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Abstract

Universal Resource-efficient
Topological Measurement-based

Quantum Computing

Seok-Hyung Lee

Department of Physics and Astronomy

The Graduate School

Seoul National University

Measurement-based quantum computing (MBQC) is a methodology of quan-

tum computing that is conducted with single-qubit measurements on large-

scale entangled states called a cluster state, which is adequate in optical sys-

tems. In particular, MBQC can be tolerant to small faults by utilizing topo-

logical quantum error-correcting codes. This dissertation introduces two

topological MBQC protocols that are advantageous over previous protocols

in terms of fault tolerance and resource efficiency.

In the first part, we propose a topological MBQC protocol with a family

of cluster states constructed based on two-dimensional color codes. The con-

ventional topological MBQC protocol with Raussendorf‘s three-dimensional

cluster states (RTCSs) has a drawback: The Hadamard and phase gates that

are essential for building up arbitrary logic gates cannot be implemented

i



natively without additional techniques, which makes the protocol less fea-

sible. We resolve this problem by altering RTCSs with color-code-based

cluster states. Specifically, we show that the Hadamard and phase gates can

be implemented natively in a fault-tolerant manner, which leads to about 26

times resource reduction compared to the protocol with RTCSs using state

distillation.

In the second part, we suggest a linear-optical topological MBQC pro-

tocol employing multiphoton qubits based on the parity encoding. The non-

deterministic nature of entangling operations and photon losses hinder the

large-scale generation of cluster states and introduce logical errors in linear-

optical MBQC. Our protocol turns out to be highly photon-loss tolerant and

resource-efficient even under the effects of nonideal entangling operations

that unavoidably corrupt nearby qubits. For the realistic error analysis, we

introduce a Bayesian methodology to track errors caused by such detrimen-

tal effects. Notably, we show that our protocol is advantageous over several

other existing protocols in terms of fault-tolerance, resource overhead, or

feasibility of basic elements.

Keywords : Quantum Computing, Quantum Information, Quantum Error

Correction, Measurement-based Quantum Computing

Student Number : 2017-27328
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Figure 21. (a) Explicit structure of a parity-check operator (PC),

specifically a pb-PC in a 4-8-8 CCCS. Purple trian-

gles indicate its X-support qubits. (b) A Z or X-measurement

error on a pcAQ (purple triangle) flips two pc-PCs

sandwiching q. (c) A dual layer of a 4-8-8 CCCS is

presented. Purple triangles indicate the pCQs with er-

rors. Each c-colored face corresponds to a flipped pc-

PC, where an example is shown in (a) as a blue face
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Chapter 1

Introduction

Currently, we are in the nascent stage of quantum computing technol-

ogy. Quantum computing utilizes quantum natures such as superposition or

entanglement to handle computational tasks. It started to attract attention

due to the discovery that several quantum computing algorithms such as

Shor’s factoring algorithm [4] and Grover’s search algorithm [5] are known

to have at most exponential speedup compared to their classical counterpart.

Not only that, physics problems that are natively quantum, such as simulat-

ing many-body quantum systems [6] or finding the ground states of compli-

cated Hamiltonians [7], are expected to be solved efficiently with quantum

computing.

There is still a long way to go to get a decent quantum computing im-

plementation. From a theoretical point of view, there are three major chal-

lenges: universality, fault-tolerance, and resource efficiency.

Universality indicates the ability of a quantum computer to initialize

logical qubits to the computational basis state, apply any unitary operations,

and measure them in the computational basis. It is known that, if quan-

tum gates in a universal set of gates are implementable, any unitary opera-

tion can be approximated to an arbitrary accuracy [8, 9]. One typical exam-

ple of a universal set of gates is composed of the controlled-NOT (CNOT),

Hadamard, phase, and T gates [9], which is respectively expressed in matrix

1



forms as

UCNOT :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, H :=

1 1

1 −1

 ,

S :=

1 0

0 i

 , T :=

1 0

0 e
π

4 i

 .

(1.1)

Fault-tolerance means that adverse effects of errors during quantum

computing are suppressed so that faithful computing results can be obtained

under small enough faults. A representative way to achieve fault-tolerance

is to use quantum error-correcting (QEC) codes in which a single logical

qubit is composed of multiple physical qubits. QEC codes vary from simple

codes with few physical qubits [10, 11, 12, 13, 14] to advanced topological

stabilizer codes defined on lattice structures of qubits allowing only local

interactions [15]. In particular, surface codes [16, 17, 18, 19, 20, 21, 1, 22]

and two-dimensional (2D) color codes [23, 24, 15, 25] are two different

families of topological codes defined on 2D lattices, which are promising

due to their universality and relatively high fault-tolerance. Recently, alter-

native approaches for controlling errors in specific problems of estimating

the expected values of operators have been suggested, which are collectively

referred to as error mitigation [26, 27, 28]. Although these techniques are

far less hardware-demanding than quantum error correction, which makes

them suitable for noisy intermediate-scale quantum (NISQ) devices, their
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performance is insufficient for application to complex quantum algorithms.

In this dissertation, we do not cover error mitigation.

Lastly, fault-tolerant universal quantum computing typically requires

enormous resources, which makes it tough to realize it. It is not only be-

cause a single logical qubit is composed of multiple physical qubits, but also

because state distillation, which generally demands many ancillary logical

qubits, is required for several logic gates to be fault-tolerant [29, 20, 1, 30].

For example, one round of a typical state distillation protocol to implement

a logical T gate requires 15 ancillary logical qubits [29, 31, 1]. It is thus

desirable to minimize the need for state distillation or find an efficient state

distillation protocol. Not only that, there exist various platform-dependent

problems that hinder the reduction of resource overheads, such as the non-

deterministic nature of entangling operations in linear-optical systems.

Measurement-based quantum computing (MBQC) is a quantum com-

puting methodology that is processed by single-qubit measurements on a

large entangled state called a cluster state [32, 33, 34, 35, 31, 36]. The ini-

tial MBQC schemes via cluster states on 2D planes [32, 33] were universal

but not fault-tolerant. To achieve fault-tolerance, the concept of topologi-

cal codes is exquisitely combined with MBQC. Specifically, Raussendorf’s

three-dimensional cluster states (RTCSs) constructed based on surface

codes allow universal and fault-tolerant MBQC with topologically-encoded

logical qubits [34, 35, 31, 36, 2].

In this dissertation, we propose two different universal fault-tolerant

MBQC protocols and delve into their performance and resource efficiency.

We first briefly review essential background knowledge in Chapter 2, in-
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cluding the stabilizer formalism, quantum error correcting codes, and the

operational principle of MBQC. In Chapter 3, we suggest an MBQC proto-

col using a family of cluster states constructed based on 2D color codes, not

surface codes which is the basis of RTCSs. We verify that this new proto-

col is advantageous over the protocol with RTCSs in terms of resource effi-

ciency when implementing the Hadamard and phase gates, owing to the self-

duality of 2D color codes. While Chapter 3 addresses platform-independent

theory, in Chapter 4 we regard linear-optical systems. We propose a linear-

optical MBQC protocol employing multiphoton qubits based on the parity

encoding, which turns out to be highly photon-loss tolerant and resource-

efficient compared to other existing protocols. For realistic error analysis,

we introduce a Bayesian methodology to track errors caused by the detri-

mental effects of nonideal entangling operations during the construction of

cluster states. We conclude with final remarks in Chapter 5.

Chapters 3 and 4 are respectively based on the following two papers:

• Seok-Hyung Lee and Hyunseok Jeong, “Universal hardware-efficient

topological measurement-based quantum computation via color-code-

based cluster states,” Phys. Rev. Research 4, 013010 (2022) [37].

• Seok-Hyung Lee, Srikrishna Omkar, Yong Siah Teo, and Hyunseok

Jeong, “Parity-encoding-based quantum computing with Bayesian er-

ror tracking,” arXiv:2207.06805 [quant-ph] (2022) [38].
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Chapter 2

Preliminary

In this chapter, we briefly introduce essential background information.

We first cover the stabilizer formalism, which is a fundamental mathemat-

ical language for describing quantum error correction (QEC) theory and

measurement-based quantum computing (MBQC). Subsequently, we study

how MBQC operates, including the structures of resource states, the imple-

mentation of quantum gates, and the error-correcting scheme.

The followings show notations used throughout the dissertation:

• For two operators O1 and O2,


[O1, O2] := O1O2−O2O1 (Commutator of O1 and O2)

{O1, O2} := O1O2 +O2O1 (Anticommutator of O1 and O2)

• ⟨G⟩= ⟨G1, G2, · · · , Gn⟩ for a set of operators G = {G1, G2, · · · , Gn}:

Group generated by G under their multiplication. Namely, every el-

ement in the group can be expressed as the product of elements in

G .

• I, X , Y , Z: Single-qubit identity, Pauli-X , Y , and Z operators, respec-

tively.
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• Pn: n-qubit Pauli group defined as

Pn :=
〈
iI⊗n, X1, Z1, X2, Z2, · · · , Xn, Zn

〉
,

where O j for a single-qubit operator O and j ∈ {1, · · · ,n} is an oper-

ator in the n-qubit Hilbert space that is the tensor product of O on the

j-th qubit and the identities on the other qubits.

• supp(O) for a multi-qubit operator O: Support of O, which means the

set of qubits on which O acts non-trivially.

• suppP(O) for a multi-qubit Pauli operator O ∈ Pn and a single-qubit

Pauli operator P ∈ {X , Y, Z}: P-support of an operator O, which

means the set of qubits on which O acts as P.

2.1 Stabilizer formalism

The stabilizer formalism, which was first developed by Daniel Gottes-

man [39], is a powerful methodology for describing certain multi-qubit quan-

tum states and quantum operations on them. We here organize its basic con-

cepts including the definitions of stabilizer groups and subspaces and the

effects of unitary operations or measurements on them. See also the follow-

ing references for comprehensive introductions of the formalism.

• M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Chapter 6, Cambridge University Press (2010) [9].

• D. Bacon, Quantum Error Correction (edited by D. A. Lidar and T.

6



A. Brun), Chapter 2, Cambridge University Press (2013) [40].

2.1.1 Stabilizer group and subspace

We define a stabilizer group in an n-qubit Hilbert space Hn as follows:

Definition 2.1 (Stabilizer group). For an abelian subgroup S of Pn that

satisfies −I⊗n /∈ S , the common eigenspace HS of the elements in S with

eigenvalue +1, namely,

HS :=
{
|Ψ⟩ ∈Hn : ∀g ∈ S , g |Ψ⟩= |Ψ⟩

}
(2.1)

is called the stabilizer subspace stabilized by S , and S is referred to as the

stabilizer group of the space HS . Each element in S is called a stabilizer

of HS .

Note that, for a generating set GS of S , the condition in Eq. (2.1) can

be simplified as ∀g ∈ GS , g |Ψ⟩ = |Ψ⟩. The next proposition shows an im-

portant property of a stabilizer subspace that its dimension is determined by

the number of generators of its stabilizer group:

Proposition 2.1 (Dimension of stabilizer subspace). For a stabilizer sub-

space HS <Hn, if a minimum generating set of S is G , HS is a 2k-dimensional

vector space where k = n−|G |.

This proposition can be intuitively understood as follows: For each sta-

bilizer generator added, only one of the±1 eigenspaces that together gener-

ate the original space survives, thus the dimension of the stabilizer subspace
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is cut in half. See Ref. [9] for rigorous proof. Due to this proposition, a sta-

bilizer subspace can encode k := n− |G | logical qubits if |G | < n, which

are composed of n physical qubits. Such an encoding scheme is called a

stabilizer code and the corresponding stabilizer subspace is called its code

space. If |G | = n, the stabilizer subspace contains only one quantum state

|ΨS ⟩ up to a global phase, which is simply called the stabilizer state stabi-

lized by S .

Example 2.1 (Steane’s 7-qubit code). Steane’s 7-qubit code is defined on

the stabilizer subspace of a seven-qubit Hilbert space stabilized by

S = ⟨g1, g2, g3, g4, g5, g6, g7⟩ ,

where

g1 := X1X2X3X7, g2 := X3X4X5X7, g3 := X1X5X6X7,

g4 := Z1Z2Z3Z7, g5 := Z3Z4Z5Z7, g6 := Z1Z5Z6Z7.
(2.2)

The code encodes one logical qubit since it has six generators.

Example 2.2 (Bell states). The four Bell states on two qubits which respec-

tively have the basis of {|0⟩ , |1⟩} are defined as

|Φ±⟩ := |0⟩⊗ |0⟩± |1⟩⊗ |1⟩ ,

|Ψ±⟩ := |0⟩⊗ |1⟩± |1⟩⊗ |0⟩ .

Each Bell state is stabilized by
〈
msignX⊗X , mlettZ⊗Z

〉
, where msign =±1

for |Φ±⟩ and |Ψ±⟩ and mlett =+1 (−1) for |Φ±⟩ (|Ψ±⟩).
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2.1.2 Unitary operation on a stabilizer subspace

We now study the effect of a unitary operation U ∈ U(Hn) on a sta-

bilizer subspace HS ⊆ Hn, where U(Hn) is the set of unitary operations on

Hn. For every |Ψ⟩ ∈HS and every g ∈ S ,

U |Ψ⟩=Ug |Ψ⟩=UgU†U |Ψ⟩ ,

thus the transformed subspace UHS is the common eigenspace of the ele-

ments in USU† :=
{

UgU† : g ∈ S
}

with eigenvalue +1. To say that UHS

is the stabilizer subspace stabilized by USU†, USU† should be a subgroup

of Pn, which holds if U transforms every Pauli operator into a Pauli oper-

ator under the Heisenberg picture (namely, UPU† ∈ Pn for every P ∈ Pn).

Note that such unitary operations form the n-qubit Clifford group, whose

elements are termed Clifford operations or gates. It is known that any Clif-

ford gate can be expressed as a combination of the Hadamard (H), phase (S),

and CNOT (UCNOT) gates on the n qubits, which are defined in Eq. (1.1). Each

of these gates transforms the single- or two-qubit Pauli operators under the

Heisenberg picture as follows:

HXH† = Z, SXS† = Y, UCNOT(X⊗ I)U†
CNOT = X⊗X ,

HZH† = X , SZS† = Z, UCNOT(Z⊗ I)U†
CNOT = Z⊗ I,

UCNOT(I⊗X)U†
CNOT = I⊗X ,

UCNOT(I⊗Z)U†
CNOT = Z⊗Z,

where the first (second) qubit is the control (target) for the CNOT gate.
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The above method seems quite straightforward, but it implies the power

of the stabilizer formalism. An n-qubit state generally requires 2n ampli-

tudes for its description and all of them should be tracked according to uni-

tary operations applied to the qubits. However, provided that the state is

a stabilized state, only n stabilizer generators are sufficient to describe the

state and track its transformation. Such a reduction of computational cost is

extremely useful when simulating quantum circuits. Additionally, it is di-

rectly related to an important theorem in quantum computational theory, the

Gottesman-Knill theorem [41] that a quantum computation involving only

state preparations in the computational basis, Clifford gates, measurements

of Pauli operators, and classical controls conditioned on the outcomes of the

measurements can be efficiently simulated on a classical computer.

Any unitary operation outside S that preserves the stabilizer group

serves as a nontrivial logical operation in the code space. In other words,

defining the normalizer N (S) of S by

N (S) :=
{

U ∈U(Hn) : USU† = S
}
,

any element in N (S)\S changes the state of the logical qubits encoded in

HS while preserving the code space. Note that such logical operations are

equivalent up to the multiplication of an arbitrary stabilizer.

In particular, we can find a set of independent Hermitian operators

X1, · · · , Xk, Z1, · · · , Zk ∈ Pn∩N (S)\S

10



that commute with each other except for each pair of X j and Z j for the

same subscript j, which anticommutes. (Note that Pn ∩N (S) is a group.)

Here, the term “independent” means that no operator can be expressed as a

product of others. X j (Z j) represents the logical Pauli-X (Z) operator of

the j-th logical qubit. We further define the logical Pauli group P (S) by

P (S) :=
〈
i, X1, Z1, · · · , Xk, Zk

〉
≤ Pn∩N (S)

as a natural extension of the Pauli group to the logical space. We note the

following two propositions regarding P (S).

Proposition 2.2. All the elements of Pn∩N (S), which include the elements

of P (S), commute with every element of S .

Proof. If Q ∈ P (S) anticommutes with P ∈ S , QPQ†
= −P ∈ S , which

contradicts to −I⊗n /∈ S .

Proposition 2.3. Pn∩N (S) is the direct sum of S and P (S); namely,

Pn∩N (S) =
〈
i, g1, · · · , gn−k, X1, · · · , Xk, Z1, · · · , Zk

〉
, (2.3)

where {g1, · · · , gn−k} is a minimum generating set of S .

Proof. Let P be an arbitrary element of Pn∩N (S). For each l ∈{1, · · · , k},

P commutes at least one of X l , Zl , and Y l := iX lZl , because

[
X lZl, P

]
= X l

{
Zl, P

}
−
{

X l, P
}

Zl = 0

if P does not commute with both X l and Zl . Let Ql denote one of X l , Zl , and
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Y l that commutes with P. Then

S ′ :=
〈
g1, · · · , gn−k, Q1, · · · , Qk

〉
is an abelian subgroup of Pn that does not contain −I⊗n. Since S ′ has n in-

dependent generators, its stabilizer space HS ′ contains only one state |ΨS ′⟩

up to a global phase. For every g′ ∈ S ′, g′P |ΨS ′⟩= Pg′ |ΨS ′⟩= P |ΨS ′⟩, thus

P |ΨS ′⟩ ∈HS ′ . Therefore, P |ΨS ′⟩= eiθ |ΨS ′⟩ for a real value θ, which means

that e−iθP ∈ S ′. Since S ′ < Pn and P ∈ Pn, e−iθ is either ±1 or ±i. Hence, P

can be expressed as a product of elements in
{

i, g1, · · · , gn−k, Q1, · · · , Qk
}

,

which proves the proposition.

To reveal the effect of an arbitrary element U in N (S)\S on the logical

qubits, one can check the transformation of the logical Pauli operators upon

U . For example, if a unitary operation H j ∈ N (S) satisfies H jX jH
†
j = Z j

and H jZ jH
†
j = X j and commutes with all the other logical Pauli operators,

H j can be regarded as the logical Hadamard gate on the j-th logical qubit.

Example 2.3. For Steane’s 7-qubit code defined in Example 2.1, the logical

Pauli operators of the logical qubit are

XL :=
7∏

j=1

X j, ZL :=
7∏

j=1

Z j.

The operator HL = H⊗7, where H is the Hadamard gate on a physical qubit,

serves as the logical Hadamard gate since HLSH†
L = S , HLXLH†

L = ZL, and

HLZLH†
L = XL.
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2.1.3 Measurement on a stabilizer subspace

We next address the effect of a measurement on a stabilizer subspace

HS . In particular, we consider the projective measurement of a Pauli observ-

able Q∈Pn that is a tensor product of single-qubit identity or Pauli operators

with no multiplicative factor of−1 or±i. When the initial state is |Ψ⟩ ∈HS

and the measurement outecome is λ ∈ {±1}, the post-measurement state is

I +λQ√
2(1+λ⟨Ψ|Q|Ψ⟩)

|Ψ⟩ . (2.4)

There are three possibilities:

(i) Either Q or −Q is in S .

(ii) Neither Q nor −Q is in S and Q commutes with all the elements in S .

(iii) Q anticommutes with at least one element in S .

The measurement may transform the stabilizer group S and require the re-

definition of the logical Pauli operators X1, · · · , Xk, Z1, · · · , Zk . Let S ′

denote the stabilizer group of the projected subspace. For all three cases, S ′

contains mQ.

Case (i): The measurement outcome λ is always ±1 if ±Q ∈ S . Both the

stabilizer group and the logical Pauli group are invariant under the mea-

surement. This type of measurement is commonly called a syndrome mea-

surement since wrong measurement outcomes mean the presence of er-

rors on physical qubits, which is a core idea of stabilizer quantum error-

correcting (QEC) codes.
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Case (ii): This case corresponds to measuring logical qubits in a (possibly

multi-qubit) Pauli basis. It is because, due to Proposition 2.3,

Q ∈ Pn∩N (S) =
〈
GS ∪

{
i, X1, · · · , Xk, Z1, · · · , Zk

}〉
,

thus we can write Q = cg
∏k

l=1 Pl , where c ∈ {±1}, g ∈ S , and Pl is either

I⊗n, X l , Zl , or Y l := iX lZl for each l.

The stabilizer group of the projected space is S ′ = ⟨GS∪{λQ}⟩, where

GS is a generating set of S and λ is the measurement outcome. λQ newly

becomes a stabilizer since neither Q nor −Q is in S . The original stabilizers

in S remain as stabilizers because

(I +λQ) |Ψ⟩= (I +λQ)g |Ψ⟩= g(I +λQ) |Ψ⟩

for every g ∈ S .

The number of stabilizer generators increases by one, thereby the num-

ber of logical qubits decreases by one. The new logical Pauli operators can

be found in the following way: Since neither Q nor −Q is in S , there exists

at least one l ∈ {1, · · · , k} such that Pl ̸= I⊗n. We arbitrarily choose such

an l = l0 and define P′ by either X l0 or Zl0 that is not Pl0 . We then remove

the l0-th logical qubit and redefine the logical Pauli operators as X ′l, Z′l for
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l ∈ {1, · · · , k}\{l0} where

X ′l :=


X l if Pl ∈

{
I⊗n, X l

}
,

X lP
′ otherwise,

Z′l :=


Zl if Pl ∈

{
I⊗n, Zl

}
,

ZlP
′ otherwise.

One can easily check that the above k−1 pairs of operators satisfy the con-

ditions for logical Pauli operators presented in Sec. 2.1.2.

Case (iii): We choose a generating set GS of S that contains only one

element ganti anticommuting with Q. It is always possible since, if there are

multiple stabilizer generators ganti, g1, · · · , gl that anticommute with Q, we

can redefine gi to giganti for each i ∈ {1, · · · , l} to leave only one element

(ganti) anticommuting with Q. After the projection, ganti is removed from the

generating set and λQ is newly added; namely,

S ′ = ⟨GS ∪{λQ}\{ganti}⟩ .

Note that the two outcomes (λ = ±1) have the same probability regardless

of the initial state |Ψ⟩ ∈HS since

⟨Ψ|Q|Ψ⟩= ⟨Ψ|Qg|Ψ⟩=−⟨Ψ|gQ|Ψ⟩=−⟨Ψ|Q|Ψ⟩= 0.

Since the number of stabilizer generators does not change, the number
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of logical qubits does not change either. For each logical Pauli operator, if

it anticommutes with Q, we can make them commute by multiplying ganti.

The redefined k pairs of logical Pauli operators satisfy the conditions for

logical Pauli operators.

Additionally, it is worth noting that the information of the logical qubits

is invariant under the projection; in other words, ⟨Ψ|P|Ψ⟩ = ⟨Ψ′|P|Ψ′⟩,

where |Ψ⟩ ∈HS is the pre-measurement state, |Ψ′⟩ is the post-measurement

state in Eq. (2.4), and P is any logical Pauli operator commuting with Q. It

is because

〈
Ψ
′∣∣P∣∣Ψ′〉= 1

2(1+λ⟨Ψ|Q|Ψ⟩)
⟨Ψ|(I +λQ)2P|Ψ⟩

=
1
2
⟨Ψ|(I +λQ)2P|Ψ⟩

= ⟨Ψ|P+λPQ|Ψ⟩= ⟨Ψ|P|Ψ⟩ .

The last equality holds since P commute with every stabilizer of |Ψ⟩ while

Q anticommutes with at least one stabilizer.

Example 2.4. The followings are examples of the above three cases regard-

ing Steane’s 7-qubit code (see Examples 2.1 and 2.3).

1. Measurement of each stabilizer generator in Eq. (2.2) always gives

the outcome of +1 if there are no errors. Any single-qubit Pauli error

can be detected by the code with a unique pattern of stabilizer mea-

surements. For example, if a Z error occurs on the fifth qubit, only

the two stabilizer generators g2 = X3X4X5X7 and g3 = X1X5X6X7 give

the measurement outcomes of −1, from which the error is uniquely
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identified provided that the error is a single-qubit Pauli one.

2. Suppose that we measure Q= Z4Z5Z6 and get the outcome of λ, which

corresponds to the case (ii). g0 := λQ = λZ4Z5Z6 is then added to the

set of stabilizer generators. Since g4g7 = λZL, the post-measurement

stabilizer space, which is one-dimensional, is composed of the eigen-

state of ZL with eigenvalue λ.

3. Suppose that we measure Q = Z1 and get the outcome of λ, which

corresponds to the case (iii). Q anticommutes with two stabilizer gen-

erators: g1 and g3. To make only one of them anticommute with Q, we

replace g3 with g′3 = g1g3 = X2X3X5X6. After the measurement, the

new stabilizer group is generated by {λZ1, g2, g′3, g4, g5, g6}. Since

XL anticommutes with Q, we redefine it as X ′L := XLg1 = X4X5X6. ZL

commutes with Q, thus it does not need to be redefined. Nevertheless,

it can be simplified as Z′L := λQZL = λZ2Z3 · · ·Z7.

2.2 Measurement-based quantum computing

In this section, we study what is measurement-based quantum com-

puting (MBQC) and how it works. We first define cluster states, which are

basic resource states of MBQC, and investigate their features. After that,

we present the basic concept of MBQC and how elementary logic gates can

be implemented using a two-dimensional cluster state. We then address the

ways to achieve fault-tolerance using topological MBQC. See the following

references for more comprehensive explanations of MBQC:

17



• Non-topological MBQC

– R. Raussendorf and H. J. Briegel, “A one-way quantum com-

puter,” Phys. Rev. Lett. 86, 5188–5191 (2001) [32].

– R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-

based quantum computation on cluster states,” Phys. Rev. A 68,

022312 (2003) [33].

• Topological MBQC

– R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant

one-way quantum computer,” Ann. Phys. 321, 2242–2270 (2006)

[34].

– R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-

tolerance in cluster state quantum computation,” New J. Phys. 9,

199 (2007) [31].

– R. Raussendorf and J. Harrington, “Fault-tolerant quantum com-

putation with high threshold in two dimensions,” Phys. Rev.

Lett. 98, 190504 (2007) [35].

– A. G. Fowler and K. Goyal, “Topological cluster state quantum

computing,” Quantum Info. Comput. 9, 721–738 (2009) [36].

2.2.1 Cluster state

Cluster states, which are also referred to as graph states, indicate a

particular family of stabilizer states whose structures can be represented as

graphs composed of multiple vertices and edges.
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Definition 2.2 (Cluster state). For a set V of qubits and a given graph

G = (V, E) on V with an edge set E ⊂ V ×V , the corresponding cluster

state or graph state |ψG⟩V means a stabilizer state stabilized by

〈gv = Xv

∏
v′∈N(v)

Zv′ : v ∈V


〉

=: SG, (2.5)

where Xv (Zv) is the Pauli-X (Z) operator on the qubit v ∈ V and N(v) :=

{v′ : (v, v′) ∈ E} is the set of vertices adjacent to v in G. Alternatively,

|ψG⟩V can be defined as

|ψG⟩V :=
∏

(v1,v2)∈E

UCZ(v1, v2)
⊗
v∈V

|+⟩v ,

where UCZ(v1, v2) is the controlled-Z (CZ) gate on v1 and v2 and |+⟩v is the

state (|0⟩+ |1⟩)/
√

2 on v. The CZ gate is the two-qubit gate that transforms

the basis states as UCZ |00⟩ = |00⟩, UCZ |01⟩ = |01⟩, UCZ |10⟩ = |10⟩, and

UCZ |11⟩=−|11⟩.

Note that the Heisenberg picture of the CZ gate is

UCZ(X⊗ I)U†
CZ = X⊗Z, UCZ(Z⊗ I)U†

CZ = Z⊗ I,

UCZ(I⊗X)U†
CZ = Z⊗X , UCZ(I⊗Z)U†

CZ = I⊗Z.

In most cases, {gv : v ∈V} is regarded as the standard choice of stabi-

lizer generators for a cluster state. We say that gv is the stabilizer generator

around v and v is called the interior qubit or vertex of gv.

Instead of employing the CZ gates to construct a cluster state, one may
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Figure 1: Examples of cluster states. Orange dots and lines indicate the
vertices and edges of the graphs, respectively. (a) A cluster state on a simple
graph. The presented “XZZZ” operator indicates an example of a stabilizer
generator. (b) A unit cell of Rausssendorf’s three-dimensional cluster states
(RTCSs). A vertex is located on each edge and face of the cell.

take an approach to merge multiple small cluster states into a large one with

so-called fusion operations [42]. A fusion operation consists of projecting

two qubits in a particular entangled basis. By performing a fusion operation

on two qubits in different cluster states, these two states can be merged up to

several local operations. The initial small cluster states are typically three-

or five-qubit states and are regarded as basic resource states for MBQC. We

will cover this method in Chapter 4 in more detail.

Two examples of cluster states are visualized in Fig. 1. The cluster state

in Fig. 1(b), which is a unit cell of Rausssendorf’s three-dimensional cluster

states (RTCSs) [34, 31], is particularly important for topological MBQC.
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Figure 2: Implementation of the Hadamard gate in two-dimensional
MBQC. MX (MY ) means the measurement in the X-basis (Y -basis).

2.2.2 How measurement-based quantum computing works

MBQC is a methodology to implement a quantum circuit by perform-

ing single-qubit measurements on a cluster state [32, 33]. It is determined by

two factors: the structure of the cluster state and the measurement pattern

(namely, the bases of the single-qubit measurements).

To see how MBQC works, we consider a simple setting shown in Fig. 2

with a five-qubit linear graph. For a given single-qubit input state |ψIN⟩, we

prepare the state

|Ψ⟩=UCZ(1,2)UCZ(2,3)UCZ(3,4)UCZ(4,5) |ψIN⟩⊗ |+⟩⊗4 ,

where UCZ(i, j) is the CZ gate between the i-th and j-th qubits. If we measure

the first qubit in the X-basis and the second to fourth qubits in the Y -basis,

the marginal state on the last qubit becomes |ψOUT⟩= PbyH |ψIN⟩, where H

is the Hadamard gate and Pby, which is called the byproduct operator, is

one of I, X , Y , and Z determined by the measurement outcomes. In other

words, this process implements the Hadamard gate up to a Pauli oper-

ator. It can be easily verified by using the basic quantum theory, but here

we want to use the stabilizer formalism described in Sec. 2.1. The initial
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state before applying the CZ gate is an element of the five-qubit stabilizer

subspace stabilized by ⟨X2, X3, X4, X5⟩. The subspace has one logical qubit

with the logical Pauli operators of X = X1 and Z = Z1. After applying the

CZ gates, the stabilizer group is transformed into

⟨g2 = Z1X2Z3, g3 = Z2X3Z4, g4 = Z3X4Z5, g5 = Z4X5⟩ ,

and accordingly the logical Pauli operators are transformed as X = X1Z2 and

Z = Z1. Note that g1 = X1Z2 is not a stabilizer unlike the cluster state of the

same graph. We now measure X1, Y2, Y3, and Y4, which anticommute with

at least one stabilizer. Since X = X1Z2 anticommutes with Y2, it should be

redefined by multiplying g3g4 as X1Y3Y4Z5 that commutes with all the mea-

surements. Similarly, Z = Z1 is redefined as Y2Y3X5 by multiplying g2g3g5.

Following the instruction in Chapter 2.1.3, we get the new stabilizer group

of ⟨λ1X1, λ2Y2, λ3Y3, λ4Y4⟩, where λ1, λ2, λ3, λ4 are the measurement out-

comes in order. The logical Pauli operators are invariant but we can equiv-

alently transform them as λ1λ3λ4Z5 and λ2λ3X5 by multiplying stabilizers.

