



Master's Thesis of Biological Sciences

# The genetic history of ancient Siberian populations

고대 시베리아 집단의 유전학적 역사

February 2023

Graduate School of Natural Sciences Seoul National University Biological Sciences Major

Haechan Gill

## The genetic history of ancient Siberian populations

Advised by Professor Choongwon Jeong

### Submitting a master's thesis of Biological Sciences

February 2023

### Graduate School of Natural Sciences Seoul National University Biological Sciences Major

Haechan Gill

Confirming the master's thesis written by Haechan Gill February 2023

| Chair      | Lim, Young Woon  | (Seal) |
|------------|------------------|--------|
| Vice Chair | Jeong, Choongwon | (Seal) |
| Examiner   | Shin, Seunggwan  | (Seal) |

### Abstract

Siberia is a vast geographic region spanning North Asia from Ural Mountain to the Pacific Ocean that is covered with tundra and taiga forests. Although Siberia has been sparsely populated, the history of the Siberian populations is complicated and interesting. This complication is because multiple migrations and admixtures have occurred in Siberia, and ancient genomes have contributed to revealing these events. Indeed, Eastern and Western Eurasians mixed frequently in Siberia, and also the ancestors of Native Americans were formed and migrated from Siberia to America. However, since ancient Siberian genomes have been analyzed focusing on the relationship with Native Americans for recent years, a comprehensive understanding of the relationship between ancient Siberian populations is lacking. In order to solve this problem, published genomes were analyzed comprehensively to reconstruct the detailed genetic history of ancient Siberian populations and their impact on other populations. As a result, before the Middle Holocene began, Siberian populations were already divided into population located in Lake Baikal and population located in Yakutia region. Genetic exchanges between the two populations occurred during the Neolithic period, consistent with changes in genetic profiles and cultures in each region. Then, the impact of the Yakutia population was explored. They were found to influence the genetic makeup of present-day Uralic-speaking people, Nganasan, Selkup people, and north-eastern Europeans. Furthermore, the Yakutia population also affected both Yenisei-speaking Kets and NaDene-speaking Athabaskans in North America, suggesting that the Yenisei and Na-Dene languages shared common Siberian ancestors. This result will be used as an essential example for studying a correlation between linguistic similarity and genetic similarity and used for reconstructing the formation of North Eurasians and their migration to America in detail.

**Keyword:** Siberia, Archaeogenetics, Middle Holocene, Human population genetics, Uralic-language, Dene-Yenisei language, Yakutia Student Number : 2021-23420

### Table of Contents

| Abstracti                                                       |
|-----------------------------------------------------------------|
| List of Figuresv                                                |
| List of Tables vii                                              |
| 1. Introduction 1                                               |
| 1.1. General introduction to Archaeogenetics 1                  |
| 1.2. Archaeogenetic studies of early Siberian populations 1     |
| 1.3. Development of diverse Siberian cultures during the Middle |
| Holocene 3                                                      |
| 1.4. Shared Siberian ancestry among Uralic language family. 5   |
| 1.5. Dene-Yenisei language hypothesis and its relevance with    |
| Paleo Eskimo 6                                                  |
| 1.6. Purpose of the study 8                                     |
| 2. Material and Methods 11                                      |
| 2.1. Genotype data preparation11                                |
| 2.2. Principal Component Analysis 12                            |
| 2.3. <i>F</i> -statistics 12                                    |
| 2.4. Admixture modeling analysis14                              |
| 2.5. Graph-based analysis16                                     |
| 3. Results 18                                                   |
| 3.1.1. Data preparation and archaeological background 18        |
| 3.1.2. Population structure of ancient Siberian                 |
| 3.1.3. Proximal source of ANE and ANA ancestry for Middle       |
| Holocene Siberia                                                |
| 3.1.4 Complex and multiple admixture events occurred during     |
| Holocene 34                                                     |
| 3.2.1. The origin of present-day Uralic speaking people 47      |

| 3.2.2 Siberian ancestry in north-eastern Europe | originated |
|-------------------------------------------------|------------|
| from Neolithic Yakutia culture                  | 53         |
| 3.2.3. Common Siberian ancestors of Dene-Yenise | i speaking |
| people originated from Yakutia                  | 58         |
| 4. Discussion                                   | 61         |
| References                                      | 64         |
| 국문 초록                                           | 69         |

## List of Figures

| Figure 1. The sampling sites of the key ancient Siberian genomes       |
|------------------------------------------------------------------------|
| and major demographic events9                                          |
| Figure 2. The sampling sites of the key ancient and present-day        |
| genomes used in this study20                                           |
| Figure 3. Principal component analysis performed with present-day      |
| Eurasian and American individuals23                                    |
| Figure 4. Principal component analysis performed with present-day      |
| Eurasian individuals24                                                 |
| Figure 5. Distal <i>qpAdm</i> modeling of APS individuals and APS-like |
| Middle Holocene Siberians28                                            |
| Figure 6. Genetic affinity measured by $outgroup-F_3$ statistics for   |
| APS-like and ANE-like Siberians                                        |
| Figure 7. Genetic affinity measured by $outgroup-F_3$ statistics for   |
| EastBaikal_N and ANA-like Siberians                                    |
| Figure 8. Genetic symmetricity test between ANE-like Siberians         |
| and each of proximal source                                            |
| Figure 9. Genetic symmetricity test between ANA-like Siberians         |
| and proximal ANA source                                                |
| Figure 10 Manually fitted admixture graph explaining population        |
|                                                                        |
| dynamics of ancient Siberian populations                               |

| Figu | re 1 | 11.  | Gene | etic | affin | ity | mea   | sure | d by | οι   | itgr | oup | $-F_3$ | st | atist | ics   | for  |
|------|------|------|------|------|-------|-----|-------|------|------|------|------|-----|--------|----|-------|-------|------|
| I    | ores | sent | -da  | уU   | ralic | -sı | peaki | ng p | opu  | atio | ons  |     | ••••   |    |       | ••••• | . 49 |

| Figure | 12.  | Genetic  | symmetricity | test | between | Selkup | and | Yakutia |
|--------|------|----------|--------------|------|---------|--------|-----|---------|
| line   | eage | populati | ons          |      |         |        |     | 50      |

### List of Tables

| Table 1. Distal <i>qpAdm</i> modeling of key ancient Siberians                             |
|--------------------------------------------------------------------------------------------|
| Table 2. The genetic cladality tests between APS, APS-likeSiberians and ANE-like Siberians |
| Table 3. The genetic cladality tests between ANA and ANA-like    Siberians    31           |
| Table 4. Proximal admixture modeling of Yakutia_MN                                         |
| Table 5. Proximal admixture model of irk030 and WestBaikal_LNBA                            |
| Table 6. The genetic cladality tests between ANA-like Siberians 42                         |
| Table 7. The genetic cladality tests between Middle HoloceneSiberians43                    |
| Table 8. Proximal admixture modeling of Yakutia_LN                                         |
| Table 9. Proximal admixture modeling of WestBaikal_EN 45                                   |
| Table 10. Cladality tests of present-day Nganasan                                          |
| Table 11. Proximal admixture modeling of present-day Uralic speaking populations           |
|                                                                                            |
| Table 12. Proximal admixture models for Bolshoy individuals aretested by qpAdm56           |

| and Eskimo | Aleut | populations | are tested | by | <i>qpAdm</i> | 60 | ) |
|------------|-------|-------------|------------|----|--------------|----|---|
|------------|-------|-------------|------------|----|--------------|----|---|

| Appendix | 1. A list | of Middle | Holocene | Siberian | genomes | used in |    |
|----------|-----------|-----------|----------|----------|---------|---------|----|
| this st  | udy       |           |          |          |         | ,       | 71 |

Appendix 2. A list of worldwide populations used in this study......74

### 1. Introduction

#### 1.1. General introduction to Archaeogenetics

As DNA sequencing and Polymerase Chain Reaction (PCR) technologies advance, ancient DNA can be used as molecular data in population genetics (Pääbo et al., 1989). Existing population genetic and evolutionary theories could be proved and applied to practical research using ancient genome data (Patterson et al., 2012). Archaeogenetics is a study that reconstructs demographic histories such as migration, admixture, and domestication by analyzing increasing ancient genome data (Kim et al., 2018). In particular, studies of human evolution have received much attention and significantly impacted the understanding of human history and finding the causes of genetic diseases (Bouwman & Rühli, 2016). Archaeogenetics will be studied more actively and developed further in the future.

# 1.2. Archaeogenetic studies of early Siberian populations

Siberia is a vast geographical region spanning north Asia that is covered with tundra and taiga forests (Cocks & Torsvik, 2007). Since Siberia has unsuitable vegetation for crop cultivation, thus hunting, gathering, and nomadic pastoralism were common in this region (Krupnik, 2000; Weber & Bettinger, 2010). However, although Siberia has been populated sparsely, the history of the Siberian population is quite complicated and interesting. This complication is because multiple migrations and admixtures have occurred in Siberia, and ancient genomes have revealed demographic events over the past several years (Raghavan et al., 2014; Sikora et al., 2019).

According to the oldest Siberian genome from Ust'-Ishim in western Siberia (Ust'-Ishim from here on), Siberia was occupied by anatomically modern humans at least 45 thousand years ago (kya) (Fu et al., 2014). Since Ust'-Ishim is genetically symmetric with Western Eurasian and Eastern Eurasian, a common Eurasian ancestor occupied Siberia first. After 10,000 years, two Upper Paleolithic 31,000-years-old individuals genetically close to Western Eurasian were found in the Yana river (Yana\_RHS from here on) in northern Siberia (Sikora et al., 2019). Interestingly, while the major ancestry of Yana\_RHS is Western Eurasian, they also have minor Eastern Eurasian ancestry represented by a 34,000-year-old individual from Salkhit Valley in northeastern Mongolia, suggesting a pretty ancient admixture between Western and Eastern Eurasian (Massilani et al., 2020). Therefore, the Upper Paleolithic Siberian ancestors had a distinctive genetic composition, including Western Eurasian and Eastern Eurasian ancestry (Figure 1A).

As the Last Glacial Maximum began 33,000 years before present (BP), northern Siberians migrated south to avoid cold climates (Sikora et al., 2019). Consequently, descendants of Yana\_RHS, a 24,000-year-old individual from Mal'ta (MA1) and two 18,000-year-old individuals from Afontova Gora (AG2, AG3)

2

appeared in south-central Siberia during LGM (Fu et al., 2016; Raghavan et al., 2014). These individuals had similar genetic profiles that were named "Ancient North Eurasian" (ANE) and found to affect western Siberians, Europeans as well as Native Americans (Fu et al., 2016). More specifically, the ANE population mixed with Native American ancestors who diverged from east Asian, and after that, Native American ancestors migrated from Siberia to America by crossing the Bering Land Bridge (Fu et al., 2014) (Figure 1B). Interestingly, Native American ancestry remained in Siberia. A 14,000-year-old individual from the Ust-Kyakhta-3 site in the south of Lake Baikal (UKY) and a 9,800year-old individual from the Kolyma river in northern Siberia (Kolyma\_M) were suggested to represent close relatives of Native American and referred as "Ancient Paleo Siberian" (APS) (Sikora et al., 2019; Yu et al., 2020) (Figure 1B).

# 1.3. Development of diverse Siberian cultures during the Middle Holocene

At the beginning of the Holocene (10,000 years BP), two distinctive populations already existed in Siberia: ANE and APS. However, "Ancient North Asian" (ANA), the East Asian population represented by hunter-gatherers from Devil's Cave in Russia Far East (DevilsCave\_N) (Siska et al., 2017) and Amur river basin (AR\_EN) (Ning et al., 2020) migrated north to Siberia during the Middle Holocene (7,000 years BP to 5,000 BP) (K + 1 + nç et al., 2021). As a result, genomic aspects of the Middle Holocene Siberia became complicated, and diverse cultures appeared during this period (Figure 1C).

Lake Baikal and Yakutia, the largest republic of Russia in the Far East, are the representative archaeological sites where artifacts and ancient genomes from the Middle Holocene have been discovered (de Barros Damgaard et al., 2018; K + I + nç et al., 2021; Sikora et al., 2019; Yu et al., 2020). According to the previous study, ANA ancestry was first transferred to the east Baikal region, which is close to the Amur river (K + I + nç et al., 2021). Then, ANA ancestry spread to the west Baikal and Yakutia regions during the Neolithic period. As a result, the preexisting APS and ANE ancestry were largely replaced by ANA ancestry in both Baikal and Yakutia regions.

Before the introduction of ANA ancestry in Yakutia, the Middle Neolithic individual in Yakutia were closer to APS and belonged to Belkachi culture, descendants of Syalakh culture (Slobodin, 2019). Unlike the Middle Neolithic culture, following Late Neolithic Yakutia culture was affected by the migration of ANA ancestry during the Neolithic period (K + I + nç et al., 2021). Late Neolithic Yakutia culture, Ymyiakhtakh spread as far as Chukotka Peninsula and contributed largely to present-day Far East populations (Flegontov, Alt + n + § + k, et al., 2016; Stepanov et al., 2012).

Similarly, Early Neolithic west Baikal individuals, Kitoi people, were closer to ANA like Ymyiakhtakh, which implies the introduction of ANA ancestry in the west Baikal region (de Barros Damgaard et al., 2018). While no significant genetic changes occurred in the Yakutia region after the migration of ANA ancestry, ANE ancestry resurged in the west Baikal region during the Early Bronze Age (de Barros Damgaard et al., 2018; K + I + nç et al., 2021; Yu et al., 2020). During this period, cultural change also occurred from Kitoi culture to Serevo-Glazkovo culture in the west Baikal region (Weber et al., 2002). The reintroduction of distal ANE ancestry has explained this resurgence of ANE ancestry in previous studies (de Barros Damgaard et al., 2018; K + I + nç et al., 2021; Yu et al., 2020).

However, it is still being determined where distal ANE ancestors came from and whether the reintroduction of ANE ancestry occurred. Moreover, although the genetic makeup of Yakutia and Lake Baikal was adequately explained independently, spatiotemporal analysis of whole Middle Holocene populations still needs to be improved. For instance, archaeological evidence supported the migration of Kitoi people from the west Baikal region to the Yakutia region (Kuzmin & Bellwood, 2015). However, the genetic relationship between Kitoi and Belkachi culture has never been studied. Thus, a comprehensive understanding of the relationships between Middle Holocene Siberian populations is necessary.

# 1.4. Shared Siberian ancestry among Uralic language family

Present-day Siberians speak diverse languages, including Uralic, Yukaghir, Turkic, Tungusic, and Yenisei (Abondolo, 2015; Khabtagaeva, 2019). Among them, Uralic-language is a widespread language in North Eurasia that is spoken by present-day north Siberian such as Nganasan, Nenets, and Selkup, as well as by north-eastern Europeans such as Finns, Saami, and Hungarian (Lamnidis et al., 2018). Interestingly, north-eastern Europeans and northern Siberians share linguistic similarities despite the long physical distance and geographical barrier of the Ural Mountains. Moreover, not only linguistic similarity between them but the genetic makeup of north-eastern Europeans was also shaped by the migration of Siberian ancestors (Jeong et al., 2019). For instance, 3,500-year-old early Metal Age individuals from Bolshoy Oleni Ostrov in the Kola Peninsula were found to possess Siberian ancestry and transferred Siberian ancestry to present-day Uralicspeaking north-eastern European (Lamnidis et al., 2018).

However, it has yet to be revealed how the Siberian ancestors influenced north-eastern Europeans. In the previous study, Siberian ancestry was represented by Nganasan, present-day Uralic-speaking people (Lamnidis et al., 2018). In other words, the ancestors of Nganasan and when the Siberian ancestors of northeastern Europeans migrated are still uncertain. Moreover, since Nganasan is an eastern representative of other present-day north Eurasian such as Selkup, finding Siberian ancestors of Nganasan is also necessary to understand the genetic makeup of north Eurasians (Jeong et al., 2019).

# 1.5. Dene-Yenisei language hypothesis and its relevance with Paleo Eskimo

As mentioned above, the Yenisei language is one of the

language families in Siberia. However, the Yenisei language is only spoken by Ket people, and other Yenisei-speaking populations are extinct (Georg, 2008; Vajda, 2013). In addition, since the Yenisei language is distinctive from other languages spoken in Siberia, the origin of the Yenisei language has been controversial (Vajda, 2019; Vovin, 2000). One of the hypotheses for the origin of the Yenisei language is about the shared origins of the Yenisei language and Na-Dene language, which Athabaskans speak in north America (Vajda, 2019). Not only linguistic evidence but genetic evidence also has been suggested. For instance, the major Y haplogroup of Ket is the Q1 subclade (90%) which is common in Native Americans but rare in Siberian except for Selkup people (60%) (Pinotti et al., 2019). In addition, autosomal analysis unraveled the genetic connection between Ket people and Paleo-Eskimo, represented by the Saqqaq culture who influenced Athabaskan (Flegontov et al., 2019; Flegontov, Changmai, et al., 2016). In summary, the Ket people and Athabaskans share common ancestors through Paleo-Eskimos. However, whether Ket people were influenced by back migration of Paleo-Eskimo ancestry is still uncertain. The existence of common Siberian ancestors of Ket and Paleo-Eskimo can also explain this similarity.

A recent study reported genetic similarity between Paleo-Eskimo and a Middle Neolithic individual from Yakutia (K + l + nç et al., 2021). However, whether Middle Neolithic Yakutia ancestry can replace Paleo-Eskimo ancestry in Athabaskan or Ket people has never been tested. Therefore, studying Middle Neolithic Yakutia ancestry and its spread is necessary for unraveling the origin of the Yenisei and Na-Dene language.

#### 1.6. Purpose of the study

This study will reveal the demographic history of Middle Holocene Siberian populations. Since genetic interactions between Yakutia and Lake Baikal cultures have been understudied, the first purpose will be to dissect two populations and confirm if there was a genetic exchange between the two regions. Then, the influence of Yakutia ancestry will be explored on worldwide populations to explain shared Siberian ancestry among present-day Uralicspeaking populations. Finally, the Yakutia genome will be compared with the Paleo-Eskimo genome and tested whether Yakutia ancestry was transferred to Na-Dene-speaking Athabaskans. This result will shed light on the origins of the Yenisei language. The proposed three primary purposes of this study are presented in Figure 1C.



Figure 1. The sampling sites of the key ancient Siberian genomes and major demographic events. (A) The sampling sites of Upper Paleolithic

Siberian ancient genomes, Yana\_RHS, and Eastern Eurasian ancient genomes, Salkhit, are presented. (B) The sampling sites of Ancient North Eurasian (ANE) and Ancient Paleo Siberian (APS) are presented. According to previous studies, the ancestors of Native Americans diverged from the East Asian population, Ancient North Asian (ANA), and then met the ANE population. When migrating to America, Native American ancestry was transferred to the APS population. The process of a series of admixture and migration is presented on the map. (C) The sampling sites of Middle Holocene Siberian populations and ANA populations are presented. The migration of ANA ancestry to Siberia is presented, and three major purposes of this study are presented. The base map data is downloaded from Natural Earth (https://www.naturalearthdata.com/downloads/), and the coordinates of each sample from the AADR annotation file v52.2 are (https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadrdownloadable-genotypes-present-day-and-ancient-dna-data).

