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Abstract 

Quantum computers are expected to outperform classical computers in solving 

certain sets of problems such as factorizations, the travelling salesman problem, and 

searching algorithms. This is because quantum bits (qubits), the building blocks of 

the quantum computer, enable quantum superposition and entanglement that have no 

classical counterpart. To achieve reliable large-scale quantum computers in practice, 

various platforms based on superconducting circuits, trapped ions, and 

semiconductor quantum dots (QDs) have been investigated both theoretically and 

experimentally.  

Demonstrating the quantum supremacy with the superconducting qubits, recent 

progresses on the quantum information processing are shown to be promising. The 

semiconductor QD spin qubits are also actively studied for advanced quantum 

information processing. Some of the advantages of QD-spin-qubit-based platforms 

include long-lattice-relaxation time, highly-dense integrability, and compatibility 

with CMOS fabrication processes. Based on these, high-fidelity single- and two-

qubit operations along with quantum error correction have been demonstrated 

recently. Moreover, coherent manipulation of the spin qubits have also been 

performed at high-temperatures ( > 1 K), alleviating the need for ultra-low 

temperature. This allows the integration of the classical electronics near the qubit 

chip and supports the scalability as a result.  

Fluctuating nuclear spins in a host material pose a great threat to the coherence 

of electron spins in semiconductor QDs. At the same time, it is also possible to 

investigate the interaction of an electron spin with surrounding nuclear spins which 

is known as the central-spin problem. While high electron mobility ( > 106 cm2V-1s-

1) and low effective electron mass of the two-dimensional electron gas in GaAs-

based heterostructures allow for simple fabrication process, the non-zero nuclear 

spins of Ga and As limit the coherence of the electron spins present in the GaAs QDs. 

This thesis illustrates the manipulation of multi-electron and nuclear spins in GaAs 

and suggests possible routes toward high-fidelity quantum operations under noisy 

environments via passive and active noise mitigation. 

Chapter 1 briefly introduces the basics of the quantum computation including 

the concept of qubits and GaAs QD-spin qubits. It also describes the details of 

measurement techniques including dc transport measurement of the QDs, and the 

radio-frequency (rf) based real-time charge sensing technique. The rf-charge sensing 

is essential for single-shot detection of quantum states described in the following 

chapters.  
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QD is a versatile platform for studying various types of spin qubits in 

semiconductors. Chapter 2 briefly describes different types of spin qubits such as 

single-electron spin qubit, two-electron singlet-triplet qubit and three-electron 

hybrid qubit. The advantages of the multi-electron spin qubits are mainly discussed 

in this chapter.  

Chapter 3 discusses the operation of two-electron single-triplet qubits in double 

quantum dots (DQDs) based on energy-selective-tunneling (EST) single-shot 

readout. The EST readout enables high-fidelity detection of spin states (> 90 %) 

under a large-magnetic-field difference across the DQD (> 85 mT), where the 

difference is known to limit the lifetime of a singlet-triplet qubit at the Pauli spin 

blockade. The high-fidelity EST is further applied to single-shot-based estimation of 

Hamiltonian parameters for real-time-feedback-based coherence extension of the 

qubit which is discussed in Chapter 4.  

Coherent manipulation of three-electron spins as well as the control of nuclear 

spins with the three-electron spin are discussed in Chapter 5 and 6. Strong Coulomb 

interaction between the electrons within a single QD facilitates the formation of a 

Wigner molecule, the strongly-correlated electronic ground state with a spatially 

localized orbital wavefunction. One of the consequences of the localization is 

quenched-orbital splitting which allows for the realization of a three-electron hybrid 

qubit in GaAs within the typical experimental bandwidth (Chapter 5). Furthermore, 

efficient dynamic nuclear polarization with the Wigner molecule is described in 

Chapter 6.  

EST-based multi-electron qubit operations and the dynamic nuclear 

polarization scheme presented here can also be realized with other host materials 

including silicon and germanium, which is expected to further boost the overall qubit 

control fidelities. In Chapter 7, I summarize the main results and discuss possible 

applications of semiconductor QDs in advanced quantum information processing. 
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Chapter 1. Introduction 

 

 

 

1.1. Quantum Computation 

 Quantum computers may provide significant speed-ups for solving certain 

sets of problems including factorization, and traveling salesman problem, which 

have been assumed to be unsolvable within a finite timescale with the classical 

computers [1–3]. This is because the quantum superposition, and entanglement, 

which have no counterpart in the classical world, enable the quantum parallelism for 

processing multiple inputs simultaneously. To facilitate such parallelism the building 

blocks of the quantum computers, the qubits, are purely quantum objects. Naturally, 

the quantum computers can also offer efficient routes for the quantum 

simulations [3,4].  

 

1.1.1 Qubit 

 The qubit serves as the basic unit for quantum information processing, 

which is analogous to the bit of the classical computers. The qubit is a quantum two-

level system where the ground and excited states are encoded as 0, and 1. Due to the 

quantumness the qubits allow the quantum superposition, and entanglement which 

in turn enable the quantum parallelism [3].  

 A qubit state |𝜓⟩ can be represented by the linear combination of two 

orthogonal eigenstates |0⟩ and |1⟩.  

             |𝜓⟩ =  𝑎0|0⟩ +  𝑎1|1⟩                   (Eq. 1.1) 
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Here, the complex coefficient ai corresponds to the probability amplitude (i = 0, 1), 

where the norm of the ai is the probability of the qubit to be at the state |𝑖⟩, Pi .  

𝑃i = |𝑎i|
2                       (Eq. 1.2) 

In the ideal case without any leakage state, the Pi sum up to 1 which serves as the 

normalization condition.  

Together with the normalization condition, because global phase of the 

probability amplitudes a0 and a1 does not affect the physical observables, the ai can 

be characterized by two independent variables  and  as shown in Eq. 1.3.  

𝑎0 = sin (
θ

2
)   , 𝑎1 = 𝑒𝑖𝜙cos (

θ

2
)            (Eq. 1.3) 

This implies that a qubit state can be represented by a single point on a sphere, which 

is referred to as the Bloch sphere [3] as shown in Fig. 1.1.   

 

Figure 1.1: Qubit state on a Bloch sphere 
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For example, the |0⟩ and |1⟩ states sit on the north and south pole of the sphere 

respectively, where the eigenstates of the Pauli-x, X (Pauli-y, y) operator reside on 

the x- (y-) axis.  

 

1.1.2 Decoherence 

 A pure quantum state can be described by a single state vector |𝜓⟩, which 

differs from the mere statistical mixture of certain states. For example, in a box one 

can prepare 100 electrons with spin (| ↑⟩ + | ↓⟩) √2⁄  (+x axis on the Bloch sphere) 

which is an eigenstate of the x operator, and in the other box, one can prepare 

random mixture of 50 spin | ↑⟩ electrons, and 50 spin | ↓⟩ electrons. While the 

average of the spin projection to z-axis in both boxes are equal to 0, there exist the 

qualitative difference between the two boxes. If we perform the famous Stern-

Gerlach experiment with the measurement axis aligned to the x-axis, the 100 

electrons in the former box would be projected to +1 states. However in case of the 

latter box, the projection would result in the random mixture of -1, and +1 states. 

The electron states in the former box are the pure states, whereas the electrons in the 

latter box are referred to as the mixed states. As can be inferred from the example, 

the purity of a quantum state is directly related to how much information is not lost 

about the state. Therefore, it is necessary for the qubits to be as ‘pure’ as possible to 

perform successful quantum computations.  

 Decoherence is the loss of purity, or the quantum coherence which is mainly 

caused by the interaction of the quantum state with the environment. While the 

interactions between the qubits and the surrounding systems are mandatory to enable 

quantum control, the interactions at the same time lead to decoherence inevitably. 
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The decoherence can be roughly categorized into the dephasing and lattice relaxation. 

The dephasing is the loss of the information about the quantum phase which is 

represented by  in Fig. 1.1. This is mainly caused by the fluctuation of the qubit 

energy spacing because the change in the qubit energy splitting modulates the 

oscillating frequency of the quantum state about the z-axis on the Bloch sphere. The 

time scale which the dephasing takes place is called T2
*. Secondly, the lattice 

relaxation is the relaxation of the qubit state from the excited state to the ground state 

where the characteristic time scale for the lattice relaxation time is often referred to 

as the T1 time.  

 While the single quantum state vector is not capable of formulating the 

purity of the state, density matrix formalism can devise how pure the quantum state 

is. For instance, a superposition state |𝜓⟩ = (| ↑⟩ + | ↓⟩) √2⁄  can be expressed as 

following with the density matrix.  

𝜌pure =  |𝜓⟩⟨𝜓| =  
1

2
[
1 1
1 1

]              (Eq. 1.4) 

On the other hand, the completely mixed state of | ↑⟩, and | ↓⟩ can be expressed as 

following.  

𝜌mixed =  
1

2
𝜌↑ +

1

2
𝜌↓ =

1

2
[
1 0
0 1

]             (Eq. 1.5) 

The purity of a quantum state is represented by tr(2). The purity satisfies 1/d ≤ 

tr(2) ≤ 1, where d is the dimension of the Hilbert space. If the purity is 1, the 

quantum state is pure, and for mixed state the tr(2) < 1, where the lower bound 1/d 

represents the completely mixed state. In the upper case, tr(pure
2) = 1, and tr(mixed

2) 

= 1/2. The details of the density matrix formalism including the time evolution, and 

the Lindblad equation which can describe the open system dynamics can be found 
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in Ref. [3]. 

 

1.1.3 Quantum control 

 Precise quantum state control is required to realize the high-fidelity 

quantum gates for advanced quantum computations. This section describes the 

resonant ac-control of the qubits based on the rotating wave approximation.  

 The Hamiltonian of a simple two-level system can be represented by a 

Pauli-z operator.  

𝐻0 =
ε0

2
𝜎Z                   (Eq. 1.6) 

Here, the ground state and the excited state is assumed to have the energy −
ε0

2
, and 

+
ε0

2
 respectively. Note the overall shift in the energy of the ground and excited states 

only contributes to the global phase of the qubit, and thereby the above can represent 

all the quantum two-level systems without the loss of generality.  

 Recalling the Schrödinger equation, the quantum states acquire the phase 

proportional to its energy along time. This can be visualized by the rotation of a 

quantum state about the z-axis on the Bloch sphere with the angular frequency 

ω0 = ε0/ℏ. The quantum states rotate about the eigen-axis on the Bloch sphere with 

the angular frequency defined by the eigen-energy difference.  

 Suppose a quantum state is initialized to |0⟩ which corresponds to the 

north pole of the Bloch sphere. The |0⟩ state then rotates about the z-axis with the 

angular frequency ω0 . Because the mere z-rotation cannot result in the finite 

population of |1⟩, there must be other components that can generate the rotation 

about some other axis on the Bloch sphere. First assume that we introduce a small 
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constant perturbative field Δ << ε0 (it can be a small constant magnetic field if the 

qubit is encoded in the spin degree of freedom) about the x-axis in order to generate 

the x-rotation which can be written as below.  

𝐻 =
ε0

2
𝜎Z + Δ𝜎𝑋                (Eq. 1.7) 

 

In this case, because the qubit state is continuously rotating about the z-axis, the 

perturbation is effectively cancelled out at the qubit’s frame after the time-averaging. 

Thereby, constant perturbation cannot generate the rotation of the qubit state about 

some other axis.  

 Now suppose the perturbative field is also rotating about the z-axis with the 

angular frequency ω . Then the Hamiltonian is as follows. Here, the ℏ= 1 for 

simplicity, and ω0 = ε0 holds. 

𝐻 =
ω0

2
𝜎Z + Δ [cos(ωt) 𝜎𝑋 − sin(ωt)𝜎𝑌]         (Eq. 1.8) 

If we move onto the frame that is rotating with the angular frequency ω , the 

corresponding transformation matrix Urf(t) is as follows. 

Urf(t) =  ∫
𝑖𝜔t

2
𝜎𝑍𝑑t = [𝑒

𝑖𝜔t

2 0

0 𝑒−
𝑖𝜔t

2

]            (Eq. 1.9) 

At the rotating frame, the Hamiltonian is transformed in according to the below 

formula.  

𝐻rf = 𝑈rf
† (t)𝐻𝑈rf(t) − 𝑖𝑈̇rf

† (t)𝑈rf(t)          (Eq. 1.10) 

The transformation explicitly leads to 

𝐻rf = (ω0 − ω)𝜎Z + Δ𝜎𝑋               (Eq. 1.11) 

It should be emphasized that if the ω = ω0 holds (if the perturbation is oscillating 
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resonant to the qubit splitting), Hrf is reduced to Δ𝜎X, implying that the qubit state 

can now rotate about the x-axis in the rotating frame.  

 While it is complicated in practice to apply a circularly oscillating field for 

the qubit, a simple sinusoidal driving about a fixed direction can be enough for the 

qubit driving. This is called the rotating wave approximation. Because a simple 

sinusoidal function cos(ωt) can be described as the summation of e𝑖ωt and e−𝑖ωt, 

which are the rotating and the counter-rotating term respectively, one can average 

out the counter-rotating terms. Assuming that a simple Δcos(ωt)𝜎X field is applied 

with the same H0, it can easily be shown with the Eq. 1.10 that the resulting 

Hamiltonian in the rotating frame is as follows.  

𝐻rf = (ω0 − ω)𝜎Z +
Δ

2
𝜎𝑋               (Eq. 1.12) 

 

 

1.2. Semiconductor Quantum Dots 

 Quantum dot (QD) is a 0-dimensional structure where the electrons or holes 

can be confined, and the semiconductor is one of the platforms to study various QD 

array structures [5–7]. The qubits can be defined by utilizing the various degrees of 

freedom of the particles confined in the QDs. While the large susceptibility of the 

QDs to the charge noise makes the charge qubit impractical for advanced quantum 

information processing protocols [8,9], semiconductor QDs provide a significant 

platform for the spin qubits owing to the extensive controllability, scalability, long 

lattice relaxation time and dephasing time [4,5,10,11]. 
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1.2.1 Gate-defined Quantum Dots 

There have been several approaches to define quantum dots in the 

semiconductor including gate-define (lateral) QDs, vertical QDs, and the nanowire 

QDs [5]. Among these, the gate-defined QD is a versatile platform to study various 

QD structures which is not only limited to the 1-dimensional QD arrays, but also the 

2-dimensional QD arrays. Especially the 2-dimensional QD array can be beneficial 

for surface code based quantum error correction schemes [12]. Moreover, the gate-

defined QD systems provide a wide range of control for the QD arrays such as the 

inter-dot tunnel coupling strengths, chemical potentials, and QD-reservoir tunnel 

coupling strengths.  

 

Figure 1.2: a. Schematic of the GaAs heterostructure for 2-dimensional electron 

gas (2DEG) formation. b. Conduction band energy diagram near the 2DEG. 

 To realize the gate-defined QDs in semiconductor, a substrate with two-

dimensional electron (or hole) system is required. Possible candidates of such 

substrates include the simple silicon on insulator substrates [13], and certain types 

of semiconductor heterostructures which can host 2-dimensional electron gas (2DEG) 

or 2-dimensional hole gas (2DHG) at the interface [5,10]. This thesis will be mainly 

discussing the gate-defined QDs in 2DEG. Figure 1.2a shows the schematic of the 
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GaAs / AlGaAs heterostructure where the 2DEG resides at the interface of the GaAs 

and AlGaAs (red dashed line). Figure 1.2b is the conduction band energy diagram 

along the z-axis in Fig. 1.2a. The sharp band bending at the interface results in the 

narrow dip of the conduction band which is a quasi-two-dimensional quantum well. 

By engineering the Fermi level to reside above the dip, for example by adequate 

doping techniques, the quantum well can host the 2DEG.  

 By depositing metal gate structures as shown in Fig. 1.3a for example, and 

by applying negative voltages electrons underneath the gates can be depleted to form 

the QDs. Because the chemical potential of the QDs can be controlled via the gate 

voltages, the QDs can easily reach few electron regime by the electrical control. With 

the well-defined number of electrons, the various qubits can be implemented 

depending on the energy configurations, and the QD geometries [14–17]. Fig. 1.3b 

shows the scanning electron microscope (SEM) image of a GaAs QD device.  

 

Figure 1.3: a. Schematic of a quantum dot device on a GaAs heterostructure. b. 

Scanning electron microscope (SEM) image of the gate structure. (Courtesy of 
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Jehyun Kim) c. Electron spin interacting with surrounding Ga and As nuclear 

spins.  

1.2.2 GaAs Quantum Dots 

 As shown in the previous section, GaAs / AlGaAs is one of the 

heterosturctures that can host the 2DEG at the interface (Fig. 1.2). Based on the 

remarkable electron mobility, GaAs 2DEG has been widely exploited for various 

transport studies including the quantum hall measurements, and electron 

optics [18,19].  

 Small effective electron mass in GaAs alleviates the need for dense gate 

structures for QD formations, allowing a rather simple fabrication process [5,7]. 

Promoted by the simple fabrication and significant transport properties, initial 

studies on the QD qubits have been mostly demonstrated in GaAs [5]. However, 

because the electron in a GaAs QD is known to interact with ~ 106 surrounding Ga, 

and As nuclear spins (Fig. 1.2.2c), the fluctuations of the non-zero Ga and As nuclear 

spins pose a great threat to the coherence of the electron spin qubits [15]. Thereby, 

recent QD spin qubits are mainly studied in Si or Ge where the nuclear spin effect is 

not as significant [11,20].  

 Nonetheless, GaAs is still an interesting platform to study the interaction 

between a spin and the surrounding spin system which is known as the central-spin 

problem [21,22]. One of the applications of the central-spin problem is dynamic 

nuclear polarization where the electron spin is transferred to the nuclear spin to allow 

environmental field controls [23,24]. Furthermore because the nuclear spin 

fluctuation timescale is relatively slow, real-time Hamiltonian estimation based 
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feedback loop control effectively eliminates the nuclear spin noise and allows highly 

coherent spin qubit operations [25]. Thereby, investigation of the spin qubits in GaAs 

may offer routes towards various noise mitigation techniques for high-fidelity 

quantum operations.  

 

1.3 Electron Confinement in Quantum Dots 

 The number of electrons in the QDs must be well-defined to implement the 

desired qubit systems. This section introduces the signatures of the quantum dot 

formation which is related to the Coulomb blockade in cryogenic temperatures. 

Furthermore, I also describe measurement details required to reach the few electron 

regime, and to demonstrate real-time charge sensing.  

 

1.3.1 Coulomb Blockade 

 The Coulomb repulsion between the electrons in a QD results in the energy 

cost for adding an extra electron to a QD, which is known as the charging energy 

(EC, Fig. 1.4). If the energy scale of the charging energy is much larger than the 

thermal broadening of the electron reservoir, the electron number in the QD can be 

precisely defined. The number of electrons inside the QD, and thereby the chemical 

potential of the QD is tunable via the gate voltage, where the chemical potential has 

the linear dependence on the gate voltage [5]. As shown in the right panel in Fig. 1.4, 

if the chemical potential comes in between the Fermi level of the surrounding 

electron reservoir, the electron is allowed to freely tunnel across the QD to yield the 

finite current, and otherwise the current is blocked. Such is called the Coulomb 

blockade which is one signature of the QD formation. However, because the gate 
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voltage also affects the tunneling barrier between the QD and the reservoir, as the 

gate voltage becomes more negative, the tunneling rate gets smaller. This implies the 

measurement of the current through the QD is challenging in the few electron regime, 

and calls for the charge sensing technique which is described below. 

 

Figure 1.4: SEM image of a GaAs QD device with the QD energy schematic, and 

the corresponding Coulomb oscillation measured by the direct current through the 

QD.  

 

1.3.2 Charge sensing 

 As mentioned in the previous section, the charge sensing technique is 

required to reach the few electron regime. In the SEM image shown in Fig. 1.4, the 

QD denoted in the yellow dot can function as a charge sensor. Due to the capacitive 

coupling between the yellow QD and the green QD, the conductance of the charge 

sensor QD can be modulated sensitively in according to the number of charges inside 
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the green QD.  

 Figure 1.5a shows the Coulomb oscillation of the charge sensor QD, or the 

single-electron transistor (SET). If the VCS is parked at the position with finite 

dICS/dVCS, the change in the electron number inside the target QD can result in the 

modulation of the conductance. With the VCS parked at the sensitive position (large 

dICS/dVCS), the conductance is first modulated along the VG because of the capacitive 

coupling between the VG and the SET. However, when the electron tunnels out from 

the QD it effectively applies positive voltage to the SET, and there appear the kink 

in the conductance (Fig. 1.5b). By lowering the VG until the kinks do not occur, one 

can fully deplete the QD and fill up the QD with the desired number of electrons by 

counting the kinks.  

 

Figure 1.5: a. Coulomb oscillation of the charge sensor single-electron transistor 

b. Charge sensing signal. 

Attaching a resonant LC circuit to the ohmic contact allows high-bandwidth 

rf charge sensing by the reduced 1/f noise [26]. The rf-reflectance of the circuit is 

modulated by the resistance (and thereby the conductance) of the sensor SET channel, 

the same charge sensing is possible with the rf. This further allows the real-time 
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detection of the charge tunneling events which can be directly utilized for single-

shot quantum state detection. For instance, when the chemical potential (n = 1) of 

a QD is tuned close to the Fermi level of the reservoir as shown in Fig. 1.6a, the last 

electron in the QD can tunnel in and out from the QD to reservoir due to the thermal 

tunneling events. Figure 1.6b. is showing the time-resolved measurement of the 

tunneling events via the rf-reflectometry with the measurement bandwidth > 1 MHz. 

 

Figure 1.6: a. Schematic of the one electron tunneling in and out from the QD to 

the reservoir. b. Time-resolved measurement of the electron tunneling event with 

a rf charge sensor. 
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1.3.3 Charge stability diagram of a double quantum dot 

 

Figure 1.7: a. SEM image of a GaAs QD device. b. Schematic of the stability 

diagram of a DQD for different coupling strengths. 

Assume two QDs labeled QD1 and QD2 are formed, where the chemical 

potential of the QDs are mainly controlled by V1, and V2 respectively (Fig. 1.7a). The 

current through the QDs, IQD, as the function of V1, and V2 would resemble the 

checkerboard pattern as shown in the first panel in Fig. 1.7b. However, because the 

V1 (V2) capacitively couple not only with the QD1 (QD2) but also with QD2 (QD1) 

by C12 (C21), the charging line of the QD1 (QD2) has finite slope about the V2 (V1) 

as shown in the second panel of Fig. 1.7b. Moreover, because the QD1, and QD2 are 

also coupled by the capacitive coupling (C’12), the crossing between the charging 
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lines becomes the anti-crossings and result in the honeycomb pattern as shown in the 

third panel of the Fig. 1.7b. Such plots are called the charge stability diagrams. Figure 

1.8a is showing one example of the stability diagram where the current through the 

double QD (DQD) as the function of V1, and V2. Figure 1.8b is a stability diagram 

measured by the charge sensing technique near the single-electron regime. Such 

stability diagrams provide the information about the charge configuration of the 

multiple QD array, which serve as a basis for qubit operations.  

 

Figure 1.8: Stability diagram measured by a. the direct current through the double 

quantum dot and b. rf charge sensing. 
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Chapter 2. Spin Qubits in Quantum Dots 

 

 

 

 Gate-defined semiconductor QD system is a versatile platform to study 

various types of spin qubits. Depending on the number of QDs, and on the number 

of the electrons (or holes) inside the QDs, different types of spin qubits can be 

defined. For instance, one electron inside a QD can define a simple Loss-DiVincenzo 

(LD) qubit where the qubit state is encoded in the spin-up, and spin-down subspace, 

and two-electron confined in a double QD (DQD) can define a singlet-triplet qubit 

where the qubit states are encoded in the spin-triplet zero (T0), and spin-singlet (S) 

states. This section introduces several spin qubits in QD systems including the LD 

qubit, and multi-electron spin qubits.  

 

 

2.1 Single-Electron Spin Qubit 

 First proposed by Loss and DiVincenzo [1], single-electron spin is the 

simplest form of the spin qubit feasible in QD systems. The single-electron spin qubit, 

or the LD qubit can be formed by confining an electron in a single QD. Because the 

electron is a spin-1/2 particle, the spin | ↑⟩ and | ↓⟩ states of the electron naturally 

form a quantum two-level system. Also, it should be emphasized the LD qubit is the 

only qubit that requires a single QD for the qubit operation, which can be beneficial 

at the scalability aspect.  
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Figure 2.1: Schematic of the Zeeman split single-electron spin qubit in a QD. 

The qubit energy splitting of the LD qubit can be given by the Zeeman 

splitting from an external magnetic field, Bext. Explicitly, the energy of the | ↑⟩ (| ↓⟩) 

is 
1

2
 g*BBext (−

1

2
 g*BBext), where the resulting qubit splitting is g*BBext. Here g* 

is the Lande-g factor dependent on the materials, and B is the Bohr magneton. 

Assuming the external field direction as the z-axis, an oscillating magnetic field 

transverse to the z-axis can drive the qubit state if the driving frequency is resonant 

to the qubit splitting.  

 One of the ways to implement the resonant driving is to apply an ac-current 

through a transmission line near the LD qubit which in turn generates the oscillating 

magnetic field [2]. However, fabrication of the transmission lines for sizable driving 

field strength is challenging which calls for alternative single-spin control techniques.  

Micromagnet can generate slanting field for coherent single-spin 

manipulations [3,4]. Figure 2.2a shows an example of the QD device with the 

micromagnet, and Fig. 2.2b shows the schematic of the magnetic field along the 

direction shown in Fig. 2.2a. By applying the oscillating electric field to the gate (Fig. 

2.2b), the electron wavefunction is expected to spatially oscillate. As a result, the 
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electron experiences the oscillating field about the axis transverse to the quantization 

axis (z-axis) and allows the coherent qubit manipulations. Previous works have 

shown > 10 MHz Rabi frequency is achievable in Si with the well-designed 

micromagnet, where the micromagnet also generates spatial magnetic field gradient 

for individual qubit addressing [3,5,6].   

 

Figure 2.2: a. A GaAs QD device with a Co micromagnet. b. Schematic of the 

micromagnet integrated QD device along the line-cut shown in the black arrow in 

a. 

 

2.2 Two-Electron Spin Qubit 

 Two spin-1/2 particles construct 4 different spin states. The 4 spin states 

can be categorized into the singlet (s = 0) and triplet state (s = 1), where the triplet 

state can be further sorted in to T+ (m = 1), T0 (m = 0) and T- (m = -1). Here, s is the 

spin quantum number, and m is their projection onto the z-axis which is also referred 

to as the spin magnetic quantum number. 
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Figure 2.3: Two-electron spin states with and without the magnetic field.  

