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Abstract

Universal Resource-efficient
Topological Measurement-based
Quantum Computing

Seok-Hyung Lee
Department of Physics and Astronomy
The Graduate School

Seoul National University

Measurement-based quantum computing (MBQC) is a methodology of quan-
tum computing that is conducted with single-qubit measurements on large-
scale entangled states called a cluster state, which is adequate in optical sys-
tems. In particular, MBQC can be tolerant to small faults by utilizing topo-
logical quantum error-correcting codes. This dissertation introduces two
topological MBQC protocols that are advantageous over previous protocols
in terms of fault tolerance and resource efficiency.

In the first part, we propose a topological MBQC protocol with a family
of cluster states constructed based on two-dimensional color codes. The con-
ventional topological MBQC protocol with Raussendorf*s three-dimensional
cluster states (RTCSs) has a drawback: The Hadamard and phase gates that

are essential for building up arbitrary logic gates cannot be implemented



natively without additional techniques, which makes the protocol less fea-
sible. We resolve this problem by altering RTCSs with color-code-based
cluster states. Specifically, we show that the Hadamard and phase gates can
be implemented natively in a fault-tolerant manner, which leads to about 26
times resource reduction compared to the protocol with RTCSs using state
distillation.

In the second part, we suggest a linear-optical topological MBQC pro-
tocol employing multiphoton qubits based on the parity encoding. The non-
deterministic nature of entangling operations and photon losses hinder the
large-scale generation of cluster states and introduce logical errors in linear-
optical MBQC. Our protocol turns out to be highly photon-loss tolerant and
resource-efficient even under the effects of nonideal entangling operations
that unavoidably corrupt nearby qubits. For the realistic error analysis, we
introduce a Bayesian methodology to track errors caused by such detrimen-
tal effects. Notably, we show that our protocol is advantageous over several
other existing protocols in terms of fault-tolerance, resource overhead, or

feasibility of basic elements.

Keywords : Quantum Computing, Quantum Information, Quantum Error
Correction, Measurement-based Quantum Computing

Student Number : 2017-27328
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List of Figures

|Figure 1.

Examples of cluster states. Orange dots and lines indi-

cate the vertices and edges of the graphs, respectively.

(a) A cluster state on a simple graph. The presented

“XZ/2Z” operator indicates an example of a stabilizer

generator. (b) A unit cell of Rausssendort’s three-dimensionall

cluster states (RTCSs). A vertex 1s located on each

edge and face of thecell.|. . . . . ... .. ... ...
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|Figure 2.

Implementation of the Hadamard gate in two-dimensional |

MBQC. My (My) means the measurement in the X-

basis (Y-basis).| . . . . ... ... oL

|[Figure 3.

Two typical examples of color-code lattices: (a) 4-8-

8 and (b) 6-6-6 lattices. The lattices are 3-valent and

have 3-colorable faces.| . . . . . . .. ... ... ...

|Figure 4.

(a) Red and (b) blue shrunk lattices of the 4-8-8 color-

code lattice. Red or blue dots (lines) indicate their ver-

tices (edges), which correspond to red or blue faces

(links) of the original lattices.| . . ... ... ... ..
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|Figure 5.

Structure of a single layer of a color-code-based clus-

ter state (CCCYS) based on the 4-8-8 color-code lattice

L,p. Each black circle is a code qubit (CQ) located at

a vertex of £rp. Each colored square is an ancilla qubit

(AQ) with that color, located at the center of a face of

Lop with that color. Each AQ is connected with sur-

rounding CQs by edges (CZ gates), some of which are

drawn as black solid lines. Two adjacent CQs are con-

nected by a link, some of which are drawn as colored

lmes.| . ... .. . . . .

|Figure 6.

Stack of multiple 1dentical layers along the simulating

time axis for a CCCS. Each pair of two CQs adjacent

along the time axis 1s connected by an edge, some of

which are presented as black solid lines. One of the

primalities (“primal” and “dual”) 1s alternatively as-

signed to each layer. An AQ (a CQ or link) is primal

(dual) 1f 1t 15 1n a primal layer, and vice versa for a dual

layer. Labels of some elements defined in Sec. [3.1.2]

areshown.| . .. ... .. ... . ... ... ...

|[Figure 7.

Four types of stabilizer generators in a CCCS defined

in Definitions|3.1H3.3t (a) A-, (b) C-, (¢) L-, and (d) J-

type stabilizer generators. Each grey square indicates

a layer. A stabilizer generator of each type 1s the tensor

product of the marked X or Z operators on the qubats. |.
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|Figure 8.

Unit cells of the primal shrunk lattices of a 4-8-8 CCCS:

(a) a blue cell in the primal red shrunk lattice £LP" (a

green cell 1s identical except the colors of AQs) and

(b) red and green cells in the primal blue shrunk lat-

tice LPP. prs and dfs indicate primal and dual layers,

respectively. Some qubits on the last layer are not dis-

played. All the pcAQs are vertices of LP°. Each space-

like (or timelike) edge, visualized as red or blue solid

lines, connects two adjacent vertices 1n a layer (or dif-

ferent layers) and corresponds to a pcL (or dcAQ).

Faces and cells are defined naturally with the edges. |

33

|[Figure 9.

(a) Timelike joint of primal correlation surfaces (CSs)

originated from a J-type stabilizer generator. The X

or Z operators on the qubits indicate the support of

the resulting CS. A series of CQs along which the

three faces meet 1s marked as a purple dashed line. (b)

Example of a general joint, obtained by multiplying

a series of timelike and spacelike joints together with

ordinary CSs.|. . . . ... ... ... ... ... ...
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|[Figure 10. Example of the construction of a spacelike joint of |

three primal CSs. A primal layer of a 4-8-8 CCCS is |

presented. We first assume a timelike pg-CS S ending |

at the green dashed line. We then expand S by mul- |

tiplying the A-type stabilizer generators around the |

pAQs marked with purple triangles. After the expan- |

sion, suppy (S) contains the marked pAQs, and supp,(S) |

contains the CQs along the red and blue solid lines. |

The red (blue) area above (below) the green line can |

be regarded as a pr(b)-CS, in the sense that it may be |

expanded by multiplying ordinary pr(b)-CSs. A joint |

of the three CSs is thus constructed, and S is the cor- |

responding joined CS. The qubits in supp,(S) inside |

the area A or B exactly match with the final layer of a |

timelike joint, thus spacelike and timelike joints may |

beconnected. | . . . . .. ... .. L. 38
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|[Figure 11. (a) Schematic diagram of a defect (pb-D) and a db- |

CS S ending at the defect. The defect is defined as |

Eq. (3.3) with a 2-chain 4S° € HS in the shape of a |

pipe. (b) Schematic diagram of a pg-CS surrounding |

a pb-D. (¢) A primal layer in a 4-8-8 CCCS pene- |

trated by a timelike pb-D D(hS°) for a 2-chain /S°. |

The cross-section of hS° is presented as a blue solid |

line. Each purple triangle with a solid (dashed) border |

indicates a defect ppAQ (pCQ) in the layer (adjacent |

layer) measured 1n the Z-basis. The cross-sections of a |

timelike db-CS ending at the defect and a timelike pg- |

CS surrounding it are presented as a blue double line |

and a green dashed line, respectively. The double (or |

dashed) lines indicate faces bisected by the layer (or |

ending at the layer). That 1s, the corresponding qubits |

are on the layer (or an adjacent layer). (d) A dual layer |

i a 4-8-8 CCCS containing one side of a spacelike |

pb-D. Part of the 2-chain hS° corresponding to the de- |

fect is presented as a gray surface. A db-CS ending |

at the defect 1s visualized as a blue surface, where the |

blue line corresponds to its boundary.| . . . . ... .. 42
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|[Figure 12. Definition of a primal logical qubit and its initializa- |

| tion and measurement. (a) Schematic diagram of a |

| primal logical qubit composed of three parallel pri- |

[ maltumelike defects with different colors. Bluedashed |

| lines indicate 1-chains /X% and h)fpbr, which con- |

| stitute suppy (Xz) and supp, (X ), respectively. Red, |

| green, and blue dotted lines indicate 1-chains 44", hfg, |

| and h7°, respectively, which constitute supp, (7 ) ex- |

[ cept the pCQ ¢; at which they end. suppy (X;) and |

[ supp, (Z;) meet at a pPCQ ganii, thus they anticom- |

| mute with each other. (b) Structure of Z; near g; in |

| a 4-8-8 CCCS. Colored lines are h%r, h]Zg’ and hIZb, re- |

| spectively. Purple triangles indicate supp (Z;).| . . .. 46
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|[Figure 13. (a) X;- and (b) Z;-initialization. A logical qubit pre- |

| pared in the output layers Qour (fo- and (#p + 1)-layer). |

| For the X; -1nitialization, the defects are made to start |

| from the #-layer. For the Z; -initialization, they are ex- |

| tended to meet at a point before the layer-fo. Xy (Z;) 1s |

[ then a part of a pb-CS Sy (d}-CS S7) which is a sta- |

| bilizer. After the measurement step, the logical qubit |

| in Qour is initialized to [+;) (|0.) or 1)), depend- |

| ing on the measurement result of X7 Sx (Z1.57). (¢) X - |

| and (d) Z;-measurement of a logical qubit inserted |

| into the nput layer (fp-layer). Each of them 1s done |

| by reversing the corresponding initialization process. |

[ There then exists a pb-CS Sy (dj-CS S7) which is a |

| stabilizer, such that the measurement result of SxyX; |

| (8777 ) determine the X; (Z; )-measurement result.| . . . 48

|Figure 14. Logical identity gate of a primal logical qubit between |

| the mput layer O (fo-layer) and the output layers |

| Qour (t;- and (¢; + 1)-layer). The gate is constructed |

| by extending the defects from QOin to Qout. The logical- |

| X operator in QN (Qour) is Xz, (X;), and Z; and Z; |

| are defined similarly. (a) X;, is transformed into X; via |

| a pb-CS Sx surrounding the red defect, and (b) Z; |

| is transformed into Z; via a dj-CS S ending at the |

[ three defects. Double lines indicate error chains caus- |

| ing logical errors covered in Sec.|3.3.1L| . . . . .. .. 50
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|[Figure 15. Construction of a CNOT gate between a primal logical

qubit (target) and a dual one (control). Each colored

single (double) line indicates the primal (dual) defect

of the corresponding color. Z; ® I is transformed into

Zfl ®Zg, via the presented dj-CS. | ...........

|Figure 16. (a) Construction of the primality-switching gate chang-

ing a primal logical qubit to a dual one. Z’L) is trans-

formed into Zg, via the presented dj-CS. (b) Circuit

equivalent to the primality-switching gate. ME is the

/i -measurement on the primal qubit, and the result 1s

Xiv



|[Figure 17. Construction of a Hadamard gate from a primal logi- |

cal qubit to a dual one. Each colored single (double) |

line is the primal (dual) defect of that color. Szp, is a dJ- |

CS ending at the three primal defects and the (t5 + 1)- |

layer. Similarly, Sxq i1s a pJ-CS ending at the three |

dual defects and the 7y-layer. S7p and Sxq are chosen |

so that their supports overlap in the ¢5- and (77 + 1)- |

layer between the defects. Next, Sxp is a pr-CS which |

surrounds the pg-D and ends at the ty-layer. Szq 18 |

a dr-CS which surrounds the dg-D and reaches the |

(ty — 1)-layer. Note that S;4 does not have a bound- |

ary in the (1 — 1)-layer; instead, its interior is pen- |

etrated by the pg-D. This is possible since Szq4 and |

the pg-D have different primalities. Sxp and Szq are |

chosen so that their supports overlap in the #5-layer. |

Finally, Szx := S7pSxq and Sxz := SxpSzq transtorm |

the logical Pauli operators as Eq. (3.10). The supports |

of Syx and Sy, are marked as colored dashed lines |

and a circle filled 1n red. In particular, their ¥-support |

qubits are in the 75- and (75 + 1)-layer and measured |

tolerant, dual and primal Y-planes are placed on the |

ty- and (15 + 1)-layer, respectively.| . . . . . ... .. 56
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|[Figure 18. Construction of a logical phase gate on a primal log-

1cal qubit. The mput logical-X operator (X;) 1s trans-

formed into the output logical-Y operator (Y¥;) via a

stabilizer Sg(l)S&2 ), where S;l ) and S;z ) are CSs shown

in (a) and (b), respectively. A pj-CS S)((1 ) presented in

(a) connects X; and X;. Near the input layer, S g(l ) has

the form of a pb-CS surrounding the red defect. On

the f;-layer, it is divided into three CSs with differ-

ent colors through a spacelike joint. Each CS is then

deformed appropriately so that the jomt 1s extended

along the black dashed line and suppy <S§(1 )> contains

the 1-chains on the #,-layer (colored dotted lines). On

the #3-layer, the joint becomes spacelike again. After

that, S)((1 ) returns to the form of a pb-CS and is con-

nected to X;. A dj-CS Sg(z ) presented in (b) connects

Z; and the 1-chains on the f-layer (colored dashed

lines). In the #,-layer, the defects are extended space-

likely and Sg(l )S§(2 ) has X and ¥ operators as shown in
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|[Figure 19. Placement of a Y-plane on the #,-layer of Fig.|[I1&| In |

| (a), the colored circles indicate the timelike defects |

| penetrating the layer, and the thick colored lines indi- |

[ cate the spacelike defects. By placing a primal Y-plane |

| 1n the area surrounded by the spacelike defects, ¥ op- |

| erators in Sg(l s ;2 ) can be measured. In (b), the vicinity |

| of the timelike pb-D 1s explicitly described. Here, the |

[ colored solid lines indicate the cross-sections of the |

[ spacelike defects, along which CQs are measured in |

| theZ-basis.| . .. ... ... ... ... ... . ..., 59

|[Figure 20. State injection procedure. (a) An unencoded state is |

| mjected nto an injection qubit giyj, which 1s the only |

[ input qubit, in the pr-D which is spacelike and thick- |

| nessless at ginj. Z(ginj) is invariant when the CZ gates |

| assoclated with gy are applied. However, X i 18 trans- |

| formed into S (qinj), where S (qinj) is the C-type SG |

around gipj. S (qmj) is equivalent to Sgs (hgb> since

Scs <h§b> = 5(ginj) S(q1), where hgb € Hfb is the time-

| like 2-chain marked as a blue dashed line and g, 1s the |

| marked CQ adjacent to ginj. ¢inj 1S measured in the |

| X-basis during the measurement step. (b) Scs (hS°) is |

| transformed 1nto X; of the output logical qubit via the |

| pb-CS Sx. Z(ginj) is transformed into Z; of the output |

| logical qubit via the d-CS Sz.| . . . . ... ... ... 61
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[Figure 21. (a) Explicit structure of a parity-check operator (PC), |

specifically a pb-PC in a 4-8-8 CCCS. Purple trian- |

gles indicate 1ts X -support qubits. (b) A Z or X-measurement |

error on a PCAQ (purple triangle) flips two pc-PCs |

sandwiching g. (¢) A dual layer of a 4-8-8 CCCS 1s |

presented. Purple triangles indicate the pCQs with er- |

rors. Each C-colored face corresponds to a flipped pc- |

PC, where an example is shown in (a) as a blue face |

on the dual layer. (d) A primal blue error chain (pb- |

EC), where every qubit along a connected dual 1-chain |

1S has an error, flips two pb-PCs located at its two |

ends. (e) Starting from an error on a pCQ ¢;, a p|-EC |

is constructed by multiplying a pc-EC ending at the |

flipped pc-PC for each color C to the error operator. A |

pj-EC flips three primal PCs located atits ends.| . . . 63
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[Figure 22. PCs deformed or created due to a (a) timelike or (b) |

spacelike pb-D 1n a 4-8-8 CCCS. Each purple triangle |

with a solid (or dashed) border indicates a defect qubit |

on the layer (or an adjacent dual layer). Examples of |

merged and removed primal PCs and shown as green, |

red, or grey faces. Examples of dual defect PCs are |

shown as faces with borders. In (a), two types of non- |

trivial undetectable error chains are shown as a green |

double solid line (dg-EC) and a blue double dashed |

line (pb-EC). Specific nontrivial (trivial) defect error |

chains are partially shown as orange circles with solid |

(dotted) borders.| . . . . ... ... ... ... ..., 66
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[Figure 23. (a) Primal hybrid PC for error correction in a primal |

Y-plane, constructed by multiplying a primal PC and |

the dual A-type SG around its center qubit. Circles and |

squares indicate links and AQs, respectively, and their |

colors mean their primalities: orange (primal) and blue |

(dual). The hybrid PC contains Y operators on CQs |

in the dual layer. (b) Undetectable error chains near a |

primal Y-plane. Orange (blue) lines are primal (dual) |

error chains. Undetectable primal error chains can be- |

have as 1f there are no Y-planes, such as (1) and (2). |

However, 1f a dual error chain passes through the Y- |

plane, there should be a primal error chain of the same |

color ending at the mtersection point such as (3) and |

(4), for a total error set to be undetectable.|. . . . . . . 69
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|[Figure 24.

Error correction during the process for a Hadamard

gate, particularly near the Y-planes. (a) The Y-planes

should be wide enough since there are error chains

connecting their boundaries and the defects. The dual

Y-plane and the primal defects are shown as an exam-

ple. (b) Dual Y-plane in the ty-layer near the pb-D.

Defect (Y-plane) qubits are marked as purple triangles

(orange circles). The same structure 1s repeated 1n the

next layer for the primal Y-plane and the db-D. A db-

HPC around the defect pbAQ is no longer compatible

and so 1s the next pb-HPC, thus they are merged to be

compatible. Similarly, a defect PC in the pb-D inter-

secting the Y-plane 1s merged with the adjacent defect

PC in the db-D to be compatible.| . . . .. ... ...

|Figure 25.

Configuration of the system .5 introduced to verify er-

ror correction 1n a Hadamard gate, where the primal

defects are just extended straightly mstead of chang-

g todualdefects.| . . . ... ... .. .. ... ...
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[Figure 26.

Correspondences of (a), (b) hybrid PCs, (¢) merged

hybrid PCs, and (d) merged defect PCs in the origi-

nal system Sy for a Hadamard gate and merged PCs

n Sy, which 1s called type-1, -2, -3, and -4 merged

PCs, respectively. The circles (squares) indicate links

(AQs). In (a)—(c), the primalities of the qubits are pre-

sented as colors: orange (primal) and blue (dual). In

(d), Z-support qubits are marked as purple triangles.

Note that, for each correspondence, both the PCs have

the same support if the (t5 + 1)-layer in Sy, is omit-

|Figure 27.

Error correction when the vacuum and a primal Y-

plane on a dual layer are separated by a pb-D. De-

fect (Y-plane) qubits 1n the layer are marked as pur-

ple triangles (orange circles). pr-HPGC, pg-HPC, pr-

PC, and pg-PCs acting on defect qubits are incom-

patible, but they can be merged with each other appro-

priately to form compatible stabilizers. However, pb-

PCs and pb-HPCs overlapping with the defect cannot

be merged 1n such a way, thus they are just removed. | .
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|[Figure 28.

Microscopic structures near where (a) red and blue de-

fects or (b) blue and green defects are closest for a

logical phase gate. The colored solid (dotted) lines 1n-

dicate the cross-sections of the defects (support of Sx)

on the layer; CQs along the lines belong to the defects

(support). Gray areas indicate removed PCs due to the

defects.| . . . . . . . . . . ..

|Figure 29.

Nontrivial undetectable primal error chains regarding

a logical phase gate. The colored circles indicate the

timelike parts of the defects and the thick colored lines

indicate their spacelike parts. supp (Sx) is presented

[ ascolored dotted lines. Fach of such error chamnscan |

either (a) end at the three defects or (b) end at two

defects, as shown 1n colored solid lines. In the case

of (b), at least one of the surfaces where it meets the

defects should be spacelike. The intersection points of

the error chains and supp (Sx ) are marked as triangles. |
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[Figure 30.

Removal of some primal PCs near where (a) red and

blue defects or (b) green and blue defects are closest

to verify that local nontrivial undetectable primal error

chains 1n the area do not exist. Each red, green, or blue

area indicates a survived pr-PC, pg-PC, or pb-PC,

respectively. Each purple or orange area indicates a

survived merged primal PC. Each qubit marked by a

black circle 1s a terminable qubit that belongs to the

supportof one PConly.| . . . ... ... ... ....

|Figure 31.

Structure of a layer 1n the simplified defect model for

the simulation regarding (a) RTCSs, (b) 4-8-8 CCCSs,

or (¢) 6-6-6 CCCSs, particularly when the code dis-

tance 1S d = 3. In (a), blue squares (black circles) indi-

cate primal (dual) qubits. In (b) and (c), a colored solid

line 1s a boundary corresponding to that color, which

can be regarded as a part of a defect. For all of them,

dashed lines are examples of primal error chains in-

curring Z; errors. Purple triangles indicate the qubits

1n the error chains, which show that the code distances

are three. Defect models for d > 3 can be constructed

analogously by increasing the distances between the

boundaries while keeping their shapes.| . . . . .. ..
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[Figure 32. Z; error rate per two layers Py, versus nontrivial physical- |

level error rate pypy, for different code distances with

respect to (a) 4-8-8 CCCSs, (b) 6-6-6 CCCSs, and (c¢)

RTCSs. The small graphs show the results near the

[ error thresholds. Pale areas around the lines indicate |

the 99% confidence intervals of Po,. The error thresh-

olds are obtained by using the results of the two largest

code distances (d = 11, 13), and the values are 2.8%

for 4-8-8 CCCSs, 2.7% for 6-6-6 CCCSs, and 3.3%

for RTCSs, which are shown as grey dashed lines. |

95

|Figure 33.

(a) Implementation of a logical phase gate S; with an

ancilla logical state |Y;) := (|0.) +i|12))/V2. Z; S or

St 1s applied on the 1nput state 1f the Z; -measurement

result z1s +1 or —1, respectively. (b) Distillation cir-

cuit for a |¥7) state [1]. Each Sy gate is implemented

with a noisy |Y;) state by the circuit in (a). The X -

measurement (My ) results determine whether the dis-

tillation succeeds or not. If i1t succeeds, the distilled

state is obtained from |y ).| . . ... ... ... ...
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|[Figure 34. Estimated numbers of physical qubits required for (a) |

an identity gate, (b) a CNOT gate, or (¢) a phase gate |

versus the logical error rate Py, for CCCS and RTCS |

computation, while fixing the physical-level error rate |

Pphy t0 1%. For (a), it 1s assumed that the total num- |

bers of layers are equal to twice the code distances. |

For RTCS computation in (¢), we consider using the |

state distillation cycle once to implement the phase |

gate. Extrapolated values for RT'CS computation are |

shown as dashed lines. Note that these results, partic- |

ularly (b) and (c), are rough estimations since we use |

the results in Sec. [3.4] which cover only Z; errors in |

the identity gates.|. . . . . .. ... ... L. 102
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|[Figure 35. Arrangement of timelike primal defects for calculating |

the resource overheads of MBQC via (a) RTCSs or (b) |

CCCSs. Their projections on a plane perpendicular to |

the time axis are schematized. Each black, red, green, |

or blue square 1s a defect, where its color means the |

color of the defect in CCCS computation. Each purple |

rectangle surrounded by dashed lines 1s an area occu- |

pied by a logical qubit. Dotted lines indicate all the |

possible types of error chains which may be the short- |

est ones, which are used for obtaining the values of the |

marked spaces minimizing the area of a logical qubit. |

Note that, in (b), counterparts of some error chains |

regarding the exchange of blue and green defects are |

omitted, since the two lattices (4-8-8 and 6-6-6) which |

we concern have symmetry on those defects. The opti- |

mal spaces for RTCSs are directly presented in (a). For |

CCCSs, they are (1,7,8,8',€) = (5d,0, 5d, 5d, 5d) for |

7-8-8and (0,7,09,5,€) ~ (0.464d,0.2684,0.634d,0.634d,01269d)

for 6-6-6. Here, the unit length 1s a side of a unit cell |

in RTCSs [see Fig. [1(b)], the distance between adja- |

cent prAQ and pgAQ in 4-8-8 CCCSs (see Fig. |3), |

and half the distance between two adjacent prAQs in |

666 CCCSs [see FIg BB ] « o v v oo e 107
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|[Figure 36. Checkerboard architecture in patch-based RTCS com- |

putation. Blue (grey) squares are patches for logical |

data (ancilla) qubits. (a) A CNOT gate between two |

data qubits (orange circles) 1s done with two “merge & |

split” operations [2]] (black lines) between data qubits |

and the ancilla qubit A. The ancilla qubit 1s prepared |

just before the operation. (b) A CNOT gate between |

non-adjacent qubits 1s done by moving a logical qubit |

appropriately while setting aside qubits in the path.| . . 111
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|[Figure 37. Arrangement of defects for the logical CNOT gate in |

| defect-based RTCS computation. (a) The control pri- |

| mal logical qubit 1s first switched to a dual one (grey |

| squares). Then one of the dual defects proceeds to |

| wrap around a defect of the target qubit. During this |

| process, the defect basically proceeds spacelikely but |

| proceeds by %d layers along the positive time axis at |

| a specific location (marked as purple “\\”). The blue |

| paths indicate two examples of such braiding opera- |

[ tons. Prmal and dual defects should be more than |

| a certain distance apart, due to the existence of the |

| two types of nontrivial undetectable error chains (or- |

[ ange dotted lines). (b) 3D picture of a CNOT gate. The |

| black and blue lines are primal and dual defects, re- |

| spectively. The orange dotted lines indicate possible |

| types of error chains, from which the number of lay- |

| ers between defects (highlighted 1n red) 1s obtained. |

| Note that a timelike error chain contains one qubit per |

| twolayers.| . . ... ... ... ... 113
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|[Figure 38.

Arrangement of defects for the logical CNOT gate in

CCCS computation. The control primal logical qubits

are first switched to dual ones (colored squares with

dashed boundaries) as shown 1n (a) and (c), then the

braiding operations are performed (blue arrows) as shown |

in (b) and (d). The spacelike extensions of primal (dual)

defects for primality-switching gates are shown as the

colored solid (double) lines. The dual defects pene-

trate primal CSs at the points marked as purple circles. | 118

|Figure 39.

Arrangement of defects for a logical Hadamard gate.

The Y-plane (orange square) covering the logical qubit

should be wide enough so that error chains (colored

dotted lines) connecting its boundary and the defects

are longer than the code distance d.| . . . . .. .. ..

|[Figure 40.

Arrangement of defects for a logical phase gate in CCCS

computation. Defects of width 0y are extended space-

likely to surround the Y-plane. Three types of error

chains are considered: Type-1 1s for those ending at the

three defects 1n the concerning logical qubit and Type-

2 (Type-3) 1s for those ending at two defects of differ-

ent colors 1n the same logical qubit (different logical

qubits).| . . . ...
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|[Figure 41. Example of a type-II fusion. A type-1I fusion is done

by measuring Zp Xy and XoZy on the two graph states.

In (a), two stabilizers (green and purple operators) be-

come those of the resulting graph state up to sign fac-

tors (the sign or letter outcome migjgn, Miere OF the BSM)

after the fusion. The final state 1s the graph state shown

in (b), where the presented Pauli-Z operators are ap-

|Figure 42.

BSM scheme for single-photon polarization qubits. It

uses three polarizing Beam splitters (PBSs), 90° and

45° wave plates, and four (A—D) photodetectors (single-

photon resolving or on-off detectors). A PBS trans-

mits (reflects) photons polarized horizontally (verti-

cally). The scheme distinguishes [w™): [w™) if detec-

tors (A,C) or (B,D) detect one photon respectively

and |y~) if detectors (A,D) or (B,C) detect one pho-

ton respectively. If otherwise, it fails or detects a loss,

which can be distinguished by the total number of de-

tected photons 1f single-photon resolving detectors are

used. Two distinguishable Bell states can be chosen by

putting or removing wave plates appropriately before

the first PBS.| . . . . . .. ..o o oo




|[Figure 43. Lattice building process with microclusters. The or- |

| ange boxes indicate fusions. In step 1, side and central |

[ microclusters are fused to form a star cluster. Theloca- |

| tions of the Hadamard gates are marked as “C” (“S™) |

| for the HIC (HIS) configuration. In step 2, multiple |

[ star clusters are fused to form an RTCS. The macro- |

| scopic picture of step 2 in a unit cell of the lattice |

| 1s depicted 1n the lower right. The locations of the |

| Hadamard gates are marked as orange dots. The er- |

| ror probabilities of qubits assigned by one fusion in |

| each step for the HIC configuration are written 1n red, |

| where gsion (qier) 18 the sign (letter) error probability |

| of the BSM. Errors 1n the side qubits remaining after |

| step 1 (purple dashed squares) are propagated to cen- |

| tral qubits during step 2 (purple dashed arrows).| . . . 134
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|[Figure 44. Structure and generation of post-H microclusters for

PTQC. (a) Schematic of central and side post-H mi-

croclusters used in PTQC for the two H-configurations,

HIC and HIS. The marks “H;” indicate the locations

of the lattice-level Hadamard gates. (b) Example of a

process generating a post-H microcluster from GHZ-3

states. Each GHZ-3 state is represented by a triangle

whose vertices indicate its three photons. An orange

line connecting two vertices and a mark “H” next to a

vertex respectively mean a fusion and Hadamard gate

performed on the photon(s). The graph of the triangles

connected with the orange lines is called a merging

graph.|. . . . . .. .. 137
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|[Figure 45. Physical-level graphs of post-H microclusters for the |

| HIC and HIS configurations when the (n,m) parity en- |

| coding 1s used for PTQC. The squares (circles) cor- |

| respond to lattice-level (physical-level) qubits, among |

| which black ones indicate that the lattice-level (physical- |

| level) Hadamard gates are applied to the qubits on the |

| graph state. A blue dashed box indicates a group of |

| recurrent subgraphs; that 1s, the structure in the box 1s |

| repeated as many times as indicated, and 1f there 1s an |

| edge across the border of the box, 1t means that edges |

| of the same pattern exist in each of the repeated struc- |

[ tures. A number inside a circle means a blue dashed |

| box surrounding only the circle with the imndicated rep- |

| etition number. If there 1s an edge between two blue |

| dashed boxes or circles containing numbers, the full |

| graph can be recovered just by expanding them one |

| by one. See Fig.|46[for examples.| . . . . .. ... .. 139

|Figure 46. Examples of graph notations used in Fig. 45| (a) and |

| (b) respectively show examples of a blue dashed box |

| and a number inside a circle, which indicate groups |

| of recurrent subgraphs. (c¢) shows the full graph of the |

| side microcluster of the HIS configuration when n = |




|Figure 47.

Examples of the two types of merging operations on

two GHZ states: (a) a BSM on the root photon of one

state and a leaf photon of the other and (b) a fusion on

two leaf photons. | . . . . . ... ... ... ... ...

|[Figure 48.

Decomposition of a graph state done by separating

recurrent subgraphs that are connected with multiple

Vertices. |. . . . o o o e

|Figure 49.

Decomposition of post-H microclusters for the HIC

configuration. Different types of post-H microclusters

are decomposed by the method shown 1 Fig. 48 Only

[ the side microclusters are considered since the central |

microclusters do not have connected pairs of recurrent

subgraphs, thus their physical-level graphs are single

components by themselves. | . . ... ... .. .. ..

|Figure 50.

Decomposition of post-H microclusters for the HIS

configuration. Different types of post-H microclusters

are decomposed by the method shown 1n Fig.|48| Post-

H microclusters that are not presented here do not have

connected pairs of recurrent subgraphs, thus their physical- |

level graphs are single components by themselves. | . . 145

|Figure S1.

Construction of merging graphs from a physical-level

graph. v 1s the only vertex with a degree larger than

two 1n the original graph. The upper and lower pro-

[ cesses differ n the selection of the seed vertex forthe |

decompositionof v.|. . . . . ... ... 148
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|[Figure 52.

Loss threshold ng for various parameters on the en-

coding size (n,m), the type of detectors, the post-selection |

(PS) of star clusters, and the H-configuration. “SPRD”

stands for single-photon resolving detector. The val-

ues of j are chosen to maximize Mg, and shown next

to the data points. The H-configuration does not affect

the results when star clusters are post-selected. | . . .

. 153

[Figure 53.

Resource overhead Ajy-s (calculated at n = 0.01) for

various parameters on the encoding size (n,m), the

type of detectors, the post-selection (PS) of star clus-

ters, and the H-configuration. “SPRD” stands for single-

photon resolving detector. The values of j are chosen

to be the same as the ones in Fig.[52l| . . ... .. ..

|Figure 54.

Photon loss thresholds 1, as a function of the number

Ngypy, of GHZ-3 states required per central qubit. Ngyy,

1s calculated at = 0.01 or 1 =1, /2. “SPRD” stands

for a single-photon resolving detector. The data points

correspond to different parameter settings on the type

of detectors, the post-selection (PS) of star clusters,

the encoding size, and the H-configuration, which are

grouped by the first two factors. The upper envelope

for each of the groups 1s presented as a line. The values

of j are chosen to maximize Ney. | . -« » « « v o . . . ..
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|[Figure 55. Comparison of different strategies for generating a post- |

[ H microcluster. It shows the distribution of the calcu- |

| lated overhead Né‘g% of a side microcluster depending |

| on the used strategy (among the original strategy and |

| its four variants) for different H-configurations and |

| values of n and m. We considered 9,600 samples for |

| each box plot. Each box shows the range between the |

| first and third quartile and the line crossing represents |

| indicated by whiskers.| . . . ... .. ... 00, 159

|[Figure 56. Simulation results for the approach using single-photon |

| qubits with fusions assisted by ancillary photons. It |

| shows the photon loss thresholds 1y, obtained from |

| simulations or estimated theoretically as a function of |

| the fusion fatlurerate p¢. | . . . . . . . . ... ... .. 170
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|[Figure 57.