To summarize, the logical Pauli operators are transformed as

X = X1→ λ1λ3λ4Z5,

Z = Z1→ λ2λ3X5,

which corresponds to the Heisenberg picture of PbyH where

Pby := X (1−λ1λ3λ4)/2Z(1−λ2λ3)/2.
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Other Clifford gates such as the phase and CNOT gates can be imple-

mented in similar manners [33]. For the CNOT gate, two qubits are allo-

cated for input and output respectively and a two-dimensional (2D) graph is

used; because of it, this scheme is commonly called a 2D MBQC scheme.

Moreover, an arbitrary Pauli rotation including the T gate also can be imple-

mented, but measurement in rotated bases selected adaptively by previous

measurement outcomes is required [33]. These logic gates complete the uni-

versal set of gates, thus the 2D MBQC scheme is universal. See Ref. [33]

for more details on the 2D MBQC scheme.

The above MBQC scheme is not fault-tolerant. In other words, any

single-qubit errors may incur logical errors in the final results. To achieve

fault-tolerance, we need to go to three-dimensional (3D) space and em-

ploy quantum error-correcting (QEC) codes. Particularly, topological QEC

codes, which are families of stabilizer QEC codes defined on qubits in a

lattice interacting only locally, make topological MBQC possible. In such

schemes, errors can be corrected from the measurement outcomes of spe-

cific operators, called the parity-check operators, which are stabilizers

that commute with the measurement bases and thus remain as stabilizers

even after the measurement. A representative example is the scheme using

RTCSs [34, 31, 36] in Fig. 1(b), which are constructed based on surface

codes [17, 18, 1]. See Chapter 3 for detailed explanations of how topologi-

cal MBQC works.

To sum up, MBQC to implement a quantum circuit with a given graph

G = (V,E) is generally processed through the following three steps:
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1. Preparation. A qubit is attached to each vertex in V . V is divided

into three subsets: the input qubits VIN, the output qubits VOUT, and

the others. VIN and VOUT can be empty if the desired circuit does not

require an input quantum state or produce an output quantum state,

respectively. The input states for the circuit are prepared in VIN and

all the other qubits are initialized to the |+⟩ state. A CZ gate is then

applied on every pair of qubits connected by an edge.

2. Measurement. Each physical qubit in V \VOUT is measured by a ba-

sis selected according to the measurement pattern. The measurement

pattern is determined by the desired circuit. If possible, errors in the

outcomes are corrected by decoding the parity-check outcomes.

3. Postprocessing. The output logical state is obtained from QOUT up to

logical Pauli operators called byproduct operators determined by the

measurement outcomes. If QOUT = /0, the results of the final logical

measurements are determined by the outcomes.

Note that, although we separate the preparation and measurement steps

above, one does not have to complete the preparation step to begin the mea-

surement step; they can be done simultaneously. Provided that a qubit q and

its neighbors are prepared and CZ gates are applied on them, q can be mea-

sured before the other qubits are prepared. Therefore, we do not need to

prepare a large entangled state at once, which is highly demanding for most

environments.
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Chapter 3

Color-code-based measurement-based
quantum computing

The contents of this chapter are largely based on the following pa-

per: Seok-Hyung Lee and Hyunseok Jeong, “Universal hardware-efficient

topological measurement-based quantum computation via color-code-based

cluster states,” Phys. Rev. Research 4, 013010 (2022) [37].

Measurement-based quantum computing using Rausssendorf’s three-

dimensional cluster states (RTCSs) has been widely studied since the

scheme allows universal and fault-tolerant quantum computing with topologically-

encoded logical qubits [34, 35, 31, 36, 2]. Nevertheless, it has a signifi-

cant drawback: There are no ways to natively implement the topologically-

protected logical Hadamard, phase, and T gates, unlike the CNOT gate. Sev-

eral ways to circumvent this problem have been suggested. The conven-

tional one is to use state distillation; these gates can be realized with error-

free ancilla logical states |YL⟩ := (|0L⟩+ i |1L⟩)/
√

2 and |AL⟩ which are dis-

tilled from noisy ones [31]. However, this method requires at least seven

ancillary logical qubits to implement, thus it can be highly costly. Alterna-

tively, there have been proposals to map lattice surgery [43] onto MBQC

models [2, 44]. With their methods, the Hadamard and phase gates can be

fault-tolerantly implemented without distillation by “dislocating” the RTCS
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structure (namely, transforming the lattice locally) when the gates are ap-

plied. In other words, the lattice loses its translational symmetry when the

gates are applied. However, such dislocations may be undesirable from a

practical point of view since the hardware should be capable of applying

extra CZ gates which are not in the original lattice. In other words, the hard-

ware should be designed in a way that can create multiple types of lattice

structures.

To solve the above problem, we propose a new MBQC scheme via

a family of cluster states based on the 2D color codes instead of the sur-

face codes, called color-code-based cluster states (CCCSs). We show that

MBQC via CCCSs natively implements the logical Hadamard and phase

gates fault-tolerantly without the need for state distillation and lattice dislo-

cations, while keeping most of the advantages of MBQC via RTCSs. In this

sense, our scheme is hardware-efficient.

This chapter is structured as follows: In Sec. 3.1, we construct CCCSs

and describe their properties. In Sec. 3.2, we show that universal MBQC is

possible via CCCSs by defining logical qubits and suggesting the schemes

for their initializations and measurements, elementary logic gates, and state

injection. In Sec. 3.3, we present the methods to correct physical-level er-

rors. In Sec. 3.4, we calculate the error thresholds of MBQC via CCCSs

and compare them with the results for RTCSs. In Sec. 3.5, we analyze and

compare the resource overheads of placing logical qubits and implement-

ing each logic gate in the two schemes. We conclude with final remarks in

Sec. 3.6.
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Figure 3: Two typical examples of color-code lattices: (a) 4-8-8 and (b)
6-6-6 lattices. The lattices are 3-valent and have 3-colorable faces.

3.1 Color-code-based cluster states

In this section, we define color-code-based cluster states and describe

their properties. Based on the work on the foliation of CSS codes [45], we

consider a particular family of cluster states derived from 2D color-code

lattices, called color-code-based cluster states (CCCSs).

3.1.1 Two-dimensional color-code lattices

To define two-dimensional color-code lattices on which CCCSs are

based, we consider a lattice L2D on a 2D plane which is 3-valent and has

3-colorable faces; namely, three edges meet at each vertex and one of the

three colors (red, green, or blue) is assigned to each face in such a way that

neighboring faces have different colors. Note that each edge, called link, is

also colorable with the color of the faces it connects. Two typical examples

(4-8-8 and 6-6-6) of such lattices are shown in Fig. 3. In the original 2D

color codes, a qubit is attached to each vertex and two stabilizer generators
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(a) (b)

Figure 4: (a) Red and (b) blue shrunk lattices of the 4-8-8 color-code lattice.
Red or blue dots (lines) indicate their vertices (edges), which correspond to
red or blue faces (links) of the original lattices.

(X- and Z-type) correspond to each face; see Refs. [23, 15] for details.

Regarding a color-code lattice L2D, we define three shrunk lattices,

one for each color by shrinking all the faces of that color, as shown in Fig. 4.

For example, in the red shrunk lattice, each vertex corresponds to a red face

in L2D and each face corresponds to a blue or green face in L2D. Edges of the

red shrunk lattice then correspond to red links in L2D. The blue and green

shrunk lattices are also defined analogously.

3.1.2 Construction of color-code-based cluster states

The graph G for a CCCS based on a color-code lattice L2D has a 3D

structure composed of multiple identical 2D layers stacked along the simu-

lating time (t) axis. The layer of t = t0 is referred to as the t0-layer.

The structure of each layer is originated from L2D, as illustrated in

Fig. 5 for the case of the 4-8-8 lattice. Each vertex in the layer is located

at either a vertex of L2D or the center of a face of L2D; the corresponding
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CZ gate

Ancilla qubit (AQ)

Code qubit (CQ)

Link

Figure 5: Structure of a single layer of a color-code-based cluster state
(CCCS) based on the 4-8-8 color-code lattice L2D. Each black circle is a
code qubit (CQ) located at a vertex of L2D. Each colored square is an an-
cilla qubit (AQ) with that color, located at the center of a face of L2D with
that color. Each AQ is connected with surrounding CQs by edges (CZ gates),
some of which are drawn as black solid lines. Two adjacent CQs are con-
nected by a link, some of which are drawn as colored lines.

qubit is called a code qubit (CQ) or an ancilla qubit (AQ), respectively.

Each AQ is colorable with the color of the corresponding face in L2D. For

each face in L2D, the layer has an edge connecting the corresponding AQ

and each surrounding CQ, on which a CZ gate is applied. Each pair of CQs

connected by a link in L2D is called link here as well. Note that links are not

edges of G.

Next, we stack multiple identical layers along the time axis as shown

in Fig. 6. Every pair of CQs adjacent along the time axis is connected by

an edge in G. The vertices (CQs and AQs) and edges (between CQs and

AQs in the same layer and between CQs in the adjacent layers) constructed
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Figure 6: Stack of multiple identical layers along the simulating time axis
for a CCCS. Each pair of two CQs adjacent along the time axis is connected
by an edge, some of which are presented as black solid lines. One of the
primalities (“primal” and “dual”) is alternatively assigned to each layer. An
AQ (a CQ or link) is primal (dual) if it is in a primal layer, and vice versa
for a dual layer. Labels of some elements defined in Sec. 3.1.2 are shown.

above finally complete the graph G of the cluster state.

We assign each layer, qubit, or link a “primality”: either primal or

dual. Each layer is primal (dual) if it has an even (odd) time. An AQ is

primal (dual) if it is in a primal (dual) layer, while a CQ or link is primal

(dual) if it is in a dual (primal) layer. We label each qubit or link in an

abbreviated form with its primality (“p” for primal and “d” for dual), color

(“r” for red, “g” for green, and “b” for blue; omitted for CQs), and type

(“AQ,” “CQ,” and “L” for a link). For example, a pgAQ means a primal

green ancilla qubit. We also frequently use “c” instead of a specific color (r,

g, or b) for a variable on colors.
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Figure 7: Four types of stabilizer generators in a CCCS defined in Defi-
nitions 3.1–3.3: (a) A-, (b) C-, (c) L-, and (d) J-type stabilizer generators.
Each grey square indicates a layer. A stabilizer generator of each type is the
tensor product of the marked X or Z operators on the qubits.

3.1.3 Stabilizer generators

We now present stabilizer generators of a CCCS. Remark that, for each

vertex v in G, gv given in Eq. (2.5) is a stabilizer generator if v (which is

called the interior qubit of gv) is initialized to |+⟩.

We define A- and C-type stabilizer generators shown in Fig. 7(a) and

(b) as follows.

Definition 3.1 (A- and C-type stabilizer generators). For a CCCS, the op-

erator gv := Xv
∏

v′∈N(v) Zv for an AQ (CQ) v is an A-type (C-type) stabilizer

generator if v is initialized to |+⟩.
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The support of a C-type stabilizer generator is distributed in three ad-

jacent layers, while that of an A-type stabilizer generator is contained in a

layer.

Although these two types of stabilizer generators completely generate

the stabilizer group, we define another two types of stabilizer generators: L-

and J-type stabilizer generators in Fig. 7(c) and (d).

Definition 3.2 (L-type stabilizer generator). For a CCCS, the product of

two C-type stabilizer generators whose interior qubits constitute a link l is

the L-type stabilizer generator around a link l.

Definition 3.3 (J-type stabilizer generator). For a CCCS, let v0, v1, v2,

and v3 be four CQs initialized to |+⟩ such that (v0,v1), (v0,v2), and (v0,v3)

are links with different colors. SJ := Sv1Sv2Sv3 is then the J-type stabilizer

generator around the CQ v0.

A-, L-, and J-type stabilizer generators together generate the stabilizer

group over-completely, if we do not care about qubits near boundaries. To

see this, regarding a J-type stabilizer generator SJ , we consider an L-type

stabilizer generator SLi := Sv0Svi for the four CQs v0, v1, v2, and v3 used

when defining SJ . Then Sv0 = SL1SL2SL3SJ , thus any C-type stabilizer gener-

ator that is not very close to boundaries can be written as the product of L-

and J-type stabilizer generators. Note also that, for every stabilizer generator

regardless of its type, qubits in its X- and Z-support always have different

primalities.
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Figure 8: Unit cells of the primal shrunk lattices of a 4-8-8 CCCS: (a) a blue
cell in the primal red shrunk lattice Lpr (a green cell is identical except the
colors of AQs) and (b) red and green cells in the primal blue shrunk lattice
Lpb. pts and dts indicate primal and dual layers, respectively. Some qubits
on the last layer are not displayed. All the pcAQs are vertices of Lpc. Each
spacelike (or timelike) edge, visualized as red or blue solid lines, connects
two adjacent vertices in a layer (or different layers) and corresponds to a
pcL (or dcAQ). Faces and cells are defined naturally with the edges.

3.1.4 Shrunk lattices and correlation surfaces

Almost every discussion from now on is symmetric between the two

primalities. Thus, throughout the rest of this chapter, we frequently discuss

only one of them, which implies that the other side can be treated in the

same manner.

We now construct the shrunk lattices of a CCCS, which are analogous

to those of a 2D color code in Fig. 4. We then define correlation surfaces

[34, 35, 31] within each shrunk lattice, through which logic gates are built

for MBQC.

The primal c-colored shrunk lattice Lpc is a 3D lattice containing every

pcAQ as a vertex. Note that the vertices are only in primal layers. There are

two types of edges connecting them: “spacelike” and “timelike” edges. Each
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spacelike edge corresponds to a pcL and connects two vertices in a layer.

Each timelike edge connects two vertices adjacent along the time axis and

contains a dcAQ between them. Faces and cells are then naturally defined

by the vertices and edges. Cells in each primal shrunk lattice are visualized

in Fig. 8 for 4-8-8 CCCSs. Note that each primal layer in Lpc is identical

with the c-colored shrunk lattice of the 2D color code on which the CCCS

is based.

Each element (vertex, edge, face, or cell) in a shrunk lattice corre-

sponds to an AQ or a link, as presented in Table 1. Here Q(b) for an element

b denotes the set of qubits corresponding to b. An element is colorable with

the color of the AQ or link corresponding to it. In particular, cells and space-

like faces have colors different from the color of the shrunk lattice, e.g., Lpr

is composed of green and blue cells.

We now regard the shrunk lattices as chain complexes [34, 35, 31].

Let Bpc
i for i = 0, 1, 2, or 3 be the set of vertices, edges, faces, or cells in

Lpc, respectively. We then consider a vector space Hpc
i generated by Bpc

i

over Z2. Each primal shrunk lattice may be regarded as a chain complex:

Table 1: Qubits Q(b) corresponding to each element (vertex, edge, face, or
cell) b in Lpc. The results for Ldc can be obtained by changing each p or d.

Element b in Lpc Qubits Q(b)

Vertex (∈ Bc
0 ) pcAQ

Edge (∈ Bc
1 )

Timelike dcAQ
Spacelike dcL (two dCQs)

Face (∈ Bc
2 )

Timelike pcL (two pCQs)
Spacelike pc′AQ (c′ ̸= c)

Cell (∈ Bc
3 ) dc′AQ (c′ ̸= c)
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Lpc =
{

Hpc
3 ,Hpc

2 ,Hpc
1 ,Hpc

0

}
. Each element hi ∈Hpc

i is called an i-chain and

corresponds to a set B(hi)⊆ Bc
i where each b ∈ B(hi) has nonzero contribu-

tion in hi. For example, if f1, f2, and f3 are faces in Lpc
2 , h2 := f1+ f2+ f3 is

a 2-chain in Hpc
2 and B(h2) = { f1, f2, f3} holds. The correspondence is one-

to-one, thus we use hi and B(hi) without distinction throughout the chapter

for convenience. The chain complex Lpc has a boundary map ∂ which maps

hi ∈ Hpc
i to ∂hi ∈ Hpc

i−1 corresponding to the geometrical boundary of hi.

Note that ∂ is a linear map and satisfies ∂◦∂ = 0.

For an i-chain hi and P ∈ {X ,Y,Z}, we define a multi-qubit Pauli oper-

ator P(hi) by

P(hi) :=
∏

q∈Q(hi)

P(q),

where Q(hi) :=
⋃

bi∈hi
Q(bi) and P(q) is the P operator on the qubit q ten-

sored with identity on all other qubits. We now define correlation sur-

faces (CSs), which are essential elements for constructing logical opera-

tions through MBQC.

Definition 3.4 (Correlation surface). For each 2-chain h2 ∈ Hp(d)c
2 , the

operator

SCS(h2) := X(h2)Z(∂h2). (3.1)

is a primal (dual) c-colored correlation surface, referred to as a “p(d)c-CS.”

It is straightforward to see that, for a spacelike or timelike face f ,

SCS( f ) is an A- or L-type stabilizer generator around the AQ or link corre-
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sponding to f , respectively. The following theorem relates general 2-chains

to stabilizers of the CCCS.

Theorem 3.1 (CSs as stabilizers). For a 2-chain h2, SCS(h2) is a stabilizer

before measuring any qubit in its support if and only if Q(h2)∩QIN = /0,

where QIN is the set of input qubits defined in Sec. 2.2.2 which are not ini-

tialized to |+⟩.

Proof. (If) Since qubits outside QIN are initialized to the |+⟩ states, there

exists the A- or C-type stabilizer generator around each of them. Let F :={
f ∈ Bpc

2 | Q( f )∩QIN = /0
}

. For a face f ∈ F , SCS( f ) is a stabilizer be-

fore measuring any qubit in its support; it is an A- or L-type stabilizer

generator. For a 2-chain h2 ∈ Hpc
2 where Q(h2)∩QIN = /0, h2 can be writ-

ten as a linear summation of elements in F : ∃{ fi} ⊆ F , h2 =
∑

i fi. Since

the map ∂ is linear and P(h)P(h′) = P(h+h′) for any Pauli operator P,

SCS(h2)=X(h2)Z(∂h2)=
∏

i X( fi)Z(∂ fi)=
∏

i SCS( fi) is a stabilizer before

measuring any qubit in its support. The proof is analogous to dual 2-chains.

(Only if) Since qubits in QIN are not initialized to the |+⟩ states, the A-

and C-type stabilizer generators around each of them do not exist. Therefore,

the X-support of any stabilizer cannot contain qubits in QIN.

Regarding a primal CS S := SCS(h2), Q(h2) is called the interior of

S (which is the natural extension of the interior of a stabilizer generator).

The interior qubits of a primal CS are primal and in suppX(S). Similarly,

Q(∂h2) is called the boundary of S, in which every qubit is dual and in

suppZ(S). We say that S is timelike (spacelike) if h2 is composed of timelike

(spacelike) faces only.
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Figure 9: (a) Timelike joint of primal correlation surfaces (CSs) originated
from a J-type stabilizer generator. The X or Z operators on the qubits in-
dicate the support of the resulting CS. A series of CQs along which the
three faces meet is marked as a purple dashed line. (b) Example of a gen-
eral joint, obtained by multiplying a series of timelike and spacelike joints
together with ordinary CSs.

CSs discussed above include all A- and L-type stabilizer generators,

but not J-type stabilizer generators in Fig. 7(d). Each J-type stabilizer gen-

erator can be regarded as three primal timelike CSs with different colors

“joined” along a timelike series of CQs as Fig. 9(a), in the sense that each

“wing” of a color c may be extended by multiplying ordinary pc-CSs. Note

that the CQs along the joint are not included in the support.

A question arising naturally may be about “spacelike” joints, and those

are also possible as presented in Fig. 10. A timelike pc-CS and two space-

like primal CSs with the other two colors may be joined along a spacelike

series of pcLs. Such a joint can be obtained by multiplying several A-type

stabilizer generators along a spacelike boundary of the timelike CS. Note

that the ends of spacelike and timelike joints may fit perfectly with each
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Figure 10: Example of the construction of a spacelike joint of three pri-
mal CSs. A primal layer of a 4-8-8 CCCS is presented. We first assume a
timelike pg-CS S ending at the green dashed line. We then expand S by
multiplying the A-type stabilizer generators around the pAQs marked with
purple triangles. After the expansion, suppX(S) contains the marked pAQs,
and suppZ(S) contains the CQs along the red and blue solid lines. The red
(blue) area above (below) the green line can be regarded as a pr(b)-CS, in
the sense that it may be expanded by multiplying ordinary pr(b)-CSs. A
joint of the three CSs is thus constructed, and S is the corresponding joined
CS. The qubits in suppZ(S) inside the area A or B exactly match with the
final layer of a timelike joint, thus spacelike and timelike joints may be con-
nected.

other, in the sense that all the Z operators on the joint cancel out when mul-

tiplying them.

A general joint of CSs with different colors can be obtained as Fig. 9(b)

by multiplying several spacelike and timelike joints together with ordinary

CSs. We refer to such a primal CS with a joint as a “pj-CS.” For consistency

with ordinary CSs, we define the interior (boundary) of a pj-CS by its

X(Z)-support, which is intuitive considering its visualization in Figs. 9 and

10.
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3.2 Measurement-based quantum computing via
color-code-based cluster states

In this section, we describe the scheme for MBQC via CCCSs. We first

introduce defects and define logical qubits using them. We then describe

initializations and measurements of logical qubits and construct elementary

logic gates including the identity, CNOT, Hadamard, and phase gates, which

together generate the Clifford group. We lastly present the state injection

scheme to prepare arbitrary logical states and implement the logical T gate.

Each logical initialization, measurement, gate, or state injection pro-

cess can be regarded as an independent circuit “block” implemented by the

three-step process presented in Sec. 2.2.2: In each block, the input logical

state is first prepared in the input qubits QIN, then the output logical state is

produced in the output qubits QOUT after the single-qubit measurements of

all qubits except QOUT. Note that QIN (QOUT) is empty for the logical initial-

izations (measurements). An arbitrary quantum circuit can be constructed by

connecting multiple blocks in a way that the output qubits of each block are

used as the input qubits of the next block.

We assume that the single-qubit measurements are performed layer by

layer along the simulating time (t) axis. In that case, the output qubits of

a (gate, initialization, or state injection) block are the last several layers in

it, called the output layers. On the other hand, it is sufficient that the input

qubits of a (gate or measurement) block contain only the first layer in it,

called the input layer. Exceptionally, the input qubits of a state injection

block contain only one qubit into which an unencoded state is injected.
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Two subsequent blocks can be connected in a way that the input layer

of the second block overlaps with the first output layer of the first block. To

see this, let us assume that the output layers of the first block are the layers

of t0 ≤ t ≤ t1. We first consider applying all the CZ gates between qubits of

t0≤ t ≤ t1 again after measuring the qubits of t > t0. Since the measurements

commute with these CZ gates, the qubits of t0 < t ≤ t1 simply return to the

initial |+⟩ states. The t0-layer is then the only layer containing nontrivial

information and is used as the input layer of the second block. The CZ gates

in the first t1− t0 + 1 layers of the second block restore the output state of

the first block to be used as the input state of the second block. Of course,

the above argument is just a trick to connect two blocks conceptually; it is

unnecessary to apply CZ gates multiple times in a real implementation.

3.2.1 Measurement pattern

Remark that each qubit except the output qubits is measured in the

basis determined by a predefined measurement pattern. In our scheme, a

qubit is included in an area with one of the four types: vacuum, defect, Y-

plane, and injection qubit. There may be multiple defects, Y-planes, and

injection qubits, and the entire remaining area is the vacuum. We denote the

set of all vacuum (defect) qubits as V (D).

Defects are key ingredients for the protocol; all the logical operations

completely depend on how to place them. Y-planes are used in fault-tolerant

Y -measurements on physical qubits for the logical Hadamard and phase

gates. Lastly, each injection qubit is a special area for state injection and

consists of a single qubit. Note that injection qubits are always input qubits.
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Qubits in each area are measured as follows:

A qubit q is measured

in the basis of



X if q is in the vacuum

or is an injection qubit,

Z if q is in a defect,

Y if q is in a Y-plane.

(3.2)

Arranging these elements besides the vacuum properly is the key to imple-

menting logical qubits and gates, which is what we cover in this section.

3.2.2 Defects and related correlation surfaces

We first define a defect as follows.

Definition 3.5 (Defect). Consider a 2-chain h2 ∈ Hd(p)c
2 in the shape of a

“pipe,” as shown in Fig. 11(a). A primal (dual) c-colored defect, referred to

as a “p(d)c-D,” corresponding to h2 is defined as

D(h2) :=
⋃
f∈h2

Q(∂ f ), (3.3)

which consists of p(d)cAQs and p(d)CQs.

We say that a defect is timelike or spacelike if the “pipe” is extended

along the time axis or a spatial axis, respectively. It is also possible that the

direction of a defect is changed in the middle. Figure 11(c) and (d) illustrate

the explicit structures of timelike and spacelike defects, respectively, in a 4-

8-8 CCCS. Here, each purple triangle with a solid (dashed) border indicates
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Figure 11: (a) Schematic diagram of a defect (pb-D) and a db-CS S end-
ing at the defect. The defect is defined as Eq. (3.3) with a 2-chain hdb2 ∈Hdb

2
in the shape of a pipe. (b) Schematic diagram of a pg-CS surrounding a
pb-D. (c) A primal layer in a 4-8-8 CCCS penetrated by a timelike pb-D
D
(
hdb2
)

for a 2-chain hdb2 . The cross-section of hdb2 is presented as a blue
solid line. Each purple triangle with a solid (dashed) border indicates a de-
fect pbAQ (pCQ) in the layer (adjacent layer) measured in the Z-basis. The
cross-sections of a timelike db-CS ending at the defect and a timelike pg-
CS surrounding it are presented as a blue double line and a green dashed
line, respectively. The double (or dashed) lines indicate faces bisected by
the layer (or ending at the layer). That is, the corresponding qubits are on
the layer (or an adjacent layer). (d) A dual layer in a 4-8-8 CCCS containing
one side of a spacelike pb-D. Part of the 2-chain hdb2 corresponding to the
defect is presented as a gray surface. A db-CS ending at the defect is visu-
alized as a blue surface, where the blue line corresponds to its boundary.

42



a defect qubit located at the layer (adjacent layer).

We now get the following theorem regarding compatible CSs surviv-

ing after the measurement step.

Theorem 3.2 (Compatible CSs). For a set of qubits Q̃, a CS S is com-

patible with Q̃ (namely, S is a stabilizer both before measuring any qubit

and after measuring all the qubits in Q̃\QOUT) if and only if the followings

hold:

Qint(S)∩ Q̃\QOUT ⊆V \QIN, (3.4a)

Qbnd(S)∩ Q̃\QOUT ⊆ D, (3.4b)

where Qint(bnd)(S) is the interior (boundary) of S and QIN(OUT) is the set of

input (output) qubits.

Proof. (If) Suppose that Eq. (3.4) holds. Let q be an arbitrary qubit in

Q̃ \QOUT. If q ∈ Qint(S), q is in the vacuum, thus [M(q),S] = [Xq,S] = 0,

where M(q) is the single-qubit Pauli operator on q corresponding to the mea-

surement pattern. If q∈Qbnd(S), q is in a defect, thus [M(q),S] = [Zq,S] = 0.

If otherwise, q /∈ supp(S), thus M(q) and S commute. Therefore, S is com-

patible with Q̃.

(Only if part) Suppose that a CS S is compatible with Q̃. Then S

should commute with M(q) for each qubit q ∈ Q̃ \QOUT. Let q be an ar-

bitrary qubit in Qint(S)∩ Q̃ \QOUT ⊆ Q̃ \QOUT. q cannot be an injection

qubit, since Qint(S)∩QIN = /0 according to Theorem 3.1 and injection qubits

are always input qubits. Thus, if q /∈ V , M(q) is either Y (q) or Zq, thus
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M(q) and S anticommute, which contradicts to the assumption. Therefore,

q is in V . Since Qint(S)∩QIN = /0, Qint(S)∩ Q̃ \QOUT ⊆ V \QIN holds.

Qbnd(S)∩ Q̃\QOUT ⊆ D can be shown analogously.

If a CS is compatible with all the qubits except the output qubits, we

say that it is a compatible CS. We particularly want to emphasize that a

compatible CS cannot end in the vacuum qubits. Note that QIN is excluded

in the right-hand side (RHS) of Eq. (3.4a) due to Theorem 3.1.

Table 2 shows allowed positional relations between a pc-D d and a

compatible CS with each primality and color, derived from Theorem 3.2

and Table 1. Remark that d is composed of pcAQs and pCQs correspond-

ing to edges in Ldc. Let us first check whether a compatible pc′−CS S can

be penetrated by d. The interior of S corresponds to faces in Lpc′ , thus it

consists of pCQs if S is timelike and pc′′AQs (c′′ ̸= c) if S is spacelike, as

shown in Table 1. According to Eq. (3.4a), the interior should not contain

defect qubits for S to be compatible. Therefore, S can be penetrated by d

only if c = c′ and S is spacelike (i.e., d is timelike). Additionally, S cannot

Table 2: Allowed positional relations between a primal defect d and a
compatible CS. The relations for dual defects are analogous.

With a pc-D d, a xy-CS ...
HHH

HHHx
y

c c′(̸= c)

p
can be penetrated by d
only if d is timelike.

cannot be penetrated by d.

cannot end at d.

d
can be penetrated by d.

can end at d. cannot end at d in general.
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end at d, since its boundary qubits are dual. Next, let us check whether a

compatible dc′-CS S can end at d. The boundary of S corresponds to edges

in Ldc′ . According to Eq. (3.4b), the boundary should contain defect qubits

for S to be compatible. Since the defect qubits correspond to edges in Ldc,

S can end at d if c = c′; otherwise, it is impossible in general. (There may

be specific cases that it is possible even if c ̸= c′, but they are not utilized in

our schemes.) Additionally, S can be penetrated by d since its interior qubits

are dual.

We mainly concern two types of CSs with respect to a pc-D: pc-CSs

surrounding the defect and dc-CSs ending at it, as shown schematically in

Fig. 11(a) and (b) and explicitly in Fig. 11(c) and (d). Each of such CSs is

compatible with all the qubits except the boundary qubits in the two ends

about the direction of the defect.

3.2.3 Defining a logical qubit

We first define connected 1-chains as follows.

Definition 3.6 (Connected 1-chain). A 1-chain h1 is connected if and only

if it satisfies |∂h1| ≤ 2. It is closed if |∂h1|= 0 and open if otherwise.

To define a logical qubit, we consider three parallel timelike defects

with different colors passing through the t0- and (t0 +1)-layer for a given

integer t0, as visualized schematically in Fig. 12(a). The constructed logical

qubit is primal (dual) if the defects are primal (dual) and t0 is odd (even).

We define a logical qubit by specifying the logical-X (XL) and logical-

Z (ZL) operators. To define XL, for a given pair of different colors (c,c′), we
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Figure 12: Definition of a primal logical qubit and its initialization and
measurement. (a) Schematic diagram of a primal logical qubit composed
of three parallel primal timelike defects with different colors. Blue dashed
lines indicate 1-chains hXdbr

1 and hXpbr
1 , which constitute suppX (XL) and

suppZ (XL), respectively. Red, green, and blue dotted lines indicate 1-chains
hZr

1 , hZg
1 , and hZb

1 , respectively, which constitute suppZ (ZL) except the pCQ
qI at which they end. suppX (XL) and suppZ (ZL) meet at a pCQ qanti, thus
they anticommute with each other. (b) Structure of ZL near qI in a 4-8-8
CCCS. Colored lines are hZr

1 , hZg
1 , and hZb

1 , respectively. Purple triangles in-
dicate supp(ZL).

consider two closed connected spacelike 1-chains hXdcc′

1 ∈Hdc
1 and hXpcc′

1 ∈

Hpc
1 : hXdcc′

1 is located in the t0-layer and surrounding the pc′−D. hXpcc′

1 is

defined as parallelly moving hXdcc′
1 one unit positively along the time axis.

An example of XL is shown in Fig. 12(a) for the case of (c,c′) = (b, r). Note

that the two 1-chains consist of pcLs and dcLs, respectively. We then define

XL := Fcc′
X (t0) := X

(
hXdcc′

1

)
Z
(

hXpcc′

1

)
. (3.5)

46



Note that suppZ (XL) = Q
(

hXpcc′

1

)
may be in the boundary of a pc−CS

since the boundary is a 1-chain in Hpc
1 as well. The colors c and c′ can be any

pair of different colors, and they are proven to be equivalent in Sec. 3.2.5.

