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ABSTRACT 
 

Laser-based spectroscopic studies on iron 
chalcogenide superconductors 

 

Younsik Kim 

Department of Physics and Astronomy 

The Graduate School 

Seoul National University 

  

With the discovery of iron-based superconductors, research on strongly correlated 

systems faced a new era since iron-based superconductors show rich emergent 

phenomena as well as unconventional superconductivity. Owing to their multiorbital 

nature, much more degrees of freedom can be imposed, leading to diverse emergent 

phenomena including various magnetism, nematic phase, and orbital-selective physics. 

Despite the high interest in iron-based superconductors, their low-energy electronic 

structures remain a mystery. This is due to their low energy scale in electronic structures 

due to their low transition temperature and strong renormalization induced by electronic 

correlations. To reveal the low-energy electronic structures of iron-based superconductors, 

laser-based spectroscopic measurements can be utilized owing to the high energy 

resolution of lasers. In particular, low-energy electronic structures can be directly 

measured by laser-based angle-resolved photoemission spectroscopy (ARPES). 



 
 
 
 
 

Abstract 

ii 
 

 

 

 

 

 

In this thesis, I will present the development of a high-resolution laser ARPES system and 

experimental results on iron-based superconductors utilizing the setup. The laser is based 

on optical fibers, which makes the system compact and stable. The output photon energy 

is 7 eV (177 nm). The ARPES system utilizes a time-of-flight analyzer. Deep learning-

based data processing speeds up the slow data acquisition process. The results on iron-

based superconductors consist of two parts: i) Kondo lattice in FeTe; and ii) anisotropic 

superconducting gap in Fe(Te,Se). The successful measurement of low-energy electronic 

structures with the developed instrument not only facilitates the study of unconventional 

superconductivity but also leads to the demonstration of a new platform for ARPES. 

Keywords: iron-based superconductor, iron chalcogenides, fiber-based laser, angle-

resolved photoemission spectroscopy, deep learning, orbital-selective Mott transition, 

kondo physics, unconventional superconductivity  
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Chapter 1  
 
Introduction 
 

This chapter provides a brief overview of iron-based superconductors. The background, 

general phase diagram, and electronic structure of these materials are described. It is then 

followed by a discussion of iron chalcogenides. The importance of the bond angle in 

determining the electronic structure of iron chalcogenides is explained in this chapter. 

Based on the described background, the research motivation for this thesis is discussed. 
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1.1  Overview of iron-based superconductors 

 

1.1.1 Background of iron-based superconductors 

 

Iron-based superconductors (IBSCs) were discovered in 2008 with a relatively high 

superconducting transition temperature (Tc). It was a big surprise for the research 

community as there had been a preconception that superconductivity could not exist in 

magnetic materials like Fe compounds. Numerous materials have been synthesized since 

the first discovery. The materials immediately attracted attention due to their similarity to 

copper-based superconductors (hereafter cuprates). In addition, it is a multiorbital system, 

which differs from cuprates, which have only a single orbital. Specifically, the similarity 

of the phase diagram to that of cuprates raised some hope that IBSCs might provide new 

insight into the microscopic theory of high Tc materials. 
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Figure 1.1 Crystallographic structures of the iron-based superconductors. 

 

For the aforementioned reasons, intensive and extensive research has been conducted 

in IBSCs. Numerous experiments and theoretical studies have been performed on various 

materials as shown in Fig. 1.2. Even some phenomena emergent in IBSCs have been 

understood, still numerous physics including the mechanism of the high Tc 

superconductors have remained unveiled. 

 

1.1.2 Electronic structures 
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The electronic structure of IBSCs is crucial to understanding their noble physics. As 

mentioned above, there are numerous system in IBSCs, but overall electronic structure is 

similar. As shown in Fig. 1.3, the electronic structure mostly consists of t2g orbitals among 

the Fe 3d orbitals. This multiorbital system makes them distinct from cuprate 

superconductors, known as a single band system. Detailed explanations of the electronic 

structure are given as follows. Near the Γ point, three hole bands with dxz, dyz, dxy orbital 

characters locate. As a consequence, there are several Fermi surface pockets (see Fig. 1.4). 

Near the Γ point, there are usually two hole pockets while there are two electron pockets 

near the M point. It is noteworthy that the relative energy level of the hole band near Γ 

point depends on some parameters, resulting in different Fermi surface topologies. 

The detailed electronic structure may vary depending on the system. One of the reasons 

for this dependence is their crystal structures. The electronic structure of IBSCs are 

known to be extremely sensitive to the bond angle. The details of the bond angle 

dependency are discussed in Section 1.2.2. 

 

1.1.3 Multiorbital correlation effects 

 

One of the prominent aspects of IBSCs is their multiorbital nature. Due to the small 

crystal field splitting and almost half-filled electrons in the Fe 3d shell, the multiorbital 

correlation effect originated from Hund’s coupling dominates the correlation of the 

systems. Such systems are dubbed as Hund metal. IBSCs are canonical systems that show 
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Hund metal features such as orbital-selectivity or coherence-incoherence crossover. In 

this section, the orbital-selective physics of IBSCs is discussed. 

The orbital-selectivity is a representative behavior where Hund’s coupling dominates 

the overall correlation [1]. This is due to the strong blocking of interorbital hopping in the 

presence of Hund’s coupling. As a result, the orbital degeneracy is lifted, leading to the 

tally singlet state (or high spin state). The reduction of possible electron configuration 

leads to a strong correlation effect. Thus, Hund’s metal systems are generally in the 

strongly correlated regime, where overall spectral functions are broadened and coherent 

energy scale is significantly suppressed. 

IBSCs show various orbital-selective physics [2]. Among them, the orbital-selective 

Mott phase (OSMP) is the most intensively studied and experimentally confirmed [3]. 

OSMP is a phase in which only part of the orbitals is in a Mott-localized state. The OSMP 

is realized in IBSCs, (Ca,Sr)2RuO4, and some vanadate systems. The OSMP is a result of 

strong Hund’s coupling since Hund’s coupling block interorbital hopping. Consequently, 

the orbitals are separated, behaving individually. Thus, it is possible that one orbital is in a 

Mott-localized state, whereas other orbitals are in an itinerant state. 

 

1.1.4 Unconventional Superconductivity 

 

IBSCs show unconventional superconductivity. The microscopic pairing mechanism is 

still unveiled as that of other unconventional superconductors is also unveiled. Still, 

intensive research until now revealed some features of the origin. The consensus on the 
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origin of unconventional superconductivity of IBSCs is that pairing is mediated by (π, 0) 

spin fluctuations, which connect hole- and electron pockets. As a result, the phase of the 

superconducting gap is shifted by π between each pocket. This is called as s±-wave 

superconductivity. This s±-wave superconductivity was experimentally confirmed by 

quasiparticle interference in scanning tunneling microscopy measurements. The inference 

signal provides information on the phase of each superconducting pocket. Thus, the s±-

wave superconductivity was general and representative behavior of IBSCs [4]. 

Despite the consensus on the s±-wave superconductivity, there are some exceptions. 

The prime example is a monolayer FeSe grown on SrTiO3 (001) substrate. The measured 

superconducting transition temperature is up to 100 K, which is enhanced by almost an 

order of magnitude. The electronic structure measurement by ARPES revealed that the 

Fermi surface pocket near the Γ point disappears due to the strong charge transfer from 

the SrTiO3 substrate. This behavior is in strong contrast to the established s±-wave 

scenario where the Γ point pocket and M point pocket should exist. 

Another well-known example is the hole-doped iron pnictide systems. These systems 

are described as AFe2As2 (A = K, Rb, Cs). The hole-doping makes the electron pocket 

near the M point shrink below the Fermi level [5,6]. This also breaks the conventional 

s±-wave condition. The resultant behavior of superconducting properties is the 

emergence of nodal gap structure in such materials. The result regarding the nodal gap 

structure aroused interest due to possible d-wave superconductivity. However, recent 

experimental results reported that the superconducting gap symmetry of hole-doped iron 

pnictides is s-wave, not d-wave. 
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1.2  Iron chalcogenide superconductors 

 

Iron chalcogenide superconductor is in the IBSC family, having the simplest crystal 

structures (see Fig. 1.1)[7]. They have a quasi-two dimensional crystal structure. Despite 

their simple crystal structure, they attracted much attention owing to their rich phenomena. 

For instance, monolayer FeSe grown on SrTiO3 (001) substrate shows 100 K 

superconductivities, and FeTe0.5Se0.5 shows topological superconductivity. The simple 

crystal structure but rich phenomena is originated from sensitivity of electronic structures 

as a function of bond angle. The bond angle can be tuned by chalcogen substitution or by 

pressure. In this section, brief introductions on the overall phase diagram and bond angle 

physics are provided. 

 

1.2.1 Overall phase diagram 

 

Figure 1.2 Overall phase diagram of iron chalcogenide superconductors. 
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Overall phase diagram of iron chalcogenide superconductors is illustrated in Fig 1.3. 

As shown in the phase diagram, iron chalcogenides show rich phenomena, depending on 

the bond angle. In this regard, the bond angle is a prime parameter describing the physical 

and electric properties of iron chalcogenides. The superconductivity spans a wide range, 

covering FeS to FeTe0.9Se0.1. However, detailed properties of the superconductivity are 

different. FeSe shows nematic superconductivity. The superconducting order parameter is 

strongly anisotropic, following the nematic phase. In FeTe0.5Se0.5, topological 

superconductivity emerges due to the band inversion between the pz and dyz band. In 

addition, ferromagnetism and bicollinear antiferromagnetism emerge at pressurized FeTe 

and FeTe, respectively. In this thesis, the research is focused on FeTe and slightly tuned 

FeTe (pressurized FeTe and Se-doped FeTe) where strong correlation effect dominates.  

 

 

1.2.2 Bond angle physics 

 

The rich phenomena shown in iron chalcogenides are due to the sensitivity of 

electronic structure as a function of bond angle. The chalcogen doping thus significantly 

changes the electronic structure despite the isovalent doping. In this regard, understanding 

the role of bond angle is important. 
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Figure 1.3 Bond angle dependent orbital differentiation in iron chalcogenides [8]. 

 

The prime role of bond angle is changing the hopping of each orbital. The hopping of 

dxy orbital is more suppressed compared to dxz/yz orbitals when the bond angle becomes 

small. This is due to the fact that the dxy orbital is confined in the Fe plane. If bond angle 

becomes small, the chalcogen atom is pushed away from the Fe plane assuming bond 

length is constant. Thus, the hopping of the dxy orbital through the chalcogen atom is 

suppressed. The phenomenon is represented as OSMP near the FeTe end; the dxy orbital 

of FeTe is almost completely localized. This orbital differentiated hopping is protected by 

Hund’s coupling, which significantly suppresses interorbital hopping. This orbital-

dependent correlation or mass renormalization is well-studied in iron chalcogenide 

superconductors as shown in Fig 1.3. 

 

1.3 Motivation 

 

FeTe and slightly tuned FeTe show interesting phenomena such as bicollinear 
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antiferromagnetism, ferromagnetism, and superconductivity. Especially, the transport 

properties across the magnetic transition change significantly. However, their microscopic 

origin is still puzzling. This is due to the absence of studies on the low-energy electronic 

structure of the systems since low-energy electronic structures contain direct information 

on transport properties and superconductivity. By developing a state-of-the-art high-

resolution ARPES system, the low-energy electronic structures of iron chalcogenide can 

be revealed. 
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Chapter 2 
 
Development of laser-based ARPES system  
 
 

 

In this chapter, experimental setups are introduced which are utilized to obtain the 

results in this thesis. Along with overall scheme and working principles, detailed 

descriptions on each component are provided. Since the main purpose of the thesis is to 

study and investigate low-energy electronic structures of iron chalcogenide 

superconductors, developing a system with high energy-resolution is approach. In this 

regard, the distinct points that make different from other ARPES system are described. 

More specifically, next-generation time-of-flight analyzer and fiber-based laser are 

utilized, which are totally different approach from conventional ARPES setup. The 

developed setup has a high energy-resolution of 1.4 meV without space-charge effect.  

This chapter is organized as follows. Firstly, time-of-flight analyzers are introduced 

with the comparison with hemispherical analyzers. Next, fiber-based lasers and detailed 

experimental setups are described. Finally, overall ARPES setup, representative data are 

introduced. 
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2.1. Angle-resolved photoemission spectroscopy (ARPES) 

 

2.1.1. Introduction to ARPES 

 

Angle-resolved photoemission spectroscopy (ARPES) measures electron distributions 

in the reciprocal space of solids directly. As a result of the photoelectric effect, electrons 

are emitted from the sample when light is incident upon it. The photoelectrons have 

information regarding their kinetic energy and emitted angle. Based on this information, 

it is possible to determine the binding energy and momentum of the electrons in the 

crystal (see Fig. 2.1). The following explanations provide more detail. 

