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Abstract

Metastability of Langevin dynamics

Jung-Kyoung Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we investigate metastability of non-reversible Langevin dy-
namics. We prove the Eyring-Kramers formula, which is a precise estimation
of the expectation of transition time, for non-reversible metastable diffusion
processes that have Gibbs invariant measures. In addition, we further de-
velop the Eyring—Kramers formula by proving that a suitably time-rescaled
non-reversible metastable diffusion process converges to a Markov chain on
the deepest metastable valleys.

Finally, we introduce the Curie-Weiss—Potts model as an example of a
metastable dynamics on complex potential function so that complex metasta-
bility occurs. We analyze the energy landscape of the Curie-Weiss—Potts
model and the metastable behavior of the heat-bath Glauber dynamics as-
sociated with the Curie-Weiss—Potts model.

Key words: Metastability, statistical physics, Langevin dynamics, Eyring—
Kramers formula, Markov chain model reduction, Curie-Weiss—Potts model
Student Number: 2017-29414
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Chapter 1
Introduction

Metastability is a wide-spread phenomenon that occurs in various stochastic
systems at the low temperature regime. This phenomenon exhibits transitions
between (meta)stable states. The mathematical study of metastability dates
back to the work of H. Eyring [28] and H.A. Kramers [43] in the early 20th
century. Later in the 1960s, its first successful mathematical treatment was
carried out in a sequence of pioneering studies by Freidlin and Wentzell from
a large-deviation theoretical perspective [29]. In this thesis, we introduce
mathematical study of metastability of Langevin dynamics considering sharp
asymptotics of the mean of the transition time and Markov chain description
of successive transitions. Also, we introduce the Curie-Weiss—Potts model as

an example of metastable dynamics on complex potential.

1.1 Mathematical study of metastability

Consider a physical system whose energy landscape is given as shown in
Figure 1.1. In this system, m is a metastable state, s is a stable state, and A
is an energy barrier from m to s. Suppose that the system is at state m. If a
sufficient impact larger than A is applied to the system, the transition from

m to s occurs. In many probabilistic models, this impact is an accumulation
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Energy Energy

A

m o S State m o S State

Figure 1.1: Single ground state Figure 1.2: Multiple ground states

of randomness.

Let 7.5 be a transition time from m to s. The first metastability result,
called Freidlin-Wentzell theory [29], for this system is the following large-
deviation type estimation of the expectation of 7,,_s:

lime logE[r,, s = A, (1.1)

e—0

where € > 0 denotes the temperature.

Eyring—Kramers formula

The first more quantitative question in metastability is the derivation of
the precise estimate of E[7,,_,s] as a refinement of the logarithmic estimate
(1.1). Such a precise estimate is called the Eyring-Kramers formula (e.g.,
8, 14, 28, 43, 51, 57, 58]) and takes the form

E[Tm_s| = f(€) exp% : (1.2)

Finding prefactor f(e) is the main challenge in this problem.
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Markov chain model reduction

If there are multiple ground states as shown Figure 1.2, we can expect that
there will be successive transitions between those states. The canonical way
to describe this kind of metastable behavior is the Markov chain model re-
duction (e.g., [2, 3, 49, 50, 52, 53, 54, 57, 59, 83|) which describes the suc-
cessive inter-valley hopping dynamics as a Markov chain on much simpler
state space. This also requires quantitatively precise information in the level

of (1.2) regarding the metastable transition.

1.2 Langevin dynamics

In the study of the metastability of stochastic dynamical systems, one of the
most important models is the overdamped Langevin dynamics given by a

stochastic differential equation (SDE) of the form
dy.(t) = —VU(y(t)) dt + V2¢ dw, , (1.3)

where (w;)¢>o represents the standard d-dimensional Brownian motion, € > 0
is a small constant parameter corresponding to the magnitude of the noise,
and U : RY — R is a smooth Morse function' with finite critical points. In
addition to its importance in large-deviation theory, mathematical physics,
and engineering (cf. [29] and references therein), this process is also well-
known for approximating the minibatch gradient descent algorithm widely
used in deep learning (cf. [35] and references therin).

The metastable behaviors of the process y.(-), exhibited when U has mul-
tiple local minima, have attracted considerable attention in recent decades.
Its first successful mathematical treatment was carried out in a sequence of pi-

oneering studies by Freidlin and Wentzell in the 1960s from a large-deviation

L All the critical points of U are non-degenerate (i.e., the Hessian at each critical point
is invertible) and isolated from others.
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theoretical perspective, and these achievements have been summarized in
[29]. Further, their accurate quantitative analysis has been thoroughly in-
vestigated in many studies. For instance, [14, 36] established the Eyring—
Kramers formula, [13] provided the sharp asymptotics of low-lying spectra,
(83, 86] described the metastable behavior as a limiting Markov chain under
a suitable exponential time-rescaling, and [21, 22, 23, 60, 61, 65, 73] devel-
oped the quasi-stationary distribution approach for this process. The last
approach is based on the theories from semi-classical analysis developed in
(36, 70]. We note that these approaches are the most typical methods for

quantitatively investigating the metastable behavior of a metastable process.

Metastable behavior of the dynamics

To heuristically explain the metastable behavior of the process y.(-), we
regard this process as a small random perturbation of the dynamical system

given by an ordinary differential equation (ODE) of the form
dy(t) = —=VU(y(t))dt . (1.4)

Note that the stable equilibria of this dynamical system are given by the local
minima of U. Hence, provided that e ~ 0, the process y.(-) starting from a
neighborhood of a local minimum of U will remain there for a sufficiently
long time, as the noise is small compared to the drift term —VU (y.(t))dt
that pushes the process toward the local minimum.

The metastability issue arises for the process y.(-) if U has multiple local
minima. To illustrate the corresponding metastable behavior more clearly,
we simply assume that U has two local minima m,; and ms as shown in
Figure 1.3, and we suppose that the process y.(-) starts at m;. If there is no
noise, i.e., ¢ = 0, the process always remains at m;. However, when ¢ is small
but positive, random noise term v/'2e dw, accumulates over a sufficiently long

time and enables the process y.(-) to make a transition to a neighborhood of
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my

Figure 1.3: Double-well potential U with two minima m,; and my and a
saddle point o between them.

another minimum m. after an exponentially long time, and this can be un-
derstood via the large-deviation principle (cf. [29]). This movement is called
a metastable transition. Then, it remains for a long time in the neighborhood
of my before making another transition. Such rare transitions between the
neighborhoods of local minima constitute the dynamical metastable behav-
ior of the process y.(-). We can expect richer behaviors when U has a more

complex landscape.

Eyring—Kramers formula

The Eyring—Kramers formula is the sharp asymptotics, as € — 0, of the
mean of the time required to observe the transition described above. It was
obtained for the one-dimensional case in classical studies [28, 43] conducted
in the 1930s on the basis of explicit computation. The generalization of this
result to arbitrary dimensions was finally accomplished in [14] a few decades
later. We recall the double-well situation illustrated in Figure 1.3 to explain
the Eyring-Kramers formula in a simple form. Let 7p_(m,) denote the hitting
time with respect to the process y.(:) of the set D.(ms), which is a ball of
radius € centered at ms. Then, the Eyring—Kramers formula is the sharp

estimate of the mean transition time E[7p, (m,)|yc(0) = m4]. The Freidlin-

A& st
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Wentzell theory gives the large deviation estimate for this quantity as
P_{%E lOgE[TDe(mQ) |ye(0) = ml] = U<U) - U(ml) ) (15)

where o is the saddle point between the two wells as shown in Figure 1.3. The
Eyring-Kramers formula is a refinement of this result (cf. Corollary 3.1.5 of
the thesis), and it gives the precise asymptotics of the expectation in (1.5).
The mean transition time is related to the quantification of the mixing
property of the process y.(-). To explain it more precisely, we remark that

the unique invariant measure for the process y.(-) is given by

1
pe(dz) = A e V@/edg (1.6)

€

where Z, is the constant given by
Z. = / e V@ ede < o0, (1.7)
Rd

where we will impose suitable growth conditions for U in Section 2.1 to
guarantee the finiteness of Z.. The measure p.(dx) corresponds to the Gibbs
measure associated with the energy function U and inverse temperature € and
hence the constant Z. denotes the associated partition function. Therefore,
we can regard the process y.(+) as a sampler of the Gibbs distribution p.(dx),
which is exponentially concentrated on the global minima of U. There are two
representative quantities for measuring this mixing property of the sampler
Yc(+): the spectral gap [13] and the mean transition time of the process from
one local minimum to another [14]. Thus, by estimating the latter using the

Eyring—Kramers formula, one can precisely measure the mixing property of

yé()
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Figure 1.4: Example of potential U with multiple global minima.

Markov chain description of metastable behavior

The Eyring—Kramers formula focuses on a single metastable transition. Our
next focus is not on such a single transition but on the full description of
successive transitions via a suitable scaling limit. Now, suppose that U has
multiple global minima as shown in Figure 1.4* and that the process y.(-)
starts from a small fixed neighborhood of a minimum, which is called a
(metastable) wvalley. More precisely, we can expect that once the process
y(-) makes a transition from one valley to another, then the next transi-
tion to another valley will take place after another exponentially long time.
Hence, to comprehensively describe the metastable behavior, it is natural to
prove that these successive metastable transitions converge in some sense to
a continuous-time Markov process whose state space consists of the valleys
of U. This limiting Markov process has a finite state space and is simpler
than the original process so that this argument is called Markov chain model
reduction. This proof of course requires highly accurate knowledge regard-
ing the transition time in the level of the Eyring—Kramers formula, thereby
providing a more detailed description of the metastable behavior.

Now, we review existing studies on the Markov chain description of meta-
stable behavior. In [2, 3], a robust methodology based on potential theory has
been introduced for the case in which the underlying dynamic is a Markov

process on a discrete set. This method has been applied to many models

2This figure has been excerpted from [83, Figure 1.2].

B kit



CHAPTER 1. INTRODUCTION

such as the zero-range process [4, 45, 84], the inclusion process [7, 40, 41],
the discrete version of the overdamped Langevin dynamics [52, 54|, and the
ferromagnetic systems [47, 53]. On the other hand, for metastable diffusion
processes, a different methodology known as the PDE approach based on the
analysis of a certain Poisson equation has been introduced in [55, 83]. In [83],
a general methodology to deal with the solution to the corresponding Poisson
equation when the underlying dynamics is reversible has been developed and

successfully applied to the process y.(-).

1.3 Main contribution of the thesis

In this thesis, we consider a variant of the classical overdamped Langevin
dynamics y.(+), which is obtained by adding a vector field to the drift term
of the SDE (1.3). More precisely, we focus on the metastability of the diffusion
process given by an SDE of the form

da (t) = —(VU + £)(z(t)) dt + v/2¢ dw, ,

where U : R? — R is the smooth potential function as described above.
Further, £ : R — R? is a smooth vector field that is orthogonal to the
gradient field VU, i.e.,

VU(z) - l(x) =0 forall zcR?,
and it is incompressible:
(V-£)(x) =0 foralxecR?.

The first condition guarantees that the quasi-potential of the process @(+) is
U (cf. [29, Theorem 3.3.1]), and the second condition ensures that the invari-

ant measure of the process x.(-) is the Gibbs measure p.(dx) (cf. Theorem



CHAPTER 1. INTRODUCTION

2.1.3). In this sense, the process x.(-) is another sampler of the Gibbs mea-
sure pi.(dx). Indeed, we prove in Theorem 2.1.3 that both of the conditions
are the necessary and sufficient conditions for the process x.(-) to have as
an invariant measure the Gibbs distribution pu.(dx) defined in (1.6) for all
€ > 0. For this reason, this generalized model has been investigated in many
studies from different perspectives, e.g., [24, 37, 38, 62, 64, 81, 82].

Comparison to the process y.(-)

One of the main features of the process y.(-) is the fact that it is reversible
with respect to its Gibbs invariant measure p.(dx). Owing to this reversibil-
ity, many tools are available to investigate the process y.(-). However, nearly
none of these tools is applicable to non-reversible processes such as x(-).
Hence, the quantitative analysis of the metastability of non-reversible pro-
cesses has long been an open issue. To this end, many innovative studies
such as [32, 45, 51, 54, 84] have been conducted in recent years, and several
non-reversible metastable processes have been analyzed. In particular, low-
lying spectra of x.(-) has been analyzed in [64]. In the thesis, we present the
Eyring—Kramers formula and the Markov chain description of the metastable
behavior of the process x.(-).

Moreover, it is widely believed that the non-reversible process x.(-) has
a better mixing property than the reversible process y.(-). In fact, this belief
has been quantitatively verified in Chapter 3 and [64] in view of the so-
called Eyring—Kramers formula and low-lying spectra, respectively. We verify
in Theorem 2.1.1 that the stable points of the process x.(-) are the local
minima of U and hence identical to those of the process y.(-). Hence, we
can compare the Eyring-Kramers formula of x.(-) with that of y.(-), and
this comparison reveals that the mean transition time of the dynamics x(+)
from one local minimum of U to another is always faster than that of the
reversible dynamics y.(-). This implies that we can accelerate the stochastic

gradient descent algorithm by adding the incompressible field £, which is
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orthogonal to VU. We remark that such an acceleration has been observed
for the model when the diffusivity € is kept constant (see [24, 37, 38, 62, 81, 82]
and references therein). In particular, we refer to [31] for the explicit relation

with the stochastic gradient descent algorithm.

General methodology of capacity estimation

Another main result of our study is the establishment of a straightforward
and robust method for estimating a potential theoretic notion known as the
capacity. In the proof of Eyring—Kramers formula based on the potential theo-
retic approach developed in [14], it is crucial to estimate the capacity between
metastable valleys. In all the existing results based on this approach, such
an estimation is carried out via variational principles such as the Dirichlet
principle or the Thomson principle.

For the reversible case, this approach is less complex as the Dirichlet
principle is an optimization problem over a space of functions. Hence, by
taking a suitable test function that approximates the known optimizer of
the variational principle, we can bound the capacity in a precise manner.
This strategy is the essence of the potential theoretic approach to metasta-
bility. By contrast, for the non-reversible case, the variational expression of
the capacity is destined to involve both the function and the so-called flow
(cf. [54, Theorems 3.2 and 3.3]). Therefore, one must construct both the test
function and the test flow to estimate the capacity precisely. Accordingly,
when this approach is adopted for the non-reversible model, the major tech-
nical difficulty arises in the construction of the test flow. This problem has
been resolved in existing studies such as [51, 54, 84] based on considerable
computations.

In this thesis, we develop a robust methodology to estimate the capacity
without relying on these variational principles. We use only a test function
in the estimation of the capacity; no test flow is used even in the non-

reversible case. Hence, our methodology significantly reduces the complex-

10
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ity of the analysis of metastable non-reversible processes to the level of the
reversible models. Therefore, our methodology is expected to present new
possibilities for the analysis of non-reversible metastable random processes.

In summary, we develop a new methodology to estimate the capacity and
use it to establish the Eyring—Kramers formula for the non-reversible and

metastable diffusions x.(-).

Resolvent equation approach

The Markov model reduction has been presented for the reversible process
y.(+) in [83] based on the partial differential equation (PDE) approach. In this
thesis, we extend the PDE approach to the non-reversible setting in a robust
manner and apply this method to the process x.(-). We note that the method
of [83] relies on analysis of solutions of certain form of Poisson equations. It
has been observed in [49, 50] that considering resolvent equation, instead
of Poisson equation, simplifies several argument and provide more robust
and convenient methodology which in some sense provides a necessary and
sufficient condition for the Markov chain description of metastable behavior.
This method has been applied to a critical reversible zero-range process [49]
to which the method of [2, 3] is not applicable because the metastable valley
is too large. Hence, we will rely on this resolvent approach to analyze the
metastability of the process () in the current thesis and this is the first

application of this method to a non-reversible model.

Curie—Weiss—Potts model

The Potts model is a well-known mathematical model suitable for studying
ferromagnetic spin system consisting of ¢ > 3 spins. We refer to [89] a com-
prehensive review on the Potts model. In this thesis, we introduce the Potts
model defined on large complete graphs without an external field to under-

stand the associated energy landscape as well as the metastable behavior

11
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of the heat-bath Glauber dynamics to the highly precise level. This special
case of the Potts model defined on complete graphs is called the Curie—
Weiss—Potts model. First, we thoroughly analyze the energy landscape of the
Curie—Weiss—Potts model. In particular, for the Curie-Weiss—Potts model
with ¢ > 3 spins and zero external field, we completely characterize all criti-
cal temperatures and phase transitions in view of the global structure of the
energy landscape. We observe that there are three critical temperatures and
four different regimes for ¢ < 5, whereas there are four critical temperatures
and five different regimes for ¢ > 5. Our analysis extends the investigations
performed in [18]; they provide the precise characterization of the second
critical temperatures for all ¢ > 3 and in [53], which provides a complete
analysis of the energy landscape for ¢ = 3. Based on our precise analysis
of the energy landscape, we also perform a quantitative investigation of the
metastable behavior of the heat-bath Glauber dynamics associated with the
Curie—Weiss—Potts model.

1.4 General model

We conclude the introduction by explaining the importance of the process
x.(+) in the study of metastability. For a vector field b : R? — R?, consider
the dynamical system in R? given by an ODE of the form

dz(t) = —b(z(t)dt ;t>0. (1.8)

Suppose that this dynamics has several stable equilibria. An open problem
in the study of metastability is to determine the metastable behavior for the

following small random perturbation of (1.8):

dz(t) = —b(z(t))dt +V2edw, ;t>0. (1.9)

12
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For this model, Freidlin and Wentzell [29] established the large-deviation-type
analysis of the metastable behavior. In [55], metastability of the process z.(+)
on a one-dimensional torus has been analyzed based on the explicit form of
the solution to the Poisson equation. However, rigorous accurate quantitative
analysis such as that based on the Eyring—Kramers formula or the Markov
chain description is unknown for this general model and remains as a primary
open question in this field. We refer to [8] for the Eyring—Kramers formula
for z.(+) under a special set of assumptions.

The difficulty in the rigorous analysis of the process z.(-) is due to two
factors: the non-reversibility and the lack of an explicit formula for the invari-
ant measure. In Theorem 2.1.3 below, we prove that the process z(-) defined
in (1.9) has a Gibbs invariant measure (1.6) if and only if b = VU + £ for
some £ such that VU -£ = 0 and V-£ = 0; hence, this is the model considered
in this thesis. Thus, we completely overcome the difficulty arising from the
non-reversibility in the study of the process z.(+) in this thesis. The problem
arising from the lack of an understanding of the invariant measure of z(-) is
not addressed in our studies, as the model considered has an explicit Gibbs
invariant measure; this problem should be investigated in future research.

We finally remark that an important model which is not discussed in
this introduction is the underdamped Langevin dynamics. This dynamics is
non-reversible and has the Gibbs measure as the invariant measure so that
it seems at first glance that this model falls into our framework. However,
the main challenge in this model is the fact that the diffusion coefficient is
degenerate. Accordingly, rigorous quantitative study for this model is barely

known (cf. [63]) and is an important future research problem.

Structure of the thesis

First, we present a precise definition of non-reversible Langevin dynamics in

Chapter 2. Chapters 3 and 4 are devoted to the Eyring-Kramers formula

13
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and Markov chain model reduction for non-reversible Langevin dynamics,
respectively. In Chapter 5, we introduce the Curie-Weiss—Potts model as
an example of metastable dynamics on complex potential. We completely
analyze the energy landscape of the model and prove the Eyring—Kramers
formula and Markov chain model reduction for the heat-bath Glauber dy-

namics associated with the Curie—Weiss—Potts model.

14



Chapter 2

Model

2.1 Non-reversible Langevin dynamics

In this section, we introduce the fundamental features of the model. Recall
the definition of x.(-):

dx(t) = —(VU + £)(z(t)) dt + V2e dw, , (2.1)

with two conditions on £:
VU(x)-£(x) = 0 forall x € R?, (2.2)

and

(V-£)(x) =0 forallzecR?. (2.3)
The results stated in this chapter regarding the process x.(-) constitute the
essence of this field.

Potential function U

To introduce the model rigorously, we must explain the potential function
U :R? = R in the SDE (2.1). We assume that the potential function U €

15
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C*(R%) is a Morse function that satisfies the growth conditions

U(z)

lim inf —= = o0, (2.4)
n—oo |x|>n ]w|

lim . VU(x) = oo, and (2.5)
|z| 00 ||

| llim {IVU(x)| — 2AU(x)} = o, (2.6)
x| —00

where |2| denotes the Euclidean distance in R?. These conditions have been
introduced in previous studies such as [14, 51, 83] to guarantee the positive
recurrence of the diffusion process y.(-) given by (1.3) and the finiteness of
Z in (1.7). More precisely, it is well known (cf. [14]) that these conditions
imply the tightness condition

/ e V@/eqe < Cye™ foralla e R, (2.7)
{z:U(x)>a}

where (), is a constant that depends only on a, and hence imply the finiteness
of the partition function Z.. Finally, we also assume that U is a Morse func-
tion, i.e., all the critical points of U are non-degenerate. We remark that the
metastability of the reversible process y.(-) has been analyzed in [14] under
the same set of assumptions.

Deterministic dynamical system x(-)

To explain the metastable behavior of the process x.(-), we first consider a

deterministic dynamical system given by the ODE
dx(t) = —(VU + £)(x(t)) dt . (2.8)

We can demonstrate that this dynamical system has essentially the same

phase portrait as y(-) defined in (1.4).

Theorem 2.1.1. The following hold.

16
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1. We have £(c) = 0 for all critical points ¢ € R* of U.

2. A point ¢ € R is an equilibrium of the dynamical system (2.8) if and
only if ¢ € RY is a critical point of U.

3. An equilibrium ¢ € R? of the dynamical system (2.8) is stable if and

only if ¢ is a local minimum of U.

The proof is given in Section 2.2. We emphasize that the divergence-
free condition (2.3) is not used in the proof of this theorem, whereas the
orthogonality condition (2.2) plays a significant role. In view of part (3) of
the previous theorem, we can observe that the process x.(-) is expected to
exhibit metastable behavior when U has multiple local minima, and this is

the situation that we are going to discuss in the current thesis.

Diffusion process x.(-)

Now, we focus on the diffusion process x.(-). Under the condition (2.2) and
conditions (2.4)—(2.6), we can prove the following property of the process

x(+). Note again that the condition (2.3) is not used.
Theorem 2.1.2. The following hold.
1. There is no explosion for the diffusion process @.(+).
2. The diffusion process x.(+) is positive recurrent.

The proof of this result is given in Section 2.3.

Invariant measure

Since the process x.(-) is positive recurrent, we know that this process has
an invariant measure. Now, we prove that p.(dz) is the unique invariant

measure for the process x(+).

17
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Before proceeding to the statement of this result, we first explain the role
of the conditions (2.2) and (2.3). Recall the general model z.(-) given by the
SDE (1.9). It is known from [29, Theorem 3.3.1] that if the quasi-potential V'
associated with (1.9) is of class C*, we can write b = VV +£ where VV -£ = 0.
Hence, the assumption (2.2) is nothing more than the regularity assumption
on the quasi-potential. The special assumption regarding the field £ is (2.3),

and the role of this assumption is summarized below.
Theorem 2.1.3. The following hold.

1. If £ satisfies the conditions (2.2) and (2.3), then the Gibbs measure

te(dx) is the unique invariant measure for the diffusion process x.(-).

2. On the other hand, suppose that the Gibbs measure p.(dx) is the in-
variant measure for the diffusion process z.(-) defined in (1.9) for all
€ > 0. Then, the vector field b can be written as b =NV U + £, where U
and £ satisfy (2.2) and (2.3).

The proof of this theorem is given in Section 2.3. Therefore, heuristically,
the condition (2.3) can be regarded as a necessary and sufficient condition
(up to the regularity of the quasi-potential) for the diffusion process z(-) to

have the Gibbs invariant measure.

Construction of £

The result obtained in this thesis might be nearly useless if it is extremely
difficult to find a non-trivial £ satisfying the conditions (2.2) and (2.3) si-
multaneously. However, there is a simple way to generate a variety of £ when
the potential U is given. Let M yq(R) be a space of d x d real matrices
and let J : R — Myyq(R) be a smooth function such that the range of J
consists of only skew-symmetric matrices. Then, a vector field of the form
L(x) = J(U(x)) VU (x) satisfies the conditions (2.2) and (2.3) as observed in
[47, Section 1] and [64, Section 1]. Moreover, unless J is a constant function,

the model considered here is different from the one considered in [51].

18
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Notations regarding z.(-)

We conclude this section by defining some notations regarding the process

(). Let Z. denote the generator associated with the process x.(-). Then,
%, acts on f € C*(R?) such that

Lf = —(VU +£) - Vf+eAf . (2.9)

Under the conditions (2.2) and (2.3) on £, we can rewrite this generator in

the divergence form as
1
Lf = Vv . [e_U/€<Vf——f£” . (2.10)
€

Finally, let P, denote the law of the process x(-) starting from @, and let

E;, denote the expectation with respect to P,.

2.2 Deterministic dynamical system

In this section, we prove the properties of the dynamical systems x(-) given
by the ODE (2.8).

2.2.1 Preliminary results on matrix computations

In this subsection, we present few technical lemmas. We remark that all the
vectors and matrices in this subsection are real. The first lemma below will

be used to investigate the stable equilibria of the dynamical system x(-).

Lemma 2.2.1. Let A, B be square matrices of the same size and suppose
that A 1s symmetric positive definite and AB is skew-symmetric. Then, all
the eigenvalues of matriz A + B are either positive real or compler with a

positive real part. In particular, the matriz A + B is invertible.

Proof. By a change of basis, we may assume that A = diag(A1, A2, -+, Ag)
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for some Ay, ..., Ay > 0. Let a be a real eigenvalue of A + B and let u be

the corresponding non-zero eigenvector. Then, we have
0 < |Aul*> = Au- (A +B)u = a(Au-u),

where the first identity holds since AB is skew-symmetric. This proves that
a > 0 since A is positive definite.

Next, let z = a + b be a complex eigenvalue of A +B and let u + iw
be the corresponding non-zero eigenvector, where u and w are real vectors.

Since A and B are real, we have
(A+B)u = au —bw and (A+B)w = bu+aw .
Since AB is skew-symmetric, we get

Aul?* = Au- (A +B)u = Au - (au — bw) ,
Aw]* = Aw - (A +B)w = Aw - (bu + aw) .

By adding these two identities, we get
|Aul? + |[Aw|* = a(Au-u+ Aw - w) .

Therefore, we get a > 0 since A is positive definite. n

The next lemma is used to analyze the saddle points of the dynamical
system (2.8). For a square matrix M, let M denote its transpose, and we
write M® = %(M + M),
Lemma 2.2.2. Let A, B be square matrices of the same size and suppose
that A® is positive definite and B is a non-singular, symmetric matriz that
has only one negative eigenvalue. Then, AB is invertible and has only one

negative eigenvalue with geometric multiplicity 1.
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Proof. By a change of basis, we may assume that B = diag(—\1, Aa, ..., Ag)
for some Aq, ..., A\g > 0. It is well known that a matrix A such that A® is
positive definite does not have a negative eigenvalue and det A > 0. Hence,
we have det AB < 0 so that AB is invertible and has at least one negative
eigenvalue.

First, assume that AB has two different negative eigenvalues, —a, —b, and
let w = (ug, ..., ug), w= (wy, ..., wy) be the corresponding eigenvectors.

We claim that uq, w; # 0. By contrast, suppose that u; = 0. Then, we have

d
Bu - A°Bu = Bu-ABu = —aBu-u = —aZ)\ﬂﬁ <0, (2.11)

=2

which is a contradiction since A’ is positive definite. By the same argument,
we get wy # 0.

By the definition of a, b and by the positive definiteness of A® for any
teR,

(u + tw) B (au + btw) = —(u + tw)  BAB (u + tw) < 0.
Let p = —uy/(bwy). By substituting ¢ with ap in the previous equation, the
first coordinate of au + btw = a(u + bpw) is zero; thus, we have
d
0 > (u+ apw)' B (au + abpw) = a Z Aj (u; 4+ apw;) (u; + bpw;) . (2.12)
=2

Similarly, substituting ¢ with bp makes the first coordinate of u + bpw zero,

and we get
d
0> (u+ bpw)! B (au + b*pw) = Z N (au; + b*pw;) (uj + bpw;) . (2.13)
=2
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Computing (b/a x (2.12) + (2.13)) gives

d d

0> ZAJ- (u;+bpw;) (bu;+abpw;+au;+b*pw;) = (a+Db) Z)\j(“j+bpwj>2 :
=2 =2

which is a contradiction since we have assumed that Xy, ..., Ay > 0. There-

fore, AB has only one negative eigenvalue —a.

Now, let us assume that there are two eigenvectors u and w correspond-
ing to —a, which are linearly independent. Then, we can repeat the same
computation as that presented above to get a contradiction, as we did not
use the fact that a # b in the computation. Hence, the dimension of the

eigenspace corresponding to the eigenvalue —a is 1. O

Remark 2.2.3. Indeed, we can show that the algebraic multiplicity of the

unique negative eigenvalue 1s also 1 by considering the Jordan decomposition.
The following lemma is a direct consequence of the previous one.

Lemma 2.2.4. Let A, B be square matrices of the same size and suppose that
A is a symmetric non-singular matriz with exactly one negative eigenvalue
and AB is a skew-symmetric matrixz. Then, the matriz A + B is invertible

and has only one negative eigenvalue, and its geometric multiplicity is 1.