### 2. Material and Methods

#### 2.1. Genotype data preparation

All genotype data used in this study are from Allen Ancient DNA Resource (AADR) v52.2, uniformly curated genotypes for thousands of ancient and present-day individuals (https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadrdownloadable-genotypes-present-day-and-ancient-dna-data". version 52.2). There are two SNP datasets: 1240K, a set of 1,233,013 SNP sites in the human genome, and Human Origins (HO), a subset of 1240K merged with present-day human data typed on the Human Origins array with 597,573 sites (Consortium, 2015). The HO dataset was used only for analysis including present-day populations, and the 1240K dataset was used for the rest of the analysis.

Since group-based methods assume independence between individuals (i.e., each genome is treated as an independent sample from a population), close relatives must be excluded for further analysis. To exclude close relatives, pairwise mismatch rates (PMR) between every pair of genomes were calculated by dividing the number of mismatched genotypes by the number of sites covered in both genomes (Kennett et al., 2017). Then, kinship coefficients were calculated by PMR, and one extra pair of duplicates which was not reported was found. For each firstdegree pair or duplicate, one of the individuals with low sequencing coverage was removed for further analysis. In addition, outliers reported in previous studies were also removed. Samples used in this study are listed in Appendix 1 and Appendix 2.

### 2.2. Principal Component Analysis

Since genotype matrix data is high-dimensional, dimension reduction methods were frequently used for data visualization. Principal Component Analysis (PCA), one of the dimension reduction methods, was performed with present-day individuals in the HO dataset using *smartpca* v18140 from EIGENSOFT version 8.0.0, and the 'lsqrproject: YES' option was used to project ancient samples on precalculated principal components (Patterson et al., 2006). The first PCA was performed with present-day Eurasian and Native American populations, and the second PCA was performed with present-day Eurasian. Present-day populations used in PCA are listed in Appendix 2.

### 2.3. F-statistics

Although PCA is practical and intuitive for describing the data pattern, quantitative analysis and demographic hypothesis tests are impossible with PCA. Thus, quantitative analysis and demographic hypothesis are tested by F-statistics in this study. F-statistics is a measurement of shared genetic drift between populations and is calculated by the allele frequencies of populations (Patterson et al., 2012). F-statistics between two different populations (referred to as " $F_2$ ") is estimated by the mean of the square of allele frequency difference and can be interpreted as a branch length subtending two populations in the phylogenetic tree (Peter, 2016).

F-statistics can also be calculated for three and four populations, but the purpose of each test is different (Patterson et al., 2012).  $F_3$  statistics is defined as the mean product of the allele frequency difference of the other two populations against one fixed population. In other words, for fixed population A and the other two populations B and C,  $F_3$  (A; B, C) is defined as the mean of (a-c)(a-b) (a, b, and c represent allele frequency of A, B, and C). The meaning of  $F_3$  statistics depends on what the fixed group is. If a fixed population, A is an outgroup of B and C, then  $F_{\mathfrak{z}}$  (A; B, C), referred to as *outgroup*- $F_{\mathfrak{z}}$ , measures shared genetic drift between B and C against A (Raghavan et al., 2014). Otherwise,  $F_3$  (A; B, C) can be used for testing admixture because it can be negative only if A has intermediate allele frequencies due to admixture between B and C (Durand et al., 2011). The final form of F-statistics,  $F_4$  (A, B; C, D) (A is usually outgroup), is defined as the mean of (a-b)(c-d) and used for testing the cladality of proposed tree topology (Durand et al., 2011). If no asymmetric gene flow has occurred between B and C or B and D (i.e., tree topology (A, (B, (C, D))) is correct), then the expected  $F_4$  (A, B; C, D) is zero. Otherwise,  $F_4$  (A, B; C, D) can be negative or positive when the proposed tree topology is wrong or needs admixture. A significantly positive  $F_4$  value implies asymmetric gene flow between B and C, and a negative value implies asymmetric gene flow between B and D.

In this study, F-statistics were calculated by qp3pop and f4 functions from the R library ADMIXTOOLS2 2.0.0. ver 2.0.0.

(https://github.com/uqrmaie1/admixtools, publication pending). Central African population, Mbuti was used as an outgroup to calculate *outgroup*- $F_3$  and  $F_4$  statistics in the form of  $F_4$  (Mbuti, worldwide; target1, target2). *Outgroup*- $F_3$  was used for measuring shared genetic drift to infer proximal sources or descendants of the target population, and  $F_4$  statistics were used for testing symmetricity between targets or searching additional admixture sources. Worldwide populations used in F-statistics are listed in Appendix 2.

#### 2.4. Admixture modeling analysis

As an application of F-statistics, the qpWave method was developed to infer how many independent genetic streams are necessary for a set of target populations against a set of outgroups (Reich et al., 2012). qpWave is based on multiple  $F_4$  statistics and infers the rank (the number of independent column or row vectors) of the matrix composed with  $F_4$  statistics. For example, if all  $F_4$  statistics of the form  $F_4$  (target1, target2; outgroup1, outgroup2) are zero, then the rank of the  $F_4$  matrix is also zero. Zero rank of the matrix implies that targets are symmetric to each other against all outgroup populations, and only one genetic stream from the outgroup is enough to explain all target populations. Likewise, if the rank of  $F_4$  matrix is r, then at least (r+1)independent streams from outgroups are necessary to explain target populations.

qpAdm is also an application of F-statistics and can be interpreted as a particular case of qpWave (Lazaridis et al., 2016). qpAdm supposes that the target population is a mixture of source populations. If the admixture is correct, one of *the*  $F_4$  vectors can be expressed as a linear combination of other  $F_4$  vectors, and then the rank of *the*  $F_4$  matrix must be the number of sources. qpAdm compares whether the full-rank model (assumes no admixture and has the most parameters) is significantly better than the admixture model (has fewer parameters than the full-rank model). If the full-rank model is significantly better (i.e., the P-value is lower than the cutoff, 0.05), then it means the admixture model is infeasible. Otherwise, the admixture model is feasible, and admixture proportions can be estimated.

*Qpwave* and *qpadm* function from R library ADMIXTOOLS2 2.0.0. (https://github.com/uqrmaie1/admixtools, publication pending) were used for admixture modeling analysis. Following populations were used as а base outgroup set for both *qpWave* and *qpAdm* analysis: present-day central Africa population Mbuti (n=5), Southeast Asian Ami (n=2), Native American Mixe (n=3), South Asian Onge (n=2) (Mallick et al., 2016), Neolithic Iranians from the Ganj Dareh site Iran\_N (n=8)(Lazaridis et al., 2016), Epipaleolithic European Villabruna (n=1) (Fu et al., 2016), Anatolian Neolithic Anatolia\_N (n=23) (Mathieson et al., 2015), and Neolithic southern Russia West\_Siberia\_N (n=3) (Narasimhan et al., 2019). In addition, when multiple admixture models feasible, *qpAdm* rotating which were approach, systematically shifts candidates from target to outgroup, was used to find the best proximal source (Harney et al., 2021).

#### 2.5. Graph-based analysis

component-wise admixture In order to test models comprehensively, graph-based analysis was implemented by using the qpgraph function from the R library ADMIXTOOLS2 2.0.0. (https://github.com/uqrmaie1/admixtools, publication pending). *Qpgraph* automatically fits the branch length, which is measured by F-statistics and estimates admixture proportions of a given graph topology (Patterson et al., 2012). Since *qpgraph* does not search other graph topologies, it differs from automated-graph search programs like treeMix (Pickrell & Pritchard, 2012). However, a fully-automated graph search algorithm based on *qpgraph*, *find\_graph* function has been developed recently in ADMIXTOOLS2. Although the graph is likely to be over-fitted and fitted to the local optimum by the *find\_graph* function, consensus features between fitted graphs are informative.

In this study, the *qpgraph* function was used to construct the admixture graph of Middle Holocene Siberian populations manually. Before graph fitting,  $F_2$  statistics between all pairs of target populations are calculated by *extract\_f2* function in ADMIXTOOLS2 with 'max\_miss=0' option, the same as 'allsnps: NO' in the previous version. The number of within SNP sets was 182,628. Mbuti population was also used as an outgroup in this analysis, and the following populations were used for distal representatives: MA1 for ANE; WHG for Mesolithic hunter-gatherers from Europe (Mathieson et al., 2018); USR1 for Native Americans (Moreno-Mayar et al., 2018); EastBaikal\_N for ANA. Then, Middle Holocene populations were systematically added by following orders: irk030,

Dzhylinda-1, WestBaikal\_EN, Yakutia\_MN, Saqqaq, WestBaikal\_LNBA, and Yakutia\_LN.

Then, Lake Baikal populations and Yakutia populations were replaced with Metal Age north-eastern European (Russia\_Bolshoy) (Lamnidis et al., 2018) and Comb Ceramic Complex huntergatherers (Estonia\_MN\_CCC) (Saag et al., 2017) to find the best admixture graph explaining the migration of Siberian ancestry to north-eastern Europe. In this case, the number of within SNP sets was 151,255.

### 3. Results

The result section will be divided into two parts because of quantity and complexity. The first part (3.1) delineates a general description of data preparation and visualization. Then, the spatiotemporal demographic history of Middle Holocene Siberian populations will be tested by population genetic analysis. The second part (3.2) explains the impact of Middle Holocene Siberian populations on other regions and linguistic families.

# 3.1.1. Data preparation and archaeological background

Ancient and present-day genomes data used in this study are included in the Allen Ancient DNA Resource (AADR, version 52.2) dataset (Method). First, three well-known distal sources of Middle Holocene Siberian were prepared: Ancient North Eurasian (ANE) represented by Upper Paleolithic genomes, Afontova Gora3 (AG3) and Mal'ta1 (MA1) (Fu et al., 2016; Raghavan et al., 2014); Ancient North Asian (ANA) represented by early Neolithic huntergatherers from Devil's Gate Cave (DevilsCave\_N) and Amur river (AR\_EN) (Ning et al., 2020; Siska et al., 2017); Ancient Paleo Siberian (APS) represented by Paleolithic genome from Lake Baikal (UKY) and Mesolithic genome from Kolyma river (Kolyma\_M) (Sikora et al., 2019; Yu et al., 2020) (Figure 2).

Then, the Middle Holocene Siberian genomes were prepared.

Middle Holocene Siberian genomes are mainly from Lake Baikal, Yakutia, and Kolyma river region, and the number of genomes from Middle Holocene is relatively larger than that of genomes from Pleistocene (de Barros Damgaard et al., 2018; K + I + nç et al., 2021; Sikora et al., 2019; Yu et al., 2020). Since these genomes were reported from multiple different studies, relatedness needs to be checked. Thus, the pairwise mismatch rate (PMR) between every pair of genomes was calculated to infer the kinship coefficient (Kennett, Douglas J. et al. 2017) (Methods, Appendix 1). As a result, an extra pair of duplicates not reported in AADR was found. Then, duplicates, first-degree relatives, and outliers reported in previous studies were removed for further analysis.

Finally, one ancient population and three present-day populations were selected as target groups to explore the influence in north-eastern Europe (Russia\_Bolshoy) (Lamnidis et al., 2018), Uralic-speaking (Nganasan, Selkup) and Yenisei-speaking (Ket) populations. The sampling sites of key samples are presented in Figure 2.



Figure 2. The sampling sites of the key ancient and present-day genomes used in this study. The sampling sites of ancient and present-day genomes used in this study are presented. Triangles represent ancient genomes, and squares represent present-day genomes. Distal source populations (AG3, MA1 for ANE; UKY, Kolyma\_M for APS; Amur\_EN, DevilsCave\_N for ANA), which are used for explaining the formation of Middle Holocene Siberians, are represented by light pink triangles. Among Middle Holocene Siberians, key individuals, irk030, Dzhylinda-1, and Yakutia\_MN, are marked separately, and the rest of the Middle Holocene populations are marked based on geographic locations. A red triangle represents the north-eastern European target from Bolshoy Oleni Ostrov (Bolshoy). Three present-day Siberian targets, Nganasan, Selkup, and Ket, are represented by green, yellow, and blue squares, respectively. The base map data is downloaded from Natural Earth (<u>https://www.naturalearthdata.com/downloads/</u>), and the coordinates of each sample are from the AADR annotation file v52.2 (<u>https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data</u>).

#### 3.1.2. Population structure of ancient Siberian

Principal component analysis (PCA) was performed with present-day Eurasian and American populations, and ancient genomes were projected on the calculated PCs to explore the population structure of studied genomes. As reported in previous studies, PC1 separated individuals from west to east, and PC2 separated individuals from Eurasians to Americans (Jeong et al., 2019). Almost Middle Holocene genomes from Lake Baikal and Yakutia were located on "ANE-ANA" cline stretching between ANE represented by AG3 and ANA represented by DevilsCave\_N (Figure 3). Exceptionally, two Lake Baikal samples, Dzhylinda-1 and irk030, were not on the ANE-ANA cline and shifted toward Native American populations represented by USR1 (Moreno-Mayar et al., 2018) along the PC2 axis like APS such as UKY and Kolyma\_M.

Except for irk030 and Dzhylinda-1, the rest of the Middle Holocene Siberian genomes were clustered by period and location. Each of the clusters was named as follows: Early Neolithic West Baikal (WestBaikal\_EN); Late Neolithic to Bronze Age West Baikal (WestBaikal LNBA); Neolithic East Baikal (EastBaikal N); Middle Neolithic Yakutia (Yakutia\_MN); Late Neolithic Yakutia (Yakutia\_LN); These clusters were divided into two groups according to affinity against ANE and ANA: ANE-like Siberian, WestBaikal\_LNBA and Yakutia\_MN that were shifted toward ANE; ANA-like Siberian, WestBaikal\_EN, Yakutia\_LN and EastBaikal\_N that were shifted toward ANA (Figure 3). Interestingly, the frequency of the Y-haplogroup is almost fixed in each subgroup.

21

For example, 26 of 27 Y-haplogroups of ANE-like Siberians are Q, and 12 of 16 Y-haplogroups of males in ANA-like Siberians are N (Appendix 1).

Next, PCA was performed with only present-day Eurasian populations (Figure 4). In this result, PC2 separated the Asian population from north to south. Yakutia\_LN and WestBaikal\_EN were split, and Yakutia\_LN was shifted toward Nganasan population along PC2. This shift suggested that ancient individuals in Yakutia shared more genetic drift with Nganasan than that other ancient Siberians.



Figure 3. Principal component analysis performed with present-day Eurasian and American individuals. Principal component analysis is performed with present-day Eurasian and American individuals, and each present-day sample is placed on principal component 1 and 2 coordinates by grey circle. Key ancient genomes and present-day genomes are projected on pre-calculated principal components and labeled.



Figure 4. Principal component analysis performed with present-day Eurasian individuals. Principal component analysis is performed with present-day Eurasian individuals only, and each present-day sample is placed on principal component 1 and 2 coordinates by grey circle. Key ancient genomes and present-day genomes are projected on precalculated principal components and labeled.

# 3.1.3. Proximal source of ANE and ANA ancestry for Middle Holocene Siberia

The previous study explained Middle Holocene Siberians by admixtures between APS and ANA populations (Yu et al., 2020). However, the time between APS and the Middle Holocene Siberian is over 2,000 years. It means reconstructing high-resolution dynamics of Middle Holocene populations with distal APS sources is impossible. Therefore, proximal sources for the Middle Holocene Siberian were searched. Dzhylinda-1 and irk030 were assumed to be proximal sources of APS ancestry in Middle Holocene Siberian populations and referred to as APS-like Siberians because they were shifted toward APS on PCA results (Figure 3).

As with APS, irk030 and Dzhylinda-1 were expected to share Native American ancestry. In order to validate this assumption quantitatively, qpAdm analysis was performed to test whether a three-way admixture: ANE + ANA + Native American is also feasible for irk030 and Dzhylinda-1. As a result, irk030 and Dzhylinda-1 were adequately modeled as a three-way admixture with similar ancestry proportion to UKY and Kolyma\_M (Figure 5, Table 1). The same admixture model was tested for Middle Holocene populations, and all Middle Holocene populations showed diminished Native American ancestry compared to the former four individuals (Table 1). Furthermore, qpWave was implemented to infer how many independent genetic streams were necessary for grouped populations, and only one stream was enough for (APS, irk030) and (APS, Dzhylinda-1) (Table 2). In other words, irk030

25
and Dzhylinda-1 can be explained by only genetic drift from APS without additional admixture. Meanwhile, an additional genetic stream was necessary when Dzhylinda-1 and irk030 were grouped (Table 2).

Next,  $outgroup-F_3$  statistics were calculated to confirm genetic continuity from Dzhylinda-1/irk030 to the Middle Holocene Siberian (Figure 6). Then, irk030 shared the most genetic drift with WestBaikal\_LNBA, and Dzhylinda-1 shared the most genetic drift with Yakutia\_MN. This result mirrored the geographical location of each sample. Indeed, irk030 was found in the West Baikal region as WestBaikal\_LNBA individuals, and Dzhylinda-1 was found in the northeast Baikal region, which is close to the Yakutia region (Figure 2). Then, *qpWave* analysis further confirmed that only one stream was enough for (Dzhylinda-1, Yakutia\_MN) and at least two independent genetic streams were necessary to explain (irk030, WestBaikal\_LNBA) (Table 2). Interestingly, Dzhylinda-1 showed close genetic affinity to not only Yakutia\_MN but also Paleo-Eskimo Saqqaq. All combinations of subgroups among Yakutia\_MN, Saqqaq, and Dzhylinda-1 were tested by qpWave, and the best topology was (Dzhylinda-1, (Yakutia\_MN, Saqqaq)) (Table 2).

Likewise, EastBaikal\_N was assumed as the proximal ANA source because EastBaikal\_N is close to AR\_EN, one of the ANA populations, both geographically and genetically (Figure 2, Figure 3). *QpWave* analysis confirmed that no extra genetic stream was necessary for (AR\_EN, EastBaikal\_N), however at least two genetic streams were necessary for EastBaikal\_N and other ANA populations such as DevilsCave\_N, Yumin (Table 3). Therefore, proximal ANA ancestry was introduced from the Amur river basin

to the East Baikal region.  $Outgroup-F_3$  results also supported close genetic affinity between ANA-like Siberian and EastBaikal\_N (Fig. 7). However, both Yakutia\_LN and WestBaikal\_EN were found to require extra genetic stream against EastBaikal\_N by qpWave analysis (Table 3).



**Figure 5. Distal** *qpAdm* modeling of APS individuals and APS-like Middle Holocene Siberians. The results of three-way admixture model: AG3 (ANE) + DevilsCave\_N (ANA) + USR1 (Native American) are presented by stacked-bar plot. Horizontal bars represent the standard error of ancestry proportion calculated by the 5cM block jackknifing method provided in the *qpAdm* function.