 Figure 2.4 shows the energy diagram of the two-electrons confined in a 

DQD as a function of the voltage detuning . Two electrons occupy the (2,0) [(1,1)] 

charge configuration at the negative [positive] . Throughout the thesis, n1 (n2) 

denotes the number electrons in the first (second) QD by the (n1, n2) charge 

configuration. When two electrons occupy the same QD, the eigenstates of the two-

electron system becomes the singlet and triplet states due to the strong exchange 

interaction between the electrons [7,8]. The energy spacing between the singlet and 

the triplet branch, the singlet-triplet splitting, is described by the orbital splitting in 

GaAs which is typically on the order of 101 ~ 102 h ∙ GHz (h is the Planck constant.). 

On the other hand, when the two electrons are at the (1, 1) charge configuration with 

the negligible exchange interaction, the eigenstates become the simple product state 

of two individual spin states,| ↑, ↑⟩, | ↑, ↓⟩, | ↓, ↑⟩, and | ↓, ↓⟩. While the full 4 

different spin states comprise the full subspace for the two-qubit operations with the 

LD qubits, this section will be focusing on the m = 0 subspace formed by | ↑, ↓⟩ 

and | ↓, ↑⟩.  
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Figure 2.4: Energy diagram of the two-electrons in a double quantum dot  

 The m = 0 subspace of the two-electron spin states is a quantum two-level 

system which is commonly referred to as the singlet-triplet (ST0) qubit [7,9]. By the 

electrical control of  (Fig. 2.4), one can freely manipulate the charge state from (2,0) 

to (1,1). Because the spin singlet state is the ground state at the (2,0) the spin state 

can be initialized to the (2,0)S by the relaxation or electron exchange with the 

reservoir [9–11].  

 The quantum control of the ST0 qubit is possible at the (1, 1) configuration. 

When the electrons are separated into different QDs, the electrons may experience 

the different Zeeman splitting, quantified by the BZ, due to the spatial g-factor 

difference [12], nuclear field difference [7,9], or the micromagnet [13]. The 

magnetic field difference BZ governs the energy splitting between | ↑, ↓⟩  and 

| ↓, ↑⟩ in the deep positive detuning, and the charge hybridization between the (2,0) 

and (1,1) near the 0 detuning results in the sizable exchange interaction J(). Thereby, 



 

 

２８ 

the Hamiltonian of the ST0 qubit can be written as follows with the ordered basis {T0, 

S}.  

H = J() (𝕀 +  σz)/2 + BZ σx = [
𝐽(𝜀) Δ𝐵𝑧

Δ𝐵𝑧 0
]       (Eq. 2.1) 

 If the initialized (2,0)S state is brought diabatically (diabatic with respect 

to the qubit splitting, but adiabatic about the tunnel coupling) to the (1,1) charge 

detuning, the spin state is kept at the singlet state during the diabatic passage. 

However, because the eigenstate is | ↑, ↓⟩, and | ↓, ↑⟩ in the (1,1) which is the x-

axis of the Bloch sphere made of S, and T0 qubit states, the singlet state can rotate 

about the x-axis with the oscillation frequency determined by BZ  [7,9,10].  

 Also, the ST0 qubit can be driven with the ac control as in the single electron 

case. Adiabatically bringing the (2,0)S state to the (1,1) regime initializes the qubit 

state to one of the | ↑, ↓⟩, and | ↓, ↑⟩ states depending on the sign of the BZ. 

Under such circumstance, if the J() oscillates resonant to the qubit splitting BZ by 

the means of the oscillation the qubit can be resonantly driven [14,15].  

 As described above, the ST0 qubit can be operated in the (1, 1) charge 

configuration under the finite magnetic field difference across the DQD. After the 

qubit manipulation, the states can be detected with the charge sensor after adequate 

spin-to-charge conversion methods. Pauli-spin blockade (PSB) is one of the 

techniques to convert the spin state to the charge state. The blue box in Fig. 2.4 is 

the energy detuning where the PSB can occur. Here, the singlet-state can occupy the 

(2,0) charge state whereas the triplet can only occupy (1,1) charge state because of 

the Pauli exclusion principle. The resultant charge difference can be detected with 

the charge sensor. Various spin-to-charge conversion methods are also introduced in 
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the Chapter 3 along with the emphasis on the energy-selective tunneling (EST) 

readout.  

 

2.3 Three-Electron Spin Qubit 

 There are 8 possible spin states formed by the three spin-1/2 particles. In 

according to their spin quantum number, the states are grouped into quadruplet (s = 

3/2), and doublet (s = 1/2) states. The quadruplet states are further sorted into m = -

3/2, m = -1/2, m = 1/2 and m = 3/2 states, where the doublet states are sorted into the 

doublet triplet (DT) and doublet singlet (DS) states with m = 1/2 and m = -1/2. 

 

Figure 2.5: Three-electron spin states with and without the magnetic field.   

  

 Among the above 8 possible spin states, the DS and DT subspace are utilized 

to encode the three-electron spin qubit. While both the DS, and DT states have the 

spin degeneracy of 2 and result in the 4-dimensional subspace, because both m = 1/2 

and m = -1/2 subspaces have the same dynamics for the doublet states and also 
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because the m = 1/2 and m = -1/2 subspace does not couple with each other (in the 

ideal case), the DS and DT subspace can be regarded as a qubit subspace [16]. There 

are two types of the three-electron spin qubit encoded in the DS and DT subspace 

which are namely the exchange-only qubit, and the hybrid qubit. The exchange-only 

qubit is defined in a triple quantum dot with three electrons in the (1,1,1) 

configuration, whereas the hybrid qubit is encoded in the three electron spin state in 

a DQD. This section will only be describing the hybrid qubit, where the dynamics of 

the exchange-only qubit is very similar to that of the hybrid qubit [17,18]. 

 As shown in Fig. 2.6, when the three-electrons are at the (2,1) charge 

configuration, the single electron in the right QD interact with both the ground and 

excited orbitals in the left QD via the exchange interactions, J1(ε) and J2(ε). While 

there exist no direct coupling between the ground (DS) and excited (DT) orbital state 

in the left QD, the exchange interactions J1(ε) and J2(ε) can mediate the exchange 

coupling J12(ε) (between the ground and the excited state. The detailed mathematical 

description based on the Schrieffer-Wolff transformation can be found in the 

Ref. [16].  

 

Figure 2.6: Schematic of the three-electron hybrid qubit in a DQD in (2,1) charge 

configuration 

 It should be emphasized the while the qubit states are encoded in the spin 
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states in the three-electron hybrid qubit, the manipulation of the qubit does not 

require any magnetic field at all. The hybrid qubit does not call for micromagnets, 

striplines or external magnetic field, and the control is possible solely by the 

electrical means. This is where the name hybrid qubit comes from. The spin states 

couple with the electric field similar to the charge qubits. Even though the gate 

operation per dephasing time, quantified by T/T2
* (T is the time required to realize 

the X gate) is consistent with the other types of qubits, the hybrid qubit can offer a 

longer dephasing time than the typical charge qubits, and faster manipulation speed 

compared to typical spin qubits. Because of the electrical controllability without any 

magnetic components, the hybrid qubit is directly compatible with the 

superconducting circuits for long range interactions [19] and the CMOS fabrication 

techniques well-established to date [20]. Details of the hybrid qubit control and 

readout are shown in Chapter 5.  
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Chapter 3. Robust energy selective tunneling readout 

of singlet triplet qubits under large magnetic field 

gradient i 

 

Abstract           

Fast and high-fidelity quantum state detection is essential for building 

robust spin-based quantum information processing platforms in semiconductors. The 

Pauli spin blockade (PSB)-based spin-to-charge conversion and its variants are 

widely used for the spin state discrimination of two-electron singlet–triplet (ST0) 

qubits; however, the single-shot measurement fidelity is limited by either the low 

signal contrast, or the short lifetime of the triplet state at the PSB energy detuning, 

especially due to strong mixing with singlet states at large magnetic field gradients. 

Ultimately, the limited single-shot measurement fidelity leads to low visibility of 

quantum operations. Here, we demonstrate an alternative method to achieve spin-to-

charge conversion of ST0 qubit states using energy selective tunneling between 

doubly occupied quantum dots (QDs) and electron reservoirs. We demonstrate a 

single-shot measurement fidelity of 90% and an S–T0 oscillation visibility of 81% at 

a field gradient of 100 mT (~ 500 MHz·h·(g*B)-1); this allows single-shot readout 

with full electron charge signal contrast and, at the same time, long and tunable 

measurement time with negligible effect of relaxation even at strong magnetic field 

                                                      

This chapter is adapted from npj Quantum Information 6, 64 (2020). 



 

 

３６ 

gradients. Using an rf-sensor positioned opposite to the QD array, we apply this 

method to two ST0 qubits and show high-visibility readout of two individual single-

qubit gate operations is possible with a single rf single-electron transistor sensor. We 

expect our measurement scheme for two-electron spin states can be applied to 

various hosting materials and provides a simplified and complementary route for 

multiple qubit state detection with high accuracy in QD-based quantum computing 

platforms. 

 

 

 

 
Introduction 

The assessment of general quantum information processing performance 

can be divided into that of state initialization, manipulation, and measurement. Rapid 

progress has been made in semiconductor quantum dot (QD) platforms, with 

independent demonstrations of, for example, high-fidelity state initialization of 

single and double QD spin qubits [1–3], high-fidelity quantum control with resonant 

microwaves [4–8] and non-adiabatic pulses [1,9,10], and high-fidelity state 

measurements using spin-to-charge conversion [3,11–19]. However, the high 

visibility of a quantum operation requires high fidelity in all stages of the quantum 

algorithm execution, which has been demonstrated in only a few types of spin qubits 

so far [4,6,7,10,20,21].  

For double QD two-electron spin qubits, the Pauli spin blockade (PSB) 

phenomenon is typically used for discriminating spin-singlet (S) and -triplet (T0) 

states where different spin states are mapped according to the difference in the 
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relative charge occupation of two electrons inside the double QD, which is detected 

by a nearby electrometer [22–24]. As the spin-dependent signal deterministically 

appear at the measurement phase defined by the pulse sequence at the PSB, the 

measurement window can be shortened to the limit which allows enough signal to 

noise ratio (SNR) to discriminate the different spin signal [13], and such can lead to 

high measurement bandwidth. However, depending on the device design, the signal 

contrast can be small compared to the signal of one electron, especially when the 

charge sensor position in the device is not aligned with the QD axis. This issue is 

particularly problematic in recent multiple QD designs [25–29], where the charge 

sensor positioned opposite to the qubit array increases the range of QDs detectable 

by one sensor, but renders sensitive measurement of the relative electron position 

between nearest-neighbor QDs difficult.  

Moreover, the spatial magnetic field difference B// = |BL// - BR//|, where the 

BL// (BR//) denotes the magnetic field strength parallel to the spin quantization axis at 

the left (right) dot, provides relaxation pathways through (1,1)T0–(1,1)S mixing and 

rapid (1,1)S to (2,0)S tunneling in the PSB region as shown in the solid green regions 

in Fig. 3.1a, and normal PSB readout is difficult under large B//. For example when 

B// > 200 MHz·h·(g*B)-1, where h is the Planck’s constant, g* is the electron g-

factor in GaAs, and B is the Bohr magneton, the fast spin relaxation is known to 

lead to vanishing oscillation visibility [30]. As most QD spin qubit platforms utilize 

sizeable intrinsic [2,31,32] or extrinsic [33]B// to realize individual qubit 

addressing and high-fidelity single- and two-qubit operations [4,6,34,35], it is 

important to develop fast readout techniques that enable high-fidelity spin detection 
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even at large B//. So far, visibility higher than 95% using PSB readout can be 

achieved only for small B// despite the method’s high measurement bandwidth 

[13,18].  

These limitations of conventional PSB readout have been addressed in 

previous works, and several variants of the PSB readout have been developed for 

various QD systems [14–17]. In the latched readout scheme [14], the lack of the 

reservoir on one side of the double QD enables spin conversion to the (1,0) or (2,1) 

charge state, enhancing the signal contrast. In Ref [15], singlet–triplet (ST0) qubit 

readout was performed in a triple QD to isolate the middle QD from the reservoirs, 

and the qubit state conversion to a metastable charge state enabled robust, high-

fidelity qubit readout. While these techniques enhance the signal contrast to the full 

electron charge, the explicit demonstration of such methods combined with high-

fidelity operation under large B// (> 200 MHz·h·(g*B)-1) has not been reported to 

date. We stress that it is unclear whether the readout near the (2,1) charge transition 

[15,17] will not suffer from the fast T0 relaxation if the spin mixing rate due to B//  

is comparable to the (1,1)T0 – (2,1) tunneling rate. We note here that unlike the 

readout methods near the (2,1) charge transition [15,17], T0 relaxation pathway is 

inherently absent at the readout position of this work, as both the S and T0 state 

occupy the (2,0) charge state as we describe below in detail. On the other hand, 

Orona, L. A. et al.[16] reported the shelving readout technique, whereby one of the 

qubit states is first converted to the T+ state through fast electron exchange with the 

reservoir to prevent mixing with the (1,1)S state, enabling high-visibility readout of 

the ST0 spin qubit. They showed explicitly that single-shot readout is possible even 
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for B//  ~ 180 mT (~ 900 MHz·h·(g*B)-1) by optimizing the shelving pulse 

sequence. However, the technique relies on PSB for final spin-to-charge conversion 

and is expected to be effective only when the charge sensor is sensitive to the relative 

position of electrons in the double QD. 

Here, we demonstrate the energy selective tunneling (EST) readout, 

commonly called Elzerman readout [11], of ST0 qubits under large B//, 

accomplishing both signal enhancement, due to one electron tunneling, and long 

measurement time, enabling a robust single-shot readout. Unlike previous works, 

which demonstrated independent enhancement of the signal contrast and 

measurement time through intermediate spin or charge state conversion steps, our 

scheme does not require additional state conversion during the readout. Using large 

voltage modulation by rapid pulsing with  ranging from the PSB-lifted (2,0) to the 

deep (1,1) charge regions, where the exchange coupling J() is turned off, we 

explicitly demonstrate a single-shot measurement fidelity of 90±1.3 % and an S–T0 

oscillation visibility of 81% at B// ~ 100 mT, corresponding to an oscillation 

frequency of 500 MHz. Furthermore, we demonstrate the detection of coherent 

operation of two individual ST0 qubits in a quadruple QD array with a single rf-

reflectometry line. We stress that we combine previous methods which individually 

demonstrated the Elzerman readout of the two electron spin states [12], large B// 

generation with micromagnet [33], high fidelity control of the ST0 qubit [36], and 

robust measurement within a single quantum processor yielding a record high 

quantum oscillation visibility in large B//. We also note that this is achieved at the 

expense of high bandwidth of PSB readout due to EST readout’s intrinsic timing 
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uncertainty in tunneling events. However the achieved measurement time on the 

order of 100 s in this work using EST readout is still useful for future application 

to fast spin state readout, for example single-shot readout-based Bayesian estimation 

[37]. In this paper, we describe the proposed EST readout method in detail, compare 

it with the conventional PSB readout, and suggest possible routes for its further 

optimization.  

 

Results 

Energy selective tunneling readout 

 

Figure 3.1 Energy levels and device platform a. Schematic of the singlet–triplet 

(ST0) qubit energy levels as a function of detuning  with energy selective tunneling 

(EST, blue boxes)- and Pauli spin blockade (PSB, green boxes)-based readout 

schemes. Green panel: At the PSB readout point, the (1,1)S state tunnels into the 

(2,0) charge state while the tunneling from the (1,1)T0 state is blocked. The relative 

charge position is observed to determine the qubit state. Finite magnetic field 

difference B// provides a relaxation pathway for the (1,1)T0 state. Blue panel: The 

Fermi level resides between the (2,0)S and (2,0)T0 states, which enables EST. The 



 

 

４１ 

triplet state (red) tunnels out to the (1,0) and initializes to the (2,0)S, while no 

tunneling occurs for the S state. For comparison, three other types of modified PSB 

readout scheme are presented. Grey panel: In the direct enhanced latched readout (d-

ELR) scheme, the (2,0)S state tunnels out to (1,0) while the spin-blockaded (1,1)T0 

state cannot tunnel out [14]. Dashed grey panel: At the reverse ELR (r-ELR) point, 

an electron tunnels into the spin-blockaded T0 state to form the (S,1) while the S state 

stays at the (2,0) [14,15,17]. Yellow panel: In the T+ readout scheme [16], one of the 

qubit states is conversed into the T+ state to prevent the relaxation in the PSB. The 

readout is taken in the PSB by discriminating the (2,0)S and (1,1)T+. Points 

corresponding to different schemes are denoted in Fig. 3.1c. b. Scanning electron 

microscopy image of the device. Green (orange) dots indicate the left (right) ST0 

qubit QL (QR), and the yellow dot indicates the rf single-electron transistor (rf-set). 

The blue arrow indicates the external magnetic field direction. The white scale bar 

corresponds to 500 nm. c.(d.) Charge stability diagram for QL (QR) operation with 

the pulse cycling I – W – O – W – R points superimposed. The red dashed line shows 

the boundary of the region inside which the EST readout is appropriate. The inset of 

c. shows the PSB readout signal for the same area observed by gated integration. The 

yellow line in d. shows the electron transition signal of the QD coupled to V2.  

 

The blue rectangular regions in Fig. 3.1a show the position of  and the 

energy level configuration used for EST state initialization and readout. At this 

readout point, the PSB is lifted, and both S and T0 levels can first occupy the (2,0) 

charge state, the energies of which are separated by ST0 splitting typically in the 

order of ~ 25–30 GHz [38], depending on the dot-confining potential. Near the (1,0) 

- (2,0) electron transition, the electrochemical potential of the reservoir resides 

between these states, which enables the EST of the ST0 qubits. As discussed in detail 

below, we observe the single-shot spin-dependent tunneling signal where one 

electron occupying an excited orbital state of the (2,0)T0 state tunnels to the reservoir 

to form the (1,0) charge state, leading to an abrupt change in the sensor signal, and 

predominantly initializes back to the energetically favorable (2,0)S state. In contrast, 

no tunneling occurs for the (2,0)S state (see Fig. 3.1a, blue right panel). 
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We study a quadruple QD array with an rf single-electron transistor (rf-set) 

sensor consisting of Au/Ti metal gates on top of a GaAs/AlGaAs heterostructure, 

where a 2D electron gas (2DEG) is formed approximately 70 nm below the surface 

(Fig. 3.1b). A 250 nm-thick rectangular Co micromagnet with large shape anisotropy 

was deposited on top of the heterostructure to generate stable B// for ST0 qubit 

operation [33,36,39,40] (see methods section for fabrication details). The device was 

placed on a plate in a dilution refrigerator at ~20 mK and an in-plane magnetic field 

Bz,ext of 225 mT was applied. To demonstrate the EST readout in the experiment, we 

independently operated and readout two ST0 qubits (QL and QR) in the non-

interacting regime by blocking QL–QR tunneling using appropriate gate voltages. We 

monitored the rf-reflectance of the rf-set sensor (Fig. 3.1b, yellow dot) for fast single-

shot charge occupancy detection in the s time scale [41,42]. The intra qubit tunnel 

couplings for both QL and QR were tuned above 8 GHz to suppress unwanted 

Landau–Zener–Stuckelberg interference under fast  modulation, and we estimated 

the electron temperature to be approximately 230 mK (see also Supplementary Note 

3.1). 

We first locate appropriate EST readout points in the charge stability 

diagrams. Figure 3.1c (1d) shows the relevant region in the stability diagram for the 

QL (QR) qubit operation as a function of two gate voltages V1 (V3) and V2 (V4). We 

superimpose the cyclic voltage pulse, sequentially reaching I – W – O – W – R points 

in the stability diagram (see Fig. 3.1c and 3.1d) with a pulse rise time of 200 ps. 

During the transition from the point W to point O stage, the pulse brings the 

initialized (2,0)S state to the deep (1,1) region non-adiabatically, and the time 

evolution at point O results in coherent S-T0 mixing due to B//. The resultant non-
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zero T0 probability is detected at the I/R point. For this initial measurement, the 

duration of each pulse stage was not strictly calibrated, but the repetition rate was set 

to 10 kHz. The resulting ‘mouse-bite’ pattern inside the (2,0) charge region (Fig. 

3.1c., boundary marked by the red dashed line) implies the (1,0) charge occupancy 

within the measurement window, which arises from the EST of the ST0 qubit states 

averaged over 100 s. For comparison, we note that the PSB readout signal with a 

similar pulse sequence is not clearly visible in the main panel of Fig. 3.1c in the time-

averaged manner due to fast relaxation, as described above. The inset in Fig. 3.1c 

shows the PSB readout signal measured by gated (boxcar) integration (see 

Supplementary Note 3.2), where an approximately 100 ns gate window was applied 

immediately after the pulse sequence. This difference in the available range of 

measurement time scale clearly contrasts two distinct readout mechanisms for the 

spin-to-charge conversion of ST0 qubits.    

The PSB and EST readouts are systematically compared through time-

resolved relaxation measurements, which also serve as calibration of the readout 

parameters for EST readout visibility optimization. Fig. 3.2a (2b) shows the 

relaxation of the sensor signal as a function of waiting time  before reaching the 

measurement stage, using the pulse sequence shown in the inset of Fig. 3.2a (3.2b) 

near the PSB (EST) readout position for QL (see Supplementary Note 3.3 for 

measurement result and fidelity analysis of QR). As expected, the lifetime T1 of the 

T0 state at the PSB region is in the order of 200 ns, indicating strong spin state mixing 

and subsequent charge tunneling due to the large B// produced by the micromagnet 

(see Supplementary Note 3.4 for magnetic field simulation). However, at large 

negative , the PSB is eventually lifted, and the absence of rapid spin mixing as well 
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as the insensitivity of the (2,0)T0 – (2,0)S spin splitting to charge fluctuations ensures 

the long lifetime of the T0 state. The evolution time at O is varied in the EST 

relaxation time measurement in Fig. 3.2b, and the amplitude decay of the coherent 

oscillation is probed to remove background signals typically present for long pulse 

repetition periods. The resultant T1 of 337 s is three orders of magnitude longer than 

that in PSB readout. Without fast  modulation, a long T1 exceeding 2.5 ms has been 

reported in GaAs QDs [43] implying that further optimization is possible.   
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Measurement fidelity optimization 

 

Figure 3.2 Time-resolved relaxation measurements and fidelity analysis of QL a. 

Relaxation time measurement at PSB readout. The time-averaged rf-demodulated 

signal Vrf is recorded as a function of the waiting time  at the  denoted in the inset. 

T1 ~ 200 ns is extracted from the fitting data to the exponential decay curve. b. 

Relaxation time measurement near EST readout. The decay of the coherent 

oscillation is observed along the waiting time  near the detuning at the measurement 

point denoted in the inset. T1 ~ 337 s is extracted. c. Histogram of the tunneling out 

events triggered by the end of the manipulation pulse as a function of time. d. 

Histogram of the experimental and simulated rf-demodulated single-shot traces with 

the application of  pulses for EST readout showing a mean value separation of more 

than 8 times the standard deviation. e. Tunneling detection infidelity calculated from 

the CDS peak amplitude histogram shown in the inset. Minimum total error (ET + 

EN) of ~10.5% corresponding to ET ~ 5 % , and EN ~ 5.5 %are estimated at the 

optimal threshold voltage Vopt. 

 

Next, we discuss the calibration of the tunnel rates for single-shot readout 

and the optimization of the readout fidelity and visibility with the given experimental 

parameters. While for time-averaged charge detection we use a minimum integration 

time of 30 ns in the signal demodulation setup, corresponding to a measurement 

bandwidth of 33 MHz, we set the integration time to 1 s for single-shot detection 
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to increase the signal to noise ratio, and we typically tune the tunneling rates to less 

than 1 MHz. Fig. 3.2c shows time-resolved tunnel out events triggered by the end of 

the pulse sequence from which we measure the tunneling out rate out ~ out
-1 = (16 

s)-1, extracted from the fit to an exponentially decaying function. The rate is within 

our measurement bandwidth. Also note that the ratio T1/out is at least 20, which is 

reasonable to perform high-fidelity measurements above 90% [44]. Fig. 3.2d shows 

the resultant histogram showing a separation of the mean value of the S and T0 signal 

levels of more than 8 times the standard deviation, confirming the high fidelity of 

single-shot spin state detection with 1 s integration time. We also find good 

agreement between the experimental and numerically simulated single-shot 

histograms [3] generated using the measured tunneling rates and signal to noise ratio 

(See Supplementary Note 3.5 for details). 

After the rf demodulation stage, we further apply correlated double 

sampling (CDS) [15] to the single-shot traces to simplify the state discrimination and 

measurement automation. Using a fast boxcar integration with two gate windows 

that are 5 s apart in the time domain, a dc background-removed pseudo-time 

derivative of the single-shot traces is generated, enabling separate detection of 

tunneling out/in events with an external pulse counter (Stanford Research Systems, 

SR400 dual gated photon counter) and time-correlated pulse counting with a 

multichannel scaler (Stanford Research Systems, SR430 multichannel scaler) 

without the need for customized field-programmable gate array (FPGA) 

programming [37,45] (see Supplementary Note 3.2 for details of the CDS scheme). 

While this scheme was successful, the electronic measurement bandwidth was 
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further reduced to 200 kHz for single-shot detection, which resulted in a relatively 

long readout time requiring relatively slow tunneling rates. To simulate realistic 

measurement conditions, we applied the numerical CDS filter to the simulated 

single-shot traces (Fig. 3.2e) and reproduced the tunneling detection fidelity of the 

measurement setup. As the measured electron temperature (230 mK ~ 5~6 GHz·h/kB, 

where h is the Planck’s constant and kB is the Boltzmann’s constant) compared to 

the ST0 splitting (25~30 GHz) may trigger unwanted events such as false 

initialization, thermal tunneling of the ground state, and double-tunneling events 

within the measurement windows, we have introduced corresponding thermal 

parameters to the analysis. The parameters were utilized to model the Larmor 

oscillation measured (see Fig. 3.3), and the values were extracted from the least 

squares fitting with the experimental data to yield the final measurement fidelity (see 

Supplementary Note 3.5 for measurement fidelity analysis).  The resulting 

theoretical measurement fidelity of the QL is 90±1.3 %, corresponding to a visibility 

of 80±2.6 %, confirming that high-fidelity single-shot detection is possible at the 

given experimental conditions. Moreover, in Supplementary Note 3.6, we show 

through numerical simulation that FPGA-based single-shot detection, which we plan 

to perform in the future, will yield a measurement fidelity (visibility) of 94% (89%) 

at the same experimental condition through faster and more accurate peak detection 

which lowers the tunneling detection infidelity.  
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High-visibility quantum control with the EST readout 

 

Figure 3.3 High-visibility two-axis control of two ST0 qubits. a. (d.) Coherent ST0 

oscillation of QL (QR) under large B//. 81% (64%) quantum oscillation visibility is 

defined by the initial oscillation amplitude which is in good agreement with the 

analytic model with thermal effects and spin relaxation (See Supplementary Note 

3.5). b. (e.) Coherent exchange oscillation and two-axis control of QL (QR) on the 

Bloch sphere. The top panel of b. shows the Ramsey pulse sequence where the first 

/2 pulse induces equal superposition of S and T0 spin states, and the phase evolution 

under non-zero J() is probed by the second /2 pulse. By varying the pulse 

amplitude Aex and the evolution time ex at the exchange step, the high-resolution 

rotation axis evolution and an energy spectrum consistent with the expected 

functional form of J() [38], the schematic of which is shown in the top panel of c., 

are confirmed by the fast Fourier transform (FFT) plots in c. (f.). 