Proof. Since A is symmetric and AB is skew-symmetric, we have —AB =
(AB)" = B'A. Therefore, we get BA™ = —A7'Bf = —(BA™")T; thus, the
matrix BA™! is skew-symmetric. Let I be the identity matrix with the same
size as A. Then, by substituting I + BA™! and A for A and B, respectively,
in Lemma 2.2.2, we conclude the proof since A + B = (I 4+ BA™1)A. O

2.2.2 Equilibria of the dynamical system x(-)

In the remainder of the thesis, we use the following notations.

Notation 2.2.5. For each critical point ¢ of U, let H® = (V2U)(c) denote
the Hessian of U at ¢ and let L¢ = (D£)(c) denote the Jacobian of £ at c.
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In this subsection, we analyze the equilibria of the dynamical system (2.8)

by proving Theorem 2.1.1. First, we prove part (1) of the theorem.

Proof of part (1) of Theorem 2.1.1. Let ¢ € R be a critical point of U. Since
VU - £ =0 by (2.2), we have

0=V[VU-£] = (VU)L+ (DE)VU .

Thus, we have HL® = 0 as VU(c¢) = 0. Since H€ is invertible as U is a
Morse function, we get £(c) = 0. O

Now, we present a lemma that is a consequence of the condition (2.2) and

part (1) of Theorem 2.1.1 that we have just proved.

Lemma 2.2.6. For any critical point ¢ of U, the matrix HLC is skew-

symmetric.

Proof. For small € > 0 and « € R?, the Taylor expansion implies that
VU(c+ex) = eHez +O(c?) and £(c+ex) = cLéx + O(?)

since we have VU(c) = £(c) = 0 by part (1) of Theorem 2.1.1. By (2.2), we
have
[eHCx + O(c?)] - [eL°z + O(e?)] = 0.

Dividing both sides by & and letting ¢ — 0, we get (H°z) - (L°x) = 0.
Since the Hessian H¢ is symmetric, we can deduce that - H°L°x = 0 for

all £ € R% This completes the proof. O
Now, we focus on parts (2) and (3) of Theorem 2.1.1.

Proof of parts (2) and (3) of Theorem 2.1.1. First, we focus on part (2). If
c is a critical point of U, we have (VU + £)(c) = 0 by part (1); thus, ¢ is
an equilibrium of the dynamical system (2.8). On the other hand, suppose
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that ¢ is an equilibrium, i.e., (VU + £)(c) = 0. Then, by (2.2), we have
0= (VU -£)(c) = —|VU(e)|?; thus, VU(c) = 0.

For part (3), suppose that ¢ is a local minimum of U such that the Hessian
H€ is positive definite. Since H°LLC is skew-symmetric by Lemma 2.2.6, we
can insert A := H® and B = L° into Lemma 2.2.1 to conclude that all the
eigenvalues of the matrix H¢ + IL¢ are either positive real or complex with a
positive real part; hence, ¢ a is stable equilibrium of the dynamical system
x(-) since H® + L is the Jacobian of the vector field VU + £ at c.

For the other direction, suppose that ¢ is a stable equilibrium of the
dynamical system (2.8), i.e., the matrix H¢ + L is positive definite in the
sense that

x-[H°+Lx >0 forallx+#0. (2.14)

Suppose now that the symmetric matrix H€ is not positive definite so that
there is a negative eigenvalue —\ < 0. Let v be the corresponding unit eigen-
vector. Since HCLC is skew-symmetric by Lemma 2.2.6 and H€ is symmetric,

we have
Q(HC)Q — HC[HC + Lc] + [Hc + (LC)T]HC ’

and thus we get

20? = v - 2(H)?v = H% - [H® + L¢v + v - [H® + (L€)' H
= v - [H® + L + HE 4 (L) o = —2\v - [H® + Lw .

This contradicts with (2.14) and therefore H® 4 L must be positive definite.
This completes the proof. n

2.2.3 Saddle points of dynamical system (2.8)

Now, we focus on the saddle points. First, we prove that, for a saddle point
o € R% the matrix H® + L% has only one negative eigenvalue as the matrix

H? has only one negative eigenvalue.
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Lemma 2.2.7. Let o € R? be a saddle point such that H has only one neg-
ative eigenvalue. Then, the matriz H? +1L7 has only one negative eigenvalue

and is tnvertible.

Proof. Let o € R? be a saddle point so that H has exactly one negative
eigenvalue by the Morse lemma. Then, we can insert A := H? and B := 1.7
into Lemma 2.2.4 owing to Lemma 2.2.6, and we can conclude that the matrix

H? + L7 has only one negative eigenvalue and is invertible. O]

Next, we compares the unique negative eigenvalues of H? and H? + L7
for saddle point o € R

Lemma 2.2.8. Let A7 and p° be unique negative eigenvalues of H? and
H? + L7, respectively. Then, we have u® > \°

Proof. Denote by —A1, o, ..., A\g the eigenvalues of the symmetric matrix
H?, where Ay, ..., Ay > 0. Thus, A2 = \{. Let uq, ..., ug denote the nor-
mal eigenvectors of H? corresponding to the eigenvalues —A{, ..., A4, re-

spectively. Let v denote the unit eigenvector of H? + L7 corresponding to
d

the unique negative eigenvalue —u® and write v = Z a;u;. Since HILY is
i=1
skew-symmetric by Lemma 2.2.6, we have

Hv|* = v -H°(H° +L%)v = —pv - Hv

Using the above-mentioned notations, we can rewrite this identity as

d

S @i = [ S Z )i ] (2.15)

=1

d
First, suppose that a; = 0. Then, we have Z aZ)} = —p Z a?); and hence

we get as = = ag = 0. This implies that v = 0, which i 1s a contradiction.
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Thus, a; # 0. By (2.15), we have

d d
2 2
ai\i < Zafk? = uai —MUZ@Mi < paiA .
i=1

1=2

Since a; # 0, we get u7 > Ay = 7. m

2.3 Properties of diffusion process

In this section, we prove the basic properties of the diffusion process x.(-).

2.3.1 Positive recurrence and non-explosion

First, we establish a technical lemma.

Lemma 2.3.1. For all € > 0, there exists ro = ro(€) > 0 such that (L.U)(x)
< =3 for all x ¢ D,,(0).

Proof. By (2.5) and (2.6), we can take ¢ to be sufficiently large such that

VU ()| - 2AU(z) > < and |VU(z)| > 2 (2.16)

N

for all ¢ D,,(0). Then, for « ¢ D,,(0), we have

1 1
AU(z) < —f+§|w(a¢)| < —|VU() .

4
Therefore,
3
(L)) = ~|VU(@) P+ cAU(@) < | VU@ < 3.
The last inequality follows from the second condition of (2.16). O]

Now, we prove Theorem 2.1.2
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Proof of Theorem 2.1.2. First, we prove part (1), i.e., the non-explosion prop-
erty. By [87, Theorem at page 197], it suffices to check that there exists a
smooth function v : RY — (0, oo) such that

u(x) = o0 as ¢ — oo and (Lu)(x) < u(x) forallz € RY. (2.17)

We claim that u = U + k. with a sufficiently large constant k. satisfies all
these conditions. First, we take k. to be sufficiently large such that « > 0. The
former condition of (2.17) is immediate from (2.4). Now, it suffices to check
the second condition. By Lemma 2.3.1, the function .Z.u = Z.U is bounded
from above. Denote this bound by M, and then take k. to be sufficiently large
such that u(x) > M, for all x € R% Then, the second condition of (2.17)
follows.

The positive recurrence of x.(-) follows from Lemma 2.3.1 and [79, The-
orem 6.1.3]. O

2.3.2 Invariant measure

By a slight abuse of notation, we write p.(z) = Z 'e Y@/ (cf. (1.6)).
Now, we prove Theorem 2.1.3. We can observe from the expression (2.10)
of the generator .7, that the adjoint generator £ of .Z, with respect to the

Lebesgue measure dx can be written as
Lf = eV-[e Vv )] +2-V(eVef) . (2.18)

Proof of Theorem 2.1.3. First, we prove part (1). With the expression (2.18)
and the explicit form of p.(x), we can check that Z*u. = 0. Therefore, by
[87, Theorem at page 254] and part (1) of Theorem 2.1.2, the measure p.(dx)
is the invariant measure for the process x.(-). The uniqueness follows from
[87, Theorem at page 259 | and [87, Theorem at page 260 |.

For part (2), let us assume that p.(dx) is the invariant measure for the
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dynamics z.(+) given in (1.9) for all € > 0. Note that the generator associated
with the process z.() acts on f € C*(R%) as

Lf = —b-Vf+eAf.

Hence, its adjoint generator with respect to the Lebesgue measure is given
by
LAf = V- [fb]+eAf.
By [87, Theorem at page 259 ], we must have ogﬂz",ue = 0. By writing £ =
1
b — VU, this equation can be expressed as e Y/¢ {—VU £+ V- E] = 0.
€

Since this holds for all € > 0, the vector field £ must satisfy both (2.2) and
(2.3). O
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Chapter 3
Eyring—Kramers formula

This chapter is devoted to prove the Eyring—Kramers formula for the process
Z(+) (Theorem 3.1.3). We also remark that in a recent study [64], the model
considered in this thesis was investigated in view of the low-lying spectra.
Sharp estimates were established for the exponentially small eigenvalues of
the generator associated with the process x(+). See Corollary 3.1.6 to under-

stand how our discovery is related to the result presented in [64].

3.1 Main result

In this section, we explain the Eyring—Kramers formula for the diffusion
process @(-). The main result is stated in Theorem 3.1.3 (and Corollary

3.1.5 for the simple double-well case).

3.1.1 Structure of metastable valleys

Let M denote the set of local minima of U. The starting point my € M of
the process x.(-) is fixed throughout the chapter. Note that my is a stable
equilibrium of @(-) by Theorem 2.1.1.

Let us fix H € R such that U(my) < H and define ¥ = ¥ as the set of
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saddle points of level H:

Y :={o0:U(o) = H and o is a saddle point of U } .

We take H such that X # (). We define
H={xzcR': Ulx)<H}, (3.1)

and we assume that H has multiple connected components; hence, metasta-
bility occurs.

We decompose H = Ho U H;, where H is the connected component of
H containing mg and H; = H \ Ho. Note that H; may not be connected.
Let My and M denote the sets of local minima belonging to Hy and H;,
respectively. Let D,(z) denote an open ball in R? centered at 2 with radius
r, and define

U, = U D.(m) .
meM;

In this chapter, we focus on the sharp asymptotics of the mean of the tran-
sition time from myg to U.. Figure 3.1 illustrates the notations introduced

above.

Notation 3.1.1. Since the sets such as ¥ and U, depend on H, we add the
superscript H to these notations, e.q., 2, when we want to emphasize the

dependency on H.

3.1.2 Eyring—Kramers constant for x.(-)

In this subsection, we fix o € 3 and suppose that H has only one negative
eigenvalue —\?. In the Eyring-Kramers formula for the reversible process
y.(+) obtained in [14], an important constant is the so-called Eyring—Kramers
constant defined by

o >\Cr

w = 3.2
Y 9ny/— det He (3:2)
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A A /

Sy VAV,

Figure 3.1: Example of landscape of the potential function U with five local
minima {m; : 0 < i < 4} and four saddle points {o; : 0 < i < 3}. We assume
that U(mgs) = U(my) and write H; = U(o;), 0 < i < 3. Our objective is
to compute the transition time from the local minimum mg to other local
minima. We can select the level H according to our detailed objective. By
taking H = Hy, we have M; = {my, my}; hence, we focus on the transition
time from myg to D.(m;) U D (my). This occurs at the level of H; since the
process must pass through o to make such a transition. For this case, we have
My = {mgy, m3, my} and M} = {mg3, my4}. On the other hand, by taking
H = H,, we have My = {m, my, m3, my}. For this case, we compute the
escape time from the metastable valley around my. The selection H = Hj is
not available since the condition U(my) < H is violated; hence H does not
contain my. This level is meaningful when we start from, e.g., ms. Finally,
the selection H = Hj is not appropriate as >y becomes an empty set. For
this case, we refer to Remark 3.1.4 (4) for further details.
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Now, we introduce the corresponding constant for the process x.(-). By

Lemma 2.2.7, H° 4+ LL? has only one negative eigenvalue and is invertible.

Let —u” denote the unique negative eigenvalue obtained in this lemma and
define the Eyring—Kramers constant at o by

ILLO.

wl = ————. 3.3

2my/— det He (3:3)

Then, by Lemma 2.2.8, we can prove the following comparison result for the

Eyring—Kramers constant.

Lemma 3.1.2. We have w® > wg

rev’

In Corollary 3.1.7, we prove that the process x(-) is faster than y.(-) on

the basis of this comparison result.

3.1.3 Eyring—Kramers formula for z.(-)

For A C R% let A denote the closure of A. Define
Yo = HoNH, C X (3.4)

We assume that Y, # 0'. For each o € %, the Hessian H has only one
negative eigenvalue as a consequence of the Morse lemma (cf. [71, Lemma
2.2]); hence, the Eyring-Kramers constant w” at o € ¥ can be defined as

in the previous subsection. Then, define

wy = Z w? . (3.5)

o€

!The case ¥y = () may occur, for instance, if we take H = H in Figure 3.1. We can
deal with this situation using our result by modifying H; see Remark 3.1.4(4).
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Let hy denote the minimum of U on H, and let M denote the set of the

deepest minima of U on H,:
b ={meMy:U(m)=he}. (3.6)

Define

1
vy = _— 3.7
0 mg/\:/tg v/ det H™ (37)

Now, we are ready to state the Eyring—Kramers formula for the non-reversible
process & (-), which is the main result of the current chapter. For a sequence

(@e)eso of real numbers, we write a. = o.(1) if lirré a. = 0.
€—>

Theorem 3.1.3. We have

Erol ] = [140(1)] — exp

(3.8)

Remark 3.1.4. We state the following with regard to Theorem 3.1.3.

1. Heuristically, the process x.(-) starting at mg first mizes among the
neighborhoods of minima of M, and then makes a transition to U,
by passing through a neighborhood of the saddle in ¥y according to
the Freidlin—-Wentzell theory. This is the reason that the formula (3.8)
depends on the local properties of the potential U at M§ and ¥y. A
remarkable fact regarding the formula (3.8) is that the sub-exponential
prefactor is dominated only by these local properties. This is mainly
because the invariant measure is the Gibbs measure u.(dx). It is ob-
served in [8] that an additional factor called “non-Gibbsianness” of the
process should be introduced in the general case (i.e., in the analysis of

the metastable behavior of the process z(+)).

2. Theorem 3.1.3is a generalization of [14, Theorem 3.2/, as the reversible

case is the special £ = 0 case of our model. Moreover, a careful reading
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of our arqguments reveals that the error term o.(1) is indeed O(e"/?

which is the one that appeared in [14, Theorems 3.1 and 3.2].

1
1 _
oge)

. The constants wy, vy, and hg and the set U, are not changed if we
take a different starting point my € Mg. In view of Theorem 3.1.3,
this implies that all the transition times from a point in Mg to U, are
asymptotically the same. For instance, if we take H = Hy in Figure 3.1,
the expectation of the hitting time Tp_(m,)up.(m.) 1S asymptotically the
same for the starting points mg, mg and my. This is because the pro-
cess . (+) sufficiently mizes in the valley Ho before moving to another

valley.

. Consider the case H = H,, where the potential U is given as Figure

3.1 so that we have L{€H2 = {my, my, ms, my}. However, in time scale

Hy—h
exp {u}, the diffusion process cannot move to the neighborhoods
€

of my and my, since oy is the only saddle point in 2512 and ms and
my are the only minima in the connected components of Hy whose

boundary contains a. Qur proof verifies this as well.

. We can tune H such that mygy s the unique local minimum of Ho.
For example, in Figure 3.1, we can achieve this by selecting H = Hs.
Then, the formula (3.8) becomes the asymptotics of the transition time
from my to one of the other local minima, and this is the classic form
of the Eyring—Kramers formula. We remark that all the existing stud-
ies [14, 51] on the Eyring—Kramers formula for metastable diffusion
processes have dealt with only this situation. On the other hand, our
result 1s more comprehensive in that we analyzed all the possible lev-
els by carefully investigating the equilibrium potential in Section 3.5.
Such a comprehensive result for a diffusion setting was barely known
previously, see [70] where a similar setting along with the possibility of

degenerate critical points has been discussed.
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6. We use Notation 3.1.1 and suppose that 25{0 = (. Then, we have
Hy — ho

€
investigate this mean transition time. Instead, we define

Ern, [ 7] > exp{ and the level Hy is not appropriate to

H* = sup{ H : U =y}

so that at level H* the gate path from my to Z/{GHO firstly appears and
hence S # 0. Thus, we can estimate Eqn [ 7m0 | by taking H = H*.

For instance, in Figure 3.1, we have 26{0 =0 and H* = H;.
7. By selecting £ appropriately, we can make wq arbitrarily large.

The proof of Theorem 3.1.3 is given in Section 3.3.

Double-well case

The Eyring-Kramers formula stated above has a simple form in the double-
well case. Recall the double-well situation illustrated in Figure 1.3. For this
case, the only meaningful selection of H is U(o), and Xy = {o} for this

choice. With this H, we can interpret Theorem 3.1.3 as following corollary.

Corollary 3.1.5. We have

. B 21 | —det He Ulo) — U(m,)
Eml[TDe(mZ)] — [1+0€(1)] ,UU dethl eXp € . (39)

This is the classical form of the Eyring—Kramers formula. With this simple

case, we explain why this result is a refinement of the Freidlin-Wentzell the-
ory. By [29, Theorem 3.3.1], the quasi-potential V'(-;m;) of the process x()
with respect to the local minimum my is given by V(x; m;) = U(x)—U(m,)
on the domain of attraction of m; with respect to the process x(-). Hence,

we can deduce the following large-deviation type result from the Freidlin—
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Wentzell theory:
lim € og By, [ 70, msy | = Ul@) — U(m)

In the formula (3.9), we find the precise sub-exponential pre-factor associated
with this large-deviation estimate.

We can also deduce from Corollary 3.1.5 a precise relation between the
mean transition time and a low-lying spectrum of the generator .Z, for the
double-well case. In [64], the sharp asymptotics for the eigenvalue A, of %,
with the smallest real part was obtained. Note that the generator .Z, is not

self-adjoint; hence, the eigenvalue might be a complex number.

Corollary 3.1.6. For the double-well situation, we suppose that U(my) >
U(my). Let A\ denote the one with smallest real part among the non-zero

eigenvalues of Z.. Then, the following holds:

1+o.(1) .

", (3.10)

B, [TD(ma) ] =

Note that A, as well as the error term o.(1) in (3.10) is in general a non-
real complex number. Suprisingly, it is verified in [64, Remark 1.10] that A, is
indeed a real number if U is a double-well potential and ¢ is sufficiently small.
We remark that the inverse relationship between the low-lying spectrum and
the mean transition time as in (3.10) has been rigorously verified in [13, 14]

for a wide class of reversible models including y.(-).

Comparison with reversible case

The Eyring—Kramers formula for the reversible process y.(-) has been shown
in [14, Theorem 3.2]. We can also recover” this result by inserting £ = 0. We

now explain this result using our terminology and we provide a comparison

*Indeed, our result with £ = 0 strictly contains what has been established in [14]. See
Remark 3.1.4-(3).
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between reversible and non-reversible cases. Write

_ 2 o
w07 rev. — wrev )

o€

and let £, ., denote the expectation with respect to the reversible process
y.(-) starting from = € R% Then, as a consequence of Theorem 3.1.3 with

£ = 0, we get the following corollary.

Corollary 3.1.7. The following holds:

v H—-h
Eino,rev[TUe] = [1+Oe(1)] 0 exp 0 .
Wo, rev €

Therefore, we have B, [, ] <E

o < Ky e[ T ] for all small enough e.

Proof. The first assertion follows immediately from the fact that wy, defined

in (3.2) corresponds to w? with £ = 0. The second assertion follows from

Lemma 3.1.2 which implies that wy > wg, rev- ]

In view of the fact that the dynamics y.(-) plays a crucial role in the
stochastic gradient descent algorithm, we might be able to accelerate this
algorithm by adding a suitable orthogonal, incompressible vector field to the
drift part.

3.2 Potential theory

In this section, we introduce the potential theory related to the process . (-).
As in the previous studies, we prove the Eyring-Kramers formula based on
the relation between the mean transition time and the potential theoretic
notions, and this relation is recalled in Proposition 3.3.1. The difficulty, es-
pecially for the non-reversible process, in using this formula arises from the
estimation of the capacity term appearing in the formula. In this chapter, as

explained in the Introduction section, we develop a novel and simple way to
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estimate the capacity. In this section, we explain a formula given by Propo-
sition 3.2.2 for the capacity which plays a crucial role in our method. We
remark that this formula itself is not new; the method for handling this for-
mula is the innovation of the current study, and will be explained in the
remainder of this chapter. To explain this formula, we start by introducing

the adjoint process, equilibrium potential, and capacity.

3.2.1 Adjoint process

The adjoint operator £ of £, with respect to the invariant measure p.(dx)

can be written as
*p Ule —-Ule 1 _
L f = eVlv. [e (Vf+zf£>] — (VU —£)-Vf+eAf. (3.11)

Note that the generator .£* defined in (2.18) is an adjoint with respect to
the Lebesgue measure, instead of u.(dx). The adjoint process ) (:) is the
diffusion process associated with the generator .Z; hence, it is given by the
SDE

dxi(t) = —(VU — £)(z(t)) dt + v/2e dw, .

€

Let P5* denote the law of the process &} (-). We can prove that the process

*

x:(-) is positive recurrent and has the unique invariant measure p.(dx) by

€

an argument that is identical to that for x.(-).

3.2.2 Equilibrium potentials and capacities

In the remainder of this section, we fix two disjoint non-empty bounded
domains A and B of R with C*“-boundaries for some a € (0, 1) such that
the perimeters o(A) and o(B) are finite, and d(.A, B) > 0. Now, we introduce
the equilibrium potential and capacity between the two sets A and B. Write
Q = (AU B)° so that 9Q = AU IB.

The equilibrium potentials iy g, hfai:kB : R? — R between A and B with
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respect to the processes (-) and x}(-) are given by
ap (@) =Pylra<ms] and s () = Py [74 < 75]

for © € RY, respectively.
The capacity between A and B with respect to the processes x.(-) and
x;(-) are respectively defined by

cap (A, B) = e/ (VhYy 5-mq)o(du:) and (3.12)
0A

cap? (A, B) = ¢ / (VS - ma) o(di) |
0A

where ng(x) is the outward normal vector to €2 at «; hence, ng(x) = —n4(x)
for x € 0A. Here, / f o(dp) is a shorthand of/ f(x) pe(x) o(dx). These

capacities exhibit the following well-known properties.
Lemma 3.2.1. The following properties hold.
1. We have

cap (A, B) = cap{(A, B) = cap;(B, A) = cap (B, A) .
2. We have
cap.(A, B) = e/ VA 5l” dpe = e/ |Vhf;lj‘3|2 djte .
Q Q

Proof. We refer to [51, Lemmas 3.2 and 3.1] for the proof of parts (1) and
(2), respectively. O

3.2.3 Representation of capacity

We keep the sets A, B, and € from the previous subsection. Then, for a
function f : R? — R that is differentiable at & € R, we define a vector field
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O, at x as

Qi(x) = Vi(x)+ %f(ac)f(ac) : (3.13)

Let C5°(R?) denote the class of smooth and compactly supported functions
on R%. Let

Cap ={fcCRY:f=1on A, f=0onB}. (3.14)

Hence, for f € %4 p, the vector field ®; is defined on R?. The following

expression plays a crucial role in the estimation of the capacity.

Proposition 3.2.2. For all f € €4 5, we have

e [ 197 Fhiys)dn. = can (A 5) (3.15)
Q

Proof. Since f is compactly supported, we can apply the divergence theorem
to rewrite the left-hand side of (3.15) as

¢ [ 19k ot — [ £( L) dc

o0

Since f = 1pa4 on 002 by the condition f € @4 g, the first term of the
above-mentioned expression is equal to cap, (A, B) by (3.12). On the other
hand, the second integral is 0 since Z.h%y s = 0 on () by the property of the

equilibrium potential. O

3.3 Proof of Eyring—Kramers formula

In this section, we prove the Eyring—Kramers formula stated in Theorem
3.1.3 up to the construction of a test function and analysis of the equilibrium

potential.
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3.3.1 Proof of Theorem 3.1.3

For convenience of notation, we will use the following abbreviations for the
capacity and equilibrium potential between a small ball around the minimum

mg and U,:

cap, = cap (D.(my), U, ) ,
he(*) = hp,moyu () and  RI() = B30 () - (3.16)

The proof of the Eyring—Kramers formula relies on the following formula

regarding the mean transition time.

Proposition 3.3.1. We have

€ - 1 *
B[] = [1+0.0] o [ Bduc. (317)

This remarkable relation between the mean transition time and the po-
tential theoretic notions was first observed in [14, Proposition 6.1] for the
reversible case. Then, it was extended to the general non-reversible case in
[51, Lemma 9.2]. Our proof is identical to that of the latter case; hence, we
omit the details. Now, the proof of Theorem 3.1.3 is reduced to computing
the right-hand side of (3.17). We shall estimate the capacity and integral
terms separately. We emphasize here that, even if we rely on the general
formula (3.17), the estimation of these two terms is carried out in a novel
manner. For simplicity of notation, hereafter, we write

e = Z7 e e (2me)? (3.18)
Our main innovation in the proof of the Eyring—Kramers formula is the new

strategy to prove the following proposition.
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Proposition 3.3.2. For wy defined in (3.5), we have
cap, = [1 4+ 0c(1)] aewp . (3.19)

We present our proof, up to the construction of a test function, in the

next subsection. Further, we need to estimate the integral term in (3.17).

Proposition 3.3.3. For vy defined in (3.7), we have
/ hedpe = [1+0.(1)] Z71 (2me) Y2 e=Mo/eyy, (3.20)
R4

We heuristically explain that the last proposition holds. Define G = {x :
U(x) < H— p} for small 8 > 0 and let G; = H; NG for i = 0, 1. Since the
process starting from a point in Gy may touch the set D.(m) before climbing
to the saddle point at level H, we can expect that hX ~ 1 on Gy. By a similar
logic, we have h] ~ 0 on Gj. Since i (G°) is negligible by (2.7), we can
conclude that the left-hand side of (3.20) is approximately equal to u.(Go),
whose asymptotics is given by the right-hand side of (3.20). We turn this
into a rigorous argument in Section 3.5.4 on the basis of a delicate analysis
of the equilibrium potential.

Now, we formally conclude the proof of Eyring—Kramers formula.

Proof of Theorem 3.1.3. The proof is completed by combining Propositions
3.3.1, 3.3.2, and 3.3.3. O

3.3.2 Strategy to prove Proposition 3.3.2

Instead of relying on the traditional approach, which uses the variational
expression of the capacity given by the Dirichlet principle or the Thomson
principle to estimate the capacity, we develop an alternative strategy in this
subsection. This strategy is suitable for non-reversible cases in that neither

the flow structure nor the test flow is used.

42



CHAPTER 3. EYRING-KRAMERS FORMULA

In Section 3.6, we construct a smooth test function ge € €p,_(mg),u. (cf.

(3.14)) satisfying the following property.

Theorem 3.3.4. We have

e/ [®,. - Vhe]due = [1+0.(1)] e wo + 0,(1) [ cap, ]2, (3.21)

where Q. = (D.(my) UU, )°.

The left-hand side of (3.21) corresponding to cap, by Proposition 3.2.2 is
believed to be equal to the first term at the right-hand side. Thus, the second
error term is somewhat unwanted and appears just because of a technical
reason explained in more detail at Remark 3.3.5. We can however absorb
this second error term to the first error term at the right-hand side of (3.21)
as illustrated in the proof below of Proposition 3.3.2. Note that we assume

Theorem 3.3.4 at this moment.
Proof of Proposition 3.3.2. By Proposition 3.2.2 and Theorem 3.3.4, we get

cap, = [1+4 0c(1)] acwy + oc(1) [ cap, Y2 .
By dividing both sides by «. and substituting r, = [Cape/ae]l/g, we can

rewrite the previous identity as

r2 = [1+0.(1)]wo + oc(1) 7 .

By solving this quadratic equation in ., we get 7. = [1 + 0c(1)] (wo)'/2.

Squaring this completes the proof. m

Now we turn to Theorem 3.3.4. The core of our strategy is to find a
suitable test function g. and to compute the left-hand side of (3.21). Indeed,
we construct g, as an approximation of the equilibrium potential h}(-) for the

adjoint process (cf. (3.16)). The reason is that, by the divergence theorem,
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we can write the left-hand side of (3.21) as
€ / [ @y, - Vhe]dpe = —/ he £ ge due + (boundary terms) . (3.22)
Qe Qe

To control the integration on the right-hand side, we try to make .£"g. as
small as possible (cf. Proposition 3.4.5); hence, in view of the fact that £ h} =
0 on €). by the property of the equilibrium potential, the test function g.
should be an approximation of 2. The main contribution for the computation
of the left-hand side of (3.22) comes from the boundary terms, and relevant
computations are carried out in Proposition 3.4.6.

