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Abstract

Dynamical invariants and measures
on metric graphs and Applications

in medical science

Jaemin Park
Department of Mathematical Sciences

The Graduate School
Seoul National University

The space of geodesics on a metric graph has three important invariant mea-
sures for geodesic flow that reflect the geometric, dynamical, and probabilistic
properties of the metric graph. The measures are constructed by dynamical
invariants and measure classes on the boundary of the universal covering tree.
In this thesis, we focus on the structure of the metric graphs that determines
the dynamical invariants and the boundary measure classes.

First, we formulate three boundary measure classes using potential func-
tions analogous to the manifold cases: visibility measures, Patterson-Sullivan
measures, and harmonic measures. We show that there is an edge length which
is a necessary and sufficient condition to the equivalence of two of these mea-
sure classes (Theorem 3.4.2, Theorem 3.4.3, Theorem 3.4.4).

Next, we use the dynamical invariant and boundary measures to study the
brain network. Regarding the brain network as a metric graph, we compute the
volume entropy and Patterson-Sullivan measure numerically. Comparing the
values between the tinnitus group and the non-tinnitus group, we strengthen
the tinnitus cause interpretation based on the Bayesian hypothesis and the
triple network model.

We also obtain a result of topological data analysis on medical science.
Using the Mapper algorithm, we represent data space as a metric graph and
propose a grouping method based on the structure of the metric graph. In this
framework, we find the new subtype of Mitral regurgitation patients.

Finally, we improve a well-known result in the Diophantine approxima-
tion. We construct a fractal set contained in weighted singular vectors using
tree structure and the shadowing property in homogeneous dynamics. By con-
structing the tree associated to lattice point counting, we obtain a nontriv-
ial lower bound of Hausdorff dimension of weighted singular vectors (Theo-
rem 1.5.1).
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Key words: metric graph, dynamical invariant, invariant measure, brain net-
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Chapter 1

Introduction

A graph is a mathematical object consisting of vertices and edges. The vertex

set is a discrete set, and edges are pairs of distinct vertices. Graph structures

are widely used in many areas of mathematics, such as combinatorics, proba-

bility, group theory, etc. Moreover, real-world data often has a graph structure,

so the graph theory has many applications to data analysis, such as brain net-

works, recommendation systems, deep neural networks, etc. In most of these

studies, weighted graphs are considered, where edges adopt weights related to

the similarity between vertices. In this thesis, we consider graphs as geometric

objects, especially a hyperbolic metric space. We study the geometry of graphs

(or their structure) mainly focusing on the dynamics of group actions on the

metric graphs. In this thesis, we obtained the following results in the area of

homogeneous dynamics and medical data analysis.

1. Equivalence of boundary measures;

2. Brain network analysis 1: Tinnitus on hearing loss patients [Son21];

3. Brain network analysis 2: Tinnitus on sudden sensorineural hearing loss

patients [Lee22].

Moreover, we also obtained the two following results, which use graph

structure of data networks and tree structure for a fractal set with the dy-

namical property of homogeneous space, respectively.

4. Topological data analysis: Mitral regurgitation [Cho22];

5. Lower bound of Hausdorff dimension of weighted singular vectors [KP22].

1



CHAPTER 1. INTRODUCTION

The studies 1 and 5 are related to homogeneous dynamics and the studies

2, 3 and 4 are related to medical data analysis.

1.1 Equivalence of boundary measures

Let M be a compact connected Riemannian manifold with pinched negative

sectional curvature and M̃ be the universal cover of M . In [Kai90], there are

three natural invariant measures for the geodesic flow on the unit tangent

bundle T 1M̃ : Lebesgue measure, the Bowen-Margulis measure, and harmonic

invariant measure. All three measures are constructed via Hopf’s parametriza-

tion T 1M̃ ' ∂∞M̃ × ∂∞M̃ × R using the suitable measure class (mx)
x∈M̃ on

the boundary of the universal cover M̃ (visibility measures, Patterson-Sullivan

measures, and harmonic measures, respectively) and the corresponding kernel

K as follows:

dm(v) = K(v+,v−, x) dmx(v+) dmx(v−) dt.

This construction has been used in [Pat76], [Pat87], [Sul76], and [Sul79]. Here,

the boundary measures are Patterson densities associated to certain poten-

tial functions (geometric potential, zero potential, and harmonic potential,

respectively). If two of the potential functions are cohomologous, then the

associated boundary measures are equivalent, which implies that the Radon-

Nikodym derivatives of measures are well-defined. Combining the Radon-

Nikodym derivatives and kernels, it follows that the associated invariant mea-

sures coincide [PPS12]. Now, the question is when potential functions are coho-

mologous. Equivalently, when the boundary measures are equivalent or when

the invariant measures coincide. Katok and Kaimanovich conjectured that any

two of the invariant measures coincide if and only if M̃ is locally symmetric.

Many results [Kat82, Kat88, Led87, Led90, Ham] has been devoted to the

conjecture.

Kaimanovich asked the analogous question for finite graphs. Lyons an-

swered the question for combinatorial graphs [Lyo94] as follows. Let X be a

finite connected simplicial graph, i.e. a graph with finite vertices and edges

with all edge lengths equal to 1. Assume moreover that the degree of each

vertex is at least 3. Lyons proved that if any two of the three boundary mea-

sures (visibility measure, Patterson-Sullivan measure, and harmonic measure)

coincide, then X is regular or biregular.

2



CHAPTER 1. INTRODUCTION

Moreover, if each edge of X adopts an integer edge length (or a rational

edge length after normalizing), then two of the three boundary measures coin-

cide if and only if the edge length L is given in each case. However, the Lyons’

results are proven combinatorially and their arguments can not be general-

ized naturally to real edge length case (in particular, rationally independent

edge lengths). In this thesis, we proved analogous results for arbitrary metric

graphs (Section 3.4) with new proofs by formulating the situation dynamically

as follows.

Motivated by the manifold cases, we define potential functions and associ-

ated boundary measures as the Patterson density for the potential functions

in Section 2.3.1. However, the unit tangent bundle of graphs is not appro-

priate for this situation, since there may be infinitely many geodesics on a

graph starting from the given unit vector, which causes the geodesic flow to

be not well defined. Thus we define a geodesic flow on the space of geodesics

on a graph as in [BPP16]. Potential functions defined on the unit tangent

bundle are naturally extended to functions on the space of geodesics by as-

signing the same function value on the unit tangent vector determined by the

given geodesic. Hopf’s parametrization also can be established for the space

of geodesics so that invariant measures can be constructed similarly to the

manifold cases (see Section 2.3.2).

The visibility measure λx for x ∈ X̃ is the solid angle under which the

boundary of X̃ can be seen from x. In this sense, Lyons constructed the

visibility measures for metric graphs as a Markov measure for cylinder sets

of geodesic rays. On the other hand, Kaimanovich characterize the visibility

measures for manifold cases by the Patterson density for the geometric poten-

tial function [Kai90]. The geometric potential function is the negative of the

exponential growth rate of change of the volume on the strong unstable leaf

under geodesic flow [PPS12]. For given geodesic segment of length t, the inte-

gration of the geometric potential function along the geodesic segment is the

logarithm of change of the volume of a small ball in the strong unstable leaf

by the geodesic flow ϕt [LS20]. We call this quantity the integrated geometric

potential. In Section 3.1, we introduce an analog of the integrated geometric

potential function for metric graphs. We define the integrated geometric po-

tential and related measures on metric graphs analogous to the manifold cases.

The Patterson density for integrated geometric potential is defined similarly

to the manifold case and it is the family of visibility measures in our setting.

We note that the visibility measures in this thesis are not equal to the Lyons’

3



CHAPTER 1. INTRODUCTION

construction but they are equivalent (see Remark 3.1.6).

We equip the boundary of X̃ with the visual metric. For the visual metric,

the Hausdorff dimension of the boundary of X̃ is equal to the volume entropy

of X [Bou95, BM96]. Lyons constructed the Patterson-Sullivan measures sim-

ilar to the manifold cases and proved that they are equal to the Hausdorff

measures on the boundary of X̃ of dimension hvol. The same situation arises

for metric graphs. Moreover, [KN07] introduces an analog for metric graphs

of the characterization of the Hausdorff measures in [Lyo94]. Using this char-

acterization, we can easily compute the Patterson-Sullivan measure by matrix

computation.

The harmonic measure νx for x ∈ X̃ is the hitting measure on the boundary

of X̃ for the Brownian motion starting from x. Lyons interpreted the harmonic

measure as a current flow [Lyo90] from x to infinity. That is, considering X̃

as an electric network with the generator connecting x and ∂X̃, the amount

of electric current on a wire(edge) is the measurement by νx of boundary

points(geodesic rays) passing through the edge. Lyons also introduced explicit

formula for harmonic measure based on the series-parallel laws for electric

networks. In the manifold case, the harmonic measures are characterized as the

Patterson density for the harmonic potential function. The harmonic potential

function is the negative of the exponential rate of change of Martin kernel

under geodesic flow [Led88]. Martin kernel is given by the Radon-Nikodym

derivative of the harmonic measures. In Section 3.3, we define an analog of

the harmonic potential function for metric graphs. Similar to the geometric

potential function, we define integrated harmonic potential along a geodesic.

Even though the harmonic measures in this thesis are also different from Lyons’

construction, they are equivalent (see Remark 3.3.8).

In Section 3.4, we introduce three main theorems for metric graphs with

real edge lengths.

Theorem 1.1.1. Let X be a metric graph with real edge lengths and X̃ be the

universal covering tree of X. Then

1. The visibility measure λx and the Patterson-Sullivan measure µx are

equivalent for all x ∈ X̃ if and only if for all e ∈ EX,

L(e) =
1

hvol
log(deg(e−)− 1)(deg(e+)− 1);

2. The visibility measure λx and the harmonic measure νx are equivalent

4



CHAPTER 1. INTRODUCTION

for all x ∈ X̃ if and only if there exists c > 0 such that for all e ∈ EX,

L(e) = c

(
1− 1

deg(e−)
− 1

deg(e+)

)
;

3. The Patterson-Sullivan measure µx and the harmonic meausre νx are

equivalent for all x ∈ X̃ if and only if for all e ∈ EX,

L(e)ehvolL(e)

e2hvolL(e) − 1
= K(e−)K(e+),

where for x ∈ V X,

K(x)2 =
1 +

∑
e−=x

1
e2hvolL(e)−1∑

e−=x
1

L(e)

.

The key idea of proofs of the main theorems is the cohomological invari-

ance of the invariant measures for geodesic flow. Proposition 2.3.6 implies that

if two Patterson densities are equivalent, then the associated Gibbs measures

coincide. From the observation, we compare the measure of some Bowen balls

in the space of geodesics and hence obtain cohomologous relation of the poten-

tial functions (Theorem 3.4.2, Theorem 3.4.3, and Theorem 3.4.4). The overall

proofs are motivated by Lyons’ results.

1.2 Brain network analysis 1: Tinnitus on hearing

loss patients

Non-pulsatile subjective tinnitus is a phantom auditory perception occurring

in the absence of an external acoustic stimulus [Lee17]. The prevalence of

tinnitus has been reported to be 6–22 [AR89, Gal15, Kim15, SCF10, Wu15]

and increases with age [Oit15, Wu15]; tinnitus represents a social burden in

aging societies.

Possible mechanisms suggested for the generation of tinnitus can be clas-

sified into three broad categories: (a) peripheral auditory deafferentation and

central maladaptive plastic changes, (b) spontaneous auditory neuronal hy-

peractivity, and (c) increased cross-fiber synchrony among neurons [BMH13,

ER12]. Previous studies have identified correlations between tinnitus pitch and

the frequency of maximum hearing loss (HL) [STM, Sch12], suggesting that

5



CHAPTER 1. INTRODUCTION

tinnitus may be a “fill-in phenomenon” for missing auditory information due

to HL. In animal studies, subsequent pathologic changes in the central audi-

tory system linked HL to tinnitus [Lee17, NE05, Nor02]. Recent animal and

human studies have also indicated that HL should be preceded by auditory

experience to generate tinnitus [EK16, Lee17].

However, there are still a number of unanswered questions concerning the

generation of tinnitus in subjects with HL. Although most cases of tinnitus

are closely associated with HL or auditory deafferentation, not all individuals

with HL develop tinnitus. This suggests that the filling in of missing audi-

tory information does not occur in every individual with HL. Most commonly,

HL originates from changes in the peripheral auditory system while tinnitus

is generated in the brain. This suggests that different neural substrates may

exist between hearing loss with tinnitus (HL-T) and hearing loss without the

generation of tinnitus (HL-NT). Resting-state quantitative electroencephalog-

raphy (rs-qEEG) may be able to identify the central mechanism that links HL

to auditory phantom perception based on the fill-in phenomenon.

To determine if there were differences in resting-state cortical activity be-

tween the HL-T and HL-NT groups at the brain network level, we adopted

the “volume entropy model” [LeeH19] and compared the groups with respect

to information flow in the brain. The volume entropy of the brain network

corresponds to the limit of asymptotic exponential growth rate of the number

of paths in the network [LeeH19]. As a global measure of the brain network,

volume entropy represents the global efficiency of the propagation of infor-

mation throughout the brain network. Furthermore, we can obtain a local

measure at each brain region based on the afferent node capacity, which is

another marker of volume entropy. Afferent node capacity, which is associated

with volume entropy, quantifies the contribution of each node to the spread of

information.

Although the volume entropy model has not priory been adopted in tinnitus-

related studies, based on precedent functional neuroimaging studies of the

pathophysiology of tinnitus, our a priori hypothesis was that while the HL-T

group may generate tinnitus by retrieving stored auditory memory [VD16] to

fill in for the lost peripheral auditory input [DVF14], the HL-NT group may not

develop unnecessary tinnitus in spite of peripherally decreased auditory input

with the help of cortical areas involved in maintaining unfocused resting-state.

In this regard, we hypothesized that the HL-T group would exhibit increased

afferent node capacity in the cortical areas in charge of memory and Bayesian

6



CHAPTER 1. INTRODUCTION

inference, to reduce perceptual uncertainty by generating tinnitus in response

to decreased peripheral auditory input [DJV14, DVF14]. Meanwhile, the HL-

NT group was expected to show relatively increased afferent node capacity in

areas involved in the maintenance of the task-free resting state of the brain,

such as the default mode network (DMN) [Rai01, RS07], which are not af-

fected by decreased auditory information. To test our hypotheses, we used

the volume entropy model to compare the HL-T and HL-NT groups in terms

of rs-qEEG data for cortical areas showing significantly different information

flow, and discuss possible reasons for tinnitus generation in the HL-T group

and non-generation in the HL-NT group.

1.3 Brain network analysis 2: Tinnitus on sudden

sensorineural hearing loss patients

Tinnitus is a common otologic symptom characterized by the conscious per-

ception of phantom sounds in the absence of corresponding external auditory

signals [DeR21b]. The prevalence of tinnitus in the adult population is 10–15

[Hen05], and one in five people with the condition experience emotional dis-

tress [ER04]. Several mechanisms for the generation of tinnitus have been

suggested at the microscopic, mesoscopic, and macroscopic levels [Egg15].

Two main types of tinnitus have been described: tinnitus based on deaf-

ferentation and tinnitus based on a noise cancelation deficiency [DeR14c].

However, the exact pathophysiology of the disorder remains elusive. Tinnitus

has been described in terms of Bayesian brain processing [DeR14a, DeR21b,

DeR15, DeR21a, Sed16, VD16, Lee17, Lee20, Moh18, DV21, Lee21, Son21].

The Bayesian brain can be conceptualized as a probability machine that con-

stantly makes predictions about the world and updates them based on input

from the senses [KP04, Fri10, DeR14b]. The goal of the Bayesian brain is to re-

duce environmental uncertainty [KP04, Fri10, DeR14b]. This model proposes

that tinnitus resolves auditory uncertainty resulting from sensory deprivation

[Fri14, VD16, Lee17]. In other words, the brain tries to “fill in” the missing

auditory information from auditory memory when deprived of an external sig-

nal, resulting in the perception of phantom sounds that are not present in

reality [NE05, Sch12, Lee17].

Recently, a “triple brain network” model was proposed to explain the psy-

chopathology of certain cognitive and affective disorders [Men11]. The triple

7
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network model proposes that neuropsychiatric disorders can be explained by

abnormal interactions within and between three canonical brain networks: a

self-representational default mode network (DMN) [Buc08], goal-oriented fron-

toparietal central executive network (CEN) [Vin08], and behavioral relevance-

encoding salience network (SN) [See07]. The DMN is activated when indi-

viduals are internally oriented, exemplified by the “wandering mind” concept

[Shu97, Mas07, Chr16], whereas the CEN, also known as the frontoparietal

control system [Vin08, Col14]; is associated with externally directed cognitive

behaviors. Normally, the DMN and CEN are anticorrelated [Men11]. The SN

processes sensory, emotional, and cognitive information simultaneously and

acts as a switch between the anticorrelated DMN and CEN; in this manner, it

integrates and balances internal psychological processes with external stimu-

lus–oriented cognitive and affective pathways [Fox05, Men11, Men18, Gou14].

However, when all components of the triple network are activated, the anti-

correlation between the DMN and CEN is disrupted, and the SN erroneously

ascribes meaning to unimportant external stimuli; this leads to neurophysio-

logical dysfunction in the brain.

Sudden sensorineural hearing loss (SSNHL) is defined as an idiopathic

acute hearing impairment (>30 dB loss) across three contiguous frequencies in

a pure-tone audiogram occurring within 72 h [CP07, Cha10]. The development

of tinnitus in subjects with SSNHL can be explained by the abovementioned

Bayesian brain model; the brain attempts to compensate for prediction errors

by retrieving previously stored auditory memories from the parahippocampal

gyrus (PHC) after the sudden loss of auditory input [Lee20]. According to this

perspective, prior auditory experience is necessary for the generation of tinni-

tus in patients with hearing loss; tinnitus is absent in patients with congenital

single-sided deafness (SSD), while it is relatively frequent among those with

acquired SSD [Lee17, LeeJ21].

A volume entropy model has been developed to statistically compare the

quantity of information flow between hearing loss patients with and without

tinnitus [Son21]. The volume entropy model calculates the exponential growth

rate of network pathways by converting distributions of cortical activities de-

rived from quantitative electroencephalography (qEEG) into mathematical in-

formation [Lim08]. Information inflow and outflow in certain brain cortical ar-

eas (i.e., nodes and vertices) are computed if the region is activated after the

execution of certain behaviors. Specifically, the global and local efficiency of

information flow is represented as volume entropy and afferent node capacity,

8
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respectively [LeeH19, Son21].

In this study, we investigated the mechanism underlying the selective gen-

eration of tinnitus in patients with SSNHL and hypothesized that, in an

SSNHL with tinnitus (T) group, tinnitus is caused by changes in the triple

network. We further hypothesized that, in an SSNHL without tinnitus (NT)

group, tinnitus does not occur due to the deactivation of areas associated with

the generation of tinnitus and activation of cortical pathways involved in tinni-

tus suppression. In summary, a volume entropy model was applied to compare

resting-state qEEG data among Brodmann areas (BAs) showing significant

differences in information flow between T and NT groups and to elucidate the

mechanisms underlying tinnitus generation and suppression.

1.4 Topological data analysis: Mitral regurgitation

Primary mitral regurgitation (MR) is a frequent surgical indication for valvu-

lar heart disease worldwide [Lun03, Nko06]. Despite recent advances in the

understanding of clinical outcomes in MR patients, we still do not know

comprehensively how the heart responds to chronic volume overload by MR

[Bau17, Wri21]. Moreover, because several echocardiographic parameters com-

monly used for prognostication in primary MR are closely correlated with each

other, there is a need to understand the structural and functional remodeling

in an integrative fashion.

Topological data analysis (TDA) is a mathematical tool used to recognize

the “shape” of data, and therefore, to gain insights from the conformation

of the model constructed from the data [Lum13]. The fundamental goal of

TDA is to apply a geometric approach to capture the complex connections

and interactions by visualizing the conformation of high-dimensional data as

the network [Lum13]. The network models of data connections are critical for

a simple yet intuitive understanding of extensive complex data, and thus, new

insights [PB18, LeeH17, Ha20]. Recent applications of TDA have provided an

understanding of the phenotypic diversity of a disease based on the patient-

patient similarity network [NLC11, Li15], enabling new classifications of the

disease or the identification of meaningful groups in the disease previously

considered homogenous [Cas19, Cho20, Hwa21].

Given these strengths of TDA, we hypothesized that TDA would provide

new and deeper insights into the cardiac remodeling of chronic primary MR.

The objective of this study was 3-fold. First, to visualize the cardiac remod-

9



CHAPTER 1. INTRODUCTION

eling pattern of chronic primary MR patients by creating a network model

from complex clinical data. Second, to discover novel phenogroups not previ-

ously acknowledged in chronic primary MR. Third, to demonstrate the clinical

implication of these new insights and/or phenogroups from the analysis.

1.5 Lower bound of Hausdorff dimension of weighted

singular vectors

In 1937, Khintchine introduced the notion of singularity in the sense of Dio-

phantine approximation. Recall that a vector x = (x1, . . . , xd) ∈ Rd is said to

be singular if, for every ε > 0, there exists T0 > 1 such that for all T > T0 the

system of inequalities

(1.1) max
1≤i≤d

|qxi − pi|d <
ε

T
and 0 < q < T

admits an integer solution (p, q) = (p1, . . . , pd, q) ∈ Zd × Z.

The name singular is derived from the fact that the set of singular vectors

is a Lebesgue nullset. On the other hand, the computation of the Hausdorff

dimension of the set of singular vectors, or more generally singular matri-

ces, has been a challenge until the breakthrough [DFSU] using a variational

principle in the parametric geometry of numbers. Historically, the first break-

through was made in [Che11] to prove that the Hausdorff dimension of the

set of 2-dimensional singular vectors is 4/3, which was extended in [CC16] to

d-dimensional singular vectors. They proved that the set of d-dimensional sin-

gular vectors has Hausdorff dimension d2/(d+ 1). For general m× n singular

matrices, it was proved in [KKLM17] that the Hausdorff dimension of m× n
singular matrices is at most mn(1− 1

m+n) , and finally, it was shown in [DFSU]

that the upper bound is sharp.

In this part of the thesis, we consider the weighted version of the singularity

as follows: Let w = (w1, . . . , wd) ∈ Rd>0 be an ordered d-tuple of positive real

numbers such that
∑

iwi = 1 and w1 ≥ · · · ≥ wd. We say that a vector

x = (x1, . . . , xd) ∈ Rd is w-singular if for every ε > 0 there exists T0 > 1 such

that for all T > T0 the system of inequalities

(1.2) max
1≤i≤d

|qxi − pi|
1
wi <

ε

T
and 0 < q < T

10
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admits an integer solution (p, q) = (p1, . . . , pd, q) ∈ Zd×Z. Denote by Sing(w)

the set of w-singular vectors in Rd. Here and hereafter we always assume that

the weight vector w satisfies the above assumption.

Note that if all weights have the same value, that is, wi = 1/d for all

i = 1, . . . , d, then the weighted system (1.2) gives the unweighted system

(1.1).

In the weighted setting, it was shown in [LSST20] that the set of 2-

dimensional w-singular vectors has Hausdorff dimension 2 − 1
1+w1

. The aim

of Chapter 7 is to extend this 2-dimensional result to higher dimensions re-

garding the lower bound of the Hausdorff dimension.

Theorem 1.5.1. For d ≥ 2, the Hausdorff dimension of Sing(w) is at least

d− 1
1+w1

.

One of the main ingredients of the proof of Theorem 1.5.1 is Dani’s corre-

spondence, which says that w-singular vectors correspond to certain divergent

trajectories in the space Ld+1 of unimodular lattices in Rd+1. More precisely,

let at := diag
(
ew1t, . . . , ewdt, e−1

)
∈ SLd+1(R) and let

h(x) :=

(
Id x

0 1

)
∈ SLd+1(R) for x ∈ Rd,

where Id is the d × d identity matrix. Then x is w-singular if and only if the

diagonal orbit
(
ath(x)Zd+1

)
t≥0

is divergent.

Our method for the proof of Theorem 1.5.1 is motivated by the method

in [LSST20], hence we also have the following result as in [LSST20, Theorem

1.5].

Theorem 1.5.2. For any Λ ∈ Ld+1 and any nonempty open subset U in Rd,
the Hausdorff dimension of the set

{x ∈ U : (ath(x)Λ)t≥0 is divergent}

is at least d− 1
1+w1

.

Theorem 1.5.2 implies the following corollary as in [LSST20, Corollary 1.6]

(see also [GS20, AGMS21]).

Corollary 1.5.3. The Hausdorff dimension of the set

{Λ ∈ Ld+1 : (atΛ)t≥0 is divergent}

11
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is at least dimSLd+1(R)− 1
1+w1

= (d+ 1)2 − 1− 1
1+w1

.

Recently, Solan [Sol] established a variational principle in the parametric

geometry of numbers for general flows. Following his notations, we consider

the following two subgroups:

H = {g ∈ SLd+1(R) : a−tgat → Id+1 as t→∞},
H ′ = {h(x) ∈ SLd+1(R) : x ∈ Rd}.

Note that H is the unstable horospherical subgroup of a1. In the unweighted

setting (w1 = · · · = wd), the two subgroups H and H ′ are the same, but

in general, H is bigger than H ′. One of the applications of the variational

principle for general flows in [Sol] is to give an upper bound of the Hausdorff

dimension of the set

Sing(H,Λ; at) = {h ∈ H : (athΛ)t≥0 is divergent}.

More precisely, [Sol, Corollary 2.34] implies that the Hausdorff dimension of

Sing(H,Λ; at) is at most dim H − 1
1+w1

. On the other hand, Theorem 1.5.2

implies that the Hausdorff dimension of Sing(H,Λ; at) is at least dim H− 1
1+w1

,

hence we have the following corollary.

Corollary 1.5.4. The Hausdorff dimension of Sing(H,Λ; at) is dim H− 1
1+w1

.

Chapter 7 is organized as follows. In Section 7.1, we recall fractal structures

and self-affine structures. We estimate the lower bound of Hausdorff dimension

of the associated fractal set. In Section 7.2, we generalize the lattice point

counting results in [LSST20, Section 3] to higher dimensional cases. In Section

7.3, we construct a fractal set contained in the set of weighted singular vectors

and prove Theorem 1.5.1 by estimating Hausdorff dimension of the fractal set.
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Chapter 2

Dynamics on Metric graphs

2.1 Geometry on metric graphs

In this section, we describe the geometry on metric graphs following [BPP16].

We first define a graph combinatorially and then regard it as a topological

space. With the metric on the graph induced by edge lengths, the graph is

considered as a metric space. Following the theory of metric spaces, we define

the geometric boundary and the space of geodesics of the graph.

2.1.1 Metric graphs

Followed by [Ser02], we define a graph X to be a data

(V X,EX, ·−, ·+, ·̄),

where V X and EX(⊂ V X × V X) are sets and ·−, ·+ : EX → V X and

·̄ : EX → EX are maps satisfying ē+ = e− for all e ∈ EX. We call a set V X

the set of vertices and a set EX the set of edges. For each e ∈ EX, we call

e−, e+ and ē the inital vertex, the terminal vertex and the oppisite edge of e.

A topological realization of a graph X is the topological space (Ie)e∈EX/ ∼,

where Ie is a closed unit interval for all e ∈ EX and quotient are provided by

the equivalence relation that identifies Ie and Iē by t 7→ 1 − t and identifies

the origin of Ie and Ie′ if and only if e− = e′−.

A metric graph (X, L) is a pair consisting of a graph X and an edge length

map L : EX → R>0 such that L(e) = L(ē) for all e ∈ EX. We further assume

L has a positive lower bound. We abuse the notation for simplicity that if

13
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e− = x and e+ = y, then L(x, y) := L(e). We call a metric graph (X, L) a

simlicial graph if L ≡ 1.

The geometric realization of a metric graph (X, L) is the topological real-

ization of X endowed with a metric induced by L. That is, the metric is a path

metric that for all edge e ∈ EX, the length of e in the topological realization

is given by L(e). We denote the geometric realization of a metric graph (X, L)

by X = |X|L and the metric on X by dX .

We let X be a finite simplicial graph and X̃ be the universal covering tree

of X. Let Γ ⊂ Isom(X̃) be a discrete subgroup such that X = X̃/Γ. The

geometric realization of X̃, denoted by X̃ = |X̃|L, is endowed with the lifted

metric d̃X of the metric dX on X.

We define the geometric boundary ∂∞X̃ of X̃ by the quotient space of

the set of geodesic rays ρ : R≥0 → X̃ where two geodesic lines ρ and ρ′

are equivalent if and only if there exists a real number a ∈ R such that

limt→∞ dX(ρ(t), ρ′(t + a)) = 0. Equivalently, ∂∞X̃ is the set of geodesic rays

starting from x0 ∈ X̃ for fixed x0. We endow ∂∞X with the quotient topology

of the compact-open topology.

2.1.2 Spaces of geodesics

The geodesic in X̃ is an isometry from R into X̃. Let G X̃ be the space of

geodesics in X̃. We endow G X̃ with the metric dG X̃ defined by

(2.1) dG X̃(`, `′) =

∫ ∞
−∞

d
X̃

(`(t), `′(t))e−|t|dt, ∀`, `′ ∈ G X̃.

The metric dG X̃ induces the topology of uniform convergence on compact

subsets on G X̃ and hence G X̃ is a proper metric space. We note that Γ

naturally induces the isometric action on G X̃ by (γ.`)(t) = γ.(`(t)) for all

γ ∈ Γ and ` ∈ G X̃. In this sense, we may consider the quotient space Γ\G X̃
and denote it by GX.

The geodesic flow (ϕt)t∈R on G X̃ is the one-parameter group of homeo-

morphisms of G X̃ defined by

(ϕt.`)(s) = `(s+ t), ∀` ∈ G X̃, t ∈ R.

The footprint projection in the Isom(X̃)-equivariant 1
2 -Hőlder continuous map

π : G X̃ → X̃ defined by π(`) = `(0) for all ` ∈ G X̃. The antipodal map is the

Isom(X̃)-equivariant isometric map ι : G X̃ → G X̃ defined by (ι`)(t) = `(−t)

14
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for all ` ∈ G X̃. It is easily checked that ι ◦ ϕt = ϕ−t ◦ ι for all t ∈ R and

π ◦ ι = π. We note that the maps ϕt, ι and π are Γ-equivariant so that they

are well-defined on GX.

The strong stable leaf of ` ∈ G X̃ is

W ss(`) = {`′ ∈ G X̃ : lim
t→+∞

d
X̃

(`(t), `′(t)) = 0},

and the strong unstable leaf of ` ∈ G X̃ is

W su(`) = ιW ss(ι`) = {`′ ∈ G X̃ : lim
t→−∞

d
X̃

(`(t), `′(t)) = 0}.

For ` ∈ G X̃, the Hamenstädt’s distance dW ss (dW su , respectively) on W ss

(W su, respectively) is defined by

dW ss(`, `′) = lim
t→−∞

e
1
2
d
X̃

(`(t),`′(t))−t, ∀`, `′ ∈W ss,(2.2)

dW su(`, `′) = lim
t→+∞

e
1
2
d
X̃

(`(t),`′(t))−t, ∀`, `′ ∈W su.(2.3)

We suppose X is a simplicial graph, that is, a grpah without any edge length

function. Then X̃ is the simplicial tree. The space of discrete geodesics of X̃
is the space G X̃ of geodesics ` from R to the geometric realization X̃1 = |X̃|1
such that `(0) ∈ V X. The action of Γ on X̃ induces the action of Γ on G X̃ so

that we may consider the quotient space Γ\G X̃. We denote Γ\G X̃ by GX. We

remark that the geometric realization X̃1 is distinguished from X̃ in that X̃1

is constructed without an edge legngth function `. The discrete-time geodesic

flow (ϕt)t∈Z on G X̃ is the one-parameter discrete group of homeomorphisms

of G X̃ consisting of the intergral time maps of the continuous-time geodesic

flow of the geometric realization X̃. Formally, we have (ϕt.`)(s) = `(s+ t) for

all ` ∈ G X̃, t ∈ Z.

We introduce notations that are used in the remaining parts of the thesis.

For x, y ∈ X̃, we denote by `x,y a geodesic starting from x to the direction of

y. For x ∈ X̃ and ξ ∈ ∂∞X̃, we denote by `x,ξ a geodesic starting from x to

the direction of ξ.
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2.2 Potentials, Critical exponents, and Gibbs cocy-

cles

In [BPP16], a potential F̃ for Γ is defined by a continuous Γ-invariant function

on the unit tangent bundle of X̃. For x, y ∈ X̃, the quantity∫ y

x
F̃ =

∫ d
X̃

(x,y)

0
F̃ (vϕt`)dt

is used for defining the critical exponent and Gibbs cocycles. In this section,

we use only the quantity that we call an integrated potential for developing

dynamical theory on metric graphs instead of the potential F̃ .

2.2.1 Potentials

Comparing the manifold case, well-known potential functions on the manifold

are not defined on metric graphs when considering their meaning. For exam-

ple, the geometric potential on the manifold means the expoenential rate of

changing volume of the unit tangent bundle of strong stable leaf along the

geodesic flow. In metric graphs, the exponential rate of changing volume is

discontinuous along the geodesic flow so that it cannot be differentiable. Al-

though we cannot define the geoemtric potential for metric graphs, we have

the exponential rate of changing volume on a geodesic in X̃. In this thesis, we

define the integrated potential along the geodesic in metric graphs as follows.

Definition 2.2.1. For ` ∈ G X̃ and t ≥ 0, we call Ĩ(`, t) a integrated potential

for Γ along the geodesic ` until time t if it satisfies

1. It is Γ-invariant, i.e. Ĩ(`, t) = Ĩ(γ`, t) for all γ ∈ Γ;

2. Ĩ(`, t) = Ĩ(`′, t) if `|[0,t] = `′|[0,t] for all t ≥ 0;

3. Ĩ(`, t) + Ĩ(ϕt`, s) = Ĩ(`, t+ s) for all s ≥ 0.

For r ∈ R, we denote Ĩr(`, t) := Ĩ(`, t)− rt. The quotient function I : GX ×
R≥0 → R is called a integrated potential along ` until t.