 

Figure 2.1 Schematic illustrating ARPES process [1]. 
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The photoelectron have information as follows: 

ħ𝑘௫ = ඥ2𝑚𝐸௞௜௡ sin 𝜃 cos 𝜑 

ħ𝑘௬ = ඥ2𝑚𝐸௞௜௡ sin 𝜃 sin 𝜑 

ħ𝑘௭ = ඥ2𝑚𝐸௞௜௡ cos 𝜃 

where 𝐸௞௜௡  is the kinetic energy of the photoelectrons. In principle, the electronic 

structure can be obtained with the information of 𝐸௞௜௡, 𝜃, and 𝜑. However, the out-of-

plane momentum is not conserved through the photoemission process since translational 

symmetry is broken at the surface. Therefore, additional information is required to obtain 

out-of-plain momentum 𝑘௭ . Assuming that the dispersion of the final state of 

photoelectrons as a free electron, the final state energy reads as follows: 

𝐸௙(𝑘) =  
ℏଶ𝑘∥

ଶ + ℏଶ𝑘ୄ
ଶ

2𝑚
− 𝐸଴ 

where E0 is the bottom energy of the valence band and m is an electron mass. Moreover, 

together with two equations below, 

𝐸௙(k) =  𝐸௞௜௡ +  𝜙 

ℏଶ𝑘∥
ଶ

2𝑚
=  𝐸௞௜௡ sin 𝜃ଶ 

where 𝜙 is a work function of a sample during photo-emission process. Then, out of 

plane momentum 𝑘ୄ (kz) can be determined as follows. 
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𝑘ୄ =  
1

ℏ
ඥ2𝑚𝐸௞௜௡ cos 𝜃ଶ + 𝑉଴ 

 

where V0 (= 𝐸௞௜௡ +  𝜙) is an inner potential. Changing photon energy of light source, V0 

can be obtained experimentally by using the boundary condition of periodicity in 𝑘ୄ 

(equivalent to photon energy). As a result, electronic state of the solids can be determined 

from the combination of ARPES experiment and the principles explained above. ARPES 

can provide the information of electronic spectra with energy dispersion and Fermi 

surface maps. 

From above, ARPES can provide the direct information of the electronic structure of 

solids in energy-momentum space. About the experimental (instrumental) aspect of 

ARPES, in general, the system consists of various instruments such as an electron 

analyzer, light sources, a manipulator with temperature control, several vacuum pumps to 

achieve ultra-high vacuum (pressure better than 5 x 10-11 Torr) and other in situ 

experimental instruments to perturb the sample under measurement with electric field, 

electron doping, strain, and so on. Finally, let us provide the detailed information of the 

instruments in the following subsections and our installed home lab in situ ARPES system. 

 

2.1.2  Electron analyzer 
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Figure 2.2 Schematic drawing of a hemisphere electron analyzer [2]. 

 

To detect and analyze the photo-electrons from a sample, various type of electron 

analyzers have been developed. Among them, hemisphere analyzer is the most common 

method to resolve the energy and momentum of electrons by bending the electron path 

with an electromagnet as shown in Fig. 2.2.  

Brief process of detecting photo-electrons inside the analyzer can be explained as 

follows. As in Fig. 2.2, the analyzer utilizes a hemisphere electromagnet for bending path 

of electron to resolve the energy. In detail, firstly, the photo-electrons enter to an electron-

lens table ahead of entering the electromagnet. Then, electric field from the lens set a 

certain kinetic energy of electrons to a defined energy called pass energy (EP). The rest of 

electrons with kinetic energy other than the set certain kinetic energy, is affected by the 

lens and enter into slits. As a result, photo-electrons of energy near EP selectively enter 

into the hemisphere. Inside the hemisphere, magnetic field is applied for bending path of 

the electrons (entered into slit) and its magnitude is set to make the electron of EP reach 

onto a center of a two-dimensional (2D) measuring device, the detector. For other 
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electrons, electrons with E > EP are bent less while those of E < EP bent more. Finally, the 

photo-electron energy is resolved as the final electron positions on the 2D detector as 

shown in Fig. 2.2.  

For some detailed information of data acquisition can be provided. Firstly, the angle 

𝜃 of photo-electron as in Fig. 2.12, can be directly resolved as the final electron positions 

on the 2D detector by using the momentum conservation law if the photo-electron 

successfully enter into the slit. From the fact, to obtain information of the angle 𝜑 

perpendicular to the slit direction, the sample has to be rotated in the direction by using 

manipulator. To sum, information of 𝜃 and 𝜑 can be obtained by analyzer and by 

controlling the angle (relative to the slit geometry) of sample, respectively. 

On the other hand, details of detector units can be explained. The hemisphere analyzer 

usually consists of three steps of detector units: (1) Final electrons hit multi-channel plate 

of nano-sized arrays of electron multiplier which amplifies the signal enough to be 

measured. (2) Amplified bunch of electrons hit a scintillator converting light signal from 

charged particles. (3) The light is measured by 2D CCD which resolves an angle axis (𝜃) 

and an energy axis. 

 

2.1.3 Light sources 
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Fig 2.3 Various types of light sources for ARPES with their characters and photon energy 

ranges [2]. 

 

In addition to the analyzer, light source is also a fundamental instrument for ARPES 

measurement and thereby, various types of light sources have been developed as shown in 

Fig. 2.3. In general, typical light sources to induce photo-electrons of solids for ARPES 

measurement are threefold by using a synchrotron radiation, a gas discharge lamp, and an 

optical laser. A critical requirement to be utilized as a light source would be that the 

photon energy has to be larger than work function of samples, which typically is around 

4.5 eV for many cases. From now on, we will introduce the characteristic light sources 

(synchrotron radiation & discharge lamp) in this subsection one by one. 

The most common example would be the synchrotron radiation which can provide a 

change in photon energy. It generates light by bending (accelerating) the propagating 

bunches of electrons which induces light emission. Moreover, synchrotron radiation 

utilizes a set of magnets (called undulator) to manipulate the emitted photons, which can 
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provide a manipulation of photon polarizations and energy. On the other hand, high flux 

compared to those of discharge lamp or laser would provide various advantages for 

ARPES measurement: (1) Obtained data have less noise level, better statistics, and 

thereby a short data acquisition time. (2) Large flux allows a much small beam size 

(typically about few tens of microns in diameter) providing sufficient numbers of 

photoelectrons. (3) Corresponding small beam size provides fine momentum-, energy-

resolutions, and also opens a way for measurement of tiny size samples.  

Another frequent example would be a gas discharge lamp which utilizes gases 

(typically He, Xe, Ne) with low pressure. Among the gases, He gas would be the most 

common element providing photon energy of 21.2 eV (He I) and 40.8 eV (He II) [3,4]. 

Since the discharge lamp can be run with a compact controller and the unit size is not that 

large, it usually is installed in many home lab based ARPES facilities. However, since the 

gas determines photon energy, the energy cannot be varied compared to the case in 

synchrotron radiation which makes the lamp not suitable for measurement of materials 

having three-dimensional electronic structures.  

 

2.2 Time-of-flight analyzers 

 

Advances in spectroscopic techniques often accompany an increase in the dimension 

that can be obtained, thereby allowing new information. The prime example of this is 

ARPES. Conventional hemispherical analyzers can take two-dimensional 

energy/momentum space, whereas modern-day angle-resolved time-of-flight (ARTOF) 



 
 
 
 
 

Chapter 2 

20 
 

 

 

 

 

analyzer can take three-dimensional energy/momentum space [2]. Despite their capability 

that can cover additional phase space thereby allowing new information, most of ARPES 

analyzers are still hemispherical analyzers to date due to some apparent shortcomings of 

ARTOF analyzers. In this section, the working principle of ARTOF analyzers which is 

totally different from that of hemispherical analyzers is introduced. The advantages and 

disadvantages of ARTOF analyzers over hemispherical analyzers are described as well, 

with newly developed methodologies to alleviate such shortcomings of ARTOF analyzers. 

 

2.2.1 Working principles 

 

ARTOF analyzers measure flying time of photoelectrons from sample surface to the 

detector to measure the kinetic energy of photoelectrons. Without any lens voltages, the 

conversion relation between flying time and kinetic energy of photoelectrons are as 

follows: 

𝐸௞ =
𝑚௘

2
൬

𝐿

𝑡
൰

ଶ

 

where 𝑚௘ is mass of electrons, 𝐿 is distance from sample surface to detector, and 𝑡 

is flying time of photoelectrons. To measure the kinetic energy in meV scale, detectors 

should have temporal resolution in several hundreds picosecond scale. Since 

conventionally used charged charge-coupled device (CCD) detectors have much slower 

temporal resolution, a new type of detector called as delay line detector (DLD) combined 

with microchannel plate (MCP) is utilized in ARTOF analyzers. DLDs contain several 
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layers of grid-like electrodes as shown in Fig. 2.4. A bunch of multiplied photoelectrons 

emitted from MCP bumps into the grid-like electrodes, resulting in two 

counterpropagating pulses in each electrode. Ends of each electrode are connected to a 

time-to-digital converter (TDC) board where incoming timings of pulses are digitized. 

The x, y positions can be calculated by the timing difference between each end of 

electrodes. The conversion relation is as follows: 

 

𝑥 = 𝑥଴ + 𝑣(𝑡௫ଵ − 𝑡௫ଶ), 𝑦 = 𝑦଴ + 𝑣൫𝑡௬ଵ − 𝑡௬ଶ൯ 

 

where 𝑣 is transverse propagating speed of pulses in electrodes and 𝑡௜ଵ,  𝑡௜ଶ are timings 

at the end of each electrode along i-direction. In the same manner, total flying time can 

also be calculated by averaging the two timings. Measured (𝑥, 𝑦, 𝑡) data has one-to-one 

correspondence to ൫𝑘௫ , 𝑘௬, 𝐸൯ data. However, complex non-linear conversion should be 

applied to obtain ൫𝑘௫ , 𝑘௬, 𝐸൯ data from (𝑥, 𝑦, 𝑡) data. Roughly speaking, each axis of 

measured (𝑥, 𝑦, 𝑡) signals roughly corresponds to the each axis of ൫𝑘௫ , 𝑘௬, 𝐸൯.  

 

Figure 2.4 Schematic drawing of delay line detectors. 
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2.2.2  Comparison with hemispherical analyzers 

 

The novel combination of DLD and MCP enables new information of photoelectrons; 

simultaneous three-dimensional data acquisition gives two-dimensional momentum 

resolution as well as energy resolution. In contrast, hemispherical analyzers can obtain 

two-dimensional data. To get data from two-dimensional Brillouin zone, sample should 

be rotated, or photoelectron should be deflected with proper lens tables. The simultaneous 

acquisition of three-dimensional energy/momentum space accelerates data acquisition and 

makes matrix element effect simpler. In addition, hemispherical analyzers utilize slits to 

have energy resolution [2]. Thus, most of photoelectrons are blocked, resulting in low 

photon-detector count conversion efficiency. The low photon-detector count conversion 

efficiency is detrimental for high resolution measurements, where space-charge effect 

should be severely considered (see Fig. 2.5) [5,6]. This, in turn, implies that the data 

acquisition efficiency becomes worse when it comes to high resolution measurements. 

ARTOF analyzers are slitless. The photon-detector count conversion efficiency is much 

better compared to hemispherical analyzers. As a result, the measurement efficiency for 

high-resolution measurements is much better compared to hemispherical analyzers. 

Despite these advantages of ARTOF analyzers, ARTOF analyzers have not been 

adopted so much for their apparent disadvantages. The prime disadvantage is a constraint 

on light source: the light source should be pulsed with proper pulse width and repetition 

rate. More specifically, the pulse width should be less than 1 ns for meV-scale energy 

resolution, and repetition rate should be in range from 100 kHz to 1.5 MHz. These 
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required conditions strongly impose constraints on light source. Continuous wave light 

sources, which have been conventionally used such as gas discharge lamps, cannot be 

used with ARTOF analyzers. Only some of lasers or synchrotron light sources can be 

used for ARTOF analyzers. Another known issue of ARTOF analyzers is slow data 

acquisition for lower-dimensional data. If one only needs energy/momentum cuts or just 

energy distribution curve, hemispherical analyzers are much faster for such applications.  

These features are apparent obstacles to prevent ARTOF analyzers from being widely 

used. In this thesis, the disadvantages are overcome by introducing a home-built fiber 

laser and deep learning-based data processing techniques [7], which will be introduced 

later. 

 

Figure 2.5 Space-charge effect for ARPES measurements. 

 

2.3  Fiber-based 7 eV laser 

 

Since the successful application of lasers as a new light source for ARPES 

measurements, high-resolution (HR) measurements enabled by lasers allow for new 
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information, thereby facilitating new discoveries. The most widely used laser for ARPES 

is 7 eV laser, which is 6-th harmonics of Nd:YVO4 laser which generates 1064 nm [8,9]. 