The construction of g. particularly focuses on the neighborhoods of the
saddle points of ¥, as the equilibrium potential (and hence g., which is
an approximation of the equilibrium potential) drastically falls from 1 to 0
there. We carry out this construction around the saddle point in Section 3.4
on the basis of a linearization procedure that is now routine in this field,
e.g., [14, 51]. Then, we extend these functions around the saddle points of ¥
to a continuous function on R? belonging to 6D.(mo),u.- This process will be
performed in Section 3.6, and we finally obtain g. in (3.81). Then, we prove
(3.21) on the basis of our analysis of the equilibrium potential carried out in
Section 3.5.

Remark 3.3.5 ((Comparison with reversible case)). Our strategy is rela-
tively simple when the underlying process is reversible. In order to get a con-
tinuous test function g., we need a mollification procedure (cf. Proposition
3.6.2), and we must include an additional term o.(1) [o cap,]*/? in (3.21) to
compensate for this additional procedure. However, for the reversible case,
we can get a continuous test function without this mollification procedure (cf.

Remark 3.6.1) and we can prove that

e [ 100V dn = 1+ 0.(1)] a0
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instead of (3.21); hence, the proof of the Eyring—Kramers formula is more
straightforward. This is the only technical difference between the reversible

and non-reversible models in our methodology.

The remainder of this chapter is devoted to proving Theorem 3.3.4, and
in the course of the proof, Proposition 3.3.3 will also be demonstrated in
Section 3.5.

3.4 Construction of test function around sad-
dle point

We explain how we can construct the test function around a saddle point
o € Y. Section 3.4.1 presents a preliminary analysis of the geometry around
the saddle point. We acknowledge that several statements and proofs given
in these sections are similar to those given in [51]; however, we try not to
omit the proofs of these results, as the details of the computations are slightly
different owing to the differences between the models. Then, we construct the
test function p? on a neighborhood of o in Section 3.4.2. Finally, we explain
several computational properties of this test function in Sections 3.4.3-3.4.5.

These properties play crucial role in the proof of Theorem 3.3.4.

Setting

In this section, we fix a saddle point o € ¥, and simply write H = H? =
(V2U)(o) and L = L7 = (D£)(o). Recall that H has only one negative
eigenvalue because of the Morse lemma. Let —Aq, Ao, -+, Ay denote the
eigenvalues of H, where —\; = —\7 denotes the unique negative eigenvalue.
Let e = ej denote the eigenvector associated with the eigenvalue A, (—\g
if £ = 1). In addition, we assume the direction of e; to be toward H,, i.e.,

for all sufficiently small r > 0, o + re; € H,.
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By Lemma 2.2.7, the matrix H + L has a unique negative eigenvalue
—p = —p°. We can readily observe that the matrix H — L is similar to
H + L. To see this, first note that, since HIL is skew-symmetric by Lemma
2.2.6, we have HIL = —(HIL)" = —L'H. Therefore, we can check the similarity
as

H'MH-LYH = H'(H>*+HL) = H+ L. (3.23)

Hence, the matrix H — LT also has a unique negative eigenvalue —pu, and
let v = v denote the unit eigenvector of this matrix associated with the
eigenvalue —u. Finally, we assume without loss of generality that v - ey > 0.
Indeed, this cannot be 0 because of the following lemma, which implies that
(v-e)? >0.

Lemma 3.4.1. We have

d
1

v-H v = — 'vel +Zvek = ——<0.
k=2 K

d

Proof. The first equality is obvious if we write v = Z a;e;. Now, we focus
i=1
on the second equality. Note that H — L is invertible by Lemma 2.2.1 and

(3.23). Hence, we can compute

1
v H'w=v H'H-LYH-L)'v = ——v -H'(H- Lo
]
1 1
= —wv-v+-—v - H'LHHA v .
It I

1
Since |v|* = 1, the first term in the last line is ——. On the other hand, since

L'H = —(HL)" is skew-symmetric and H™! is symmetric, the second term in

the last line is 0. This completes the proof. O]

For two vectors u, w € R?, let u@w € R™? denote their tensor product,

ie., (u® w);; = ww,;, where u; and w; are the ith and jth elements of u
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and w, respectively. The following Lemma is a consequence of the previous

lemma and is similar to [54, Lemmas 4.1 and 4.2].
Lemma 3.4.2. The following hold.
1. The matriz H 4+ 2pv ® v is symmetric positive definite and det (H +
2uv @ v) = —det H.

2. The matriz H+ pv®wv is symmetric non-negative definite and det (H+
pv®v) = 0. The null space of the matriz H+pv®w is one-dimensional

and spanned by the vector H 'v.

Proof. By a change of coordinate, we can assume that e; is the ith standard

unit vector of R? such that H = diag(—\;, s, ..., Ag). First, we show that

H + pv ® v is non-negative definite. If v = -+ = v; = 0, then, we have

v? = p/A by Lemma 3.4.1; thus, H + pv ® v = diag(0, Ay, ..., \g) is non-
d

negative definite. Otherwise, for = Z z;e; € R, we can compute
i=1

d d
2
z- [ H+pvuv]e = —Alx%th)\kxijL,u < wa,) :
k=2 i=1
By minimizing the right-hand side over z; and using Lemma 3.4.1, we get

d
Z At — (Zizz Ty )
k=2 Zzzz v/ Mk

Y

which is non-negative by Cauchy—Schwarz inequality. This proves that H +
1 VR is non-negative definite. Then, the matrix H+2p v ®wv is non-negative

definite as well. By the well-known formula
det A+x®y) = (1+y'A'z)det A, (3.24)

along with Lemma 3.4.1, we can check that det (H+2pv®wv) = —det H > 0,
and thus, H+ 2p v ® v is indeed positive definite. Finally, we investigate the
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0,Co

0uB?

€

e

Figure 3.2: Illustration of the neighborhood structure around a saddle point
o.

null space of H + pv ® v. Suppose that w € R? satisfies (H + pv ® v)w = 0.
Since H is invertible, we can rewrite this equation as w = —pu(v - w)H 'wv.
Hence, the null space is a subspace of (H 'v). On the other hand, if w =
aH 'v for some a € R, we can readily check that (H + uv ® v)w = 0, and
hence, (H ') is indeed the null space. O

3.4.1 Neighborhood of saddle points

In this subsection, we specify the geometry around each saddle point o.
Figure 3.2 illustrates the sets appearing in this section.

We focus on a neighborhood of o with size of order §, which is defined
by
1
J = 0(e) = (elog—)1/2 : (3.25)
€
Let J be a sufficiently large constant that is independent of €. There will be
several class, e.g., Lemma 3.6.4, that require .J to be sufficiently large; we

suppose that J satisfies all such requirements. Define a box C7 centered at
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d
C7 = {J+Zaieg€Rd:—;—5<a1§J—5

= P
2Jo 2J6 .
and—wgajgw for 2§j§d}
J J

Now, decompose the boundary dC? into 0.CZ, 0_CZ, and 9,CZ such that

A2

d Js
0.0 = {U+Zaie;’€Rd:a1:i } (3.26)
i=1

8eC° = 9CT\ (0,C°UD_C7) .

5)
Lemma 3.4.3. Forx € 0,CZ, we have U(x) > H + ZJ252 for all sufficiently
small € > 0.

Proof. For x € CZ, by the Taylor expansion of U at o,
1 d
Uxz) = H+ 5 [ — \zd 4 Zmi] + 0(5%) . (3.27)
j=2

For x € 9y,C?, z; = :i:2J5/\/)\_Z- for some 2 < i < d. Therefore,

‘ 276 \2
a4+ Y e > -8 A (W> = 3J%52
J=2 i
Inserting this to (3.27) completes the proof. [

Hereafter, we assume that ¢ > 0 is sufficiently small such that Lemma

3.4.3 holds. Define, for € > 0,

Ke={xcR":U(x) < H+ J**} and
K={xecR":U(x)< H+J*} (3.28)
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so that H C K. C K holds.

By Lemma 3.4.3, the boundary 9,C? does not belong to K. The neigh-
borhood of o in which we focus on the construction is the set BY = C7 N K.
Now, we decompose the boundary 087 into 0. B, 0_B?, and 9,7 such that

0B = 9,7 NB° and 9B’ = OB, \ (0.8 UI_B7)

so that we have U(x) = H + J*67 for all £ € 9yB% by Lemma 3.4.3.

Now, the set ICc \ Uges, B consists of several connected components. Let
‘H denote one such component containing My and let H] denote the union
of the other components such that M; C Hj. By our convention on the
direction of the vector e; = e] mentioned earlier in the current section, we

have

0.B° C OM5 and 0_B° C OHS . (3.29)

This is illustrated in Figure 3.2.

3.4.2 Construction of test function around o via lin-

earization procedure

We construct a function p° : RY — R on BY

7, which acts as a building

block for the global construction carried out in the following sections. As
mentioned in Section 3.3.2, we would like to build a function approximating
the equilibrium potential h} between D,(my) and U,. Thus, we expect pZ to
satisfy Zp? ~ 0, where £ is defined in (3.11). To find this function, we
linearize the generator £ around o by the first-order Taylor expansion such
that, for smooth f,

Lif = eAf(z) — Vi(z) (H-L)(z),

and we solve the linearized equation .,éfk p? = 0. This equation can be ex-

plicitly solved using the separation of variables method. Note that in view of
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(3.29), we would like to impose boundary conditions of the form pZ ~ 1 on
0+B7 and p? ~ 0 on 0_B7. A test function satisfying all these requirements

is given by

1 [, _
V7 (z) = —/ cECd L aeBE (3.30)

lod
CE

X up 2
g = / et qt = 225 (3.31)
e V'

Note that v and p are defined at the beginning of the current section. The

o0

where

crucial technical difficulty arises from the fact that the function p? is not
constant along the boundary 0. B unless the dynamics is reversible since e]
and v are linearly independent if £ ## 0. This makes it difficult to patch these
functions together. This issue will be thoroughly investigated in Section 3.6.

Since p? is smooth on B7, we can define ®,o on BY. Next, we must
investigate the properties of p7 and ®,0. For the simplicity of notation, we

assume that o = 0 in the remainder of the current section.

3.4.3 Negligibility of .£"p7 on BY
Our construction of p7 suggests that Z"p? is small on BZ. The next lemma

precisely quantifies this heuristic observation.

Notation 3.4.4. Let C' > 0 denote a positive constant independent of € and

x. Different appearances of C may express different values.

Proposition 3.4.5. We hcwe/ L p? | dpe = 0e(1) e
57

Proof. By inserting the explicit formula (3.30), we get

n

(Zo)(@) = () e EE [ (VU - O)(@) - v~ p(-v)

€
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Now, by applying the Taylor expansion of VU and ¢ around o, for © € BY,

(L)) = ~(0) " e EE [{(H - Lw+ 0@ } 0+ u(z o)

= —(c7) et @y [m (—pw) + plx - v) + O<52)] ’

where the last line follows from the fact that v is an eigenvector of (H—1L)1
H — L' associated with the eigenvalue —u. Now, recall ¢ from (3.31) to
deduce that, for some constant C' > 0,

2
C'o — £ (z-v)

—— e 2
cl/2

2

[ (L7 () |

IA

By the second-order Taylor expansion, we can write
1 3 o
U(w):H+§w~Ha:+O(5) forx € BY .

This expansion will be repeatedly used in the subsequent computation. Since
e=0U/¢ = 1 4 0.(1) by the definition (3.25) of 4, we can conclude that

52
L% ldp. < C e Hle e~ 2@ (HIuwdv)Z 100 3.32
e Pe 7 /2
Be € Be

Now, the estimation of the last integral remains. This part is similar to [51,
Lemma 8.7]; however, we repeat the argument here for the completeness of
the proof. By part (2) of Lemma 3.4.2, let p; = 0 and ps, ..., pg > 0 denote
the eigenvalues of H + pv ® v and let uy, ..., uy denote the corresponding
unit eigenvectors. Let (uo,--- ,uy) denote the subspace of R? spanned by

vectors ug, - -+, u4. Since BY C C7, there exists M > 0 such that

B2 | (awi+(us, .. ug)).

a:la|<Mé

Hence, along with the change of variables & = Zyiui, we can bound the
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last integral in (3.32) by

Mo 1 d ) e
- d ot d ] d = C 5 - .
/; |: /R;cll b { 2¢ ; PrYk } Y2 Ya | AY1 €

M6

By inserting this into (3.32), we get / | £ |dpe < C6* et a,. Since
Bg

5% e ! = 0.(1), the proof is completed. ]

3.4.4 Property of ®,- at the boundary of B

Next, we prove the following property of the vector field ®,-. Recall w? from
(3.3).

Proposition 3.4.6. We have
1
e[ [(2n-3e) e]otdn) = (1+omlaw. (3
o4 Be €

This estimate is indeed the key estimate in the proof of Theorem 3.3.4.
The left-hand side of (3.33) corresponds to the boundary term in (3.22). The
proof of this proposition is slightly complicated. Hence, we first establish some
technical lemmas. For simplicity of notation, we assume in this subsection

that e; is the ith standard normal vector of R?; hence, we can write
H = diag( =X, A2, ..., Ag) and v = (v, ..., vq) .

Change of coordinate on 0,57

First, we introduce a change of coordinate that maps 0,87 to a subset of
R4 to simplify the integration in (3.33)
For A € R™ and u = (uy, ..., ug) € R, define A € RU-Dx(-1) 49
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w e R as

A = (Ai,j)2§i,j§d and ﬂ = (Ug, . ,Ud) y (334)

respectively. It is important to select a point of 9,87 corresponding to
the origin of R4 to simplify our computation. To this end, define v =
(’727 R ’Yd) S Rd_l as

\L/2

1 Uk
= ——-—J0 k=2 ....d. )
Vi v /\kJ ) ) ) (335>

Note that v; # 0 by Lemma 3.4.1. Define a map II. : 9,8 — R%! that
represents the change of coordinate as

M (x) = &+~ . (3.36)

Our careful selection of « ensures that this map simplifies the computation

of the crucial quadratic form.

Lemma 3.4.7. For all x € 0,87, we have

- (H+pvov)e = (x) (H+po@0) I (z) .

Jé

Proof. Fix x = ( —5,
()\1/2

Ta, ..., Tq) € 04B7 and write IL.(z) =y = (3o, ...,

ya). Then, by Lemma 3.4.1, we can write

d 1/2
Jé _ JoN
T-v=—zv1+ ) (Ye— W)k =Y U+ .
/\}/2 kz:; MU
Thus, we can write @ - (H + pv ® v)x as
d 1/2
~JOA 2 ~
—A1$3+2Akxi+u(y-v+ : ) =y (H+ o)y
k=2 po1
54
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The correction vector = is designed to clear the linear terms and constant

term here. ]

We can now show that the image of I1.(0,B7) is comparable with a ball

centered at the origin with a radius of order §.

Lemma 3.4.8. There exist constants r, R > 0 such that
DY V(0) C IL(9,B7) € Dy (0) . (3.37)

where DY(0) denotes a sphere on R centered at the origin with radius

a.
Proof. Since 0, B7 C D(C%_I)(O) for sufficiently large C' > 0 and |v| = O(9),
the existence of R is immediate from the definition of II..

Now we focus on the first inclusion of (3.37). For v € R%™! defined in
(3.35), we write

Jo
_ d..,. _ J9 d
Ps = {wER .xl—)\}ﬂ} Cc R* and
_ Jo

Then, by the Taylor expansion and Lemma 3.4.1, we can check that

A
UF) = H— == J*8+0(5%) < H— cyJ*? (3.38)
2 pvy
for all sufficiently small € > 0, provided that we take cq to be sufficiently
small. Therefore, there exists » > 0 such that D,s(F) N Ps C 0;B7. Since
II.(7) = 0, we have Df,gl*l)(ﬂ) = He(DfﬂZ*l)(i) N Ps). This completes the

proof. O

Now, we present three auxiliary lemmas (Lemmas 3.4.9, 3.4.10, and 3.4.11)
that will be used in several instances including the proof of Proposition 3.4.6.

The proofs of these technical results are deferred to the next subsection.
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Lemma 3.4.9. The matriz H + 1o ® v is positive definite and

d

~ 2
det(H—F,u’TJ@'TJ):,uK—l Ak -
U=z

Proof. By (3.24) and Lemma 3.4.1,

o~ ~ o~ 2 o~
det (H+puo®@0) = (14 0 H ' %) det H = % det H .
1

[l

Recall 0,C? from (3.26) and define, for a > 0,
oyCe = {x €9, C° :x-v>ald} , (3.39)
02°C = {x €09,C7 :U(z) > H + aJ?5*} . (3.40)

Lemma 3.4.10. There exists ag > 0 such that, for all a € (0, ag),
oyCo uaTCe = 0,C .

Hereafter, the constant ag always refers to the one in the previous lemma.

For a > 0, we write

0yB° = 0,B°N0L°C° = {x €0, B :x-v>ald}, (3.41)
07°B7 = 0,87 NIYCT = {x €0, B :U(x) > H+aJ?*}; (3.42)

hence, we have

0,B% = 9-B U BT (3.43)
for all a € (0, ag) by the previous lemma. Now, we introduce the last lemma.

Lemma 3.4.11. Let D be a positive-definite (d — 1) x (d — 1) matriz, Then,
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for all uy, uy € R and c € (0, 1), we have

/ Y w2 t0 gy g,
11 (83 BZ ) {yeRi- iy >—cs} Y - U1+ 0

(27T6)(d_1)/2

= Lo )

Now, we are ready to prove Proposition 3.4.6.

Proof of Proposition 8.4.6. In view of the definition of ®,. given in (3.13),

we can write
1
e/ [épg - —4 ceroldu) = I — I, (3.44)
84 Bg €
where

L=c[| V@) eoldn) and L :/ (1= ) (€-e1) o(dpe) -
04+ BZ 04+ BZ

First, we compute I;. By the explicit form of pJ and the Taylor expansion of

U, we can write

I = [1+oe(1)]vlzi€,/2ime—’f /MG e~ 2T EHIET S (Ga)  (3.45)

By the change of variables y = II.(x), the last integral can be expressed as

_ (d—1)/2
/ e ET gy = (14 0,(1)] 0 ,
T (94 Be) \/det(H+uz7®17)
where the equality follows from the change of variables z = e /%y and

o7

&

| &1
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Lemma 3.4.8. Summing up, we get

1/2
vy 2 a

27?\/det(]ﬁl+u5®5)

L = [1+0/(1)] (3.46)

Next, we consider I5. Let us take a € (0, ag), where qq is the constant in

Lemma 3.4.10, and decompose
Iy = Iy + Iz, (3.47)

where
o= [ s eatdn),
oy Be

Iy = / (1— 30 (£-e1) old) .
94 Be\Oy “Be

First, we compute I3 ;. Recall the elementary inequality

b b2 > 2 1 2
—b2+1e < /b e dt < be orb>0 (3.48)

Now, for & € 8};“83, since we have H(w -v) — oo as € — 0, we obtain
€

from the definition of p? and (3.48) that

/2

@) 2 (@ ) exp{~L-(@-v)*}.  (349)

By the Taylor expansion of £, we have

L=y (@) = [1+0.(1)]

Lx)-e = Lx-e +0(5). (3.50)

Our plan is to insert (3.49) and (3.50) into I to complete the proof. To this
end, we first explain that we can ignore the O(6?) term in (3.50). By (3.49),

o8

&

| &1
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the Taylor expansion of U, and Lemma 3.4.2, we have

@ [ - oln)
ayBg

) 1/2
<cZ GH/E/ exp { —ﬁw-(H—l—uv@v)az}a(dw)
€ oy *Be 2e
A 1/2 5d 1/2
< CEZ—e’H/Ea(mB;’) - CZL el = o.(1)a, . (3.51)

Hence, by combining (3.49), (3.50), and (3.51), we can write

_ [1+0€<1)]a66 — Lz [Htpoevlz Lz - e
b= odl et o e sy EX e

(3.52)
By the change of variables y = Il.(x) and Lemma 3.4.7, we can write the

last integral as

ot — J8u Vi
Y L'v v1 Zk:2 L Ak d
ToA Yy
vy

= <—MLH_IU)/ o~ 2y HHuvsly v ’lf
(04 B )N {y:y-o>¢' I8} Y- v+

/ e—iyﬂﬁpru%@%]y
(84 B)N{y:y-o>c Jo} Yy v+

JoM
po1

T, Y
1

A
for some w € R and ¢ = a — =, Take a € (0, ap) to be sufficiently
Huy
small such that ¢ < 0 (which is possible by the statement of Lemma 3.4.10).
Evaluating the last integral via Lemmas 3.4.8 and 3.4.11 and inserting the

result into (3.52), we conclude that

p? (~LH 'v) - e,

I = o0(1)ae+[1+0(1)] —
2y det (H + 1% @ B)

(3.53)

Next, we consider I 5. By Lemma 3.4.10, we have 0,87 \ 0y °B° C
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2
07 *BY; hence,

¢ e Hle e 50, B%) . (3.54)

C — xr)/€e
|]2,2| < 7 /1 e U=)/ O’(dw) < —
e JopBe €

N

where we applied trivial bounds® for |1 — p? ()| and £ in the first inequality,
while we used the condition U(x) > H + aJ 25% for x € 6&’ “B. in the second

one. Since ¢(04B8,) = O(6%71), we get

C’éd_l
|| < ——— ¢/ =0.(1) (3.55)

Ze
for sufficiently large J. Hence, I5 o is negligible. By combining (3.47), (3.53),

and (3.55), we get
1/2 —LH-! X
o v-e (3.56)

Iy = o) ae +[14+0(1)] =
QW\/det(H—f—u'tNJ@'TJ)

By (3.46) and (3.56), we obtain
1/2 LH! .
plwHLH ) e (3.57)

2my/det (H+ 1% ©3)

II_IQ = [1"‘06(1)]06

Since HL = —L'H by the skew-symmetry of HL, we have LH ! = —H 'L,
Hence,
(v+LH 'v)-e;=1-H'LYv-e; = H'(H-L)v-e

=—pH 'v-e = )%'v-el = M/\—zil (3.58)

since —p is an eigenvalue of H — LT associated with the eigenvector v and

3Since 9, B C K where K is defined in (3.28) we can bound £ by the L*(K) norm of
£. This argument will be used repeatedly in the remainder of the chapter without further

mention.
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H' = diag(—1/A1,1/A2, -+ ,1/)g). Inserting this computation and Lemma
3.4.9 into (3.57), we get

L
[Ties A

L -1, =[140(1)]c = [14 o0.(1)] e w?

This completes the proof. n

3.4.5 Proof of Lemmas 3.4.10 and 3.4.11
d

Proof of Lemma 3.4.10. By Lemma 3.4.1, we have A\ ZUZ/)\k < vi. Thus,

k=2
there exists gy € (0, v1) such that

IM

d
)\1 + 80 Z )\ U1 — 60)2 . (359)
k=2

Y 2, A}, and we claim that this constant ag satisfies

Let ap = gomin{l, A\,
the requirement of the lemma.

Fix a € (0, ap), € J,.C, and suppose, on the other hand, that
80@ andU() H < aJ°0 <60/\1

x-v < ald < (3.60)

1
Since U(x) — H = —~x - Hz + O(6*) by the Taylor expansion, the latter

2
252
condition implies that « - Ha < ¢ for all sufficiently small € > 0.
Jo L
Write ¢ € 0,.C. as « = )\1/2 (61 + Zxkek) such that we can rewrite

k=2
the two conditions of (3.60) respectively as

d
0 <wv—eg < —kaazk and Z)\kxi < A1+ €.

k=2 k=2
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By these two inequalities and (3.59), we have

which contradicts the Cauchy—Schwarz inequality; hence, the claim is proven.
]

Proof of Lemma 3.4.11. Write ¢ = ((e) = \/log% and let Q. = I1.(0.B.).

Then, by the change of variables z = ¢ /%y, we can write the integral in the

statement of the lemma as

C(d_l)/2 / LM 6_(1/2)z.]D)ZdZ '
6*1/2Qem{zeRd—lzz,ulz_cc} z - ul +<’

Fix 0 < a < 1. Then, since ( — oo as € — 0, by Lemma 3.4.8,
foé;l)(ﬂ) C e, n{zeR" 2z uy > —cC}

for all sufficiently small € > 0. Now we decompose the integral into

[ / +/ | T LS ccupmenagy
DU N 120000 (000 (2RI iz 2} | 2 UL
(3.61)
Let us consider the first integral. Note that
sup ‘Z u2—i—§_1‘_06(1)
zGD(d_U(O) Z Ul +C
r(
Thus, the first integral is
9 )([@-1)/2
[1+o0.(1)] / e~ (1/2)zDz 7, _ [14 0.(1)] L ’ (3.62)
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since foé;l)(ﬂ) TR as e — 0.
Now, we focus on the second integral. Since e */2Q, C Dg{l)(ﬂ) by
Lemma 3.4.8, and since z - u; > —cC for ¢ € (0, 1) by the statement of

the lemma, there exists C' > 0 such that

’z uz—l—C‘

su
D z: U,1+C

Z€671/2Q5
Hence, the absolute value of the second integral in (3.61) is bounded from
above by

/ e~ W=Dz 15 — o.(1) . (3.63)
(d—1) (d—1)
Dl 0\ Pl (0)

By combining (3.61), (3.62), and (3.63), we complete the proof. O

3.5 Analysis of equilibrium potential

In this section, we establish a bound on the equilibrium potential k. and A}
in Proposition 3.5.1. On the basis of this bound, we prove Proposition 3.3.3
in Section 3.5.4. Further, we remark that this bound plays an important role
in the proof of Theorem 3.3.4 (cf. Section 3.6.4).

For two disjoint non-empty sets A, B C RY, let I' 4 8 be a set of all Cl-
paths v : [0,1] — R? such that v(0) € A and ~(1) € B. Then, let 4 5
denote the height of the saddle points between A and B:

Hap = inf sup U(~(t)).

7€l4, B te0, 1]

3.5.1 Estimates of equilibrium potentials i, and h’

In this subsection, we prove the following proposition regarding the so-called

leveling property of the equilibrium potential.
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Proposition 3.5.1. We can find a constant C' > 0 satisfying the following
bounds.

1. For all y € Hy, the following holds:

mo) — H
he(y), hi(y) > 1—Ce @ exp )y}, De(mo) |

2. For all y € Hq, the following holds:

U(y)—H'

€

he(y), hi(y) < Ceexp
The proof of Proposition 3.5.1 relies on the following two bounds on the
capacity.

Lemma 3.5.2. There exists C' > 0 such that for all y € Wy and m € M,
cap (De(y), De(m)) > C ' Z7 e P necem/e
Lemma 3.5.3. There exists C' > 0 such that for all y € Ho,
cap,(De(y), U.) < C Z-te /e

We prove Lemmas 3.5.2 and 3.5.3 in Sections 3.5.2 and 3.5.3, respectively.

Now, we prove Proposition 3.5.1

Proof of Proposition 3.5.1. Since the proofs for h, and h; are identical, we
consider only h.. In [51, Proposition 7.9], it has been shown that there exists

C' > 0 such that
cap (D.(x), A)

cap(De(x), B)
provided that A and B are disjoint domains of sufficiently smooth bounds.

has(x) < C (3.64)
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For part (1), we can use this bound to get

cap.(Dc(y), U.)
cap (De(y), De(my))

1—he(y) = hu, po(mo)(Y) <

Now, by applying Lemmas 3.5.2 and 3.5.3, we complete the proof of part (1).
For part (2), we fix y € H;. Then, again by (3.64),

cap (De(y), De(my))
cap(De(y), Ue)

he(y) = ho,(mo),u.(y) <

By the same logic with the proofs of Lemmas 3.5.2 and 3.5.3, we get

—H/e,—HJe
cap,(Du(y), De(ma)) < 2" and

Ze
Ce

€

e_f){y}aue /E .

cap (De(y), Ue) =

Since U, contains all the local minima of M; and H; is a subset of the domain

of attraction of M, we have 9,1, = U(y) and the proof is completed. [

3.5.2 Proof of Lemma 3.5.2

For the lower bound case, the proof is a consequence of the existing estimate
for the reversible case. Let capi(+, -) denote the capacity with respect to the
reversible process y.(-) given in (1.3), whose generator is (1/2)(%. + £).
Then, it is well known that (cf. [32, Lemma 2.5]) for any two disjoint non-
empty domains A, B € R? with smooth boundaries, we have the following
equation:

cap (A, B) > capi(A, B) . (3.65)

Therefore, it suffices to show the inequality for cap?(D.(y), D.(m)), instead.
The lower bound for this capacity can be obtained by optimizing the integra-
tion on the tube connecting D,(y) and D, (m). This is rigorously achieved by

a parametrization of this tube. When we parametrize the tube successfully,
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we can use the idea of [14, Proposition 4.7] to complete the proof.
Let w : [0,L] — R? be a smooth path such that |w(t)] = 1 for all
t €0, L]. For r > 0, define A,.(0), A,(L) by

A 0) ={xeR: 2 -w(0) <0, |z —w0)]<r}
A(L) ={zcR":x - w(L)>0,|z—w(l)<r}

and define the tubular neighborhood of w of radius r by
w, = {xeR: | —w(t)| <r for somet €[0,L]}\ (A.(0)UA.(L)).

For p > 0, let D,gdfl) be a (d — 1)-dimensional sphere of radius p centered at

the origin.