Let Ĩ, Ĩ∗ : G X̃ × R≥0 → R be integrated potentials for Γ. We say Ĩ is

cohomologous to Ĩ∗ if there exists Γ-invariant function H : X̃ → R satisfying

(2.4) Ĩ∗(`, t)− Ĩ(`, t) = H(`(t))−H(`(0))
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for all ` ∈ G X̃ and t ≥ 0.

2.2.2 Critical exponents and Gibbs cocycles

We fix an integrated potential Ĩ for Γ. We define Ĩ+ = Ĩ and Ĩ−(`, t) =

Ĩ(`◦ι, t) for all ` ∈ G X̃ and t ≥ 0. The quotient functions I± : GX×R≥0 → R
are induced from Ĩ±.

Definition 2.2.2. Let x, y ∈ X̃. The critical exponent of (Γ, I) is the element

δ = δΓ,I ∈ [−∞,+∞] defined by

δ = lim sup
n→+∞

1

n
log

∑
γ∈Γ:n−1<d

X̃
(x,γy)≤n

eĨ(`x,γy ,dX̃(x,γy)).

The Poincaré series of (Γ, I) is the map Q = QΓ,I,x,y : R → [0,+∞] defined

by

Q(s) =
∑
γ∈Γ

eĨs(`x,γy ,dX̃(x,γy)).

It follows from [BPP16] that the critical exponent δΓ,I is the radius of

convergence of the Poincaré series QΓ,I,x,y.

Definition 2.2.3. The Gibbs cocycle of dimension δ associated with the group

Γ and the integrated potential Ĩ± is the map C± = C±
δ,Γ,I± : ∂∞X̃×X̃×X̃ → R

defined by

C+(ξ, x, y) = lim
t→+∞

[
Ĩ+
δ (`y,ξ, t)− Ĩ+

δ (`x,ξ, t)
]
,(2.5)

C−(ξ, x, y) = lim
t→+∞

[
Ĩ−δ (ϕt`y,ξ, t)− Ĩ−δ (ϕt`x,ξ, t)

]
.

where `x,ξ is any geodesic starting from x to ξ

Indeed, the Gibbs cocycle C± can be represented as

C+(ξ, x, y) = Ĩδ(`y,p, dX̃(y, p))− Ĩδ(`x,p, dX̃(x, p)),(2.6)

C−(ξ, x, y) = Ĩδ(`p,y, dX̃(y, p))− Ĩδ(`p,x, dX̃(x, p))

where p ∈ X̃ is the point at which geodesic lines `y,ξ and `x,ξ meet first. Thus

the Gibbs cocycle is well-defined.
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2.2.3 Systems of conductances

We define the system of conductances c̃ : EX̃ → R by

(2.7) c̃(e) = Ĩ(`e, L(e)),

where `e be a geodesic starting from e− to the direction of e. For x, y ∈ V X̃, let

`xy be a geodesic in G X̃ starting from x to direction of y and e1, . . . , en ∈ EX̃
be edges such that `x,y|[0,d

X̃
(x,y)] ∩ EX̃ = {e1, . . . , en} considering the order.

By the definition of I, we have

I(`xy, dG X̃(x, y)) =
n∑
i=1

c̃(ei).

Since c̃ is invariant under the action of Γ, we derive the system of conductance

c : EX → R.

Let Ĩ, Ĩ∗ be two integrated potentials for Γ and c̃, c̃∗ be the system of

conductances associated with them, respectively. If Ĩ and Ĩ∗ are cohomologous

via a function H : X̃ → R in (2.4), then we have

c̃∗(e)− c̃(e) = H(e+)−H(e−)

for all e ∈ EX̃.

It follows from the proposition 3.22. in [BPP16] that there is correspon-

dence between the cohomology classes of the system of conductance and the

potential. In fact, the dynamical theory on metric graphs associated with po-

tentials can be interpreted in terms of systems of conductances. Though we

define new objects Ĩ replacing potentials, the classical theory in [BPP16] is

applicable.

2.3 Gibbs measures

In this section, we define Patterson densities and the Gibbs measure for an

integrated potential. Although we use an integrated potential instead of a

potential, these measures are essentially the same as the ones in [BPP16].

Moreover, we prove important facts that cohomologous relation between two

integrated potentials gives the equivalence of the Patterson densities and the

uniqueness of the Gibbs measures (Proposition 2.3.2 and Proposition 2.3.6).

18



CHAPTER 2. DYNAMICS ON METRIC GRAPHS

These propositions are key ingredients for Chapter 3.

2.3.1 Patterson densities

Definition 2.3.1. For s ≥ 0, a family (m±x )
x∈X̃ of finite positive Borel mea-

sures on ∂∞X̃ is a conformal density of dimension s for (Γ, Ĩ±) if

1. (m±x )
x∈X̃ is Γ-equivariant, i.e. γ∗m

±
x = m±γx for all γ ∈ Γ and x ∈ X̃;

2. For all x, y ∈ X̃,
dm±x
dm±y

(ξ) = e−C
±(ξ,x,y),

where C±(ξ, x, y) = C±
s,Γ,Ĩ±

(ξ, x, y) is the Gibbs cocycle (2.5).

If m±x is nonzero for all x ∈ X̃, then we call (m±x )
x∈X̃ the Patterson density

for (Γ, Ĩ±).

By the Hopf-Tsuji-Sullivan-Roblin theorem, the Patterson densities (m±x )
x∈X̃

are unique up to a scalar multiple (see [BPP16]). Using the uniqueness of the

Patterson density, we get the cohomological invariance of the equivalent class

of the Patterson density as follows.

Proposition 2.3.2. Let Ĩ and Ĩ∗ be two cohomologous integrated potentials

for Γ. Then the Patterson densities associated with Ĩ and Ĩ∗ are equivalent.

Proof. Since Ĩ and Ĩ∗ are cohomologous, there exists Γ-invariant function

H : X̃ → R such that Ĩ∗(`, t)−Ĩ(`, t) = H(`(t))−H(`(0)) for all ` ∈ G X̃ and

t ≥ 0. Let C± and C∗± be the Gibbs cocycles associated Ĩ and Ĩ∗, respectively.

Then by (2.6), we have for ξ ∈ ∂∞X̃ and x, y ∈ X̃,

C∗+(ξ, x, y)− C+(ξ, x, y) = H(x)−H(y)(2.8)

C∗−(ξ, x, y)− C−(ξ, x, y) = H(y)−H(x).

Let (m±x )
x∈X̃ be the Patterson density for (Γ, Ĩ±). We define a family of

measures (m∗±x )
x∈X̃ by for all ξ ∈ ∂∞X̃ and x, y ∈ X̃,

dm∗±x (ξ) := e∓H(x)dm±x (ξ).

Then Γ-equivariance of (m∗±x follows from Γ-invariance ofH and Γ-equivaraince

of (m±x )
x∈X̃ . By (2.8), it can be checked that (m∗±x )

x∈X̃ is the Patterson den-
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sity for (Γ, Ĩ∗±). Since the Patterson density is unique up to a scalar multiple,

we prove the proposition.

For x, y ∈ X̃, we define a shadow Ox(y) of y seen from x by a subset of

∂∞X̃ consisting of the equivalent classes of geodesic rays starting from x to

direction of y. We note that the shadows Ox(y) for x, y ∈ V X forms the basis

of the topology on ∂∞X̃. Thus any Borel measures on ∂∞X̃ are determined

by the measure values on the shodows.

For e ∈ EX, let ẽ be a lift of e to X̃. We denote

me := mẽ−
(
Oẽ−(ẽ+)

)
,

for a conformal density (mx)
x∈X̃ . It follows from the Γ-equivariance of the

conformal density that m is independent of the choice of lifts ẽ.

For e, e′ ∈ EX, we denote e → e′ if e+ = e′− and ē 6= e′. The following

proposition is a generalization of proposition 3.13 in [KN07].

Proposition 2.3.3. For all e ∈ EX, we have

me = ec(e)−sL(e)
∑

e′:e→e′
me′ .

Proof. For e ∈ EX, let ẽ ∈ EX̃ be a lift of e. Let ẽ′ ∈ EX̃ be such that ẽ→ ẽ′.

Then

Oẽ−
(
ẽ+
)

=
⊔
ẽ→ẽ′
Oẽ−

(
(ẽ′)+

)
=
⊔
ẽ→ẽ′
O(ẽ′)−

(
(ẽ′)+

)
,

and hence we have

mẽ−
(
Oẽ−

(
ẽ+
))

=
∑
ẽ→ẽ′

mẽ−
(
O(ẽ′)−

(
(ẽ′)+

))
.

By (2.6) and (2.7), we have

mẽ−
(
O(ẽ′)−

(
(ẽ′)+

))
= ec(e)−sL(e)m(ẽ′)−

(
O(ẽ′)−

(
(ẽ′)+

))
.

Thus we prove the proposition.

Proposition 2.3.4. There is a unique number s ≥ 0 such that the measures

m±x in the conformal density of dimension s are nonzero and have no atoms.

In fact, the critical exponent δ is the unique such number.
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From Proposition 2.3.4, we prove alternatively that the Patterson density

exists and is unique up to scalar multiplication. This observation is a key

ingredient for computing the critical exponent numerically, which is used in

Chapter 4 and Chapter 5.

Proof. Let (mx) = (m+
x ) be the nonzero conformal density of dimension s. We

denote by m = (me)e∈EX . Then by the assumption, m has positive entries.

Let A(s) be a square matrix whose rows and columns are indexed by EX

defined by for all e, f ∈ EX,

[A(s)]ef =

{
ec(e)−sL(e) if e→ f

0 otherwise.

Then by Proposition 2.3.3, m is the eigenvector of A(s) corresponding to

the eigenvalue 1. We note that A(s) is nonnegative irreducible matrix by the

assumption of X (see [Lim08]). By the Perron-Frobenius theorem, the spectral

radius ρ(A(s)) of A(s) is equal to 1.

By the Galfand’s formula, we write

ρ(A(s)) = lim
n→∞

‖A(s)n‖
1
n = lim

n→∞

 ∑
e1···en∈Pn

e
∑m
i=1 c(ei)−s

∑n
i=1 L(ei)

 1
n

,

where Pn is the set of edge paths in X consisting of n edges. Let Lmin =

min{L(e) : e ∈ EX}. Then

d

ds

 ∑
e1···en∈Pn

e
∑m
i=1 c(ei)−s

∑n
i=1 L(ei)

 1
n

=
1

n

 ∑
e1···en∈Pn

(
−

n∑
i=1

L(ei)

)
e
∑n
i=1 c(ei)−s

∑n
i=1 L(ei)


·

 ∑
e1···en∈Pn

e
∑m
i=1 c(ei)−s

∑n
i=1 L(ei)

 1
n
−1

≤ −Lmin

 ∑
e1···en∈Pn

e
∑m
i=1 c(ei)−s

∑n
i=1 L(ei)

 1
n

.
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Thus we have
d

ds
ρ(A(s)) ≤ −Lminρ(A(s)) < 0.

Since s 7→ ρ(A(s)) is strictly decreasing, there is unique s such that ρ(A(s)) =

1.

2.3.2 Gibbs measures

Let ∂2
∞X̃ be the subset of ∂∞X̃ × ∂∞X̃ that consists of pairs of distinct

points at infinity of X̃. Hopf’s parametrization of G X̃ is the homeomorphism

that identifies G X̃ with ∂2
∞X̃ × R, by the map ` 7→ (`−, `+, t), where `± =

limt→±∞ `(t) and t is the signed distance from the closest point to the fixed

basepoint x0 on the geodesic line ` to `(0). In Hopf’s parametrization, we

have ϕs(`−, `+, t) = (`−, `+, t + s) for all s ∈ R, and for all γ ∈ Γ, we have

γ(`−, `+, t) = (γ`−, γ`+, t+ tγ,`−,`+), where tγ,`−,`+ ∈ R depends only on γ, `−,

and `+. The restriction of the antipodal map to G X̃ is the map (`−, `+, t) 7→
(`+, `−,−t).

Definition 2.3.5. The Gibbs measure m̃I on G X̃ is the measure on G X̃ given

by the density

dm̃I(`) = eC
−(`−,x0,`(0))+C+(`+,x0,`(0))dm−x0(`−)dm+

x0(`+)dt

in Hopf’s parametrization with respect to the basepoint x0.

We note that the Gibbs measure is independent of the choice of a base

point x0. The following proposition gives cohomological invariance of the Gibbs

measure.

Proposition 2.3.6. Let Ĩ and Ĩ∗ be two cohomologous integrated potentials

for Γ. Then the Gibbs measures m̃Ĩ and m̃Ĩ∗ associated with Ĩ and Ĩ∗, respec-

tively, are the same up to a scalar multiple.

Proof. By Proposition 2.3.2, we have

(2.9) dm∗±x (ξ) := e∓H(x)dm±x (ξ)
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ignoring scalar multiple. Then by (2.8) and (2.9),

dm̃Ĩ∗(`) = eC
∗−(`−,x0,`(0))+C∗+(`+,x0,`(0))dm∗−x0 (`−)dm∗+x0 (`+)dt

= eC
−(`−,x0,`(0))+C+(`+,x0,`(0))dm∗−x0 (`−)dm∗+x0 (`+)dt

= eC
−(`−,x0,`(0))+C+(`+,x0,`(0))dm−x0(`−)dm+

x0(`+)dt

= dm̃Ĩ(`).

The Gibbs measure is invariant under the action of Γ and the geodesic flow

ϕt. Thus, it derives a geodesic flow invariant measure mI on Γ\G X̃, we call it

the Gibbs measure on Γ\G X̃. In our case, mI is finite and unique up to scalar

multiplication.

For ` ∈ G X̃ and r > 0, T, T ′ ≥ 0, the Bowen ball around ` is

B(`;T, T ′, r) =

{
`′ ∈ G X̃ : sup

t∈[−T ′,T ]
d
X̃

(`(t), `′(t)) < r

}
.

The following proposition explains why the terminology of the Gibbs measure

is appropriate. The proof is followed by proposition 4.5 in [BPP16].

Proposition 2.3.7. The Gibbs measure mI on Γ\G X̃ satisfies the Gibbs

property for the integrated potential I, that is, for every compact subset K

of Γ\G X̃, ther exist r > 0 and c = cK,r ≥ 1 such that for all large enough

T, T ′ ≥ 0, for every ` ∈ Γ\G X̃ with ϕ−T ′`, ϕT ` ∈ K, we have

1

c
≤ mI(B(`;T, T ′, r)

eI(ϕ−T ′`,T+T ′)−δ(T+T ′)
≤ c.

2.4 Variational principles

In this section, we define the topological pressure for an integrated potential

analogous to [BPP16]. We also describe two well-known theorems: Kolmogorov-

Sinai theorem (Theorem 2.4.1) and variational principle (Theorem 2.4.2).

Kolmogorov-Sinai theorem is used in Section 3.1 for computing the topological

pressure directly. By the variational principle, the topological pressure is equal

to the critical exponent.
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2.4.1 Entropy

Let (Z, T,m) be a measure-preserving dynamical system and P = {P1, P2, . . . , Pn}
be a finite measurable partition of Z. The (static) entropy of a partition P is

defined by

Hm(P) := −
n∑
i=1

m(Pi) logm(Pi).

For partitions P = {P1, P2, . . . , Pn} and Q = {Q1, Q2, . . . , Qn′}, the join

P ∨Q of P and Q is a partition consiting of subsets Pi ∩Qj for all 1 ≤ i ≤ n
and 1 ≤ j ≤ n′. We note that the entropy Hm(P ∨ T−1P ∨ · · · ∨ T−k+1P) is

subadditive with respect to k. By Fekete lemma, the limit

hm(P, T ) := lim
k→∞

1

k
Hm(P ∨ T−1P ∨ · · · ∨ T−k+1P)

exists and we call hm(P, T ) the entropy of the transformation T with respect

to the partition P.

The (measure theoretic or metric) entropy of the transformation T is de-

fined by

hm(T ) = sup
P
h(P, T ),

where the supremum is taken over all finite meausrable partitions.

For a partition P, if the smallest σ-algebra containing ∨∞k=−∞T
−kP is equal

to the σ-algebra of Z up to measure zero sets, then we call P a generator with

respect to T .

Theorem 2.4.1 (Kolmogorov-Sinai Theorem). If P is a generator with respect

to T , then hm(T ) = hm(P, T ).

Let M be the set of T -invariante Borel probability measures. The topolog-

ical entropy htop for T is defined by

htop := sup
m∈M

hm(T ).

For finite metric graphs, the topological entropy htop for time-one map of

geodesic flow is equal to the volume entropy hvol [Gui94]. The volume entropy

hvol is defined by

hvol = lim
r→∞

log volB̃(x, r)

r
,
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where B̃(x, r) is a ball in the universal covering tree of the graph with the cen-

ter x and radius r. It is well-known that the volume entropy hvol is independent

of a choice of the center x of the ball.

2.4.2 Topological Pressure

Let (Z, (ϕt)t∈R) be a topological space endowed with a continuous one-parameter

group of homeomorphisms and ψ : Z → R be a locally constant bounded con-

tinuous map. Let M be the set of φt-invariant Borel probability measures.

The (metric) pressure for ψ of a measure m ∈M is defined by

Pψ(m) := hm(ϕ1) +

∫
Z
ψ dm

and the (topological) pressure for ψ is defined by

Pψ := sup
m∈M

Pψ(m).

We call a measure m an equilibrium state for ψ if Pψ = Pψ(m).

In order to fit into our settings, we let Z = GX and I(`, t) =
∫ t

0 ψ(ϕs`) ds

for all ` ∈ GX and t ≥ 0. Then we have∫
GX

ψ dm =
∑
e∈EX

∫
[e]
ψ dm =

∑
e∈EX

m([e])I(`e, L(e)) =: m(I ′),

where [e] is the set of geodesics starting from e− to dirction of e. With this

observation, we define the metric pressure for I by

PI(m) := hm(ϕ1) +m(I ′).

The topological pressure PI for I and an equilibrium state for I is defined

similarly. The following theorem is the main theorem of part 1 in [BPP16].

Theorem 2.4.2 (Variational Principle for finite metric graphs). Let X be

a finite metric graph and I be an integrated potential. Then the topological

pressure PI is equal to the critical exponent δΓ,I and the Gibbs measure mI is

the unique equilibrium state for I.
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2.5 Coding

In this section, we describe a coding process of the discrete-time geodesic flow

(Theorem 2.5.2). Then we identify the suspension flow with the continuous-

time geodesic flow (Theorem 2.5.5). With this identification, we observe that

a continuous-time geodesic flow invariant measure is represented by a product

measure of a discrete-time geodesic flow invariant measure and the Lebesgue

measure (Theorem 2.5.6). This observation is a crucial part of computational

technique used in Chapter 3.

2.5.1 Two-sided subshifts of finite type

Definition 2.5.1. A two-sided topological subshift of finite type is a topo-

logical dynamical system (Σ, σ) constructed from a finite alphabet A and a

transition matrix A = (Aij)i,j∈A ∈ {0, 1}A×A , where Σ is the closed subset

of the topological product space A Z defined by

Σ =
{
x = (xn)n∈Z ∈ A Z : ∀n ∈ Z, Axn,xn+1 = 1

}
,

and σ : Σ→ Σ is the two-sided shift defined by

(σ(x))n = xn+1

for all x ∈ Σ and n ∈ Z.

We note that Σ is comapct by Tychonoff’s theorem.

For p ≤ q in Z, a finite word (an)p≤n≤q ∈ A {p,...,q} is called admissible if

Aan,an+1 = 1 for all n ∈ {p, . . . , q − 1}. For an admissible word (an)p≤n≤q, a

cylinder is a subset of the form

[ap, . . . , aq] := {(xn)n∈Z ∈ Σ : ∀n ∈ {p, . . . , q}, xn = an} .

A subshift of finite type is transitive if for all x, y ∈ A , there exists an admis-

sible word (an)p≤n≤q such that ap = x and aq = y.

2.5.2 Coding discrete-time geodesic flows

We let A = EX and construct a subshift of finite type consisting of

Σ =
{

e = (ei)i∈Z ∈ A Z : ∀i ∈ Z, ei → ei+1

}
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and the shift map σ : Σ→ Σ.

For ` ∈ GX, let ˜̀∈ G X̃ be a lift of ` with repsect to the quotient map by

Γ. Let ẽi(˜̀) be the edge in EX̃ whose topological realization is ˜̀([i, i+1]), and

let ei(`) be the quotient image of ẽi(˜̀) by Γ. That is,

(2.10) ei(`) = the i-th edge through ` in X starting from `(0).

It is easily checked that ei(`) is independent of the choice of a lift ˜̀ of `.

Theorem 2.5.2. The coding map Θ : GX→ Σ defined by

` 7→ e(`) = (ei(`))i∈Z

is a homeomorphism that conjugates the time-one discrete geodesic flow ϕ1

and the shift σ; that is, the following diagram commutes

GX GX

Σ Σ.

ϕ1

Θ Θ

σ

Furthermore, if we endow GX with the quotient distance dGX of

dG X̃(˜̀, ˜̀′) = e− sup{n∈N : ˜̀|[−n,n]=˜̀′|[−n,n]}
on G X̃ and Σ with the distance

dΣ(e, e′) = e− sup{n∈N : ∀i∈{−n,...,n}, ei=e′i},

then Θ is a bilipschitz homeomorphism.

Proof. Let ˜̀, ˜̀′ ∈ G X̃ with γ ˜̀= ˜̀′ for some γ ∈ Γ. Then we have γẽi(˜̀) =

ẽi(γ ˜̀) = ẽi(˜̀′) for all i ∈ Z, hence the map Θ is well-defined.

For ` ∈ GX, we have `(i) = ei(`)
− for all i ∈ Z. Thus ϕ1`(i) = ei+1(`)− =

(σe(`))−i for all i ∈ Z so that the map Θ is equivariant for ϕ1 and σ.

Let ˜̀, ˜̀′ ∈ G X̃ with ˜̀|[−n,n] = ˜̀′|[−n,n] for some n ∈ N. Then we have

ẽi(˜̀) = ẽi(˜̀′) for all −n ≤ i ≤ n− 1. Thus

dΣ(Θ(`),Θ(`′)) ≤ e dGX(`, `′),

that is, Θ is Lipschitz. In particular, Θ is continuous.
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Now, we will construct an inverse Ψ : Σ → GX of Θ and show that it

is Lipschitz. Let e = (ei)i∈Z ∈ Σ and fix a lift ẽ0 of e0. By the construction

of Σ, we may choose ẽ−1 and ẽ1 such that ẽ−1 → ẽ0 → ẽ1. Inductively, for

given ẽi, i ∈ Z, choose ẽi−1 or ẽi+1 satisfying ẽi−1 → ẽi → ẽi+1. We define˜̀ : Z → V X̃ by ˜̀(i) = ẽ−i . Then ˜̀ ∈ G X̃ and its image ` by the natural

quotient map G X̃→ GX maps to e by Θ. We define Ψ(e) = `. Note that ` is

independent of the choice of lift ẽ0 and hence Ψ is well-defined inverse of Θ.

T For e, e′ ∈ Σ with ei = e′i for all −n ≤ i ≤ n for some n ∈ N, let ` = Ψ(e)

and `′ = Ψ(e′). Then `|[−n,n+1] = `′|[−n,n+1] and hence

dGX(Ψ(e),Ψ(e′)) ≤ dΣ(e, be′).

Thus Ψ is Lipschitz and continuous.

For an integrated potential I for GX, we define a potential Fsymb on Σ

defined by for e = (ei)i∈bZ ∈ Σ,

Fsymb(e) = c(e0),

where c is a system of conductances on EX.

For the Gibbs measure mI on GX, we derive the measure msymb,I on Σ

defined by

msymb,I = Θ∗mI .

We call msymb,I the Gibbs measure on Σ. The following proposition comes

from p.112 in [BPP16].

Proposition 2.5.3. The Gibbs measure msymb,I on Σ satisfies the Gibbs prop-

erty with the cosntant δ for the potential Fsymb.

2.5.3 Suspensions

Let (Σ, σ) be the subshift of finite type which is homeomorhpic to (GX, ϕ1)

and msymb,I be the Gibbs measure on Σ. Define a function r : Σ → R>0 by

for e = (ei)i∈Z,

r(e) = L(e0).

Definition 2.5.4. The suspension over (Σ, σ) with roof function r is the

continuous-time dynamical system (Σr, (σr,t)t∈R) constructed as follows.

28



CHAPTER 2. DYNAMICS ON METRIC GRAPHS

(1) The space Σr is the quotient topological space (Σ × R)/ ∼, where ∼ is

hte equivalence relation on Σ×R generated by (e, , s+ r(e)) ∼ (σ(e), s)

for all (e, s) ∈ Σ× R.

(1) For all t ∈ R, the map σr,t : Σr → Σr is defined by

σr,t([e, s]) = [e, s+ t],

where [e, s] is the equivalence class of (e, s) ∈ Σ× R.

We endow Σr with the Bowen-Walters distance (see [BW72] and [BS00]).

Note that the set

F = {(e, s) : e ∈ Σ, 0 ≤ s < r(e)}

is a measurable strict funcamental domain for the equivalence relation of Σr.

Then σr,t can be defined on F equivalently by for (e, s) ∈ F ,

σr,t(e, s) = (σn(e), s′),

where n ∈ N and s′ ∈ R are such that

t+ s =
n=1∑
i=0

r(σie) + s′ and 0 ≤ s′ < r(σne).

We define the Gibbs measure msymb,I,r on Σr using the identification with F

by the pushforward of the restriction from Σ×R to F of the product measure

dmsymb,Ids. Here, ds is the Lebesgue measure on R.

2.5.4 Coding continuous-time geodesic flows

From now, in order to distinguish the discrete-time and continuous-time situ-

ation, we use the left exponent ] to indicate a discrete-time object whenever

needed. For instance, we set ]X = |X|1 and we denote by (]ϕt)t∈Z the discrete-

time geodesic flow on GX.

For ` ∈ GX, let

τ−(`) = sup{t < 0 : `(t) ∈ V X}.

The following theorem is from [BS00].
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Theorem 2.5.5. The continuous-time dynamical system (GX, (ϕt)t∈R) is iso-

morphic to the suspension (Σr, (σr,t)t∈R) by a bilipschitz homeomorphism Θr :

GX → Σr defined by

` 7→ [Θ
(
ϕτ−(`)`

)
,−τ−(`)].

For the Gibbs measure mI on GX, we endow the measure msymb,I on Σr

defined by

msymb,I = (Θr)∗mI .

We call msymb,I the Gibbs measure on Σr.

The following theorem is the key observation of ϕt-invariant measures on

the space of geodesics for this thesis. The proofs for symbolic cases are in

[LL09]. Using the coding map described above, the theorem follows.

Theorem 2.5.6. 1. PI is given by the unique number t0 such that the

topological pressure of GX for c− t0L is equal to 0.

2. For ]ϕn-invariant meausre ]m on GX, the measure m on GX of the form

dm = d]mds is ϕt-invariant. Conversely, any ϕt-invariant measure m

on GX is the product measure (after normalizing if necessary) of some
]ϕn-invariant measure on GX and the Lebesgue measure on R.

3. For the Gibbs measure ]mc−t0L on GX, the Gibbs meausre mI on GX

is represented by

dmI =
d]mc−t0Lds∫

GX r d
]mc−t0L

.
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Equivalence of boundary

measures

In [Lyo94], Lyons found the condition to the equivalence of three measures

(visibility measure, Patterson-Sullivan measure, and harmonic measure) on

the boundary of the universal covering tree of simplicial graphs. The simpli-

cial graph in [Lyo94] is assumed that every vertex has degree at least 2 and

some vertex has degree more than 2. If e1, . . . , en is an edge path without

backtracking whose intermediate vertices have degree 2, then we may regard

the edge path as an edge with length n. Thus the simplicial graph is indeed the

metric graph with integer edge lengths. Lyons constructed the three measures

as Markov measures of which transition probabilities are obtained from some

combinatorial matrix computations. Comparing these transition probabilities,

Lyons proves that two of the three measures coincide if and only if there are

certain edge lengths as follows.

Theorem 3.0.1 (Lyons).

1. The visibility measures and the Patterson-Sullivan meausres coincide if

and only if for all e ∈ EX,

L(e) =
1

hvol
log(deg(e−)− 1)(deg(e+)− 1);

2. The visibility measures and the harmonic measures coincide if and only
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if there exists c > 0 such that for all e ∈ EX,

L(e) = c

(
1− 1

deg(e−)
− 1

deg(e+)

)
;

3. The Patterson-Sullivan measures and the harmonic measures coincide if

and only if for all e ∈ EX,

L(e)ehvolL(e)

e2hvolL(e) − 1
= K(e−)K(e+),

where for x ∈ V X,

K(x)2 =
1 +

∑
e−=x

1
e2hvolL(e)−1∑

e−=x
1

L(e)

.

However, the constructions are not naturally generalized to metric graphs

with real edge lengths. In this chapter, we introduce new methods for con-

structing boundary measures dynamically. Moreover, we prove the general-

ized statements of Theorem 3.0.1 in Section 3.4. Our results are different from

Theorem 3.0.1 in two respects: (1) we assume that edge lengths can be real

numbers, (2) we consider the cases in that two boundary measures are equiv-

alent not only coincide.

We first set notations used in this chapter. Denote the set of edge paths

without backtracking in GX of length n by Pn.

For any e1 · · · en ∈Pn, define a cylinder of GX by

][e1 · · · em] := {]` ∈ GX : ]`([i− 1, i]) = ei, ∀i = 1, . . . ,m}

We note that the family {[e]}e∈EX forms a partition for GX and it is a gener-

ator with resepct to ]ϕn. For 1 ≤ k ≤ m, define

[e1 · · · ek · · · em] = {` ∈ GX : e1 · · · em ⊂ Im `, `(0) ∈ e1 · · · ek}

If zi = e−i for i = 1, . . . ,m and zm+1 = e+
m, then we also denote [e1 · · · ek · · · em]

by [z1 · · · zk+1 · · · zm+1].
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3.1 Visibility measures

Let M̃ be a complete simply connected Riemannian manifold, with dimension

at least 2 and pinched sectional curvature at most -1 and Γ be a non-elementary

discrete group of isometries of M̃ . The geometric potential F̃G : T 1M̃ → R is

defined by

F̃G(v) = − d

dt

∣∣∣∣
t=0

log Jac
(
ϕt|W su(v)

)
(v),

where Jac
(
ϕt|W su(v)

)
is the Jacobian (see [PPS12]). The geoemtric potential

is the negative of the pointwise exponential growth rate of the Jacobian of the

geodesic flow restricted to the strong unstable manifold. We note that

(3.1)

∫ t

0
F̃G(ϕsv)ds = − log Jac

(
ϕt|W su(v)

)
(v)

is the negative of the exponential growth rate of the volume on the strong

unstable manifold W su(v) under the geodesic flow ϕt.

Let ` ∈ G X̃ and Bsu(`, ε) be the ball in W su(`) with the center ` and radius

ε > 0. Then by the definition of dG X̃ (2.1), we have for sufficiently small ε,

Bsu(`, ε) = {`′ ∈W su(`) : π(`′) = π(`)}.

For t > 0, we observe that

ϕ−tB
su(ϕt`, ε) = {`′ ∈W su(`) : `|[0,t] = `′|[0,t]}.

From the observation, we define (3.1) on the metric graph by the logarithm of

the ratio of the measures of ϕ−tB
su(ϕt`, ε) and Bsu(ϕt`, ε).

Now, let x ∈ V X̃ and ` ∈ G X̃ with π(`) = x. Let y ∈ V X̃ be the first

vertex meeting along ` at time t. Then we may approximate (3.1) on the metric

graph by

log
1

deg(y)− 1
.

We define the analogue of the geometric potential on metric graphs as follows.

For x ∈ V X̃, we denote the degree of x by d(x) which is the number of edges

in X̃ starting from x. For convenience, we define a notation δ(x) := d(x)− 1.

Definition 3.1.1. The integrated geometric potential ĨG(`, t) along the geodesic
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` ∈ G X̃ until time t ≥ 0 is defined by

ĨG(`, t) :=

n∑
i=1

log
1

δ(xi)
,

where x1, . . . , xn ∈ V X̃ are vertices in `|(0,t] considering the order.

Let M be the set of all ϕt-invariante Borel probability measure on GX.

For simplicity, we denote the metric potential for IG of m ∈M by PG(m) and

the topological potential for IG by PG.

Theorem 3.1.2. For all m ∈M , we have PG(m) ≤ 0. Hence we have PG ≤ 0.

Proof. Let m ∈ M . Then by Theorem 2.5.6 2, there exists a ]ϕn-invariant

measure ]m on G X̃ such that

dm =
d]mds∫

GX r d
]m

.

It follows that hm(ϕ1) = h]m(]ϕ1)/
∫
G X̃ r d

]m (see [Abr59]). By Theorem 2.4.1,

we have

h]m(]ϕ1) = lim
n→∞

− 1

n

∑
e1···en∈Pn

]m([e1 · · · en]) log ]m([e1 · · · en]).

Then∑
e1···en∈Pn

]m([e1 · · · en]) log ]m([e1 · · · en])

=
∑

e1···en∈Pn

]m([e1 · · · en])
]m([e1 · · · en−1])

]m([e1 · · · en−1])

·
(

log
]m([e1 · · · en])
]m([e1 · · · en−1])

+ log ]m([e1 · · · en−1])

)

=
∑

e1···en−1∈Pn−1

]m([e1 · · · en−1])

 ∑
en:en−1→en

]m([e1 · · · en])
]m([e1 · · · en−1])

log
]m([e1 · · · en])
]m([e1 · · · en−1])


+

∑
e1···en−1∈Pn−1

 ∑
en:en−1→en

]m([e1 · · · en])
]m([e1 · · · en−1])

 ]m([e1 · · · en−1]) log ]m([e1 · · · en−1]).
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Here, we note that

∑
en:en−1→en

]m([e1 · · · en])
]m([e1 · · · en−1])

= 1

and

∑
e1···en−1∈Pn−1

]m([e1 · · · en−1])

 ∑
en:en−1→en

]m([e1 · · · en])
]m([e1 · · · en−1])

log
]m([e1 · · · en])
]m([e1 · · · en−1])


≥

∑
e1···en−1∈Pn−1

]m([e1 · · · en−1])

 ∑
en:en−1→en

1

δ(e+
n−1)

log
1

δ(e+
n−1)


=

∑
e1···en−1∈Pn−1

]m([e1 · · · en−1]) log
1

δ(e+
n−1)

=
∑
e∈EX

∑
e1,...,en−2∈EX
e1···en−2∈Pn−2
e1···en−2→e

]m([e1 · · · en−2e]) log
1

δ(e+)

=
∑
e∈EX

]m([e])]IG(`e, L(e))

= ]m(]I ′G)

Thus we have∑
e1···en∈Pn

]m([e1 · · · en]) log ]m([e1 · · · en])

≥
∑

e1···en−1∈Pn−1

]m([e1 · · · en−1]) log ]m([e1 · · · en−1]) + ]m(]I ′G)

≥ · · · ≥
∑
e∈EX

]m([e]) log ]m([e]) + (n− 1)]m(]I ′G)

so that

h]m(]ϕ1) ≤ lim
n→∞

− 1

n

( ∑
e∈EX

]m([e]) log ]m([e]) + (n− 1)]m(I ′G)

)
= −]m(]I ′G).
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For all m ∈M ,

PG(m) = hm(ϕ1) +m(I ′G) =
h]m(]ϕ1) + ]m(]I ′G)∫

GX r d
]m

≤ 0.