For the ZL operator, we consider an open connected spacelike 1-chain

hZc
1 ∈ Hdc

1 for each color c, which is located in the t0-layer and connects the

pc-D and a common pCQ qI , as shown in Fig. 12(a) schematically. Note

that hZc
1 is composed of pcLs. We define

ZL := FZ(t0) := Z
(
hZr

1
)
Z
(

hZg
1

)
Z
(

hZb
1

)
Z(qI). (3.6)

Note that qI is out of supp(ZL). The support of ZL near qI is explicitly shown

in Fig. 12(b), where purple triangles indicate the support qubits. It is worth

noticing that supp(ZL) may be in the boundary of a dj-CS, which is veri-

fiable by comparing supp(ZL) and the structure of a timelike joint of CSs

shown in Fig. 9(b).

XL and ZL defined above anticommute with each other, considering that

suppZ (ZL) and suppX (XL) meet at a pCQ qanti in Fig. 12(a). A dual logi-

cal qubit is defined analogously, but now the logical operators are defined

oppositely; supp(ZL) surrounds a defect and supp(XL) ends at each defect.

3.2.4 Initialization and measurement of a logical qubit

We first describe initializing a primal logical qubit to an eigenstate of

XL or ZL. A dual logical qubit can be initialized analogously. As mentioned

at the beginning of this section, in each initialization block, there is no input
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Figure 13: (a) XL- and (b) ZL-initialization. A logical qubit prepared in
the output layers QOUT (t0- and (t0 +1)-layer). For the XL-initialization, the
defects are made to start from the t0-layer. For the ZL-initialization, they are
extended to meet at a point before the layer-t0. XL (ZL) is then a part of a
pb-CS SX (dj-CS SZ) which is a stabilizer. After the measurement step, the
logical qubit in QOUT is initialized to |±L⟩ (|0L⟩ or |1L⟩), depending on the
measurement result of XLSX (ZLSZ). (c) XL- and (d) ZL-measurement of a
logical qubit inserted into the input layer (t0-layer). Each of them is done by
reversing the corresponding initialization process. There then exists a pb-
CS SX (dj-CS SZ) which is a stabilizer, such that the measurement result of
SX XL (SZZL) determine the XL(ZL)-measurement result.

layer, and the initialized state is prepared in the output layers QOUT (t0- and

(t0 +1)-layer) after the measurement step.

The XL-initialization of a primal logical qubit is done by making the

defects start from the t0-layer. XL given in Eq. (3.5) is then a part of a “cup-

shaped” pc-CS SX as shown in Fig. 13(a). Since XLSX has the support out

of the output qubits and commutes with each single-qubit measurement in

the measurement step, the post-measurement state is an eigenstate of XLSX .
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SX is a stabilizer both before and after the measurement step due to Theo-

rem 3.2. Therefore, the post-measurement state is also an eigenstate of XL,

and the eigenvalue is determined by the measurement result of XLSX .

The ZL-initialization of a primal logical qubit is done by extending the

defects to meet at a qubit before the t0-layer, as shown in Fig. 13(b). ZL

given in Eq. (3.6) is then a part of a dj-CS SZ which is a stabilizer. From an

analogous argument, the post-measurement state is an eigenstate of ZL and

the eigenvalue is determined by the measurement result of ZLSZ .

The XL- or ZL-measurement is done by reversing the time order from

the corresponding initialization process, as shown in Fig. 13(c) and (d). This

time, QIN is the t0-layer and QOUT is empty. Regarding the XL-measurement,

there exists a pb-CS SX which is a stabilizer before the measurement step

such that X ′L := XLSX commutes with each single-qubit measurement in the

measurement step. We redefine XL as X ′L and the measurement result of X ′L

can be directly obtained from the results of the measurement step. The ZL-

measurement process can be verified analogously.

3.2.5 Elementary logic gates

Identity gate

The identity gate of a primal logical qubit is constructed just by ex-

tending the defects along the time axis between QIN (t0-layer) and QOUT

(t1- and (t1 +1)-layer) as shown in Fig. 14. Let XL and X ′L be the logical-X

operators of the input and output logical qubits, respectively: XL := Fbr
X (t0)

and X ′L := Fbr
X (t1), where Fbr

X (·) is given in Eq. (3.5). We consider a pb-CS
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Figure 14: Logical identity gate of a primal logical qubit between the input
layer QIN (t0-layer) and the output layers QOUT (t1- and (t1 +1)-layer). The
gate is constructed by extending the defects from QIN to QOUT. The logical-
X operator in QIN (QOUT) is XL (X ′L), and ZL and Z′L are defined similarly. (a)
XL is transformed into X ′L via a pb-CS SX surrounding the red defect, and (b)
ZL is transformed into Z′L via a dj-CS SZ ending at the three defects. Double
lines indicate error chains causing logical errors covered in Sec. 3.3.1.

SX which surrounds the red defect and ends at suppZ (XL) and suppZ (X
′
L),

as shown in Fig. 14(a). Since SX is a stabilizer before the measurement step

according to Theorem 3.1, XL is equivalent to

X̃L := SX XL =

⊗
q∈VX

Xq

X ′L, (3.7)

where VX := supp(SX XLX ′L) ⊂ V \QOUT. Since X̃L commutes with every

measurement basis, it is invariant under the measurement of qubits. [See
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case (iii) in Sec. 2.1.3.] However, we can redefine it by multiplying the sta-

bilizer xqXq for each q ∈ VX , where xq is the measurement outcome of q,

as ∏
q∈VX

xq

X ′L := xX X ′L.

We do a similar thing on the ZL operators. Denoting those of the input

and output logical qubits as ZL and Z′L, respectively, we consider a dj-CS

SZ ending at supp(ZL), supp(Z′L), and the defects, as Fig. 14(b). ZL is then

equivalent to

Z̃L := SZZL =

⊗
q∈VZ

Xq

⊗
q∈DZ

Zq

Z′L,

where VZ := suppX (SZZLZ′L)⊂V \QOUT and DZ := suppZ (SZZLZ′L)⊆ D\

QOUT. After the measurement step, Z̃L transforms into xZzZZ′L where xZ :=∏
q∈VZ

xq and zZ :=
∏

q∈DZ
zq.

The transformations of the logical operators are summarized as

XL→ xX X ′L, ZL→ xZzZZ′L. (3.8)

(Throughout this chapter, we use prime symbols to distinguish the output

logical operators from the input ones.) Therefore, the input logical state |ψL⟩

encoded in |ψ⟩ with the logical Pauli operators {XL,ZL} is transformed into

∣∣ψ′L〉= X (1−xZzZ)/2Z(1−xX )/2 |ψL⟩
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encoded in |ψ′⟩ with the logical Pauli operators {X ′L,Z′L}. This transforma-

tion corresponds to the identity gate up to some byproduct operators deter-

mined by the measurement results.

The above arguments show the basic ideas for implementing logic

gates. Regarding n logical qubits, let PLi for each P ∈ {X ,Z} and an integer

i ≤ n denote the logical-P operator of the ith logical qubit. To construct a

general logic gate U for n logical qubits, one should find a configuration of

defects (and Y-planes for some gates) where a CS SPi exists for each PLi

satisfying the following conditions:

Condition 1: SPi should connect PLi of the input logical qubits and UPLiU† of the

output logical qubits. XL (ZL) of a logical qubit can be connected with

primal (dual) CSs.

Condition 2: SPi should be compatible with all qubits except supp(PLi); it satisfies

the relationships shown in Table 2 in that region.

If such CSs exist, the configuration implements the desired logic gate

with some byproduct operators obtained from the measurement results.

CNOT and primality-switching gates

We first consider a CNOT gate between a primal logical qubit (target)

and a dual one (control). Figure 15 illustrates the defect configuration, where

the pg-D of the primal logical qubit and the dr-D of the dual one are twisted

one round with each other, which is commonly called defect braiding [1].
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Figure 15: Construction of a CNOT gate between a primal logical qubit
(target) and a dual one (control). Each colored single (double) line indicates
the primal (dual) defect of the corresponding color. Zp

L ⊗ IdL is transformed
into Zp

L
′⊗Zd

L
′ via the presented dj-CS.

The logical Pauli operators are transformed as


Xp

L IdL → Xp
L
′IdL
′
, IpL Xd

L → Xp
L
′Xd

L
′
,

Zp
LIdL → Zp

L
′Zd

L
′
, IpL Zd

L → IpL
′Zd

L
′
,

(3.9)

where the tensor product symbols and the sign terms such as xX , xZ , and zZ

in Eq. (3.8) are omitted, and each superscript p or d indicates the primality

of the logical qubit. The above transformation is exactly the Heisenberg

picture of a CNOT gate where the primal logical qubit is the target.

We need to find CSs satisfying two Conditions presented in Sec. 3.2.5

to verify the transformations in Eq. (3.9). A dual CS for the transformation

of Zp
L⊗ IdL is presented schematically in Fig. 15. Note that the “tunnel” of the

CS along the dr-D must be formed since the dr-D cannot overlap with a dg-

CS (see Table 2). A CS for IpL ⊗Xd
L can be constructed analogously; now,

a tunnel of a pr-CS is made along the pg-D. The other two transformations

are straightforward.
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Figure 16: (a) Construction of the primality-switching gate changing a pri-
mal logical qubit to a dual one. Zp

L is transformed into Zd
L
′ via the presented

dj-CS. (b) Circuit equivalent to the primality-switching gate. Mp
Z is the ZL-

measurement on the primal qubit, and the result is zp.

Exploiting a CNOT gate discussed above, it is possible to make a primality-

switching gate which changes a primal logical qubit to a dual one, by “clos-

ing” the input part of the dual one and the output part of the primal one, as

shown in Fig. 16(a). Remark that these closures indicate the ZL-measurement

of the primal one and the XL-initialization of the dual one. The modified

configuration is thus equivalent to the circuit in Fig. 16(b) up to byproduct

operators, which implements the identity or XL gate while changing the pri-

mality. Alternatively, this result is directly obtainable by finding appropriate

CSs; for example, the dj-CS in Fig. 16(a) verify the transformation of Zp
L to

Zd
L
′. The primality-switching gate from a dual logical qubit to a primal one

can be made similarly.
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The primality-switching gate enables the CNOT gate between logical

qubits with arbitrary primalities. Regardless of the primalities of the input

logical qubits, one can switch them to primal (target) or dual (control), and

apply a CNOT gate in Fig. 15.

Note that the equivalence between the different definitions of the XL op-

erator, related to the choice of the color pair (c,c′) in Eq. (3.5), can be proven

with the primality-switching gate. We consider a chain of two primality-

switching gates: primal→ dual→ primal. No matter how XL is defined in

the first primal logical qubit, it becomes symmetric about the color in the

dual one. We can thus transform it into any definition of XL in the final pri-

mal one.

Hadamard gate

To construct a logical Hadamard gate, the logical Pauli operators should

be transformed as

XL→ Z′L, ZL→ X ′L. (3.10)

It is simple if the gate is located just after a state injection block presented in

the Sec. 3.2.6: injecting the unencoded state to a dual logical qubit instead

of a primal one. This method is valid since the definitions of XL and ZL are

opposite for primal and dual logical qubits.

If the Hadamard gate is located in the middle of the circuit, it is a bit

tricky. Since XL (ZL) of a logical qubit can be connected only with primal

(dual) CSs regardless of the primality of the logical qubit, there should be a
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Figure 17: Construction of a Hadamard gate from a primal logical qubit to
a dual one. Each colored single (double) line is the primal (dual) defect of
that color. SZp is a dj-CS ending at the three primal defects and the (tH +1)-
layer. Similarly, SXd is a pj-CS ending at the three dual defects and the tH-
layer. SZp and SXd are chosen so that their supports overlap in the tH- and
(tH +1)-layer between the defects. Next, SXp is a pr-CS which surrounds
the pg-D and ends at the tH-layer. SZd is a dr-CS which surrounds the dg-
D and reaches the (tH −1)-layer. Note that SZd does not have a boundary
in the (tH −1)-layer; instead, its interior is penetrated by the pg-D. This is
possible since SZd and the pg-D have different primalities. SXp and SZd are
chosen so that their supports overlap in the tH-layer. Finally, SZX := SZpSXd

and SXZ := SXpSZd transform the logical Pauli operators as Eq. (3.10). The
supports of SZX and SXZ are marked as colored dashed lines and a circle
filled in red. In particular, their Y -support qubits are in the tH- and (tH +1)-
layer and measured in the Y -basis. For these Y -measurements to be fault-
tolerant, dual and primal Y-planes are placed on the tH- and (tH +1)-layer,
respectively.

CS having different primalities near the input and output layers, to achieve

the transformation. To solve this problem, we construct a defect structure
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starting with a primal logical qubit and ending with a dual one as shown in

Fig. 17, where the primal one stops at the primal tH-layer and the dual one

starts from the dual (tH +1)-layer. Each pair of defects with the same color

must have the same spatial structure at t = tH and t = tH +1. Note that such

a configuration is possible thanks to the self-duality of the 2D color codes

which makes primal and dual layers have the same structure.

We consider two pairs of overlapping primal and dual CSs: (SZp,SXd)

and (SXp,SZd), where SXp, SZp, SXd, and SZd are a pr-CS, dj-CS, pj-CS,

and dr-CS defined in Fig. 17, respectively. SZX := SZpSXd then connects

ZL and X ′L. Similarly, SXZ := SXpSZd connects XL and Z′L. Condition 1 in

Sec. 3.2.5 is thus satisfied with these two “hybrid” CSs. What remains is

Condition 2. Since SZX and SXZ contain Y operators on some CQs in the

overlapping regions, the qubits should be measured in the Y -basis for the

CSs to be compatible.

To make the Y -measurements fault-tolerant, we introduce Y-planes:

Definition 3.7 (Y-plane). A primal (dual) Y-plane is the set of p(d)CQs in

a continuous area contained in a dual (primal) layer. CQs in Y-planes are

measured in the Y -basis.

Errors in Y-planes can be corrected by an error correction procedure

presented in Sec. 3.3.3. Therefore, the Y -measurements for the Hadamard

gate can be fault-tolerantly done by placing wide enough Y-planes to cover

suppY (SZX) and suppY (SXZ) completely. More details including microscopic

pictures are presented in Sec. 3.3.3.
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Figure 18: Construction of a logical phase gate on a primal logical qubit.
The input logical-X operator (XL) is transformed into the output logical-Y
operator (Y ′L) via a stabilizer S(1)X S(2)X , where S(1)X and S(2)X are CSs shown
in (a) and (b), respectively. A pj-CS S(1)X presented in (a) connects XL and
X ′L. Near the input layer, S(1)X has the form of a pb-CS surrounding the red
defect. On the t1-layer, it is divided into three CSs with different colors
through a spacelike joint. Each CS is then deformed appropriately so that
the joint is extended along the black dashed line and suppX

(
S(1)X

)
contains

the 1-chains on the t2-layer (colored dotted lines). On the t3-layer, the joint
becomes spacelike again. After that, S(1)X returns to the form of a pb-CS and
is connected to X ′L. A dj-CS S(2)X presented in (b) connects Z′L and the 1-
chains on the t2-layer (colored dashed lines). In the t2-layer, the defects are
extended spacelikely and S(1)X S(2)X has X and Y operators as shown in Fig. 19.

Phase gate

To construct a logical phase gate, the logical Pauli operators should be

transformed as

XL→ Y ′L, ZL→ Z′L.
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Figure 19: Placement of a Y-plane on the t2-layer of Fig. 18. In (a), the col-
ored circles indicate the timelike defects penetrating the layer, and the thick
colored lines indicate the spacelike defects. By placing a primal Y-plane in
the area surrounded by the spacelike defects, Y operators in S(1)X S(2)X can be
measured. In (b), the vicinity of the timelike pb-D is explicitly described.
Here, the colored solid lines indicate the cross-sections of the spacelike de-
fects, along which CQs are measured in the Z-basis.

It can be achieved with the defect structure in Fig. 18(a): The defects of

a logical primal qubit are just extended from the input layer to the output

layer as the logical identity gate in Fig. 14. The transformation of ZL is

straightforward; it is the same as that in an identity gate in Fig. 14(b). XL

is transformed into Y ′L by a stabilizer SX := S(1)X S(2)X , where S(1)X and S(2)X are
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CSs defined in Fig. 18(a) and (b) as follows: S(1)X is a pj-CS connecting

XL and X ′L. It has the form of a pb-CS surrounding the pr-D near the input

and output layers but is deformed appropriately through joints in between.

(See Fig. 9 for more details on joints.) S(2)X is a dj-CS connecting a dual

layer (t = t2) and Z′L. These two CSs can be chosen such that SX contains Y

operators in the t2-layer as shown in Fig. 19(a) schematically as dotted lines.

To make SX compatible between the input and output layers, a primal

Y-plane is placed on the t2-layer to cover the Y operators. (The Y-plane does

not affect the transformation of ZL, since the CS used for the transformation

is dual.) However, this is not enough; because of an issue regarding error

correction near the boundary of the Y-plane, the defects need to be extended

spacelikely to surround the Y-plane, as shown in Fig. 19(a) schematically

and in Fig. 19(b) explicitly near where two defects meet. More details on it

are presented in Sec. 3.3.3.

3.2.6 State injection

We finish this section by introducing a state injection scheme. Prepara-

tion of an arbitrary logical qubit a |0L⟩+b |1L⟩ is essential for implementing

a logical T gate as well as quantum computation with arbitrary input states.

This is done in our scheme by injecting the corresponding unencoded state

into a physical qubit.

We start from the configuration for the ZL-initialization of a primal

logical qubit shown in Fig. 13(a), where three defects meet at a point. First, a

qubit qinj in the pc-D for any color c is selected as an injection qubit which
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Figure 20: State injection procedure. (a) An unencoded state is injected
into an injection qubit qinj, which is the only input qubit, in the pr-D which
is spacelike and thicknessless at qinj. Z

(
qinj
)

is invariant when the CZ gates
associated with qinj are applied. However, Xqinj is transformed into S

(
qinj
)
,

where S
(
qinj
)

is the C-type SG around qinj. S
(
qinj
)

is equivalent to SCS
(

hpb2

)
since SCS

(
hpb2

)
= S
(
qinj
)
S(q1), where hpb2 ∈ Hpb

2 is the timelike 2-chain
marked as a blue dashed line and q1 is the marked CQ adjacent to qinj. qinj
is measured in the X-basis during the measurement step. (b) SCS

(
hdb2
)

is
transformed into XL of the output logical qubit via the pb-CS SX . Z

(
qinj
)

is
transformed into ZL of the output logical qubit via the dj-CS SZ .

is the only input qubit in QIN. We assume that the defect is “thicknessless” at

qinj; namely, its cross-section at qinj contains at most one qubit as shown in

Fig. 20(a). The desired initial state is injected into qinj in an unencoded form

|ψ⟩= a |0⟩+b |1⟩, then the associated CZ gates are applied. Remark that qinj

is measured in the X-basis as stated in Eq. (3.2). The X (Z) operator on qinj

is transformed into XL (ZL) up to a sign factor as shown in Fig. 20, thus the

logical state |ψL⟩= a |0L⟩+b |1L⟩ is prepared up to byproduct operators.

Note that the state injection procedure is inherently not fault-tolerant,

since it uses an unprotected single-qubit state and the defect is thicknessless

at qinj. Therefore, magic state distillation is essential for the faithful T gate.
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3.3 Error correction

Now we describe error correction schemes in CCCSs. We first consider

the cases without defects and Y-planes, then investigate how they affect the

scheme.

We consider four types of single-qubit errors: X , Y , and Z errors be-

fore the measurement step and measurement errors. We say that two sets of

(single-qubit) errors are equivalent if they incur the same logical error. We

also say that an error set is trivial if it does not incur any logical errors (i.e.,

it is equivalent to the identity). Note that a measurement error is equivalent

to a Pauli error before the measurement; for example, an X-measurement

error on a vacuum qubit is equivalent to a Z error before the measurement.

Therefore, we can write any error set as a tensor product of Pauli operators.

Additionally, regarding an error set e, the error set obtained by multiply-

ing e, arbitrary stabilizers, and arbitrary Pauli operators commuting with the

measurement pattern is equivalent to e.

3.3.1 Error correction in the vacuum

For error correction in the vacuum, we exploit parity-check operators

(PCs) defined as follows:

Definition 3.8 (Parity-check operator). For each cell c, the CS SCS(∂c) =

X(∂c) is a parity-check operator (PC), where SCS(·) is given in Eq. (3.1).

PCs are classified into six groups according to primalities and cell col-

ors. Here, the primality of a PC SCS(∂c) is that of the shrunk lattice L con-

taining the cell c, and its cell color is the color of the AQ Q(c). Remark that
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Figure 21: (a) Explicit structure of a parity-check operator (PC), specif-
ically a pb-PC in a 4-8-8 CCCS. Purple triangles indicate its X-support
qubits. (b) A Z or X-measurement error on a pcAQ (purple triangle) flips
two pc-PCs sandwiching q. (c) A dual layer of a 4-8-8 CCCS is presented.
Purple triangles indicate the pCQs with errors. Each c-colored face corre-
sponds to a flipped pc-PC, where an example is shown in (a) as a blue face
on the dual layer. (d) A primal blue error chain (pb-EC), where every qubit
along a connected dual 1-chain hdb1 has an error, flips two pb-PCs located at
its two ends. (e) Starting from an error on a pCQ qI , a pj-EC is constructed
by multiplying a pc-EC ending at the flipped pc-PC for each color c to the
error operator. A pj-EC flips three primal PCs located at its ends.

the cell color is different from the color of L , as shown in Table 1. We refer

to a primal c-colored PC as a “pc-PC.”

Remark that a given dcAQ q corresponds to two primal cells: one for
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each of Lpc1 and Lpc2 where c, c1, and c2 are all different colors. However,

the PCs corresponding to the cells are indeed the same, comparing Fig. 8(a)

and (b) as an example. We can thus regard that one AQ (q) corresponds

to one PC, and denote it as SPC(q). The support of the pc-PC SPC(q) for

a dcAQ q contains two pcAQs and multiple pCQs around q as shown in

Fig. 21(a), where the purple triangles indicate the support qubits.

We now assume that there are no defects and Y-planes. Since vacuum

qubits are measured in the X-basis, all PCs survive as stabilizers after the

measurement step, and thus can be used to detect Z errors on vacuum qubits.

Note that X errors on them are trivial. The final step for error correction is

to decode errors from the PC measurement results and correct the errors.

An error may occur on either an AQ or a CQ. An error on a pcAQ

flips two pc-PCs sandwiching the qubit along the time axis as shown in

Fig. 21(b), where the purple triangle indicates the qubit with an error. An

error on a pCQ flips pr-PC, pg-PC, and pb-PC surrounding the qubit spa-

tially, as shown in Fig. 21(c). If both the pCQs constituting a pcL have

errors, the two pc-PCs connected by the link are flipped.

Combining the above facts, we conclude that, if every qubit in Q(hdc1 )

for a connected dual 1-chain hdc1 ∈ Hdc
1 has an error, the pc-PC SPC(q) for

each qubit q∈Q(∂hdc1 ) is flipped, as shown in Fig. 21(d). Such an error set in

the vacuum is called a primal c-colored error chain, referred to as a “pc-

EC.” Furthermore, starting from an error on a pCQ, each flipped PC may

be “moved” by multiplying a primal error chain of the corresponding color

ending at the PC. An error set constructed in this way flips three primal

PCs located at its ends and is referred to as a “pj-EC.” (A single-qubit error
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separated from other error sets is also regarded as a pj-EC by itself.) General

error chains are obtained by connecting multiple pc-ECs for each color c

and pj-ECs.

3.3.2 Error correction near defects

We here investigate error correction near a pc-D Dpc = D(h2) for a

2-chain h2 where D(·) is given in Eq. (3.3). First, all primal PCs whose

supports contain defect qubits are no longer compatible, while dual PCs

are unaffected. Incompatible PCs may be multiplied with each other to

form larger compatible stabilizers. Such processes are possible for pc′−PCs

(c′ ̸= c) contacting with timelike surfaces of Dpc (namely, timelike areas of

h2), as shown in Fig. 22(a) where a pr-PC and pg-PC adjacent to a pb-D

are merged. It is worth noting that merged PCs are still local like ordinary

PCs; i.e., their sizes are independent of the thicknesses of Dpc. Other types

of incompatible PCs cannot be merged in such a way, thus they are just re-

moved. These include pc′−PCs (c′ ̸= c) contacting with spacelike surfaces

of Dpc (e.g., the pr-PC in Fig. 22(b)) and pc-PCs (e.g., the pb-PCs in Fig.

22). Lastly, there are additional stabilizers that become compatible due to

Dpc: dual CSs whose Z-supports are in the defect. These stabilizers include

dc-CSs {SCS( f ) | f ∈ h2} (e.g., the db-CSs in Fig. 22), and if Dpc is space-

like, they also include dc′−CSs on the spacelike surfaces of Dpc (e.g., the

dg-CS in Fig. 22(b)). Such CSs are called defect PCs and used for error

correction in defect qubits.

We now identify nontrivial undetectable error sets regarding primal

logical qubits. Let us first consider errors on primal vacuum qubits. Since
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Figure 22: PCs deformed or created due to a (a) timelike or (b) spacelike
pb-D in a 4-8-8 CCCS. Each purple triangle with a solid (or dashed) border
indicates a defect qubit on the layer (or an adjacent dual layer). Examples
of merged and removed primal PCs and shown as green, red, or grey faces.
Examples of dual defect PCs are shown as faces with borders. In (a), two
types of nontrivial undetectable error chains are shown as a green double
solid line (dg-EC) and a blue double dashed line (pb-EC). Specific non-
trivial (trivial) defect error chains are partially shown as orange circles with
solid (dotted) borders.
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pc-PCs adjacent to a pc-D are removed, undetectable pc-ECs can end at

the defect as shown in Fig. 22(a). On the other hand, undetectable pc′−ECs

(c′ ̸= c) cannot end at the defect in general, but they may change their colors

while passing through the defect due to merged PCs. As an exception, if the

defect is spacelike, undetectable pc′−ECs can end at its spacelike surfaces.

For a primal error chain to be nontrivial and undetectable, it should end at

multiple different primal defects. For example, for a logical identity gate of

a primal logical qubit, a pj-EC ending at the three defects incurs a ZL error

as shown in Fig. 14(a).

Next, let us consider errors on dual vacuum qubits. All the dual PCs

remain compatible even if a primal defect is placed, thus a dual error chain

cannot end at the defect. Therefore, every undetectable dual error chain is

closed. A closed dc-EC E surrounding a pc′−D is nontrivial if c′ ̸= c (e.g.,

the dg-EC in Fig. 22(a)) since it may anticommute with dc′−CSs ending at

the defect. For example, for a logical identity gate of a primal logical qubit,

a db-EC surrounding the pr-D incurs an XL error as shown in Fig. 14(b).

Lastly, errors on defect qubits also may incur logical errors. An error

on a defect qubit flips adjacent two or three defect PCs. Similar to the case

of vacuum qubits, a series of errors on defect qubits (called defect error

chains) flips defect PCs located at its ends. For a defect error chain to be

nontrivial and undetectable, it should go around the surface of the defect

once, as shown in Figure 22(a) where the defect error chain marked as or-

ange circles may anticommute with db-CSs ending at the defect (see also

Fig. 11). Otherwise, the defect error chain shares an even number of qubits

with a db-CS, thus does not incur a logical error. Furthermore, since defect
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PCs contain X operators on dual vacuum qubits, there exist undetectable

error sets containing both dual and defect error chains. For example, a dc-

EC penetrating a dc′−D flips defect PCs, thus there should be defect error

chains ending at these defect PCs for the total error set to be undetectable.

Note that we can always obtain a dual error chain equivalent to a defect error

chain eD by multiplying A- or C-type SGs around the qubits in supp(eD).

The code distance is determined by the size of the smallest nontriv-

ial undetectable error set. Two factors are determining the code distance:

distances between defects and their thicknesses. The former is related to

error chains ending at different defects, while the latter is related to those

surrounding the defects and defect error chains. Note that the shortest non-

trivial undetectable defect error chain is generally shorter than the shortest

nontrivial undetectable dual error chain, as shown visually in Fig. 22(a), al-

though comparing them directly may be unfair if the error model used is

biased.

3.3.3 Error correction near Y-planes

To correct errors in Y-planes, we use hybrid PCs defined as follows.

Definition 3.9 (Hybrid PC). For each d(p)cAQ q, the stabilizer SPC(q)SA(q)

is a primal (dual) c-colored hybrid PC denoted by p(d)c-HPC, where SPC(q)

is the p(d)c-PC corresponding to q and SA(q) is the A-type SG around q.

As visualized in Fig. 23(a), a primal hybrid PC contains Y operators on

CQs in a dual layer. Ordinary primal PCs intersecting a primal Y-plane are

no longer compatible, thus primal hybrid PCs are used instead. A notable
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Figure 23: (a) Primal hybrid PC for error correction in a primal Y-plane,
constructed by multiplying a primal PC and the dual A-type SG around its
center qubit. Circles and squares indicate links and AQs, respectively, and
their colors mean their primalities: orange (primal) and blue (dual). The hy-
brid PC contains Y operators on CQs in the dual layer. (b) Undetectable
error chains near a primal Y-plane. Orange (blue) lines are primal (dual) er-
ror chains. Undetectable primal error chains can behave as if there are no
Y-planes, such as (1) and (2). However, if a dual error chain passes through
the Y-plane, there should be a primal error chain of the same color ending
at the intersection point such as (3) and (4), for a total error set to be unde-
tectable.

thing is that a hybrid PC contains both primal and dual qubits in its support.

Therefore, a pc-HPC detects not only pc-ECs ending at it but also timelike

dc-ECs penetrating it. As a consequence, for a dc-EC passing through a

primal Y-plane to be undetectable, there should be a pc-EC ending at the

pc-HPC located at the intersection point, such as (3) and (4) in Fig. 23(b).

On the other hand, primal error chains can penetrate a primal Y-plane or

progress spacelikely in it without being detected, such as (1) and (2) in

Fig. 23(b). However, they may end at the boundary of the Y-plane in con-

tact with the vacuum since neither hybrid PCs nor ordinary PCs cannot be

defined along the boundary.

As proposed in Sec. 3.2.5, Y-planes are necessary to implement the log-
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ical Hadamard and phase gates. We now verify that errors can be corrected

well while implementing these gates; namely, local nontrivial undetectable

error sets near the Y-planes do not exist. Here, an error set is said to be local

if its size is unrelated to the distances between the defects or their thick-

nesses.

Error correction in a logical Hadamard gate

Two consecutive Y-planes are required for a Hadamard gate as shown

in Fig. 17: a dual Y-plane at the end of the primal defects and a primal one at

the end of the dual defects. As shown in Fig. 24(a), each Y-plane completely

covers the three defects. Since there are undetectable error chains connect-

ing the defects and the boundary of the Y-planes, the Y-planes should be

wide enough so that such error chains are longer than the code distance. Fig-

ure 24(b) shows the dual Y-plane near the pb-D, where the orange circles

indicate Y-plane qubits. All dual (primal) PCs intersecting the dual (primal)

Y-plane are replaced with the corresponding hybrid PCs. Exceptionally, dc-

HPCs and pc-HPCs overlapping with the pc-D or dc-D are incompatible

since their supports contain defect qubits. Instead, each pair of them adja-

cent timelikely can be merged to form a compatible stabilizer which can

be used for error correction. Additionally, defect PCs (see Fig. 22) inter-

secting the Y-planes are also incompatible, thus each pair of them adjacent

timelikely should be merged to form a compatible stabilizer.