Lemma 3.5.4. There exists ro > 0 such that [0, L] x Df,ff_l) is diffeomorphic
to wy,. Furthermore, we can find a diffeomorphism ¢ : [0, L] x Dﬁg_l) — Wy,
of the form

o(t, z) = w(t) +A(t)z (3.66)

for some smooth d x (d — 1) matriz-valued function A(-) of rank d — 1, and

it satisfies

dp
a(t, z)

1
’ det ’ > 5 on [0, L] x DY~V (3.67)

T0

Proof. The proof needs to recall several notions and results from differential
geometry. We refer to [56] for a reference. We regard w = w([0, L]) as a
one-dimensional compact manifold. Let Nw C R? x R? denote the normal
bundle of w. By the tubular neighborhood theorem (cf. [56, Theorem 6.24]),
there exists 1o > 0 such that w,, is diffeomorphic to Nw,, = { (p, v) € Nw :
|v| < ¢ }. The diffeomorphism E : Nw,, — w,, is given by E(p, v) = p+v.
Since w is contractible, the vector bundle of w is trivial; thus, Nw is diffeo-
morphic to w x R Let ¢ : w x R — Nw denote the corresponding

diffeomorphism. Since this diffeomorphism preserves the vector space struc-
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ture, the function ¢(p, z) is linear in z and satisfies |m2(¢(p, 2))| = |z| where
7y R?T x RY — RY is the projection function for the second coordinate.
Since w x R4 is a trivial bundle of rank d — 1, there are d — 1 smooth
sections 0; @ w — R4 which are linearly independent. By the Gram-—
Schmidt operation, we may assume that they are pointwise orthonormal, i.e.,
oi(p)-oj(p) = 6; ; for all 4, j and p € w. Define a d x (d — 1) matrix B(p) =
[B1(p), .-, Ba-1(p)] by Bi(p) = m(o(p, 0i(p))) for j =1,...,d—1. By
the smoothness of ¢ and o;, we can observe that all the elements of B(-) are
smooth. Then, the diffeomorphism ¢ : [0, L] x DY — w,, can be written

p(t, 2z) = o(w(t), 2) = w(t) +Bw(t))z .

We can now take A = B o w to get (3.66). Now we consider (3.67). We can
write 9
2 .
t,0) = t), A(t)] .
St 0) = [a(t), Al

Since all the column vectors in the matrix on the right-hand sides are normal

D
—_— =1 H
) (t, 0)’ ence, by

taking ro to be sufficiently small, we get (3.67). O

and orthogonal to each other, we have }det

Proposition 3.5.5. Let w : [0, L] — R? be a C*-path connecting y and m
such that U(w(t)) < M and |w(t)| = 1 for all t. Moreover, let f be a smooth
function such that f =1 on D(y) and f =0 on D.(m). Then, there exists
a constant C > 0 such that

e/ |V |2dpe > C L et Z7 e M/e

70

where 1 is the constant obtained in Lemma 3.5.4 for the path w.
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Proof. By Lemma 3.5.4, we have

‘ / V1 [Pdp.

70
L
| VF(w(t) 4+ At)z) |? e V@O+AO2/e gt g
pl=b Jo

€

>
- 27

for € € (0,79), where the factor of 2 appears because (3.67) is used for
bounding the Jacobian of the change of variables from below. For (t,z) €
[0, L] x DY we have

& Tl +Ah)2)
= VS(wlt) +AW0)2) - (@) +A0)2) < 2 V(@) +AD2)]

where the last inequality holds for sufficiently small € since |w(t)| = 1 and

|z| < e. Summing up, we can write

6/ | Vf I dpe

Wr

0
S _€ / / L ‘if(w(t)nLA(t)z) C VOO gy 1 (3.68)
— 4Ze Jpe-v Jy Ldt | |

Now, we can apply the idea of [14, Proposition 4.7]. Indeed, we can fix z €
D=V and write f,(t) = f(w(t)+A(t)z). Then, we can obtain the minimizer
2

‘ L
d
of the integral/ Efz(t) e~ U(w(t)+A(t
0

)2)/edt explicitly as

ftL cU(w(s)+A(s)2) /e gg

- foL eU(w(s)+A(s)2) /e Jg

f=(t)

68
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Inserting this solution into (3.68) gives

L -1
€
Vf 2y, > [/ U(w(t)+A®)2) /€ gy dz .
e/w ‘ f’ fe = 4Zﬁ /1;&‘11) 0 ‘ z

T0

Since |z| < e, we have U(w(t) + A(t)z) < M + C ¢ for some constant C' > 0,
and the proof is completed. O

Now, we are ready to prove Lemma 3.5.2.

Proof of Lemma 3.5.2. Fix y € Ho and for some L = L(y), let w : [0, L] —
R? be a C'-path connecting y to D.(m) such that U(w(t)) < Hiyy.p.(m)
and |w(t)] = 1 for all t € [0, L]. Since Hy is bounded, we can find Ly
such that L(y) < Lo for all y € Hy. Then, recall the diffeomorphism ¢ :
0, L] x Dﬁg_l) — wy, constructed in Lemma 3.5.4. Then, e

capt(D.(y), Dulm)) = [ [VH ), [Pt

Wrq

S

where h7) (1), 7. (my (") 18 the equilibrium potential between De(y) and D(m)
with respect to the reversible process y.(-). Hence, by Proposition 3.5.5 and
the fact that we can take L(y) to be uniformly bounded by Lg, the proof is
completed. O

3.5.3 Proof of Lemma 3.5.3

The upper bound cannot be proven by a comparison with reversible dynam-
ics as in the lower bound case unless the dynamics satisfies the so-called
sector condition, and that is exactly what has been used in [51]. However,
the dynamics @.(-) does not necessarily satisfy the sector condition; hence,
we must develop a new argument. We believe that our argument presented

below is sufficiently robust to treat a wide class of models.
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Proof of Lemma 3.5.3. For each set A C R? and 7 > 0, define
Al = {2z eR?: |z —y| <7 forsomey €A} . (3.69)

Suppose that e is sufficiently small such that 7—[([)24 is disjoint from U, and
’H([fﬁ] C K (cf. (3.28)). Take a smooth function ¢, : R? — R such that, for

some constant C' > 0,

_ d _ d\ a0 ¢
g =1onHy , g =0onR*\Hy" , and |Vg ]| < ?17_[%26]\%%6] )
(3.70)

Since qc € Cp.(y),u. (cf. (3.14)), we can deduce from Proposition 3.2.2 that
1
cap.(D.(y), U.) = € / [qu -Vhe + quﬂ : Vhe} dte . (3.71)
Qe

By the divergence theorem and (2.3), the second term on the right-hand side

can be rewritten as

/ m%wwmgdwa—/Vuv%wwm. (3.72)
00

Qe

Since he = 1op,(y) on 0 = OU U 0D (y), g = 1 on 0D (y), and ng, =
—Np, (y), the first integral of (3.72) becomes

[ temngloe) = [ (Vo dur [ (69n)@)de (373
9Dc(y) De(y) De(y)

by the divergence theorem again. Note that the last two integrals are 0 by
(2.3) and (2.2), respectively. Hence the first integral of (3.72) vanishes. For
the second integral of (3.72), by the trivial bound |k < 1 and the last

condition of (3.70), we have

C
eZ,

/ e V@/ede < S efle (3.74)
H%QE]\H([;]

€

Qe

N
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where the second inequality follows from the fact that U(xz) = H + O(e) on
HEI\ HE and that vol (HP9\ #17) = O(e). Summing up, we obtain from
(3.71) that

cap.(D(y), U.) < € / [Vge - VRS dpe + % e Hle (3.75)

Qe €

By the Cauchy—Schwarz inequality and part (2) of Lemma 3.2.1, the integral

on the right-hand side is bounded from above by the square root of

E/Q | Ve |” dpe x cap(De(y), Ue) .

By a computation similar to (3.74), we get

C C
e/ IVae|* due < / e U@/eqe < — e Hle,
Q. €Zc Jplh\pld

Therefore, we can bound the integral on the right-hand side of (3.75) by

N

C —H/ 1/2 1 C —H/
€ < | = €
[_ZE e cap.(D.(y), L{e)} < 5 [ 7. e + cap (De(y), U)

Inserting this into (3.75) completes the proof. O

3.5.4 Proof of Proposition 3.3.3

Now, we are ready to prove Proposition 3.3.3, which is a crucial step in the

proof of the Eyring—Kramers formula.

Proof of Proposition 3.3.3. Take B > 0 to be sufficiently small such that
there is no critical point ¢ of U such that U(e) € [H — 5, H). Then, we
can decompose G = {x : U(x) < H — B} into Gy, G1, where Gy C H, and
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g1 C H,. Write

/ h:dp. = / / / h* die (3.76)
Go G1 ¢

and consider the three integrals separately. First, for y € Gy, we have
Ny} D.(mo) < H — 3; thus, by part (1) of Proposition 3.5.1, we have | h}(y) —
1| < Ce?e /¢ =0,(1). This bound ensures that

/g B dp = [1+001)] pe(Go) = [140.(1)] Z-1 (2me)¥2 e~hole o (3.77)

where the second identity follows from the Laplace asymptotics for the func-

tion e Y/e,

For the second integral, by part (2) of Proposition 3.5.1,

/ hidu. < % / elU@=Hl/e o =U@)/¢ g — o.(1) Z7! (27T6)d/2 eho/eyy

1 (3.78)
where the last line follows from H > hy. Finally, for the last integral, by the
bound |h}| <1 and (2.7),

/ hedpe < pe(GS) < Z7 e =R = o (1) Z71 (2me) 2 e~/ ey,

(3.79)
By inserting (3.77), (3.78), and (3.79) into (3.76), the proof is completed. [J

3.6 Construction of test function and proof
of Theorem 3.3.4

In this section, we finally construct the test function g. € 6p,(m,),u. satisfying
Theorem 3.3.4.
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3.6.1 Construction of g. and proof of Theorem 3.3.4

Recall ‘H{ and p? from Section 3.4.1 and (3.30), respectively, and define
fo:RY - R as

pZ(x) @« € B for some o € ¥,
fe(x) =

1y (x) otherwise .

The function f. is not continuous on K, in general; instead, it is discontinuous
along the boundaries 0.8 and 0K..

Remark 3.6.1. [t can be readily checked that the function f. is continuous

on K. if we consider the reversible case, i.e., £ = 0.

For convenience, we formally define V f.(x) as

Vp? € B? f €Yo,
Vi (x) = pZ(x) x € B? for some o € ¥ (3.80)

0 otherwise .

Note that this is not a weak derivative of f,; hence, elementary theorems
such as the divergence theorem cannot be applied to this gradient. With this

formal gradient, we can define ®; formally as

el(x) xeH,
1
Py (x) = V(z)+ - fe(@) &(z) = Do (x) € B for some o € ¥,

0 otherwise .

Note that this is a formal definition, and Proposition 3.2.2 is not applicable
to @y..

Now, we mollify the function f. as in [51] to get the genuine test function
ge. To this end, consider a smooth, positive, and symmetric function ¢ : R? —
R that is supported on the unit sphere of R% and satisfies / o(x)dx = 1.

R4
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Then, for r > 0, define ¢,.(x) = r~¢(r—'x). For the function f : R* — R
and vector field V : R? — RY, we write

f7 = fxdp and VI = Vg,

where % represents the usual convolution. In the remaining subsections, we
prove the following two propositions. Hereafter, we write 7 = €2. The first

one asserts that we can approximate ® o) by ®y..

Proposition 3.6.2. We have

6/ [ @, — @y,
R4 €

Next, we prove the following estimate.

2dpe = oc(1) a .

Proposition 3.6.3. We have

e/ [@f. - Vhe]|dpe = [14 0c(1) ] aewy -
R4

Before proving these propositions, we explain why Theorem 3.3.4 is a
consequence of these propositions. We define the test function g. explicitly
as

g = f™ wheren = €. (3.81)

Proof of Theorem 3.3.4. By Proposition 3.6.3, it suffices to prove that

‘ / (@, — ®;,) - Vh]di. = od(1) [acap, "2 .
]Rd

With the selection (3.81), this is immediate from the Cauchy—Schwarz in-
equality, Lemma 3.2.1, and Proposition 3.6.2. O

In Sections 3.6.2 and 3.6.3, we shall prove Propositions 3.6.2 and 3.6.3,
respectively. We remark that the proof of Proposition 3.6.2 is nearly model-

independent and is similar to the proof of [51, Lemma 6.4]. Hence, we explain
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the structure of the proof and refer to [51] for most of the details. Of course,
there are several differences in the proofs, and we present the full details for

such parts.

3.6.2 Proof of Proposition 3.6.2

By the Cauchy—Schwarz inequality, we can write

6/ | ®pon — Dy,
R4 ‘

dpe < 3(L+ L+ 1I3)
where

= [ 1VU) = (910 F dc

(er)(") — V[ |*du. , and

[226 |
Rd

1
=1 / (£ — £)2 1€ dp
Rd

€

To conclude the proof of Proposition 3.6.2, it suffices to prove that Iy, Iy, I3 =
0¢(1) a. The proofs of I} = 0.(1) a and Iy = o.(1) c, are identical to those of
[51, Lemma 8.5] and [51, Assertions 8.C and 8.D], respectively. The term I3
has not been investigated previously. We present the proof of I3 = o.(1) c.
Note that the functions fe(”) and f. are supported on K for sufficiently small

e > 0, and since |£| is bounded on K, it suffices to prove the following lemma.

Lemma 3.6.4. We have

o ]G e = o). (3.82)
Rd

€

I6)
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Proof. Recall the notation A" from (3.69) and define

BZ = BZ\ (9B7)", and

He = U\ [OK) U (pen, (0B2)) ] 5i=1,2.

By the Cauchy—-Schwarz inequality, we have

(0 =@ = ([ (o)~ fle—u) o w)y )
< [ ()= fla =)o (w) dy.

Since
f@) = f(x—y) ife¢ KM and |y <7, (3.83)

the left-hand side of (3.82) is bounded from above by

//CLW] /Rd % |fe(m) - fe(m - y)|2 ¢n(y) dyue(daj) .

Now, we divide the integral / . in the previous case into
K’

. / N / N / n / (3.84)
/~6 He (9KCe) ) Z B gz:o (9B )1\ (KCe) 1)

o€

and consider the five integrals separately.
The first two integrals are 0 for the same reason with regard to (3.83).
Now, we consider the third one. Since | f.(x)—f.(z—y) | < 1forallz, y € R?,

the integral is bounded from above by

/ L ouw) dy plda) = S p((0K)) . (3.85)
AL €

Rd €
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Since U(y) = H + J?§* for y € OK,, there exists C' > 0 such that
Ulx) > H+J*0*—Cn forall x € (9K )M .

Hence, the right-hand side of (3.85) is bounded by

C
€/,

o HJe / ¢ Ol dp < C el g, vol((OK)M™) = 0.(1)
(OKCe)

for sufficiently large .J, since vol ( (9K ) = O(1).

Next, we consider the fourth term in (3.84). Fix o € ¥y and assume, for
simplicity of notation, that & = 0. By the mean value theorem, for « € gf
and y € D,(0),

(@) = flm—y)| < |yl > sup |Vif(2)]. (3.86)

i—1 2€Dn(x)

First, we remark from the expression (3.80) that, for u € BZ,

Vil (u) = éexp [~ Lwr o (3.87)
Since n < ¢ and |x| = O(6), we have

(z-v7)? > (x-v7)2—Cnd forx e B and z € D,(x) . (3.88)
By combining (3.87) and (3.88), we get

‘kae(z)|2 < geXp{ —g(w.v0)2} '

Inserting this into (3.86), we obtain, for x € Eg,

€

[ 18- s < Pew [ ez}
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Therefore, the integral in the fourth term of (3.84) is bounded by

! 0—7726}1/6/ exp { — iw (H"+2,uv”®v")a:}da:
€. € Be 2e
by the Taylor expansion of U around o. By Lemma 3.4.2, the last integral is
O(e%?); hence, the whole expression is o.(1) a..

Now, we consider the last integral of (3.84). We also fix o and assume
that o = 0. Since

(0B7)\ (9K )" < (9,B2)" U (0-B7)"

it suffices to prove that the integral over (&J)’f)m is small, as the argument
for (O_B7)" is identical. Since 7 < 4, by Lemma 3.4.10, there exists a

constant a > 0 such that
U(x) > aJ?* or x-v° > ald (3.89)

holds for all € (9,8%)". Let us first assume that the former holds. Then,
since |f.] < 1 and vol ((0.B%)") = O(1), by the first condition of (3.89),
the integral over x € (9,B%)" satisfying the former condition of (3.89) is

bounded from above by

¢ / U@/ gy <« ©
€Z€ (048l GZE

for sufficiently large J.
Now, assume that the second condition of (3.89) holds for € (9, 8%)".

e~ 1/ 7 yol((0,B7)) = 0.(1) v
(3.90)
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As in the proof of Lemma 3.4.6, we can rewrite 1 — f.(x) as

1/2 ,
Q)2 (z-v7) TP { N %“‘3'”0) }

5 exp{—%(m-v”)Q}.

Similarly, we can check that, for y € D, (0),

[1+0(1)]

l/2
11— flx—y)| <

exp { —Zﬂ(mﬂv"f} :

€

By the two bounds above, we can bound |f.(x) — f.(x — y)|* from above by

Ce

2|1 — fu(@)2+ |1 — fi(z —y)]*] < ?eXp{ _g(m.vo)z}.

Hence, we can bound the last integral of (3.84) and restrict it to & €

(0.B7)" satisfying the second condition of (3.89), from above by

C

[
7 Joo oy eXp{ — (@ )Q}ME(dw)-
+Bg )

By applying the Taylor expansion of U around o, this is bounded by

1
AR /< - exp { — e [+ 207 @0 e fdo.
€ +€U”I

By Lemma 3.4.2, there exists ¢ > 0 such that = -[H7 +2uv° @v° |z > c|z|*.
Furthermore, there exists C' > 0 such that |&| > C6 for all & € (0,87)".

Therefore, we can bound the last centered display from above by

ie—H/e ECJ2 V01<(a+83')[77]) = 05(1) Qe (391)

€

for sufficiently large .J since vol((0;B8%)™) = O(1). By (3.90) and (3.91), we
can verify that the last integral of (3.84) is o.(1) a, and this completes the
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proof. O

3.6.3 Proof of Proposition 3.6.3

First, note that we can write

; / (. Vh]dpe = A+ Y Ay(o) (3.92)

o€

where

Al ::d/
H

To estimate these integrals, we first mention a technical result.

€ Vh]dpy and  As(o) — e/ (@, - V] dpc

0 Bg

Lemma 3.6.5. There exists C > 0 such that
/ o(dp) < Ce*"?q, .
oKe

Proof. Since U(x) = H + J*§* on 0K¢, we have

/ o(dpue) = / pe(x) o(de) = Z- e e” 5(KF) .

oKe oK

Since 0(0K) = O(1), the proof is completed by the definition (3.18) of
Q. ]

We now consider A;.

Lemma 3.6.6. We can write

A = o(Dac+ Y Aia(o),

o€y

where

Ari(o) = /6 L& heotdn) (3.93)
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Proof. By the divergence theorem, we have

/ [€-Vhe|dpu, :/ [£- e | he o(dpe) -
H oM

Write
oH = aHg\[ U agsg] c oK, .

o€

Then, it suffices to prove that
/A [£-nye | heo(dpe) = oc(1) e .
oHg

Since |he| and |€] are bounded on OH;, C K, and since dH, C OK., the abso-

lute value of the left-hand side of the previous case is bounded by / o(due),
oK.
which is o(1) . for sufficiently large J by Lemma 3.6.5. This completes the

proof. O]
Now, we focus on Ay (o).

Lemma 3.6.7. For o € Xy, we can write
Asy(o) = o(1) e + Ag 1 (o)

where
Ay (o) =€ / [®pe - mpe | he o (dytc) (3.94)
04 BTUD_BE

Proof. By the divergence theorem, we can write

Aalo) = = [ (Lo hedpete [ (g ot

By Proposition 3.4.5, the first integral on the right-hand side is o.(1) cv.
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Hence, it suffices to prove that
€ / [®pe - npe | heo(dpe) = o0c(1) ac . (3.95)
803?

By the explicit formula for p? and by the boundedness of £ on K, we can
check that there exists C' > 0 such that | ®,e | < Ce™' on 9yB7. Therefore,
the absolute value of the left-hand side of (3.95) is bounded from above by

C o(due). Since 9yBZ C OK,, the proof is completed by Lemma 3.6.5,
OoBZ
provided that we take J to be sufficiently large. O

By (3.92) and Lemmas 3.6.6 and 3.6.7, it suffices to check the following

Lemma to complete the proof of Proposition 3.6.3.

Lemma 3.6.8. For o € Xy, we have
A (o) +Asq1(0) = [1+0(1)] e w? .

We defer the proof of Lemma 3.6.8 to the next subsection and conclude

the proof of Proposition 3.6.3 first.

Proof of Proposition 3.6.3. The proof is completed by combining 3.92 and
Lemmas 3.6.6, 3.6.7, and 3.6.8. O

3.6.4 Proof of Lemma 3.6.8

As a consequence of Proposition 3.5.1, we can get the following estimate of

the equilibrium potential at the boundaries 0487 and 0_BY for o € Xy.

Lemma 3.6.9. There exists a constant C > 0 such that, for all o € X,

he(z) > 1—Ce?exp U(wg—_H Ve € 0,87 and
€
he(z) < Ce ™ exp U(m; — Ve € 0_B7 .
€
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Proof. Let us consider the first inequality. If @ € 0, B, satisfies U(x) > H,
then the inequality is obvious for all sufficiently small e. Otherwise, € Ho;
hence, the bound follows from part (1) of Proposition 3.5.1 since we have
Nz}, D.(mo) = U(x) for all sufficiently small e. The proof of the second one is

similar and left to the reader. O
In the next lemma, we provide a consequence of the previous lemma.

Lemma 3.6.10. For o € ¥y, we have

e[ 111 = kool = odn)a.. (3.96)
[ =)= holdu) = ov)a.. (3.97)
0, Be
e/ 1V | e o(dpd) = o.(1) a (3.98)
o_Be
/ P heo(due) = oc(1) a . (3.99)
o_Be

Proof. Since the proofs of (3.98) and (3.99) are identical to those of (3.96)
and (3.97), respectively, we focus only on (3.96) and (3.97).

Let us first consider (3.96). We use the explicit formula for p? and Lemma
3.6.9 to bound the left-hand side of (3.96) by

1/9— Ulx)—H u
1/2-3d/2 _ CH a2
Ce Qe /8+Bg exp { e 26(:1: v7) }a(da:) . (3.100)

By the Taylor expansion, the last line can be further bounded by

1
C V2342 / exp { — o [H 4 2% 907 } o(dz)

04+ BZ

< Ol g / exp { - l]w|2}a(dw) , (3.101)
04 Bg 4de

where v > 0 is the smallest eigenvalue of the positive-definite matrix H +
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2pv @ v (cf. Lemma 3.4.2). Since there exists C' > 0 such that |x| > C'Jo
for all z € 9,87, and since (0, B7) = O(§*7!), we can bound (3.101) from

above, for some ¢, C' > 0, by

1

d—1
C e V23402 =1 e (. <log _> Poeetmd-1 0c(1) ce
€

for sufficiently large J. This completes the proof of (3.96).
For (3.97), recall 9 °B7 and 97 “BY from (3.41) and (3.42), respectively.
By Lemma 3.4.10, it suffices to prove that, for a € (0, ao),

/ (1-p7)(1—h)oldu) = ol)a, ;s k=12.  (3.102)
oy Be

For k =1, by (3.49) and Lemma 3.6.9, we can bound the integral from above
by

CeHell? Ulx)—H pu J.
s /a+BE exp { By —%(amv ) }J(da:).

Hence, we can proceed as in the computation of (3.100) to prove that this is
0.(1) a.

Now, we finally consider the k& = 2 case of (3.102). Since U(x) > H+a.J?§>
for & € 97“B7, the left-hand side of (3.102) with k = 2 is bounded from
above by

1
? o H/e 6aJ2 O(a+Bg) < 7 e /e E‘IJ2 §a-1 — 06(1) Qle

Q

for sufficiently large J. This completes the proof. O
Now, we are ready to prove Lemma 3.6.8.

Proof of Lemma 3.6.8. In view of the expressions (3.93) and (3.94) for A, 1(0o)
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and Ay 1 (o), respectively, it suffices to prove the following estimates:
1
¢ / [ (cp . —e) .ngg] heo(dp) = [1+0.(1)]acw®,  (3.103)
8, Bg €
€ / [®pe - nipe | heo(dpe) = 0c(1) ac . (3.104)
o_Bg
Let us first consider (3.103). By (3.96) and (3.97) of Lemma 3.6.10, we can
replace the h.(x) term with 1 with an error term of order o.(1) a.. Then, we

can apply Proposition 3.4.6 to prove (3.103). On the other hand, the estimate
(3.104) is a direct consequence of (3.98) and (3.99) of Lemma 3.6.10. O
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Chapter 4
Markov chain model reduction

This chapter is devoted to prove the Markov chain model reduction for the
process &.(+) (Theorem 4.1.5). The proof of the Markov chain model reduc-
tion for the reversible process y.(-) in [83] is based on the Poisson equation
approach. In this chapter, we extend this result to the non-reversible dynam-

ics by considering resolvent equation instead of Poisson equation.

Remark. Sets and constants including set of saddle points ¥ and Eyring—
Kramers constants w® are already defined in the previous chapter. However,
our interest in this chapter is a different perspective of metastable behavior
so that we need different saddle structure and metastable valleys (cf. ¥ and
V; defined below). Hence, in spite of their similarities, for the completeness

of the current chapter, we recall their definitions.

4.1 Main result

In this section, we explain our main result regarding the Markov chain de-
scription of the metastable behavior of the process @.(-) when U has several

local minima.
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{a:U(w) =H}

Ws

Figure 4.1: Example of landscape of U. In this example, we have ¥ =
{01, 02, 03, 04} and the set {x : U(x) < H} consists of three compo-
nents Wi, Wy, Ws. Hence, S = {1, 2, 3}. We have ¥, 5 = {01}, X935 =
{02, o3}, and X1 3 = 0. Therefore, ¥* = {01, 09, 03} T X. Suppose
that hy = hy = h < hz. Then, we have S, = {1, 2}. By assuming that
U(ms) = U(ms) = h, two metastable valleys are defined by V, = D, (m,)
and Vo = D, (my)UD,, (m3). Metastable valley is not defined for the shallow
well Wg.

4.1.1 Landscape of U and invariant measure

We first analyze the landscape of U. We refer to Figure 4.1 for an illustration
of the notations introduced in this subsection.
For a concrete description, we fix a level H and define ¥ = £ as the set

of saddle points of level H:
Y :={o:U(o) = H and o is a saddle point of U} .

By selecting H appropriately, we shall assume that > is a non-empty set. We
now define

H ={xecR: Ux)< H},

and denote by Wi, ..., Wk the connected components of the set H. These

sets are called (metastable) wells for the potential function U corresponding
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to the level H. We focus on the transition of the process @.(-) among these
wells. Various selections of H are possible; however, we focus on one fixed
level to get a concrete result. The last paragraph of the current section explain
how we can select various H to get a variety of results that provide a full
description of the metastable behavior.

If K = 1, there is no interesting metastable behavior at level H, and
we must take a smaller level to observe the metastable behavior. Therefore,
we assume that K > 2. Now, we shall assume that the closure H of H is a
connected set. Otherwise, our analysis can be applied to each connected com-
ponent of H, and this general situation is explained later. See the discussion
after Theorem 4.1.5.

Write S = {1,--- ,K}. For i, j € S,' we write

Zi,j - WZQW] ;

which denotes the set of saddle points between W; and W; of level H. Note
that this set can be empty. Now, assume further that ¥; ; N2, ; = () unless
{i, 7} = {k, l}; hence, there is no saddle point connecting three or more wells
simultaneously. Write

= B (4.1)

i,jes

Then, we have ¥* C ¥, and the equality may not hold (cf. Figure 4.1). By the
Morse lemma, for each o € ¥*, the Hessian (V?U)(a) has only one negative
eigenvalue and (d — 1) positive eigenvalues, as we have assumed that U is a

Morse function. We remark that this may not be true for o € ¥\ ¥*.

n this thesis, writing “a, b € S” implies that a € S, b€ S, and a # b.
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Metastable valleys

Now, we define the metastable valleys. We fix ¢ € S and denote by h; the

minimum value of the potential U on the well W, i.e.,
hi = min{U(x) : x € W;} . (4.2)
Define M; as the set of the deepest minima of U on Wi;:
M, ={meW,:U(m)=h}.

Then, we can regard H — h; as the depth of the well W;. We write the ball

in R? centered at = with radius r as
Dy(x) = {ycR: |y —z| <r}.

We take g > 0 to be sufficiently small so that, for all ¢ € S and for all
m c MZ',

Doy (m) C W; and Dy, (m) \ {m} does not contain a critical point of U.
(4.3)
Finally, the metastable valley corresponding to the well W, is defined as

V= |J Dy (m), (4.4)

meM;

where D,, (m) = {y € R? : |y — x| < ry} denotes the closed ball. Our

primary focus is the inter-valley dynamics among these sets V.

Deepest valleys

We now characterize the deepest valleys of U, which will be the state space

of the limiting Markov chain describing the metastable behavior. Recall h;
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from (4.2) and define
h = rrélglhl and S, :={ieS:h;=h},

so that {W, : i € S,} denotes the collection of the deepest wells. We assume
that |9, > 2 since the Markov chain description is trivial when |S,| = 1. Let

M, = U./\/li:{azeRd:U(ac):h},

1€S%

so that the set M, denotes the set of global minima of U. Write V, = U V;
1€SK
so that V, denotes the set of deepest valleys. Finally, we write A = R*\ V,.