We define a measure mL on GX such that

mL

(
[z1 · · · zk · · · zm]

)
=

dX(z1, zk)

δ(z1) · · · δ(zm)
.

Then mL is a finite positive Borel measure on GX which is ϕt invariant. We

denote m̂L = mL
‖mL‖ .

Theorem 3.1.3. We have hm̂L +m̂L(I ′G) = 0, i.e. m̂L is the equilibrium state

for IG and PG = 0.

Proof. Let ]mL be a measure on GX such that

]mL([e1 · · · em]) =
1

δ(e−1 ) · · · δ(e+
m)

and denote ]m̂L =
]mL
‖]mL‖

. Then

dm̂L =
d]m̂Lds∫
GX r d

]m
.
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We note that ]mL is a Markov measure. Thus

hm̂L

∫
GX

r d]m = h]m̂L

= −
∑

e1e2∈P2

]m̂L([e1e2]) log
]m̂L([e1e2])
]m̂L([e1])

= −
∑

e1e2∈P2

]m̂L([e1e2]) log
]mL([e1e2])
]mL([e1])

= −
∑

e1e2∈P2

]m̂L([e1e2]) log
1

δ(e−2 )

= −
∑

e1∈EX

]m̂L([e1]) log
1

δ(e+
1 )

= −]m̂L(]I ′G)

= −m̂L(I ′G)

∫
GX

r d]m.

Definition 3.1.4. The visibility measures (λ±x )
x∈X̃ are Patterson density for

I±G . We denote the Gibbs measure mIG by λ for simlicity.

Lemma 3.1.5. There exists C > 0 such that the following holds: For x, y ∈
V X̃, if x, z1, . . . , zm, y ∈ V X̃ are vertices containing in the geodesic segment

between x and y (considering the order), then

λ±x (Ox(y)) =
C

δ(z1) · · · δ(zm)
.

Proof. We prove only for the case of λ+
x . The proof for the case of λ−x is

not quite different. As we describe in Section 2.3.1, the visibility measures

are determined by the values λ+
x (Ox(y)) for all x ∼ y ∈ V X̃. Therefore, by

Proposition 2.3.3, it suffices to show that the constant vector(
λ+
xy

)
x∼y∈V X̃ := (C)

x∼y∈V X̃

forms the eigenvector of AIG corresponding to the eigenvalue 1.
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Let x ∼ y ∈ V X̃. Then

eIG(`xy ,L(x,y))
∑

z : y∼z 6=x
λ+
yz =

1

δ(y)

∑
z : y∼z 6=x

C = C = λ+
xy.

Since the Patterson density is unique up to scalar multiplication, we may

choose C > 0 for given scale of the visibility measure.

Remark 3.1.6. Lemma 3.1.5 is the natural extension for metric graphs of

the visibility measures in [Lyo94]. In Lyons’ setting, the visibility measure at

x is the solid angle seen from x. In fract, the lemma implies that the Lyons’

visibility measures are d(x)λ+
x in the terms of the our settings However, we

observe that the visibility measures in our definition and Lyons’ definition are

equivalent and hence their Gibbs measures coincide.

Theorem 3.1.7. We have
mL

‖mL‖
=

λ

‖λ‖
.

Proof. The proof is immediate from the uniqueness of the equilibrium state.

However, we prove the theorem by direct calculation.

Let z1, . . . , zm be vertices in X lying on a geodesic segment. Then

λ([z1 · · · zk · · · zm])

=

k−1∑
i=1

λ([z1 · · · zizi+1 · · · zm])

=
k−1∑
i=1

λ−z1(Oz2(z1))
1

δ(z1) · · · δ(zi)
λ+
zm(Ozm−1(zm))

1

δ(zi+1) · · · δ(zm)
dX(zi, zi+1)

= C2 dX(z1, zk)

δ(z1) · · · δ(zm)

= C2mL([z1 · · · zk · · · zm]).

3.2 Patterson-Sullivan measures

Patterson-Sullivan meausres were introduced in [Pat76], [Sul79] for a Kleinian

group actin on the boundary of a hyperbolic space. It was extended in [Coo93]
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to a group acting geometrically (see also [Bou95], [BM96], [HP97], [Pau97],

and [CP99], [Fur02]). Patterson-Sullivan measures on the universal covering

trees of finite simplicial graphs were studied in [Lyo94] and [CP97]. In [BPP16],

Patterson-Sullivan measures are generalized with potential functions which is

Patterson densities. In this historical observation, we define Patterson-Sullivan

measures in our setting as follows.

We call the Patterson density for I ≡ 0 the Patterson-Sullivan measures

(PS measures), denoted by (µ±x )
x∈X̃ . In this case, the critical exponent δ of

which PS measures are nonzero and have no atoms is equal to the volume

entropy hvol.

Recall that the boundary ∂∞X̃ of the univeral covering tree of a metric

grpah adopts the visual distance defined as follows.

d
∂∞X̃

(ρ, ρ′) = e− sup{t≥0 : ρ|[0,t]=ρ′|[0,t]}.

Lyons proves for simplicial graphs that the volume entropy (or critical expo-

nent for ]Ĩ ≡ 0) is equal to the Hausdorff dimension of ∂∞X̃ for the visual

distance and the Patterson-Sullivan measures coincides with the Hausdorff

measures for the Hausdorff dimension [Lyo94]. These observations are ex-

tended to metric grpahs in [BPP16]. From these results, the values of the

Patterson-Sullivan measures are characterized by the eigenvalue of some ma-

trix [Lyo94, KN07].

Moreover, We denote the Gibbs measure for I ≡ 0 by µ which is called

the Bowen-Margulis measure [Rob03]. The Bowen-Margulis measure has an

important meaning in that it maximizes the measure-theoretic entropy.

3.3 Harmonic measures

Let M be a compact connected Riemannian manofold with pinched nega-

tive sectional curvatures and M̃ be the universal cover of M . The harmonic

measures on the boundary of M̃ is defined by the hitting measure for Brow-

nian motion. The harmonic measures are equivalent each other and their

Radon-Nikodym derivatives are the Martin kernel K. The harmonic poten-

tial F̃H : T 1M̃ → R is defined by

F̃H(v) = − d

dt

∣∣∣∣
t=0

logK(`v(0), `v(t), (`v)+),
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where ` is the geodesic starting at π(v) to direction of v. In this section,

we define the harmonic measures and harmonic potential for metric graphs

analogous to the manifold cases.

Let (Ω,P) be a probability space and Bx
t : Ω→ X̃ be a Brownian motion

starting from x ∈ X̃. For x, y ∈ X̃ and t ∈ R, we denote the heat kernel by

p(t, x, y). The green function G : X̃ × X̃ → R is defined by

G(x, y) =

∫ ∞
0

p(t, x, y) dt.

Since we assume degree of each vertex in X̃ is more than or equal to 3, the

Brownian motion is transitive. Thus the green function G has finite values.

We first define the harmonic measures (ν+
x )

x∈X̃ as follows.

Definition 3.3.1. The harmonic measures (ν+
x )

x∈X̃ is defined on ∂∞X̃ by

ν+
x = (Bx

∞)∗P.

In order to define the harmonic meausres (ν−x )
x∈X̃ , we define the integrated

harmonic potential from (ν+
x )

x∈X̃ .

Definition 3.3.2. The Martin kernel K : X̃ × X̃ × ∂∞X̃ → R is defined by a

Radon-Nikodym derivative of harmonic measures as follows. For x, y ∈ X̃ and

ξ ∈ ∂∞X̃,

K(x, y, ξ) =
dν+
y

dν+
x

(ξ).

The integrated harmonic potential ĨH(`, t) along the geodesic ` ∈ G X̃ until

time t ≥ 0 is defined by

ĨH(`, t) := − logK(`(0), `(t), `+).

The Martin boundary is the boundary of the image of the embedding de-

fined by y 7→ K(x0, ·, y) on X̃. In fract, the harmonic measures are defined on

the Martin boundary. However, we may regard they defined on ∂∞X̃ since the

Martin boundary and the Gromov boundary coincide [HL19].

Theorem 3.3.3. For x, y ∈ X̃,

K(x, y, (`xy)+) =
G(y, y)

G(x, y)
.
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Thus we have for x, y ∈ V X̃ and e ∈ EX̃ with e− = x and e+ = y,

c̃(e) = ĨH(`e, L(e)) = log
G(x, y)

G(y, y)
.

To prove the theorem we first introduce the lemma.

Lemma 3.3.4. For x, y ∈ X̃, we have

G(x, y)

G(y, y)
= Px[τy <∞],

where Px is the probability measure on Ω supported on the Brownian motion

starting from x.

Proof. Let

Lxt :=

∫ T

0
1{Bt=x} dt.

Then

Ex[Ly∞] = Ex
[∫ ∞

0
1{Bt=y} dt

]
=

∫ ∞
0

Px[Bt = y]

=

∫ ∞
0

p(t, x, y) dt = G(x, y).

Let τ is a first return time map on Ω and AT := {ω ∈ Ω : τy(ω) < T}.
For a constant K > 0 and a function f , we denote by K ∧ f := min{K, f}.
For s ≥ 0, we define a map θs : Ω → Ω such that for t, s ≥ 0 and ω ∈ Ω,

Bt(θs(ω)) = Bt+s(ω). Then for K > 0, we have

Ex[K ∧ Ly∞] = Ex
[
(K ∧ Ly∞) ◦ θτy ; τy <∞

]
= Ex

[
lim
T→∞

1AT (K ∧ Ly∞) ◦ θτy
]

= lim
T→∞

Ex
[
1AT (K ∧ Ly∞) ◦ θτy

]
by LDCT

= lim
T→∞

Ex
[
1ATEBτy [K ∧ Ly∞]

]
by SMP of Bt

= Ex
[

lim
T→∞

1ATEBτy [K ∧ Ly∞]

]
by LDCT

= Ex
[
1ATEBτy [K ∧ Ly∞] ; τy <∞

]
= Px[τy <∞] Ey[K ∧ Ly∞],
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where LDCT means Lebesgue dominant convergence themreom and SMP

means strong Markov property. Letting K →∞, we have

G(x, y) = Ex[Ly∞] = Px[τy <∞] Ey[Ly∞] = Px[τy <∞] G(y, y).

Proof of Theorem 3.3.3. For x, y ∈ X̃ and `xy ∈ G X̃, let z ∈ Im(`xy) not lying

between x and y. Inspired from the proof of the lemma 6.8 in [BPP16], we

claim that
ν+
y (Ox(z))

ν+
x (Ox(z))

=
G(y, z)

G(x, z)
.

Let Cx(z) be the subset of X̃ consisting of the points different from z on the

geodesic rays from z to the points in Ox(z). Using the Markov property of the

Brownian motion, we have

ν+
y (Ox(z)) = P[By

∞ ∈ Ox(z)] = G(y, z) P[∀t > 0, Bx
t ∈ Cx(z)].

It holds for x instead of y so that we prove the claim.

By the claim, we have

K(x, y, (`xy)+) = lim
z=`xy(t)
t→∞

ν+
y (Ox(z))

ν+
x (Ox(z))

= lim
z=`xy(t)
t→∞

G(y, z)

G(x, z)
.

By Lemma 3.3.4, we have

G(y, z)

G(x, z)
=
G(y, z)

G(z, z)

G(z, z)

G(x, z)
=

Py[τz <∞]

Px[τz <∞]
=

1

Px[τy <∞]
=
G(y, y)

G(x, y)
,

where the third equality holds by the Markov property of the Brownian motion

and the structure of the tree X̃.

We denote the metric potential for IH of m ∈ M by PH(m) and the

topological potential for IH by PH .

Theorem 3.3.5. The harmonic measures (ν+
x )

x∈X̃ are Patterson density for

IH and PH = 0.

Proof. By the construction of the harmonic measures, (νx)
x∈X̃ are finite Borel

measures. It follows from the Γ-invariance of P that (νx)
x∈X̃ is Γ-equivariant.

42



CHAPTER 3. EQUIVALENCE OF BOUNDARY MEASURES

For distinct x, y ∈ X̃, by the Markov property of Brownian motion, we have

ν+
x (Ox(y)) = Px[B∞ ∈ Ox(y)] = Px[τy <∞] Py[B∞ ∈ Ox(y)]

= eĨH((`x,y)+,x,y)ν+
y (Ox(y)).

Therefore, (ν+
x )

x∈X̃ satisfy the second condition of the Patterson density for

ĨH with PH = 0.

Based on Theorem 3.3.5, we define the harmonic measures (ν±x )
x∈X̃ by

Patterson density for I±H . We denote the Gibbs measure mIH by ν for simplic-

ity.

We define the random walk (]Bn)n∈N on V X̃ associated with the Brownian

motion. For x, y ∈ X̃, the transition probability ]p(x, y) from x to y is defined

by

]p(x, y) := P
[
τy < τN(x)\{y}

]
=

1/L(x, y)∑
z∈N(x) 1/L(x, z)

,

where N(x) = {z ∈ V X̃ : z is adjacent to x} and L(x, z) is the length of the

edge between x and z. The second equality is from [LP17]. We denote the green

function of the random walk (]Bn)n∈N by ]G. We let π(x) =
∑

z∈N(x) 1/L(x, z)

for all x ∈ V X̃. It follows that (π(x))
x∈V X̃ is proportional to the stationary

distribution on V X̃ since

π(y) =
∑
x:x∼y

π(x)]p(x, y).

We denote by ]P the probability measure induced by the stationary distribu-

tion and ]p on the discrete state space.

We associate the random walk (]Bn)n∈N with the Brownian motion (Bt)t∈R
in terms of the Green function as follows.

Lemma 3.3.6. For x, y ∈ V X̃, we have

G(x, y) = ]G(x, y).

Proof. In the proof of Lemma 3.3.4, G(x, y) = Ex[Ly∞] is the expectation of

the number of which the Brownian motion Bx
t hits y. That is equal to the

expectation of the number of which the random walk ]Bn starting from x hits

y. From [Bar17], the expectation is equal to ]G(x, y).
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The following lemma gives the explicit formula for the harmonic measures

(ν+
x )

x∈X̃ in terms of the Green function for the random walk (]Bn)n∈N.

Lemma 3.3.7. For x ∼ y ∈ V X̃, we have

ν+
x (Ox(y)) =

]G(x, x)

π(x)L(x, y)

(
1−

]G(y, x)
]G(x, x)

)
.

Proof. For x ∼ y ∈ V X̃, let Cx(y) be the subset of X̃ consisting of the points

containing y on the geodesic rays from y to the points in Ox(y). Then we have

ν+
x (Ox(y)) = Px [Bx

∞ ∈ Ox(y)]

= ]Px
[
]B

x
∞ ∈ Ox(y)

]
= ]G(x, x)]p(x, y)]Py

[
∀n ≥ 0, ]Bn ∈ Cx(y)

]
= ]G(x, x)]p(x, y)]Py [τx =∞]

=
]G(x, x)

π(x)L(x, y)

(
1−

]G(y, x)
]G(x, x)

)
.

Remark 3.3.8. Lemma 3.3.7 is the natural extension for metric graphs of the

harmonic measures in [Lyo94]. In Lyons’ setting, the harminc measure at x is

the hitting measure for simple random walk starting from x which corresponds

to unit current flow (see [Lyo90]). In fract, the lemma implies that the Lyons’

harmonic measures are G(x,x)
π(x) ν

+
x in the terms of the our settings However, we

observe that the harmonic measures in our definition and Lyons’ definition

are equivalent and hence their Gibbs measures coincide.

3.4 Equivalence conditions

In this section, we prove the main theorems of this chapter. We first need the

following lemma to prove the necessary condition of the theorems.

Lemma 3.4.1. Let I, I ′ be integrated potentials on GX × R≥0 and c, c′ be

associated system of conductances. If there exists a function g : V X → R such

that

c(e)− PIL(e) = c′(e)− PI′L(e) + g(e+)− g(e−),

44



CHAPTER 3. EQUIVALENCE OF BOUNDARY MEASURES

then the Patterson densities (m±x )
x∈X̃ for I± and ((m′)±x )

x∈X̃ for (I ′)± are

equivalent.

Proof. Recall that the Patterson density (m±x )
x∈X̃ is uniquely determined by

the values {m±x (Ox(y))}
x∼y∈V X̃ and

m±x (Ox(y))) = e−Ĩ
±(`xy ,d(x,y))+PId(x,y)m±y (Ox(y))(3.2)

= e−Ĩ
±(`xy ,d(x,y))+PId(x,y)

∑
x 6=z∈N(y)

m±y (Oy(z)).

Recall that for e ∈ EX and its lift ẽ ∈ EX̃, we denote

m+
e := m+

ẽ−

(
Oẽ−(ẽ+)

)
.

Then (m+
e )e∈EX is the right eigenvector of the matrix AI ∈ Mat(EX,R)

corresponding to the eigenvalue 1, where AI is defined by

[AI ]ef =

{
ec(e)−PIL(e) if e→ f

0 otherwise

for all e, f ∈ EX. We note that AI is irreducible by the assumption of X (see

[Lim08]). By the Perron-Frobenius theorem, the eigenvalue 1 is simple so that

the eigenvector of A corresponding to the eigenvalue 1 is unique upto scalar

multiplication.

By the observation, we have

m+
e = ec(e)−PIL(e)

∑
f :e→f

m+
f = ec

′(e)−PI′L(e)+g(e+)−g(e−)
∑
f :e→f

m+
f

and hence

eg(e
−)m+

e = ec
′(e)−PI′L(e)

∑
f :e→f

eg(f
−)m+

f .

That is,
(
eg(e

−)m+
e

)
e∈EX

is the eigenvector of AI′ corresponding to the eigen-

value 1. Since 1 is a simple eigenvalue, there exists c0 > 0 such that m′+e =

c0e
g(e−)m+

e for all e ∈ EX so (m+
x )

x∈X̃ and ((m′)+
x )

x∈X̃ are equivalent.

It can be check that

m−e := m−
ẽ−

(
Oẽ−(ẽ+)

)
.
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is the left eigenvector of the matrix AI . Thus we have that (m−x )
x∈X̃ and

((m′)−x )
x∈X̃ are equivalent by similar argument.

Theorem 3.4.2. The visibility measures (λ±x )
x∈X̃ and the PS measures (µ±x )

x∈X̃
are equivalent if and only if for all e ∈ EX,

L(e) =
1

hvol
log δ(e−)δ(e+).

Proof. We first assume that the visibility measures (λ±x )
x∈X̃ and the Patterson

measures (µ±x )
x∈X̃ are equivalent. Let e1 · · · ek be a cycle in X and e−1 = x

and e+
1 = y. Take their lifts ẽ1, . . . , ẽk, x̃, ỹ such that ẽ1 · · · ẽk is an edge path

in X̃ and x̃ = ẽ−1 and ỹ = ẽ+
1 . Let γ ∈ Γ be such that γx̃ = ẽ+

k . Then we have

λ̃
(
[ẽ1 · · · ẽk(γẽ1)]

)
= λ−x̃

(
Oỹ(x̃)

)
λ+
γỹ

(
Oγx̃(γỹ)

) L(e1)

δ(e−1 ) · · · δ(e−k )δ(x)δ(y)

= λ−x̃
(
Oỹ(x̃)

)
λ+
ỹ (Ox̃(ỹ))

L(e1)

δ(x)δ(y)

1

δ(e−1 ) · · · δ(e−k )
(3.3)

= λ̃
(
[ẽ1]
) 1

δ(e−1 ) · · · δ(e−k )

and

µ̃
(
[ẽ1 · · · ẽk(γẽ1)]

)
= µ−x̃

(
Oỹ(x̃)

)
µ+
γỹ

(
Oγx̃(γỹ)

)
e−hvol(

∑k
i=1 L(ei)+L(e1))L(e1)

= µ−x̃
(
Oỹ(x̃)

)
µ+
ỹ (Ox̃(ỹ)) e−hvolL(e1)L(e1)e−hvol

∑k
i=1 L(ei)(3.4)

= µ̃
(
[ẽ1]
)
e−hvol

∑k
i=1 L(ei).

Since we assume the visibility measures (λ±x )
x∈X̃ and the Patterson measures

(µ±x )
x∈X̃ are equivalent, we have λ̃ = µ̃. Combining with (3.3) and (3.4), we

have

1

δ(e−1 ) · · · δ(e−k )
=
λ̃
(
[ẽ1 · · · ẽk(γẽ1)]

)
λ̃
(
[ẽ1]
)

=
µ̃
(
[ẽ1 · · · ẽk(γẽ1)]

)
µ̃
(
[ẽ1]
) = e−hvol

∑k
i=1 L(ei)
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so that

(3.5)

k∏
i=1

1

δ(e−i )
ehvolL(ei) = 1

for any cycle e1 · · · ek in X.

Now we define

θ(e) :=
1

δ(e−)
ehvolL(e), e ∈ EX.

For e ∈ EX, let P1 and P2 be two distinct edge paths starting from e+ to e−

that do not contain e. We note that the edge paths exsit by the assumption

of X. Then by (3.5), we have three equalities

θ(e)

 ∏
e′∈P1

θ(e′)

 = 1

 ∏
e′∈P1

θ(e′)

 ∏
e′′∈P2

θ(ē′′)

 = 1

θ(ē)

 ∏
e′′∈P2

θ(ē′′)

 = 1

Using the three equalities, we observe that

θ(e) =

 ∏
e′∈P1

θ(e′)

−1

=
∏
e′′∈P2

θ(ē′′) = θ(ē)−1.

Thus if follows that for all e ∈ EX,

1 = θ(e)θ(ē) =
1

δ(e−)δ(e+)
e2hvolL(e)

that is

L(e) =
1

2hvol
log δ(e−)δ(e+).
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Conversly, we assume for all e ∈ EX,

L(e) =
1

hvol
log δ(e−)δ(e+).

Then we have

−hvolL(e) =
1

2
log

1

δ(e−)δ(e+)
= log

1

δ(e+)
− 1

2
log

1

δ(e+)
+

1

2
log

1

δ(e−)
.

By the Lemma 3.4.1, we complete the proof.

Theorem 3.4.3. The visibility measures (λ±x )
x∈X̃ and the harmonic measures

(ν±x )
x∈X̃ are equivalent if and only if there exists c > 0 such that for all

e ∈ EX,

L(e) = c

(
1− 1

d(e−)
− 1

d(e+)

)
.

Proof. We first assume that the visibility measures (λ±x )
x∈X̃ and the harmonic

measures (ν±x )
x∈X̃ are equivalent. Let x ∼ y ∼ z ∈ V X̃ such that x 6= z. Then

we have

ν̃
(
[xyz]

)
ν̃
(
[xy]

) =
ν−x (Oy(x)) ν+

y (Oy(z))G(y,y)
G(x,y)L(x, y)

ν−x (Oy(x)) ν+
y (Ox(y))G(y,y)

G(x,y)L(x, y)
=
ν+
y (Oy(z))
ν+
y (Ox(y))

.

By Lemma 3.3.7,

ν+
y (Oy(z)) =

]G(y, y)

π(y)L(y, z)

(
1−

]G(z, y)
]G(y, y)

)
and

ν+
y (Ox(y)) = ν+

y

 ⊔
z:y∼z 6=x

Oy(z)

 =
∑

z:y∼z 6=x
ν+
y (O(z)).

We note that

]Py [τx <∞] =
∑

z:y∼z 6=x

]p(y, z)]Pz [τx <∞] + ]p(y, x)(3.6)

=
∑

z:y∼z 6=x

]p(y, z)]Pz [τy <∞] ]Py [τx <∞] + ]p(y, x).
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and hence

1 =
∑

z:y∼z 6=x

]p(y, z)]Pz [τy <∞] + ]p(y, x)]Py [τx <∞]−1(3.7)

=
∑

z:y∼z 6=x

1

π(y)L(y, z)

]G(z, y)
]G(y, y)

+
1

π(y)L(y, x)

]G(x, x)
]G(y, x)

.

Combining with Lemma 3.3.7, (3.6) and (3.7), we have

1
]G(y, y)

ν+
y (Ox(y)) =

∑
z:y∼z 6=x

1

π(y)L(y, z)

(
1−

]G(z, y)
]G(y, y)

)

=
1

π(y)L(y, x)

(
]G(x, x)
]G(y, x)

− 1

)
.

Thus we have

ν̃
(
[xyz]

)
ν̃
(
[xy]

) =
ν+
y (Oy(z))
ν+
y (Ox(y))

=

1
L(y,z)

(
1−

]G(z,y)
]G(y,y)

)
1

L(y,x)

(
]G(x,x)
]G(y,x)

− 1
) .

Similar to the proof of Theorem 3.4.2,

λ̃
(
[xyz]

)
λ̃
(
[xy]

) =
1

δ(y)
.

By the uniqueness of the Gibbs measure,

1

L(y, z)

(
1−

]G(z, y)
]G(y, y)

)
=

1

δ(y)L(x, y)

(
]G(x, x)
]G(y, x)

− 1

)
=: η(y)

is indepdent of x, z and

δ(y)η(y) =
1

L(x, y)

(
1−

]G(y, x)
]G(x, x)

)
]G(x, x)
]G(y, x)

=
η(x)

1− L(x, y)η(x)
.

Then we have

1

η(x)
− 1

δ(y)η(y)
= L(x, y) = L(y, x) =

1

η(y)
− 1

δ(x)η(x)
.
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Let

c :=
1

η(x)
+

1

δ(x)η(x)
=

1

η(x)

d(x)

δ(x)

which is independent of x. Then we have

L(x, y) = c

(
δ(x)

d(x)
− 1

d(y)

)
= c

(
1− 1

d(x)
− 1

d(y)

)
.

Conversely, we assume that

L(e) = c

(
1− 1

d(e−)
− 1

d(e+)

)
.

Let x, y, z1, . . . , zn ∈ V X̃ be such that z1, . . . , zn are on the geodesic segment

between x and y considering the order. We claim that

]G(x, y)
]G(y, y)

=
1

δ(z1) · · · δ(zn)δ(y)

d(y)

d(x)
.

Fix y ∈ V X̃ and consider

]G(x, y)
]G(y, y)

= ]Px [τy <∞]

as a function of x. Then it is the unique solution of the following Dirichlet

proble [LP17] {
∆f(x) = 0 on V X̃ \ {y}
f(y) = 1

where ∆ is the (right normalized) graph Laplacian operator defined by

∆f(x) =
∑
v:v∼x

]p(x, v)(f(x)− f(v))

for a function f : V X̃ → R. We will show that the function

f(x) :=

{
1

δ(z1)···δ(zn)δ(y)
d(y)
d(x) if x 6= y

1 if x = y
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is also a solution of the Dirichlet problem. For x 6= y, we have

∆f(x) = f(x)−
∑
v:x∼v

]p(x, v)f(v)

= f(x)− ]p(x, z1)f(z1)−
∑

v:x∼v 6=z1

]p(x, v)f(v)

=
1

δ(z1) · · · δ(zn)δ(y)

d(y)

d(x)
− 1

π(x)L(x, z1)

1

δ(z2) · · · δ(zn)δ(y)

d(y)

d(z1)

−
∑

v:x∼v 6=z1

1

π(x)L(x, v)

1

δ(x)δ(z1) · · · δ(zn)δ(y)

d(y)

d(v)

=
d(y)

π(x)δ(z1) · · · δ(zn)δ(y)

·

π(x)

d(x)
− 1

L(x, z1)

δ(z1)

d(z1)
−

∑
v:x∼v 6=z1

1

L(x, v)

1

δ(x)d(v)


=

d(y)

π(x)δ(z1) · · · δ(zn)δ(y)

·

 1

L(x, z1)

(
1

d(x)
− δ(z1)

d(z1)

)
+

∑
v:x∼v 6=z1

1

L(x, v)

(
1

d(x)
− 1

δ(x)d(v)

) .
By the assumption,

1

d(x)
− δ(z1)

d(z1)
=

1

d(x)
+

1

d(z1)
− 1 = −1

c
L(x, z1)

and

1

d(x)
− 1

δ(x)d(v)
=

1

δ(x)

(
1− 1

d(x)
− 1

d(v)

)
=

1

δ(x)

1

c
L(x, v).

Thus ∆f(x) = 0 so we prove the claim by the uniqueness of the solution of

the Dirichlet problem. By the claim and Lemma 3.3.6, for all e ∈ EX,

log
G(e−, e+)

G(e+, e+)
= log

]G(e−, e+)
]G(e+, e+)

= log
1

δ(e+)
+ log d(e+)− log d(e−).

We complete the proof by Lemma 3.4.1.

Theorem 3.4.4. The PS measures (µ±x )
x∈X̃ and the harmonic meausres (ν±x )

x∈X̃
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are equivalent if and only if for all e ∈ EX,

L(e)ehvolL(e)

e2hvolL(e) − 1
= K(e−)K(e+),

where for x ∈ V X,

K(x)2 =
1 +

∑
e−=x

1
e2hvolL(e)−1∑

e−=x
1

L(e)

.

Proof. We first assume that the Pattterson measures (µ±x )
x∈X̃ and the har-

monic measures (ν±x )
x∈X̃ are equivalent. Let x ∼ y ∼ z ∈ V X̃ such that x 6= z.

We denote µxy = µ+
x (Ox(y)). Then we have

µ̃
(
[xyz]

)
µ̃
(
[xy]

) =
µ−x (Oy(x)) µ+

y (Oy(z)) e−hvolL(x,y)L(x, y)

µ−x (Oy(x)) µ+
y (Ox(y)) e−hvolL(x,y)L(x, y)

=
µ+
y (Oy(z))
µ+
y (Ox(y))

= e−hvolL(x,y)µyz
µxy

,

where the last equality is from the property of the Patterson denstiy

µ+
y (Ox(y)) =

∑
z:y∼z 6=x

µyz = ehvolL(x,y)µxy.

By the uniqueness of the Gibbs measure, we have

e−hvolL(x,y)µyz
µxy

=
ν+
y (Oy(z))
ν+
y (Ox(y))

.

Then by the proof of Theorem 3.4.3,

µyzL(x, z)

(
1−

]G(z, y)
]G(y, y)

)−1

= ehvolL(x,y)µxyL(y, x)

(
]G(x, x)
]G(y, x)

− 1

)−1

=: ζ(y)
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is independet of x and z. Since

ζ(y) = ehvolL(x,y)µxyL(y, x)

(
]G(x, x)
]G(y, x)

− 1

)−1

= ehvolL(x,y)
]G(y, x)
]G(x, x)

µxyL(y, x)

(
1−

]G(y, x)
]G(x, x)

)−1

= ehvolL(x,y)
]G(y, x)
]G(x, x)

ζ(x),

we have
]G(y, x)
]G(x, x)

= e−hvolL(x,y) ζ(y)

ζ(x)
.

Then

µxy = ζ(y)e−hvolL(x,y)
]G(x, x)
]G(y, x)

1

L(y, x)

(
1−

]G(y, x)
]G(x, x)

)
= ζ(y)

ζ(x)

ζ(y)

1

L(y, x)

(
1− e−hvolL(x,y) ζ(y)

ζ(x)

)
=

1

L(y, x)

(
ζ(x)− ehvolL(x,y)ζ(y)

)
.

By the property of the Patterson density,

1

L(x, y)

(
ζ(y)− ehvolL(x,y)ζ(x)

)
= µyx =

∑
v:x∼v 6=y

e−hvolL(x,y)µxv

=
∑

v:x∼v 6=y
e−hvolL(x,y) 1

L(x, v)

(
ζ(x)− ehvolL(x,v)ζ(v)

)
.

Then

π(x)e−hvolL(x,y)ζ(x) =
ζ(y)

L(x, y)
+

∑
v:x∼v 6=y

e−hvol(L(x,v)+L(x,y)) ζ(v)

L(x, v)
.

Let

β(x) :=
∑
w:x∼w

e−hvolL(x,w) ζ(w)

L(x,w)
.

Then

π(x)ζ(x) = β(x) +
ζ(y)

L(x, y)

(
ehvolL(x,y) − e−hvolL(x,y)

)
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and hence
ehvolL(x,y) − e−hvolL(x,y)

L(x, y)
=
π(x)ζ(x)− β(x)

ζ(y)
.

We note that the left side is invariant under interchanging x and y. Thus there

exists c1 such that

(3.8)
c1

ζ(x)ζ(y)
=
π(x)ζ(x)− β(x)

ζ(y)
=
ehvolL(x,y) − e−hvolL(x,y)

L(x, y)

or c1 = ζ(x) (π(x)ζ(x)− β(x)). Hence

π(x)ζ(x)2 − c1 = ζ(x)β(x)

= ζ(x)
∑
v:x∼v

e−hvolL(x,v) ζ(v)

L(x, v)

=
∑
v:x∼v

e−hvolL(x,v) c1

ehvolL(x,v) − e−hvolL(x,v)

= c1

∑
v:x∼v

1

e2hvolL(x,v) − 1

so we have

ζ(x)2 =
c1

π(x)

(
1 +

∑
v:x∼v

1

e2hvolL(x,v) − 1

)
.

We let K(x) := ζ(x)/
√
c1 and combining with (3.8), we finally get

L(e)ehvolL(e)

e2hvolL(e) − 1
= K(e−)K(e+).