Simulation results for the approach using the simple

repetition codes. It shows the photon loss thresholds

N as a function of n for MTQC, which are obtained

from Ref. [3] and the recalculation using the method-

ology for analyzing nonideal fusions. Other param-

eters are (m,N) = (2,1) and (m,N) = (2,3) for the

unencoded and encoded cases, respectively. Two sub-

variants of MTQC, one with the post-selection of star

clusters and the other without 1t, are considered, which

are respectively termed MTQC-2 and MTQC-1 m Ref. [3]]. |

|[Figure 58. (a) Transtformation of a graph state by applying a Hadamard |

gate followed by applying a CZ gate. (b) Physical-

level graph structure of the state [+7) = [0.) +[1.). (¢)

Physical-level graph structure of a lattice-level three-

qubit linear graph state. | . . .. ... ... ... ...

[Figure 59.

Encoding circuit of the state |+, ) := [0.) 4 |1,) in the

(3,3) parity encoding. It employs multiple copies of

the state |[+) := |H) + [V), CZ gates, and Hadamard

gates. The label [i, j| for each physical-level qubit in-

dicates the index i of the block and the index j of the

photonin the block.| . . .. ... ... ... ... .

|Figure 60.

Circuit to implement the lattice-level Hadamard gate

of the (3, 3) parity encoding. | . . . . . ... ... ...
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|[Figure 61. Structure of a logical identity gate for simulations where |

the code distance 1s d = 5 and the length along the |

simulated time (¢) axis1s 7' in the unitofacell.| . . . . 189
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Chapter 1

Introduction

Currently, we are in the nascent stage of quantum computing technol-
ogy. Quantum computing utilizes quantum natures such as superposition or
entanglement to handle computational tasks. It started to attract attention
due to the discovery that several quantum computing algorithms such as
Shor’s factoring algorithm [4]] and Grover’s search algorithm [5]] are known
to have at most exponential speedup compared to their classical counterpart.
Not only that, physics problems that are natively quantum, such as simulat-
ing many-body quantum systems [[6] or finding the ground states of compli-
cated Hamiltonians [7]], are expected to be solved efficiently with quantum
computing.

There is still a long way to go to get a decent quantum computing im-
plementation. From a theoretical point of view, there are three major chal-
lenges: universality, fault-tolerance, and resource efficiency.

Universality indicates the ability of a quantum computer to initialize
logical qubits to the computational basis state, apply any unitary operations,
and measure them in the computational basis. It is known that, if quan-
tum gates in a universal set of gates are implementable, any unitary opera-
tion can be approximated to an arbitrary accuracy [8, 9]]. One typical exam-
ple of a universal set of gates is composed of the controlled-NOT (CNOT),

Hadamard, phase, and T gates [9]], which is respectively expressed in matrix



forms as

1 0 0O
01 0O 1 1
Ucnor := , H = )
0 0 0 1 1 -1
(1.1)
0O 01 O
1 0 1 0
S = , T :=
0 i 0 eil

Fault-tolerance means that adverse effects of errors during quantum
computing are suppressed so that faithful computing results can be obtained
under small enough faults. A representative way to achieve fault-tolerance
is to use quantum error-correcting (QEC) codes in which a single logical
qubit is composed of multiple physical qubits. QEC codes vary from simple
codes with few physical qubits [10} 11} 12,13} [14]] to advanced topological
stabilizer codes defined on lattice structures of qubits allowing only local
interactions [[15]]. In particular, surface codes [[16, 17, 18} (19} 20, 21} [1, 22]]
and two-dimensional (2D) color codes [23, 24, [15) 25]] are two different
families of topological codes defined on 2D lattices, which are promising
due to their universality and relatively high fault-tolerance. Recently, alter-
native approaches for controlling errors in specific problems of estimating
the expected values of operators have been suggested, which are collectively
referred to as error mitigation |26, 27, 28]]. Although these techniques are
far less hardware-demanding than quantum error correction, which makes

them suitable for noisy intermediate-scale quantum (NISQ) devices, their



performance is insufficient for application to complex quantum algorithms.
In this dissertation, we do not cover error mitigation.

Lastly, fault-tolerant universal quantum computing typically requires
enormous resources, which makes it tough to realize it. It is not only be-
cause a single logical qubit is composed of multiple physical qubits, but also
because state distillation, which generally demands many ancillary logical
qubits, is required for several logic gates to be fault-tolerant [29} 20, (1} 130].
For example, one round of a typical state distillation protocol to implement
a logical T gate requires 15 ancillary logical qubits [29, 31} [1]. It is thus
desirable to minimize the need for state distillation or find an efficient state
distillation protocol. Not only that, there exist various platform-dependent
problems that hinder the reduction of resource overheads, such as the non-
deterministic nature of entangling operations in linear-optical systems.

Measurement-based quantum computing (MBQC) is a quantum com-
puting methodology that is processed by single-qubit measurements on a
large entangled state called a cluster state [32,(33] 134} 135, 31}, 36]. The ini-
tial MBQC schemes via cluster states on 2D planes [32}33]] were universal
but not fault-tolerant. To achieve fault-tolerance, the concept of topologi-
cal codes is exquisitely combined with MBQC. Specifically, Raussendorf’s
three-dimensional cluster states (RTCSs) constructed based on surface
codes allow universal and fault-tolerant MBQC with topologically-encoded
logical qubits [34, 35 31} 136/ 2]

In this dissertation, we propose two different universal fault-tolerant
MBQC protocols and delve into their performance and resource efficiency.

We first briefly review essential background knowledge in Chapter 2] in-

3 3



cluding the stabilizer formalism, quantum error correcting codes, and the
operational principle of MBQC. In Chapter 3| we suggest an MBQC proto-
col using a family of cluster states constructed based on 2D color codes, not
surface codes which is the basis of RTCSs. We verify that this new proto-
col is advantageous over the protocol with RTCSs in terms of resource effi-
ciency when implementing the Hadamard and phase gates, owing to the self-
duality of 2D color codes. While Chapter [3|addresses platform-independent
theory, in Chapter ] we regard linear-optical systems. We propose a linear-
optical MBQC protocol employing multiphoton qubits based on the parity
encoding, which turns out to be highly photon-loss tolerant and resource-
efficient compared to other existing protocols. For realistic error analysis,
we introduce a Bayesian methodology to track errors caused by the detri-
mental effects of nonideal entangling operations during the construction of
cluster states. We conclude with final remarks in Chapter [5

Chapters [3|and 4] are respectively based on the following two papers:

* Seok-Hyung Lee and Hyunseok Jeong, ‘“Universal hardware-efficient
topological measurement-based quantum computation via color-code-

based cluster states,” Phys. Rev. Research 4, 013010 (2022) [37].

» Seok-Hyung Lee, Srikrishna Omkar, Yong Siah Teo, and Hyunseok
Jeong, “Parity-encoding-based quantum computing with Bayesian er-

ror tracking,” arXiv:2207.06805 [quant-ph] (2022) [I38]].



Chapter 2

Preliminary

In this chapter, we briefly introduce essential background information.
We first cover the stabilizer formalism, which is a fundamental mathemat-
ical language for describing quantum error correction (QEC) theory and
measurement-based quantum computing (MBQC). Subsequently, we study
how MBQC operates, including the structures of resource states, the imple-
mentation of quantum gates, and the error-correcting scheme.

The followings show notations used throughout the dissertation:

* For two operators O; and Oy,

[0y, 03] := 010, — 0,01  (Commutator of O; and O;)

{01, 02} :== 0,02+ 0,0, (Anticommutator of O; and O5)

* (G)=(G1, Ga, -+, Gy) forasetof operators G ={G1, Gz, -+, Gp}:
Group generated by G under their multiplication. Namely, every el-

ement in the group can be expressed as the product of elements in

G.

* [, X, Y, Z: Single-qubit identity, Pauli-X, Y, and Z operators, respec-

tively.



* P,: n-qubit Pauli group defined as

an = <i1®n7 Xla Zla X27 227 B Xn’ Zn>’

where O for a single-qubit operator O and j € {1,---,n} is an oper-
ator in the n-qubit Hilbert space that is the tensor product of O on the

Jj-th qubit and the identities on the other qubits.

* supp(O) for a multi-qubit operator O: Support of O, which means the

set of qubits on which O acts non-trivially.

* suppp(0) for a multi-qubit Pauli operator O € P, and a single-qubit
Pauli operator P € {X, Y, Z}: P-support of an operator O, which

means the set of qubits on which O acts as P.

2.1 Stabilizer formalism

The stabilizer formalism, which was first developed by Daniel Gottes-
man [39], is a powerful methodology for describing certain multi-qubit quan-
tum states and quantum operations on them. We here organize its basic con-
cepts including the definitions of stabilizer groups and subspaces and the
effects of unitary operations or measurements on them. See also the follow-

ing references for comprehensive introductions of the formalism.

* M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Chapter 6, Cambridge University Press (2010) [9].

* D. Bacon, Quantum Error Correction (edited by D. A. Lidar and T.

6



A. Brun), Chapter 2, Cambridge University Press (2013) [40].

2.1.1 Stabilizer group and subspace

We define a stabilizer group in an n-qubit Hilbert space #, as follows:

Definition 2.1 (Stabilizer group). For an abelian subgroup S of P, that
satisfies —I®" ¢ S, the common eigenspace Hs of the elements in § with

eigenvalue +1, namely,

Hy:={|W) e H,: Vge s, g|¥) =¥} 2.1)

is called the stabilizer subspace stabilized by S, and S is referred to as the

stabilizer group of the space #. Each element in § is called a stabilizer

of #.

Note that, for a generating set Gs of S, the condition in Eq. (2.I) can
be simplified as Vg € Gs, g|¥) = |¥). The next proposition shows an im-
portant property of a stabilizer subspace that its dimension is determined by

the number of generators of its stabilizer group:

Proposition 2.1 (Dimension of stabilizer subspace). For a stabilizer sub-
space Hs < H,, if a minimum generating set of S is G, Hs is a 2*-dimensional

vector space where k =n—|G|.

This proposition can be intuitively understood as follows: For each sta-
bilizer generator added, only one of the &1 eigenspaces that together gener-

ate the original space survives, thus the dimension of the stabilizer subspace
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is cut in half. See Ref. [9] for rigorous proof. Due to this proposition, a sta-
bilizer subspace can encode k := n — |G| logical qubits if |G| < n, which
are composed of n physical qubits. Such an encoding scheme is called a
stabilizer code and the corresponding stabilizer subspace is called its code
space. If |G| = n, the stabilizer subspace contains only one quantum state
|W¥s) up to a global phase, which is simply called the stabilizer state stabi-

lized by S.

Example 2.1 (Steane’s 7-qubit code). Steane’s 7-qubit code is defined on

the stabilizer subspace of a seven-qubit Hilbert space stabilized by

5 == <gla 82, 83, 84, 85, 86, g7>’

where

81 :=X1XX3X7, g2 :=X3X4X5X7, g3:=X1X5XcX7, 22)

84 =L\ nhl37,, g5 :=72324757q, g6 =7Z1Zs2eZ7.
The code encodes one logical qubit since it has six generators.

Example 2.2 (Bell states). The four Bell states on two qubits which respec-

tively have the basis of {|0),|1)} are defined as
@) :=0)©]|0) £ [1) 1),
W) :=[0)®|1)£[1)®]0).

Each Bell state is stabilized by (mgjgnX ® X, mieeZ ® Z), where mgjgn = +1
for |®,) and |¥4) and myeq = +1 (—1) for |Py) (|¥1)).
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2.1.2 Unitary operation on a stabilizer subspace

We now study the effect of a unitary operation U € U(#,) on a sta-
bilizer subspace s C H,, where U(#H,) is the set of unitary operations on

H,. For every |¥) € Hs and every g € S,
U|¥) =Ug|¥)=UgU'U|¥),

thus the transformed subspace U H; is the common eigenspace of the ele-
ments in USUT := {UgU" : g € 5} with eigenvalue +1. To say that U %
is the stabilizer subspace stabilized by USU™, USU" should be a subgroup
of P,, which holds if U transforms every Pauli operator into a Pauli oper-
ator under the Heisenberg picture (namely, UPUT € B, for every P € B,).
Note that such unitary operations form the n-qubit Clifford group, whose
elements are termed Clifford operations or gates. It is known that any Clif-
ford gate can be expressed as a combination of the Hadamard (H), phase (),
and CNOT (Ucnor) gates on the n qubits, which are defined in Eq. (I.1). Each
of these gates transforms the single- or two-qubit Pauli operators under the

Heisenberg picture as follows:

HXHY =7, SXS'=Y, Uwor(X®@D)Ulyor =X ®X,

HZH' =X, SZS'=7, Uenor(Z&DNUlyor =Z 31,

UCNOT(I®X)UCNOT - I®X
(I®Z)

UCNOT I®Z UCNOT == Z®Z

where the first (second) qubit is the control (target) for the CNOT gate.

9



The above method seems quite straightforward, but it implies the power
of the stabilizer formalism. An n-qubit state generally requires 2" ampli-
tudes for its description and all of them should be tracked according to uni-
tary operations applied to the qubits. However, provided that the state is
a stabilized state, only n stabilizer generators are sufficient to describe the
state and track its transformation. Such a reduction of computational cost is
extremely useful when simulating quantum circuits. Additionally, it is di-
rectly related to an important theorem in quantum computational theory, the
Gottesman-Knill theorem [41]] that a quantum computation involving only
state preparations in the computational basis, Clifford gates, measurements
of Pauli operators, and classical controls conditioned on the outcomes of the
measurements can be efficiently simulated on a classical computer.

Any unitary operation outside S that preserves the stabilizer group
serves as a nontrivial logical operation in the code space. In other words,

defining the normalizer A'(S) of S by
N(S):={U e u(s,): USU" =5},

any element in A'(S) \ S changes the state of the logical qubits encoded in
Hs while preserving the code space. Note that such logical operations are
equivalent up to the multiplication of an arbitrary stabilizer.

In particular, we can find a set of independent Hermitian operators

}717 '”7Yk7 717 7Zkefpnm9\£(5)\5
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that commute with each other except for each pair of X; and Z; for the
same subscript j, which anticommutes. (Note that Z, N A'(S) is a group.)
Here, the term “independent” means that no operator can be expressed as a
product of others. X ; (Z;) represents the logical Pauli-X (Z) operator of

the j-th logical qubit. We further define the logical Pauli group ?(S) by
§(5) = <l7 Yl? 717 ) X/w Zk> < anﬂN(S)

as a natural extension of the Pauli group to the logical space. We note the

following two propositions regarding 2(.5).

Proposition 2.2. All the elements of B, N N(S), which include the elements

of P(S), commute with every element of .

Proof. If Q € P(S) anticommutes with P € S, @P@T = —P € S, which

contradicts to —“" ¢ S. O

Proposition 2.3. B, NN () is the direct sum of S and P(S); namely,

ﬂ,’nﬁf)\[(j) = <l’ 81, " 8n—k YI? Tty Yk) Zh Tty Zk>7 (23)
where {g1, -, gn—k} IS a minimum generating set of S.
Proof. Let P be an arbitrary element of £, NA((S). Foreachl e {1, ---, k},

P commutes at least one of X;, Z;, and Y; := iX;Z;, because
(X:Zi, P) =X{Z;, P} —{X,, P}Z, =0

if P does not commute with both X; and Z;. Let Q, denote one of X;, Z;, and
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Y, that commutes with P. Then

5/:: <gl7 oy 8n—ks Qh "'7Qk>

is an abelian subgroup of B, that does not contain —I*". Since S’ has n in-
dependent generators, its stabilizer space s contains only one state |¥ /)
up to a global phase. For every ¢’ € §', ¢'P|¥¢) = Pg' |¥s) = P|WPy), thus
P|¥s) € Hy. Therefore, P|W/) = ™ |Ws) for areal value 8, which means
that e ®P € §’. Since S’ < B, and P € B,, e is either +1 or +i. Hence, P
can be expressed as a product of elements in {i, 81, s Gnks O, v+, @k}

which proves the proposition. O

To reveal the effect of an arbitrary element U in A_(S) \ S on the logical
qubits, one can check the transformation of the logical Pauli operators upon
U. For example, if a unitary operation H; € A((S) satisfies H ;X jﬁ; =Z;
and H,Z jﬁj = X j and commutes with all the other logical Pauli operators,

H ; can be regarded as the logical Hadamard gate on the j-th logical qubit.

Example 2.3. For Steane’s 7-qubit code defined in Example the logical

Pauli operators of the logical qubit are

The operator H; = H®’, where H is the Hadamard gate on a physical qubit,
serves as the logical Hadamard gate since H; . SH, =5 , HLXLHZ =75, and

H Z H =X;.
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2.1.3 Measurement on a stabilizer subspace

We next address the effect of a measurement on a stabilizer subspace
Hs. In particular, we consider the projective measurement of a Pauli observ-
able Q € 7, that is a tensor product of single-qubit identity or Pauli operators
with no multiplicative factor of —1 or 4-i. When the initial state is |¥) € Hs

and the measurement outecome is A € {£1}, the post-measurement state is

I+A0
V2(1T+A(T[0¥))

P (2.4)

There are three possibilities:
(1) Either Q or —Qisin §.
(i) Neither Q nor —Q is in § and Q commutes with all the elements in §.
(iii)) Q anticommutes with at least one element in S.

The measurement may transform the stabilizer group S and require the re-
definition of the logical Pauli operators Xy, ---, Xy, Zy, -++, Z . Let 5
denote the stabilizer group of the projected subspace. For all three cases, S’

contains mQ.

Case (i): The measurement outcome A is always +1 if +Q € S. Both the
stabilizer group and the logical Pauli group are invariant under the mea-
surement. This type of measurement is commonly called a syndrome mea-
surement since wrong measurement outcomes mean the presence of er-
rors on physical qubits, which is a core idea of stabilizer quantum error-

correcting (QEC) codes.
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Case (ii): This case corresponds to measuring logical qubits in a (possibly

multi-qubit) Pauli basis. It is because, due to Proposition [2.3]

QG?HON(S):<GSU{17 Yh ”'7Yk7 Zl? "'7Zk}>7

thus we can write Q = cg[[+_, P;, where ¢ € {#1}, g € S, and P, is either
1" X, Z;,orY; :=iX,;Z; for each .

The stabilizer group of the projected space is S’ = (Gs U {LQ}), where
Gs is a generating set of § and A is the measurement outcome. AQ newly
becomes a stabilizer since neither Q nor —Q is in S. The original stabilizers

in S remain as stabilizers because
(I+AQ)|¥) = (I+21Q)g|¥) = g(I+1Q) |¥)

for every g € S.

The number of stabilizer generators increases by one, thereby the num-
ber of logical qubits decreases by one. The new logical Pauli operators can
be found in the following way: Since neither Q nor —Q is in S, there exists
at least one [ € {1, ---, k} such that P; # I®". We arbitrarily choose such
an [ = [y and define P’ by either X, I Of Zj, that is not P;,. We then remove

the ly-th logical qubit and redefine the logical Pauli operators as X' ;, Z; for
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le{l, ---, k}\{lo} where

— Yl ifﬁlé{l®n, Y;},
X[ =
X, P otherwise,
- Zl ifﬁle{l‘@”,Z},
Z,;P  otherwise.

One can easily check that the above k — 1 pairs of operators satisfy the con-

ditions for logical Pauli operators presented in Sec. [2.1.2]

Case (iii): We choose a generating set Gs of § that contains only one
element g.n anticommuting with Q. It is always possible since, if there are
multiple stabilizer generators ganti, g1, - - -, & that anticommute with Q, we
can redefine g; to g;gani for each i € {1, --- I} to leave only one element
(ganti) anticommuting with Q. After the projection, g, is removed from the

generating set and AQ is newly added; namely,

S'=(Gs U{MQ}\ {gani}) -

Note that the two outcomes (A = +1) have the same probability regardless

of the initial state |¥) € #; since

(P|Q¥) = (Y|Qg|¥) = — (¥|eQ|¥) = — (¥|Q|¥) = 0.

Since the number of stabilizer generators does not change, the number
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of logical qubits does not change either. For each logical Pauli operator, if
it anticommutes with Q, we can make them commute by multiplying gans.
The redefined k pairs of logical Pauli operators satisfy the conditions for
logical Pauli operators.

Additionally, it is worth noting that the information of the logical qubits
is invariant under the projection; in other words, (¥|P|¥) = (¥'|P|¥'),
where |¥) € # is the pre-measurement state, |\P’) is the post-measurement
state in Eq. (2.4)), and P is any logical Pauli operator commuting with Q. It

is because

1
(1+A(Y|Q|Y))

(P|(I+10)°P|¥)

(¥|P¥) = 5 (|(1+1Q)°P|¥)

_1
2

= (P|P+APQ|¥) = (¥|P|¥).

The last equality holds since P commute with every stabilizer of [¥) while

QO anticommutes with at least one stabilizer.

Example 2.4. The followings are examples of the above three cases regard-

ing Steane’s 7-qubit code (see Examples [2.1]and [2.3).

1. Measurement of each stabilizer generator in Eq. always gives
the outcome of +1 if there are no errors. Any single-qubit Pauli error
can be detected by the code with a unique pattern of stabilizer mea-
surements. For example, if a Z error occurs on the fifth qubit, only
the two stabilizer generators go = X3X4XsX7 and g3 = X1 X5XeX7 give

the measurement outcomes of —1, from which the error is uniquely

16 -



identified provided that the error is a single-qubit Pauli one.

2. Suppose that we measure Q = Z4ZsZ¢ and get the outcome of A, which
corresponds to the case (ii). gg := AMQ = AZ4Z5Z is then added to the
set of stabilizer generators. Since g4g7 = AZ;, the post-measurement
stabilizer space, which is one-dimensional, is composed of the eigen-

state of Z; with eigenvalue A.

3. Suppose that we measure Q = Z; and get the outcome of A, which
corresponds to the case (iii). Q anticommutes with two stabilizer gen-
erators: g1 and g3. To make only one of them anticommute with Q, we
replace g3 with g§ = g183 = XoX3X5Xs. After the measurement, the
new stabilizer group is generated by {AZ,, g2, g5, g4, &5, 86} Since
X; anticommutes with Q, we redefine it as Xi = X181 = XuXsXs. Z1
commutes with Q, thus it does not need to be redefined. Nevertheless,

it can be simplified as Z; := AQZ; = AZ,Z5---Z7.

2.2 Measurement-based quantum computing

In this section, we study what is measurement-based quantum com-
puting (MBQC) and how it works. We first define cluster states, which are
basic resource states of MBQC, and investigate their features. After that,
we present the basic concept of MBQC and how elementary logic gates can
be implemented using a two-dimensional cluster state. We then address the
ways to achieve fault-tolerance using topological MBQC. See the following

references for more comprehensive explanations of MBQC:
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* Non-topological MBQC

— R. Raussendorf and H. J. Briegel, “A one-way quantum com-

puter,” Phys. Rev. Lett. 86, 5188-5191 (2001) [32].

— R.Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-
based quantum computation on cluster states,” Phys. Rev. A 68,

022312 (2003) [33].

* Topological MBQC

— R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant
one-way quantum computer,” Ann. Phys. 321, 2242-2270 (2006)

[34].

— R.Raussendorf, J. Harrington, and K. Goyal, “Topological fault-
tolerance in cluster state quantum computation,” New J. Phys. 9,

199 (2007) [311].

— R. Raussendorf and J. Harrington, “Fault-tolerant quantum com-
putation with high threshold in two dimensions,” Phys. Rev.

Lett. 98, 190504 (2007) [35].

— A. G. Fowler and K. Goyal, “Topological cluster state quantum

computing,” Quantum Info. Comput. 9, 721-738 (2009) [36].

2.2.1 Cluster state

Cluster states, which are also referred to as graph states, indicate a
particular family of stabilizer states whose structures can be represented as

graphs composed of multiple vertices and edges.

18 -



Definition 2.2 (Cluster state). For a set V of qubits and a given graph
G = (V, E) on V with an edge set E C V x V, the corresponding cluster

state or graph state [\y¢), means a stabilizer state stabilized by

< o =X, H Zy:veV >::5G, (2.5)

VeN(v)

where X, (Z,) is the Pauli-X (Z) operator on the qubit v € V and N(v) :=
{V': (v V) €E} is the set of vertices adjacent to v in G. Alternatively,

|Wg)y can be defined as

WG)y = H Uez (v, V2)®H>w

(vi,v»2)€E vev

where U, (v, v2) is the controlled-Z (Cz) gate on v; and v, and |+),, is the
state (|0) +|1))/v/2 on v. The CZ gate is the two-qubit gate that transforms
the basis states as Uc |00) = |00), Uc,|01) = |01), Uz |10) = |10), and
Ues [11) = —|11).

Note that the Heisenberg picture of the CZ gate is

U (X@NUL, =X ®Z, Uer(ZRNUS, =Z &1,

U, I@X) UL, =ZRX, Ue(IQZ)UL, =10 Z.

In most cases, {g, : v € V} is regarded as the standard choice of stabi-
lizer generators for a cluster state. We say that g, is the stabilizer generator
around v and v is called the interior qubit or vertex of g,.

Instead of employing the CZ gates to construct a cluster state, one may
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™ Qubit

(a) b
J

-1

CZ gate

Figure 1: Examples of cluster states. Orange dots and lines indicate the
vertices and edges of the graphs, respectively. (a) A cluster state on a simple
graph. The presented “XZZZ” operator indicates an example of a stabilizer
generator. (b) A unit cell of Rausssendorf’s three-dimensional cluster states
(RTCSs). A vertex is located on each edge and face of the cell.

take an approach to merge multiple small cluster states into a large one with
so-called fusion operations [42]. A fusion operation consists of projecting
two qubits in a particular entangled basis. By performing a fusion operation
on two qubits in different cluster states, these two states can be merged up to
several local operations. The initial small cluster states are typically three-
or five-qubit states and are regarded as basic resource states for MBQC. We
will cover this method in Chapter [ in more detail.

Two examples of cluster states are visualized in Fig. |1} The cluster state
in Fig. [I(b), which is a unit cell of Rausssendorf’s three-dimensional cluster

states (RTCSs) [34, [31]], is particularly important for topological MBQC.
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Figure 2: Implementation of the Hadamard gate in two-dimensional
MBQC. My (My) means the measurement in the X-basis (Y -basis).

2.2.2 How measurement-based quantum computing works

MBQC is a methodology to implement a quantum circuit by perform-
ing single-qubit measurements on a cluster state [|32}[33]]. It is determined by
two factors: the structure of the cluster state and the measurement pattern
(namely, the bases of the single-qubit measurements).

To see how MBQC works, we consider a simple setting shown in Fig.
with a five-qubit linear graph. For a given single-qubit input state |y ), we

prepare the state
|lI!> — Ucz(172)Ucz(273)UCZ(374)UCZ(475) |l|I[N> ® ’+>®4)

where U (i, j) is the CZ gate between the i-th and j-th qubits. If we measure
the first qubit in the X-basis and the second to fourth qubits in the Y-basis,
the marginal state on the last qubit becomes |Wour) = PoyH |Yin), Where H
is the Hadamard gate and Py, which is called the byproduct operator, is
one of I, X, Y, and Z determined by the measurement outcomes. In other
words, this process implements the Hadamard gate up to a Pauli oper-
ator. It can be easily verified by using the basic quantum theory, but here

we want to use the stabilizer formalism described in Sec. 2.1l The initial
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state before applying the CZ gate is an element of the five-qubit stabilizer
subspace stabilized by (X», X3, X4, Xs). The subspace has one logical qubit
with the logical Pauli operators of X = X and Z = Z,. After applying the

CZ gates, the stabilizer group is transformed into
(82 =Z1X273, 83 = 2o X324, g4 = Z3X4Zs, 85 = Z4Xs)

and accordingly the logical Pauli operators are transformed as X = X;Z, and
Z = Z,. Note that g = X7, is not a stabilizer unlike the cluster state of the
same graph. We now measure X, Y, Y3, and Y4, which anticommute with
at least one stabilizer. Since X = X;Z, anticommutes with Y,, it should be
redefined by multiplying g3g4 as X1Y3Y4Zs that commutes with all the mea-
surements. Similarly, Z = Z; is redefined as Y>¥3Xs by multiplying g,g3g5.
Following the instruction in Chapter 2.1.3] we get the new stabilizer group
of (M X1, MY, A3Y3, AuYs), where Ay, A2, A3, A4 are the measurement out-
comes in order. The logical Pauli operators are invariant but we can equiv-
alently transform them as AjA3A4Zs and A,A3X5 by multiplying stabilizers.

To summarize, the logical Pauli operators are transformed as

X =X; — MA3A4Zs,

Z=7— MAsXs,

which corresponds to the Heisenberg picture of P,yH where

Poy 1= x(1-Mhaha) 2 7(1-2ak) /2
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Other Clifford gates such as the phase and CNOT gates can be imple-
mented in similar manners [33]]. For the CNOT gate, two qubits are allo-
cated for input and output respectively and a two-dimensional (2D) graph is
used; because of it, this scheme is commonly called a 2D MBQC scheme.
Moreover, an arbitrary Pauli rotation including the T gate also can be imple-
mented, but measurement in rotated bases selected adaptively by previous
measurement outcomes is required [33]]. These logic gates complete the uni-
versal set of gates, thus the 2D MBQC scheme is universal. See Ref. [33]
for more details on the 2D MBQC scheme.

The above MBQC scheme is not fault-tolerant. In other words, any
single-qubit errors may incur logical errors in the final results. To achieve
fault-tolerance, we need to go to three-dimensional (3D) space and em-
ploy quantum error-correcting (QEC) codes. Particularly, topological QEC
codes, which are families of stabilizer QEC codes defined on qubits in a
lattice interacting only locally, make topological MBQC possible. In such
schemes, errors can be corrected from the measurement outcomes of spe-
cific operators, called the parity-check operators, which are stabilizers
that commute with the measurement bases and thus remain as stabilizers
even after the measurement. A representative example is the scheme using
RTCSs [34}, 31}, 36] in Fig. Ekb), which are constructed based on surface
codes [[17, 18] [1]]. See Chapter [3| for detailed explanations of how topologi-
cal MBQC works.

To sum up, MBQC to implement a quantum circuit with a given graph

G = (V,E) is generally processed through the following three steps:
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1. Preparation. A qubit is attached to each vertex in V. V is divided
into three subsets: the input qubits Vin, the output qubits Voyt, and
the others. Vin and VoyT can be empty if the desired circuit does not
require an input quantum state or produce an output quantum state,
respectively. The input states for the circuit are prepared in Vin and
all the other qubits are initialized to the |+) state. A CZ gate is then

applied on every pair of qubits connected by an edge.

2. Measurement. Each physical qubit in V \ Voyr is measured by a ba-
sis selected according to the measurement pattern. The measurement
pattern is determined by the desired circuit. If possible, errors in the

outcomes are corrected by decoding the parity-check outcomes.

3. Postprocessing. The output logical state is obtained from Qoyr up to
logical Pauli operators called byproduct operators determined by the
measurement outcomes. If Qoyt = 0, the results of the final logical

measurements are determined by the outcomes.

Note that, although we separate the preparation and measurement steps
above, one does not have to complete the preparation step to begin the mea-
surement step; they can be done simultaneously. Provided that a qubit ¢ and
its neighbors are prepared and CZ gates are applied on them, g can be mea-
sured before the other qubits are prepared. Therefore, we do not need to
prepare a large entangled state at once, which is highly demanding for most

environments.
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Chapter 3

Color-code-based measurement-based

quantum computing

The contents of this chapter are largely based on the following pa-
per: Seok-Hyung Lee and Hyunseok Jeong, “Universal hardware-efficient
topological measurement-based quantum computation via color-code-based
cluster states,” Phys. Rev. Research 4, 013010 (2022) [37].

Measurement-based quantum computing using Rausssendorf’s three-
dimensional cluster states (RTCSs) has been widely studied since the
scheme allows universal and fault-tolerant quantum computing with topologically-
encoded logical qubits [34, 35, 31} [36] 2]]. Nevertheless, it has a signifi-
cant drawback: There are no ways to natively implement the topologically-
protected logical Hadamard, phase, and T gates, unlike the CNOT gate. Sev-
eral ways to circumvent this problem have been suggested. The conven-
tional one is to use state distillation; these gates can be realized with error-
free ancilla logical states |Y7) := (|0.) +i|1.))/+v/2 and |AL) which are dis-
tilled from noisy ones [31]. However, this method requires at least seven
ancillary logical qubits to implement, thus it can be highly costly. Alterna-
tively, there have been proposals to map lattice surgery [43] onto MBQC
models [2, 44]]. With their methods, the Hadamard and phase gates can be

fault-tolerantly implemented without distillation by “dislocating” the RTCS
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structure (namely, transforming the lattice locally) when the gates are ap-
plied. In other words, the lattice loses its translational symmetry when the
gates are applied. However, such dislocations may be undesirable from a
practical point of view since the hardware should be capable of applying
extra CZ gates which are not in the original lattice. In other words, the hard-
ware should be designed in a way that can create multiple types of lattice
structures.

To solve the above problem, we propose a new MBQC scheme via
a family of cluster states based on the 2D color codes instead of the sur-
face codes, called color-code-based cluster states (CCCSs). We show that
MBQC via CCCSs natively implements the logical Hadamard and phase
gates fault-tolerantly without the need for state distillation and lattice dislo-
cations, while keeping most of the advantages of MBQC via RTCSs. In this
sense, our scheme is hardware-efficient.