We now verify that local nontrivial undetectable error sets do not occur

during the implementation of a Hadamard gate. Throughout this subsection,

it is assumed that the Y-planes are wide enough, thus their boundaries do
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Figure 24: Error correction during the process for a Hadamard gate, par-
ticularly near the Y-planes. (a) The Y-planes should be wide enough since
there are error chains connecting their boundaries and the defects. The dual
Y-plane and the primal defects are shown as an example. (b) Dual Y-plane
in the tH-layer near the pb-D. Defect (Y-plane) qubits are marked as purple
triangles (orange circles). The same structure is repeated in the next layer
for the primal Y-plane and the db-D. A db-HPC around the defect pbAQ
is no longer compatible and so is the next pb-HPC, thus they are merged to
be compatible. Similarly, a defect PC in the pb-D intersecting the Y-plane
is merged with the adjacent defect PC in the db-D to be compatible.

not need to be considered. The problems then may happen near where the

Y-planes and defects meet.

Instead of investigating the configuration for a Hadamard gate in Fig. 17

directly, we introduce a simpler system SI visualized in Fig. 25, where the

primal defects are just extended straightly instead of changing to dual de-

fects. Let SH denote the original system for a Hadamard gate. In SI , a dj-CS
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𝑋
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𝑋

𝑋 𝑋

dr-CS 𝑆""!
(')

𝑆""! ≔ 𝑆""!
($) 𝑆""!

(')

Figure 25: Configuration of the system SI introduced to verify error cor-
rection in a Hadamard gate, where the primal defects are just extended
straightly instead of changing to dual defects.

S̃ZX ending at the defects and a pr-CS S̃(1)XZ surrounding the green defect are

defined as usual. We additionally define a stabilizer S̃XZ := S̃(1)XZ S̃(2)XZ , where

S̃(2)XZ is a closed dr-CS between the (tH −1)- and (tH +1)-layer as shown in

Fig. 25.

We also consider another system SIM which is identical with SI except

for one difference: For each of hybrid PCs, merged hybrid PCs, and merged

defect PCs in SH (see Figs. 23 and 24), a pair of PCs in SI are merged as

shown in Fig. 26 and form type-1, -2, -3, and -4 merged PCs, respectively.

These merged PCs are used in SIM instead of original PCs involved in the

(tH +1)-layer.

We now prove that SH does not allow local nontrivial undetectable

error sets (LNUEs) by showing the following three statements:

1. For each error set e in SH , there exists an error set in SIM which has

the same properties (i.e., whether it is local, trivial, or detectable) as e
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d dp
[𝑡 = 𝑡!]

dc-HPC in 𝓢𝑯

d dp
[𝑡 = 𝑡!]

p

dc-PC × pc-PC in 𝓢𝑰𝑴

(b)

d dp
[𝑡 = 𝑡!]

p

Merged HPC in 𝓢𝑯

d dp
[𝑡 = 𝑡!]

p

dc-PC × dc-PC in 𝓢𝑰𝑴

d

(c)

d
p [𝑡 = 𝑡!]

p
d

Merged DPC in 𝓢𝑯

d

d
p

p [𝑡 = 𝑡!]

d
DPC × DPC in 𝓢𝑰𝑴

(d)

d pp
[𝑡 = 𝑡!]

pc-HPC in 𝓢𝑯

ddp
[𝑡 = 𝑡!]

p

pc-PC × dc-PC in 𝓢𝑰𝑴

(a)

Figure 26: Correspondences of (a), (b) hybrid PCs, (c) merged hybrid
PCs, and (d) merged defect PCs in the original system SH for a Hadamard
gate and merged PCs in SIM, which is called type-1, -2, -3, and -4 merged
PCs, respectively. The circles (squares) indicate links (AQs). In (a)–(c), the
primalities of the qubits are presented as colors: orange (primal) and blue
(dual). In (d), Z-support qubits are marked as purple triangles. Note that, for
each correspondence, both the PCs have the same support if the (tH +1)-
layer in SIM is omitted.
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and does not act on any qubit in the (tH +1)-layer. Here, we say that

an error set in SIM is nontrivial if it anticommutes with S̃ZX or S̃XZ .

2. SI does not allow LNUEs.

3. If there exists an LNUE in SIM which does not act on any qubit in the

(tH +1)-layer, there also exists an LNUE in SI .

Proof of the first statement: To show the first statement, we should notice

that SIM is just a variation of SH where an extra layer is inserted between the

tH- and (tH +1)-layer. (Remark that these two layers contain Y-planes in

SH .) For a qubit q in SH at (x,y, t), let q̃ denote a qubit in SIM at (x,y, t) if

t ≤ tH and at (x,y, t +1) if otherwise. Note that q̃ cannot be in the (tH +1)-

layer. Then for an error set e in SH , there is an error set ẽ in SIM such that

supp(ẽ) = {q̃ | q ∈ supp(e)} holds. Note that we here consider only their

supports, not their actual operators.

Furthermore, we can find similar correspondences for PCs and stabi-

lizers for transforming logical operators (SXZ and SZX ) in SH . (However,

this time the supports of their counterparts in SIM may contain qubits in the

(tH +1)-layer.) Comparing Figs. 17 and 25, supp
(
S̃ZX
)
= {q̃ | q ∈ supp(SZX)}

can be checked. Similarly, supp
(
S̃XZ
)

contains q̃ for each qubit q∈ supp(SXZ),

but this time it additionally contains some qubits in the (tH +1)-layer. For

a PC S in SH , it is straightforward to obtain a unique PC S̃ in SIM such

that supp
(
S̃
)
= {q̃ | q ∈ supp(S)} holds, if S is an ordinary PC or a defect

PC. Otherwise, S is a hybrid or merged PC involved in Y-plane qubits (see

Figs. 23 and 24). In such a case, S̃ is set to a merged PC in SIM shown in
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Fig. 26. Likewise, supp
(
S̃
)

is composed of q̃ for each qubit q ∈ supp(S)

and some additional qubits in the (tH +1)-layer. Note that this correspon-

dence for PCs is bijective since we remove original PCs involved in the

(tH +1)-layer which do not have their counterparts in SH .

We can now notice that e and ẽ have the same properties. Since they

have the same size, e is local if and only if ẽ is local. If e is trivial, e and each

of SXZ and SZX share an even number of qubits, thus so do ẽ and each of S̃XZ

and S̃ZX , which means that ẽ is trivial. (It does not matter that the support

of S̃XZ contains additional qubits in the (tH +1)-layer since it is guaranteed

that ẽ does not act on those qubits.) It is straightforward to see that PCs

flipped by e are S1,S2, · · · if and only if PCs flipped by ẽ are S̃1, S̃2, · · · .

Hence, e is detectable if and only if ẽ is detectable. Lastly, ẽ does not act on

any qubit in the (tH +1)-layer by definition.

Proof of the second statement: Noticing that SI is just the simple exten-

sions of defects, we can show that SI does not allow local undetectable error

sets anticommuting with S̃ZX , S̃(1)XZ , S̃(2)XZ , or S̃XZ = S̃(1)XZ S̃(2)XZ . S̃ZX and S̃(1)XZ are

CSs used for a logical identity gate, thus we already know that this state-

ment is true for them. Since S̃(2)XZ is a dual CS, only dual error chains passing

through it an odd number of times can anticommute with it. However, since

S̃(2)XZ is closed and dual error chains cannot end at primal defects, there are

no undetectable error sets anticommuting with S̃(2)XZ . The statement for S̃XZ

then automatically holds.
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Proof of the third statement: Let us assume that there exists an LNUE e

in SIM which does not act on any qubit in the (tH +1)-layer. Remark that SI

has some additional PCs compared to SIM. Therefore, e may be a local non-

trivial detectable error set in SI . In detail, if two PCs S1 and S2 are merged

in SIM, e may flip both S1 and S2 in SI . For example, a type-3 merged PC

in Fig. 26(c) can be written as SdS′d for two dc-PCs Sd and S′d, thus e may

flip both of them. The same argument holds for defect PCs regarding type-4

merged PCs in Fig. 26(d). However, considering type-1 and -2 merged PCs

in Fig. 26(a) and (b), a pc-PC is involved in two merged PCs with two dc-

PCs. Hence, e either commutes or anticommutes with all these three PCs.

Suppose that e flips np primal PCs, nd dual PCs, and nD defect PCs.

In other words, e anticommutes with a primal PC Sip and two dual PCs

Sid, S′id (i = 1, · · · ,np) of the same color for a pair of type-1 and -2 merged

PCs, with dual PCs Sid and S′id (i = np+1, · · · ,nd/2) of the same color for

a type-3 merged PC, and with defect PCs SiD and S′iD (i = 1, · · · ,nD) for a

type-4 merged PC. Here, Sid and S′id are set to act on qubits of t ≤ tH + 1

and t ≥ tH +1, respectively. We define Pp, Pd, P′d, and PD by the sets of Sip’s,

Sid’s, S′id’s, and SiD’s, respectively.

Let e(i)D denote the length-1 defect error chain consisting of a qubit

shared by SiD and S′iD for each i. e(i)D is trivial since the corresponding qubit is

a defect CQ which neither S̃ZX nor S̃XZ contains in its support. (S̃ZX contains

defect qubits, but they are AQs as shown in Fig. 11(c).) Therefore, e1 :=

e
∏

i e(i)D is local, nontrivial, and detected by PCs in Pp∪Pd∪P′d.

Let us write e1 := epede′deD, where ep is a primal error chain, ed is a

dual error chain in the layers of t < tH + 1, e′d is a dual error chain in the
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layers of t > tH +1, and eD is a defect error chain. Note that the dual error

chain in e1 can be divided by two in such a way since e does not contain

qubits in the (tH +1)-layer. Note that primal PCs only can be flipped by ep.

In order for ep to be a proper error chain,

|Ppr| ≡ |Ppg| ≡ |Ppb| ≡ x (mod 2) (3.11)

should hold for x∈ {0,1}, where Ppc for each color c is the set of pc-PCs in

Pp, because of the fusion rule: A unit error chain (pr-PC, pg-PC, pb-PC,

or pj-PC) always flips either two PCs of the same color or three PCs of

different colors. Similarly, dual PCs in Pd only can be flipped by ed, thus

|Pdr| ≡ |Pdg| ≡ |Pdb| ≡ y (mod 2) (3.12)

holds for y ∈ {0,1}, where Pdc for each color c is the set of dc-PCs in Pd.

Now, let e(i)d denote the length-1 dual error chain consisting of the qubit

shared by Sid and S′id. Since e(i)d flips only these two PCs, e2 := e1
∏

i e(i)d =

eped2eD only flips primal PCs in Pp, where ed2 := ed
∏

i e(i)d is a new dual

error chain. Since the primal PCs only can be flipped by ep, ed2eD is local

and undetectable, thus it is trivial according to the second statement. Re-

mark that the qubit in e(i)d is a dcAQ in the (tH +1)-layer if Sid and S′id

have the color of c. Thus, e(i)d (for every i), ed2eD, and ep all commute

with S̃ZX which only acts on vacuum dCQs and defect pAQs. Therefore,

e1 = epedeD = eped2eD
∏

i e(i)d also commutes with S̃ZX . We however know

that e1 is nontrivial, thus it should anticommute with S̃XZ . Moreover, e(i)d
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anticommutes with S̃XZ if and only if it is either green or blue and located

inside the area enclosed by S̃XZ . Therefore, since e1 anticommutes with S̃XZ ,

{
e2, S̃XZ

}
= 0 ⇐⇒ |Pdg,I|+ |Pdb,I| ≡ 0 (mod 2) (3.13)

holds, where Pp(d)c,I is the set of PCs in Pp(d)c to which the qubits corre-

sponding are located inside the area enclosed by S̃XZ .

We can get another equation regarding the locality condition. Remark

that merged c-colored hybrid PCs in SH are placed inside the c-colored

defects (see Fig. 24), thus so are type-3 c-colored merged PCs in SIM. Since

e1 is local and anticommutes with S̃XZ , it can be assumed that its support is

near the green defect, which indicates that neither dr-PCs nor db-PCs in SI

corresponding to type-3 merged PCs in SIM are not flipped by e1. Therefore,

Sid and S′id for every i ∈ {np+1, · · · ,nd/2} are green, thus


|Ppr|= |Pdr|, |Ppb|= |Pdb|,

|Ppr,I|= |Pdr,I|, |Ppb,I|= |Pdb,I|
(3.14)

hold. As a consequence, we get

x≡ |Ppr|= |Pdr| ≡ y (mod 2), (3.15)

considering Eq. (3.11) and Eq. (3.12). For green PCs, we can only say that

|Ppg|− |Ppg,I|= |Pdg|− |Pdg,I|, (3.16)
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which is about PCs outside the area enclosed by S̃XZ .

Lastly, we try to make e2 undetectable by multiplying appropriate pri-

mal error chains. Remark that e2 flips only primal PCs. First, let us consider

moving all flipped PCs in Ppc,I outside the area enclosed by S̃XZ . If a moved

PC is green or blue, the corresponding multiplied error chain anticommutes

with S̃XZ . After that, since every flipped PC is outside the area, they can

move properly and annihilate with each other without touching S̃XZ , then

a local undetectable error chain e3 is finally obtained. To see whether e3 is

nontrivial or not, we use

{
e3, S̃XZ

}
= 0 ⇐⇒ |Pdg,I|+ |Pdb,I|+ |Ppg,I|+ |Ppb,I| ≡ 0 (mod 2),

(3.17)

which is obtained by considering the above discussion and the proposition

in Eq. (3.13). We get

|Pdg,I|+ |Pdb,I|+ |Ppg,I|+ |Ppb,I| ≡ |Pdg,I|+ |Ppg,I|

≡ |Ppg|+ |Pdg|

≡ x+ y≡ 0 (mod 2),

where the first equivalence comes from Eq. (3.14), the second one comes

from Eq. (3.16), the third one comes from Eqs. (3.11) and (3.12), and the last

one comes from Eq. (3.15). Therefore, e3 is indeed nontrivial. In summary,

if there exists an LNUE e in SIM which does not act on any qubit in the

(tH +1)-layer, there also exists an LNUE e3 in SI , which contradicts to the
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second statement that SI does not allow LNUEs.

Error correction in a logical phase gate

We now investigate error correction in a logical phase gate. As pro-

posed in Sec. 3.2.5, a primal Y-plane is placed in the middle of the timelike

defects of a primal logical qubit. XL is transformed into Y ′L via SX := S(1)X S(2)X

and ZL is transformed into Z′L via SZ , where S(1)X and a primal CS while S(2)X

and SZ are dual CSs. It is important that SX has X and Y operators in the t2-

layer on which the Y-plane is placed, as shown in Fig. 18(c). Unlike the case

of the Hadamard gate, the Y-plane cannot be made to cover a wide enough

area, since supp(SX) has X operators on qubits just near the defects. How-

ever, since neither hybrid PCs nor ordinary PCs are not compatible along

the interface between the Y-plane and vacuum, there may be short nontrivial

undetectable error chains near the interface.

On the other hand, if the Y-plane and the vacuum are separated by de-

fect qubits, compatible PCs can be appropriately defined along the interface.

To see this, let us suppose that the Y-plane and the vacuum are separated by

the pc-D, as shown in Fig. 27 for c = b where the orange circles (purple

triangles) indicate Y-plane (defect) qubits in the layer. Although pc′−PCs

and pc′−HPCs (c′ ̸= c) acting on defect qubits are incompatible, they can be

merged with each other appropriately to form larger compatible stabilizers.

It is worth noticing that such “hybrid merged PCs” can be analogously used

instead of original merged PCs near defects in Fig. 22. Note that, unlike

original merged stabilizers, hybrid merged PCs have Z operators on several

defect qubits. Additionally, defect PCs are not affected by the Y-plane, since
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[dual 𝑡] pb-D
pr-PC

pg-HPC

Removed pb-(H)PC

Figure 27: Error correction when the vacuum and a primal Y-plane on a
dual layer are separated by a pb-D. Defect (Y-plane) qubits in the layer are
marked as purple triangles (orange circles). pr-HPC, pg-HPC, pr-PC, and
pg-PCs acting on defect qubits are incompatible, but they can be merged
with each other appropriately to form compatible stabilizers. However, pb-
PCs and pb-HPCs overlapping with the defect cannot be merged in such a
way, thus they are just removed.

they do not overlap with it.

In summary, each PC near the defect either remains the same or is just

replaced with its “hybrid version” when the Y-plane is placed. This contrasts

with the fact that PCs along the interface between the Y-plane and vacuum

cannot be compatible. Therefore, we need to extend the defects spacelikely

to surround the Y-plane entirely as visualized in Fig. 18(c), so that the Y-

plane only contacts with the defects. The shape of SX and the paths of defects

should be carefully chosen for the defects not to overlap with supp(SX). In

particular, the microscopic structures near where two defects are closest are

important. As visualized in Fig. 28, the Y-plane should not contact directly

with ordinary PCs for the vacuum; they always meet separated by a defect.

We now verify that local nontrivial undetectable error sets do not exist
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pb-D

Y-plane

pr-D

pb-D

pg-DY-plane(b)
[Dual 𝑡]

supp(𝑆!)

(a) [Dual 𝑡]

supp(𝑆!)

Figure 28: Microscopic structures near where (a) red and blue defects or
(b) blue and green defects are closest for a logical phase gate. The colored
solid (dotted) lines indicate the cross-sections of the defects (support of SX )
on the layer; CQs along the lines belong to the defects (support). Gray areas
indicate removed PCs due to the defects.
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in the above configuration. We first show that it is enough to consider only

primal error chains. It is observed that each hybrid merged PC contains

various types of qubits: primal vacuum, dual vacuum, defect, and Y-plane

qubits. Therefore, primal error chains may end at the Y-plane and connect

with defect or dual error chains without being detected. However, since there

always exists a dual error chain equivalent to each defect error chain (see

Sec. 3.3.2), we only need to consider primal and dual error chains.

Let us consider a local undetectable error chain e := eped where ep

(ed) is a primal (dual) error chain. Since there are neither flipped dual PCs

nor dual defects, ed should be closed, thus there exists a stabilizer S such

that suppZ(S) = ed. (If ed is a closed dc(j)-EC, we can find a pc(j)-CS S

whose boundary is supp(ed). ed generally can be written as the product of

multiple closed error chains, thus S is also the product of the corresponding

CSs.) Since suppX(S) is composed of primal qubits, we get ed ∼ edS =

X(suppX(S))∼ X(DS)X(YS), where the symbol “∼” means the equivalence

relation and DS (YS) is defect (Y-plane) qubits in suppX(S). Here, DS can

be assumed to be empty, because ed neither goes around a defect (since e

is local) nor penetrates it (since e should not be detected by defect PCs).

Therefore, ed is equivalent to a primal error chain in the Y-plane, which

means that e is equivalent to a primal error chain.

We find that local undetectable primal error chains are trivial. Each

of such error chains behaves as if the primal Y-plane does not exist since

each hybrid PC or hybrid merged PC and the corresponding original one

contain exactly the same primal qubits in their supports. Remark that a pc-

EC e can end at the pc′−D d only if c = c′ or the surface where e meets

83



[Dual 𝑡]

(a)
(b)

Error chainspr-D

pb-D

pg-D

supp 𝑆!

Figure 29: Nontrivial undetectable primal error chains regarding a logical
phase gate. The colored circles indicate the timelike parts of the defects and
the thick colored lines indicate their spacelike parts. supp(SX) is presented
as colored dotted lines. Each of such error chains can either (a) end at the
three defects or (b) end at two defects, as shown in colored solid lines. In
the case of (b), at least one of the surfaces where it meets the defects should
be spacelike. The intersection points of the error chains and supp(SX) are
marked as triangles.

d is spacelike (see Sec. 3.3.2). Furthermore, since dual CSs SZ and S(2)X

always commute with primal error chains, we only need to consider S(1)X

whose support in each dual layer is shaped as the dotted lines shown in

Fig. 29. Therefore, two types of nontrivial undetectable primal error chains

are possible as shown in Fig. 29: error chains ending at three or two defects.

For an error chain of the second type, at least one of the surfaces where

it meets the defects should be spacelike. We can check that both of them

are nonlocal. (It may seem unclear that an error chain of the second type is

also nonlocal. However, since it should pass by the timelike part of a defect

to reach its spacelike surface, its size depends on the circumference of the

defect, thus it is nonlocal.)
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(a)

supp 𝑆!
"

(b)

supp 𝑆!
"

Figure 30: Removal of some primal PCs near where (a) red and blue
defects or (b) green and blue defects are closest to verify that local nontrivial
undetectable primal error chains in the area do not exist. Each red, green, or
blue area indicates a survived pr-PC, pg-PC, or pb-PC, respectively. Each
purple or orange area indicates a survived merged primal PC. Each qubit
marked by a black circle is a terminable qubit that belongs to the support of
one PC only.
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One may wonder whether the above analysis on error chains works

well even for such extreme cases where two defects are very close. We can

approach the problem differently. Let us consider removing all primal PCs

near where red and blue defects are closest, except red and green PCs (in-

cluding their merged ones) in a region close to the blue defect with respect

to supp
(

S(1)X

)
, as shown in Fig. 30(a). We can observe that each vacuum

qubit in this area either belongs to the supports of one or two PCs or does

not belong to the support of any PC at all. In particular, each vacuum qubit

belonging to the support of one PC is contained in supp(SX) and called a

“terminable qubit.” The region near where green and blue defects are closest

can be considered analogously as shown in Fig. 30(b).

We now show that, if some PCs are removed as suggested above, any

undetectable primal error chain in this area can be decomposed of multiple

undetectable primal error chains by the following steps. For simplicity, we

regard an error set and a PC as its support; i.e., we omit the corresponding

operators. Let e be an undetectable error set.

1. For each qubit qsng
i ∈ e (i = 1,2, · · · ) which does not belong to the

support of any PC, a single-qubit error on qsng
i is undetectable by

itself. Define e′ := e\
{

qsng
1 ,qsng

2 , · · ·
}

.

2. Pick a terminable qubit q0 from e′. If there are no such qubits, skip

this and the following step.

(a) Let S0 be the unique PC flipped by an error on q0. Pick a qubit q1

from e′0∩S0 where e′0 := e′ \{q0} is an error set. This is possible

since e′0 flips S0 only.
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(b) If q1 is terminable, we get an undetectable error set eend
1 :=

{q0,q1}.

(c) If otherwise,

i. Let S1 be the unique PC flipped by an error on q1 such that

S1 ̸= S0. Pick a qubit q2 from e′1∩S1 where e′1 := e′0 \{q1}

is an error set. This is possible since e′1 flips S1 only.

ii. If q2 is terminable, we get an undetectable error set eend
1 :=

{q0,q1,q2}.

iii. If otherwise, repeat step 2(c) analogously for q2,q3, · · · un-

til we reach a terminable qubit and get an undetectable error

set.

3. For each i≥ 2, repeat step 2 for e′ \
(
eend

1 ∪·· ·∪ eend
i−1

)
instead of e′ to

get an undetectable error set eend
i until there are no terminable qubits

in e′ \
(
eend

1 ∪·· ·∪ eend
i
)
.

4. Pick a qubit q0 ∈ e′′ := e′ \
(
eend

1 ∪ eend
2 ∪·· ·

)
. If there are no such

qubits, skip this and the following step.

(a) Let S−1 and S0 be PCs flipped by q0. Pick a qubit q1 ∈ e′′0 ∩ S0

where e′′0 := e′′ \ {q0}. This is possible since e′′0 flips S−1 and

S0. Let S1 be the unique PC flipped by an error on q1 such that

S1 ̸= S0.

(b) Through the same method as step 2, obtain qubits q2, · · · ,qi and

the corresponding PCs S2, · · · ,Si where Si = S−1. The only dif-

ference from step 2 is that e′′j for j < i flips not only S j but also
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S−1. Such a qubit qi always can be reached since the number of

PCs is limited.

(c) ecyc
1 := {q0, · · · ,qi} is then an undetectable error set.

5. For each i≥ 2, repeat step 4 for e′′ \
(
ecyc

1 ∪·· ·∪ ecyc
i−1

)
instead of e′′ to

get an undetectable error set ecyc
i until e′′ = ecyc

1 ∪·· ·∪ ecyc
i holds.

Through the above process, we can decompose an undetectable pri-

mal error chain e into multiple mutually-disjoint undetectable primal error

chains:
{

qsng
1

}
,
{

qsng
2

}
, · · · , eend

1 , eend
2 , · · · , ecyc

1 , ecyc
2 , · · · . For each i, eend

i

starts from a terminable qubit and ends at another, while
{

qsng
i

}
and ecyc

i

only contain non-terminable qubits. Since all qubits in supp(SX) in the area

are terminable, ecyc
i for each i meets supp(SX) twice, while

{
qsng

i

}
and ecyc

i

for each i does not meet it at all. Therefore, e commutes with SX , thus it

is trivial. In other words, every local undetectable primal error chain near

where two defects are closest is trivial if some PCs are removed. This state-

ment also holds for the original setting where PCs are not removed since

a local nontrivial undetectable error chain retains these properties even if

some PCs are removed.

3.4 Error simulations

We here numerically simulate correction of physical-level errors in

MBQC via RTCSs and CCCSs and compare their error thresholds.

88



3.4.1 Error model

We assume a simple error model where vacuum qubits have nontrivial

single-qubit errors independently with the same probability pphy. Note that

these nontrivial errors contain X-measurement, Y , and Z errors as discussed

in Sec. 3.3; X errors on vacuum qubits cannot make logical errors.

3.4.2 Simulation methods

For each simulation with a code distance of d, we simulate the iden-

tity gate of a primal logical qubit covering consecutive 2T + 1 layers with

T = 4d + 1 starting from a primal layer. We used simplified defect models

for efficient simulations. Instead of considering big regions containing the

entire defects, we consider only regions surrounded by boundaries corre-

sponding to the defects. That is, we only take account of error chains located

in the “inner” regions surrounded by the defects. Since those error chains are

strictly shorter than error chains passing outside the regions, we conjecture

that this assumption does not affect the resulting ZL error rates much.

Figure 31 shows single layers of the three simplified defect models

for the simulations regarding RTCSs, 4-8-8 CCCSs, and 6-6-6 CCCSs, re-

spectively. Each layer of the concerned RTCSs has the shape of a square

with a side length of d − 1 in the units of cells for the code distance d,

where the boundaries are of different types (primal and dual). Any error

chain connecting the two primal boundaries incurs a ZL error. For CCCSs,

we consider a region surrounded by three boundaries of different colors,

where each boundary can be regarded as a part of a defect. Any error chain
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(a) (b)

pb-D
pg-D

pr-D

(c)

Figure 31: Structure of a layer in the simplified defect model for the sim-
ulation regarding (a) RTCSs, (b) 4-8-8 CCCSs, or (c) 6-6-6 CCCSs, partic-
ularly when the code distance is d = 3. In (a), blue squares (black circles)
indicate primal (dual) qubits. In (b) and (c), a colored solid line is a bound-
ary corresponding to that color, which can be regarded as a part of a defect.
For all of them, dashed lines are examples of primal error chains incurring
ZL errors. Purple triangles indicate the qubits in the error chains, which show
that the code distances are three. Defect models for d > 3 can be constructed
analogously by increasing the distances between the boundaries while keep-
ing their shapes.

connecting the three boundaries incurs a ZL error.

We calculate the ZL error rate per two layers with the Monte Carlo

method; we repeat a sampling cycle many times enough to obtain a desired
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confidence interval of the ZL error rate. Each cycle is structured as follows:

We first prepare a cluster state whose shape and size are determined

by d and T . Here we assume perfect preparation, namely, no qubit losses or

failures of CZ gates. Errors are then randomly assigned to primal qubits with

a given probability pphy, except those in the first and final layers to prevent

error chains ending at these layers. After that, the outcomes of primal PCs

are calculated, then decoded to locate errors. Edmonds’ minimum-weight

perfect matching (MWPM) algorithm [46, 47, 48] via Blossom V software

[49] is used for decoding (once for RTCSs and six times for CCCSs); see the

following subsection for details. We then identify primal error chains con-

necting different defects which incur ZL errors by comparing the assigned

and decoded errors. We count such error chains while repeating the cycles

and obtain the ZL error rate per two layers Plog. The error threshold pthrs is

obtained from the calculated Plog results for different values of d and pphy;

Plog decreases as d increases if pphy < pthrs and vice versa if otherwise.

3.4.3 Decoding methods

RTCS: In an RTCS, the PC outcomes are decoded to locate errors at

vacuum qubits via Edmonds’ minimum-weight perfect matching algorithm

(MWPM) [46, 47, 48], as frequently used in the literature [34, 50, 51, 52].

Remark that an error chain flips at most two PCs located at its ends, and if

it flips one PC, it ends at the boundary. Hence, our goal is to figure out the

most probable set of error chains based on the PC outcomes.

The decoding procedure is briefly summarized as follows. First, a graph

is constructed from the PC outcomes. The vertex set of the graph contains
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two vertices for each flipped PC: One is the PC itself and the other is the

“boundary vertex.” An edge is connected between each pair of different

PCs, each pair of a PC and the corresponding boundary vertex, and each

pair of different boundary vertices. A “weight” value is assigned to each

edge as follows: If both the vertices are PCs, the weight is the number of

qubits in the shortest error chain between them. If only one of them is a

PC, the weight is the number of qubits in the shortest error chain between

the PC and the closest boundary. If both of them are boundary vertices, the

weight is zero.

We use the MWPM algorithm via Blossom V software [49] to search

for a set of edges of the graph constructed above which covers all the ver-

tices, does not contain duplicated vertices, and minimizes the total weight.

Each edge in the resulting set corresponds to a pair of PCs flipped by an

error chain or a PC flipped by an error chain ending at the boundary, un-

less the edge connects two boundary vertices, which is ignored. We can thus

locate errors from the error chain along the shortest path for each edge.

CCCS: The decoding method for RTCSs is not directly applicable to CCCSs,

since an error in a CCCS flips at most three PCs, unlike the case of an RTCS.

The decoding for each sample requires the application of the MWPM algo-

rithm six times.

First, the outcomes of pb-PCs and pg-PCs are decoded to find the

faces in Lpr containing only one qubit with an error, via the method anal-

ogous to that for RTCSs. This is possible since each of such faces flips at

most two (blue or green) PCs like an error in an RTCS. Remark that each
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face in Lpr corresponds to a pbAQ, pgAQ, or prL. Errors on pbAQs and

pgAQs are thus obtained from this process, while errors on prLs are left

ambiguous (since a prL is composed of two pCQs). Next, the left results

for prLs obtained above and the outcomes of pr-PCs are decoded to locate

errors on prAQs and pCQs, treating the parity of the number of errors in

each prL like a PC. This is possible since an error on a prAQ or pCQ flips

at most two among pr-PCs and the error parities of prLs.

All the errors are finally located by the above process. However, to

make the decoding more accurate, we repeat it for Lpb and Lpg analogously

and select the smallest set of decoded errors among the three results.

We lastly note the similarities and differences between our decoding

method on CCCSs and the color-code decoders suggested in Refs. [53, 54,

55]. First, they have in common that the MWPM algorithm is first used

in the (“shrunk” in our scheme and “restricted” in Refs. [54, 55]) lattice

corresponding to each color derived from the original lattice. However, the

processes after that are different: The MPWM algorithm is used one more

time in our method, while a “local lifting” procedure is applied in the other

decoders. It is not straightforward to convert these color-code decoders to

suit our scheme since the lattice structures of CCCSs are in 3D and contain

not only code qubits arranged on color-code lattices but also ancilla qubits.

If such conversions are possible, it will be worth investigating which one

performs better.
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3.4.4 Results

Figure 32 shows the results of the simulations: ZL error rates (Plog)

against nontrivial physical-level error rates (pphy) for different MBQC schemes

and code distances (d). The obtained error thresholds are about 2.8% for 4-

8-8 CCCSs, 2.7% for 6-6-6 CCCSs, and 3.3% for RTCSs. The values for

CCCSs are slightly lower than the value for RTCSs, but they have similar

orders of magnitude.
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3.5 Resource analysis

3.5.1 Resource overheads for placing logical qubits

We first analyze the minimal resource overheads required to place log-

ical qubits in RTCSs or CCCSs. We consider two schemes for RTCS com-

putation: defect-based and patch-based ones. In the defect-based scheme

[34, 35, 31, 36], each logical qubit is encoded in a pair of defects and logi-

cal operations are done by defect braiding or state distillation. In the patch-

based scheme [2], logical qubits are encoded in square “patches” separated

from each other, and logical operations are done by lattice surgery or state

distillation. For CCCS computation, we consider two types of lattices: 4-8-8

and 6-6-6.