Table 1. Distal *qpAdm* modeling of key ancient Siberians. The results of *qpAdm* modeling composed of distal source, ANE, ANA, and Native American are summarized. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

| Target           | Ref1 | Ref2         | Ref3 | p-value  | Coeff1              | Coeff2            | Coeff3              |
|------------------|------|--------------|------|----------|---------------------|-------------------|---------------------|
|                  | AG3  | DevilsCave_N | -    | 3.31E-03 | $0.265 {\pm} 0.018$ | $0.735 \pm 0.018$ | -                   |
| UEV              | AG3  | AR_EN        | -    | 1.40E-03 | 0.257±0.024         | $0.743 \pm 0.024$ | -                   |
| UKI              | AG3  | DevilsCave_N | USR1 | 9.27E-01 | $0.184 \pm 0.025$   | 0.573±0.041       | $0.242 \pm 0.055$   |
|                  | AG3  | AR_EN        | USR1 | 8.32E-01 | 0.163±0.031         | $0.538 \pm 0.049$ | $0.299 {\pm} 0.064$ |
|                  | AG3  | DevilsCave_N | -    | 2.19E-05 | $0.279 \pm 0.017$   | $0.721 \pm 0.017$ | -                   |
| Kalama M         | AG3  | AR_EN        | -    | 3.53E-03 | $0.268 \pm 0.023$   | $0.732 \pm 0.023$ | -                   |
| Kolyma_w         | AG3  | DevilsCave_N | USR1 | 6.02E-01 | $0.188 \pm 0.024$   | $0.541 \pm 0.038$ | $0.271 {\pm} 0.053$ |
|                  | AG3  | AR_EN        | USR1 | 9.99E-01 | 0.171±0.03          | $0.55 \pm 0.045$  | $0.28 \pm 0.062$    |
|                  | AG3  | DevilsCave_N | -    | 3.27E-05 | $0.295 {\pm} 0.017$ | $0.705 \pm 0.017$ | -                   |
| :-1-020          | AG3  | AR_EN        | -    | 2.28E-04 | $0.304 \pm 0.022$   | $0.696 \pm 0.022$ | -                   |
| IIKUSU           | AG3  | DevilsCave_N | USR1 | 1.33E-01 | 0.214±0.024         | $0.535 \pm 0.04$  | $0.251 {\pm} 0.054$ |
|                  | AG3  | AR_EN        | USR1 | 8.77E-01 | $0.198 \pm 0.03$    | $0.474 \pm 0.048$ | $0.329 {\pm} 0.064$ |
|                  | AG3  | DevilsCave_N | -    | 1.52E-05 | $0.233 {\pm} 0.019$ | $0.767 \pm 0.019$ | -                   |
| Dahylinda 1      | AG3  | AR_EN        | -    | 1.21E-04 | $0.227 {\pm} 0.026$ | $0.773 \pm 0.026$ | -                   |
| Dznynnda-1       | AG3  | DevilsCave_N | USR1 | 7.10E-01 | 0.136±0.025         | $0.556 \pm 0.041$ | $0.307 {\pm} 0.056$ |
|                  | AG3  | AR_EN        | USR1 | 8.44E-01 | 0.113±0.032         | 0.513±0.053       | $0.374{\pm}0.07$    |
|                  | AG3  | DevilsCave_N | -    | 7.04E-01 | $0.238 \pm 0.021$   | $0.762 \pm 0.021$ | -                   |
| Volutio MN       | AG3  | AR_EN        | -    | 1.66E-01 | 0.21±0.035          | $0.79 \pm 0.035$  | -                   |
| Takutta_IVIIN    | AG3  | DevilsCave_N | USR1 | 7.17E-01 | 0.216±0.031         | $0.722 \pm 0.046$ | $0.061 \pm 0.063$   |
|                  | AG3  | AR_EN        | USR1 | 2.72E-01 | $0.161 \pm 0.046$   | $0.676 \pm 0.077$ | 0.162±0.1           |
|                  | AG3  | DevilsCave_N | -    | 1.54E-03 | $0.242 \pm 0.01$    | $0.758{\pm}0.01$  | -                   |
| WestDeiltel INDA | AG3  | AR_EN        | -    | 9.81E-04 | $0.238 \pm 0.014$   | $0.762 \pm 0.014$ | -                   |
| wesibaikai_LinbA | AG3  | DevilsCave_N | USR1 | 1.01E-02 | $0.219 \pm 0.013$   | $0.706 \pm 0.022$ | $0.076 \pm 0.03$    |
|                  | AG3  | AR_EN        | USR1 | 1.18E-01 | $0.19{\pm}0.018$    | $0.656 \pm 0.029$ | $0.154{\pm}0.039$   |
|                  | AG3  | DevilsCave_N | -    | 1.15E-03 | $0.129{\pm}0.011$   | $0.871 \pm 0.011$ | -                   |
| Volutio IN       | AG3  | AR_EN        | -    | 2.22E-03 | $0.129 \pm 0.017$   | $0.871 \pm 0.017$ | -                   |
| I akutta_LIN     | AG3  | DevilsCave_N | USR1 | 5.35E-03 | 0.101±0.017         | $0.81 \pm 0.028$  | $0.089 {\pm} 0.038$ |
|                  | AG3  | AR_EN        | USR1 | 7.44E-02 | 0.078±0.023         | $0.756 \pm 0.037$ | $0.166 \pm 0.05$    |
|                  | AG3  | DevilsCave_N | -    | 1.56E-01 | 0.111±0.01          | $0.889 \pm 0.01$  | -                   |
| WestDaile1 EN    | AG3  | AR_EN        | -    | 1.96E-01 | 0.113±0.015         | $0.887 \pm 0.015$ | -                   |
| westbalkal_EIN   | AG3  | DevilsCave_N | USR1 | 9.82E-02 | 0.111±0.014         | $0.887 \pm 0.025$ | $0.002 \pm 0.033$   |
|                  | AG3  | AR_EN        | USR1 | 4.04E-01 | $0.085 \pm 0.02$    | 0.829±0.033       | $0.086 \pm 0.044$   |

Table 2. The genetic cladality tests between APS, APS-like Siberians and ANE-like Siberians. Genetic cladality between all kinds of pairs between APS, APS-like and ANE-like Siberian individuals are tested by qpWave. Non-significant p-values (p > 0.05) are highlighted in grey and support cladality between target individuals against base outgroup.

| target 1    | target 2        | target 3    | target 4 | p-value  |
|-------------|-----------------|-------------|----------|----------|
| UKY         | irk030          | -           | -        | 5.3E-02  |
| irk030      | Kolyma_M        | -           | -        | 3.31E-01 |
| irk030      | Dzhylinda-1     | -           | -        | 2.81E-03 |
| UKY         | Kolyma_M        | -           | -        | 3.18E-01 |
| UKY         | Dzhylinda-1     | -           | -        | 7.52E-01 |
| Dzhylinda-1 | Kolyma_M        | -           | -        | 2.3E-01  |
| UKY         | Dzhylinda-1     | irk030      | -        | 1.97E-02 |
| UKY         | Kolyma_M        | irk030      | -        | 1.02E-01 |
| Dzhylinda-1 | Kolyma_M        | irk030      | -        | 2.37E-02 |
| UKY         | Kolyma_M        | Dzhylinda-1 | -        | 3.86E-01 |
| UKY         | Kolyma_M        | Dzhylinda-1 | irk030   | 3.27E-02 |
| irk030      | WestBaikal_LNBA | -           | -        | 5.62E-06 |
| irk030      | Dzhylinda-1     | -           | -        | 2.81E-03 |
| irk030      | Yakutia_MN      | -           | -        | 1.86E-03 |
| Dzhylinda-1 | WestBaikal_LNBA | -           | -        | 7.79E-06 |
| Dzhylinda-1 | Yakutia_MN      | -           | -        | 1.03E-01 |
| Yakutia_MN  | WestBaikal_LNBA | -           | -        | 1.40E-01 |
| Saqqaq      | irk030          | -           | -        | 4.13E-05 |
| Saqqaq      | Dzhylinda-1     | -           | -        | 3.96E-02 |
| Saqqaq      | WestBaikal_LNBA | -           | -        | 4.08E-02 |
| Saqqaq      | Yakutia_MN      | -           | -        | 1.64E-01 |



Figure 6. Genetic affinity measured by outgroup  $-F_3$  statistics for APSlike and ANE-like Siberians. *Outgroup*  $-F_3$  statistics are calculated for each APS-like and ANE-like Siberians to explore genetically close populations. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$ (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

Table 3. The genetic cladality tests between ANA and ANA-like Siberians. Genetic cladality between all kinds of pairs between ANA (AR\_EN, DevilsCave\_N, Yumin), EastBaikal\_N and ANA-like Siberian (WestBaikal\_EN, Yakutia\_LN) are tested by *qpWave*. Non-significant pvalues (p > 0.05) are highlighted in grey and support symmetricity between target individuals against base outgroup.

| target1      | target2       | p-value  |
|--------------|---------------|----------|
| EastBaikal_N | AR_EN         | 7.65E-01 |
| EastBaikal_N | DevilsCave_N  | 1.64E-07 |
| EastBaikal_N | Yumin         | 3.83E-03 |
| AR_EN        | DevilsCave_N  | 1.47E-02 |
| AR_EN        | Yumin         | 3.13E-02 |
| DevilsCave_N | Yumin         | 2.58E-06 |
| EastBaikal_N | Yakutia_LN    | 2.18E-14 |
| EastBaikal_N | WestBaikal_EN | 7.01E-12 |
| Yakutia_LN   | WestBaikal_EN | 5.42E-02 |



Figure 7. Genetic affinity measured by *outgroup*- $F_3$  statistics for EastBaikal\_N and ANA-like Siberians. *Outgroup*- $F_3$  statistics are calculated for each EastBaikal\_N and ANA-like Siberians to explore genetically close populations, and 20 closest populations are shown. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$  (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

## 3.1.4 Complex and multiple admixture events occurred during Holocene

Population dynamics in the Lake Baikal and Yakutia region were complicated. ANA-related ancestry increased, and the major Yhaplogroup was changed from Q to N over time in the Yakutia region, but a reversed pattern was observed in Lake Baikal. Thus, the proximal admixture model for each Middle Holocene Siberian population was tested to propose more high-resolution dynamics.

Yakutia\_MN Since and WestBaikal\_LNBA were undistinguishable by base outgroup in *qpWave* results (Table 2), proximal sources which can dissect Yakutia\_MN and WestBaikal\_LNBA were necessary. Dzhylinda-1 and irk030 were tested as proximal sources by qpWave analysis. As expected, each qpWave p-values decreased to 2.71E-02 and 2.14E-04 when Dzhylinda-1 and irk030 were added to the outgroup, respectively. Next, direction of gene flow was tested by calculating  $F_4$  statistics, and asymmetric gene flows were confirmed from irk030 to WestBaikal\_LNBA (F<sub>4</sub> (Mbuti, irk030; WestBaikal\_LNBA, Yakutia\_MN): Z = -3.83, and from Dzhylinda-1 Yakutia\_MN (F<sub>4</sub> (Mbuti, Dzhylinda-1; WestBaikal\_LNBA, to Yakutia\_MN); Z=3.25). Thus, Yakutia\_MN and WestBaikal\_LNBA were found to have different proximal APS ancestry, which Dzhylinda-1 and irk030 represent, respectively.

As confirmed by *qpWave* (Table 2), an extra genetic stream was unnecessary for (Yakutia\_MN, Dzhylinda-1), which means Yakutia\_MN could be explained by only genetic drift from

Dzhylinda-1. This symmetricity was further tested against worldwide populations by  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; Dzhylinda-1, Yakutia\_MN), and results were symmetric to all populations except two, Yakutia\_LN and WestBaikal\_EN (Figure 8). This asymmetricity implies asymmetric gene flow between ANA-like Siberian and Yakutia\_MN. Thus, *qpWave* was implemented again for (Dzhylinda-1, Yakutia\_MN) by adding ANA-Siberians outgroups (Table 4). Yakutia\_LN like to and WestBaikal\_EN distinguished between Yakutia\_MN and Dzhylinda-1, and even Yakutia\_MN = Dzhylinda-1 + Yakutia\_LN/WestBaikal\_EN admixture models were found to be feasible by *qpAdm* analysis (Table 4). Then, WestBaikal\_EN and Yakutia\_LN were compared by *qpAdm* rotating approach, and Yakutia\_LN was better than WestBaikal\_EN (Table 4).

For modeling of WestBaikal\_LNBA,  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; irk030, WestBaikal\_LNBA) were calculated to explore possible admixture source of WestBaikal\_LNBA against irk030. irk030 had deep ANE ancestry represented by AG3 and MA1 whereas WestBaikal\_LNBA had more ANA ancestry represented by AR\_EN and EastBaikal\_N (Figure 8). Therefore, WestBaikal\_LNBA could be modeled adequately by twoadmixture: irk030 + EastBaikal\_N/WestBaikal\_EN, and way EastBaikal\_N was demonstrated as the best ANA proxy by *qpAdm* rotating approach (Table 5). To exclude the possibility of gene flow from WestBaikal\_LNBA to irk030, a two-way admixture: irk030 = WestBaikal\_LNBA + ANE was tested by qpAdm and found to be infeasible (Table 5). As a result, the gene would have flowed from irk030 to WestBaikal\_LNBA because

irk030 not only predates time estimates of all WestBaikal\_LNBA individuals but is not modeled as WestBaikal\_LNBA + ANE.

admixture models of ANA-like Siberians Next. (i.e., Yakutia\_LN and WestBaikal\_EN) were tested. A simple one-way model of EastBaikal\_N was infeasible for both Yakutia\_LN and WestBaikal\_EN (Table 3), and they were found to need more ANE by  $F_4$  (Mbuti, worldwide; EastBaikal\_N, sources Yakutia\_LN/WestBaikal\_EN) (Figure 9). Although Yakutia\_LN and WestBaikal\_EN were cladal against the base outgroup in the *qpWave* result (Table 3), they could be distinguished by adding Yakutia\_MN and Dzhylinda-1 to the outgroup (Table 6). In addition,  $F_4$  statistics found that Dzhylinda-1 and Yakutia\_MN were more close to Yakutia\_LN against WestBaikal\_EN (F<sub>4</sub> (Mbuti, Dzhylinda-1; WestBaikal\_EN, Yakutia\_LN):  $Z=4.92, F_4$  (Mbuti, Yakutia\_MN; WestBaikal\_EN, Yakutia\_LN): Z=5.09). Since this implies that WestBaikal\_EN and Yakutia\_LN are not sister clades against Yakutia\_MN and Dzhylinda-1, plausible tree topologies were tested by  $F_4$  statistics (Table 7). Both Yakutia\_LN and WestBaikal\_EN were closer to Yakutia\_MN than Dzhylinda-1, and Dzhylinda-1 was symmetric to Yakutia\_LN and Yakutia\_MN which topology, (Dzhylinda-1, (Yakutia\_MN, suggests the tree Yakutia\_LN)). On the other hand, Dzhylinda-1 was significantly closer to Yakutia\_MN than WestBaikal\_EN. This pattern is possible only if Yakutia\_MN is an admixture of Dzhylinda-1 and WestBaikal\_EN.

As expected, Yakutia\_LN could be modeled as Dzhylinda-1/Yakutia\_MN/Saqqaq + EastBaikal\_N, and Yakutia\_MN was found to be the best source by *qpAdm* rotating approach (Table 8). In

addition, Dzhylinda-1 was not a feasible source for WestBaikal\_EN, and irk030 was found to be the best proximal source (Table 9). Although Yakutia\_LN was found to be the best proximal source for Yakutia\_MN by rotating approach (Table 4), this could be explained even when Yakutia\_LN was a close descendant of Yakutia\_MN. Considering the  $F_4$  results and cultural contexts, Yakutia\_LN is more likely to be a descendant of Yakutia\_MN.

Lastly, all proximal models of the Middle Holocene Siberians were tested comprehensively by graph-based method, *qpgraph*. Basal graph including Mbuti, MA1, WHG, EastBaikal\_N, and USR1 was constructed referring to the previous study (Yu et al., 2020), and ancient Siberian populations were added to the basal graph one by one based on each proximal model. The final admixture graph was statistically plausible (i.e., worst |Z| < 3) and needed seven admixture events (Figure 10). Table 4. Proximal admixture modeling of Yakutia\_MN. The results of qpAdm and qpWave modeling for Yakutia\_MN are summarized. To find the best proximal source, candidate sources are systematically added to base outgroup and change of significance is observed. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

|            |             |               |          | Base outgroup |             |          | Base outgroup + WestBaikal_EN |             |          | Base outgroup + Yakutia_LN |                   |  |
|------------|-------------|---------------|----------|---------------|-------------|----------|-------------------------------|-------------|----------|----------------------------|-------------------|--|
| Target     | Ref1        | Ref2          | p-value  | Coeff1        | Coeff2      | p-value  | Coeff1                        | Coeff2      | p-value  | Coeff1                     | Coeff2            |  |
|            | Dzhylinda-1 | -             | 1.03E-01 | -             | -           | 7.09E-04 | -                             | -           | 2.75E-04 | -                          | -                 |  |
| Yakutia_MN | Dzhylinda-1 | WestBaikal_EN | 3.30E-01 | 0.708±0.121   | 0.292±0.121 | -        | -                             | -           | 1.56E-03 | 0.672±0.132                | $0.328 \pm 0.132$ |  |
|            | Dzhylinda-1 | Yakutia_LN    | 2.53E-01 | 0.688±0.146   | 0.312±0.146 | 1.04E-01 | 0.535±0.103                   | 0.465±0.103 | -        | -                          | -                 |  |

Table 5. Proximal admixture model of irk030 and WestBaikal\_LNBA. The results of qpAdm and qpWave modeling for WestBaikal\_LNBA and irk030 are summarized. To find the best proximal source, candidate sources are systematically added to base outgroup and change of significance is observed. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

|                 |        |                 |          | Base outgroup |                   | Base outgroup + WestBaikal_EN |                   |                   | Base outgroup + EastBaikal_N |                   |                   |
|-----------------|--------|-----------------|----------|---------------|-------------------|-------------------------------|-------------------|-------------------|------------------------------|-------------------|-------------------|
| Target          | Ref1   | Ref2            | p-value  | Coeff1        | Coeff2            | p-value                       | Coeff1            | Coeff2            | p-value                      | Coeff1            | Coeff2            |
|                 | irk030 | EastBaikal_N    | 9.26E-02 | 0.751±0.040   | 0.249±0.040       | 1.14E-01                      | 0.735±0.034       | 0.265±0.034       | -                            | -                 | -                 |
| WestBaikal_LNBA | irk030 | WestBaikal_EN   | 1.43E-01 | 0.667±0.047   | 0.333±0.047       | -                             | -                 | -                 | 1.63E-02                     | 0.606±0.034       | 0.394±0.034       |
|                 | irk030 | Yakutia_LN      | 3.48E-02 | 0.650±0.059   | $0.350 \pm 0.059$ | 1.04E-02                      | $0.612 \pm 0.053$ | $0.388 \pm 0.053$ | 5.30E-03                     | $0.577 \pm 0.040$ | $0.423 \pm 0.04$  |
|                 | AG3    | WestBaikal_LNBA | 1.39E-02 | 0.920±0.020   | $0.080 \pm 0.020$ | 2.54E-02                      | 0.920±0.017       | $0.080 \pm 0.017$ | 7.32E-03                     | 0.903±0.018       | $0.097 \pm 0.018$ |
| 11K030          | MA1    | WestBaikal_LNBA | 1.53E-03 | 0.921±0.021   | 0.079±0.021       | 2.51E-03                      | 0.911±0.017       | $0.089 \pm 0.017$ | 2.57E-05                     | $0.884 \pm 0.018$ | 0.116±0.018       |



Figure 8. Genetic symmetricity test between ANE-like Siberians and each of proximal source.  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; Dzhylinda-1, Yakutia\_MN) and  $F_4$  (Mbuti, worldwide; irk030, WestBaikal\_LNBA) are calculated for exploring extra admixture sources. 15 most positive and 15 most negative Z score results are shown in red and blue, respectively. Horizontal bars represent the point estimate  $\pm 3$ (thin),  $\pm 2$  (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.