This chapter is structured as follows: In Sec. we construct CCCSs
and describe their properties. In Sec. [3.2] we show that universal MBQC is
possible via CCCSs by defining logical qubits and suggesting the schemes
for their initializations and measurements, elementary logic gates, and state
injection. In Sec. [3.3] we present the methods to correct physical-level er-
rors. In Sec. [3.4] we calculate the error thresholds of MBQC via CCCSs
and compare them with the results for RT'CSs. In Sec. we analyze and
compare the resource overheads of placing logical qubits and implement-
ing each logic gate in the two schemes. We conclude with final remarks in

Sec.
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(b)

Figure 3: Two typical examples of color-code lattices: (a) 4-8-8 and (b)
6-6-6 lattices. The lattices are 3-valent and have 3-colorable faces.

3.1 Color-code-based cluster states

In this section, we define color-code-based cluster states and describe
their properties. Based on the work on the foliation of CSS codes [43], we
consider a particular family of cluster states derived from 2D color-code

lattices, called color-code-based cluster states (CCCSs).

3.1.1 Two-dimensional color-code lattices

To define two-dimensional color-code lattices on which CCCSs are
based, we consider a lattice £;p on a 2D plane which is 3-valent and has
3-colorable faces; namely, three edges meet at each vertex and one of the
three colors (red, green, or blue) is assigned to each face in such a way that
neighboring faces have different colors. Note that each edge, called link, is
also colorable with the color of the faces it connects. Two typical examples
(4-8-8 and 6-6-6) of such lattices are shown in Fig. 3] In the original 2D

color codes, a qubit is attached to each vertex and two stabilizer generators
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(a) (b)

Figure 4: (a) Red and (b) blue shrunk lattices of the 4-8-8 color-code lattice.
Red or blue dots (lines) indicate their vertices (edges), which correspond to
red or blue faces (links) of the original lattices.

(X- and Z-type) correspond to each face; see Refs. [23} [15]] for details.
Regarding a color-code lattice £,p, we define three shrunk lattices,
one for each color by shrinking all the faces of that color, as shown in Fig. ]
For example, in the red shrunk lattice, each vertex corresponds to a red face
in L,p and each face corresponds to a blue or green face in £,p. Edges of the
red shrunk lattice then correspond to red links in £,p. The blue and green

shrunk lattices are also defined analogously.

3.1.2 Construction of color-code-based cluster states

The graph G for a CCCS based on a color-code lattice £pp has a 3D
structure composed of multiple identical 2D layers stacked along the simu-
lating time (¢) axis. The layer of t =ty is referred to as the fy-layer.

The structure of each layer is originated from L,p, as illustrated in
Fig. [5 for the case of the 4-8-8 lattice. Each vertex in the layer is located

at either a vertex of £pp or the center of a face of L,p; the corresponding
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e
~ . - » Ancilla qubit (AQ)

CZ gate

Code qubit (CQ)

Figure 5: Structure of a single layer of a color-code-based cluster state
(CCCS) based on the 4-8-8 color-code lattice £,p. Each black circle is a
code qubit (CQ) located at a vertex of L,p. Each colored square is an an-
cilla qubit (AQ) with that color, located at the center of a face of L,p with
that color. Each AQ is connected with surrounding CQs by edges (Cz gates),
some of which are drawn as black solid lines. Two adjacent CQs are con-
nected by a link, some of which are drawn as colored lines.

qubit is called a code qubit (CQ) or an ancilla qubit (AQ), respectively.
Each AQ is colorable with the color of the corresponding face in £;p. For
each face in £,p, the layer has an edge connecting the corresponding AQ
and each surrounding CQ, on which a Cz gate is applied. Each pair of CQs
connected by a link in £;p is called link here as well. Note that links are not
edges of G.

Next, we stack multiple identical layers along the time axis as shown
in Fig. [ Every pair of CQs adjacent along the time axis is connected by
an edge in G. The vertices (CQs and AQs) and edges (between CQs and

AQs in the same layer and between CQs in the adjacent layers) constructed
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t t=0 t= t=2
[Primal] [Dual] [Primal]

Figure 6: Stack of multiple identical layers along the simulating time axis
for a CCCS. Each pair of two CQs adjacent along the time axis is connected
by an edge, some of which are presented as black solid lines. One of the
primalities (“primal” and “dual”) is alternatively assigned to each layer. An
AQ (a CQ or link) is primal (dual) if it is in a primal layer, and vice versa
for a dual layer. Labels of some elements defined in Sec. [3.1.2]are shown.

above finally complete the graph G of the cluster state.

We assign each layer, qubit, or link a “primality”: either primal or
dual. Each layer is primal (dual) if it has an even (odd) time. An AQ is
primal (dual) if it is in a primal (dual) layer, while a CQ or link is primal
(dual) if it is in a dual (primal) layer. We label each qubit or link in an
abbreviated form with its primality (“p” for primal and “d” for dual), color
(“r” for red, “g” for green, and “b” for blue; omitted for CQs), and type
(“AQ,” “CQ,” and “L” for a link). For example, a pgAQ means a primal
green ancilla qubit. We also frequently use “C” instead of a specific color (T,

g, or b) for a variable on colors.
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Figure 7: Four types of stabilizer generators in a CCCS defined in Defi-
nitions 3.1H3.3} (a) A-, (b) C-, (¢) L-, and (d) J-type stabilizer generators.
Each grey square indicates a layer. A stabilizer generator of each type is the
tensor product of the marked X or Z operators on the qubits.

3.1.3 Stabilizer generators

‘We now present stabilizer generators of a CCCS. Remark that, for each
vertex v in G, g, given in Eq. (2.5) is a stabilizer generator if v (which is
called the interior qubit of g,) is initialized to |+).

We define A- and C-type stabilizer generators shown in Fig.[7[(a) and
(b) as follows.

Definition 3.1 (A- and C-type stabilizer generators). For a CCCS, the op-
erator g, := X, [ [yen(,) Zy for an AQ (CQ) v is an A-type (C-type) stabilizer

generator if v is initialized to |+).
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The support of a C-type stabilizer generator is distributed in three ad-
jacent layers, while that of an A-type stabilizer generator is contained in a
layer.

Although these two types of stabilizer generators completely generate
the stabilizer group, we define another two types of stabilizer generators: L-

and J-type stabilizer generators in Fig.[7(c) and (d).

Definition 3.2 (L-type stabilizer generator). For a CCCS, the product of
two C-type stabilizer generators whose interior qubits constitute a link / is

the L-type stabilizer generator around a link [.

Definition 3.3 (J-type stabilizer generator). For a CCCS, let vg, vy, va,
and v3 be four CQs initialized to |4) such that (vo,v1), (vo,v2), and (vo,v3)
are links with different colors. S; := S,,S,,S,, is then the J-type stabilizer

generator around the CQ vy.

A-, L-, and J-type stabilizer generators together generate the stabilizer
group over-completely, if we do not care about qubits near boundaries. To
see this, regarding a J-type stabilizer generator S;, we consider an L-type
stabilizer generator Sy; := S,,S,, for the four CQs vy, v, v2, and v3 used
when defining S;. Then S, = S1151251357, thus any C-type stabilizer gener-
ator that is not very close to boundaries can be written as the product of L-
and J-type stabilizer generators. Note also that, for every stabilizer generator
regardless of its type, qubits in its X- and Z-support always have different

primalities.
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Figure 8: Unit cells of the primal shrunk lattices of a 4-8-8 CCCS: (a) a blue
cell in the primal red shrunk lattice LP" (a green cell is identical except the
colors of AQs) and (b) red and green cells in the primal blue shrunk lattice
LPP pts and drs indicate primal and dual layers, respectively. Some qubits
on the last layer are not displayed. All the pcAQs are vertices of LP€. Each
spacelike (or timelike) edge, visualized as red or blue solid lines, connects
two adjacent vertices in a layer (or different layers) and corresponds to a
pcL (or dcAQ). Faces and cells are defined naturally with the edges.

3.1.4 Shrunk lattices and correlation surfaces

Almost every discussion from now on is symmetric between the two
primalities. Thus, throughout the rest of this chapter, we frequently discuss
only one of them, which implies that the other side can be treated in the
same manner.

We now construct the shrunk lattices of a CCCS, which are analogous
to those of a 2D color code in Fig. [d] We then define correlation surfaces
[34, 135 31] within each shrunk lattice, through which logic gates are built
for MBQC.

The primal c-colored shrunk lattice LP€is a 3D lattice containing every
pcAQ as a vertex. Note that the vertices are only in primal layers. There are

two types of edges connecting them: “spacelike” and “timelike” edges. Each

33 J;.-H;! _u‘l.'!l_ 1_-]

| &1

1V



spacelike edge corresponds to a pcL and connects two vertices in a layer.
Each timelike edge connects two vertices adjacent along the time axis and
contains a dCAQ between them. Faces and cells are then naturally defined
by the vertices and edges. Cells in each primal shrunk lattice are visualized
in Fig. [§] for 4-8-8 CCCSs. Note that each primal layer in £P€ is identical
with the c-colored shrunk lattice of the 2D color code on which the CCCS
is based.

Each element (vertex, edge, face, or cell) in a shrunk lattice corre-
sponds to an AQ or a link, as presented in Table|l} Here Q(b) for an element
b denotes the set of qubits corresponding to b. An element is colorable with
the color of the AQ or link corresponding to it. In particular, cells and space-
like faces have colors different from the color of the shrunk lattice, e.g., LP"
is composed of green and blue cells.

We now regard the shrunk lattices as chain complexes [34, 35, 31]].
Let $ipc for i =0, 1, 2, or 3 be the set of vertices, edges, faces, or cells in
LP<, respectively. We then consider a vector space H'® generated by B

over Z,. Each primal shrunk lattice may be regarded as a chain complex:

Table 1: Qubits Q(b) corresponding to each element (vertex, edge, face, or
cell) b in LPC. The results for £9¢ can be obtained by changing each p or d.

Element b in £P€ Qubits Q(b)
Vertex (€ BS) pcAQ
Edge (¢ B) Timelike dcAQ

Spacelike dcL (two dCQs)

«. Timelike pcL (two pCQs)

Face (¢ B;) Spacelike  pc’AQ (¢’ # ¢)
Cell (€ BS) dc’AQ (¢ #¢)
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L£P={H} HY,H{“,H"}. Each element h; € H} is called an i-chain and
corresponds to a set B(h;) C ‘Bf where each b € B(h;) has nonzero contribu-
tion in h;. For example, if fi, f>, and f3 are faces in L;C, hy:=fi+fr+f3is
a 2-chain in Hy and B(hy) = { f1, />, f3} holds. The correspondence is one-
to-one, thus we use &; and B(h;) without distinction throughout the chapter
for convenience. The chain complex £P¢ has a boundary map d which maps
hi € HP to oh; € Hipfl corresponding to the geometrical boundary of A;.
Note that d is a linear map and satisfies dod = 0.

For an i-chain h; and P € {X,Y,Z}, we define a multi-qubit Pauli oper-
ator P(h;) by

where Q(h;) := U, Q(bi) and P(g) is the P operator on the qubit g ten-
sored with identity on all other qubits. We now define correlation sur-
faces (CSs), which are essential elements for constructing logical opera-

tions through MBQC.

Definition 3.4 (Correlation surface). For each 2-chain h; € Hzp (d>c, the

operator
Scs(h2) := X (h2)Z(0hy). (3.1

is a primal (dual) c-colored correlation surface, referred to as a “p(d)c-CS.”

It is straightforward to see that, for a spacelike or timelike face f,

Scs(f) is an A- or L-type stabilizer generator around the AQ or link corre-
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sponding to f, respectively. The following theorem relates general 2-chains

to stabilizers of the CCCS.

Theorem 3.1 (CSs as stabilizers). For a 2-chain hy, Scs(hy) is a stabilizer
before measuring any qubit in its support if and only if Q(hy) N QN = 0,
where QI is the set of input qubits defined in Sec. which are not ini-

tialized to |+).

Proof. (If) Since qubits outside Qy are initialized to the |+) states, there
exists the A- or C-type stabilizer generator around each of them. Let F :=
{feB0(f)NOn=0}. For a face f € F, Scs(f) is a stabilizer be-
fore measuring any qubit in its support; it is an A- or L-type stabilizer
generator. For a 2-chain hy € H;  where Q(hy) N QN = 0, hy can be writ-
ten as a linear summation of elements in F: 3{f;} C F, hy =), f;. Since
the map 0 is linear and P(h)P(h') = P(h+H') for any Pauli operator P,
Scs(hy) =X (ha)Z(0hy) =11, X(fi)Z(0fi) =] 1;Scs(f;) is a stabilizer before
measuring any qubit in its support. The proof is analogous to dual 2-chains.

(Only if) Since qubits in Qpy are not initialized to the |+) states, the A-
and C-type stabilizer generators around each of them do not exist. Therefore,

the X-support of any stabilizer cannot contain qubits in Qjn. O

Regarding a primal CS § := Scs(h2), Q(hy) is called the interior of
S (which is the natural extension of the interior of a stabilizer generator).
The interior qubits of a primal CS are primal and in suppy (S). Similarly,
Q(0hy) is called the boundary of S, in which every qubit is dual and in
supp,(S). We say that S is timelike (spacelike) if /2, is composed of timelike

(spacelike) faces only.
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(b)

Figure 9: (a) Timelike joint of primal correlation surfaces (CSs) originated
from a J-type stabilizer generator. The X or Z operators on the qubits in-
dicate the support of the resulting CS. A series of CQs along which the
three faces meet is marked as a purple dashed line. (b) Example of a gen-
eral joint, obtained by multiplying a series of timelike and spacelike joints
together with ordinary CSs.

CSs discussed above include all A- and L-type stabilizer generators,
but not J-type stabilizer generators in Fig. [7(d). Each J-type stabilizer gen-
erator can be regarded as three primal timelike CSs with different colors
“joined” along a timelike series of CQs as Fig.[9a), in the sense that each
“wing” of a color C may be extended by multiplying ordinary pc-CSs. Note
that the CQs along the joint are not included in the support.

A question arising naturally may be about “spacelike” joints, and those
are also possible as presented in Fig. A timelike pc-CS and two space-
like primal CSs with the other two colors may be joined along a spacelike
series of pcLs. Such a joint can be obtained by multiplying several A-type
stabilizer generators along a spacelike boundary of the timelike CS. Note

that the ends of spacelike and timelike joints may fit perfectly with each

37



Figure 10: Example of the construction of a spacelike joint of three pri-
mal CSs. A primal layer of a 4-8-8 CCCS is presented. We first assume a
timelike pg-CS S ending at the green dashed line. We then expand S by
multiplying the A-type stabilizer generators around the pAQs marked with
purple triangles. After the expansion, suppy (S) contains the marked pAQs,
and supp,(S) contains the CQs along the red and blue solid lines. The red
(blue) area above (below) the green line can be regarded as a pr(b)-CS, in
the sense that it may be expanded by multiplying ordinary pr(b)-CSs. A
joint of the three CSs is thus constructed, and S is the corresponding joined
CS. The qubits in supp,(S) inside the area A or B exactly match with the
final layer of a timelike joint, thus spacelike and timelike joints may be con-
nected.

other, in the sense that all the Z operators on the joint cancel out when mul-
tiplying them.

A general joint of CSs with different colors can be obtained as Fig.[9(b)
by multiplying several spacelike and timelike joints together with ordinary
CSs. We refer to such a primal CS with a joint as a “pj-CS.” For consistency
with ordinary CSs, we define the interior (boundary) of a pj-CS by its
X (Z)-support, which is intuitive considering its visualization in Figs. [9]and

10]
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3.2 Measurement-based quantum computing via

color-code-based cluster states

In this section, we describe the scheme for MBQC via CCCSs. We first
introduce defects and define logical qubits using them. We then describe
initializations and measurements of logical qubits and construct elementary
logic gates including the identity, CNOT, Hadamard, and phase gates, which
together generate the Clifford group. We lastly present the state injection
scheme to prepare arbitrary logical states and implement the logical T gate.

Each logical initialization, measurement, gate, or state injection pro-
cess can be regarded as an independent circuit “block” implemented by the
three-step process presented in Sec. In each block, the input logical
state is first prepared in the input qubits Qin, then the output logical state is
produced in the output qubits Qoyr after the single-qubit measurements of
all qubits except Qourt. Note that Oin (Qour) is empty for the logical initial-
izations (measurements). An arbitrary quantum circuit can be constructed by
connecting multiple blocks in a way that the output qubits of each block are
used as the input qubits of the next block.

We assume that the single-qubit measurements are performed layer by
layer along the simulating time (¢) axis. In that case, the output qubits of
a (gate, initialization, or state injection) block are the last several layers in
it, called the output layers. On the other hand, it is sufficient that the input
qubits of a (gate or measurement) block contain only the first layer in it,
called the input layer. Exceptionally, the input qubits of a state injection

block contain only one qubit into which an unencoded state is injected.
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Two subsequent blocks can be connected in a way that the input layer
of the second block overlaps with the first output layer of the first block. To
see this, let us assume that the output layers of the first block are the layers
of fo <t <t1. We first consider applying all the CZz gates between qubits of
to <t <t again after measuring the qubits of ¢ > #y. Since the measurements
commute with these CZ gates, the qubits of 7y <t < #; simply return to the
initial |+) states. The #p-layer is then the only layer containing nontrivial
information and is used as the input layer of the second block. The CZ gates
in the first #; —#o + 1 layers of the second block restore the output state of
the first block to be used as the input state of the second block. Of course,
the above argument is just a trick to connect two blocks conceptually; it is

unnecessary to apply CZ gates multiple times in a real implementation.

3.2.1 Measurement pattern

Remark that each qubit except the output qubits is measured in the
basis determined by a predefined measurement pattern. In our scheme, a
qubit is included in an area with one of the four types: vacuum, defect, Y-
plane, and injection qubit. There may be multiple defects, Y-planes, and
injection qubits, and the entire remaining area is the vacuum. We denote the
set of all vacuum (defect) qubits as V (D).

Defects are key ingredients for the protocol; all the logical operations
completely depend on how to place them. Y-planes are used in fault-tolerant
Y-measurements on physical qubits for the logical Hadamard and phase
gates. Lastly, each injection qubit is a special area for state injection and

consists of a single qubit. Note that injection qubits are always input qubits.
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Qubits in each area are measured as follows:

X if g is in the vacuum

A qubit g is measured or is an injection qubit, 32)

in the basis of Z if qis in a defect,

Y if gisina Y-plane.

Arranging these elements besides the vacuum properly is the key to imple-

menting logical qubits and gates, which is what we cover in this section.

3.2.2 Defects and related correlation surfaces

We first define a defect as follows.

Definition 3.5 (Defect). Consider a 2-chain A € H; (P)e in the shape of a
“pipe,” as shown in Fig.[[1[a). A primal (dual) c-colored defect, referred to

as a “p(d)c-D,” corresponding to A, is defined as

D(hy) := | ] 0(0f), (3.3)

fehy

which consists of p(d)cAQs and p(d)CQs.

We say that a defect is timelike or spacelike if the “pipe” is extended
along the time axis or a spatial axis, respectively. It is also possible that the
direction of a defect is changed in the middle. Figure[TT|c) and (d) illustrate
the explicit structures of timelike and spacelike defects, respectively, in a 4-

8-8 CCCS. Here, each purple triangle with a solid (dashed) border indicates
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Figure 11: (a) Schematic diagram of a defect (pb-D) and a db-CS S end-
ing at the defect. The defect is defined as Eq. (3.3) with a 2-chain 4" € HgP
in the shape of a pipe. (b) Schematic diagram of a pg-CS surrounding a
pb-D. (¢) A primal layer in a 4-8-8 CCCS penetrated by a timelike pb-D
D(hgb) for a 2-chain hgb. The cross-section of hgb is presented as a blue
solid line. Each purple triangle with a solid (dashed) border indicates a de-
fect pbAQ (pCQ) in the layer (adjacent layer) measured in the Z-basis. The
cross-sections of a timelike db-CS ending at the defect and a timelike pg-
CS surrounding it are presented as a blue double line and a green dashed
line, respectively. The double (or dashed) lines indicate faces bisected by
the layer (or ending at the layer). That is, the corresponding qubits are on
the layer (or an adjacent layer). (d) A dual layer in a 4-8-8 CCCS containing
one side of a spacelike pb-D. Part of the 2-chain 45" corresponding to the
defect is presented as a gray surface. A db-CS ending at the defect is visu-
alized as a blue surface, where the blue line corresponds to its boundary.
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a defect qubit located at the layer (adjacent layer).
We now get the following theorem regarding compatible CSs surviv-

ing after the measurement step.

Theorem 3.2 (Compatible CSs). For a set of qubits Q, a CS S is com-
patible with Q (namely, S is a stabilizer both before measuring any qubit

and after measuring all the qubits in Q \ Qour) if and only if the followings
hold:

Qint(S) N O\ Qout €V \ Oy, (3.4a)

Obnd(S) N O\ Qour C D, (3.4b)

where Qini(bnd) (S) is the interior (boundary) of S and Quour) is the set of

input (output) qubits.

Proof. (If) Suppose that Eq. holds. Let ¢ be an arbitrary qubit in
0\ Qour. If ¢ € Qi (S), ¢ is in the vacuum, thus [M(q),S] = X,,8] =0,
where M(q) is the single-qubit Pauli operator on ¢ corresponding to the mea-
surement pattern. If ¢ € Qpna(S), ¢ is in a defect, thus [M(q),S] = [Z,,5] =0.
If otherwise, ¢ ¢ supp(S), thus M(g) and S commute. Therefore, S is com-
patible with 0.

(Only if part) Suppose that a CS S is compatible with Q. Then S
should commute with M(q) for each qubit ¢ € O\ Qour. Let ¢ be an ar-
bitrary qubit in Qi (S) N O\ Qout € O\ Qout. ¢ cannot be an injection
qubit, since Qine(S) N QN = 0 according to Theorem and injection qubits

are always input qubits. Thus, if g ¢ V, M(q) is either Y (gq) or Z,, thus
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M(q) and S anticommute, which contradicts to the assumption. Therefore,

q is in V. Since Qin(S) N O = 0, Qine(S) N O\ Qour C V \ Qv holds.

Qbnd(S)N O\ Qout C D can be shown analogously. O

If a CS is compatible with all the qubits except the output qubits, we
say that it is a compatible CS. We particularly want to emphasize that a
compatible CS cannot end in the vacuum qubits. Note that Qqy is excluded
in the right-hand side (RHS) of Eq. (3.4a) due to Theorem[3.1]

Table 2 shows allowed positional relations between a pc-D d and a
compatible CS with each primality and color, derived from Theorem
and Table (1} Remark that d is composed of pcAQs and pCQs correspond-
ing to edges in £9. Let us first check whether a compatible pc’—CS S can
be penetrated by d. The interior of S corresponds to faces in L£PC | thus it
consists of pCQs if S is timelike and pc”AQs (c” # c) if § is spacelike, as
shown in Table [T} According to Eq. (3.4a)), the interior should not contain
defect qubits for S to be compatible. Therefore, S can be penetrated by d

only if c = ¢’ and S is spacelike (i.e., d is timelike). Additionally, S cannot

Table 2: Allowed positional relations between a primal defect d and a
compatible CS. The relations for dual defects are analogous.

With a pc-D d, a xy-CS ...

N c d(#¢)

can be penetrated by d
p only if d is timelike.
cannot end at d.

cannot be penetrated by d.

can be penetrated by d.
canend at d. cannot end at d in general.
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end at d, since its boundary qubits are dual. Next, let us check whether a
compatible dc’-CS S can end at d. The boundary of S corresponds to edges
in £9¢, According to Eq. (3.4b), the boundary should contain defect qubits
for S to be compatible. Since the defect qubits correspond to edges in £9°,
S can end at d if ¢ = ¢’; otherwise, it is impossible in general. (There may
be specific cases that it is possible even if ¢ # ¢/, but they are not utilized in
our schemes.) Additionally, S can be penetrated by d since its interior qubits
are dual.

We mainly concern two types of CSs with respect to a pc-D: pc-CSs
surrounding the defect and dc-CSs ending at it, as shown schematically in
Fig.[I1}a) and (b) and explicitly in Fig.[11}c) and (d). Each of such CSs is
compatible with all the qubits except the boundary qubits in the two ends

about the direction of the defect.

3.2.3 Defining a logical qubit

We first define connected 1-chains as follows.

Definition 3.6 (Connected 1-chain). A 1-chain 4, is connected if and only

if it satisfies [0h;| < 2.1t is closed if |0h;| = 0 and open if otherwise.

To define a logical qubit, we consider three parallel timelike defects
with different colors passing through the 7o- and (7o + 1)-layer for a given
integer 7y, as visualized schematically in Fig.[12a). The constructed logical
qubit is primal (dual) if the defects are primal (dual) and 7y is odd (even).

We define a logical qubit by specifying the logical-X (Xz) and logical-

Z (Z1) operators. To define X, for a given pair of different colors (c,c’), we
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Figure 12: Definition of a primal logical qubit and its initialization and
measurement. (a) Schematic diagram of a primal logical qubit composed
of three parallel primal timelike defects with different colors. Blue dashed
lines indicate 1-chains 4¥9*" and h)fpbr, which constitute suppy (X;) and
supp, (X1), respectively. Red, green, and blue dotted lines indicate 1-chains
KT, W78, and h7®, respectively, which constitute supp, (Z;.) except the pCQ
qr at which they end. suppy (X) and supp, (Z;) meet at a pCQ gangi, thus
they anticommute with each other. (b) Structure of Z; near ¢g; in a 4-8-8
CCCS. Colored lines are h%', h?g, and hfb, respectively. Purple triangles in-
dicate supp (Z1).

consider two closed connected spacelike 1-chains h’fdcc/ € HY and hfpccl €
HP<: h}fdccl is located in the fy-layer and surrounding the pc’—D. h)l(pccl is
defined as parallelly moving h)fdccl one unit positively along the time axis.
An example of X; is shown in Fig.[12{a) for the case of (c,c’) = (b,r). Note

that the two 1-chains consist of pcLs and dcLs, respectively. We then define

X = FE (19) = X(h’fd“’)z@’fp“'). (3.5)
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Note that supp, (X;) = Q(h}](pcc/> may be in the boundary of a pc—CS
since the boundary is a 1-chain in H lp © as well. The colors € and ¢’ can be any
pair of different colors, and they are proven to be equivalent in Sec.[3.2.5]
For the Z;, operator, we consider an open connected spacelike 1-chain
héc e H f'c for each color ¢, which is located in the #p-layer and connects the
pc-D and a common pCQ gy, as shown in Fig. [12(a) schematically. Note

that h%c is composed of pcLs. We define
71 = Fy(to) i= z(h{f)z(hfg)z(h{b)z(q,). (3.6)

Note that g; is out of supp (Z; ). The support of Z; near g; is explicitly shown
in Fig. [[2|(b), where purple triangles indicate the support qubits. It is worth
noticing that supp (Z;) may be in the boundary of a dj-CS, which is veri-
fiable by comparing supp (Z;) and the structure of a timelike joint of CSs
shown in Fig. O(b).

X1 and Z; defined above anticommute with each other, considering that
suppy (Z) and suppy (X;.) meet at a pPCQ gang in Fig. [12(a). A dual logi-
cal qubit is defined analogously, but now the logical operators are defined

oppositely; supp (Z;) surrounds a defect and supp (X;,) ends at each defect.

3.2.4 Initialization and measurement of a logical qubit

We first describe initializing a primal logical qubit to an eigenstate of
Xy or Z;. A dual logical qubit can be initialized analogously. As mentioned

at the beginning of this section, in each initialization block, there is no input

47



d]'CS SZ tO tO

dj-CS s,

Figure 13: (a) X;- and (b) Z;-initialization. A logical qubit prepared in
the output layers Qour (fo- and (7o + 1)-layer). For the X -initialization, the
defects are made to start from the fy-layer. For the Z; -initialization, they are
extended to meet at a point before the layer-#g. Xz (Z;) is then a part of a
pb-CS Sy (dj-CS Sz) which is a stabilizer. After the measurement step, the
logical qubit in Qour is initialized to |+,) (|0.) or |1.)), depending on the
measurement result of X; Sy (Z;.S7). (¢) X;- and (d) Z;-measurement of a
logical qubit inserted into the input layer (fp-layer). Each of them is done by
reversing the corresponding initialization process. There then exists a pb-
CS Sy (dj-CS S7) which is a stabilizer, such that the measurement result of
Sx X1, (SzZ;) determine the X;(Z;)-measurement result.

layer, and the initialized state is prepared in the output layers Qouyr (fo- and
(to+ 1)-layer) after the measurement step.

The X;-initialization of a primal logical qubit is done by making the
defects start from the #p-layer. X, given in Eq. (3.3)) is then a part of a “cup-
shaped” pc-CS Sx as shown in Fig. [13|a). Since X;Sx has the support out
of the output qubits and commutes with each single-qubit measurement in
the measurement step, the post-measurement state is an eigenstate of X; Sy .
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Sx is a stabilizer both before and after the measurement step due to Theo-
rem [3.2] Therefore, the post-measurement state is also an eigenstate of X;,
and the eigenvalue is determined by the measurement result of Xy Sx.

The Z; -initialization of a primal logical qubit is done by extending the
defects to meet at a qubit before the #p-layer, as shown in Fig. [[3(b). Z;
given in Eq. is then a part of a dj-CS Sz which is a stabilizer. From an
analogous argument, the post-measurement state is an eigenstate of Z; and
the eigenvalue is determined by the measurement result of Z;Sz.

The X;- or Z;-measurement is done by reversing the time order from
the corresponding initialization process, as shown in Fig.[I3|c) and (d). This
time, Qg is the #p-layer and Qour is empty. Regarding the X; -measurement,
there exists a pb-CS Sy which is a stabilizer before the measurement step
such that X i := X1.Sx commutes with each single-qubit measurement in the
measurement step. We redefine X, as X; and the measurement result of X;
can be directly obtained from the results of the measurement step. The Z; -

measurement process can be verified analogously.

3.2.5 Elementary logic gates
Identity gate

The identity gate of a primal logical qubit is constructed just by ex-
tending the defects along the time axis between Qv (fp-layer) and Qour
(t1- and (t; + 1)-layer) as shown in Fig. [14] Let X; and X; be the logical-X
operators of the input and output logical qubits, respectively: X; := F,?'(to)

and X} := F{'(t1), where F{'(-) is given in Eq. (3:3). We consider a pb-CS
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® : Primal qubit
B : Dual qubit 1

y t t-boundary (primal)
[4 [nemeney

d—1 ~
x-boundary
(primal)

L
d—1
y-boundary Edge g
] (dual) (CZ gate)
t-boundary (primal)
Primal unit cell

Figure 14: Logical identity gate of a primal logical qubit between the input
layer Q)N (fo-layer) and the output layers Qour (¢1- and (71 4 1)-layer). The
gate is constructed by extending the defects from Oy to Qour. The logical-
X operator in Q1N (Qour) is X, (X]), and Z;, and Z; are defined similarly. (a)
X is transformed into X] via a pb-CS Sy surrounding the red defect, and (b)
Z; is transformed into Z; via a dj-CS Sz ending at the three defects. Double
lines indicate error chains causing logical errors covered in Sec.[3.3.1]

Sx which surrounds the red defect and ends at supp, (X;) and supp, (X]),
as shown in Fig.[T4[a). Since Sy is a stabilizer before the measurement step

according to Theorem [3.1] X}, is equivalent to

X, =SxX = | QR X, | X, (3.7)
qeVx

where Vy := supp (SxX.X;) C V \ Qour. Since X; commutes with every
measurement basis, it is invariant under the measurement of qubits. [See
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case (iii) in Sec. [2.1.3]] However, we can redefine it by multiplying the sta-
bilizer x,X, for each g € Vx, where x, is the measurement outcome of ¢,

as

! !
qu XL .—XXXL.
qEeVx

We do a similar thing on the Z; operators. Denoting those of the input
and output logical qubits as Z; and Z], respectively, we consider a dj-CS
Sz ending at supp (Z.), supp (Z} ), and the defects, as Fig.[14[b). Z;, is then

equivalent to
71 =877 = ®Xq ®Zq 7,
q€Vz q€Dz

where Vz := suppy (SzZ1.Z;) C V \ Qour and Dz := supp, (SzZ1Z;) C D\
Qour. After the measurement step, ZL transforms into szzZ’L where xz :=

HqGVZ xq and iz = HqGDZ Zq-

The transformations of the logical operators are summarized as
X, — )CXX£, Z; — XZZZZi. (38)

(Throughout this chapter, we use prime symbols to distinguish the output
logical operators from the input ones.) Therefore, the input logical state |y )

encoded in |y) with the logical Pauli operators {X;,Z; } is transformed into

[wi) = XU 2z |y )
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encoded in |y’) with the logical Pauli operators {X/,Z; }. This transforma-
tion corresponds to the identity gate up to some byproduct operators deter-
mined by the measurement results.

The above arguments show the basic ideas for implementing logic
gates. Regarding n logical qubits, let Py; for each P € {X,Z} and an integer
i < n denote the logical-P operator of the ith logical qubit. To construct a
general logic gate U for n logical qubits, one should find a configuration of
defects (and Y-planes for some gates) where a CS Sp; exists for each Py;

satisfying the following conditions:

Condition 1: Sp; should connect P;; of the input logical qubits and U P;U T of the
output logical qubits. X; (Z;) of a logical qubit can be connected with

primal (dual) CSs.

Condition 2: Sp; should be compatible with all qubits except supp (Py;); it satisfies

the relationships shown in Table [2|in that region.

If such CSs exist, the configuration implements the desired logic gate

with some byproduct operators obtained from the measurement results.