Except for the patch-based RTCS scheme, we consider a periodic hexag-

onal arrangement of parallel timelike primal defects, where primal logical

qubits with the code distance of d are compactly packed in the space. In

other words, the spaces between defects are determined to minimize the

number of physical qubits per logical qubit while keeping all the possible

nontrivial undetectable error chains to contain d or more qubits. We first

optimize the arrangements while ignoring the implementation of nontrivial

logic gates. We then investigate how the arrangements should be changed to

make it possible to implement each logic gate on an arbitrary logical qubit

(or an arbitrary pair of logical qubits) while keeping the code distance the

same. In particular, for CCCS computation, we first get the arrangements

for implementing each one of the gates (the CNOT, Hadamard, and phase

gates) and then the arrangements where arbitrary logic gates are applicable.
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Note that we here do not consider implementing multiple adjacent gates at

the same time. For a more detailed method, see Sec. 3.7.1.

Table 3 shows the calculated values of n/k and NCZ/k in terms of the

code distance d, where k is the number of logical qubits and n (NCZ) is the

number of required physical qubits (CZ gates) per layer. Note that NCZ/n is

Table 3: Resource overheads of RTCS and CCCS computation for various
sets of implementable logic gates, evaluated by the numbers of physical
qubits (n) and CZ gates (NCZ) per layer in terms of the code distance (d) and
the number of logical qubits (k). For RTCS computation, the patch-based
and defect-based schemes are considered. For CCCS computation, the 4-8-8
and 6-6-6 lattices are considered. Except for the patch-based RTCS scheme,
optimal hexagonal arrangements of parallel timelike primal defects are used.
The arrangements are optimized while either ignoring all nontrivial logic
gates, considering only one type of logic gate, or considering general gates.
Only the leading-order terms on d are calculated.

Implementable logic gates n/k NCZ/k

(a) Defect-based RTCS computation
- 6.6d2 13d2

CNOT 6.6d2 13d2

(b) Patch-based RTCS computation
- 3d2 6d2

CNOT 6d2 12d2

(c) 4-8-8 CCCS computation
- 7.5d2 20d2

CNOT 7.5d2 20d2

Hadamard 25d2 66d2

Phase 19d2 50d2

General 32d2 84d2

(d) 6-6-6 CCCS computation
- 6.3d2 17d2

CNOT 6.7d2 18d2

Hadamard 27d2 72d2

Phase 15d2 39d2

General 29d2 77d2
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2 for RTCSs and 8/3 for CCCSs. It is observed that the values of n/k are

not significantly different from scheme to scheme if only the CNOT gates

are considered. However, the Hadamard and phase gates with CCCSs re-

quire relatively large values of n/k. Note that, in a real implementation, the

arrangement of logical qubits does not always have to be the most general

one which is the most costly, thus n/k lies somewhere between these val-

ues. Depending on its purpose, not all types of logic gates may need to be

available for each qubit.

3.5.2 Resource overheads for nontrivial logic gates

Considering the results of the previous subsection, our CCCS scheme

seems to be worse than the RTCS schemes in terms of resource efficiency.

However, remark that those results only show physical qubits per logical

qubit in a layer, not the real numbers of physical qubits to implement each

logic gate, which is investigated in this subsection. To calculate them, we

need to know the number of layers required for each gate; see Secs. 3.7.2

and 3.7.3 for the analysis.

Table 4 presents the number of physical qubits required to implement

a CNOT gate for each MBQC scheme. For CCCS computation, we consider

the two cases: Defects are arranged so that only the CNOT gate or all logic

gates are applicable. The numbers of physical qubits per layer are directly

obtained from the results of Table 3. Considering the most general arrange-

ment of defects in each scheme, a CNOT gate requires about five times more

physical qubits in CCCS computation than in RTCS computation, for the

same code distances.
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We now evaluate resource overheads for the logical phase gates, as-

suming that the gates are implemented by state distillation in RTCS com-

putation. A logical ancilla state |YL⟩ := |0L⟩+ i |1L⟩ is used to implement a

phase gate in RTCS computation through the circuit in Fig. 33(a). If |YL⟩

has an error and the other parts of the circuit are perfect, the resulting phase

gate also has an error. Seven noisy |YL⟩ states can be distilled to obtain a less

noisy |YL⟩ state [31, 1] via the circuit shown in Fig. 33(b); if each input state

has an XL or ZL error with a probability of ε and the distillation process is

perfect, the output state has a probability 7ε3 of having an error. The success

probability of the distillation process is 1−7ε.

The numbers of physical qubits required for the logical phase gates

are analyzed in Sec. 3.7.2 for RTCS computation and Sec. 3.7.3 for CCCS

computation, and the results together with the residual errors εres in the dis-

tilled |YL⟩’s are presented in Table 5. The results clearly show that a phase

Table 4: Numbers of physical qubits required for the logical CNOT gates
with RTCSs or CCCSs. Only the leading order terms on d are presented.
We consider the two cases for CCCS computation: Defects are arranged so
that (a) only the CNOT gate or (b) all logic gates are applicable. The results
of Table 3 are used to obtain the numbers of physical qubits per layer. Note
that, for patch-based RTCS, about 4d layers are additionally needed if the
two logical qubits are not adjacent.

Type # per layer # of layers Total #

Defect-based RTCS 13d2 4.5d 59d3

Patch-based RTCS 12d2 4d 48d3

4-8-8 CCCS (a) 15d2 4d 60d3

6-6-6 CCCS (a) 13d2 4.4d 60d3

4-8-8 CCCS (b) 63d2 4d 250d3

6-6-6 CCCS (b) 56d2 4.4d 250d3
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Figure 33: (a) Implementation of a logical phase gate SL with an ancilla
logical state |YL⟩ := (|0L⟩+ i |1L⟩)/

√
2. ZLSL or SL is applied on the input

state if the ZL-measurement result z is +1 or −1, respectively. (b) Distilla-
tion circuit for a |YL⟩ state [1]. Each SL gate is implemented with a noisy
|YL⟩ state by the circuit in (a). The XL-measurement (MX ) results determine
whether the distillation succeeds or not. If it succeeds, the distilled state is
obtained from |ψL⟩.

gate with CCCSs is significantly more resource-efficient (at least about 26

times) than with RTCSs. Note that the non-determinacy of distillation is not

considered here; if considering it, the difference in resource overheads gets

even bigger.

It is inappropriate to directly compare the Hadamard gates in the two

schemes since RX(π/2) := exp
(
i π

4 X
)

is used in RTCS computation to com-

plete a universal set of gates instead of the Hadamard gate [31, 2]. Since

RX(π/2) is also implemented by state distillation with the state |AL⟩, we can
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at least say that the Hadamard gate in CCCS computation is a more resource-

efficient element to complete a universal set of gates than RX(π/2) in RTCS

computation. In detail, the circuit to implement RX(π/2) is the same as the

one shown in Fig. 33(a) except that the target and control of the CNOT gate

are swapped and the ancilla logical qubit is measured in the X-basis, not the

Z-basis. Therefore, it requires almost the same number of physical qubits as

the logical phase gate shown in Table 5. On the other hand, a Hadamard gate

in CCCS computation requires only about 90d2 physical qubits for both the

4-8-8 and 6-6-6 lattice since it needs three consecutive layers: the (tH −1)-,

tH-, and (tH +1)-layer in Fig. 17.

The above analyses may be not fair comparisons since the same code

distance does not mean the same level of protection against errors. Thus, in

Fig. 34, we illustrate the estimated numbers (n) of physical qubits required

Table 5: Numbers of physical qubits required for the logical phase gates in
defect-based (DB) RTCS, patch-based (PB) RTCS, or CCCS computation.
Only the leading order terms on d are presented. For each RTCS scheme, we
consider the two cases: The distillation cycle is repeated once or twice. For
CCCS computation, we assume that the defects are arranged so that all logic
gates are applicable. Lower bounds of residual errors in the output |YL⟩ states
are calculated for the cases of RTCS computation. The bounds are achieved
when logical errors do not occur during the distillation processes. ε is the
error probability of the initial noisy |YL⟩ obtained by state injection.

Type Number of physical qubits Residual error

DB RTCS (Distilled once) 1000d3 ≥ 7ε3

DB RTCS (Distilled twice) 7900d3 ≥ 74ε9

PB RTCS (Distilled once) 840d3 ≥ 7ε3

PB RTCS (Distilled twice) 6400d3 ≥ 74ε9

4-8-8 CCCS 32d3 -
6-6-6 CCCS 28d3 -
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Figure 34: Estimated numbers of physical qubits required for (a) an iden-
tity gate, (b) a CNOT gate, or (c) a phase gate versus the logical error rate
Plog for CCCS and RTCS computation, while fixing the physical-level error
rate pphy to 1%. For (a), it is assumed that the total numbers of layers are
equal to twice the code distances. For RTCS computation in (c), we consider
using the state distillation cycle once to implement the phase gate. Extrap-
olated values for RTCS computation are shown as dashed lines. Note that
these results, particularly (b) and (c), are rough estimations since we use the
results in Sec. 3.4 which cover only ZL errors in the identity gates.

for each logic gate against achievable logical error rates (plog) while fixing

the physical-level error rate (pphy) to 1%, considering the optimal arrange-

ments allowing general logic gates. For the identity gate, we assume that

the number of layers is equal to twice the code distance d. It apparently

shows that, although the identity and CNOT gates with CCCSs are slightly

more costly than those with RTCSs, the phase gate with CCCSs is signifi-

cantly more resource-efficient than that with RTCSs. Note that these results

are rough estimations since they are obtained by using the logical error rates

calculated in Sec. 3.4 which covers only ZL errors in the identity gates. More

precisely, for each logic gate, scheme, and code distance, we here assume
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that the logical error rate is equal to pZL

∑
i Ti, where pZL is the correspond-

ing ZL error rate per two layers calculated in Sec. 3.4 and Ti is the number

of layers demanded by the ith logical qubit participating in the gate (which

can be an ancillary logical qubit for distillation).

We lastly remark that state distillation is not the only method to im-

plement the Hadamard and phase gates with RTCSs. These gates can be

implemented by lattice dislocations [2, 44], which may lead to small re-

source overheads comparable to those in CCCS computation. However, we

then need to sacrifice the regularity of the lattices, which is another obstacle

to realization.

3.6 Remarks

In this chapter, we have proposed a new topological measurement-

based quantum computation (MBQC) scheme via color-code-based clus-

ter states (CCCSs). We have shown that our scheme is comparable with or

even better than the conventional scheme via Raussendorf’s 3D cluster states

(RTCSs) [34, 35, 31, 36], in the following three aspects:

1. Universality: Initializations and measurements of logical qubits and

all the elementary logic gates constituting a universal set of gates (the

CNOT, Hadamard, phase, and T gates) can be implemented via appro-

priate placement of defects and Y-planes. We described each one of

them explicitly in Sec. 3.2.

2. Fault-tolerance: We suggested the error correction scheme for each

area of qubits in Sec. 3.3. We further verified in Sec. 3.4 that the error
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thresholds for errors in the vacuum have a similar order of magnitude

with the values for RTCSs.

3. Hardware-efficiency: Contrary to the case of using RTCSs, the Hadamard

and phase gates are implemented natively with CCCSs, thanks to the

nature of the self-duality of the 2D color codes. One way to implement

these gates using RTCSs is to use state distillation, but it typically

consumes many ancillary logical qubits [29, 31, 20]. In Sec. 3.5.2,

we verified quantitatively that the phase gate in CCCS computation

demands significantly fewer physical qubits (at least about 26 times)

than that the gate in RTCS computation implemented by state distil-

lation. Other known methods to implement these gates with RTCSs

require lattice dislocations [2, 44] to the best of our knowledge. Al-

though they are more resource-efficient than using distillation, the

regularity of the lattices should be sacrificed, which may be unde-

sirable from a practical point of view. Our protocol with CCCSs does

not have such a problem as well; it always uses strictly regular lattices.

We particularly emphasize the last aspect on hardware-efficiency as a

definite improvement from the previous schemes, which makes our scheme

a more easy-to-implement alternative to those.

Our work has several limitations. First, logical T gates still need costly

state distillation. Some methods to significantly reduce the cost of distilla-

tion have been proposed, such as using logical qubits with low code dis-

tances as ancilla qubits [56] or exploiting redundant ancilla encoding and

flag qubits [57]. Moreover, 3D gauge color codes [58, 59, 60, 61, 62, 63,
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64, 65] enables non-Clifford gates without distillation. It may be possible

to translate these protocols to be applicable to our MBQC scheme. We also

assume the perfect preparation of cluster states, which is unrealistic. It is un-

clear how much the fault-tolerance gets weaker if we consider qubits losses

or failures of CZ gates, which is particularly related to photon losses in op-

tical systems. It will be interesting future works to further investigate and

resolve these problems.

3.7 Appendix

3.7.1 Methods for analyzing resource overheads of plac-
ing logical qubits

We here describe the method to calculate the resource overheads for

placing logical qubits, which gives the results in Sec. 3.5.1. To make the

code distance equal to d, we should find arrangements of defects or patches

where all the possible nontrivial undetectable error chains contain d or more

qubits.

We first define the coordinate systems for the analysis. The x and y

axes are presented in Fig. 1(b) for RTCSs and Fig. 3 for the two types of

CCCSs. The unit length is the length of a side of a unit cell for RTCSs, the

distance between adjacent prAQ and pgAQ for 4-8-8 CCCSs, and half the

distance between two adjacent AQs with the same color for 6-6-6 CCCSs.

A unit area contains three qubits and six CZ gates for RTCSs, three qubits

and eight CZ gates for 4-8-8 CCCSs, and 3
√

3/2 qubits and 4
√

3 CZ gates

for 6-6-6 CCCSs. Note that, when counting CZ gates, we regard that each
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CZ gate connecting different layers belongs to these layers divided in half.

The analysis for the patch-based RTCS scheme is straightforward. Each

patch is a square with side length d and the gaps between patches are suffi-

cient to be O(1). We therefore get n/k ≈ 3d2 and NCZ/k ≈ 6d2.

For the other three schemes, we consider hexagonal arrangements of

parallel timelike primal defects, where every error chain connecting differ-

ent defects or surrounding a defect has d or more qubits. We need to find the

optimal distances between defects minimizing n/k.

The optimal arrangement for the defect-based RTCS scheme is shown

in Fig. 35(a) where each black square indicates a primal defect and the pur-

ple area indicates a region occupied by a logical qubit. It is straightforward

to obtain the distances, considering that the shortest error chain connecting

(0,0) and (x,y) contains |x|+ |y|+O(1) qubits. The area occupied by a log-

ical qubit is thus about 35
16 d2 ≈ 2.19d2, and since a unit area contains three

qubits and six CZ gates, we get n/k ≈ 6.56d2 and NCZ/k ≈ 13.1d2.

It is more tricky to obtain the optimal arrangements in 4-8-8 or 6-6-

6 CCCSs. Figure 35(b) shows the concerned hexagonal arrangement with

five parameters (α,γ,δ,δ′,ε) considering the symmetry, where each colored

square indicates a defect of the color.

We first consider 4-8-8 CCCSs. The shortest pc-EC connecting (0,0)

and (x,y) contains

lc(x,y) :=


2max(x,y)+O(1) if c= r,

|x|+ |y|+O(1) otherwise.
(3.18)
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Figure 35: Arrangement of timelike primal defects for calculating the
resource overheads of MBQC via (a) RTCSs or (b) CCCSs. Their pro-
jections on a plane perpendicular to the time axis are schematized. Each
black, red, green, or blue square is a defect, where its color means the
color of the defect in CCCS computation. Each purple rectangle surrounded
by dashed lines is an area occupied by a logical qubit. Dotted lines indi-
cate all the possible types of error chains which may be the shortest ones,
which are used for obtaining the values of the marked spaces minimiz-
ing the area of a logical qubit. Note that, in (b), counterparts of some er-
ror chains regarding the exchange of blue and green defects are omitted,
since the two lattices (4-8-8 and 6-6-6) which we concern have symmetry
on those defects. The optimal spaces for RTCSs are directly presented in
(a). For CCCSs, they are (α,γ,δ,δ′,ε) = (1

2 d,0, 1
2 d, 1

2 d, 1
2 d) for 4-8-8 and

(α,γ,δ,δ′,ε) ≈ (0.464d,0.268d,0.634d,0.634d,0.269d) for 6-6-6. Here,
the unit length is a side of a unit cell in RTCSs [see Fig. 1(b)], the distance
between adjacent prAQ and pgAQ in 4-8-8 CCCSs (see Fig. 5), and half the
distance between two adjacent prAQs in 6-6-6 CCCSs [see Fig. 3(b)].
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qubits. Also, the shortest defect error chain in a pc-D connecting (0,0) and

(x,y) contains lc(x,y)/2 qubits if the error chain is in a spacelike surface

of the defect. If otherwise, it contains lc(x,y) qubits. (See Fig. 22.) The

width α of each defect can be derived from the shortest defect error chain

surrounding it: α= 1
2 d. (It may be more optimal for defects to have different

widths for different colors. We however constrain the widths to be equal for

ease of calculation.) The following eight inequalities are derived from the

eight possible types (A)–(H) of the error chain in Fig. 35(b):



(A) 2(δ+δ′+α)≥ d,

(B) δ+δ′+α≥ d,

(C) 2max
[

γ+α

2 + ε,min(δ,δ′)
]
≥ d,

(D) α+γ

2 + ε+min(δ,δ′)≥ d,

(E) γ+2min(δ,δ′)≥ d,

(F) min(δ,δ′)+ ε+ 1
2 max(γ−α,0)≥ d,

(G) α+2ε≥ d,

(H) α+ γ+ ε≥ d.

(3.19)

Note that, to get the inequalities corresponding to (E)–(H), the points at

which three error chains meet should be placed carefully. It is straightfor-

ward to see that placing each point just next to the red defect minimizes the

length of the error chain. The area S occupied by a logical qubit is written
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as

S≈
(

3
2

α+
γ

2
+ ε

)(
δ+δ

′+2α
)
. (3.20)

Minimizing S subject to the above inequalities, we get S ≈ 2.5d2 where

the corresponding spaces are (α,γ,δ,δ′,ε) =
( 1

2 ,0,
1
2 ,

1
2 ,

1
2

)
d. We thus obtain

n/k ≈ 7.5d2 and NCZ/k ≈ 20d2.

The optimal arrangement for 6-6-6 CCCSs also can be derived simi-

larly. The shortest error chain connecting (0,0) and (x,y) for x,y ≥ 0 con-

tains

l(x,y) := max
(

x+
1√
3

y,
2√
3

y
)
+O(1) (3.21)

qubits. The length of the corresponding shortest defect error chain is half of

it if the error chain is in a timelike surface and the same as it if otherwise. We

thus get α =
(
2
√

3−3
)
d ≈ 0.464d, considering an error chain surrounding

109



a defect. The following inequalities are derived for each type of error chain:



(A), (B) 2√
3
(α+δ+δ′)≥ d,

(C), (D) max
[

α+γ

2 + ε+ 1√
3

min(δ,δ′),

2√
3

min(δ,δ′)
]
≥ d,

(E) γ+ 2√
3

min(δ,δ′)≥ d,

(F) ε+ 2√
3

min(δ,δ′)≥ d,

(G) α+2ε≥ d,

(H) α+ ε+ γ≥ d.

(3.22)

Minimizing S in Eq. (3.20) subject to the inequalities, we get S ≈ 2.41d2

where the corresponding spaces are (α,γ,δ,δ′,ε)≈ (0.464,0.268,0.634,0.634,0.269)d.

We thus obtain n/k ≈ 6.27d2 and NCZ/k ≈ 16.7d2.

3.7.2 Methods for analyzing resource overheads of logic
gates in RTCS computation

CNOT gate: A logical CNOT gate in patch-based RTCS computation [43,

2] can be done with lattice surgery between logical qubits in diagonally-

adjacent patches, which requires an ancillary logical qubit adjacent to both

of them. Therefore, there should be spaces for such ancillary qubits to be

defined. The checkerboard architecture [66] visualized in Fig. 36(a) allows

a CNOT gate between an arbitrary pair of qubits (orange circles). The gate

can be directly done if the qubits are diagonally-adjacent; otherwise, one

of them should be moved appropriately while setting aside qubits in the
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A

(a) (b)

Figure 36: Checkerboard architecture in patch-based RTCS computa-
tion. Blue (grey) squares are patches for logical data (ancilla) qubits. (a)
A CNOT gate between two data qubits (orange circles) is done with two
“merge & split” operations [2] (black lines) between data qubits and the an-
cilla qubit A. The ancilla qubit is prepared just before the operation. (b) A
CNOT gate between non-adjacent qubits is done by moving a logical qubit
appropriately while setting aside qubits in the path.

path for a while as shown in Fig. 36(b). Therefore, we get n/k ≈ 6d2 and

NCZ/k≈ 12d2, which are twice the values obtained without considering the

CNOT gate.

A CNOT gate between two adjacent qubits requires 4d layers (2d for

each “merge & split” operation) to keep the code distance at d since a time-

like error chain contains one qubit per two layers. Therefore, at least 48d3

physical qubits are required for a CNOT gate. If the two qubits are not adja-

cent, 4d layers are additionally needed to set aside qubits in the path and put

them back. Note that, in the original scheme with the surface codes [66],

multiple SWAP gates are necessary to move logical qubits, which is very

time-consuming; it is one of the advantages of MBQC that logical qubits

can be moved quite flexibly.

A logical CNOT gate in defect-based RTCS computation is done by de-

fect braiding [58]; the control logical qubit is first switched to a dual qubit,
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one of the defects constituting it proceeds to surround a defect of the target

qubit (called a braiding operation), and finally, the control qubit returns

to a primal qubit. Figure 37(a) shows examples of such operations. New

types of nontrivial undetectable error chains arise from the coexistence of

primal and dual defects as shown in Fig. 37(a): the error chains ending at

primal defects and surrounding dual defects (or vice versa). These give re-

strictions that primal and dual defects must be more than a certain distance

apart (d/8 or d/4). Fortunately, the optimal arrangement in Fig. 35(a) is spa-

cious enough to satisfy this condition. Thus, the resource overheads remain

the same: n/k ≈ 6.56d2 and NCZ/k ≈ 13.1d2.
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The minimal number of layers required for a CNOT gate is 9
2 d, which

can be obtained by considering possible error chains shown in Fig. 37(b).

Hence, the number of physical qubits for a CNOT gate is ∼ 59.1d3.

We note two things regarding the CNOT gate in defect-based RTCS

computation. First, a CNOT gate between any pair of non-adjacent logical

qubits is also possible without modifying the arrangement. The entire pro-

cess discussed above including the number of required layers remains the

same, except that one of the dual defects should proceed further spacelikely.

Second, multiple CNOT gates with the same control qubit can be done si-

multaneously by braiding a defect of the control qubit in a way that its path

surrounds one of the defects of every target qubit. However, additional lay-

ers may be needed during the braiding operation, depending on the shape of

the path. These two statements also hold for CCCS computation.

Phase gate with state distillation: We consider using state distillation for

the logical phase gate. As shown in Fig. 33(a), a phase gate is implemented

with an ancilla logical state |YL⟩ := (|0L⟩+ i |1L⟩)/
√

2. A noisy |YL⟩ is first

prepared by state injection and then distilled with the circuit in Fig. 33(b).

If the initial |YL⟩ has an XL or ZL error with a probability of ε, the distilled

state has an error rate of 7ε3 [31, 1]. The distillation circuit can be repeated

multiple times to achieve a low enough error rate.

To obtain the resource overheads, we count physical qubits used for

CNOT gates. We assume that multiple CNOT gates with the same control

qubit can be implemented simultaneously, although it is uncertain for patch-

based RTCS computation to the best of our knowledge. (It is known that
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such processes are possible if the rotated surface codes are used [67].)

Using the circuit in Fig. 33(b), we can find out a lower bound of re-

quired layers for each logical qubit. For example, denoting the number of

layers used for a CNOT gate by TR, the second one requires 2TR layers, TR for

each of the groups of CNOT gates with the same control qubit in the distilla-

tion circuit and in the SL circuit of Fig. 33(b). The fourth one requires 5TR

layers, 4TR for the CNOT gates in the distillation and SL circuits and TR for

waiting until the fourth group of single-control CNOT gates ends. Addition-

ally, we need seven logical qubits for noisy |YL⟩ states, each of which occu-

pies TR layers. The number of total physical qubits required for a distillation

circuit is then lower-bounded by (2+2+2+5+4+4+6+1+7)rRTR =

33rRTR, where rR is the number of physical qubits per logical qubit in a

layer.

If a |YL⟩ state distilled once is used for a phase gate, total 35rRTR (≈

840d3 for patch-based and ≈ 1030d3 for defect-based) physical qubits are

required since the SL circuit in Fig. 33(a) additionally occupies 2rRTR qubits.

If a |YL⟩ state distilled twice is used, (33× 7+ 33+ 2)rRTR = 266rRTR (≈

6380d3 for patch-based and≈ 7850d3 for defect-based) qubits are required.

3.7.3 Methods for analyzing resource overheads of logic
gates in CCCS computation

For CCCS computation, we first investigate the optimal arrangement

of defects to implement each nontrivial logic gate: the CNOT, Hadamard,

or phase gate. Using these results, we obtain an arrangement allowing the
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implementation of the universal set of gates. Lastly, we calculate the number

of physical qubits required for each gate.

CNOT gate: The analysis for the CNOT gate in CCCS computation is anal-

ogous to that in defect-based RTCS computation. Similarly, there exist un-

detectable nontrivial error chains involved in both primal and dual defects,

which may constrain the minimal distances between them. However, if the

width α of each defect is equal to or larger than that obtained in Sec. 3.5.1

(α = 1
2 d for the 4-8-8 lattice and α = 0.464d for the 6-6-6 lattice), such er-

ror chains are always longer than the code distance d. We, therefore, do not

need to consider spacelike gaps between primal and dual defects unless they

overlap. (If they overlap, defect PCs are no longer compatible.)

Figure 38 shows some examples of CNOT gates in CCCS computation.

For a CNOT gate, the control logical qubit is first switched to a dual logical

qubit (squares with dashed borders) through a primality-switching gate. It

is important to make the spacelike part of one of the dual defects penetrate

a primal CS of a different color (see Fig. 16), as shown by purple circles in

Fig. 38. Additionally, the dual defects should be sufficiently far away from

each other to keep the code distance. As long as these conditions meet, the

dual defects can be placed quite freely. After the primality-switching gate,

the dg-D or db-D circles around the pr-D of the target logical qubit. In

order for these operations to be possible, we need three simple conditions in

addition to Eq. (3.19) or (3.22):

δ≥ α, δ
′ ≥ α, ε≥ α. (3.23)
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The previous result for the 4-8-8 lattice satisfies these conditions: (α,γ,δ,δ′,ε)=( 1
2 ,0,

1
2 ,

1
2 ,

1
2

)
d, n/k ≈ 7.5d2, and NCZ/k ≈ 20d2. However, for the 6-6-6

lattice, the parameters should be modified: α = γ = δ = δ′ = ε ≈ 0.464d,

n/k ≈ 6.72d2, and NCZ/k ≈ 17.9d2.
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We now count the required number of layers for a CNOT gate. Remark

that a timelike error chain contains one qubit per two layers. The calcula-

tion is analogous to that for RTCS computation in Fig. 37(b); denoting the

depth (i.e., thickness along the time axis) of each spacelike defect by tdepth

and the gap between each pair of adjacent primal and dual defects along

the time axis by tgap (which are in the units of layers), the total number of

required layers is TCNOT = 4tdepth +2tgap +2d. For both types of lattices, the

conditions

1
2

tdepth +2α≥ d,

1
2
(
tgap + tdepth

)
+α≥ d

are sufficient for error chains surrounding each defect (either surrounding

it completely or ending at other defects of different primality) to be longer

than d. Therefore, we get tCNOT = 4d for the 4-8-8 lattice and tCNOT ≈ 4.43d

for the 6-6-6 lattice.

Hadamard gate: Remark that every error chain connecting the defects

and the boundaries of the Y-planes for the gate should be longer than the

code distance d, as discussed in Sec. 3.3.3. We assume that the Y-planes are

square in shape as visualized in Fig. 39 where possible error chains are also

presented. For the 4-8-8 lattice, we get


α≥ d

2 , δ′ ≥ 3
2 d,

ε− 1
2(α+ γ)≥ 2d, γ+2δ≥ d,

(3.24)
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𝜀
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Figure 39: Arrangement of defects for a logical Hadamard gate. The Y-
plane (orange square) covering the logical qubit should be wide enough so
that error chains (colored dotted lines) connecting its boundary and the de-
fects are longer than the code distance d.

and for the 6-6-6 lattice, we get


α≥

(
2
√

3−3
)
d, 2√

3
δ′ ≥ 2d,

ε− 1
2(α+ γ)≥ 2d, γ+ 2√

3
δ≥ d.

(3.25)

Minimizing S subject to the above conditions, for the 4-8-8 lattice, we get

n/k = 24.75d2 and NCZ/k = 66d2 for (α,γ,δ,δ′,ε) =
( 1

2 ,0,
1
2 ,

3
2 ,

9
4

)
d. Sim-

ilarly, for the 6-6-6 lattice, we get n/k ≈ 26.8d2 and NCZ/k ≈ 71.5d2 for

(α,γ,δ,δ′,ε)≈ (0.464,0,0.866,1.73,2.23)d.

Lastly, a logical Hadamard gate requires only three layers: the (tH −1)-

, tH-, and (tH +1)-layer in Fig. 17. Therefore, although the gate demands
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Figure 40: Arrangement of defects for a logical phase gate in CCCS com-
putation. Defects of width α0 are extended spacelikely to surround the Y-
plane. Three types of error chains are considered: Type-1 is for those ending
at the three defects in the concerning logical qubit and Type-2 (Type-3) is
for those ending at two defects of different colors in the same logical qubit
(different logical qubits).

relatively many physical qubits per layer, the total number of required qubits

is rather small.

Phase gate: We lastly consider the logical phase gate. Remark that de-

fects are extended spacelikely to surround the Y-plane for a phase gate (see

Secs. 3.2.5 and 3.3.3). We assume that these extensions are done as shown

in Fig. 40, where possible nontrivial undetectable error chains are also vi-

sualized. We classify the error chains into Type-1, -2, and -3: Type-1 is for

those ending at the three defects in the concerning logical qubit, and Type-2
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(Type-3) is for those ending at two defects of different colors in the same

logical qubit (different logical qubits). Note that Type-2 and Type-3 error

chains are possible since they can end at the spacelike surface of a defect

regardless of their colors (see Sec. 3.3.2). Such error chains may cause dif-

ficulties because some of them have lengths that only depend on the width

of each timelike defect as shown in Fig. 40, but the previous values of the

width α (0.5d for the 4-8-8 lattice and 0.464d for the 6-6-6 lattice) may be

not enough for them to be longer than d. Nevertheless, the width α0 of each

spacelike defect does not need to be α; we can set it to O(1) and make it

deep enough along the time axis. Another problem is that it is not straight-

forward to analytically find conditions regarding Type-1 error chains. We

thus numerically estimate the condition on γ and δ regarding them. In de-

tail, we randomly sample Type 1 error chains by choosing their end and

joint points for a sufficiently large number (≥ 10000) of times, then check

whether there are error chains shorter than d.

For the 4-8-8 lattice, we get the following conditions in addition to
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Eq. (3.19):



Type-1 (numerical): γ ⪆ 0.4d,

0.3γ+δ ⪆ 0.45d

Type-2: 2α≥ d,

3
2 α+ 1

2 γ≥ d,

α+δ≥ d,

Type-3: δ′ ≥ d,

ε− 1
2(α+ γ)≥ d.