The generation of 7 eV (177 nm) light is enabled by the development of KBe2BO3F2 

(KBBF) crystals, which can convert 3.5 eV photons into 7 eV photons. The combination 

of the KBBF crystals and Nd:YVO4 is widely accepted, opening a new era in laser 

ARPES. 

 

2.3.1. Motivation: why fiber-based lasers? 

 

Fiber-based lasers attracted much attention recently due to their compact, and stable 

properties [6,10]. Compared to bulk solid-state lasers, fiber-based lasers occupy much 

smaller space. In addition, fiber-based lasers do not require any alignment, which 

guarantees stability over a long time. These features are ideal for spectroscopic 

experiments. Thus, some research group starts to apply fiber-based lasers in spectroscopic 

experiments [6,11]. In addition, fiber-based lasers feature high amplifier gain (up to 30 

dB) [12]. This, in turn, means that complicated amplification structures such as 

regenerative amplifiers are not required. For spectroscopic experimentalist, such easy-to-

handle features of fiber-based lasers are another attractive point. 

The weak point of fiber-based laser is non-linear effects in fiber medium; when intense 

light pulses propagate the laser medium, undesired phenomena such as self-phase 

modulation, self-focusing, and non-linear polarization rotation occur [13]. These 

phenomena are detrimental for fiber lasers, which should be avoided. Considering intense 
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pulses cause the non-linear effect, the peak power or pulse energy is limited. This 

severely limits the output power from fiber-based lasers. 

ARTOF analyzers require much less power of light sources compared to hemispherical 

analyzers owing to the slitless nature. Thus, the disadvantage of fiber lasers: weak output 

power is not a remarkable problem for ARTOF analyzers. This makes ARTOF analyzers 

and fiber-based lasers a novel combination. 

 

2.3.2. Overall structure 

 

Figure 2.6 Schematic of fiber-based 7 eV laser. DFB: distributed feedback laser; SOA: 

semiconductor optical amplifier; LD: laser diode; WDM: wavelength division multiplexer; 

BPF: bandpass filter; PC: pump combiner; SMF: single mode fiber; DCF: double-clad 

fiber; FBG: fiber Bragg grating; LBO: LiB3O5 crystal. 
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The overall schematic of fiber-based 7 eV laser is illustrated in Fig. 2.6. Gain switched 

distributed feedback laser (DFB) module is utilized as an oscillator. The weak pulse 

generated subsequently amplified by a semiconductor optical amplifier (SOA) located in 

the same module. The series of amplification stages made of Yb-doped fiber is fed by 

optical pulses generated from DFB/SOA module. The oscillator and amplifiers are all 

fiber setups, which is dubbed as the master oscillator fiber amplifier (MOFA) setup. The 

frequency of amplified pulses is up-converted to 6th harmonics by a series of LiB3O5 

crystals and a KBBF crystal. Fig. 2.7 shows the fiber-based 7 eV laser system built in the 

home lab. 

Figure 2.7 Fiber-based 7 eV laser system built in Seoul National University. 

 

2.3.3. Oscillator: gain-switched DFB laser diode 

 

For the oscillator of the laser system, gain-switched DFB laser diode is adopted. The 

adopted reasons are as follows:  
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i) Stable pulse generation  

Since optical pulses with pulse width of 50 ps can be generated by electrical switching, 

stable pulse generation free from external perturbation is possible. This feature is in a 

strong contrast with mode-locked lasers, in which pulse generations are severely affected 

by external perturbation such as temperature fluctuations or mechanical vibrations. The 

stability of pulse generation of DFB laser diodes enables the operation of lasers at 

ambient conditions. 

 

ii) Free repetition rate tuning 

Considering the working principles of ARTOF analyzers, free repetition tuning is a 

desirable feature. If repetition rate is too high, the photoelectrons are overlapped with 

subsequent photoelectrons. If repetition rate is too low, data acquisition is slow and space-

charge effect is more significant. Since the optimal repetition rate depends on lens mode, 

tunability of the repetition rate is highly desirable. 

 

iii) Easy integration with fiber amplifiers 

Since the output of DFB/SOA module is connected by optical fibers, it is easy to integrate 

with fiber amplifiers. This enables all-fiber setup, which does not require alignment 

procedure. This ensures long-term stability of the MOFA system.  

 

Considering the advantages of gain-switched DFB laser diodes over mode-locked 

lasers, the DFB laser diode module (QCBA1061-64A0 from QDLaser) is adopted. 
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2.3.4. Amplifier: Yb-doped fibers 

 

Yb-doped fibers are utilized for the amplification stages. The output from DFB/SOA 

module are connected to the Yb-doped fiber amplifiers by FC/APC connectors. The 

amplification stages consist of three stages: two pre-amplification stages and one main 

amplification stage. First pre-amplifier utilizes Yb-doped fibers with core diameter of 4 

μm, cladding diameter of 125 μm, and core absorption at 976 nm of 1200 dB/m (LIEKKI, 

YB-1200-4/125). Second pre-amplifier utilizes Yb-doped fibers with core diameter of 6 

μm, cladding diameter of 125 μm, and core absorption at 976 nm of 250 dB/m (Coherent, 

SM-YSF-HI-HP). The pre-amplification stage utilizes single-mode 976 nm laser diodes 

(Thorlabs, BL976-SAG300) as pump sources. The current and temperature of laser 

diodes are precisely controlled for stable operations. Fiber-based isolators are installed in 

between amplification stages to protect from back-propagating light. Fiber-based 

bandpass filters are also installed after each stage, to block amplified spontaneous 

emission. Second amplification stage is double-pass scheme, by using a fiber Bragg 

grating and a fiber circulator. The fiber Bragg grating not only act as a mirror reflecting 

1064 nm pulses but also act as a bandpass filter. The average power of pre-amplified 

pulses is around 50 mW at 1.5 MHz. The average power is amplified up to 1 W after 

main amplification stage. 

 

2.3.5. Frequency up-conversion 
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The amplified 1064 nm pulses are up-converted series of LBO and KBBF crystal. First, 

1064 nm pulses are up-converted to 532 nm by an LBO crystal. The second harmonic 

generation is in type I non-critical phase matching (NCPM) condition where the phase 

matching condition is set by temperature. The intrinsic pulse and second harmonic pulse 

are fed into second LBO crystal where third harmonic pulses are generated via sum-

frequency generation. The sum-frequency generation is in the type II phase matching 

condition. Subsequently, the 6th harmonics are generated in the KBBF crystal inside a 

nitrogen chamber. Generation of 6th harmonics is checked by a vacuum ultraviolet (VUV) 

sensitive photodiode from Hamamatsu. 

 

2.3.6. 7 eV alignment/focusing 

 

Since 6th harmonics or 7 eV light cannot propagate in the air due to strong absorption 

by oxygen or vapor water, all 7 eV alignment and focusing are performed inside a 

custom-made acrylic optical chamber. The optical chamber is always filled with nitrogen 

or argon gas. When aligning optics inside the chamber, the chamber is filled with argon 

which is much heavier than air. Thus, the alignment can be conducted with the lid of the 

chamber open. This makes the whole alignment procedure much easier and is in strong 

contrast with 11 eV, which requires a much purer condition. 

Focusing 7 eV light onto the sample surface is done by using a pair of CaF2 lenses. One 

is used for collimating divergent 7 eV light from the KBBF crystal, and the other one is 
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used for focusing the light onto the sample. The focused beam spot size is less than 100 

μm, checked by knife-edge method and phosphorus sample.  

 

2.4  Laser-based ARPES system 

 

The ARTOF analyzer and developed fiber-based 7 eV laser are combined, along with 

an open-cycle cryo-manipulator that can cool down to 5 K and 6-axis motion. In this 

section, the overall structure, representative data, and system benchmark are represented. 

 

2.4.1 Overall structure 

 

Figure 2.8 Schematic illustration of laser-based ARTOF system. 

 

The overall structure of the laser-based ARPES system is illustrated in Fig. 2.8. As well 
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as the laser system and ARTOF analyzer, the laser-based ARPES system has a glovebox 

and in situ transfer system. By utilizing the setup, air-sensitive or exfoliated samples can 

be prepared and transferred without exposure to air. In addition, an ultra-high vacuum 

suitcase enables us to transfer samples from thin film growth chambers. This versatility 

extends the sample spectrum from single crystals to artificially fabricated systems such as 

thin films or exfoliated systems. 

 

2.4.2 Representative data and benchmark 

 

Figure 2.9 Representative data from the developed laser-based ARPES system. a. ARPES 

data from a Bi2Se3 single crystal. b. ARPES data from a Bi2Te3 thin film. 

 

Representative data from the developed laser-based ARPES system is illustrated in Fig. 

2.9. Shown in Figs. 2.9a and b are from Bi2Se3 single crystal and Bi2Te3 thin film, 

respectively. The results show clear spectra with well-defined band structures. ARPES 
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data from these reference samples show the developed ARPES system works well with 

good data quality. 

To investigate the performance of the ARPES system quantitatively, we conducted 

energy resolution measurements. Shown in Fig. 2.10 is the temperature-dependent 

ARPES measurement result on superconducting FeTe0.55Se0.45. Note that the 

superconducting transition temperature of FeTe0.55Se0.45 is around 15 K. The low-

temperature data shows a well-defined quasiparticle peak (QP), whereas high-temperature 

data shows the edge following the usual Fermi-Dirac distribution. The edge of the QP 

seen in low-temperature data has a width of around 1 meV, directly demonstrating the 

energy resolution of the system. Note that the results are taken without attenuating photon 

flux, which demonstrates high resolution of 1 meV can be obtained without the space-

charge effect. 

 

Figure 2.10 Temperature-dependent ARPES results on FeTe0.55Se0.45.  

 

Up to now, I have provided explanations for experimental setups for the research in 

this thesis. Based on the experimental tool, in the following chapters 3 and 4, my main 
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results and discussion of the low energy physics of iron chalcogenide superconductors are 

covered.  
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Chapter 3 
 
Kondo interaction in FeTe 
 

 

 

In this chapter, I provide the results to confirm/clarify the existence of Kondo lattice 

behavior in FeTe. As well as the drastic change of transport properties across the 

magnetic transition, the peculiar magnetism of FeTe can be explained under the Kondo 

lattice scenario. The observation was enabled by the high energy resolution of the 

developed laser-based ARPES system, which can directly measure low-energy electronic 

structures of FeTe. The strongly enhanced electron mass is a representative feature of 

Kondo lattice or resultant heavy fermion (HF) behavior which was elusive up to date.  

Finding d-electron heavy fermion (HF) states has been an important topic as the 

diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena 

or new states of matter such as correlation-driven topological Kondo insulators. Yet, 

obtaining direct spectroscopic evidence for a d-electron HF system has been elusive to 

date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic 

metal, FeTe, via ARPES, scanning tunneling spectroscopy, and transport property 

measurements. The Kondo lattice behavior is represented by the emergence of a sharp 

quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property 

measurements confirm the low-temperature Fermi liquid behavior and reveal successive 
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coherent-incoherent crossover upon increasing temperature. We interpret the Kondo 

lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz 

orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice 

behavior and long-range magnetic order. Some parts of this chapter are adopted from the 

previous work [1]. 
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3.1 Backgrounds 

 

3.11 Kondo effect 

 

The Kondo effect describes the scattering of conduction electrons via magnetic 

impurities at low temperatures. The phenomenon was first discovered in 1936, showing a 

minimum in resistivity of Au [2]. Prof. Jun Kondo derived a solution using perturbation 

theory [3]. The dependence of the resistivity on temperature can be written as 

 

𝜌(𝑇) = 𝜌଴ + 𝑎𝑇ଶ + 𝑐௠ ln
𝜇

𝑇
+ 𝑏𝑇ହ 

 

where 𝜌଴ is residual resistivity and 𝑎𝑇ଶ is the contribution from Fermi liquid behavior, 

𝑐௠ ln
ఓ

்
 is from Kondo scattering, and 𝑏𝑇ହ is from lattice vibrations. The heart of the 

Kondo effect is random scattering by magnetic impurities, leading to an increase in 

resistivity and incoherence in electronic structures. 

 

3.12 Kondo lattice 

 

If magnetic impurities in the Kondo problem are placed periodically, the periodicity 

can develop coherency via Kondo interaction [4]. This is called as Kondo lattice, where 

local magnetic moments are located at each site of a lattice. The demonstrative system 
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having a Kondo lattice is the f-electron system, where local magnetic moments are 

intrinsically formed from a partially filled f-electron shell. The resultant feature of the 

Kondo lattice enhanced electron mass since the newly formed quasiparticles have 

significantly enhanced mass due to hybridization with localized bands. Thus, the 

Sommerfeld coefficients of such materials are enhanced by two- or three-times magnitude 

compared to their non-magnetic counterpart [5]. 