Figure 9. Genetic symmetricity test between ANA-like Siberians and proximal ANA source.  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; EastBaikal\_N, WestBaikal\_EN) and  $F_4$  (Mbuti, worldwide; EastBaikal\_N, Yakutia\_LN) are calculated for exploring extra admixture sources. 15 most positive and 15 most negative Z score results are shown in red and blue, respectively. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$ (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

Table 6. The genetic cladality tests between ANA-like Siberians. Genetic cladality between WestBaikal\_EN and Yakutia\_LN are tested by adding Dzhylinda-1 or Yakutia\_MN to outgroup sets. Non-significant p-values (p > 0.05) are highlighted in grey and support symmetricity between target individuals against outgroup.

| Target 1      | Target 2   | outgroup                    | p-value  |
|---------------|------------|-----------------------------|----------|
| WestBiakal_EN | Yakutia_LN | base outgroup               | 5.42E-02 |
| WestBiakal_EN | Yakutia_LN | base outgroup + Dzhylinda-1 | 5.50E-05 |
| WestBiakal_EN | Yakutia_LN | base outgroup + Yakutia_MN  | 2.77E-04 |

Table 7. The genetic cladality tests between Middle Holocene Siberians.  $F_4$  statistics are calculated for detecting direction of gene flow and determining plausible tree topology for Dzhylina-1, Yakutia\_MN, Yakutia\_LN and WestBaikal\_EN. Significant results (|Z| > 3) are highlighted in grey.

| pop1   | pop2          | pop3          | pop4          | Z      |
|--------|---------------|---------------|---------------|--------|
|        | WestBaikal_EN | Dzhylinda-1   | Yakutia_MN    | 3.47   |
|        | Dzhylinda-1   | WestBaikal_EN | Yakutia_MN    | 3.13   |
| Mhuti  | Yakutia_MN    | Dzhylinda-1   | WestBaikal_EN | -0.227 |
| Miduti | Yakutia_LN    | Dzhylinda-1   | Yakutia_MN    | 3.53   |
|        | Dzhylinda-1   | Yakutia_LN    | Yakutia_MN    | 0.447  |
|        | Yakutia_MN    | Dzhylinda-1   | Yakutia_LN    | 2.92   |

Table 8. Proximal admixture modeling of Yakutia\_LN. The results of qpAdm modeling for Yakutia\_LN are summarized. To find the best proximal source, candidate sources are systematically added to base outgroup and change of significance is observed. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

|            |             |              | Base outgroup |             | Base outgroup + Yakutia_MN |          |             | Base outgroup + Dzhylinda-1 |          |             |                   |
|------------|-------------|--------------|---------------|-------------|----------------------------|----------|-------------|-----------------------------|----------|-------------|-------------------|
| Target     | Ref1        | Ref2         | p-value       | Coeff1      | Coeff2                     | p-value  | Coeff1      | Coeff2                      | p-value  | Coeff1      | Coeff2            |
| Yakutia_LN | Dzhylinda-1 | EastBaikal_N | 3.25E-01      | 0.344±0.043 | 0.656±0.043                | 3.58E-03 | 0.357±0.060 | 0.643±0.060                 | -        | -           | -                 |
|            | Yakutia_MN  | EastBaikal_N | 8.90E-01      | 0.454±0.057 | $0.546 \pm 0.057$          | -        | -           | -                           | 9.55E-01 | 0.443±0.061 | $0.557 \pm 0.061$ |

Table 9. Proximal admixture modeling of WestBaikal\_EN. The results of qpAdm modeling for WestBaikal\_EN are summarized. To find the best proximal source, candidate sources are systematically added to base outgroup and change of significance is observed. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

|                |             |              | Base outgroup |             | Base outgroup + irk030 |          |                   | Base outgroup + UKY |          |                   |                   |
|----------------|-------------|--------------|---------------|-------------|------------------------|----------|-------------------|---------------------|----------|-------------------|-------------------|
| Target         | Ref1        | Ref2         | p-value       | Coeff1      | Coeff2                 | p-value  | Coeff1            | Coeff2              | p-value  | Coeff1            | Coeff2            |
|                | irk030      | EastBaikal_N | 1.26E-01      | 0.232±0.030 | $0.768 \pm 0.030$      | -        | -                 | -                   | 1.39E-01 | 0.236±0.029       | 0.764±0.029       |
|                | Dzhylinda-1 | EastBaikal_N | 7.61E-03      | 0.278±0.040 | $0.722 \pm 0.040$      | 2.74E-05 | $0.260 \pm 0.045$ | $0.740 \pm 0.045$   | 8.46E-03 | $0.279 \pm 0.041$ | 0.721±0.041       |
| westBaikai_Eiv | UKY         | EastBaikal_N | 2.89E-01      | 0.290±0.034 | $0.710\pm0.034$        | 4.50E-05 | $0.259 \pm 0.039$ | 0.741±0.039         | -        | -                 | -                 |
|                | Kolyma_M    | EastBaikal_N | 1.02E-01      | 0.249±0.034 | 0.751±0.034            | 1.65E-05 | 0.223±0.039       | 0.777±0.039         | 6.17E-02 | 0.260±0.035       | $0.740 \pm 0.035$ |



Figure 10. Manually fitted admixture graph explaining population dynamics of ancient Siberian populations. Admixture graph is based on proximal admixture modeling results and manually fitted by *qpgraph* function.

# 3.2.1. The origin of present-day Uralic speaking people

Based on the population dynamics of Siberia during the Middle Holocene, genetic profiles of the present-day Uralic-speaking populations, Nganasan and Selkup, were studied. According to the PCA result, Yakutia genomes were getting closer to Nganasan over time, and the Bronze Age genome from Krasnoyarsk Krai (Krasnoyarsk\_BA) was also close to Nganasan (Figure 4). As expected, Nganasan showed a high genetic affinity with Yakutia\_LN and Krasnoyarsk\_BA in  $outgroup-F_3$  results (Figure 11). To confirm the necessity of an additional admixture source, *qpWave* was implemented, and an extra gene flow was necessary for (Nganasan, Yakutia\_LN) but unnecessary for (Nganasan, Krasnoyarsk\_BA) (Table 10). Then, qpWave found Yakutia\_LN and Krasnoyarsk\_BA were cladal even if Nganasan was added to the outgroup, implying tree topology, (Nganasan, (Yakutia\_LN, Krasnoyarsk\_BA)) (Table 10). In addition, both Nganasan and Krasnoyarsk\_BA were symmetric to Yakutia\_MN and EastBaikal\_N and adequately modeled as Yakutia\_MN +EastBaikal\_N (Table10, Table 11). Thus, the genetic makeup of Nganasan occurred concurrently with that of Yakutia\_LN, and then Nganasan has isolated from other populations.

Another Uralic-speaking people, Selkup, also showed a high  $outgroup-F_3$  value with ancient Yakutia populations (Figure 4, Figure 11). In order to model Selkup, additional admixture sources were searched by  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide;

Nganasan, Selkup), and ANE populations represented by AG3 and Eastern European hunter-gatherers (EHG) were necessary for Selkup (Figure 12). However, both Nganasan + ANE and Yakutia\_LN + ANE were infeasible for Selkup (Table 11). Thus, Yakutia\_LN was replaced with Yakutia\_MN as a representative of Yakutia\_LN + ANE, and then  $F_4$  (Mbuti, worldwide; Yakutia\_MN, Selkup) found an extra gene flow from Sintashta\_MLBA, the Bronze Age Steppe populations (Figure 12). Then, two-way admixture models, Selkup = Yakutia\_MN + Bronze Age Steppe populations, were tested, and only Yakutia\_MN + Krasnoyarsk\_MLBA was feasible (Table 11).



Figure 11. Genetic affinity measured by *outgroup*- $F_3$  statistics for present-day Uralic-speaking populations. *Outgroup*- $F_3$  statistics are calculated for Nganasan and Selkup population to explore genetically close populations, and 20 closest populations are shown. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$  (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.



Figure 12. Genetic symmetricity test between Selkup and Yakutia lineage populations.  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; Nganasan, Selkup) and  $F_4$  (Mbuti, worldwide; Yakutia\_MN, Selkup) are calculated for exploring extra admixture sources of Selkup. 15 most positive and 15 most negative Z score results are shown in red and blue, respectively. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$  (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

Table 10. Cladality tests of present-day Nganasan. The results of *qpWave* cladality tests between Nganasan and close ancient relatives, Krasnoyarsk\_BA and Yakutia\_LN are summarized. To find plausible topology, targets and other proximal sources are systematically added to outgroup and change of significance is observed. Models with p-value > 0.05 are highlighted.

| Target 1     | Target 2       | outgroup                       | p-value  |
|--------------|----------------|--------------------------------|----------|
|              | Yakutia_LN     | base outgroup                  | 1.38E-02 |
|              | Yakutia_LN     | base outgroup + Krasnoyarsk_BA | 2.93E-03 |
| Nganasan     | Krasnoyarsk_BA | base outgroup                  | 1.63E-01 |
| nganasan     | Krasnoyarsk_BA | base outgroup + Yakutia_LN     | 2.56E-05 |
|              | Krasnoyarsk_BA | base outgroup + Yakutia_MN     | 8.85E-02 |
|              | Krasnoyarsk_BA | base outgroup + EastBaikal_N   | 5.90E-02 |
| Valutia IN   | Krasnoyarsk_BA | base outgroup                  | 9.83E-01 |
| I aKutla_LIN | Krasnoyarsk_BA | base outgroup + Nganasan       | 1.97E-01 |

Table 11. Proximal admixture modeling of present-day Uralic speaking populations. Proximal admixture models for Nganasan, Krasnoyarsk\_BA and Selkup are tested by *qpAdm*. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

| Target         | Ref1        | Ref2             | P-value  | Coeff1            | Coeff2            |
|----------------|-------------|------------------|----------|-------------------|-------------------|
| Nganasan       | Yakutia_MN  | EastBaikal_N     | 7.80E-01 | $0.585 \pm 0.062$ | $0.415 \pm 0.062$ |
| Krasnoyarsk_BA | Yakutia_MN  | EastBaikal_N     | 7.79E-01 | 0.481±0.100       | $0.519{\pm}0.100$ |
|                | Yakutia_LN  | AG3              | 4.71E-68 | $0.666 \pm 0.015$ | $0.334 \pm 0.015$ |
|                | Yakutia_LN  | Estonia_MN_CCC   | 6.99E-09 | $0.658 \pm 0.009$ | $0.342 \pm 0.009$ |
|                | Yakutia_LN  | Sintashta_MLBA   | 2.72E-34 | $0.682 \pm 0.007$ | $0.318 \pm 0.007$ |
|                | Yakutia_LN  | Krasnoyarsk_MLBA | 4.26E-29 | $0.672 \pm 0.007$ | $0.328 \pm 0.007$ |
|                | Nganasan    | AG3              | 8.50E-79 | 0.673±0.013       | $0.327 \pm 0.013$ |
|                | Nganasan    | Estonia_MN_CCC   | 8.29E-16 | $0.672 \pm 0.008$ | $0.328 \pm 0.008$ |
| C -11          | Nganasan    | Sintashta_MLBA   | 2.70E-51 | $0.700 \pm 0.007$ | $0.300 \pm 0.007$ |
| Selkup         | Nganasan    | Krasnoyarsk_MLBA | 1.35E-43 | $0.688 \pm 0.007$ | $0.312 \pm 0.007$ |
|                | Dzhylinda-1 | Sintashta_MLBA   | 3.55E-02 | 0.730±0.012       | $0.270 \pm 0.012$ |
|                | Dzhylinda-1 | Krasnoyarsk_MLBA | 2.82E-02 | $0.723 \pm 0.013$ | $0.277 \pm 0.013$ |
|                | Yakutia_MN  | Sintashta_MLBA   | 4.16E-02 | 0.736±0.013       | 0.264±0.013       |
|                | Yakutia_MN  | Krasnoyarsk_MLBA | 5.10E-02 | 0.727±0.014       | $0.273 \pm 0.014$ |
|                | Saqqaq      | Sintashta_MLBA   | 7.87E-02 | 0.711±0.011       | $0.289 \pm 0.011$ |
|                | Saqqaq      | Krasnoyarsk_MLBA | 1.62E-01 | 0.703±0.012       | $0.297 \pm 0.012$ |

### 3.2.2 Siberian ancestry in north-eastern Europe originated from Neolithic Yakutia culture

The early metal Age individuals from Bolshoy Oleni Ostrov in west Russia (Russia\_Bolshoy) were the oldest samples with Siberian ancestry in north-east Europe.  $Outgroup-F_3$  statistics were calculated first to explore the proximal Siberian sources of Russia\_Bolshoy. Russia\_Bolshoy showed high genetic affinities with Bronze Age genomes from Tarim Basin mummies (Tarim\_EMBA1) (Zhang et al., 2021), ancient Yakutia genomes and the Eastern European hunter-gatherers (EHG) (Figure 13). Although Russia\_Bolshoy showed the highest genetic affinity with Tarim\_EMBA1, they showed pretty asymmetric  $F_4$  statistics against worldwide populations (Figure 13). Since Middle Holocene Yakutia genomes were asymmetrically close to Russia\_Bolshoy than Tarim\_EMBA1, Russia\_Bolshoy = Yakutia lineage + Tarim\_EMBA1 was tested by *qpAdm*. However, this model was insufficient to explain Russia\_Bolshoy and was found to need Eastern European hunter-gatherers sources by  $F_4$  (Mbuti, worldwide; Yakutia\_MN, Russia\_Bolshoy) (Table 12, Figure 13). Then, three-way admixture: Yakutia\_LN + Estonia\_MN\_CCC + Tarim\_EMBA1 was feasible for Russia\_Bolshoy, and the more parsimonious admixture model Yakutia\_MN + Estonia\_MN\_CCC was also feasible (Table 12). Although the two-way admixture model is inconsistent with the Yhaplogroup pattern, the number of Yakutia\_MN samples is too small (n=1) that it is difficult to determine which of the two sources is

better.

Finally, the genetic makeup of the Russia\_Bolshoy population and migration of Yakutia ancestry to the Paleo-Eskimo population were comprehensively tested by *qpgraph*. As a result, Yakutia ancestry was found to be transferred to north-eastern Europe after it diverged from the Paleo-Eskimo population (Figure 14).



Figure 13. *F*-statistics results for exploring admixture model of Russia Bolshoy. *Outgroup*- $F_3$  statistics are calculated for Russia Bolshoy population to explore genetically close populations, and 20 closest populations are shown (Upper left).  $F_4$  statistics of the form  $F_4$  (Mbuti, worldwide; Tarim\_EMBA1, Russia\_Bolshoy) (Upper right) and  $F_4$  (Mbuti, worldwide; Yakutia\_MN, Russia\_Bolshoy) (Bottom left) are calculated for exploring extra admixture sources of Russia\_Bolshoy. 15 most positive and 15 most negative Z score results are shown in red and blue, respectively. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$ (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

Table 12. Proximal admixture models for Bolshoy individuals are tested by qpAdm. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

| Target               | Ref1       | Ref2           | Ref3           | p-value   | Coeff1          | Coeff2            | Coeff3          |
|----------------------|------------|----------------|----------------|-----------|-----------------|-------------------|-----------------|
|                      | Yakutia_LN | Tarim_EMBA1    | -              | 1.42E-174 | 0.370<br>±0.020 | 0.630<br>±0.020   | -               |
|                      | Yakutia_LN | Tarim_EMBA1    | EHG            | 6.17E-03  | 0.413<br>±0.013 | -0.035<br>±0.027  | 0.623<br>±0.023 |
|                      | Yakutia_LN | Tarim_EMBA1    | Estonia_MN_CCC | 1.13E-01  | 0.389<br>±0.014 | 0.158<br>±0.023   | 0.454<br>±0.018 |
| Yakı<br>Yakı<br>Yakı | Yakutia_LN | AG3            | -              | 1.43E-79  | 0.391<br>±0.019 | 0.609<br>±0.019   | -               |
|                      | Yakutia_LN | AG3            | EHG            | 2.58E-01  | 0.409<br>±0.012 | -0.0373<br>±0.031 | 0.628<br>±0.030 |
|                      | Yakutia_LN | AG3            | Estonia_MN_CCC | 4.43E-01  | 0.405<br>±0.015 | 0.152<br>±0.029   | 0.443<br>±0.025 |
| Bolsnoy              | Yakutia_LN | EHG            | -              | 6.14E-03  | 0.404<br>±0.011 | 0.596<br>±0.011   | -               |
|                      | Yakutia_LN | Estonia_MN_CCC | -              | 1.80E-10  | 0.445<br>±0.012 | 0.555<br>±0.012   | -               |
|                      | Yakutia_MN | EHG            | -              | 1.42E-03  | 0.452<br>±0.016 | 0.548<br>±0.016   | -               |
|                      | Yakutia_MN | Estonia_MN_CCC | -              | 3.83E-01  | 0.513<br>±0.019 | 0.487<br>±0.019   | -               |
|                      | Saqqaq     | EHG            | -              | 6.53E-06  | 0.437<br>±0.014 | 0.563<br>±0.014   | -               |
|                      | Saqqaq     | Estonia_MN_CCC | -              | 9.06E-04  | 0.476<br>±0.014 | 0.524<br>±0.014   | -               |

worst Z: -1.6 score: 6.99



Figure 14. Manually fitted admixture graph explaining impact of ancient Yakutia population on north-eastern European. Admixture graph is manually fitted by *qpgraph* based on proximal admixture modeling.

### 3.2.3. Common Siberian ancestors of Dene-Yenisei speaking people originated from Yakutia

The origin of the Yenisei language was explored by reconstructing the admixture history of Ket. According to PCA and *outgroup*- $F_3$  results, Ket showed close relation to Selkup people (Figure 3, Figure 4, Figure 15). As expected, a two-way admixture: Yakutia\_MN + Krasnoyarsk\_MLBA was also feasible (Table 13).

To propose common Siberian ancestors of Yenisei-speaking people and Na-Dene-speaking people, ancient Athabaskans were modeled as Yakutia\_MN + First American represented by Late Pleistocene genome from Clovis burial site (Rasmussen et al., 2014), and Eskimo Aleuts were modeled as Yakutia\_MN + Athabaskan. As expected, Yakutia\_MN could replace the Saqqaq ancestry in both Na-Dene-speaking ancient Athabaskan and Aleut populations (Table 13). Consequently, Ket could be explained as a two-way admixture: Saqqaq + Krasnoyarsk\_MLBA (Table 13). As a result, Yenisei-speaking Ket people and Na-Dene-speaking Athabaskan share their Siberian ancestry, which Yakutia\_MN represents.



Figure 15. Genetic affinity measured by *outgroup*- $F_3$  statistics for present-day Yenisei-speaking populations. *Outgroup*- $F_3$  statistics are calculated for Ket population to explore genetically close populations, and 20 closest populations are shown. Horizontal bars represent the point estimate  $\pm 3$  (thin),  $\pm 2$  (intermediate),  $\pm 1$  (thick) standard error, respectively. Standard errors are calculated by 5cM block jackknifing.