(3.26)

The conditions for Type-1 error chains are valid when α = 1
2 d. By minimiz-

ing S in Eq. (3.20) subject to the above conditions, we get n/k = 18.75d2

and NCZ/k = 50d2 for (α,γ,δ,δ′,ε) =
( 1

2 ,
1
2 ,

1
2 ,1,

3
2

)
d.

For the 6-6-6 lattice, we get the conditions:



Type-1 (numerical): γ ⪆ 0.5, δ ⪆ 0.4

Type-2:
(

1+ 2√
3

)
α≥ d,

3
2 α+ 1

2 γ≥ d,

2√
3
(α+δ)≥ d,

Type-3: 2√
3
δ′ ≥ d,

ε− 1
2(α+ γ)≥ d.

(3.27)

The conditions on Type-1 error chains are valid when α =
(
2
√

3−3
)
d. By
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minimizing S, we get n/k≈ 14.5d2 and NCZ/k≈ 38.6d2 for (α,γ,δ,δ′,ε)≈

(0.464,0.608,0.402,0.866,1.537)d.

Lastly, the number of layers Tphase required for a phase gate is deter-

mined by the widths of the spacelike defects surrounding the Y-plane. Since

α0 = O(1), the depth of each spacelike defect should be at least d layers.

Therefore, Tphase = d holds for both types of lattices.

Optimal arrangement for general logic gates: Until now, we have in-

vestigated the arrangements of defects to implement each of the logical

CNOT, phase, and Hadamard gates. We next find the optimal arrangements

where all the logic gates are applicable. For the 4-8-8 lattice, consider-

ing the conditions in Eqs. (3.19), (3.23), (3.26), and (3.24), we get n/k =

31.5d2 and NCZ/k = 84d2 for (α,γ,δ,δ′,ε) = (1
2 ,

1
2 ,

1
2 ,

3
2 ,

5
2)d. For the 6-

6-6 lattice, considering the conditions in Eqs. (3.21), (3.23), and (3.27),

and (3.25), we get n/k ≈ 28.7d2 and NCZ/k ≈ 76.5d2 for (α,γ,δ,δ′,ε) =

(0.464,0.608,0.464,1.73,2.54)d.
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Chapter 4

Linear-optical measurement-based
quantum computing with
parity-encoded multiphoton qubits

The contents of this chapter are largely based on the following manuscript:

Seok-Hyung Lee, Srikrishna Omkar, Yong Siah Teo, and Hyunseok Jeong,

“Parity-encoding-based quantum computing with Bayesian error tracking,”

arXiv:2207.06805 [quant-ph] (2022) [38].

Photonic qubits are a promising candidate for quantum computing with

advantages such as long decoherence time even at room temperature. Among

different encoding schemes, those of dual-rail allow one to detect photon

losses by counting the total photon number and manipulate and measure sin-

gle qubits via linear optical elements and photodetectors [68]. Measurement-

based quantum computing (MBQC) is a representative way to achieve uni-

versal quantum computing in linear optical systems.

The generation of cluster states, which is a significant challenge for

realizing fault-tolerant optical MBQC, can be done by entangling multiple

small resource states with fusions of types I and/or II [42]. Both types of

fusions are nonideal in linear optics because of theoretical limitations and

environmental factors such as photon losses. Fusion success rates cannot ex-

ceed 50% without additional resources [69] for single-photon qubits, which
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is far too insufficient to implement MBQC [70]. There exist several types of

approaches to overcome this shortcoming such as the following examples:

1. Different types of encoding strategies with coherent states [71, 72],

hybrid qubits [73, 74], and multiphoton qubits [75, 3] that signifi-

cantly improve error thresholds and resource overheads [3].

2. Adding ancillary photons to boost the success rate of a type-II fu-

sion to 75% [76, 77], which enables MBQC with the renormalization

method [78].

3. Redundant structures added to resource states to replace a single fu-

sion by multiple fusion attempts [79, 80, 81].

4. Use of squeezing for teleportation channels [82] or inline-processes

[83, 84].

Previous studies frequently treated fusion failures with bond discon-

nection [85, 86, 87] or qubit removals [70, 78, 73, 3]. However, to accurately

evaluate the performance of computing protocols, the detrimental effects

of nonideal fusions affecting nearby qubits should be analyzed more rigor-

ously. In this chapter, we study how nonideal fusions corrupt stabilizers and

how errors arising from such corruption can be tracked during the genera-

tion of graph states. Using a Bayesian approach and the stabilizer formalism,

we can now assign error rates with strong posterior evidence from measure-

ment data on certain qubits in the final lattice, thereby enabling much more

realistic error simulations and adaptive decoding of syndromes.

We then propose a linear-optical fault-tolerant MBQC protocol termed
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a parity-encoding-based topological quantum computing (PTQC), which

employs a Raussendorf’s 3D cluster state (RTCS) constructed using the

parity encoding [88] and concatenated Bell-state measurement (CBSM)

[89]. We use the polarization of photons as the degree of freedom to en-

code quantum information and denote the horizontally (vertically) polar-

ized single-photon state by |H⟩ (|V⟩). The protocol requires on-off or single-

photon resolving detectors, optical switches, delay lines, and three-photon

Greenberger-Horne-Zeilinger (GHZ-3) states that can be generated with lin-

ear optics. Here, a single-photon resolving detector discriminates between

zero, one, and more than one photon entering the detector. We analyze the

loss-tolerance of the protocol while exhaustively tracking the detrimental

effects of nonideal fusions. The resource overhead in terms of the number

of required GHZ-3 states is also investigated. To minimize it, we introduce

a graph-theoretical method for optimizing the process of constructing re-

source states, which is generalizable for other MBQC schemes. By compar-

ing PTQC with three other known approaches using single-photon qubits

with fusions assisted by ancillary photons, using simple repetition codes,

and using redundant tree graphs, we show that our protocol is advantageous

over these protocols in terms of fault-tolerance, resource overheads, or fea-

sibility of basic elements.

This chapter is structured as follows. In Sec. 4.1, we describe the type-

II fusion process, introduce a Bayesian methodology for tracking errors

caused by nonideal fusions, and present a method to construct an RTCS

through fusions. In Sec. 4.2, we propose our new PTQC protocol and an-

alyze its performance. In Sec. 4.3, we depict the modified concatenated
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Bell-state measurement scheme used for the PTQC protocol. In Sec. 4.4, we

compare the PTQC protocol with three other known approaches and show

in what aspects PTQC is advantageous over them. We finish this chapter

with final remarks in Sec. 4.5.

4.1 Constructing Raussendorf’s 3D cluster states
through fusions

4.1.1 Type-II fusion

We denote the four Bell states by

∣∣φ±〉 := |0⟩ |0⟩± |1⟩ |1⟩ ,∣∣ψ±〉 := |0⟩ |1⟩± |1⟩ |0⟩

(normalization coefficients are omitted) and call “±” its sign and “φ” or “ψ”

its letter. An ideal Bell-state measurement (BSM) entails the measurements

of X⊗X and Z⊗Z on two qubits, whose outcomes are addressed as its sign

and letter outcomes, respectively.

Since the direct implementation of a controlled-Z gate for photonic

qubits demands multi-photon interaction, linear optical MBQC typically

takes an approach to construct a graph state by merging multiple small re-

source graph states via fusion operations [42, 90, 79, 80, 85, 81, 86, 78,

87, 73, 3]. Among the two types of fusions [42], we only consider type

II since type I may convert photon losses into unheralded errors [81]. A

type-II fusion is done by measuring X⊗Z and Z⊗X on two qubits. In prac-
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Figure 41: Example of a type-II fusion. A type-II fusion is done by mea-
suring Z0X0′ and X0Z0′ on the two graph states. In (a), two stabilizers (green
and purple operators) become those of the resulting graph state up to sign
factors (the sign or letter outcome msign, mlett of the BSM) after the fusion.
The final state is the graph state shown in (b), where the presented Pauli-Z
operators are applied.

tice, it is realized by applying the Hadamard gate on one of the qubits and

then performing a BSM on them. For two qubits (v1,v2), if {v1} ∪N(v1)

and {v2}∪N(v2) are disjoint, the effect of a fusion on the qubits is to con-

nect (disconnect) every possible pair of disconnected (connected) qubits,

one from N(v1) and the other from N(v2), up to several Pauli-Z operators

determined by the BSM outcome. These Pauli-Z operators are compensated

by updating the Pauli frame [91] classically. This effect can be checked by

tracking stabilizers, as shown in the example of Fig. 41(a). Here, the stabi-

lizer X1Z0X0′Z1′Z2′ (colored in green) before the fusion is transformed into

msignX1Z1′Z2′ after the fusion, where msign ∈ {±1} is the sign outcome of the

BSM if the Hadamard gate is applied on qubit 0. The other two stabilizers
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Z1X0Z0′X1′ (colored in purple) and Z1X0Z0′X2′ that commute with the fusion

can be transformed in similar ways. Consequently, the marginal state on the

unmeasured qubits is equal to the merged graph state up to several Pauli-Z

operators, as presented in Fig. 41(b).

4.1.2 Bayesian error tracking for nonideal fusions

We consider errors of qubits in the “vacuum” measured in the X-basis,

which occupies most of the area in the RTCS [34]; thus, X-errors do not

affect the results. Henceforth, every error mentioned is a Z-error.

We first verify that the marginal state of the qubits participating in a

fusion is maximally mixed. More strictly, we prove the proposition:

Proposition 4.1 (Maximally mixed marginal states in a cluster state).

For a cluster state |ψG⟩V with a graph G = (V,E) and given two vertices

a,b ∈ V , if {a} ∪N(a) and {b} ∪N(b) are disjoint and neither N(a) nor

N(b) is empty where N(v) for a vertex v ∈ V is the set of vertices adjacent

to v, the marginal state TrV\{a,b} |G⟩⟨G|V =: ρab is maximally mixed.

Proof.. Let S denote the stabilizer group of the zero-dimensional Hilbert

space {|G⟩V}. First, any stabilizer g ∈ S can be written as the product of

stabilizer generators: g =
∏

v∈V0
gv where V0 ⊆ V and gv := Xv

∏
v′∈N(v) Zv′ .

If V0 contains a vertex c ̸= a,b, S must contain Xc or Yc since no stabilizer

generators besides gc contain Xc. If otherwise, V0 is one of /0, {a}, {b}, and

{a,b}. Except when V0 is empty (namely, g is identity), there exists a ver-

tex c ̸= a,b such that g contains Zc, since N(a) and N(b) are not empty,

b /∈ N(a), a /∈N(b), and N(a) ̸= N(b). Therefore, every single- or two-qubit
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Figure 42: BSM scheme for single-photon polarization qubits. It uses three
polarizing Beam splitters (PBSs), 90◦ and 45◦ wave plates, and four (A–D)
photodetectors (single-photon resolving or on-off detectors). A PBS trans-
mits (reflects) photons polarized horizontally (vertically). The scheme dis-
tinguishes |ψ±⟩: |ψ+⟩ if detectors (A,C) or (B,D) detect one photon respec-
tively and |ψ−⟩ if detectors (A,D) or (B,C) detect one photon respectively.
If otherwise, it fails or detects a loss, which can be distinguished by the total
number of detected photons if single-photon resolving detectors are used.
Two distinguishable Bell states can be chosen by putting or removing wave
plates appropriately before the first PBS.

Pauli operator on a and b that is not identity cannot be a stabilizer, thus it an-

ticommutes with at least one stabilizer. (If such an operator PaPb commutes

with all stabilizers, PaPb |ψG⟩V is also stabilized by S , which means that

PaPb |ψG⟩V = |ψG⟩V since S stabilizes the zero-dimensional Hilbert space.)

Consequently, Tr(PaPbρab) = ⟨ψG|PaPb |ψG⟩ = 0 for every single- or two-

qubit Pauli operator PaPb that is not identity. The state ρab satisfying this

condition is unique and maximally mixed.

We now introduce the methodology to track the errors caused by non-

ideal fusions. Let us revisit the example in Fig. 41, supposing that the qubits

are single-photon polarization ones and there are no photon losses. Then
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a BSM can discriminate between only two Bell states (say, |ψ±⟩) among

the four without additional resources [92]; see Fig. 42 for the scheme. The

intact final state |Cf⟩ is obtained only when the BSM succeeds. When the

BSM fails (which is heralded), mlett is determined while msign is left com-

pletely ambiguous. In other words, the posterior probability that the in-

put state is |φ±⟩ for the obtained photodetector outcomes is equal for both

signs (±), assuming that the four Bell states have the same prior probabil-

ity. This assumption can be justified by Proposition 4.1. Therefore, we fix

the value of mlett while randomly assigning that of msign. Then, the opera-

tor msignX1Z1′Z2′ , which is originally a stabilizer of |Cf⟩, gives±1 randomly

when it is measured after the failed BSM. Whereas, the other two stabilizers

mlettZ1X1′ and mlettZ1X2′ are left undamaged. The key point is that this situa-

tion is equivalent to a 50% chance of an erroneous qubit 1 in |Cf⟩ in terms of

stabilizer statistics. In other words, both situations give the same statistics if

the stabilizers of |Cf⟩ are measured; thus, every process in MBQC described

with the stabilizer formalism works in the same way.

Generally, a nonideal BSM gives one of the possible outcomes and the

posterior probability of each Bell state for the outcome can be calculated

with the Bayesian theorem, assuming the equal prior probabilities of the

Bell states. Accordingly, the Bell state with the highest posterior probability

is selected as the result of the BSM, and the probability qsign (qlett) that the

selected sign (letter) is wrong can be obtained as well. These error probabil-

ities are “propagated” into nearby qubits in a way that the stabilizer statistics

are preserved. For example, if the fusion in Fig. 41 is nonideal in such a way,

it is equivalent to qubit 1 having an error with probability qsign and qubits 1′
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and 2′ having correlated errors with probability qlett. We term a qubit with a

nonzero error rate deficient.

Additionally, if a qubit participating in a fusion is erroneous, this error

is propagated to the qubits on the opposite side. For example, an erroneous

qubit 0 in Fig. 41 induces an error in the X0Z0′ measurement, which is equiv-

alent to erroneous qubits 1′ and 2′.

The above error tracking methodology can be utilized for accurate and

effective error simulations. The method can precisely locate qubits affected

by unsuccessful fusions, which is closer to reality than simple bond dis-

connection or qubit removal. Since unsuccessful fusions are now regarded

as Pauli error sources, we no longer need lattice deformation and the con-

struction of supercheck operators [50, 70]. Instead, the error probabilities on

individual qubits are employed for decoding syndromes in an adaptive man-

ner (with decoders such as the weighted minimum-weight perfect matching

one), which may be particularly effective if the probabilities are between 0

and 1/2 since regarding such errors as just removal of qubits is a loss of

information.

4.1.3 Building a lattice

An RTCS can be built with two types of linear three-qubit graph states

called central and side microclusters [85, 78]. The process is composed

of two steps (see Fig. 43): In step 1, a central microcluster and two side

microclusters are merged by two fusions to form a five-qubit graph state

named a star cluster composed of one central qubit and four side qubits.

In step 2, the side qubits of star clusters are fused to form an RTCS. Even-
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Figure 43: Lattice building process with microclusters. The orange boxes
indicate fusions. In step 1, side and central microclusters are fused to form
a star cluster. The locations of the Hadamard gates are marked as “C” (“S”)
for the HIC (HIS) configuration. In step 2, multiple star clusters are fused
to form an RTCS. The macroscopic picture of step 2 in a unit cell of the
lattice is depicted in the lower right. The locations of the Hadamard gates
are marked as orange dots. The error probabilities of qubits assigned by
one fusion in each step for the HIC configuration are written in red, where
qsign (qlett) is the sign (letter) error probability of the BSM. Errors in the
side qubits remaining after step 1 (purple dashed squares) are propagated to
central qubits during step 2 (purple dashed arrows).

tually, the lattice includes only the central qubits, which are measured in

appropriate bases for MBQC. For step 2, we consider two options: (i) Star

clusters with successful step-1 fusions may be post-selected, or (ii) all gen-

erated star clusters are used regardless of the fusion results. The locations of

the Hadamard gates during fusions (called H-configuration) may be chosen

arbitrarily. Here, we define two specific H-configurations: Hadamard-in-

center (HIC) and Hadamard-in-side (HIS). In the HIC (HIS) configura-
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tion, the Hadamard gates in step 1 are applied on qubits in the central (side)

microclusters, as shown in Fig. 43. Whereas the Hadamard gates in step 2

are arranged in the same pattern for both configurations.

Nonideal fusions during lattice building render some central qubits in

the final lattice deficient, as shown in Fig. 43 when the HIC configuration is

used. When the HIS configuration is used, the positions of qsign and qlett in

the figure are swapped. Note that errors in the side qubits are propagated to

the nearest central qubits after step 2. Correlation between the sign and letter

errors of a fusion, if any, can be neglected if the primal and dual lattices are

considered separately since these errors respectively affect primal and dual

[34] qubits (or vice versa).

4.2 Parity-encoding-based topological quantum
computing

We introduce the new linear-optical parity-encoding-based topologi-

cal quantum computing (PTQC) protocol, where fusion success rates are

boosted by using multiphoton qubits for all qubits that participate in fusions

and single-photon polarization encoding is used for central qubits. The par-

ity encoding [88] is employed for the multiphoton qubits, which are fused

by concatenated Bell-state measurement (CBSM) [89]. On-off or single-

photon resolving detectors are used as photodetectors, and GHZ-3 states,

which can be generated linear-optically [93], are regarded as basic resource

135



states. The (n,m) parity encoding defines a basis as

|0L⟩ :=
∣∣∣+(m)

〉⊗n
, |1L⟩ :=

∣∣∣−(m)
〉⊗n

, (4.1)

where

∣∣∣±(m)
〉

:= (|H⟩+ |V⟩)⊗m± (|H⟩− |V⟩)⊗m. (4.2)

The Hilbert space has a hierarchical structure composed of three levels:

the lattice, block, and physical levels with respective bases {|0L⟩ , |1L⟩},{∣∣±(m)
〉}

, and {|H⟩ , |V⟩}. In the original CBSM scheme [89], a BSM of

a certain level is decomposed into multiple BSMs of one level below. Our

current CBSM scheme slightly differs from the original one in the follow-

ing two areas: (i) We consider two types of photodetectors: single-photon

resolving and on-off detectors. A physical-level BSM can discriminate be-

tween a photon loss and failure only if single-photon resolving detectors

are used. (ii) The letter outcome of a lattice-level BSM is obtained by a

weighted majority vote of block-level letter outcomes. See Sec. 4.3 for the

details of the CBSM scheme and its error rates.

4.2.1 Noise model

We consider a noise model where each photon suffers an independent

loss with probability η, which arises from imperfections throughout the pro-

tocol: GHZ-3 states (which are initial resource states), delay lines, optical

switches, and photodetectors. We assume that noise that cannot be modeled
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Figure 44: Structure and generation of post-H microclusters for PTQC. (a)
Schematic of central and side post-H microclusters used in PTQC for the
two H-configurations, HIC and HIS. The marks “HL” indicate the locations
of the lattice-level Hadamard gates. (b) Example of a process generating a
post-H microcluster from GHZ-3 states. Each GHZ-3 state is represented by
a triangle whose vertices indicate its three photons. An orange line connect-
ing two vertices and a mark “H” next to a vertex respectively mean a fusion
and Hadamard gate performed on the photon(s). The graph of the triangles
connected with the orange lines is called a merging graph.

with photon losses such as dark counts is negligible. Note that not only non-

ideal fusions but also photon losses in central qubits, which are detectable

by on-off detectors, may incur deficiency. If the measurement outcome of

a central qubit cannot be determined due to photon losses, we select the

outcome randomly and assign an error rate of 50% to the qubit.
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4.2.2 Generation of microclusters

For practical reasons, we consider generating post-H microclusters

(that is, the states obtained by applying several lattice-level Hadamard gates

on microclusters) directly from GHZ-3 states, instead of generating micro-

clusters first and then applying the lattice-level Hadamard gates for the fu-

sions. Figure 44(a) depicts the central and side post-H microclusters for the

HIC and HIS configurations. A post-H microcluster can be generated up to

several physical-level Hadamard gates by performing physical-level BSMs

or fusions (referred to as merging operations) between multiple GHZ-3

states according to a predetermined merging graph, as shown in the ex-

ample of Fig. 44(b). Note that the merging graph may be not unique for a

post-H microcluster. However, each merging operation has a low success

rate of less than or equal to 50%, which may lead to extensive usage of

GHZ-3 states for generating a post-H microcluster successfully. Thus, the

generation process, which is determined by the merging graph and the or-

der of the merging operations, should be adjusted carefully to minimize the

resource overhead. To optimize the merging order, our protocol utilizes a

graph edge coloring algorithm, based on the idea that merging operations

for non-adjacent edges can be performed simultaneously.

We now address the generation of post-H microclusters and the opti-

mization problem in detail.

Physical-level graphs of post-H microclusters: We first present the physical-

level graphs of post-H microclusters for PTQC. A post-H microcluster,

which is composed of three lattice-level qubits or two of them and one
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Figure 45: Physical-level graphs of post-H microclusters for the HIC and
HIS configurations when the (n,m) parity encoding is used for PTQC. The
squares (circles) correspond to lattice-level (physical-level) qubits, among
which black ones indicate that the lattice-level (physical-level) Hadamard
gates are applied to the qubits on the graph state. A blue dashed box in-
dicates a group of recurrent subgraphs; that is, the structure in the box is
repeated as many times as indicated, and if there is an edge across the bor-
der of the box, it means that edges of the same pattern exist in each of the
repeated structures. A number inside a circle means a blue dashed box sur-
rounding only the circle with the indicated repetition number. If there is an
edge between two blue dashed boxes or circles containing numbers, the full
graph can be recovered just by expanding them one by one. See Fig. 46 for
examples.
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Figure 46: Examples of graph notations used in Fig. 45. (a) and (b) respec-
tively show examples of a blue dashed box and a number inside a circle,
which indicate groups of recurrent subgraphs. (c) shows the full graph of
the side microcluster of the HIS configuration when n = m = 2.

photon (physical-level qubit), can be regarded as a graph state of photons

up to several physical-level Hadamard gates. The graph of this graph state,

called the physical-level graph of the post-H microcluster, is visualized

in Fig. 45 for each post-H microcluster; see Sec. 4.7 for their derivation.

Here, the squares (circles) indicate lattice-level (physical-level) qubits. If a

square (circle) is filled with black, it means that the lattice-level (physical-

level) Hadamard gate is applied on the qubit after the involved edges are

connected. Recurrent subgraphs are abbreviated as blue dashed squares or

circles with numbers; see Fig. 46 for the detailed interpretation of these no-

tations.
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Generating post-H microclusters: We now depict the ways to generate a

specific post-H microcluster from GHZ-3 states. We first describe a straight-

forward method and then adjust or generalize it. The final method can be

summarized as follows:

1. Determine a merging graph G for the post-H microcluster that we

want to create by the algorithm presented below. Each edge of G is

labeled as either “internal” or “external.”

2. For each vertex v in G, Prepare a GHZ-3 state |GHZ3⟩v.

3. For each edge e in G that connects v1 and v2, perform a BSM (fusion)

on two photons selected respectively from |GHZ3⟩v1
and |GHZ3⟩v2

if

e is an internal (external) edge. The order of the operations does not

matter.

We define the GHZ-l state for an integer l ≥ 3 by the state |GHZl⟩ :=

|H⟩⊗l + |V⟩⊗l . Note that it is a state obtained from a graph state with a star

graph (where the number of vertices is l) by applying Hadamard gates on

all the leaves of the graph; namely,

|GHZl⟩= H2 · · ·HlCZ
12 · · ·CZ

1l |+⟩
⊗l .

We refer to the first photon of the above expression as the root photon of

the state (which can be chosen arbitrarily) and the other photons as its leaf

photons.

If a BSM is performed on the root photon of a GHZ-l1 state and a

leaf photon of a GHZ-l2 state, the resulting state on the remaining photons
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Figure 47: Examples of the two types of merging operations on two GHZ
states: (a) a BSM on the root photon of one state and a leaf photon of the
other and (b) a fusion on two leaf photons.

is a GHZ-(l1 + l2− 2) state; see Fig. 47(a) for an example. Thus, an arbi-

trary GHZ state can be constructed by performing BSMs on multiple GHZ-3

states appropriately. On the other hand, if a fusion is performed on two leaf

photons selected respectively from GHZ-l1 and GHZ-l2 states, the resulting

state is no longer a GHZ state, but it is a graph state (up to some Hadamard

gates) with a graph containing a vertex with degree l1− 1, a vertex with

degree l2− 1, and multiple vertices with degree one; see Fig. 47(b) for an

example. (The degree dv of a vertex v means the number of edges connected

to v.)

Combining the above facts, a post-H microcluster (or an arbitrary graph

state) with the physical-level graph G can be generated from GHZ-3 states

up to physical-level Hadamard gates in the following way: For each vertex

v of G with a degree larger than one, prepare a state |GHZdv+1⟩v through
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Figure 48: Decomposition of a graph state done by separating recurrent
subgraphs that are connected with multiple vertices.

BSMs on GHZ-3 states. Then, for each edge (v1,v2) of G, perform a fusion

on two photons selected respectively from
∣∣∣GHZdv1+1

〉
v1

and
∣∣∣GHZdv2+1

〉
v2

.

We refer to each BSM or fusion during this process as a merging operation.

However, the above method still has room for improvement. The physical-

level graphs in Fig. 45 can be decomposed into multiple components that are

combined by fusions through the process shown in Fig. 48. Here, each recur-

rent subgraph connected with multiple vertices is separated and connected

with only one vertex. The decomposition of various post-H microclusters is

explicitly presented in Figs. 49 and 50 for the HIC and HIS configurations,

respectively. To generate a post-H microcluster, we prepare the individual

components first by the aforementioned method, then merge them through

fusions. This process may greatly reduce the number of required merging
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HIC side

(ii) 𝑛,𝑚 > 1(i) 𝑛 = 1, 𝑚 > 1

×	(2𝑛 − 1) ×	(𝑛 − 1)

	𝑚 − 1 	𝑚 − 1

𝑚 𝑚
Fusion

	𝑚 − 1

𝑚

𝑚

Figure 49: Decomposition of post-H microclusters for the HIC configura-
tion. Different types of post-H microclusters are decomposed by the method
shown in Fig. 48. Only the side microclusters are considered since the cen-
tral microclusters do not have connected pairs of recurrent subgraphs, thus
their physical-level graphs are single components by themselves.

operations since the number of edges decreases as shown in Fig. 48.

Furthermore, we can generalize the method using the fact that every

merging operation commutes with each other. That is, even if all the fusions

and BSMs in the above process are performed in an arbitrary order, the final

state does not vary (up to the change of the Pauli frame). To systematically

address this feature, we define a merging graph of a post-H microcluster

or one of its components by a graph in which the vertices correspond to

initial GHZ-3 states and the edges indicate the merging operations between

them required to generate the state. Each edge of a merging graph is either

internal or external that corresponds to BSMs or fusions, respectively.
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HIS central (𝑛,𝑚 > 1)

×	(𝑛 − 1)×	(𝑛 − 1)

	𝑚 − 1 	𝑚 − 1

𝑚 𝑚

HIS side

(i) 𝑛 > 1, 𝑚 = 1

×	𝑛 ×	𝑛 ×	(𝑛 − 1)

	𝑚 − 1 	𝑚 − 1 	𝑚 − 1

𝑚

×	𝑛

×	(𝑛 − 1)

×	𝑛

(ii) 𝑛,𝑚 > 1

Figure 50: Decomposition of post-H microclusters for the HIS configura-
tion. Different types of post-H microclusters are decomposed by the method
shown in Fig. 48. Post-H microclusters that are not presented here do not
have connected pairs of recurrent subgraphs, thus their physical-level graphs
are single components by themselves.
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A merging graph Gmrg of a component can be constructed by the fol-

lowing algorithm starting from its physical-level graph (see Fig. 51 for two

examples):

1. Initialize the graph Gmrg = (V,E) by the graph G = (V0,E0) of the

component; that is, V ←V0,E← E0.

2. Let us define Vdeg≥3 := {v ∈V |dv ≥ 3}. This set is fixed and not up-

dated during the entire process. For each vertex v ∈ Vdeg≥3, perform

the follows:

(a) Remove v from Gmrg and add dv− 1 new vertices. Let Vnew =(
v(1)new, · · · ,v(dv−1)

new

)
denote the series of the new vertices and

Vngh =
(

v(1)ngh, · · · ,v
(dv)
ngh

)
denote the series of the vertices that

were adjacent to v before removing it. The order of the vertices

in Vngh can be arbitrarily chosen.

(b) Connect the vertices in Vnew linearly with internal edges; namely,

connect
(

v(1)new,v
(2)
new

)
,
(

v(2)new,v
(3)
new

)
, and so on.

(c) Choose one of the vertices in Vnew arbitrarily and term it the

seed vertex vseed of v0, where v0 is the vertex in G from which v

originates.

(d) Let us define a series V ′new by omitting vseed from Vnew while

keeping the order of the other vertices. For each i∈{1, · · · ,dv−2},

connect v(i)ngh and the ith element of V ′new with an external edge.

(e) Connect
(

v(1)new,v
(dv−1)
ngh

)
and

(
v(dv−1)

new ,v(dv)
ngh

)
with external edges.
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3. Remove all vertices with degree 1 from the graph. For each vertex

v0 ∈V0 with degree 2, if v is the vertex in V originating from v0 (which

is not removed in the previous steps), define the seed vertex of v0 as

v.

It is worth noting that there are two degrees of freedom in the above

algorithm for each vertex with a degree larger than 2: (i) the order of the

series Vngh and (ii) the selection of the seed vertex. Different merging graphs

can be constructed depending on their selection, which may severely affect

the resource overheads.

The merging graph of a post-H microcluster is constructed by combin-

ing the merging graphs of its components. That is, for each fusion between

different components, the corresponding seed vertices in the merging graphs

are connected by an external edge.
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Optimization of resource overheads: The process of generating a post-

H microcluster described above is determined by two factors: the merging

graph and the order of the merging operations. Here, we discuss their opti-

mization for minimizing resource overhead. The merging graph is selected

randomly by the algorithm presented above. Based on it, we determine the

order of the merging operations through an algorithm found heuristically

and calculate the expected number NMC
GHZ of GHZ-3 states required to gener-

ate the state. We repeat this process for a large enough number to obtain as

low resource overhead as possible.

During the generation process, performing each merging operation can

be regarded as contracting the corresponding edge, which means removing

the edge, merging the two vertices (v1,v2) that it previously joined into a

new vertex w, and reconnecting all the edges that were connected to v1 and

v2 with w. Here, each vertex indicates a connected subgraph (a group of

entangled photons) of the intermediate graph state. We assign a “weight”

Nv (which is initialized to 1) on each vertex v, which is the average number

of GHZ-3 states required to generate the connected subgraph. If the edge

between two vertices v1 and v2 are contracted, the new vertex w has the

weight of

Nw =
2

(1−η)2 (Nv1 +Nv2) =: Nv1 +m Nv2 , (4.3)

where the factor 2/(1−η)2 is the inverse of the success probability of the

merging operation. By repeating this process, the post-H microcluster is

obtained when there is only one vertex left, whose weight is equal to NMC
GHZ.
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To find an optimal order of merging operations, we use the following

strategy:

1. Find the set Emin.wgt of edges with the smallest weight, where the

weight of an edge (v1,v2) is defined as Nv1 +m Nv2 .

2. Using an edge coloring algorithm, allocate “colors” to all edges so

that different edges sharing a vertex have different colors and as few

colors as possible are used.

3. Partition Emin.wgt into disjoint subsets by the colors of the edges. Find

the largest subset Emrg among them. If such a subset is not unique,

choose one randomly.