Conversely, we assume that

(3.9)
L(e)ehvolL(e)

e2hvolL(e) − 1
= K(e−)K(e+),

where

(3.10) K(x)2 =
1 +

∑
e−=x

1
e2hvolL(e)−1∑

e−=x
1

L(e)

.
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For x, y ∈ V X̃, we claim that

]G(x, y)
]G(y, y)

= e−hvold(x,y)K(x)

K(y)
,

where we denote d
X̃

= d for simplicity. Similar to the proof of Theorem 3.4.3,

we fix y ∈ V X̃ and consider the right handside as a function of x, denote f(x).

We will prove that f is a solution of the Dirichlet problem. It is obvious that

f(y) = 1. For x 6= y,

∆f(x) = f(x)−
∑
v:x∼v

]p(x, v)f(v)

= e−hvold(x,y)K(x)

K(y)
−
∑
v:x∼v

e−hvold(v,y)

π(x)L(x, v)

K(v)

K(y)
.

Let z ∈ V X̃ be adjacent to x and contained in the geodesic segment between

x and y. Then by (3.9) and (3.10), we have

∑
v:x∼v 6=z

e−hvold(v,y)

π(x)L(x, v)

K(v)

K(y)
(3.11)

=
1

π(x)K(y)

∑
v:x∼v 6=z

e−hvol(d(v,y)−L(x,v))

e2hvolL(x,v) − 1

1

K(x)

=
e−hvold(x,y)

π(x)K(y)K(x)

∑
v:x∼v 6=z

1

e2hvolL(x,v) − 1

=
e−hvold(x,y)

π(x)K(y)K(x)

(
π(x)K(x)2 − 1− 1

e2hvolL(x,z) − 1

)
= e−hvold(x,y)K(x)

K(y)
− e−hvold(x,y)

π(x)K(y)K(x)

e2hvolL(x,z)

e2hvolL(x,z) − 1
.

Similarly, (3.9) implies

e−hvold(z,y)

π(x)L(x, z)

K(z)

K(y)
=

1

π(x)K(y)

e−hvol(d(z,y)−L(x,z))

e2hvolL(x,z) − 1

1

K(x)
(3.12)

=
e−hvold(x,y)

π(x)K(y)K(x)

e2hvolL(x,z)

e2hvolL(x,z) − 1
.

Combining (3.11) and (3.12), we have ∆f(x) = 0 for x 6= y. Thus we prove

the claim.
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By the claim and Lemma 3.3.6, for all e ∈ EX,

log
G(e−, e+)

G(e+, e+)
= log

]G(e−, e+)
]G(e+, e+)

= −hvolL(e)− logK(e+) + logK(e−).

We complete the proof by Lemma 3.4.1.
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Chapter 4

Brain network analysis 1:

Tinnitus on hearing loss

patients

4.1 Materials and Methods

4.1.1 Patients

All procedures in this study were approved by the institutional reviewboards

of Seoul National University Bundang Hospital (IRB-B-2006-621-105) and the

need for informed consent from the participants has been waived by the IRB.

Table 4.1 summarizes the characteristics of the two groups. A total of 65

tinnitus patients with bilateralHL from the database of Seoul National Uni-

versity Bundang Hospitalwere included in the HL-T group. The average hear-

ing threshold (average of the pure tone audiometry [PTA] thresholds at 500,

1,000,2,000, and 4,000 Hz) of the subjects in the HL-T group was more than

25 dB HL bilaterally. The mean age of the participants in the HL-Tgroup

was 66.6 ± 10.1 years (range: 32–82 years), and 21 (32.3%)were male. Of 65

subjects, 39 (60%) reported pure-tone tinnitus whilethe remaining 26 (40%)

reported narrow-band noise tinnitus. A total of 44 (67.78%) subjects had bi-

lateral tinnitus while the remaining 21 had unilateral tinnitus.

For the HL-NT group, 104 hearing threshold-matched individualswith bi-

lateral HL (> 25 dB) without tinnitus were selected from ourdatabase. The

mean age of the HL-NT group was 67.5 ± 13.4 years (range: 19–86 years),
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and 50 (47.6%) were male. The mean age andmean PTA thresholds at all

frequencies (measured at 250, 500, 1,000, 2,000, 3,000, 4,000, and 8,000 Hz

bilaterally) showed no statistically significant differences between the HL-T

and HL-NT groups (Table 4.1). Individuals with otologic disorders such as

otosclerosis and Meniere’s disease, chronic headache, psychiatric or neurologi-

cal disorders, current psychotropic/central nervous system-active medications,

historyof drug/alcohol abuse, and/or a history of head injury (with loss of con-

sciousness) or seizures were excluded from the study to ensure ahomogeneous

sample. The data that support the findings of this study are available from

the corresponding author upon reasonable request.

HL-T group HL-NT group P value

Number of subjects 65 104

Male:Female 21:44 50:54

Mean age 66.6 ± 10.1 67.5 ± 13.4 0.631

Mean PTA threshold
Right
250 Hz 29.1 ± 9.1 29.2 ± 11.8 0.930
500 Hz 32.4 ± 9.1 35.5 ± 11.4 0.070
1,000 Hz 39.9 ± 8.4 41.9 ± 11.1 0.237
2,000 Hz 44.7 ± 8.4 46.8 ± 11.7 0.213
3,000 Hz 51.4 ± 9.1 53.1 ± 14.1 0.398
4,000 Hz 57.1 ± 8.5 58.7 ± 15.1 0.426
8,000 Hz 69.5 ± 11.3 71.6 ± 18.2 0.392
Left
250 Hz 30.5 ± 10.0 30.2 ± 13.9 0.905
500 Hz 34.7 ± 9.3 36.4 ± 12.8 0.368
1,000 Hz 40.8 ± 8.4 43.0 ± 12.2 0.200
2,000 Hz 45.6 ± 8.6 47.8 ± 13.3 0.247
3,000 Hz 52.0 ± 7.3 54.1 ± 15.5 0.321
4,000 Hz 57.9 ± 8.2 60.0 ± 17.6 0.378
8,000 Hz 70.1 ± 10.5 71.7 ± 18.5 0.692

Table 4.1: Demographic and audiological characteristics of the study subjects.
HL-T, hearing loss with tinnitus; HL-NT, hearing loss without tinnitus.
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4.1.2 EEG recording

The EEG recordings were performed in accordance with a standard diagnos-

tic and neuromodulation treatment protocol after obtaininginformed consent.

Participants refrained from alcohol consumption for 24 hr before EEG record-

ing, and from caffeinated beverages on the day of recording, to prevent alcohol-

related changes in the EEG [VD12a] and a caffeine-induced decrease in alpha

waves, respectively [BCJ11, Fox12].

Each participant sat upright on a comfortable chair in a well-lit room that

was shielded against sound and stray electric fields. Then, EEG recordings

were obtained for 5 min using a tin electrode cap (ElectroCap, Eaton, OH)

and Mitsar EEG-201 amplifier (Mitsar,St. Petersburg, Russia). The vigilance

of the participants was determined according to EEG parameters such as the

appearance of spindles or slowing of the alpha rhythm, where enhanced theta

power reflects drowsiness [MMWJ10]. The EEG was recorded with 19 elec-

trodes using the International 10–20 system and referenced to linked ears; the

impedance of all electrodes was kept below 5 kΩ during EEG recording. Data

were collected under eyes-closed conditions (sampling rate,1,024 Hz; band-

pass, 0.15–200 Hz), using WinEEG software (version 2.84.44; Mitsar). The

data were resampled to 128 Hz, band-pass filtered (fast Fourier transform fil-

ter) to 2–44 Hz, and transposed into Eureka! Software [SC05]. Then, the data

were plotted and carefully inspected for manual artifact rejection. All episodic

artifacts, such as eye movements, eye blinks, body movement, teeth clench-

ing, and electrocardiogram artifacts, were removed from the EEG signals. An

independent component analysis (ICA) was also performed to confirm that

all artifacts had been removed. The power spectra were compared (a) after

visual artifact rejection only, and (b) after visual artifact and ICA component

rejection. There was no statistically significant difference in the mean power of

the delta (2–3.5 Hz), theta (4–7.5 Hz), alpha1 (8–10 Hz), alpha2 (10–12 Hz),

beta1 (13–18 Hz), beta2 (18.5–21 Hz), beta3 (21.5–30 Hz), or gamma (30.5–44

Hz) frequency band [Han18, Kim16, Lee19, Lee20, Son17, VSD18] between the

two approaches. Therefore, we reported the results of the two-step artifact cor-

rection data. Average Fourier cross-spectral matrices were computed for the

aforementioned bands from delta to gamma.
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4.1.3 Source localization analysis

Standardized low-resolution brain electromagnetic tomography (sLORETA)

was used to estimate the intracerebral electrical sources that generated the

scalp-recorded activity in each of the eight frequency bands [Pas02]. sLORETA

computes neuronal activity in current density (A/m2) without assuming a

predefined number of active sources. The solution space used in this study

is implemented in the LORETA-Key software. The sLORETA-key template

consists of 6,239 voxels (voxel size: 5 × 5 × 5 mm) and is restricted to cortical

gray matter and hippocampi, as defined by the digitized Montreal Neurologi-

cal Institute (MNI) 152 template [Fuc02]. Scalp electrode coordinates on the

MNI brain are referred from the international 5% system [Jur07]. The analysis

procedures were conducted for both the T and NT groups on the average EEG

data at sensor level (19 electrodes) and on average EEG data that was source-

localized to a specific set of regions of interest (ROI) (84 BAs in Table 4.2).

4.1.4 Metric graph

The network in this study was modeled as a fully connected undirected graph

with 84 nodes and 3,486 undirected edges. Each node of the network represents

a BA. The lagged coherence between a pair of BAs provides a weight for the

edge that connects them. Weighted and binary graph models are frequently

used for modeling brain networks [Moh16]. This study focused primarily on

the geometric properties of brain networks. In the metric graph, edge lengths

are assigned based on the multiplicative inverse of the lagged linear coherence

between the endpoints of the edges. This assignment method is in turn based

on the relationship between conductance and resistance in the electric network.

The edge lengths induce the path metric, which is defined by the infimum of

the total lengths of the paths between two points.

4.1.5 Volume entropy

As a metric graph, the brain network is not cyclic and has no terminal ver-

tices. The volume entropy, denoted by hvol, is characterized using the following

equation:

hvol = lim
r→∞

logNr

r
,

where Nr is the number of edge paths in the metric graph (without back-

tracking), the total length of which is less than r [Lim08]. In other words,
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Brodmann areas Abbreviation Name of the Brodmann area

BA01 S1 Primary somatosensory cortex
BA02 S2 Secondary somatosensory cortex
BA03 S3 Tertiary somatosensory cortex
BA04 M1 Primary motor cortex
BA05 SPS Superior parietal sulcus
BA06 SMA Supplementary motor area
BA07 SPG Superior parietal gyrus
BA08 Pre-SMA Pre-supplementary motor area
BA09 DLPFC Dorsolateral prefrontal cortex
BA10 FPC Fronto-polar cortex
BA11 OFC Orbital frontal cortex
BA13 Insula Insula
BA17 V1 Primary visual cortex
BA18 V2 Secondary visual cortex
BA19 Cuneus Cuneus
BA20 ITG Inferior temporal gyrus
BA21 MTG Medial temporal gyrus
BA22 STG Superior temporal gyrus
BA23 PCC1 Posterior cingulate cortex1
BA24 dACC Dorsal anterior cingulate cortex
BA25 sgACC Subgenual anterior cingulate cortex
BA27 PHC1 Parahippocampal gyrus1
BA28 HIP1 Hippocampal area1
BA29 RSC1 Retrosplenial cortex1
BA30 RSC2 Retrosplenial cortex2
BA31 PCC2 Posterior cingulate cortex2
BA32 prACC Pregenual anterior cingulate cortex
BA33 rACC Rostral anterior cingulate cortex
BA34 HIP Hippocampus
BA35 HIP2 Hippocampal area2
BA36 PHC2 Parahippocampal gyrus2
BA37 OTC Occipital-temporal cortex
BA38 TP Temporal pole
BA39 AG Angular gyrus
BA40 IPS Intra-parietal sulcus
BA41 A1 Primary auditory cortex
BA42 A2 Secondary auditory cortex
BA43 PCG Postcentral gyrus
BA44 OPCG Opercular part of inferior frontal gyrus
BA45 IFG Inferior frontal gyrus
BA46 MPFC Medial prefrontal cortex
BA47 VLPFC Ventro-lateral prefrontal cortex

Table 4.2: All the Brodmann areas included in the study.

the volume entropy is equal to the asymptotic exponential growth rate of the

number of edge paths, and Nr becomes closer to ehvolr as r approaches ∞.
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Although volume entropy is defined abstractly in mathematical terms, we

can compute it algorithmically. We first defined a matrix L(h) with rows and

columns indexed by directed edges in the metric graph, as follows:

[L(h)] =

{
e−hL(f) if e+ = f−, e− 6= f+

0 otherwise.

Regarding the spectral properties of L(h), the largest eigenvalue of L(0) is

a positive real number >1. As h increases, the largest absolute eigenvalue of

L(h) decreases. Therefore, there is a unique positive constant h, such that the

largest absolute eigenvalue of L(h) is 1. The constant h is equal to the volume

entropy hvol of the metric graph.

4.1.6 Afferent node capacity

The eigenvector x = (xe)e∈EX of L(hvol) associated with an eigenvalue of 1,

which is determined uniquely, assigns a positive value to each directed edge.

We call these positive values the edge capacities, which are associated with

volume entropy hvol. The edge capacity indicates the extent to which the edge

affects the spread of information in the brain network.

It follows from the definition of L(hvol) that two directed edges with the

same terminal node have similar edge capacities if the graph has rich connec-

tions. Because we modeled the brain network as a fully connected network, this

property can be observed therein. We converted the edge capacities of directed

edges with the same terminal node to the node capacity of their terminal node

by summing the edge capacities. The resulting node capacity becomes a new

local measure of nodes, and thus also of BAs; we call this local measure the

afferent node capacity. The efferent node capacity can be determined by sum-

ming the edge capacities of edges with identical initial nodes. However, the

efferent node capacity cannot be used as a local measure of BAs, because its

value does not vary according to the edge capacity. One way to interpret edge

paths in a brain network is to regard them as information flows. Volume en-

tropy can then be used to investigate information flow along the edges after a

sufficient amount of time has passed. Related to the volume entropy, the affer-

ent node capacity of a given node becomes larger when information frequently

flows through the node. The volume entropy and afferent node capacity are

highly related to each other and serve as global and local network measures,

respectively. An alternative method to convert functional data on the edges
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to node data is discussed in a previous study [LeeH19].

Remark 4.1.1. The afferent node capacity is proportional to the total mass of

the Patterson-Sullivan measure. In fact, the afferent node capacity at v ∈ V X
is equal to δ(v)‖µṽ‖. We note that ‖µṽ‖ is independent of a choice of a lift

ṽ of v since Patterson-Sullivan measures are Γ-equivariant. To prove this, we

have that for the eigenvector (xe)e∈EX of L(hvol),

xe = e−hvolL(e)µẽ−(Oẽ−(ẽ+)) = µẽ+(Oẽ−(ẽ+)) = ‖µẽ+‖ − µẽ+(Oẽ+(ẽ−)).

The first equality follows from Proposition 2.3.3 and the secon equality fol-

lows from the definition of the Patterson density (Definition 2.3.1). Then the

afferent node capacity at v ∈ V X is∑
e : e+=v

xe =
∑

e : e+=v

(‖µẽ+‖ − µẽ+(Oẽ+(ẽ−))) = δ(v)‖µṽ‖.

Since we model the brain network as a complete graph with 84 vertices, δ(v) ≡
83 for all v ∈ V X.

4.1.7 Statistical analysis

For each BA and frequency band, we used a permutation test [Was13] to

determine the difference in distribution of afferent node capacities between the

T and NT groups. The permutation test is the most powerful and intuitive

nonparametric statistical approach and is particularly useful for small samples.

Because the relatively small size of our dataset made it difficult to analyze

the data distribution, the permutation test was considered appropriate. We

compared the average afferent node capacity between the two groups under

the assumption that the samples were identically distributed. We used 10,000

permutations and a significance level of p < 0.05 when comparing volume

entropy and afferent node capacity between the two groups. The statistical

analysis was performed using Python software (version 3.7.0; Python Software

Foundation, Beaverton, OR, USA).
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4.2 Results

4.2.1 Comparison of volume entropy between the HL-T and

HL-NT groups

The statistical analysis gives no significant difference between theHL-T and

HL-NT groups in terms of volume entropy for any frequency bands. The dis-

tributions of volume entropy in the HL-T andHL-NT groups are in Figure 4.1.

From the result of the statistical analysis, we may assume that the net-

works in the HL-T and HL-NT groups are well-normalized, that is, the distri-

butions of the global measure (volume entropy) between two groups are not

statistically different. Based on the assumption, comparing the afferent node

capacities, which are highly related to the volume entropy, is more meaningful

than not normalized case.

Figure 4.1: Histogram of volume entropy. The histograms show the distribution
of volume entropy on various frequency bands in the HL-T (red) and HL-NT
(black) groups. The red vertical line means the average of volume entropy
in the HL-T group and the black vertical line means the average of volume
entropy in the HL-NT group.

4.2.2 Comparison of afferent node capacity between the HL-T

and HL-NT groups

Figure 4.2 depicts the afferent node capacity distribution of the 84 BAs for all

eight frequency bands. Figure 4.3 illustrates the relative afferent node capacity

of the HL-T and HL-NT groups. As summarized in Table 4.3, the HL-T and
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HL-NT groups showed statistically significant differences in afferent node ca-

pacity for a total of 14 ROIs for the theta, alpha2, and beta3 frequency bands.

Fo rthese 14 ROIs, the afferent node capacity is summarized in Figure 4.3.

frequency band Abbreviation BA P-value Tinnitus Non-tinnitus

theta

OFC 11L 0.00003 0.77201489 0.38964517
sgACC 25L 0.00741 0.8021413 0.54459024
VLPFC 47L 0.00388 0.72965909 0.46009869
MTG 21R 0.00671 0.57059879 0.83148991

alpha2

RSC1 29L 0.00941 1.17301991 1.39255565
OPCG 44L 0.00214 0.57080755 0.31750684
IFG 45L 0.00833 0.4669897 0.26588954
PCC1 23R 0.00125 1.03064385 1.3262293
RSC1 29R 0.00535 1.15502661 1.41378237

beta3

Insula 13R 0.00853 0.93953276 0.66183085
HIP1 28R 0.00117 1.04740913 0.72378116
HIP 34R 0.00648 1.0233051 0.73847828
HIP2 35R 0.00317 1.01532414 0.72952998
PHC2 36R 0.00697 0.95658985 0.70022195

Table 4.3: Result of statistical inference with significant level 0.01. Tinnitus,
an average of afferent node capacity on the ROI in the tinnitus group; Non-
tinnitus, an average of afferent node capacity on the ROI in the non-tinnitus
group.

As illustrated in Figure 4.4 and summarized in Table 4.3, the HL-T group

showed a significantly higher afferent node capacity in the left orbitofrontal

cortex (OFC; p < .01), left subgenual anterior cingulate cortex (sgACC; p <

.01), and left ventrolateral prefrontal cortex (VLPFC; p < .01) compared

with the HL-NT group for the theta frequency band. By contrast, the mean

afferent node capacity at theright medial temporal gyrus (medTG) for the

theta frequency band was significantly higher in the HL-NT group compared

with the HL-Tgroup (p < .01) (Figure 4.5, upper panel).

For the alpha2 frequency band, the afferent node capacity in the left oper-

cular part of the inferior frontal gyrus (OPCG; p < .01) and left inferior frontal

gyrus (IFG) (p < .01) was significantly higher in the HL-T group compared

with the HL-NT group. By contrast, the afferent node capacity in left retro-

splenial cortex 1 (RSC1; p < .01), right posterior cingulate cortex 1 (PCC1;
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Figure 4.2: Distribution of afferent node capacities on the Brodmann areas.
(a)-(h) represent the distribution of afferent node capacities on the 84 Brod-
mann areas in left: HL-T and right: HL-NT groups in (a) delta, (b) theta, (c)
alpha1, (d) alpha2, (e) beta1, (f) beta2, (g) beta3 and (h) gamma frequency
band. The figures have been drawn using Python nilearn package (Version
0.2.5).

p < .01), and right RSC1 (p < .01) was significantly higher in the HL-NT

group compared with the HL-T group (Figure 4.5, middle panel).
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Figure 4.3: Afferent node capacity for two groups. Average of afferent node
capacities on each Brodmann area are calculated in the HL-T (red) and HL-
NT (black) groups in upper : theta, middle: alpha2 and bottom: beta3 frequency
band. The gray vertical lines on the significantly different Brodmann areas.
Any other frequency bands have no significantly different Brodmann areas.

For the beta3 frequency band, the afferent node capacity in the right insula

(p < .01), right hippocampus (p < .01), right hippocampal area (HIP) 1

(p < .01), right HIP2 (p < .01), and right parahippocampal gyrus (PHC)

2 (p < .01) was significantly higher in the HL-T group compared with the

HL-NT group (Figure 4.5, lower panel).

For the delta, alpha1, beta1, beta2, and gamma frequency bands, no signif-

icant difference was observed between the HL-T and HL-NT groups in terms

of afferent node capacity for any of the 84 ROIs.

4.3 Discussion

In the present study, we compared HL-T and HL-NT groups, in terms of

the afferent node capacity of 84 ROIs in the brain, via lagged linear connec-

tivity analysis of eight rs-qEEG frequency bands. The HL-T group showed
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significantly higher afferent node capacity in the left OFC, left sgACC, and

left VLPFC compared with the HL-NT group for the theta frequency band,

while the HL-NT group had a significantly higher afferent node capacity in

the right medTG compared with theHL-T group. For the alpha2 frequency

band, the HL-T group had a significantly higher afferent node capacity in the

left IFG (p < .01) compared with the HL-NT group, while the HL-NT group

showed significantly higher values in the bilateral RSC1 and right PCC1 com-

pared with the HL-T group. For the beta3 frequency band, the HL-T group

showed a significantly higher afferent node capacity in the right insula, right

hippocampus, and parahippocampus compared with the HL-NT group. Thus,

the HL-T and HL-NT groups showed marked differences in the spread of neural

information among many cortical areas for different frequency bands.

As summarized above, the HL-T group had a significantly higher affer-

ent node capacity in the right hippocampus and parahippocampus compared

with the HL-NT group for the beta3 frequency band. The HL-NT group also

showed higher afferent node capacity in the bilateral RSC1 for the alpha2

frequency band. Considering that an increase in qEEG alpha waves reflects

top-down, inhibitory control processes [AR89], the relatively increased affer-

ent node capacity in the bilateral RSC1 for the alpha2 frequency band in the

HL-NT group may reflect relatively decreased inhibitory control processes in

the bilateral RSC1.

It has been suggested that tinnitus is the result of Bayesian inference,

and may be generated to reduce perceptual uncertainty [DJV14, DVF14]. The

Bayesian brain can be conceptualized as a probability machine that constantly

makes predictions based on its model of the world, and then updates these

predictions by active exploration of the environment via the senses [Fri10], to

reduce the uncertainty that is inherent to a changing environment [DVF14].

Against this background, sensory perception can be viewed as the result of

memory-based predictions that are verified and updated with additional sen-

sory input. If sensory input is not available, for example, due to HL, then the

missing auditory information can be retrieved from memory [DJV14, DVF14].

The model of the world maintained by the brain can be described as a cognitive

map stored in the hippocampal-parahippocampal area and OFC [WS16]. A

cognitive map can be defined as an abstract map of causal relationships, that

is, a set of mental representations that binds external sensory features (hip-

pocampus/parahippocampus) with internal motivational or emotional factors

(OFC) to form an integrated relational database [Tol48, WS16]. These same
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areas are involved in predictions of sensory stimuli to reduce perceptual un-

certainty [Wei18]. The updating of sensory predictions involves a cascade from

early unisensory encoding in primary sensory cortices to reliability-weighted

fusion in parietal–temporal cortices, and then to causal inference (primarily

in the OFC) of behaviorally relevant (insula) signals [Cao19]. The VLPFC

suppresses behaviorally irrelevant sensory stimuli in a cross-modal context to

minimize perceptual bias [Cao19].

The findings of this study can be interpreted in the context of the Bayesian

brain to derive a model for tinnitus [DJV14, DVF14, HSV19, Lee17, VD16].

Some individuals with HL develop tinnitus, which is characterized by increased

information transmission efficiency in a network that comprises the lateral

OFC, VLPFC, sgACC, and parahippocampal and hippocampal areas, as well

as the insula.

The parahippocampus is involved in auditory memory and thus may also

play a role in the generation of tinnitus in cases of HL [DeR06, DERL11].

Indeed, parahippocampal activity was more common in tinnitus subjects com-

pared with non-tinnitus controls in a recent connectomics study [Moh16].

Transient suppression of hippocampal activity by amytal injections into the

anterior choroid alartery could also suppress tinnitus [DeR06]. Furthermore,

in a recent study describing partial peripheral reafferentation via the use of a

hearing aid in tinnitus subjects, pre-hearing aid parahippocampal activity was

shown to be a negative prognostic factor for tinnitus improvement [Han20].

The parahippocampus has been suggested to act as a gatekeeper to the hip-

pocampus, filtering out irrelevant or redundant auditory input [Bou08, TM97].

In a recent proof-of-concept study, tinnitus patients with marked HL exhibited

increased parahippocampal activity compared with healthy controls; moreover,

the range of HL correlated with changes in cortical activity in the parahip-

pocampus [VD16]. In another recent study, subjects with HL-T showed in-

creased functional connectivity between the parahippocampus and auditory

cortex compared with subjects with HL-NT [VAD19]. Based on this litera-

ture and a recent Bayesian brain model explaining the generation of tinnitus

in terms of Bayesian updating of missing auditory information (and thus the

generation of phantom auditoryperception) [DVF14], we surmise that, when

opened, a “parahippocampal sensory gate” generates phantom sounds from

auditory memories stored in the hippocampus, to compensate for missing au-

ditory information due to HL. The posterior hippocampus/parahippocampus

contains a cognitive map of the causal relationships between sensory inputs in
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space and time [WS16]. This is also consistent with studies on the neural cor-

relates of “multisensory inference” [Wei18]. The significantly higher afferent

node capacity of the (para)hippocampal area in our HL-T group suggests a

crucial role of the parahippocampus in the generation of tinnitus, by promot-

ing the spread of stored auditory information to other cortical areas. However,

this compensatory generation of phantom auditory perception by the parahip-

pocampus does not occur in all subjects with HL: unnecessary retrieval of

parahippocampal auditory memory may be contingent upon interactions with

other cortical areas. The OFC also contains a cognitive map of the world;

however, it is based on behavioral relevance rather than contextual multisen-

sory input [WS16]. This suggests that for individuals who develop tinnitus, the

missing auditory information is deemed salient by the parahippocampus, which

drives it to distribute the missing auditory input across the brain. Previous

studies have suggested that the insula, especially the anterior insula, engages

in mathematical tasks, that is, the tracking of risk and risk prediction errors

[BBWR09, Bos10]. In addition, activation of the insula due to a perceived

threat or risk prediction error has been found to be closely related to activation

of the ACC or IFG [CTBDS09]. This is not surprising, as the insula is part of

the salience network (SN) incharge of salience processing and executive control

[See07]. Therefore, we speculate that, in our HL-T group, decreased periph-

eral auditory input may have been regarded as a behaviorally salient stimulus

by the insula, which may promote the generation of tinnitus by pulling au-

ditory memories from the (para)hippocampus and aforementioned prefrontal

areas. Also, as the IFG is a part of the central executive network (CEN) that

is related to activity inhibition, emotion, and working memory [Lan21], the

modulatory role of the SN with regard to the function of the CEN may have

resulted in better perception of the parahippocampal memory-based tinnitus.

Salience is also related to the subjective value that the brain (sgACC) ascribes

to missing information, irrespective of the stimulus type, as demonstrated by

a meta-analysis [CR14]. Furthermore, the sgACC and parahippocampal area

are part of a general network processing aversive/unpleasant stimuli [Mou11],

which is also present in tinnitus [JVD12, VD15]. The VLPFC forms part of a

Bayesian inference model of the suppression of irrelevant sensory information

[Cao19]. In a broader sense, the VLPFC suppresses the “silent” model of the

world and generates a new model that encompasses tinnitus [DCK14].

In summary, in the presence of HL, a highly activated network (measured

by afferent node capacity) consisting of the OFC, sgACC,and VLPFC, in which
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Bayesian inferences related to decreased peripheral auditory input generate

tinnitus by retrieving stored auditory memories from the (para)hippocampus,

generates a model of the world incorporating tinnitus because the brain consid-

ers the missing auditory input behaviorally relevant. By contrast, the HL-NT

group showed significantly higher afferent node capacity in the right PCC1 and

right medTG for the alpha2 and theta frequency bands, respectively, compared

with the HL-T group. The PCC is a core component of the DMN, which shows

a high rate of metabolism in healthy subjects not focused on the outside world,

and decreases in activity across a range of cognitive loads [Rai01, Shu97]. The

PCC has long been regarded as a posterior hub ofthe DMN [Fox17, XYL16]

and has recently been suggested to regulate the DMN [WCCL19]. Whether a

new model of the world is required depends on the current needs, behavioral

flexibility, and prior knowledge about the environment of a given individual

[Pea11]. Based on Bayesian inference, the PCC is involved in detecting sensory

changes and drives subsequent shifts inself-referential processing and thus be-

havior [Pea11]. The PCC is also the main cortical hub of the parasympathetic

and digestive systems [BMBN13]. The PCC does not consider a decrease in

auditory input salient. The MedTG has been suggested as a component of the

DMN [Mur18], and microstate analysis suggested that it is an important com-

ponent of a “tinnitus generating network” [VTD19]. The MedTG is involved

in updating auditory predictions made by the Bayesian brain [Cao19]; because

the brain does not consider HL as salient, it does not update missing auditory

information via the retrieval of parahippocampal memories.

The difference in tinnitus generation between the HL-T and HL-NT groups

may be explained as follows: (a) when the brain detects decreased auditory in-

put and the prefrontal “Bayesian inferential system” is active enough to fill in

for the decreased peripheral sensory input to reduce uncertainty, and regards

it as a sufficiently salient event, to generate phantom auditory perception by

retrieving auditory memories stored in the parahippocampus, the brain ulti-

mately generates tinnitus (the HL-T group); whereas (b) when the DMN of

the brain surpasses the Bayesian inferential system and thus auditory mem-

ory retrieval is interrupted, the subject does not perceive tinnitus(the HL-NT

group).

Using a volume entropy model of the brain, the present study uncovered

different patterns of cortical information flow that may regulate tinnitus per-

ception in individuals with HL. The increased information flow seen in the

prefrontal Bayesian inferential network in the HL-T group suggests that HL
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was treated as an event of sufficient salience to generate phantom auditory

perception, by retrieving auditory memories from the parahippocampus; thus,

tinnitus is perceived. In contrast, in the HL-NT subjects, activation of the

DMN prevented Bayesian inference and thus the generation of phantom audi-

tory perception. In other words, the present study suggests that the balance

of activity between the Bayesian inferential network and DMN determines

whether tinnitus is generated in a brain with decreased peripheral auditory

input. Follow-up neuromodulatory studies of the cortical areas responsible for

tinnitus generation, and investigation of changes in volume entropy in the

brain, could validate the current findings.

The current study has several limitations that should be addressed in fu-

ture follow-up studies. First, 44 out of 65 subjects had lateral tinnitus while

the other 21 had unilateral tinnitus. Because the laterality of tinnitus may

have affected the results [Van11], follow-up studies in tinnitus subjects with

homogenous laterality should be performed. Second, the male to female ra-

tio of the two study groups showed statistically significant difference. This

may have biased the results of the current study since male- and female tinni-

tus patients show different cortical, prefrontal, in particular, activity patterns

[VJD12]. Future studies controlled for the sex ratio should be performed to

check the reproducibility of the current study. Third, future studies subdivid-

ing the HL-T group into low-and high-distressed tinnitus or acute- or chronic

tinnitus may give us further information on other culprit brain areas of tinni-

tus generation such as the posterior cingulate cortex (PCC), based on previ-

ous qEEG studies showing connectivity changes in the PCC according to the

chronicity of tinnitus [Lan21] or the level of tinnitus-related distress [VD15].

4.4 Conclusion

Taken together, the current study suggests that the balance of activity between

the Bayesian inferential network (updating missing auditory information by

retrieving auditory memories from the hippocampus/parahippocampus) and

DMN (maintaining the“silent status quo”)determines whether phantom au-

ditory perception occurs in a brain with decreased peripheral auditory input

using the volume entropy model of the brain. Also, this study could be applied

for treating tinnitus by offering potential target areas for neuromodulatory ap-

proaches.
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Figure 4.4: Histogram of afferent node capacity. The histograms show the
distribution of afferent node capacity on significantly different (frequency
band)/(Brodmann area) pairs in the HL-T (red) and HL-NT (black) groups.
The red vertical line means the average of afferent node capacities in the HL-T
group and the black vertical line means the average of afferent node capacities
in the HL-NT group.
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Figure 4.5: Significantly different Brodmann areas. The pointed regions are
significantly different Brodmann areas in (a) theta, (b) alpha2 and (c) beta3
frequency band networks. The size of dot means difference in afferent node
capacities on corresponding Brodmann area between two groups. On the red
point, an average afferent node capacity in the HL-T is greater than that in
the HL-NT group and the opposite is true on the blue point. (a) contains left
OFC, left sgACC, left VLPFC and right MTG. (b) contains left RSC1, left
OPCG, left IFG, right PCC1 and right RSC1. (c) contains right Insula, right
HIP1, right HIP, right HIP2 and right PHC2. The figures have been illustrated
using Python nilearn package (Version 0.2.5).
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Chapter 5

Brain network analysis 2:

Tinnitus on sudden

sensorineural hearing loss

patients

5.1 Materials and Methods

Metric graph modeling and dynamical invariants (volume entropy and afferent

node capacity) used for analysis are the same as in Chapter 4

5.1.1 Participants

We retrospectively reviewed the medical records of patients with unilateral

SSNHL who visited the outpatient clinic of Seoul National University Bun-

dang Hospital (SNUBH) between September 2014 and June 2021. In total, 15

patients (6 males and 9 females) who met the diagnostic criteria for unilateral

SSNHL but did not complain of tinnitus were recruited to the NT group. The

average hearing threshold [average of the pure tone audiometry (PTA) thresh-

olds at 500, 1,000, 2,000, and 4,000 Hz] of the NT group for the contralesional

normal ear was 21.4 ± 10.6 dB HL. The mean age of the patients in the NT

group was 60.1 ± 17.1 years (range: 29-78 years), and six of them (40.0%)

complained of right-sided hearing loss. The mean duration of deafness was

29.2 ± 30.8 months.
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The comparison (T) group initially comprised 65 patients presenting with

both unilateral SSNHL and tinnitus, as identified in the SNUBH database.