 

 We now demonstrate high-visibility coherent qubit operations with the EST 

single-shot readout. The panels in Fig. 3.3 show the high-visibility two-axis control 

of QL (Figs. 3a–c) and QR (Figs. 3d–f) under large B// recorded with a single rf-set. 

For the B// oscillations (Figs. 3a, 3d), the I – W – O – W – R with the period of 150 

s (Fig. 3.3a, top panel) was applied, and the evolution time at O was varied from 0 

to 10 ns. Each trace in Figs. 3a and 3d is the average of 50 repeated measurements 
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with 2000 shots per point, which takes over 5 min; thus, we expect an ensemble-

averaged coherence time of ST0 qubit oscillation T2
* in the order of 15 ns, limited by 

nuclear bath fluctuation [1]. We clearly observe coherent oscillations of QL (QR) with 

~81% (~64%) visibility, which is consistent with the results of the numerical 

simulation reported in Supplementary Note 3.5. Under the large B// of 100 (80) mT, 

corresponding to an oscillation frequency of 500 (400) MHz, we expect the Q-factor 

(T2
*/T) of the oscillation to reach up to 28 (22) for QL (QR), even with the measured 

ensemble-averaged T2
*~ 15 ns. Moreover, we estimate the leakage probability during 

the fast ramp less than 2% (see Supplementary Note 3.7); thus, we assume here that 

the effect of leakage error to the visibility is not significant. As discussed above, 

electronic bandwidth owing to the CDS technique is one of the factors limiting the 

visibility for both QL and QR. Moreover, we estimate about 8% (9%) probability that 

the ground state tunnel out to the reservoir and 4% (2%) probability of false 

initialization to T0 state for QL (QR), showing that the reduction of the measurement 

fidelity and visibility in our experiment stems from the combination of the thermal 

effects, spin relaxation, and electronic bandwidth of the CDS method. For QR, tuning 

to an even longer out of 25 s was necessary to account for the reduced rf-set sensor’s 

signal contrast to farther QDs, for which the final visibility is approximately 64%. 

However, as shown in Supplementary Note 3.6, the visibility of the further QDs can 

be easily enhanced to more than 78% by simply improving the electronics of the 

measurement system, for example, with FPGA programming.   

To acquire the 2D plots shown in Figs. 3b and 3e, the typical Ramsey pulse 

sequence of I – W – O (/2) – Aex – O (/2) – W – R (Fig. 3.3b, top panel) was 
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applied, and the detuning amplitude Aex and evolution time ex at the exchange step 

were varied. The figures show high-visibility quantum oscillation as well as 

continuous evolution of rotation axis on the Bloch sphere as Aex is varied over 

different regimes, where T2
* is limited by the charge noise for J() > B// or by 

fluctuations in B// for J() ~ 0. The fast Fourier transform (FFT) of the exchange 

oscillations along the exchange detuning axis (Figs. 3c and 3f) confirms the control 

of the ST0 qubit over the two axes on the Bloch sphere for both QL and QR, which is 

consistent with the expected qubit energy splitting (Fig. 3.3c, top panel). We 

emphasize that the measurement of two qubits is possible with one accompanied rf-

set, which can be useful for the linear extension of the ST0 qubits because the charge 

sensor does not need to be aligned with the QD array. In this work, we focused on 

independent two single-qubit gate operation; nevertheless, we expect that long T1 at 

EST readout will allow the sequential measurement of two qubit states for a given 

quantum operation, which, in turn, will allow two qubit correlation measurement, 

enabling full two qubit state and process tomography in the future. Characterization 

of the two qubit interaction of ST0 qubits in the current quadruple dot array, for 

example by dipole coupling [6,10] or exchange interaction [36], is the subject of 

current investigations.  

 

Discussion 

High-visibility readout of the ST0 qubit at large B// is necessary for high-

fidelity ST0 qubit operations [6,37]. We performed high-visibility single-shot 

readout of two adjacent ST0 qubits at B// of 100 mT (~500 MHz·h·(g*B)-1) by 
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direct EST with one rf-set. No mixing between T0 and (1,1)S state was observed at 

the EST readout point, which would allow sequential readout of multiple arrays of 

qubits due to the long T1. Full one-electron signal difference discriminates the S and 

T0 states compared to other readout methods where the dipolar charge difference is 

measured to readout the ST0 qubit states [13,16]. This feature can be especially 

useful for scaling up the ST0 qubits for the following reasons: 1) the large signal 

contrast can result in high visibility and low measurement error, and 2) the sensor 

does not need to be aligned along the QD array. Especially for GaAs spin qubits, 

high-visibility ST0 qubit readout allows fast nuclear-spin fluctuation measurements, 

which will enable accurate feedback/stabilization of the nuclear spin bath for high-

fidelity qubit control [2,32,37]. Furthermore, our method does not require additional 

metastable states [15,17,46] or pulsing sequences for high-fidelity measurements at 

large B// [14,16], showing that the experimental complexity is greatly reduced. EST 

readout of ST0 qubits in nuclear spin-free systems, including Si, may also enhance 

the measurement fidelity by providing even longer T1 for electron spins [7,47,48]. 

We further expect that the large B// based high-fidelity control combined with the 

high-fidelity readout method will be a powerful tool not only for single-qubit 

operations but also for exploring the charge-noise insensitive two-qubit operations 

of the ST0 qubits using extended sweet spot [6].   

Because the highest bandwidth potential of rf-reflectometry cannot be fully 

exploited with the CDS technique used in this study, we expect that the use of FPGA 

to detect the peaks from the bare rf demodulated single-shot traces will enhance the 

visibility to at least 88% (78%) for QL (QR). The use of FPGA programming will 

also allow faster nuclear environment Hamiltonian learning [37], which can be 
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useful in, for example, studying the time-correlation of nuclear spin bath fluctuations 

at different QD sites. We have taken the thermal tunneling probabilities into the 

analysis, and have successfully modeled the coherent ST0 oscillation in our 

measurement setup, and derived the measurement fidelities. In the future, we plan to 

improve the performance by adopting an FPGA-based customized measurement, 

reducing electron temperature, and further optimizing the electronic signal path. 

However, even with the current limitations, the achieved visibility of 81% for ST0 

qubits at large B// shows potential to realize high-fidelity quantum measurements 

in scalable and individually addressable multiple QD arrays in semiconductors.  
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Methods 

Device Fabrication. The quadruple QD device was fabricated on a GaAs/AlGaAs 

heterostructure with a 2DEG formed 73 nm below the surface. The transport property 

of the 2DEG shows mobility  = 2.6×106 cm2 V-1 s-1 with electron density n = 

4.6×1011 cm-2 and temperature T = 4 K. Mesa was defined by the wet etching 

technique to eliminate the 2DEG outside the region of interest. Ohmic contact was 

formed through metal diffusion to connect the 2DEG with the electrode on the 

surface. The depletion gates were fabricated on the surface using standard e-beam 

lithography and metal evaporation. The QD array axis was oriented parallel to the 

[011] crystallographic direction of GaAs. Subsequently, the micromagnet was 

patterned perpendicular to the QD array using standard e-beam lithography, and a Ni 

10 nm/Co 250 nm/Au 5 nm was deposited using metal evaporation.  

 

Measurement. The experiments were performed on a quadruple QD device placed 

on the 20 mK plate in a commercial dilution refrigerator (Oxford instruments, Triton-

500). Rapid voltage pulses generated by Agilent M8195A arbitrary waveform 

generator (65 GSa/s sampling rate) and stable dc voltages generated by battery-

operated voltage sources (Stanford Research Systems SIM928) were applied through 

bias-tees (picosecond Pulselabs 5546) in the dilution refrigerator before applying the 

metal gates. An LC-resonant tank circuit was attached to one of the ohmic contacts 

near the rf-set with a resonance frequency of ~110 MHz for homodyne detection. 

The reflected rf-signal was first amplified at 4 K with a commercial cryogenic 

amplifier (Caltech Microwave Research, CITLF2) and then further amplified at 

room temperature with home-made low-noise amplifiers. Signal demodulation was 
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performed with an ultra-high-frequency lock-in amplifier (Zurich instrument 

UHFLI), and the demodulated amplitude was processed using a boxcar integrator 

built in the UHFLI for CDS. The CDS peaks were counted with an external photon 

counter (Stanford Research, SR400). The pulse parameters could be rapidly swept 

via a hardware looping technique, which enabled fast acquisition of the 

B//oscillations. In Supplementary Note 3.8, we show the details of the measurement 

setup, CDS technique, and signal analysis. 
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Supplementary Information 3 

 

Supplementary Note 3.1. Electron temperature and intra-qubit tunnel coupling 

calibration  

 Electron temperature, and the tunnel coupling strength of the left double 

quantum dot are measured using the standard lock-in technique. dVrf/dV2 is observed 

by modulating V2 gate voltage with 337Hz frequency. With proper adjustment of dot-

reservoir tunnel rates less than 1 MHz and setting minimal modulation amplitude, 

the electron temperature Te ~ 230mK is determined by fitting the heterodyne detected 

single electron transition line to the equation

2
B1 offsetrf

1 offset
B2 B1 offset

exp( ( ) )
( )

(1 exp( ( ) ))

V V k TdV A
V A

dV k T V V k T






 

 
, which is the 

derivative of the typical Fermi-Dirac distribution (Supplementary Fig. 3.1a). Here  

= 0.035 is the lever-arm of the V1 gate obtained from the Coulomb diamond 

measurement, kB is the Boltzmann constant, and Aoffset and Voffset are the dVrf/dV2 offset 

and the offset V1 voltage in the dVrf/dV2 – V1 plot, respectively. The intra-qubit tunnel 

coupling strength tc was obtained in the similar manner, by sweeping the gate voltage 

through the inter-dot transition line in the stability diagram for example shown in 

Fig. 1c of the main text. The broadening is fitted using the same equation described 

above, with the broadening width 2tc instead of kBT where the tc represents the tunnel 

coupling strength. The resultant 2tc/h is 16 GHz where h is the Plank’s constant.   
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Supplementary Figure 3.1 System parameter calibration. a. Electron 

temperature measurement. b. tunnel coupling strength measurement using the 

heterodyne detection scheme. Typical lock-in measurement was performed to 

obtain the broadening of the single electron transition due to thermal broadening 

and the intra-qubit tunneling. Electron temperature Te ~ 230 mK, and tunnel 

coupling tc /h ~ 8GHz were obtained from the fitting. When obtaining b. both V1, 

and V2 were swept through the inter-dot transition line in Fig. 3.1c, but only the 

V1 gate voltage is shown in the x-axis.    
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Supplementary Note 3.2. Correlated double sampling (CDS) 

 By resampling the demodulated rf-signal with the boxcar integrator, we 

enable the real-time single-shot event counting without the use of field-

programmable gate arrays (FPGA) programming. As shown in Supplementary Fig. 

3.2, the boxcar integrator subtracts the 100 ns-averaged baseline signal from the gate 

signal which are separated by 5 s in the time domain to yield a pseudo-time 

derivative signal of the single-shot trace with 200 kHz sampling rate. CDS converts 

the falling (rising) edge to the positive (negative) peak and the peaks are detected by 

the external photon counter (Stanford Research Systems SR400) as shown in 

Supplementary Fig. 3.2a. This allows the separate detection of tunneling in / out 

event in real-time without post-processing which may reduce the experimental 

overhead in the analysis step. By counting the tunneling out events, we have 

observed the coherent singlet-triplet qubit (ST0 qubit) oscillations in the energy 

selective tunneling (EST) readout point in the main text. For single-shot readout, the 

boxcar integrator is operated with average number set to 1 (no averaging).  

 When averaged, however, the CDS technique can also be utilized to observe 

short-lived T0 signal for Pauli Spin Blockade (PSB) readout, which enable 

measurement bandwidth of 33MHz in time averaged manner (see also the inset to 

Fig. 3.1c in the main text). By setting the ~ 0.1s gate window right after the spin-

mixing pulse comes back to the PSB region, and the ~ 0.1s baseline gate window 

before the next pulse start as shown in Supplementary Fig. 3.2b, the demodulated 

signal is effectively sampled for short time where the portion of the T0 signal is 

sufficiently large to be observed with sufficient periodic average.  
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Supplementary Figure 3.2 Correlated double sampling schematics. a. 

Correlated double sampling for tunneling out / in event detection. Boxcar 

integrator resamples the bare demodulated rf signal by subtracting the ~ 100 ns 

averaged baseline (B) signal from the gate (G) signal every 5s. This resampling 

process converts the falling edge signal of the rf signal to a positive peak with 

removing dc background and produces pulse signal robust to background drift. b. 

CDS scheme for short T0 signal detection in PSB readout. Pulse mixes the S and 

T0 states in the operation (O) sequence, and when returning to the readout (R) step, 

the T0 quickly relaxes to (2,0) charge state under large magnetic field difference. 

The boxcar integrator in this case is operated in averaging mode where sampled 

signal G of the rf-signal for short period time after the pulse sequence are 

subtracted by the B signal and averaged about 5000 times to increase signal to 

noise ratio.   
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Supplementary Note 3.3. Right qubit measurement fidelity 

 

Supplementary Figure 3.3 Right qubit readout fidelity analysis. a. Tunneling 

out rate of the right qubit QR at the EST readout point. Tunneling out events were 

recorded as a function of the tunneling time, and the exponential fit to the curve 

yields out s. b. Relaxation time measurement near EST readout point. The 

decay of the coherent oscillation is observed along the waiting time  near the EST 

readout point. T1 ~ 192s is extracted from the fit. c. Experimental, and simulated 

rf single-shot traces of the QR with the -pulse applied. d. Tunneling detection 

infidelity calculated from the CDS peak amplitude histogram shown in the inset. 

Minimum total error (ET + EN) of 28.2% corresponding to ET ~ 19%, and EN ~ 

9.2% are estimated at the optimal threshold.  
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Supplementary Note 3.4. Magnetic field simulation 

 

Supplementary Figure 3.4 Simulation of the magnetic field around the QDs. 

The total magnetic field strength around the quantum dots in our device (see 

Supplementary Fig. 3.8) is simulated using the boundary integral method with 

RADIA [1,2] package. Green dots indicate the quantum dot positions. The fast 

B//oscillations shown in Fig. 3.3 in the main text is up to 500MHz corresponding 

to B// of 100 mT, and we ascribe this higher-than-expected-B// to the 

displacement of the electrons from the expected positions by the confining 

potential in the few electron regime.    
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Supplementary Note 3.5. Measurement fidelity analysis 

 We have taken the thermal tunneling events into consideration for the 

fidelity analysis and describe the analysis protocol in detail here. We first define two 

parameters 1, and  where1 corresponds to the probability for the ground (S) state 

to tunnel out to the reservoir within a measurement window, and  corresponds to 

the false initialization probability following the Pla. et al.[3]. Regarding the false 

initialization we assume the following for three triplet states – T0, T+, and T-. 

1) Probabilities for the electron to falsely initialize to different triplet states are all 

equal to. 

2) The relaxation time is equal for all T0, T+, and T- state. 

3) T+ (1,1), and T- (1,1) states do not evolve to other states during the Larmor 

oscillation phase.   

It should be noted that while the false initialization to T0 state contribute to the 

visibility loss while the false initialization to T+ or T- states would result in overall 

shift of the Larmor oscillation because the T+ or T- will not undergo coherent mixing 

process during the evolution time. We introduce an additional parameter, 2 to 

account for the double-tunneling probability of the ground state within a single 

measurement window. For example, in the case that a T0 state first tunnels out to the 

reservoir and initialize to the S state in a measurement phase, there still exist non-

zero probability for the S state to tunnel out within the measurement window, and 2 

represents the corresponding probability. It is thus natural to define the total double 

tunneling probability as P2 = (+ (1-)/2) which covers the double-tunneling 

probability of the false initialized triplet states and the reinitialized S state after a 
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single tunneling event.  

 

Supplementary Figure 3.5 Pulse sequence for Larmor oscillation 

measurement. The Larmor oscillations of QL and QR are measured by first 

sweeping the pulse parameter, the free evolution time tj, and repeating the 

measurement over 2000 times to average traces. N different pulses corresponding 

to N different evolution time are all recorded in the arbitrary waveform generator 

(AWG) before measurements to enable the rapid hardware triggered sweep of the 

pulse parameter.  

In the Larmor experiment in Supplementary Fig. 3.3a, 3d of the main text, 

we obtain the oscillation by averaging single-shot traces using the pulse sequence 

shown in Supplementary Fig. 3.5. As we regard the spin state is at the excited (T0) 

state if there is at least one tunneling event within a measurement window, we first 

define the P(tj, B//) as the probability for at least one tunneling to occur within a 

single measurement window at the evolution time tj ( 1 ≤ j ≤ N, j is integer) under 
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the magnetic field difference B//. It should be noted that P(tj, B//) must be derived 

recursively since the tunneling event at the jth shot affects the tunneling probability 

of the (j+1)th shot. The relation between the P(tj+1, B//), and P(tj, B//) is as follows.  

j 1 // j / / j 1 j 1 1 j 1 1( , ) ( , )[(1 ){ (1 ) (1 ) }P t B P t B f r f f r               

j 1 1 j 1 j 1 1{ (1 ) (1 )(1 ) }
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3
r r


    

j / / j 1 j 1 1 j 1 1(1 ( , ))( (1 ) (1 ) )P t B f r f f r                    
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Here fj+1 = f(tj+1, B//) = sin2(B// tj+1) is the ideal T0 probability at the evolution 

time tj+1 under the magnetic field difference B// when the initial state is the singlet 

state, and (1- r) is the relaxation probability of the T0 state within the measurement 

window which is given by 
1 out
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 where M is the 

length of the measurement window, T1 is the spin-relaxation time, and out is the 

tunneling-out time.   

However, recursively obtained P(t, B//) cannot yet fully account for the 

experimentally obtained Larmor curve. We additionally define tunneling detection 

fidelity TT (TN) which is the fidelity to correctly tell there is a (no) tunneling event 

when there is a (no) peak in the signal. Here TT and TN are determined by the signal 

to noise ratio (SNR) of the measurement setup, and the detailed description on how 
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to obtain the tunneling detection fidelities is given below. With P(t, B//),TT, and TN, 

the experimental Larmor curve can be fully modeled. A(t, B//), the average number 

of the tunneling events detected by the photon counter, has the following relation 

with the P(t, B//).  

/ / / / 2 T / / NA( , ) P( , )(1 ) (1 P( , ))(1 )t B t B P T t B T             (2) 

Assuming that 
/ /B suffers from the Gaussian noise, we perform the Gaussian 

weighted sum of A(t, B//)curves as below within the 5-sigma range.  
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//

5

/ / / /

5

A( , ) A( , )G( , , )
B

b B

t B t b b B b





 

 

            (3) 

Here G(x, , ) is the Gaussian distribution centered at with the standard 

deviation.  

By setting , and B// as the fitting parameters we perform the least squares 

fitting of the / /A( , )t B to the experimental Larmor curve. Below we describe the 

protocol for obtaining the tunneling detection infidelities.  

Typical measurement fidelities are acquired by obtaining the histograms of 

the time-resolved signals of qubit ground and excited states, and finding the adequate 

threshold which yields the highest visibility [4–6]. The obtained measurement 

fidelities not only suffer from the imperfect tunneling detection, but also from the 

spin-relaxation or thermal tunneling events, implying that the TT, and TN cannot be 

solely obtained experimentally. We first numerically simulate [6] the traces with the 

experimental parameters including the offset rf-voltage, amplitude of the tunneling 

peaks, tunneling in/out time, spin-relaxation (T1) time, and sampling rate (Parameters 

are denoted in the Supplementary Table 3.1.). The thermal tunneling events are 



 

 

７０ 

added to the signals in according to the thermal tunneling parameters and, 

which then undergo through the numerical noise and low pass filter to yield a realistic 

signal. Then the amplitude of the noise filter is varied to match the experimentally 

obtained histogram of the rf-signal as in Fig. 3.2d, and the optimal noise amplitude 

is chosen. With the noise amplitude, we numerically generate the ‘ideal’ signals of 

triplets and singlets without the thermal tunneling events, or spin-relaxation to solely 

evaluate the tunneling detection fidelity of the electrical measurement setup. As we 

have utilized the CDS technique as described in Supplementary Note 3.2, 

corresponding boxcar filter is applied to the numerical signals, and the histograms 

of the boxcar-filtered signals are acquired to perform a typical integration for 

tunneling detection fidelity calculation [4–6]. We have plotted the tunneling 

detection infidelity ET (EN) where ET = 1 – TT (EN = 1-TN) in the Fig. 3.2e and 

Supplementary Fig. 3.3d. The tunneling detection fidelities TT(Vop), and TN(Vop) at 

the optimal threshold which yields the lowest Etot(Vop) = ET(Vop) + EN(Vop) are 

utilized for the Larmor curve fitting described above. 

 

To sum up, the whole process is done as follows.  

1) Put the initial guesses of parameters to perform Larmor curve fitting, 

and obtain the 1, 2, and . 

2) Use the obtained thermal tunneling parameters for rf-histogram fitting 

to acquire the optimal noise amplitude.  

3) Generate ideal traces of the T0, and S states with the noise amplitude 

from 2), and calculate TT, and TN 

4) Use TT, and TN for Larmor curve fitting, and obtain1, 2, and .  

5) Iteratively obtain the optimal TT, TN,1, 2, and .. 

 

We now turn to discuss the total measurement fidelity. If there exist thermal 

tunneling events irrelevant with the spin dynamics, it is difficult to tell whether the 
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tunneling peak occurs due to the thermal effect or not upon acquiring a single-shot 

trace. Thereby the total measurement fidelity should now be obtained by taking1, 

2, and  into account. Let us define FT0 (FS) as the T0 (S) measurement fidelity, and 

RT0 (RS) = 1 – FT0 (FS) as the measurement infidelity. We first evaluate RS by 

categorizing the cases which can detract the S measurement fidelity.    

X1: No tunneling occurs (1 - 1), photon counter ‘beeps’ due to electrical 

noise (EN)   

X2: A single tunneling occurs (1), photon counter detects the tunneling   (1 

- ET) 

X3: A single tunneling occurs (1), the tunneling is not detected (ET) but 

the photon counter ‘beeps’ due to electrical noise (EN) 

X4: Double tunneling occurs (1P2), first tunneling is not detected (ET), 

and the second tunneling is detected (1 - ET) 

X5: Double tunneling occurs (1P2), both tunneling events are not detected 

(ET
2), but photon counter ‘beeps’ due to electrical noise (EN) 

As X1 ~ X5 are independent, mutually exclusive, 

RS = P(X1) + P(X2) + P(X3) + P(X4) + P(X5) holds. i.e.  

2

S 1 N 1 T 1 T N 1 2 T T 1 2 T N(1 ) (1 ) (1 )R E E E E P E E P E E                 - (4) 

Cases for the T0 measurement infidelity can be similarly categorized with the 

relaxation process considered, as follows. 

Y: T0 relaxes within the measurement time (1- r), photon counter detects 

no tunneling (1 - RS) 

Z1: T0 does not relax within the measurement time (r), the tunneling is not 
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detected (ET), no additional tunneling occurs (1-P2), counter detects no 

signal (1 - EN) 

Z2: T0 does not relax within the measurement time (r), double-tunneling 

occurs (P2), both tunneling events are not detected (ET
2) 

Y, Z1, Z2 are all independent, and mutually exclusive leading to RT0 = P(Y) + P(Z1) 

+ P(Z2). i.e. 

0

2

T S T 2 N T 2(1 )(1 ) (1 )(1 )R r R rE P E rE P                - (5) 

Finally, the total measurement fidelity 
0S T

meas

( )
1

2

R R
F


   with the 

spin-relaxation, thermal tunneling events, and the tunneling detection infidelity of 

the setup is calculated as 90±1.3% (80.3±1 %) corresponding to visibility (FS + FT0 

-1) of 80±2.6 % (60.6±2 %) for QL (QR). Also, from the Larmor curve fitting we 

obtain the B//fluctuation of  ~15.71 MHz (15.73 MHz) corresponding to T2
* ~ 

14.33 ns (14.31 ns) for QL (QR). We assume that ~ 3% disagreement of the QR 

visibility is due to the uncertainty in measured relaxation time. 
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Input QL QR 

out (s) –:Tunneling-out time of the triplet 

states 

16 25.5 

in (s) : Tunneling-in time of the singlet 

state 

117 130.5 

T1 (s) : Relaxation time of the triplet states 337 192 

Meas. Time (s)  150 200 

Sampling rate (MHz) 14 14 

CDS freq. (kHz) 200 50 

CDS gate width (s) 0.1 4 

Output   

1 : False tunneling-out probability of the 

singlet state 

0.081 0.092 

2 : Double tunneling-out probability 0.08 0.089 

 : False initialization probability 0.12 0.069 

 (MHz) : Std. deviation of the B// 

distribution 

15.71 15.73 

ET : Tunneling detection infidelity  0.05 0.19 

EN : No-tunneling detection infidelity 0.055 0.092 

RT0 : T0 measurement infidelity  0.077 0.232 

RS : S measurement infidelity 0.128 0.162 

Fmeas : Total measurement fidelity 90±1.3% 80.3±1 % 

Supplementary Table 3.1. Input and output parameters of the analysis 
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Supplementary Note 3.6. Expected fidelity with direct peak detection    

 

Supplementary Figure 3.6 Error simulation for direct peak detection scheme. 

a. (b.) The tunneling detection infidelity calculated from the rf-histogram in the 

inset. The histograms are constructed by sampling the peak values for QL (QR) 

single-shot traces without the spin relaxation, and thermal tunneling events to 

evaluate the tunneling detection infidelities without the CDS. For QL, the 

tunneling detection infidelities are below 0.00001% while for QR infidelities of ET 

~ 2 % , and EN ~ 2 % are obtained at the optimal threshold. 