 

3.2. Introduction 

 

Most heavy fermion materials are f-electron systems, according to previous 

experimental and theoretical studies [4,6,7]. Recently, Kondo interactions have been 

proposed to host HF states in d-electron systems as well [8-11]. It is important to study 

HF states in d-electron materials since the diversity of d-electron systems may lead to 

exotic Kondo interactions, such as topological Kondo insulating states [12] or 

cooperation between Kondo lattice behavior and long-range magnetism [13]. Thus, the 

novelty calls for new studies to find HF in d-electron material groups. 

FeTe can be a candidate material to observe d-electron HF states. Its electron 

correlation is the strongest among iron-based superconductors (IBSCs) [14]. The 

magnetic ground state is known to be bicollinear antiferromagnetism (BAFM) with a 

large magnetic moment of 2.1 μB, implying the local nature of the magnetism [14]. The 

Sommerfeld coefficient of FeTe is reported to be 31.4 mJ/(K2·mol), indicating a heavy 

effective mass of the system [15]. This value is much larger than that of other iron 
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chalcogenides; FeS and FeSe for instance have 3.8 and 6.9 mJ/(K2·mol), respectively 

[16,17].  

In addition to these HF-related properties, other transport properties suggest the 

existence of strong spin-electron interaction. The temperature-dependent resistivity 

exhibits a drastic change at the Néel temperature (TN). It shows an insulating behavior 

above TN, but a metallic behavior below TN [18]. The aforementioned properties of FeTe 

imply that the local magnetic moment significantly affects the electronic structure. Thus, 

electronic structure studies on the HF state of FeTe can unveil its origin and how it 

couples with magnetism.  

In this chapter, we report on a comprehensive study on FeTe using angle-resolved 

photoemission spectroscopy (ARPES), transport property measurements and scanning 

tunneling spectroscopy (STS). We observe a hallmark of an HF behavior in ARPES 

spectra: a sharp quasiparticle peak (QP) near the Γ point and its strong temperature 

dependence. The observed QP is attributed to Kondo hybridization between Fe 3dxy and 

Te 5pz. The Kondo hybridization scenario is further supported by STS results, showing 

the Fano line shape and narrow hybridization gap. In this picture, the recovery of metallic 

behavior in the low-temperature region is due to the emergence of the strong QP around 

the Γ point. We also conducted a Heisenberg model calculation, suggesting the Kondo 

interaction may be responsible for the emergence of BAFM in FeTe. These results 

provide a unified perspective that the Kondo interaction determines the exotic physical 

and magnetic properties in FeTe. 
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3.3 Methods 

 

3.3.1 ARPES measurements 

 

High-resolution ARPES measurements were performed with a home lab-based laser 

ARPES system equipped with a 10.897 eV laser (UV-2 from Lumeras) and a time-of-

flight analyzer (ARTOF 10k from Scienta Omicron) [19]. Photon energy-dependent 

ARPES measurements were performed at BL-21B1 of the National Synchrotron 

Radiation Research Center (NSRRC). All ARPES measurements were conducted with p-

polarized light. Overall energy resolution for the laser ARPES and photon energy 

dependent ARPES measurements was set to be 2 and 14 meV, respectively. The 

temperature dependent measurements were conducted upon cooling, starting from 80 K. 

The photon energy-dependent measurements were conducted at 15 K. 

 

3.3.2 Transport measurements 

 

The resistivity and heat capacity measurements were carried out with a Physical 

Property Measurement System (PPMS from Quantum Design). The resistivity and Hall 

coefficient measurement was conducted in a standard 4-probe and Hall bar geometry, 

respectively. 

 

3.3.3 Scanning tunneling microscopy measurements 
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STM experiments have been performed using a home-built low-temperature STM 

operating at 4.3 K or 80 K. The FeTe single crystal precooled to 15 K was cleaved in the 

ultra-high vacuum condition. The cleaved FeTe sample was immediately inserted into the 

STM head. A PtIr tip is used for the measurements, and the tip quality is checked by the 

surface interference pattern on Cu(111). To acquire dI/dV spectra, a standard lock-in 

technique was used with a modulation frequency of f = 718 Hz. 

 

3.3.4 Band structure simulation 

 

The band structure simulation with a toy model is conducted to simulate ARPES results 

with finite kz broadening where a strongly kz-dispersive band is hybridized with a 

localized band. The simulation is based on a two-band model with a finite hybridization. 

The Hamiltonian is defined as  

𝐻 =  ቆ
𝐸௣(𝑘ሬ⃗ ) 𝛥

𝛥 𝐸ௗ(𝑘ሬ⃗ )
ቇ, 

where  

𝐸௣൫𝑘ሬ⃗ ൯ =  5𝑡 ൬
𝑘௫

𝜋
൰

ଶ

+ 100𝑡 cos(𝑘௭) −  𝜇, 

𝐸ௗ൫𝑘ሬ⃗ ൯ =  −
𝑡

200
൬

𝑘௫

𝜋
൰

ଶ

− 𝑡 cos(𝑘௭)  −  𝜇, 
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𝛥 = 10𝑡. 

 

t is the energy scale of the hopping parameter and μ is the chemical potential of the 

system which is set arbitrarily. The basis of each axis is p, d orbitals, respectively. The in-

plane dispersion is defined as parabolic and out-of-plane dispersion is defined as a cosine 

function. The dispersion parameter is based on the DFT calculation and ARPES results on 

FeTe1-xSex
20, 22-24. The diagonalized band structures are projected onto the (001) surface 

and plotted in Fig. 5f. For Fig. 5e, only 𝐸௣൫𝑘ሬ⃗ ൯ is plotted to simulate the ARPES data at 

80 K where hybridization does not occur. The blue and red intensity in Fig. 5 denotes the 

orbital character of pz and dxy, respectively.  

 

3.4 Results 

 

3.4.1 Transport properties 
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Figure. 3.1. Crystal structure and transport results of FeTe. (a) Crystal structure of FeTe. 

(b) Spin configuration of bicollinear antiferromagnetic (BAFM) state in FeTe. (c) 

Temperature-dependent resistivity. The red curve is the experimental data while the blue 

curve is the fitting result of the logarithmic function (a+b log(T)) of the data between 120 

K and 300 K. Inset shows the temperature-derivative of the resistivity. (d) Temperature-

dependent Hall coefficient. (e) Temperature-dependent Cv/T. Inset shows Cv/T vs T2 plot 

in the low-temperature region. The black solid line in the inset is the fit result of Cv/T = γ 

+ βT2. 

 

FeTe has the simplest crystal structure among the IBSCs as shown in Fig. 3.1a. 

Compared to other similar iron chalcogenide systems of FeSe and FeS, FeTe has a 

distinctive bonding angle value θ shown in Fig 3.1(a). More specifically, Te atom is 

pushed away from the Fe plane due to its large atomic size and, as a result, FeTe has a 



 
 
 
 
 

Chapter 3 

44 
 

 

 

 

 

small θ value [20]. This aspect of the crystal structure leads to localization of the Fe 3dxy 

band as the dxy orbital is confined in the Fe plane. A recent ARPES study showed a 

complete loss of coherent spectral weight in the dxy band in FeTe, indicating a strong 

localization in the band [14,21]. The magnetic ground state of FeTe is bicollinear 

antiferromagnetism (BAFM) as shown in Fig. 1b below a Néel temperature of near 70 K 

[18]. It is noteworthy that among IBSCs, only FeTe exhibits BAFM. The ordering vector 

of BAFM in FeTe is (π/2, π/2) (1-Fe unit cell) while that of conventional AFM shown on 

other IBSCs is (π, 0) [22]. 

Transport properties show a close relationship with magnetic properties. The 

temperature-dependent resistivity in Fig. 1c shows insulating behavior above TN. We find 

the temperature dependence follows a logarithmic behavior of -ln(T). On the other hand, 

it abruptly recovers a metallic behavior below TN. More specifically, it shows a Fermi 

liquid behavior below 15 K with a T2 dependence resistivity, and a T-linear behavior 

between 30 K and 70 K. These T-dependent behaviors indicate the existence of coherent-

incoherent crossover around 15 K (see the inset of Fig. 1c and Supplementary 

Information). It is also noteworthy that the resistivity shows a minimum at around 2.2 K 

(see Supplementary Information for the corresponding data and discussion). The Hall 

coefficient, as well as the resistivity, shows a drastic change at TN. The Hall coefficient 

changes hole dominant (T > TN) to electron dominant (T < TN) at TN as can be seen in Fig. 

3.1d. The crossover behavior seen in the resistivity data can be also found in the heat 

capacity data in Fig. 3.1e; Cv/T deviates from T2 behavior around 15 K (see 

Supplementary Information for the determination of the deviation temperature). Further 
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analysis shows that the Sommerfeld coefficient extracted from the heat capacity is 33.4 

mJ/mol·K2 (see the inset of Fig. 3.1e). It is much larger than that of other iron 

chalcogenides. For instance, it is 3.8 and 6.9 mJ/mol·K2 for FeS and FeSe, respectively 

[16,17]. 

 

3.4.2 Electronic structures 

 

 

Figure 3.2. Electronic structure of FeTe. (a) Fermi surface (FS) maps from high-

resolution laser-ARPES measurements, obtained at 15 and 80 K. (b) Temperature-

dependent high symmetry cuts along the Γ-X direction. ARPES data were taken with 11 

eV photons. (c) Energy distribution curves (EDCs) integrated within a certain momentum 

range (kx
2 + ky

2 < (0.15 Å-1)2). The EDCs are normalized with the integrated intensity 
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from an energy window of -0.25 eV < E – EF < -0.2 eV. (d) Symmetrized EDCs of (c). 

Inset: enlarged view of EDCs near the Fermi level. (e) Temperature-dependent spectral 

weight at E = EF and E = EF – 0.1 eV. (f and g) Temperature-dependent Fermi momentum 

(kF) and Fermi velocity (vF), respectively, obtained from momentum distribution curve 

(MDC) analysis. Errors bars in (f and g) represent the fitting errors of Fermi momentum 

and Fermi velocity, respectively. 

 

We turn our attention to the electronic structure of FeTe. High-resolution laser ARPES 

experiments were performed to track the temperature-dependent evolution of the 

electronic structure. The Fermi surfaces (FSs) near the Γ point shown in Fig. 3.2a exhibit 

significant temperature dependence as the temperature decreases from 80 K to 15 K. A 

single circular FS pocket is clearly observed at 15 K while it becomes a blob at 80 K. 

Evolution of the electronic structure can be also seen in the high symmetry cuts along the 

kx-direction shown in Fig. 3.2b. It is revealed that the FS pocket observed at 15 K in Fig. 

2a comes from an electron band. As the temperature increases, the electron band tends to 

be broadened and vanishes abruptly at 80 K.  

This observed temperature dependence of the band can be more clearly seen in the 

temperature-dependent energy distribution curves (EDCs) plotted in Fig. 3.2c. A clear QP 

is observed at the lowest temperature, which comes from the electron band mentioned 

above. Upon increasing temperature, the QP is gradually suppressed while the spectral 

weight of the hump centered at -0.1 eV, indicated by an arrow in Fig. 3.2c, gradually 

increases. Such spectral weight transfer behavior is more pronounced in symmetrized 
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EDCs in Fig. 3.2d. Analysis of the spectral weight transfer behavior is depicted in Fig. 

3.2e. It clearly shows that the lost QP spectral weight is transferred to the 0.1 eV hump, 

demonstrating that the observed temperature dependence is intrinsic. It is also noteworthy 

that the full width at half maximum (FWHM) of the QP obtained from a Lorentzian 

fitting is 7.9 meV as can be seen in the inset of Fig. 3.2d, implying remarkable heavy 

mass and long quasiparticle lifetime of the band. 

Additional band fitting analyses provide more information about the temperature-

dependent evolution of the band. We extract the Fermi momentum (kF) and Fermi 

velocity (vF) using momentum distribution curve (MDC) analysis as depicted in Figs. 

3.2(f) and 3.2(g), respectively. Temperature-dependent kF value shows that the FS pocket 

size tends to enlarge upon cooling. Meanwhile, vF of the electron band decreases with the 

temperature. From these results, we can infer that the temperature evolution of the kF and 

vF did not result from a simple chemical potential shift. The origin of the evolution will be 

discussed below. 
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Figure 3.3. Photon energy-dependent electronic structure. (a) Photon energy-dependent 

electronic structure near the Γ point. (b) Photon energy-dependent high symmetry cuts 

along the Γ-X direction, obtained using 11, 13, 15 eV photon. 