Table 13. Proximal admixture models for Ket, ancient Athabaskan and Eskimo Aleut populations are tested by *qpAdm*. Models with p-value > 0.05 are highlighted in grey and estimates of coefficients are represented with  $\pm$  standard error.

| Target       | Ref1       | Ref2             | p-value  | Coeff1            | Coeff2            |
|--------------|------------|------------------|----------|-------------------|-------------------|
| Ket          | Yakutia_MN | Krasnoyarsk_MLBA | 1.03E-01 | 0.771±0.014       | $0.229 \pm 0.014$ |
|              | Saqqaq     | Krasnoyarsk_MLBA | 8.16E-02 | 0.745±0.012       | 0.255±0.012       |
| Athabaskan   | Yakutia_MN | Clovis           | 2.68E-01 | 0.376±0.029       | $0.624 \pm 0.029$ |
|              | Saqqaq     | Clovis           | 4.54E-01 | 0.376±0.029       | $0.624 \pm 0.029$ |
| Eskimo_Aleut | Yakutia_MN | Athabaskan       | 7.89E-01 | $0.147 \pm 0.040$ | 0.853±0.040       |
|              | Saqqaq     | Athabaskan       | 8.45E-01 | 0.179±0.035       | 0.821±0.035       |

#### 4. Discussion

This study suggests a spatiotemporal demographic model of Middle Holocene Siberian populations. Before Holocene, APS ancestry occupied the Siberia region widely from Lake Baikal to the Kolyma river. Even though the previous study (K + I + nç et al., 2021) did not report about remained APS ancestry during Middle Holocene, two individuals, irk030 and Dzhylinda-1, supported that APS ancestry remained at least until the Neolithic period. Moreover, irk030 and Dzhylinda-1 not only support the existence of APS ancestry but also dissect the Middle Holocene Siberian populations into Yakutia and Lake Baikal lineage. Thus, the Yakutia and Lake Baikal seem to be split at least before Middle Holocene began.

After the Yakutia and Lake Baikal lineage diverged, ANA ancestors migrated from the Amur river basin, affecting both Yakutia and Lake Baikal lineage independently. As a result, the early Neolithic Kitoi culture appeared in the west Baikal region. Then, Kitoi people would have interacted with Middle Neolithic Belkachi culture in the Yakutia region and exchanged genetic materials. This result has been supported by archaeological evidence (Kuzmin & Bellwood, 2015). However, it has never been supported by genomic evidence. Thus, this result is the first genomic evidence of interaction between Kitoi culture and Belkachi culture, and the extent of the influence of Kitoi culture in north Siberian needs to be further studied.

It is also essential to confirm whether genetic materials would have flowed from Yakutia to the west Baikal region. Indeed,
WestBaikal\_LNBA individuals, mostly belonging to the Serevo-Glazkovo culture, showed a similar genetic profile to the Belkachi culture individuals on the PCA. However, no significant gene flow from Yakutia to west Baikal was found in this study, and it seems that the formation of Serevo-Glazkovo culture was unrelated to Belkachi culture or Ymyiakhtakh culture. In other words, the west Baikal and Yakutia populations were split again after the Early Bronze Age. This result will help to understand the descendants of west Baikal populations in the Central Steppe or Altai Mountain (Jeong et al., 2018; Zhang et al., 2021).

Based on the high-resolution dynamics of Siberian populations, the impact of the Yakutia lineage was explored on global populations. Although it was impossible to determine which population was more appropriate for Bolshoy, at least it is clear that Siberian ancestry migrated from the Yakutia region to north-eastern Europe during the Neolithic period. Moreover, Yakutia lineage was also found in present-day Nganasan and Selkup, suggesting that the common origin of the Uralic-speaking people was from Yakutia.

Another exciting result of this study is also related to language families. The origin of the Yenisei-speaking people, a long-debated topic in linguistics, is suggested by studying Ket people. Yeniseispeaking people are found to be related to Na-Dene-speaking people through Belkachi culture and Paleo Eskimos. This result suggests that two language families originated from common Siberian ancestors, and this scenario is more parsimonious than the back migration of Paleo-Eskimo ancestry from America to Siberia. However, since Yakutia lineage also influenced Uralic-speaking people, it is still contentious what makes Yenisei and the Uralic languages differ. This problem is interesting and vital for reconstructing the precise formation of north Eurasian and understanding the evolution of language. Therefore, to solve this problem, Siberian genomes must be paid attention to and studied further in the future.

## References

Abondolo, D. (2015). The Uralic languages. Routledge.

Bouwman, A., & Rühli, F. (2016). Archaeogenetics in evolutionary medicine. *Journal of Molecular Medicine*, *94*(9), 971–977.

Cocks, L. R. M., & Torsvik, T. H. (2007). Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. *Earth–Science Reviews*, 82(1-2), 29–74.

Consortium, G. P. (2015). A global reference for human genetic variation. *Nature*, *526*(7571), 68.

de Barros Damgaard, P., Martiniano, R., Kamm, J., Moreno-Mayar, J. V., Kroonen, G., Peyrot, M., Barjamovic, G., Rasmussen, S., Zacho, C., & Baimukhanov, N. (2018). The first horse herders and the impact of early Bronze Age steppe expansions into Asia. *Science*, *360*(6396), eaar7711.

Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture between closely related populations. *Molecular biology and evolution*, *28*(8), 2239–2252.

Flegontov, P., Alt I n I Ş I k, N. E., Changmai, P., Rohland, N., Mallick, S., Adamski, N., Bolnick, D. A., Broomandkhoshbacht, N., Candilio, F., & Culleton, B. J. (2019). Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. *Nature*, *570*(7760), 236-240.

Flegontov, P., Alt I n I Ş I K, N. E., Changmai, P., Vajda, E. J., Krause, J., & Schiffels, S. (2016). Na-Dene populations descend from the Paleo-Eskimo migration into America. *bioRxiv*, 074476.

Flegontov, P., Changmai, P., Zidkova, A., Logacheva, M. D., Alt I n I Ş I K, N. E., Flegontova, O., Gelfand, M. S., Gerasimov, E. S., Khrameeva, E. E., & Konovalova, O. P. (2016). Genomic study of the Ket: a Paleo-Eskimorelated ethnic group with significant ancient North Eurasian ancestry. *Scientific reports*, 6(1), 1-12.

Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S. M., Bondarev, A. A., Johnson, P. L., Aximu-Petri, A., Prüfer, K., & De Filippo, C. (2014). Genome sequence of a 45,000-year-old modern human from western Siberia. *Nature*, *514*(7523), 445-449.

Fu, Q., Posth, C., Hajdinjak, M., Petr, M., Mallick, S., Fernandes, D.,

Furtwängler, A., Haak, W., Meyer, M., & Mittnik, A. (2016). The genetic history of ice age Europe. *Nature*, *534*(7606), 200-205.

Georg, S. (2008). Yeniseic languages and the Siberian linguistic area. In *Evidence and Counter-Evidence: Essays in Honour of Frederik Kortlandt, Volume 2* (pp. 151-168). Brill.

Harney, E., Patterson, N., Reich, D., & Wakeley, J. (2021). Assessing the performance of qpAdm: a statistical tool for studying population admixture. *Genetics*, *217*(4), iyaa045.

Jeong, C., Balanovsky, O., Lukianova, E., Kahbatkyzy, N., Flegontov, P., Zaporozhchenko, V., Immel, A., Wang, C.-C., Ixan, O., & Khussainova, E. (2019). The genetic history of admixture across inner Eurasia. *Nature ecology & evolution*, *3*(6), 966–976.

Jeong, C., Wilkin, S., Amgalantugs, T., Bouwman, A. S., Taylor, W. T. T., Hagan, R. W., Bromage, S., Tsolmon, S., Trachsel, C., & Grossmann, J. (2018). Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. *Proceedings of the National Academy of Sciences*, *115*(48), E11248–E11255.

Kennett, D. J., Plog, S., George, R. J., Culleton, B. J., Watson, A. S., Skoglund, P., Rohland, N., Mallick, S., Stewardson, K., & Kistler, L. (2017). Archaeogenomic evidence reveals prehistoric matrilineal dynasty. *Nature communications*, 8(1), 1–9.

Khabtagaeva, B. (2019). Language Contact in Siberia: Turkic, Mongolic, and Tungusic Loanwords in Yeniseian. Brill.

Kılınç, G. M., Kashuba, N., Koptekin, D., Bergfeldt, N., Dönertaş, H. M., Rodríguez-Varela, R., Shergin, D., Ivanov, G., Kichigin, D., & Pestereva, K. (2021). Human population dynamics and Yersinia pestis in ancient northeast Asia. *Science advances*, 7(2), eabc4587.

Kim, T., Woo, E. J., & Pak, S. (2018). Principles of Archaeogenetics and the Current Trends of Ancient Genome Studies. *Korean Journal of Physical Anthropology*, *31*(4), 105–119.

Krupnik, I. (2000). Reindeer pastoralism in modern Siberia: research and survival during the time of crash. *Polar Research*, *19*(1), 49–56.

Kuzmin, Y. V., & Bellwood, P. (2015). Northern and North-eastern Asia: archaeology. *The global prehistory of human migration*, 191–196.

Lamnidis, T. C., Majander, K., Jeong, C., Salmela, E., Wessman, A., Moiseyev, V., Khartanovich, V., Balanovsky, O., Ongyerth, M., & Weihmann,

A. (2018). Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. *Nature communications*, 9(1), 1–12.

Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D. C., Rohland, N., Mallick, S., Fernandes, D., Novak, M., Gamarra, B., & Sirak, K. (2016). Genomic insights into the origin of farming in the ancient Near East. *Nature*, *536*(7617), 419-424.

Mallick, S., Li, H., Lipson, M., Mathieson, I., Gymrek, M., Racimo, F., Zhao, M., Chennagiri, N., Nordenfelt, S., & Tandon, A. (2016). The Simons genome diversity project: 300 genomes from 142 diverse populations. *Nature*, *538*(7624), 201-206.

Massilani, D., Skov, L., Hajdinjak, M., Gunchinsuren, B., Tseveendorj, D., Yi, S., Lee, J., Nagel, S., Nickel, B., & Devièse, T. (2020). Denisovan ancestry and population history of early East Asians. *Science*, *370*(6516), 579–583.

Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., Szécsényi-Nagy, A., Rohland, N., Mallick, S., Olalde, I., Broomandkhoshbacht, N., Candilio, F., & Cheronet, O. (2018). The genomic history of southeastern Europe. *Nature*, *555*(7695), 197–203.

Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., & Novak, M. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. *Nature*, *528*(7583), 499-503.

Moreno-Mayar, J. V., Potter, B. A., Vinner, L., Steinrücken, M., Rasmussen, S., Terhorst, J., Kamm, J. A., Albrechtsen, A., Malaspinas, A.-S., & Sikora, M. (2018). Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. *Nature*, *553*(7687), 203-207.

Narasimhan, V. M., Patterson, N., Moorjani, P., Rohland, N., Bernardos, R., Mallick, S., Lazaridis, I., Nakatsuka, N., Olalde, I., & Lipson, M. (2019). The formation of human populations in South and Central Asia. *Science*, *365*(6457), eaat7487.

Ning, C., Li, T., Wang, K., Zhang, F., Li, T., Wu, X., Gao, S., Zhang, Q., Zhang, H., & Hudson, M. J. (2020). Ancient genomes from northern China suggest links between subsistence changes and human migration. *Nature communications*, *11*(1), 1–9.

Pääbo, S., Higuchi, R. G., & Wilson, A. C. (1989). Ancient DNA and the polymerase chain reaction: the emerging field of molecular archaeology (Minireview). *The Journal of biological chemistry*, *264*(17), 9709–9712.

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., & Reich, D. (2012). Ancient admixture in human history. *Genetics*, *192*(3), 1065–1093.

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. *PLoS genetics*, *2*(12), e190.

Peter, B. M. (2016). Admixture, population structure, and F-statistics. *Genetics*, *202*(4), 1485-1501.

Pickrell, J., & Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. *Nature Precedings*, 1-1.

Pinotti, T., Bergström, A., Geppert, M., Bawn, M., Ohasi, D., Shi, W., Lacerda, D. R., Solli, A., Norstedt, J., & Reed, K. (2019). Y chromosome sequences reveal a short Beringian Standstill, rapid expansion, and early population structure of Native American founders. *Current Biology*, 29(1), 149–157. e143.

Raghavan, M., Skoglund, P., Graf, K. E., Metspalu, M., Albrechtsen, A., Moltke, I., Rasmussen, S., Stafford Jr, T. W., Orlando, L., & Metspalu, E. (2014). Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. *Nature*, *505*(7481), 87–91.

Rasmussen, M., Anzick, S. L., Waters, M. R., Skoglund, P., DeGiorgio, M., Stafford, T. W., Rasmussen, S., Moltke, I., Albrechtsen, A., & Doyle, S. M. (2014). The genome of a Late Pleistocene human from a Clovis burial site in western Montana. *Nature*, *506*(7487), 225–229.

Reich, D., Patterson, N., Campbell, D., Tandon, A., Mazieres, S., Ray, N., Parra, M. V., Rojas, W., Duque, C., & Mesa, N. (2012). Reconstructing native American population history. *Nature*, *488*(7411), 370–374.

Saag, L., Varul, L., Scheib, C. L., Stenderup, J., Allentoft, M. E., Saag, L., Pagani, L., Reidla, M., Tambets, K., & Metspalu, E. (2017). Extensive farming in Estonia started through a sex-biased migration from the Steppe. *Current Biology*, *27*(14), 2185-2193. e2186.

Sikora, M., Pitulko, V. V., Sousa, V. C., Allentoft, M. E., Vinner, L., Rasmussen, S., Margaryan, A., de Barros Damgaard, P., de la Fuente, C., & Renaud, G. (2019). The population history of northeastern Siberia since the Pleistocene. *Nature*, *570*(7760), 182–188.

Siska, V., Jones, E. R., Jeon, S., Bhak, Y., Kim, H.-M., Cho, Y. S., Kim, H., Lee, K., Veselovskaya, E., & Balueva, T. (2017). Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago.

Science advances, 3(2), e1601877.

Slobodin, S. B. (2019). Neolithic of the Northeast Asia and the Arctic small tool tradition of the North America.

Stepanov, A., Kuzmin, Y. V., Hodgins, G., & Jull, A. (2012). Kyordyughen site, Ymyiakhtakh culture, Yakutia: An interpretation of burial rite. *Archaeology, Ethnology and Anthropology of Eurasia, 40*(4), 51–61.

Vajda, E. (2019). Yeniseian and Dene hydronyms.

Vajda, E. J. (2013). Yeniseian peoples and languages: a history of Yeniseian studies with an annotated bibliography and a source guide. Routledge.

Vovin, A. (2000). Did the Xiong-nu speak a Yeniseian language? *Central Asiatic Journal*, 44(1), 87-104.

Weber, A. W., & Bettinger, R. (2010). Middle Holocene hunter-gatherers of Cis-Baikal, Siberia: an overview for the new century. *Journal of Anthropological Archaeology*, 29(4), 491-506.

Weber, A. W., Link, D. W., & Katzenberg, M. A. (2002). Hunter-gatherer culture change and continuity in the Middle Holocene of the Cis-Baikal, Siberia. *Journal of Anthropological Archaeology*, *21*(2), 230-299.

Yu, H., Spyrou, M. A., Karapetian, M., Shnaider, S., Radzevičiūtė, R., Nägele, K., Neumann, G. U., Penske, S., Zech, J., & Lucas, M. (2020). Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. *Cell*, *181*(6), 1232-1245. e1220.

Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., Wei, D., Wang, W., Fan, L., & Abuduresule, I. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. *Nature*, *599*(7884), 256-261.

## 국문 초록

시베리아는 우랄산맥에서부터 태평양까지 이어지는 넓은 북아시아를 차지하는 지역으로 툰드라와 타이가 삼림지대로 구성되어 있다. 시베리아는 비록 적은 밀도의 사람들이 살았던 지역이지만, 그 역사는 굉장히 복잡하고 흥미롭다. 그 이유는 여러 차례에 걸친 이주와 혼합이 시베리아에서 있었기 때문이며 고유전체 정보가 이 사건들을 밝히는데 기여해왔다. 실제로 시베리아에서는 동유라시아인과 서유라시아인 사이의 혼합이 빈번히 일어났으며, 아메리카 원주민의 조상 집단이 형성되어 아메리카 대륙으로 이주하기도 하였다. 그러나, 최근 몇 년간 보고된 시베리아의 고유전체들이 아메리카 원주민과의 관계에 집중되어 분석된 나머지 고대 시베리아인 집단들 사이의 포괄적인 관계에 대한 이해는 현재 부족한 상황이다. 따라서 본 연구에서는 이를 해결하기 위해 출판된 고유전체를 종합해 재분석하여, 고대 시베리아 집단의 자세한 유전적 역사를 재구성하고 다른 집단에 끼친 영향을 연구하였다. 그 결과, 시베리아 집단은 중기 홀로세가 시작되기 전부터 야쿠티아와 바이칼 호, 두 개 지역의 고유 집단으로 분기되어 있었다. 그리고 신석기 시대에 두 집단 사이의 유전적 흐름이 있었고 이는 각 지역에서의 유전적 프로필 및 문화적 변화와 일치하였다. 다음으로 야쿠티아 지역 집단이 다른 지역 집단에 끼친 영향을 연구하였고, 이들은 굉장히 활발하게 이주하여 응가나산, 셀쿱 사람과 더불어 북동유럽인과 같은 현대 우랄어족(語族)의 유전자 풀 형성에 큰 영향을 준 것으로 밝혀졌다. 또한, 야쿠티아 집단은 예니세이어를 사용하는 시베리아의 케트 사람과 나테네어를 사용하는 북아메리카의 애서베스카 사람들에게도 영향을 준 것으로 밝혀져 예니세이어족과 나테네어족이 시베리아계 조상을 공유함을 시사하였다. 이 결과는 언어적 유사성과 유전적 유사성 사이의 상관관계를 연구할 수 있는 중요한 연구사례가 될

69

것이며 북유라시아 집단의 형성과 아메리카 대륙으로의 이주를 더 구체적으로 재구성하는데 중요한 정보를 제공할 것이다.