4. Contract each edge in Emrg in an arbitrary order.

5. Repeat all the above steps until only one vertex is left.

The strategy is based on the following two intuitions: First, it is better to

merge vertices with small weights first, since (N1 +m N2)+m N3 < N1 +m

(N2 +m N3) if N1 < N2 < N3. Secondly, it is better to perform merging op-

erations in parallel as much as possible. Such a set of edges can be found

by the edge coloring algorithm. For our results, we have used the function

coloring.greedy color in NetworkX package [94] with the strategy

largest first. (Since the function performs vertex coloring, we input

the line graph of Gmrg into the function.)
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4.2.3 Performance analysis

For error simulations, we consider the logical identity gate with the

length T of 4d + 1 unit cells along the simulated time axis, where d is the

code distance. All the fusion outcomes are sampled from appropriate prob-

ability distributions, and the corresponding error rates are assigned to indi-

vidual central qubits according to the process described earlier. These error

rates are exploited when decoding syndromes by the weighted minimum-

weight perfect matching in the PyMatching package [95]. The loss thresh-

olds are calculated by finding the intersections of logical error rates for d = 9

and d = 11. The resource overhead of PTQC is quantified by the average to-

tal number NpL of GHZ-3 states to achieve a target logical error rate of pL

for the logical identity gate of T = d−1, which depends on the photon loss

rate η. See Secs. 4.7.1 and 4.7.2 for the detailed methods of error simula-

tions and resource calculations, respectively.

The simulation results of the loss thresholds and the resource overheads

(quantified by N10−6) are respectively presented in Figs. 52 and 53 for the

two types of photodetectors, the two options for the post-selection of star

clusters, and the two H-configurations.

Figure 52 shows that, if single-photon resolving detectors are used,

ηth reaches up to 8.5% (n = 5, m = 4, j = 2) when star clusters are post-

selected and up to 6.3% (n=m= 5, j = 3, HIC) when they are not. If on-off

detectors are used, ηth reaches up to 4.4% (n = 5, m = 4, j = 1) when star

clusters are post-selected and up to 3.3% (n = 5, m = 4, j = 1, HIS) when

they are not. The post-selection of star clusters increases the photon loss
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thresholds by about 1–2%p.

From Fig. 53, it is observed that the protocol using single-photon re-

solving detectors is most resource-efficient with N10−6 ≈ 5×105 (n= 4, m=

3, j = 1, HIC) when star clusters are post-selected and with N10−6 ≈ 1×106

(n = m = 4, j = 2, HIS) when they are not. If on-off detectors are used, the

protocol is most resource-efficient with N10−6 ≈ 2×107 (n = m = 4, j = 2,

HIC) when star clusters are post-selected and with N10−6 ≈ 3× 107 (n =

m = 5, j = 2, HIC) when they are not. It is worth noting that, compared to

the protocol without the post-selection, the protocol with it requires fewer

GHZ-3 states to achieve a target logical error rate. In other words, further

fault-tolerance obtained by using only successfully-generated star clusters

leads to a positive overall effect that surpasses the negative effect caused by

the increase in the number of required GHZ-3 states for one central qubit in

the final lattice.
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(a) (b)

Figure 54: Photon loss thresholds ηth as a function of the number N∗GHZ
of GHZ-3 states required per central qubit. N∗GHZ is calculated at η = 0.01
or η = ηth/2. “SPRD” stands for a single-photon resolving detector. The
data points correspond to different parameter settings on the type of de-
tectors, the post-selection (PS) of star clusters, the encoding size, and the
H-configuration, which are grouped by the first two factors. The upper en-
velope for each of the groups is presented as a line. The values of j are
chosen to maximize ηth.

Additionally, Fig. 54 presents the photon loss thresholds as a function

of N∗GHZ when η is fixed to 0.01 or variable as η = ηth/2, which is used to

calculate N10−6 . aIt shows that at least about 400 GHZ-3 states are required

per central qubit for PTQC to work. The explicit information of the data

points along the upper envelope lines in the figure is presented in Tables 6

and 7 for single-photon resolving and on-off detectors, respectively.

Lastly, we show evidence that our optimizing strategy for microcluster

generation described in Sec. 4.2.2 is indeed highly effective in terms of both

the optimality of the calculated overhead and searching time, by comparing

its performance with those of its variants constructed by omitting or altering
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specific steps. We consider four of such variants that are the same as the

original strategy except for the following differences:

Variant 1 The original physical-level graph is directly used as a single compo-

nent without decomposition.

Table 6: Information of the data points along the upper envelope lines in
Fig. 54(b) when single-photon resolving detectors are used. N∗GHZ, N10−7 ,
and d10−7 at η = 1% are not calculated when ηth < 1%.

ηth
N∗GHZ

(η = ηth/2)
N∗GHZ

(η = 1%)
N10−7

(η = 1%)
d10−7 n m j H-config.

(a) Single-photon resolving detector with post-selection
0.009 3.3×102 3.7×102 1 4 3 HIC
0.02 3.9×102 3.9×102 2.1×107 21 2 2 1 HIC
0.03 8.8×102 8.2×102 1.5×106 7 3 2 1 HIC
0.035 1.0×103 9.2×102 3.8×106 9 2 3 2 HIC
0.036 1.8×103 1.6×103 3.0×106 7 4 2 1 HIC
0.04 1.9×103 1.7×103 3.2×106 7 2 4 3 HIC
0.052 2.7×103 2.1×103 1.4×106 5 3 3 1 HIC
0.067 5.3×103 3.9×103 5.2×105 3 4 3 1 HIC
0.074 8.6×103 6.1×103 8.1×105 3 5 3 1 HIC
0.085 2.3×104 1.5×104 2.0×106 3 5 4 2 HIC

(b) Single-photon resolving detector without post-selection
0.009 7.2×102 - - - 3 2 1 HIC
0.015 8.4×102 8.6×102 2.5×108 37 2 3 2 HIC
0.022 1.6×103 1.6×103 6.8×106 9 2 4 3 HIC
0.023 2.3×103 2.3×103 1.4×1010 101 5 2 1 HIC
0.024 2.6×103 2.6×103 4.9×106 7 2 5 4 HIC
0.043 4.4×103 3.9×103 2.6×106 5 4 3 1 HIC
0.048 7.1×103 6.0×103 4.0×106 5 5 3 1 HIC
0.05 8.7×103 7.3×103 4.9×106 5 5 3 1 HIS
0.052 9.3×103 9.8×103 1.3×106 3 4 4 2 HIC
0.054 1.4×104 1.1×104 1.5×106 3 4 5 3 HIC
0.061 1.9×104 1.4×104 1.9×106 3 5 4 2 HIC
0.063 2.3×104 1.7×104 2.3×106 3 5 5 3 HIC
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Variant 2 GHZ-N states for N ≥ 3 are first constructed and then they are merged

by fusions to construct a post-H microcluster, which is the process

described before introducing merging graphs in Sec. 4.2.2. A GHZ-N

state is generated by merging two GHZ-(N/2+1) states if N is even,

or by merging a GHZ-[(N +1)/2] state and a GHZ-[(N +3)/2] state

if N is odd. The order of the fusions is determined by the same strategy

as the original one, regarding the merging graph where the vertices

Table 7: Information of the data points along the upper envelope lines in
Fig. 54(b) when on-off detectors are used. N∗GHZ, N10−7 , and d10−7 at η = 1%
are not calculated when ηth < 1%.

ηth
N∗GHZ

(η = ηth/2)
N∗GHZ

(η = 1%)
N10−7

(η = 1%)
d10−7 n m j H-config.

(a) On-off detector with post-selection
0.009 1.8×103 - - - 2 3 2 HIC
0.012 3.6×103 3.9×103 2.1×109 45 2 4 2 HIC
0.013 4.6×103 5.0×103 4.6×108 25 2 5 4 HIC
0.022 1.0×104 1.0×104 1.1×109 27 3 3 1 HIC
0.024 1.1×104 1.0×104 2.0×107 7 3 4 2 HIC
0.035 3.1×104 2.6×104 1.7×107 5 4 4 2 HIS
0.044 2.4×105 1.9×105 1.2×108 5 5 4 1 HIC

(b) On-off detector without post-selection
0.005 1.9×103 - - - 3 3 2 HIC
0.008 2.3×103 - - - 3 3 1 HIS
0.013 3.7×103 3.9×103 2.1×108 21 4 3 1 HIC
0.014 4.4×103 4.6×103 6.6×108 29 3 4 2 HIS
0.016 4.7×103 4.8×103 1.6×109 39 4 3 1 HIS
0.02 6.0×103 6.0×103 4.6×107 11 5 3 1 HIC
0.023 9.6×103 9.3×103 7.1×107 11 4 4 2 HIS
0.025 1.4×104 1.4×104 5.8×107 9 4 5 3 HIS
0.028 1.5×104 1.5×104 6.3×107 9 5 4 2 HIC
0.03 1.6×104 1.7×104 1.2×108 11 5 4 1 HIS
0.032 2.3×104 2.1×104 8.8×107 9 5 5 2 HIS
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correspond to general GHZ states and the edges indicate the fusions

to perform. Accordingly, the weight of each vertex is not initialized

to 1, but to the expected number of GHZ-3 states used to generate the

corresponding GHZ state.

Variant 3 The merging order is just randomly chosen without using a specific

strategy.

Variant 4 The merging order is chosen by considering only the weights of the

vertices without using the edge coloring algorithm. Namely, steps 2,

3, and 4 in the original strategy in Sec. 4.2.2 are replaced with con-

tracting a random edge in Emin.wgt.

Figure 55 displays how the overhead of a side microcluster (namely,

the expected number Nside
GHZ of GHZ-3 states required to generate it) varies

depending on the used strategy for several settings. Since the strategies con-

tain randomness, the distributions of the outcomes are visualized as box

plots. It is clearly shown that the original strategy is the most optimal in

general, although Variant 2 or 4 is also as effective as the original strategy

for some cases. Moreover, the original strategy gives the least variance on

the calculated overhead (except for Variant 2), which means that the optimal

point can be found quickly.
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Figure 55: Comparison of different strategies for generating a post-H mi-
crocluster. It shows the distribution of the calculated overhead Nside

GHZ of a
side microcluster depending on the used strategy (among the original strat-
egy and its four variants) for different H-configurations and values of n and
m. We considered 9,600 samples for each box plot. Each box shows the
range between the first and third quartile and the line crossing represents the
median. The minimum and maximum values are indicated by whiskers.
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4.3 Modified concatenated Bell-state measure-
ment scheme

In this section, we describe the modified CBSM scheme used for PTQC.

For the lattice, block, and physical levels of the (n,m) parity encoding, the

Bell states are respectively defined as


|Φ±⟩ := |0L⟩ |0L⟩± |1L⟩ |1L⟩ ,

|Ψ±⟩ := |0L⟩ |1L⟩± |1L⟩ |0L⟩ ,
∣∣∣φ±(m)

〉
:=
∣∣+(m)

〉∣∣+(m)
〉
±
∣∣−(m)

〉∣∣−(m)
〉
,∣∣∣ψ±(m)

〉
:=
∣∣+(m)

〉∣∣−(m)
〉
±
∣∣−(m)

〉∣∣+(m)
〉
,

|φ±⟩ := |H⟩ |H⟩± |V⟩ |V⟩ ,

|ψ±⟩ := |H⟩ |V⟩± |V⟩ |V⟩ ,

where |0L⟩, |1L⟩, and
∣∣±(m)

〉
are defined in Eqs. (4.1) and (4.2). The Bell

states of each level can be decomposed into those of one level below as

follows:

∣∣Φ±〉= 2−
n−1

2
∑

l:even(odd)≤n

P
[∣∣∣φ−(m)

〉⊗l ∣∣∣φ+
(m)

〉⊗n−l
]
, (4.4a)

∣∣Ψ±〉= 2−
n−1

2
∑

l:even(odd)≤n

P
[∣∣∣ψ−(m)

〉⊗l ∣∣∣ψ+
(m)

〉⊗n−l
]
, (4.4b)

∣∣∣φ±(m)

〉
= 2−

m−1
2

∑
k:even≤m

P
[∣∣ψ±〉⊗k ∣∣φ±〉⊗m−k

]
, (4.4c)

∣∣∣ψ±(m)

〉
= 2−

m−1
2

∑
k:odd≤m

P
[∣∣ψ±〉⊗k ∣∣φ±〉⊗m−k

]
, (4.4d)
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where P [·] means the summation of all the permutations of the tensor prod-

ucts inside the bracket. Therefore, a BSM can be performed in a concate-

nated manner: A lattice-level BSM (BSMlat) is done by n block-level BSMs

(BSMblc’s), each of which is again done by m physical-level BSMs (BSMphy’s).

We refer to the sign (letter) result obtained from a lattice-, block-, or physical-

level BSM as the lattice-, block-, or physical-level sign (letter), respec-

tively.

4.3.1 Original CBSM scheme

We review the original CBSM scheme of the parity encoding in Ref. [89].

A BSMphy can discriminate between only two among the four Bell states.

Three types of BSMphy’s (Bψ, B+, and B−) are considered, which discrim-

inate between {|ψ+⟩ , |ψ−⟩}, {|φ+⟩ , |ψ+⟩}, and {|φ−⟩ , |ψ−⟩}, respectively.

Bψ can be implemented by the process in Fig. 42, which can be modified to

implement B+ instead by adding a 45◦ wave plate on each input line just be-

fore the first PBS. If the 90◦ wave plate on the second input line is removed

in the setting for B+, B− is executed alternatively. A BSMphy has four possi-

ble outcomes: two successful cases (e.g., for Bψ, |ψ+⟩ and |ψ−⟩), “failure,”

and “detecting a photon loss.” Failure and loss can be distinguished by the

number of total photons detected by the photon detectors. Since two pho-

tons may enter a single detector, it is assumed that single-photon resolving

detectors are used. Note that, even in the failure cases, either sign or letter

still can be determined. (For example, even if a Bψ fails, we can still learn

that the letter is φ.) On the other hand, if it detects a loss, we can get neither

a sign nor a letter.
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A BSMblc is done by m-times of BSMphy’s. Each block is composed of

m photons, thus we consider m pairs of photons selected respectively in the

two blocks. The types of the BSMphy’s are selected as follows: First, Bψ is

performed on each pair of photons in order until it either succeeds, detects

a loss, or consecutively fails j times, where j ≤ m− 1 is a predetermined

number. Then a sign s =± is selected by the sign of the last Bψ outcome if

it succeeds or selected randomly if it fails or detects a loss. After that, Bs’s

are performed for all the left pairs of photons.

The block-level sign (letter) is determined by the physical-level signs

(letters) of the m BSMphy’s. In detail, the block-level sign is chosen (i) to be

the same as s if the last Bψ succeeds or any Bs succeeds, and (ii) to be the

opposite of s if the last Bψ does not succeed and any Bs fails. (iii) Otherwise

(namely, if the last Bψ does not succeed and all the Bs’s detect losses), the

block-level sign is not determined. The block-level letter is determined only

when all the physical-level letters are determined, namely, when no losses

are detected and all Bs’s succeed. For such cases, the block-level letter is φ

(ψ) if the number of ψ in the BSMphy results is even (odd).

Next, a BSMlat is done by n-times of BSMblc’s. The lattice-level sign

is determined only when all the block-level signs are determined; it is (+) if

the number of (−) in the BSMblc results is even and it is (−) if the number

is odd. The lattice-level letter is equal to any determined block-level letter.

Thus, if all BSMblc’s cannot determine letters, the lattice-level letter is not

determined as well.
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4.3.2 Modified CBSM scheme for PTQC

In our PTQC protocol, we consider using either single-photon resolv-

ing or on-off detectors. The CBSM scheme should be slightly modified for

this case.

Since failure and loss cannot be distinguished, a BSMphy now has three

possible outcomes: two successful cases and failure. Consequently, in a

BSMblc, Bψ’s are performed until it either succeeds or consecutively fails

j times. The way to determine the block-level sign and letter is the same

as the original scheme, except that case (iii) when determining the sign no

longer occurs. The biggest difference from the original scheme is that the

determined sign and letter may be wrong. These error probabilities are pre-

sented in the next subsection.

In a BSMlat, the lattice-level sign is determined from the block-level

signs by the same method as the original scheme, although it may be wrong

with a nonzero probability as well. On the other hand, the lattice-level letter

is not determined by a single block-level letter unlike the original scheme;

instead, we use a weighted majority vote of block-level letters. The weight

of each block-level letter is given as w := log
[
(1−qblc

lett)/qblc
lett

]
, where qblc

lett

is the probability that the block-level letter is wrong. This weight factor is

justified as follows: Let Iφ (Iψ) denote the set of the indices of block pairs

where the block-level letters are φ (ψ). Assuming that the two lattice-level
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letters (Φ and Ψ) have the same prior probability, we get

Pr
(
Φ
∣∣Iφ, Iψ

)
Pr
(
Ψ
∣∣Iφ, Iψ

) = Pr
(
Iφ, Iψ

∣∣Φ)Pr(Φ)

Pr
(
Iφ, Iψ

∣∣Ψ)Pr(Ψ)
=

Pr
(
Iφ, Iψ

∣∣Φ)
Pr
(
Iφ, Iψ

∣∣Ψ)
=

∏
i∈Iφ

(
1−q(i)lett

)∏
i∈Iψ

q(i)lett∏
i∈Iφ

q(i)lett
∏

i∈Iψ

(
1−q(i)lett

)
=
∏
i∈Iφ

1−q(i)lett

q(i)lett

/∏
i∈Iψ

1−q(i)lett

q(i)lett

= exp

(
n∑

i=1

w(i)

)
,

where q(i)lett and w(i) are respectively the letter error probability and the weight

of the ith block. Note that the third equality comes from the fact that a lattice-

level Bell state is decomposed into block-level Bell states of the same letter,

as shown in Eqs. (4.4a) and (4.4b).

4.3.3 Error probabilities of a CBSM under a lossy en-
vironment

We now present the possible outcomes of a CBSM using either single-

photon resolving or on-off detectors and the corresponding error probabil-

ities
(
qsign,qlett

)
. We denote x := (1−η)2, which is the probability that a

BSMphy does not detect photon losses. It is assumed that the four Bell states

have the same prior probabilities; namely, the initial marginal state on qubits

1 and 2 before suffering losses is the equal mixture of four lattice-level Bell

states, which is justified by Proposition 4.1. For a BSMblc or BSMlat, to

avoid confusion, we use the term “outcome” to indicate the tuple of the out-
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comes of the BSMphy’s constituting the BSMblc or BSMlat, and use the term

“result” to indicate one of the four Bell states that gives the largest posterior

probability under its outcome. Note that the result of a BSM may be not

deterministically determined by its outcome; if multiple Bell states have the

same posterior probability, one of them is randomly selected as the result.

Using single-photon resolving detectors: The case using single-photon

resolving detectors is analyzed in Ref. [89] and we here review the contents

to be self-contained. The outcome of a BSMblc is included in one of the

following three cases: (Success) Both the sign and letter are identified if no

losses are detected and all the B±’s succeed. (Failure) Neither sign nor letter

is identified if no Bψ’s succeed and all B±’s detect losses. (Sign discrimina-

tion) Only the sign is identified if otherwise. The block-level sign (or letter)

is selected randomly if it is not identified. The probabilities of these cases

are respectively


Success : ps =

[
1−2−( j+1)

]
xm,

Failure : pf =
∑ j

l=0

( x
2

)l
(1− x)m−l,

Sign discrimination : psd = 1− ps− pf.

For a BSMlat, let Ns (Nf) denote the number of successful (failed) BSMblc’s.

The lattice-level letter is identified if Ns ≥ 1 (namely, if at least one block-

level letter is identified) and the sign is identified if Nf = 0 (namely, if all

block-level signs are identified). Hence, the outcome of a BSMlat is included

165



in one of the following four events:



S (Success) : Ns ≥ 1∧Nf = 0,

DL (Letter discrimination) : Ns,Nf ≥ 1,

DS (Sign discrimination) : Ns = Nf = 0,

F (Failure) : Ns = 0∧Nf ≥ 1.

The sign and letter error probabilities (qsign,qlett) of the BSMlat for each

event are (0,0) for S, (1/2,0) for DL, (0,1/2) for DS, and (1/2,1/2) for F .

The probabilities of the events are respectively given as

PS = (1− pf)
n− pn

sd,

PDL = 1− (1− ps)
n +(1− pf)

n− pn
sd,

PDS = pn
sd,

PF = (1− ps)
n− pn

sd.

(4.5)

Using on-off detectors: We now consider using on-off detectors for fu-

sions. Each outcome of a BSMblc is uniquely identified by a triple O =

(r,s,U), where r ∈ Z j+1 := {0, · · · , j} is the number of failed Bψ’s, s = ±

is the sign chosen by the successful (r+ 1)th Bψ (if r < j) or randomly (if

r = j), and U is an (m− r)-element tuple composed of “φ,” “ψ,” and “ f ”

(failure) indicating the outcomes of the BSMphy’s from the (r+ 1)th to the

the last. (If r < j, the first component of U is always ψ, and the other compo-

nents are determined by the Bs’s. If r = j, all the components are determined

by the Bs’s.) Let Ne(U) for e ∈ {φ,ψ, f} denote the number of e in U. Then
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a BSMblc outcome O is included in one of the following j+3 events:

Sr :=
{
(r,s,U)

∣∣N f (U) = 0
}

(0≤ r ≤ j),

F :=
{
( j,s,U)

∣∣N f (U) = m− j
}
,

D := O \

[
F ∪

j⋃
r=0

Sr

]
,

(4.6)

where O is the set of all possible outcomes. Note that the events Sr, F , and

D correspond to success, failure, and sign discrimination when η = 0. For

each event E in Eq. (4.6), its sign and letter error probabilities qblc
sign/lett(E)

and the probability pE that the event occurs are given as follows (see Sec. 4.6.1

for the proof):


qblc

sign(Sr) = 0, qblc
lett(Sr) =

1
2 −

1
2

( x
2−x

)r
,

pSr =
1
2

(
1− x

2

)rxm−r,
qblc

sign(F ) = (1−x)m− j

1+(1−x)m− j , qblc
lett(F ) = 1

2 ,

pF = 1
2

(
1− x

2

) j[1+(1− x)m− j
]
,

qblc
sign(D) = 0, qblc

lett(D) = 1
2 ,

pF = 1−
∑

r pSr − pF .

(4.7)

A possible outcome of a BSMlat corresponds to an n-tuple of events com-

posed of Sr (0 ≤ r ≤ j), F , and D , which can be regarded as an indepen-

dent event for the outcomes of the BSMlat. The probability that an event
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E = (E1, · · · ,En) occurs is

pE =

n∏
i=1

pEi (4.8)

and the sign and letter error probabilities of E = (E1, · · · ,En) are respec-

tively

qsign(E) =
1
2
− 1

2
[
1−2qblc

sign(F )
]NF

,

qlett(E) =
1
2
+

1
2

∑
(λ1,··· ,λn)∈Zn

2

n∏
i=1

[
qλi

i (1−qi)
1−λi
]

× sgn

(
n∑

i=1

(2λi−1) log
1−qi

qi

)
,

where NF is the number of F ’s in E, qi := qblc
lett(Ei), and sgn(a) is a/|a| if

a ̸= 0 and 0 if a = 0. See Sec. 4.6.1 for the proof.

4.4 Comparison with other approaches

We now compare the PTQC protocol with three other known approaches

for linear optical quantum computing:

(i) Using single photons for all qubits with fusions assisted by ancillary

photons.

(ii) Using simple repetition codes.

(iii) Attaching redundant tree structures to replace a single fusion by mul-

tiple fusion attempts.
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We show evidence that PTQC is more efficient than these approaches.

4.4.1 Comparison with approach (i)

The first approach uses single photons for all qubits with fusions as-

sisted by ancillary photons [77], which has been widely studied in the con-

text of ballistic quantum computing [85, 86, 78, 87]. In these works, cluster

states that differ from RTCSs are used as resources except for Ref. [78];

however, RTCSs should be used to enable a solid error correction, as also

mentioned in Refs. [85, 87]. Moreover, in these works, the detrimental ef-

fects of failed fusions corrupting nearby qubits are not treated comprehen-

sively; instead, they (except Ref. [78]) regard a fusion failure as removing

the corresponding edge and mainly focus on finding percolation thresholds.

Under the noise model described in Sec. 4.2.1, a fusion detects a loss

with probability 1− (1−η)2, if losses in ancillary photons are neglected.

Since a marginal state of every Bell state is maximally mixed, detection of

a photon loss means complete loss of information; thus, qlett = qsign = 1/2

in such a case. If losses are not detected, the fusion fails with probability

pf, where the letter information of the Bell state still can be obtained [77];

namely, qlett = 0 and qsign = 1/2. These two cases make some central qubits

deficient, which can be tracked using the methodology of analyzing nonideal

fusions presented in Sec. 4.1.2. HIC is used for the H-configuration to make

the failure of a step-1 fusion affects only one central qubit; see Fig. 43.

The photon loss thresholds calculated numerically are plotted in Fig. 56

with theoretical estimations for various values of pf. It shows that pf should

be less than about 10% (1%) even if η is only 1% when star clusters are
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Figure 56: Simulation results for the approach using single-photon qubits
with fusions assisted by ancillary photons. It shows the photon loss thresh-
olds ηth obtained from simulations or estimated theoretically as a function
of the fusion failure rate pf.

(are not) post-selected. Such low fusion failure rates are highly demand-

ing to implement with linear optics due to the requirements of photon-

number resolving detectors (PNRDs) that can resolve many photons and

ancillary states hard to generate. The failure rate of 10% can be achieved

by using the BSM scheme of N = 3 in Ref. [77] where pf = 6.25%. BSM

with N = 3 requires PNRDs resolving up to 16 photons and the ancil-

lary states |ϒ1⟩ , |ϒ2⟩ ,and |ϒ3⟩. (
∣∣ϒ j
〉

is a 2 j-mode state defined as
∣∣ϒ j
〉

:=

|2,0,2,0, · · · ,2,0⟩+ |0,2,0,2, · · · ,0,2⟩.) It is probably impossible to obtain∣∣ϒ j
〉
’s for j ≥ 2 from single photons with linear optics [77]. Moreover, our

simulation does not consider the imperfectness of ancillary states and addi-

tional PNRDs; if they are considered, the requirements will be even stricter.

We note that there is a possibility that the lattice renormalization method

in Ref. [78] makes the protocol less demanding, which is worth investigating

in future works. However, the method has a shortcoming that the renormal-
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ized lattice may be significantly smaller than the original lattice; namely,

about 203 photons are consumed to generate one node [78].

The theoretical estimation in Fig. 56 is done by the following methods:

We first assume that star clusters are not post-selected. For a central qubit q

to be not deficient, the following conditions should be satisfied simultane-

ously:

1. Two step-1 fusions in the star cluster containing q succeed.

2. Four step-1 fusions in the four adjacent star clusters (one for each) do

not detect losses.

3. Four step-2 fusions involved in the star cluster containing q do not

detect losses. Two among them (that make q deficient if they fail)

succeed.

4. q itself does not suffer a loss.

From above, we obtain the probability that a central qubit in the final lattice

is intact: pint(η, pf) = (1− pf)
4(1−η)21. If star clusters are post-selected,

the first and second conditions are no longer needed, thus we get pint(η, pf)=

(1− pf)
2(1−η)9. Regarding a 50% chance of a Z-error as erasing the qubit

by measuring it in the Z-basis (while ignoring the correlation of errors), a

photon loss threshold ηth can be estimated by solving 1− pprc = pint(ηth, pf),

where pprc = 0.249 is the known cubic-lattice bond percolation threshold

[50, 96].
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4.4.2 Comparison with approach (ii)

We next investigate the approach using simple repetition codes, which

is covered in our previous work [3]. In this protocol (called “MTQC”), side

qubits are n-photon ones encoded in the basis of
{
|H⟩⊗n , |V⟩⊗n}, where n

is a natural number. For central qubits, we first consider using m-photon

qubits and then concatenate them with the N-repetition code. That is, we

use the basis of
{(
|H⟩⊗m±|V⟩⊗m)⊗N

}
for the central qubits. In Ref. [3],

the photon loss thresholds and resource overheads are analyzed in detail,

but a rigorous analysis of the effects of nonideal fusions like that done for

PTQC is lacking.

Since the n-photon encoding for side qubits is equal to the (n,1) parity

encoding, the effects of nonideal fusions can be analyzed in the same way

as done for PTQC with the (n,1) parity encoding. The difference between

the two is the way that central qubits become deficient due to photon losses

in themselves. In PTQC, central qubits are single photons, thus a central

qubit becomes deficient with probability η. In MTQC, however, the defi-

ciency rate due to photon losses in central qubits is [1− (1−η)m]N , which

decreases exponentially as N increases. The photon loss thresholds recalcu-

lated based on these facts are presented in Fig. 57 with the previous values

reported in Ref. [3], which shows that the recalculated photon loss thresh-

olds are smaller than the reported values. In particular, it is observed that

the central qubit encoding strategy does not improve the thresholds signifi-

cantly. This discrepancy is because the detrimental effects of nonideal fusion

affecting nearby qubits have not been sufficiently rigorously addressed.
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Figure 57: Simulation results for the approach using the simple repetition
codes. It shows the photon loss thresholds ηth as a function of n for MTQC,
which are obtained from Ref. [3] and the recalculation using the method-
ology for analyzing nonideal fusions. Other parameters are (m,N) = (2,1)
and (m,N) = (2,3) for the unencoded and encoded cases, respectively. Two
subvariants of MTQC, one with the post-selection of star clusters and the
other without it, are considered, which are respectively termed MTQC-2
and MTQC-1 in Ref. [3].

4.4.3 Comparison with approach (iii)

Lastly, we compare PTQC with the approach of (iii) that utilizes re-

dundant tree structures on graph states. Such an approach also has been

actively investigated [79, 80, 81], among which Ref. [81] presents the cur-

rent most advanced version of the protocol where an RTCS is constructed

by entangling multiple GHZ-3 states like PTQC. There, at least ∼ 2× 105

photodetectors are required per data qubit to achieve a positive photon loss

threshold with single-photon resolving detectors, while PTQC requires at

least ∼ 7× 104 photodetectors per data qubit (see below for the calcula-
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tion). Hence, PTQC shows a twofold improvement in resource efficiency

compared to the protocol in Ref. [81]. Furthermore, we have shown that

PTQC also operates with on-off detectors, while the protocol in Ref. [81]

is currently unclear whether it is possible. Nevertheless, further work will

be required to compare their performance (especially their fault-tolerance)

rigorously and comprehensively.

Conversion of resource measures: In Ref. [81], resource overheads are

quantified by the number of photodetectors required per central qubit, not

the number of GHZ-3 states we have used, thus conversion between them

is necessary for a fair comparison. In PTQC, detectors are used when gen-

erating GHZ-3 states, applying physical-level BSMs, and measuring central

qubits. We suppose that GHZ-3 states are generated by the scheme pro-

posed in Ref. [93] like the protocol in Ref. [81]. The scheme uses six detec-

tors to generate a single GHZ-3 state and succeeds with probability 1/32;

thus, generating one GHZ-3 state requires 192 detectors. (If it is allowed to

use photodetectors repeatedly during the generation of each GHZ-3 state,

only six detectors are required per GHZ-3 state. However, we ignore this

option to be consistent with Ref. [81].) Next, four detectors are used for

one physical-level BSM (see Fig. 42). Counting the number of physical-

level BSMs per central qubit is not simple, but we can get its upper bound

as (3N∗GHZ− 1)/2, which is half the number of total photons in all GHZ-

3 states except one photon in the central qubit. Lastly, two detectors are

used for the two polarization modes when measuring a central qubit. In to-

tal, Ndet = 198N∗GHZ detectors are required per data qubit in PTQC. Since
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N∗GHZ ⪆ 330 is required for a positive photon loss threshold (see Fig. 54),

Ndet should be at least about 7×104.

4.5 Remarks

In this chapter, we address the problem of overcoming the negative ef-

fects of nonideal fusions and photon losses during linear-optical measurement-

based quantum computing (MBQC). We first introduced a Bayesian method-

ology for tracking errors caused by nonideal fusions during the construc-

tion of graph states, which enables accurate and effective error simulations.