Invariant measure

With the construction of the metastable valleys, we can conclude that the
invariant measure pu.(de) is concentrated on the set V,. Moreover, we can
compute the precise asymptotics for p.(V;) for each i € S,. To this end, we
recall Notation 2.2.5.

Notation 4.1.1. For each x € R?, we write H® = (V?U)(x) as the Hessian
of U at  and L* = DE(x) as the Jacobian of £ at x.

For each i € S, we define

1
S Z Vdet H™

meM;

and write v, = E v;. For a sequence (ac)e~o of real numbers, we write a. =
1€S%

0c(1) if lir% a. = 0. The following asymptotics are useful in our discussion.
E—
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Proposition 4.1.2. We have

Ze=[1+40.1)] (2me)¥2 e ey, | (4.5)
(Vi) = [1—1—06(1)]% ;i€ S, and pd(A) = od(1).

Proof. The proof is a consequence of an elementary computation based on the

Laplace asymptotics. For further detail, we refer to [83, Proposition 2.2]. [

Eyring—Kramers constants

For o € ¥*, we previously mentioned that the Hessian H? has only one
negative eigenvalue by the Morse lemma. Further, the matrix H? + IL7 also
has only one negative eigenvalue by Lemma 2.2.7. Denote by —u? the unique
negative eigenvalue of H? +1L7. Recall the Eyring—Kramers constant at o €
3" defined by

o

o . H

T onV/—detHe

w

(4.6)

For i, 7 € S, we define
Wi j = E w? and w; = E Wi, i
0'621'7]' jES

where we set w; ; = 0 for ¢ € S for convenience of notation. Note that the

connectedness of H implies that w; > 0 for all i € S.

4.1.2 Two Markov chains

Now, we construct two continuous-time Markov chains: (x(t)):>o and (y(t)):>o-
The Markov chain y(-) describes the limiting metastable behavior of the dif-
fusion process (). The auxiliary Markov chain x(-) is used in the construc-
tion of this limiting chain y(-); moreover, it plays a crucial role in the proof.

We refer to Remark 4.1.3 for the meaning of these Markov chains.
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The construction of the limiting chain y(-) is simple when all the wells
have the same depth, i.e., S, = S (cf. Remark 4.1.3). However, if S, C S, the
behavior of the process x.(-) on each shallow valley V;, i € S\ S, should be
properly reflected in the construction; hence, the definition of y(-) becomes
more complex and should be done via the auxiliary chain x(-) defined from

now on.

Auxiliary Markov chain x(-) on §

We define a probability measure m(-) on S by

m(i) = wi/ij ;1€ 8.

jes

Let (x(¢))i>0 be the continuous-time Markov chain on S whose jump rate
from i € S to j € S is given by r«(i, j) = w; j/m(i). It is clear that the
invariant measure for the Markov chain x(-) is m(-), and moreover the process
x(+) is reversible with respect to m(-). We now introduce several potential
theoretic notions regarding the process x(-). These notions are used in the
definition of the limiting Markov chain y(-).

Denote by Ly the generator associated with the Markov chain x(-) acting
on f:S — R such that

(Laf)()) = Y rx(i, ) [£() —£())] ;i€ 5.

j€S

Denote by P; the law of process x(+) starting at i € S. For two disjoint non-
empty subsets A, B of S, the equilibrium potential between A and B with
respect to the process x(-) is a function hy 5 : S — R defined by

hA7B(i) = Pi[TA<TB] ; iES,

where 74, A C S, denotes the hitting time of the set A, i.e., 74 = inf{t >0 :
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x(t) € A}. Define a bi-linear form Dy(-,-) by, for all f, g : S — R,

Du(t, g) = Y u(i) £(i) [~ (Lg)(9)] :% > wis [F0)—£0)] (i) -8()] -

ieS i,jes
(4.7)
Note that Dy(f, f) represents the Dirichlet form associated with the Markov
chain x(+). Finally, the capacity between two disjoint non-empty subsets A

and B of S with respect to the process x(+) is defined by
Capx(A, B) = Dx(hA,B) hA,B) . (48)

Limiting Markov chain y(-) on S,

Recall that we assumed |S,| > 2. For i, j € S,, define

Bij = %[Capx({ih S \{i}) +cap ({5}, S\ —capc ({2, 5}, S\ {4, 53] -

We set 3, ; = 0, 1 € S, for convenience and note that we have g; ; = 3; ; for
all i, j € Ss. Then, we define (y(¢)):>0 as a continuous-time Markov chain on
S, with jump rate ry (i, j) from i € S, to j € S, given by ry (4, j) = 5 ;/vi.
The process y(-) defined in this manner is indeed the so-called trace process

of x(+) (cf. [2, Appendix])

Remark 4.1.3 (Comments on the processes x(-) and y(-)). The auxiliary
process X(-) represents the inter-valley dynamics of the process x () by as-
suming that it spends the same time scale at all valleys (which is not true
in general). Since the process x.(-) spends a negligible time scale on shal-
low valleys, we can take the suitable trace of the process x(-) on the (indices
corresponding to) deepest valleys to get the correct process representing the

inter-(deepest) valley dynamics of the process x.(-). This trace process isy(-).
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4.1.3 Markov chain description via convergence of or-
der process
Recall that H — h represents the depth of the deepest wells. We can expect

from Eyring-Kramers formula for .(-) obtained in Theorem 3.1.3 that the

order of the time scale for a metastable transition is

H—h

€

0. .= exp

Hence, we speed up the process () by a factor of §. and then observe the
index of the valley in which the speeded-up process is staying. To that end,
we write

z(t) =z (0t) ;t>0

the speeded-up process. In view of the fact that p.(V,) = 1—o0(1) (cf. Propo-
sition 4.1.2), this index belongs to the set S, with dominating probability.
We wish to prove that this index process converges to the process y(-) de-
fined in the previous subsection. The major technical issue in this heuristic
explanation is the fact that the speeded-up process Z.(-) may stay in the set
A =R\ V, with small probability, and for this case, the index process is not
defined. Thus, to formulate this convergent result in a rigorous manner, we
recall the notion of the order process introduced in [2, 3]. To define the order

process, define

T.(t) = /Otl{ie(s) eV.tds ;t>0,

which measures the amount of time for which the speeded-up process @(+)
stayed in V, until time ¢. Then, define S,(t) as the generalized inverse of the

random increasing function 7,(-):

Se(t) :=sup{s >0:T(s) <t} ;t>0. (4.9)

94



CHAPTER 4. MARKOV CHAIN MODEL REDUCTION

Define the trace process &.(-) as
(1) == ®(Sc(t) ;t>0.

This process the one is obtained from the process Z.(-) = @.(f,-) by turning
off the clock when the process Z.(-) does not belong to V,. In other words,
the trajectory of &.(-) is obtained by removing the excursions of x.(-) at A.
Hence, we have &.(t) € V, for all ¢ > 0; furthermore, the process &.(-) is a
Markov process (with jump) on V,.

First, we show that the process &(-) is a relevant approximation of the
process &.(-) in the sense that the excursion of .(-) at A is negligible. Denote
by P¢ the law of the original process x.(-) starting from € R? and by E

the expectation with respect to it.

Theorem 4.1.4. For allt > 0, it holds that

lim sup ES [ /t 1a(Z.(5)) ds] — 0.
=0 zey, 0

The proof of this result is a direct consequence of the analysis of resolvent
equation explained in Section 4.2 and will be explained therein.

By assuming this theorem, it now suffices to analyze the inter-valley be-
havior of the trace process &.(+). To this end, we define a projection ¥ : V, —
S, simply by

V() =1 ifxeV, ;i€8,, (4.10)

which maps a point belonging to a deepest valley to the index of that valley.

Finally, define a process on S, as

ye(t) = W(&(1) ;t=0,

which represents the valley where the trace process £.(t) is staying. This

process y(-) is called the order process. Denote by Qg the law of the order
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process y.(-) when the underlying process x(+) starts from a distribution 7,
on R? and denote by Q; the law of the limiting Markov chain y(-) starting
from ¢ € S,. The following convergence theorem is the main result of the

current chapter.

Theorem 4.1.5. For every i € S, and for any sequence of Borel proba-
bility measures (mc)eso concentrated on V;, the law Q. of the order process

converges to Q; as € — 0.

The proof of the theorem based on the resolvent approach developed in
[50] is given in the next subsection. We remark that this is a generalization
of [83, Theorem 2.3], as the reversible case is the special £ = 0 case of our
model. Moreover, a careful reading of our arguments reveals that, the speed

of the convergence of the finite dimensional marginals is given by

Q. [ye(ti) € A; fori=1, ..., k]
1

under the conditions of Theorem 4.1.5, where the error term O(e'/?

1
log —) is
€
identical to the one appeared in [14, Theorems 3.1 and 3.2] and depends on

ot

Discussion on general case

Thus far, we have assumed that H = {x € R? : U(x) < H} is connected.
However, our argument can be readily applied to the general situation with-
out this assumption as follows. If H is not connected, we take a connected
component X and denote by Wi, ..., Wk the connected component of H
contained in X. Let S = {1, ..., K}. Then, we can define all the notations
as before, and Theorem 4.1.5 holds unchanged. This can be readily verified
by coupling with the same dynamical systems reflected at the boundary of
the connected component of the domain {x € R? : U(x) < H + a} for
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my my msy mg

Figure 4.2: In this example of U, we have three possible choices of H: Hj,
Hy, and Hj. By selecting H = H;, we analyze the transitions between two
deepest valleys D, (m,) and D,,(my) UD,,(m;) UD,,(mg). The time scale
for these transitions is e17"/¢ and ¥* with this choice of H is {1, o3}
Note that these two valleys are not directly connected, and all the transitions
must pass through shallow valleys around m, and m3. Hence, to get a precise
Markov chain convergence, we must understand the behavior of the process in
these shallow valleys. If we take H = H,, we analyze the transitions between
two shallow valleys D, (m;) and D,,(1m3). The time scale is now e#2=")/¢
Finally, if we choose H = Hj , the successive transitions among three valleys
D,,(my), D,,(ms), and D,, () are investigated in the time scale e#2="/¢,
Note that these valleys are not distinguished at the level H = Hy; hence, we
can analyze the metastable behavior with a higher resolution by taking this
smaller H.

small enough @ containing X’. This will be more precisely explained in [48] at
which all the inter-valley (not restricted to the deepest valleys) dynamics are
completely analyzed. Therefore, we can vary H to get different convergence

results, and an example is given in Figure 4.2.

Connection to Eyring—Kramers formula

Now, we explain the connection between our result and the Eyring—Kramers
formula obtained in Theorem 3.1.3. For simplicity, we suppose that S = S,
(i.e., hy = h for all ¢ € S) and that all the local minima of U are global
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minima. The explanation below is slightly more complicated without these
assumptions, and we leave the details to the interested readers. Write 74,
A C R% as the hitting time of the set A. Then, by the Eyring-Kramers

formula obtained in Theorem 3.1.3, we have, for i € S and « € V),

€ Vi
B[] = [1+01)] 20,
In other words, for the speeded-up process x.(f,-) starting from a valley V;,
the average of the transition time to other valleys is approximately v; /w;. This
is in accordance with our result in that the limiting chain y(-) starting from i

jumps to one of the other sites at an average time of | Z ry(i, J) ] = Vi w;.
j€S

On the other hand, our result provides more comprehensive information re-

garding the metastable behavior compared to the Eyring—Kramers formula,

especially when S # §,.

4.2 Proof based on resolvent approach

In this section we review the resolvent approach developed in [50] and then

prove Theorems 4.1.4 and 4.1.5 based on it.

4.2.1 Review of resolvent approach to metastability

Denote by L, the generator associated with the limiting Markov chain y(-)
(defined in the previous section) that acts on f : S, — R such that

Vi

(Lyf)(i) = Y =2 [£(7) — £(0)] . (4.11)

JESK

Recall (4.3) and define, for i € S,

Vi= |J Dan(m).
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The following analysis of a solution to the resolvent equation is the main

component of the resolvent approach.

Theorem 4.2.1. Let f : S, — R be a given function and let A > 0 where
both f and X are independent of €. Then, the unique strong solution ¢£ to the

resolvent equation (on u) on R

A=0L)u = Y [(A = Lyf](i) 1y, (4.12)
€S
satisfies
lim sup | ¢f(x) —f(i)| = 0 forallie S, . (4.13)
€—00 we\/}i

In [50, Theorem 2.3], it has been proven that this theorem implies Theo-
rems 4.1.4 and 4.1.5 provided that the underlying metastable process x.(-) is
a Markov process on discrete set. On the other hand, the proof of Theorem
4.1.5 based on Theorem 4.2.1 requires a slight technical modification since
the solution ¢f obtained in Theorem 4.2.1 does not belong to the core of the
generator %, associated with the process x.(-). We provide the proof here
with emphasis on the modification. We remark that, we took supremum on
V; (instead of V; as in [50]) in order to reserve enough space to carry out this
modification.

The main idea is to replace the indicators in the right-hand side of (4.12)
with smooth functions approximating the indicators so that we can recall the
resolvent theory. Then, by using comparison argument, we shall solve all the
technical problems. To that end, let us take r; > rg such that ry also satisfies
the requirement (4.3) and define (cf. (4.4))

Vi = U Dyyj2(m) and V4 = U D,,(m)

meM; meM;

so that V; - C V; C V; ;. Then, for each i € S, find smooth functions
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Gi.— Gy RT— [0, 1] such that
1y, - <G, - <1y, <G+ <1y, . (4.14)
The key idea is to consider the functions wf’ _and 1/)2 + of the equations

A= 0Lu = Y [(A = Ly)E](i) G+ (4.15)

1€S5%

respectively. Then, wz 4 is now a smooth function that also satisfies (4.13) in

the following sense.

Proposition 4.2.2. We have that

lim sup |4 (x) —f£(i)| =0 forallies,. (4.16)

€700 gV

Proof. Denote by qb?i the solution to the equations

(A= 0LJu =Y [(A = Ly)f](i) 1y, . - (4.17)

1€ESK

Since Theorem 4.2.1 holds for all rqg > 0 satisfying (4.3), we can conclude
that ¢f . also satisfies (4.13) in the sense that

lim sup |¢f (z) —f£(i)| =0 forallics,. (4.18)

€00 xzeV;

Note that the appearance of 91 at (4.13) guarantees sup in the previous
xeV;

estimate for gbf’ _. Therefore, the statement of proposition follows from (4.14)

and the strong positivity of the operator A — 6..Z.. O

Now we use two functions @Df, and %f, + to prove Theorems 4.1.4 and

4.1.5, respectively. The huge benefit with these functions is the well-known
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expressions

¢£i@0::E;LAme‘MGi@%@»dt (4.19)

where G4 = Z[(/\ — Ly)f](i) ¢;, + are bounded functions.

1€S5%

4.2.2 Proof of Theorem 4.1.4

Proof of Theorem 4.1.4. For t > 0, we have

t t [e%s)
/ 1a(F.(5)) ds < / NN, (B (5)) ds < e / e 1a (.(5)) ds .
0 0 0
(4.20)
Also, by (4.14) and by definition of A, we have

INES B e (4.21)

1€5%

By (4.20) and (4.21), the proof of Theorem 4.1.4 is reduced to show that, for
all i € S,

lim sup ES [ /OOO e—As(1 - Zg,_@e(s))) ds} ~ 0

EHOEEVi ics.
or equivalently
o° 1
lim sup E, [/ e G (T (s ds} = —. 4.22
e B [ [ Y@ a] = 5 (4.22)

1
Note that the constant function ¢ : S, — R defined by ¢ = X satisfies
(A — Ly)c =1 and therefore by (4.19), we can write

B[ [ e Y 6@ ds] =g (@)

1€SK

101



CHAPTER 4. MARKOV CHAIN MODEL REDUCTION

Therefore, (4.22) is a direct consequence of Proposition 4.2.2. ]

4.2.3 Proof of Theorem 4.1.5

Next we turn to the proof of Theorem 4.1.5. Here we need to use %Uef . instead.

We first recall the following technical lemma from [50, Lemma 4.3].

Lemma 4.2.3. Theorem /.1.4 implies that, for allt >0, (cf. (4.9))

lim sup Ef [ — e”\SC(t)] =0 and
e—0 eV,

¢
lim sup [E, {/ {e_’\s — e_’\Sf(s)} ds| =0.
0

=0 CBEV*
Now we turn to the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. The argument given in [50] uses the solution ¢£ to
prove Theorem 4.1.5 when the underlying metastable Markov process (in our
case, x.(+)) is defined on a discrete set. However, our proof requires a slight
modification since our underlying Markov process «.(-) is now defined on R%.
Technically speaking, the problem is the fact that ¢f ¢ C*(R?) which implies
that ¢f does not belong to the core of the generator .%.. Thus, we cannot

conclude that
t
M (t) = e MG (@e(t)) — c(@e(0)) + / e\ = 0.Z) P (@ (s5))ds
0
is a martingale. This is the only place at which we can not use this function

as in the proof of [50, Proposition 4.4]. This is the reason that we introduced

the solution wf’ + which belongs to the core of .Z,, and we instead consider
t
M (t) = e e L (@e(t)) — v (Ze(0)) + /0 e NN = L) (Ze(s))ds
which is now a martingale.

102



CHAPTER 4. MARKOV CHAIN MODEL REDUCTION

In the proof of [50, Proposition 4.4] at which M?(t) was a martingale,
the crucial ingredient of the proof is to consider M?(S(t)) which can be
rewritten in a simple form thanks to (4.12) and (4.13). Therefore, if we can
show that

lim sup [|M2(Se(t)) — M2(Sc(t))|] =0 forallt >0, (4.23)
e :EGV*

we can argue that M?(t) is a negligible perturbation of a martingale and
therefore the proof of [50, Proposition 4.4] can still be applied. To prove
(4.23), we need to prove that

lim sup E [0F  (@c(Sc(t))) — oL(®(Sc(t)))| =0 for all ¢ >0, and (4.24)

=0 €V,

lim sup E;,
=0 TEVs

Se(t)
/0 e_’\slA(iie(s))ds] =0 (4.25)

where the second one follows from the observation that, for some C' > 0,

[N = 0 L)ef | — (A= 0.2)6f <CD 1y, 1\, < Cla.

1€S%

Since Z.(Sc(t)) € Vi by the definition (4.9) of S(t), the estimate (4.24) is a
direct consequence of (4.13) and Proposition 4.2.2.
Now it remains to prove (4.25). By the change of variable s <— Sc(u),

Se(t) t t
/ e 1y, (Zc(s))ds = / e 1y, (@c(Sc(u)))du = / e ¥5e(w) gy
0 0 0

where the first equality follows from the definition of S(-) and the second
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one follows from .(Sc(u)) € V, for all u > 0 by definition. Therefore,

Se(t)
/0 e 1a(F(s))ds
Se(t)
_ / e {1 — 1y, (Z(s))} ds

Se(t) ¢
:/ e_’\sds—/ e M) gy
0 0
Se(t) t
= [/ e_’\sds—/ e ds
0 0

Thus, (4.25) is a direct consequence of Lemma 4.2.3. O

t
+/ {e—As . e—Ase(s)}dS '
0

The remainder of the chapter is focused on the proof of Theorem
4.2.1. Hence, we shall assume in the remainder of the chapter that both f :
S, — R and A > 0 are fixed and independent of €. Moreover, we simply write
¢, the solution ¢f of equation (4.12). Moreover, we shall always implicitly
assume that e > 0 is sufficiently small, as we are focusing on the asymptotics

as € — 0.

4.3 Analysis of resolvent equation

In this section, we prove Theorem 4.2.1 up to the construction of a certain
test function, which will be deferred to Sections 4.4 and 4.5.

4.3.1 Energy estimate

In this subsection, we present a crucial energy estimate for the solutions of
resolvent equation. Before proceeding to this estimate, we first remark that
¢c is a bounded function as a consequence of [50, display (4.2)]. A detailed

statement is given as the following proposition.

Proposition 4.3.1. There exists C > 0 so that ||¢c|| e ray < C for all e > 0.
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Notation 4.3.2. Here and later, we write C' > 0 as a constant independent of
e and x (of course, C' can possibly depend on £ and \). Different appearances

of C possibly express different values.

For sufficiently smooth function f, let us define the Dirichlet form Z,(f)

with respect to the process x.(+) as

9f) = / FZfydp = e / S (4.26)

where the latter equality follows from an application of divergence theorem.
Then, the flatness of the solution of resolvent equation (4.12) on each valley

essentially follows from the following energy estimate (cf. [49, 76, 83]).

Proposition 4.3.3. There exists C > 0 such that, for the solution ¢. of
(4.12),
De(¢) < CO. (4.27)

Proof. By multiplying both sides of (4.12) by ¢.du. and by performing the

integral over R?, we get
¢6()‘¢E - 96Z¢5) dﬂ’e S C
Rd

by Proposition 4.3.1, since the right-hand side of (4.12) is a compactly sup-
ported bounded function independent of €. The proof is completed by defi-
nition (4.26) of the Dirichlet form. O

4.3.2 Flatness of solution on each well

We first define Ny
§ = d(e) = (e logz> : (4.28)

which is an important scale in the analyses around saddle points carried out

in the next section. Let J > 0 be a sufficiently large constant, and let ¢ > 0
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be a constant that will be specified later in (4.71). For i € S, define
Wi =W = {xeW,: U< H—cJ**} . (4.29)

Note that this set is connected if € is sufficiently small, and we have V; C
Y, C Wi C Wy Fori € S, denote by m(7) the average of ¢, on )//\71-, ie.,
)= —— [ o)
m(i) = —— (x)dx |
VOI(WZ) 17\7\1

where vol(A) = / dx denotes the volume of a Lebesgue measurable set
A

A C R? with respect to the Lebesgue measure. Remark from Proposition
4.3.1 that there exists C' > 0 such that

max [m(i)] < C (4.30)
1€
for all € > 0. Our next objective is to prove that the function 1. is close to

its average value m.(7) in W, in the L*-sense.

Proposition 4.3.4. For alli € S, we have

e = me) gy = 0c(1) -

In [83, Section 4], it has been generally proven that the energy estimate of
the form (4.27) is sufficient to prove Proposition 4.3.4 for the solution ¢.. The
argument presented therein is quite robust, and the reversibility is used only
when the energy estimate is obtained. Hence, the methodology developed in

[83] can be applied to Proposition 4.3.4 without any modification.

Remark 4.3.5. In fact, the L>-boundedness such as Proposition 4.3.1 was
not available when [83] started to prove the flatness result similar to Propo-
sition 4.3.4. They obtained this boundedness as a byproduct of the proof of

Proposition 4.53.4. Since we know this boundedness a priori owing to Propo-
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sition 4.3.1, the proof can indeed be written in even more concise form.

4.3.3 Characterization of m, on deepest valleys via a

test function

Since )A/, - )//\7Z for all ¢ € S by (4.3), it remains to prove the following

proposition.

Proposition 4.3.6. We have that
|m (i) — £(i)| = 0c(1) forallie S, .

Before proving Proposition 4.3.6, let us formally conclude the proof of
Theorem 4.2.1 .

Proof of Theorem 4.2.1. By Propositions 4.3.4 and 4.3.6, we have
[¢e =£(0)|| oo 3,y = 0e(1) for all i € S,. Since Vi, C W, the proof is completed.
O

Now, we turn to Proposition 4.3.6. The following proposition is the key
in the proof of Proposition 4.3.6.

Proposition 4.3.7. Let g =g.: S — R be a function that might depend on

€ which is uniformly bounded in the sense that

supmax |g(i)] < oo . (4.31)
e>0 €S

Then, there exists a uniformly (in €) bounded continuous function Q% : R* —
R that satisfies, for alli € S,

Q%(x) = g(i) forallxeV; and (4.32)

1
0c e Q% (ZLepe) dppe = o Dy (g, m,) +o(1) . (4.33)

*
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The construction of the test function (¢ stated in the proposition above
is the most crucial part of the proof and hence its proof is postponed to
the next sections. At this moment, we prove Proposition 4.3.6 by assuming
Proposition 4.3.7. Recall the bi-linear form Dy(, -) defined in (4.7) and define
another bi-linear form Dy (f, g) for f, g: S, = R as

= SO (Lyg)) L = 3 B, (FG) ~ £)) (8() — (1)
i€, Y ies
(4.34)
We recall some relations between Dx(-,-) and Dy(-,-) proved in [83]. For
u: S, — R, we define the harmonic extension u : S — R as the extension of
u to S satisfying (Lyu)(i) = 0 for all : € S\ S,.

Lemma 4.3.8. Letu, v : S, — R and letu and v be the harmonic extensions
of u and v, respectively. Then, we have Dx(u, V) = v, Dy(u, v). Moreover,

for any extensions vy, vy of v, we have Dy(u, vi) = Dx(u, v3).
Proof. See [83, Lemma 4.3]. O
Now, we prove Proposition 4.3.6.

Proof of Proposition 4.3.6. Let us define h, : S, — R as
h. (i) := m (i) — f(i) forallies,, (4.35)

and let EE be the harmonic extension of h.. Then, by the maximum principle
and (4.30), there exists C' > 0 such that

‘ — max |h.(i)] < C . (4.36)

ZE*

max
€S

Therefore, we can construct a test function Q?e constructed in Proposition

4.3.7.
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Now, by Proposition 4.1.2, (4.12) and (4.32), we have

[, @8 6= 020 due = (14 0,1) T h() O = LA 2 (437

v
i€S, *

=AY h()£(0) Z— + Dy(h,, £) +o0.(1)

1€5%

where the last line follows from the definition of Dy and (4.36). The crucial
idea in the proof is to compute the left-hand side of (4.37) in a different way

and to compare with the previous computation. To that end, we first observe
from Propositions 4.1.2, 4.3.1, 4.3.4 and (4.32) that

)\/Rd QE‘E Ge dpte = A Z h (i) m(7) 2y 0.(1) . (4.38)

v
i€S, *

By Proposition 4.3.7 and uniform boundedness of Q} , we have

Q;ﬁe (_95"%5@56) d,ue = Vli(He, me) + 06(1) . (439)
Rd

*

Denote by m? : S, — R the restriction of m, : S — R on S,, and denote by

m’ the harmonic extension of m}. Then, by Lemma 4.3.8, we have
Dy(h,, m,.) = Dy(h,, m’) = v, Dy(h,, m?) .

Inserting this into (4.39) and combining with (4.38), we can conclude that

[ Q0= 00 disc = 23 b meli) 1+ Dy(he, m) + o(1).

1€5%

Comparing this with (4.37) and inserting (4.35), we get

Ay he(i)2% + Dy(he, h.) = o.(1) .

1€S%
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This implies that max |h.(7)| = 0.(1) and therefore by recalling the definition
1ES%
(4.35) of h, completes the proof. n

4.4 Construction of test function

In this section, we explicitly define the test function @)%, which is an approx-

imating solution to the following elliptic equation:

L =0 onR'\ (UgesV;) and (4.40)

u = g(i) onV,foreachieS.

Although we share the same philosophy is this construction with the re-
versible case [83], the detailed construction and entailed computations are

more complicated compared to the ones therein because of the non-reversibility.

4.4.1 Neighborhoods of saddle points

To construct the approximating solution to (4.40), we mainly focus on a
neighborhood of each saddle point o € ¥; ; for some ¢, j € S, as the function
u suddenly changes its value from g(7) to g(j) around such a saddle point.
Therefore, we carefully define several notations regarding this neighborhood.
In this subsection, we fix 7, 7 € S and consider a saddle point o € ¥; ;. In

addition, we assume that i < j in this subsection.
Notation 4.4.1. We use the following notations in this subsection.
1. We abbreviate H = H? and L = 1L°.

2. Since the symmetric matrix H has only one negative eigenvalue, we
denote by —Ai, Aay ..., Mg (= =A], AT, ..., AT) the eigenvalues of H,

where —\1 denotes the unique negative eirgenvalue.
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a.co
v
.87 |
WE s
0+ Bg____,_..-

U)= H Ulz)=H + J°8 O

Figure 4.3: Illustration of various sets around a saddle point o introduced in

Section 4.4.1.

3. Denote by €7 the unit eigenvector associated with the eigenvalue —\q,
and by e, k > 2, the unit eigenvector associated with the eigenvalue
M. In addition, we assume that the direction of e is toward W;, i.e.,
for all sufficiently small a > 0, o + ae € W;. Then, for x € R? and

k=1,...,d, we write x;, = (x — o) - ef. In other words, we have
d
o
x =0+ g Tm€,,-
m=1

Now, we define several sets around o. Figure 4.3 illustrates the sets ap-

pearing in this section. Recall § from (4.28) and recall that J > 0 is a

sufficiently large constant. Define an auxiliary set

. 2J6 2Jo
T, ::{wERd:xkE[—W,E} for2§k§d}.

Then, define a box CZ centered at o as

) 5 Js )
Ce ::{weRd:xle [—F,F]}mt .
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The boundary sets 0,C7 and 0_C? defined below will be used later.

8in:{a:€Cf:a:1:iJ5}. (4.41)

A2

We define another scale
n = n(e) = €. (4.42)

Then, define the enlargements of boundaries 0,.CZ and 0_C? as

8+C€—{:BER .l‘le[w,wﬁ‘ﬁ}}ﬂz )
806{iBER.iLjE[—F—ﬁ,—F]}ﬂTG.