**주요어 :** 시베리아, 중기 홀로세, 고고유전체학, 인류 집단유전학, 우랄어, 데네-예니세이어, 야쿠티아

학번 : 2021-23420

Appendix 1. A list of Middle Holocene Siberian genomes used in this study. This list includes 92 Middle Holocene Siberian genomes which is extracted from AADR dataset and used in this study. 1<sup>st</sup> degree relatives and duplicates were excluded in further analysis and PCA outliers were also excluded in further analysis.

| Genetic ID                | Publication         | Date  | Group ID        | Sex | Y hg    | remark      |
|---------------------------|---------------------|-------|-----------------|-----|---------|-------------|
| UKY001                    | YuCell2020          | 13929 | UKY             | М   | Q1b1    |             |
| Kolyma_River_noU<br>DG.SG | SikoraNature2019    | 9775  | Kolyma_M        | М   | Q1a1    |             |
| irk051_noUDG.SG           | KilincSciAdv2021    | 7922  | Baikal_EN       | F   | n/a     |             |
| irk00x_noUDG.SG           | KilincSciAdv2021    | 8419  | Dzhylinda-1     | М   | C2a1a   |             |
| cta016_noUDG.SG           | KilincSciAdv2021    | 8264  | EastBaikal_M    | F   | n/a     |             |
| irk007_noUDG.SG           | KilincSciAdv2021    | 8801  | WestBaikal_EN   | М   | N1a2    |             |
| DA357_noUDG.SG            | DamgaardScience2018 | 7785  | WestBaikal_EN   | М   | C2a1a   |             |
| DA341_noUDG.SG            | DamgaardScience2018 | 7577  | WestBaikal_EN   | F   | n/a     |             |
| DA359_noUDG.SG            | DamgaardScience2018 | 7545  | WestBaikal_EN   | М   | N1a2    |             |
| DA340_noUDG.SG            | DamgaardScience2018 | 7023  | WestBaikal_EN   | М   | n/a     |             |
| DA245_noUDG.SG            | DamgaardScience2018 | 7944  | WestBaikal_EN   | М   | N1a2    |             |
| DA249_noUDG.SG            | DamgaardScience2018 | 7840  | WestBaikal_EN   | F   | n/a     |             |
| DA246_noUDG.SG            | DamgaardScience2018 | 7723  | WestBaikal_EN   | F   | n/a     |             |
| DA247_noUDG.SG            | DamgaardScience2018 | 7689  | WestBaikal_EN   | М   | Ν       |             |
| brn008_noUDG.SG           | KilincSciAdv2021    | 7379  | EastBaikal_N    | М   | N1a1a1~ |             |
| DA248_noUDG.SG            | DamgaardScience2018 | 7646  | WestBaikal_EN   | М   | N1a2    |             |
| brn001_noUDG.SG           | KilincSciAdv2021    | 7334  | EastBaikal_N    | F   | n/a     |             |
| DA250_noUDG.SG            | DamgaardScience2018 | 7377  | WestBaikal_EN   | М   | N1a2    |             |
| DA252_noUDG.SG            | DamgaardScience2018 | 7317  | WestBaikal_EN   | F   | n/a     |             |
| DA251_noUDG.SG            | DamgaardScience2018 | 7299  | WestBaikal_EN   | М   | N1a2    |             |
| DA253_noUDG.SG            | DamgaardScience2018 | 7240  | WestBaikal_EN   | F   | n/a     |             |
| DA362_noUDG.SG            | DamgaardScience2018 | 7230  | WestBaikal_EN   | М   | N1a2    |             |
| ANG001                    | YuCell2020          | 7274  | WestBaikal_EN_o | М   | C2a     | PCA outlier |
| STB002                    | YuCell2020          | 6587  | WestBaikal_EN   | F   | n/a     |             |
| IUO001                    | YuCell2020          | 6905  | WestBaikal_EN   | М   | C2a1a1  | PCA outlier |
| KAG001                    | YuCell2020          | 6856  | WestBaikal_EN   | М   | C2a1a1  | PCA outlier |

| Genetic ID          | Publication         | Date | Group ID              | Sex | Y hg    | remark                                   |
|---------------------|---------------------|------|-----------------------|-----|---------|------------------------------------------|
| NEO229_noUDG.S<br>G | SikoraNature2019    | 6577 | WestBaikal_EN         | F   | n/a     | I7336 3rd degree relatives<br>or further |
| brn003_noUDG.SG     | KilincSciAdv2021    | 6550 | EastBaikal_N          | М   | Ν       |                                          |
| N5a.SG              | KilincSciAdv2021    | 6232 | Yakutia_MN            | М   | n/a     |                                          |
| brn012_noUDG.SG     | KilincSciAdv2021    | 6115 | EastBaikal_N          | F   | n/a     | brn002.SG 2nd or 3rd deg                 |
| brn002_noUDG.SG     | KilincSciAdv2021    | 6061 | EastBaikal_N          | М   | N1a2    | brn012.SG 2nd or 3rd deg                 |
| irk030_noUDG.SG     | KilincSciAdv2021    | 5969 | irk030                | М   | Q1b1a3  |                                          |
| irk036_noUDG.SG     | KilincSciAdv2021    | 4720 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk057_noUDG.SG     | KilincSciAdv2021    | 4380 | WestBaikal_LNBA       | М   | Q1b     |                                          |
| irk025_noUDG.SG     | KilincSciAdv2021    | 4350 | WestBaikal_LNBA       | М   | Q1b1b~  | irk022 3rd to 5th deg                    |
| irk050_noUDG.SG     | KilincSciAdv2021    | 4350 | WestBaikal_LNBA       | F   | n/a     |                                          |
| irk022_noUDG.SG     | KilincSciAdv2021    | 4251 | WestBaikal_LNBA       | М   | Q1b1a3  | irk025 3rd to 5th deg                    |
| irk040.SG           | KilincSciAdv2021    | 5559 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk034_noUDG.SG     | KilincSciAdv2021    | 5525 | WestBaikal_LNBA       | М   | n/a     |                                          |
| irk033_noUDG.SG     | KilincSciAdv2021    | 4858 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| DA358_noUDG.SG      | DamgaardScience2018 | 4713 | WestBaikal_LNBA       | F   | n/a     |                                          |
| DA360_noUDG.SG      | DamgaardScience2018 | 4704 | WestBaikal_LNBA       | F   | n/a     |                                          |
| DA354_noUDG.SG      | DamgaardScience2018 | 4591 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk075_noUDG.SG     | KilincSciAdv2021    | 5397 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk071_noUDG.SG     | KilincSciAdv2021    | 5132 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk068_noUDG.SG     | KilincSciAdv2021    | 4468 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk061_noUDG.SG     | KilincSciAdv2021    | 4341 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| irk008_noUDG.SG     | KilincSciAdv2021    | 3787 | WestBaikal_LNBA       | F   | n/a     |                                          |
| BZK002              | YuCell2020          | 4709 | WestBaikal_LNBA_<br>o | М   | Q1b1a3  |                                          |
| irk017_noUDG.SG     | KilincSciAdv2021    | 5132 | WestBaikal_LNBA       | F   | n/a     |                                          |
| mak026_noUDG.SG     | KilincSciAdv2021    | 4759 | WestBaikal_LNBA       | F   | n/a     |                                          |
| DA337_noUDG.SG      | DamgaardScience2018 | 4328 | WestBaikal_LNBA       | М   | Q1b1b~  |                                          |
| DA335_noUDG.SG      | DamgaardScience2018 | 4200 | WestBaikal_LNBA       | М   | Q1b1b~  | DA334 2nd or 3rd deg                     |
| DA336_noUDG.SG      | DamgaardScience2018 | 4200 | WestBaikal_LNBA       | М   | Q1b1b~  | DA338 siblings (brothers)                |
| GLZ001              | YuCell2020          | 4556 | WestBaikal_LNBA_<br>o | М   | C2a1a   |                                          |
| N4a1_noUDG.SG       | KilincSciAdv2021    | 4505 | Yakutia_LN            | М   | Nlalala |                                          |
| DA334_noUDG.SG      | DamgaardScience2018 | 4129 | WestBaikal_LNBA       | М   | Q1b1b~  | DA335 2nd or 3rd deg                     |
| DA339_noUDG.SG      | DamgaardScience2018 | 4040 | WestBaikal_LNBA       | М   | Q1b1a3  |                                          |
| GLZ002              | YuCell2020          | 4430 | WestBaikal_LNBA_<br>o | М   | C2a1    |                                          |

| Genetic ID      | Publication         | Date | Group ID                | Sex | Y hg            | remark                               |
|-----------------|---------------------|------|-------------------------|-----|-----------------|--------------------------------------|
| GLZ003          | YuCell2020          | 4478 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| STB001          | YuCell2020          | 4604 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| ZPL002          | YuCell2020          | 4168 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| ZPL001          | YuCell2020          | 3951 | WestBaikal_LNBA         | F   | n/a<br>(female) |                                      |
| KPT003          | YuCell2020          | 3945 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| KPT002_petrous  | YuCell2020          | 3931 | WestBaikal_LNBA         | М   | Q1b1b~          |                                      |
| KPT004          | YuCell2020          | 3773 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| KPT001          | YuCell2020          | 3759 | WestBaikal_LNBA         | F   | n/a             |                                      |
| KAG002          | YuCell2020          | 3748 | WestBaikal_LNBA         | М   | Q1b1            |                                      |
| KPT006          | YuCell2020          | 3614 | WestBaikal_LNBA         | F   | n/a             |                                      |
| DA338_noUDG.SG  | DamgaardScience2018 | 4200 | WestBaikal_LNBA_<br>rel | М   | Q1b1b~          | DA338 siblings (brothers)            |
| N4b2_noUDG.SG   | KilincSciAdv2021    | 4200 | Yakutia_LN              | М   | n/a             |                                      |
| kra001_noUDG.SG | KilincSciAdv2021    | 4170 | Krasnoyarsk_BA          | М   | Nlalalala       |                                      |
| NEO232_noUDG.SG | SikoraNature2019    | 4812 | WestBaikal_LNBA         | М   | Q1b1            | I7780 3rd deg or further             |
| NEO231_noUDG.SG | SikoraNature2019    | 4665 | WestBaikal_LNBA         | F   | n/a             |                                      |
| NEO298_noUDG.SG | SikoraNature2019    | 4630 | WestBaikal_LNBA         | F   | n/a             |                                      |
| irk076_noUDG.SG | KilincSciAdv2021    | 4104 | WestBaikal_LNBA_<br>rel | М   | Q1b             | DA336 1st deg                        |
| NEO230_noUDG.SG | SikoraNature2019    | 4875 | WestBaikal_LNBA         | F   | n/a             |                                      |
| KPT005          | YuCell2020          | 4034 | WestBaikal_LNBA_<br>o   | М   | Q1b1            |                                      |
| DA343_noUDG.SG  | DamgaardNature2018  | 4819 | WestBaikal_LNBA         | U   | n/a             |                                      |
| DA353_noUDG.SG  | DamgaardNature2018  | 4285 | WestBaikal_LNBA         | U   | n/a             |                                      |
| KPT002_tooth    | YuCell2020          | 3931 | WestBaikal_LNBA_<br>dup | М   | Q1b1b~          | KPT002_petrous dup                   |
| DA356_noUDG.SG  | DamgaardNature2018  | 4277 | WestBaikal_LNBA         | U   | n/a             |                                      |
| yak022_noUDG.SG | KilincSciAdv2021    | 3799 | Yakutia_LN              | F   | n/a             | yak023 2nd or 3rd deg                |
| DA361_noUDG.SG  | DamgaardNature2018  | 4130 | WestBaikal_LNBA         | U   | n/a             |                                      |
| DA342_noUDG.SG  | DamgaardScience2018 | 5617 | WestBaikal_LNBA         | F   | n/a             |                                      |
| DA344_noUDG.SG  | DamgaardScience2018 | 5595 | WestBaikal_LNBA         | М   | n/a             |                                      |
| DA355_noUDG.SG  | DamgaardScience2018 | 5469 | WestBaikal_LNBA         | М   | Q1b1b~          |                                      |
| yak023_noUDG.SG | KilincSciAdv2021    | 3735 | Yakutia_LN_rel          | F   | n/a             | yak024.SG 1st deg                    |
| DA345_noUDG.SG  | DamgaardScience2018 | 5454 | WestBaikal_LNBA         | М   | Ν               |                                      |
| yak024_noUDG.SG | KilincSciAdv2021    | 3500 | Yakutia_LN              | F   | n/a             | yak023.SG 1st deg;<br>yak021 1st deg |
| yak021_noUDG.SG | KilincSciAdv2021    | 3225 | Yakutia_LN_rel          | F   | n/a             | yak024 1st deg                       |
| irk078_noUDG.SG | KilincSciAdv2021    | 3107 | EastBaikal_BA           | F   | n/a             |                                      |

## Appendix 1. Continued

Appendix 2. A list of worldwide populations used in this study. This table summarizes for which analysis each group was used. "N" column represents the total number of individuals.

| New.Group.Label     | Ν  | Ancient | 1240K | но | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References                          | Ancient individual IDs                                                                                                                                                                                                 |
|---------------------|----|---------|-------|----|-----|--------------|------------------|---------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Afanasievo          | 23 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science | I6711, I6713, I6715, I2069, I2071, I3388, I3950, I3954,<br>I1829, I3952, I5269, I5270, I5271, I5272, I5273, I5277,<br>I5278, I5279, I3387, I10565, I10564, I11112, I11752                                              |
| Afanasievo_Mongolia | 2  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell            | SHT001, SHT002                                                                                                                                                                                                         |
| AG2                 | 1  | 0       | 0     | 0  |     | 0            |                  |         | Raghavan et al. (2014) Nature       | AfontovaGora2_noUDG.SG                                                                                                                                                                                                 |
| AG3                 | 1  | 0       | 0     | 0  | 0   | 0            | 0                |         | Fu et al. (2016) Nature             | AfontovaGora3_noUDG_d                                                                                                                                                                                                  |
| Alalakh_MLBA        | 25 | 0       | 0     | 0  |     | 0            |                  |         | Skourtanioti et al. (2020) Cell     | ALA001_d, ALA002, ALA004, ALA008, ALA011,<br>ALA013, ALA014_d, ALA015, ALA016, ALA017,<br>ALA018, ALA020, ALA023, ALA024, ALA025, ALA026,<br>ALA028, ALA029, ALA030, ALA034, ALA035, ALA037,<br>ALA039, ALA084, ALA095 |
| Alan                | 5  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature       | DA146_noUDG.SG,DA160_noUDG.SG,DA162_noUDG.S<br>G,DA164_noUDG.SG,DA243_noUDG.SG                                                                                                                                         |
| Altai_MLBA          | 7  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell            | BIL001, ULI001, ULI002, ULI,003, BER002, SBG001, ULZ001                                                                                                                                                                |
| Anatolia_BA         | 3  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2017) Nature      | 12683, 12495, 12499                                                                                                                                                                                                    |
| Anatolia_ChL        | 1  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature      | 11584                                                                                                                                                                                                                  |
| Anatolia_N          | 24 | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2015) Nature      | 10726,11099,11100,11102,11103,10707,10708,10709,10736,107<br>44,10745,10746,11096,11097,11098,11101,10723,10724,10727,<br>11579,11580,11581,11583,11585                                                                |
| AR_EN               | 2  | 0       | 0     | 0  | 0   | 0            | 0                |         | Ning et al. (2020) Nat.<br>Commun.  | WQM4_noUDG, ZLNR-2_noUDG                                                                                                                                                                                               |
| AR_IA               | 1  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.  | ZLNR-1_noUDG                                                                                                                                                                                                           |
| AR_Xianbei_IA       | 2  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.  | MGS-M6_noUDG,MGS-M7R_noUDG                                                                                                                                                                                             |
| Armenia_ChL         | 5  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature      | 11634, 11632, 11631, 11409, 11407                                                                                                                                                                                      |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label      | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References                            | Ancient individual IDs                                                                                                                                                                                                                                                |
|----------------------|----|---------|-------|----|-----|--------------|------------------|---------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Armenia_EBA          | 3  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature        | 11635, 11633, 11658                                                                                                                                                                                                                                                   |
| Armenia_MBA          | 1  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature        | I1656                                                                                                                                                                                                                                                                 |
| Arslantepe_LC        | 17 | 0       | 0     | 0  |     | 0            |                  |         | Skourtanioti et al. (2020) Cell       | ART004,ART005,ART012,ART014,ART015,ART017,ART<br>018,ART019,ART020_d,ART022,ART023,ART026,ART02<br>7_d,ART032,ART038,ART039,ART042                                                                                                                                    |
| Balkans_BronzeAge    | 6  | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2018) Nature        | I2163, Bul10, Bul6,Bul8, I2175,I2520                                                                                                                                                                                                                                  |
| Balkans_Chalcolithic | 12 | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2018) Nature        | 10781,10785,12423,12424,12425,12427,12430,12431,12509,125<br>19,12526,12181,12426                                                                                                                                                                                     |
| Balkans_IronAge      | 1  | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2018) Nature        | 15769                                                                                                                                                                                                                                                                 |
| Ban_Chiang           | 3  | 0       | 0     | 0  |     | 0            |                  |         | Lipson et al. (2018) Science          | 18970, 14458,18974                                                                                                                                                                                                                                                    |
| Bell_Beaker_Germany  | 41 | О       | 0     | 0  |     | О            |                  |         | Mathieson et al. (2015) Nature        | 10108,10111,10112,10113,10806,11546,11549,13588,13589,135<br>90,13594,13600,13601,14134,14143,14144,15014,15023,15523,1<br>5524,15525,15527,15529,15531,15658,15659,15833,15834,1583<br>6,16482,16590,16591,16624,10060,13602,13604,14249,14250,15<br>655,15661,15663 |
| Bianbian             | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science            | Bianbian_noUDG                                                                                                                                                                                                                                                        |
| Boncuklu             | 5  | 0       | 0     | 0  |     | 0            |                  |         | Feldman et al. (2019) Nat.<br>Commun. | ZHAG_BON004.A0101_Luk10,ZHAJ_BON034.A0101_Luk<br>9,ZHJ_BON024.A0101_Luk84,ZKO_BON001.A0101_Luk7,<br>ZMOJ_BON014.A0101_Luk21                                                                                                                                           |
| Boncuklu.SG          | 4  | 0       | 0     | 0  |     | 0            |                  |         | Kılınç et al. (2016) Curr. Biol.      | Bon001_noUDG.SG,Bon002_noUDG.SG,Bon004_noUDG.S<br>G                                                                                                                                                                                                                   |
| Boshan               | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science            | BS                                                                                                                                                                                                                                                                    |
| Botai_pub            | 3  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Science        | BOT14_noUDG.SG,BOT15_noUDG.SG,BOT2016_noUDG.<br>SG                                                                                                                                                                                                                    |
| Bustan_BA            | 10 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science   | I11025,I11026,I11027,I11519,I4156,I4157,I4159,I4899,I560<br>4,I5605                                                                                                                                                                                                   |
| Bustan_EN            | 1  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science   | 111028                                                                                                                                                                                                                                                                |
| BZK002               | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yu et al. (2020) Science              | BZK002                                                                                                                                                                                                                                                                |
| CamlibelTarlasi_LC   | 9  | 0       | 0     | 0  |     | О            |                  |         | Skourtanioti et al. (2020) Cell       | CBT001,CBT003,CBT004,CBT005,CBT010,CBT011,CBT0<br>14,CBT015,CBT016                                                                                                                                                                                                    |
| CentralSteppe_EMBA   | 2  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Science        | EBA1_noUDG.SG,EBA2_noUDG.SG                                                                                                                                                                                                                                           |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label       | N  | Ancient | 1240K | но | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                                                                  | Ancient individual IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|----|---------|-------|----|-----|--------------|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chandman_IA           | 9  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell                                                                                                    | CHN001,CHN003,CHN004,CHN006,CHN007,CHN008,CH<br>N012,CHN015,CHN016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chemurchek_northAlai  | 2  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell                                                                                                    | KUR001, KUM001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chemurchek_southAltai | 2  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell                                                                                                    | YAG001, IAG001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CHG                   | 2  | 0       | 0     | 0  |     | 0            |                  |         | Jones et al. (2015) Nat.<br>Commun.                                                                                         | KK1_noUDG.SG, SATP_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chokhopani.SG         | 1  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2016) Proc. Natl.<br>Acad. Sci. USA                                                                           | C1_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chuanyun              | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                                                  | L5694_noUDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WestBaikal_EN         | 22 | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2021) Sci. Adv.<br>Damgaard et al. (2018) Science<br>Yu et al. (2020) Science<br>Sikora et al. (2019) Nature | irk051_noUDG.SG, irk007_noUDG.SG,<br>DA340_noUDG.SG, DA341_noUDG.SG,<br>DA357_noUDG.SG, DA359_noUDG.SG,<br>DA245_noUDG.SG, DA246_noUDG.SG,<br>DA247_noUDG.SG, DA246_noUDG.SG,<br>DA249_noUDG.SG, DA250_noUDG.SG,<br>DA251_noUDG.SG, DA252_noUDG.SG,<br>DA253_noUDG.SG, DA362_noUDG.SG, ANG001,<br>IUO001, KAG001, NEO229_noUDG.SG, STB002                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WestBaikal_LNBA       | 45 | 0       | ο     | ο  | 0   | O            | ο                | 0       | Kılınç et al. (2021) Sci. Adv.<br>Damgaard et al. (2018) Science<br>Yu et al. (2020) Science<br>Sikora et al. (2019) Nature | irk022_noUDG.SG,irk025_noUDG.SG,irk036_noUDG.SG,ir<br>k050_noUDG.SG,irk057_noUDG.SG,<br>irk033_noUDG.SG,irk034_noUDG.SG,<br>DA358_noUDG.SG,DA360_noUDG.SG,<br>DA354_noUDG.SG,DA360_noUDG.SG,<br>irk068_noUDG.SG,irk075_noUDG.SG,irk071_noUDG.SG,<br>irk068_noUDG.SG,irk061_noUDG.SG,irk008_noUDG.SG,<br>irk017_noUDG.SG,mak026_noUDG.SG,<br>DA337_noUDG.SG,DA335_noUDG.SG,DA336_noUDG.SG,<br>DA334_noUDG.SG,DA339_noUDG.SG,GIZ003,<br>KAG002,KPT001,KPT002_petrous,KPT003,KPT004,KPT00<br>6,STB001,ZPL001,ZPL002,KPT002_tooth,KPT005,<br>NEO232_noUDG.SG,NEO231_noUDG.SG,<br>DA343_noUDG.SG,NEO231_noUDG.SG,<br>DA343_noUDG.SG,DA355_noUDG.SG,<br>DA342_noUDG.SG,DA355_noUDG.SG,DA355_noUDG.SG<br>,DA342_noUDG.SG,DA344_noUDG.SG,DA345_noUDG.SG<br>,DA355_noUDG.SG |
| Clovis.SG             | 1  | 0       | 0     | 0  |     | 0            | 0                |         | Rasmussen et al. (2014) Nature                                                                                              | Anzick_realigned_noUDG.SG M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label     | N  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                           | Ancient individual IDs                                                                                                                                                                                                                                                               |
|---------------------|----|---------|-------|----|-----|--------------|------------------|---------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corded_Ware_Germany | 10 | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2015) Nature                                                       | 10049,10103,10104,10106,11532,11536,11538,11539,11542,115<br>44                                                                                                                                                                                                                      |
| DevilsCave_N        | 4  | 0       | 0     | 0  | 0   | 0            | 0                |         | Sikora et al. (2019) Nature                                                          | NEO236_noUDG.SG,NEO238_noUDG.SG,NEO239_noUD<br>G.SG,NEO240_noUDG.SG                                                                                                                                                                                                                  |
| Dzharkutan1_BA      | 6  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                  | I4161,I4163,I4312,I4313,I4315,I7411                                                                                                                                                                                                                                                  |
| Dzhylinda-1         | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2021) Sci. Adv.                                                       | irk00x_noUDG.SG                                                                                                                                                                                                                                                                      |
| eastMongolia_preBA  | 1  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell                                                             | SOU001                                                                                                                                                                                                                                                                               |
| Ebla_EMBA           | 11 | 0       | 0     | 0  |     | О            |                  |         | Skourtanioti et al. (2020) Cell                                                      | ETM001,ETM004,ETM005,ETM006,ETM010,ETM012,ET<br>M014,ETM016,ETM018,ETM023,ETM026                                                                                                                                                                                                     |
| EHG                 | 4  | 0       | 0     | 0  |     | О            | 0                |         | Damgaard et al. (2018) Science<br>Mathieson et al. (2015) Nature                     | Sidelkino_noUDG.SG, I0211,I0061, I0124                                                                                                                                                                                                                                               |
| ElMiron             | 1  | 0       | 0     | 0  |     | 0            |                  |         | Fu et al. (2016) Nature                                                              | ElMiron_d                                                                                                                                                                                                                                                                            |
| Estonia_MN_CCC      | 3  | о       | 0     | о  | 0   | 0            | о                | 0       | Saag et al. (2017)<br>CurrentBiology<br>Mittnik et al.<br>(2018)NatureCommunications | MA974_noUDG.SG, Tamula3, Tamula1                                                                                                                                                                                                                                                     |
| Fofonovo_EN         | 4  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell                                                             | FNO001,FNO003,FNO006,FNO007                                                                                                                                                                                                                                                          |
| Geoksyur_EN         | 21 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                  | 112478,112479,112480,112481,112482,112483,112485,112486,<br>112487,18503,18504,18505,18510,18524,18526,18527,18528,18<br>529,18530,18532,112484                                                                                                                                      |
| Globular_Amphora    | 9  | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2018) Nature                                                       | I2405, I2433, I2434, I2440, I2441, I2403, ILK001, ILK002, ILK003                                                                                                                                                                                                                     |
| Gonur1_BA           | 19 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                  | 110410,110411,111042,11781,11782,11784,11787,11788,11790,<br>11793,12085,12087,12116,12121,12125,12128,13374,16119,162<br>17                                                                                                                                                         |
| Hajji_Firuz_C       | 5  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                  | I2323,I2328,I4241,I4349_noUDG,I4351_noUDG                                                                                                                                                                                                                                            |
| HMMH_MN             | 1  | 0       | 0     | 0  |     | О            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                   | HMF32_noUDG                                                                                                                                                                                                                                                                          |
| Hun_TianShan_1700BP | 16 | О       | 0     | О  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                        | DA100_noUDG.SG,DA101_noUDG.SG,DA104_noUDG.SG<br>,DA385_noUDG.SG,DA52_noUDG.SG,DA54_noUDG.SG,<br>DA65_noUDG.SG,DA66_noUDG.SG,DA68_noUDG.SG,D<br>A69_noUDG.SG,DA72_noUDG.SG,DA73_noUDG.SG,DA7<br>4_noUDG.SG,DA80_noUDG.SG,DA82_noUDG.SG,DA96_<br>noUDG.SG,DA71_noUDG.SG,DA105_noUDG.SG |