CNOT and primality-switching gates

We first consider a CNOT gate between a primal logical qubit (target)
and a dual one (control). Figure[I3]illustrates the defect configuration, where
the pg-D of the primal logical qubit and the dr-D of the dual one are twisted

one round with each other, which is commonly called defect braiding [11]].
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-~
_ dj-CS / o
Dual
(control)

Figure 15: Construction of a CNOT gate between a primal logical qubit
(target) and a dual one (control). Each colored single (double) line indicates
the primal (dual) defect of the corresponding color. ZP ®I,ﬁ' is transformed
into 2P © 73" via the presented dj-CS.

The logical Pauli operators are transformed as

xPrd s xPrd Pxd - xP'xy
(3.9)
7 7078 Pz -1z,

where the tensor product symbols and the sign terms such as xy, xz, and zz
in Eq. (3.8) are omitted, and each superscript p or d indicates the primality
of the logical qubit. The above transformation is exactly the Heisenberg
picture of a CNOT gate where the primal logical qubit is the target.

We need to find CSs satisfying two Conditions presented in Sec.|3.2.5
to verify the transformations in Eq. (3.9). A dual CS for the transformation
of ZP @I is presented schematically in Fig. |15 Note that the “tunnel” of the
CS along the dr-D must be formed since the dr-D cannot overlap with a dg-
CS (see Table . A CS for I! ® Xf can be constructed analogously; now,
a tunnel of a pr-CS is made along the pg-D. The other two transformations

are straightforward.
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(b) M}
lPiN), —E Zp

|+1)g ——— [YouT)y

Figure 16: (a) Construction of the primality-switching gate changing a pri-
mal logical qubit to a dual one. Z} is transformed into Zfl via the presented
dj-CS. (b) Circuit equivalent to the primality-switching gate. M} is the Z; -
measurement on the primal qubit, and the result is zp,.

Exploiting a CNOT gate discussed above, it is possible to make a primality-
switching gate which changes a primal logical qubit to a dual one, by “clos-
ing” the input part of the dual one and the output part of the primal one, as
shown in Fig. @ka). Remark that these closures indicate the Z; -measurement
of the primal one and the X;-initialization of the dual one. The modified
configuration is thus equivalent to the circuit in Fig. [I6(b) up to byproduct
operators, which implements the identity or X}, gate while changing the pri-
mality. Alternatively, this result is directly obtainable by finding appropriate
CSs; for example, the dj-CS in Fig. a) verify the transformation of ZJ to
Z,‘j/. The primality-switching gate from a dual logical qubit to a primal one

can be made similarly.
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The primality-switching gate enables the CNOT gate between logical
qubits with arbitrary primalities. Regardless of the primalities of the input
logical qubits, one can switch them to primal (target) or dual (control), and
apply a CNOT gate in Fig.

Note that the equivalence between the different definitions of the X; op-
erator, related to the choice of the color pair (c,c’) in Eq. (3.5)), can be proven
with the primality-switching gate. We consider a chain of two primality-
switching gates: primal — dual — primal. No matter how X; is defined in
the first primal logical qubit, it becomes symmetric about the color in the
dual one. We can thus transform it into any definition of X} in the final pri-

mal one.

Hadamard gate

To construct a logical Hadamard gate, the logical Pauli operators should

be transformed as

XL—>Z£, ZL—>X£. (310)

It is simple if the gate is located just after a state injection block presented in
the Sec. injecting the unencoded state to a dual logical qubit instead
of a primal one. This method is valid since the definitions of X; and Z; are
opposite for primal and dual logical qubits.

If the Hadamard gate is located in the middle of the circuit, it is a bit
tricky. Since X; (Zp) of a logical qubit can be connected only with primal

(dual) CSs regardless of the primality of the logical qubit, there should be a
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Figure 17: Construction of a Hadamard gate from a primal logical qubit to
a dual one. Each colored single (double) line is the primal (dual) defect of
that color. Sz, is a dj-CS ending at the three primal defects and the (t5 + 1)-
layer. Similarly, Sxq is a pj-CS ending at the three dual defects and the -
layer. Sz, and Sxq are chosen so that their supports overlap in the 74- and
(ty + 1)-layer between the defects. Next, Sy, is a pr-CS which surrounds
the pg-D and ends at the 75-layer. Szq is a dr-CS which surrounds the dg-
D and reaches the (1 — 1)-layer. Note that Sz4 does not have a boundary
in the (ty — 1)-layer; instead, its interior is penetrated by the pg-D. This is
possible since Sz¢ and the pg-D have different primalities. Sy, and Szq are
chosen so that their supports overlap in the 75-layer. Finally, Szx := S7pSxd
and Sxz := SxpSzq transform the logical Pauli operators as Eq. (3.10). The
supports of Szx and Sxz are marked as colored dashed lines and a circle
filled in red. In particular, their Y-support qubits are in the 7y- and (t5 + 1)-
layer and measured in the Y-basis. For these Y-measurements to be fault-
tolerant, dual and primal Y-planes are placed on the 7y- and (75 + 1)-layer,
respectively.

CS having different primalities near the input and output layers, to achieve

the transformation. To solve this problem, we construct a defect structure

. Jiﬂ '.C':" r]
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starting with a primal logical qubit and ending with a dual one as shown in
Fig. where the primal one stops at the primal tg-layer and the dual one
starts from the dual (5 + 1)-layer. Each pair of defects with the same color
must have the same spatial structure at t =ty and ¢ = ¢ty + 1. Note that such
a configuration is possible thanks to the self-duality of the 2D color codes
which makes primal and dual layers have the same structure.

We consider two pairs of overlapping primal and dual CSs: (Szp,Sxd)
and (Sxp,Szd), Where Sxp, Szp, Sxd. and Szq are a pr-CS, dj-CS, pj-CS,
and dr-CS defined in Fig. respectively. Szx := Sz,Sxq then connects
Z; and X;. Similarly, Sxz := SxpSz4 connects X;, and Z;. Condition 1 in
Sec. is thus satisfied with these two “hybrid” CSs. What remains is
Condition 2. Since Szx and Sxz contain Y operators on some CQs in the
overlapping regions, the qubits should be measured in the Y-basis for the
CSs to be compatible.

To make the Y-measurements fault-tolerant, we introduce Y-planes:

Definition 3.7 (Y-plane). A primal (dual) Y-plane is the set of p(d)CQs in
a continuous area contained in a dual (primal) layer. CQs in Y-planes are

measured in the Y-basis.

Errors in Y-planes can be corrected by an error correction procedure
presented in Sec. @} Therefore, the Y-measurements for the Hadamard
gate can be fault-tolerantly done by placing wide enough Y-planes to cover
suppy (Szx) and suppy (Sxz) completely. More details including microscopic

pictures are presented in Sec. [3.3.3]
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Figure 18: Construction of a logical phase gate on a primal logical qubit.
The input logical-X operator (X) is transformed into the output logical-Y
operator (Y/) via a stabilizer s§} )Sg ), where Sg ) and S§? ) are CSs shown
in (a) and (b), respectively. A pj-CS Sg(l ) presented in (a) connects X; and
X]. Near the input layer, Sg(l) has the form of a pb-CS surrounding the red
defect. On the 7;-layer, it is divided into three CSs with different colors
through a spacelike joint. Each CS is then deformed appropriately so that
the joint is extended along the black dashed line and suppy (Sg)) contains
the 1-chains on the t;-layer (colored dotted lines). On the f3-layer, the joint
becomes spacelike again. After that, Sg(l) returns to the form of a pb-CS and

is connected to X;. A dj-CS Sg) presented in (b) connects Z; and the 1-

chains on the #;-layer (colored dashed lines). In the #,-layer, the defects are

extended spacelikely and ngl >S§§) has X and Y operators as shown in Fig.

Phase gate

To construct a logical phase gate, the logical Pauli operators should be

transformed as 58
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Figure 19: Placement of a Y-plane on the #,-layer of Fig. @ In (a), the col-
ored circles indicate the timelike defects penetrating the layer, and the thick
colored lines indicate the spacelike defects. By placing a primal Y-plane in
the area surrounded by the spacelike defects, Y operators in S)((l)Sg(z) can be
measured. In (b), the vicinity of the timelike pb-D is explicitly described.
Here, the colored solid lines indicate the cross-sections of the spacelike de-

fects, along which CQs are measured in the Z-basis.

It can be achieved with the defect structure in Fig. [I8[a): The defects of
a logical primal qubit are just extended from the input layer to the output
layer as the logical identity gate in Fig. [T4] The transformation of Z;, is
straightforward; it is the same as that in an identity gate in Fig. [I4(b). X,

is transformed into Y/ by a stabilizer Sy := S)((l) S§(2), where Sg(l) and S)((Z) are
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CSs defined in Fig. a) and (b) as follows: Sg(l) is a pj-CS connecting
X, and X] . It has the form of a pb-CS surrounding the pr-D near the input
and output layers but is deformed appropriately through joints in between.
(See Fig. @for more details on joints.) Sg(z) is a dj-CS connecting a dual
layer (t = ;) and Z; . These two CSs can be chosen such that Sy contains Y
operators in the ,-layer as shown in Fig.[I9(a) schematically as dotted lines.

To make Sy compatible between the input and output layers, a primal
Y-plane is placed on the t,-layer to cover the Y operators. (The Y-plane does
not affect the transformation of Z;, since the CS used for the transformation
is dual.) However, this is not enough; because of an issue regarding error
correction near the boundary of the Y-plane, the defects need to be extended
spacelikely to surround the Y-plane, as shown in Fig. [I9@a) schematically
and in Fig. [T9(b) explicitly near where two defects meet. More details on it

are presented in Sec.|3.3.3

3.2.6 State injection

We finish this section by introducing a state injection scheme. Prepara-
tion of an arbitrary logical qubit a|0.) 4+ b|1.) is essential for implementing
alogical T gate as well as quantum computation with arbitrary input states.
This is done in our scheme by injecting the corresponding unencoded state
into a physical qubit.

We start from the configuration for the Z;-initialization of a primal
logical qubit shown in Fig.[T3|a), where three defects meet at a point. First, a

qubit giyj in the pc-D for any color C is selected as an injection qubit which
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Figure 20: State injection procedure. (a) An unencoded state is injected
into an injection qubit gi,j, which is the only input qubit, in the pr-D which
is spacelike and thicknessless at gjyj. Z (qinj) is invariant when the CZ gates
associated with g;,; are applied. However, X in is transformed into S (qinj),

where S (Cﬁnj) is the C-type SG around gjp;. S (qinj) is equivalent to Scs (hg b)

since Scs <hgb) = S(qinj)S(ql), where hgb S H2pb is the timelike 2-chain
marked as a blue dashed line and ¢; is the marked CQ adjacent to Ginj- Ginj
is measured in the X-basis during the measurement step. (b) Scs (hgb) is
transformed into X}, of the output logical qubit via the pb-CS Sx. Z (qinj) is
transformed into Z; of the output logical qubit via the dj-CS Sz.

is the only input qubit in Qin. We assume that the defect is “thicknessless” at
inj> namely, its cross-section at gj,j contains at most one qubit as shown in
Fig. a). The desired initial state is injected into gj,; in an unencoded form
lW) =a|0)+b|1), then the associated CZ gates are applied. Remark that giy;
is measured in the X-basis as stated in Eq. (3.2). The X (Z) operator on giy;
is transformed into X7 (Zr) up to a sign factor as shown in Fig. thus the
logical state |yz) = a|0.) +b|1z) is prepared up to byproduct operators.
Note that the state injection procedure is inherently not fault-tolerant,
since it uses an unprotected single-qubit state and the defect is thicknessless

at ginj. Therefore, magic state distillation is essential for the faithful T' gate.
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3.3 Error correction

Now we describe error correction schemes in CCCSs. We first consider
the cases without defects and Y-planes, then investigate how they affect the
scheme.

We consider four types of single-qubit errors: X, Y, and Z errors be-
fore the measurement step and measurement errors. We say that two sets of
(single-qubit) errors are equivalent if they incur the same logical error. We
also say that an error set is trivial if it does not incur any logical errors (i.e.,
it is equivalent to the identity). Note that a measurement error is equivalent
to a Pauli error before the measurement; for example, an X-measurement
error on a vacuum qubit is equivalent to a Z error before the measurement.
Therefore, we can write any error set as a tensor product of Pauli operators.
Additionally, regarding an error set e, the error set obtained by multiply-
ing e, arbitrary stabilizers, and arbitrary Pauli operators commuting with the

measurement pattern is equivalent to e.

3.3.1 Error correction in the vacuum

For error correction in the vacuum, we exploit parity-check operators

(PCs) defined as follows:

Definition 3.8 (Parity-check operator). For each cell ¢, the CS Scs(dc) =
X (dc) is a parity-check operator (PC), where Scs(+) is given in Eq. (3.1).

PCs are classified into six groups according to primalities and cell col-
ors. Here, the primality of a PC Scs(dc) is that of the shrunk lattice £ con-

taining the cell ¢, and its cell color is the color of the AQ Q(c). Remark that
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Figure 21: (a) Explicit structure of a parity-check operator (PC), specif-
ically a pb-PC in a 4-8-8 CCCS. Purple triangles indicate its X-support
qubits. (b) A Z or X-measurement error on a pCAQ (purple triangle) flips
two pc-PCs sandwiching g. (¢) A dual layer of a 4-8-8 CCCS is presented.
Purple triangles indicate the pCQs with errors. Each c-colored face corre-
sponds to a flipped pc-PC, where an example is shown in (a) as a blue face
on the dual layer. (d) A primal blue error chain (pb-EC), where every qubit
along a connected dual 1-chain 4¢P has an error, flips two pb-PCs located at
its two ends. (e) Starting from an error on a pCQ ¢, a pj-EC is constructed
by multiplying a pc-EC ending at the flipped pc-PC for each color C to the
error operator. A pj-EC flips three primal PCs located at its ends.

the cell color is different from the color of £, as shown in Table[I] We refer
to a primal ¢c-colored PC as a “pc-PC.”
Remark that a given dcAQ ¢ corresponds to two primal cells: one for
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each of LP! and LP% where C, c1, and ¢, are all different colors. However,
the PCs corresponding to the cells are indeed the same, comparing Fig. [8|a)
and (b) as an example. We can thus regard that one AQ (g) corresponds
to one PC, and denote it as Spc(g). The support of the pc-PC Spc(g) for
a dcAQ ¢ contains two pcAQs and multiple pCQs around ¢ as shown in
Fig.[21]a), where the purple triangles indicate the support qubits.

We now assume that there are no defects and Y-planes. Since vacuum
qubits are measured in the X-basis, all PCs survive as stabilizers after the
measurement step, and thus can be used to detect Z errors on vacuum qubits.
Note that X errors on them are trivial. The final step for error correction is
to decode errors from the PC measurement results and correct the errors.

An error may occur on either an AQ or a CQ. An error on a pcAQ
flips two pc-PCs sandwiching the qubit along the time axis as shown in
Fig. 21}b), where the purple triangle indicates the qubit with an error. An
error on a pCQ flips pr-PC, pg-PC, and pb-PC surrounding the qubit spa-
tially, as shown in Fig. 21{c). If both the pCQs constituting a pcL have
errors, the two pc-PCs connected by the link are flipped.

Combining the above facts, we conclude that, if every qubit in Q(h‘fc)
for a connected dual 1-chain ~9° € HE€ has an error, the pc-PC Spc(g) for
each qubitg € Q(ah;k) is flipped, as shown in Fig. d). Such an error set in
the vacuum is called a primal c-colored error chain, referred to as a “pc-
EC.” Furthermore, starting from an error on a pCQ, each flipped PC may
be “moved” by multiplying a primal error chain of the corresponding color
ending at the PC. An error set constructed in this way flips three primal

PCs located at its ends and is referred to as a “pj-EC.” (A single-qubit error

64



separated from other error sets is also regarded as a pj-EC by itself.) General
error chains are obtained by connecting multiple pc-ECs for each color €

and pj-ECs.

3.3.2 Error correction near defects

We here investigate error correction near a pc-D Dy = D(hy) for a
2-chain hy where D(-) is given in Eq. (3.3). First, all primal PCs whose
supports contain defect qubits are no longer compatible, while dual PCs
are unaffected. Incompatible PCs may be multiplied with each other to
form larger compatible stabilizers. Such processes are possible for pc’—PCs
(¢! # ¢) contacting with timelike surfaces of D;c (namely, timelike areas of
), as shown in Fig. 22|a) where a pr-PC and pg-PC adjacent to a pb-D
are merged. It is worth noting that merged PCs are still local like ordinary
PCs; i.e., their sizes are independent of the thicknesses of Dyc. Other types
of incompatible PCs cannot be merged in such a way, thus they are just re-
moved. These include pc’—PCs (¢’ # c) contacting with spacelike surfaces
of Dpc (e.g., the pr-PC in Fig. 22|b)) and pc-PCs (e.g., the pb-PCs in Fig.
[22)). Lastly, there are additional stabilizers that become compatible due to
Dp.: dual CSs whose Z-supports are in the defect. These stabilizers include
dc-CSs {Scs(f) | f € ha} (e.g., the db-CSs in Fig. 22), and if Dy is space-
like, they also include dc’—CSs on the spacelike surfaces of Dy (e.g., the
dg-CS in Fig. 22[b)). Such CSs are called defect PCs and used for error
correction in defect qubits.

We now identify nontrivial undetectable error sets regarding primal

logical qubits. Let us first consider errors on primal vacuum qubits. Since
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Figure 22: PCs deformed or created due to a (a) timelike or (b) spacelike
pb-D in a 4-8-8 CCCS. Each purple triangle with a solid (or dashed) border
indicates a defect qubit on the layer (or an adjacent dual layer). Examples
of merged and removed primal PCs and shown as green, red, or grey faces.
Examples of dual defect PCs are shown as faces with borders. In (a), two
types of nontrivial undetectable error chains are shown as a green double
solid line (dg-EC) and a blue double dashed line (pb-EC). Specific non-
trivial (trivial) defect error chains are partially shown as orange circles with
solid (dotted) borders.
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pc-PCs adjacent to a pc-D are removed, undetectable pc-ECs can end at
the defect as shown in Fig. a). On the other hand, undetectable pc’—ECs
(c! # ¢) cannot end at the defect in general, but they may change their colors
while passing through the defect due to merged PCs. As an exception, if the
defect is spacelike, undetectable pc’—ECs can end at its spacelike surfaces.
For a primal error chain to be nontrivial and undetectable, it should end at
multiple different primal defects. For example, for a logical identity gate of
a primal logical qubit, a pj-EC ending at the three defects incurs a Z; error
as shown in Fig.[14{a).

Next, let us consider errors on dual vacuum qubits. All the dual PCs
remain compatible even if a primal defect is placed, thus a dual error chain
cannot end at the defect. Therefore, every undetectable dual error chain is
closed. A closed dc-EC E surrounding a pc’—D is nontrivial if ¢’ # ¢ (e.g.,
the dg-EC in Fig. a)) since it may anticommute with dc’—CSs ending at
the defect. For example, for a logical identity gate of a primal logical qubit,
a db-EC surrounding the pr-D incurs an X, error as shown in Fig. [I4{(b).

Lastly, errors on defect qubits also may incur logical errors. An error
on a defect qubit flips adjacent two or three defect PCs. Similar to the case
of vacuum qubits, a series of errors on defect qubits (called defect error
chains) flips defect PCs located at its ends. For a defect error chain to be
nontrivial and undetectable, it should go around the surface of the defect
once, as shown in Figure 22{a) where the defect error chain marked as or-
ange circles may anticommute with db-CSs ending at the defect (see also
Fig.[[T)). Otherwise, the defect error chain shares an even number of qubits

with a db-CS, thus does not incur a logical error. Furthermore, since defect
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PCs contain X operators on dual vacuum qubits, there exist undetectable
error sets containing both dual and defect error chains. For example, a dc-
EC penetrating a dc’—D flips defect PCs, thus there should be defect error
chains ending at these defect PCs for the total error set to be undetectable.
Note that we can always obtain a dual error chain equivalent to a defect error
chain ep by multiplying A- or C-type SGs around the qubits in supp (ep).
The code distance is determined by the size of the smallest nontriv-
ial undetectable error set. Two factors are determining the code distance:
distances between defects and their thicknesses. The former is related to
error chains ending at different defects, while the latter is related to those
surrounding the defects and defect error chains. Note that the shortest non-
trivial undetectable defect error chain is generally shorter than the shortest
nontrivial undetectable dual error chain, as shown visually in Fig.[22]a), al-
though comparing them directly may be unfair if the error model used is

biased.

3.3.3 Error correction near Y-planes

To correct errors in Y-planes, we use hybrid PCs defined as follows.

Definition 3.9 (Hybrid PC). For each d(p)cAQ g, the stabilizer Spc(g)Sa(q)
is a primal (dual) c-colored hybrid PC denoted by p(d)c-HPC, where Spc(q)

is the p(d)c-PC corresponding to g and Sa(q) is the A-type SG around g.

As visualized in Fig.[23(a), a primal hybrid PC contains Y operators on
CQs in a dual layer. Ordinary primal PCs intersecting a primal Y-plane are

no longer compatible, thus primal hybrid PCs are used instead. A notable
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M @ @ @

Figure 23: (a) Primal hybrid PC for error correction in a primal Y-plane,
constructed by multiplying a primal PC and the dual A-type SG around its
center qubit. Circles and squares indicate links and AQs, respectively, and
their colors mean their primalities: orange (primal) and blue (dual). The hy-
brid PC contains Y operators on CQs in the dual layer. (b) Undetectable
error chains near a primal Y-plane. Orange (blue) lines are primal (dual) er-
ror chains. Undetectable primal error chains can behave as if there are no
Y-planes, such as (1) and (2). However, if a dual error chain passes through
the Y-plane, there should be a primal error chain of the same color ending
at the intersection point such as (3) and (4), for a total error set to be unde-
tectable.

thing is that a hybrid PC contains both primal and dual qubits in its support.
Therefore, a pc-HPC detects not only pc-ECs ending at it but also timelike
dc-ECs penetrating it. As a consequence, for a dc-EC passing through a
primal Y-plane to be undetectable, there should be a pc-EC ending at the
pc-HPC located at the intersection point, such as (3) and (4) in Fig. 23(b).
On the other hand, primal error chains can penetrate a primal Y-plane or
progress spacelikely in it without being detected, such as (1) and (2) in
Fig. 23(b). However, they may end at the boundary of the Y-plane in con-
tact with the vacuum since neither hybrid PCs nor ordinary PCs cannot be
defined along the boundary.

As proposed in Sec.[3.2.5] Y-planes are necessary to implement the log-
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ical Hadamard and phase gates. We now verify that errors can be corrected
well while implementing these gates; namely, local nontrivial undetectable
error sets near the Y-planes do not exist. Here, an error set is said to be local
if its size is unrelated to the distances between the defects or their thick-

nesses.

Error correction in a logical Hadamard gate

Two consecutive Y-planes are required for a Hadamard gate as shown
in Fig. a dual Y-plane at the end of the primal defects and a primal one at
the end of the dual defects. As shown in Fig.[24|a), each Y-plane completely
covers the three defects. Since there are undetectable error chains connect-
ing the defects and the boundary of the Y-planes, the Y-planes should be
wide enough so that such error chains are longer than the code distance. Fig-
ure 24(b) shows the dual Y-plane near the pb-D, where the orange circles
indicate Y-plane qubits. All dual (primal) PCs intersecting the dual (primal)
Y-plane are replaced with the corresponding hybrid PCs. Exceptionally, dc-
HPCs and pc-HPCs overlapping with the pc-D or dc-D are incompatible
since their supports contain defect qubits. Instead, each pair of them adja-
cent timelikely can be merged to form a compatible stabilizer which can
be used for error correction. Additionally, defect PCs (see Fig. inter-
secting the Y-planes are also incompatible, thus each pair of them adjacent
timelikely should be merged to form a compatible stabilizer.

We now verify that local nontrivial undetectable error sets do not occur
during the implementation of a Hadamard gate. Throughout this subsection,

it is assumed that the Y-planes are wide enough, thus their boundaries do

70



db-HPC x pb-HPC

[t =ty (primal)] ~ PP-D

Figure 24: Error correction during the process for a Hadamard gate, par-
ticularly near the Y-planes. (a) The Y-planes should be wide enough since
there are error chains connecting their boundaries and the defects. The dual
Y-plane and the primal defects are shown as an example. (b) Dual Y-plane
in the ty-layer near the pb-D. Defect (Y-plane) qubits are marked as purple
triangles (orange circles). The same structure is repeated in the next layer
for the primal Y-plane and the db-D. A db-HPC around the defect pbAQ
is no longer compatible and so is the next pb-HPC, thus they are merged to
be compatible. Similarly, a defect PC in the pb-D intersecting the Y-plane
is merged with the adjacent defect PC in the db-D to be compatible.

not need to be considered. The problems then may happen near where the
Y-planes and defects meet.

Instead of investigating the configuration for a Hadamard gate in Fig.[7]
directly, we introduce a simpler system .S visualized in Fig. 23] where the
primal defects are just extended straightly instead of changing to dual de-

fects. Let Sy denote the original system for a Hadamard gate. In §;, a dj-CS
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Figure 25: Configuration of the system .§; introduced to verify error cor-
rection in a Hadamard gate, where the primal defects are just extended
straightly instead of changing to dual defects.

S,x ending at the defects and a pr-CS SQZ) surrounding the green defect are
defined as usual. We additionally define a stabilizer Syz = SE})SEZZ), where
S)(?Z) is a closed dr-CS between the (1 — 1)- and (g + 1)-layer as shown in
Fig.[23]

We also consider another system Sj3; which is identical with §; except
for one difference: For each of hybrid PCs, merged hybrid PCs, and merged
defect PCs in Sy (see Figs. 23| and , a pair of PCs in §; are merged as
shown in Fig.[26{and form type-1, -2, -3, and -4 merged PCs, respectively.
These merged PCs are used in Sy instead of original PCs involved in the
(tg + 1)-layer.

We now prove that Sy does not allow local nontrivial undetectable

error sets (LNUESs) by showing the following three statements:

1. For each error set e in Sy, there exists an error set in S;, which has

the same properties (i.e., whether it is local, trivial, or detectable) as e
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pc-HPC in Sy
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Figure 26: Correspondences of (a), (b) hybrid PCs, (¢) merged hybrid
PCs, and (d) merged defect PCs in the original system Sy for a Hadamard
gate and merged PCs in Sy, which is called type-1, -2, -3, and -4 merged
PCs, respectively. The circles (squares) indicate links (AQs). In (a)—(c), the
primalities of the qubits are presented as colors: orange (primal) and blue
(dual). In (d), Z-support qubits are marked as purple triangles. Note that, for
each correspondence, both the PCs have the same support if the (75 +1)-
layer in Sy is omitted.

(c)
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and does not act on any qubit in the (5 + 1)-layer. Here, we say that

an error set in Sy is nontrivial if it anticommutes with Sy or Sx.
2. S; does not allow LNUE:s.

3. If there exists an LNUE in $j3; which does not act on any qubit in the

(ty + 1)-layer, there also exists an LNUE in 5.

Proof of the first statement: To show the first statement, we should notice
that Sy, is just a variation of Sy where an extra layer is inserted between the
ty- and (zy + 1)-layer. (Remark that these two layers contain Y-planes in
Su.) For a qubit ¢ in Sy at (x,y,7), let G denote a qubit in Sy at (x,y,1) if
t <ty and at (x,y,7 + 1) if otherwise. Note that § cannot be in the (7 + 1)-
layer. Then for an error set e in Sy, there is an error set € in Sy, such that
supp (€) = {G | g € supp(e)} holds. Note that we here consider only their
supports, not their actual operators.

Furthermore, we can find similar correspondences for PCs and stabi-
lizers for transforming logical operators (Sxyz and Szx) in Sy. (However,
this time the supports of their counterparts in Sy, may contain qubits in the
(ty + 1)-layer.) Comparing Figs.and 25| supp (Szx) = {d | g € supp (Szx)}
can be checked. Similarly, supp (S’ XZ) contains g for each qubit g € supp (Sxz),
but this time it additionally contains some qubits in the (tz + 1)-layer. For
a PC S in Sy, it is straightforward to obtain a unique PC S in $;; such
that supp (S) = {7 | g € supp(S)} holds, if S is an ordinary PC or a defect
PC. Otherwise, S is a hybrid or merged PC involved in Y-plane qubits (see
Figs. 23| and . In such a case, S is set to a merged PC in ;3 shown in
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Fig. Likewise, supp (S’) is composed of G for each qubit g € supp (S)
and some additional qubits in the (ty + 1)-layer. Note that this correspon-
dence for PCs is bijective since we remove original PCs involved in the
(ta + 1)-layer which do not have their counterparts in Sg.

We can now notice that ¢ and & have the same properties. Since they
have the same size, e is local if and only if € is local. If e is trivial, e and each
of Sxz and Szx share an even number of qubits, thus so do & and each of Sxz
and Szx, which means that & is trivial. (It does not matter that the support
of Sxz contains additional qubits in the (tg + 1)-layer since it is guaranteed
that & does not act on those qubits.) It is straightforward to see that PCs
flipped by e are Si,S,--- if and only if PCs flipped by & are S;,5,,---.
Hence, e is detectable if and only if € is detectable. Lastly, é does not act on

any qubit in the (¢ + 1)-layer by definition.

Proof of the second statement: Noticing that S is just the simple exten-

sions of defects, we can show that .§; does not allow local undetectable error

sets anticommuting with Sz, S‘Q} 5@ or Syz = SQZ)SE(ZZ) Szx and ng) are

CSs used for a logical identity gate, thus we already know that this state-

ment is true for them. Since S@ is a dual CS, only dual error chains passing

through it an odd number of times can anticommute with it. However, since

}((2% is closed and dual error chains cannot end at primal defects, there are

no undetectable error sets anticommuting with §§§Z) The statement for Sxz

then automatically holds.
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Proof of the third statement: Let us assume that there exists an LNUE e
in S;y which does not act on any qubit in the (¢y + 1)-layer. Remark that ;
has some additional PCs compared to Sjy. Therefore, e may be a local non-
trivial detectable error set in §;. In detail, if two PCs S| and S, are merged
in S;u, e may flip both S and S5 in §;. For example, a type-3 merged PC
in Fig. C) can be written as Sq4S); for two dc-PCs Sy and S}, thus e may
flip both of them. The same argument holds for defect PCs regarding type-4
merged PCs in Fig.[26(d). However, considering type-1 and -2 merged PCs
in Fig.26{a) and (b), a pc-PC is involved in two merged PCs with two dc-
PCs. Hence, e either commutes or anticommutes with all these three PCs.

Suppose that e flips np primal PCs, ng dual PCs, and np defect PCs.
In other words, e anticommutes with a primal PC S, and two dual PCs
Sid, S;d (i=1,---,np) of the same color for a pair of type-1 and -2 merged
PCs, with dual PCs Sjq and S}y (i =np+1,--- ,nq/2) of the same color for
a type-3 merged PC, and with defect PCs S;p and S}, (i =1,--- ,np) for a
type-4 merged PC. Here, Siq and S’ are set to act on qubits of # <1y + 1
and r > ty + 1, respectively. We define Py, Py, Pé, and Pp by the sets of Sjp’s,
Sid’s, S;d’s, and S;p’s, respectively.

Let eg) denote the length-1 defect error chain consisting of a qubit
shared by S;p and S’ for each i. eg) is trivial since the corresponding qubit is
a defect CQ which neither Szx nor Sy contains in its support. (Szx contains
defect qubits, but they are AQs as shown in Fig. [L1{c).) Therefore, e; :=
el]; eg) is local, nontrivial, and detected by PCs in P, UP4 U P}.

Let us write e := epedeéeD, where e, is a primal error chain, eq is a

dual error chain in the layers of # < 1 + 1, €/ is a dual error chain in the
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layers of t >t + 1, and ep is a defect error chain. Note that the dual error
chain in e; can be divided by two in such a way since e does not contain
qubits in the (t + 1)-layer. Note that primal PCs only can be flipped by ej,.

In order for e, to be a proper error chain,
|Por| = |Ppg| = |Pob| =x  (mod 2) (3.11)

should hold for x € {0, 1}, where P, for each color C is the set of pc-PCs in
Py, because of the fusion rule: A unit error chain (pr-PC, pg-PC, pb-PC,
or pj-PC) always flips either two PCs of the same color or three PCs of

different colors. Similarly, dual PCs in Py only can be flipped by eq, thus
|Pdr’ = |Pdg| = |de’ =Yy (mod 2) (312)

holds for y € {0, 1}, where Py for each color C is the set of dc-PCs in Py.

Now, let e((f) denote the length-1 dual error chain consisting of the qubit

shared by S;4 and S;. Since eg) flips only these two PCs, e; := ¢ Hie((f) =
epeqpep only flips primal PCs in P,, where eqg) := eq Hieg) is a new dual
error chain. Since the primal PCs only can be flipped by e, eqzep is local
and undetectable, thus it is trivial according to the second statement. Re-
mark that the qubit in e’ is a dcAQ in the (1 + 1)-layer if Sy and S,
have the color of ¢. Thus, eff) (for every i), eqrep, and e, all commute
with Szx which only acts on vacuum dCQs and defect pAQs. Therefore,
el = epedep = epedrep Hieff) also commutes with Szx. We however know

that e, is nontrivial, thus it should anticommute with Syz. Moreover, eé’)
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anticommutes with Syz if and only if it is either green or blue and located

inside the area enclosed by Sxz. Therefore, since e; anticommutes with Sy,

{e2,8x2} =0 <= |Pygs|+|Pabs| =0 (mod 2) (3.13)

holds, where F,q)c is the set of PCs in Py(d)c to which the qubits corre-
sponding are located inside the area enclosed by Sy.