These patients were matched with those in the NT group based on sex and

the average hearing threshold on the contralesional (symptom-free) side. In

total, 35 patients were excluded due to bilateral hearing loss >40 dB HL or

underlying otologic diseases; the 30 remaining patients (12 males and 18 fe-

males) had an average contralesional hearing threshold of 19.8 ± 9.9 dB HL

and mean age of 55.2 ± 10.8 years (range: 38–77 years). The mean PTA thresh-

old of all frequencies (measured at 250, 500, 1,000, 2,000, 4,000, and 8,000 Hz

bilaterally) on both the lesional and contralesional sides was not significantly

different between the T and NT groups. All but one patient (96.7%) in the

T group showed left-sided symptoms. The mean duration of deafness in the

T group was 13.0 ± 19.8 months, which was significantly different compared

to that in the NT group (p-value = 0.022, Mann–Whitney test). Detailed de-

mographic and audiological characteristics of the study subjects are listed in

Table 5.1. Subjects with chronic otitis media, otosclerosis, Meniere’s disease,

vestibular schwannoma, psychiatric/neurological diseases, a history of drug or

alcohol abuse, and/or a history of head trauma were excluded from the study,

which was approved by the Institutional Review Board (IRB) of SNUBH (IRB

No. B-2112-725-103). The requirement for informed consent was waived.

5.1.2 Electroencephalography recording

The EEG data acquisition and preprocessing procedures were conducted ac-

cording to our previously reported protocols [Kim16, Son17, Han18, Lee19].

Prior to EEG recording, the participants were instructed not to drink alcohol

for 24 h, and to avoid caffeinated beverages on the day of recording to preclude

alcohol-induced changes in the EEG signal and caffeine-induced reductions in

alpha and beta power, respectively [SK02, Kor16].

Electroencephalograms were recorded over 5 min using a tin electrode cap

(Electro-Cap International Inc., Eaton, OH, USA), EEG-201 amplifier (Mit-

sar, St. Petersburg, Russia), and WinEEG software (version 2.84.44; Mitsar),

in a fully lit room shielded from sound and stray electric fields. During record-

ing, each patient sat upright with the eyes closed. Nineteen electrodes were

placed according to the 10–20 system of electrode placement and referenced to

linked ears. The impedance of all electrodes was kept below 5 kΩ during EEG

recording. The vigilance of the participants was meticulously monitored by
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SSNHL-T group SSNHL-NT group p-value

Number of subjects 30 15

Male : Female 12 : 18 6 : 9

Mean age 55.2 ± 10.8 60.1 ± 17.1

Mean PTA thresholds (dB HL)
Lesional side

250 Hz 57.5 ± 25.4 64.7 ± 28.3 0.256
500 Hz 66.0 ± 21.9 73.0 ± 24.1 0.128
1,000 Hz 70.7 ± 20.7 82.3 ± 15.0 0.056
2,000 Hz 74.2 ± 21.7 84.3 ± 13.4 0.057
4,000 Hz 81.2 ± 18.9 86.0 ± 16.2 0.291
8,000 Hz 90.0 ± 13.4 90.3 ± 14.2 0.855
Contralesional side

250 Hz 11.5 ± 7.4 12.3 ± 8.1 0.891
500 Hz 13.5 ± 8.6 13.3 ± 6.7 0.805
1,000 Hz 18.0 ± 9.7 16.7 ± 10.3 0.687
2,000 Hz 19.7 ± 11.5 24.0 ± 15.2 0.338
4,000 Hz 30.0 ± 15.5 33.7 ± 18.7 0.570
8,000 Hz 39.7 ± 21.4 52.0 ± 26.5 0.122

Table 5.1: Demographic and audiological characteristics of the study partici-
pants.

checking for abnormal EEG patterns, including slowing of the alpha rhythm

or the emergence of sleep spindles [MMWJ10]. Data were obtained at a sam-

pling rate of 1,024 Hz, and filtered using a high-pass filter with a cutoff of

0.15 Hz and low-pass filter with a cutoff of 200 Hz. The raw data were resam-

pled to 128 Hz, band-pass filtered using a fast Fourier transform filter with

a Hanning window at 2–44 Hz, and transposed into Eureka! Software [SC05].

All episodic artifacts, such as eye movements and blinks, body movements,

teeth clenching, and electrocardiogram artifacts, were carefully inspected and

removed. An independent component analysis (ICA) was performed to verify

that all artifacts had been fully removed. The power spectra were compared

after removing visual artifacts, and then after removing visual artifacts and

performing ICA; there were no significant differences in the mean power of the

delta (2–3.5 Hz), theta (4–7.5 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta

1 (13–18 Hz), beta 2 (18.5–21 Hz), beta 3 (21.5–30 Hz), or gamma (30.5–44 Hz)
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frequency bands between the two approaches [Kim16, Son17, Han18, Lee20].

All of the results reported herein were obtained after applying the two-step

artifact correction process, and average Fourier cross-spectral matrices were

computed for the aforementioned bands (from delta to gamma). No patients

exhibited abnormal EEG patterns during the measurements.

5.2 Results

5.2.1 Comparison of the volume entropy between the sudden

sensorineural hearing loss-with tinnitus and sudden sen-

sorineural hearing loss-without tinnitus groups

The distributions of volume entropy in the T and NT groups are illustrated

in Figure 5.1. The statistical analysis revealed that volume entropy was sig-

nificantly higher in the T than NT group for the beta 2 frequency band. For

the other seven frequency bands, no statistically significant differences were

observed between the two groups. From these results, it can be inferred that

there was an increase in the overall information flow for the beta 2 frequency

band in the T group.

5.2.2 Comparison of afferent node capacity between the sud-

den sensorineural hearing loss-with tinnitus and sudden

sensorineural hearing loss-without tinnitus groups

The comparisons of afferent node capacity between the T and NT groups for

all eight frequency bands are summarized in Figure 5.2. For 14 ROIs for all

frequency bands except alpha 2 and beta 3, significantly higher afferent node

capacities were seen in the T group, while for 9 ROIs for the delta, alpha

2, beta 2, and gamma frequency bands, afferent node capacities were higher

in the NT group. The afferent node capacities for all ROIs, and for ROIs in

which afferent node capacity differed significantly between the two groups, are

illustrated in Figure 5.3, respectively.

In the T group, the afferent node capacity was significantly higher in the

left superior parietal sulcus (SPS, BA05), left PHC (BA36), and left angular

gyrus (AG, BA39) for the delta band; right temporal pole (TP, BA39) for the

theta band; and right SPS (BA05), right secondary visual cortex (V2, BA18),

right dorsal anterior cingulate cortex (dACC, BA24), right posterior cingu-

late cortex (PCC, BA31), right pregenual anterior cingulate cortex (prACC,
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Figure 5.1: Histograms showing the distribution of volume entropy for each
frequency band in the sensorineural hearing loss with tinnitus (T; red) and
sensorineural hearing loss without tinnitus (NT; black) groups. The red and
black vertical lines indicate the average volume entropy in the T and NT
groups, respectively.

BA32), and right intraparietal sulcus (IPS, BA40) for the alpha 1 band. The

right dACC (BA24) and left medial temporal gyrus (MTG, BA21) showed

significantly higher afferent node capacities for the beta 1 and beta 2 bands,

respectively. For the gamma frequency band, the afferent node capacity of the

T group was significantly higher than that of the NT group in the left occipi-

totemporal cortex (OTC, BA37), left TP (BA38), and right AG (BA39). By

contrast, for the ROIs in the NT group other than those mentioned above,

afferent node capacity was significantly higher compared to the T group. In

detail, higher afferent node capacity was observed in the right insula (BA13),

right MTG (BA21), right superior temporal gyrus (STG, BA22), and right sub-

genual anterior cingulate cortex (sgACC, BA25) for the delta band; right STG

(BA22), right sgACC (BA25) and right retrosplenial cortex (RSC1, BA29) for

the alpha 2 band; left hippocampal area (HIP1, BA28) for the beta 2 band;

and left insula (BA13), left sgACC (BA25), right insula (BA13), and right

primary visual cortex (V1, BA17) for the gamma band.
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5.3 Discussion

Many psychological disorders, such as depression, anxiety, and schizophrenia,

are caused by aberrant neural activity or functional connectivity within the

triple network [Men11, Sha19]. The triple brain network has recently been

implicated in tinnitus [DeR22], but proof of its involvement is lacking. Tinnitus

is commonly accompanied by underlying comorbidities such as presbycusis

[Gib13] and SSNHL; the rate of comorbid tinnitus in the latter condition is

66–93% [Din18].

Herein, we compared the volume entropy and afferent node capacity of

84 ROIs between T and NT groups via linear connectivity analysis of eight

resting-state qEEG frequency bands. The T group had significantly higher

volume entropy in the beta 2 frequency band than the NT group. The T group

had significantly higher afferent node capacities in the left SPS, left PHC2,

and left AG than the NT group for the delta frequency band, while the NT

group had significantly higher afferent node capacities in the right insula, right

MTG, right STG, and right sgACC. For the theta frequency band, the T group

had significantly higher afferent node capacity in the right TP. For the alpha 1

frequency band, the T group had significantly higher afferent node capacities

in the right SPS, right dACC, right PCC2, right prACC, and right IPS, while

the NT group had significantly higher afferent node capacities in the right

STG and right sgACC for the alpha 2 band. For the beta 1 band, the T group

showed significantly higher afferent node capacity in the right dACC. For the

gamma frequency band, the T group showed significantly higher afferent node

capacities in the left TP and right AG, while the NT group demonstrated

higher afferent node capacities in the left and right insula, and left sgACC.

Overall, the T and NT groups showed different patterns of neural information

flow in various frequency bands.

5.3.1 New insight into the generation of tinnitus in patients

with sudden sensorineural hearing loss provided by a

triple network model

As described above, the T group had significantly higher afferent node ca-

pacities in the left and right AG for the delta and gamma frequency bands,

respectively, as well as in the right PCC for the alpha 1 frequency band, and

left and right TP for the theta and gamma frequency bands, respectively.

The AG, PCC, and TP are responsible for the activation of, or are func-
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tionally connected with, the DMN [FM08, Seg13, Hu17]. The PCC is a core

element of the DMN; it shows elevated metabolic activity when an individual

is not focused on the outside world, and decreased activity during attention-

demanding tasks [Shu97, Rai01]. The TP may be crucial for socioemotional

processes and disorders; it is a component of the dorsomedial prefrontal cortex,

which is composed of various DMN networks [Ols07, And10]. [Lai09] demon-

strated that the bilateral AGs in the DMN network are engaged in dynamic

self-referencing processes in the resting state, and [Bin99] similarly observed

activation of the AG during task-free semantic and conceptual processing at

rest [Bin99, Lai09]. These findings can be interpreted in the context of the

volume entropy model: DMN regions may have been activated to a greater

degree in the T than NT group.

The posterior parietal cortex (PPC), which is located between the vi-

sual and somatosensory cortices, is a major domain in the human brain cor-

tex, along with the temporal and prefrontal cortices. It consists of the SPS

(BA05), superior parietal gyrus (SPG; BA07), AG (BA39), and IPS (BA40)

[Whi17]. Key nodes of the CEN that participate in goal-directed judgments

and decision-making include the dorsolateral prefrontal cortex (DPC) and

PPC [Mul06, KS07, Whi10]. In our study, significantly higher afferent node

capacities in the T than NT group were observed in the bilateral SPS nd right

IPS, which are both part of the CEN. Similarly, significantly higher afferent

node capacities were seen in the T group in the right prACC and right dACC,

which are key components of the SN [See07, Stu21]. The SN functions as a

large-scale brain network involved in the detection of salient external stimuli,

such as tinnitus.

Tinnitus seems to be the consequence of increased activity in the triple net-

work, which has also been implicated in Bayesian processing. Predictions are

generated in the DMN during the resting state [Pez21], while prediction errors

are computed in the left insula (SN) [Fic21] and left DPC and ventrolateral

prefrontal cortex (CEN) [Fic21]. Prediction errors generated by the left SN

rompt the goal-oriented CEN to reduce uncertainty. The CEN subsequently

generates new predictions based on intentions, and new prediction errors are

detected by the left SN via active sampling of the environment.

The DMN and frontoparietal network are essential for the conscious per-

ception of stimuli. Studies of patients with loss of consciousness have demon-

strated that auditory stimuli can reach the auditory cortex, but for con-

scious awareness thereof the auditory cortex must be functionally connected
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to consciousness-enabling networks [Bol04, Bol05, Lau04, Dem12] such as the

DMN and frontoparietal network [Dem12, Ake14]. Furthermore, auditory stim-

uli only enter into conscious awareness when certain networks are coactivated

[Bol08, Sad09]. All components of the triple network are important for the

conscious awareness of internally generated phantom sounds.

5.3.2 Activation of auditory processing and noise-canceling

pathways in sudden sensorineural hearing loss patients

without tinnitus

Regardless of whether tinnitus is generated by peripheral or central neural net-

works along auditory pathways, specific functional cortical regions are involved

[Jas90]. A recent meta-analysis of studies that have investigated tinnitus-

related abnormalities in brain structures and functions demonstrated that

temporal gyrus regions, such as the STG and MTG, are crucial for simple

peripheral auditory processing and semantic memory [Che20]. Moreover, the

connections of the temporal gyrus with the primary auditory cortex and frontal

lobe constitute hierarchical structures necessary for the execution of auditory

processing [Ish19]. In particular, the temporal lobes are highly activated in pa-

tients whose tinnitus is suppressed by narrowband noise or lidocaine injections

[Mir00]. Similar to the temporal gyrus, the insula plays a role in auditory tem-

poral processing, as does the central auditory nervous system (which is also

involved in speech perception). Aspects of temporal processing involving the

insula include organization of acoustic stimuli into meaningful sound units,

frequency discrimination, and sound localization [BML03]. Increased informa-

tion flow in auditory pathways indicates intentional modification of neural

projections to promote auditory processing and reduce the influence of the

tinnitus-generating network. Our results accord with those findings in that

we found significantly higher afferent node capacities of the right STG, right

MTG, and right insula for the delta frequency band; right STG for the alpha

2 frequency band; and both insulae for the gamma frequency band in the NT

group. Activation of auditory pathways strongly implies that the temporal

gyrus and insula serve as central processing units, compensate for auditory

deafferentation in patients with SSNHL, and prevent the generation of tinni-

tus.

The sgACC extends into the nucleus accumbens-ventral tegmental area

and is involved in the processing of aversive sounds (particularly tinnitus)
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and social distress [Muh06, VD12b]. Neuroimaging studies have demonstrated

involvement of the limbic system in tinnitus, and a “dysfunctional noise-

canceling mechanism” has been proposed [Rau10]. According to this concept,

patients perceive tinnitus only if the noise canceling system malfunctions,

and thus fails to suppress the tinnitus signal produced by auditory cortical

changes. Together, the ACCs (particularly the pregenual and rostral ACCs

and sgACC) and anterior insula may comprise the noise-canceling system

[Rau10, DeR12, Son15]. In our study, higher afferent node capacities were

observed in the right sgACC for the delta and alpha 2 frequency bands, and

left sgACC for the gamma frequency band, in the NT group; this suggests that

both sides of the sgACC were activated in the NT group, thereby triggering

the noise-canceling system and disrupting the tinnitus-generating pathway. In

other words, the sgACC may be the core region of what has been described as

the “descending noise-canceling pathway,” such that upregulation thereof may

suppress tinnitus. These results are in accordance with a transcranial neuro-

modulation study demonstrating an inhibitory effect on tinnitus of pgACC

and rostral ACC activity modulation [VD11].

5.3.3 Study strengths and limitations

Using a volume entropy model, this study demonstrated differences in infor-

mation flow and afferent node capacity between SSNHL patients with and

without tinnitus. The application of our volume entropy model in conjunction

with the triple network model could reveal the factors responsible for the selec-

tive generation of tinnitus in patients with SSNHL. When information flow is

increased in regions of the DMN and CEN after sudden-onset hearing loss, the

anticorrelation between the DMN and CEN is disrupted, and the SN perceives

tinnitus as normal (and thus generates symptoms, as seen in our T group).

However, tinnitus will not be perceived when the information flow auditory

network is activated to a greater extent than the tinnitus-generating triple net-

work, and tinnitus generation will be effectively blocked after the activation of

noise-canceling pathways (as seen in the NT group). Noninvasive neuromodu-

lation techniques, such as transcranial magnetic stimulation and direct current

stimulation, have shown promising results in studies of tinnitus when applied

to temporoparietal and prefrontal cortical regions [DeR05, Joo14, Cim20]. By

applying these techniques to triple network regions in studies based on our vol-

ume entropy model, new treatment protocols may emerge involving the deacti-
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vation of tinnitus-generating regions simultaneous with activation of tinnitus-

suppressing regions. In this manner, the outcomes of refractory tinnitus could

be improved. Our findings could lead to personalized therapies for patients

with tinnitus, particularly those who have experienced sudden hearing loss.

This study also had several limitations. First, due to the relative scarcity

of SSNHL patients without tinnitus, the NT group was not large enough for

a detailed analysis of the distribution of information flow, which may have

reduced the statistical significance of the comparison of afferent node capacity

among regions. Follow-up studies including more subjects are warranted to

validate our findings. Second, the laterality of the SSNHL could not be fully

matched between the T group and NT group due to the limited number of

subjects with SSNHL without tinnitus. Because the laterality of the deafness

can affect the cortical plastic changes and the oscillatory patterns are different

between left- and right sided tinnitus according to our own previous report

[Van11], future studies controlling for the laterality of hearing loss should be

performed to check the replicability of the current study. Also, as summarized

in Table 1, the duration of deafness showed significant differences between

the two groups due to the paucity of subjects with SSNHL without tinnitus.

Therefore, future follow-up studies utilizing larger subject groups matched for

the duration of deafness are warranted. Third, the activities of certain cortical

regions not associated with tinnitus were highly correlated in our study. For

instance, higher afferent node capacity was observed in the right V2 (BA18)

for the alpha 1 frequency band in the T group, whereas significantly higher

afferent node capacity in the right V1 (17R) was seen for the gamma frequency

band in the NT group. The visual cortex is not involved in generation of tin-

nitus but could play a role in the multisensory processing of auditory stimuli

[KY11, Roh19]. Therefore, future studies should evaluate the potential role

of the visual cortices in the generation or suppression of tinnitus. Fourth, the

frequency spectrum was limited to the traditional frequency bands; extending

it to include the infraslow (0.01–0.1 Hz) and slow (0.1–1 Hz) bands may yield

additional relevant information, but studies with larger study populations are

required to test this due to the problem of multiple comparisons. Fifth, we did

not check for anticorrelations within and between components of the triple net-

work, which may have provided a more complete picture of the interactions

of auditory areas with the triple network and noise-canceling system. How-

ever, this would require analysis of the infraslow band; most research of this

nature is based on functional magnetic resonance imaging, where the BOLD
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signal correlates with the infraslow EEG band [Pan13, Tho14, Gro17]. Sixth,

state-of-the-art functional cortical atlas such as the gradient-weighted Markov

Random Field (gwMRF) model combining the local gradient and global sim-

ilarity approaches for the functional classification of human cerebral cortex

[Sch18] may be advantageous over BA-based ROI mapping. Future studies

based on the recently developed functional atlas to check the replicability of

the current study are warranted.

5.4 Conclusion

Using a volume entropy model of the brain, we showed that activity within

the triple network (comprising the DMN, CEN, and SN) has a major role in

the selective generation of tinnitus after sudden hearing loss. By contrast, tin-

nitus suppressing networks (i.e., networks activating both temporal auditory

processing and noise-canceling pathways) exhibited activity surpassing that

of the triple network in our NT group, thereby effectively blocking tinnitus

generation. This study could inform neuromodulatory treatments for tinnitus

targeting the triple network.
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Figure 5.2: Frequency bands in Brodmann areas (BAs) showing differences
in afferent node capacity between the sudden sensorineural hearing loss pa-
tients with tinnitus (T) and sudden sensorineural hearing loss patients with-
out tinnitus (NT) (p < 0.05). The red and black lines represent the T and
NT groups, respectively. The black vertical lines denote BAs in which the fre-
quency bands showed significant group differences. The figures were generated
using the Nilearn (version 0.2.5) Python package.
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Figure 5.3: Afferent node capacity in all regions of interest in Brodmann ar-
eas, for all frequency bands (p < 0.05). The figures were generated using the
Nilearn (version 0.2.5) Python package. The color scales of blue dots represent
the average afferent node capacities at each Brodmann area of the sudden
sensorineural hearing loss patients with- and without tinnitus groups; darker
dots represent higher afferent node capacity.
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Chapter 6

Topological data analysis:

Mitral regurgitation

6.1 Methods

6.1.1 Study participants

A total of 1,276 patients with chronic moderate or severe MR were consecu-

tively enrolled in this multicenter prospective valvular heart disease registry

from 11 Asian tertiary hospitals (Korea, Japan, Hong Kong, and Singapore)

between April 2013 and February 2016 [Ama20]. Among these, we extracted

1,147 patients with isolated primary MR without other significant coexistent

valvular heart disease. After excluding those with missing values in any of the

14 variables required for TDA, 850 patients were included for the final analysis

in the derivation cohort, including 318 moderate MR and 532 severe MR (Fig-

ure 6.1). The comparison of baseline characteristics between the derivation

cohort and the entire population including the patients with missing values in

any of the features used for TDA is presented in Table 6.1. Meanwhile, the

validation cohort consisted of 257 consecutive patients with chronic primary

MR diagnosed at the Seoul National University Hospital from February 2016

to June 2019.

The study conforms to the principles of the Helsinki declaration, and the

study protocol was approved by the ethics committees of all participating

centers. Informed written consent was obtained from all participating patients.
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Figure 6.1: Flowchart of patient selection for the derivation cohort. Of 1,276
patients with chronic moderate or severe mitral regurgitation (MR), 850 pa-
tients were retained in the final analysis after excluding those with either
significant co-existent valvular heart disease other than MR or those who un-
derwent valve surgery and those with missing values in any of the 14 variables
required for topological data analysis. AR, aortic regurgitation; AS, aortic
stenosis; MS, mitral stenosis.

6.1.2 Echocardiographic evaluation

All patients underwent a comprehensive 2-dimensional and Doppler transtho-

racic echocardiography using commercially available ultrasound machines ac-

cording to the contemporary international guidelines (Section 6.5) [Lan15,

Nag16, Rud10]. The severity of MR was comprehensively assessed considering

the effective regurgitant orifice area and/or regurgitant volume by the proximal

isovelocity surface area method or the Doppler volumetric method according

to the contemporary guidelines [Ama20, Zog17]. Generally, in primary MR,

an effective regurgitant orifice area ≥0.4 cm2 and regurgitant volume ≥60 mL

are consistent with severe MR, and 0.20–0.39 cm2 and ≥50 mL with moderate

MR. In the case of late systolic regurgitation such as MR caused by prolapse,

we additionally considered other parameters, such as the left ventricular (LV)

size, to assess the severity of MR.
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Variables
Derivation cohort Entire population

P
N=850 N=1,147

Age, years 56.9±14.2 57.0±14.3 0.866
Male sex, n (%) 492 (57.9) 668 (58.2) 0.937
Body mass index, kg/m2 23.7±4.1 23.6±4.5 0.746
Systolic blood pressure, mmHg 126.5±18.0 126.4±18.3 0.878
Diastolic blood pressure, mmHg 73.3±11.2 73.3±11.3 0.936
Heart rate, bpm 71.1±11.7 71.4±12.8 0.605
NYHA functional class II-IV 312 (38.4) 382 (33.3) 0.818
Severe MR, n (%) 532 (62.5) 671 (58.5) 0.065
Etiology, n (%) 0.255
Prolapse/flail 718 (83.5) 960 (83.3)
Rheumatic change 67 (7.9) 86 (7.5)
Others 65 (7.6) 101 (8.8)
Comorbidities, n (%)
Hypertension 303 (35.6) 429 (67.4) 0.710
Diabetes mellitus 69 (8.1) 104 (9.1) 0.716
Dyslipidemia 130 (15.3) 171 (14.9) 0.950
Atrial fibrillation 109 (12.8) 151 (13.2) 0.975
End-stage renal disease 10 (1.2) 14 (1.2) 0.945
Echocardiographic parameters
LV end-diastolic volume, ml 145.6±48.5 143.9±48.7 0.979
LV end-systolic volume, ml 52.7±23.6 52.7±25.1 0.453
LV ejection fraction, % 64.0±7.1 63.8±7.3 0.534
Interventricular septal thickness, mm 9.3±1.5 9.3±1.5 0.752
Posterior LV wall thickness, mm 9.2±1.4 9.2±1.4 0.693
E velocity, m/s 1.1±0.4 1.1±0.8 0.741
e’ velocity, cm/s 7.7±2.4 7.8±2.5 0.268
E/e’ ratio 16.2±8.3 15.8±8.1 0.266
Maximal TR velocity, m/s 2.6±0.5 2.6±0.5 0.878
Left atrial volume index, ml/m2 73.1±44.5 73.2±71.4 0.875

Table 6.1: Baseline characteristics of the cohort before and after excluding
patients with missing values. E velocity, early diastolic transmitral inflow ve-
locity; e’ velocity, early diastolic mitral annular tissue velocity; LV, left ven-
tricular; MR, mitral regurgitation; NYHA, New York Heart Association; TR,
tricuspid regurgitation.
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6.1.3 Topological data analysis

The entire 14 variables were used for analysis—age, body mass index, systolic

and diastolic blood pressure, heart rate, LV end-diastolic and end-systolic vol-

umes, left ventricular ejection fraction (LVEF), interventricular septal and

posterior LV wall thickness, left atrial volume, early diastolic transmitral in-

flow velocity, early diastolic mitral annular velocity (e’ velocity), and the max-

imal tricuspid regurgitation velocity (TRVmax). TDA was used in the current

analysis because of its versatility in dealing with the high-dimensional data

sets, bringing new insights that may be different from those obtained with

traditional data mining methods. We performed TDA with a cloud-based an-

alytic platform (version 8.8, Ayasdi Inc). Using TDA, we generated a network

representation called the Mapper network of high-dimensional geometric data

space [SMC07, Car09], using the 14 variables mentioned in the previous text

to calculate the metric and the lens essential for TDA.

The Mapper network is an “analog of Reeb graph.” Each node of the

network represents a cluster of patients with similar features. The similarity

between the 2 subjects was measured using a specific dimensionality reduction

method, which we call a lens. An edge connects 2 nodes if the 2 corresponding

clusters share the same subjects. Nodes were color-coded according to the

average value of the feature of interest (eg, echocardiographic variables) for

each node. In common, red to orange represents a higher value, yellow to green

an intermediate value, and turquoise to blue a lower value of the feature.

A normalized correlation metric was used to measure the dissimilarity be-

tween 2 patients on a standard normalized data set. All features were normal-

ized to have a zero mean and 1 SD. This was combined with Isomap with 2

components (resolution: 30, gain: 3.0, equalized) as lenses (Figure 6.2 A-C). A

detailed introduction to the Mapper algorithm and the geometrical/topological

concept is described in Section 6.5.2.

6.1.4 Phenogrouping based on patient-patient similarity net-

work model

After a network model of patients with chronic primary MR was generated, we

extracted distinct subgroups from the network, ie, the group of patients who

share the common characteristics. The adequacy of grouping was supported

with the agglomerative hierarchical clustering and the Louvain method (Sec-

tion 6.5.3).
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Figure 6.2: Schematic diagram of the network model development from the
topological data analysis. (A) (Upper) Distance matrix of mitral regurgita-
tion patients using normalized correlation. (Lower) The original space of the
dataset is visualized by principal component analysis with 3 components. The
red and blue clusters that come from the rectangles in the latent space form
the nodes in the Mapper network. (B) Latent space is the image of the Isomap,
which is a method to reduce the dimension, a 2-dimensional space in this case.
The subjects with similar characteristics are covered in a rectangle. A cover
is the set of these rectangles, which ultimately covers the whole space. (C)
The Mapper network is generated from the patients’ data for visualization and
exploration of the data. (D) Phenogroups in the Mapper network are iden-
tified by applying the agglomerative hierarchical clustering and the Louvain
algorithm.
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First, we performed agglomerative hierarchical clustering to the Mapper

network so that the node-set was partitioned into some clusters (Section 6.5.3).

The densities of nodes were visualized by coloring with “rows per node,” ie,

the number of patients in each node. In the topological map colored by the

number of subjects per node (ie, “rows per node”), we found 3 notable groups

in the network model (Figure 6.2 D) with a relatively large number of patients

clustered (ie, the areas represented by red to orange nodes in the center)

(Figure 6.3 A). To group the subjects with high-density into clusters, the

distance was set so that nodes with similar densities were close—the Louvain

method slightly adjusted the clusters to obtain the most statistically stable

partition. Finally, we reduced each subset of the partition so that any 2 subsets

do not share a patient in common. The patients in each reduced subset of

nodes formed a group of patients (Figure 6.2 D). Consequently, we discovered

3 groups based on the Mapper network (Figure 6.3 B). Details are described

in Section 6.5.3.

Figure 6.3: Phenotypic groups of chronic primary mitral regurgitation patients
based on the network model. (A) The patient-patient similarity network model
is colored to represent the number of subjects per node (i.e., Rows per node).
In the upper right corner of the network, a histogram shows the range of the
number of patients for each color. Red nodes—meaning a large number of
subjects per node—are clustered into three distinct regions. (B) Three groups
were recognized in the lower left region (group A), upper region (group B),
and lower right region (group C).
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6.1.5 Clinical outcomes

The clinical outcome was defined as a composite of surgery for symptomatic

MR and cardiovascular death. Patients with symptomatic MR were defined as

those with New York Heart Association functional class II, III, or IV, ie, any

symptoms associated with heart failure. Patients were followed until Septem-

ber 2018 or for 5 years after the initial echocardiographic examination. We

considered the patients censored when there was open heart surgery for rea-

sons other than symptomatic MR and non-cardiovascular death.

6.1.6 Statistical analysis

Continuous variables were tested for normality and expressed as mean ± SD.

Categorical variables are shown in number (percentage). For comparisons be-

tween 3 groups, the 1-way analysis of variance and Kruskal-Wallis tests or the

chi-square test and Fisher exact test were used. Pairwise post hoc analysis

was conducted using the Tukey HSD test. Event-free survival was estimated

by the Kaplan-Meier method and compared using the log-rank test. HRs were

calculated using Cox regression and presented with a 95% CI and P value.

To evaluate the additive prognostic value of patient phenogrouping by

TDA, we first calculated the Mitral Regurgitation International Database

(MIDA) mortality risk score (3 points are given for age ≥65 years and symp-

toms; 2 points for pulmonary arterial systolic pressure >50 mm Hg; and 1

point for atrial fibrillation, left atrial dimension ≥55 mm, LV enddiastolic di-

mension ≥40 mm, LVEF ≤60%) for each patient [Gri18], and then calculated

the Harrell’s C-index, the net reclassification improvement, and integrated

discrimination improvement when the group information obtained from the

network model was added on the MIDA risk score.

A 2-sided P < 0.05 was considered statistically significant. We used R

version 3.5.3 (R Core Team, 2020, R Foundation for Statistical Computing)

and SPSS version 25 (IBM Corp., Release 2017) for statistical analysis.

6.2 Results

6.2.1 Study population of the derivation cohort

A total of 850 patients (mean age 56.9 ± 14.2 years; 492 men [57.9%]) with

chronic primary MR were included in the final analysis. The most common
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etiology of MR was mitral valve prolapse/flail leaflet (83.5%). A total of 312

subjects (38.4%) presented symptoms related to MR at the time of echocar-

diographic evaluation. Details of the baseline characteristics are listed in Ta-

ble 6.2.

6.2.2 Patient-patient similarity network model and distinct

phenogroups of primary MR patients

Based on the similarity of patients with chronic primary MR, the geometric

network model was presented in a 2-dimensional space. The patient-patient

similarity network revealed 3 groups that were mainly located in the left lower

region (group A), the top (group B), and the right lower region (group C)

(Figure 6.3). Meanwhile, these 3 distinct patient phenogroups obtained us-

ing TDA could not be recognized with other analytical methods, such as the

principal component analysis or hierarchical clustering (Figure 6.4).

When nodes were colored with orange to red for high values and turquoise

to blue for low values for each echocardiographic variable, each feature showed

different smooth gradients across the network (Figure 6.5, Figure 6.6). When

the LV end-systolic volume (blue ≤26.5 mL and red ≥77.2 mL) and LVEF

(blue ≤58.5% and red ≥70.7%) were shown by color across the geometric net-

work, subjects with a dilated LV chamber and decreased LV systolic function

were mostly gathered in the right lower corner of the network corresponding

to group C region (Figure 6.5 A,B). Those with preserved LV systolic function

and relatively normal LV end-systolic volume were located on the left upper

side of the network corresponding to the region of group B, but only partially

in group A. These distributions were discordant with those colored by the e’

velocity (blue ≤4.1 cm/s and red ≥10.6 cm/s) and TRVmax (blue ≤1.9 m/s

and red ≥3.2 m/s) (Figure 6.5 C,D). Specifically, most nodes with substan-

tially decreased e’ velocity were on the right and upper part of the network

corresponding to the regions of groups B and C. Similarly, patients with an

elevated TRVmax were located from the right side of group B region to the

right lower part of the network, mainly within group C region. The network

models of the remaining 10 variables are in Figure 6.6.

6.2.3 Characteristics of primary MR phenogroups

For group comparison, 69 subjects allocated in 2 phenogroups or more were

excluded from the analysis, and therefore a total of 781 patients were analyzed.
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Figure 6.4: Failure to reproduce the phenogroups from the topological data anal-
ysis with other dimensionality reduction methods and hierarchical clustering.
(A) Latent space obtained from commonly used two-dimensionality reduction
methods, principal component analysis (PCA), and Isomap. Each point cor-
responds to a patient and is colored according to the groups identified from
topological data analysis. (B) Hierarchical clustering to the patient space.
The horizontal axis means patients, and the vertical axis means thresholds at
which clusters are merged. Each segment is colored according to groups iden-
tified from topological data analysis. Note that the groups identified by TDA
cannot be reproduced by any of these methods nor can the characteristics of
each feature “visualized” by the network.