| Appendix | 2. | Continued |  |
|----------|----|-----------|--|
|----------|----|-----------|--|

| New.Group.Label | Ν  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                                                                                                                                       | Ancient individual IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|----|---------|-------|----|-----|--------------|------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| irk030          | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2021) Sci. Adv.                                                                                                                                                                   | irk030_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Iberia_ChL      | 82 | 0       | 0     | 0  |     | 0            |                  |         | Gunther et al. (2015) PNAS,<br>Mathieson et al. (2015) Nature,<br>Lipson et al. (2017) Nature,<br>Olalde et al. (2018) Nature,<br>Olalde et al. (2019) Science,<br>Valdiosera et al. (2018) PNAS | $\begin{matrix} 10257,10258,10260,10261,10262,10263,10455,10456,10457,104\\ 59,10460,10823,10825,10826,11271,11272,11276,11277,11280,11\\ 1281,11282,11284,11300,11303,11314,11553,11838,11842,1184\\ 3,11845,11846,11975,11976,11978,11981,12467,12473,13269,13\\ 270,13271,13272,13277,14245,14247,14565,15838,16475,16543\\ ,16584,16587,16604,16609,16612,16617,16622,16628,16629,166\\ 30,17587,18048,18131,18141,18148,18149,18150,18153,18154,1\\ 8156,18158,18197,18198,18199,18364,18365,18566,18569,1058\\ 1_d,13276,16542,16596,16608,18140_d\end{matrix}$ |
| Iberia_EN       | 11 | 0       | О     | о  |     | 0            |                  |         | Mathieson et al. (2015) Nature,<br>VillalbaMouco et al. (2019)<br>CurrentBiology, Lipson et al.<br>(2017) Nature, Valdiosera et al.<br>(2018) PNAS, Fregel et al.<br>(2018) PNAS                 | CHA001_merged,CHA002_merged,CHA003_merged,CHA0<br>04.A0102,FUC003_merged,I0409,I0410,I0412,I0413,I1972,I<br>2199                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iberia_MN       | 46 | 0       | 0     | о  |     | 0            |                  |         | Mathieson et al. (2015) Nature,<br>VillalbaMouco et al. (2019)<br>CurrentBiology, Lipson et al.<br>(2017) Nature, Olalde et al.<br>(2019) Science                                                | ELT002_merged,ELT006_merged,I0405,I0406,I0407,I0408,I<br>10277,I10278,I10280,I10283,I10284,I10285,I10286,I11248,I<br>11249,I11300,I11301,I11303,I11305,I11306,I3214,I7547,I75<br>49,I7550,I7594,I7598,I7600,I7601,I7602,I7603,I7604,I7605,I<br>7606,I7642,I7643,I7644,I7645,I7646,I7647,I8134,I8567,I856<br>8,I10287,I11304,I3273,I7679                                                                                                                                                                                                                               |
| Iran_ChL        | 5  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature                                                                                                                                                                   | 11661, 11670, 11662, 11674, 11665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Iran_N          | 8  | 0       | О     | О  |     | 0            | О                |         | Lazaridis et al. (2016) Nature;<br>Naramsimhan et al. (2019)<br>Science                                                                                                                          | 17527,11290,11944,11945,11947,11949,11951,11954,11946,119<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Israel_C        | 19 | 0       | 0     | 0  |     | 0            |                  |         | Harney et al. (2018) Nat.<br>Commun.                                                                                                                                                             | I0644,I1152,I1154,I1160,I1164,I1165,I1168,I1169,I1170,I11<br>71,I1172,I1178,I1179,I1182,I1184,I1187,I1155,I1177,I1181                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Jordan_EBA      | 3  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature                                                                                                                                                                   | 11705, 11706, 11730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kangju_1800BP   | 6  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                                                                    | DA121_noUDG.SG,DA229_noUDG.SG,DA123_noUDG.SG<br>,DA206_noUDG.SG,DA125_noUDG.SG,DA226_noUDG.S<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Karasuk.SG      | 6  | 0       | 0     | 0  |     | 0            |                  |         | Allentoft et al. (2015) Nature                                                                                                                                                                   | RISE494_noUDG.SG,RISE493_noUDG.SG,RISE495_noUD<br>G.SG,RISE496_noUDG.SG,RISE499_noUDG.SG,RISE502_<br>noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Karluk_TianShan | 2  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                                                                    | DA222_noUDG.SG, DA230_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label             | N  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                                                                                     | Ancient individual IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kennewick_WA.SG             | 1  | 0       | 0     | 0  |     | 0            |                  |         | Rasmussen et al. (2015) Nature                                                                                                                 | kennewick_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Khovsgol                    | 20 | О       | 0     | О  |     | 0            |                  |         | Jeong et al. (2018) Proc. Natl.<br>Acad. Sci. USA                                                                                              | ARS001.A0101,ARS002.B0101,ARS003.B0101,ARS004.A0<br>101,ARS005.A0101,ARS006.A0101,ARS007.B0101,ARS00<br>8.A0101,ARS009.A0101,ARS011.A0101,ARS012.A0101,A<br>RS013.A0101,ARS014.B0101,ARS015.A0101,ARS016.A01<br>01,ARS017.A0101,ARS018.A0101,ARS024.A0101,ARS025<br>.A0101,ARS026.A0101                                                                                                                                                                                         |
| Kimak_Kazakhstan_13<br>50BP | 1  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                  | DA87_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kipchak                     | 2  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                  | DA179_noUDG.SG, DA23_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Krasnoyarsk_BA              | 1  | 0       | 0     | 0  | 0   | 0            | 0                |         | Kılınç et al. (2021) Sci. Adv.                                                                                                                 | kra001_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Krasnoyarsk_MLBA            | 16 | 0       | 0     | 0  | 0   | 0            | 0                |         | Narasimhan et al. (2019)<br>Science                                                                                                            | 111214,11821,11828,11851,11852,11853,11856,13389,13390,13<br>391,13392,13394,13395,13396,16716,16718,13393,16717                                                                                                                                                                                                                                                                                                                                                                |
| Kolyma_M                    | 1  | 0       | 0     | 0  | 0   | 0            | 0                |         | Sikora et al. (2019) Nature                                                                                                                    | Kolyma_River_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LateDorset.SG               | 1  | 0       | 0     | 0  |     | 0            |                  |         | Raghavan et al. (2015) Science                                                                                                                 | LateDorset-XIV-H_126_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LBK_EN                      | 69 | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2014) Nature,<br>Mathieson et al. (2015) Nature,<br>Lipson et al. (2017) Nature,<br>Rivollat et al. (2020)<br>ScienceAdvance | HBS002,HBS004,HBS005,HBS006,HBS007,HBS008,HBS0<br>09,I0018,I0022,I0025,I0026,I0054,I0056,I0100,I0795,I0797,I<br>2014,I2022,SCH001,SCH004,SCH007,SCH009,SCH010,SC<br>H011,SCH014,SCH015,SCH016,SCH018,SMH004,XN164,<br>XN165,XN166,XN167,XN168,XN169,XN170,XN171,XN17<br>2,XN173,XN174,XN175,XN178,XN180,XN182,XN183,XN<br>188,XN191,XN205,XN206,XN207,XN211,XN215,XN224,X<br>N225,I0046,I0048,I0057,I0659,I0821,I1550,I2008,I2017,I20<br>26,I2029,I2030,I2032,I2036,I2037,I2038 |
| Levant_N                    | 8  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature                                                                                                                 | 11707,11710,11415,11701,11414,11700, 11699,11679                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liangdao1                   | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                                                                     | LDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Liangdao2                   | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                                                                     | LD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Loebanr_IA                  | 32 | О       | О     | О  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                                                                            | 110000,110001,110974,112134,112137,112455,112456,112457,<br>112458,112459,112979,112980,112981,112982,112984,112987,<br>112988,113220,113221,113222,113223,113224,113226,113227,<br>113228,15400,16292,16553,16556,18998,18999,112983                                                                                                                                                                                                                                           |
| MA1                         | 1  | 0       | 0     | 0  |     | 0            | 0                | 0       | Raghavan et al. (2014) Nature                                                                                                                  | MA1_noUDG.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label              | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References                                        | Ancient individual IDs                                                                                                                                                                                                                                            |
|------------------------------|----|---------|-------|----|-----|--------------|------------------|---------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Man_Bac                      | 7  | 0       | 0     | 0  |     | 0            |                  |         | Lipson et al. (2018) Science                      | I0626_noUDG2,I0627,I1135,I1859,I2731,I2947,I1137                                                                                                                                                                                                                  |
| Mebrak.SG                    | 2  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2016) Proc. Natl.<br>Acad. Sci. USA | M344_noUDG.SG,M63_noUDG.SG                                                                                                                                                                                                                                        |
| Miaozigou_MN                 | 3  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                | MZGM10-1_noUDG,MZGM16_noUDG,MZGM25-<br>2_noUDG                                                                                                                                                                                                                    |
| Minoan_Lasithi               | 5  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2017) Nature                    | 10070,10071,10073,10074,19005                                                                                                                                                                                                                                     |
| Minoan_Odigitria             | 5  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2017) Nature                    | I9127,I9128,I9129,I9130,I9131                                                                                                                                                                                                                                     |
| Mongolia_EIA_SlabGr<br>ave_1 | 13 | 0       | 0     | 0  |     | 0            |                  |         | Wang et al. (2021) Nature                         | 112960,112969,112971,113178,113963,16349,16352,16353,163<br>57,16359,16365,16369,17032                                                                                                                                                                            |
| Mongolia_LBA_Ulaanz<br>ukh_2 | 3  | 0       | 0     | 0  |     | 0            |                  |         | Wang et al. (2021) Nature                         | I12972,I13964,I14037                                                                                                                                                                                                                                              |
| Mycenaean                    | 4  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2017) Nature                    | 19010, 19006, 19041                                                                                                                                                                                                                                               |
| Natufian                     | 4  | 0       | 0     | 0  |     | 0            |                  |         | Lazaridis et al. (2016) Nature                    | I1072_d,I0861,I1069,I1690                                                                                                                                                                                                                                         |
| Nomad_Kazakhstan_17<br>00BP  | 2  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                     | DA177_noUDG.SG,DA95_noUDG.SG                                                                                                                                                                                                                                      |
| Nomad_Kazakhstan_IA          | 1  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                     | DA92_noUDG.SG, DA129_noUDG.SG                                                                                                                                                                                                                                     |
| Nui_Nap                      | 2  | 0       | 0     | 0  |     | 0            |                  |         | Lipson et al. (2018) Science                      | I2497, I2948                                                                                                                                                                                                                                                      |
| Okunevo                      | 14 | О       | 0     | О  |     | 0            |                  |         | Damgaard et al. (2018) Science                    | RISE515_noUDG.SG,RISE667_noUDG.SG,RISE670_noUD<br>G.SG,RISE671_noUDG.SG,RISE672_noUDG.SG,RISE674_<br>noUDG.SG,RISE675_noUDG.SG,RISE677_noUDG.SG,RIS<br>E680_noUDG.SG,RISE681_noUDG.SG,RISE683_noUDG.S<br>G,RISE684_noUDG.SG,RISE685_noUDG.SG,RISE719_no<br>UDG.SG |
| Parkhai_EBA                  | 1  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science               | I6671                                                                                                                                                                                                                                                             |
| Parkhai_EN                   | 4  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science               | 14259, 14634, 14635, 16669                                                                                                                                                                                                                                        |
| Parkhai_LBA                  | 1  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science               | I6668                                                                                                                                                                                                                                                             |
| Parkhai_MBA                  | 1  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science               | I6674                                                                                                                                                                                                                                                             |
| Pinarbasi_HG                 | 1  | 0       | 0     | 0  |     | 0            |                  |         | Feldman et al. (2019) Nat.<br>Commun.             | ZBC_IPB001.B-C0101_Luk2-Pinarbasi                                                                                                                                                                                                                                 |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label             | Ν  | Ancient | 1240K | но | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                                                                                       | Ancient individual IDs                                                                                                                                                                                                                                                                                                             |
|-----------------------------|----|---------|-------|----|-----|--------------|------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qihe                        | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                                                                       | Qihe2_noUDG_d                                                                                                                                                                                                                                                                                                                      |
| Russia_Bolshoy              | 6  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Lamnidis et al. (2018) Nat.<br>Commun.                                                                                                           | BOO001.A0101, BOO002.A0101, BOO003.A0101,<br>BOO004.A0101, BOO005.A0101, BOO006.A0101                                                                                                                                                                                                                                              |
| Saka_Kazakhstan_2500<br>BP  | 5  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                    | DA11_noUDG.SG,DA13_noUDG.SG,DA14_noUDG.SG,D<br>A15_noUDG.SG,DA16_noUDG.SG,MJ-51_noUDG.SG                                                                                                                                                                                                                                           |
| Saka_TianShan_2150BP        | 10 | 0       | О     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                    | DA47_noUDG.SG,DA48_noUDG.SG,DA49_noUDG.SG,D<br>A50_noUDG.SG,DA51_noUDG.SG,DA55_noUDG.SG,DA5<br>7_noUDG.SG,DA58_noUDG.SG, DA130_noUDG.SG                                                                                                                                                                                            |
| Samdzong.SG                 | 4  | 0       | 0     | 0  |     | 0            |                  |         | Jeong et al. (2016) Proc. Natl.<br>Acad. Sci. USA                                                                                                | S10_noUDG.SG,S35_noUDG.SG,S40_noUDG.SG,S41_noU<br>DG.SG                                                                                                                                                                                                                                                                            |
| Sappali_Tepe_BA             | 11 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                                                                              | I4285,I4286,I4288,I4289,I7414,I7416,I7419,I7420,I7421,I74<br>92,I7542                                                                                                                                                                                                                                                              |
| Saqqaq.SG                   | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Rasmussen et al. (2010) Nature                                                                                                                   | Inuk_noUDG.SG                                                                                                                                                                                                                                                                                                                      |
| Sarazm_EN                   | 2  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                                                                              | I4910, I4290                                                                                                                                                                                                                                                                                                                       |
| Sarmatian                   | 20 | 0       | 0     | 0  |     | 0            |                  |         | Krzewińska et al. (2018) Sci.<br>Adv<br>Jarve et al. (2019)<br>CurrentBiology<br>Damgaard et al. (2018) Nature<br>Mathieson et al. (2015) Nature | chy001_noUDG.SG,chy002_noUDG.SG,tem001_noUDG.S<br>G,tem002_noUDG.SG,tem003_noUDG.SG,<br>DA134_noUDG.SG,DA136_noUDG.SG,DA139_noUDG.SG<br>,DA141_noUDG.SG,DA143_noUDG.SG,DA144_noUDG.S<br>G,DA145_noUDG.SG,MJ-38_noUDG.SG,DA202_noUDG.SG,<br>DA26_noUDG.SG,DA30_noUDG.SG,DA202_noUDG.SG,<br>DA20_noUDG.SG,DA27_noUDG.SG, 10574,10575 |
| Scythian_Hungary_240<br>0BP | 5  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                                                                                    | DA191_noUDG.SG,DA194_noUDG.SG,DA197_noUDG.SG<br>, DA195_noUDG.SG,DA198_noUDG.SG                                                                                                                                                                                                                                                    |
| Shahr_I_Sokhta_BA1          | 8  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science                                                                                                              | I11462,I11474,I11476,I11478,I11479,I11483,I8724,I8725                                                                                                                                                                                                                                                                              |
| SHG                         | 7  | 0       | О     | 0  |     | 0            |                  |         | Mathieson et al. (2015) Nature,<br>Mittnik et al. (2018)<br>NatureCommunications                                                                 | I0011,I0012,I0013,I0014,I0015,I0017,MotalaAA                                                                                                                                                                                                                                                                                       |
| Shimao_LN                   | 3  | 0       | О     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                                                                               | SM-SGDLM27_noUDG,SM-SGDLM6_noUDG,SM-<br>SGDLM7X_noUDG                                                                                                                                                                                                                                                                              |
| Sintashta_MLBA              | 36 | О       | О     | О  |     | 0            | о                |         | Narasimhan et al. (2019)<br>Science                                                                                                              | 10937,10938,10939,10942,10943,10982,10984,10986,10989,110<br>03,11006,11008,11011,11013,11018,11019,11022,11024,11027,1<br>1029,11053,11055,11060,11061,11062,11063,11064,11065,1108<br>2,11084,11086,11088,11089,11090,17480,11012                                                                                                |
| Srubnaya                    | 11 | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2015) Nature                                                                                                                   | I0232,I0234,I0235,I0358,I0359,I0361,I0422,I0423,I0424,I04<br>30,I0431                                                                                                                                                                                                                                                              |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label      | N  | Ancient | 1240K | но | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References                           | Ancient individual IDs                                                                                                                |
|----------------------|----|---------|-------|----|-----|--------------|------------------|---------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Suogang              | 2  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science           | SuogangB1_noUDG_d,SuogangB3_noUDG_d                                                                                                   |
| Tagar                | 8  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature        | DA2_noUDG.SG,DA3_noUDG.SG,DA4_noUDG.SG,DA5_<br>noUDG.SG,DA6_noUDG.SG,DA7_noUDG.SG,DA8_noUD<br>G.SG,DA9_noUDG.SG                       |
| Tanshishan           | 7  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science           | L5700_noUDG,L5701_noUDG_d,L5704_noUDG_d,L5705_<br>noUDG,L5706_noUDG_d,L7415_noUDG,L7417_noUDG_d                                       |
| TellKurdu_EC         | 5  | 0       | 0     | 0  |     | 0            |                  |         | Skourtanioti et al. (2020) Cell      | KRD001, KRD003, KRD004, KRD005, KRD006                                                                                                |
| Tepe_Anau_EN         | 3  | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science  | I4085, I4086, I4087                                                                                                                   |
| Tepe_Hissar_C        | 12 | 0       | 0     | 0  |     | 0            |                  |         | Narasimhan et al. (2019)<br>Science  | 12337,12512,12513,12514,12918,12922,12923,12924,12925,129<br>27,12928,12921                                                           |
| Tepecik.SG           | 3  | 0       | 0     | 0  |     | 0            |                  |         | Kılınç et al. (2016) Curr. Biol.     | Tep006_noUDG.SG,Tep001_noUDG.SG,Tep002_noUDG.S<br>G,Tep003_noUDG.SG,Tep004_noUDG.SG                                                   |
| Tianyuan             | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2017) Curr. Biol.       | Tianyuan                                                                                                                              |
| EastBaikal_BA        | 1  | 0       | 0     | 0  | 0   | 0            |                  |         | Kılınç et al. (2021) Sci. Adv.       | irk078_noUDG.SG                                                                                                                       |
| EastBaikal_M         | 1  | 0       | 0     | 0  | 0   | 0            |                  |         | Kılınç et al. (2021) Sci. Adv.       | cta016_noUDG.SG                                                                                                                       |
| EastBaikal_N         | 5  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2016) Sci. Adv.       | brn003_noUDG.SG, brn001_noUDG.SG,<br>brn002_noUDG.SG,brn012_noUDG.SG, brn008_noUDG.SG                                                 |
| UKY                  | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Yu et al. (2020) Science             | UKY001                                                                                                                                |
| Ulaanzuukh_SlabGrave | 15 | 0       | О     | 0  |     | 0            |                  |         | Jeong et al. (2020) Cell             | BUL001, BOR001, DAR001, DAR002, BUL002,<br>ULN001, ULN002, ULN003, ULN004, ULN005, ULN006, ULN<br>007, ULN009, ULN010, ULN011, ULN015 |
| Upper_YR_IA          | 3  | О       | 0     | О  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.   | DCZM17IV_noUDG,DCZ-M21II_noUDG,DCZ-<br>M22IV_noUDG,DCZ-M6_noUDG                                                                       |
| Upper_YR_LN          | 4  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.   | JCKMI-<br>1_noUDG,LJM2_noUDG,LJM3_noUDG,LJM4_noUDG,LJ<br>M5_noUDG,LJM14_noUDG,LJM25_noUDG                                             |
| USR1                 | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Moreno-Mayar et al. (2018)<br>Nature | USR1.SG                                                                                                                               |
| Ust_Ishim            | 1  | 0       | 0     | 0  |     | 0            |                  |         | Fu et al. (2014) Nature              | Ust_Ishim.DG                                                                                                                          |
| Varna                | 2  | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2018) Nature       | ANI160, ANI159-ANI181                                                                                                                 |
| Villabruna           | 1  | 0       | 0     | 0  |     | 0            | 0                |         | Fu et al. (2016) Nature              | Villabruna_noUDG                                                                                                                      |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label           | N  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References                                                                                  | Ancient individual IDs                                                                                                          |
|---------------------------|----|---------|-------|----|-----|--------------|------------------|---------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| West_Siberia_N            | 2  | 0       | 0     | 0  |     | 0            | 0                |         | Narasimhan et al. (2019)<br>Science                                                         | 11960, 15766                                                                                                                    |
| WHG                       | 8  | 0       | 0     | 0  |     | 0            |                  | 0       | Lazaridis et al. (2014) Nature<br>Mathieson et al. (2018) Nature<br>Fu et al. (2016) Nature | Loschbour.DG, Iboussieres25-1_noUDG, Iboussieres31-<br>2_noUDG, Falkenstein_noUDG, Rochedane,<br>BerryAuBac_noUDG, I1875, I2158 |
| WLR_BA                    | 2  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | 91KLH11_noUDG, 91KLH18_noUDG                                                                                                    |
| WLR_BA_o                  | 1  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | 91KLM2_noUDG                                                                                                                    |
| WLR_LN                    | 2  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | EDM139_noUDG, EDM176_noUDG                                                                                                      |
| WLR_MN                    | 2  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | BLSM27S_noUDG, BLSM41_noUDG                                                                                                     |
| Wusun_TianShan_2200<br>BP | 4  | 0       | 0     | 0  |     | 0            |                  |         | Damgaard et al. (2018) Nature                                                               | DA220_noUDG, DA223_noUDG                                                                                                        |
| Xiaogao                   | 1  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                  | Xiaogao_noUDG                                                                                                                   |
| Xiaojingshan              | 2  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                  | XJS1309_M4_noUDG,XJS1311_M16_noUDG                                                                                              |
| Xitoucun                  | 7  | 0       | 0     | 0  |     | 0            |                  |         | Yang et al. (2020) Science                                                                  | L5700_noUDG,L5701_noUDG_d,L5704_noUDG_d,L5705_<br>noUDG,L5706_noUDG_d,L7415_noUDG,L7417_noUDG_d                                 |
| Yakutia_LN                | 5  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2021) Sci. Adv.                                                              | N4a1_noUDG.SG,N4b2_noUDG.SG,<br>yak021_noUDG.SG,yak022_noUDG.SG,yak024_noUDG.SG                                                 |
| Yakutia_MN                | 1  | 0       | 0     | 0  | 0   | 0            | 0                | 0       | Kılınç et al. (2021) Sci. Adv.                                                              | N5a.SG                                                                                                                          |
| Yakutia_UP                | 1  | 0       | 0     | 0  | 0   | 0            |                  |         | Kılınç et al. (2021) Sci. Adv.                                                              | yak025_noUDG.SG                                                                                                                 |
| Yamnaya_Samara            | 10 | 0       | 0     | 0  |     | 0            |                  |         | Mathieson et al. (2015) Nature                                                              | I0231,I0357,I0370,I0429,I0438,I0439,I0441,I0443,I0444,I74<br>89                                                                 |
| YR_LBIA                   | 5  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | HJTM115_noUDG,JXNTM2_noUDG,JXNTM23_noUDG,L<br>GM41_noUDG,LGM79_noUDG                                                            |
| YR_LN                     | 7  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | HJTM107_noUDG,HJTM109_noUDG,PLTM310_noUDG,P<br>LTM311_noUDG,PLTM313_noUDG,WD-<br>WT1H16_noUDG,WD-WT5M2_noUDG,PLTM312_noUDG      |
| YR_MN                     | 7  | 0       | 0     | 0  |     | 0            |                  |         | Ning et al. (2020) Nat.<br>Commun.                                                          | WGM20_noUDG,WGM35_noUDG,WGM43_noUDG,WG<br>M70_noUDG,WGM76S_noUDG,WGM94_noUDG,XW-<br>M1R18_noUDG                                 |
| Yumin                     | 1  | 0       | 0     | 0  |     | 0            | 0                |         | Yang et al. (2020) Science                                                                  | China_NEastAsia_Inland_EN                                                                                                       |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label   | Ν  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Abazin            | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Abkhasian         | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Adygei            | 31 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Albanian          | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Aleut             | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Aleut_Tlingit     | 4  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Altaian           | 24 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Altaian_Chelkans  | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ami               | 10 |         |       | 0  | 0   | 0            | 0                |         |            |                        |
| Armenian          | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Armenian_Hemsheni | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Atayal            | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Avar              | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Azeri             | 17 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Balkar            | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Bashkir           | 53 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Basque            | 29 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Belarusian        | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Besermyan         | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Borneo            | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Bulgarian         | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label        | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|------------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Buryat                 | 37 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Cambodian              | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Chechen                | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Chukchi                | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Chuvash                | 16 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Circassian             | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Croatian               | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Cypriot                | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Czech                  | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Dai                    | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Darginian              | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Daur                   | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Dolgan                 | 4  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Dungan                 | 13 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Enets                  | 3  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| English                | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Eskimo_ChaplinSireniki | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Eskimo_Naukan          | 12 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Estonian               | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Even                   | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Evenk_FarEast          | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label  | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Evenk_Eastbaikal | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ezid             | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Finnish          | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| French           | 61 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Gagauz           | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Georgian         | 23 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| German           | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Greek            | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Han              | 43 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Hezhen           | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Hungarian        | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Icelandic        | 12 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ingushian        | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Irish            | 24 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Irish_Ulster     | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Italian_North    | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Italian_South    | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Itelmen          | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Japanese         | 29 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Jew_Ashkenazi    | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Jew_Georgian     | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-----------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Kabardinian     | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kaitag          | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kalmyk          | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Karachai        | 12 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Karakalpak      | 14 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Karelian        | 15 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kazakh          | 18 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ket             | 22 |         |       | 0  | 0   | 0            | 0                |         |            |                        |
| Khakass         | 16 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Khakass_Kachins | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Khamnegan       | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kinh            | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Korean          | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Koryak          | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kubachinian     | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kumyk           | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kurd            | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Kyrgyz          | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Lahu            | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Lak             | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Lezgin          | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label | Ν  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-----------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Lithuanian      | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Maltese         | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Mansi           | 8  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Miao            | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Moldavian       | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Mongol          | 34 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Mongola         | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Mordovian       | 32 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Nanai           | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Naxi            | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Negidal         | 3  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Nganasan        | 33 |         |       | 0  | 0   | 0            | 0                |         |            |                        |
| Nivh            | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Nogai           | 25 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Norwegian       | 11 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Orcadian        | 13 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Oroqen          | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ossetian        | 16 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Polish          | 23 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Romanian        | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Russian         | 71 |         |       | 0  | 0   | 0            |                  |         |            |                        |