With these enlarged boundaries, we can expand C? to
C” =C° UL uUdCl.

Let

_ _ 275
0,C7 = {wecg:xk:ii

72 for some 2§k§d} )
A

Then, by a Taylor expansion of U around o, we can readily verify that
U(x) > H+ g J26%[14+0.(1)] forall x € 80(1" . (4.43)
For the detailed proof, we refer to Lemma 3.4.3. Now, we define
Ke={xcR": U(x) < H+ J**},

so that, by (4.43), the boundary 9,C% does not belong to K. provided that e

is sufficiently small. Then, we define

B® =C°NK. , 9.8° = 0,.C°NK. and &7 = C°NK.

112



CHAPTER 4. MARKOV CHAIN MODEL REDUCTION

so that £7 = B% U0, B° UO_B?. Denote by OE7 the boundary of the set £

and decompose it into
087 = 0,7 U 0_E7 U 0y&°7

such that

0.7 = {weﬁgf:mlzj:(J—(S+77)} and ,

1/2
A

75
DES = {we@é’f:xl#i(w—i—n)}.

1

Then, by (4.43) (one can readily check from Figure 4.3), for sufficiently small
€ >0,
U(x) = H+ J?$* forall x € &7 . (4.44)

Furthermore, by our selection of the direction of vector ef (cf. Notation

4.4.1-(3)), we have
0.7 C OWf and 0-&7 C oW . (4.45)
Similarly, we decompose 0B7 into 0,87, 0_B7, and 9B such that

0.7 = {mE@Bf:xlzin } and

A2

00B7 = {:1: COBT iz £ 100 } . (4.46)

1/2
A

4.4.2 Decomposition of I,

Now, we turn to the global picture. Recall ¥* from (4.1). By (4.44), we can
observe that K¢ \ (Ugpex+E7) consists of K connected components, and we

denote by Wy, i € S, the component among them containing V;. Then, we
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can decompose K, such that

ko= |Uw v Ue| (4.47)

€S oex*

The test function % is constructed on this global structure of ..

4.4.3 Construction of function Q%
Construction around a saddle point

We start by introducing the building block for the construction of )¢, which
is a function on €7 = BZ U 5+Bg U 5_15’?. First, let us focus on the set
BZ. Recall that H” + L7 has a unique negative eigenvalue —p?. Denote
by AT the transpose of the matrix A. Then, we can readily verify that (cf.
(3.23)) the matrix H? — (L) is similar to H +1° and hence has the unique
negative eigenvalue —u°. We denote by v the unit eigenvector of H” — (IL7)1
associated with —u?. We assume that v7-e7 > 0, as we can take —v? instead
if this inner product is negative. We note that v7 - €Y # 0 by Lemma 3.4.1.
Recall the definition 3.30 of a function p? : R* — R as

1 (@=0)v” n? 42
p?(x) = c_"/ e"="dt ;xelC?, (4.48)

where the normalizing constant ¢ is given by
oo o 2
< = / et = (4.49)

Note that we defined the function on C7 containing B?. The function p?
introduced here is identical to (3.30). It is remarkable that the test function
for the Eyring-Kramers formula and that for the Markov chain convergence
share the building block, while the global construction from this building

block is carried out in a different manner.
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The function p? is an approximating solution .Z*f ~ 0 with approxi-
mating boundary conditions f ~ 1 on 0;C7 and f ~ 0 on 0_C? by our
assumption that v7 - e7 > 0. The approximating property £ 'pZ ~ 0 can be
quantified in the following proposition, which has been proven in Proposition
3.4.5.

Proposition 4.4.2. For all o0 € X", we have
0 [ 1209 1 d = o1).
B?

Now, we focus on the properties p? ~ 1 on 0,.CZ and p? ~ 0 on 0_C?.
When suitably extending this function to get a continuous function on R?,
these asymptotic equalities along the boundaries cause technical problems.
They become the exact equality for the reversible case considered in [83] as
v? = e . For our case, the discontinuity is a natural consequence of the non-
reversibility; hence, we need an additional continuation procedure. In Chap-
ter 3, this continuation has been carried out by mollification via a smooth
mollifier. For the current problem, such a procedure does not work, and we
take a different path of construction. The enlarged set £7 is introduced for

performing this continuation procedure.
d

Now, we continuously extend p? to C:". For each = a—i-z ey € @[CS ,

. k=1
we write

x :aiwel —i—Zxkek € 0.C7,
1 k=2

where the boundaries 0.C7 are defined in (4.41). Then, define p? on the

enlarged boundaries (in as

1 Jo N
( 1+5[(w—a)-e?—w—n}u—pz@) for @ € 9,C7
pl(x) = 1 J ! ~
5[@_0).6“W+n}pg(z) for z € 5_C7 .
(4.50)
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By such an extension, we can check that p? is continuous on C:". Now, we
regard p? as a function on £7. Then, we can check that p? satisfies the exact

boundary conditions

" 1 ifxeo&,
pl(x) = ‘ (4.51)
0 ifeed &7.

Now, we claim that the cost of this continuation procedure is tolerable.

Lemma 4.4.3. For all o € X%, we have

966/; IVp?|? dpe = o.(1) .
B)

+CZ

We defer the technical proof of this lemma to the next subsection.

Global construction
For g = g.: S — R, we can now define the function Q% : R? — R. First, we

define this function on IC. (cf. (4.47)) such that

g(i) forx e Wi, ie S,
Q) = ¥ ’ o
g(7) + (g(i) —g()pl (x) forazc &l oe;fori<y.
(4.52)
By (4.45) and (4.51), the function Q¢ is continuous on K. Since for all

o € X*, it holds that
p?(x) € [0,1] and —Vp(z)| < Cn~' foralx €&,
we can check that

IQE ey = gl and [[VQE[rexy < Cn'llgl
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where ||g|| = max |g(7)|. Note that (% is not differentiable along the bound-
ary of £7 for each o € ¥*. In this computation and subsequent computations,
we implicitly regard VQ# as an a.e. defined function except for these discon-
tinuity surfaces. Then, we can continuously extend this function to R? such
that

IQElr~@sy = llglle and || VQE[|rx@s < Cn7' gl - (4.53)

In particular, we have uniformly boundedness of Q¥ since we assumed in
Proposition 4.3.7 that ||g|| is uniformly bounded in e. Note also that the
condition (4.32) of Proposition 4.3.7 is satisfied by Q% immediately from its
definition in (4.52). The last and the most technical part is to check that
()% satisfies (4.33). This will be carried out in the next section. Before doing

that, we conclude the proof of Lemma 4.4.3.

4.4.4 Proof of Lemma 4.4.3

Before proving Lemma 4.4.3, we explain a decomposition of the extended

boundary 5+Cg, which will be used several times later. Define, for a > 0,

olc? = {x€d.,C’:T-v>ald}, (4.54)
02°C7 = {2 €d,C°:Ux) > H+aJ*5} . (4.55)

Lemma 4.4.4. There exists ag > 0 such that, for all a € (0, ag),
alecsudrece = a.c. .

The proof is a direct consequence of Lemma 3.4.10 as n < ¢ and is

omitted.

Proof of Lemma 4.4.3. Fix o € ¥*, and for convenience of notation, we as-

sume that o = 0. We only consider the integral on 5+cg since the proof
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for the case 5_66" is essentially the same. Write e = (ey, ..., eq) and
v? = (vy, ..., vg). Then, by the explicit formula (4.50) for pZ, we have,
for x € 5+Cf ;

e
Vil (@) = - [1-p@)]. (4.56)
€; o —
Vip (z) = Z[l—pe ()]
Ua- —ii"UUQ o J5 .
+7760@ 5 (@) [m-el—w—n] ;1> 2. (4.57)
€ 1

Since the absolute value of the term in the second pair of brackets in (4.57)

is bounded by 7 for @ € (in , we can conclude that

V@) < S pr@p s CetEer
T] €

Now, for a € (0, ag) where aq is the constant appearing in Lemma 4.4.4, it

suffices to prove that

%

1 1 — o
0, € / [—2 [1—p7(Z))* + —e @ )2] pe(x)dr = o.(1) for k=1, 2.
afece B €
+ €
(4.58)

o0
We first consider the case k = 1. By the elementary inequality / e 2qt
b

1
< 56_1#/2 for b > 0, we can deduce that
C S C . ~
1—p7(@) < —— e 5@ < Z o 5@ for g c 9LOCT
x - v° 4]

Hence, the left-hand side of (4.58) is bounded from above by

06 K (.00 1 o T 2T 1T
0772;2[ e e @ (x)de < Ced/z+352/A e BT e g
5
(4.59)

o04Cg +C
where we applied (4.5), the Taylor expansion of U around o = 0, and the
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fact that

e f@V = [140,(1)]e @)
Since the matrix H? + 2uv? ® v is positive definite by Lemma 3.4.2, we

can write
x- (H +2u° v @v%)x > Clz|*> > CJ* 6, (4.60)

as there exists C' > 0 such that |z —o| > C'J0 for all x € 5+C§’. By inserting
(4.60) into (4.59), we can bound the right-hand side of (4.59) from above by

1 o ap
C m V01(8+CE )ECJ = Oe(]-> s
where the equality holds for sufficiently large J since V01(5+Cg) = O(ns?=1h).
Next, we consider the case k = 2 of (4.58). For this case, by (4.5), the

left-hand side of (4.58) is bounded from above by

o 1—d/2 =

O -1/ 1 vemen G vol(0,C7) = o.(1)
~ 2 2 e o
87 ce M N

where the inequality holds from the definition of 5_% “CZ, and the last equality
holds for sufficiently large J since V01(5+Cf) = O(nd®"). This completes the
proof. O

4.5 Proof of Proposition 4.3.7

We fix g = g. : S — R throughout this section which is uniformly bounded
in € in the sense of (4.31). The function Q% appearing in this section is the
one defined in (4.52).
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4.5.1 Reduction to local computations around saddle

points

In this subsection, we reduce the proof of Proposition 4.3.7 to two local
estimates around saddle point o € »*. We perform this reduction via the

following proposition.

Proposition 4.5.1. It holds that

O | QF(ZLeoe)due
R4

=o()+ Y, D (8()—gl))[Ai(o)+ AL (o) + 45 (a)],

i, JES,1<] O'EEi,j
where

1
Al(o) = —0.¢ | VpT- [we . E‘M} dye and

€

A (o) = 6, /a b0 (Vo2 - 0) dpi,

+BZ

Proof. By the divergence theorem, we can write
1
96 QGg <D%€¢€) d/LE = _66 € VQeg ' [v(be - _¢e£i| d:ue .
Rd R4 €

Note that we can apply the divergence theorem since ¢ is continuous, while
its gradient is not defined along 0€7. Now, let us investigate the right-hand
side. First, note that VQ& = 0 on W; by definition. Hence, we can rewrite
the right-hand side as

—9&(/}@\}@—!—2

oex*

/g, )ves: [ Voo~ %M] dc . (4.61)

Now we consider two integrals separately.
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First integral of (4.61): We will separately show that

O e / (VQE - Vo) du. = o(l) and (4.62)
RA\K,

RA\K,

For (4.62), by (4.53) and the Cauchy—Schwarz inequality,

1

< CH%e = p(RINK) De(oe) . (4.64)

2
66 € / v@eg ’ V¢€ d,ue
RA\KC,

Note that the uniform boundedness of g is implicitly used here. We shall
repeatedly use this boundedness in the later arguments as well. Since U >

H + §%J% on R\ K, by (2.7) and Proposition 4.1.2,

C 2,2 >
pe(RE\ IC.) < 7€_H+i < Cote = (4.65)

Applying this and Proposition 4.3.3 to (4.64) yields

956/ (VQE - Vo) du. | < C ar-t4y
RA\K, n

Since 1 = €2, we obtain (4.62) by taking J to be sufficiently large.

Now, we turn to (4.63). By (4.53), Proposition 4.3.1, (4.65) we can bound
the absolute value of the left-hand side of (4.63) by C8.n~ " (R*\K,) = o(1).
Second integral of (4.61): For each o € 3, ; with i, j € S, we have
VQE = (g(i) —g(7))VpZ on E7. Therefore, we can prove that this integral
is Ai(o) + A (o) + A; (o) provided that we can prove

eee[ (VpF - Vo) e = o(1) .
0+ BZ

This follows from the Cauchy—Schwarz inequality, Proposition 4.3.3, and
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Lemma 4.4.3. O

Based on the previous proposition, it suffices to estimate A;(o) and
A3 (o) for each o € ¥*. These estimates are carried out via the following

proposition.

Proposition 4.5.2. Fori, j € S withi < j and o € %; ;, we have

(o) = A (m() —m(0) +ol) . (460

and
Aoy = A B o). e
Az (o) = M L)) e () 4ol (468)

+
2rv,y/ — det HO vo - e

Before proving this proposition, we conclude the demonstration of Propo-

sition 4.3.7 by assuming this proposition.

Proof of Proposition 4.3.7. First, we check that

(v7 + L7 (H7) ' v7) - ef = (I—(H") " (L7))v7 - ef
o\— o (e o o o g\ — g g /'I/o. o o
= (H7)H(H7 — (L)) v7 - ef = —u” (H7) ' v7 - e = Yo (7 et
1
where the first identity follows from the fact that the matrix H7LL? is a skew-
symmetric matrix by Lemma 2.2.6, and the last identity follows from the fact
that e is the eigenvector of H? associated with the eigenvalue —\7. We can

combine this computation with Proposition 4.5.2 to get
o

Avl0) + Af (o) + A (o) = “= (m.(j) — me(0)) + oc(1) | (4.69)

Vs

where the Eyring—Kramers constant w? is defined in (4.6), and we implicitly

used (4.30). Inserting (4.69) into Proposition 4.5.1 completes the proof. [J
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Now, it remains to prove Proposition 4.5.2. We provide the estimates of
Ay(o) and A5 (o) in Sections 4.5.3 and 4.5.4, respectively.

4.5.2 Change of coordinates on 0,857

Hereafter, it suffices to focus only on a single saddle point o; hence, in the
remainder of the current section, we recall Notation 4.4.1 and use the fol-
lowing conventions: we fix o € X; ; for some i, j € S with 1 < j, assume
that o = 0 for simplicity of notation, and drop the superscript o from the

notations, e.g., we write p. and B instead of p? and B, respectively.

Before proceeding to the proof of Proposition 4.5.2, we recall in this sub-
section a change of coordinate introduced in Section 3.4.4, which maps 0, B,
to a subset of R For A € R™ and u = (uq, ..., ug) € R% we define

A € RE-DxE-D 31 5 € R as

A = (Ai,j)QSi,de and ’lj = (UQ, ey Ud) s (470)

respectively. Define a vector v = (7s, ..., 7a) € R by 3 = i /\I—J(F for
U1 k

2 <k <d, where v = v = (vq, ..., vy) denotes the eigenvector introduced

in Section 4.4.3, at which it has been mentioned that v; = v - e # 0. Define

Jo
7)5 = {w:(xl,...,xd)GRd:xlz)\—} CRd,

so that 9, B., 9,C. C Ps, and define amap Il : Ps — R4 by [I(x) = T +~.
This maps the change of coordinate from 0,B. to R?!, which simplifies

computations significantly. For instance, we have the following result.

Lemma 4.5.3. For all x € 0. B., we have

- (H+pvev)e = IL(z) (H+po @) () .
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In addition, the matriz H + 1LY ® v is positive definite and

d

det (H + po ®79) = (v-el)2Aﬂ A -
I g=2

Proof. We refer to Lemmas 3.4.7 and 3.4.9 for the proof. O]

In Lemma 3.4.8, it has been verified that the image of II.(0,B7) is com-
parable with a ball in R?™! centered at the origin with radius of order 4. In

the next lemma, we slightly strengthen this result. Recall the definition of
W, from (4.29).

Lemma 4.5.4. There exist constants r, R > 0 such that
DY C IL(0.B7 NW)) C IL(0.87) ¢ Dig; ¥,
where D((ldfl) represents a ball in R¥™ of radius a centered at the origin.

Proof. In view of Lemma 3.4.8, it suffices to show the first inclusion. Define

Jé

— _ d. .. _ d
Pg.—{x—(xl,...,xd)eR.xl—F}CR and
_ Jo
v = (F7 Y2, t _7d> €P5

Then, it has been shown in (3.38) that
A
UX) = H— 2M1UQ J252+0(8%) < H—2¢yJ% 6 (4.71)
i

for all sufficiently small € > 0 if we take ¢y > 0 as a sufficiently small constant.
By inserting this ¢ into the definition of )//\71 in (4.29), we can find sufficiently
small 7 > 0 such that D,s(¥) N Ps C 0,87 N V/\Z Since II.(%) = 0, we have
fo;_l) = I1.(D,s(7) N 'Ps) and the proof is completed. O
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4.5.3 Estimate of A;(o)

Now, we prove (4.66) of Proposition 4.5.2. By the divergence theorem, we

can write

Al (0') - _96 € 0B ¢e [Vpe : 'n/lS’e ] O-(d,ue) + 05 /B (»Zjl%) Qbe d,ue .

By Propositions 4.3.1 and 4.4.2, we can observe that the second term at the

right-hand side is o.(1). Therefore, we can write
A(o) = Ko+ K+ K_+o/(1), (4.72)
where
Ko = ~bic | 6.V, ng]o(de) and
d0Be

K, = —0.¢ / O [Vpe - mp. | o(due) .
0+ Be
First, we show that Ky = o.(1). For & € 0yB,, by (4.48) and (4.49),

)2 C
Vp@) (@) | = | & e B0 v g (@) <

Therefore, by Proposition 4.3.1 and (4.44) along with the fact that 9,87 C

0E?, we have

|K0| < C0, 172 Z;l 6—(H+J262)/5 0(8086) < CEJQ—(d—i-l)/Q gi-1 — 05(1)
(4.73)
for sufficiently large .J, where we used o(9B.) = O(6* ') in the second

inequality. Next, we estimate K, and K _.
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Lemma 4.5.5. We have

A |
K, = - (i) + 0,(1) and
+ T oy derm ) o) an
A
K_ = . m(j) + oc(1) .

" 2nu/—detH

Proof. We only prove the estimate for K, since the proof for K _ is identical.
Since ng, = e; on 0B, by the Taylor expansion of U around o, explicit

formula (4.48) for p., and (4.5), we can write

ep’? (v-e)

Ky = _[1 +Oe(1)] (QWE)(d_H)/Q v,

/ ¢ 2 (e b (2) o (de)
04 Be
With the notations introduced in Section 4.5.2, we perform the change of

variable y = Il (x) in the previous integral to deduce that

ep'? (v-en)

K, = —[1 + 06(1)] (27r6)(d+1)/2 Uy

| e g ) ay
I (8. Be)

(4.74)
where we applied Lemma 4.5.3 to the exponential term. Let » > 0 be the
constant appearing in Lemma 4.5.4. By Proposition 4.3.4 and Lemma 4.5.4,
we have ¢ (II_'(y)) = m.(i) + o.(1) for y € D(§

N -, Thus, we have

D=V () 6
(2me)ld=1)/2

= — [m.(i) +o0.(1)] .
\/det (El+ 15 © %)

Since the integral on II.(0,85,) \Dﬁ?il)(O) c R\ fo;fl)(ﬂ) is 0.(1) by
Proposition 4.3.1, we can conclude from (4.74) that

(v - e)

Ko = ~[1+0(1)]
27w*\/det (H+ 10 @ 9)

m, (i) + o.(1) .
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The proof is completed by the second part of Lemma 4.5.3. O

Now, (4.66) can be obtained by combining (4.72), (4.73), and Lemma
4.5.5.

4.5.4 Estimate of A5 (o)

Now, we estimate A3 (o) and A; (o). Since the proof is identical, it suffices
to consider Aj (o), i.e., (4.67). Write £ = ({1, ..., £;) and v = (vy, ..., vq).
Then, by (4.56) and (4.57), we can write

A;(O’) = M1 + M2 3 (475)

where

05 Jo - (zv -
M, = e() [wel—w—n}e @RS "y (@) pe(dee) |
1 k=2

nCE (/9\+Be

My =0 [ @) L ) )
04 Be n

First, we show that M, is negligible.

Lemma 4.5.6. We have that M; = o.(1).

5 .
Proof. Since }m e — — n{ < for @ € 0, B,, by Proposition 4.3.1, it

NE
1
suffices to prove that
0. 1 b ()2 U@
€ — 4 (@v)? - —
— — e 2 e« dr = o(l). (4.76)
Ce Ze 5+C

By applying U(z) = U(Z) + O(e*) and then applying the Taylor expansion
to U(@) (with respect to o = 0), the left-hand side of the above equality can
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be bounded from above by

C - - C
NSV /5 e—iw-(]ﬂl—&-uv@v)w de = E(d+?)/2 /a . e—im.(H—kuv@v)wa(dm) )
+Le

1+-Ce

Using the change of variable y = Il.(x) and applying Lemma 4.5.3, we can
check that the last integral is bounded by Ce!“=1/2. Hence, the left-hand side

C
of (4.76) is bounded from above by T« D2 = 0(1). This proves

c(d+1)/2
the lemma. ]
Next, we estimate M.
Lemma 4.5.7. We have
My = — P [(LHv)-e]m(i) +ol). (477)
21, \| det(H + po ® v)

Proof. Let a € (0, ag), where ag is the constant appearing in Lemma 4.4.4.
Let us define
2B = §.B° N d>°Co
and write
My = My + Mo, (4.78)

where

My, = QE/A qﬁe(w)wfl(a:) pe(x) dz , and
97 “Be

1—px
M, o = 06\/; ~ qbg(w)ﬁfl(m),ue(w) dex .
4 BNID Be N

First, we check that M, = o.(1). By Proposition 4.3.1, it suffices to show
86 N a . .

that —p.(02°B.) = 0,(1). This is a consequence of the bound U(zx) >
n

H + aJ*$* on 5_2;‘186, which holds by definition, the bound Vol(gi’“Be) <
V01(5+B€) < Cnd?', and (4.5).
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Now, we turn to M, ». By Lemma 4.4.4, we have T - v > ¢J¢ for ¢ €

5+B€ \ 5_%‘186; hence, we can use the elementary inequality

b e~V /2 < / e 12 qt < 1e_bQ/z for b >0
b2 +1 b b
to obtain
1/2 B
1 —p(®) = [1+0(1)] < e~ 3@ )*

2rn) 72 (@ - v)

Now, we apply this result along with the Taylor expansions of U and £ around
o =0 to M; 5 to get

M o
1+ o.(1) Lz - e

- _
_ bo(@) =L e e
(27r)(d+1)/2 v, M1/2 e(d+3)/2 /?9\+Be\5f‘“35 xr-v

T .

Note here that we have replaced several x’s with ’s without changing the
error term since | — x| = O(n). Let r > 0 be the constant appearing in

Lemma 4.5.4. Then, we claim that, for all sufficiently small ¢ > 0,

J5 J5 . S
<W’ WM] X T(D,s5(0) € 0B, AW € 3,8, \ 2B, .
1 1

The second inclusion is immediate from the definitions of )//\71 and 5%“[51. On
the other hand, the first inclusion is a consequence of Lemma 4.5.4 and the

fact that n = ¢2. For convenience, we write

J5Js )
A= <F FH] XTI (D,5(0))

We further decompose My o = My o9 1 + My 9 2 where My 5 1 and M; 5 o

are obtained from M, 5 by replacing the integral / with
84BN\ “Be
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/ and / , respectively. We argue that Ms o1 = o.(1). By
(04 BN\ “Be)\ A« c

Proposition 4.3.1 and the fact that - v > aJd on 5+BE \ 543’“86, it suffices
to show that

/ o 2@ H+pve) @ g (d-1)/2 0c(1)
RA=I\TI7 (D5 /2(0))

where  is defined in (4.70). The previous identity can be directly verified
by the change of variable y = II.(%).
Next, we turn to M 5 2. On A, we have ¢.(x) = m.(i) +o.(1) by Propo-

sition 4.3.4. Hence, we can write

1+ o0.(1) .
Moz2 = Gy, a7z qanpe [ me0) +odD)]
- X / @e—%ﬁ (Htnv@v)T g (4.79)
I (Dys2(0) LV

We can use Lemma 3.4.11 to show that the last integral can be written as

(2me)@=V/2 (—p LH ') - e

[1+0c(1)]
\/det (4 15 @ %)

Inserting this into (4.79) along with the fact that M 2 1 = o.(1) proves that

= — L a ) e m.(i 0
My, = \/det(]ﬁHM%@%)[(LH )-er]m(i) +o(1). (4.80)

Combining this estimate with the fact that M; 1 = o.(1) completes the proof.
O

Now, the proof of (4.67) follows immediately from (4.75) and Lemmas
4.5.3, 4.5.6, 4.5.7. This concludes the proof of Proposition 4.3.7.
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Chapter 5

Curie—Weiss—Potts model

In this chapter, we completely analyze the energy landscape of the Curie—
Weiss—Potts model for all ¢ > 4. Based on this result, we prove metastable
behavior of heat-bath Glauber dynamics associated with the Curie—Weiss—
Potts model. The model exhibits phase transitions as an inverse temperature
[ varies so that different aspects of metastable behavior are observed. Our
result reveals that different phase transitions are observed in the case of ¢ < 4

and the case of ¢ > 5 because the number of critical temperatures is different.

5.1 Studies on the Curie—Weiss—Potts model

The Curie-Weiss—Potts model is investigated in various studies; e.g., [6, 12,
18, 19, 25, 26, 44, 53, 85, 88] and references therein. We note that the rigorous
mathematical definition of the Curie-Weiss—Potts model is presented in the

next section.

The Curie—Weiss model

The Ising case of the Curie-Weiss—Potts model, i.e., the corresponding spin
system consisting only of ¢ = 2 spins, is the famous Curie-Weiss model. It

is well-known that the Curie-Weiss model without an external field exhibits
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a phase transition at the critical (inverse) temperature . > 0. It is mainly
because the number of global minima of the potential function associated
with the empirical magnetization is one for the high temperature regime g <
B, while it becomes two for the low temperature regime 3 > (., where 5 > 0
represents the inverse temperature (cf. [80, Chapter 9] for more detail). It is
also well-known that such a phase transition for the structure of the energy
landscape is closely related to the mixing property of the associated heat-
bath Glauber dynamics. In [66], it has been shown that the Glauber dynamics
exhibits the so-called cut-off phenomenon which is a signature of the fast
mixing for the high-temperature regime (i.e., 8 < f.) and the metastability
for the low-temperature regime (i.e., 5 > (.). The metastability for the low-

temperature regime has been more deeply investigated in [17].

The Curie—Weiss—Potts model with ¢ = 3

The picture for the Curie-Weiss model explained above has been fully ex-
tended to the Curie-Weiss—Potts model consisting of ¢ = 3 spins. The
complete description of the energy landscape has been obtained recently in

[44, 53], where three critical temperatures

0< B <Be<f3=3

are characterized. More precisely, it has been shown that the potential func-
tion associated with the empirical magnetization (which will be explained in
detail in section 5.2.3) has

e the unique global minimum for 5 € (0, f;),
e one global minimum and three local minima for 3 € (81, 82),
e three global minima and one local minimum for 5 € (33, 83), and

e three global minima for 5 € (3, 00).
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The articles [44, 53] also analyzed the associated saddle structure. Based
on this analysis, [53] discussed the quantitative feature of the metastable
behavior of the heat-bath Glauber dynamics in view of the Eyring-Kramers
formula and Markov chain model reduction (cf. [2, 3, 46]) for all the low-
temperature regime [ > ;. Because of the abrupt change in the structure
of the potential function at § = By and [ = (3, the metastable behaviors
of the Glauber dynamics in three low-temperature regimes (31, 52), (52, 33),
and (f3,00) turned out to be both quantitatively and qualitatively different.
For the high-temperature regime (0, 51), the cut-off phenomenon has been
verified in [19] for all ¢ > 3. Adjoining all these works completes the picture
for the Curie—~Weiss—Potts model with ¢ = 3 spins.

The Curie—Weiss—Potts model with ¢ > 4

Compared to the Curie-Weiss—Potts model with ¢ = 2 or 3 spins, the analysis
of the case with ¢ > 4 spins is not completed so far. In many literature,
two critical temperatures [3;(q) < fa(q) for the Curie-Weiss—Potts model
with ¢ > 4 spins are observed and the phase transitions near these critical
temperatures have been analyzed. For instance, in [19], the phase transition
from the fast mixing (the cut-off phenomenon) to the slow mixing (due to
the appearance of new local minima) at 8 = (1(¢) has been confirmed. In
[26], it has been observed that the limiting distributions of the empirical
magnetization exhibits the abrupt change at § = f((¢). In [18], the phase
transition around fs(q) also has been studied in view of the equivalence and
non-equivalence of ensembles.

These studies focus on the phase transitions involved with the local and
the global minima of the potential function. However, in order to investigate
the metastable behavior whose main objective is to analyze the transitions
between neighborhoods of local minima (i.e., the metastable states), the pre-
cise understanding of the saddle structure is also required. To the best of

our knowledge, the analysis of the saddle structure as well as the metastable
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behavior of the heat-bath Glauber dynamics for ¢ > 4 has not been analyzed
yet.

Main contribution of the chapter

The main result of the present work is to provide the complete description of
the energy landscape including the saddle structure and to analyze dynami-
cal features of the Glauber dynamics based on it for the Curie-Weiss—Potts
models with ¢ > 4 spins.