We can get another equation regarding the locality condition. Remark
that merged c-colored hybrid PCs in Sy are placed inside the c-colored
defects (see Fig.[24), thus so are type-3 c-colored merged PCs in Sjy. Since
ey is local and anticommutes with Sy, it can be assumed that its support is
near the green defect, which indicates that neither dr-PCs nor db-PCs in §;
corresponding to type-3 merged PCs in Sy, are not flipped by e;. Therefore,

Sig and S}, for every i € {n,+1,--- ,nq/2} are green, thus

|Porl = |Parl,  [Pob| = |Pabl,
(3.14)
|Port| = |Partl,  [Pob.i| = |Pab.]
hold. As a consequence, we get
X = |Py| = |Par| =y (mod 2), (3.15)

considering Eq. (3.11) and Eq. (3.12). For green PCs, we can only say that

|Pog| = |Pog.1| = |Pag| — |Pug.1s (3.16)
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which is about PCs outside the area enclosed by Sxz.

Lastly, we try to make e, undetectable by multiplying appropriate pri-
mal error chains. Remark that e, flips only primal PCs. First, let us consider
moving all flipped PCs in P, ; outside the area enclosed by Sxz. If a moved
PC is green or blue, the corresponding multiplied error chain anticommutes
with Sxz. After that, since every flipped PC is outside the area, they can
move properly and annihilate with each other without touching Sy, then
a local undetectable error chain e3 is finally obtained. To see whether e3 is

nontrivial or not, we use

{e3,8x2} =0 <= |Pug| + |Pabs| + [Pogs| +[Pobs| =0 (mod 2),
(3.17)

which is obtained by considering the above discussion and the proposition

in Eq. (3.13). We get

|Pag.1| =+ |Pab.i| 4 [Pog,1| +|Pob.1| = |Pag,1| + |Pog.1]
= |Pog| + | Pag]

=x+y=0 (mod 2),

where the first equivalence comes from Eq. (3.14), the second one comes
from Eq. (3.16)), the third one comes from Eqgs. (3.11)) and (3.12)), and the last
one comes from Eq. (3.15). Therefore, e3 is indeed nontrivial. In summary,
if there exists an LNUE e in Sj; which does not act on any qubit in the

(g + 1)-layer, there also exists an LNUE ej3 in 5;, which contradicts to the
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second statement that §; does not allow LNUEs.

Error correction in a logical phase gate

We now investigate error correction in a logical phase gate. As pro-
posed in Sec.[3.2.5] a primal Y-plane is placed in the middle of the timelike

defects of a primal logical qubit. X} is transformed into Y/ via Sy := S)((1 )Sg )

and Zy is transformed into Z; via Sz, where Sg(l ) and a primal CS while S§§)
and Sz are dual CSs. It is important that Sx has X and Y operators in the #,-
layer on which the Y-plane is placed, as shown in Fig.[I§[c). Unlike the case
of the Hadamard gate, the Y-plane cannot be made to cover a wide enough
area, since supp (Sy) has X operators on qubits just near the defects. How-
ever, since neither hybrid PCs nor ordinary PCs are not compatible along
the interface between the Y-plane and vacuum, there may be short nontrivial
undetectable error chains near the interface.

On the other hand, if the Y-plane and the vacuum are separated by de-
fect qubits, compatible PCs can be appropriately defined along the interface.
To see this, let us suppose that the Y-plane and the vacuum are separated by
the pc-D, as shown in Fig. 27| for ¢ = b where the orange circles (purple
triangles) indicate Y-plane (defect) qubits in the layer. Although pc’—PCs
and pc’—HPCs (¢’ # ¢) acting on defect qubits are incompatible, they can be
merged with each other appropriately to form larger compatible stabilizers.
It is worth noticing that such “hybrid merged PCs” can be analogously used
instead of original merged PCs near defects in Fig. Note that, unlike
original merged stabilizers, hybrid merged PCs have Z operators on several

defect qubits. Additionally, defect PCs are not affected by the Y-plane, since
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Figure 27: Error correction when the vacuum and a primal Y-plane on a
dual layer are separated by a pb-D. Defect (Y-plane) qubits in the layer are
marked as purple triangles (orange circles). pr-HPC, pg-HPC, pr-PC, and
pg-PCs acting on defect qubits are incompatible, but they can be merged
with each other appropriately to form compatible stabilizers. However, pb-
PCs and pb-HPCs overlapping with the defect cannot be merged in such a
way, thus they are just removed.

they do not overlap with it.

In summary, each PC near the defect either remains the same or is just
replaced with its “hybrid version” when the Y-plane is placed. This contrasts
with the fact that PCs along the interface between the Y-plane and vacuum
cannot be compatible. Therefore, we need to extend the defects spacelikely
to surround the Y-plane entirely as visualized in Fig. [T§{c), so that the Y-
plane only contacts with the defects. The shape of Sx and the paths of defects
should be carefully chosen for the defects not to overlap with supp (Sx). In
particular, the microscopic structures near where two defects are closest are
important. As visualized in Fig. the Y-plane should not contact directly
with ordinary PCs for the vacuum; they always meet separated by a defect.

We now verify that local nontrivial undetectable error sets do not exist
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(a) [Dual t] PN /..\‘ Y-plane

(b)
[Dual t]

supp(Sx)

Figure 28: Microscopic structures near where (a) red and blue defects or
(b) blue and green defects are closest for a logical phase gate. The colored
solid (dotted) lines indicate the cross-sections of the defects (support of Sx)
on the layer; CQs along the lines belong to the defects (support). Gray areas
indicate removed PCs due to the defects.
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in the above configuration. We first show that it is enough to consider only
primal error chains. It is observed that each hybrid merged PC contains
various types of qubits: primal vacuum, dual vacuum, defect, and Y-plane
qubits. Therefore, primal error chains may end at the Y-plane and connect
with defect or dual error chains without being detected. However, since there
always exists a dual error chain equivalent to each defect error chain (see
Sec.[3.3.2), we only need to consider primal and dual error chains.

Let us consider a local undetectable error chain e := ep,eq where e,
(eq) is a primal (dual) error chain. Since there are neither flipped dual PCs
nor dual defects, eq should be closed, thus there exists a stabilizer S such
that supp,(S) = eq. (If eq4 is a closed dc(j)-EC, we can find a pc(j)-CS S
whose boundary is supp (eq). eq generally can be written as the product of
multiple closed error chains, thus S is also the product of the corresponding
CSs.) Since suppy (S) is composed of primal qubits, we get eq ~ eqS =
X (suppy (S)) ~ X (Ds)X (Ys), where the symbol “~” means the equivalence
relation and Dg (Ys) is defect (Y-plane) qubits in suppy(S). Here, Dg can
be assumed to be empty, because eq neither goes around a defect (since e
is local) nor penetrates it (since e should not be detected by defect PCs).
Therefore, eq is equivalent to a primal error chain in the Y-plane, which
means that e is equivalent to a primal error chain.

We find that local undetectable primal error chains are trivial. Each
of such error chains behaves as if the primal Y-plane does not exist since
each hybrid PC or hybrid merged PC and the corresponding original one
contain exactly the same primal qubits in their supports. Remark that a pc-

EC e can end at the pc’—D d only if ¢ = ¢’ or the surface where e meets
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Figure 29: Nontrivial undetectable primal error chains regarding a logical
phase gate. The colored circles indicate the timelike parts of the defects and
the thick colored lines indicate their spacelike parts. supp (Sx) is presented
as colored dotted lines. Each of such error chains can either (a) end at the
three defects or (b) end at two defects, as shown in colored solid lines. In
the case of (b), at least one of the surfaces where it meets the defects should
be spacelike. The intersection points of the error chains and supp (Sx) are
marked as triangles.

d is spacelike (see Sec. . Furthermore, since dual CSs Sz and S§(2 )

always commute with primal error chains, we only need to consider Sg(l )
whose support in each dual layer is shaped as the dotted lines shown in
Fig.[29] Therefore, two types of nontrivial undetectable primal error chains
are possible as shown in Fig.[29} error chains ending at three or two defects.
For an error chain of the second type, at least one of the surfaces where
it meets the defects should be spacelike. We can check that both of them
are nonlocal. (It may seem unclear that an error chain of the second type is
also nonlocal. However, since it should pass by the timelike part of a defect
to reach its spacelike surface, its size depends on the circumference of the

defect, thus it is nonlocal.)
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Figure 30: Removal of some primal PCs near where (a) red and blue
defects or (b) green and blue defects are closest to verify that local nontrivial
undetectable primal error chains in the area do not exist. Each red, green, or
blue area indicates a survived pr-PC, pg-PC, or pb-PC, respectively. Each
purple or orange area indicates a survived merged primal PC. Each qubit
marked by a black circle is a terminable qubit that belongs to the support of
one PC only.
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One may wonder whether the above analysis on error chains works
well even for such extreme cases where two defects are very close. We can
approach the problem differently. Let us consider removing all primal PCs
near where red and blue defects are closest, except red and green PCs (in-
cluding their merged ones) in a region close to the blue defect with respect
to supp (SQ), as shown in Fig. a). We can observe that each vacuum
qubit in this area either belongs to the supports of one or two PCs or does
not belong to the support of any PC at all. In particular, each vacuum qubit
belonging to the support of one PC is contained in supp (Sx) and called a
“terminable qubit.” The region near where green and blue defects are closest
can be considered analogously as shown in Fig. [30(b).

We now show that, if some PCs are removed as suggested above, any
undetectable primal error chain in this area can be decomposed of multiple
undetectable primal error chains by the following steps. For simplicity, we
regard an error set and a PC as its support; i.e., we omit the corresponding

operators. Let e be an undetectable error set.

1. For each qubit q?ng € e (i=1,2,---) which does not belong to the
support of any PC, a single-qubit error on ¢;° is undetectable by

itself. Define ¢’ := ¢\ {qing,q;nga e }

2. Pick a terminable qubit gy from &' If there are no such qubits, skip

this and the following step.

(a) LetSp be the unique PC flipped by an error on go. Pick a qubit ¢;
from e, NSy where ¢, := ¢’ \ {¢o} is an error set. This is possible

since ¢j, flips Sp only.
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(b) If g; is terminable, we get an undetectable error set e‘l’nd =
{q0.q1}

(c) If otherwise,

i. Let Sy be the unique PC flipped by an error on ¢; such that
S1 # So. Pick a qubit g, from ¢} NS} where €| := e\ {g1}
is an error set. This is possible since ¢/ flips S only.

ii. If ¢ is terminable, we get an undetectable error set €™ :=
{90,491, 92}-

iii. If otherwise, repeat step 2(c) analogously for ¢,¢3,- - un-
til we reach a terminable qubit and get an undetectable error

set.

3. For each i > 2, repeat step 2 for ¢’ \ (¢S U---Ues™} ) instead of ¢’ to

end

get an undetectable error set e{"“ until there are no terminable qubits

ine\ (esMMU---Ues™).

4. Pick a qubit gg € " :=¢€'\ (™ UM U--). If there are no such

qubits, skip this and the following step.

(a) Let S_; and Sy be PCs flipped by ¢o. Pick a qubit g; € e’o’ N So
where ¢ := €” \ {qo}. This is possible since e flips S_; and
So. Let S1 be the unique PC flipped by an error on ¢ such that
S1 # So.

(b) Through the same method as step 2, obtain qubits ¢», - - ,¢g; and
the corresponding PCs Sy, -+ ,S; where S; = S_;. The only dif-

ference from step 2 is that e’/ for j < i flips not only S; but also
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S_1. Such a qubit g; always can be reached since the number of

PCs is limited.

(¢) € :={qo, - ,qi} is then an undetectable error set.

C

5. For each i > 2, repeat step 4 for ¢” \ (e7°U--- Ue;”] ) instead of ¢’ to

get an undetectable error set e until ¢’ = €Y U---Ue:* holds.

Through the above process, we can decompose an undetectable pri-
mal error chain e into multiple mutually-disjoint undetectable primal error
chains: {qing}, {q;ng o e‘f“d, eeznd, e efyc, e;yc, ---.Foreach i, e‘l?“d

. . . sng cyc
starts from a terminable qubit and ends at another, while {qi } and e,

only contain non-terminable qubits. Since all qubits in supp (Sx) in the area

cyc
i

are terminable, e;”° for each i meets supp (Sy) twice, while {q?ng} and e
for each i does not meet it at all. Therefore, ¢ commutes with Sy, thus it
is trivial. In other words, every local undetectable primal error chain near
where two defects are closest is trivial if some PCs are removed. This state-
ment also holds for the original setting where PCs are not removed since

a local nontrivial undetectable error chain retains these properties even if

some PCs are removed.

3.4 Error simulations

We here numerically simulate correction of physical-level errors in

MBQC via RTCSs and CCCSs and compare their error thresholds.
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3.4.1 Error model

We assume a simple error model where vacuum qubits have nontrivial
single-qubit errors independently with the same probability pypny. Note that
these nontrivial errors contain X-measurement, Y, and Z errors as discussed

in Sec.[3.3} X errors on vacuum qubits cannot make logical errors.

3.4.2 Simulation methods

For each simulation with a code distance of d, we simulate the iden-
tity gate of a primal logical qubit covering consecutive 27 + 1 layers with
T =4d + 1 starting from a primal layer. We used simplified defect models
for efficient simulations. Instead of considering big regions containing the
entire defects, we consider only regions surrounded by boundaries corre-
sponding to the defects. That is, we only take account of error chains located
in the “inner” regions surrounded by the defects. Since those error chains are
strictly shorter than error chains passing outside the regions, we conjecture
that this assumption does not affect the resulting Z; error rates much.

Figure shows single layers of the three simplified defect models
for the simulations regarding RTCSs, 4-8-8 CCCSs, and 6-6-6 CCCSs, re-
spectively. Each layer of the concerned RTCSs has the shape of a square
with a side length of d — 1 in the units of cells for the code distance d,
where the boundaries are of different types (primal and dual). Any error
chain connecting the two primal boundaries incurs a Z;, error. For CCCSs,
we consider a region surrounded by three boundaries of different colors,

where each boundary can be regarded as a part of a defect. Any error chain
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Figure 31: Structure of a layer in the simplified defect model for the sim-
ulation regarding (a) RTCSs, (b) 4-8-8 CCCSs, or (c) 6-6-6 CCCSs, partic-
ularly when the code distance is d = 3. In (a), blue squares (black circles)
indicate primal (dual) qubits. In (b) and (c), a colored solid line is a bound-
ary corresponding to that color, which can be regarded as a part of a defect.
For all of them, dashed lines are examples of primal error chains incurring
Z; errors. Purple triangles indicate the qubits in the error chains, which show
that the code distances are three. Defect models for d > 3 can be constructed
analogously by increasing the distances between the boundaries while keep-
ing their shapes.

connecting the three boundaries incurs a Z;, error.
We calculate the Z; error rate per two layers with the Monte Carlo

method; we repeat a sampling cycle many times enough to obtain a desired
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confidence interval of the Z; error rate. Each cycle is structured as follows:

We first prepare a cluster state whose shape and size are determined
by d and T. Here we assume perfect preparation, namely, no qubit losses or
failures of Cz gates. Errors are then randomly assigned to primal qubits with
a given probability pphy, except those in the first and final layers to prevent
error chains ending at these layers. After that, the outcomes of primal PCs
are calculated, then decoded to locate errors. Edmonds’ minimum-weight
perfect matching (MWPM) algorithm [46] 47, 48] via Blossom V software
[49] is used for decoding (once for RTCSs and six times for CCCSs); see the
following subsection for details. We then identify primal error chains con-
necting different defects which incur Z; errors by comparing the assigned
and decoded errors. We count such error chains while repeating the cycles
and obtain the Z; error rate per two layers Poe. The error threshold pyy is
obtained from the calculated P, results for different values of d and pphy;

Pyog decreases as d increases if pphy < pmrs and vice versa if otherwise.

3.4.3 Decoding methods

RTCS: In an RTCS, the PC outcomes are decoded to locate errors at
vacuum qubits via Edmonds’ minimum-weight perfect matching algorithm
(MWPM) [46, 47, 48], as frequently used in the literature [34} 50, 511 152].
Remark that an error chain flips at most two PCs located at its ends, and if
it flips one PC, it ends at the boundary. Hence, our goal is to figure out the
most probable set of error chains based on the PC outcomes.

The decoding procedure is briefly summarized as follows. First, a graph

is constructed from the PC outcomes. The vertex set of the graph contains
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two vertices for each flipped PC: One is the PC itself and the other is the
“boundary vertex.” An edge is connected between each pair of different
PCs, each pair of a PC and the corresponding boundary vertex, and each
pair of different boundary vertices. A “weight” value is assigned to each
edge as follows: If both the vertices are PCs, the weight is the number of
qubits in the shortest error chain between them. If only one of them is a
PC, the weight is the number of qubits in the shortest error chain between
the PC and the closest boundary. If both of them are boundary vertices, the
weight is zero.

We use the MWPM algorithm via Blossom V software [49] to search
for a set of edges of the graph constructed above which covers all the ver-
tices, does not contain duplicated vertices, and minimizes the total weight.
Each edge in the resulting set corresponds to a pair of PCs flipped by an
error chain or a PC flipped by an error chain ending at the boundary, un-
less the edge connects two boundary vertices, which is ignored. We can thus

locate errors from the error chain along the shortest path for each edge.

CCCS: The decoding method for RTCSs is not directly applicable to CCCSs,
since an error in a CCCS flips at most three PCs, unlike the case of an RTCS.
The decoding for each sample requires the application of the MWPM algo-
rithm six times.

First, the outcomes of pb-PCs and pg-PCs are decoded to find the
faces in LP" containing only one qubit with an error, via the method anal-
ogous to that for RTCSs. This is possible since each of such faces flips at

most two (blue or green) PCs like an error in an RTCS. Remark that each
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face in LP" corresponds to a ppbAQ, pgAQ, or prL. Errors on pbAQs and
PgAQs are thus obtained from this process, while errors on prLs are left
ambiguous (since a prL is composed of two pCQs). Next, the left results
for prLs obtained above and the outcomes of pr-PCs are decoded to locate
errors on prAQs and pCQs, treating the parity of the number of errors in
each prL like a PC. This is possible since an error on a prAQ or pCQ flips
at most two among pr-PCs and the error parities of prLs.

All the errors are finally located by the above process. However, to
make the decoding more accurate, we repeat it for LP° and £P# analogously
and select the smallest set of decoded errors among the three results.

We lastly note the similarities and differences between our decoding
method on CCCSs and the color-code decoders suggested in Refs. [53] 154,
55]]. First, they have in common that the MWPM algorithm is first used
in the (“shrunk™ in our scheme and “restricted” in Refs. [54, 155]) lattice
corresponding to each color derived from the original lattice. However, the
processes after that are different: The MPWM algorithm is used one more
time in our method, while a “local lifting” procedure is applied in the other
decoders. It is not straightforward to convert these color-code decoders to
suit our scheme since the lattice structures of CCCSs are in 3D and contain
not only code qubits arranged on color-code lattices but also ancilla qubits.
If such conversions are possible, it will be worth investigating which one

performs better.

93



3.4.4 Results

Figure shows the results of the simulations: Z;, error rates (Pog)
against nontrivial physical-level error rates (pphy) for different MBQC schemes
and code distances (d). The obtained error thresholds are about 2.8% for 4-
8-8 CCCSs, 2.7% for 6-6-6 CCCSs, and 3.3% for RTCSs. The values for
CCCSs are slightly lower than the value for RTCSs, but they have similar

orders of magnitude.
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3.5 Resource analysis

3.5.1 Resource overheads for placing logical qubits

We first analyze the minimal resource overheads required to place log-
ical qubits in RTCSs or CCCSs. We consider two schemes for RTCS com-
putation: defect-based and patch-based ones. In the defect-based scheme
[34} 1350131} 136]], each logical qubit is encoded in a pair of defects and logi-
cal operations are done by defect braiding or state distillation. In the patch-
based scheme [2]], logical qubits are encoded in square “patches” separated
from each other, and logical operations are done by lattice surgery or state
distillation. For CCCS computation, we consider two types of lattices: 4-8-8
and 6-6-6.

Except for the patch-based RTCS scheme, we consider a periodic hexag-
onal arrangement of parallel timelike primal defects, where primal logical
qubits with the code distance of d are compactly packed in the space. In
other words, the spaces between defects are determined to minimize the
number of physical qubits per logical qubit while keeping all the possible
nontrivial undetectable error chains to contain d or more qubits. We first
optimize the arrangements while ignoring the implementation of nontrivial
logic gates. We then investigate how the arrangements should be changed to
make it possible to implement each logic gate on an arbitrary logical qubit
(or an arbitrary pair of logical qubits) while keeping the code distance the
same. In particular, for CCCS computation, we first get the arrangements
for implementing each one of the gates (the CNOT, Hadamard, and phase

gates) and then the arrangements where arbitrary logic gates are applicable.
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Note that we here do not consider implementing multiple adjacent gates at
the same time. For a more detailed method, see Sec.

Table [3| shows the calculated values of n/k and Ncz/k in terms of the
code distance d, where k is the number of logical qubits and n (Ncz) is the

number of required physical qubits (CZ gates) per layer. Note that Ncz /n is

Table 3: Resource overheads of RTCS and CCCS computation for various
sets of implementable logic gates, evaluated by the numbers of physical
qubits (n) and Cz gates (Ncz) per layer in terms of the code distance (d) and
the number of logical qubits (k). For RTCS computation, the patch-based
and defect-based schemes are considered. For CCCS computation, the 4-8-8
and 6-6-6 lattices are considered. Except for the patch-based RTCS scheme,
optimal hexagonal arrangements of parallel timelike primal defects are used.
The arrangements are optimized while either ignoring all nontrivial logic
gates, considering only one type of logic gate, or considering general gates.
Only the leading-order terms on d are calculated.

Implementable logic gates  n/k  Ncz/k

(a) Defect-based RTCS computation

- 6.6d>  13d”
CNOT 6.64> 134>
(b) Patch-based RTCS computation
- 3d? 6d>
CNOT 6d> 124>
(c) 4-8-8 CCCS computation
- 7.5d>  20d>
CNOT 7.5d*>  20d?
Hadamard 2542 664>
Phase 194> 504>
General 324 8442
(d) 6-6-6 CCCS computation
- 6.3d> 17d°
CNOT 6.7d*>  18d”
Hadamard 27d? 72d?
Phase 154> 394>
General 2942 77d?
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2 for RTCSs and 8/3 for CCCSs. It is observed that the values of n/k are
not significantly different from scheme to scheme if only the CNOT gates
are considered. However, the Hadamard and phase gates with CCCSs re-
quire relatively large values of n/k. Note that, in a real implementation, the
arrangement of logical qubits does not always have to be the most general
one which is the most costly, thus n/k lies somewhere between these val-
ues. Depending on its purpose, not all types of logic gates may need to be

available for each qubit.

3.5.2 Resource overheads for nontrivial logic gates

Considering the results of the previous subsection, our CCCS scheme
seems to be worse than the RTCS schemes in terms of resource efficiency.
However, remark that those results only show physical qubits per logical
qubit in a layer, not the real numbers of physical qubits to implement each
logic gate, which is investigated in this subsection. To calculate them, we
need to know the number of layers required for each gate; see Secs.
and for the analysis.

Table ] presents the number of physical qubits required to implement
a CNOT gate for each MBQC scheme. For CCCS computation, we consider
the two cases: Defects are arranged so that only the CNOT gate or all logic
gates are applicable. The numbers of physical qubits per layer are directly
obtained from the results of Table 3] Considering the most general arrange-
ment of defects in each scheme, a CNOT gate requires about five times more
physical qubits in CCCS computation than in RTCS computation, for the

same code distances.
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We now evaluate resource overheads for the logical phase gates, as-
suming that the gates are implemented by state distillation in RTCS com-
putation. A logical ancilla state |Yz) := |0z) +i|1z) is used to implement a
phase gate in RTCS computation through the circuit in Fig. [33(a). If |Y7)
has an error and the other parts of the circuit are perfect, the resulting phase
gate also has an error. Seven noisy |Y,) states can be distilled to obtain a less
noisy |Y;) state [311 1] via the circuit shown in Fig. [33(b); if each input state
has an X; or Z; error with a probability of € and the distillation process is
perfect, the output state has a probability 7€ of having an error. The success
probability of the distillation process is 1 — 7e.

The numbers of physical qubits required for the logical phase gates
are analyzed in Sec. for RTCS computation and Sec. for CCCS
computation, and the results together with the residual errors € in the dis-

tilled |Yz)’s are presented in Table |5} The results clearly show that a phase

Table 4: Numbers of physical qubits required for the logical CNOT gates
with RTCSs or CCCSs. Only the leading order terms on d are presented.
We consider the two cases for CCCS computation: Defects are arranged so
that (a) only the CNOT gate or (b) all logic gates are applicable. The results
of Table [3|are used to obtain the numbers of physical qubits per layer. Note
that, for patch-based RTCS, about 4d layers are additionally needed if the
two logical qubits are not adjacent.

Type # per layer # of layers Total #
Defect-based RTCS 134> 454 5943
Patch-based RTCS 1242 4d 4843
4-8-8 CCCS (a) 154> 4d  60d>
6-6-6 CCCS (a) 134> 44d  60d>
4-8-8 CCCS (b) 63d? 4d 25043
6-6-6 CCCS (b) 56d> 4.4d  250d°
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Figure 33: (a) Implementation of a logical phase gate S; with an ancilla
logical state |Y7) := (|0.) +i|1.))/v/2. Z1S, or Sy is applied on the input
state if the Z;-measurement result z is +1 or —1, respectively. (b) Distilla-
tion circuit for a |Y;) state [1]]. Each S; gate is implemented with a noisy
|Y.) state by the circuit in (a). The X;-measurement (My) results determine
whether the distillation succeeds or not. If it succeeds, the distilled state is
obtained from |yz).

gate with CCCSs is significantly more resource-efficient (at least about 26
times) than with RTCSs. Note that the non-determinacy of distillation is not
considered here; if considering it, the difference in resource overheads gets
even bigger.

It is inappropriate to directly compare the Hadamard gates in the two
schemes since Rx (1/2) :=exp (i5X) is used in RTCS computation to com-
plete a universal set of gates instead of the Hadamard gate [31} 2]. Since

Rx(m/2) is also implemented by state distillation with the state |A; ), we can
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at least say that the Hadamard gate in CCCS computation is a more resource-
efficient element to complete a universal set of gates than Rx (7/2) in RTCS
computation. In detail, the circuit to implement Ry (7t/2) is the same as the
one shown in Fig. [33|a) except that the target and control of the CNOT gate
are swapped and the ancilla logical qubit is measured in the X-basis, not the
Z-basis. Therefore, it requires almost the same number of physical qubits as
the logical phase gate shown in Table[5] On the other hand, a Hadamard gate
in CCCS computation requires only about 904> physical qubits for both the
4-8-8 and 6-6-6 lattice since it needs three consecutive layers: the (15 — 1)-,
ty-, and (ty + 1)-layer in Fig.

The above analyses may be not fair comparisons since the same code
distance does not mean the same level of protection against errors. Thus, in

Fig.[34] we illustrate the estimated numbers (n) of physical qubits required

Table 5: Numbers of physical qubits required for the logical phase gates in
defect-based (DB) RTCS, patch-based (PB) RTCS, or CCCS computation.
Only the leading order terms on d are presented. For each RTCS scheme, we
consider the two cases: The distillation cycle is repeated once or twice. For
CCCS computation, we assume that the defects are arranged so that all logic
gates are applicable. Lower bounds of residual errors in the output |, ) states
are calculated for the cases of RTCS computation. The bounds are achieved
when logical errors do not occur during the distillation processes. € is the
error probability of the initial noisy |¥;) obtained by state injection.

Type Number of physical qubits Residual error
DB RTCS (Distilled once) 10004 > 7¢3
DB RTCS (Distilled twice) 790043 > 74¢?
PB RTCS (Distilled once) 84043 > 7¢3
PB RTCS (Distilled twice) 64004 > 74¢?
4-8-8 CCCS 3243 -
6-6-6 CCCS 2843 -
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Figure 34: Estimated numbers of physical qubits required for (a) an iden-
tity gate, (b) a CNOT gate, or (c¢) a phase gate versus the logical error rate
Piog for CCCS and RTCS computation, while fixing the physical-level error
rate pphy to 1%. For (a), it is assumed that the total numbers of layers are
equal to twice the code distances. For RTCS computation in (c), we consider
using the state distillation cycle once to implement the phase gate. Extrap-
olated values for RTCS computation are shown as dashed lines. Note that
these results, particularly (b) and (c), are rough estimations since we use the
results in Sec. [3.4] which cover only Z;, errors in the identity gates.

for each logic gate against achievable logical error rates (piog) While fixing
the physical-level error rate (pphy) to 1%, considering the optimal arrange-
ments allowing general logic gates. For the identity gate, we assume that
the number of layers is equal to twice the code distance d. It apparently
shows that, although the identity and CNOT gates with CCCSs are slightly
more costly than those with RTCSs, the phase gate with CCCSs is signifi-
cantly more resource-efficient than that with RTCSs. Note that these results
are rough estimations since they are obtained by using the logical error rates
calculated in Sec.[3.4which covers only Z; errors in the identity gates. More

precisely, for each logic gate, scheme, and code distance, we here assume
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that the logical error rate is equal to pyz, > . T;, where pyz, is the correspond-
ing Z; error rate per two layers calculated in Sec. [3.4)and 7; is the number
of layers demanded by the ith logical qubit participating in the gate (which
can be an ancillary logical qubit for distillation).

We lastly remark that state distillation is not the only method to im-
plement the Hadamard and phase gates with RTCSs. These gates can be
implemented by lattice dislocations [2, 44], which may lead to small re-
source overheads comparable to those in CCCS computation. However, we
then need to sacrifice the regularity of the lattices, which is another obstacle

to realization.

3.6 Remarks

In this chapter, we have proposed a new topological measurement-
based quantum computation (MBQC) scheme via color-code-based clus-
ter states (CCCSs). We have shown that our scheme is comparable with or
even better than the conventional scheme via Raussendorf’s 3D cluster states

(RTCSs) [134},135} 1311, 136]], in the following three aspects:

1. Universality: Initializations and measurements of logical qubits and
all the elementary logic gates constituting a universal set of gates (the
CNOT, Hadamard, phase, and T gates) can be implemented via appro-
priate placement of defects and Y-planes. We described each one of

them explicitly in Sec.[3.2]

2. Fault-tolerance: We suggested the error correction scheme for each

area of qubits in Sec. [3.3] We further verified in Sec. [3.4]that the error
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thresholds for errors in the vacuum have a similar order of magnitude

with the values for RTCSs.

3. Hardware-efficiency: Contrary to the case of using RT'CSs, the Hadamard
and phase gates are implemented natively with CCCSs, thanks to the
nature of the self-duality of the 2D color codes. One way to implement
these gates using RTCSs is to use state distillation, but it typically
consumes many ancillary logical qubits [29, 31], 20]. In Sec. 3.5.2]
we verified quantitatively that the phase gate in CCCS computation
demands significantly fewer physical qubits (at least about 26 times)
than that the gate in RTCS computation implemented by state distil-
lation. Other known methods to implement these gates with RTCSs
require lattice dislocations [2, 44]] to the best of our knowledge. Al-
though they are more resource-efficient than using distillation, the
regularity of the lattices should be sacrificed, which may be unde-
sirable from a practical point of view. Our protocol with CCCSs does

not have such a problem as well; it always uses strictly regular lattices.

We particularly emphasize the last aspect on hardware-efficiency as a
definite improvement from the previous schemes, which makes our scheme
a more easy-to-implement alternative to those.

Our work has several limitations. First, logical T gates still need costly
state distillation. Some methods to significantly reduce the cost of distilla-
tion have been proposed, such as using logical qubits with low code dis-
tances as ancilla qubits [56] or exploiting redundant ancilla encoding and

flag qubits [57]. Moreover, 3D gauge color codes [58, 59, 160, (61, 162, 163}
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64, 165] enables non-Clifford gates without distillation. It may be possible
to translate these protocols to be applicable to our MBQC scheme. We also
assume the perfect preparation of cluster states, which is unrealistic. It is un-
clear how much the fault-tolerance gets weaker if we consider qubits losses
or failures of CZ gates, which is particularly related to photon losses in op-
tical systems. It will be interesting future works to further investigate and

resolve these problems.

3.7 Appendix

3.7.1 Methods for analyzing resource overheads of plac-

ing logical qubits

We here describe the method to calculate the resource overheads for
placing logical qubits, which gives the results in Sec. To make the
code distance equal to d, we should find arrangements of defects or patches
where all the possible nontrivial undetectable error chains contain d or more
qubits.

We first define the coordinate systems for the analysis. The x and y
axes are presented in Fig. [I{b) for RTCSs and Fig. [3 for the two types of
CCCSs. The unit length is the length of a side of a unit cell for RTCSs, the
distance between adjacent prAQ and pgAQ for 4-8-8 CCCSs, and half the
distance between two adjacent AQs with the same color for 6-6-6 CCCSs.
A unit area contains three qubits and six CZ gates for RTCSs, three qubits
and eight Cz gates for 4-8-8 CCCSs, and 3+/3/2 qubits and 41/3 Cz gates

for 6-6-6 CCCSs. Note that, when counting CZ gates, we regard that each
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CZ gate connecting different layers belongs to these layers divided in half.