Demographic, clinical characteristics, and echocardiographic data were signif-

icantly different between the 3 groups (Table 6.3). The comparison of groups,

including the patients overlapping in each group, is presented separately in

Table 6.4.

Group A was the youngest (average age 41.8 ± 10.2 years; P < 0.05

vs others), with a lower prevalence of comorbidities, such as hypertension,

dyslipidemia, and atrial fibrillation. Group B was the oldest (average age 65.4

± 10.4 years; P < 0.05 vs others) with the highest systolic blood pressure

(135.1 ± 17.2 mm Hg; P < 0.05 vs others) and the highest prevalence of

hypertension (50.0%; P < 0.05 vs others). The average age and prevalence

of comorbidities in group C were intermediate between groups A and B, but
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Figure 6.5: Patient-patient similarity network model of chronic primary mi-
tral regurgitation patients in the derivation cohort colored by left ventricular
(LV) remodeling parameters. A network model was generated by topological
data analysis using 14 demographic and echocardiographic variables. The net-
work model is color-coded to reflect the indicated variable in the upper right
corner of each network; red orange indicating a higher level of the variable,
yellow green intermediate level, and turquiose blue indicating lower/normal
level. In the upper right corner of each network, a histogram shows the range
and distribution of each color value. (A) LV end-systolic volume (LVESV)
(ml), (B) LV ejection fraction (LVEF) (%), (C) early diastolic mitral annular
tissue velocity (e’ velocity) (cm/s), and (D) maximal tricuspid regurgitation
velocity (TRVmax) (m/s).

atrial fibrillation was most frequent in group C (26.5%; P < 0.05 vs others).

Besides, group C had the highest proportion of subjects with symptomatic MR

and severe MR among the 3 groups. The proportion of subjects with dyspnea
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Figure 6.6: Patient-patient similarity network model of chronic primary mitral
regurgitation patients in the derivation cohort. A network model was gener-
ated by topological data analysis using 14 demographic and echocardiographic
variables from the derivation cohort. The network model is color-coded to re-
flect the indicated variable in the upper right corner of each network; red or-
ange indicating a higher level of variables, yellow green intermediate level, and
turquoise blue indicating lower/normal level. In the upper right corner of each
network, a histogram shows the range and distribution of each color value. (A)
Age (years), (B) body mass index (BMI) (kg/m2), (C) systolic blood pressure
(SBP) (mmHg), (D) diastolic blood pressure (DBP) (mmHg), (E) heart rate
(HR) (bpm), (F) early diastolic transmitral inflow velocity (E velocity) (m/s),
(G) interventricular septal thickness (IVST) (mm), (H) left ventricular pos-
terior wall thickness (LVPW) (mm), (I) left ventricular end-diastolic volume
(LVEDV) (ml), and (J) left atrial (LA) volume (ml).

(New York Heart Association functional classification II-IV) increased in the

order of groups A, B, and C (24.2%, 38.1%, and 53.2%; P < 0.001).

Regarding the echocardiographic parameters, LVEF was similar between

groups A and B. The e’ velocity and TRVmax, variables commonly used to
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assess the diastolic function, were significantly lower and higher, respectively,

in group B than in group A, whereas LV volumes were larger in group A

than group B. Group C had the largest LV volume, the highest TRVmax,

and the lowest LVEF and e’ velocity among the 3 phenogroups. Based on

these characteristics, we could summarize group A as the “compensatory LV

dilation” group, group B as the “LV diastolic dysfunction” group, and group

C as having both characteristics.

6.2.4 Association of the distinct phenotypic groups with clin-

ical outcome and its additive value

During a median follow-up of 3.5 years [IQR 0.89-5.00 years], 60 patients

received surgery for symptomatic MR (n = 58) or died from cardiovascular

causes (n = 2). Group C had the worst event-free survival for the composite

outcome (P < 0.001 by log-rank test) (Figure 6.7). Notably, group B had

an event-free survival rate comparable to group A (P = 0.142 by log-rank

test). These trends were similar for subgroups stratified by the severity of MR

(Figure 6.8) and symptom status (Figure 6.9).

After adjusting for the MIDA risk score with multivariate Cox regression

analysis, the grouping information obtained from the network model was an

independent predictor for the composite outcome (adjusted HR: 1.918; 95% CI

1.257-2.927; P = 0.003). The addition of the phenogrouping by the network

model to the MIDA risk score increased the C-index (0.685 to 0.705; P =

0.028) and resulted in a significantly improved prediction of the composite

outcome (net reclassification improvement 0.373; 95% CI: 0.113-0.634; P =

0.005; integrated discrimination improvement 0.056; 95% CI: 0.013-0.098; P =

0.010).

6.2.5 Validation of network model of primary MR

The validation cohort consisted of 257 chronic primary MR patients (mean age

61.9 ± 16.3 years; 128 men [49.8%]) with a higher proportion of moderate MR

(n = 188, 73.2%) than the derivation cohort (Table 6.5). The 2-dimensional

network model and its colored distribution of the same parameters demon-

strated a pattern similar to that of the derivation cohort, albeit with fewer

nodes and edges because of the smaller number of subjects (Figure 6.10). By

the same analytic approach, we discovered 3 phenogroups with distinct char-

acteristics as in the derivation cohort (Table 6.6), after excluding 36 subjects
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Figure 6.7: Kaplan-Meier curve for cumulative event-free survival in the
phenogroups of mitral regurgitation (MR) patients discovered in the network
model. The composite endpoint was surgery for symptomatic MR and cardio-
vascular death. Three phenogroups of chronic primary MR were discovered in
the network model. CI, confidence interval; HR, hazard ratio; LV, left ventric-
ular.

allocated in 2 or more phenogroups. The relationship between the phenogroups

and clinical outcome was similar to that in the derivation cohort (Figure 6.10

F).
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Figure 6.8: Kaplan-Meier curves for cumulative event-free survival in moderate
and severe mitral regurgitation (MR). Patients with chronic primary MR in
the derivation cohort were stratified according to the severity; (A) moderate
MR and (B) severe MR. The composite endpoint of surgery for symptomatic
MR and cardiovascular death were compared between the three groups dis-
covered in the network model of chronic primary MR. Kaplan-Meier curves
for cumulative event-free survival were drawn for each stratum. CI, confidence
interval; HR, hazard ratio; LV, left ventricular.
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Variables
Total

N=850

Age, years 56.9±14.2
Male sex, n (%) 492 (57.9)
Body mass index, kg/m2 23.7±4.1
Systolic blood pressure, mmHg 126.5±18.0
Diastolic blood pressure, mmHg 73.3±11.2
Heart rate, bpm 71.1±11.7
NYHA functional class II-IV, n (%) (N=812) 312 (38.4)
Severe MR, n (%) 532 (62.5)
Etiology, n (%)
Prolapse/flail 718 (83.5)
Rheumatic change 67 (7.9)
Others 65 (7.6)
Comorbidities, n (%)
Hypertension 303 (35.6)
Diabetes mellitus 69 (8.1)
Dyslipidemia 130 (15.3)
Atrial fibrillation 109 (12.8)
End-stage renal disease 10 (1.2)
Echocardiographic parameters
LV end-diastolic volume, ml 145.6±48.5
LV end-systolic volume, ml 52.7±23.6
LV ejection fraction, % 64.0±7.1
LV ejection fraction ≥60%, n (%) 664 (78.1)
LV ejection fraction 50–59.9%, n (%) 163 (19.2)
LV ejection fraction <50%, n (%) 23 (2.7)
Interventricular septal thickness, mm 9.3±1.5
Posterior LV wall thickness, mm 9.2±1.4
E velocity, m/s 1.1±0.4
e’ velocity, cm/s 7.7±2.4
E/e’ ratio 16.2±8.3
Maximal TR velocity, m/s 2.6±0.5
Left atrial volume index, ml/m2 73.1±44.5

Table 6.2: Baseline characteristics of the derivation cohort. E velocity, early
diastolic transmitral inflow velocity; e’ velocity, early diastolic mitral annular
tissue velocity; LV, left ventricular; MR, mitral regurgitation; NYHA, New
York Heart Association; TR, tricuspid regurgitation.
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Variables
Group A Group B Group C

P

N=217 N=364 N=200

Age, years 41.8±10.2† 65.4±10.4* 57.2±10.9*,† <0.001
Male, n (%) 132 (60.8) 199 (54.7) 118 (59.0) 0.503
Body mass index, kg/m2 22.2±3.3† 24.4±4.5* 23.8±3.7* 0.008
Systolic blood pressure, mmHg 124.5±15.2† 135.1±17.2* 113.7±14.0*,† <0.001
Diastolic blood pressure, mmHg 74.0±10.1 75.4±11.3 67.9±10.4*,† <0.001
Hart rate, bpm 73.9±11.3† 67.8±11.2* 73.3±12.0† 0.484
NYHA functional class II-IV, n (%) (N=747) 50/207 (24.2)† 135/354 (38.1)* 99/186 (53.2)*,† <0.001
Severe MR, n (%) 141 (65.0)† 192 (52.7)* 150 (75.0)*,† <0.001
Etiology, n (%)
Prolapse/flail 196 (90.3) 322 (88.5) 140 (70.0)

<0.001Rheumatic change 10 (4.6) 10 (2.7) 43 (21.5)
Others 11 (5.1) 32 (8.8) 17 (8.5)
Comorbidities, n (%)
Hypertension 31 (14.3)† 182 (50.0)* 58 (29.0)*,† <0.001
Diabetes mellitus 12 (5.5) 36 (9.9) 17 (8.5) 0.204
Dyslipidemia 13 (6.0)† 88 (24.2)* 21 (10.5) <0.001
Atrial fibrillation 11 (5.1) 31 (8.5) 53 (26.5)*,† <0.001
End-stage renal disease 1 (0.5) 4 (1.1) 4 (2.0) 0.312
Echocardiographic parameters
LV end-diastolic volume, ml 148.2±39.4† 124.2±37.6* 180.1±55.3*,† <0.001
LV end-systolic volume, ml 50.7±15.3† 43.7±15.5* 71.2±32.8*,† <0.001
LV ejection fraction, % 65.6±5.3 64.9±6.2 60.8±9.5*,† <0.001
LV ejection fraction ≥60%, n (%) 191 (88.0) 287 (78.8) 130 (65.0) <0.001
LV ejection fraction 50–59.9%, n (%) 26 (12.0) 71 (19.5) 53 (26.5)
LV ejection fraction <50%, n (%) 0 (0.0) 6 (1.6) 17 (8.5)
Interventricular septal thickness, mm 8.6±1.4† 9.8±1.5* 9.4±1.3*,† <0.001
Posterior LV wall thickness, mm 8.6±1.3† 9.6±1.4* 9.3±1.2*,† <0.001
E velocity, m/s 1.0±0.3 1.0±0.3 1.4±0.4*,† <0.001
e’ velocity, cm/s 10.1±2.2† 6.7±1.7* 7.1±1.9*,† <0.001
E/e’ ratio 10.7±3.5† 16.5±7.3* 21.4±10.1*,† <0.001
Maximal TR velocity, m/s 2.3±0.3† 2.6±0.4* 2.9±0.6*,† <0.001
Left atrial volume index, ml/m2 54.9±22.3 62.5±27.4 110.5±64.6*,† <0.001

Table 6.3: Baseline characteristics according to phenogroups in the network
model. *P <0.05 compared with group A and †P <0.05 compared with group
B. E velocity, early diastolic transmitral inflow velocity; e’ velocity, early di-
astolic mitral annular tissue velocity; LV, left ventricular; MR, mitral regur-
gitation; NYHA, New York Heart Association; TR, tricuspid regurgitation.
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Variables
Group A Group B Group C

P
N=250 N=416 N=229

Age, years 43.6±11.2† 65.1±10.5* 57.8±11.3*,† <0.001
Male, n (%) 152 (60.8) 232 (55.8) 138 (60.3) 0.539
Body mass index, kg/m2 22.2±3.3† 24.4±4.5* 24.1±3.8* <0.001
Systolic blood pressure, mmHg 124.8±15.3 134.0±17.5 113.0±14.7*,† <0.001
Diastolic blood pressure, mmHg 74.1±10.1 75.5±11.2 68.9±10.8*,† <0.001
Hart rate, bpm 75.1±12.1† 70.1±11.8* 76.6±41.1† 0.557
NYHA functional class II-IV, n (%) 57 (23.9)† 159 (39.5)* 117 (54.9)*,† <0.001
Severe MR, n (%) 165 (66.0)† 228 (54.8)* 171 (74.7)*,† <0.001
Etiology, n (%)
Prolapse/Flail 185 (74.0) 271 (65.1) 100 (43.7)

<0.001Rheumatic change 12 (4.8) 13 (3.1) 45 (19.7)
Others 12 (4.8) 34 (8.2) 17 (7.4)
Comorbidities, n (%)
Hypertension 43 (17.2)† 213 (51.2)* 73 (31.9)*,† <0.001
Diabetes mellitus 13 (5.2) 40 (9.6) 19 (8.3) 0.155
Dyslipidemia 17 (6.8)† 94 (22.6)* 22 (9.6)*,† <0.001
Atrial fibrillation 15 (6.0) 43 (10.3) 62 (27.1)*,† <0.001
End-stage renal disease 1 (0.4) 5 (1.2) 5 (2.2) 0.223
Echocardiographic parameters
LV end-diastolic volume, ml 147.7±10.2† 126.8±40.0* 178.1±54.7*,† <0.001
LV end-systolic volume, ml 50.8±15.6† 44.6±15.9* 69.7±31.7*,† <0.001
LV ejection fraction, % 65.5±5.2 64.8±6.2 61.2±9.2*,† <0.001
LV ejection fraction ≥60%, n (%) 221 (88.4) 327 (78.6) 151 (65.9) <0.001
LV ejection fraction 50–59.9%, n (%) 29 (11.6) 83 (20.0) 61 (26.6)
LV ejection fraction <50%, n (%) 0 (0.0) 6 (1.4) 17 (7.4)
Interventricular septal thickness, mm 5.6±1.4† 9.7±1.5* 9.5±1.3* <0.001
Posterior LV wall thickness, mm 8.6±1.3† 9.5±1.4* 9.3±1.2* <0.001
E velocity, m/s 1.1±0.3 1.1± 0.3 1.4±0.4*,† <0.001
e’ velocity, cm/s 9.9±2.2† 6.7±1.8* 7.0±1.9* <0.001
E/e’ ratio 11.0±3.5† 16.8±7.4* 21.3±9.9*,† <0.001
Maximal TR velocity, m/s 2.3±0.3† 2.6±0.5* 2.9±0.6*,† <0.001
Left atrial volume index, ml/m2 56.6±23.3† 64.6±28.6* 107.7±62.2*,† <0.001

Table 6.4: Baseline characteristics according to phenogroups in the network
model (Sensitivity analysis). *P <0.05 compared with group A and †P <0.05
compared with group B. E velocity, early diastolic transmitral inflow velocity;
e’ velocity, early diastolic mitral annular tissue velocity; LV, left ventricular;
MR, mitral regurgitation; NYHA, New York Heart Association; TR, tricuspid
regurgitation.
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Figure 6.9: Kaplan-Meier curves for cumulative event-free survival in mitral
regurgitation (MR) patients with or without symptoms. Patients in the deriva-
tion cohort were stratified according to the symptoms of MR; New York Heart
Association functional class (NYHA Fc) II-IV defined as symptomatic MR.
The composite endpoint of surgery for symptomatic MR and cardiovascular
death were compared between the three groups discovered in the network
model of chronic primary MR. Kaplan-Meier curves for cumulative event-free
survival were drawn for each stratum. CI, confidence interval; HR, hazard
ratio; LV, left ventricular.
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variables
Total

N=257

Age, years 61.9±16.3
Male sex, n (%) 128 (49.8)
Body mass index, kg/m2 22.9±3.36
Systolic blood pressure, mmHg 123.2±18.2
Diastolic blood pressure, mmHg 72.2±11.8
Heart rate, bpm 74.7±16.5
NYHA functional class II-IV, n (%) 78 (30.3)
Severe MR, n (%) 69 (26.8)
Etiology
Prolapse/flail 203 (79.0)
Rheumatic change 34 (13.2)
Others 20 (7.8)
Echocardiographic parameters
LV end-diastolic volume, ml 50.9±22.2
LV end-systolic volume, ml 130.2±43.2
LV ejection fraction, % 60.8±6.7
LV ejection fraction ≥60%, n (%) 140 (63.3)
LV ejection fraction 50–59.9%, n (%) 70 (31.7)
LV ejection fraction <50%, n (%) 11 (4.9)
Interventricular septal thickness, mm 9.3±1.4
Posterior LV wall thickness, mm 9.2±1.4
E velocity, m/s 1.1±0.4
e’ velocity, cm/s 7.4±2.4
E/e’ ratio 17.0±9.6
Maximal TR velocity, m/s 2.6±0.5
Left atrial volume index, ml/m2 80.3±65.7

Table 6.5: Baseline characteristics of the validation cohort. E velocity, early
diastolic transmitral inflow velocity; e’ velocity, early diastolic mitral annular
tissue velocity; LV, left ventricular; MR, mitral regurgitation; NYHA, New
York Heart Association; TR, tricuspid regurgitation.
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Figure 6.10: Patient-patient similarity network model of chronic primary mitral regurgita-
tion (MR) patients in the validation cohort. A network model was generated by topological
data analysis using 14 demographic and echocardiographic variables from the validation co-
hort. (A) A large number of subjects per node are clustered into three distinct regions; lower
left region (group A), upper region (group B), and lower right region (group C). (B E) The
network model is color-coded to reflect the given parameter in the upper right corner of
each figure; red orange indicating a higher level of the variable, yellow green intermediate
level, and turquiose blue indicating lower/normal level. In the upper right corner of each
network, a histogram shows the range and distribution of the variable for each color; (B)
left ventricular (LV) end-systolic volume (LVESV) (ml), (C) LV ejection fraction (LVEF)
(%), (D) early diastole mitral annular tissue velocity (e’ velocity) (cm/s), and (E) maximal
tricuspid regurgitation velocity (TRVmax) (m/s). (F) The composite endpoint of surgery for
symptomatic MR and cardiovascular death is shown for the validation cohort. CI, confidence
interval; HR, hazard ratio.
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6.3 Discussion

This study applied a topology-based approach for chronic primary MR patients

to develop a patientpatient similarity network (fig. 6.11). Our findings can be

summarized as follows. First, the network of chronic primary MR patients by

TDA intuitively visualized the pattern of LV structural and functional remod-

eling. Second, 3 distinct phenogroups of chronic primary MR patients were set

apart based on the patient-patient similarity network, each with distinctive

characteristics. Third, a specific phenogroup of patients (ie, group B) with

both significant MR and predominant LV diastolic dysfunction showed a clin-

ical outcome comparable to that of those with only compensatory LV dilation

but preserved systolic function.

Figure 6.11: A step-by-step process to understand the cardiac remodeling pat-
tern by chronic primary mitral regurgitation (MR) using topological data anal-
ysis and to demonstrate the clinical relevance of the new phenogroups. A large
demographic and echocardiographic data of chronic primary MR patients were
collected from the international multicenter registry. The distance matrix for
topological data analysis was created by calculating the normalized correlation
and processed with Isomap. The high-dimensional data undergoes dimension-
ality reduction into a 2-dimensional topological map. The network was repre-
sented by nodes (dots) and edges (lines), which we call a patient-patient sim-
ilarity network model. Based on the network model, new phenogroups with
distinct characteristics were discovered using the agglomerative hierarchical
clustering and the Louvain method. Lastly, we evaluated the clinical relevance
of these novel phenogroups and their clinical implications. LV, left ventricular.
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There are certain unique points in the methods used. First, TDA can

“picturize” or “visualize” the distribution of the multiple complex data holis-

tically, and provides a more intuitive understanding of the entire data set and

its complex connections. Second, it would have been possible to discover that

a certain echocardiographic parameter is predictive of the outcome had the

conventional hypothesis-driven analysis been used for the same data set. How-

ever, it would have been nearly impossible to identify a certain “group” of

patients sharing similar characteristics. Rather than discovering the impor-

tance of a certain parameter, it would be clinically more useful to determine

which type of patient is at high risk. Third, TDA reduces the possibility of

missing critical insights by clustering the data in the original high dimensional

space, whereas other dimensionality reduction methods first reduce the data

into a few attributes. Thus, other dimensionality reduction and/or clustering

methods may fall short of reproducing our phenogroups (Figure 6.4), verifying

the uniqueness of TDA.

Group A in our analysis verifies a well-known compensatory mechanism

following LV volume overload by chronic MR, in which the LV chamber ex-

pands to accommodate higher volumes and maintain a relatively normal end-

diastolic pressure [GM18]. After the early stage with preserved LV systolic

function, pump failure and deterioration of myocardial diastolic properties

progress with an increase in ventricular stiffness [Cor91]. This advanced struc-

tural and functional LV remodeling in chronic MR is manifested in group C.

On the other hand, the network revealed a distinctive phenotype of chronic

primary MR (ie, group B) not described in the current published data. Group

B is characterized by impaired LV relaxation and LV hypertrophy, differ-

ing from the commonly established compensatory LV dilation phenotype.

Notably, LV diastolic dysfunction with LV hypertrophy is often seen in el-

derly patients with hypertension and is commonly associated with LV stiffness

[Con95, Zan07, Wes08]. Besides, patients in group B had a higher proportion

of symptomatic patients. The cardiac remodeling observed in group B could

contribute to patients’ breathlessness, thus complicating the symptomatology

of the MR patients. Therefore, it remains to be verified whether the diastolic

dysfunction is a result of comorbidities, chronic MR, or a mixture of both.

Although compensatory dilation of LV and systolic dysfunction have gained

attention, diastolic dysfunction has not been sufficiently considered when as-

sessing MR patients and determining the optimal timing for surgical interven-

tion [Bau17, Wri21]. This might be because it is challenging to determine the
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diastolic function in MR with the enhanced early transmitral inflow and re-

duced systolic pulmonary vein flow by the regurgitant flow [Ros01]. Although

our analysis does not prove the causal relationship between the phenogroups

and clinical outcome, it should be highlighted that the presence of diastolic

dysfunction is as important as the compensatory mechanism of LV dilation in

MR patient evaluation. Furthermore, future studies are warranted to confirm

our findings on whether there is a causality between chronic primary MR and

diastolic dysfunction.

6.3.1 Study limitation

First, the features used for TDA were acquired by noninvasive imaging and

not by invasive hemodynamic studies such as right heart catheterization. In

addition, variables indicating the LV functional reserve (eg, stress echocar-

diography) and the right ventricular structure and/or function were also not

collected and, therefore, not included for analysis. Although advanced echocar-

diography, such as speckle tracking echocardiography, was not done, we tried

to analyze the echocardiography data that is most likely to be standardized

across any institutions. As such, our findings can be generalized to any cen-

ter involved in managing or treating these patients, which is a strength of

this study. Second, the validation data set was limited in numbers. However,

we reproduced the network model and phenotypic groups using the valida-

tion cohort and could demonstrate their relationship with clinical outcomes.

Last, the MIDA risk score has been initially proposed as a system to predict

mortality, and its use as a predictor of the composite clinical outcome can

be criticized as an excessive extrapolation of the score. However, there is no

specific scoring system to predict the composite clinical outcome in primary

MR patients to now, and our analysis shows that the MIDA risk score is also

a significant predictor for the composite outcome of surgery for symptomatic

MR and cardiovascular death (HR: 1.323; 95% CI: 1.204- 1.453; P < 0.001).

6.4 Conclusion

The patient-patient similarity network model generated by TDA intuitively

visualized the patterns of cardiac structural and functional remodeling in

chronic primary MR. The geometric network revealed an important distinct

phenogroup of chronic primary MR patients with predominant diastolic dys-
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function, which has been overlooked in the current published data. These

findings suggest that diastolic dysfunction deserves equal attention as ventric-

ular dilatation or pump failure when trying to understand the progression or

clinical presentation of chronic primary MR.

6.5 Supplemental Methods

6.5.1 Echocardiographic evaluation

All patients underwent a comprehensive 2-dimensional and Doppler transtho-

racic echocardiography using commercially available ultrasound machines. The

left ventricular end-diastolic and end-systolic volumes were determined from

2-dimensional images according to the contemporary international guidelines

[Nag16], and the LV ejection fraction was calculated using the modified biplane

method. The LV wall thickness was assessed in the parasternal views at or im-

mediately below the level of the mitral valve leaflet tips at end-diastole [Nag16].

Pulse-wave Doppler was used to measure early diastolic transmitral inflow ve-

locity. Pulse-wave tissue Doppler was applied to measure early diastolic mi-

tral annular velocity at the septal mitral annulus [Rud10]. Continuous-wave

Doppler was applied to obtain the maximal tricuspid regurgitation velocity

[Zog17].

6.5.2 Mapper

The Mapper [SMC07, Car09], which is an efficient visualization and dimen-

sionality reduction method that preserves the topological properties of the

data point cloud, is an application of the Reeb graph to data analysis. The

Mapper is based on the clustering and lens function.

For a topological space X and a real-valued continuous map f defined on

X, the Reeb graph is obtained by identifying the poinmts which are in the

same connected component of the level set f−1(a) = {x ∈ X : f(x) = a}
for a ∈ R (Figure 6.12). Note that, however, the Reeb graph of a discrete

space is itself. Thus, to apply the concept of the Reeb graph to data analysis,

we adjust the concept of the Reeb graph to the data point cloud. We use an

interval instead of a value f(a) of a function f , so level set f−1(a) are replaced

by pullback covering. On each element of the pullback covering, an alternative

concept of the connected component is identified with clustering. Moreover, in

this study, we use an R2-valued function, which we call lens function, instead
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of a real-valued function f in order to preserve more topological information.

Details of the process and the setting in this paper for each step are described

below.

Figure 6.12: Reeb graph of a topological space X with respect to a function
f . Two blue circles are level set f−1(a) of a real number a. Each circle is a
connected component that is to be identified as a red point. The red line is
the Reeb graph.

Distance

We choose a distance between the data points (or vector) as the normalized

correlation (or the correlation distance), which is formulated as follows: For

tow points x and y in RM ,

dnc(x, y) := 1− (x− x̄) · (y − ȳ)

‖x− x̄‖‖y − ȳ‖
= 1− corr(x, y),

where x̄ is the mean of elements of x, · is the dot product in RM , ‖ · ‖ is the

Euclidean norm and corr(·, ·) is the degree of correlation. However, it should

be noted that the normalized correlation is not a distance (not satisfying the

triangular inequality), but the square root of the normalized correlation is a

distance on the space of normalized vectors. More precisely, if we denote the
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normalized vector by x̂, i.e. x̂ = (x− x̄)/‖x− x̄‖, then

√
dnc(x, y) =

√
1− (x− x̄) · (y − ȳ)

‖x− x̄‖‖y − ȳ‖
=

1√
2

√
(x̂− ŷ) · (x̂− ŷ) =

1√
2
‖x̂− ŷ‖.

The normalization amounts to x being projected to a point in the sphere

SM−2 = {x ∈ H : ‖x‖ = 1} of the hyperplane H = {x = (x1, . . . , xM ) :

x1 + · · ·+xM = 0}. Thus the nomalized correlation is interpreted as a variant

of Euclidean distance on SM−2.

Lens function

The lens functions. corresponding to the continuous map f for the Reeb graph,

are R2-valued function defined on data points. In this study, we use a function

ϕ : X → R2 which we call Isomap. Isomap is a nonlinear dimensionality

reduction method that minimizes the difference between the geodesic distance

in the k-nearest neighborhood metric graph (knn graph) of the original space

and the corresponding Euclidean distance in the latent space.

For the Isomap algorithm, we first need to construct the k-nearest neigh-

borhood metric graph from the data. The nodes of the graph consist of the data

points, and for each data point xi, the k-nearest data points xi1 , . . . , xik and

xi are connected by edges of length dnc(xi, xi1), . . . , dnc(xi, xik), respectively.

The geodesic distance between a pair of nodes (xi, xj), denoted by dg(xi, xj),

is defined by the shortest path length between xi and xj .

The value of ϕ at N data points x1, . . . , xN are obtained by minimizing

the stress function defiend as follows:

stress(x1, . . . , xN ) :=

∑
i 6=j

[dg(xi, xj)− ‖ϕ(xi)− ϕ(xj)‖]2
 1

2

.

We get a new 2-dimensional space ϕ(X) ⊂ R2, which we call the latent space

of Isomap (Figure 6.13).

Covering

To handle and simplify the complex configuration of the data, the entire space

should be adequately ‘covered’ over the entire dataset and then expressed in a

simpler configuration, which is the basic idea of TDA. Covering is the process
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Figure 6.13: Process of Isomap and covering. (A) (left) Data point cloud in
the original space; (middle) k-nearest neighborhood graph of data point cloud
with k = 5; (right) Latent space obtained from the Isomap function ϕ. (B)
(left) The coverings C = {Ia : a ∈ A} and D = {Jb : b ∈ B} of the axes
corresponding to ϕ, gives the covering C×D. For example, the purple rectangle
in the middle is an element of C×D. In this figure, the resolution is 3, and the
gain is 1.2 for both axes of the range of ϕ. We set equalize option, i.e., each
rectangle corresponding to Ia×Jb to contain the same number of data points;
(right) red points correspond to the points in the red dotted rectangle in the
laten space of the left-side figure.

of setting the function to ‘cover’ the entire space of the dataset. For the lens

function, we make coverings C = {Ia : a ∈ A} and D = {Jb : b ∈ B}, where A

and B are finite sets, consisting of intervals Ia and Jb on the axis of the range

of the lens function. The covering C × D = {Ia × Jb : a ∈ A, b ∈ B} consists

of rectangles Ia × Jb that cover the range of ϕ (Figure 6.13). There are two

parameters when determining the covering. One is the resolution, which is the

number of intervals, i.e. |A| and |B|. The other is the gain, which is related

to the overlapping ratio p between each interval by p = 1 − 1/(gain). In this

article, the resolution is 30, and the gain is 3.0 for the two axes of the range of

ϕ with equalize option in which the number of data points in each rectangle

is constant. These resolution, gain, and option settings are also the default

settings of the Ayasdi mapper.
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Clustering

We will replace the connected components of the Reeb graph by clusters based

on the assumption that the nearby points in the data point cloud belong to

the same connected component. Clustering used in Mapper has two character-

istics: 1. take input as a distance matrix; 2. do not predetermine the number

of clusters. The single linkage clustering, which is based on the single link-

age distance D(A,B) = minx∈A,y∈B dnc(x, y) between subset A and B of the

dataset space, satisfies the two conditions above. With the initial state that

each point is a cluster, the clusters are sequentially combined into larger clus-

ters according to close single linkage distance D(·, ·). We stopped in the proper

step and obtained the resulting clusters.

After clustering, we make each cluster a node and connect the nodes with

edges if two clusters contain the same data point. To examine the distribution

of variables on the Mapper network, we color the nodes according to the

average value of the variable of the points in each node.

6.5.3 Grouping

In order to find groups in the resulting Mapper network, we use agglomerative

hierarchical clustering and the Louvain (AHCL) algorithm. The AHCL algo-

rithm consists of two-step of algorithms: 1. Agglomerative hierarchical clus-

tering; 2. Louvain method (Figure 6.14). The result of the AHCL algorithm

is a partition; that is, there are disjoint subsets of node-set, and each node is

contained in some subset. However, if two nodes are connected by an edge and

contained in different subsets, two nodes contain a patient in common. Then

the patient is included in both subsets. In order to avoid statistical issues, we

reduce each subset by taking the interior of the subset, that is, no two subsets

share a node in common. More precise descriptions are given below.

Agglomerative hierarchical clustering

We first find an initial partition for Louvain method using agglomerative hier-

archical clustering. In order to apply agglomerative hierarchical clustering to

the network, the distance between any two nodes should be defined. As our

aim of clustering is to group nodes with similar color values, we set an edge

length as the difference between the color values of two nodes. In this article,

‘Rows per Node’ is used for color value as we want to group dense point sets.
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Figure 6.14: Process of agglomerative hierarchical clustering and the Louvain
method. (A) (left) Mapper network colored by rows per node; (right) Edge
lengths computed from rows per node. (B) Result of applying Ward linkage
method for geodesic distance. (C) Result of applying Louvain method after
(B).

The distance between non-adjacent nodes is given by the shortest length of

the paths between them. In this distance setting, we use the Ward linkage

method [War63] in order to obtain subsets of similar size, the desired property

for statistical analysis.

Louvain method

The Louvain method is a method to extract groups from networks [BGLL08].

The method proceeds in the direction of maximizing modularity by slightly

changing the given partition. The partition from agglomerative hierarchical

clustering may not be well grouped. That is, the modularity is not maximized,

but through the Louvain method, we obtain modularity maximized partition

(Figure 6.14). The improvement of the Louvain method [LDB08] has one more

parameter called resolution. Higher resolution tends to reduce the number of

subsets of the partition. We applied the Louvain method for various resolu-

tions, and we took the most stable result among the partitions divided into
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three (Figure 6.15).

Figure 6.15: Stable partition under varying resolution. (A) Partition results by
the Louvain method for resolution from 0 to 19. (B) Row and column indices
are resolutions in (A). The color of the component is white if the corresponding
partitions are exactly the same and black, if else. Resolutions 4 through 17
give the same partition with three subsets.

118



Chapter 7

Lower bound of Hausdorff

dimension of weighted

singular vectors

7.1 Fractal structure and Hausdorff dimension

7.1.1 Fractal structure

A tree T is a connected graph without cycles. If we take a vertex τ0 and fix it

(we call it a root), then T is a rooted tree. In this paper, we identify T with

the set of vertices of T . It can be checked directly from the definition of T
that any τ ∈ T can be joined to τ0 by a unique geodesic edge path. We define

the height of τ as the length of the geodesic edge path joining τ, τ0 and denote

the set of vertices of height n by Tn. For any τ ∈ Tn, there exists a unique

τn−1 ∈ Tn−1 such that τ and τn−1 are adjacent. Then we say τ is a son of

τn−1 and denote the set of all sons of τn−1 by T (τn−1). The boundary of T ,

denoted by ∂T , is the set of all sequences {τn} = {τn}n∈N∪{0} where τn is a

son of τn−1 for all n ∈ N.