 

The photon energy-dependent ARPES result gives further insights into the origin of the 

band. As can be seen in Fig. 3.3, the electron band which is clearly visible at 11 eV has a 

strong kz dispersion. As the photon energy increases, the band shifts to the higher binding 

energy side, and its energy scale becomes more than 0.5 eV. Considering FeTe is in the 

strongly correlated limit, a bandwidth of 0.5 eV far surpasses that of Fe 3d bands [20]. In 

addition, the photoionization cross section of Te 5p orbital is much larger than that of Fe 

3d orbital at 11 eV [23]. Thus, the band observed at 11 eV is likely to be mostly from Te 

pz orbital. We note that similar kz dispersion behavior was also reported for FeTe0.55Se0.45 
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[24].  

Considering the large dispersion of the pz band away from EF as shown in Fig. 3.3, the 

sharp QP near EF implies that the band undergoes a strong modulation. Two scenarios 

may be considered for the modulation: (i) electron-bosonic mode coupling and (ii) Kondo 

hybridization between the itinerant and localized bands. It was claimed in a previous 

ARPES study on FeTe that the feature is a result of strong electron-phonon coupling, 

namely a polaronic behavior [25]. However, such a scenario may not explain the 

enlargement of the Fermi surface at low temperatures in Fig. 3.2f since an electron-boson 

coupling should conserve the kF. Alternatively, one can consider a Kondo hybridization 

scenario which should also show a mass enhancement at low temperatures and strong 

temperature dependence of the QP. Therefore, it is highly desirable to have an alternative 

way to discern the two scenarios. 

 

3.4.3 Fano line shape and hybridization gap 
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Figure 3.4. STS results on FeTe. (a) Differential conductance (dI/dV) spectrum measured 

on FeTe surface at 4.3 K. The blue circles represent the Fano fitting of the Kondo 

resonance (see Supplementary Information for the fitting parameters). The inset shows 

the position where the spectrum is taken. Vbias = -300 mV, I = 100 pA and Lockin-

modulation Vmod = 5 mVpp. (b) dI/dV spectrum enlarged around the Fermi energy. The 

inset is the spectrum after subtracting the smoothly-varying background. Vbias = -40 mV, I 

= 100 pA and Vmod = 500 μVpp. (c) dI/dV spectra measured at 80 K. Vbias = -300 mV, I = 

50 pA and Vmod = 5 mVpp. (d) Zoomed-in dI/dV spectrum. Vbias = -40 mV, I = 50 pA and 

Vmod = 500 μVpp. 

 

Whether the strong renormalization of the dispersion near EF is due to Kondo 

hybridization or not may be determined based on tunneling spectra. Shown in Fig. 
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3.4 are STS data at 4.3 and 80 K. A wide energy range scan at 4.3 K depicted in 

Fig. 3.4a shows an asymmetric spectrum. The spectrum is found to be well fitted 

with a Fano line shape as illustrated in the figure. It is well-known that tunneling 

spectra from a Kondo singlet state should exhibit a Fano-type resonance [13]. The 

Fano fit shown as blue circles in Fig. 3.4a gives a Fano line width (Γ value) of 

24.1 meV, which corresponds to the Kondo temperature of about 280 K. 

Furthermore, a closer look of the data over a narrow energy range around EF 

plotted in Fig. 3.4b shows a gap feature that is consistent with a gap expected for a 

Kondo hybridization scenario. We subtract the smoothly-varying background 

from the data and plot it in the inset. The subtracted data shows a gap with a size 

of about 7 meV as seen in Fig. 3.4b. In addition, it is seen that the gap feature is 

slightly shifted to the unoccupied side. Plotted in Figs. 3.4c and 3.4d are dI/dV 

spectra taken at 80 K, above TN. The two spectra are taken over the same energy 

ranges as the 4.3 K data. The Kondo-related features are expected to disappear at 

high temperatures, which are indeed seen in the high-temperature data in Figs. 

3.4c and 3.4d; the Fano behavior is weakened and the hybridization gap has 

disappeared. Therefore, these observations – Fano behavior and narrow gap near 

EF – are clear signs of Kondo hybridization, confirming that FeTe exhibits Kondo 

hybridization below TN. 

 

3.5 Discussion 
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Figure. 3.5. Schematic of the Kondo hybridization scenario. (a and b) Band structure of 

FeTe along the Γ-Z direction (out-of-plane) above and below TN, respectively. (c and d) 

Band structure of FeTe along the Γ-X direction (in-plane) above and below TN, 

respectively. (e and f) Simulated band structure projected onto the (001) surface along the 

Γ-X direction (in-plane) above and below TN, respectively. Blue bands denote pz orbital, 

and red bands denote dxy orbital. 
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Fully considering our comprehensive data, we argue that the electron band that 

emerges below TN is a result of a Kondo hybridization between the itinerant pz and 

localized dxy bands. The argument is based on the fact that only the dxy orbital of FeTe is 

in a localized state, which is a prerequisite for the Kondo effect [4,14]. Density functional 

theory calculations also confirm the band we measured in ARPES has Te pz and Fe dxy 

orbital characters (see the Appendix). Here, it is also noteworthy that the appearance of 

the coherence peak may be accounted for within the coherence-incoherence crossover 

picture in Hund’s metal [26-29] as observed in some of the iron-based superconductors 

[26,29]. However, the Kondo hybridization picture is needed to explain the other aspects 

of the experimental results. Indeed, recent theoretical work proposed that the interorbital 

hopping in the orbital-selective Mott phase can develop a narrow quasiparticle peak near 

the Fermi level [30]. In this perspective, our work emphasizes the role of interorbital 

coupling. When the system enters the BAFM state, the pz and dxy bands start to Kondo 

hybridize as illustrated in Fig. 3.5; the strongly dispersive pz band along kz direction 

crosses the localized dxy band, resulting in a Kondo hybridization and heavy electron band. 

The correlation between Kondo hybridization and BAFM is discussed later. Based on 

known band dispersions, we simulate the band structure with a finite hybridization 

between the pz and dxy band. The simulated band structures projected onto the (001) 

surface in Figs. 3.5e and f well coincide with ARPES results shown in Fig. 3.2b at the 

temperature of 80 K and 15 K, respectively. In addition, the narrow gap in the unoccupied 

side at low temperature and its disappearance at high temperature in the STS data directly 

support the band diagram illustrated in Fig. 3.5f and e, respectively. The details of the 
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simulation are described in the Methods section. The Kondo hybridization scenario is 

further supported by previous inelastic neutron scattering measurements on FeTe: the 

study reported that the local magnetic moment of FeTe is S = 1 at 10 K but it 

unexpectedly grows to S = 3/2 at 300 K, suggesting low-temperature Kondo screening of 

the local moments by itinerant electrons [31]. Note that the dxy band is not visible near the 

Fermi level since dxy band is strongly localized and thus its spectral weight near the Fermi 

level is mostly transferred to the high binding energy region and the photoionization cross 

section of Te 5p orbitals far surpass that of Fe 3d orbitals at 11 eV photon. 

The observed heavy electron band resulting from Kondo hybridization can address the 

unique transport properties of FeTe: (i) recovery of metallic behavior below TN, (ii) 

sudden sign change in the Hall conductivity at TN, and (iii) emergent Fermi liquid 

behavior at low temperature. First, the recovery of metallic behavior can be understood 

through the emergence of the sharp and strong QP at the Fermi level near the Γ point at 

TN; the transport properties are dominated by the QP. The emergence of the electron QP 

below TN can also explain the sign change in the Hall conductivity, from hole dominant 

(T > TN) to electron dominant (T < TN). A previous study reported that recovery of the 

metallic behavior and Hall coefficient change may be related to the formation of 

pseudogap near the Brillouin zone corner33. However, their observation is not enough to 

explain the abrupt change in the resistivity and Hall conductivity. It is also noteworthy 

that such a strong QP and its strong temperature dependence are only observed at the Γ 

point (see Appendix for the temperature dependent ARPES results on the X point pocket.). 

Thus, we believe the FS near the Γ point, which exhibits a sudden change at TN, 
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dominates transport properties. Finally, the sharp QP bandwidth of 7.9 meV indicates a 

long quasiparticle lifetime, indicating that FeTe is in a Fermi liquid regime at low 

temperatures. This observation is consistent with the unique transport results and 

enhanced Sommerfeld coefficient of FeTe. We note that recent ARPES and STS studies 

on CeRh2Si2 and SmB6 reported significantly different Kondo properties at the surface 

and in the bulk [32-34]. In such cases, considering the surface sensitivity of ARPES and 

STS, the Kondo-related properties of FeTe observed via ARPES and STS can be different 

from those of transport measurements. However, the crystal structure of FeTe is quasi-

two-dimensional, which is distinct from CeRh2Si2 and SmB6. This feature might be the 

reason for the consistency in the Kondo properties of FeTe observed by ARPES and 

transport measurements. 

The overall temperature dependence of electronic structures and transport properties 

are well explained within the Kondo lattice scenario. In the paramagnetic (PM) state, 

FeTe is in the Kondo scattering regime, consistent with the logarithmic resistivity and 

estimated Kondo temperature from Fano line width (see Appendix for detailed 

parameters). From the electronic structure point of view, the strong scattering in the 

Kondo scattering regime results in breakdown of a well-defined quasiparticle, which in 

turn leads to loss of spectral weight and its transfer to a higher binding energy region. 

Thus, the hump structure is the incoherent counterpart of the QP, supported by the 

spectral weight transfer as shown in Fig. 3.2e. The broadened but persistent Fano line 

shape at 80 K also indicates the system is still in the Kondo scattering regime, while 

strongly suppressed coherency above TN leads to the loss of the QP. On the other hand, 
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when the system enters the BAFM state, low-temperature behaviors of a Kondo lattice 

emerge: a sharp quasiparticle peak in the electronic structure induced by Kondo 

hybridization as well as a Fermi liquid behavior (T2 dependence) at low temperature 

followed by a coherent-incoherent crossover in resistivity. Based on these facts, we may 

address the unique feature of the Kondo lattice behavior in FeTe; low-temperature Kondo 

lattice behaviors in FeTe suddenly set in at the onset of BAFM as evidenced by the abrupt 

drop in the resistivity and sudden emergence of QP at TN. This drastic shift of the system 

to the low-temperature Kondo lattice regime at the onset of the BAFM suggests a 

possible positive correlation between BAFM and Kondo lattice behavior in FeTe. 

 

Figure 6. Magnetic phase diagram of FeTe from Heisenberg model. (a) Definition of the 

Heisenberg model parameters. Grey solid lines denote the prime square lattice, whereas 

brown dots denote sublattice. J1 and J2 are nearest-neighbor (NN) and next nearest-

neighbor (NNN) exchange interactions, respectively, on the prime lattice. JK denotes NN 

exchange interaction between the prime lattice and sublattice. K is the NN biquadratic 

exchange interaction. (b and c) Magnetic phase diagram calculated from the model 

Hamiltonian (Eqn. 1) with K = 0.1 and 0.4, respectively. 
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To reveal the underlying mechanism of the positive correlation between BAFM and 

Kondo lattice behavior in FeTe, we conducted a Heisenberg model calculation with an 

additional Fe-Te exchange interaction. Based on the established two-neighbor Heisenberg 

model with the biquadratic term (J1-J2-K model) on a prime square lattice, we additionally 

introduce a centered sublattice as shown in Fig. 3.5a to take into account the Fe-Te 

interaction (defined as JK hereafter). We define the J1-J2-JK-K model on the combined 

lattice as 

𝐻 = 𝐽ଵ ෍ 𝑆ప
ሬሬሬ⃗ ∙ 𝑆ఫ

ሬሬሬ⃗

ழ௜,௝வ

− 𝐾 ෍ ൫𝑆ప
ሬሬሬ⃗ ∙ 𝑆ఫ

ሬሬሬ⃗ ൯
ଶ

ழ௜,௝வ

+ 𝐽ଶ ෍ 𝑆ప
ሬሬሬ⃗ ∙ 𝑆ఫ

ሬሬሬ⃗

≪௜,௝≫

+ 𝐽௄ ෍ 𝑆ప
ሬሬሬ⃗ ∙ 𝑠௞ሬሬሬ⃗

ழ௜,௞வ

 

where J1 and J2 are nearest-neighbor (NN) and next nearest-neighbor (NNN) exchange 

interactions on the prime lattice, respectively, and K is the NN biquadratic exchange 

interaction, while JK is the NN interaction between prime lattice and sublattice as 

described in Fig. 3.6a. i and j are indices for the prime lattice, and k is the sublattice index.  