First, we observe that for ¢ = 4, as in the case of ¢ = 3, the potential

function has three critical temperatures

0< 61(4) < 62(4) < B3<4) =4 ,

and moreover the associated metastable behavior is quite similar to that of
the case ¢ = 3. On the other hand, for ¢ > 5, we will deduce that there are

four critical temperatures

0 < Bi(q) < Balq) < B3(q) < Balg) = q ,

where two critical temperatures 3 (q) and f2(q) play essentially the same role
with £1(3) and [B2(3) (and hence (£;(4) and [55(4)), respectively. Surprisingly,
our work reveals that the role of the third critical temperature 33(q) for ¢ < 4
is divided into the third and fourth critical temperatures f5(q) and f4(q) for
q > 5. More precisely, for ¢ < 4, the change in the saddle gates between global
minima and the disappearance of the local minimum representing the chaotic
configuration happen simultaneously at 8 = (3(q) = ¢; however, for g > 5,
the change of saddle gates happens at § = (3(q) < ¢ and the disappearance
of the chaotic local minimum occurs at § = 34(¢) = ¢q. Hence, for ¢ > 5, we
observe another type of metastable behavior at 5 € [53(q), 84(¢)) compared
to the case ¢ < 4.
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Remark. We can also consider the Curie—Weiss—Potts model under an ez-
ternal field. For such models with ¢ = 3 spins, the energy landscape has been
completely analyzed in [53, Sections 5, 6]. We expect similar results but rig-
orous demonstration seems to be very complicated for general ¢ > 4; hence
we leave it for future research. We also remark that the Curie—Weiss—Potts

model with an random external field has been studied in [85, Section 5].

Other studies on the Potts model

Although the present work focuses on the Potts model on complete graphs,
we also note that the Ising and Potts models on the lattice are widely studied
as well. For instance, we refer to [80] and the references therein for the phase
transition, to [67, 68, 69] for the cut-off phenomenon in the high-temperature
regime, and to [1, 5, 9, 10, 11, 15, 42, 72, 74, 75, 77| for the metastability
in the low-temperature regime. In addition, we refer to [34, 39] for the Potts
model in many spins or large dimensions and to [16, 20] for the study of

metastability of the Ising model on random graphs.

5.2 Model

In this section, we introduce the formal definition of the Curie-Weiss—Potts
model, which will be analyzed in the present work. Fix an integer ¢ > 3 and
let S = {1, ..., q} be the set of spins.

5.2.1 Curie—Weiss—Potts measure

For a positive integer N, let us denote by' Ky = {1, ..., N} the set of sites.
Let Qn = S be the configuration space of spins on K . Each configuration
is represented as 0 = (01, ..., on) € Qy where 0, € S denotes a spin at
site v € K. Let h = (hy, ..., hy) € R? be the external magnetic field. The

We write Ky to emphasize that our model is on the complete graph
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Hamiltonian associated with the Curie-Weiss—Potts model with the external

field h is given by

Hy(o) = 5= Y lo,=0,) - qu:hjl(avzj) Lo €Oy,
N

1<u,v<N v=1 j=1

where 1 denotes the usual indicator function. Then, the Gibbs measure as-
sociated with the Hamiltonian at the (inverse) temperature 5 > 0 is given
by

1
MN(U) ZN(ﬁ)e O N
where Zn(5) = Z e PN i the partition function. The measure p5 ()
UEQN

denotes the Curie-Weiss—Potts measure on {2y at the inverse temperature .

5.2.2 Heat-bath Glauber dynamics

Now, we define a heat-bath Glauber dynamics associated with the Curie—-
Weiss—Potts measure ,uﬁ,() For o € Qu, v € Ky, and k € S, denote by o *

the configuration whose spin o, at site v is flipped to k, i.e.,

(O'U’k) . Ou U#U,

U
k uwu=w.

Then, we will consider a heat-bath Glauber dynamics associated with gener-

ator Ly which acts on f: Qy — R as

(Exf)0) = v 3D casl@)f (0™ ~ f(0)]

v=1 k=1

where

CU7k(U)

exp {~ZBv(o™*) ~ Hvlo)]}
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It can be observed that this dynamics is reversible with respect to the
Curie-WeissPotts measure 1 (-). Henceforth, denote by o(t) = 0%~ (t) =
(o1(t), ..., on(t)) the continuous time Markov process associated with the

generator Ly.

5.2.3 Empirical magnetization

For each spin k € S, denote by % (o) the proportion of spin k of configuration

o€ Qy,ie.,

which represents the empirical magnetization of the configuration ¢ contain-
ing the macroscopic information of o.

Define = as
E={z= (21, ..., 701) € Rso)" 't 21+ +a,1 <1}, (5.1)
and then define a discretization of = as
Exn=2=Nn(Z/N) .

With this notation, we immediately have ry (o) € Zy for o € Qy.

For the Markov process (O'(t))t>0, we write ry(-) = ry(o(+)) which is a
stochastic process on =y expressing the evolution of the empirical magneti-
zation. Since the model is defined on the complete graph Ky, we obtain the

following proposition.

Proposition 5.2.1. The process (rN(t))t>0 is a continuous time Markov
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chain on =xn whose invariant measure is given by

where vy (x) denotes the set {o € Qn : rn(0) = x}. Furthermore, ry(-) is

reversible with respect to e

The proof of this proposition including jump rates is given in Section
5.5.1. Let PX# be the law of the Markov chain 7y(-) starting at « € Zy and

let EY '# be the corresponding expectation.

More on the measure v (.)

Forye=Z lety=(y, ..., Yp—1, yy) € R where y, =1 — (y1 + - - + y4—1)-

Then, the Hamiltonian Hy can be written as
Hy(o) = NH(rn(0)) ; 0 €y

where )
H(a:):—§|§:\|2—h-fﬁ X EZ. (5.2)

Therefore, by Proposition 5.2.1, the invariant measure /5 (-) of the process

ry(t) on Zy can be written as

Wi(x) = L exp{—FHxy (o
@) 7 (AN}

ory(o)=

exp{—fGNH(x)}

- ((Nan) Nl <qu>) ZN1<5>

= N a2y (F) exp{—FNFs n(x)} . (5.3)

where, by Stirling’s formula, we can write
1
Fyn(w) = Faw) + G, v(®)
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where

1 ] e
Fy(@) = H(z)+ 5S(2) and Gy x(w) = %ﬁ%) FONTY) . (5.4)
In this equation, H(-) is the energy functional defined in (5.2) and S(-) is the

entropy functional defined by
q
S(x) = sz log(z;) ,
i=1

and Gg, ny(x) converges to log(x; - --x,)/(28) uniformly on every compact

subsets of int =.

Main objectives of the chapter

Now, we can express the main purpose of the current chapter in a more
concrete manner. In this chapter, we consider the Curie-Weiss—Potts model
when there is no external magnetic field; i.e., h = 0. Therefore, from now on,
we assume h = 0. Under this assumption, the first objective is to analyze the
function Fj(-) expressing the energy landscape of the empirical magnetization
of the Curie-~Weiss—Potts model. This result will be explained in Section 5.3.
The second concern is to investigate the metastable behavior of the process
rxn(-) in the low-temperature regime. This will be explained in Section 5.4.

Latter part of the chapter is devoted to proofs of these results.

5.3 Main result for energy landscape

In view of Proposition 5.2.1, (5.3), and (5.4), the structure of the invariant
measure l/f,() of the process ry(+) is essentially captured by the potential
function Fp(-); hence, the investigation of Fj(-) is crucial in the analysis of
the energy landscape and the metastable behavior of ry(-). In this section,

we explain our detailed analysis of the function Fj(-).
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Note that the function Fjs(-) = H(-) + B87'S(:) express the competition
between the energy and the entropy represented by H(-) and S(-), respec-
tively. Since there is a 7! factor in front of the entropy functional, we can
expect that the entropy dominates the competition when § is small (i.e., the
temperature is high). Since entropy is uniquely minimized at the equally dis-
tributed configuration (1/q, ..., 1/q) € Z, we can expect that the potential
Fj3(+) also has the unique minimum when £ is small. On the other hand, if §
is large enough (i.e., the temperature is low), the energy H(-) with ¢ minima
dominates the system, and therefore, we can expect that the potential I
also has ¢ global minima. In this section we provide the complete character-
ization of the complicated pattern of transition from this high-temperature
regime to low-temperature regime in a precise level.

In Section 5.3.1, we define several points that will be shown to be criti-
cal points. In Section 5.3.2, we introduce several critical values of (inverse)
temperature (. In Section 5.3.3, we summarize the results on the energy land-
scape Fj(-). In Section 5.3.4, as a by-product of these results, we compute

the mean-field free energy.

5.3.1 Critical points of Fj(-)

Let us first investigate critical points of Fjz(-). We recall that

1< 1
Fs(x) = —szi + EZxklog:pk ; TEE.
k=1 k=1

Notation 5.3.1. We have following notations for convenience.

1. Since there is no risk of confusion, we will write the point € = (x4, .. .,

Tgo1) €EZasx = (21, ..., Ty1, T,) € RT where xg = 1—21— - —241.
2. Let {ey, ..., e, 1} be the orthonormal basis of R*' and e, = 0 €
R7™Y. According to the convention above, the vectors eq, . .., e, can be

regarded as an orthonormal basis of RY.
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25 A

20 A

15 +

10 -

0.00 0.05 0.10
Figure 5.1: Graph of go(t) for ¢ = 10.

Now, we explain the candidates for the critical points of Fjs(-) playing

important role in the analysis of the energy landscape. The first candidate is

p:=(1/q,...,1/q) € =,

which represents the state where the spins are equally distributed.
In order to introduce the other candidates, we fix i € NN [1,¢/2] and let
j =q—1t. Define g; : (0,1/7) — R as

ilt) = —log (<) (55
where we set ¢;(1/q) = ¢ so that g; becomes a continuous function on (0, 1/5).
We refer to Figure 5.1 for an illustration of graph of g;. Then, it will be
verified by Lemma 5.6.1 in Section 5.6.1 (and we can expect from the graph
illustrated in Figure 5.1) that g;(¢) = § has at most two solutions. We denote
by u;(8) < v;() these solutions, provided that they exist. If there is only

one solution, we let u;(5) = v;(/3) be this solution.
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For k € S, let

b =ut(8) = (w(), ... 1= (@=Duw(d), ... m(B) €2, (5.6)
vk = vE(g) = (Ul(ﬁ), 1= (g =D (B), ..., vl(ﬁ)) c=,  (57)

where 1 —(¢—1)uy(f) and 1 — (¢ —1)v1(5) are located at the k-th component

of uf and v¥, respectively. For k, [ € S, let

Akl 1 —(q—2)ux(B)
ub!t = ubh(g) = <u2(ﬁ),..., 5

1 —(q—2)ux(B)
> ,...,m(ﬁ))é

(5.8)

(1]

Y

1 — (g = 2)us(P)

each of these points is well defined only when wuy(8),v1(5), or ug(3) exists,

is located at the k-th and [-th components. Of course,

where

respectively. Then, let
U ={ut keS}, Up:={ub' k1eS}, andV, = {v: ke S} .

We remark that these sets depend on 3 although we omit  in the expressions
for the simplicity of the notation.

Since we assumed that h = 0, by symmetry, we can expect that the
elements in U; have the same properties; for instance, for all k,[ € S, we have
Fy(uf) = Fs(ul), and uf is a critical point of Fj(-) if and only if u} is. Of
course the elements in U, or V; respectively have the same properties. Thus, it
suffices to analyze their representatives, and hence select these representatives
as

-1
w =uf, wy=ul""? and vi =v{. (5.9)

Now, we have the following preliminary classification of critical points.
We remark that a saddle point is a critical point at which the Hessian has

only one negative eigenvalue.
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Proposition 5.3.2. The following hold.
1. If c € = is a local minimum of Fjs, then c € {p} UlU.

2. If s € 2 is a saddle point of Fg, thens € Vi UUsy for ¢ > 4 ands € V;
forq=3.

Remark 5.3.3. The set Uy is not defined for ¢ = 3 since the set U; is defined
only when i < q/2. This will be explained in Section 5.6.1.

The proof of this proposition is an immediate consequence of Proposition
5.6.3 in Section 5.6.1. The above proposition permits us to focus only on {p }U
U1 Ul UV, when we analyze the energy landscape in view of the metastable
behavior, since the critical points of index greater than 1 cannot play any
role, as the metastable transition always happens at the neighborhood of a

saddle point (a critical point of index 1).

5.3.2 Critical temperatures

In this subsection, we introduce critical temperatures

0 < Bi(q) < Balq) < Bs(q) < q,

at which the phase transitions in the energy landscape occur. The precise
definition of these critical temperatures are given in (5.31) of Section 5.6.2.
Henceforth, we write 5; = (;(¢q), 1 < i < 3, since there is no risk of confusion.

To describe the role of these critical temperatures, we regard [ as increas-
ing from 0 to co. Figure 5.2 shows the role of p, U, V;, and Us according to
inverse temperature. Section 5.6 will prove this figure.

At 8 = 1, the dynamics exhibits phase transition from fast mixing to slow
mixing, and this is proven in [19]. Furthermore, the behavior of the dynamics
changes from cutoff phenomenon to metastability. This phase transition is

due to the appearance of new local minima U, of F(-) other than p at 8 = ;.
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Figure 5.2: Role of each critical point according to temperature. Solid lines
imply local minima and dashed lines imply saddle points.

At B = fs, the ground states of dynamics change from p to elements of U, as
observed in [18, Theorem 3.1(b)]. To explain the role of critical temperatures
b3 and ¢, we have to divide the explanation into several cases. Let us first
assume that ¢ > 5 so that 83 < ¢q. At § = (3, the saddle gates among the
ground states in U; is changed from V; to U, (since the heights Fj(vy) and
Fj(uy) are reversed at this point) and at 5 = ¢, the local minimum p becomes
a local maximum. On the other hand, for ¢ < 4, we have 3 = q. At 8 = (3,
the change of the saddle gates and the disappearance of the local minimum
p occur simultaneously. We refer to [53] for the detailed description when

q=3.

5.3.3 Stable and metastable sets

We define some metastable sets based on the results explained earlier. If
q > 4, define Hz as (cf. (5.9))

Hﬁ _ FB(VI) ) 6 € (Bl»ﬂfﬂ) ) (51())

Fg(ug) , B € [B3,00) .

When g = 3, we set Hg = Fj(vy) for all 5 > f; (cf. Remark 5.3.3). It will be
verified in Lemma 5.6.7 and (5.31) that Hg is the height of the lowest saddle
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v
Vv

d) B € (B2, 83)
e) B=03 f) B € (83,00

A

Figure 5.3: Energy landscape of F when ¢ = 3.

points.

Let S := SU {0} and ul := p. Let> W, = Wi(8), k € S, be the
connected component of {Fs < Hg} containing u} and let W, = W,(3) be
the connected component of {Fjs < Fj(vy)} containing uj. For k, [ € S, let
Y1 = Zra(B) == WL NW, be a set of saddle gates of height Hj between u’f
and u}.

Now, we can state the main result on energy landscape and the proofs of

2We define the set Wy, k € S, and W, as the empty set if the set {F3 < Hg} does not
contain u} and {Fs < Fs(v1)} does not contain u§ respectively.
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theorems in this section will presented in Section 5.9. The first result holds
for all ¢ > 3.

Theorem 5.3.4. For q > 3, the following hold.

1. If B < 1, there is no critical point other than p, which is the global

minimum.
2. For 8 € (01,q), we have W, # 0 and for € [q,0), we have W, = ().

3. Let Mg be a set of local minima of Fg. Then, we have

{p} ﬁ € (Ovﬁl] )
Ms=q{ptUlh Be (B q),
U B € [q,00) .

4. Let M be a set of global minima of Fg. Then, we have

{p} B € (0,5) ,
M= {ptUlh B=70,
Z/{l B € (BZ?OO) .

Since there is only one minimum if 8 < (31, we now consider 3 > ;. Before
we write the main result on metastable sets, we would like to emphasize that
[53, Proposition 4.4] proved the case when ¢ = 3, while the proof for the case
q > 4 is the main novel contents of the current chapter. We first consider the
case ¢ < 4. See Figure 5.3° for the visualization of the following and above

theorem.

Theorem 5.3.5. For q < 4, the following hold.

1. ﬁ?):q

3This figures are excerpt from [53, Fig 4]
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2. For B € (B1,q), the sets Wy, k € §, are nonempty and disjoint. For
k, l e S, Zk,l =0 andfor ke S, ka = {V]f}

3. For 8 = q, we have W, = (). The sets Wy, k € S, are nonempty and
disjoint. For k,l € S, ¥y, = {p}.

4. For B € (q,0), we have W, = (). The sets Wy, k € S, are nonempty
and disjoint. For k, 1 € S,

{vi'}, where m € S\ {k,l}, ifq=3,

Y= .
{u2’}7 qu:4

Next, we consider the case ¢ > 5. Note that the crucial difference com-
pared to the previous theorem lies in the third and fifth statements. See
Figures 5.4 and 5.5 for the visualization of the following theorem and Theo-
rem 5.3.4.

Theorem 5.3.6. For q > 5, the following hold.
1. 53 <gq.

2. For g € (p1,Ps), the sets Wy, k € :9\, are nonempty and disjoint. For
k,1€S, %, =0 and fork e S, ¥, = {vi}

3. For = (3, the sets Wy, k € §, are nonempty and disjoint. For k, | €
S, Y1 = {u’;’l} and for k€ S, X, 1 = {V]f}

4. For € (B3,00), the sets Wy, k € S, are nonempty and disjoint. For
k,leS, S ={us'Y and fork € S, X0 = 0.

5. For B € (Bs,q), we have Fz(vi) > Hg. Furthermore, the set {Fs <
Fs(v1)} has only two connected components, the well W, and the other

containing Uy,. The saddle points between them are V.
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ui ui
2 2
Tv \Y
3 1 1 3 1 1
u; w3 vl uz u; v vl uz
o

(a) (B1,52) (b) B =52
u? u?

Ht—>
ui uj
(c) (B2, 83) (d) (B3,00)
ui
ui V2 Il v‘l u}l
.\ 1 p *1/v.
Lol vi
u‘]‘\ / \Ui
(e) (B3, q)

Figure 5.4: Illustration of energy landscape of F3 when ¢ = 5. The first four
figures are {F3 < Hz} and the last figure is {Fjs < F(vq)}. The star-shaped
vertices and circles represent saddle points and local minima, respectively.
The empty circles are shallower minimg. Each arrow represents a path from
one shallower minimum to another deeper minimum passing through a saddle
point.
] 2-tf &
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2
uj
1,2
2 u
Vv ﬁ/.\ﬁ 2
1
u3 3 I 1 uj 3 1
.\*Vl p *‘ﬁ/v. u; K, *p 55 uz
vi vi
u‘l‘/ \ug

(a) Uy and Vy (b) Uy and Us

(C) Z/ll, Vl, and Z/IQ

Figure 5.5: Illustration of energy landscape of Fjs when ¢ = 5 and 8 = [35. The
figures are {F3 < Hp}. The star-shaped vertices and circles represent saddle
points and local minima, respectively. The empty circles are shallower min-
ima. Each arrow represents a path from one shallower minimum to another
deeper minimum passing through a saddle point. Note that when 5 = (3, Us
and V; exist simultaneously. The first two figures are illustrations of saddle
structures of V; and Us, respectively. The last figures is a combination of the
previous two figures.
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5.3.4 Mean-field free energy

In this subsection, we compute the mean-field free energy of the Curie-Weiss—
Potts model defined by

0(8) i= = Jim Zlog Zy(9) (.11

It is well known that the Curie-Weiss model with ¢ = 2 spins exhibits the
second-order phase transition at the unique critical temperature g = f,,
while the Curie-Weiss—Potts model with ¢ > 3 spins exhibits the first-order
phase transition at 8 = (s (cf. [18, 26, 78]). We now reconfirm this folklore
by computing the free energy explicitly. This computation is based on the
following observation (cf. [26, display (2.4)]):

Jim 108 Zx(8) = sup{~Fy(a)} (5.12)

We give a rigorous proof in Appendix B.
Now, let us assume that ¢ > 3 so that by (5.11), (5.12), and Theorems
5.3.4, we can deduce that

F if 3< B,
W(B) = 5(p) 1 B < B (5.13)
Fg(ul) lfﬁ > ﬁg .

Corollary 5.3.7. We have that

1 .
, —ES(P) if <P,
V(B =9 1 , (5.14)
—@S(ul) if 8> Pa .
In particular, the Curie—Weiss—Potts model with ¢ > 3 exhibits the first-order
phase transition at § = Ps.

Proof. Let ¢(B3) € Z be a critical point of Fs(-). Then, since Fs = H + 3719,
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we have )

%Fﬁ(C(ﬁ)) = VFs(c(B)) - €(B) — @S(C(ﬁ)) :
Since VFj3(c(8)) = 0, we get (5.14) from (5.13). Since S attains its unique
local minimum at p and u; # p, ¥'(+) is discontinuous at § = (. O

5.4 Main result for metastability

In this section, we analyze the metastable behavior of ry(-) based on the
analysis of the energy landscape carried out in the previous section and the
general results obtained by [54]. As inverse temperature 3 varies, the behavior
of this dynamics changes both qualitatively and quantitatively thanks to the
structural phase transitions explained in the previous section.

Since the invariant measure Vﬁ, is exponentially concentrated in neighbor-
hoods of ground states, the corresponding Markov process ry(-) stays most
of the time at these neighborhoods. The abrupt transitions between such
stable states are the metastable behavior of the process ry(+) and one of the
natural ways of describing these hopping dynamics among the neighborhoods
of the ground states is the Markov chain model reduction. A comprehensive
understanding of such approaches can be obtained from [2, 3, 46].

When the dynamics starts from a local minimum which is not a global
minimum, we have to estimate the mean of the transition time to the global
minimum in order to quantitatively understand the metastable behavior.
This estimation is known as the Fyring—Kramers formula. In this section we
provide the Markov chain model reduction and Eyring-Kramers formula for
the metastable process ry(-).

Such a metastable behavior is observed only when there are multiple
local minima; and hence we cannot expect metastable behavior at the high-
temperature regime § < [; for which p is the unique local (and global)

minimum. Hence, we assume ( > f; in this section.

151



CHAPTER 5. CURIE-WEISS-POTTS MODEL

5.4.1 Some preliminaries

In this subsection, we introduce several notions crucial to the description of

the metastable behavior.

Some constants

We first define the so-called Eyring—Kramers constants which play fundamen-
tal role in the quantitative analysis of metastability. Recall the definition of
{ei, ..., e,} from Notation 5.3.1. Define (¢ — 1) x (¢ — 1) matrices A"/,
i,j €S, and A(x) as

A = (ej—e)(ej—e)l and  Am)= ) w(z)A.
1<i<j<q

As we will see in Section 5.5.3, these constants are related to the drift of
empirical magnetization as a consequence of spin update from ¢ to j or j to 7.
Since A“7, i, j € S, are positive definite, A(x) satisfies [54, display (A.1)] and
hence, by [54, Lemma A.1], for all k, 1 € S, the matrices (V2Fg)(uf')A(uf ")
and (V2Ep)(vi)A(VH)T have the unique negative eigenvalue which will be
denoted respectively by —ug ; = —p () and —pio, 1 = —pto, (5).

Now, let us define the Eyring—Kramers constants corresponding to our

model as
We,1 = wk,1(B) == t.1(5) ¢ BGs(uz") , k,leS, (5.15)
V-~ det[(V2Ey) (u))
Wo, i = Wo k() 1= to, () e PG | kes. (5.16)

/= det[(V2Fp) (VE)]

By symmetry, we have wy; = wyp y for all k, 1 € S and ¥, 1" € S and

Wo,k = Wy, for all k, k' € S. Hence, let us write w, = w, 1 and w; = wy 2.
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Next, define

e AG() )
0 TRy 0
exp(—BGs(p))

VB2 det[(V2F5) ()]

Vo = 1,(0) =

(5.18)

As explained in [54, display (2.8)], the constants v, k € S, and v, are the
normalized asymptotic mass of the neighborhood of u¥ and p, respectively.

By the symmetry, we also obtain v = -+ = 1,.

Time scales

The constant Hz defined in (5.10) denotes the height of the lowest saddle
points. Let 6 = 0,(3), k € S, be the depth of well Wi(8), i.e.,

Oy = =0, =B[Hz — Fp(w)],
0o = BIFs(v1) — Fs(p)] -

Then, e and e™% represent the time scales on which 7y (-) exhibits metasta-

bility. For 8 > ¢, the constant #, is meaningless since W, = ().

Order process and Markov chain model reduction

Let 06 = 6(8) > 0 be a small enough number such that § < min{6,,6;}. If
B > q, since 0, is not defined, let § = (1/2)6,. For k € S, define

W,f:Wkﬂ{wEE : Fg($)<H5—5},
W =W,n{x €= : Fs(x) < Fs(v1) — 0} .

For k € S, define £F = () as

Eh =WINZy .
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This set é’}f, is called the metastable set, provided that it is not an empty set.
For A C §, we write
ev=J¢&.
keA
Let T be S, §, or {o, S}. Denote by U = \IJ?V : 2y — TU{N} the projection
map given by

Un(z) = Y kl{z € &y} + N{z € Ex \ E(} .

keT

Let us define the so-called order process by Xy (t) = ¥y (ry(t)) which rep-

resents the index of metastable set at which the process ry(-) is staying.

Definition 5.4.1 (Markov chain model reduction). Let X(-) be a continuous
time Markov chain on T. We say that the metastable behavior of the process
ry(+) is described by a Markov Process X(-) in the time scale Oy if, for all
k € T and for all sequence (xn)n>1 such that xn € EN for all N > 1, the
finite dimensional marginals of the process Xy (0n-) under Pivl’vﬁ converges to
that of the Markov chain X(-) as N — oc.

In the previous definition, it is clear that the Markov chain X(-) describes

the inter-valley dynamics of the process ry(-) accelerated by a factor of Oy.

5.4.2 Metastability results for ¢ <4

We can now state the main result for the metastable behavior. First, we
consider the case ¢ < 4 whose result is essentially the same as that in [53,
Section 4.3] where only the case ¢ = 3 was considered.

We define limiting Markov chains when ¢ < 4.

Definition. Let ¢ < 4 and" i € {(1,2), (2), (2,3), (3,00), (4)}. Let Y.(-)
be a Markov chain on T with jump rate rf] T xT — R given by

“Here, (1,2), (2,3), (3,00) are single element of the given set.
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1,2 _ _ W _ 3
1. (k) =1{l=0 V—l,T_S.

2. (k1) = 1{l = 0} 4 1{k=0}—2 T =4
141 Vy

Wo

3@ l)=—"" T=25.
q ( ) qn
ﬂ, q=3
b PNk D) = O ,T=85.
I q:4
V1

5 (k) = 1{k =0} =, T =3.
Vo

The following theorem is the metastability result for ¢ < 4. We remark
that the case when ¢ = 3 is proven in [53, Section 4.3].

Theorem 5.4.2. Let ¢ < 4. Then, the metastable behavior of the process
ry(-) is described by (cf. Definition 5.4.1)

1. B € (B, B2): the process Y(gl’z)(-) in the time scale 2r Ne.
2. B = Py the process Yf)(-) in the time scale 2r N e’

3. B € (Pa,q): the process YSQ’S)(-) in the time scale 2rNe® and by the
4

process Yé )(-) in the time scale 2mNeP.
4. B € (q,00): the process Yég’oo)(~) in the time scale 2r Nef .

The proof follows from Theorems 5.3.4 and 5.3.5, Proposition 5.5.3, and
[53, Theorem 2.2, Remark 2.10, 2.11].

Remark 5.4.3. As mentioned in [53], we cannot investigate the case § =

B3 = q with the current method since p is a degenerate saddle point.

Remark 5.4.4. The qualitative feature of the metastable behavior of ry(+)
1s essentially same for ¢ = 3 and q = 4. The only difference is that the saddle
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points between metastable sets are defined in different ways; however, when
B > B3, the points in Vy for ¢ = 3 and Uy for ¢ = 4 play the same role since
all the points belonging to these sets represent states in which most sites are

aligned to two spins equally.

5.4.3 Metastability results for ¢ > 5

As in the previous subsection, we start by defining limiting Markov chains.

Note that there are two different Markov chains.

Definition. Let ¢ > 5 and i € {(1,2), (2), (2,3), (3), (3,00), (4), (5) }. Let
Yé(~) be a Markov chain on T with jump rate ré :T'xT — R with jump rate
ré:TxT%Rgiven by

1,2 _ W _ 3
1.7 (k) =1{l=0 V—I,T_S.

2 (k) = 1{l = 0} =2 + 1{k = 0}, T =§.
1%} Vy

3. @ = g
Ty (7) qyla

L we
b (kD) = —(2 4uwy), T=5.

v oq

5. 18 (k1) = % T=25.
1

Wo ~
6. rM (k1) = 1{k = o}y—o, T=2S.

qWo
7. (k1) = 1{k = o} =, T ={o, 5}

[

Now, we present the metastability result for ¢ > 5. The new metastable
behaviors are observed when 8 = (3 and 8 € (fs, q).