 The measurement fidelity and visibility are calculated for the direct peak 

detection scheme to explicitly show that the use of FPGA rather than CDS technique 

may extend the measurement fidelity and visibility with the same experimental 

parameters. Following the A. Morello et al.[6], single-shot traces were first 

simulated with the experimental parameters, and instead of passing through 

additional numerical CDS filter, the peak value (the minimum value) from each rf 

single-shot trace is sampled from 15,000 traces to construct the histogram shown in 

the insets of Supplementary Fig. 3.6a. and 6b. Because the short peaks or the full 

signal contrast cannot be perfectly detected with the CDS due to its limited 
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bandwidth, the tunneling detection fidelities are naturally higher for the FPGA case. 

With the same out, T1,1, 2, and , the measurement fidelity of QL (QR) is estimated 

as 94 % (88.8 %). We claim that the fidelities can further be higher if the FPGA-

based readout is applied because the large peak separation would allow faster single-

shot measurements with faster tunneling rates which would result in less relaxation 

due to lower out/T1. 

 

 

 

Supplementary Note 3.7. Leakage error analysis due to Landau-Zener 

transition 

 We estimate the Landau-Zener transition probability during the fast ramp 

time by solving the time-dependent Schrodinger equation with the typical ST0 qubit 

Hamiltonian [7]. We put the measured parameters such as the tunnel coupling 

strength, pulse rise time, pulse amplitude, and the magnetic field differences into the 

numerical simulation, and obtained the time trace of (2,0)S along the evolution time 

up to 10 ns. As the decoherence of the system is not considered in the simulation, 

the resultant trace (Supplementary Fig. 3.7) exhibits non-decaying oscillatory 

behavior in the 0 ~ 3% range which averages to 1.7%. We therefore conclude that 

the leakage probability and its effect to the visibility is not significant.  
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Supplementary Figure 3.7 The (2,0)S probability along the free evolution 

time. Time evolution of the (2,0)S state probability under the typical ST0 qubit 

Hamiltonian is numerically obtained by putting the experimental parameters. The 

simulation yields 1.7% (2,0)S average occupation probability during the qubit 

manipulation time.   

 

Supplementary Note 3.8. Measurement setup 

 A rf-single electron transistor (rf-set) sensor is operated to detect the charge 

states of the ST0 qubits in our device. For the rf-reflectometry, impedance matching 

tank circuit as shown in Supplementary Fig. 3.8 is attached to the rf-ohmic contact 

of the device, and the 100 pF capacitor is connected in series to the other ohmic 

contact (depicted on the micromagnet) to serve as a rf-ground. With the inductor 

value L = 1500 nH and the parasitic capacitance Cp = 1.4 pF of the circuit board, the 

resonance frequency is about 110MHz, and the impedance matching occurs at rf-set 

sensor resistance approximately 0.5 h/e2 where h is Plank’s constant and e is the 

electron charge. A commercial high frequency lock-in amplifier (Zurich Instrument, 

UHFLI) is used as the carrier generator, rf demodulator for the homodyne detection, 

and further signal processing such as gated integration and timing marker generation. 

Carrier power of -40dBm power is generated at room temperature and attenuated 
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through the attenuators and the directional coupler by -50 dB in the input line. The 

reflected signal is first amplified by 25 dB with commercial cryogenic amplifier 

(Caltech Microwave Research Group, CITLF2), and further amplified by 50 dB at 

room temperature using a home-made low-noise rf amplifier. Demodulated signal is 

acquired with a data acquisition card (National Instruments, NI USB-9215A) for 

raster scanning and also boxcar-averaged with the gated integrator module in the 

UHFLI for the correlated double sampling described above. For single-shot readout, 

the CDS output is counted with a high-speed commercial photon counter (Stanford 

Research Systems, SR400 dual gated photon counter). A commercial multichannel 

scalar (Stanford Research Systems, SR430 multichannel scaler & average) is also 

used for time correlated pulse counting for tunneling rate calibration.     
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Supplementary Figure 3.8 The measurement setup for radio frequency (rf)-

reflectometry, and the signal block diagram. Impedance matching tank-circuit 

(L~1500 nH, Cp ~ 1.4pF) is attached to the rf-set sensor Ohmic contact for 

homodyne detection. Orange (green) line indicates the input (reflected) signal. 
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Reflected signal is demodulated and processed for single-shot event counting as 

shown in the block diagram.  
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Chapter 4. Approaching ideal visibility in singlet-

triplet qubit operations using energy selective 

tunneling-based Hamiltonian estimation i 

  

 
Abstract           

We report energy selective tunneling readout-based Hamiltonian parameter 

estimation of a two-electron spin qubit in a GaAs quantum dot array. Optimization 

of readout fidelity enables a single-shot measurement time of 16 μs  on average, 

with adaptive initialization and efficient qubit frequency estimation based on real-

time Bayesian inference. For qubit operation in a frequency heralded mode, we 

observe a 40-fold increase in coherence time without resorting to dynamic nuclear 

polarization. We also demonstrate active frequency feedback with quantum 

oscillation visibility, single-shot measurement fidelity, and gate fidelity of 97.7%, 

99%, and 99.6%, respectively, showcasing the improvements in the overall 

capabilities of GaAs-based spin qubits. By pushing the sensitivity of the energy 

selective tunneling-based spin to charge conversion to the limit, the technique is 

useful for advanced quantum control protocols such as error mitigation schemes, 

where fast qubit parameter calibration with a large signal-to-noise ratio is crucial. 

 

                                                      

This chapter is adapted from Physical Review Letters 129, 040501 (2022). 
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The efficient and precise characterization of a quantum system is important 

for building scalable quantum technologies that are robust to noise stemming from a 

fluctuating environment [1,2]. Estimating Hamiltonian parameters faster than the 

characteristic noise fluctuation time scale is essential, where knowledge gained from 

the measurement is used for correcting control parameters [2-4]. Active 

measurement-based feedback for example is used to enhance quantum sensing [5,6]. 

For semiconductor quantum dot (QD)-based spin qubit platforms, Hamiltonian 

parameter estimation applied to GaAs has shown that the effect of quasi-static 

nuclear spin fluctuation can be strongly suppressed for both single spin [7] and 

singlet-triplet qubits [2]. While the development of spin qubits in nuclear noise-free 

group-IV materials such as 28Si shows impressive progress in increasing single spin 

qubit coherence times [8,9], two-qubit control fidelity is often impeded by charge 

noise, which is also often sufficiently non-Markovian [10] and hence suppressible. 

Thus, fast Hamiltonian learning methods are expected to be used for a wide range of 

materials in noisy intermediate-scale quantum systems. 

The fast single-shot measurement of qubits with high fidelity is a 

prerequisite for enabling Hamiltonian estimation. Semiconductor spin qubit devices 

mostly utilize a nearby charge sensor, where spin states are distinguished via spin to 

charge conversion mechanisms such as energy selective tunneling (EST) [11,12] or 

Pauli spin blockade (PSB) [13]. While both mechanisms are applicable for the 

detection of single spin [11], singlet-triplet (ST0) [13], and exchange only qubits [14], 

PSB-based readout has been predominantly used for real-time Hamiltonian 

estimation owing to its deterministic readout time and fast initialization capability 

[15]. However, direct application of PSB often suffers from small signal contrast due 
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to sub-optimal sensor position relative to double quantum dot (DQD) or fast 

relaxation at the readout condition due to large magnetic field difference-induced 

singlet state tunneling or the effect of spin-orbit coupling [16]. Variants of PSB-based 

readout have been developed using electron latching mechanisms in sufficiently 

isolated quantum dots [17,18] or by mapping to states outside the qubit space [19] 

circumventing some of the PSB-readout’s known disadvantages. For Si devices, high 

readout visibility has been demonstrated using both PSB and EST readout owing to 

relatively long relaxation time [20-22]. However, so far the experiments using GaAs 

devices showed visibility below 80% using PSB readout.      

The EST-based single-shot readout, on the other hand, guarantees a signal 

contrast corresponding to a full electron charge and long relaxation time [23,24]. As 

the Hamiltonian learning efficiency is directly affected by the ideality of the 

likelihood function, the large signal-to-noise ratio (SNR) of the EST readout can 

potentially be used for real-time Hamiltonian parameter estimation. Because the EST 

readout suffers from the intrinsically probabilistic nature of electron tunneling, 

requiring a longer waiting time than the PSB readout [25], it is important to 

determine whether the current state-of-the-art sensitivity of the RF-charge sensor can 

provide an EST readout that is sufficiently fast and simultaneously has a large SNR 

to enable efficient qubit frequency estimation on the fly.  

In this Letter, we demonstrate real-time Hamiltonian parameter estimation 

by EST-based single-shot readout with sub-MHz accuracy in qubit frequency 

verified by observing over a 40-fold increase in coherence time T2* compared to that 

of bare evolution on the order of 20 ns in GaAs [13]. With frequency feedback, the 

single-qubit operation performance in terms of initialization, manipulation, and 
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measurement fidelity is one of the best figures reported thus far for semiconductor 

spin qubits, providing a promising route for applying the EST-based single-shot 

readout method to various qubit operations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) Scanning electron microscopy image of a device similar to the one 

used in the experiment. Green (yellow) circles indicate the position of quantum dots 

for the ST0 qubit (RF charge sensor. Hext is applied to the z-axis as indicated by the 

blue arrow. (b) Root mean squared error of the Bayesian estimator as a function of 

N and  . (c) Left panel: block diagram of the experimental procedure including 

the probe and operation step, where the latter is performed either in heralded or active 

feedback mode. Right panel: example scope trace of the charge sensor signal 
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recorded during the experiment. Gray trace: RF-demodulated sensor signal with 

SNR = 9.2 at tint =200 ns. Blue trace: trigger signals marking the start timings of each 

probe and operation step. The red dots show the timings of the initialization check 

sequences. (d) Histograms of BZ obtained by running the probe step 10000 times 

at two different Hext. For the heralded (active feedback) mode, (BZ)set on the order 

of 1 MHz (few tens of MHz) around an average BZ of 30 (110) MHz was chosen. 

Green dashed lines indicate a tolerance window 2(BZ)set. 

 

The quantum system we study is an ST0 qubit with a basis state singlet S  

and triplet-zero 0T , formed by two gate-defined lateral QDs. Fig. 4.1(a) shows a 

scanning electron microscope image of a quantum dot device similar to the one we 

measured. Au/Ti gate electrodes were deposited on top of the GaAs/AlGaAs 

heterostructure, where a 2D electron gas is formed 70 nm  below the surface. 

Focusing on the DQD denoted by green circles in Fig. 4.1(a), high-frequency voltage 

pulses combined with DC voltages through bias tees are input to gates V1, V2, and 

VM. RF-reflectometry was performed by injecting a carrier frequency of 125 MHz 

with an estimated power of -100 dBm at the Ohmic contacts and monitoring the 

reflected power through homodyne detection. The device was operated in a dilution 

refrigerator with base temperature   7 mK and with an external magnetic field Hext. 

The measured electron temperature is   72 mK [26-28]. 

The qubit Hamiltonian is given by 
( )

2 2


 


  z

z x

BJ
H , where J() is 

the exchange splitting between states S  and 0T  controlled by potential detuning 

, i = x, y, z is the Pauli matrix, and ΔBz is the magnetic field difference between QDs 

set by the hyperfine interaction with the host Ga and As nuclei. We adopted units 
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where g* B/h = 1, in which g* ≈ −0.44 is the effective gyromagnetic ratio in GaAs, 

B is the Bohr magneton, and h is Planck’s constant. With the quantum control 

provided by rapidly turning on and off J(), the main task is to estimate ΔBz, which 

varies randomly in time owing to statistical fluctuations of the nuclei. The basic idea 

of the Bayesian inference is to update one’s knowledge about the Hamiltonian 

parameter by comparing the measurement results with the expected form of time 

evolution (likelihood function). Based on the single-shot projective measurement of 

the qubit evolving around the x-axis on the Bloch sphere for time tk = 4k ns (Larmor 

oscillation), Bayesian inference is performed by the following rule up to a 

normalization constant [2]:  

1 1 0

1

1
( , , ) ( ) [1 ( cos(2 ))]

2

N

z N N z k z k

k

P B m m m P B r B t  



            (1) 

where N is the number of single-shot measurements per Hamiltonian estimation, 

P0(BZ) is the uniform initial distribution, rk = 1 (-1) for  0km S T , and  () 

is the parameter determined by the axis of rotation (oscillation visibility). After the 

Nth single-shot measurement and update, the most probable ΔBz is determined from 

the posterior distribution P(BZ | mN, mN-1, …, m1).  

In the likelihood function 
1

[1 ( cos(2 )]
2

k z kr B t     , ideally,  =0 

and =1. Fig. 4.1(b) shows the simulation results of the root mean squared error 

between the true and estimated ΔBz. Compared to the low-visibility case ( = 0.5) 

corresponding to a large measurement error, the high-visibility case ( = 0.9) shows 

a large improvement in the rate of convergence, reaching sub-MHz accuracy in less 
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than N = 70. To date, Bayesian estimations of quantum dot spin qubits have been 

performed with  ~0.7 [2,7] requiring N > 120 for practical Hamiltonian estimation. 

Below, we show that the EST readout indeed provides  reaching unity enabling 

efficient frequency detection and feedback.  

Fig. 4.1(c) shows a schematic block diagram and an example scope trace 

during the experiment. We set the integration time of the RF demodulator tint = 200 

ns, at which SNR = 9.2 [24,26,29-33]. The measurement time was set to 15 s, 

during which the dot-to-reservoir tunnel rate tuned to the order of 1 MHz ensures 

that a tunnel-out event occurs for the state 0T . For the probe sequence, we 

diabatically pulse  to rapidly turn off J. The calculation time according to Eq. (1) is 

10 s after the kth measurement. For the operation, there are two types of modes. 

The first is heralded mode where the operation is conditionally triggered only when 

the estimated qubit frequency in the probe step falls within a preset tolerance 

(BZ)set around the target frequency ΔBz.t. Once a short operation on the order of 20 

shots is finished, one has to wait for the next ΔBz.t ±(BZ)set to happen. The method 

is conceptually similar to Ref. [34] where the Bayesian estimator-based heralding 

was used to effectively suppress thermally induced initialization error. The second is 

the active feedback mode where resonant modulation of J() (Rabi oscillation) is 

performed using the frequency obtained from the probe step. Here, (BZ)set is 

typically set to more than 70 MHz and the control frequency is actively adjusted so 

that the waiting time is minimized. In all steps, we apply an adaptive initialization 

step [34,35] where the controller triggers the next experiment provided that the state 
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is S . Including all the latency components, the repetition period for one probe 

(operation) step is approximately 26 (16) s on average [26]. Fig. 4.1(d) shows 

typical histograms of ΔBz obtained by repeatedly running the probe step at different 

Hext, showing fluctuation about a non-zero mean ΔBz. Note that the average ΔBz 

depends on Hext. While the exact origin of this is not well understood to date, 

previous studies in GaAs quantum dot report similar behavior [36,37], and we adjust 

Hext to set the most probable ΔBz about 30 MHz (110 MHz) for the heralded (active 

feedback) mode.      

 

 

Figure 4.2 (a) Representative Larmor oscillations with N = 70 showing T2* = 835 

ns, with a fit to a Gaussian decay function (red envelope and blue oscillatory fit). (b) 

T2* as a function of N, showing an optimal N = 70 with (BZ)set = 0.1 MHz. (c) The 

variance of the ΔBz as a function of elapsed time showing a diffusion process with 

the diffusivity (10.16 ± 0.06 kHz)2/s. (d) The uncertainty of the frequency 

estimation Bz as a function of the half-width of the tolerance (BZ)set. 
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First, we demonstrate the performance of the EST-based Bayesian estimator 

using the heralded mode operation. Fig. 4.2(a) shows the representative Larmor 

oscillations where P1 is the triplet return probability with N = 70, ΔBz.t = 30 MHz, 

and (BZ)set = 0.1 MHz. The measurement of T2*(N), extracted by fitting the Larmor 

oscillations to a Gaussian decay, reveals the uncertainty of the EST-Bayesian 

estimation (Fig. 4.2(b)). The initial increase in T2*(N) corresponds to an 

improvement in the estimation accuracy. T2* reaches an optimal coherence time of 

over 800 ns near N = 70 and subsequently decreases for N > 80. The latter reflects 

the effect of nuclear fluctuation during the increased estimation period consistent 

with the diffusive behavior of ΔBz with diffusivity D = 10.16 kHz2/s (Fig. 4.2(c)) 

[2]. 

Fig. 4.2(d) shows the (BZ)set dependence of the experimental estimation 

uncertainty Bz = 1/(√2T2
*) [38]. As we set the tolerance more stringently (smaller 

(BZ)set), T2* increases correspondingly. The residual uncertainty of the EST-based 

Bayesian estimator when (BZ)set = 0 is approximately 0.25 MHz. It is likely 

overestimated by the nuclear fluctuation during the operation time of 0.32 ms (16 

s× 20 shots) after the probe step. Thus, we conclude that our Hamiltonian 

estimation scheme enables qubit frequency estimation in 70 shots with an accuracy 

better than 0.25 MHz. Note also that while the maximum T2* = 835 ns we observe 

is less than the PSB-based Hamiltonian estimation [2], the actual performance of the 

PSB and EST-based Bayesian estimators is difficult to directly compare so far 

because the dynamic nuclear polarization [3,39] is not used in the current experiment.   
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Figure 4.3 (a) Top: Pulse sequences applied to gates V1 and V2 for the heralded 

Larmor oscillations measurement. Bottom: Larmor oscillations with visibility higher 

than 97% (b) Top: Pulse sequence for coherent exchange operation. Bottom: 

Corresponding exchange oscillations at J = 75 MHz, ΔBz,t = 30 MHz showing charge 

noise-limited coherence time Tdecay = 450 ns. (c) Exchange oscillations as a function 

of barrier pulse amplitude Aex and evolution time te. (d) Tdecay and the quality factor 

Q as a function of exchange coupling J. 

 

We now discuss the application of the EST-based Hamiltonian estimation to 

general single-qubit operations (Fig. 4.3: heralded mode, Fig. 4.4: active feedback 

mode). Fig. 4.3(a) shows coherent Larmor oscillations with ΔBz,t = 30 MHz. The 

oscillation shows the visibility of approximately 97.7%. Considering possible 

imperfections in the control stemming from residual J and finite rise time of the 
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waveform generator (~0.4 ns), the result shows that the EST-based Bayesian method 

enables accurate qubit frequency estimation and high measurement fidelity at the 

same time, leading to near ideal visibility. By comparing the oscillation with the 

numerical simulation, we estimate measurement fidelity of 99% with less than 0.1% 

initialization errors for the heralded mode [23,26,40,41]. 

Using symmetric barrier-pulse operation, recently demonstrated in Ref. [42], 

Fig. 4.3(b) shows coherent exchange oscillations with ΔBz,t = 30 MHz, and J = 75 

MHz. In addition, a two-dimensional map of the exchange oscillations is measured 

as a function of exchange amplitude Aex and exchange duration te  (Fig. 4.3(c)), 

showing the oscillations with a high-quality factor Q. Moreover, Q(J) follows the 

general trend observed in previous results [42] where Q (Tdecay) tends to saturate 

(decrease) at large J owing to the crossover from nuclear noise to electrical noise-

limited decoherence. While the maximum Q of ~40 is comparable to that in the 

previous report [42], our EST-based Bayesian method effectively suppresses the ΔBz 

fluctuation, leading to the observation of Q > 30 in a wide range of J.  

Although the heralded mode operation exemplifies the performance of the 

EST-based Hamiltonian estimator with minimal overhead in the Bayesian circuit, the 

main drawback is the low duty cycle (actual operation/waiting time), which can be 

< 1% depending on the tolerance. Thus we further develop our methodology using 

ac-driven qubit operation in active feedback mode. The pulse sequence for qubit 

operation is the same as in Fig. 4.3(b) except that a sinusoidal RF pulse is applied to 

VM using the frequency detected in the probe step. In this manner, the total waiting 

time is reduced down to one probe step (70 shots x 26 s = 1.82 ms). Fig. 4.4(a) 

shows the coherent Rabi oscillation measured as a function of the RF pulse duration 
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and controlled detuning δf. The pulse amplitude ARF is chosen to maximize the Q 

factor QRabi = fRabiTRabi ~ 12 with the Rabi frequency fRabi of 6.05 MHz and the Rabi 

decay time TRabi of 1.71 μs (inset to Fig. 4.4(a)). The oscillation visibility reaches 

approximately 97.6 %, (Fig. 4.4(b)). This near-ideal visibility of the RF-driven 

oscillation even without dynamic nuclear polarization again reveals the precise qubit 

frequency estimation and high measurement fidelity simultaneously enabled by the 

EST-based Bayesian estimator.  
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Figure 4.4 (a) Rabi oscillation of P1 as a function of controlled detuning δf and pulse 

duration. Inset: Oscillation quality factor QRabi as a function of RF amplitude ARF 

(measured at the output of the signal generator). The red symbol marks the condition 

for the maximum QRabi. (b) Representative Rabi oscillation with visibility higher 

than 97 %. The oscillation is fit to the sinusoidal function with the Gaussian envelope, 

from which Rabi decay time TRabi = 1.71 s is obtained. (c) P1 as a function of the 

number of random Clifford gates obtained from a single qubit standard and 

interleaved randomized benchmarking. Traces are offset by 0.3 for clarity. (d) 

Density matrices (top row) and Pauli transfer matrices (bottom row) evaluated by 

gate set tomography.  
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Furthermore, we perform the standard randomized benchmarking (RB) and 

interleaved randomized benchmarking (IRB) where single-qubit gates X, Y, X/2, Y/2, 

−X/2, and −Y/2 are interleaved to random Clifford gates [43-45]. The recovery gate 

is chosen such that the final state is ideally singlet, and the gate fidelity is obtained 

by fitting the measured data to the exponentially decaying curve [26,45]. We find the 

average gate fidelity Favg of 96.80 % and -pulse fidelity FX of 99.13 %, the latter 

being close to the Q-factor limited value exp(-1/(2QRabi)
2)= 99.76% ± 0.03 %. 

To compare the state preparation and measurement (SPAM) errors between 

two operation modes, we perform gate-set tomography (GST) [41]. Fig. 4.4(d) shows 

the density matrix (top row) and the Pauli transfer matrix (PTM, bottom row), 

obtained using a single qubit GST protocol with a gate set {I, X/2, and Y/2}2 [26,46], 

from which we obtain FX/2 = 99.05 % and FY/2 = 98.2 %, consistent with the values 

obtained from the IRB. The GST yields the initialization fidelity of 99.7% and 

measurement fidelity of 98.3%. We ascribe slightly lower initialization and 

measurement fidelity for the active feedback mode-based GST compared to the 

heralded mode to a combination of an additional leakage probability through S-T+ 

anticrossing while preparing (projecting) a state on the x(z)-axis of the Bloch sphere 

and the increased relaxation probability during the idle time between the discrete 

gates. Nevertheless, these results consolidate the high gate fidelity and low SPAM 

error illustrating that our Hamiltonian estimation enables the real-time application of 

general qubit operations in GaAs with the fidelities reaching the level of singlet-

triplet qubits in Si devices [47].  

In conclusion, using energy selective tunneling readout-based Hamiltonian 

parameter estimation of an ST0 qubit in GaAs, we demonstrated passive and active 
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suppression of nuclear noise, leading to T2* above 800 ns, near-ideal quantum 

oscillation visibility, and gate fidelity up to 99.6% confirmed by both RB and GST 

comparable with recently demonstrated optimal control-based gate fidelity [48]. The 

work showcases the improvements in the overall capabilities of GaAs-based spin 

qubits. With the large SNR of the charge sensor and real-time capability, the EST-

based Hamiltonian estimation is potentially useful for advanced quantum control 

protocols with affordable overhead in classical signal processing, such as error 

mitigation schemes and entanglement demonstration experiments, where fast qubit 

parameter calibration with large readout visibility is essential [35]. 
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Supplementary Materials 4  

S4.1. Measurement setup and FPGA implementation 

An RF-single electron transistor (RF-SET) sensor is used to detect the 

quantum states of the ST0 qubit. An impedance matching tank circuit as shown in 

Fig. S4.1 is attached to the RF-ohmic contact of the device. With the inductor value 

L = 1500 nH and the parasitic capacitance Cp = 1.4 pF of the circuit board, the 

resonance frequency is about 125 MHz, and the impedance matching occurs when 

the conductance of the RF-SET sensor is approximately 0.5 h/e2 where h is Plank’s 

constant and e is the electron charge. A commercial high-frequency lock-in amplifier 

(Zurich Instrument, UHFLI) is used as the carrier generator, RF-demodulator for the 

homodyne detection, and further signal processing units such as gated integration 

and timing marker generation. Carrier power of – 40 dBm is generated at room 

temperature and further attenuated through the cryogenic attenuators and the 

directional coupler by -60 dB. The reflected signal is first amplified by 50 dB with a 

two-stage commercial cryogenic amplifier (Caltech Microwave Research Group, 

CITLF2 x 2 in series), and further amplified by 25 dB at room temperature using a 

home-made low-noise RF amplifier.  
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Supplementary Figure S4.1 Measurement setup for radio frequency (RF)-

reflectometry and signal block diagram. An impedance matching tank-circuit (L 

~1500 nH, Cp ~1.4 pF) is attached to the RF-SET sensor Ohmic contact for 

homodyne detection. The yellow (green) line indicates the input (reflected) signal. 

The reflected signal is demodulated in the UHFLI, and subsequently processed in a 

Field Programmable Gate Array (FPGA) for the EST readout-based Bayesian 

estimation. 

 

For real-time data processing, we implement a digital logic circuit with a 

Field Programmable Gate Array board (FPGA, Digilent Zedboard with Zynq-7000 

XC7Z020-CLG484). The RF-demodulated analog signal from the UHFLI is input to 

the 12-bit ad-converter of the FPGA. For single-shot discrimination, the transient 

tunneling events of the qubit state are thresholded in real-time by comparing the 

preset threshold value with the data in parallel. The discriminator records bit 1 

immediately when data above the threshold value is detected. The bit 0 is recorded 

when such events did not happen throughout the preset measurement period of 15 

s. The Bayesian estimation after a single shot measurement for the probe step is 
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carried out by calculating the posterior probability distribution for 512 values of ΔBz 

between 10 and 160 MHz. We use a look-up table (LUT) storing all the possible 

values of the likelihood function in the Block RAM inside the FPGA and design a 

512-parallelized calculation module to minimize latency due to data processing. 