We solved the J1-J2-JK-K model for various K values and obtained the corresponding 

magnetic phase diagram in Fig. 3.6b and c. For a small JK, the model well reproduces (π, 

0) stripe phase in iron pnictides. As JK grows, (π/2, π/2) BAFM starts to be stabilized and 

spans the phase diagram over a wide range of K (see Supplementary Information for an 

extended phase diagram.). Within the JK-induced BAFM scenario, the sublattice (Te atom 

for FeTe) should be also spin-polarized accordingly. We note that previous spin-polarized 

scanning tunneling microscopy measurements on FeTe revealed that Te atoms are also 

spin-polarized in the BAFM state. These results suggest that JK, an exchange interaction 
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between Fe and Te, may play a crucial role in stabilizing the BAFM in FeTe. This JK-

induced BAFM scenario thus explains the positive correlation between Kondo lattice 

behavior and BAFM since the Kondo lattice behavior and BAFM share the same origin, 

JK. The positive correlation between long-range magnetism and Kondo lattice state is 

reminiscent of the underscreened Kondo lattice model in UTe and UCu0.9Sb2, where a 

local magnetic moment of S = 1 is not fully screened by itinerant electrons. Likewise, the 

local moment of S = 3/2 in FeTe at 300 K is not fully screened, resulting in a residual 

local moment of S = 1 at 10 K, suggesting a possible analogy with the underscreened 

Kondo lattice model. 

We find the J1-J2-JK-K model has further implications. It was previously reported that 

an unexpected ferromagnetic (FM) state emerges under hydrostatic pressure [35]. A 

transition from BAFM to FM occurs in our calculated magnetic phase diagram if JK is 

further increased. Note that previously proposed Heisenberg models had to employ the 

third nearest-neighbor exchange interaction (J3) to account for the BAFM in FeTe, but 

could not predict the FM phase. In other words, the inclusion of JK may be the key to 

understanding the magnetic order in FeTe.  

 

3.6 Conclusion and remarks 

 

Recently, there have been numerous studies reporting that orbital-selectiveness is a 

prominent ingredient to make physics diverse in correlated d-electron multiorbital 

systems. In particular, while the orbital-selective Mott phase itself is an intriguing 
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phenomenon, another important aspect is that materials with orbital-selective Mott phase 

are vulnerable to Kondo hybridization and thus may result in a new type of HF state. We 

thus suppose that the local magnetic moment formed in the orbital-selective Mott phase 

critically affects the physical and magnetic properties of FeTe via Kondo interaction. Our 

results shed light on the role of the local magnetic moments in correlated d-electron 

multiorbital systems. 

  



 
 
 
 
 

Chapter 3 

60 
 

 

 

 

 

References 

 

[1] Y. Kim et al., arXiv preprint arXiv:2203.06432  (2022). 

[2] W. De Haas and G. Van Den Berg, Physica 3, 440 (1936). 

[3] J. Kondo, Progress of theoretical physics 32, 37 (1964). 

[4] S. G. Stewart, Reviews of Modern Physics 56, 755 (1984). 

[5] P. Coleman, arXiv preprint cond-mat/0612006  (2006). 

[6] N. Mathur, F. Grosche, S. Julian, I. Walker, D. Freye, R. Haselwimmer, 

and G. Lonzarich, Nature 394, 39 (1998). 

[7] S. Wirth and F. Steglich, Nature Reviews Materials 1, 1 (2016). 

[8] Y. Wu, D. Zhao, A. Wang, N. Wang, Z. Xiang, X. Luo, T. Wu, and X. Chen, 

Physical Review Letters 116, 147001 (2016). 

[9] M. Kim et al., arXiv preprint arXiv:2102.09760  (2021). 

[10] D. Zhao et al., Physical Review B 97, 045118 (2018). 

[11] A. Shimoyamada et al., Physical review letters 96, 026403 (2006). 

[12] K.-J. Xu et al., Proceedings of the National Academy of Sciences 117, 

15409 (2020). 

[13] Y. Zhang et al., Science advances 4, eaao6791 (2018). 

[14] Z. P. Yin, K. Haule, and G. Kotliar, Nat Mater 10, 932 (2011). 

[15] P. Maheshwari, V. R. Reddy, and V. Awana, Journal of Superconductivity 

and Novel Magnetism 31, 1659 (2018). 

[16] J. Xing, H. Lin, Y. Li, S. Li, X. Zhu, H. Yang, and H.-H. Wen, Physical 



 
 
 
 
 

Chapter 3 

61 
 

 

 

 

 

Review B 93 (2016). 

[17] L. Wang, F. Hardy, T. Wolf, P. Adelmann, R. Fromknecht, P. Schweiss, 

and C. Meingast, physica status solidi (b) 254 (2017). 

[18] J. Jiang, C. He, Y. Zhang, M. Xu, Q. Q. Ge, Z. R. Ye, F. Chen, B. P. Xie, and 

D. L. Feng, Physical Review B 88 (2013). 

[19] Y. He et al., Review of Scientific Instruments 87, 011301 (2016). 

[20] M. Yi, Y. Zhang, Z.-X. Shen, and D. Lu, npj Quantum Materials 2 (2017). 

[21] J. Huang et al., Communications Physics 5, 1 (2022). 

[22] T. J. Liu et al., Nat Mater 9, 716 (2010). 

[23] X. L. Peng et al., Physical Review B 100 (2019). 

[24] Z. Wang et al., Physical Review B 92 (2015). 

[25] Z. K. Liu et al., Phys Rev Lett 110, 037003 (2013). 

[26] H. Miao et al., Physical Review B 94, 201109 (2016). 

[27] Z. Yin, K. Haule, and G. Kotliar, Physical Review B 86, 195141 (2012). 

[28] M. Yi et al., Nature communications 6, 1 (2015). 

[29] M. Yi et al., Physical review letters 110, 067003 (2013). 

[30] F. B. Kugler and G. Kotliar, Physical review letters 129, 096403 (2022). 

[31] I. A. Zaliznyak, Z. Xu, J. M. Tranquada, G. Gu, A. M. Tsvelik, and M. B. 

Stone, Physical review letters 107, 216403 (2011). 

[32] G. Poelchen et al., npj Quantum Materials 5, 1 (2020). 

[33] S. Patil et al., Nature communications 7, 1 (2016). 

[34] L. Jiao, S. Rößler, D. Kim, L. Tjeng, Z. Fisk, F. Steglich, and S. Wirth, 



 
 
 
 
 

Chapter 3 

62 
 

 

 

 

 

Nature communications 7, 1 (2016). 

[35] K. Mydeen et al., Phys Rev Lett 119, 227003 (2017). 

 



 
 
 
 
 

Chapter 4 

63 
 

 

 

 

 

Chapter 4 
 
Strongly anisotropic superconducting gap 
symmetry in Fe(Te,Se)  

 

 

 

Superconducting gap symmetry is one of the most intrinsic parameters determining 

the properties of superconducting materials. In particular, recent advances in quantum 

information and computing technology urge to find and realize stable superconducting 

devices, which can be realized by using topological superconductors. Since the 

topological superconductors can be realized in odd-parity superconducting gap symmetry 

or frustration of two independent superconducting gap symmetry, finding and measuring 

new types of superconducting gap symmetry have been an important task. In this chapter, 

the superconducting gap symmetries of Fe(Te,Se) compounds are demonstrated by using 

the developed ultra-high-resolution laser-based ARPES system. The results show 

Fe(Te,Se) compounds show strong anisotropic gap symmetry near Te end. Considering 

the conventional s±wave gap condition is broken near Te end, the anisotropic gap 

symmetry may be an indication of new superconducting gap symmetry such as nodal s, 

which was demonstrated in hole-doped iron pnictides.  
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4.1 Backgrounds 

 

4.1.1 Superconducting gap symmetry of unconventional superconductors 

  

Unconventional superconductivity is a superconductivity that deviates from BCS’s 

assumption. The BCS’s assumption is i) phonon-mediated, ii) isotropic s-wave, and iii) 

weak coupling [1]. Unconventional superconductors show different behavior from the 

aforementioned BCS’s assumption. The prime example is spin fluctuation-mediated 

superconductivity [2]. The spin fluctuation is known to mediate superconductors. Since 

the coupling potential of spin fluctuations is positive, an additional condition to overcome 

detrimental Coulomb repulsion is imposed for the emergence of the superconductivity; 

the integration of the superconducting gap over the whole Brillouin zone should be zero. 

This can be understood by the following argument. The wavefunction of electrons can be 

written as 𝜓(𝑟) = ∑ 𝜓௞𝑒௜௞∙௥
௞ . Since on-site Coulomb repulsion is strong (𝑉(0) ≫ 1), 

the wavefunction should satisfy the following condition to save the potential energy. 

𝜓(0) = ෍ 𝜓௞𝑒௜௞∙଴

௞

= 0 

In weak coupling limit, 𝜓௞  ~ 𝛥௞ . Hence, ∑ 𝛥௞ = 0௞ . This condition should be 

considered for positive coupling potential (note that the coupling potential of phonons is 

negative, which does not need the aforementioned condition.). Since iron-based 

superconductors are though to be mediated by spin fluctuations, the condition should also 

be considered in iron-based superconductors [3]. 
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Iron-based superconductors generally show s±-wave superconductivity. The hole pocket 

near the Γ point and the electron pocket near the M point have opposite superconducting 

phases. However, it is reported that some iron-based superconductors show different 

superconducting gap symmetry other than s±-wave superconductivity [4-6]. 

 

4.1.1 Deviation of s±-wave condition in Fe(Te,Se) 

 

Fig. 4.1 Phase diagram of Fe(Te,Se). Blue-shaded region denotes the (π/2, π/2) spin 

fluctuation-dominated region, whereas the yellow-shaded region denotes the (π, 0) spin 

fluctuation-dominated region 
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Figure. 4.2 Fermi surface of Fe(Te,Se) measured by ARPES [7]. 

 

In Te end, the s±-wave condition is broken in two ways: i) the dominant spin fluctuation 

is (π/2, π/2) as can be seen in Fig. 4.1 [8]; ii) the M point pocket disappears as shown in 

Fig. 4.2. Considering these facts, it can be expected that the Fe(Te,Se) compounds exhibit 

possible deviation from s±-wave superconductivity. 

 

4.2 Experimental details  

 

High-quality Fe(Te,Se) single crystals were grown using the modified Bridgman 

method. Stoichiometric, electric, and magnetic properties were characterized by using 

scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), a 
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physical property measurement system (PPMS), and a magnetic property measurement 

system (MPMS), respectively. ARPES measurements were performed with a lab-based 

system using a p-polarized laser photon source (hv = 21.2 eV). Spectra were acquired 

using ARTOF 10k electron analyzers with energy resolutions of 1 meV. Samples were 

cleaved in situ at T = 10 K and measured in an ultrahigh vacuum better than 5 × 10−11 Torr. 
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Figure 4.3 Electronic structures of FeTe0.8Se0.2. (a) Fermi surface of FeTe0.8Se0.2. (b) 

high-symmetry cut along the Γ-X line near the Γ point. 

 

4.3 Results and Discussion 

 

4.3.1 Basic electronic structure 

 

The Fermi surface pocket of FeTe0.8Se0.2 shown in Fig. 4.3.(a) shows the two pockets. 

The inner/outer pocket (α/β band) corresponds to dxz/yz band, respectively. Due to the 

matrix element effect, only part of the β band is visible. The high symmetry cut along the 

ky-direction is shown in Fig. 4.3(b). The β shows clear dispersion. The subsequent 

superconducting gap measurement is performed at the β band. 

 

4.3.2 Superconducting gap structures 
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Figure 4.4 Anisotropic superconducting gap structure of FeTe0.8Se0.2 

 

The superconducting gap of FeTe0.8Se0.2 as a function of the azimuthal angle is shown in 

Fig. 4.4. The superconducting gap is extracted by fitting the shift of the leading edge. The 

extracted gap shows quite anisotropic depending on the azimuthal angle. The minimum 

anisotropy is more than two times, which is much more than the reported value in 

FeTe0.55Se0.45. The overall azimuthal angle-dependent gap structure is shown in Fig. 4.5. 

The gap structure shows strongly anisotropic features. 

 

 

Figure 4.5 Azimuthal angle-dependent superconducting gap in FeTe0.8Se0.2 
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Considering the broken s±-wave condition, the superconducting gap symmetry might 

deviate from the s±-wave condition as in hole-doped iron pnictides. The deviation in 

hole-doped iron pnictide results in a new type of superconducting order parameter, which 

is called as nodal s-wave superconductivity. In light of the strongly anisotropic 

superconducting gap structure, along with broken s±-wave condition, the nodal s-wave 

can be one possible candidate for the superconducting order parameter in FeTe0.8Se0.2. 

The further systematic doping dependent study can discern the superconducting gap 

evolution of Fe(Te,Se) compounds. In addition, the polarization dependent measurement 

such as LCP+RCP can avoid the matrix element effect, which enables the extraction of 

the superconducting gap structure over the whole Brillouin zone. 