The analysis for the patch-based RTCS scheme is straightforward. Each
patch is a square with side length d and the gaps between patches are suffi-
cient to be O(1). We therefore get n/k ~ 3d* and Ncz /k ~ 6d>.

For the other three schemes, we consider hexagonal arrangements of
parallel timelike primal defects, where every error chain connecting differ-
ent defects or surrounding a defect has d or more qubits. We need to find the
optimal distances between defects minimizing n/k.

The optimal arrangement for the defect-based RTCS scheme is shown
in Fig. [35(a) where each black square indicates a primal defect and the pur-
ple area indicates a region occupied by a logical qubit. It is straightforward
to obtain the distances, considering that the shortest error chain connecting
(0,0) and (x,y) contains |x|+|y|+ O(1) qubits. The area occupied by a log-
ical qubit is thus about %dz ~ 2.1942, and since a unit area contains three
qubits and six Cz gates, we get n/k ~ 6.56d> and Ncz /k ~ 13.1d°.

It is more tricky to obtain the optimal arrangements in 4-8-8 or 6-6-
6 CCCSs. Figure [35[b) shows the concerned hexagonal arrangement with
five parameters (a.,7,,d',€) considering the symmetry, where each colored
square indicates a defect of the color.

We first consider 4-8-8 CCCSs. The shortest pc-EC connecting (0,0)

and (x,y) contains

2max(x,y)+O(1) ifc=r,
lc(xay) = (3.18)
|x|+ [y|+ O(1) otherwise.
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Figure 35: Arrangement of timelike primal defects for calculating the
resource overheads of MBQC via (a) RTCSs or (b) CCCSs. Their pro-
jections on a plane perpendicular to the time axis are schematized. Each
black, red, green, or blue square is a defect, where its color means the
color of the defect in CCCS computation. Each purple rectangle surrounded
by dashed lines is an area occupied by a logical qubit. Dotted lines indi-
cate all the possible types of error chains which may be the shortest ones,
which are used for obtaining the values of the marked spaces minimiz-
ing the area of a logical qubit. Note that, in (b), counterparts of some er-
ror chains regarding the exchange of blue and green defects are omitted,
since the two lattices (4-8-8 and 6-6-6) which we concern have symmetry
on those defects. The optimal spaces for RTCSs are directly presented in
(a). For CCCSs, they are (o.,7,8,8,€) = (3d,0,1d,3d,3d) for 4-8-8 and
(0,y,0,0',€) ~ (0.464d,0.268d,0.634d,0.634d,0.269d) for 6-6-6. Here,
the unit length is a side of a unit cell in RTCSs [see Fig. Ekb)], the distance
between adjacent prAQ and pgAQ in 4-8-8 CCCSs (see Fig.[5), and half the
distance between two adjacent prAQs in 6-6-6 CCCSs [see Fig.[3(b)].
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qubits. Also, the shortest defect error chain in a pc-D connecting (0,0) and
(x,y) contains Ic(x,y)/2 qubits if the error chain is in a spacelike surface
of the defect. If otherwise, it contains c(x,y) qubits. (See Fig. 22]) The
width o of each defect can be derived from the shortest defect error chain
surrounding it: ot = %d . (It may be more optimal for defects to have different
widths for different colors. We however constrain the widths to be equal for
ease of calculation.) The following eight inequalities are derived from the

eight possible types (A)—(H) of the error chain in Fig. 35(b):

(A) 2(0+98+a)>d,
B) 8+8+a>d,
(C) 2max % +¢,min(8,8)] > d,
(D) %¥+e+min(5,8) >d,
(3.19)
(E) vy+2min($,d) >d,
(F) min(8,8)+¢e+ 3 max (y—a,0) >d,

(G) a+2e>d,

H) o+y+e=>d.

Note that, to get the inequalities corresponding to (E)—(H), the points at
which three error chains meet should be placed carefully. It is straightfor-
ward to see that placing each point just next to the red defect minimizes the

length of the error chain. The area S occupied by a logical qubit is written
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as

S~ <;a+§+e> (8+8 +20). (3.20)

Minimizing S subject to the above inequalities, we get S ~ 2.5d°> where
the corresponding spaces are (a.,7, 5,8, €) = (%,O, %, %, %)d We thus obtain
n/k ~7.5d* and Ncz /k ~ 20d>.

The optimal arrangement for 6-6-6 CCCSs also can be derived simi-

larly. The shortest error chain connecting (0,0) and (x,y) for x,y > 0 con-

tains

I(x,y) := max <X+ \%y, \%y> +0(1) (3.21)

qubits. The length of the corresponding shortest defect error chain is half of
it if the error chain is in a timelike surface and the same as it if otherwise. We

thus get o0 = (2\/§ — 3)d ~ 0.464d, considering an error chain surrounding
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a defect. The following inequalities are derived for each type of error chain:

;

(A), (B) %(a+6+6’) >d,
(©), (D) max [ +e+ %min (8,8),
%min(ﬁ,ﬁ’) >d,
(E) v+ Fmin(3,8) > d, (3.22)
¥ e+ %min(ﬁ,ﬁ’) >d,
(G) o+2e>d,
(H) o+e+y>d.

Minimizing S in Eq. (3.20) subject to the inequalities, we get S ~ 2.41d>
where the corresponding spaces are (Y, 8,8, €) ~ (0.464,0.268,0.634,0.634,0.269)d.
We thus obtain n/k =~ 6.27d* and Ncz /k ~ 16.7d°.

3.7.2 Methods for analyzing resource overheads of logic

gates in RTCS computation

CNOT gate: A logical CNOT gate in patch-based RTCS computation [43,
2|| can be done with lattice surgery between logical qubits in diagonally-
adjacent patches, which requires an ancillary logical qubit adjacent to both
of them. Therefore, there should be spaces for such ancillary qubits to be
defined. The checkerboard architecture [66] visualized in Fig. [36[a) allows
a CNOT gate between an arbitrary pair of qubits (orange circles). The gate
can be directly done if the qubits are diagonally-adjacent; otherwise, one

of them should be moved appropriately while setting aside qubits in the
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Figure 36: Checkerboard architecture in patch-based RTCS computa-
tion. Blue (grey) squares are patches for logical data (ancilla) qubits. (a)
A CNOT gate between two data qubits (orange circles) is done with two
“merge & split” operations [2]] (black lines) between data qubits and the an-
cilla qubit A. The ancilla qubit is prepared just before the operation. (b) A
CNOT gate between non-adjacent qubits is done by moving a logical qubit
appropriately while setting aside qubits in the path.

path for a while as shown in Fig. b). Therefore, we get n/k ~ 6d° and
Ncz/k ~ 12d?, which are twice the values obtained without considering the
CNOT gate.

A CNOT gate between two adjacent qubits requires 4d layers (2d for
each “merge & split” operation) to keep the code distance at d since a time-
like error chain contains one qubit per two layers. Therefore, at least 48d°
physical qubits are required for a CNOT gate. If the two qubits are not adja-
cent, 4d layers are additionally needed to set aside qubits in the path and put
them back. Note that, in the original scheme with the surface codes [66]],
multiple SWAP gates are necessary to move logical qubits, which is very
time-consuming; it is one of the advantages of MBQC that logical qubits
can be moved quite flexibly.

A logical CNOT gate in defect-based RTCS computation is done by de-
fect braiding [58]]; the control logical qubit is first switched to a dual qubit,
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one of the defects constituting it proceeds to surround a defect of the target
qubit (called a braiding operation), and finally, the control qubit returns
to a primal qubit. Figure [37(a) shows examples of such operations. New
types of nontrivial undetectable error chains arise from the coexistence of
primal and dual defects as shown in Fig. [37(a): the error chains ending at
primal defects and surrounding dual defects (or vice versa). These give re-
strictions that primal and dual defects must be more than a certain distance
apart (d /8 or d /4). Fortunately, the optimal arrangement in Fig. a) is spa-
cious enough to satisfy this condition. Thus, the resource overheads remain

the same: n/k ~ 6.56d> and Ncz /k ~ 13.1d>.
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The minimal number of layers required for a CNOT gate is %d, which
can be obtained by considering possible error chains shown in Fig. [37(b).
Hence, the number of physical qubits for a CNOT gate is ~ 59.1d>.

We note two things regarding the CNOT gate in defect-based RTCS
computation. First, a CNOT gate between any pair of non-adjacent logical
qubits is also possible without modifying the arrangement. The entire pro-
cess discussed above including the number of required layers remains the
same, except that one of the dual defects should proceed further spacelikely.
Second, multiple CNOT gates with the same control qubit can be done si-
multaneously by braiding a defect of the control qubit in a way that its path
surrounds one of the defects of every target qubit. However, additional lay-
ers may be needed during the braiding operation, depending on the shape of

the path. These two statements also hold for CCCS computation.

Phase gate with state distillation: We consider using state distillation for
the logical phase gate. As shown in Fig. [33](a), a phase gate is implemented
with an ancilla logical state |Y7) := (|02) +i|1.))/v/2. A noisy |¥7) is first
prepared by state injection and then distilled with the circuit in Fig. [33]b).
If the initial |Y7) has an X;, or Z;, error with a probability of €, the distilled
state has an error rate of 7€ [31} [1]. The distillation circuit can be repeated
multiple times to achieve a low enough error rate.

To obtain the resource overheads, we count physical qubits used for
CNOT gates. We assume that multiple CNOT gates with the same control
qubit can be implemented simultaneously, although it is uncertain for patch-

based RTCS computation to the best of our knowledge. (It is known that
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such processes are possible if the rotated surface codes are used [67]].)

Using the circuit in Fig. 33(b), we can find out a lower bound of re-
quired layers for each logical qubit. For example, denoting the number of
layers used for a CNOT gate by T, the second one requires 27 layers, Tr for
each of the groups of CNOT gates with the same control qubit in the distilla-
tion circuit and in the Sy, circuit of Fig. b). The fourth one requires 57x
layers, 47r for the CNOT gates in the distillation and Sy, circuits and 7g for
waiting until the fourth group of single-control CNOT gates ends. Addition-
ally, we need seven logical qubits for noisy |Y;) states, each of which occu-
pies Tr layers. The number of total physical qubits required for a distillation
circuit is then lower-bounded by (24+2+4+2+5+4+4+6+1+7)rTr =
33rrTR, where rr is the number of physical qubits per logical qubit in a
layer.

If a |Y7) state distilled once is used for a phase gate, total 35rrTr (=
84043 for patch-based and ~ 1030d> for defect-based) physical qubits are
required since the Sy, circuit in Fig.[33|a) additionally occupies 2rg Tr qubits.
If a |¥,) state distilled twice is used, (33 X 7+ 33 +2)rgTr = 266rrTR (=

6380d° for patch-based and ~ 7850d> for defect-based) qubits are required.

3.7.3 Methods for analyzing resource overheads of logic

gates in CCCS computation

For CCCS computation, we first investigate the optimal arrangement
of defects to implement each nontrivial logic gate: the CNOT, Hadamard,

or phase gate. Using these results, we obtain an arrangement allowing the
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implementation of the universal set of gates. Lastly, we calculate the number

of physical qubits required for each gate.

CNOT gate: The analysis for the CNOT gate in CCCS computation is anal-
ogous to that in defect-based RTCS computation. Similarly, there exist un-
detectable nontrivial error chains involved in both primal and dual defects,
which may constrain the minimal distances between them. However, if the
width o of each defect is equal to or larger than that obtained in Sec.
(a= %d for the 4-8-8 lattice and o = 0.464d for the 6-6-6 lattice), such er-
ror chains are always longer than the code distance d. We, therefore, do not
need to consider spacelike gaps between primal and dual defects unless they
overlap. (If they overlap, defect PCs are no longer compatible.)

Figure 38 shows some examples of CNOT gates in CCCS computation.
For a CNOT gate, the control logical qubit is first switched to a dual logical
qubit (squares with dashed borders) through a primality-switching gate. It
is important to make the spacelike part of one of the dual defects penetrate
a primal CS of a different color (see Fig.[16), as shown by purple circles in
Fig.[38] Additionally, the dual defects should be sufficiently far away from
each other to keep the code distance. As long as these conditions meet, the
dual defects can be placed quite freely. After the primality-switching gate,
the dg-D or db-D circles around the pr-D of the target logical qubit. In

order for these operations to be possible, we need three simple conditions in

addition to Eq. (3.19) or (3.22):



The previous result for the 4-8-8 lattice satisfies these conditions: (a,y,8,8’,€) =
(3,0,3,1,1)d, n/k ~ 7.5d%, and Ncz/k ~ 20d>. However, for the 6-6-6
lattice, the parameters should be modified: o« =y =8 = & = € ~ 0.464d,

n/k = 6.72d?, and Ncz /k =~ 17.9d>.
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We now count the required number of layers for a CNOT gate. Remark
that a timelike error chain contains one qubit per two layers. The calcula-
tion is analogous to that for RTCS computation in Fig. [37b); denoting the
depth (i.e., thickness along the time axis) of each spacelike defect by fgepm
and the gap between each pair of adjacent primal and dual defects along
the time axis by gy, (Which are in the units of layers), the total number of
required layers is Tenor = 4ldepth + 2tgap + 2d. For both types of lattices, the

conditions

1
Etdepth +200 > d?

1
5 (tgap + tdepth) +a>d

are sufficient for error chains surrounding each defect (either surrounding
it completely or ending at other defects of different primality) to be longer
than d. Therefore, we get tcnor = 4d for the 4-8-8 lattice and oot ~ 4.43d

for the 6-6-6 lattice.

Hadamard gate: Remark that every error chain connecting the defects
and the boundaries of the Y-planes for the gate should be longer than the
code distance d, as discussed in Sec.[3.3.3] We assume that the Y-planes are
square in shape as visualized in Fig. [39| where possible error chains are also

presented. For the 4-8-8 lattice, we get

o>

[SIISW

, >34,
(3.24)

e—t(a+y)>2d, y+28>d,
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Figure 39: Arrangement of defects for a logical Hadamard gate. The Y-
plane (orange square) covering the logical qubit should be wide enough so
that error chains (colored dotted lines) connecting its boundary and the de-
fects are longer than the code distance d.

and for the 6-6-6 lattice, we get

o> (2v/3-3)d, 2§ >2d,
( )4 7 (3.25)

e—j(a+y)>2d, y+58>d.

Minimizing S subject to the above conditions, for the 4-8-8 lattice, we get
n/k = 24.75d* and Nz /k = 66d> for (.,7,8,8,€) = (3,0,%,3,7)d. Sim-
ilarly, for the 6-6-6 lattice, we get n/k ~ 26.8d% and N¢z Jk ~ 71.5d? for
(o,y,0,0',€) =~ (0.464,0,0.866,1.73,2.23)d.

Lastly, a logical Hadamard gate requires only three layers: the (1 — 1)-

, ty-, and (ty + 1)-layer in Fig. Therefore, although the gate demands
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Figure 40: Arrangement of defects for a logical phase gate in CCCS com-
putation. Defects of width oy are extended spacelikely to surround the Y-
plane. Three types of error chains are considered: Type-1 is for those ending
at the three defects in the concerning logical qubit and Type-2 (Type-3) is
for those ending at two defects of different colors in the same logical qubit
(different logical qubits).

relatively many physical qubits per layer, the total number of required qubits

is rather small.

Phase gate: We lastly consider the logical phase gate. Remark that de-
fects are extended spacelikely to surround the Y-plane for a phase gate (see
Secs.[3.2.3 and [3:3.3)). We assume that these extensions are done as shown
in Fig. where possible nontrivial undetectable error chains are also vi-
sualized. We classify the error chains into Type-1, -2, and -3: Type-1 is for

those ending at the three defects in the concerning logical qubit, and Type-2
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(Type-3) is for those ending at two defects of different colors in the same
logical qubit (different logical qubits). Note that Type-2 and Type-3 error
chains are possible since they can end at the spacelike surface of a defect
regardless of their colors (see Sec.[3.3.2)). Such error chains may cause dif-
ficulties because some of them have lengths that only depend on the width
of each timelike defect as shown in Fig. 40| but the previous values of the
width o (0.5d for the 4-8-8 lattice and 0.464d for the 6-6-6 lattice) may be
not enough for them to be longer than d. Nevertheless, the width o, of each
spacelike defect does not need to be a; we can set it to O(1) and make it
deep enough along the time axis. Another problem is that it is not straight-
forward to analytically find conditions regarding Type-1 error chains. We
thus numerically estimate the condition on ¥ and  regarding them. In de-
tail, we randomly sample Type 1 error chains by choosing their end and
joint points for a sufficiently large number (> 10000) of times, then check
whether there are error chains shorter than d.

For the 4-8-8 lattice, we get the following conditions in addition to
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Eq. (3.19):

Type-1 (numerical): vz 0.4d,
0.37+8 2 0.45d
Type-2: 200>d,
Yot lysd, (3.26)

oa+d>d,

The conditions for Type-1 error chains are valid when a0 = %d. By minimiz-
ing S in Eq. (3.20) subject to the above conditions, we get n/k = 18.75d>
and Ncz/k = 50d? for (a,v,8,8',€) = (3,3,3.1,3)d.

For the 6-6-6 lattice, we get the conditions:

Type-1 (numerical): vz 0.5, 82 0.4
Type-2: (1+%>0(2d,
3o, 1
50+ 5Y>d,
2 (3.27)
2 (a+8) > d,
Type-3: %5/ >d,
e—S(a+y) >d.

The conditions on Type-1 error chains are valid when o= (2v/3 —3)d. By
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minimizing S, we get n/k ~ 14.5d* and Nz /k ~ 38.6d" for (a,7,8,8,€) ~
(0.464,0.608,0.402,0.866,1.537)d.

Lastly, the number of layers Tphase required for a phase gate is deter-
mined by the widths of the spacelike defects surrounding the Y-plane. Since
0p = O(1), the depth of each spacelike defect should be at least d layers.

Therefore, Tphase = d holds for both types of lattices.

Optimal arrangement for general logic gates: Until now, we have in-
vestigated the arrangements of defects to implement each of the logical
CNOT, phase, and Hadamard gates. We next find the optimal arrangements
where all the logic gates are applicable. For the 4-8-8 lattice, consider-

ing the conditions in Egs. (3.19), (3.23), (3.26), and (3.24), we get n/k =

31.5d* and Ncz/k = 84d* for (a,v,8,8,€) = (3,3,3,3,3)d. For the 6-

6-6 lattice, considering the conditions in Egs. (3.21)), (3.23), and (3.27),
and (3.25)), we get n/k ~ 28.7d* and Ncz/k ~ 76.5d* for (a,7,5,8,¢) =

(0.464,0.608,0.464, 1.73,2.54)d.
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Chapter 4

Linear-optical measurement-based
quantum computing with

parity-encoded multiphoton qubits

The contents of this chapter are largely based on the following manuscript:
Seok-Hyung Lee, Srikrishna Omkar, Yong Siah Teo, and Hyunseok Jeong,
“Parity-encoding-based quantum computing with Bayesian error tracking,”
arXiv:2207.06805 [quant-ph] (2022) [38]].

Photonic qubits are a promising candidate for quantum computing with
advantages such as long decoherence time even at room temperature. Among
different encoding schemes, those of dual-rail allow one to detect photon
losses by counting the total photon number and manipulate and measure sin-
gle qubits via linear optical elements and photodetectors [68]. Measurement-
based quantum computing (MBQC) is a representative way to achieve uni-
versal quantum computing in linear optical systems.

The generation of cluster states, which is a significant challenge for
realizing fault-tolerant optical MBQC, can be done by entangling multiple
small resource states with fusions of types I and/or II [42]]. Both types of
fusions are nonideal in linear optics because of theoretical limitations and
environmental factors such as photon losses. Fusion success rates cannot ex-

ceed 50% without additional resources [69] for single-photon qubits, which
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is far too insufficient to implement MBQC [70]. There exist several types of

approaches to overcome this shortcoming such as the following examples:

1. Different types of encoding strategies with coherent states [71} [72]],
hybrid qubits [73, [74]], and multiphoton qubits [75} 13]] that signifi-

cantly improve error thresholds and resource overheads [3]].

2. Adding ancillary photons to boost the success rate of a type-II fu-
sion to 75% [/6, [777], which enables MBQC with the renormalization

method [78]].

3. Redundant structures added to resource states to replace a single fu-

sion by multiple fusion attempts [79, 80, [81]].

4. Use of squeezing for teleportation channels [82] or inline-processes

(83, 84].

Previous studies frequently treated fusion failures with bond discon-
nection [85, 186 [87]] or qubit removals [[70, (7873, 13]]. However, to accurately
evaluate the performance of computing protocols, the detrimental effects
of nonideal fusions affecting nearby qubits should be analyzed more rigor-
ously. In this chapter, we study how nonideal fusions corrupt stabilizers and
how errors arising from such corruption can be tracked during the genera-
tion of graph states. Using a Bayesian approach and the stabilizer formalism,
we can now assign error rates with strong posterior evidence from measure-
ment data on certain qubits in the final lattice, thereby enabling much more
realistic error simulations and adaptive decoding of syndromes.

We then propose a linear-optical fault-tolerant MBQC protocol termed
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a parity-encoding-based topological quantum computing (PTQC), which
employs a Raussendorf’s 3D cluster state (RTCS) constructed using the
parity encoding [88] and concatenated Bell-state measurement (CBSM)
[89]. We use the polarization of photons as the degree of freedom to en-
code quantum information and denote the horizontally (vertically) polar-
ized single-photon state by |H) (|V)). The protocol requires on-off or single-
photon resolving detectors, optical switches, delay lines, and three-photon
Greenberger-Horne-Zeilinger (GHZ-3) states that can be generated with lin-
ear optics. Here, a single-photon resolving detector discriminates between
zero, one, and more than one photon entering the detector. We analyze the
loss-tolerance of the protocol while exhaustively tracking the detrimental
effects of nonideal fusions. The resource overhead in terms of the number
of required GHZ-3 states is also investigated. To minimize it, we introduce
a graph-theoretical method for optimizing the process of constructing re-
source states, which is generalizable for other MBQC schemes. By compar-
ing PTQC with three other known approaches using single-photon qubits
with fusions assisted by ancillary photons, using simple repetition codes,
and using redundant tree graphs, we show that our protocol is advantageous
over these protocols in terms of fault-tolerance, resource overheads, or fea-
sibility of basic elements.

This chapter is structured as follows. In Sec. we describe the type-
II fusion process, introduce a Bayesian methodology for tracking errors
caused by nonideal fusions, and present a method to construct an RTCS
through fusions. In Sec. we propose our new PTQC protocol and an-

alyze its performance. In Sec. f.3] we depict the modified concatenated
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Bell-state measurement scheme used for the PTQC protocol. In Sec. we
compare the PTQC protocol with three other known approaches and show

in what aspects PTQC is advantageous over them. We finish this chapter

with final remarks in Sec.

4.1 Constructing Raussendorf’s 3D cluster states

through fusions

4.1.1 Type-1I fusion

We denote the four Bell states by

[0%) = 10)[0) £[1) 1),

[w®) :=10) 1) £ 1) |0)

(normalization coefficients are omitted) and call “£” its sign and “¢” or “y”
its letter. An ideal Bell-state measurement (BSM) entails the measurements
of X ® X and Z ® Z on two qubits, whose outcomes are addressed as its sign
and letter outcomes, respectively.

Since the direct implementation of a controlled-Z gate for photonic
qubits demands multi-photon interaction, linear optical MBQC typically
takes an approach to construct a graph state by merging multiple small re-
source graph states via fusion operations [42, (90, [79] [80, [85) (81} (86 [78,
87, [73} 13]. Among the two types of fusions [42], we only consider type
II since type I may convert photon losses into unheralded errors [81]. A

type-II fusion is done by measuring X ® Z and Z ® X on two qubits. In prac-
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Figure 41: Example of a type-II fusion. A type-II fusion is done by mea-
suring ZopXy and XoZy on the two graph states. In (a), two stabilizers (green
and purple operators) become those of the resulting graph state up to sign
factors (the sign or letter outcome Mg, Mie Of the BSM) after the fusion.
The final state is the graph state shown in (b), where the presented Pauli-Z
operators are applied.

tice, it is realized by applying the Hadamard gate on one of the qubits and
then performing a BSM on them. For two qubits (vi,v;), if {vi} UN(v;)
and {v2} UN(vy) are disjoint, the effect of a fusion on the qubits is to con-
nect (disconnect) every possible pair of disconnected (connected) qubits,
one from N(v;) and the other from N(v;), up to several Pauli-Z operators
determined by the BSM outcome. These Pauli-Z operators are compensated
by updating the Pauli frame classically. This effect can be checked by
tracking stabilizers, as shown in the example of Fig. d1{a). Here, the stabi-
lizer X1 ZoXyZ1Z> (colored in green) before the fusion is transformed into
MsignX1Z11Zy after the fusion, where mjgn € {31} is the sign outcome of the

BSM if the Hadamard gate is applied on qubit 0. The other two stabilizers
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Z1XoZy Xy (colored in purple) and Z; XoZy Xy that commute with the fusion
can be transformed in similar ways. Consequently, the marginal state on the
unmeasured qubits is equal to the merged graph state up to several Pauli-Z

operators, as presented in Fig. 4I[b).

4.1.2 Bayesian error tracking for nonideal fusions

We consider errors of qubits in the “vacuum” measured in the X-basis,
which occupies most of the area in the RTCS [34]; thus, X-errors do not
affect the results. Henceforth, every error mentioned is a Z-error.

We first verify that the marginal state of the qubits participating in a

fusion is maximally mixed. More strictly, we prove the proposition:

Proposition 4.1 (Maximally mixed marginal states in a cluster state).
For a cluster state |Wg),, with a graph G = (V,E) and given two vertices
a,b €V, if {a}UN(a) and {b} UN(D) are disjoint and neither N(a) nor
N(b) is empty where N(v) for a vertex v €V is the set of vertices adjacent

to v, the marginal state Try\ (4 py |GXGly =: Pap is maximally mixed.

Proof.. Let S denote the stabilizer group of the zero-dimensional Hilbert
space {|G)y }. First, any stabilizer g € S can be written as the product of
stabilizer generators: g = HVGVO gv where Vo CV and g, :== X, [[,c NOZ
If Vp contains a vertex ¢ # a,b, S must contain X, or Y, since no stabilizer
generators besides g. contain X,. If otherwise, V; is one of 0, {a}, {b}, and
{a,b}. Except when V; is empty (namely, g is identity), there exists a ver-
tex ¢ # a,b such that g contains Z, since N(a) and N(b) are not empty,

b¢ N(a),a ¢ N(b),and N(a) # N(b). Therefore, every single- or two-qubit
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Figure 42: BSM scheme for single-photon polarization qubits. It uses three
polarizing Beam splitters (PBSs), 90° and 45° wave plates, and four (A-D)
photodetectors (single-photon resolving or on-off detectors). A PBS trans-
mits (reflects) photons polarized horizontally (vertically). The scheme dis-
tinguishes [y®): |y™) if detectors (A, C) or (B, D) detect one photon respec-
tively and [y~ ) if detectors (A, D) or (B, C) detect one photon respectively.
If otherwise, it fails or detects a loss, which can be distinguished by the total
number of detected photons if single-photon resolving detectors are used.
Two distinguishable Bell states can be chosen by putting or removing wave
plates appropriately before the first PBS.

Pauli operator on a and b that is not identity cannot be a stabilizer, thus it an-
ticommutes with at least one stabilizer. (If such an operator P,P, commutes
with all stabilizers, P,P,|W¢)y is also stabilized by S, which means that
P.Py |Ws)y = [Wg)y since S stabilizes the zero-dimensional Hilbert space.)
Consequently, Tr(P,Pypar) = (We| PuPs |We) = O for every single- or two-
qubit Pauli operator P,P, that is not identity. The state p, satisfying this

condition is unique and maximally mixed. O

We now introduce the methodology to track the errors caused by non-
ideal fusions. Let us revisit the example in Fig. 1] supposing that the qubits

are single-photon polarization ones and there are no photon losses. Then
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a BSM can discriminate between only two Bell states (say, |y*)) among
the four without additional resources [92]; see Fig. @] for the scheme. The
intact final state |Cy) is obtained only when the BSM succeeds. When the
BSM fails (which is heralded), myey is determined while my;g, is left com-
pletely ambiguous. In other words, the posterior probability that the in-
put state is [¢*) for the obtained photodetector outcomes is equal for both
signs (%), assuming that the four Bell states have the same prior probabil-
ity. This assumption can be justified by Proposition .1} Therefore, we fix
the value of mye While randomly assigning that of myie,. Then, the opera-
tor msignX1Z1'Zy, which is originally a stabilizer of |C), gives £1 randomly
when it is measured after the failed BSM. Whereas, the other two stabilizers
menZ1 X1 and myewZ1 Xy are left undamaged. The key point is that this situa-
tion is equivalent to a 50% chance of an erroneous qubit 1 in |Cf) in terms of
stabilizer statistics. In other words, both situations give the same statistics if
the stabilizers of |Cy) are measured; thus, every process in MBQC described
with the stabilizer formalism works in the same way.

Generally, a nonideal BSM gives one of the possible outcomes and the
posterior probability of each Bell state for the outcome can be calculated
with the Bayesian theorem, assuming the equal prior probabilities of the
Bell states. Accordingly, the Bell state with the highest posterior probability
is selected as the result of the BSM, and the probability ggign (gier) that the
selected sign (letter) is wrong can be obtained as well. These error probabil-
ities are “propagated” into nearby qubits in a way that the stabilizer statistics
are preserved. For example, if the fusion in Fig.[d1]is nonideal in such a way,

it is equivalent to qubit 1 having an error with probability gsien and qubits 1’
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and 2’ having correlated errors with probability gie. We term a qubit with a
nonzero error rate deficient.

Additionally, if a qubit participating in a fusion is erroneous, this error
is propagated to the qubits on the opposite side. For example, an erroneous
qubit 0 in Fig. A T]induces an error in the XoZy measurement, which is equiv-
alent to erroneous qubits 1’ and 2’

The above error tracking methodology can be utilized for accurate and
effective error simulations. The method can precisely locate qubits affected
by unsuccessful fusions, which is closer to reality than simple bond dis-
connection or qubit removal. Since unsuccessful fusions are now regarded
as Pauli error sources, we no longer need lattice deformation and the con-
struction of supercheck operators [50,70]. Instead, the error probabilities on
individual qubits are employed for decoding syndromes in an adaptive man-
ner (with decoders such as the weighted minimum-weight perfect matching
one), which may be particularly effective if the probabilities are between 0
and 1/2 since regarding such errors as just removal of qubits is a loss of

information.

4.1.3 Building a lattice

An RTCS can be built with two types of linear three-qubit graph states
called central and side microclusters [85. [78]]. The process is composed
of two steps (see Fig. d3): In step 1, a central microcluster and two side
microclusters are merged by two fusions to form a five-qubit graph state
named a star cluster composed of one central qubit and four side qubits.

In step 2, the side qubits of star clusters are fused to form an RTCS. Even-
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Figure 43: Lattice building process with microclusters. The orange boxes
indicate fusions. In step 1, side and central microclusters are fused to form
a star cluster. The locations of the Hadamard gates are marked as “C” (“S”)
for the HIC (HIS) configuration. In step 2, multiple star clusters are fused
to form an RTCS. The macroscopic picture of step 2 in a unit cell of the
lattice is depicted in the lower right. The locations of the Hadamard gates
are marked as orange dots. The error probabilities of qubits assigned by
one fusion in each step for the HIC configuration are written in red, where
Gsign (qlewr) 1s the sign (letter) error probability of the BSM. Errors in the
side qubits remaining after step 1 (purple dashed squares) are propagated to
central qubits during step 2 (purple dashed arrows).

tually, the lattice includes only the central qubits, which are measured in
appropriate bases for MBQC. For step 2, we consider two options: (i) Star
clusters with successful step-1 fusions may be post-selected, or (ii) all gen-
erated star clusters are used regardless of the fusion results. The locations of
the Hadamard gates during fusions (called H-configuration) may be chosen
arbitrarily. Here, we define two specific H-configurations: Hadamard-in-

center (HIC) and Hadamard-in-side (HIS). In the HIC (HIS) configura-
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tion, the Hadamard gates in step 1 are applied on qubits in the central (side)
microclusters, as shown in Fig. B3] Whereas the Hadamard gates in step 2
are arranged in the same pattern for both configurations.

Nonideal fusions during lattice building render some central qubits in
the final lattice deficient, as shown in Fig. 43| when the HIC configuration is
used. When the HIS configuration is used, the positions of ggjgn and gjeq in
the figure are swapped. Note that errors in the side qubits are propagated to
the nearest central qubits after step 2. Correlation between the sign and letter
errors of a fusion, if any, can be neglected if the primal and dual lattices are
considered separately since these errors respectively affect primal and dual

[34]] qubits (or vice versa).

4.2 Parity-encoding-based topological quantum

computing

We introduce the new linear-optical parity-encoding-based topologi-
cal quantum computing (PTQC) protocol, where fusion success rates are
boosted by using multiphoton qubits for all qubits that participate in fusions
and single-photon polarization encoding is used for central qubits. The par-
ity encoding [88] is employed for the multiphoton qubits, which are fused
by concatenated Bell-state measurement (CBSM) [|89]. On-off or single-
photon resolving detectors are used as photodetectors, and GHZ-3 states,

which can be generated linear-optically [93]], are regarded as basic resource
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states. The (n,m) parity encoding defines a basis as
A om)\ ™"
0 = [+) " = |0 @1
where
£ 1= (1) + V)" £ (1) = [v) " (42)

The Hilbert space has a hierarchical structure composed of three levels:
the lattice, block, and physical levels with respective bases {|0.),|1.)},
{|=™)}, and {|n),|v)}. In the original CBSM scheme [89], a BSM of
a certain level is decomposed into multiple BSMs of one level below. Our
current CBSM scheme slightly differs from the original one in the follow-
ing two areas: (i) We consider two types of photodetectors: single-photon
resolving and on-off detectors. A physical-level BSM can discriminate be-
tween a photon loss and failure only if single-photon resolving detectors
are used. (ii) The letter outcome of a lattice-level BSM is obtained by a
weighted majority vote of block-level letter outcomes. See Sec. for the

details of the CBSM scheme and its error rates.