We then proposed the parity-encoding-based topological quantum com-

puting (PTQC) protocol that uses the parity encoding and concatenated

Bell-state measurement, which turns out to have a high loss threshold of at

most∼ 8.5%. Moreover, logical error rates near 10−6 can be achieved using

about 106 or fewer three-photon Greenberger-Horne-Zeilinger states (GHZ-

3) states in total when the photon loss rate is 1%, which outperforms other

known linear optical computing protocols [3]. We presented comprehen-

sive and systematic methods to construct a graph state from GHZ-3 states,

including the graph-theoretical algorithm that can minimize the resource

overhead efficiently.

Additionally, we investigated three other known approaches that re-

spectively use single-photon qubits with fusions assisted by ancillary pho-

tons, simple repetition codes, and redundant tree graphs. We verified that

the first two are highly demanding compared to PTQC due to low photon

loss thresholds or hard-to-implement requirements such as photodetectors
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that can resolve many photons. Compared to the third approach, we showed

that PTQC has a twofold improvement in terms of the resource overhead

required for the loss threshold to be positive, although additional work will

be necessary to compare their fault-tolerance as well.

One may apply the Bayesian error tracking method to other encoding

schemes or decoding algorithms (such as the union-find decoder [97]) to

improve fault-tolerance or resource overheads. More careful consideration

of component-wise errors, including both heralded photon losses and un-

heralded errors (such as dark counts on photodetectors), shall give rise to

more realistic analyses. Resource analysis will be more comprehensive if

other factors such as the number of optical switches or the lengths of delay

lines are considered. In particular, one trial of CBSM may require optical

switches to change the types (Bψ, B+, and B−) of the physical-level BSMs.

Our graph-theoretical optimization scheme for generating graph states can

be applied to arbitrary graph states as well as microclusters for PTQC. It

will be interesting future work to investigate the resource reduction effect

of this scheme for various MBQC protocols or other applications of graph

states such as quantum repeaters. Lastly, our methods may be generalized

to fusion-based quantum computing [98] that is attracting attention recently,

or other MBQC protocols such as the color-code-based one [37].
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4.6 Appendix

4.6.1 Calculation of the error probabilities of a CBSM
when on-off detectors are used

We here derive the error probabilities of a CBSM on two qubits (say,

qubits 1 and 2) encoded with the parity encoding when on-off detectors are

used for fusions. We denote x := (1−η)2, which is the probability that a

BSMphy does not detect photon losses.

Block-level BSM (BSMblc)

We note that every positive operator-valued measure (POVM) element

of a lossy BSMphy has vanishing off-diagonal entries in the Bell basis; see

Sec. 4.6.2 for the proof. Also, each POVM element of a lossy BSMblc, de-

noted by Mblc
O for each outcome O = (r,s,U), is the tensor product of partic-

ular POVM elements of the lossy BSMphy’s constituting the BSMblc. Thus,

the conditional probability of getting O from a block-level Bell state |B⟩ is

Pr(O|B) = ⟨B|Mblc
O |B⟩=

1
2m−1

∑
i

⟨Bi|Mblc
O |Bi⟩=

1
2m−1

∑
i

Pr(O|Bi),

where |Bi⟩’s are the terms constituting the summation in Eqs. (4.4c) and

(4.4d), namely, |B⟩= 1√
2m−1

∑
i |Bi⟩. In other words, when calculating Pr(O|B),

it is enough to find Pr(O|Bi)’s and then take their average.

The posterior probability of a block-level Bell state |B⟩ under a given
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outcome O is

Pr(B|O) =
Pr(O|B)∑

|B′⟩∈Bblc
Pr(O|B′)

, (4.9)

where Bblc is the set of the four block-level Bell states. Thus, the result of

the BSMblc is selected randomly in the set R(O) := argmaxB Pr(O|B). The

sign (letter) error probability as a function of O is

qblc
sign(lett)(O) =

1
|R(O)|

∑
|B⟩∈R(O)

[
Pr
(
Fsign(lett)(B)

∣∣O)+Pr
(
Fsign ◦Flett(B)

∣∣O)],
(4.10)

where
∣∣Fsign(lett)(B)

〉
is the Bell state obtained by flipping the sign (letter)

from |B⟩ (e.g., Fsign(φ
±) = φ∓).

Block-level outcomes can be grouped by the j+3 events Sr (r = 0, · · · , j),

F , and D , as defined in Eq. (4.6). We now calculate the probability that each

event occurs and the corresponding sign and letter error probabilities. Let us

first consider an outcome O = (r,s,U) ∈ Sr, where Nf(U) = 0. Regarding a

single term in the decomposition of
∣∣∣φ±(m)

〉
[see Eq. (4.4c)], if there are total

k of |ψ±⟩’s, the first r physical levels contain k−Nψ(U) of |ψ±⟩’s, which

should suffer photon losses by the definition of r. If r < j, s selected by the

successful (r+ 1)th Bψ is certainly ±, the sign of
∣∣∣φ±(m)

〉
. If r = j, the ran-

domly selected s may or may not be corrected; however, the latter case is out

of Sr since all the following B∓’s must fail. The remaining m− r BSMphy’s

should not suffer photon losses since N f (U) = 0. Hence, for all U satisfying
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Nf(U) = 0, we get

Pr
(

r,±,U
∣∣∣φ±(m)

)
=

1
2m−1

∑
k:even≤r+Nψ

(
r

k−Nψ

)
(1− x)k−Nψ

1
2δr j

xm−r

=
1

2δr j

[(
1− x

2

)r( x
2

)m−r
+(−1)Nψ

( x
2

)m
]
,

Pr
(

r,∓,U
∣∣∣φ±(m)

)
= 0,

(4.11)

where Nψ = Nψ(U). Similarly, we get

Pr
(

r,±,U
∣∣∣ψ±(m)

)
=

1
2δr j

[(
1− x

2

)r( x
2

)m−r
− (−1)Nψ

( x
2

)m
]
,

Pr
(

r,∓,U
∣∣∣ψ±(m)

)
= 0.

(4.12)

From Eqs. (4.9)–(4.12), we obtain

qblc
sign(O) = 0 =: qblc

sign(Sr),

qblc
lett(O) =

(
1− x

2

)r( x
2

)m−r−
( x

2

)m

2
(
1− x

2

)r( x
2

)m−r =
1
2

[
1−
(

x
2− x

)r]
=: qblc

lett(Sr).

(4.13)

Note that the error probabilities are the same for all O ∈ Sr. The total prob-

ability that the event Sr occurs is

pSr :=
1
4

∑
O∈Sr

∑
|B⟩∈Bblc

Pr(O|B)

=
1
2

1
2δr j

(
1− x

2

)r( x
2

)m−r
2m−r−1+δr j

=
1
2

(
1− x

2

)r
xm−r,
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where the factor 2m−r−1+δr j is the number of possible U’s for a given value

of r.

Next, we consider O = ( j,s,U) ∈ F , where N f (U) = m− j, namely,

all the Bs’s fail. Regarding a single term in the decomposition of
∣∣∣φ±(m)

〉
, all

the |ψ±⟩’s in the first j physical levels should suffer photon losses. If s =±,

all the following B±’s should suffer photon losses as well. If s = ∓, all the

following B∓’s fail regardless of photon losses. We thus get

Pr
(

j,±,U = ( f , · · · , f )
∣∣∣φ±(m)

)
=

1
2m−1

∑
0≤k1≤ j

0≤k2≤m− j
k1+k2: even

(
j

k1

)(
m− j

k2

)
(1− x)k1+m− j · 1

2

=
1
2

(
1− x

2

) j
(1− x)m− j,

Pr
(

j,∓,U = ( f , · · · , f )
∣∣∣φ±(m)

)
=

1
2

(
1− x

2

) j
,

where k1 (k2) in the summation indicates the number of |ψ±⟩’s in the first

j (last m− j) physical levels. Similarly, the same results are obtained for∣∣∣ψ±(m)

〉
:

Pr
(

j,±,U = ( f , · · · , f )
∣∣∣ψ±(m)

)
=

1
2

(
1− x

2

) j
(1− x)m− j,

Pr
(

j,∓,U = ( f , · · · , f )
∣∣∣ψ±(m)

)
=

1
2

(
1− x

2

) j
.

The corresponding error probabilities are

qblc
sign(O) =

(1− x)m− j

1+(1− x)m− j =: qblc
sign(F ), qblc

lett(O) =
1
2
=: qblc

lett(F )
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and the total probability of the event F is

pF =
1
4

∑
s=±

∑
|B⟩∈Bblc

Pr( j,s,U = ( f , · · · , f )|B) = 1
2

(
1− x

2

) j[
1+(1− x)m− j].

Lastly, we consider O = (r,s,U) ∈ D . If r < j, N f (U) > 0 by the def-

inition of D and N f (U) < m− r since the first component of U is always

ψ. If r = j, 0 < N f (U) < m− j by the definition of D . Therefore, regard-

less of r, U contains at least one failure and one success (ψ or φ). Thanks

to the successful BSMphy’s, the sign of the result is identified without an

error. On the other hand, the letter is not identified because of the failures.

We can see intuitively without calculation that the letter error probability

is 1/2: Even if there is only one failure in U, the letter information of the

corresponding physical-level Bell state is completely lost, considering that

the marginal state of a block-level Bell state on a single physical level is

|φ±⟩⟨φ±|+ |ψ±⟩⟨ψ±|. Thus, the block-level letter information (determined

by the parity of the number of BSMphy outcomes with ψ) is completely lost

as well. To rewrite the results, we get

qblc
sign(D) = 0, qblc

lett(D) =
1
2
, pD = 1−

j∑
r=0

pSr − pF .

Lattice-level BSM (BSMlat)

Each n-tuple of events composed of Sr (0 ≤ r ≤ j), F , and D cor-

responds to a set of possible outcomes of a BSMlat. Let us consider such

an n-tuple E = (E1, · · · ,En). A lattice-level sign error occurs when there is

an odd number of block-level sign errors and F is the only event where a
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block-level sign error may occur; thus, the sign error probability is

qsign =
∑

i:odd≤NF

(
NF

i

)
qblc

sign(F )i[1−qblc
sign(F )

]NF −i
=

1
2
− 1

2
[
1−2qblc

sign(F )
]NF

,

where NF is the number of F ’s in E.

A lattice-level letter error occurs when the weighted majority vote of

the block-level letters gives a wrong answer. We consider i.i.d. random vari-

ables Λ1, · · · ,Λn such that Λi∼Bernoulli(qi) for each i where qi := qblc
lett(Ei),

which indicates whether a letter error occurs in the ith block. A lattice-level

letter error occurs if

∑
i

(2Λi−1) log
1−qi

qi
=: V (Λ1, · · · ,Λn)

is larger than zero or if it is equal to zero and the randomly selected letter is

wrong. Therefore, we get

qlett = Pr(V (Λ1, · · · ,Λn)> 0)+
1
2

Pr(V (Λ1, · · · ,Λn) = 0)

=
∑

(λ1,··· ,λn)∈Zn
2

n∏
i=1

Pr(Λi = λi)

{
Θ[V (λ1, · · · ,λn)> 0]+

1
2

Θ[V (λ1, · · · ,λn) = 0]
}

=
∑

(λ1,··· ,λn)∈Zn
2

n∏
i=1

[
qλi

i (1−qi)
1−λi
][1

2
sgn(V (λ1, · · · ,λn))+

1
2

]
,

=
1
2
+

1
2

∑
(λ1,··· ,λn)∈Zn

2

n∏
i=1

[
qλi

i (1−qi)
1−λi
]

sgn

(
n∑

i=1

(2λi−1) log
1−qi

qi

)
,

where Θ[C] for a condition C is equal to 1 if C is true and 0 if it is false, and

sgn(a) is a/|a| if a ̸= 0 and 0 if a = 0.
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4.6.2 Proof of vanishing off-diagonal entries of the POVM
elements of a lossy physical-level BSM

We here prove that every POVM element of a lossy BSMphy in a CBSM

with on-off detectors has vanishing off-diagonal entries in the Bell basis.

Let Λη denote the photon loss channel of a loss rate η defined as Λη(σ) :=

(1−η)σ+η |0⟩⟨0| for a single-photon state σ and the vacuum state |0⟩. By

substituting σ = |ψ⟩⟨ψ| for an arbitrary pure state |ψ⟩ = α |H⟩+ β |V⟩, we

get Λη(|H⟩⟨V |) = (1−η) |H⟩⟨V |. Thus,

(Λη⊗Λη)(
∣∣φ±〉〈ψ±∣∣) =(1−η)2 ∣∣φ±〉〈ψ±∣∣

+η(1−η)(|H0⟩⟨V 0|+ |V 0⟩⟨H0|+ |0H⟩⟨0V |+ |0V ⟩⟨0H|),

(Λη⊗Λη)(
∣∣φ±〉〈ψ∓∣∣) =(1−η)2 ∣∣φ±〉〈ψ∓∣∣

+η(1−η)(|H0⟩⟨V 0|− |V 0⟩⟨H0|− |0H⟩⟨0V |+ |0V ⟩⟨0H|),

(Λη⊗Λη)(
∣∣φ+
〉〈

φ
−∣∣) =(1−η)2 ∣∣φ+

〉〈
φ
−∣∣

+η(1−η)(|H0⟩⟨H0|− |V 0⟩⟨V 0|+ |0H⟩⟨0H|− |0V ⟩⟨0V |),

(Λη⊗Λη)(
∣∣ψ+

〉〈
ψ
−∣∣) =(1−η)2 ∣∣ψ+

〉〈
ψ
−∣∣

+η(1−η)(|H0⟩⟨H0|− |V 0⟩⟨V 0|− |0H⟩⟨0H|+ |0V ⟩⟨0V |).

(4.14)

Now, let M± and M f denote the POVM elements of a lossy Bψ correspond-

ing to the outcomes |ψ±⟩ and failure, respectively. By modelling a lossy

Bψ as a photon loss channel followed by an ideal Bψ, Mi for i ∈ {+,−, f}
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satisfies

Tr[Miρ] = Tr[Πi(Λη⊗Λη)(ρ)], (4.15)

for any two-qubit state ρ, where

Π+ :=
∣∣ψ+

〉〈
ψ
+
∣∣ , Π− :=

∣∣ψ−〉〈ψ−∣∣ ,
Π f := |φ+⟩⟨φ+|+ |φ−⟩⟨φ−|+ |H0⟩⟨H0|+ |V 0⟩⟨V 0|+ |0H⟩⟨0H|+ |0V ⟩⟨0V |+ |00⟩⟨00|

are the projectors of an ideal Bψ with a lossy input. From Eqs. (4.14) and

(4.15), we obtain ⟨ψ±|Mi |φ±⟩= ⟨ψ±|Mi |φ∓⟩= ⟨φ+|Mi |φ−⟩= ⟨ψ+|Mi |ψ−⟩=

0 for every i ∈ {+,−, f}. Similar arguments can be done for a lossy B+ and

B− as well.

4.7 Derivation of the physical-level graphs of
post-H microclusters

Here we derive the physical-level graph structures of the central and

side post-H microclusters for the two H-configurations, which are shown in

Fig. 45. The first step of the derivation is to investigate how a graph state

is transformed if a Hadamard gate (H1) is applied on one of the qubits (say,

qubit 1) and then a CZ gate (CZ
12) is applied on qubit 1 and another qubit

(say, qubit 2) that is not adjacent to qubit 1. Note that, in the Heisenberg

picture, the CZ gate transforms the Pauli-X operators of the qubits as X1→

X1Z2 and X2 → Z1X2, while it leaves the Pauli-Z operators the same. For

a qubit i, gi := Xi
∏

j∈N(i) Z j, where N(i) is the set of qubits adjacent to
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CZ gate
(a)

(b)

|+!⟩

𝑚 𝑚 − 1

×	(𝑛 − 1)

	𝑚 − 1

𝑚

	𝑚 − 1

𝑚

	𝑚 − 1

×	(𝑛 − 1) ×	(𝑛 − 1)

(c) 𝑚

×	(𝑛 − 1)

Figure 58: (a) Transformation of a graph state by applying a Hadamard
gate followed by applying a CZ gate. (b) Physical-level graph structure of
the state |+L⟩ = |0L⟩+ |1L⟩. (c) Physical-level graph structure of a lattice-
level three-qubit linear graph state.

qubit i, is a stabilizer of the initial graph state. The stabilizers S1 and S1S2

are transformed by CZ
12H1 as

g1 = X1
∏

j∈N(1)

Z j −→ Z1
∏

j∈N(1)

Z j = H1

X1
∏

j∈N(1)

Z j

H1,

g1g2 = X1X2
∏

j∈N(1)△N(2)

Z j −→ X2
∏

j∈N(1)△N(2)

Z j = H1

X2
∏

j∈N(1)△N(2)

Z j

H1,

185



Figure 59: Encoding circuit of the state |+L⟩ := |0L⟩+ |1L⟩ in the (3,3)
parity encoding. It employs multiple copies of the state |+⟩ := |H⟩+ |V⟩,
CZ gates, and Hadamard gates. The label [i, j] for each physical-level qubit
indicates the index i of the block and the index j of the photon in the block.

where A△B := A∪B\ (A∩B) for two sets A and B. Also, for each qubit i ∈

N(1),

gi = Xi

∏
j∈N(i)

Z j −→ XiX1Z2
∏

j∈N(i)\{1}

Z j = H1

Xi

∏
j∈N(i)△{2}

Z j

H1.

Therefore, the overall effect of the process is, for each qubit i adjacent

to qubit 1, to flip the connectivity of the qubits 2 and i (namely, connect

them if they are disconnected and disconnect them if they are already con-

nected) and then apply H1. An example of this transformation is presented

in Fig. 58(a).

Next, we obtain the graph structure of the state |+L⟩ := |0L⟩+ |1L⟩.

Fig. 59 shows the encoding circuit of the state for the (3,3) parity encod-

ing, which employs multiple copies of the state |+⟩ := |H⟩+ |V⟩, CZ gates,
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and Hadamard gates. Here, we label the jth physical qubit of the ith block

by [i, j]. It is straightforward to generalize it for any pair of (n,m) The

graph structure of |+L⟩ shown in Fig. 58(b) is obtained by preparing nm

isolated vertices and tracking the transformation of the graph via the CZ and

Hadamard gates in the circuit.

A lattice-level CZ gate CZ
L is done by m2 physical CZ gates:

CZ
L =

∏
i, j≤m

CZ
1i,1 j, (4.16)

where CZ
i j,kl is the CZ gate between the [i, j] qubit of the first lattice-level

qubit and the [k, l] qubit of the second lattice-level qubit. It can be verified

as follows: The stabilizer generators of the (n,m) parity encoding are

Xi jXi( j+1) (∀i≤ n, ∀ j ≤ m−1),
m∏

j=1

Zi jZ(i+1) j (∀i≤ n−1)


and the lattice-level Pauli operators are

XL = X11 · · ·Xn1, ZL = Z11 · · ·Z1m,

where Xi j (Zi j) is the Pauli-X (-Z) operator on the [i, j] qubit. It is straight-

forward to see that the RHS of Eq. (4.16) commutes with all the stabilizers

and transforms the lattice-level Pauli operators correctly.

Combining the above results on the |+L⟩ state and the lattice-level

CZ gate, we attain the graph structure of a lattice-level three-qubit linear

graph state shown in Fig. 58(c). The only left ingredient is the lattice-level
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Figure 60: Circuit to implement the lattice-level Hadamard gate of the (3,
3) parity encoding.

Hadamard gate (HL). The circuit for HL is obtained by simply connecting

the decoding circuit, the physical Hadamard gate, and the encoding cir-

cuit, which is explicitly shown in Fig. 60 for the (3, 3) parity encoding. By

transforming the graph in Fig. 58(c) with appropriate lattice-level Hadamard

gates, we finally get the desired graph structures of the post-H microclusters

shown in Fig. 45. Note that, for central microclusters, the middle lattice-

level qubits are replaced with unencoded physical-level qubits.

4.7.1 Details of error simulations

Here we describe the error simulation method in detail. We first intro-

duce the parameters that determine the details of PTQC:

• pssl: If True, star clusters generated by successful step-1 fusions

are post-selected for step 2. If False, all generated star clusters are

used regardless of the fusion results.
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: Dual qubit
: Primal qubit

⋯

2𝑇
+ 1

layers

𝑥

𝑦 𝑡

𝑑 − 1
𝑦-boundary

(dual)

𝑑 − 1
𝑥-boundary

(primal)

Primal unit cell
𝑡-boundary (primal)

𝑡-boundary (primal)

Edge
(CZ gate)

Figure 61: Structure of a logical identity gate for simulations where the
code distance is d = 5 and the length along the simulated time (t) axis is T
in the unit of a cell.

• hic: If True, the H-configuration is HIC. If False, it is HIS.

• sprd: If True, single-photon resolving detectors are used. If False,

on-off detectors are used.

• n, m: The (n,m) parity encoding is used to encode side qubits.

• j: The maximal number of Bψ’s in a BSMblc. (See the CBSM scheme

in Sec. 4.3)

For a fixed parameter setting, we consider an RTCS lattice whose bound-
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aries are in the form of a cuboid as visualized in Fig. 61, which implements

a logical identity gate. Let us term the three axes of the cuboid as the x-, y-,

and t-axis and the corresponding boundaries as the x-, y-, and t-boundaries.

The t-axis is also referred to as the simulated time axis. The cuboid has

the widths of d− 1 unit cells along the x- and y-axis, where d is the code

distance, and the width of T = 4d +1 unit cells along the t-axis. The value

of T is arbitrarily set to be larger enough than d for reducing the effects

of errors near the t-boundaries. The x- and t-boundaries are set to be pri-

mal, while the y-boundaries are set to be dual. In other words, the x- and

t-boundaries adjoin normally on primal unit cells, while the y-boundaries

cross the middle of primal unit cells. For error simulations, we count error

chains connecting the opposite x-boundaries, thus we assume that the qubits

on the t-boundaries do not have errors.

We use a Monte-Carlo method for the simulations. Each trial proceeds

as follows:

1. Sample the outcomes of all fusions in steps 1 and 2 (only step 2 if

pssl is True) by the probabilities shown in Sec. 4.3, which depend

on the values of n, m, j, and η.

2. For each fusion outcome, the corresponding error probabilities (qsign,

qlett) are obtained and whether the fusion has a sign or letter error

is randomly determined by the probabilities. These error probabili-

ties and errors are then propagated to appropriate central qubits de-

termined by the value of hic. For each central qubit i, the presence

or absence of an error and its probability are assigned to a boolean
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variable errori and a floating-point variable qerr,i, respectively.

3. For each central qubit i, a photon loss is sampled with probability

η. If it has a loss, qerr,i is updated to 0.5 and errori is flipped with

probability 50%.

4. The syndrome of each parity-check operator (which corresponds to a

primal unit cell) is determined by the values of errori’s of the qubits

in the support of the operator.

5. The syndromes are decoded to infer the locations of the errors. We

use the weighted minimum-weight perfect matching decoder via Py-

Matching package [95] where the weight for each qubit i is log[(1−qerr,i)/qerr,i].

(If qerr,i = 0, the weight is infinity, which is handled by ignoring the

qubit from the input of the decoder.) Exceptionally, if every value of

qerr,i is either 0 or 1/2, the qubits with qerr,i = 1/2 are given the weight

of one, not zero, for a technical reason.

6. The remaining errors are obtained by comparing the original and esti-

mated errors. If the number of the remaining errors on one side of the

x-boundaries is odd, we regard that this trial has a logical error.

The logical error rate pL for a given parameter setting is obtained by

repeating the above process a sufficient number of times. In detail, we repeat

the process until ∆pL/pL ≤ 0.1 is reached where ∆pL is half the width of the

99% confidence interval. The logical error rates p(9)L (η), p(11)
L (η) are calcu-

lated while varying η for two code distances d = 9, 11 and the loss thresh-

old ηth is obtained by finding the largest η satisfying p(11)
L (η)+∆p(11)

L (η)<
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p(9)L (η)−∆p(9)L (η).

4.7.2 Details of resource analysis

Here, we describe the details of resource analysis on PTQC. We first

investigate calculating N∗GHZ, the expected number of required GHZ-3 states

to generate one star cluster. N∗GHZ is used to obtain the expected total number

Nptarg
L

of GHZ-3 states to achieve the target logical error rate of ptarg
L for the

logical identity gate with the length of d−1 unit cells.

By using the optimization method presented in Sec. 4.2.2, we deter-

mine the merging graphs and the orders of the merging operations for center

and side post-H microclusters and calculate their resource overheads Ncentral
GHZ

and Nside
GHZ. Then we get

N∗GHZ =


[(

Ncentral
GHZ +Nside

GHZ

)
/psucc,step1 +Nside

GHZ

]
/psucc,step1 if pssl is True,

Ncentral
GHZ +2Nside

GHZ if pssl is False,

where psucc,step1 is the average success probability of step-1 fusions and

pssl is defined in Sec. 4.7.1

To obtain the simulation results in Sec. 4.2.3, we sample 1200 values

of NMC
GHZ through the aforementioned process. Let N1 (N2) be the minimal

values of NMC
GHZ for the first 600 (total 1200) samples. If N1 = N2, the value

is returned. If otherwise, we sample 1200 values of NMC
GHZ again and denote

the minimal NMC
GHZ for the total 2400 samples by N3. If N2 = N3, the value is

returned. If otherwise, we sample 2400 merging graphs again and so on. By

varying the total number of samples in this way, it is possible to increase the
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odds that we reach close to the real optimal value.

After obtaining N∗GHZ (at η = η0), we consider the logical identity gate

with T = d− 1 (see Fig. 61) to calculate Nptarg
L

. Nptarg
L

is determined by the

following equality:

Nptarg
L

= N∗GHZ(2dptarg
L

+1)(3d2
ptarg

L
−3dptarg

L
+1),

where dptarg
L

is the minimal code distance to achieve the target logical error

rate of ptarg
L for the identity gate when η=η0. dptarg

L
is obtained by employing

the error simulation method in Fig. 4.7.1. However, this method simulates

the logical identity gate with T = 4d + 1, while our current interest is that

with T = d− 1. From an obtained logical error rate p′L from the method

with T = 4d + 1, we estimate the logical error rate p(1)L per two layers

(one unit cell) from the relation

p′L =
∑

t≤T :odd

(
T
t

)(
p(1)L

)t(
1− p(1)L

)T−t
=

1
2

[
1−
(

1−2p(1)L

)T
]
,

where T = 4d+1. Using a similar relation for T = d−1, we can convert p′L

into the logical error rate pL of the gate with T = d−1. We then obtain dptarg
L

by calculating the logical error rate p(d)L at η = η0 for each code distance

d ≤ 11 and finding the smallest d satisfying p(d)L < ptarg
L . If p(11)

L ≥ ptarg
L ,

dptarg
L

is estimated from the linear extrapolation of the points (9, log p(9)L )

and (11, log p(11)
L ).
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Chapter 5

Conclusion

Measurement-based quantum computing (MBQC) is an attractive method-

ology for conducting quantum computing, thanks to its nature that it is

processed with only single-qubit measurements provided that entangled re-

source states are supplied. Optical systems are particularly suitable to im-

plement MBQC since single-qubit measurement can be made with high ac-

curacy and entangled resource states can be generated with linear optical

circuits such as beam splitters. However, the detrimental effects of various

error sources during computation must be sufficiently suppressed by error-

correcting techniques to obtain reliable outcomes. Not only that, a large

number of resources demanded to generate cluster states makes its realiza-

tion technically difficult.

In this dissertation, we have explored two different schemes for univer-

sal fault-tolerant MBQC with topologically-encoded logical qubits, which

have several significant advantages over previous approaches including re-

source efficiency. The first scheme investigated in Chapter 3, which is platform-

independent, uses color-code-based cluster states as resource states instead

of conventional Raussendorf’s three-dimensional cluster states (RTCSs).

We elaborately designed the methods to perform elementary logic gates and

correct errors that can occur in different regions of a cluster state. Notably,

we showed that it is significantly more hardware-efficient when conducting

195



the phase and Hadamard gates than the scheme with RTCSs, which is due

to the discovery that these gates can be implemented natively without addi-

tional techniques or resources. The second scheme addressed in Chapter 4,

which operates in linear optical systems, exploits parity-encoded multipho-

ton qubits to boost the success probability of entangling operations for ef-

ficient construction of cluster states. We verified that this new protocol can

tolerate high photon loss rates near 8% and has advantages over previous

approaches in terms of loss-tolerance, resource overheads, or feasibility of

basic elements. We further proposed a graph-theoretical algorithm to opti-

mize the resources required to generate large-scale cluster states. We antici-

pate that our suggestions can contribute to lowering the technical barriers to

accomplishing topological MBQC.

We finish this dissertation by presenting several related open questions:

1. We can construct cluster states based on various quantum error-correcting

codes besides surface and color codes. For example, one may consider

the XZZX surface code, which has been recently getting attention due

to its exceptional thresholds [99]. Are there any benefits to using such

cluster states for MBQC?

2. We presented a color-code-based scheme in Chapter 3, but the linear-

optical scheme in Chapter 4 is based on RTCSs. It is because we made

use of the existing scheme for constructing an RTCS from GHZ-3

states. If we apply the parity encoding and the Bayesian error tracking

method to the color-code-based scheme, how will the performance be

compared to the previous results?
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3. Are there any other encoding schemes better than the parity encoding

for boosting the success probability of the type-II fusion?

4. How can we reduce the number of required switching circuits? Our

parity-encoding-based protocol requires many of them for various

parts such as adaptive lattice-level Bell-state measurement and post-

selection of GHZ-3 states. They may heavily affect the overall photon

loss rate.

We hope that these questions will be resolved in the near future.
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국문초록

측정 기반 양자 컴퓨팅(MBQC)은 양자 컴퓨팅의 한 방법론으로, 클

러스터 상태라고 하는 큰 얽힌 상태에 단일 큐비트 측정을 함으로써 이

루어지며, 특히 광학 시스템에 적합하다. 위상기하학적 양자 오류 정정

부호를활용하면 MBQC가작은오류들에내성을가지도록할수있음이

알려져 있다. 이 학위논문에서는 기존의 프로토콜들에 대해 오류에 대한

내성과 자원 효율성의 측면에서 장점을 가지는 두 종류의 위상기하학적

MBQC프로토콜을소개한다.

첫 번째 프로토콜로서 2차원 색 부호를 기반으로 구성된 클러스터

상태를이용하는위상기하학적MBQC프로토콜을제안한다.라우젠도르

프(Raussendorf)의 3차원 클러스터 상태(RTCS)를 기반으로 하는 기존의

위상기하학적 MBQC프로토콜은한가지문제점이있는데,임의의논리

적게이트를구축하기위해필수적인하다마드(Hadamard)게이트와위상

게이트가 추가적인 기술 없이 구현될 수 없다는 것이다. 이러한 단점은

RTCS프로토콜의실현을방해하는기술적인장벽이된다.우리는이러한

문제를해결하기위해 RTCS대신색부호기반의클러스터상태를사용하

는프로토콜을제시한다.그결과하다마드게이트와위상게이트가오류

정정과함께추가적인기술없이구현될수있으며,이는 RTCS프로토콜

에서상태증류(state distillation)방법을활용하는것보다약 26배의필요

자원량감소를가져온다는것을보인다.

두번째프로토콜로서패리티(parity)부호기반의다중광자큐비트를

활용하는선형광학적위상기하학MBQC프로토콜을제시한다.선형광학

시스템에서의MBQC에서얽힘작용의비결정론적인특성과광자손실은
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거대한 클러스터 상태의 생성을 방해하고 논리적 오류를 유발한다. 비이

상적(nonideal) 얽힘 작용이 주위 큐비트들을 불가피하게 손상시킴에도

불구하고 제시된 프로토콜이 광자 손실에 높은 내성을 가지고 자원 효율

적이라는사실을밝힌다.현실적인오류분석을위해,이러한악영향들에

의한 오류들을 추적하는 베이지안(Bayesian)적 방법론을 소개한다. 오류

에 대한 내성, 필요 자원량, 기본 요소들의 실현 가능성 등의 측면에서

기존에 존재하는 방법들보다 우리의 프로토콜이 우위를 가진다는 것을

보인다.

주요어 : 양자컴퓨팅,양자정보,양자오류정정,측정기반양자컴퓨팅
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