After the calculation, the FPGA follows either of the following steps depending on 

the operation mode. For the heralded mode operation, the user-defined controller 

triggers the operation step provided that the ΔBz calculated after the Nth Bayesian 

update is in the range ΔBz.t ±(BZ)set where ΔBz.t is the target frequency and (BZ)set 

is the preset tolerance. For the active feedback mode, the FPGA converts the 

estimated ΔBz into a 9-bit digital signal and sends it to the digital input/output port 

of the arbitrary waveform generator (Zurich Instruments, HDAWG). The HDAWG 

applies the square-wave enveloped sinusoidal waveform with the frequency 

corresponding to the digital value to VM using the multifrequency modulation 

function. For both probe and operation steps, an adaptive state initialization is 

performed by acquiring a 200 ns long sample and thresholding repeatedly until the 

lastest value falls below the threshold. For the entire data processing, about 60% of 

LUT and 38% of Flip Flop resources were used. 

 

S4.2. Charge stability diagram and electron temperature 

Fig. S4.2(a) shows the charge stability diagram as a function of gate 

voltages V1 and V2 showing the relevant region for the EST-Bayesian of our ST0 

qubit, where initialization/read-out points in (2,0) and the operation point in (1,1) are 

depicted as black circles. Fig. S4.2(b) shows the normalized charge transition signal 

of the last electron in the left quantum dot as a function of V1 at the mixing chamber 

temperature Tmixing = 7 mK. This data is fitted to the Fermi-Dirac distribution curve 

given by 
1

1 ( b)

1
( )

1





e a V
P V

e
, 

B e

a
k T


 , where a and b are fitting parameters, 

  is the lever-arm for V1, kB is the Boltzmann constant, and Te is the electron 

temperature. The 1/a extracted at several different Tmixing is converted to Te using 

= 0.0497 meV/mV obtain from the linear relationship for Tmixing > 100 mK as shown 
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in Fig. S4.2(c) [1]. From a power law 

1

mixing mixing( ) ( )k k k
e ST T T T   where TS is a 

saturation limit of Te at Tmixing = 0 mK and k is an exponent that depends on the 

thermalization mechanisms, we estimate TS = 72 mK and k = 3.35, indicating that 

Wiedemann-Franz cooling is a dominant cooling mechanism rather than electron-

phonon cooling [2]. 

 

Supplementary Figure S4.2 (a) Charge stability diagram measured at the mixing 

chamber temperature Tmixing = 7 mK. The Yellow dashed line indicates the 

boundary of the EST-readout window. (b) Normalized charge transition signal 

from (1,0) to (0,0) as a function of V1 at Tmixing = 7 mK. (c) Electron temperature 

Te extracted from broadening of the Fermi-Dirac distribution as a function of 

Tmixing showing estimated Te of 72 mK at Tmixing = 7 mK. 

 

S4.3. Charge sensitivity 

We evaluate the sensitivity of the charge sensor by observing the integration 

time tint dependence of the signal-to-noise ratio (SNR). We define the SNR by V, 

where V is the sensor signal contrast for a single electron charge transition and  

is the rms noise amplitude at a given tint. The sampling rate of the oscilloscope is set 

above 200 MHz. As shown in Fig. S4.3, the SNR is proportional to intt  and we 

linearly fit the SNR2 to extract the minimum integration time for achieving SNR = 

1, min of 2.45 ns [3].  
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Supplementary Figure S4.3 Signal to noise ratio (SNR) of the RF-single-electron 

transistor charge sensor as a function of integration time tint. The minimum 

integration time min ~ 2.45 ns corresponding to the integration time for achieving 

the unit SNR is obtained from extrapolating a linear fit to the data. 

 

Using min as a suitable metric for binary charge detection sensitivity 

mine   [4,5], we compare performances of the recently published works as shown 

in Supplementary Table 4.1. [3,4,6-8] showing that the charge sensitivity achieved 

in this work is one of the best values available. By comparison, the charge sensor 

used in this work is more sensitive than a dispersive sensor with a cavity-coupled 

Josephson parametric amplifier [3] but less sensitive than a similarly prepared RF-

SET in a strong quantum dot – sensor capacitive coupling regime [4].      
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Supplementary Table 4.1. Comparison of minimum integration time min and 

corresponding charge sensitivity. 

 

S4.4. Visibility analysis 

 We analyze the visibility of the quantum oscillation shown in Fig. 4.3 in the 

main text with a numerical model which includes the thermal tunneling, and the false 

initialization errors. The analysis essentially amounts to combining the visibility 

with the computed readout infidelities to extract the relevance of other effects. We 

first evaluate the tunneling detection infidelity of our readout circuit by numerically 

simulating the histogram of the RF single-shot traces [9,10]. Following the Ref. 10, 

we fit the numerical histogram obtained from the simulated traces to the 

experimental histogram which yields the tunneling detection error (Fig. S4.4(a)) of 

ET (EN) ~ 1.4 % (0.7 %) where the ET (EN) corresponds to the infidelity for detecting 

the tunneling (no-tunneling) events.   

 Based on the tunneling detection infidelities, we extract the state 

measurement fidelities by fitting the Larmor oscillation curve to the numerical model 

which comprises the state relaxation, false initialization, and the thermal tunneling 

errors, where the following parameters describe the error rates respectively.    

αS : Thermal tunneling probability of the singlet (S) state 

βT(S) : Probability for the qubit state to be initialized to the triplet (singlet) state 

 : Relaxation probability ~ τout/T1 ~ 0.3% where we use T1 ~ 337 s previously 

measured in Ref. 10 as a rough estimate. While T1 time can be different depending 

on tuning conditions, we obtain measurement fidelity consistent with that of gate 

set tomography (see section S4.5 below).  

 

With Pflip(τ) ~ sin2(BZ ) corresponding to the ideal diabatic Larmor oscillation 

under the magnetic field gradient BZ, we estimate the probability Pi(τ) (i = S, T0, 

T+, T-), which is the realistic probability for the qubit state to be at one of the two-

spin states after the manipulation. We assume the polarized triplet states T+, and T- 
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states are not involved in the coherent dynamics at the manipulation stage, and all 

three triplet states have the same relaxation rates to the ground (singlet) state. We 

also suppose that false initialization probability to each of three triplet states is all 

equal to βT/3. The estimation procedure is as follows.  

i) PS(τ) : Probability for the final qubit state to be S after the manipulation.  

- Initializes to S (βS), does not flip under the manipulation pulse (1- Pflip(τ)) 

- Initializes to S (βS), flip under the manipulation pulse (Pflip(τ)), relax to the ground 

state (𝛾) 

- Initializes to T0 (βT/3), flip under the manipulation pulse (Pflip(τ)) 

- Initializes to T+ or T- (2βT/3), relax to the ground state (𝛾) 

⇒ PS(τ) = T T
S flip flip flip flip

2
[1 ( ) ( ) ] [ ( ) (1 ( ) )]

3 3
 

            P P P P   

ii) PT0(τ) : Probability for the final qubit state to be the T0 after the manipulation.  

- Initialize to S (βS), flip under the manipulation pulse (Pflip(τ)), does not relax to the 

ground state (1-𝛾) 

- Initialize to T0 (βT/3), does not flip under the manipulation pulse (1- Pflip(τ)), does 

not relax to the ground state (1-𝛾) 

⇒ PT0(τ) = T
S flip flip( )(1 ) (1 )(1 )

3


      P P   

iii) PT+(τ) (PT-(τ)) : Probability for the final qubit state to be the T+ (T-) after the 

manipulation. 

- Initialize to T+ (T-) (βT/3), does not relax to the ground state (1-𝛾) 

⇒ PT+(τ) = PT-(τ) = T (1 )
3


   

Combined with the tunneling detection infidelities, the probability for the 

tunneling event to be detected PD(τ) can be calculated as, PD(τ) = (PT0(τ) + PT+(τ) + 
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PT-(τ))(1-ET) + PS(τ)EN + αSPS(τ)(1-ET). We neglect the terms proportional to ET∙EN. 

By fitting the PD(τ) to the measured Larmor oscillation (Fig. S4.4(b)), we extract the 

thermal tunneling error αS ~ 0.6 %, and βT  < 0.1 %. Note that the adaptive 

initialization scheme described above facilitates very low false initialization error βT 

and we expect the accurate measure of the βT should be possible with the self-

consistent tomography schemes [11]. Also, large EST/kBTe at the EST readout 

position provided by singlet-triplet splitting EST on the order of 30 GHz [9] enables 

αS < 1 %. Based on the error rates, we evaluate the singlet (triplet) measurement 

fidelity FS (FT0) ~ 99.28 % (~ 98.53 %) yielding the total measurement fidelity about 

99 %. This corresponds to the quantum oscillation visibility of ~ 98 % consistent 

with the observation.  

 

Supplementary Figure S4.4 Quantum oscillation visibility analysis (a) Tunneling 

(no-tunneling) detection infidelity shown in blue (green) curves. At the optimum 

threshold voltage, the error rate for the tunneling (no-tunneling) detection ET (EN) ~ 

1.4 % (0.7 %) is obtained. The red curve corresponds to the total error (ET + EN) as 

a function of the threshold voltage. (b) Experimental Larmor oscillation curve (green 

dot) and the numerical model (green curve) comprising the thermal tunneling, false 

initialization, and the relaxation errors. Fit to the model yield thermal tunneling error 

(αS) ~ 0.6 % with the false initialization error (βT) < 0.1 %.  
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S4.5. Randomized Benchmarking and Gate Set Tomography 

Randomized benchmarking (RB and IRB): A single-qubit Clifford gate set 

is constructed using primitive gates I, X, Y, ±X/2, and ±Y/2, which are implemented 

by calibrated RF bursts. For concatenating RF bursts, we use an idle time of 16 ns. 

The elements of the Clifford gate set are randomly selected during the benchmarking. 

Each point in Fig. 4.4(c) is obtained by averaging 1000 single-shot measurements 

per sequence. The measurement data obtained from the standard randomized 

benchmarking (RB) is fitted to the exponentially decaying curve 

1 avg( ) mP m Ap B   where m denotes the number of Clifford gates. The average gate 

fidelity Favg is then determined by the depolarizing parameter pavg as (1+pavg) / 2 [12].  

 The gate fidelity of each primitive gate, on the other hand, is obtained with 

respect to the reference random Clifford gate sets using interleaved randomized 

benchmarking (IRB) protocol [12]. The measurement data from the interleaved 

randomized benchmarking is fitted to the same exponentially decaying curve 

1 gate( ) mP m Ap B   to obtain the depolarizing parameter pgate. The gate fidelity is 

then obtained as (1+pgate/pavg) / 2, where the effect of the reference RB is reflected as 

1/pavg [12]. 

 Gate set tomography (GST): We use a single qubit gate set of {I, X/2, Y/2}, 

where the notation for each element is the same as those in the RB. Specifically, the 

length of all gates is fixed to a specific length, including the idle gate I. Compositing 

the elements in the gate set, we conducted the GST experiment with germs {I, X/2, 

Y/2, X/2◦Y/2, X/2◦X/2◦Y/2} and fiducials {null, X/2, Y/2, X/2◦X/2, X/2◦X/2◦X/2, 

Y/2◦Y/2◦Y/2} and the results are analyzed using the open-source python package, 

pyGSTi [13]. 
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Chapter 5. Single-shot readout of a driven hybrid 

qubit in a GaAs double quantum dot i 

 

 
Abstract           

We report a single-shot-based projective readout of a semiconductor hybrid 

qubit formed by three electrons in a GaAs double quantum dot. Voltage-controlled 

adiabatic transitions between the qubit operations and readout conditions allow high-

fidelity mapping of quantum states. We show that a large ratio both in relaxation time 

vs. tunneling time (~ 50) and singlet-triplet splitting vs. thermal energy (~ 20) allow 

energy-selective tunneling-based spin-to-charge conversion with readout visibility ~ 

92.6 %. Combined with ac driving, we demonstrate high visibility coherent Rabi and 

Ramsey oscillations of a hybrid qubit in GaAs. Further, we discuss the generality of 

the method for use in other materials, including silicon. 

 

Performing high-fidelity projective readout of qubit states is an important 

requirement in many steps of quantum information processing protocols [1–8]. In 

the semiconductor quantum dot (QD) qubit platform, state detection mainly uses 

sensors proximal to qubits, where the sensor is either sensitive to the number [9–14] 

or the susceptibility of the charges inside a QD to external perturbation [15–19]. 

Along with the progress in developing wide-bandwidth charge sensors [10,20], 

                                                      

This chapter is adapted from Nano Letters 21, 12 (2021). 
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single-shot state detection methods have been employed in various spin qubits in 

semiconductors, including single-spin [21,22], singlet-triplet [23–29], and 

exchange-only qubits [30]. The rapidly repeated single-shot readout performed in 

these systems is also used for nuclear feedback control [31,32] and quantum non-

demolition measurement [33,34]. 

The QD hybrid qubit (HQ) [35–38] compromises the desirable features of 

charge (fast manipulation) and spin (long coherence time) qubits. Formed by a 

decoherence-free subspace of three-electron spin states in a double QD, recent 

experiments on both Si/SiGe [36–38] and GaAs [39] have demonstrated fast 

electrical control of HQ with a favorable ratio between the manipulation time and 

coherence time T2
*. Moreover, the naturally formed extended charge noise-

insensitive sweet spot is tunable, and T2
* exceeding 100 ns has been demonstrated in 

Si/SiGe [38]. However, so far these experiments have been performed by time-

averaged measurements, while more advanced protocols [1,2,4–8] using HQ require 

high-fidelity single-shot readout. Time-averaged measurements are also often 

susceptible to errors in relaxation time T1 compensated probability normalization. 

In this work, we demonstrate high-fidelity single-shot measurements of a 

three-electron HQ in GaAs. The logical states 0  and 1  are mapped to spin states 

that are energetically separated by more than 20 times the thermal energy, and the 

energy-selective tunneling (EST) events between one of the QDs and the reservoir 

is measured by a radio-frequency single-electron transistor (rf-set). Similar to 

Ref.[37], we use resonant driving to coherently control the HQ states and 

demonstrate high-visibility, normalization-free two-axis control on the HQ Bloch 
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sphere. Achieving measurement fidelity ~ 96.4 %, readout visibility ~ 92.6 %, and 

quantum oscillation visibility ~ 75 %, the result facilitates efficient HQ state 

detection with fidelity in line with the state-of-the-art EST single-shot detections 

achieved in various semiconductor gate-defined QD qubits [22,25]. 

 

Figure 5.1 (a) Scanning electron microscope image of the hybrid qubit (HQ) device 

similar to the one used in the experiment. Green (Yellow) circles: Double (Single) 

quantum dot used to form an HQ (charge sensor). (b) Probability of the state 1 , P1, 

as a function of the ramp amplitude Vramp and applied microwave frequency fMW, 

illustrating the energy dispersion of the HQ. The black dashed line shows the 

calculated dispersion using the Hamiltonian described in supporting information. 
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Inset: Schematic energy levels of the HQ as a function of the energy detuning   and 

pulse sequence used for the spectroscopy. (c) Double dot charge stability diagram 

near the (2,1) – (1,2) charge transition spanned by V1 and V2. The superimposed non-

adiabatic step-pulse (blue pulse diagram) results in an oscillatory detector signal near 

the point I/M. (d) Single-shot traces of the HQ. The energy-selective tunneling (EST) 

readout of the HQ is enabled by putting the reservoir level between the qubit splitting. 

EST of 1  results in the step-pulse signal whereas no peak occurs for 0 .   

 

Fig. 5.1a shows a scanning electron microscope image of a QD device 

similar to the one we measured. The device is designed to form up to four QDs used 

for qubits, but we focus on the right double QD by grounding the irrelevant gate 

electrodes. Au/Ti gate electrodes are deposited on top of a GaAs/AlGaAs 

heterostructure, where a 2D electron gas (2DEG) is formed 70 nm  below the 

surface. The device was operated in a dilution refrigerator with base temperature~ 20 

mK and at zero external magnetic fields. The electron temperature is ~ 234 mK (see 

SI Section S5.3).  

 A previous study of HQ in GaAs double QD showed that operating the HQ 

near the (2,3)-(1,4) charge occupation provides energy tunability stemming from 

asymmetric and anharmonic potentials [39]. Instead, we operate our HQ with the 

same total number of electrons as proposed originally near the (2,1) – (1,2) charge 

transition. We define the qubit states at the readout window as 0 S   and 

01 1/ 3 2 / 3T T    where  and   represent the spin 

configuration of the single electron in the left QD and, S , 0T , and T  

represent the singlet (S) and triplet (T0, T-) spin configurations of the two electrons 

in the right QD as in the original HQ design [35,36]. Note that the spin states 
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comprise 1/ 2, 1/ 2  tot zS S  subspace. We describe the detailed energy levels 

and toy-model Hamiltonian in supporting information. 

We perform ac-driven spectroscopy of the qubit frequency. As shown in the 

right panel of Fig. 5.1b, we start with an initial qubit state at the (1,2) ground level 

at the initialization and measurement point I/M. After adiabatically ramping the 

detuning  to the operation point O, the resonant ac-modulation in the detuning 

induces the probability to be in the excited state, P1, which is adiabatically mapped 

back to the point I/M. The point I/M is chosen so that the Fermi level of the right 

reservoir resides between the energies of 0  and 1  to enable EST. The same 

technique was used for HQ in Si/SiGe in time-averaged probability measurement 

[37]. Here, we monitor the charge difference using fast rf-reflectometry recording 

tunneling events at MHz bandwidth, which enables single-shot projective readout. 

As we show below in detail, the double QD used in this work exhibits a highly 

asymmetric singlet-triplet splitting between the dots, where the splitting in the left 

(right) dot, L (R) is ~ 3 (96) h·GHz. The exceptionally small L may be a possible 

evidence for the non-negligible electron-electron interaction which is known to 

cause quenching of excited orbital energy spectrum [40,41] (see SI Section S5.2 for 

preliminary theoretical calculation). From the magnetic field susceptibility 

measurement (see SI section S5.2) we show that the (2,1) qubit states split by L  

have the same Stot, and Sz where the spin-conserving tunnel-coupling ensures the (2,1) 

ground states with 1/ 2, 1/ 2  tot zS S  can be prepared via the adiabatic passage 

discussed above. Thus we interpret the (2,1) qubit states observed in this work as the 
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HQ states, and use the toy-model Hamiltonian identical to the original HQ proposal 

[35,42] to simulate the energy dispersion. The calculation agrees well with the 

measured energy dispersion (black dashed curve, Fig. 5.1b). While further studies 

including the exact diagonalization calculation [41,43] are required to reveal the 

actual origin of the asymmetry, we focus on the single-shot readout of the HQ in this 

work and leave the detailed investigation of the energy levels for the future works. 

 Fig. 5.1c shows a double-dot charge stability diagram where the scanning 

gate voltage is superimposed with a voltage pulse with a rise time of 100 ps and 

width of 10 ns (schematic in Fig. 5.1c, see SI for zoom-out version of the diagram, 

and the high-frequency setup), which induces a non-adiabatic coherent Landau-

Zener tunneling. The range of the gate voltage V2 where these oscillations appear 

can be used for estimating singlet-triplet splitting ~ 0.39 meV using the measured 

lever arm 0.028. This is ~ 20 times larger than the thermal energy ~ 20 eV. As 

shown in Fig. 5.1d, the real-time traces of the rf-set signal at I/M show a clear 

distinction between 0  and 1 . An electron occupying an excited orbital state of 

1  tunnels to the reservoir to form the (1,1) charge state, leading to an abrupt change 

in the sensor signal, and initializes back to the energetically favorable 0 . In 

contrast, no tunneling occurs for the state 0 . 
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Figure 5.2 (a) Histogram of the tunnel-out time out. Inset: Histogram of the tunnel-

in time in. Exponential fits yield, out = 2.04 ±0.03 s, and in = 32 ± 3 s. (b) 

Relaxation time T1 measurement at  identical to point I/M. By observing the 

amplitude decay of the Larmor oscillation as a function of the waiting time at the 

point W indicated in the inset, T1 = 102 ± 6 s is obtained. (c) Histogram of the 

detector signal with an integration time of 1 s. The solid curves are the histograms 

for the states 0  and 1 simulated using the experimentally obtained out , in , T1, 

and the thermal tunneling probability. (d) Calculated fidelity and visibility as a 

function of the threshold level Vthreshold showing the readout fidelity for the state 0

( 1 ) of 95.4 % (97.3 %). The readout visibility is 92.6 % at the optimal threshold 

Vopt. 

 

We analyze the performance of the single-shot readout by optimizing 

various tunneling rates and signal integration times. Fig. 5.2a depicts the time-

resolved tunnel-out events, which predominantly involve triplet states, triggered at 
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the end of the pulse sequence. We measure the tunneling-out time out ~ 2 s extracted 

from the exponential fitting. Similar measurements for tunneling in events, which 

occurs mostly by singlet states, result in a tunneling-in time of in ~ 32 s  (Fig. 5.2a, 

inset). Highly asymmetric tunneling times stem from different spatial distributions 

of the orbital wave functions of the singlet and triplet states that lead to different dot-

to-reservoir coupling [23,25]. We note that this large difference in state-dependent 

tunneling rates can, in principle, be used for tunneling rate-based single-shot 

measurement, which can be useful for reducing measurement times [23], but here 

we focus on the Elzerman-type readout [21] and set the measurement window to 140 

s longer than in. Compared with these time scales, T1 at the point I/M shown in Fig. 

5.2b, which is obtained by measuring the decay of the oscillation visibility as a 

function of the waiting time at point W (see inset to Fig. 5.2b), is longer than 100 s 

leading to T1/in about 50. Fig. 5.2c, which depicts the signal histogram with 1 s 

integration time, shows a separation of the mean value of the 0 and 1 signal levels 

by more than 5 times the standard deviation. Using these parameters, we estimate 

the measurement fidelities for 0 , 1 , and readout visibility that accounts for 

measurement errors owing to relaxation and thermal tunneling events [22,25] (see 

SI section S5.4). As shown in Fig. 5.2d, the measurement fidelity (visibility) reaches 

96.4% (92.6%) at the optimum threshold, confirming high-fidelity single-shot 

readout of the HQ states (see SI section S5.5). Moreover, using master equation 

simulations and additional T1 measurements, we estimate that the readout error due 

to leakage and state relaxation during the adiabatic ramp pulse is less than 2 % (see 

SI section S5.4).  
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Figure 5.3 (a) P1 as a function of the microwave burst time mw and amplitude Amw 

at instrument output when the resonant driving frequency fmw ~ 1.4 GHz. The bottom 

panel shows that the Rabi frequency fRabi increases linearly with Amw. (b) Rabi 

oscillation of P1 as a function of fmw and mw. Inset: Line-cut at fmw ~ 1.4 GHz. (c) ac-

Ramsey oscillation as a function of the detuning amplitude P and free evolution time 

te. Inset: Line-cut showing T2
* ~ 7 ns at the P indicated by an arrow. The bottom 

panel shows the fast Fourier transform of the time-domain signal indicating that the 

spectrum is consistent with Fig. 5.1(b). (d) Projection of the initial state along 

(opposite to) the y-axis of the Bloch sphere ( ( )P Y blue and ( )P Y orange) to the 

measurement axis controlled by the phase  of the second rotation pulse 

demonstrating two-axis control of the HQ qubit on the x-y plane of the Bloch sphere. 

The solid lines are fittings to the sinusoidal function. The upper insets in (a)- (d) 

show the schematic pulse sequences used for the corresponding measurements, and 

the microwave bursts with the Gaussian rising / falling edge with ~ 1 ns rise/fall time 

are utilized. The inclusion of the Gaussian envelop leads to negligible P1 for mw < 2 

ns. 
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We now discuss the application of the single-shot readout method to ac-

driven coherent operations of the HQ. Applying bursts of ac detuning modulation at 

the point O yields Rabi oscillations corresponding to x-axis rotations on the Bloch 

sphere, as shown in Figs. 5.3a-b. The typical Rabi frequency, which is of the order 

of 100 MHz, increases linearly as a function of the microwave amplitude Amw at the 

output port of the waveform generator. Although the readout visibility with perfect 

gate control can be as high as 92.6 %, the limited Rabi decay time due to decoherence 

and finite pulse length (see SI Section S5.4) leads to maximum oscillation visibility 

of approximately 75 % in this experiment.  

Moreover, T2
* is characterized by performing a Ramsey experiment (Fig. 

5.3c), which demonstrates z-axis rotations on the qubit Bloch sphere. Between the 

first and second rotation pulses X/2, which initialize the superposition state and set 

the measurement axis, respectively, we apply a ramp-evolution pulse with detuning 

amplitude P. Z-axis rotation during the evolution time te results from the 

development of a relative phase between 0  and 1 , given by, = -te·(2fQubit) 

where fQubit is the qubit frequency. Typically, T2
* is of the order of 7 ns, which is 

similar to earlier results (Fig. 5.3c, inset) [39]. While a recent theory provides 

coherence analysis of HQs in both GaAs and Si [44], more work is necessary for 

systematically identifying the dominant sources of noise in this system.  

Furthermore, Fig. 5.3d demonstrates two-axis controllability on the x-y 

plane of the Bloch sphere. The P1 oscillations of the states initially prepared along 

and opposite to the y-axis ( P( )Y  and P( )-Y ) are out-of-phase as a function of 
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the phase  of the measurement pulse  that determines the angle between the 

x-axis and the measurement axis. Together with the Rabi (x-axis control) and Ramsey 

(z-axis control) oscillations, the result demonstrates the full control of the GaAs HQ 

with single-shot readout capability. 

In this experiment, the highly asymmetric singlet–triplet energy splitting, 

possibly originating from the electron-electron interaction [40,41], was exploited, 

which provided the fQubit ~ 1.4 GHz regime during operation in the (2,1) 

configuration that facilitates electronic ac-control. It also provided the fQubit ~ 95.8 

GHz regime in the measurement configuration (1,2), which is useful for high-fidelity 

EST. While the technique is general and can be used for GaAs HQ in other electron 

occupancies as well as silicon-based HQ [37,45], further investigations are required 

for determining a convenient regime for both ac-control and high-fidelity 

measurement. In Si/SiGe, T1 at the I/M point is shown to exceed 100 ms [35] which 

facilitates high-fidelity single-shot readout even with a room-temperature trans-

impedance amplifier. Moreover, the current quantum oscillation visibility is limited 

by T2
* for the given tuning. While the splitting in the energy level in the operation 

configuration is expected to be tunable, one cannot rule out that T2
* of the HQ in 

GaAs in this tuning is limited by nuclear fluctuations that mix different logical states. 

In such a situation, reducing dfQubit / d and hence, reducing the susceptibility to 

charge noise by further tuning may not necessarily increase T2
*. We plan to 

investigate the dominant source of noise by systematic tuning as well as the HQ 

regime for the left double QD (Fig. 5.1a) in the same device. 