A fractal structure on Rd is a pair (T , β) where T is a rooted tree and

β is a map from T to the set of nonempty compact subsets of Rd. A fractal

associated to (T , β) is a set

F(T , β) =
⋃

{τn}∈∂T

∞⋂
n=0

β(τn).
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A fractal structure (T , β) is said to be regular if it satisfies the followings:

• each vertex of T has at least one son;

• if τ is a son of τ ′, then β(τ) ⊂ β(τ ′);

• for any {τn} ∈ ∂T , diamβ(τn)→ 0 as n→∞.

7.1.2 Self-affine structure and lower bound

A self-affine structure on Rd is a fractal structure (T , β) on Rd such that for

τ ∈ T the compact subset β(τ) of Rd is given by a d-dimensional rectangle

with size L(1)(τ) × · · · × L(d)(τ). A self-affine structure is regular if it is a

regular fractal structure.

The following theorem is a generalization of [LSST20, Theorem 2.1] for

d-dimensional self-affine structures.

Theorem 7.1.1. Let (T , β) be a regular self-affine structure on Rd that asso-

ciates to sequences {ρn}, {Cn}, {L(j)
n } for j = 1, . . . , d of positive real numbers

indexed by N ∪ {0} with the following properties:

1. The sequence {L(j)
n } is decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d.

2. There exists 1 ≤ ` < d such that

L(1)
n = · · · = L(`)

n < L(`+1)
n ≤ · · · ≤ L(d)

n and L(j)(τ) = L(j)
n

for all n ∈ N ∪ {0}, j = 1, . . . , d, and τ ∈ Tn;

3. C0 = 1 and #T (τ) ≥ Cn for all n ∈ N and τ ∈ Tn−1;

4. ρn ≤ 1 for all n ∈ N and

dist(β(τ), β(κ)) ≥ ρn+1L
(1)
n

for all τn ∈ Tn and distinct τ, κ ∈ T (τn).
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We denote by

Pn =

n∏
i=0

Ci,

Dn = max{i ≥ n : L
(d)
i ≥ L

(1)
n },

s = sup

{
t > 0 : lim

n→∞

log(Pn(L
(1)
n )tρtn+1 ·

∏Dn
i=n+1 ρ

`
iCi)

max{Dn − n, 1}
=∞

}
.

If s > d− `, then dimH F(T , β) ≥ s.

Using Theorem 7.1.1, we obtain the following corollary which is a gener-

alization of [LSST20, Corollary 2.3 and Corollary 2.4] for d-dimensional self-

affine structures.

Corollary 7.1.2. With the notations in Theorem 7.1.1, suppose that there

exists k, n0 ∈ N such that for all n ≥ n0 the followings hold:

(i)
L
(d)
kn

L
(d)
kn−1

≤ L
(1)
n

L
(1)
n−1

and L
(d)
kn0−1 < L

(1)
n0−1,

(ii) en/k ≤ Cn ≤ ekn,

(iii) e−kn ≤ ρn ≤ e−n/k,

(iv) ρ`nCn
∏d
j=`+1 L

(j)
n /L

(j)
n−1 ≥ n−k.

If the limit

lim
n→∞

log
(
Cn
∏d
j=`+1 L

(j)
n /L

(j)
n−1

)
− log

(
L

(1)
n /L

(1)
n−1

)
exists and is equal to r > 0, then dimH F(T , β) ≥ d− `+ r.

Proof of Corollary 7.1.2. By the assumptions (iii) and (iv), since the sequence

{L(j)
n } is decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d, we have

log

Cn d∏
j=`+1

L(j)
n /L

(j)
n−1

 = O(n),
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which implies that − log
(
L

(1)
n /L

(1)
n−1

)
→∞ as n→∞. Hence, using

log
(
Pn
∏d
j=`+1 L

(j)
n

)
− logL

(1)
n

=
log
(
C0
∏d
j=`+1 L

(j)
0

)
+
∑n

i=1 log
(
Ci
∏d
j=`+1 L

(j)
i /L

(j)
i−1

)
− logL

(1)
0 −

∑n
i=1 log

(
L

(1)
i /L

(1)
i−1

) ,

it follows that

lim
n→∞

log
(
Cn
∏d
j=`+1 L

(j)
n /L

(j)
n−1

)
− log

(
L

(1)
n /L

(1)
n−1

) = lim
n→∞

log
(
Pn
∏d
j=`+1 L

(j)
n

)
− logL

(1)
n

.

Let us denote by

s = d− `+ r = d− `+ lim
n→∞

log
(
Pn
∏d
j=`+1 L

(j)
n

)
− logL

(1)
n

.

By the regularity of the given self-affine structure (T , β), we have that L
(1)
n → 0

as n→∞, which implies

(7.1) s = sup

t > 0 : lim
n→∞

Pn(L(1)
n )t

d∏
j=`+1

L
(j)
n

L
(1)
n

=∞

 .

We will show that dimH F(T , β) ≥ s using the equality (7.1).

Recall that Dn = max
{
i ≥ n : L

(d)
i ≥ L

(1)
n

}
. Since the sequence {L(j)

n } is

decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d, we have

L
(d)
kn = L

(d)
kn0−1

kn∏
i=kn0

L
(d)
i

L
(d)
i−1

≤ L(d)
kn0−1

n∏
i=n0

L
(d)
ki

L
(d)
ki−1

≤ L(d)
kn0−1

n∏
i=n0

L
(1)
i

L
(1)
i−1

by assumption (i)

= L
(d)
kn0−1

L
(1)
n

L
(1)
n0−1

≤ L(1)
n by assumption (i).

Hence we have Dn ≤ kn.
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Given t > 0, ε > 0, it follows from the assumptions (ii), (iii), and Dn ≤ kn
that ρ`Dn+1CDn+1 ≤ ek(Dn+1) ≤ ek(kn+1). Since P εn = (

∏n
i=0Ci)

ε ≥ e
n(n+1)ε

2k ,

we have

(7.2) ρ`Dn+1CDn+1 ≤ P εn

for all large enough n ≥ 1. Similarly, it follows from the assumptions (iii), (iv),

and Dn ≤ kn that

ρtn+1

Dn+1∏
i=n+1

ρ`iCi d∏
j=`+1

L
(j)
i

L
(j)
i−1

 ≥ e−tk(n+1)
Dn+1∏
i=n+1

i−k ≥ e−tk(n+1)(kn+ 1)−k(kn−n)

≥ e−tk(n+1)−k(kn−n) log(kn+1).

The inequality P−εn ≤ e−
n(n+1)ε

2k implies that

(7.3) ρtn+1

Dn+1∏
i=n+1

ρ`iCi d∏
j=`+1

L
(j)
i

L
(j)
i−1

 ≥ P−εn
for all large enough n ≥ 1.

Fix a real number t with d − ` < t < s and take sufficiently small ε such

that d− ` < t/(1− 3ε) < s. By the equality (7.1), we have

(7.4) lim
n→∞

Pn(L(1)
n )t/(1−3ε)

d∏
j=`+1

L
(j)
n

L
(1)
n

≥ 1

for all large enough n ≥ 1.

For all large enough n ≥ 1 so that the above inequalities (7.2), (7.3), and
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(7.4) hold, we have

Pn(L(1)
n )tρtn+1

Dn∏
i=n+1

ρ`iCi ≥ P 1−ε
n (L(1)

n )tρtn+1

Dn+1∏
i=n+1

ρ`iCi by (7.2)

= P 1−ε
n (L(1)

n )tρtn+1

 d∏
j=`+1

L
(j)
n

L
(j)
Dn+1

 · Dn+1∏
i=n+1

ρ`iCi d∏
j=`+1

L
(j)
i

L
(j)
i−1


≥ P 1−ε

n (L(1)
n )tρtn+1

 d∏
j=`+1

L
(j)
n

L
(1)
n

 · Dn+1∏
i=n+1

ρ`iCi d∏
j=`+1

L
(j)
i

L
(j)
i−1


≥ P 1−ε

n (L(1)
n )t

 d∏
j=`+1

L
(j)
n

L
(1)
n

P−εn by (7.3)

≥ P 1−ε
n (L(1)

n )t

 d∏
j=`+1

L
(j)
n

L
(1)
n

1−3ε

P−2ε
n P εn

=

Pn(L(1)
n )t/(1−3ε)

d∏
j=`+1

L
(j)
n

L
(1)
n

1−3ε

P εn

≥ P εn by (7.4).

It follows that for all large enough n ≥ 1,

log

(
Pn(L(1)

n )tρtn+1

Dn∏
i=n+1

ρ`iCi

)
≥ ε logPn � εn2 ≥ ε n

k − 1
(Dn − n),

where the implied constant is independent of n. Hence dimH F(T , β) ≥ t by

Theorem 7.1.1. Since we choose arbitrary t with d − ` < t < s, it concludes

Corollary 7.1.2.

By elementary squares of β(τ) for τ ∈ T , we mean closed squares contained

in β(τ) whose side length is equal to L(1)(τ).

Lemma 7.1.3. For n ∈ N ∪ {0} with Dn > n, let κ ∈ Tn and τ ∈ Ti−1 where

n+ 1 ≤ i ≤ Dn. Then for any elementary square S of β(κ),

#{τ ′ ∈ T (τ) : β(τ ′) ∩ S 6= ∅} ≤ (16d)dρ−`i .

Proof. Through this proof, we denote the size of a rectange R in Rd by l1(R)×
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· · · × ld(R).

For a fixed elementary square S of β(κ), let R0 = β(τ) ∩ S and

S = {β(τ ′) ∩ S : τ ′ ∈ T (τ), β(τ ′) ∩ S 6= ∅}.

If R0 = ∅, then there is nothing to prove since #{τ ′ ∈ T (τ) : β(τ ′) ∩ S 6=
∅} = 0.

Let ji ∈ {1, . . . , d − 1} be an integer such that L
(d)
i ≥ · · · ≥ L

(ji+1)
i ≥

L
(1)
n > L

(ji)
i ≥ · · · ≥ L

(1)
i . Note that ji ≥ `. Let R′0 be the rectangle with the

same center as R0 such that

lj(R
′
0) =

{
4L

(j)
i−1 for j = 1, . . . , ji

4L
(1)
n for j = ji + 1, . . . , d.

Similarly, for R ∈ S let R′ be the rectange with the same center such that

lj(R
′) =

L
(j)
i + ρi

4
√
d
L

(1)
i−1 for j = 1, . . . , ji

L
(1)
n for j = ji + 1, . . . , d.

We denote by r0 (resp. r) the center of R′0 (resp. R′). Here, we note that

r0 and r are contained in both β(τ) and S. For x ∈ R′ and j = 1, . . . , d,

|xj − (r0)j | ≤ |xj − rj |+ |rj − (r0)j | ≤
1

2
lj(R

′) + min(L
(j)
i−1, L

(1)
n ) ≤ 1

2
lj(R

′
0).

Thus for all R ∈ S, R′ ⊂ R′0.

For any distinct R1, R2 ∈ S, let τ ′1, τ
′
2 ∈ T (τ) be such that R1 = β(τ ′1) ∩ S

and R2 = β(τ ′2)∩S, and let r1, r2 be the centers of R′1, R
′
2, respectively. Suppose

‖r1 − r2‖∞ = |(r1)j − (r2)j | > 0 for some j = 1, . . . , ji. Then for any x ∈ R′1
and y ∈ R′2, we have

|xj − yj | ≥ |(r1)j − (r2)j | − |xj − (r1)j | − |yj − (r2)j |

≥ 1√
d

dist(β(τ ′1), β(τ ′2)) + L
(j)
i −

1

2
lj(R

′
1)− 1

2
lj(R

′
2)

≥
(
ρi√
d
L

(1)
i−1 + L

(j)
i

)
− 1

2
lj(R

′
1)− 1

2
lj(R

′
2)

=
3ρi

4
√
d
L

(1)
i−1 > 0.

125



CHAPTER 7. LOWER BOUND OF HAUSDORFF DIMENSION OF

WEIGHTED SINGULAR VECTORS

Thus R′1 ∩R′2 = ∅.

Now we suppose ‖r1−r2‖∞ = |(r1)j− (r2)j | > 0 for some j = ji+1, . . . , d.

Observe that

L(1)
n ≥ lj(R1) + lj(R2) +

1√
d

dist(β(τ ′1), β(τ ′2)) > lj(R1) + lj(R2),

which implies that

|(r1)j − (r2)j | = L(1)
n −

1

2
lj(R1)− 1

2
lj(R2) >

1

2
L(1)
n .

Thus, for any fixed R1 ∈ S and j = ji + 1, . . . , d,

#{R2 ∈ S \ {R1} : ‖r1 − r2‖∞ = |(r1)j − (r2)j | and R′1 ∩R′2 6= ∅} ≤ 1.

Combining above two arguments, we conclude that every points of R′0 is

covered by at most d− ji + 1 rectangles of {R′ : R ∈ S}. It follows that(
ρi

4
√
d
L

(1)
i−1

)ji (
L(1)
n

)d−ji
#S ≤

(
L

(j)
i +

ρi

4
√
d
L

(1)
i−1

)ji (
L(1)
n

)d−ji
#S

= vol(R′)#S
≤ (d− ji + 1)vol(R′0)

≤ d4d
(
L

(1)
i−1

)ji (
L(1)
n

)d−ji
,

hence, using ji ≥ `,

#S ≤ d1+ji/24d+jiρ−jii ≤ (16d)dρ−`i .

This inequality completes the proof.

Let µ be the unique probability measure on F(T , β) satisfying the following

property: For all y ∈ F(T , β) and n ∈ N,

(7.5)
µ({x ∈ F(T , β) : τn(x) = τn(y)})

µ({x ∈ F(T , β) : τn−1(x) = τn−1(y)})
=

1

#T (τn−1(y))
,

where x =
⋂
n≥0 β(τn(x)). We remark that for any n ∈ N and κ ∈ Tn, it follows
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from (7.5) that

(7.6) µ(β(κ)) ≤ µ(F(T , β))

C0 . . . Cn
=

1

Pn

Lemma 7.1.4. Let n ∈ N and κ ∈ Tn. Then for any elementary square S of

β(κ), one has

µ(S) ≤ (16d)d(Dn−n)P−1
n

Dn∏
i=n+1

ρ−`i C−1
i .

Proof. If Dn = n, then it follows from (7.6). Assume Dn > n. Applying Lemma

7.1.3 for i = n+ 1, . . . , Dn, we have

(7.7) #{τ ∈ TDn : β(τ) ∩ S 6= ∅} ≤ (16d)d(Dn−n)
Dn∏

i=n+1

ρ−`i .

Since S∩F(T , β) can be covered by rectangles {β(τ) : τ ∈ TDn , β(τ)∩S 6= ∅},
we have

µ(S) ≤
∑
τ∈TDn

β(τ)∩S 6=∅

µ(β(τ))

≤ µ(β(κ))

Dn∏
i=n+1

C−1
i ·#{τ ∈ TDn : β(τ) ∩ S 6= ∅}

≤ (16d)d(Dn−n)P−1
n

Dn∏
i=n+1

ρ−`i C−1
i .

In the last inequality, we use (7.6) and (7.7).

Let U be an open subset of Rd with U ∩ F(T , β) 6= ∅. If U ∩ F(T , β)

is a single point set, then we denote by n(U) the smallest n ∈ N such that

diam(U) ≥ ρn+1L
(1)
n . In that case, there is a unique κ = κ(U) ∈ Tn(U) such

that U ∩F(T , β) ⊂ β(κ). If U ∩F(T , β) contains more than two points, then

we denote by n(U) the largest n ∈ N such that U ∩ F(T , β) ⊂ β(κ) for some

κ = κ(U) ∈ Tn. We note that diam(U) ≥ ρn(U)+1L
(1)
n(U) by the assumption (4)

of Theorem 7.1.1.

Lemma 7.1.5. Let U be an open subset of Rd with U ∩ F(T , β) 6= ∅. Let

n = n(U) and κ = κ(U). Then there is a family S of elementary squares of
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β(κ) such that

1.
⋃
S∈S S ⊃ U ∩ F(T , β);

2.
(
L

(1)
n

)t
·#S ≤ 2d−`ρ−tn+1diam(U)t for all t ≥ d− `.

Proof. If diam(U) ≤ L
(1)
n , then there exists an elementary square S of β(κ)

such that S ⊃ U ∩F(T , β). We set S = {S} so that S satisfies two conditions.

Now we assume diam(U) > L
(1)
n . Then U ∩ F(T , β) can be covered by⌈

diam(U)

L
(1)
n

⌉d−`
elementary sqaures. Let S be the family of these elementary

squares. Then

(
L(1)
n

)t
·#S =

(
L(1)
n

)t ⌈diam(U)

L
(1)
n

⌉d−`
≤ 2d−`

(
diam(U)

L
(1)
n

)d−` (
L(1)
n

)t
≤ 2d−`

(
diam(U)

L
(1)
n

)t (
L(1)
n

)t
≤ 2d−`ρ−tn+1diam(U)t.

Proof of theorem 7.1.1. For a real number t such that d − ` ≤ t < s, there

exists n0 = n0(t) such that for all n ≥ n0,

(7.8) Pn

(
L(1)
n

)t
ρtn+1

Dn∏
i=n+1

ρ`iCi ≥ (16d)dmax{Dn−n,1} ≥ (16d)d(Dn−n).

Let U be an open cover of F(T , β). Assume that for all U ∈ U , diam(U)

is small enough so that n(U) ≥ n0. Since F(T , β) is compact, there exists a

finite subcover U0 such that for all U ∈ U0, U ∩ F(T , β) 6= ∅.

For U ∈ U0, let SU be a family of elementary squares given by Lemma

7.1.5. Let Q =
⋃
U∈U0 SU and n(S) = n(U) for S ∈ SU . We note that S may

belong to different SU . However, n(S) is well-difined since a side length of S
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is L
(1)
n(U). Then Q covers F(T , β) and hence

∑
U∈U0

diam(U)t ≥ 1

2d−`

∑
S∈Q

ρtn(S)+1

(
L

(1)
n(S)

)t
by Lemma 7.1.5

≥ 1

2d−`

∑
S∈Q

(16d)d(Dn−n)P−1
n(S)

Dn∏
i=n+1

ρ−`i C−1
i by (7.8)

≥ 1

2d−`

∑
S∈Q

µ(S) by Lemma 7.1.4

≥ 1

2d−`
.

Thus we have dimH F(T , β) ≥ t. Since we choose arbitrary t with d−` ≤ t < s,

the proof is completed.

7.2 Counting lattice points in convex sets

In this section, we will generalize the results in [LSST20, §3.2] for R3 to the

general Rd+1. In §7.2.1, we first recall the notations and lemmas in [LSST20,

§3.1].

7.2.1 Preliminaries for lattice point counting

For a positive integer D ≥ 1, we write the D-dimensional Euclidean space by

ED = RD . For a convex body K ⊂ RD and a lattice Λ ⊂ RD, let λi(K,Λ) (i =

1, . . . , D) be the i-th successive minimum of Λ with respect to K, that is, the

infimum of those numbers λ such that λK ∩Λ contains i linearly independent

vectors. Let vol(·) be the Lebesgue measure on RD and let cov(Λ) be the

covolume of a lattice Λ, which is the Lebesgue measure of a fundamental

domain of Λ. Denote by

θ(K,Λ) :=
vol(K)

cov(Λ)
.

For an affine subspace H of RD, let volH(·) be the Lebesgue measure on

H with respect to the subspace Riemannian structure. We write volH(S) =

volH(S ∩ H) for a Borel measurable subset S of RD by abuse of notation.

We say that a subspace H of RD is Λ-rational if H ∩ Λ is a lattice in H,

and denote by covH(Λ) the covolume of the lattice H ∩ Λ in H. We also use

the same notations for the dual vector space E∗D with respect to the standard
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Euclidean structure.

We use ‖ · ‖ for the Euclidean norms on RD and E∗D. For a normed vector

space V , denote by Br(V ) (or Br if V = RD) the ball of radius r centered at

0 ∈ V . We use K-norms on RD and E∗D defined by{
‖v‖K = inf{r > 0 : v ∈ rK}, v ∈ RD,
‖ϕ‖K = supv∈K |ϕ(v)|, ϕ ∈ E∗D.

Recall that LD is the space of unimodular lattices in RD, which can be

identified with the homogeneous space SLD(R)/SLD(Z). For g ∈ SLD(R) let g∗

be the adjoint action on E∗D defined by ϕ 7→ ϕ ◦ g. Then g∗ can be represented

by the transpose of g with respect to the standard basis e1, . . . , eD of RD and

the dual basis e∗1, . . . , e
∗
D of E∗D.

The dual lattice of Λ in RD is the lattice in E∗D defined by

Λ∗ = {ϕ ∈ E∗D : ϕ(v) ∈ Z, ∀v ∈ Λ}.

Let us define the following two sets:

Kε = Kε(D) = {Λ ∈ LD : ‖v‖ ≥ ε, ∀v ∈ Λ r {0}} = {Λ ∈ LD : λ1(B1,Λ) ≥ ε};
K∗ε = K∗ε (D) = {Λ ∈ LD : ‖ϕ‖ ≥ ε, ∀ϕ ∈ Λ∗ r {0}}.

Since E∗D can be naturally identified with
∧D−1

R RD with the standard Eu-

clidean structure, we have Λ∗ =
∧D−1

Z Λ.

A nonzero vector v ∈ Λ is said to be primitive if (1/n)v /∈ Λ for all n ∈ N.

The set of primitive vectors in Λ is denoted by Λ̂.

We summarize the lemmas in [LSST20, §3.1].

Lemma 7.2.1. Let D ≥ 2. For every lattice Λ in RD and every bounded

centrally symmetric convex subset K of RD with λd(K,Λ) ≤ 1 we have

#(K ∩ Λ̂) =
(
ζ(D)−1 + η(K,Λ)

)
· θ(K,Λ)

where ζ is the Riemann ζ-function and

|η(K,Λ)| �D λD(K,Λ)− λD(K,Λ) log λ1(K,Λ).

Lemma 7.2.2. Let D ≥ 2. For every lattice Λ in RD and every bounded
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centrally symmetric convex subset K of RD with λD(K,Λ) ≤ 1 we have

#(K ∩ (Λ r {0})) = (1 + α(K,Λ)) · θ(K,Λ)

where |α(K,Λ)| �D λD(K,Λ)

Lemma 7.2.3. Let K and Λ be as in Lemma 7.2.2. Then

#(K ∩ Λ) �D θ(K,Λ).

Lemma 7.2.4. Let D ≥ 1. Let Λ be a lattice in RD and K be a bounded

centrally symmetric convex subset of RD with nonempty interior. Then

#(K◦ ∩ Λ) �D #(K ∩ Λ) �D #(K ∩ Λ).

Lemma 7.2.5. Let K and Λ be as in Lemma 7.2.2. If λi(K,Λ) ≤ s ≤ s′ ≤
λj+1(K,Λ) where 1 ≤ i ≤ j ≤ D, then(

s′

s

)i
�D

#(s′K ∩ Λ)

#(sK ∩ Λ)
�D

(
s′

s

)j
.

Lemma 7.2.6. Let D ≥ 2. Let K be a bounded centrally symmetric convex

subset of RD with nonempty interior and let ϕ ∈ E∗D r {0}. Then

volHϕ(K) �D ‖ϕ‖vol(K)/‖ϕ‖K .

We need the following auxiliary lemma.

Lemma 7.2.7. Given D ≥ 2 and r > 0, let Λ ∈ K∗r(D), and let v,w ∈ Λ be

any nonzero linearly independent vectors. Then there exists a positive constant

c′ = c′(D) > 0 such that ‖v ∧w‖ ≥ c′rD−2.

Proof. Let Λ′ be the 2-dimensional sublattice of Λ generated by v,w. By

Minkowski’s second theorem, we have

(7.9) ‖v ∧w‖ ≥ cov(Λ′)�2 λ1(B1,Λ
′)λ2(B1,Λ

′) ≥ λ1(B1,Λ)λ2(B1,Λ).

Agian by Minkowski’s second theorem, we have

(7.10)
1�D λ1(B1,Λ) · · ·λD(B1,Λ) ≤ λ1(B1,Λ)λ2(B1,Λ)λD(B1,Λ)D−2

≤ λ1(B1,Λ)λ2(B1,Λ)
1

rD−2
.
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The last inequality comes from Λ ∈ K∗r(D). The result is following by combin-

ing (7.9) and (7.10).

7.2.2 Lattice point counting in Rd+1

For d ≥ 2 and a (d + 1)-tuple r = (r1, . . . , rd+1) of positive real numbers, we

estimate the number of lattice points in the set

Mr = {(x1, . . . , xd+1) ∈ Rd+1 : |xi| ≤ ri, ∀i = 1, . . . , d+ 1}.

Let

M∗r = {ϕ ∈ E∗d+1 : |xϕi | ≤ ri, ∀i = 1, . . . , d+ 1},

where the element ϕ ∈ E∗d+1 is represented by ϕ =
∑d+1

i=1 x
ϕ
i e∗i .

Lemma 7.2.8. Let d ≥ 2. For any real number c0 > 1, there exists positive

real number c̃ < 1 such that for every lattice Λ in Rd+1 and every (d+1)-tuple

r of positive real numbers with

λd+1(Mr,Λ) ≤ c̃ and − λd+1(Mr,Λ) log λ1(Mr,Λ) ≤ c̃

one has

1

c0ζ(d+ 1)
θ(Mr,Λ) ≤ #(Mr ∩ Λ̂) ≤ c0

ζ(d+ 1)
θ(Mr,Λ).

Proof. The proof follows directly from Lemma 7.2.1.

Now we fix real numbers s, r1, . . . , rd+1 such that 0 < s < 1/2, ri ≥ 1

for each i = 1, . . . , d, and rd+1 = 1. Denote by r = (r1, . . . , rd+1), rM =

max1≤i≤d ri, and rm = min1≤i≤d ri. Define a norm

‖ϕ‖r = max {ri|xϕi | : i = 1, . . . , d+ 1} .

It follows from the definition that

(7.11) ‖ϕ‖r ≤ ‖ϕ‖Mr ≤ (d+ 1)‖ϕ‖r.

For q > 0 let

Nq(r, s) =
{
ϕ ∈ E∗d+1 : |xϕi | ≤ s, ∀i = 1, . . . , d, and ‖ϕ‖r ≤ q

}
.
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Note that Nq(r, s) = M∗r′ where r′ = (r′1, . . . , r
′
d, q) with r′i = min{q/ri, s}. For

a lattice Λ in Rd+1 and i = 1, . . . , d+ 1, let qi(Λ, r, s) be the infimum of those

positive real number q such that Nq(r, s) ∩ Λ contains i linearly independent

vectors. We will give an upper bound of the number of

S(Λ, r, s) :=
{

v ∈Mr ∩ Λ̂ : ϕ(v) = 0 for some ϕ ∈ N(d+1)srM (r, s) ∩ Λ̂∗
}
,

where Λ̂∗ is the set of primitive vectors in Λ∗.

Lemma 7.2.9. For d ≥ 2, let Λ be a unimodular lattice in Rd+1 with q1(Λ, r, s) ≥
s−2. Then

1. if rm = rM and qd+1(Λ, r, s) ≤ ds−1/2rM , then

#S(Λ, r, s)� s1/2 · vol(Mr);

2. if rm < rM and qd+1(Λ, r, s) log qd+1(Λ, r, s) ≤ srM , then

#S(Λ, r, s)� s2 · vol(Mr).

Proof. For simplicity, we denote by Nq = Nq(r, s), qi = qi(Λ, r, s) and S =

S(Λ, r, s). If N(d+1)srM ∩Λ̂∗ is empty then there is nothing to prove. We assume

that N(d+1)srM ∩ Λ̂∗ is nonempty. It follows from the definition that

(7.12) #S ≤
∑

ϕ∈N(d+1)srM
∩Λ̂∗

#(Hϕ ∩Mr ∩ Λ̂)

with the notation Hϕ = kerϕ.

We first claim that for every ϕ ∈ N(d+1)srM ∩ Λ̂∗,

(7.13) #(Hϕ ∩Mr ∩ Λ̂)� vol(Mr)

‖ϕ‖Mr

≤ vol(Mr)

‖ϕ‖r
.

where the second inequality follows from (7.11). If #(Hϕ ∩Mr ∩ Λ̂) < d + 1,

then it follows from (7.11) that

vol(Mr)

‖ϕ‖Mr

≥ 2(d+1)r1 . . . rd+1

(d+ 1)‖ϕ‖r
≥ 2(d+1)r1 . . . rd+1

(d+ 1)2srM
� #(Hϕ ∩Mr ∩ Λ̂).

Otherwise, Hϕ ∩Mr ∩ Λ has d linearly independent vectors, hence it follows
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from Lemma 7.2.3 and Lemma 7.2.6 that

#(Hϕ ∩Mr ∩ Λ̂)�
volHϕ(Mr)

covHϕ(Λ)
� ‖ϕ‖vol(Mr)

covHϕ(Λ)‖ϕ‖Mr

� vol(Mr)

‖ϕ‖Mr

,

which concludes the claim.

By (7.12) and (7.13), it suffices to estimate

(7.14)

η :=
∑

ϕ∈N(d+1)srM
∩Λ̂∗

‖ϕ‖−1
r

=
1

(d+ 1)srM
#(N(d+1)srM ∩ Λ̂∗) +

∑
ϕ∈N(d+1)srM

∩Λ̂∗

∫ (d+1)srM

‖ϕ‖r

1

q2
dq.

We denote the first and second terms in the last line by η1, η2, respectively.

Observe that

(7.15)

η2 =
∑

ϕ∈N(d+1)srM
∩Λ̂∗

∫ (d+1)srM

q1

1q(‖ϕ‖r)
q2

dq

=

∫ (d+1)srM

q1

∑
ϕ∈N(d+1)srM

∩Λ̂∗

1q(‖ϕ‖r)
q2

dq

≤
∫ (d+1)srM

q1

#(Nq ∩ Λ̂∗)

q2
dq.

where 1q denotes the indicator function of the set {x ∈ R : x ≤ q}.
For i = 2, . . . , d, if qi−1 ≤ q < qi then #(Nq ∩ Λ̂∗) = i ≤ d. Thus

(7.16)

∫ qd

q1

#(Nq ∩ Λ̂∗)

q2
dq ≤

∫ qd

q1

d

q2
dq ≤ d

q1
� s2 ≤ s1/2,

where the third inequality follows from the assumption q1 ≥ s−2.

Proof of the assertion (1). We claim that η � s−1/2 under the assumption

of (1), which concludes the assertion (1). Assume that rm = rM and qd+1 ≤
ds−1/2rM . Observe that by definition

(7.17) N(d+1)s−1/2rM
= M∗

(s,...,s,(d+1)s−1/2rM )
.
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We have an upper bound of η1 as

(7.18) η1 ≤
#(N(d+1)s−1/2rM

∩ Λ∗)

(d+ 1)srM
�

vol(N(d+1)s−1/2rM
)

(d+ 1)srM
� sd−3/2 ≤ s1/2.

The first inequality follows from s < 1/2, the second inequality follows from

Lemma 7.2.3, and the third inequality follows from (7.17).

For an upper bound of η2, we first compute

(7.19)

∫ (d+1)srM

srM

#(Nq ∩ Λ̂∗)

q2
dq ≤

∫ (d+1)srM

srM

#(N(d+1)srM ∩ Λ∗)

q2
dq

≤
#(N(d+1)srM ∩ Λ∗)

srM

� s1/2,

where the last inequality can be shown by the same as (7.18).

If srM ≤ qd, then it follows from (7.16) and (7.19) that η2 � s1/2. Now we

suppose that srM > qd. For all qd < q ≤ srM = srm, observe that

Nq = M∗(q/r1,...,q/rd+1) =
q

srM
NsrM .

Since λd(Nq,Λ) = λd(
q

srM
NsrM ,Λ) ≤ 1 ≤ srM/q, it follows from Lemma 7.2.5

that

#(Nq ∩ Λ̂∗) ≤ #

(
q

srM
NsrM ∩ Λ∗

)
�
(

q

srM

)d
#(NsrM ∩ Λ∗).

By srM ≤ ds−1/2rM and Lemma 7.2.3, we have

#(Nq ∩ Λ̂∗)�
(

q

srM

)d
#(Nds−1/2rM

∩ Λ∗)

�
(

q

srM

)d
vol(Nds−1/2rM

)

�
(

q

srM

)2

sd−1/2rM �
q2s−1/2

rM
.
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The last line follows from q
srM
≤ 1 and s ≤ 1. Thus we have

∫ srM

qd

#(Nq ∩ Λ̂∗)

q2
dq �

∫ srM

qd

s−1/2

rM
dq � s1/2.

It follows that η2 � s1/2 under the assumption of (1), which concludes the

assertion (1).

Proof of the assertion (2). We will prove that η � s2 under the assumption

of (2). By the assumption, we have qd+1 ≥ q1 ≥ s−2 ≥ 4 so that qd+1 < srM <

(d + 1)srM since qd+1 log qd+1 ≤ srM . Thus N(d+1)srM ∩ Λ∗ contains d + 1

linearly independent vectors. By Lemma 7.2.3, we have

(7.20) η1 ≤
#(N(d+1)srM ∩ Λ∗)

(d+ 1)srM
�

vol(N(d+1)srM )

(d+ 1)srM
� sd ≤ s2.

By (7.15), it suffices to show that∫ (d+1)srM

q1

#(Nq ∩ Λ̂∗)

q2
dq � s2.

We split the domain of integration as (q1, qd) ∪ (qd, qd+1) ∪ (qd+1, srM ) ∪
(srM , (d+ 1)srM ) and estimate upper bounds of the integrals.

For each q ∈ (srM , (d+ 1)srM ), it follows from Lemma 7.2.3 that #(Nq ∩
Λ̂∗)� vol(Nq)� sdq. Thus we have

(7.21)

∫ (d+1)srM

srM

#(Nq ∩ Λ̂∗)

q2
dq �

∫ (d+1)srM

srM

sd

q
dq = sd log(d+ 1)� s2.

For each q ∈ (qd+1, srM ), it follows from Lemma 7.2.3 that #(Nq ∩ Λ̂∗) �
vol(Nq)� sd−1q2/rM . Thus we have

(7.22)

∫ srM

qd+1

#(Nq ∩ Λ̂∗)

q2
dq �

∫ srM

qd+1

sd−1

rM
dq ≤ sd ≤ s2.