 

4.4 Conclusion 

 

Considering recent interests in topological superconductivity for further application in 

quantum information and computing, finding a new type of superconducting order 

parameter became an important task. The degeneracy of two independent 

superconducting states can lead to spontaneous breaking of time-reversal symmetry, i.e. 

s+is in hole doped iron pnictidies [9,10]. Likewise, Fe(Te,Se) may be another candidate 

that can host a new type of the superconducting order parameter. In light of the proposed 

topological superconductivity in FeTe0.55Se0.45, the Fe(Te,Se) compounds may be a novel 

platform containing multiple topological superconductivity. 
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Chapter 5 
 
Deep learning-based statistical noise reduction 
method for ARPES data 

 

 

 

In spectroscopic experiments, data acquisition in multi-dimensional phase space may 

require long acquisition time, owing to the large phase space volume to be covered. In 

such a case, the limited time available for data acquisition can be a serious constraint for 

experiments in which multidimensional spectral data are acquired. In this chapter, taking 

angle-resolved photoemission spectroscopy (ARPES) as an example, we demonstrate a 

denoising method that utilizes deep learning as an intelligent way to overcome the 

constraint. With readily available ARPES data and random generation of training datasets, 

we successfully trained the denoising neural network without overfitting. The denoising 

neural network can remove the noise in the data while preserving its intrinsic information. 

We show that the denoising neural network allows us to perform a similar level of 

second-derivative and line shape analysis on data taken with two orders of magnitude less 

acquisition time. The importance of our method lies in its applicability to any 

multidimensional spectral data that are susceptible to statistical noise. Some part of this 

chapter is adopted from the previous work [1]. 

  



 
 
 
 
 

Chapter 4 

73 
 

 

 

 

 

5.1 Introduction 

  

Advances in a spectroscopic technique often accompany an increase in the dimension 

the experimental technique can cover, allowing for more comprehensive data. An 

excellent example of this is ARPES. A modern-day hemispherical analyzer can take two-

dimensional energy/momentum space data, whereas a time-of-flight analyzer can cover a 

three-dimensional energy/momentum space at a time [2-5]. In addition, the recently 

developed momentum-resolved photoemission electron microscopy (k-PEEM) can 

investigate three-dimensional momentum/energy space as well as two-dimensional real 

space [5,6]. These advances in the analyzer technique allow for new information and 

thereby facilitate new discoveries. An important issue with the aforementioned 

developments in ARPES is that acquisition of multidimensional data has a fundamental 

constraint. Owing to the much increased phase space volume to be covered, taking 

multidimensional data necessarily requires a much longer acquisition time to get the same 

signal-to-noise ratio (SNR) level [7]. Increasing the light intensity may not be a solution 

as, in addition to its own limit, high-intensity light can bring in new issues such as 

detector non-linearity [5,8] or space-charge problem [9,10]. Considering the fact that a 

fresh surface often has a certain lifetime for adequate ARPES [5,11], this constraint in the 

acquisition time should be a serious limitation in multidimensional measurements. In fact, 

the situation also applies to other spectroscopic techniques that acquire multidimensional 

data. In such a case, the time constraint often affects decision making in real experiments. 

Therefore, development of a new methodology to overcome the time constraint is highly 
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desired to fully exploit the capability of advanced spectroscopic techniques. 

One way to alleviate the limitation is denoising the obtained spectral data. Since the 

SNR is generally proportional to the square root of the total count, majority of the 

measurement time is spent on reducing the noise. Thus, if the noise of spectral data can 

be removed with the intrinsic information preserved, the data acquisition time can be 

drastically reduced. A conventional way to reduce the noise is the Gaussian smoothing 

method, exploiting the high-frequency nature of the noise. The Gaussian smoothing is 

widely used, especially for derivative analyses, such as second-derivative or curvature 

methods, since differentiation highlights the high-frequency signal and is thus vulnerable 

to the noise [12]. However, the Gaussian smoothing inevitably blurs data, resulting in loss 

of the intrinsic information. 

Recent advances in machine learning technology have opened a new era in image 

processing, especially in removing noises in images. The performance of this new 

technique is far surpassing the conventional image processing methods, which made the 

technique widely accepted [13,14]. However, application of the machine learning-based 

image processing is mostly limited to non-scientific purposes. In light of the remarkable 

denoising performance of neural networks and the limited data acquisition time in 

spectroscopic experiments, introduction of the machine learning-based denoising can 

bring a significant impact on acquisition and analysis of data in spectroscopic 

experiments. We also note recent studies in which successful application of machine 

learning has been demonstrated in feature extraction from spectroscopic data [15], self-

energy analysis [16], x-ray structure refinement [17-19], and ultrasound spectroscopy [20]. 
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These examples show that machine learning can also be a useful tool in condensed matter 

physics. Here, we demonstrate a deep learning-based denoising method for ARPES data. 

The proposed method utilizes a deep convolutional neural network to discriminate 

between noise and intrinsic signals. When the denoising is applied to noisy data for which 

noise and signal levels are comparable, unlike conventional denoising methods, the 

intrinsic information seemingly invisible in noisy spectral data is made visible. Our 

proposed method can drastically reduce the total acquisition time and makes it possible to 

overcome the limit in the data acquisition time, one of the most serious constraints in 

spectroscopic experiments. This, in turn, enables us to fully exploit the advantages of 

multidimensional measurements. Moreover, the method can be applied to any techniques 

that acquire multidimensional data and thus suffer from statistical noise due to shorter 

than desired data acquisition time. 

 

5.2 Methods 

 

5.2.1 Generation of training dataset 

  

The training dataset of the neural network consists of pairs of original and generated 

data. The neural network is advised to generate high-count data (high SNR) from low-

count data (low SNR). The low-count data can be randomly simulated from the high-

count data since the count distribution is known to follow the Poisson distribution [see 

Fig. 5.8(a)] [15,21]. The generation of low-count data can be considered as the inverse 
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process of acquisition or denoising since the acquisition or denoising converts the low-

count data to high-count data. Thus, only high-count data are required to construct the 

training dataset, which allows us to utilize readily available high-count ARPES data. 

Furthermore, the proposed random generation method augments the training dataset, 

preventing the neural network from being overfitted. Considering the fact that training of 

the neural network generally requires numerous data and corresponding labeling, the 

proposed random generation method is a cost-effective way. The generation of the 

training dataset is based on the assumption that the count follows the Poisson 

distribution[15,21]. If the total count of data is large enough, the count at a pixel divided 

by the total count converges to the probability of the Poisson distribution, lim
ே→ஶ

௡೔ೕ

ே
= 𝑃௜௝, 

where 𝑛௜௝ denotes counts at pixel (i, j), N denotes the total count in data, and Pij denotes 

the probability that an electron enters pixel (i, j) when one electron is introduced. Note 

that 𝑛௜௝ and 𝑃௜௝ satisfy the following equations, respectively: 

 

෍ 𝑛௜௝  =  𝑁, ෍ 𝑃௜௝  =  1. 

 

The probability can be considered as the intrinsic information that can be obtained 

from the experiment. If the probability is known, one can randomly simulate 

experimental data with an arbitrary total count. Note that 𝑛௜௝/𝑁 is not exactly the same 

as 𝑃௜௝ in ARPES data since the total count of ARPES data is a finite value. We chose the 

high-count training data, which have a sufficiently high total count so that the high-count 

data have minimum noise and 𝑛௜௝/𝑁 is close to 𝑃௜௝. Even though the high-count data 
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still have finite noise, the denoising neural network produces noise-free data, since the 

network is not able to learn to produce noise due to the random nature of the noise. The 

total count in the simulated low-count data ranges from 9 ×103 to 3×106 in (300, 300) 

grids. Thus, the average count per pixel ranges from 0.1 to 33.3. The wide range of the 

total counts of the low-count training datasets ensures that the network can denoise data 

with any statistics. The distribution of the total count in low-count data is set to be log-

weight of the total count, so a higher probability is expected for lower total count data. 

 

 

 

Figure 5.1. Overall training sequence of the denoising neural network. (a) Schematic for 

the generation of a noisy training dataset. n denotes the number of counts in the spectrum. 
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x denotes original data, and x′ denotes noisy data generated from original data 𝑥. The 

denoising process is denoted as 𝑓(𝑥), while the generation of the noisy training dataset, 

which is the inverse process of denoising, is denoted as 𝑓ିଵ(𝑥ᇱ). The data used here are 

Au(111) surface state ARPES data. (b) Schematic of training the denoising neural 

network. 

 

5.2.2 Training process of the denoising neural network 

 

The overall training sequence of the neural network is described in Fig. 5.1(b). From 

the original high-count data 𝑥, noisy data 𝑥′ are generated. Then, the convolutional 

neural network generates denoised data 𝑓(𝑥ᇱ) from the noisy input. The size of the 

training data is set to be 300×300. A deep neural network of 20 convolutional layers is 

adopted to exploit the global contextual information. The structure of the network is 

based on the network proposed elsewhere [22]. Each layer of the convolutional neural 

network has a filter number of 64 and a filter size of 3. After each convolutional layer, the 

result is passed to a parametric rectifier unit to produce the non-linearity of the network 

[23]. By calculating the loss function 𝐿(𝑥, 𝑓(𝑥′)), the performance of the denoising 

neural network is determined. The loss function is defined as the weighted sum of mean 

absolute error (MAE) and multiscale structural similarity [24,25]. Details on the loss 

function are described in Appendix C. The loss is backpropagated to adjust the 

parameters used in the neural network [26]. An Adam optimizer is adopted to train the 

network for 150 epochs [27]. The learning rate is initially set to be 5×10−4 and multiplied 
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by 0.1 after every 50 epochs for a good convergence. For the training dataset, 50 different 

high-count ARPES data are used and, for every original data, 50 low-count data are 

randomly generated, resulting in a total of 2500 different low-count data. Note that the 

FeSe, Bi-2212, and Bi2Te3 data in Figs. 5.2–4, respectively, are not included in the 

training dataset. As a data augmentation, the dataset is randomly rotated or flipped, and 

the brightness of the data is also randomly adjusted during the training. 

 

5.3 Results 

 
Figure. 5.2. Denoising results. (a) FeSe ARPES data along the M–Γ–M cut and denoising 

results. LC and HC denote low-count and high-count data, respectively. t denotes a unit 

acquisition time. The low- and high-count data are acquired for t and 100t, respectively. 
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SM and NN denote the Gaussian smoothing and denoising neural network, respectively. 

(b) Corresponding second-derivative results of (a). The red dotted circle represents the 

hybridization gap between dxy and dxz/yz orbitals. 

 

The result of the denoising neural network is demonstrated in Fig. 5.2(a). We took 

ARPES data of FeSe along the M–Γ–M cut for acquisition time t (left) and 100t (right) 

where t is a unit measurement time. The data acquired for t and 100t are denoted as low-

count (LC) and high-count (HC) data, respectively. The LC data are used as the input to 

the denoising neural network, and the HC data are compared with the denoised data. The 

LC data show a high level of noise due to the low total count. The network produces 

noise-free data (middle panel), even though the input data are quite noisy. The LC data 

after the denoising neural network (LC + NN) are comparable to the HC data, showing 

almost the same features. Yet, we note that small features of the denoised data are a bit 

blurry due to the lack of information in the LC data. To visualize the band structure more 

clearly, we plot in Fig. 5.2(b) the second derivative of the data. Band dispersions from the 

LC data are barely visible. On the other hand, the second derivative of the denoised data 

in the middle panel shows very clear band dispersions, especially the hybridization gap 

between dxy and dxz/yz orbitals at ±0.3 Å−1 as indicated by a red dotted circle, which is not 

resolved in the original LC data [28,29]. Note that, since the noise is removed after the 

denoising neural network, the second derivative of the denoised data shows clean spectra, 

whereas the HC data have residual noise despite the long acquisition time. 
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Figure. 5.3. Line shape analysis results. (a) Denoising results of ARPES data from Bi-

2212 along the nodal cut. (b) Momentum distribution curves (MDCs) of the data in (a). (c) 

Peak positions (left) and widths (right) obtained from MDC fitting results of (b). 

 

To verify the validity of the denoising neural network in a quantitative way, we 

conducted line shape analysis on denoised Bi-2212 data taken along the nodal cut. As can 

be seen in Fig. 5.3(a), the denoising neural network preserves intrinsic band structure 

while removes the noise. Removal of the noise is more clearly seen in the momentum 

distribution curves (MDCs) of the data depicted in Fig. 5.3(b). Line shape analysis was 

conducted by fitting the MDCs to obtain the peak position and width as depicted in Fig. 
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5.3(c). The fitting results of LC + NN and HC data are almost identical, directly 

demonstrating that the denoising neural network preserves the quantitative information of 

the band structure. We wish to point out that the well-known 70 meV kink at the nodal 

point is clearly resolved for both LC + NN and HC data [30,31], whereas the fitting result 

of the raw LC data is too noisy to identify the kink position. 