## Appendix 2. Continued

| New.Group.Label                      | Ν  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|--------------------------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Russian_Archangelsk_<br>Krasnoborsky | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Russian_Archangelsk_<br>Leshukonsky  | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Russian_Archangelsk_<br>Pinezhsky    | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Saami                                | 3  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Sardinian                            | 27 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Scottish                             | 33 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Selkup                               | 25 |         |       | 0  | 0   | 0            | 0                |         |            |                        |
| Semende                              | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| She                                  | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Sherpa                               | 2  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Shetlandic                           | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Shor_Khakassia                       | 6  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Shor_Mountain                        | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Sicilian                             | 11 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Sorb                                 | 9  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Spanish                              | 53 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Spanish_North                        | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tabasaran                            | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tajik                                | 31 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tatar_Kazan                          | 13 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tatar_Mishar                         | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label                | N  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|--------------------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Tatar_Siberian                 | 19 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tatar_Siberian_Zabolot<br>niye | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Thai                           | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tibetan                        | 2  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Todzin                         | 3  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tofalar                        | 13 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tu                             | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tubalar                        | 27 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tujia                          | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Turkish                        | 50 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Turkish_Balikesir              | 5  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Turkmen                        | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Tuvinian                       | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Udmurt                         | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ukrainian                      | 21 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Ulchi                          | 25 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Uygur                          | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Uzbek                          | 27 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Veps                           | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Xibo                           | 7  |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Yakut                          | 20 |         |       | 0  | 0   | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label | Ν  | Ancient | 1240K | НО | РСА | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-----------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Yi              | 10 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Yukagir         | 19 |         |       | 0  | 0   | 0            |                  |         |            |                        |
| Abkhasian.DG    | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Adygei.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Albanian.DG     | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Aleut.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Altaian.DG      | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Ami.DG          | 2  |         | 0     |    |     | 0            | 0                |         |            |                        |
| Armenian.DG     | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Atayal.DG       | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Australian.DG   | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Balochi.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Basque.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| BedouinB.DG     | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Bengali.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Bergamo.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Bougainville.DG | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Brahmin.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Brahui.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Bulgarian.DG    | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Burmese.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label    | Ν | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|--------------------|---|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Burusho.DG         | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Cambodian.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Chane.DG           | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Chechen.DG         | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Chipewyan.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Chukchi.DG         | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Cree.DG            | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Crete.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Czech.DG           | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Dai.DG             | 5 |         | 0     |    |     | 0            |                  |         |            |                        |
| Daur.DG            | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Druze.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Dusun.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| English.DG         | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Eskimo_Chaplin.DG  | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Eskimo_Naukan.DG   | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Eskimo_Sireniki.DG | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Estonian.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Even.DG            | 3 |         | 0     |    |     | 0            |                  |         |            |                        |
| Finnish.DG         | 3 |         | 0     |    |     | 0            |                  |         |            |                        |
| French.DG          | 4 |         | 0     |    |     | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label    | Ν | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|--------------------|---|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Georgian.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Greek.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Han.DG             | 4 |         | 0     |    |     | 0            |                  |         |            |                        |
| Hawaiian.DG        | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Hazara.DG          | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Hezhen.DG          | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Hungarian.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Icelandic.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Igbo.DG            | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Igorot.DG          | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Iranian.DG         | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Iraqi_Jew.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Irula.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Itelman.DG         | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Japanese.DG        | 3 |         | 0     |    |     | 0            |                  |         |            |                        |
| Jordanian.DG       | 3 |         | 0     |    |     | 0            |                  |         |            |                        |
| Kalash.DG          | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Kapu.DG            | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Karitiana.DG       | 4 |         | 0     |    |     | 0            |                  |         |            |                        |
| Kashmiri_Pandit.DG | 1 |         | 0     |    |     | 0            |                  |         |            |                        |
| Kharia.DG          | 1 |         | 0     |    |     | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label | Ν  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-----------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Khonda_Dora.DG  | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Kinh.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Kongo.DG        | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Korean.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Korean_Ulsan    | 88 |         | 0     |    |     | 0            |                  |         |            |                        |
| Korean_Ulsan.SG | 88 |         | 0     |    |     | 0            |                  |         |            |                        |
| Kurumba.DG      | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Kusunda.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Kyrgyz.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Lahu.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Lemande.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Lezgin.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Madiga.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Makrani.DG      | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mala.DG         | 3  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mansi.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Maori.DG        | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mayan.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mbuti.DG        | 5  |         | 0     |    |     | 0            | 0                | 0       |            |                        |
| Miao.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mixe.DG         | 3  |         | 0     |    |     | 0            | 0                |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label   | N  | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-------------------|----|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Mixtec.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Mongola.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Nahua.DG          | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Naxi.DG           | 3  |         | 0     |    |     | 0            |                  |         |            |                        |
| North_Ossetian.DG | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Onge.DG           | 2  |         | 0     |    |     | 0            | 0                |         |            |                        |
| Orcadian.DG       | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Oroqen.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Palestinian.DG    | 3  |         | 0     |    |     | 0            |                  |         |            |                        |
| Papuan.DG         | 16 |         | 0     |    |     | 0            |                  |         |            |                        |
| Pathan.DG         | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Piapoco.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Pima.DG           | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Polish.DG         | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Punjabi.DG        | 4  |         | 0     |    |     | 0            |                  |         |            |                        |
| Quechua.DG        | 3  |         | 0     |    |     | 0            |                  |         |            |                        |
| Relli.DG          | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Russian.DG        | 2  |         | 0     |    |     | 0            |                  |         |            |                        |
| Samaritan.DG      | 1  |         | 0     |    |     | 0            |                  |         |            |                        |
| Sardinian.DG      | 4  |         | 0     |    |     | 0            |                  |         |            |                        |
| She.DG            | 2  |         | 0     |    |     | 0            |                  |         |            |                        |

| Appendix | 2. | Continued |
|----------|----|-----------|
|----------|----|-----------|

| New.Group.Label | N | Ancient | 1240K | НО | PCA | f statistics | qpWave<br>/qpAdm | qpgraph | References | Ancient individual IDs |
|-----------------|---|---------|-------|----|-----|--------------|------------------|---------|------------|------------------------|
| Sindhi.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Spanish.DG      | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Surui.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tajik.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Thai.DG         | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tlingit.DG      | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tu.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tubalar.DG      | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tujia.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Turkish.DG      | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Tuscan.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Ulchi.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Uygur.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Xibo.DG         | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Yadava.DG       | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Yakut.DG        | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Yemenite_Jew.DG | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Yi.DG           | 2 |         | 0     |    |     | 0            |                  |         |            |                        |
| Zapotec.DG      | 2 |         | 0     |    |     | 0            |                  |         |            |                        |