4.2.1 Noise model

We consider a noise model where each photon suffers an independent
loss with probability 1, which arises from imperfections throughout the pro-
tocol: GHZ-3 states (which are initial resource states), delay lines, optical

switches, and photodetectors. We assume that noise that cannot be modeled
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Figure 44: Structure and generation of post-H microclusters for PTQC. (a)
Schematic of central and side post-H microclusters used in PTQC for the
two H-configurations, HIC and HIS. The marks “H;” indicate the locations
of the lattice-level Hadamard gates. (b) Example of a process generating a
post-H microcluster from GHZ-3 states. Each GHZ-3 state is represented by
a triangle whose vertices indicate its three photons. An orange line connect-
ing two vertices and a mark “H’’ next to a vertex respectively mean a fusion
and Hadamard gate performed on the photon(s). The graph of the triangles
connected with the orange lines is called a merging graph.

H

with photon losses such as dark counts is negligible. Note that not only non-
ideal fusions but also photon losses in central qubits, which are detectable
by on-off detectors, may incur deficiency. If the measurement outcome of
a central qubit cannot be determined due to photon losses, we select the

outcome randomly and assign an error rate of 50% to the qubit.
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4.2.2 Generation of microclusters

For practical reasons, we consider generating post-H microclusters
(that is, the states obtained by applying several lattice-level Hadamard gates
on microclusters) directly from GHZ-3 states, instead of generating micro-
clusters first and then applying the lattice-level Hadamard gates for the fu-
sions. Figure 44[(a) depicts the central and side post-H microclusters for the
HIC and HIS configurations. A post-H microcluster can be generated up to
several physical-level Hadamard gates by performing physical-level BSMs
or fusions (referred to as merging operations) between multiple GHZ-3
states according to a predetermined merging graph, as shown in the ex-
ample of Fig. #4(b). Note that the merging graph may be not unique for a
post-H microcluster. However, each merging operation has a low success
rate of less than or equal to 50%, which may lead to extensive usage of
GHZ-3 states for generating a post-H microcluster successfully. Thus, the
generation process, which is determined by the merging graph and the or-
der of the merging operations, should be adjusted carefully to minimize the
resource overhead. To optimize the merging order, our protocol utilizes a
graph edge coloring algorithm, based on the idea that merging operations
for non-adjacent edges can be performed simultaneously.

We now address the generation of post-H microclusters and the opti-

mization problem in detail.

Physical-level graphs of post-H microclusters: We first present the physical-
level graphs of post-H microclusters for PTQC. A post-H microcluster,

which is composed of three lattice-level qubits or two of them and one
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Figure 45: Physical-level graphs of post-H microclusters for the HIC and
HIS configurations when the (n,m) parity encoding is used for PTQC. The
squares (circles) correspond to lattice-level (physical-level) qubits, among
which black ones indicate that the lattice-level (physical-level) Hadamard
gates are applied to the qubits on the graph state. A blue dashed box in-
dicates a group of recurrent subgraphs; that is, the structure in the box is
repeated as many times as indicated, and if there is an edge across the bor-
der of the box, it means that edges of the same pattern exist in each of the
repeated structures. A number inside a circle means a blue dashed box sur-
rounding only the circle with the indicated repetition number. If there is an
edge between two blue dashed boxes or circles containing numbers, the full
graph can be recovered just by expanding them one by one. See Fig. [46] for
examples.
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Figure 46: Examples of graph notations used in Fig. 3] (a) and (b) respec-
tively show examples of a blue dashed box and a number inside a circle,
which indicate groups of recurrent subgraphs. (¢) shows the full graph of
the side microcluster of the HIS configuration when n = m = 2.

photon (physical-level qubit), can be regarded as a graph state of photons
up to several physical-level Hadamard gates. The graph of this graph state,
called the physical-level graph of the post-H microcluster, is visualized
in Fig. 5] for each post-H microcluster; see Sec. for their derivation.
Here, the squares (circles) indicate lattice-level (physical-level) qubits. If a
square (circle) is filled with black, it means that the lattice-level (physical-
level) Hadamard gate is applied on the qubit after the involved edges are
connected. Recurrent subgraphs are abbreviated as blue dashed squares or
circles with numbers; see Fig. 46| for the detailed interpretation of these no-

tations.
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Generating post-H microclusters: We now depict the ways to generate a
specific post-H microcluster from GHZ-3 states. We first describe a straight-
forward method and then adjust or generalize it. The final method can be

summarized as follows:

1. Determine a merging graph G for the post-H microcluster that we
want to create by the algorithm presented below. Each edge of G is

labeled as either “internal” or “external.”
2. For each vertex v in G, Prepare a GHZ-3 state |GHZ3),.

3. For each edge e in G that connects v| and v, perform a BSM (fusion)
on two photons selected respectively from |GHZ3), and |GHZ;),, if
e is an internal (external) edge. The order of the operations does not

matter.

We define the GHZ-! state for an integer [ > 3 by the state |GHZ;) :=
IH)®' +|v)®!. Note that it is a state obtained from a graph state with a star
graph (where the number of vertices is /) by applying Hadamard gates on

all the leaves of the graph; namely,
\GHZ,) = Hy---H/Ch, ---C | +)7.

We refer to the first photon of the above expression as the root photon of
the state (which can be chosen arbitrarily) and the other photons as its leaf
photons.

If a BSM is performed on the root photon of a GHZ-/; state and a

leaf photon of a GHZ-I, state, the resulting state on the remaining photons
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Figure 47: Examples of the two types of merging operations on two GHZ
states: (a) a BSM on the root photon of one state and a leaf photon of the
other and (b) a fusion on two leaf photons.

is a GHZ-(I, + I, — 2) state; see Fig. a) for an example. Thus, an arbi-
trary GHZ state can be constructed by performing BSMs on multiple GHZ-3
states appropriately. On the other hand, if a fusion is performed on two leaf
photons selected respectively from GHZ-/; and GHZ-[, states, the resulting
state is no longer a GHZ state, but it is a graph state (up to some Hadamard
gates) with a graph containing a vertex with degree /; — 1, a vertex with
degree [, — 1, and multiple vertices with degree one; see Fig. {7(b) for an
example. (The degree d, of a vertex v means the number of edges connected
tov.)

Combining the above facts, a post-H microcluster (or an arbitrary graph
state) with the physical-level graph G can be generated from GHZ-3 states
up to physical-level Hadamard gates in the following way: For each vertex

v of G with a degree larger than one, prepare a state |GHZ 1), through
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Figure 48: Decomposition of a graph state done by separating recurrent
subgraphs that are connected with multiple vertices.

BSMs on GHZ-3 states. Then, for each edge (v, v2) of G, perform a fusion
on two photons selected respectively from ‘GHZdVl 41 >v1 and ‘GHZdVﬁ 1 >v2
We refer to each BSM or fusion during this process as a merging operation.
However, the above method still has room for improvement. The physical-
level graphs in Fig. [45|can be decomposed into multiple components that are
combined by fusions through the process shown in Fig.[48] Here, each recur-
rent subgraph connected with multiple vertices is separated and connected
with only one vertex. The decomposition of various post-H microclusters is
explicitly presented in Figs. #9)and [50] for the HIC and HIS configurations,
respectively. To generate a post-H microcluster, we prepare the individual

components first by the aforementioned method, then merge them through

fusions. This process may greatly reduce the number of required merging
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Figure 49: Decomposition of post-H microclusters for the HIC configura-
tion. Different types of post-H microclusters are decomposed by the method
shown in Fig. Only the side microclusters are considered since the cen-
tral microclusters do not have connected pairs of recurrent subgraphs, thus
their physical-level graphs are single components by themselves.

operations since the number of edges decreases as shown in Fig. 48]
Furthermore, we can generalize the method using the fact that every
merging operation commutes with each other. That is, even if all the fusions
and BSMs in the above process are performed in an arbitrary order, the final
state does not vary (up to the change of the Pauli frame). To systematically
address this feature, we define a merging graph of a post-H microcluster
or one of its components by a graph in which the vertices correspond to
initial GHZ-3 states and the edges indicate the merging operations between
them required to generate the state. Each edge of a merging graph is either

internal or external that corresponds to BSMs or fusions, respectively.
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Figure 50: Decomposition of post-H microclusters for the HIS configura-
tion. Different types of post-H microclusters are decomposed by the method
shown in Fig. @8] Post-H microclusters that are not presented here do not
have connected pairs of recurrent subgraphs, thus their physical-level graphs
are single components by themselves.
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A merging graph G of a component can be constructed by the fol-
lowing algorithm starting from its physical-level graph (see Fig. 51| for two

examples):

1. Initialize the graph Gmy = (V,E) by the graph G = (Vp, Ep) of the

component; that is, V < Vp, E < Ey.

2. Let us define Vgeg>3 := {v € V|d, > 3}. This set is fixed and not up-
dated during the entire process. For each vertex v € Viyeg>3, perform

the follows:

(a) Remove v from Gy, and add d, — 1 new vertices. Let Ve =

(vr(llezv, ,véﬁ‘{{”) denote the series of the new vertices and
Vhgh = (vr(l}g)h,--- ,vffé‘f?) denote the series of the vertices that

were adjacent to v before removing it. The order of the vertices

in Vpen can be arbitrarily chosen.

(b) Connect the vertices in Ve linearly with internal edges; namely,
(1) (2>> < 2) . 3)

connect (vnew, Vhew Vhew s vnew>, and so on.

(c) Choose one of the vertices in Vpey arbitrarily and term it the
seed vertex vseeq Of v, where vy is the vertex in G from which v

originates.

(d) Let us define a series V., by omitting veeeq from Ve, while

keeping the order of the other vertices. Foreachie€ {1,--- ,d, — 2},
(@)

connect Vng

, and the ith element of V;,, with an external edge.

cw

(e) Connect (vﬁé{,,,vﬁféif”) and (vr(féi,v_l),vr(fé”h)) with external edges.
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3. Remove all vertices with degree 1 from the graph. For each vertex
vo € Vp with degree 2, if v is the vertex in V originating from vy (which
is not removed in the previous steps), define the seed vertex of vy as

V.

It is worth noting that there are two degrees of freedom in the above
algorithm for each vertex with a degree larger than 2: (i) the order of the
series Vngn and (ii) the selection of the seed vertex. Different merging graphs
can be constructed depending on their selection, which may severely affect
the resource overheads.

The merging graph of a post-H microcluster is constructed by combin-
ing the merging graphs of its components. That is, for each fusion between
different components, the corresponding seed vertices in the merging graphs

are connected by an external edge.
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Optimization of resource overheads: The process of generating a post-
H microcluster described above is determined by two factors: the merging
graph and the order of the merging operations. Here, we discuss their opti-
mization for minimizing resource overhead. The merging graph is selected
randomly by the algorithm presented above. Based on it, we determine the
order of the merging operations through an algorithm found heuristically
and calculate the expected number Ngl}(fz of GHZ-3 states required to gener-
ate the state. We repeat this process for a large enough number to obtain as
low resource overhead as possible.

During the generation process, performing each merging operation can
be regarded as contracting the corresponding edge, which means removing
the edge, merging the two vertices (v, v;) that it previously joined into a
new vertex w, and reconnecting all the edges that were connected to v; and
vy with w. Here, each vertex indicates a connected subgraph (a group of
entangled photons) of the intermediate graph state. We assign a “weight”
N, (which is initialized to 1) on each vertex v, which is the average number
of GHZ-3 states required to generate the connected subgraph. If the edge
between two vertices v; and v, are contracted, the new vertex w has the

weight of

2

M=y

(Ny, +N,,) =: Ny, +m Ny, (4.3)

where the factor 2/(1 —1)? is the inverse of the success probability of the

merging operation. By repeating this process, the post-H microcluster is

NMC

obtained when there is only one vertex left, whose weight is equal to N5y .
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To find an optimal order of merging operations, we use the following

strategy:

1. Find the set Enin.wg Of edges with the smallest weight, where the

weight of an edge (vi,v2) is defined as N,, +, N,, .

2. Using an edge coloring algorithm, allocate “colors” to all edges so
that different edges sharing a vertex have different colors and as few

colors as possible are used.

3. Partition E iy wg into disjoint subsets by the colors of the edges. Find
the largest subset Ey, among them. If such a subset is not unique,

choose one randomly.

4. Contract each edge in Eyyg in an arbitrary order.

5. Repeat all the above steps until only one vertex is left.

The strategy is based on the following two intuitions: First, it is better to
merge vertices with small weights first, since (Nj 4+, Na) +m N3 < Ni +,
(N2 +, N3) if Nj < N, < N3. Secondly, it is better to perform merging op-
erations in parallel as much as possible. Such a set of edges can be found
by the edge coloring algorithm. For our results, we have used the function
coloring.greedy_color in NetworkX package [94] with the strategy
largest_first. (Since the function performs vertex coloring, we input

the line graph of Gy into the function.)
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4.2.3 Performance analysis

For error simulations, we consider the logical identity gate with the
length T of 4d + 1 unit cells along the simulated time axis, where d is the
code distance. All the fusion outcomes are sampled from appropriate prob-
ability distributions, and the corresponding error rates are assigned to indi-
vidual central qubits according to the process described earlier. These error
rates are exploited when decoding syndromes by the weighted minimum-
weight perfect matching in the PyMatching package [95]]. The loss thresh-
olds are calculated by finding the intersections of logical error rates ford =9
and d = 11. The resource overhead of PTQC is quantified by the average to-
tal number A, of GHZ-3 states to achieve a target logical error rate of py,
for the logical identity gate of T = d — 1, which depends on the photon loss
rate 1. See Secs. and for the detailed methods of error simula-
tions and resource calculations, respectively.

The simulation results of the loss thresholds and the resource overheads
(quantified by Aj(-s) are respectively presented in Figs. |52| and |53| for the
two types of photodetectors, the two options for the post-selection of star
clusters, and the two H-configurations.

Figure shows that, if single-photon resolving detectors are used,
Nw reaches up to 8.5% (n =5, m =4, j =2) when star clusters are post-
selected and up to 6.3% (n=m =15, j =3, HIC) when they are not. If on-off
detectors are used, N, reaches up to 4.4% (n =5, m =4, j = 1) when star
clusters are post-selected and up to 3.3% (n =5, m =4, j =1, HIS) when

they are not. The post-selection of star clusters increases the photon loss
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thresholds by about 1-2%p.

From Fig. [53] it is observed that the protocol using single-photon re-
solving detectors is most resource-efficient with Ajy-s ~5x 10° (n =4, m =
3, j = 1, HIC) when star clusters are post-selected and with Ajy- ~ 1 x 10°
(n=m=4, j =2, HIS) when they are not. If on-off detectors are used, the
protocol is most resource-efficient with Ajy-s ~2x 10’ (n=m =4, j =2,
HIC) when star clusters are post-selected and with Ajy6 ~ 3 x 107 (n =
m =15, j =2, HIC) when they are not. It is worth noting that, compared to
the protocol without the post-selection, the protocol with it requires fewer
GHZ-3 states to achieve a target logical error rate. In other words, further
fault-tolerance obtained by using only successfully-generated star clusters
leads to a positive overall effect that surpasses the negative effect caused by
the increase in the number of required GHZ-3 states for one central qubit in

the final lattice.
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Figure 54: Photon loss thresholds Ny, as a function of the number Ny,
of GHZ-3 states required per central qubit. Ny, is calculated at 1 = 0.01
or M = Nn/2. “SPRD” stands for a single-photon resolving detector. The
data points correspond to different parameter settings on the type of de-
tectors, the post-selection (PS) of star clusters, the encoding size, and the
H-configuration, which are grouped by the first two factors. The upper en-
velope for each of the groups is presented as a line. The values of j are
chosen to maximize M.

Additionally, Fig. [54] presents the photon loss thresholds as a function
of N§, when 1 is fixed to 0.01 or variable as | = N/2, which is used to
calculate A[j,-s. alt shows that at least about 400 GHZ-3 states are required
per central qubit for PTQC to work. The explicit information of the data
points along the upper envelope lines in the figure is presented in Tables [6]
and [7)for single-photon resolving and on-off detectors, respectively.

Lastly, we show evidence that our optimizing strategy for microcluster
generation described in Sec.[d.2.2]is indeed highly effective in terms of both
the optimality of the calculated overhead and searching time, by comparing
its performance with those of its variants constructed by omitting or altering
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specific steps. We consider four of such variants that are the same as the

original strategy except for the following differences:

Variant 1 The original physical-level graph is directly used as a single compo-

nent without decomposition.

Table 6: Information of the data points along the upper envelope lines in
Fig. b) when single-photon resolving detectors are used. Ny, Njo-7
and dyp-7 at n = 1% are not calculated when g, < 1%.

* *
Neuz Nz N

Nth M="e/2) M=1% 0=1%) dip-» n m j H-config.

(a) Single-photon resolving detector with post-selection
0.009 33x10> 3.7x10? 1 4 3 HIC

002 39x10> 39x10* 2.1x107 21 2 2 1 HIC
0.03 88x10*> 82x10* 1.5x10° 7 3 2 1 HIC
0035 1.0x10° 92x10* 3.8x10° 9 2 3 2 HIC
0036 1.8x10° 1.6x10° 3.0x10° 7 4 2 1 HIC
0.04 1.9x10° 1.7x10° 3.2x10° 7 2 4 3 HIC
0052 27x10° 21x10° 1.4x10° 5 3 3 1 HIC
0.067 53x10° 39x10° 52x10° 3 4 3 1 HIC
0074 8.6x10° 6.1x10° 8.1x10° 3 5 3 1 HIC

0.085 23x10* 1.5x10* 20x10® 3 5 4 2  HIC
(b) Single-photon resolving detector without post-selection
0.009 7.2x10? - - - 3 2 1 HIC

0.015 84x10*> 86x10>2 25x10® 37 2 3 2 HIC
0022 1.6x10° 1.6x10° 6.8x10° 9 2 4 3 HIC
0023 23x10° 23x10° 14x10"° 101 5 2 1 HIC
0024 26x10° 26x10° 49x10° 7 2 5 4 HIC
0043 44x10° 39x10° 2.6x10° 5 4 3 1 HIC
0048 7.1x10° 6.0x10° 4.0x10° 5 5 3 1 HIC
005 87x10° 73x10° 4.9x10° 5 5 3 1 HIS
0052 93x10° 98x10° 1.3x10° 3 4 4 2 HIC
0.054 1.4x10* 1.1x10* 1.5x10° 3 4 5 3 HIC
0.061 1.9x10* 14x10* 1.9x10° 3 5 4 2 HIC
0.063 23x10* 1.7x10* 23x10° 3 5 5 3 HIC
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Variant 2 GHZ-N states for N > 3 are first constructed and then they are merged
by fusions to construct a post-H microcluster, which is the process
described before introducing merging graphs in Sec. A GHZ-N
state is generated by merging two GHZ-(N/2 + 1) states if N is even,
or by merging a GHZ-[(N + 1) /2] state and a GHZ-[(N + 3) /2] state
if N is odd. The order of the fusions is determined by the same strategy

as the original one, regarding the merging graph where the vertices

Table 7: Information of the data points along the upper envelope lines in
Fig. b) when on-off detectors are used. N§yy,, Njo-7, and djg-7 atn = 1%
are not calculated when ng, < 1%.

NéHZ NEHZ 9\60*7 .
M —ne/2) M=1%) @m=1% Qo7 nom J Hconfig
(a) On-off detector with post-selection
0.009 1.8x10° - - -2 3 2 HIC
0012 3.6x10° 39x10° 21x10° 45 2 4 2 HIC
0.013 46x10° 50x10° 46x108 25 2 5 4 HIC
0.022 1.0x10* 1.0x10* 1.1x10° 27 3 3 1 HIC
0.024 1.1x10* 1.0x10* 20x10" 7 3 4 2 HIC
0.035 3.1x10* 26x10* 1.7x107 5 4 4 2 HIS
0.044 24x10° 19x10° 12x108 5 5 4 1 HIC
(b) On-off detector without post-selection
0.005 1.9x10° - - -3 3 2 HIC
0.008 2.3 x10° - - -3 3 1 HIS
0.013 3.7x10° 39x10° 21x10® 21 4 3 1 HIC
0.014 44x10° 46x10° 66x108 29 3 4 2 HIS
0.016 4.7x10° 48x10% 1.6x10° 39 4 3 1 HIS
0.02 6.0x10° 6.0x10° 46x107 11 5 3 1 HIC
0.023 9.6x10° 93x10° 7.1x107 11 4 4 2 HIS
0.025 1.4x10* 14x10* 58x10°7 9 4 5 3 HIS
0.028 1.5x10* 1.5x10* 63x107 9 5 4 2 HIC
0.03 1.6x10* 17x10* 12x10% 11 5 4 1 HIS
0.032 23x10* 2.1x10* 88x107 9 5 5 2 HIS
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correspond to general GHZ states and the edges indicate the fusions
to perform. Accordingly, the weight of each vertex is not initialized
to 1, but to the expected number of GHZ-3 states used to generate the

corresponding GHZ state.

Variant 3 The merging order is just randomly chosen without using a specific

strategy.

Variant 4 The merging order is chosen by considering only the weights of the
vertices without using the edge coloring algorithm. Namely, steps 2,
3, and 4 in the original strategy in Sec. are replaced with con-

tracting a random edge in Ein wet-

Figure [55] displays how the overhead of a side microcluster (namely,
the expected number NE, of GHZ-3 states required to generate it) varies
depending on the used strategy for several settings. Since the strategies con-
tain randomness, the distributions of the outcomes are visualized as box
plots. It is clearly shown that the original strategy is the most optimal in
general, although Variant 2 or 4 is also as effective as the original strategy
for some cases. Moreover, the original strategy gives the least variance on

the calculated overhead (except for Variant 2), which means that the optimal

point can be found quickly.
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Figure 55: Comparison of different strategies for generating a post-H mi-

side

crocluster. It shows the distribution of the calculated overhead Ngy, of a
side microcluster depending on the used strategy (among the original strat-
egy and its four variants) for different H-configurations and values of n and
m. We considered 9,600 samples for each box plot. Each box shows the
range between the first and third quartile and the line crossing represents the
median. The minimum and maximum values are indicated by whiskers.
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4.3 Modified concatenated Bell-state measure-

ment scheme

In this section, we describe the modified CBSM scheme used for PTQC.
For the lattice, block, and physical levels of the (n,m) parity encoding, the

Bell states are respectively defined as

¢

|CI>i> == 10.)|0L) £]1.) |12),
"Pi> = ‘0L> ’1L> + ‘1L> 0L)

) 1= ) ) =) )
) i= [0} |- |y ),

[0%) 1= 1) [H) £ [V} [V),

) = [m) [V) £ V) [V),

where [02), |1.), and }i(’”)> are defined in Egs. (4.1) and @#.2)). The Bell
states of each level can be decomposed into those of one level below as

follows:

of) =27 l:mn%d)gnf U¢<m>>®l ‘¢Tm)>®nl] ! (4.42)

=2 - (Odd)<n? U‘V(m)>®l ""Tm>>®nl] ! (4.4b)

)= T ot s

1 e N
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where ©P[-] means the summation of all the permutations of the tensor prod-
ucts inside the bracket. Therefore, a BSM can be performed in a concate-
nated manner: A lattice-level BSM (BSMy) is done by n block-level BSMs
(BSMy,’s), each of which is again done by m physical-level BSMs (BSMyy’s).
We refer to the sign (letter) result obtained from a lattice-, block-, or physical-
level BSM as the lattice-, block-, or physical-level sign (letter), respec-

tively.

4.3.1 Original CBSM scheme

We review the original CBSM scheme of the parity encoding in Ref. [89].
A BSMppy can discriminate between only two among the four Bell states.
Three types of BSMppy’s (By, By, and B_) are considered, which discrim-
inate between {[y*), [y}, {07}, [y*)}. and {[07),[y~)}, respectively.
By, can be implemented by the process in Fig. @, which can be modified to
implement B instead by adding a 45° wave plate on each input line just be-
fore the first PBS. If the 90° wave plate on the second input line is removed
in the setting for B, B_ is executed alternatively. A BSM,py has four possi-
ble outcomes: two successful cases (e.g., for By, W) and [y™)), “failure,”
and “detecting a photon loss.” Failure and loss can be distinguished by the
number of total photons detected by the photon detectors. Since two pho-
tons may enter a single detector, it is assumed that single-photon resolving
detectors are used. Note that, even in the failure cases, either sign or letter
still can be determined. (For example, even if a By, fails, we can still learn
that the letter is ¢.) On the other hand, if it detects a loss, we can get neither

a sign nor a letter.
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A BSMyyc is done by m-times of BSM,,y’s. Each block is composed of
m photons, thus we consider m pairs of photons selected respectively in the
two blocks. The types of the BSM,,py’s are selected as follows: First, By, is
performed on each pair of photons in order until it either succeeds, detects
a loss, or consecutively fails j times, where j < m — 1 is a predetermined
number. Then a sign s = = is selected by the sign of the last By outcome if
it succeeds or selected randomly if it fails or detects a loss. After that, By’s
are performed for all the left pairs of photons.

The block-level sign (letter) is determined by the physical-level signs
(letters) of the m BSMypy’s. In detail, the block-level sign is chosen (i) to be
the same as s if the last By succeeds or any B, succeeds, and (ii) to be the
opposite of s if the last By, does not succeed and any B; fails. (iii) Otherwise
(namely, if the last By, does not succeed and all the B,’s detect losses), the
block-level sign is not determined. The block-level letter is determined only
when all the physical-level letters are determined, namely, when no losses
are detected and all B,’s succeed. For such cases, the block-level letter is ¢
(y) if the number of y in the BSMhy results is even (odd).

Next, a BSM|y is done by n-times of BSMy,.’s. The lattice-level sign
is determined only when all the block-level signs are determined; it is (+) if
the number of (—) in the BSMy, results is even and it is (—) if the number
is odd. The lattice-level letter is equal to any determined block-level letter.
Thus, if all BSMy,.’s cannot determine letters, the lattice-level letter is not

determined as well.
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4.3.2 Modified CBSM scheme for PTQC

In our PTQC protocol, we consider using either single-photon resolv-
ing or on-off detectors. The CBSM scheme should be slightly modified for
this case.

Since failure and loss cannot be distinguished, a BSM,py now has three
possible outcomes: two successful cases and failure. Consequently, in a
BSMyye, By’s are performed until it either succeeds or consecutively fails
j times. The way to determine the block-level sign and letter is the same
as the original scheme, except that case (iii) when determining the sign no
longer occurs. The biggest difference from the original scheme is that the
determined sign and letter may be wrong. These error probabilities are pre-
sented in the next subsection.

In a BSMyy, the lattice-level sign is determined from the block-level
signs by the same method as the original scheme, although it may be wrong
with a nonzero probability as well. On the other hand, the lattice-level letter
is not determined by a single block-level letter unlike the original scheme;
instead, we use a weighted majority vote of block-level letters. The weight

blc

of each block-level letter is given as w := log [(1 — gPlc) /gP¢

lett

blc

|, where gpic

is the probability that the block-level letter is wrong. This weight factor is
justified as follows: Let Iy (1) denote the set of the indices of block pairs

where the block-level letters are ¢ (). Assuming that the two lattice-level
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letters (P and W) have the same prior probability, we get
Pr(®|ly,ly)  Pr(ly,Ly|®)Pr(P)  Pr(ly,ky|P)
Pr(¥|ly,ly)  Pr(ly,Ly|¥)Pr(¥)  Pr(ly,Iy|¥)
_ Hiel¢ (1 - qliit) Hielw ql(éit
HielqJ CIl(Qt Hiel\V (1 - ql(egt)

_ H qlett H qlett

icly qlett i€ly lett

o).
i=1
(i)

where g,_;, and w(?) are respectively the letter error probability and the weight

of the ith block. Note that the third equality comes from the fact that a lattice-

level Bell state is decomposed into block-level Bell states of the same letter,

as shown in Eqgs. (4.4a) and (4.4D).

4.3.3 Error probabilities of a CBSM under a lossy en-

vironment

We now present the possible outcomes of a CBSM using either single-
photon resolving or on-off detectors and the corresponding error probabil-
ities (Qsign,then)- We denote x := (1 —1)?, which is the probability that a
BSM,hy does not detect photon losses. It is assumed that the four Bell states
have the same prior probabilities; namely, the initial marginal state on qubits
1 and 2 before suffering losses is the equal mixture of four lattice-level Bell
states, which is justified by Proposition .1] For a BSMyj. or BSMy, to

avoid confusion, we use the term “outcome” to indicate the tuple of the out-
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comes of the BSMpy,y’s constituting the BSMy|c or BSM,, and use the term
“result” to indicate one of the four Bell states that gives the largest posterior
probability under its outcome. Note that the result of a BSM may be not
deterministically determined by its outcome; if multiple Bell states have the

same posterior probability, one of them is randomly selected as the result.

Using single-photon resolving detectors: The case using single-photon
resolving detectors is analyzed in Ref. [89]] and we here review the contents
to be self-contained. The outcome of a BSMy,. is included in one of the
following three cases: (Success) Both the sign and letter are identified if no
losses are detected and all the B ’s succeed. (Failure) Neither sign nor letter
is identified if no By,’s succeed and all BL’s detect losses. (Sign discrimina-
tion) Only the sign is identified if otherwise. The block-level sign (or letter)
is selected randomly if it is not identified. The probabilities of these cases

are respectively

Success : Ps = [1 — 2*(j+1)]xm,
Failure : pr= Z{:O (%)Z(l —x)"

Sign discrimination : pgg = 1 — ps — py.

For a BSMy,, let Ns (Vy) denote the number of successful (failed) BSMy.’s.
The lattice-level letter is identified if Ny > 1 (namely, if at least one block-
level letter is identified) and the sign is identified if Ny = 0 (namely, if all

block-level signs are identified). Hence, the outcome of a BSM, is included
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in one of the following four events:

(

S (Success) : Ny > 1 ANy =0,
Dy, (Letter discrimination) :  Ng, Ny > 1,

Ds (Sign discrimination) : Ny = Ny =0,

F (Failure) : Ny=0AN;s > 1.

The sign and letter error probabilities (gsign,qier) Of the BSMjy for each
event are (0,0) for S, (1/2,0) for Dy, (0,1/2) for Dg, and (1/2,1/2) for F.

The probabilities of the events are respectively given as

Ps=(1—pg)" — ply,
Pp, =1—(1—=pg)"+ (1= pr)" = plg,
(4.5)
PDS == pgdﬂ

Pr=(1-pg)"—ply.

Using on-off detectors: We now consider using on-off detectors for fu-
sions. Each outcome of a BSMy,. is uniquely identified by a triple O =
(r,s,U), where r € Zj;1 :={0,---, j} is the number of failed By’s, s = &
is the sign chosen by the successful (r+ 1)th By (if » < j) or randomly (if
r=j), and U is an (m — r)-element tuple composed of “0,” “y,” and “f”
(failure) indicating the outcomes of the BSMyy’s from the (r+ 1)th to the
the last. (If < j, the first component of U is always y, and the other compo-
nents are determined by the B,’s. If r = j, all the components are determined

by the B;’s.) Let N, (U) for e € {9, V, f} denote the number of e in U. Then
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a BSMy,. outcome O is included in one of the following j+ 3 events:

S = {(rs,U)|Ny(U) =0} (0<r< ),

F :={(j,s, U)|N;(U) = m— j}, (4.6)

)

@::O\[TULJJSr

r=0

where O is the set of all possible outcomes. Note that the events S, F, and
D correspond to success, failure, and sign discrimination when 1 = 0. For

each event £ in Eq. (4.6), its sign and letter error probabilities qulg o/l i (E)

and the probability p that the event occurs are given as follows (see Sec..6.1]

for the proof):

(

e (S) =0, ahe(s)=5-3(5)"

(1 . {)rxm—r7

D=

ps, —

[\

;

|y
Tl ) = i ) =3

(pr=301=3)" 1+ (1=2"],

;

“4.7)

Ben(D) =0, qRis(D) =1,

pr=1=3,ps —PF-

A possible outcome of a BSMy, corresponds to an n-tuple of events com-
posed of S, (0 <r < j), F, and D, which can be regarded as an indepen-

dent event for the outcomes of the BSMy,.. The probability that an event
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E= (%, - ,%E,) occurs is
pe=[]r= (4.8)
i=1

and the sign and letter error probabilities of E = (‘E,---,E,) are respec-

tively

(124%™,

> I (=)' ]

(7\'17"' 7}\01)62’21 i=1

X sgn (Z(Zki— 1)log ! _qi>,

i=1 i

‘Isign (E) -

N = N =
= N =

qien(E) = = +

where Ny is the number of #’s in E, g; := ¢P'(%;), and sgn(a) is a/|a| if
a# 0and 0 if a = 0. See Sec. for the proof.
4.4 Comparison with other approaches

We now compare the PTQC protocol with three other known approaches

for linear optical quantum computing:

(1) Using single photons for all qubits with fusions assisted by ancillary

photons.
(i1) Using simple repetition codes.

(iii) Attaching redundant tree structures to replace a single fusion by mul-

tiple fusion attempts.
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We show evidence that PTQC is more efficient than these approaches.