 

5.4 Discussion 

 

5.4.1 Understanding effectiveness of denoising neural network 

 

Figure. 5.4. Depth dependent denoising results. (a) ARPES data of Bi2Te3 along the K–
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Γ–K cut and depth dependent denoising results. Depth denotes the number of 

convolutional layers in the denoising neural network. (b) Validation loss 𝐿(𝑥, 𝑓(𝑥ᇱ)) as a 

function of the depth.  

 

The reason why the deep learning-based denoising is effective for ARPES data may be 

summarized into one sentence; the neighboring pixel values in ARPES data are correlated 

with each other. Two major factors contribute to the correlation. First, the typical 

dimension for ARPES features is larger than the data pixel size, leading to occupation of 

several pixels for any feature. Thus, if the value at a pixel is large, it is likely for 

neighboring pixels to have a large value. Second, the length scale over which the band 

structure changes is larger than the data pixel size. Hence, the band structure does not 

change abruptly over the length scale of the pixel. This means that the band structure has 

an approximate translational symmetry in a short length scale. Even if the information at 

a pixel is corrupted with noise, the value at the pixel can be recovered from the most 

statistically probable value inferred from adjacent pixel values. Therefore, a dataset 

carries more information than just the pixel-wise sum of information. With the additional 

information, the seemingly imperfect information of the noisy data can be recovered. 

In order to extract such a kind of contextual information, the neural network should 

accept global information of data. Since the receptive field of a convolutional neural 

network is (2𝐷 + 1) × (2𝐷 + 1) for a depth 𝐷 network with a filter size of 3, a deeper 

network of a larger 𝐷 receives more global information [22,32]. Here, depth means the 

number of convolutional layers in a neural network. For a large receptive area, we 
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adopted a convolutional neural network of 20 layers. We experimentally show in Fig. 5.4 

that a deeper network tends to work better. We took LC and HC ARPES data of a Bi2Te3 

thin film grown on a Si(111) substrate along the K–Γ–K cut [see Fig. 5.4(a)]. The LC data 

are then passed to the denoising neural network with different numbers of convolutional 

layers. It is seen that as the depth of the denoising neural network increases, the noise is 

better removed and the denoised data become more similar to the HC data. In Fig. 5.4(b), 

the validation loss 𝐿(𝑥, 𝑓(𝑥ᇱ)) is plotted as a function of the depth to visualize the 

tendency more clearly. The validation dataset consists of 20 pairs of LC and HC data 

obtained from ARPES measurements. The validation loss monotonically decreases with 

increasing depth. Generally, a deeper network tends to work better if the network is not 

overfitted [32]. We note that the network deeper than 20 layers could not be stably trained 

due to gradient vanishing/exploding. Further studies are needed to train a deeper network. 

Considering the mechanism of the denoising neural network, it is expected that the 

network does not work well for data that are very different from the training data. For 

instance, we found that denoising performance for data with a large background was not 

very good since very few datasets with high levels of background were included in the 

training dataset. This point may be improved by including more training data with a 

variety of features. 

 

5.4.2 Application to higher-dimensional data 

 

Finally, we discuss possible application of the denoising neural network to higher-
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dimensional data. Since the basic principle of denoising is the inference from adjacent 

pixel values, better denoising performance is expected if the data have more neighboring 

pixels. That is, there is much more contextual information that can be extracted from 

neighboring pixels in higher-dimensional data and the denoising neural network should 

work better. For the same reason, the denoising neural network may not work well for one 

dimensional spectra due to a relatively small number of neighboring pixels. Considering 

the fact that data acquisition in a multidimensional phase space takes a long time i.e. 

ARTOF analyzers, the denoising neural network will be a method to alleviate the time 

constraint, thereby allowing us to fully exploit the advantages of multidimensional 

measurements, not only for ARPES but possibly for other time demanding experimental 

techniques. 

To check the performance of the denoising neural network depending on the 

dimensions of corresponding data, the neural networks are trained to denoise 2D/3D 

ARPES data, respectively. The 2D/3D denoising neural network adopted 2D/3D 

convolutional neural network, respectively. The comparison result is illustrated in Fig. 5.5. 

As can be seen, the denoising performance is much better for 3D denoising, which 

restores ground truth data from noisy data. On the other hand, the 2D denoising generates 

somewhat different data from ground truth. This is due to the high noise level of input 

data. The noise level of input data is set to be high, to compare the performance of the 

2D/3D denoising neural networks.  
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Figure 5.5 Comparison of the performance of 2D/3D denoising. 

 

5.5 Summary and outlook 

 

We have demonstrated that the network not only reduces the acquisition time but also 

reduces the noise of data to an experimentally unreachable level. If trained properly, this 

scheme can also be used for distributions other than Poisson. The thorough removal of the 

noise opens up a new route for data analysis techniques for which noise is an apparent 

obstacle, such as deconvolution [33] and self-energy analysis [34]. That is, the denoising 

neural network can be used as the base layer for other data analysis techniques, which 

calls for further studies on artificial intelligence-based data analysis methods. It is also 

noteworthy that open-source Python-based data analysis packages for ARPES and other 
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multidimensional experimental techniques were recently demonstrated [35,36]. 

Considering the open source nature of these packages along with the high expandability 

of Python, implementation of our deep learning-based denoising method into one of the 

Python-based data analysis packages can be easily achieved. In addition, since the time 

required to denoise an ARPES dataset typically takes less than a few seconds, the 

implementation will allow us to denoise data in real time while analyzing and visualizing 

data. This would provide a new deep learning-based data analysis platform for the 

ARPES community. 

 

5.6 Appendix 

 

5.6.1 Training dataset  

 

 

Figure. 5.6. Plot of the dataset used in the training. 
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The data used for training are plotted in Fig. 5.6. Data complying with the following 

conditions were used as training data. First, the data must have a sufficiently high total 

count to have a low level of noise. Second, the data have no artifacts from detector 

inhomogeneity. 

 

5.6.2 Low-count data for hemispherical analyzers 

 

Figure. 5.7. (a) Examples of the data from a hemispherical analyzer and simulated data. 

(b) ARPES data of Bi2Te3 and training data dependent denoising results. 

 

The low-count data generated from the aforementioned method has pixel-wise 
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discrete values. However, the data acquired from a hemispherical analyzer consist of 

counts occupying several pixels, as described in Fig. 5.7(a), since the detector of a 

hemispherical analyzer measures an impinged signal on a phosphor screen using a CCD 

camera. To simulate the experimental results obtained with a hemispherical analyzer, the 

simulated data are convoluted with a Gaussian function with random peak intensities and 

widths. Without such Gaussian convolution, denoising the data from a hemispherical 

analyzer shows bad performance [see Fig. 5.7(b)]. 

 

5.6.3 Loss function 

 

Figure 5.8. (a) Examples of the data from a hemispherical analyzer and simulated data. (b) 

ARPES data of Bi2Te3 and training data dependent denoising results. 

 

The loss function adopted in this work is a weighted sum of mean absolute error 

(MAE) and multiscale structural similarity (MS-SSIM). The conventional mean squared 

error (MSE) has a weak penalty for a small difference. Hence, the denoised result is 
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blurry since making the data blurry is an easy way to minimize MSE loss. We therefore 

adopted a new loss function consisting of MAE and MS-SSIM as described elsewhere, 

𝐿 = (1 − 𝛼) ⋅ 𝐿ெ஺ா + 𝛼 ⋅ 𝐿ெௌିௌௌூெ  , where α is set to be 0.7. The MAE loss has a higher 

penalty for a small difference compared to MSE loss, so the result is expected to be less 

blurry. The MS-SSIM loss catches a similarity over a wide range of the data compared to 

MSE loss or MAE loss, which calculates the pixel-wise difference. Thus, the result is 

perceptually more plausible and the MS-SSIM loss ensures overall similarity. The 

comparison results of MSE loss and the loss used in this work are plotted in Fig. 5.8. 

 

5.6.4 Overfitting 

 

Figure 5.9. Plot of validation loss during the training. 

 

Overfitting is one of the most serious issues in deep learning. Generally, the 

overfitting occurs when the training dataset is small compared to the size of the neural 

network. We checked the overfitting by monitoring validation loss during the training 
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since the increase in the validation loss is a representative symptom of the overfitting. As 

shown in Fig. 5.9, the validation loss converges to a value at the end of the training. From 

the result, we judged that the model is not overfitted. 
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Chapter 6  
 
Summary & Remarks 
 

This thesis starts with introducing the background of iron-based superconductors. The 

main focus is physical properties of iron-based superconductors from a perspective of 

electronic structures. In particular, bond angle dependent physics is described in detail, 

which is a prime parameter determining the physical properties of iron chalcogenide 

superconductors. 

In chapter 2, setup of the laser-based ARPES system is introduced. The purpose of the 

setup is to reveal low-energy electronic structures of iron chalcogenide. The components 

of the laser-based ARPES system, especially ARTOF analyzer, fiber-based laser are 

discussed in detail.  

In chapter 3, results on the strongly correlated iron chalcogenide, FeTe is discussed. 

By utilizing the laser-based ARPES and various tools that can measure transport 

properties or local density of states, it is revealed that the Kondo hybridization plays an 

important role determining the physical and magnetic properties of FeTe. 

In chapter 4, results on the superconducting iron chalcogenide, Fe(Te,Se) is discussed.  

The superconducting gap structures were directly measured, which shows strongly 

anisotropic gap structure. This result implies that the superconducting gap symmetry 

deviates from conventional s+- wave superconductivity. The change of superconducting 

gap symmetry is driven by strong correlation effect. 



 
 
 
 
 

Chapter 5 

97 
 

 

 

 

 

In chapter 5, deep learning-based denoising method is introduced. By utilizing the 

technique, the long acquisition time of ARTOF analyzer can be drastically reduced. This 

is enabled by the fact that the denoising performance is much better for multidimensional 

data since there are more adjacent pixels (voxels for three-dimensional data). 

The development of laser-based ARPES system with novel combination of ARTOF 

analyzer, fiber-based laser, and deep learning can be a new ARPES platform, which 

makes the data acquisition much faster without space-charge effect. 
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국문 초록 

 

철-칼코겐 화합물 초전도체에서의 레이저 기반 

분광학 연구 

 

김윤식 

물리천문학부 

서울대학교 대학원 

 

철기반 초전도체는 다양한 발현 현상과 일반적이지 않은 초전도 현상을 보인다. 이 

덕분에 강상관계 물질에 대한 연구는 철기반 초전도체의 발견과 함께 새로운 

국면을 맞이하였다. 철기반 초전도체에서 다중 궤도가 줄 수 있는 자유도는 자성 

상태, 네마틱 상, 그리고 궤도 선택적 물리 등과 같은 새로운 현상을 가능하게 한다. 

하지만 철기반 초전도체에 대한 많은 관심에도 불구하고 철기반 초전도체의 낮은 

에너지 전자 구조는 아직까지도 잘 밝혀지지 않았는데, 이는 낮은 초전도 임계 

온도와 강한 전자 간 상호작용으로 인한 큰 재규격화에 기인한다. 따라서 철기반  
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초전도체의 낮은 에너지 전자 구조를 파악하기 위해서는 레이저 기반 분광학 

기법과 같은 고분해능을 가진 실험 장치를 사용하여야 한다.  특히, 레이저 기반 

각분해 광전자 분광법을 이용한다면 이들 시스템의 낮은 에너지 전자 구조가 

직접적으로 파악할 수 있다. 이 졸업 논문에서는 고분해능을 가진 각분해 광전자 

분광 장비 개발과 그 장비로 측정한 철기반 초전도체에서의 결과가 소개되어 있다. 

여기서 레이저는 광섬유로 만들어져 있어 전체적인 크기가 작고 안정적으로 구동될 

수 있다. 만들어진 각분해 광전자 분광 시스템은 비행시간 전자 분석기를 이용한다. 

비행 시간 전자 분석기의 고질적인 단점인 긴 측정 시간은 심층 학습을 기반으로 

한 노이즈 감쇄 기법을 이용하여 보완되었다. 철기반 초전도체에 대한 결과는 첫째, 

FeTe 에서 콘도 격자 현상, 둘째, Fe(Te,Se) 에서 강한 비등방 초전도 틈과 

관련한 내용이다. 개발된 장비를 이용한 철기반 초전도체에서 저에너지 전자 

구조의 성공적인 측정은 일반적이지 않은 초전도 현상에 대한 연구를 불러일으킬 

뿐만 아니라 새로운 각분해 광전자 분광 시스템의 입증이라는 데 그 중요성이 있다. 

 

주요어 : 철기반 초전도체, 철 칼코겐 화합물, 광섬유 기반 레이저, 각분해 광전자 

분광학, 심층 학습, 궤도 선택적 모트 상전이, 콘도 물리 
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