In conclusion, we have demonstrated the high-fidelity EST-single-shot 

readout of a driven HQ in GaAs. Achieving a measurement fidelity ~ 96.4 % and 
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readout visibility ~ 92.6 %, which are comparable with state-of-the-art EST single-

shot detections for other types of QD qubits [22,25,46], the results set the benchmark 

for HQ readout performance and provide a useful demonstration that can be adopted 

for HQ in a more general setting. With single-shot readout on a s time scale, 

experiments involving fast Hamiltonian learning [32,47] or detecting wide-band 

noise spectra [47–50] using HQ, whose demonstration has so far been limited only 

to single-spin and singlet-triplet qubits, are also conceivable.  
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Supporting Information 5 

 

S5.1. Stability diagram measurement down to zero-electron regime 

  Here we show the stability diagram in wider region to show the three-

electron occupancy at the hybrid qubit operation / readout regime in this work (Fig. 

S5.1). Also, the Pauli spin-blockade (PSB) measurements at (2,0), and (0,2) charge 

configuration are demonstrated respectively to show the asymmetry in the singlet-

triplet splitting of the left and the right dot (Fig. S5.2). 

 

 

Fig. S5.1 Stability diagram measurement down to zero electron regime 

without (a.) and with (b.) the diabatic pulse superposed. a. Stability diagram 

measurement spanned by V1 and V2 gate voltages down to the zero electron regime 

confirms the three-electron occupation in the hybrid qubit readout and operation 

point within a double quantum dot. Due to the slow tunnel-rates in the single-

electron regime charge latching behavior [1] is visible (white-arrow). b. Diabatic 

rectangular pulse of ~ 2 ns width with ~ 33 kHz repetition rate is superposed to 

the dc gate voltages when measuring the same stability diagram as in a. The 
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diabatic excitation-induced readout window is visible in the (1,2) charge regime 

(green circle). The sensor gate bias is compensated depending on V1, and V2. The 

V2 gate voltages are swept along the direction denoted in the black arrow in a. 

 

Fig. S5.2 shows the stability diagrams spanned by V1, and V2 near the (2,0)-

(1,1) (red box), and (1,1)-(0,2) (yellow box) charge configuration. Left inset to the 

red {yellow} box depicts the diagram recorded by the rf-charge sensor signal where 

the triangular pulses with the rise-in (-out) time of ~ 20 ns (~ 300ps) toward the (1,1) 

charge region are superposed to the dc-voltages at ~ 20 kHz repetition rate (yellow 

line schematic inside the left inset). The pulse adiabatically brings (2,0)S {(0,2)S} 

state across the S-T+ anticrossing to (1,1)T+ state, and non-adiabatically takes the 

(1,1)T+ back to the (2,0) {(0,2)} region which results significant triplet population 

hence the PSB. The right inset to the red {yellow} box is the pulse-synced boxcar 

integrated signal concurrently obtained with the left inset. The boxcar integrator 

effectively samples and averages ~ 1 s signal window after the pulse non-

adiabatically returns to the measurement point and reveals the PSB region as shown 

in the right inset to the yellow box. Note that the pulse also reveals the energy 

selective tunneling (EST) readout points of the ST0 qubit and the hybrid qubit. In 

contrast, the boxcar integrated diagram near (2,0)-(1,1) charge transition does not 

exhibit the PSB which demonstrates the ST0 splitting of the left dot is too small and 

PSB is lifted.   
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Fig. S5.2 Pauli spin-blockade (PSB) measurement of the singlet-triplet (ST0) 

qubit at the (2,0), and (0,2) charge configuration. Red {yellow} box shows the 

stability diagrams near the (2,0)-(1,1) {(1,1)-(0,2)} charge configuration spanned 

by V1, and V2. Triangular pulse with the rise-in (-out) time of ~ 20 ns (~ 300 ps) is 

superposed to the dc-voltages at ~ 20 kHz repetition rate to yield the spin-

blockaded (1,1) states within the (2,0) {(0,2)} charge region. Left (right) inset to 

both red and yellow boxes is the bare rf-charge sensor (boxcar integrated) signal. 

The boxcar integrator is synced to the pulse repetition rate and effectively samples 

~ 1 s window after the pulse returns to the measurement point to capture the 

short-lived excited state signal. The boxcar integrated signal reveals the typical 

PSB within the (0,2) region as well as the energy-selective tunneling readout 

points of the ST0, and the hybrid qubits. In contrast, PSB is not visible in the (2,0) 

charge region. In-plane magnetic field, Bext = 500 mT is applied. 
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S5.2. Exact-diagonalization, magneto spectroscopy, and the toy Hamiltonian 

 Exceptionally small singlet-triplet splitting in the left dot is unusual given 

that the typical size of the orbital splitting in the GaAs quantum dot (QD) is expected 

to be on the order of 101 ~ 102 h·GHz  [2–4]. The charge stability diagram shown in 

Fig. S5.1 confirms the double quantum dot structure, excluding the possibility of the 

energy modulation by the electrons from another QD. We conjecture that the 

electron-electron interaction which is usually not considered in the hybrid qubit (HQ) 

systems, is a possible reason for the extraordinary small splitting similar to recently 

reported works [5,6]. Likewise, here we show the preliminary calculation results 

derived by the full configuration interaction (FCI) method along with the 

electrostatic simulation and numerically demonstrate the energy splitting quenches 

from ~ 101 h·GHz to 100 h·GHz in the left dot. 

The Hamiltonian of two electrons in a quantum dot can be written as, 

2
2 2

1 2*

e
( ) eV( ) e V( )

2 4
      


1 2

1 2

r r
r r

H
m

             (1) 

where 𝑚∗  is the effective mass of the electron in GaAs, r1 and r2 are position 

operators, 
2

1  and 
2

2  are the Laplacian operators, and the confinement potential 

V. The spatial potential distribution V near the double-QD site is obtained self-

consistently (Fig. S5.3a-S5.3c), by iteratively solving the Poisson equation within 

the Thomas-Fermi approximation. The distribution is calculated with the finite 

element method using the COMSOL Multiphysics software using the real device 

geometry and parameters.  

As the direct diagonalization of the given two-electron Hamiltonian calls 
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for solving ~ 1010 x 1010 sized dense matrix, we here harness the FCI method to 

approximate the system [5,7]. In the FCI calculation, linear combinations of all 

possible Slater determinants, configuration state function (CSF), were used to 

estimate the energy eigenstates of the multi-electron system. The CSF derived from 

the combination of the single-electron eigenstates are classified by the number of 

excited electrons. The two-electron Hamiltonian is diagonalized in the basis 

constructed with the ground state CSF, singly-excited CSFs, and doubly-excited 

CSFs.   

The single-electron Hamiltonian, 

2

1 *
eV( )

2
    rH

m
  

(2) 

can be discretized as a sparse matrix with five diagonals by adopting the five-point 

stencil method with the Dirichlet boundary condition. As in the harmonic potential 

case, we assume zero-valued wavefunctions at the boundary and calculate 100 

eigenstates and eigenenergies from the discretized Hamiltonian with the Python 

package SciPy’s ‘eigsh’ method [8]. Because of the spin-degeneracy, 100 spatial 

eigenstates correspond to 200 spin eigenstates.  

By combining the 200 spin eigenstates, one ground CSF, 396 singly excited 

CSFs, and 19503 doubly excited CSFs are derived. With these CSFs, the matrix 

elements of the Hamiltonian can be calculated with the Slater-Condon rule which 

connects FCI Hamiltonian matrix element with one-electron integrals and two-

electron integrals for each CSF. The one-electron integral is N2 sized matrix with the 

elements 
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*

1s s ( ) ( )d    r r ri ji j
i h j H             (3) 

where N is the number of spin basis, i(r) and si are the spatial wavefunction of the 

ith single electron eigenstate and spin quantum number respectively. Also, the two-

electron integral, which represents the electron-electron interaction is an N4 sized 

four-dimensional tensor whose elements are  

2
* *

j 2s s s s

e
( ) ( ) ( ) ( )d d

4
     




 1 1 2 1 2

1 2

r r r r r r
r r

ee i k li jk l
ij V kl        

(4) 

Computation of both one and two-electron integrals are accelerated with the graphics 

processing units (GPUs, NVIDIA RTX 3090) using the Python library CuPy [9].  

Figure S5.3d shows the result of the numerical calculation. Energy levels 

without electron-electron interaction are obtained by assigning 0 to every two-

electron integral term. Since calculated coefficients of the ground state and near-

ground excited states are concentrated on CSF of small excited single wavefunctions, 

the calculation with the 100 spatial basis sets is reasonable. According to the 

calculation, when the electron-electron interaction is neglected the energy splitting 

between the ground and the first excited state is ~ 50 h∙GHz (Fig. 5.2d, black lines) 

which well matches with the typical ST0 splitting reported in the previous reports [2–

4]. Also, ~ 50 h∙GHz splitting is smaller than the ST0 splitting of the right QD as can 

be expected from the physical size of the QD (Fig. S5.3b), also showing the validity 

of the calculation. When the electron-electron interaction is taken into account, the 

energy splitting quenches down to ~ 1.3 h∙GHz (Fig. S5.3d, blue lines) which agrees 

with the experimental observation. Note that this calculation is rather preliminary as 
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the current calculation considers only the single-dot energy levels (left dot) and does 

not yet consider the finite nuclear field effects nor the detuning dependence of the 

energy levels. We do not mean to precisely fit the exact value of experimentally 

observed singlet-triplet splitting in the left QD. Nevertheless, the initial numerical 

calculation shown here successfully explains the bulk part of the physics.  

At this early stage, we believe significant ellipticity of the confinement 

potential found in the left dot (Fig. S5.3b) compared to the right dot as well as a 

rather shallow potential depth are critical to have the dominant effect of electron-

electron interaction. Roughly the shallow potential leads to the Wigner parameter  

RW = (e2/ l0)/ℏ0 about 5 for the left dot showing that the left dot is in the strongly 

correlated regime, where  is the dielectric constant of the GaAs, l0 is the spatial 

extent of the 1s orbital, and 0 is the characteristic energy splitting when the 

confinement potential is approximated to be parabolic. In comparison, the more 

strongly confined right dot (see Fig. S5.3b) does not experimentally show significant 

excited-level quenching, and part of the reason is the sufficiently negative voltage 

applied to the rightmost gate to tune the right dot to reservoir tunnel rate slow enough 

to enable single-shot readout, which leads to a more circular and symmetric dot. 
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Fig. S5.3 Energy splitting calculation based on Full Configuration Interaction 

(FCI) method. a. Scaled gate geometry of the QD device used in this work for 

electrostatic simulation. Electric potential near the double-QD site is simulated by 

the COMSOL Multiphysics software with the dc-voltages used in the experiment. 

Semi-classical electron number inside the double quantum dot (integral of the 

Thomas-Fermi electron density over the quantum dot area) resultant from this gate 

voltage set was confirmed to be (2,1) b. Spatial distribution of the confinement 

potential near the QD sites. Dashed circles denote the expected position of the 

QDs where the left QD is expected to be distributed over an oval-shaped area. c. 

Line-cut of the potential along the x (y) direction along the green (blue) arrow in 

b. d. Diagram of the energy splitting with (blue lines) and without (black lines) 

the electron-electron interaction by the FCI calculation. When the electron-

electron interaction is not considered, the energy difference between the ground 
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and the first excited state is ~ 50 h ∙ GHz. The electron-electron interaction 

quenches the spectrum, resulting in ~ 1.3 h∙GHz difference between the ground 

and the first excited state. 

 

To confirm that it is nevertheless reasonable to assume that the qubit levels 

behave as a QD hybrid qubit, we measured the magnetic field dependence of the 

energy splitting. By performing the ac-driven energy spectroscopy at a fixed 

detuning, we show that the energy splitting has no significant dependence on the 

magnetic field (Fig. S5.4). This implies the qubit states at the (2,1) configuration 

have the same Sz and Stot. Based on the observation along with the adiabatic 

initialization process described in the main text, we interpret the qubit states at the 

operation regime as the HQ states with 1/ 2, 1/ 2  tot zS S .  
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Fig. S5.4 Magnetic field dependence of the energy splitting. Microwave 

spectroscopy at the qubit frequency ~ 1.4 GHz is performed as a function of the 

external magnetic field strength, Bext. The magnetic field is applied along the 

direction shown in the white arrow in the inset.  

 

Following the HQ level spectroscopy demonstrated in Si/SiGe [10], we 

write the toy model Hamiltonian as,  

1 2
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                 (5) 

The basis set for the Hamiltonian is {(2,1)g, (2,1)e, (1,2)g, (1,2)e} where the g and 

e denote the ground and the excited state respectively at each charge configuration. 

The n (m) in the (n, m) notation indicates the number of electrons in the left (right) 

quantum dot and  is the energy detuning between the dots. L (R) is the singlet-
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triplet energy splitting in the left (right) dot, and ti (i = 1, 2, 3, 4) denotes the tunnel 

coupling between the different charge states. Figure. S5.5a shows the eigen-energy 

diagram as a function of  calculated with the parameter values of L/h =3 GHz, 

R/h = 95.8 GHz, t1/h = 1.8GHz, t2/h = 7.1 GHz, t3/h = 11.5 GHz, t4/h = 6.3 GHz. 

These parameters are obtained by empirically fitting the theoretical spectrum to the 

experimentally observed energy dispersion (Fig. 5.1b) except R/h = 95.8 GHz, 

fixed by the measured value described in the main text.  

 

 

 

Fig. S5. Energy level simulation a. Eigen-energy levels of the hybrid qubit 

simulated with the Hamiltonian (5). The Green boxed region is the energy-
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selective tunneling position for qubit readout and initialization. b. Energy splitting 

between the lowest two energy levels as a function of . The right panel of a. (b.) 

shows the energy levels (splitting) near the operation point O of the hybrid qubit 

investigated in the main text.  

 

 

 

 

S5.3. Experimental method 

The bulk of the experimental setup utilized in this work is described in 

Ref. [3]. The lever-arm of both V1, and V2 gates in Fig. 1a is 0.028 which is 

determined from Coulomb diamond measurements. The electron temperature Te 

234 mK is estimated by fitting the Fermi-Dirac distribution curve to the V2 electron 

transition line in the single electron regime (Fig. S6a). 

 

Fig. S6. Experimental methods a. Electron temperature measurement. By fitting 

the Fermi-Dirac distribution to the electron transition line, electron temperature Te 

  234 mK is extracted. b. Experimental setup utilized for single-shot readout of 
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the hybrid qubit. The magnitude of the reflected rf-signal is demodulated in a high-

frequency lock-in amplifier and is directly put to the field-programmable gate 

array (FPGA) where the signal is thresholded to discriminate the different qubit 

states. The FPGA also performs time-tagging of the tunneling events enabling 

time-resolved tunneling time measurements.  

   

 For single-shot detection, as shown in Fig. S6b, the transient tunneling 

events for qubit state |1  are thresholded in real-time using a field-programmable 

gate array (FPGA, Digilent Zedboard). The FPGA samples input data with the 

sampling rate of 1 MSa/s, compares the preset threshold with the data in parallel, 

and records the bit 1 immediately when data below the threshold value is detected. 

The bit 0 is recorded when such events did not happen throughout the preset 

measurement period. The sequence is repeated 5000 times to estimate the probability 

of the state |1 , P1. The FPGA also tags time after the trigger for each detected 

tunneling event, and the statistics of the tunneling-out and -in times are gathered to 

build the histograms shown in Fig. 2 of the main text.  

 For generating the high-frequency signals at the room-temperature, a high-

speed arbitrary waveform generator (AWG, Keysight technologies, M8195A) which 

supports up to 65 GSa/s sampling rate is utilized. To combine the high-frequency 

and dc-signals for the gate electrodes, commercial off-board bias-tees (Tektronix, 

PSPL 5546) which supports > 10 GHz ac-signals are used.  

 With the high-frequency setup shown above, we demonstrate the coherent 

charge qubit Larmor oscillation [11] to evaluate the actual signal delay at the gate 
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electrodes. Fig. S7a depicts a scanning electron microscope image of a different 

GaAs quantum dot device used for the charge qubit measurement, which is placed 

in the same cryostat with the same high-frequency wiring and circuit board as used 

in this work. As shown in Fig. S7a, pulses with the opposite polarity, and with the 

fixed width of 60 ps are generated by two different channel outputs of the AWG to 

be applied to VP1 and VP2 gate electrodes respectively. Sweeping the pulse 

amplitudes at the AWG output as a function of the relative delay between the two 

outputs of the AWG reveals a V-shaped coherent oscillation pattern (Fig. S7b). This 

is because the maximum detuning modulation condition (Fig. S7b, dashed line) is 

sensitive to the actual delay at the gate electrodes on the order of ~ 20 ps, directly 

implying the rise-times as short as ~ 20 ps can be transferred to the gate electrodes 

without further distortion. 

 

 

Fig. S7. High-frequency transmission line calibration. a. Scanning electron 

microscope image of the device used for the charge qubit measurement and 

cryostat transmission line calibration. Two square pulses of the width, te ~ 60 ps 



 

 

１４１ 

with the opposite polarity are applied to VP1 and VP2 gate electrodes respectively. 

The pulses are generated by two different channels in an arbitrary waveform 

generator (AWG). rf single-electron transistor (rf-set, green dot) detects the charge 

states of the double quantum dot (yellow dots). b. Sweeping the pulse amplitude 

versus the relative channel delay reveals a V-shaped oscillation pattern. At ~ -50 

ps channel delay (dashed line) the delay at the gate electrodes vanishes, ensuring 

the full 60 ps evolution at the target detuning set by the pulses. 

S5.4. Effects of the ramp-in and ramp-out pulse on the measurement fidelity 

We discuss the T1 relaxation time at the operation regime in (2,1) charge 

configuration, and the effect of the ramp pulse on the read-out visibility. Fig. S8a 

shows detuning dependent mapping of T1 times measured with pulse sequence 

depicted in the inset to Fig. S8a. The minimum  T1 time of 20 ns occurs near the 

detuning amplitude P ~ - 170 mV in the charge qubit regime, and the increasing T1 

time with respect to charge qubit energy splitting (P > - 170 mV) is consistent with 

the typical trend observed both in GaAs  [2] and Si charge qubits  [12] dominated 

by charge noise-induced relaxation. In the HQ regime (P < - 170 mV), T1 more 

rapidly increase away from the anti-crossing showing reduced susceptibility to 

charge noise.  
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Fig. S8. Detuning dependent T1 times and effects of ramp pulses. a. T1 times 

measured in the qubit operation regime as a function of the detuning amplitude P. 

Inset: Schematic pulse sequence used for the T1 measurement. b. P1 as a function of 

dwell time  of the adiabatic ramp-only pulse depicted in the inset showing negligible 

change compared with the pulse turned-off. P1 ~ 0.04 is due to thermal tunneling 

events by the state 0  within the 140 s long measurement window. 

The measured T1() is used for investigating the effect of adiabatic ramps, 

during which probability leakage or energy relaxation can in principle lead to 

visibility loss. As shown in the inset to Fig. S8b, the two-stage ramp-out sequence is 

utilized to avoid the relaxation hot-spot in charge qubit regime but maintain the 

adiabaticity. By solving the master equation with the toy-model Hamiltonian (5) 

given in S2, we confirm that the leakage probability during the ramp-in stage is kept 

below 0.1 %. Accumulated state relaxation probability during the ramp-out near the 

relaxation hot-spot is 1%. Moreover, a relatively fast second ramp-out stage (rise 

time 2 ns) results in an unintentional Landau-Zener transition probability of less than 

1 %.  
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Fig. S8b shows the experimentally observed P1 as a function of dwell time 

 of the adiabatic ramp-only pulse. Although independent measurement of the state 

leakage or non-adiabaticity probability is challenging, the result shows that readout 

errors due to unintended non-adiabatic state transition during ramp or state leakage 

out of computational qubit states are less than 2 % consistent with the calculation. 

Due to the thermal tunneling probability of the state 0  for the given measurement 

duration of 140 s, about 4% offset is measured even when the pulse is turned off, 

and this effect is included in the measurement fidelity analysis in the main text and 

in S5. We expect that there is room for improvement to reduce the unwanted state 

0  tunneling by applying adaptive adjustment of readout duration by further FPGA 

implementation and including fast initialization pulse sequence using, for example, 

the observed relaxation hot-spot in the charge qubit regime (Fig. S8a). 

 

 

S5.5. Readout fidelity analysis 

 Following the Ref. [13] the single-shot traces are numerically generated 

with the experimentally obtained parameters. By randomly assigning the qubit states 

to traces according to a parameter p1 which corresponds to the probability for qubit 

|1  state, 8,000 single-shot traces are generated. For the case of the |1  state if a 

random variable, pr, in the range [0,1] is larger than the relaxation proability 

calculated from the T1 relaxation time and the total measrement time, a rectangular 

tunneling peak which follows the statistics set by the tunneling-in / -out times (Fig. 
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2a) is generated. In case of the | 0  state, if a random variable, pt, in the range [0,1] 

is smaller than the thermal tunneling probability obatined in Fig. S8b, a tunneling 

peak is generated. For each | 0  and |1  trace, random gaussian noise is added 

and the numerical low pass filter similar to the experiment is applied. By sampling 

the minimum value from each trace, the histogram of the minimum values can be 

obtained to be compared with the experimentally acquired histogram. After the 

filtering process, p1 and the gaussian noise amplitude are optimized to fit the 

simulated histogram to the experimental curve.  

Because the information on the spin state for each simulated trace is given 

in priori, separate histograms corresponding to | 0  and |1  states can be 

acquired respectively. From the separate histograms, measurement fidelity for | 0 , 

t
0 t 0( ) ( )d



 VF V n V V   and |1 ,
t

1 t 1( ) ( )d


 
V

F V n V V  are evaluated along the 

threshold voltage Vt, where the n0 (n1) corresponds to the normalized histogram of 

the | 0  ( |1 ). By choosing the optimal threshold that maximizes the visibility, 

t 0 t 1 t( ) ( ) ( ) 1   V F V F V  the | 0 ( |1 ) measurement fidelity 95.4 % (97.3 %), 

and the visibility 92.6 % are obtained.  
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Chapter 6. Wigner-molecularization-enabled dynamic 

nuclear field programming i 

 

 
Abstract           

Multielectron semiconductor quantum dots (QDs) provide a novel 

platform to study the Coulomb interaction-driven, spatially localized electron 

states of Wigner molecules (WMs). Although Wigner-molecularization has 

been confirmed by real-space imaging and coherent spectroscopy, the open 

system dynamics of the strongly-correlated states with the environment are not 

yet well understood. Here, we demonstrate efficient control of spin transfer 

between an artificial three-electron WM and the nuclear environment in a 

GaAs double QD. A Landau–Zener sweep-based polarization sequence and 

low-lying anti-crossings of spin multiplet states enabled by Wigner-

molecularization are utilized. Combined with coherent control of spin states, we 

achieve control of magnitude, polarity, and site dependence of the nuclear field. 

We demonstrate that the same level of control cannot be achieved in the non-

interacting regime. Thus, we confirm the spin structure of a WM, paving the 

way for active control of correlated electron states for application in mesoscopic 

environment engineering. 

 

                                                      

This chapter is adapted from arXiv:2207.11655 (2022). 
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Semiconductor quantum dot (QD) systems facilitate investigations of the 

interaction between electron spins and nuclear environments, which is known as the 

central-spin problem [1,2]. Although the fluctuation of nuclear fields, which is 

quantified by the effective Overhauser field Bnuc [3,4], often acts as a magnetic-noise 

source for spin qubits [3], the hyperfine electron–nuclear spin interaction allows to 

achieve dynamic nuclear polarization (DNP) [5–8]. DNP is used for enhancing the 

signal-to-noise ratio in nuclear magnetic resonance [6] and prolonging coherence 

times in QD-based spin qubits [9,10]. Gate-defined semiconductor QDs have been 

used to achieve the fast probing of nuclear environments [8,11,12], bidirectional 

DNP [11], and active feedback control of nuclear fields [10].  

Although DNP achieved by the pulsed-gate technique is more relevant for 

quantum information applications compared to spin-flip mediated transport with an 

applied bias [13,14], spin qubit control combined with DNP has been limited to two-

electron singlet–triplet (ST0) spin qubits [9–12,15]. Despite the versatility of gate-

defined QD systems [16–19], the large singlet-triplet energy splitting EST (~102 

h·GHz; h is Planck’s constant) in particular in GaAs limits the access to higher spin 

states [20] in multielectron QDs at moderate external magnetic fields B0 < 1 T or 

within a typical frequency bandwidth of experimental setups.  

Coulomb-correlation-driven Wigner molecules (WMs) in confined systems 

[21–24] may provide new directions for expanding nuclear control to multielectron 

systems. Recent studies on QDs in various systems have shown clear evidence of 

WM formation [22,23,25–28]. It has been demonstrated that the EST can reach down 

to ~100 h·GHz upon the WM formation [25,27] because of strong electron-electron 



 

 

１４９ 

interactions confirmed by full-configuration interaction (FCI)-based theories 

[23,28,29]. However, most studies have focused on the spectroscopic confirmation 

of WM formation, and studies on the open system dynamics using correlated states 

have not been reported to date.  

Here, we demonstrate the formation of a WM in semiconductor QDs, which 

helps achieving efficient spin environment control. We use a gate-defined QD in 

GaAs and exploit the quenched energy spectrum of the WM (EST ~ 0.9 h·GHz) to 

enable mixing between different Sz subspaces within B0 < 0.5 T, where Sz denotes 

the spin projection to the quantization axis. Furthermore, we demonstrate DNP by 

pulsed-gate control of the electron spin states. Leakage spectroscopy and Landau–

Zener–Stuckelberg (LZS) oscillations confirm a sizable bidirectional change in Bnuc 

~ 80 mT and the spatial Overhauser field gradient Bnuc ~ 35 mT due to the long 

nuclear spin diffusion time N ~ 62 s. Further, we demonstrate on-demand control of 

Bnuc combined with coherent LZS oscillations, providing a new route for realizing 

programmable DNP using correlated electron states. 



 

 

１５０ 

 

Figure 6.1. Wigner molecule formation in a GaAs double quantum dot. a. 

Scanning electron microscope image of a GaAs quantum dot (QD) device similar to 

the one used in the experiment. Green dots denote the double QD defined for Wigner 

molecule (WM) formation which is aligned along the [110] crystal axis (black arrow). 

The inner plunger gate V2 is designed to have anisotropic confinement potential as 

shown in the right panel to facilitate the localization of the electronic ground state. 

Yellow circle: a radio-frequency (rf) single-electron transistor (rf-SET) charge 

sensor for rf-reflectometry. External magnetic field B0 is applied along the direction 

denoted by the yellow arrow. b. Charge stability diagram of the double QD near the 

three-electron region spanned by V1 and V2 gate voltages. Green shaded region: the 

energy-selective tunneling (EST) position for the state readout and initialization. c. 
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Landau–Zener–Stückelberg (LZS) oscillation of the WM at B0 = 0 T. The relative 

phase evolution between the excited doublet (DT) and the ground doublet (DS) results 

in the oscillation captured by the EST readout. Red-dashed curve in the fast Fourier 

transformed (FFT) map shows energy dispersion calculated from the toy-model 

Hamiltonian. The calculation yields quenched orbital energy spacing of the inner dot 

R ~ 0.9 h·GHz. d. Left (Right) panel: Energy spectrum along the (2,1)–(1,2) charge 

configuration in the non-interacting (strongly interacting, this work) regime with L 

~ 100 h·GHz (L ~ 19 h·GHz), and R ~ 100 h·GHz (R ~ 0.9 h·GHz).  