4.4.1 Comparison with approach (i)

The first approach uses single photons for all qubits with fusions as-
sisted by ancillary photons [77]], which has been widely studied in the con-
text of ballistic quantum computing [|85} 86} 78} [87]]. In these works, cluster
states that differ from RTCSs are used as resources except for Ref. [78]];
however, RTCSs should be used to enable a solid error correction, as also
mentioned in Refs. [85, |87]]. Moreover, in these works, the detrimental ef-
fects of failed fusions corrupting nearby qubits are not treated comprehen-
sively; instead, they (except Ref. [78]) regard a fusion failure as removing
the corresponding edge and mainly focus on finding percolation thresholds.

Under the noise model described in Sec. [4.2.1] a fusion detects a loss
with probability 1 — (1 —mn)?2, if losses in ancillary photons are neglected.
Since a marginal state of every Bell state is maximally mixed, detection of
a photon loss means complete loss of information; thus, giex = Gsign = 1 /2
in such a case. If losses are not detected, the fusion fails with probability
ps, where the letter information of the Bell state still can be obtained [77]];
namely, gjeq = 0 and ggign = 1 /2. These two cases make some central qubits
deficient, which can be tracked using the methodology of analyzing nonideal
fusions presented in Sec. HIC is used for the H-configuration to make
the failure of a step-1 fusion affects only one central qubit; see Fig.[43]

The photon loss thresholds calculated numerically are plotted in Fig.[5
with theoretical estimations for various values of ps. It shows that p¢ should

be less than about 10% (1%) even if N is only 1% when star clusters are
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Figure 56: Simulation results for the approach using single-photon qubits
with fusions assisted by ancillary photons. It shows the photon loss thresh-
olds M, obtained from simulations or estimated theoretically as a function
of the fusion failure rate ps.

(are not) post-selected. Such low fusion failure rates are highly demand-
ing to implement with linear optics due to the requirements of photon-
number resolving detectors (PNRDs) that can resolve many photons and
ancillary states hard to generate. The failure rate of 10% can be achieved
by using the BSM scheme of N = 3 in Ref. [77] where ps = 6.25%. BSM
with N = 3 requires PNRDs resolving up to 16 photons and the ancil-
lary states |Y1),[Y2),and |Y3). (|X;) is a 2/-mode state defined as ]Yj> =
12,0,2,0,---,2,0)+0,2,0,2,---,0,2).) It is probably impossible to obtain
‘T j>’s for j > 2 from single photons with linear optics [[/7]. Moreover, our
simulation does not consider the imperfectness of ancillary states and addi-
tional PNRDs; if they are considered, the requirements will be even stricter.

We note that there is a possibility that the lattice renormalization method
in Ref. [78] makes the protocol less demanding, which is worth investigating

in future works. However, the method has a shortcoming that the renormal-

170 i
A 2o 8 W



ized lattice may be significantly smaller than the original lattice; namely,
about 203 photons are consumed to generate one node [78]].

The theoretical estimation in Fig.[56]is done by the following methods:
We first assume that star clusters are not post-selected. For a central qubit g
to be not deficient, the following conditions should be satisfied simultane-

ously:
1. Two step-1 fusions in the star cluster containing g succeed.

2. Four step-1 fusions in the four adjacent star clusters (one for each) do

not detect losses.

3. Four step-2 fusions involved in the star cluster containing ¢ do not
detect losses. Two among them (that make ¢ deficient if they fail)

succeed.

4. g itself does not suffer a loss.

From above, we obtain the probability that a central qubit in the final lattice
is intact: pinc(M, pr) = (1 — pg)*(1 —m)2L. If star clusters are post-selected,
the first and second conditions are no longer needed, thus we get pinc(M, ps) =
(1 — ps)*(1—m)°. Regarding a 50% chance of a Z-error as erasing the qubit
by measuring it in the Z-basis (while ignoring the correlation of errors), a
photon loss threshold N, can be estimated by solving 1 — ppre = pint (M, Pr)>
where pp. = 0.249 is the known cubic-lattice bond percolation threshold

[50,96].
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4.4.2 Comparison with approach (ii)

We next investigate the approach using simple repetition codes, which
is covered in our previous work [3]. In this protocol (called “MTQC”), side
qubits are n-photon ones encoded in the basis of {|H)*",[v)®"}, where n
is a natural number. For central qubits, we first consider using m-photon
qubits and then concatenate them with the N-repetition code. That is, we
use the basis of {(!H>®m + \V>®m)®N} for the central qubits. In Ref. [3]],
the photon loss thresholds and resource overheads are analyzed in detail,
but a rigorous analysis of the effects of nonideal fusions like that done for
PTQC is lacking.

Since the n-photon encoding for side qubits is equal to the (n, 1) parity
encoding, the effects of nonideal fusions can be analyzed in the same way
as done for PTQC with the (n, 1) parity encoding. The difference between
the two is the way that central qubits become deficient due to photon losses
in themselves. In PTQC, central qubits are single photons, thus a central
qubit becomes deficient with probability 1. In MTQC, however, the defi-
ciency rate due to photon losses in central qubits is [1— (1 —n)"]", which
decreases exponentially as N increases. The photon loss thresholds recalcu-
lated based on these facts are presented in Fig.|S7| with the previous values
reported in Ref. [3]], which shows that the recalculated photon loss thresh-
olds are smaller than the reported values. In particular, it is observed that
the central qubit encoding strategy does not improve the thresholds signifi-
cantly. This discrepancy is because the detrimental effects of nonideal fusion

affecting nearby qubits have not been sufficiently rigorously addressed.
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Figure 57: Simulation results for the approach using the simple repetition
codes. It shows the photon loss thresholds My, as a function of n for MTQC,
which are obtained from Ref. [3] and the recalculation using the method-
ology for analyzing nonideal fusions. Other parameters are (m,N) = (2,1)
and (m,N) = (2,3) for the unencoded and encoded cases, respectively. Two
subvariants of MTQC, one with the post-selection of star clusters and the
other without it, are considered, which are respectively termed MTQC-2
and MTQC-1 in Ref. [3]].

4.4.3 Comparison with approach (iii)

Lastly, we compare PTQC with the approach of (iii) that utilizes re-
dundant tree structures on graph states. Such an approach also has been
actively investigated [79, 80, [81], among which Ref. [[81]] presents the cur-
rent most advanced version of the protocol where an RTCS is constructed
by entangling multiple GHZ-3 states like PTQC. There, at least ~ 2 x 10°
photodetectors are required per data qubit to achieve a positive photon loss
threshold with single-photon resolving detectors, while PTQC requires at

least ~ 7 x 10* photodetectors per data qubit (see below for the calcula-
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tion). Hence, PTQC shows a twofold improvement in resource efficiency
compared to the protocol in Ref. [81]. Furthermore, we have shown that
PTQC also operates with on-off detectors, while the protocol in Ref. [81]
is currently unclear whether it is possible. Nevertheless, further work will
be required to compare their performance (especially their fault-tolerance)

rigorously and comprehensively.

Conversion of resource measures: In Ref. [81]], resource overheads are
quantified by the number of photodetectors required per central qubit, not
the number of GHZ-3 states we have used, thus conversion between them
is necessary for a fair comparison. In PTQC, detectors are used when gen-
erating GHZ-3 states, applying physical-level BSMs, and measuring central
qubits. We suppose that GHZ-3 states are generated by the scheme pro-
posed in Ref. [93]] like the protocol in Ref. [81]. The scheme uses six detec-
tors to generate a single GHZ-3 state and succeeds with probability 1/32;
thus, generating one GHZ-3 state requires 192 detectors. (If it is allowed to
use photodetectors repeatedly during the generation of each GHZ-3 state,
only six detectors are required per GHZ-3 state. However, we ignore this
option to be consistent with Ref. [81]].) Next, four detectors are used for
one physical-level BSM (see Fig. {2)). Counting the number of physical-
level BSMs per central qubit is not simple, but we can get its upper bound
as (3Nyz — 1)/2, which is half the number of total photons in all GHZ-
3 states except one photon in the central qubit. Lastly, two detectors are
used for the two polarization modes when measuring a central qubit. In to-

tal, Nger = 198N(yy, detectors are required per data qubit in PTQC. Since
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Ny % 330 is required for a positive photon loss threshold (see Fig. ,

Nget should be at least about 7 x 10%.

4.5 Remarks

In this chapter, we address the problem of overcoming the negative ef-
fects of nonideal fusions and photon losses during linear-optical measurement-
based quantum computing (MBQC). We first introduced a Bayesian method-
ology for tracking errors caused by nonideal fusions during the construc-
tion of graph states, which enables accurate and effective error simulations.
We then proposed the parity-encoding-based topological quantum com-
puting (PTQC) protocol that uses the parity encoding and concatenated
Bell-state measurement, which turns out to have a high loss threshold of at
most ~ 8.5%. Moreover, logical error rates near 10~ can be achieved using
about 10° or fewer three-photon Greenberger-Horne-Zeilinger states (GHZ-
3) states in total when the photon loss rate is 1%, which outperforms other
known linear optical computing protocols [3]. We presented comprehen-
sive and systematic methods to construct a graph state from GHZ-3 states,
including the graph-theoretical algorithm that can minimize the resource
overhead efficiently.

Additionally, we investigated three other known approaches that re-
spectively use single-photon qubits with fusions assisted by ancillary pho-
tons, simple repetition codes, and redundant tree graphs. We verified that
the first two are highly demanding compared to PTQC due to low photon

loss thresholds or hard-to-implement requirements such as photodetectors
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that can resolve many photons. Compared to the third approach, we showed
that PTQC has a twofold improvement in terms of the resource overhead
required for the loss threshold to be positive, although additional work will
be necessary to compare their fault-tolerance as well.

One may apply the Bayesian error tracking method to other encoding
schemes or decoding algorithms (such as the union-find decoder [97]) to
improve fault-tolerance or resource overheads. More careful consideration
of component-wise errors, including both heralded photon losses and un-
heralded errors (such as dark counts on photodetectors), shall give rise to
more realistic analyses. Resource analysis will be more comprehensive if
other factors such as the number of optical switches or the lengths of delay
lines are considered. In particular, one trial of CBSM may require optical
switches to change the types (By, B, and B_) of the physical-level BSMs.
Our graph-theoretical optimization scheme for generating graph states can
be applied to arbitrary graph states as well as microclusters for PTQC. It
will be interesting future work to investigate the resource reduction effect
of this scheme for various MBQC protocols or other applications of graph
states such as quantum repeaters. Lastly, our methods may be generalized
to fusion-based quantum computing [98]] that is attracting attention recently,

or other MBQC protocols such as the color-code-based one [37].
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4.6 Appendix

4.6.1 Calculation of the error probabilities of a CBSM

when on-off detectors are used

We here derive the error probabilities of a CBSM on two qubits (say,
qubits 1 and 2) encoded with the parity encoding when on-off detectors are
used for fusions. We denote x := (1 — )2, which is the probability that a

BSMphy does not detect photon losses.

Block-level BSM (BSM,,;.)

We note that every positive operator-valued measure (POVM) element
of a lossy BSM,,py has vanishing off-diagonal entries in the Bell basis; see
Sec. [4.6.2] for the proof. Also, each POVM element of a lossy BSMy,c, de-
noted by M9¢ for each outcome O = (r,s5,U), is the tensor product of partic-
ular POVM elements of the lossy BSMyy,,’s constituting the BSMy,c. Thus,

the conditional probability of getting O from a block-level Bell state |B) is
1 1
Pr(OIB) = (BIMEF|B) = 53 S (B MY |B) = 5 > Pr(OIB),
i i

where |B;)’s are the terms constituting the summation in Egs. and

(4.4d), namely, |B) = \/Z}TI > ;|Bi). In other words, when calculating Pr (O|B),
it is enough to find Pr(O|B;)’s and then take their average.

The posterior probability of a block-level Bell state |B) under a given
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outcome O is

_ (0P
Pr(B|O) = Z|B/>EBMC Pr(O]B)’ 4.9)

where By is the set of the four block-level Bell states. Thus, the result of
the BSMyy, is selected randomly in the set R(O) := argmaxzPr(O|B). The
sign (letter) error probability as a function of O is
1
C]Eilgn(m)(O) = R(O)| Z [Pr (Fyign(terr) (B)|O) + Pr (Fiign © Fieu(B)|0) ],
|BYER(O)

(4.10)

where ‘Fsign(len) (B)> is the Bell state obtained by flipping the sign (letter)
from |B) (e.g., Fyign(0F) = 07).

Block-level outcomes can be grouped by the j+3 events S, (r=0,---, j),
F,and D, as defined in Eq. (4.6). We now calculate the probability that each
event occurs and the corresponding sign and letter error probabilities. Let us
first consider an outcome O = (r,s,U) € S, where N¢(U) = 0. Regarding a
single term in the decomposition of ’¢?;n)> [see Eq. (4.4c))], if there are total
k of |y*)’s, the first r physical levels contain k — Ny (U) of |y*)’s, which
should suffer photon losses by the definition of r. If r < j, s selected by the
successful (r+ 1)th By, is certainly =, the sign of ’¢?fn)>. If r = j, the ran-
domly selected s may or may not be corrected; however, the latter case is out
of S, since all the following B=’s must fail. The remaining m — r BSMppy’s

should not suffer photon losses since N(U) = 0. Hence, for all U satisfying
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Ne(U) =0, we get

1 r 1
+ ) _ NNy Y m—r
Pr (r, i,U)q)(m)) 1 Z (k B N\,,> (I—x) T

k:even<r-+Ny,

-0 )]

Pr (nq:,U)q)(im)) —0,

“.11)

where Ny = Ny (U). Similarly, we get

e (s 0y ) = o [ (1 2) (3) (2],

Pr (r,i,U’\pme =0.

From Eqs. (.9)—{@.12)), we obtain

G5gn(0) = 0 =t gBig, (5,
ble (0 — (1-3)( ;r(;)m<r2) _;{1_ <2ix> } = g% (s,).

lett 2(1 .
(4.13)

Nl= (1]

Note that the error probabilities are the same for all O € S,. The total prob-

ability that the event S, occurs is

psi=y > 3 Pe(0B)

0cs, ‘B> Egblc

11 X\ /x\m=r
——_ (1= 7) (7> 2m7r71+5rj
2 28 < 2 2

S
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where the factor 2”7~"~ %3 is the number of possible U’s for a given value
of r.

Next, we consider O = (j,s,U) € ¥, where N¢(U) = m — j, namely,
all the B,’s fail. Regarding a single term in the decomposition of ‘q)(im) >, all
the [y*)’s in the first j physical levels should suffer photon losses. If s = +
all the following B4 ’s should suffer photon losses as well. If s = F, all the

following B=’s fail regardless of photon losses. We thus get

pmmen) st ()

0<ki<j
0<ky<m—j
ki+kp: even

1 x\/ ;
—(1-3) a—x
J
P (1w U=t o) —5(1-3)"
J ¥ O 5
where ki (ky) in the summation indicates the number of [y*)’s in the first

J (last m — j) physical levels. Similarly, the same results are obtained for

"”(im>>:

(i) - 3(1-5) 0

(-3

N\'—l\)\

Pr(j,:F,U: (fs af)“”(im)

The corresponding error probabilities are

(1—x)" 1
Lin(0) = m : qoien (), dng(0) = = =1 qps(F)

\®)
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and the total probability of the event ¥ is

Py = %Z S Pe(js U= (f, . f)|B) = %(1—%)J[1+(1 —x)mi].
=+ |B)€Byic

Lastly, we consider O = (r,5,U) € D. If r < j, Ny(U) > 0 by the def-
inition of 2 and N;(U) < m — r since the first component of U is always
y. If r = j, 0 < Ny(U) < m— j by the definition of 9. Therefore, regard-
less of r, U contains at least one failure and one success (Y or ¢). Thanks
to the successful BSMpyy’s, the sign of the result is identified without an
error. On the other hand, the letter is not identified because of the failures.
We can see intuitively without calculation that the letter error probability
is 1/2: Even if there is only one failure in U, the letter information of the
corresponding physical-level Bell state is completely lost, considering that
the marginal state of a block-level Bell state on a single physical level is
|05)(0F| + [wF)(wE|. Thus, the block-level letter information (determined
by the parity of the number of BSMpy,y outcomes with ) is completely lost
as well. To rewrite the results, we get

1 J

Bn(P) =0, @(D)=3,  pp=1-) ps—ps.
r=0

Lattice-level BSM (BSM,,;)

Each n-tuple of events composed of S, (0 < r < j), ¥, and D cor-
responds to a set of possible outcomes of a BSM,. Let us consider such
an n-tuple E = (‘£;,--- , E,). A lattice-level sign error occurs when there is

an odd number of block-level sign errors and ¥ is the only event where a

181



block-level sign error may occur; thus, the sign error probability is

din= 3 (") - = - 5 (12
i:0dd<Ng¢
where N is the number of #’s in E.

A lattice-level letter error occurs when the weighted majority vote of
the block-level letters gives a wrong answer. We consider i.i.d. random vari-
ables Ay, -+, A, such that A; ~ Bernoulli (¢g;) for each i where ¢; := q}’gft(f,)
which indicates whether a letter error occurs in the ith block. A lattice-level

letter error occurs if

1 —g;
3 (2A;— 1) log q.q = V(A1 An)
1

i
is larger than zero or if it is equal to zero and the randomly selected letter is

wrong. Therefore, we get

1
lett :PI‘(V(Al,'“ ,An) > 0)+§PI(V(A1,'-- ,An) :O)

n

Ny

— Z HPrA }\,{@[V(kl,"',}bn)>0]+;®[V(}V],"'7kn)

A )€ZY =1

n

= ¥ Id0-a ] jeem@ o ag),

My ) €2 i=1

qi

:%—i_% Z H[Cl?i(l—qi)lx’}sgn(Z(z;ﬁ_l)logl—‘qv’

(Mo D)y i1 i~1

where O[C] for a condition C is equal to 1 if C is true and 0 if it is false, and

sgn(a) isa/|alifa#0and 0 if a = 0.
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4.6.2 Proof of vanishing off-diagonal entries of the POVM
elements of a lossy physical-level BSM

We here prove that every POVM element of a lossy BSMy,y ina CBSM
with on-off detectors has vanishing off-diagonal entries in the Bell basis.
Let Ay denote the photon loss channel of a loss rate 1 defined as Ay (0) :=
(I —=m)o+mn|0)(0] for a single-photon state ¢ and the vacuum state |0). By
substituting 6 = |y)(y/| for an arbitrary pure state [y) = a|H) +B|v), we

get Aq([H)(V]) = (1—1) [H)(V]. Thus,

(A @ An) (|0 )W) =(1=)? [0% )}y
+n(1 =n)([HOXVO[ + [VO)XHO| + [0H)(OV|+ |0V )}(0H ),
(1-m)% 0" ) (v
+n(1 =) (|HO)VO[ — [VO)XHO[ — [0H)(OV | + [0V )(0H ),
(1=m)*[o" )0
+n(1 —n)([HO)HO[ — [VOXVO| + [0H)(0H| — [0V ){OV]),
(1= [y Xy |

+N(1=n)(|HO)XHO| - [VOXVO[ — [0H)(0H| + |0V )(OV]).

(A @ An) (|05 )W)

(Aq @ Aq)([07)(07])

(An@ Aq)([w" Xy )

(4.14)

Now, let M+ and M denote the POVM elements of a lossy By, correspond-
ing to the outcomes |y*) and failure, respectively. By modelling a lossy

By as a photon loss channel followed by an ideal By, M; for i € {+,—, f}
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satisfies

Tr[M;p] = Tr[IT:(An @ Aq)(p)], (4.15)

for any two-qubit state p, where

o=y )(wt|, To= |y )y

T 2= [0 )(0+] +[0-)(0_| + [HO)(HO| + [VO)(VO] + |0F){0H| +]0V }(0V | +|00)(00

)

are the projectors of an ideal By, with a lossy input. From Egs. (4.14) and
[ET3), we obtain (y*| M;[0) = (¥ M;[0T) = (07 | M;|07) = (y" [ M;|y~) =
0 for every i € {+,—, f}. Similar arguments can be done for a lossy B, and

B_ as well.

4.7 Derivation of the physical-level graphs of

post-H microclusters

Here we derive the physical-level graph structures of the central and
side post-H microclusters for the two H-configurations, which are shown in
Fig. @5] The first step of the derivation is to investigate how a graph state
is transformed if a Hadamard gate (H) is applied on one of the qubits (say,
qubit 1) and then a CZ gate (C%,) is applied on qubit 1 and another qubit
(say, qubit 2) that is not adjacent to qubit 1. Note that, in the Heisenberg
picture, the CZ gate transforms the Pauli-X operators of the qubits as X; —
X17Z, and X, — Z1X,, while it leaves the Pauli-Z operators the same. For

a qubit i, g; := X;[[;en(;) Zj, where N(i) is the set of qubits adjacent to
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Figure 58: (a) Transformation of a graph state by applying a Hadamard
gate followed by applying a CZ gate. (b) Physical-level graph structure of
the state |[4+.) = |0.) +|1.). (¢) Physical-level graph structure of a lattice-
level three-qubit linear graph state.

qubit i, is a stabilizer of the initial graph state. The stabilizers S; and S5,

are transformed by C% H; as

a=x [ z—z [] z=m|x ][] z |,
jen(n) jEN(1) jeN(1)

an=x%X || z—x ][] z=m(x ][] z|H,
FEN(1)AN(2) FEN(1)AN(2) FEN(1)AN(2)
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1,1 |+) (1] [H|—
1,25 |+)

1,3 |+

2,15 |+) (o]
2,2 |+) L)
2,3 |+)

3,1 |+) [H}—
3,2 |+)

3,3 |+)

Figure 59: Encoding circuit of the state |[+) := |0z) + |1z) in the (3,3)
parity encoding. It employs multiple copies of the state |[+) := |[H) + |V),
Cz gates, and Hadamard gates. The label [, j] for each physical-level qubit
indicates the index i of the block and the index j of the photon in the block.

where AAB :=AUB\ (AN B) for two sets A and B. Also, for each qubit i €

N(1),

gi=X [ z—xx2 ][] z=m|x ][] z|H.
JEN(i) JeN\{1} JEN()A{2}

Therefore, the overall effect of the process is, for each qubit i adjacent
to qubit 1, to flip the connectivity of the qubits 2 and i (namely, connect
them if they are disconnected and disconnect them if they are already con-
nected) and then apply H;. An example of this transformation is presented
in Fig. [5§|(a).

Next, we obtain the graph structure of the state |+,) := [0p) + |1.).
Fig. |59| shows the encoding circuit of the state for the (3,3) parity encod-

ing, which employs multiple copies of the state |[4) := |H) 4 |V), CZ gates,
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and Hadamard gates. Here, we label the jth physical qubit of the ith block
by [i,j]. It is straightforward to generalize it for any pair of (n,m) The
graph structure of |+,) shown in Fig. b) is obtained by preparing nm
isolated vertices and tracking the transformation of the graph via the Cz and
Hadamard gates in the circuit.

A lattice-level CZ gate C# is done by m? physical CZ gates:

ci= 1] ¢t (4.16)

i,j<m

where C 1 1s the CZ gate between the [£, j] qubit of the first lattice-level
qubit and the [k, ] qubit of the second lattice-level qubit. It can be verified

as follows: The stabilizer generators of the (n,m) parity encoding are
XiiXi(j+1)y (Vi<n, Vj<m—1), HZ,JZ,H (Vi<n—1)
and the lattice-level Pauli operators are
X, =Xi1-- X, Zy =711 Zim,

where X;; (Z;;) is the Pauli-X (-Z) operator on the [i, j] qubit. It is straight-
forward to see that the RHS of Eq. (4.16) commutes with all the stabilizers
and transforms the lattice-level Pauli operators correctly.

Combining the above results on the |+.) state and the lattice-level
Cz gate, we attain the graph structure of a lattice-level three-qubit linear

graph state shown in Fig. [5§|c). The only left ingredient is the lattice-level

187 :



B
=
=
=
7

¥
7

—(#] [H]—

Figure 60: Circuit to implement the lattice-level Hadamard gate of the (3,
3) parity encoding.

Hadamard gate (Hp). The circuit for Hy, is obtained by simply connecting
the decoding circuit, the physical Hadamard gate, and the encoding cir-
cuit, which is explicitly shown in Fig. [60] for the (3, 3) parity encoding. By
transforming the graph in Fig.[58(c) with appropriate lattice-level Hadamard
gates, we finally get the desired graph structures of the post-H microclusters
shown in Fig. #5] Note that, for central microclusters, the middle lattice-

level qubits are replaced with unencoded physical-level qubits.

4.7.1 Details of error simulations

Here we describe the error simulation method in detail. We first intro-

duce the parameters that determine the details of PTQC:

* pssl: If True, star clusters generated by successful step-1 fusions
are post-selected for step 2. If False, all generated star clusters are

used regardless of the fusion results.
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Figure 61: Structure of a logical identity gate for simulations where the
code distance is d = 5 and the length along the simulated time (¢) axis is T
in the unit of a cell.

hic: If True, the H-configuration is HIC. If False, it is HIS.

sprd: If True, single-photon resolving detectors are used. f False,

on-off detectors are used.

n, m: The (n,m) parity encoding is used to encode side qubits.

J: The maximal number of By’s in a BSMpc. (See the CBSM scheme

in Sec.[4.3)
For a fixed parameter setting, we consider an RTCS lattice whose bound-
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aries are in the form of a cuboid as visualized in Fig. which implements
a logical identity gate. Let us term the three axes of the cuboid as the x-, y-,
and r-axis and the corresponding boundaries as the x-, y-, and z-boundaries.
The t-axis is also referred to as the simulated time axis. The cuboid has
the widths of d — 1 unit cells along the x- and y-axis, where d is the code
distance, and the width of 7" = 4d + 1 unit cells along the ¢-axis. The value
of T is arbitrarily set to be larger enough than d for reducing the effects
of errors near the f-boundaries. The x- and #-boundaries are set to be pri-
mal, while the y-boundaries are set to be dual. In other words, the x- and
t-boundaries adjoin normally on primal unit cells, while the y-boundaries
cross the middle of primal unit cells. For error simulations, we count error
chains connecting the opposite x-boundaries, thus we assume that the qubits
on the #-boundaries do not have errors.

We use a Monte-Carlo method for the simulations. Each trial proceeds

as follows:

1. Sample the outcomes of all fusions in steps 1 and 2 (only step 2 if
psslis True) by the probabilities shown in Sec.d.3] which depend

on the values of n, m, j, and 1.

2. For each fusion outcome, the corresponding error probabilities (¢ign,
qiett) are obtained and whether the fusion has a sign or letter error
is randomly determined by the probabilities. These error probabili-
ties and errors are then propagated to appropriate central qubits de-
termined by the value of hic. For each central qubit i, the presence

or absence of an error and its probability are assigned to a boolean
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variable error; and a floating-point variable ger ;, respectively.

3. For each central qubit i, a photon loss is sampled with probability
n. If it has a loss, gerr,; is updated to 0.5 and error; is flipped with

probability 50%.

4. The syndrome of each parity-check operator (which corresponds to a
primal unit cell) is determined by the values of error;’s of the qubits

in the support of the operator.

5. The syndromes are decoded to infer the locations of the errors. We
use the weighted minimum-weight perfect matching decoder via Py-
Matching package [95] where the weight for each qubit i is 1og[(1 — Gerr.i) / qerr.i]-
(If gerr,; = O, the weight is infinity, which is handled by ignoring the
qubit from the input of the decoder.) Exceptionally, if every value of
Gerr,; 18 either O or 1/2, the qubits with ger; = 1/2 are given the weight

of one, not zero, for a technical reason.

6. The remaining errors are obtained by comparing the original and esti-
mated errors. If the number of the remaining errors on one side of the

x-boundaries is odd, we regard that this trial has a logical error.

The logical error rate p; for a given parameter setting is obtained by
repeating the above process a sufficient number of times. In detail, we repeat
the process until Apy/pr. < 0.1 is reached where Apy. is half the width of the
99% confidence interval. The logical error rates p(Lg) M), pgm(n) are calcu-
lated while varying 1 for two code distances d =9, 11 and the loss thresh-

old My, is obtained by finding the largest 1 satisfying p(L1 D M) —|—Ap(L”) m) <
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4.7.2 Details of resource analysis

Here, we describe the details of resource analysis on PTQC. We first
investigate calculating Ny, the expected number of required GHZ-3 states
to generate one star cluster. Ngyy, is used to obtain the expected total number
%frg of GHZ-3 states to achieve the target logical error rate of ptLarg for the
logical identity gate with the length of d — 1 unit cells.

By using the optimization method presented in Sec. #.2.2] we deter-
mine the merging graphs and the orders of the merging operations for center

central

and side post-H microclusters and calculate their resource overheads Ny,

and Ngffz Then we get

tral id id . .
« [(N(C}?Ilzra +N(s}1HeZ) /psuCC,stepl +N(S}1H'3z] /psucc,stepl lfpssl 1S True,
NGuz =
tral idi . .
Ntz +2NGiz ifpsslisFalse,

where pgucestept 18 the average success probability of step-1 fusions and
pssl is defined in Sec.

To obtain the simulation results in Sec. [#.2.3] we sample 1200 values
of Ngl}(fz through the aforementioned process. Let N (V,) be the minimal
values of Ng/[HCZ for the first 600 (total 1200) samples. If Ny = N,, the value
is returned. If otherwise, we sample 1200 values of Ngllgz again and denote
the minimal Ng/lgz for the total 2400 samples by N3. If N, = N3, the value is
returned. If otherwise, we sample 2400 merging graphs again and so on. By

varying the total number of samples in this way, it is possible to increase the
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odds that we reach close to the real optimal value.
After obtaining Ngy, (at | = 1)), we consider the logical identity gate
with T = d — 1 (see Fig. to calculate 9\4}2\@. 9\4712@ is determined by the

following equality:
Nz = Nz (2] jors + 1)(3d§l§rg = 3d e +1),

where d e is the minimal code distance to achieve the target logical error
rate of ptLarg for the identity gate when 11 =1q. dptLarg is obtained by employing
the error simulation method in Fig. However, this method simulates
the logical identity gate with T = 4d + 1, while our current interest is that

with T = d — 1. From an obtained logical error rate p; from the method

with T = 4d 4 1, we estimate the logical error rate pg) per two layers

(one unit cell) from the relation

L= Y. (f) (pg))t(l —pg))T_t = % [1 - (1 —2p(Ll)>T],

t<T:odd

where T = 4d + 1. Using a similar relation for T = d — 1, we can convert p;

into the logical error rate p; of the gate with 7 = d — 1. We then obtain dplarg
L

by calculating the logical error rate p(Ld) at N = Mo for each code distance

d < 11 and finding the smallest d satisfying p(Ld) < pfrg. If p(L“) > ptLaIg,

dplarg is estimated from the linear extrapolation of the points (9, log p(Lg))
L

and (11, logp(L“)).
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Chapter 5

Conclusion

Measurement-based quantum computing (MBQC) is an attractive method-
ology for conducting quantum computing, thanks to its nature that it is
processed with only single-qubit measurements provided that entangled re-
source states are supplied. Optical systems are particularly suitable to im-
plement MBQC since single-qubit measurement can be made with high ac-
curacy and entangled resource states can be generated with linear optical
circuits such as beam splitters. However, the detrimental effects of various
error sources during computation must be sufficiently suppressed by error-
correcting techniques to obtain reliable outcomes. Not only that, a large
number of resources demanded to generate cluster states makes its realiza-
tion technically difficult.

In this dissertation, we have explored two different schemes for univer-
sal fault-tolerant MBQC with topologically-encoded logical qubits, which
have several significant advantages over previous approaches including re-
source efficiency. The first scheme investigated in Chapter[3] which is platform-
independent, uses color-code-based cluster states as resource states instead
of conventional Raussendorf’s three-dimensional cluster states (RTCSs).
We elaborately designed the methods to perform elementary logic gates and
correct errors that can occur in different regions of a cluster state. Notably,

we showed that it is significantly more hardware-efficient when conducting
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the phase and Hadamard gates than the scheme with RTCSs, which is due
to the discovery that these gates can be implemented natively without addi-
tional techniques or resources. The second scheme addressed in Chapter ]
which operates in linear optical systems, exploits parity-encoded multipho-
ton qubits to boost the success probability of entangling operations for ef-
ficient construction of cluster states. We verified that this new protocol can
tolerate high photon loss rates near 8% and has advantages over previous
approaches in terms of loss-tolerance, resource overheads, or feasibility of
basic elements. We further proposed a graph-theoretical algorithm to opti-
mize the resources required to generate large-scale cluster states. We antici-
pate that our suggestions can contribute to lowering the technical barriers to
accomplishing topological MBQC.

We finish this dissertation by presenting several related open questions:

1. We can construct cluster states based on various quantum error-correcting
codes besides surface and color codes. For example, one may consider
the XZZX surface code, which has been recently getting attention due
to its exceptional thresholds [99]]. Are there any benefits to using such

cluster states for MBQC?

2. We presented a color-code-based scheme in Chapter[3] but the linear-
optical scheme in Chapter[d]is based on RTCSs. It is because we made
use of the existing scheme for constructing an RTCS from GHZ-3
states. If we apply the parity encoding and the Bayesian error tracking
method to the color-code-based scheme, how will the performance be

compared to the previous results?
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3. Are there any other encoding schemes better than the parity encoding

for boosting the success probability of the type-II fusion?

4. How can we reduce the number of required switching circuits? Our
parity-encoding-based protocol requires many of them for various
parts such as adaptive lattice-level Bell-state measurement and post-
selection of GHZ-3 states. They may heavily affect the overall photon

loss rate.

We hope that these questions will be resolved in the near future.
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