By (7.16), the integral over (q1, qd) is bounded above by s2.

Now it remains to show that the integral over (qd, qd+1) is bounded above
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by s2. Let H = SpanR(Nqd ∩ Λ∗). We claim that for every q ∈ (qd, qd+1),

(7.23) volH(Nq) ≤
q

qd+1
volH(Nqd+1

).

If H contains e∗d+1, then the claim is easily checked from the definition of Nq.

Otherwise, we let pr∗ be the orthogonal projection onto SpanR{e∗1, . . . , e∗d}.
Then the volume of pr∗(Nq) is at most q/qd+1 times the volume of pr∗(Nqd+1

)

since q/rM < qd+1/rM < s. Thus we prove the claim.

For each q ∈ (qd, qd+1), we have

#(Nq ∩ Λ̂∗)� volH(Nq)

covH(Λ∗)
by Lemma 7.2.3

≤ q

qd+1

volH(Nqd+1
)

covH(Λ∗)
by (7.23)

� q

qd+1
#(Nqd+1

∩H ∩ Λ∗) by Lemma 7.2.3

� q

qd+1
#(N◦qd+1

∩H ∩ Λ∗) by Lemma 7.2.4

=
q

qd+1
#(N◦qd+1

∩ Λ∗) ≤ q

qd+1
#(Nqd+1

∩ Λ∗)

� q

qd+1
vol(Nqd+1

) by Lemma 7.2.3

� sd−1 qd+1q

rM
.

Therefore, we have

(7.24)

∫ qd+1

qd

#(N1 ∩ Λ̂∗)

q2
dq �

∫ qd+1

qd

s2 qd+1

srM

1

q
dq ≤ s2 qd+1 log qd+1

srM
≤ s2.

By combining (7.16), (7.21), (7.22), and (7.24), the proof of (2) is completed.

This proves Lemma 7.2.9.

For a weight vector w = (w1, . . . , wd) as in the introduction, let 1 ≤ ` ≤
d − 1 be the unique integer such that w1 = · · · = w` > w`+1 ≥ · · · ≥ wd,

and denote by ξ = max(1, d−`` ). For a fixed lattice Λ ⊂ Rd+1 and fixed r, s,

we denote qi(Λ, r, s) by qi(Λ) and Nq(r, s) by Nq for simplicity. Let us fix a

constant C ≥ 1 which is an implied constant for the conclusion of Lemma
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7.2.9 (1) and (2).

Lemma 7.2.10. Let d ≥ 2, s = ε2, r = (r1, . . . , rd+1) = (εet, . . . , εet, 1),

Λ ∈ K∗ε2 ∩L
′
d+1, and at = diag(ew1t, . . . , ewdt, e−t). Then there exists a positive

real number ε̃ ≤ 1 and c = c(d) > (d + 1)1/14 such that for all ε, t > 0 with

ce−wdt/(2d
3) < ε < ε̃, one has

#S(atΛ, r, s) ≤ ε1/2 · vol(Mr).

Proof. We will prove the lemma for ε̃ < 1/C2 and the constant c will be

determined later. By Lemma 7.2.9 (1), it suffices to show that

(7.25) q1(atΛ) ≥ s−2 and qd+1(atΛ) ≤ ds−1/2rd.

First, note that

Nq ∩ (atΛ)∗ = Nq ∩ a∗−tΛ∗ = a∗−t(a
∗
tNq ∩ Λ∗),

where a∗t denotes the transpose of at. Hence it is enough to show that a∗tNs−2

has no nonzero lattice point of Λ∗ for the first inequality of (7.25). Since d ≥ 2

and wd ≤ 1/d, we have

e−
t
7 < e−

wdt

2d3 < ce−
wdt

2d3 < ε,

that is, s−2 < r1s. Thus we have

Ns−2 = M∗(s−2/r1,...,s−2/r1,s−2) = M∗(ε−5e−t,...,ε−5e−t,ε−4),

which implies that

a∗tNs−2 = M∗
(ε−5e(w1−1)t,...,ε−5e(wd−1)t,ε−4e−t)

.

Since for all i = 1, . . . , d

ε

(d+ 1)1/14
>

c

(d+ 1)1/14
e−

wdt

2d3 > e−
(d−1)wdt

7 ≥ e
(wi−1)t

7 ,

we have ε−5e(wi−1)t < ε2√
d+1

for all i = 1, . . . , d. It is clear that ε−4e−t <

ε−5e(wd−1)t < ε2√
d+1

. Thus a∗tNs−2 is contained in the interior of Bε2(E∗d+1).

Since Λ ∈ K∗ε2 , there is no lattice point of Λ in a∗tNs−2 .
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To show the second inequality of (7.25), we will construct a basis for Λ∗

of which vectors are contained in Nds−1/2rd
= Ndet . Since det > rd > rds, we

have

a∗tNdet = a∗tM
∗
(s,...,s,det) = M∗(sew1t,...sewdt,d).

Let 1/2 < r ≤ 1 be such that red+1 ∈ Λ̂ from the assumption Λ ∈ L′d+1.

Let pr : Rd+1 → Rd be the orthogonal projection onto Span(e1, . . . , ed). Note

that pr(Λ) is a lattice with covolume 1/r in Rd. If v ∈ Λ satisfies ‖pr(v)‖ =

λ1(B1,pr(Λ)), then since Λ ∈ K∗ε2 , it follows from Lemma 7.2.7 with D = d+1

that

(7.26) λ1(B1,pr(Λ)) ≥ rλ1(B1,pr(Λ)) = ‖v ∧ red+1‖ ≥ c̄1(ε2)d−1

for some c̄1 = c̄1(d) < 1. Since cov(pr(Λ)) = 1/r, it follows from the Minkowski’s

second theorem and (7.26) that for any 0 < c1 < c̄1

cd−1
1 (ε2)(d−1)2λd(B1,pr(Λ)) ≤ λ1(B1,pr(Λ)) · · ·λd(B1,pr(Λ))� 1,

hence there exists c2 = c2(d) > 1 such that

(7.27) λd(B1,pr(Λ)) ≤ c2(ε−2)(d−1)2 .

Let {v(i) : i = 1, . . . , d} be a Minkowski reduced basis for pr(Λ) such

that ‖v(i)‖ ≤ 2dλi(B1,pr(Λ)). For each i = 1, . . . , d, let vi ∈ Λ be such that

pr(vi) = v(i) and |e∗d+1(vi)| < 1. Then the vectors v1, . . . ,vd,vd+1 = red+1

form a basis for Λ. Recall that E∗d+1 can be naturally identified with
∧d

RRd+1

with the standard Euclidean structure. Under this identification, we have Λ∗ =∧d
Z Λ, hence the vectors

∧
j 6=i vj for i = 1, . . . , d + 1 forms a basis for

∧d
Z Λ.

We now claim that the vectors
∧
j 6=i vj for i = 1, . . . , d + 1 are contained in

a∗tNdet via the above identification, which proves that qd+1(atΛ) ≤ ds−1/2rd.

For each i = 1, . . . , d+ 1, write

∧
j 6=i

vj =
d+1∑
h=1

x(i)
h

∧
k 6=h

ek

 .

Note that |x(d+1)
d+1 | = 1/r ≤ 2 ≤ d and x

(i)
d+1 = 0 for each i = 1, . . . , d since

vd+1 = red+1. By the definition of vi and (7.27), since ε < 1, we can choose
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large enough c3 = c3(d) > (d+ 1)d
2/7 for each i = 1, . . . , d,

‖vi‖ ≤
√

1 + ‖v(i)‖2 ≤ 2d
√

2c2(ε−2)(d−1)2 ≤ c3(ε−2)(d−1)2 .

Thus for each i = 1, . . . , d+ 1 and h = 1, . . . , d,

|x(i)
h | ≤

∥∥∥∥∥∥
∧
j 6=i

vj

∥∥∥∥∥∥ ≤
∏
j 6=i
‖vj‖ ≤ cd3(ε−2)d(d−1)2 .

From the assumption ce−wdt/(2d
3) < ε, it follows that

c2d3e−wdt < (ε2)d
3
< (ε2)d(d−1)2+1.

Choosing c = c
1/2d2

3 > (d+ 1)1/14, we have

|x(i)
h | ≤ c

d
3(ε−2)d(d−1)2 < ε2ewdt = sewdt ≤ sewit,

which concludes the claim.

Lemma 7.2.11. Let d ≥ 2, r = (r1, . . . , rd+1), bt = diag
(
bt,1, . . . , bt,d+1

)
, and

Λ ∈ K∗ε2, where

ri =


εe(ξ−

1
`
(w`+1+···+wd))t if 1 ≤ i ≤ `,

εe(ξ+wi)t if `+ 1 ≤ i ≤ d,
1 if i = d+ 1,

and

bt,i =


e(ξwi−

1
`
(w`+1+···+wd))t if 1 ≤ i ≤ `,

e(1+ξ)wit if `+ 1 ≤ i ≤ d,
e−ξt if i = d+ 1.

Then there exists a positive real number s̃ ≤ 1 such that for all s, t > 0 with

e−δt < ε < s < s̃ where δ = 1
18d2

min
(
ξwd, ξw1 − 1

` (w`+1 + · · ·+ wd)
)
, one has

(7.28) #S(btΛ, r, s) ≤ svol(Mr).

Proof. Note that rm = r1 < rM = r`+1. Take t0 = t0(w1, . . . , wd) > 0 such
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that for any t > t0 we have

(7.29) e
wd
20
t ≥ (ξ +

wd
2

)t.

Denoting by c4 = e−δt0 , then c4 ∈ (0, 1) depends only on the weights w1, . . . , wd,

and the inequality (7.29) holds whenever e−δt < c4. Let

s̃ = min

(
1

C
, c4,

1√
d+ 1

,

(
vol(B1)

4d+1

)1/d
)
≤ 1.

By Lemma 7.2.9 (2), it suffices to show that for e−δt < ε < s < s̃,

q1(btΛ) ≥ s−2 and qd+1(btΛ) log qd+1(btΛ) ≤ sεe(ξ+w`+1)t.

Since e−δt < ε < s, it follows from s−3ε−1 < ε−4 < e4δt that s−2/ri < s for

all i = 1, . . . , d, hence

b
∗
tNs−2 = b

∗
tM
∗
( s
−2

r1
,..., s

−2

rd
,s−2)

= M∗(eξ(w1−1)tε−1s−2,...,eξ(wd−1)tε−1s−2,e−ξts−2).

Since s̃ ≤ 1√
d+1

, we have for all i = 1, . . . , d,

s2ε3√
d+ 1

> ε6 > e−6δt > e−(ξw1− 1
`
(w`+1+···+wd))t ≥ eξ(wi−1)t,

and
s2ε2√
d+ 1

> ε5 > e−5δt > e−ξwdt > e−ξt,

hence it follows that b
∗
tNs−2 is contained in the interior of Bε2(E∗d+1). Since

Λ ∈ K∗ε2 , there is no lattice point of Λ in b
∗
tNs−2 , which concludes q1(btΛ) ≥ s−2

as in the proof of the first inequality of (7.25).

Since ξ = max(1, d−`` ) < d, we have

(7.30) sε > ε2 > e−
1

9d2
ξwdt > e−

1
9d
wdt,

which implies that

e
wd
2
t = e−

wd
2
tewdt < e−

1
9d
wdtewdt < sεewdt,
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hence e(ξ+
wd
2

)t < rds. On the other hand, it is clear that r`s < e(ξ+
wd
2

)t, hence

b
∗
tNe(ξ+wd/2)t is the set of ϕ = xϕ1 e∗1 + · · ·+ xϕd+1e

∗
d+1 ∈ E∗d+1 such that

|xϕi | ≤ se(
ξwi− 1

`
(w`+1+···+wd))t for 1 ≤ i ≤ `,

|xϕi | ≤ ε−1e(ξwi+
wd
2

)t for `+ 1 ≤ i ≤ d,
|xϕi | ≤ e

1
2
wdt for i = d+ 1.

It follows from Λ ∈ K∗ε2 that λ1(B1,Λ
∗) ≥ ε2. By Minkowski’s second theorem,

we have

ε2dλd+1(B1,Λ
∗) ≤ λ1(B1,Λ

∗) · · ·λd+1(B1,Λ
∗) ≤ 2d+1

vol(B1)
,

hence λd+1(B1,Λ
∗) ≤ 2d+1

vol(B1)ε
−2d. Thus there exists a Minkowski reduced basis

ϕ1, . . . , ϕd+1 of Λ∗ such that ‖ϕi‖ ≤ 4d+1

vol(B1)ε
−2d ≤ ε−3d for all i = 1, . . . d + 1

since εd < s̃d ≤ vol(B1)
4d+1 . Recall that w1 = · · · = w`, hence it can be easily

checked that ϕi’s are contained in b
∗
tNe(ξ+wd/2)t . Thus qd+1(btΛ) ≤ e(ξ+wd/2)t

so that

qd+1(btΛ) log qd+1(btΛ) ≤ e(ξ+
wd
2

)t(ξ +
wd
2

)t

≤ e(ξ+
wd
2

)te
wdt

20 by (7.29)

≤ sεe(ξ+wd)t by (7.30)

≤ sεe(ξ+w`+1)t.

7.3 Lower bound

7.3.1 Construction of the fractal set

For a given weight vector w = (w1, . . . , wd), recall that 1 ≤ ` ≤ d − 1 is

the unique integer such that w1 = · · · = w` > w`+1 ≥ · · · ≥ wd, and ξ =

max(1, d−`` ) (see §7.2.2). We choose a real number c0 > 1 such that

(7.31)
1

10
<

(
2

c0
− c0

)
1

ζ(d+ 1)
and

c0

ζ(d+ 1)
< 1,
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using 1 < ζ(d+ 1) < 2. Let c̃ ≤ 1 be a positive real number as in Lemma 7.2.8

with respect to the above c0, and let ε̃, s̃ ≤ 1 be positive real numbers as in

Lemmas 7.2.10 and 7.2.11, respectively. We fix the constants ε, t, r > 0 with

the following properties:

1. 0 < ε < r < 1
1044d

min{ε̃, s̃};

2. t ≥ 1 will be chosen large enough so that (7.34), (7.39), (7.41), (7.42),

(7.44), (7.45), (7.46), (7.47) hold.

Let {εn} and {tn} be the sequence defined as follows: for n ∈ N,

1. εn = ε/n;

2. tn − tn−1 = ξnt and t0 = 1.

We will construct the tree T whose vertices are in the set Qd of ratio-

nal vectors and the map β from V T to the set of compact subsets in Rd+1,

inductively. We first set the root of T to be zero, that is, τ0 = 0 and define

β(τ0) = {x ∈ Rd : |(τ0)i − xi| < e−wit1 , ∀i = 1, . . . , d}.

For each τ ∈ Tn with n ≥ 1, let

β̃(τ) = {x ∈ Rd : |τi − xi| < εn+1e
−witn+1−tn , ∀i = 1, . . . , d}.

Recall that at = diag
(
ew1t, . . . , ewdt, e−t

)
and h(x) =

(
Id x

0 1

)
for x ∈ Rd.

Denote by

bn = diag(e−
1
`
(w`+1+···+wd)nt, . . . , e−

1
`
(w`+1+···+wd)nt, ew`+1nt, . . . , ewdnt, 1).

Note that the first ` terms of bn are the same.

For each κ ∈ Tn−1, we define T (κ) as the set of all τ ∈ β̃(κ) with the

following properties:

(7.32)

atnh(τ)Zd+1 ∈ L′d+1,

atnh(τ)Zd+1 ∈ K∗ε2n ,

bnatnh(τ)Zd+1 ∈ K∗r .
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It follows from the definitions of T (κ) and L′d+1 that τ ∈ Qd and for any

τ ∈ T (κ) there exists the unique vector

(7.33) v(τ) ∈ {red+1 : 1/2 < r ≤ 1} ∩ atnh(τ)Zd+1.

Note that (d+1)-th coordinate of v(τ) is qe−tn for some q ∈ Z such that 1/2 <

qe−tn ≤ 1. Since tn ≥ tn−1 + 1, Tn has empty intersection with
⋃

0≤i≤n−1 Ti,
which implies that T is a rooted tree.

For each τ ∈ T (κ) with κ ∈ Tn−1, define

β(τ) = {x ∈ Rd : |τi − xi| < εne
−witn+1−tn , ∀i = 1, . . . , d}.

Note that for each τ ∈ T (κ), it follows from the definitions of β̃ and β that

β(τ) ⊂ β(κ). If follows from Lemma 7.3.1 below that each vertex of T has

sons by choosing t ≥ 1 large enough so that for any n ∈ N

(7.34)
1

100
εdne

ξdnt ≥ 1.

Hence the pair (T , β) is a regular self-affine structure.

Lemma 7.3.1. For every n ∈ N and y ∈ Tn−1 one has

1

100
εdne

ξdnt ≤ #T (y) ≤ 2d+1εdne
ξdnt.

For fixed n ∈ N and y ∈ Tn−1, we let

Λ = atn−1h(y)Zd+1 ∈ L′d+1 ∩ K∗ε2n−1
,

Λ1 = atnh(y)Zd+1 = aξntΛ,

Λ2 = bnatnh(y)Zd+1 = bnaξntΛ,

and for x ∈ β̃(y),

Λ1(x) = atnh(x)Zd+1 = atnh(x− y)a−1
tn Λ1,

Λ2(x) = bnatnh(x)Zd+1 = bnatnh(x− y)a−1
tn b
−1
n Λ2.

The lattices Λ1(x) and Λ2(x) satisfy Λ1(x) ∈ L′d+1 ∩ K∗ε2n and Λ2(x) ∈ K∗r
if and only if x ∈ T (y). Hence Lemma 7.3.1 follows from the following lemma.
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Lemma 7.3.2. Let n ∈ N and y ∈ Tn−1. Then

1

10
εdne

ξdnt ≤ #{x ∈ β̃(y) : Λ1(x) ∈ L′d+1} ≤ 2d+1εdne
ξdnt,(7.35)

#{x ∈ β̃(y) : Λ1(x) ∈ L′d+1 rK∗ε2n} ≤
8

100
εdne

ξdnt,(7.36)

#{x ∈ β̃(y) : Λ2(x) ∈ L′d+1 rK∗r} ≤
1

100
εdne

ξdnt.(7.37)

Proof. Let x ∈ β̃(y) with Λ1(x) ∈ L′d+1. Then there exists sx such that 1/2 <

sx ≤ 1 and Λ1(x) ∩ Red+1 = {sxed+1}. We denote sxed+1 by v(x).

First, we prove (7.35). It can be checked by a direct calculation that the

map x 7→ atnh(y−x)a−1
tn v(x) is a bijection from {x ∈ β̃(y) : Λ1(x) ∈ L′d+1} to

M ∩ Λ̂1 where

M = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤ εneξnt|zd+1|, 1/2 < |zd+1| ≤ 1}.

Thus it suffices to estimate #(M ∩ Λ̂1). Let

M (1) = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤
1

2
εne

ξnt, |zd+1| ≤ 1}

M (2) = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤
1

2
εne

ξnt, |zd+1| ≤
1

2
}.

Since M (1) rM (2) ⊂M ⊂ 2M (2), we have

(7.38) #(M (1) ∩ Λ̂1)−#(M (2) ∩ Λ̂1) ≤ #(M ∩ Λ̂1) ≤ #(2M (2) ∩ Λ̂1).

We will use Lemma 7.2.8 to estimate #(M (i) ∩ Λ̂1) for i = 1, 2. Since

Λ ∈ K∗
ε2n−1

⊂ K∗ε2n , it follows from the natural identification E∗∗d = Rd and

Minkowski second theorem that there exist contants C1, C2 > 0 depending

only on d such that

λ1(B1,Λ) ≥ C1ε
2d
n and λd+1(B1,Λ) ≤ C2ε

−2
n .

Since Λ = a−1
ξntΛ1, for i = 1, 2, we have

λ1(M (i),Λ1) = λ1(a−1
ξntM

(i),Λ) ≥ λ1(a−1
ξntM

(1),Λ)

≥ λ1(B(d+1)eξnt ,Λ) ≥ C1

d+ 1
e−ξntε2dn
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and

λd+1(M (i),Λ1) = λd+1(a−1
ξntM

(i),Λ) ≤ λd+1(a−1
ξntM

(2),Λ)

≤ λd+1(B 1
2
εne(1−w1)ξnt ,Λ) ≤ 2C2e

(w1−1)ξntε−3
n .

Thus we can choose t ≥ 1 large enough so that for all n ∈ N

(7.39) λd+1(M (i),Λ1) < c̃ and − λd+1(M (i),Λ1) log λ1(M (i),Λ1) < c̃.

Using Lemma 7.2.8 and (7.38), we have(
2

c0
− c0

)
1

ζ(d+ 1)
εdne

ξdnt ≤ #(M ∩ Λ̂1) ≤ c0

ζ(d+ 1)
2d+1εdne

ξdnt.

By (7.31), we complete the proof of (7.35).

Next, we prove (7.36) and (7.37). Let s1 = ε2n, s2 = r, a(1) = aξnt, a
(2) =

bnaξnt, and

Sj = {x ∈ β̃(y) : Λi(x) ∈ L′d+1 rK∗sj} for j = 1, 2.

Recall that

S(Λ, r, s) =
{

v ∈Mr ∩ Λ̂ : ϕ(v) = 0 for some ϕ ∈ N(d+1)srM (r, s) ∩ Λ̂∗
}
.

We will show that

(7.40) #Sj ≤ #S(Λj , rj , sj) (j = 1, 2)

for some rj and apply Lemma 7.2.10 and 7.2.11.

Let z(1) and z(2) be vectors in Rd such that

z
(1)
i = (yi − xi)e(wi+1)tn for 1 ≤ i ≤ d;

z
(2)
i =

{
(yi − xi)e−

1
`
(w`+1+···+wd)nt+(wi+1)tn if 1 ≤ i ≤ `,

(yi − xi)ewint+(wi+1)tn if `+ 1 ≤ i ≤ d.
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Then h(z(j)) = a(j)atn−1h(y − x)(a(j)atn−1)−1 for j = 1, 2 and

|z(1)
i | ≤ εne

ξnt =: r
(1)
i for 1 ≤ i ≤ d;

|z(2)
i | ≤

{
εne

(ξ− 1
`
(w`+1+···+wd))nt =: r

(2)
i if 1 ≤ i ≤ `,

εne
(ξ+wi)nt =: r

(2)
i if `+ 1 ≤ i ≤ d.

Since v(x) ∈ Λ1(x) ∩ Λ2(x), for j = 1, 2,

wj(x) := h(z(j))v(x) ∈ Λj .

For rj = (r
(j)
1 , . . . , r

(j)
d , 1), the map Sj →Mrj∩Λ̂j given by x 7→ wj(x) is injec-

tive. Hence, in order to show (7.40), we should find ϕj ∈ N(d+1)sjr
(j)
M

(rj , sj)∩Λ̂∗i

such that ϕj(wj(x)) = 0. It follows from the definition of Sj that for x ∈ Sj ,
a(j)atn−1h(x)Zd+1 /∈ K∗sj . Then there exists ϕj ∈ Λ̂∗j such that ‖h(z(j))∗ϕj‖ <
sj , where h(z(j))∗ is the adjoint action defined by g∗ϕ(v) = ϕ(gv) for all

g ∈ SLd+1(R), ϕ ∈ E∗d+1, and v ∈ Rd+1. It follows from direct calculation that

h(z(j))∗ϕj =

(
ϕj(e1), . . . , ϕj(ed),

d∑
i=1

z
(j)
i ϕj(ei) + ϕj(ed+1)

)
.

By choosing t ≥ 1 large enough so that for all n ∈ N

(7.41) εeξnt ≥ 1,

it follows from ‖h(z(j))∗ϕj‖ < sj that

|ϕj(ei)| < sj for 1 ≤ i ≤ d;

|ϕj(ed+1)| < sj + dsjr
(j)
M < (d+ 1)sjr

(j)
M .

Hence we have ϕj ∈ N(d+1)sjr
(j)
M

. It follows that

|ϕj(wj(x))| = |h(z(j))∗ϕj(h(−z(j))wj(x))| = |h(z(j))∗ϕj(v(x))|

≤ |h(z(j))∗ϕj(ed+1)| ≤ ‖h(z(j))∗ϕj‖ < sj < 1.

Since ϕj(wj(x)) ∈ Z, it follows that ϕj(wj(x)) = 0. This proves (7.40).
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We choose t ≥ 1 large enough so that for all n ∈ N

(7.42) ce−wdξnt/(2d
3) < εn and e−δnt < εn.

Since Λ ∈ K∗
ε2n−1

⊂ K∗ε2n and (7.42), it follows from Lemma 7.2.10 and 7.2.11

that

S1 ≤ #S(Λ1, r1, s1) ≤
√
εnvol(Mr1) = 2d+1√εnεdneξdnt,

S2 ≤ #S(Λ2, r2, s2) ≤ rvol(Mr2) = 2d+1rεdne
ξdnt.

By the assumption (1) for ε and r, this complete the proof.

The following lemma is d-dimensional version of [LSST20, Lemma 4.1].

Lemma 7.3.3. F(T , β) ⊂ Sing(w).

Proof. This lemma directly follows from the same argument in the proof of

[LSST20, Lemma 4.1].

7.3.2 The lower bound calculation

In this subsection we complete the proof of main results.

Proposition 7.3.4. Let w = (w1, . . . , wd) ∈ Rd>0 where w1 = · · · = w` >

w`+1 ≥ · · · ≥ wd > 0 and
∑d

i=1wi = 1 and let (T , β) be the self-affine

strunction on Rd in the previous section. Then

dimH F(T , β) ≥ d− 1

1 + w1
.

We will prove Proposition 7.3.4 using Corollary 7.1.2. Let Cn, L
(1)
n , . . . , L

(d)
n

be the positive constants defined as follows:

Cn = εdne
ξdnt, L(i)

n = 2εne
−witn+1−tn , ∀i = 1, . . . , d.

It can be easily checked that a regular self-affine structure (T , β) satisfies

assumptions (1), (2), and (3) of Theorem 7.1.1. For the assumption (4) of

Theorem 7.1.1, we need the following lemma.

Lemma 7.3.5. Let n ∈ N be large and τ ∈ Tn−1. Then

dist(β(x), β(y)) ≥ L(1)
n−1

c′rd−1

4
√
dεn−1

e
1
`
(w`+1+···+wd−ξ`)nt,
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where x, y ∈ T (τ) are distinct and c′ is the positive constant in Lemma 7.2.7.

Proof. By the construction of T and the definition of bn, there are 1/2 ≤
sx, sy ≤ 1 such that

sxed+1 ∈ bnatnh(x)Zd+1, syed+1 ∈ bnatnh(y)Zd+1.

Let us denote by

v = bnatnh(y − x)(bnatn)−1sxed+1 ∈ bnatnh(y)Zd+1,

v ∧ syed+1 = sxsy

d∑
i=1

uiei ∧ ed+1.

Observe that

ui =

{
(yi − xi)e(wi+1)tn− 1

`
(w`+1+···+wd)nt for 1 ≤ i ≤ `,

(yi − xi)e(wi+1)tn+wint for `+ 1 ≤ i ≤ d.

Since x and y are distinct, the vectors v and eyed+1 are linearly independent,

hence it follows from Lemma 7.2.7 that

(7.43)
√
d‖u‖∞ ≥ sxsy‖u‖ = ‖v ∧ syed+1‖ ≥ c′rd−1,

where u = (u1, . . . , ud) ∈ Rd and ‖ · ‖∞ denotes the max norm.

Let x′ ∈ β(x) and y′ ∈ β(y). Suppose that ‖u‖∞ = |ui| for some 1 ≤ i ≤ `.
Then it follows from (7.43) that

‖y′ − x′‖ ≥ |y′i − x′i| ≥ |yi − xi| − |xi − x′i| − |yi − y′i|

≥ e−(wi+1)tn+ 1
`
(w`+1+···+wd)nt

(
c′rd−1

√
d
− 2εne

−ξwi(n+1)t− 1
`
(w`+1+···+wd)nt

)

≥ e−(wi+1)tn+ 1
`
(w`+1+···+wd)nt c

′rd−1

2
√
d

(7.44)

≥ L(i)
n−1

c′rd−1

4
√
dεn−1

e
1
`
(w`+1+···+wd−ξ`)nt

≥ L(1)
n−1

c′rd−1

4
√
dεn−1

e
1
`
(w`+1+···+wd−ξ`)nt.

We choose t ≥ 1 large enough so that the third line (7.44) holds for all n ∈ N.
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On the other hand, if ‖u‖∞ = |ui| for some `+ 1 ≤ i ≤ d, then we have

‖y′ − x′‖ ≥ |y′i − x′i| ≥ |yi − xi| − |xi − x′i| − |yi − y′i|

≥ e−(wi+1)tn−wint
(
c′rd−1

√
d
− 2εne

wint−ξwi(n+1)t

)
≥ e−(wi+1)tn−wint c

′rd−1

2
√
d

(7.45)

≥ L(1)
n−1

c′rd−1

4
√
dεn−1

e(w1−wi)tn−(ξ+wi)nt

≥ L(1)
n−1

c′rd−1

4
√
dεn−1

e(w1−w`+1)tn−(ξ+wi)nt

≥ L(1)
n−1

c′rd−1

4
√
dεn−1

e
1
`
(w`+1+···+wd−ξ`)nt.(7.46)

We choose t ≥ 1 large enough so that the third line (7.45) and last line (7.46)

hold for all n ∈ N.

This concludes the proof of the lemma.

We choose t ≥ 1 large enough so that for all n ∈ N

(7.47) ρn :=
c′rd−1

4
√
dεn−1

e
1
`
(w`+1+···+wd−ξ`)nt ≤ 1

since w`+1 + · · ·+wd < ξ`. The assumption (4) of Theorem 7.1.1 follows from

Lemma 7.3.5.

Proof of Proposition 7.3.4. We prove the proposition applying Corollary 7.1.2.

It can be easily checked that for k > 4ξdt, the assumptions of Corollary 7.1.2

hold. Then we have

log(CnL
(`+1)
n · · ·L(d)

n /L
(`+1)
n−1 · · ·L

(d)
n−1)

− log(L
(1)
n /L

(1)
n−1)

=
ξdnt− ξ(w`+1 + · · ·+ wd)(n+ 1)t− ξ(d− `)nt+ o(n)

ξw1(n+ 1)t+ ξnt+ o(n)

→ `− (w`+1 + · · ·+ wd)

1 + w1
= `− 1

1 + w1
as n→∞
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Hence Corollary 7.1.2 implies

dimH F(T , β) ≥ (d− `) + `− 1

1 + w1
= d− 1

1 + w1
.

Proof of Theorem 1.5.1. If w1 = · · · = wd, then the result follows from [CC16,

Theorem 1.1]. If there exists 1 ≤ ` ≤ d− 1 such that w1 = · · · = w` > w`+1 ≥
· · · ≥ wd, then the result follows from Lemma 7.3.3 and Proposition 7.3.4.

Proof of Theorem 1.5.2. This theorem directly follows from the same argu-

ment in the proof of [LSST20, Theorem 1.5].
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principle in the parametric geometry of numbers, arXiv:1901.06602.

[GS20] L. Guan and R. Shi, Hausdorff dimension of divergent trajectories on

homogeneous spaces, Compositio Math., 156 (2020), no. 2, 340–359.

[KKLM17] S. Kadyrov, D. Kleinbock, E. Lindenstrauss, and G. A. Margulis,

Singular systems of linear forms and non-escape of mass in the space of

lattices, J. Anal. Math., 133 (2017), 253—277.

[KP22] T. Kim and J. Park, On a lower bound of Hausdorff dimension of

weighted singular vectors, arXiv preprint arXiv:2207.07944.

[LSST20] L. Liao, R. Shi, O. N. Solan, and N. Tamam, Hausdorff dimension

of weighted singular vectors in R2, J. Eur. Math. Soc., 22 (2020), 833-875.

172

https://arxiv.org/abs/1901.06602


BIBLIOGRAPHY

[Sol] O. N. Solan, Parametric geometry of numbers for a general flow,

arXiv:2106.01707.

173

https://arxiv.org/abs/2106.01707


국문초록

거리그래프의 측지선 공간에는 거리 그래프의 기하학적, 동역학적 및 확률론

적 특징을 반영하는 측지적 류에 대한 세 가지 중요한 불변측도가 있다. 측도는

동역학적불변량과범피복나무의경계에서정의된측도류에의해구축된다.본학

위논문에서는 동역학적 불변량과 경계 측도류를 결정하는 거리그래프의 구조에

집중한다.

먼저 다양체의 경우와 유사하게 퍼텐셜함수를 이용해 비지빌리티 측도, 패터

슨-설리반 측도, 하모닉 측도, 총 세 가지 경측도를 공식화한다. 이러한 경측도류

중 두 개가 동치일 필요충분조건이 특정한 간선 길이에 대한 조건으로 나타남을

보인다 (정리 3.4.2, 정리 3.4.3, 정리 3.4.4).

다음은 동역학적 불변량과 경계 측도를 활용한 뇌 네트워크 연구이다. 뇌

네트워크를 거리그래프로 간주하여 부피 엔트로피와 패터슨-설리반 측도를 수

치적으로 계산한다. 이명 집단과 비이명 집단에서 이 값들을 비교하여 베이지안

가설에 기반해 이명 증상의 원인을 해석한다.

또한 의료수학에서 위상수학적 데이터 분석에 대한 결과를 소개한다. 매퍼

알고리즘을 이용해 데이터 공간을 거리그래프로 나타내고 거리그래프의 구조에

기반한 그룹화 방법을 제안한다. 이러한 방법론에 기반해 승모판막 협착증 환자

들의 새로운 하위 유형을 찾는다.

마지막으로 디오판틴 근사 분야의 결과를 향상시킨 결과를 소개한다. 나무의

구조와 균질 동역학의 투영 성질을 이용해 무게 특이 벡터들 안에 속하는 프랙탈

집합을 만든다. 격자점 셈을 통해 나무를 관찰해 무게 특이 벡터들의 하우스도르

프 차원의 하계를 얻는다 (정리 1.5.1).

주요어휘: 거리그래프, 동역학적 불변량, 불변측도, 뇌 네트워크, 위상수학적 데

이터 분석, 디오판틴 근사

학번: 2017-21999
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