 

 

Results 

Figure 6.1a shows a gate-defined QD device fabricated on a GaAs/AlGaAs 

heterostructure, where a 2D electron gas (2DEG) is formed ~70 nm below the surface 

(see Methods). We focus on the left double QD (DQD) containing three electrons. 

We designed the V2 gate to form an anisotropic potential, which is predicted to 

promote WM formation [22]. An electrostatic simulation of the electric potential at 

the QD site near V2 shows an oval-shaped confinement potential with anisotropy 

exceeding 3 (Fig. 6.1a, right panel). This potential can be tuned by the gate voltage, 

allowing the controlled electron correlation and localization of the ground state 

wavefunction within the DQD [22,24,26,27]. The yellow dot in Fig. 6.1a. denotes a 

radio-frequency single-electron transistor (rf-SET) charge sensor utilized for 

quantum state readout [30–32]. The device was operated in a dilution refrigerator 

with a base temperature of ~40 mK, an electron temperature Te ~150 mK 

(Supplementary Note 6.1), and a variable B0 applied to the direction shown in Fig. 

6.1a.  

First, we show the spectroscopic evidence of the WM at B0 = 0 T by probing 

EST in the right QD R. Fig. 6.1b shows a charge stability diagram. The green-shaded 
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region near the (2,1)–(1,1) charge transition is exploited for energy-selective 

tunneling (EST) readout and state initialization [27,33,34]. We tune the electron 

tunneling-in (-out) time in (out) of the left dot to 14 (7) s. Starting from the 

initialized ground doublet state DS in the (2,1) charge configuration, we apply non-

adiabatic pulses (Fig. 6.1b) simultaneously to V1 and V2 with a rise time of ~500 ps 

and a repetition period of 51s ≫in to induce coherent LZS oscillation [35,36]. 

The oscillation reveals the relative phase evolution between the excited and ground 

doublet states (DT and DS), the frequency of which is governed by R. 

Fig.6.1c shows the resultant LZS oscillations as a function of evolution time 

tevol and detuning . The EST in GaAs DQDs in the non-interacting regime is typically 

on the order of 102 h·GHz [20] (Fig. 6.1d). In a charge qubit regime, a steep rise in 

the LZS oscillation frequency fLZS as a function of  (Fig. 6.1c, black curve) and short 

coherence time T2
* ~ 10 ps due to strong susceptibility to charge noise is expected 

[37]. However, we find a significantly smaller fLZS in the (1,2) charge configuration 

and T2
* ~ 10 ns because of the reduced dispersion of fLZS versus . This is a 

reminiscent of a QD hybrid qubit [27,36,38], but the excited energy is suppressed 

owing to the electron–electron interaction. WM formation in our previous GaAs 

device has been recently confirmed by FCI calculation [27–29]. Although such 

calculation is needed to rigorously determine parameters, we roughly estimate R ~ 

0.9 h·GHz, by fitting the fast Fourier transformed (FFT) spectrum to the calculation 

result (Fig. 6.1c, red-dashed curve) derived from a toy-model Hamiltonian [33,35,36] 

(see Methods). 
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The full energy spectrum calculation of the three-electron states using the 

parameters obtained experimentally across the (2,1)–(1,2) configuration is illustrated 

in Fig. 6.1d (right panel). The suppressed EST of the left dot L ~ 19 h·GHz is 

obtained by measuring the width of the EST region in the charge stability diagram 

with the lever arm of the gate V1 ~ 0.03. Because of the small value of L/(kBTe) ~ 6, 

where kB is Boltzmann’s constant, thermal tunneling precludes high-fidelity single-

shot readout. We obtain data by the time-averaged signal using the correlated-double 

sampling (CDS) method, which effectively yields the signal proportional to the 

excited state probability [33] (see Supplementary Note 6.2).  

We confirm the WM spin structure via the strongly suppressed energy 

spectrum in the right QD with varying B0. We focus on five low-lying energy levels 

among eight possible multiplet states. See Methods for notations used for labeling 

spin multiplets. Hereinafter, n (m) denotes the number of electrons in the left (right) 

dot by (n, m; Sz). As Fig. 6.2a (left panel), DS(1,2;−1/2) (DS(1,2;1/2)) becomes 

degenerate with DT(1,2;1/2) or Q(1,2;1/2) (Q(1,2;3/2)) at a certain  depending on 

the B0 magnitude. The degeneracies are lifted by the transverse Overhauser field 



nucB [8,11]. To detect such anti-crossings, we first initialize the state to either 

DS(2,1;−1/2) or DS(2,1;1/2) at the EST position. By pulsing the initialized 

DS(2,1;−1/2) (DS(2,1;1/2)) towards (1,2) and holding for ~100 ns ≫ T2
*, mixing 

with (or leakage to) states Q(1,2;1/2) or DT(1,2;1/2) (Q(1,2;3/2)) can occur if the 

pulse amplitude Ap coincides with the anti-crossing position (Fig. 6.2a, right panel). 

Upon pulsing back to the (2,1) charge configuration, the resultant excited states Q or 
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the DT probability can be detected via EST [27,33,34]. Fig. 6.2b shows the leakage 

spectrum versus AP and B0, mapping out the anti-crossing positions similar to “spin-

funnel” measurements in two-electron ST0 qubits reproducing the energy splittings 

between the ground and excited levels [8,16,39,40]. The black (red) dashed curves 

show the calculated splittings (Fig. 6.1d) between the DS and DT (Q) states at B0 = 0 

T, with the Lande g-factor g* ~ −0.4 [41,42].  
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Figure 6.2. Leakage spectroscopy and probabilistic nuclear polarization with 

the Wigner molecule. a. Left panel: schematics of the energy levels for different 

external magnetic fields B0 > 0 T. Crossings between different SZ states become anti-

crossings aided by the transverse nuclear Overhauser field. Right panel: schematic 

of the pulse sequence for leakage spectroscopy and probabilistic dynamic nuclear 

polarization (DNP). The pulse diabatically drives the initialized DS(2,1;1/2) 

(DS(2,1;−1/2)) to (1,2), and hold  for ns ≫ T2
*. Upon the coincidence of the 

pulse detuning and the anti-crossing, the state probabilistically evolves to Q(1,2;3/2) 

(Q(1,2;1/2)) and flips the electron spin mS = +1 which accompanies mN = −1. b. 

Leakage spectroscopy of the Wigner molecule (WM) state as a function of B0 and 

the pulse amplitude Ap. Black (Red) dotted curve shows the calculated energy 

splitting between DT (Q) and DS at B0 = 0 T. Measurement-induced nuclear field 

shifts the dispersion opposite to the direction of B0. c. (d.) Leakage measurement 

with an additional probabilistic polarization pulse with amplitude Ap’ applied before 
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each line sweep. The Ap’ is fixed to 370 (450) mV, and the additional distortion in 

the leakage spectrum is shown as red circles near a pulse amplitude of 370 (450) mV. 

Black arrows denote the magnetic field sweep direction.  

 

Although the calculated curve qualitatively agrees with the experimental 

curve, the observed spectrum curvature as a function of AP and B0 is smaller because 

of the DNP induced by the pulse sequence used for leakage spectroscopy. To confirm 

this, before each line scan of Ap in Fig. 6.2c (2d), a similar step pulse with a fixed 

amplitude AP’ ~ 370 mV (450 mV) is applied for 10 s. Consequently, we observe 

distortions (red circles) in the spectrum occurring at AP’. This is because, when AP’ 

matches with the anti-crossing position, the pulse probabilistically flips the electron 

spin with a change in the angular momentum mS = +1 by the leakage process 

described above and accompanies flop mN = −1 of the nuclear spin [8,11]. Unlike 

the electrons in GaAs, nuclei have positive g-factors [8,20] ; therefore, the pulse 

polarizes Bnuc toward the B0 direction. This additionally drags the leakage spectrum 

opposite to the B0 direction under a specific condition Ap = AP’. These results indicate 

that leakages induced by hyperfine interaction between the WM and nuclear 

environment lead to an observable change in Bnuc. Despite the long measurement 

time per line scan (~7 s) owing to the communication latency between the 

measurement computer and the instruments, the polarization effect is still visible. 

Thus, N > 10 s, as discussed below. Moreover, as the anti-crossing position is a 

sensitive function of Btot = B0 + Bnuc over 100 ~ 300 mT, it can be used to measure 

Bnuc.  



 

 

１５７ 

 

Figure 6.3. Bidirectional and programmable dynamic nuclear polarization 

enabled by Wigner molecularization. a. Top panel: Schematic of the anticrossings 

used for deterministic dynamic nuclear polarization (DNP). Bottom panel: pulse 

sequence used for S- and T-polarizations. For tevol = 0 ns, the sequence corresponds 

to maximum S-polarization, which brings DS(1,2;1/2) (DS(1,2;−1/2) adiabatically 

across the anti-crossing to Q(1,2;3/2) (Q(1,2;1/2)) flipping the electron spin with 

mS = +1 and leading to mN = −1 (blue arrow, S-polarization). For tevol = 600 ns, 

the sequence corresponds to maximum T-polarization. Herein, the DT(1,2;1/2) 

prepared with a (Landau–Zener–Stückelberg) LZS-oscillation-induced -pulse is 

adiabatically transferred to DS(1,2;1/2), resulting in mS = −1 and mN = +1 (red 

arrow, T-polarization), which has the opposite polarization effect compared to S-

polarization. b. Change in the nuclear field Bnuc as a function of tevol. The gray curve 

shows the corresponding LZS oscillation measurement reflecting the DT population. 

The Bnuc oscillates out of phase to the LZS oscillation owing to the oscillation of 

the S- and T-polarization ratio. c. The magnitude of the maximum polarization Bmax 

as a function of ramp time wR. The Bnuc saturates to Bmax when the polarization and 

the nuclear spin diffusion rate reach an equilibrium. For small wR, the |Bmax| decreases 

because of the small Landau–Zener transition probability PLZ for both S- (blue circle) 

and T-polarizations (red circle). In the case of T-polarization, |Bmax| decreases again 

for long wR owing to the lattice relaxation of the excited population. d. Bmax as a 

function of R. The polarization gets more efficient for smaller R indicating a strong 

dependence of the nuclear polarization efficiency on the Wigner parameter. e. (f.) 

Dynamic nuclear control with the S (T)-polarization sequence. The red dotted line is 

the numerical fit derived from the simple rate equation-based model. The fit yields 

the nuclear spin diffusion time N ~ 62 s, with a polarization magnitude per spin flip 
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of ~2.58 h·kHz·(g*B)−1. g. On-demand nuclear field programming via tevol. h. 

Adiabatic ramp amplitude AR with tevol = 0 ns realizing self-limiting nuclear field 

programming.  

  

We now show bidirectional DNP combined with coherent control of doublet 

states at B0 = 230 mT. Fig. 6.3a (top panel) shows the three primary paths through 

the anti-crossings, which can flip the electron spins deterministically by adiabatic 

passage [2,8,11]. Paths P1 and P3 describe the S-polarization that flips the electron 

spin with mS = +1. This is enabled by initializing the state to DS(1,2;-1/2) 

(DS(1,2;1/2)) at the EST position and then by non-adiabatically pulsing beyond the 

first anti-crossings near the (2,1) charge configuration (Fig. 6.3a, yellow boxes), 

followed by adiabatically driving the state through the anti-crossing to Q(1,2;1/2) 

(Q(1,2;3/2)), which accompanies mN = −1 (Fig. 6.3a, blue arrows). The Q(1,2;1/2) 

(Q(1,2;3/2)) state is diabatically driven back to the EST position, and one electron 

quickly tunnels out to the reservoir. Reloading an electron from the reservoir 

reinitializes one of the Ds states completing the polarization cycle. Both the DS(1,2;-

1/2) and DS(1,2;1/2) initial states contribute to the S-polarization. Path P2 denotes 

the T-polarization (mS = −1, mN = +1), which is possible by driving DT(1,2;1/2) 

adiabatically to DS(1,2;-1/2) (Fig. 6.3a, red arrow). To prepare DT(1,2;1/2), we apply 

a -pulse to DS(2,1;1/2) before the adiabatic passage (Fig. 6.3a, bottom panel). The 

T-polarization is possible only when the state is initialized to DS(2,1;1/2) at the EST 

position.  

 Combining the S- and T-polarizations, we measure the change in Bnuc 

(Bnuc), where the repeated polarization pulse sequence (Fig. 6.3a, bottom panel) 
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with variable tevol and a repetition rate of ~ 20 kHz is applied for 10 s before each 

line scan. For Fig. 6.3b, a waiting time ~10 min was added after each sweep to allow 

the polarized nuclei to diffuse and minimize the polarization effect in the next sweep. 

As shown in Fig. 6.3b, Bnuc oscillates with tevolwhich is anti-correlated with the 

LZS oscillation that represents the population of DT(1,2;1/2). This confirms that the 

net polarization rates can be controlled by adjusting tevol. Accordingly, we calibrate 

tevol = 0 (0.62 ns) for S (T)-polarization. We also calibrate the duration of the adiabatic 

spin transfer wR. Fig. 6.3c shows the maximum nuclear field change Bmax reachable 

as a function of wR, where both S- and T- polarizations are ineffective for short wR 

because of negligible adiabatic transfer probability PLZ [2,43]. |Bmax| reaches a 

maximum around wR ~ 0.8 s, after which the maximum efficiency is retained for 

the S-polarization sequence. In the case of T-polarization, however, for long wR, 

|Bmax| decreases because of DT relaxation during the adiabatic passage.  

By tuning R via the dc gate voltages and performing similar S-polarization 

experiments, we find that Bmax decreases with increasing R (Fig. 6.3d, see Extended 

Data Fig. 6.1). As is discussed subsequently, we find that the nuclear diffusion time 

scale exceeds 60 s regardless of R, but the Overhauser field change per electron flip 

b0 is strongly suppressed with increasing R. Ultimately, the observation implies that 

the pulsed-gate-based nuclear control becomes inefficient in the non-interacting 

regime.  

 Returning to the condition R ~ 0.9 h·GHz, we demonstrate on-demand 

nuclear field programming. Fig. 6.3e (3f) shows the result of optimized S (T)-

polarization with tevol= 0 ns, wR = 1000 ns (tevol= 0.62 ns, wR = 600 ns). Although 
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the local fluctuations of the nuclear spins lead to random drift of the anti-crossing 

positions without the polarization pulse, Bnuc builds toward (opposite to) the B0 

direction faster than the nuclear spin diffusion timescale when the polarization pulse 

is applied before each line scan. Bnuc rises to Bmax 80 mT (−40 mT) until a dynamic 

equilibrium is reached. Because only the SZ = 1/2 states contribute to the T-

polarization, |Bmax| for the T-polarization is about half of that for the S-polarization, 

implying that the state initialize to both SZ states with nearly equal probability at the 

EST position.  

We also demonstrate bidirectional DNP by adjusting tevol in Fig. 6.3g. Fig. 

6.3h illustrates the programming of Bnuc by adjusting the adiabatic sweep amplitude 

AR of the S-polarization sequence. Because Bnuc builds in the B0 direction and drives 

the anti-crossing to deeper   (more to (1,2) charge configuration) under the S-

polarization, AR serves as the limiting factor of Bmax. Thus, a self-limiting DNP 

protocol can be realized.  

Using a simple rate equation, we simulate the polarization-probe sequence 

(red-dashed curve in Fig. 6.3e, see Methods and Supplementary Note 6.3) and obtain 

s and b0 ~ 2.58 h·kHz·(g*B)−1 from the fit. In contrast, the DNP effect is 

negligible in our device with the two-electron ST0 qubit [8] under the same repetition 

rate as in the WM regime (see Supplementary Note 6.4). Through optimization of 

the magnitude and direction of B0, b0 ~ 3 h·kHz·(g*B)−1 can be achieved with an ST0 

qubit in GaAs [2,8]. However, the obtained result shows that robust nuclear control 

can be achieved with WMs even in the regime where the same level of control cannot 

be achieved with an ST0 qubit. In addition, residual polarization ~21.5 mT exists 
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after turning off the polarization sequence (Fig. 6.3e), which diffuses within ~30 min. 

The large Knight shift gradient originating from the non-uniformly broadened WM 

wavefunction may be a possible cause of the long However, the newly observed 

phenomena in this study, including the dependence of b0 on the tuning condition, 

require further investigations [44,45].  
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Figure 6.4. Field gradient control and measurement. Landau–Zener–Stückelberg 

(LZS) oscillation of the Wigner molecule (WM) states at B0 = 230 mT in a. the time 

domain and b. the frequency domain with the S-polarization sequence. The 

oscillation reveals the relative phase oscillation of the DT1 – DS (black arrow, black 

dotted arrow) and DT0 – DS (red arrow) of both the SZ = 1/2 and SZ = −1/2 states. The 

DT0 – DS splitting is constant regardless of the magnetic field gradient BZ, whereas 

the DT1 – DS energy spacing is modulated by the BZ depending on the sign of BZ 

and SZ. The resultant beating is visible in e. (f.) the time (frequency) domain line-cut 

when the polarization is on (green arrow in a.) and off (blue arrow in a.). The line 

cuts in the time domain are numerically fitted to the sum of three sine functions (solid 

lines in e.) with different amplitudes. Three separate peaks are visible in the 

frequency domain (f.) when the BZ is largely polarized in the bottom panel (blue 

line) in f. Simulated LZS oscillation in c. the time domain and d. the frequency 
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domain with the BZ in the inset of (d.). The simulation in the frequency domain 

reproduces the branches shown in (b.).  

 

Furthermore, the WM’s coherent LZS dynamics provide a novel approach 

to measure the spatial Overhauser field gradient BZ between QDs. When BZ is 

larger than the exchange splitting between DT(1,2;1/2) (DT(1,2;–1/2)) and Q(1,2;1/2) 

(Q(1,2;−1/2)), the eigenstates are expected to become DT1(1,2;1/2) = T   

(DT1(1,2;−1/2) = T  ) and DT0(1,2;1/2) = 0T  (DT0(1,2;−1/2) = 0T ) 

[46]. Because both states can tunnel-couple to DS(1,2;1/2) (DS(1,2;−1/2)), the LZS 

oscillation reveals the DT1 – DS and DT0 – DS energy splittings. As can be inferred 

from the Hamiltonian (see Supplementary Note 6.5), although the DT0 – DS splitting 

is independent of the Z and BZ, the DT1 – DS splitting is modulated by Z 

depending on the sign of Z and SZ, providing the direct measure of Z. Because 

the states can initialize to both DS(1,2;1/2) and DS(1,2;−1/2) at the EST position, the 

LZS oscillation captures the dynamics of both SZ = 1/2 and SZ = −1/2 subspaces. 

Fig. 6 .4a (4b) illustrates the LZS oscillation measurement of the WM 

multiplet states at B0 = 230 mT in the time (frequency) domain with the S-

polarization turned on and off at specific laboratory times. The FFT spectrum 

exhibits three different branches corresponding to the DT0 – DS (red arrow) and DT1 

– DS (black and black-dashed arrows) where the beating patterns vary as the S-

polarization induces changes in Bz. Two different DT1 – DS branches correspond to 

different SZ subspaces, where the sign of Bz should be known to distinguish the SZ 

for each branch. The DT0 – DS splitting is the same for both SZ subspaces and is 

displayed as a single branch (red arrow). Fig. 6.4c (4d) shows the simulated time 
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(frequency) domain signal of the same LZS oscillation, which agrees well with the 

experimental result (see Supplementary Note 6.6). As expected, the DT0 – DS 

splitting is constant regardless of Bz, whereas the DT1 – DS splitting is modulated 

along the polarization sequence.  

The DT0 – DT1 splitting without the polarization sequence implies the built-

in Bz ~ 200 h·MHz·(g*B)−1 (35 mT), which is also confirmed by the ST0 oscillation 

(see Supplementary Note 6.4). Bz increases to 400 h·MHz·(g*B)−1 (70 mT) with 

the S-polarization and decreases to 200 h·MHz·(g*B)−1 after turning the polarization 

off. Thus, we conclude that the S-polarization yields the asymmetric pumping effect 

(Bnuc ~ 200 h·MHz·(g*B)−1) about the QD sites, whereas the Bnuc direction can be 

experimentally checked, for example, via single-spin electric-dipole spin resonances 

[42]. Furthermore, the DT0 – DS splitting comprises the decoherence-free subspace 

for the qubit operations resilient to magnetic noises, where the coherent microwave 

control combined with the large polarization may enable leakage-free and state-

selective transitions. 
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Discussion 

 

 The present work uncovers the spin and energy structure of the WM states 

and explores the central-spin problem with strongly correlated WM states in 

semiconductor QDs. With the energy splitting of the WM ~ 0.9 h·GHz, we confirm 

the programmable DNP of Bnuc (Bnuc) reaching (but not limited to) 80 mT (35 mT) 

via leakage spectroscopy and LZS oscillations. The N exceeds 60 s, which, together 

with bidirectional polarizability, is beneficial for stabilizing the nuclear bath 

fluctuation and realizing long-lived nuclear polarization [10,15].  

We anticipate several directions for further developments and applications 

of WM-enabled DNP. Similar experiments with a larger L/Te ratio can enable high-

fidelity single-shot readout for a faster measurement of the dynamics of nuclear 

polarization. This would further enable feedback loop control [10] and tracking 

[12,47] of nuclear environments in multielectron QDs. The real-time Hamiltonian 

estimation also improves frequency resolution for measuring instantaneous Bnuc, 

which may enable measurements of the degree of spatial localization within WMs. 

Furthermore, DNP becomes inefficient with increasing EST of the WM, as discovered 

herein. This implies that the pulsed-gated electron-nuclear flip-flop probability is a 

strong function of the Wigner parameter, the microscopic origin of which requires 

more rigorous investigations.  
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Methods 

Device fabrication  

 A quadruple QD device was fabricated on a GaAs/AlGaAs heterostructure 

with a 2DEG formed ~70 nm below the surface. The transport property of the 2DEG 

showed mobility μ = 2.6×106 cm2(V·s)−1 with electron density n = 4.0×1011 cm−2 at 

temperature T = 4 K. Electronic mesa around the QD site was defined by the wet 

etching technique, and thermal diffusion of a metallic stack of Ni/Ge/Au was used 

to form the ohmic contacts. The depletion gates were deposited on the surface using 

standard e-beam lithography and metal evaporation of 5 nm Ti/30 nm Au. The 

lithographical width of the inner QD along the QD axis direction was designed to be 

~10% wider than the outer dot to facilitate WM formation. The QD array was aligned 

to the [110] crystal axis, as shown in Fig. 6.1a. Although the magnetic field B0 was 

intended to be applied perpendicular to the [110] axis to minimize the effect of spin-

orbit interaction [2], the angular deviation was not strictly calibrated.  

Measurement 

 The device was placed on a ~ 40 mK plate in a commercial dilution 

refrigerator (Oxford instruments, Triton-500). Ultra-stable dc-voltages were 

generated by battery-powered dc-sources (Stanford Research Systems, SIM928). 

They were then combined with rapid voltage pulses from an arbitrary waveform 

generator (AWG, Keysight M8195A with a sample rate up to 65 GSa/s) via 

homemade wideband (101–1010 Hz) bias tees to be applied to the metallic gate 

electrodes. An LC-tank circuit with a resonant radio frequency (rf) of ~120 MHz was 

attached to the ohmic contact near the SET charge sensor to enable high-bandwidth 
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(fBW > 1 MHz) charge detection [27,30–33]. The reflected rf-signal was first 

amplified by 50 dB using two-stage low-noise cryo-amplifiers (Caltech Microwave 

Research, CITLF2 ×2 in series) at a 4 K plate. Next, it was further amplified by 25 

dB at room temperature using a homemade low-noise rf-amplifier. The signal was 

then demodulated by an ultra-high-frequency lock-in amplifier (Zurich Instruments, 

UHFLI), which was routed to the boxcar integrator built in the UHFLI. Trigger 

signals with a repetition period of 51 s were generated by a field-programmable-

gate array (FPGA, Digilent, Zedboard) to synchronize the timing of the AWG and 

the boxcar integrator for the CDS [33].  

 

Eigenstates of three-electron spin states 

 Three-electron spin-multiplet structure consists of eight different 

eigenstates, which are four quadruplet states Q(SZ = 3/2), Q(SZ = 1/2), Q(SZ = −1/2), 

and Q(SZ = −3/2) and four doublet states DS(SZ = 1/2), DT(SZ = 1/2), DS(SZ = −1/2), 

and DT(SZ = −1/2), as shown in Table 6.1 [46,48,49]. 

 

 

 

 

 

 

 

 

 



 

 

１６８ 

 

Table 6.1. Three-electron spin states 

State Spin structure 

Q(SZ = 3/2) 
 

Q(SZ = 1/2) 1
( )

3
      

Q(SZ = −1/2) 1
( )

3
      

Q(SZ = −3/2) 
 

DS(SZ = 1/2) 1
( )

2
    

DT(SZ = 1/2) 1
( 2 )

6
      

DS(SZ = −1/2) 1
( )

2
    

DT(SZ = −1/2) 1
( 2 )

6
      

 

When B0 = 0 T, the DS states, DT states, and Q states are degenerate respectively, 

resulting in three different branches in the energy dispersion. We use a simple toy-

model Hamiltonian adopted from the double QD hybrid qubit [35,36], which leads 

to a 6 × 6 Hamiltonian with the charge states considered as below. The ordered basis 

for the Hamiltonian is [DS(2,1), DT(2,1), Q(2,1), DS(1,2), DT(1,2), Q(1,2)], where n 

(m) denotes the number of electrons in the left (right) QD by (n, m).  
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Here,  is the energy detuning between the double QD, ti is the tunnel coupling 

strength between different orbitals (i = 1, 2, 3, 4), and L (R) is the orbital energy 

splitting in the left (right) dot. Further,  is a factor to account for the different lever-

arms of the ground and excited states in the (1,2) WM states [50], recently shown to 

be the consequence of many-body effects [28,29]. The Hamiltonian is utilized to 

obtain the energy spectra shown in Fig. 6.1. As we discuss in detail in Supplementary 

Note 6.6, the LZS oscillation at non-zero B0 is simulated by adding the hyperfine 

interaction terms [46,48] to the aforementioned Hamiltonian and by solving the time-

dependent Schrodinger equation with the experimentally obtained parameters.  

 

Rate equation 

 Nuclear spin polarization and the diffusion process were 

phenomenologically modeled using a rate equation:  

nuc 0 flipnuc

N rep

d

d 
  

B b PB
Tt

,     (2) 
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where N is the nuclear spin diffusion time, b0 is the Overhauser field change per 

electron spin-flip, Pflip is the nuclear spin flop probability obtained from the Landau–

Zener transition probability PLZ and the false initialization probability (see 

Supplementary Note 6.3), and Trep is the pulse repetition period. Using Eq. (2), we 

simulated the polarization–probe sequence shown in Fig. 6.3 with the experimental 

parameters including the time required for the amplitude sweep in the leakage probe 

step.  
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Extended Data 

 

Extended Data Fig. 6.1. Dynamic nuclear polarization under different 

tunings of Wigner molecule energy spectrum. Time (frequency) domain 

Landau–Zener–Stuckelberg oscillation with the singlet-triplet splitting of the 

Wigner molecule (WM), R of a. (d.) ~ 1.23 h·GHz, b. (e.) 2.1 h·GHz, and c. (f.) 

2.79 h·GHz. Red-dashed curves in the frequency domain signals (d., e., and f.) 

show the energy splitting between DT and DS states derived from the toy-model 

Hamiltonian (see Methods section), from which we extract the magnitude of R. 
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The R is tuned with the dc-gate-voltages. Leakage spectroscopy of the WM with 

R of g. ~ 1.23 h·GHz, h. 2.1 h·GHz, and i. 2.79 h·GHz. Red (black) dashed 

curves are the DT – DS (Q – DS) energy spacings calculated from the toy-model 

Hamiltonian with the Lande g-factor g* ~ −0.4. Bnuc measurement with the S-

polarization turned on and off with R of j. ~ 1.23 h·GHz, k. 2.1 h·GHz, and l. 

2.79 h·GHz. Although the nuclear spin diffusion time is N ~ 60 s for all tuning, 

the nuclear polarization strength per electron spin flip b0 decreases with increasing 

R, as shown in Fig. 6.3d in the main text, resulting in smaller Bmax for larger R 

(i.e., smaller Wigner parameter) 
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Supplementary Note 6.1. Electron temperature 

 

Supplementary Figure S6.3. Electron temperature measurement. a. Charge 

transition line broadening due to the finite electron temperature. The radio-

frequency (rf)-single-electron transistor (rf-SET) charge sensing signal is recorded 

as a function of the gate voltage V1 near the (2,1)–(1,1) charge transition at the 

mixing chamber plate temperature of the dilution refrigerator Tplate ~ 100 mK. The 

solid curve is a fit to the Fermi–Dirac distribution with a linear background slope, 

from which we obtain the thermal broadening kBTe/, where kB is the Boltzmann 

constant, Te is the electron temperature, and  is the lever arm of V1. b. 

kBTe/measured with varying Tplate. From the linear relationship for Tplate > 200 

mK and plateau for Tmixing < 100 mK, we estimate Te = 150 mK and  = 0.03, 

respectively.  
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Supplementary Note 6.2. Correlated double sampling (CDS)  

 

Supplementary Figure S6.4. Tunneling time scale and correlated double 

sampling (CDS). a. (b.) Tunneling-out (-in) statistics. The solid curve is a fit to 

an exponential decay yielding the tunneling-out (-in) time out (in) ~ 7 (14) s. 

Inset in each figure shows a schematic of the charge sensor signal showing 

tunneling events in the (2,1) energy-selective tunneling (EST) region [1–4] 

recorded with the radio-frequency (rf)-single-electron transistor (rf-SET). c. Top 



 

 

１８０ 

panel: schematic of the quantum control sequence. The pulse brings the initialized 

state from (2,1) to the operation point in (1,2) and drives back to (2,1) for the EST 

readout and state initialization. Bottom panel: periodically averaged (~106 lines) 

ac-coupled rf-SET signal synchronized with the Landau–Zener–Stückelberg 

(LZS)-induced X pulse. The dc-offset-eliminated CDS amplitude is generated by 

subtracting the baseline signal (blue shaded box) from the gate signal (green 

shaded box) and averaging ~103 times via the boxcar integrator. As discussed in 

the main text, the boxcar integration and the control waveform generation is 

synchronized to a trigger signal with period of 51 s.   

 

Supplementary Note 6.3. Numerical simulation of the nuclear polarization 

sequence 

 The nuclear field Bnuc during the dynamic nuclear polarization (DNP) is 

numerically reproduced using the rate equation as follows:  

 nuc 0 flipnuc

N rep

d

d 
  

B b PB
Tt

.     (SE1) 

As discussed in the Methods section, N is the nuclear spin diffusion time, Trep is the 

repetition period of the polarization pulse, b0 is the change in the nuclear field per 

electron spin flip, and Pflip is the spin-flip probability obtained from the Landau–

Zener transition probability PLZ and the false initialization probabilities . 
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Supplementary Figure S6.5. Schematic of false initialization at energy-

selective tunneling. False initialization to the (1,1) ((1,1)orange arrow) or the 

excited orbitals (exred arrow) may occur owing to thermal tunneling.  

 

We first analyze the spin-flip probability Pflip per adiabatic passage. 

Because of the small singlet-triplet splitting in the (2,1) EST region L ~ 19 h·GHz, 

where h is Planck’s constant, the false initialization probability to (1,1) at the start of 

the pulse is  ~ 0.37 (Fig. S6.3, orange arrow), which does not contribute to the 

polarization. We also estimate the probability of the false initialization to the excited 

orbitals ex from the Fermi–Dirac distribution with Te ~ 150 mK, as described in 

Supplementary Note 6.1. With the Fermi level of the reservoir straddling in the 

middle of the DT – DS splitting, we find (ex)
−1 ~ Z = 1 + exp(L/2)/kBTe) = (0.049)−1, 

where Z is the partition function [5]. Because the falsely initialized state in the 

excited orbital contributes to the polarization in the opposite direction, we calculate 

Pflip = PLZ·(1 − (1,1) − 2ex). We estimate PLZ ~ 0.5 for the given adiabatic ramp 
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width wR from Fig. 6.3, as the maximum efficiency is saturated for wR > 0.8 s. The 

resultant Pflip is 0.26.  

 

Supplementary Figure S6.6. a. Schematic of the net magnetic field Btot = B0 + 

Bnuc during the polarization and the probe stages. During the polarization stage 

(green shaded area), Bnuc builds up and then decays at the probe stage (blue shaded 

area) owing to nuclear diffusion. The decaying Btot is probed by the pulse 

amplitude sweep denoted by the black solid line. The crossing of Btot and the pulse 

amplitude is recorded as the leakage point (red-dotted line in a., red arrow in c.). 

b. Btot with the polarization turned off. The crossing point (green-dotted line) is 

recorded as Btot (n = 43) shown in c. (green arrow). c. Simulation of Btot during 

the S-polarization sequence. When the polarization is turned on, Btot builds in the 

direction of the B0 and then decays back when the polarization is turned off.  

 

To simulate the polarization sequence, we consider the duration of the 

polarization stage tPol ~ 10 s and the adiabatic ramp amplitude AR by setting the Pflip 

to 0.26 only if the laboratory time tlab < tPol and Btot = B0 + Bnuc < BL(AR); otherwise, 

we set Pflip = 0. Here, BL is the one-to-one function between the pulse amplitude and 

the magnetic field strength obtained from the leakage spectrum in Fig. 6.2b. This 
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reproduces the experimental situation where the polarization pulse is turned on for 

tPol only when the anti-crossing is reachable with the maximum pulse amplitude, as 

shown in the green-shaded area in Fig. S6.4a. We convert the number of polarized 

nuclei to Bnuc via b0. 

Based on the above-mentioned setting, we numerically mimic the leakage 

measurement shown in Fig. 6.3e. We check for the point where the crossing of the 

decaying Btot and the probe pulse amplitude (black line in Fig. S6.4a, S6.4b) occurs 

at the probe stage (Fig. S6.4a, (S6.4b), red (green) dashed line) and denote it as Btot(n) 

for the nth leakage measurement line sweep. Fig. S6.4c shows a collection of crossing 

points Btot(n) with the polarization turned on and off along n, which reflects the 

leakage measurement with the polarization sequence turned on and off, respectively. 

We fit Btot(n) to the leakage measurement in Fig. 6.3e and obtain b0 ~ 2.58 

h·kHz·(g*B)−1 and N ~ 62 s.  

 

 

 

 

 

 

 

 

 

 



 

 

１８４ 

 

Supplementary Note 6.4. Inefficient nuclear polarization in the two-electron 

singlet-triplet qubit regime  

 

Supplementary Figure S6.7. a. Left panel: schematic of the singlet-triplet (ST0) 

qubit energy levels in the two-electron regime. Zeeman-split T+ level crosses with 

the singlet branch (black rectangle) resulting in the Overhauser field-mediated 
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anti-crossing. Right panel: magnified view of the anti-crossing with the pulse 

sequence shown below for the S-polarization (mS = +1, mN = −1) with the ST0 

qubit [6,7]. b. Leakage spectroscopy (spin-funnel) of the singlet-triplet (ST0) qubit. 

The spectrum reveals the S–T+ anti-crossing points as a function of B0. c. Leakage 

measurement at B0 = 30 mT with the S-polarization turned on and off with a pulse 

repetition period of 51 s. No significant signature of Bnuc exceeding the 

fluctuation was found. d. (e.) Time (frequency) domain signal of the ST0 qubit 

Larmor oscillation at B0 = 230 mT with the S-polarization turned on and off. A 

built-in |BZ| = |BZ
L – BZ

R| ~ 200 h·MHz·(g*B)−1 exists, where the additional 

polarization effect is not significantly larger than the fluctuation. 

  

In this section, we show the two-electron singlet-triplet (ST0) spin qubit 

operation to compare the nuclear polarization effect in the same device. Fig. S6.5a 

shows typical two-electron energy levels in a double quantum dot (QD) [8]. The 

Zeeman-split T+ level crosses with the singlet branch, and the crossing becomes an 

anti-crossing aided by the finite transverse nuclear Overhauser field [6,7] (right panel 

in Fig. S6.5a).  

Utilizing the EST readout in the (2,0) charge configuration [3], we first 

measure the leakage spectrum of the ST0 qubit by probing the S–T+ anti-crossings 

as a function of B0 (Fig. S6.5b). Because the leakage position is sensitive to the 

magnetic field only for |B0| < 50 mT, we set B0 = 30 mT and investigate the effect of 

S-polarization in Fig. S6.5c. We use the same Trep ~ 51 s as described in the main 
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text and measure the anti-crossing position with the polarization pulse turned on and 

off with the same polarization-probe sequence shown in Fig. 6.3e. As a result, we 

find that the polarization effect is found to not be as significant as in the Wigner 

molecule (WM) case shown in Fig. 6.3. This is consistent with a previous report [6], 

where a sizable Bnuc is only observable for Trep < 30 s using ST0 qubit.  

The Larmor oscillation frequency of the ST0 qubit corresponds to the size 

of the spatial magnetic field gradient BZ between the double QD (DQD) [8,9]. We 

also measure the ST0 Larmor oscillation with the S-polarization turned on and off at 

B0 = 230 mT, as shown in Fig. S6.5d, with the same sequence as in Fig. 6.4. We first 

note that there exists a built-in BZ ~ 200 h·MHz·(g*B)−1 stemming from the nuclear 

Overhauser field, consistent with the energy splitting between the DT1 and DT0 

energy levels without the polarization, as shown in Fig. 6.4b and 6.4d. In contrast to 

the WM case shown in the main text where the S-polarization yields a change of 

|BZ| =|BL
Z – BR

Z| ~ 200 h·MHz·(g*B)−1, the S-polarization with the ST0 qubit does 

not induce a polarization that is significantly larger than the nuclear field fluctuation 

with the same Trep ~ 51 s [6]. This indicates that a large Knight field shift aided by 

the non-uniform broadening of the WM wavefunction may suppress the nuclear spin 

diffusion and lead to sizable nuclear polarization despite the slow pulse repetition 

rate [10,11]. 
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Supplementary Note 6.5. Magnetic Hamiltonian 

 We adopt the hyperfine Hamiltonian from the exchange-only qubit defined 

in a triple QD [12] as follows. The ordered basis for the Hamiltonian is [DS(1/2), 

DT(1/2), Q(1/2), Q(3/2), DS(−1/2), DT(−1/2), Q(−1/2), Q(−3/2)]. 
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Here, abc 1 2 3

r r r r  B aB bB cB , where r = z, +, –, Bd denotes the magnetic field on 

the dth electron, and 𝑛̄ = –n. The transverse magnetic field B+ and B– couple different 

SZ subspaces with |mS| = 1, where SZ is the spin projection to the quantization axis. 

Note that the spin-flip terms corresponding to |mS| = 2 are not present.  

 For the LZS oscillation simulation shown in Fig. 6.4c, 6.4d, we assume that 

1) the transverse Overhauser field B+ and B– are negligibly small compared to BZ, 

and 2) the spatial magnetic field gradient within a single QD is insignificant 

compared to that between the left and right QDs. In the (1,2) charge configuration in 

a DQD, we use BL = Bd=1 to denote the magnetic field on the electron in the left QD 

and BR = Bd=2 = Bd=3 to denote the magnetic field experienced by the two electrons 
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inside the right QD. Based on the notation and the two assumptions above, Hhf can 

be simplified as (SE3).  
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(SE3) 

Hhf,P (Hhf,N) is the Hamiltonian in the positive (negative) spin subspace, where Hhf,N 

= –Hhf,P holds. Diagonalizing Hhf,P results in Eq. (SE4) as shown below with the 

ordered basis [DS(1,2; 1/2), DT0(1,2; 1/2), DT1(1,2; 1/2), Q(1,2; 3/2)] [13]. Here, 

DT0(1,2; 1/2) = 
0 T  and DT1(1,2; 1/2) = 

 T , as mentioned in the main text. 

Further, n (m) denotes the electron number inside the left (right) QD by (n, m; Sz).  
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DT1 – DT0 splitting is governed by BZ, providing a direct measure of the 

size of the spatial magnetic field gradient, BZ. We emphasize that DT0 – DS splitting 

is now independent of the magnetic field strength, providing a decoherence-free 

subspace for high-fidelity qubit operations. However, we note that DT0 – DS splitting 

may still be disturbed by the magnetic field gradient noise within the right QD, which 

we assume to be negligible compared to BZ. After implementing the single-shot 

readout-based real-time Hamiltonian estimation technique [14], we anticipate that 

the investigation of the temporal dynamics of DT0 – DS splitting may enable the study 

of the magnetic field behavior within a single QD. This in turn would be helpful to 

reveal the spatial distribution of the WM wavefunction.  

 

Supplementary Note 6.6. Simulation of the Landau–Zener–Stückelberg 

oscillation 

 As discussed in Supplementary Note 6.5, we neglect the transverse 

magnetic field contribution and do not consider the transition between different SZ 

subspaces in the LZS oscillation simulation. This allows us to analyze the dynamics 

of the SZ = 1/2 and SZ = −1/2 subspaces separately and ignore the |SZ| = 3/2 subspace. 

We combine the reduced SZ = 1/2 (SZ = −1/2) hyperfine Hamiltonian with the 
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electronic Hamiltonian shown in the Methods section to describe the dynamics in 

the SZ = 1/2 (SZ = −1/2) subspace. The hyperfine Hamiltonian in the SZ = 1/2 subspace 

with the charge configurations is explicitly considered as follows. The ordered basis 

for the Hamiltonian is [DS(2,1; 1/2), DT(2,1; 1/2), Q(2,1; 1/2), DS(1,2; 1/2), DT(1,2; 

1/2), Q(1,2; 1/2)].  
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(SE 5) 

 For numerical reproduction of the LZS oscillation shown in Fig. 6.4c, we 

solve the time-dependent Schrödinger equation by varying the detuning parameter  

according to the pulse shape. As the state probabilistically initializes to either DS(2,1; 

1/2) or DS(2,1; −1/2) at EST, we simulate the LZS oscillations of the SZ = 1/2 and 

the SZ = −1/2 cases separately. The simulated oscillations are then averaged 

assuming the equal initialization probability to DS(2,1; 1/2) and DS(1,2; −1/2).  
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Chapter 7. Conclusion  

 

7.1 Summary and conclusion 

 This thesis presents the coherent control of the multi-electron and nuclear 

spins in GaAs, based on the single-shot quantum state detection. The EST single-

shot detection of the two-electron ST0 spin qubit allows the robust high-fidelity 

quantum state detection even when the large magnetic field gradient is present at the 

DQD site. Recalling that the large magnetic field gradient enables high-fidelity 

quantum control, and at the same time degrades the readout fidelity for the PSB 

based state detection schemes, compatibility of the EST with the large gradient is 

expected to offer a route toward high-fidelity quantum control of multiple ST0 qubit 

array.  

 Such robust, and high-visibility EST readout can further enable efficient 

real-time Hamiltonian parameter estimation, which can significantly extend the 

dephasing time of the ST0 qubit in GaAs. The real-time Hamiltonian estimation 

based feedback control effectively mitigates the magnetic field fluctuation in GaAs. 

The work confirms the overall qubit operation fidelity including initialization, 

control and readout approaching 99 %. Based on the versatility of the method, the 

technique can be directly applied to Si or Ge to further boost the quantum operation 

fidelity by mitigating the relatively slow charge noise or the residual nuclear spin 

noise. 

 The EST readout can also be utilized for the high-fidelity single-shot 

detection of the three-electron hybrid qubit. Aided by the quenched energy spectrum 
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of the strongly-correlated Wigner molecule, the three-electron hybrid qubit operation 

is firstly shown in GaAs, along with the single-shot state detection. The Wigner 

molecularization offers a route toward coherent qubit operations within the typical 

experimental bandwidth even in the materials known to exhibit large orbital splitting. 

Moreover, recalling that the hybrid qubit is directly compatible with the 

superconducting circuits which can enable long-range qubit interactions [refs], such 

Wigner molecularization can allow the study of the ultra-strong coupling of the qubit 

with the superconducting circuits, and further enable long-range entanglement of the 

semiconductor qubits.  

 The Wigner molecule can also allow the bidirectional DNP with three-

electrons in GaAs within a moderate magnetic field. While the rigorous study on the 

microscopic origin is needed, the DNP efficiency is shown to increase along the 

increasing Wigner parameter. Also, the nuclear spin diffusion time is shown to be 

longer than the typical two-electron cases. Along with the long nuclear spin diffusion 

time, and the large DNP efficiency sizable nuclear spin field is achieved with 

relatively slow polarization cycle. This is expected to further allow efficient 

environmental field control with the EST quantum state detection and initializations 

scheme. 

 To summarize, the works presented here offer routes for high-fidelity 

quantum operations based on the single-shot state detection. The EST allows the 

high-fidelity single-shot state readout of multi-electron spin qubits namely the ST0 

and hybrid qubit in a DQD. The high-fidelity quantum state detection scheme allows 

the real-time Hamiltonian parameter estimation which enable efficient 

environmental noise elimination. Also, using the quenched energy spectrum of the 
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Wigner molecule, coherent hybrid qubit control, and efficient control of the 

environmental nuclear field is enabled. 

7.2 Outlook 

 The EST shown here is a versatile spin-to-charge conversion scheme that 

is applicable to any types of the host material. While the long readout time of the 

EST compared to other types of readout may limit the overall speed of the complex 

quantum computations in the semiconductor, it can certainly be beneficial at the 

aspect of the large signal contrast, and the robustness about the magnetic field 

gradient which inevitably exist in the typical QD chips.  

 Having demonstrated both the passive and active environmental field 

control by the real-time Hamiltonian estimation and the DNP, this work provides 

efficient routes toward the environmental noise cancellation. The bidirectional DNP 

with the three-electrons may allow the direct feedback control over the nuclear field 

for environmental field stabilization which can also contribute to the electron spin 

coherence extension. Moreover, the real-time Hamiltonian estimation in the Si or Ge 

where the nuclear spin effect is not as significant, can further reduce the charge noise 

and residual magnetic field noise for high-fidelity quantum operations.  

 As mentioned above, the hybrid qubit couples to the electric field without 

requiring the magnetic fields for the qubit operations. This allows the direct coupling 

to the superconducting circuits, where the high-kinetic inductance superconducting 

resonator is expected to provide ultra-strong coupling of the superconducting cavity 

with the qubit. The strong coupling of the hybrid qubit with the superconducting 

cavity would allow remote entanglement of the QD spin qubits which has been one 

of the goals to achieve large scale QD quantum computers.   
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요 약 

 

양자 컴퓨터는 기존의 컴퓨터에 비해 특정 문제 해결들에 – 

소인수분해, 외판원 문제, 검색 알고리즘 등 – 대하여 막대한 전산 속도 

증대를 가져올 수 있다. 이러한 것이 가능한 이유는 양자 컴퓨터의 경우 

기존 컴퓨터와 달리 완전히 양자 역학적인 성질을 갖는 큐비트 

(qubit)가 그 기본 연산 단위이기 때문이다. 큐비트들은 고전계에는 

존재하지 않는 양자 중첩 (superposition)과 양자 얽힘 

(entanglement)을 통해 결과적으로 양자 병렬 연산을 가능케 한다. 

대규모 양자 전산 시스템의 실현을 위해 초전도 회로, 이온 트랩, 

그리고 반도체 양자점을 포함한 여러 구조물이 이론, 실험적으로 모두 

연구되고 있다.  

 최근에는 초전도 큐비트를 이용한 양자 우월성 (quantum 

supremacy) 증명이 이루어지는 등, 양자 전산의 유망함이 보여지고 있

는데, 반도체 양자점 스핀 큐비트 역시 대규모 양자 전산을 위해 활발히 

연구되고 있다. 반도체 기반 스핀 큐비트의 장점은 긴 스핀 이완 

(relaxation) 시간, 높은 집적도, 그리고 CMOS 공정 호환성 등을 포함

한다. 이에 기반하여 최근에는 고정확 단일, 이중 큐비트 게이트 구현과 

양자 에러 보정 등이 실증된 바 있고, 더 나아가, 1 K 가 넘는 온도에서

의 고온 양자 제어 가능성은 반도체 양자점 스핀 큐비트의 확장성을 보

여준다.  

 반도체 물질에 존재하는 핵 스핀의 요동은 반도체 양자점 전자 

스핀 큐비트의 양자 결맞음 (coherence)에 큰 악영향을 끼친다. 하지만 

그와 동시에, 핵스핀의 존재는 중심 스핀 문제 (central spin problem)

라고 불리는 단일 전자 스핀과 다수의 스핀 사이의 상호작용 탐구에 유

용하게 사용될 수 있다. GaAs의 2차원 전자 층 (2DEG)은 높은 전하 

이동도를 갖고, 또한 낮은 전자 유효질량을 가져 비교적 간단한 양자점 

소자 공정이 가능하다고 알려져 있다. 그러나 Ga 과 As 핵들이 유한한 

스핀을 가져 이러한 핵 스핀들의 요동이 전자의 스핀 결맞음을 제한 한
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다는 단점이 있다. 이 학위 논문에서는 GaAs 에서의 다중 전자 스핀과 

핵 스핀의 상태를 제어하는 방법에 대해 논하고, 핵 스핀 노이즈의 효과

적인 제거를 통한 전자 스핀 큐비트의 결맞음 향상법을 제시한다.  

 챕터 1은 양자 전산의 기본과 GaAs 양자점 스핀 큐비트에 대해 

간략히 소개한다. 또한 양자점 형성을 위한 dc 전하 수송 측정과 고주파 

기반 실시간 전하 센싱 기법에 대하여 소개하고자 한다. 여기서 고주파 

기반 실시간 전하 센싱 기법은 후술될 양자 상태의 실시간 단발 

(single-shot) 측정에 필수적으로 사용되는 기술이다.  

 반도체 양자점은 다양한 종류의 스핀 큐비트를 연구할 수 있는 

유연한 플랫폼이다. 챕터 2에서는 단일 전자 스핀 큐비트, 2개 전자 싱

글렛-트리플렛 큐비트와 3개 전자 혼성 (hybrid) 큐비트를 소개한다. 

각각의 큐비트의 연구 필요성과 장점들이 주로 다루어진다.  

 챕터 3은 에너지 의존 터널링 (Energy-selective tunneling, 

EST) 현상에 기반한 2개 전자 싱글렛-트리플렛 큐비트의 양자 제어에 

대해 논한다. 에너지 의존 터널링은 높은 자기장 기울기 (> 85 mT) 상

황에서도 고정확 (> 90%) 스핀 상태 측정을 가능케 한다. 높은 자기장 

기울기는 고정확 양자 제어를 가능케 하지만, 기존의 파울리 스핀 봉쇄

법 (Pauli Spin Blockade, PSB) 과는 호환되지 않는 다는 점에서 새로운 

양자 상태 측정법의 개발은 더욱 정확한 양자 제어의 가능성을 열어준다. 

더 나아가 챕터 4에서는 고정확 EST를 활용하여 단발 측정 기반 헤밀

토니안 추정을 통한 실시간 피드백 양자 제어를 수행한다. 그 결과로 핵 

스핀 노이즈가 존재하는 상황하에서 양자 결맞음이 증대될 수 있음을 보

인다.  

 챕터 5와 챕터 6에서는 3개 전자 상태를 이용한 큐비트 제어와 

핵스핀 제어법을 제시한다. 단일 양자점 내 전자간 강한 쿨롱 상호작용

은 위그너 분자의 형성을 야기하며, 위그너 분자 형성의 중요한 결과 중 

하나는 들뜬 상태의 에너지가 매우 작아진다는 점이다. 챕터 5 에서는 

이러한 작은 에너지 차이 (바닥 상태 – 들뜬 상태 사이의)를 이용하면 
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통상적인 실험적 한계 내에서 3개 전자 혼성 큐비트 결맞음 제어를 할 

수 있다는 것을 보이고, 해당 큐비트의 단발 측정을 수행할 수 있음을 

보인다. 챕터 6 에서는 위그너 분자 상태를 이용하여 비교적 작은 자기

장 조건 하에서 양방향 핵 스핀 분극 (dynamic nuclear polarization) 

을 수행하여, 핵 스핀 상태를 효율적으로 제어할 수 있는 방법을 제시한

다.  

 EST 기반의 다중 전자 스핀 과 핵 스핀 제어 방법은 GaAs 뿐

만이 아니라 모든 반도체 기반 양자점 스핀 큐비트에서 사용될 수 있는 

방법이다. 특히 핵 스핀의 영향이 비교적 적다고 알려진 Si 혹은 Ge 에

서 해당 방법들을 적용할 경우 더욱 높은 정확도의 양자 제어가 가능할 

것으로 예상 된다. 챕터 7에서는 주요 결과를 요약하고, 더욱 복잡한 양

자 전산을 위해 해당 결과들이 어떻게 응용될 수 있는지 그 방향을 제시

한다.  
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