Theorem 5.4.5. Let ¢ > 5. Then, the metastable behavior of the process
ry(+) is described by
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1. B € (B1,B2): the process Yc(ll’m(-) in the time scale 2r Net .
2. B = Pa: the process Y((ZQ)(~) in the time scale 2 Ne

3. B € (B2, Ps): the process Y§2’3)(-) in the time scale 2nNe® and by the

process Y§4)(-) in the time scale 2rNe%

4. B = [3: the process Yé?’)(-) in the time scale 2rNe’* and by the process
Y§4)(-) in the time scale 2rNe%

5. B € (B3,q): the process Y§3’°°)(-) in the time scale 2nNe and by the

process Yés’)(-) in the time scale 2rNe%
6. 5 € [q,00): the process Y§3’°°)(-) in the time scale 2n Net .

The proof follows from Theorems 5.3.4 and 5.3.6, Proposition 5.5.3, and
[54, Theorem 2.2, Remarks 2.10, 2.11].

Remark 5.4.6. Notably, in contrast to the case ¢ < 4, we can describe the
metastable behavior for all § € (51, 00) since the saddle points are nondegen-

erate when 3 = [3.

We can now provide a more intuitive explanation of Theorem 5.4.5. See
Figure 5.6 also for the description of metastable behavior. Note that if 5y <

b < q, there are two time scales.

° Y((1172): If B, < B < B, in the time scale 2rNe | ry(-) starting from
Ex, reaches £Y and stays there forever. When it goes from &5, k € S,

to £Y, it visits the neighborhood of v¥.

° Y((IQ): If = /35, in the time scale 27 N, the process ry(+) goes around
each well in 8}?,. However, when 7y (-) starting from £, k € S, goes to
El, 1 € S\{k}, it must pass through £% and as in the case 8 € (31, 52),
it visits the neighborhood of v¥ and then the neighborhood of v!.
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Figure 5.6: Figure about metastability when ¢ =5
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° Y((12’3): If B, < B < P, in the time scale 2rNe®, the process ry(-)
starting from £ travels £5, however, it stays in £% in negligible time.
Furthermore, when ry(-) goes from %, k € S, to £, 1 € S\ {k}, it

must visit £y

° Yc(13)3 If B = f33, in the time scale 2rNe® | the process ry(-) starting
from EY travels £y, however, it stays in £} in negligible time. Fur-
thermore, there are two ways in which rxy(-) goes from &%, k € S, to
E\, 1 € S\ {k}. First, it goes to £, directly and must pass through
the neighborhood of ug’l. Second, it visits £y and stays there for a

negligible period of time.

° Y((13’°°): If 3 > B, in the time scale 27 Ne”, the process ry(-) starting
from & f, travels € j@ without visiting £};. As in the case § = 3, it must
pass through the neighborhood of u', k,1 € S, when it goes from &

to Ei.

° Yc(14)3 If B < B < f33, in the second time scale 2rNe’, the process
rn(-) starting from E%, goes to Ex, k € S, and stays there forever. As
Yém), YC(IQ), and Y((f’:g), it passes through the neighborhood of V]f when

it moves to £k from &Y.

° Yé5): If B3 < B < g, in the second time scale 2r Ne’, the process 7y (-)
starting from E%, goes to £5 and stays there forever. This dynamics is

similar to Yc(14)§ however, £X, k € S, are not distinguishable.

5.4.4 Eyring—Kramers formulae

In this subsection, we present the Eyring—Kramers formula with regard to
metastable behavior.
Before we state the result, we introduce some notations. Let [x]|y be the

nearest point in Zy of & € =. If there is more than one such point, one of
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them is chosen arbitrarily. For A C =, define [A]y as
Aly = {lzly - z c A}
Denote by H 4 the hitting time of the set [A]y by the process ry(-):
Hy = inf{t >0 : ry(t) € [Aln} .

If A= {x}, we simply write H4 = H,.

We have the following theorem.
Theorem 5.4.7. Let ¢ > 3. We have the following.

1. For By < B < By and k € S, we have
ENP[Hy) = [1+0N(1)]%27TNeXp(N91) .
! 0

2. For Py < B < q, we have

Vo

21N exp(N6y) .

EY?[Hiy] = [1+ (1)

0

3. For B> (B3 and k € S, we have

N, B _ !
Eu’f [Hul\{ll’f}] = [1 +0N<1)]m27TN€Xp(N01) .

The proof follows from Theorems 5.3.4-5.3.6, Proposition 5.5.3, and [54,
Theorem 2.5, Remarks 2.10, 2.11].
Because of the Eyring—Kramers formula, we can derive the large-deviation-

type estimates on spectral gap and mixing time. To explain this more con-

cretely, let Ay be the spectral gap of the process rx(-) (which will be defined
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explicitly in (5.20)), and define the mixing time as

N _ 4N
tmix - tmix

(0) ::inf{t>0 : sup

TEEN

Pla.) vk < 6} 5e0,1),

where P'(z,-) is a distribution of 7y () with initial condition 7 (0) = x and

|| - [[Tv denotes the total variation distance defined by

= vy =5 3 (@)  v(@)]

TEEN

for any two probability measures 1 and v on Zy. Then, by the arguments in

[13, 85], we can observe that

1 1
N — log — = max{#0,, 61} .

li 11 te.. = li
Nogoo N 08 Pmix = IR N AN

Note that the Eyring—Kramers type estimate on the spectral gap cannot
follow immediately from the results of [13, 85] since there are several valleys

with same depth.

5.5 Preliminary analysis on potential and gen-

erator

In this section, we conduct several preliminary analyses. In Section 5.5.1, we
prove Proposition 5.2.1. In particular, we compute the jump rates of Markov
chain ry(-). In Section 5.5.2, we decompose the generator £y into several
simple generators Xﬁ,’f'w, x € Zy, i, € S. Via this decomposition of Zy,
we can handle %y using the method developed in [54] since our model is a
special case of [54, Remarks 2.10, 2.11]; this correspondence will be explained
in Section 5.5.3.
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5.5.1 Dynamics of proportion vector.

We prove Proposition 5.2.1 in this section.

1
Proof of Proposition 5.2.1. Let ej-v = e j € S (cf. Notation 5.3.1). Fix

configurations o, 7 € Qy such that ry(o) = ry(7) and let
x=(r1,...,251) =7n(0) =7N(T) €EEN .

For some sites uy, ug, v1,vy € Ky such that o, = 0y, = Ty, = 7o, let © = 0y,

Then, the Markovity of the process ry(t) can be inferred from the identity

Cup,j(0) = €y, j(0) = Cup j(T) = Cup,4(T)

— exp {—NTﬁ[H(rN(U”l’j)) - H(TN(U))}}

N
= o { -+ e ) - H@)]} |
for j # i. Hence, ry(-) is a Markov chain.

Since there are Nz; sites whose spins are i, the jump rate Ry (-, ) of 7y (+)

can be written as

Ry(@, @+ e —el) = 0 exp{—N—ﬂ[H(zc—l—eN ey — H(x)

(2

Hence, the generator £y of ry(-) is given as

Infx) = Y Ry(@,z+e) —el)[fz+e) —e) - f(x)], (5:20)
i,jES
for f:=Zny — R.
Finally, this dynamics is reversible with respect to Vév since we have the
following detailed balance condition

N

VéV(JI)RN(:B,JJ-f-e;V—BN) = Vév(w+e§y—er)RN(m+e§y—ei,

i ),
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so that Vév is the invariant measure. O

5.5.2 Cyclic decomposition

For 1 <i<j <g, let vj\f be the cycle (eév,ejv —el,e)) of length 2 on
(Z/N)"* and let (vy)e = & + 7y’. Define =%/ as

~. .
2] —_ —_

=V ={xeEy: (’yf\}j)wC:N} ={rxeZy: 2, <1-N12,>N"'}.
Define a jump rate ]ADL?VJ associated with this cycle as

Byly(@) = exp {~NB[Fy'y(@) - Fs,n(@)]} |

By i(@) = exp {~NB[F3'y(@) — Fon(@+e) — e} |

where )
Fyly(z) = 5 [Es (@) + Fp (@ + e —e)].

Let £y, x € En, be a generator acting on f: Ey — R as

B (@) |[f@+e) —el)~f@)] y==,

(D) = Bi\@) (@)~ f(e+e) —el)] y=zte) —e.

1

0 otherwise .
(5.21)
Here, g]if]m can be regarded as a generator of a Markov chain on the cycle
QINDES
Let
- . .
ww(m) = 1/;5_2.% , and wﬁ\’/(m) — wi(mj+ N) ‘

By (5.3), we can write

exp{—BN[Fs y(x) — H(z)]} = (2rN)@ D/ ((Nﬂfl) N (qu)> '
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By elementary computations, we obtain
Ry(m,x + e —e))/Ry/(x) = Ry(z +e) —e,2)/Ry\(x) = wi (@),

so that

Hence, by (5.21), we can write

Inf@)= ) [y (@) Ly, +uy(@+e —e). 2’ wf (@)

,9:+6,LN7€~
1<i<j<gq

J
= D> > wi W&, f(@) . (5.22)
1<i<j<q yeBi g
Since wj\’,j converges uniformly to w”? and is uniformly Lipschitz on every
compact subset of int Z, our model is a special case of [54, Remarks 2.10, 2.11]
provided that several technical requirements are verified. These requirements

will be verified in the next subsection.

Remark 5.5.1. [54, Section 2] assumes that for 4%’ = (2o, 1), 21 — 20 gen-
erates 7971 ; however, this requirement is needed to make Tx(-) be irreducible.

Since (V' )1<icj<q generate Z7, we do not need this assumption.

5.5.3 Requirements for F3 y and Zy

In this subsection, we verify that our model is a special case of [54, Remarks
2.10, 2.11].
First, we give some properties of Fj(-) and Gg n(-). By the following
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proposition, Fj(-) and Gg n(-) fulfill the requirements in the first paragraph
of [54, Section 2].

Proposition 5.5.2. The functions Fs(-) and Gg n(-) satisfy the following

properties.

1. Fjg is twice-differentiable and there is no critical points at O=. For all
x € 0=, VFs(z) - n(x) > 0.

2. The second partial derivatives of F(-) are Lipschitz-continuous on ev-

ery compact subset of int =.

3. On each compact subset of int =, Gg n(-) is uniformly Lipschitz and

converges uniformly to Gg(x) := (1/25)log(z; - - - x,) as N — oc.
4. There are finitely many critical points of Fps(-).

Proof. (1)-(3) are straightforward. By Lemma 5.6.2 in Section 5.6.1, there
are finitely many critical points of Fjp(-). O

Next, fix one of saddle points s. Note that V>Fj(s) has a unique negative
cigenvalue. As in [54, Section 4.3], define (Z57)® as

(L3 (@) = 15(e;—e) VA (@) (e —e) AT F(s)(@-9)-V (@)

Denote by —X3, A3, ..., AS_; the eigenvalues of VFj(s) where A§ > 0 for all
i=1,...q¢—1,and by a, a3, ...,a;_, the corresponding eigenvectors. Let
ey = N72/° <« N71 5o that ey satisfies [54, displays (4.7), (4.8)]. Define a

neighborhood of s as

qg—1
1208
Cy = {s+2$kaz:|x1|§e]v, |z | < 16N,2§k§q—1}ﬂEN.
Ak

k=1

Then, by the next proposition, definitions (5.15)-(5.18) are consistent with
[54, Remarks 2.10, 2.11].
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Proposition 5.5.3. For a smooth function f : = — R, we have uniformly
on Cy,
I =[+0(n)] Y wE)E)T
1<i<j<q
Proof. Since |[x—s| = O(ex), by (5.21) and the second order Taylor expansion

on Cy,, we have

Y LS (@) = [+ O0(en)l(Zy) () -

=i, J

yesy

Hence, on C3;, since w3/ (x) = [1 + O(N "N w"?(x) = [1 + O(en)|Jw"(s), we

have

nf@) = Y > wy @)Ly, /()

1<i<j<q yEHL J

= [1+0(en)] Y w(s) ) 2y, /()

1<i<j<q yeBh)

= [1+0(en)] Y. w ()L f(=) .

1<i<j<q

5.6 Investigation of critical points and tem-

peratures

This section is devoted to the investigation of critical points and tempera-
tures including their definitions. We will provide a preliminary analysis of
the critical points in Section 5.6.1 and of the critical temperatures in section
5.6.2.
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5.6.1 Classification of critical points

We recall that

1< IS
Fs(x) = —§in + BZxklogxk :
k=1 k=1

and that z, =1 — (21 + -+ 241). For 1 <k <q—1,

0 1
8_:ckFB(w) = —(zx —xy) + E(logxk —logx,) .

0 1 1
If — Fj(x) =0, we must have zy — 3 log zy, =z, — = log z,. Hence,

6xk B

1
VEs(x) = 0 if and only if 25, — 3 logzi, 1 <k <gq, are the same . (5.23)

By (5.23), p=(1/q, ..., 1/q) is a critical point.
1
By elementary computation, we can check that the equation t——logt = ¢

has at most two positive real solutions for fixed 3, ¢ > 0. Hence, if (x4, ..., z,)
is a critical point®, x;’s can have at most 2 values by (5.23). Hereafter, we

assume c is a critical point and

c=(t....t,(L—4t)/i,..., (1 —4t)/i),

where j is the number of t’'s and ¢ = ¢ — j. Observe that by symmetry, each
permutation of coordinates of ¢ has the same properties. Without loss of

generality, we may assume
1<i<q/2<j<qg-landt#1/q.

The point p will be analyzed separately.

5Recall Notaion 5.3.1.

167



CHAPTER 5. CURIE-WEISS-POTTS MODEL

20 4

10 A

0.1 -

0.0 A

0.00 0.02 0.04 0.06 0.08 0.10 0.12

40 A

20 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12

(a) i =2.

10.03 4

10.02 4

10.01 A

10.00 1

0.001 A

0.000 A

0.001 4

0.090 0.095 0.100 0.105 0.110

0.4

0.2 1

0.0 1

0.090 0.095 0.100 0.105 0.110

(b)i = q/2.

Figure 5.7: Graphs of g;(t), hi(t), and h}(t) when ¢ = 10.
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By (5.23), we obtain

1 1—4t 1 1—jt
b Liogr = 1t L (oY)
Bog - Bog ;
which implies
i 1—jt
_ 1 ( ): (1) . 5.24
B il gi(t) (5.24)

Lemma 5.6.1. Fizq > 3,1 <1i<¢q/2 and j = q— iP. Then, the function
gi = (0,1/7) — R has the unique minimum, say m;. Furthermore, if B >
gi(m;), B = gi(t) has two solutions.

Proof. Define h; : (0,1/7) — R as®

11—t qt — 1

hi(t) =1 . 5.25
(1) := log ==+ 0 =5 (5:25)
By elementary computation, we obtain
qi (¢t —1)(2jt — 1)
) = ——=hi(t d hi(t) = 5.26
i) = hlt) and 1(0) = (526)

There are two cases, where i < ¢/2 and i = ¢/2. By elementary computa-
tion, we can show that the graphs of g;, h;, h; are given by Figure 5.7, which
completes the proof. n

For 1 <i < q/2, let

/88,2' = Bs,i(C_Z) = gi(mi) ) (5'27)

where m; is the unique minimum of g;() given in the above lemma.

If B > ps,i, there are one or two solutions of § = g¢;(¢) which will be

6As g;(-); the function h;(-) can be continuously extended to (1,1/7).
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denoted by w; = u;(5), v

U; = U;(B) = {permutations of (u;, ..

Vi

for B > ., . We have the following candidates of the critical points of Fj.

Lemma 5.6.2. A critical point of Fj is exactly one of the following cases.

1.p=(1/gq,..

2. For1<i<q/2 and € (Bs,i,00), elements of U;.

1/q).

= v;(B) where u; < v;. Let

= V;(B) = {permutations of (v;, ..

-5 Ui, (1 _]Uz)/zv :

3. For1<i<gq/2 and p € (Bs.4,00) \ {q}, elements of V;.

4. For1<i<q/2 and = b5, elements of U; = V.

, (1= jui) /i)y
s (L=gui)/i)}

Proof. By part (1) of Proposition 5.5.2, points in 0= cannot be critical points.
Then, the proof follows from (5.23) and Lemma 5.6.1.

q = 3 is given in [53, Proposition 4.2].

]

Finally, we have the following results for critical points. The proof for

Proposition 5.6.3. The minima and saddle points of Fp for ¢ =3, q = 4,

and g > 5 are given by Tables 5.1, 5.2, and 5.3, respectively.

b U (B) Vi(B)
g€ (0,08s1) | minimum
B =B minimum | degenerate | degenerate
B € (Bs,1,9) | minimum minima | saddle points
8 =q degenerate | minima degenerate
f € (¢,00) | maximum | minima | saddle points

Table 5.1: Classification of critical points when ¢ = 3
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p U(B) Vi(B) Us(B) = Va(B)
B e (0,0s1) | minimum
B = PBsa minimum | degenerate | degenerate
B € (Bs.1,q) | minimum minima | saddle points
B =q degenerate | minima degenerate degenerate
B € (g,00) | maximum minima index > 2 saddle points

Table 5.2: Classification of critical points when ¢ = 4

P U (B) Vi(B) Us(B)

B e (0,5s1) minimum

B =B minimum | degenerate | degenerate

B € (Bs.1,Ps.2) | minimum minima | saddle points

B = Bs,2 minimum minima saddle points | degenerate

B € (Bs,2:9) minimum minima | saddle points | saddle points
b8 =q degenerate | minima degenerate degenerate

B € (g,00) maximum | minima index > 2 | saddle points

Table 5.3: Classification of critical points when ¢ =5

Section 5.7 proves the above proposition. Until now, we classified all min-

ima and saddle points for all ¢ > 3.

5.6.2 Definition of critical temperatures

In the previous subsection, we defined several temperatures 5, ;, 1 <i < ¢/2.

In this subsection, we prove several properties of such temperatures and more-

over introduce new temperatures. Then, we select the critical temperatures

at which phase transitions occur.

The first lemma is about the order of 3 ;.
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Lemma 5.6.4. We have 3,1 < B2 < -+ < B |q/2)- If q 15 even, we have
Bs,q/2 = q and otherwise, Bs |q/2) < q-
Proof. In this proof, we regard i as a real number and claim that g;(¢) in-

creases as i € [1,¢| increases for fixed t < 1/q. By elementary computation,

we obtain

1 1— gt it
= git) = (10g = - 1)
dzg() 1—qt ©8 it +1—]t

d
By the inequality x — 1 > logx, we can conclude that Egz-(t) > (. Hence,
i

gl(t) < gi+1(t) ift < 1/q
Hereafter, let i € Z. Suppose i < ¢/2—1. Since m;, m; 1 < 1/q, we obtain

Bs.i = gi(my) < gi(mit1) < giv1(Miv1) = Bs,it1

by the above claim. The first inequality holds since m,; is a minimum of g;.

If i =¢q/2— 1, since m; < 1/q = m;;1, we obtain

53,1‘ = gi(mi) < gi(miJrl) =q= ﬁs,q/z .

If i < q/2, we have m; < 1/¢ so that f, ; < ¢;(1/¢q) = ¢q. This with the

above argument prove the second assertion. O]

Remark. In particular, by the above lemma, we have 551 < Bs2 = q for
q=4 and Bs1 < Bs2 <q forq=5.

The relative order of heights of critical points changes with changes in (3,
and the phase transition is owing to this fact. We will explain when and how
this order is changed. Since the proofs are technical, they are postponed to
Section 5.8.

Order of heights of p and U/,

Define . as
= 297 gty - 1), (5.28)
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which is introduced in [18, display (3.3)]. Then, we obtain the following.

Lemma 5.6.5. For ¢ > 3, we have B51 < B. and for ¢ > 4, we have
65,1 < /BC < 5572-

The proof of the lemma is given in Section 5.8.1. The following lemma is

an important property of f..

Lemma 5.6.6. Let ¢ > 3. Then, we have

Fs(p) < Fg(w) if B € (Bs1,5e)
F(p) = Fp(w) if B =P, (5.29)
Fs(p) > Fs(wy) if B € (Be,0) .

This result is the same as [18, Theorem 3.1(b)]. The proof is provided in
[18, Appendices A, B] via convex-duality.

We may assume that [ increases from a very small positive number.
Observe that the elements of U and V; simultaneously appear when 5 = 3, 1
and the elements of Uy appear when 8 = 52 . By the above two lemmas,
before the appearance of critical points in U, the heights of p and u; are

reversed.

Order of heights of V; and U,

We have the following lemma about the heights of u, and v;. The critical
temperature (3, given in the following lemma is the crucial development of

this chapter.

Lemma 5.6.7. Let ¢ > 5. We have a critical temperature B3,, € (Bs 2,q) such
that
Fﬁ<vl)<Fﬁ<u2> ifﬁs,2§5<ﬁm )

Fa(vi) = Fs(us) if B =B , (5.30)
Fa(vi) > Fa(ug) if B < B<q .
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The proof of the lemma is given in Section 5.8.2.

Up to this point, we have obtained four critical values

O<65,1</BC</8872</67TL<Q’

when ¢ > 5. If ¢ = 4, we have (352 = ¢, else if ¢ = 3, (5,2 is not defined.
Thus, if ¢ < 4, define ,, = ¢ so that

0<Bs,1<ﬁc<ﬂmZQ-

We conclude this section with the definition of the critical temperatures
at which the phase transitions occur. We can now define critical temperatures

b1, B2, B3 appearing in Section 5.3.2. The critical temperatures are given by

Bi(q) = Bs,1(q), Ba(q) == Be(q), B3(q) = Bm(q) - (5.31)

5.7 Critical points of Fj

In this section, we prove Proposition 5.6.3 for ¢ > 4. For the case ¢ = 3, we

refer to [53] and we will only highlight the difference.

5.7.1 Eigenvalues of Hessian of [ at critical points

First, we investigate p = (1/q, ..., 1/q), which is always a critical point for

all 8 > 0. The following lemma proves the property of p.

Lemma 5.7.1. The point p is a local minimum of Fs if B < q, a local

mazimum of Fg if B > q, and a degenerate critical point when 3 = q.

Proof. Let 1 = (1,...,1)" bea (¢g—1) x 1 matrix. By elementary computation,
we obtain

V2Fs(p) = %(diag(l, o)+ 1111*)
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whose eigenvalues are (¢ — 3)/ with multiplicity ¢ — 2 and ¢(q — )/ with
1. This completes the proof. O

Now, fori € [1,q/2]NN, j = ¢—1i, and 5 = g;(t), define a € R and b € R

as
a=a(i,t)=—-14+1/pt, b=>b(i,t) =—-1+1i/6(1— jt) . (5.32)
We have the following lemma about eigenvalues of Hessian of Fj at critical

points.

Lemma 5.7.2. Leti € [1,q/2] NN and j = q — i. Moreover, lett € (0,1/5)
and B = g;(t). Then, c = (t,...,t,(1—4t)/i,...,(1—4t)/i) is a critical point
of Fs and eigenvalues of V>Fp(c) constitute one of the following cases.

1. If i > 2, all eigenvalues of V*Fs(c) are a, b with multiplicative j — 1,
i — 2, respectively, and the roots of \* — (a + gb)\ + b(ia + jb).

2. Ifi =1, all eigenvalues of V*Fg(c) are a with multiplicative j — 1 and
a+ (q — 1)b with multiplicative 1.

Proof. By Lemma 5.6.2, ¢ is a critical point of Fjs since § = g;(t). By ele-

mentary computation, we have

T Fyw) —1+i+(—1+i>,

8_.75,% ’ By Bz,
2
axiaxlFﬁ(@ = _Hﬁ%q’
so that
(_1+i+(—1+—i —) if1<k=1<j
o2 pt ; B(1 - jt)
Geom @) = 2 g ) fjrl<k—l<g—1
k‘“ﬁ if b #1
175
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Then, we can write V?Fs(c) as
V2Es(c) = D+ 11",

where
D = diag(a,...,a,b,...,b) .
J q—1-j

Let I =1,_; be a (¢ — 1)-identity matrix. By the formula
det(A + vw') = det A(1 +v' A 'w) |
we can write

det(V2Fj(c) — M) = det(D — Al + b117)

= (a—)\)j(b—A)i1[1+b(ai/\+2:i)] :

Hence, we obtain

det(V?Fj(c) — AI)
(a—=A)?7Hb— N2\ — (a+ gb)\ + blia + jb)) ifi>2,
(a—=N""Ha+jb—-N)=(a—-N"*(a+(g—1)b—N) ifi=1.

The proof of the lemma arises directly from this explicit computation of

characteristic polynomial of Hessian of Fj(c). H

We have the following lemma about the sign of the eigenvalues of V2F, 3(c).

Recall the definition of m; from Lemma 5.6.1.

Lemma 5.7.3. Leti € [1,q/2] NN and j = q — i. Moreover, lett € (0,1/5)
and B = ¢;(t). Then, we have the following table regarding the sign of each
value. If i = q/2, we ignore t = m; and t € (m;, 1/q).
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te(0,m) | t=m; | te(myl/q) |t=1/q|te(1/q,1/))
a + + + 0 —
b — — — 0 +
1a + jb + 0 — 0 +
blia+jb) | — 0 n 0 +

Proof. First, suppose that t < 1/q. Then,

1 ) 1— 4t 1—gqt 1—7t
a>0 < ->0p= ! log< ,‘7><:> .q>log(,—]).
t 1—qt it it it

By substituting x = (1 — jt)/(it), one can deduce that a > 0 is equivalent

to t # 1/q which implies a > 0. Moreover, by the same argument above, we

have b < 0. In the same manner, if ¢ > 1/¢, we obtain @ < 0 and b > 0.
Now, we investigate the sign of ia 4+ jb. We write

Za+]b:—Z+——j+ :—C]‘{'m

Bt A1l — jt)
By elementary computation, ia + jb = 0 if t = 1/q. Hence, ia + jb > 0 if and

only if
i i 1— jt
L S )
qt(1 — jt) p 1—qt B\

First, assume ¢ < 1/q. Then, ia + jb > 0 if and only if

1— 7t t—1
hi(t) = log( itj ) + qtc(ll _— < 0.
By investigating the graph of h; (cf. Figure 5.7), the above inequality holds
if and only if ¢ < m;. Second, assume t > 1/q. Then, ia 4+ jb > 0 if and only
if h;(t) > 0 if and only if ¢ > 1/¢. Hence, ia + jb > 0 if and only if ¢ < m; or
t>1/q.
The case when t = 1/g can be proven by the argument in the first para-

graph of this proof. If ¢ = m;, then ia + jb = 0 since h;(m;) = 0. The above
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argument can prove the case when i = ¢/2 since my/, = 1/q. ]

Now, we study the critical points more deeply. We note that the Morse
index of a critical point is the number of negative eigenvalues of the Hessian

at that point.

5.7.2 Critical points of Morse index 0 or 1

When we consider critical points in U; or V; , we assume that § > B
since when 3 = f3, ;, the elements of U; = V; are degenerate. The case when
B = [, is treated in Section 5.7.4.

By the Morse theory, critical points with more than 2 negative eigenvalues
can be neither saddle points nor minima. Hence, the critical points with
only positive eigenvalues or only one negative eigenvalue and ¢ — 2 positive
eigenvalues are relevant to the landscape of F3. We select these critical points
in this subsection.

Asin (5.32), fori € [1,¢/2|NN, j = ¢—1i, and 3 > f3, ;, when we consider
u; € U;, let

1 1

a=a(w):=-1+ u b=0b(u) :=—-1+

and when we consider v; € V;, let

a=a(v;)=—-1+

B, b=0b(v;) = _1+—ﬁ(1—jvi) )

Lemma 5.7.4. Let ¢ > 4. If B > (51 , Ui is a set of local minima. If
B > Bsa, Us is a set of saddle points. If Bs1 < < q, V1 is a set of saddle

points else if B > q, each point in V, has at least two negative eigenvalues.

Proof. Consider u; € U;. Eigenvalues of V?Fjs(u;) are a with multiplicative
q — 2 and a + (¢ — 1)b with multiplicative 1. By Lemma 5.7.3, if § > [, 1,
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then since u; < my < 1/q, we obtain a, a+ (¢ — 1)b > 0; hence, u; is a local
minimum.

Next, consider v; € V. Eigenvalues of V2Fjs(v,) are a with multiplicative
q—2 and a+ (¢ —1)b with multiplicative 1. By Lemma 5.7.3, if 551 < 8 < g,
then since m; < v; < 1/¢, we obtain a > 0 and a + (¢ — 1)b < 0; hence,
it is a saddle point. If 8 > ¢, then since v; > 1/q, we obtain a < 0 and
a+ (g —1)b > 0 so that v; has more than two negative eigenvalues.

Finally, let ¢ > 2, j = ¢ — ¢, and 8 > f3, ;. In this case, u; has eigenvalues
a, b with multiplicative j — 1, s — 2 and the roots of A — (a+gb) A +b(ia + jb).
Since uw; < m; < 1/q for all ¢ and 8 > f,;, by Lemma 5.7.3, a > 0, b < 0,
and b(ia + jb) < 0 so that it has j positive eigenvalues and ¢ — 1 negative

eigenvalues. Hence, u, is a saddle point. O]

Remark 5.7.5. For q = 3, by the same argument, V>Fs(v1) has only one

negative eigenvalue and two positive eigenvalues for 5 € (Bs1,00) \ {q}.

5.7.3 Critical points of Morse index larger than 1

In this subsection, we eliminate unneeded critical points.

Lemma 5.7.6. Let ¢ > 5. For i € [3,¢/2] NN and 5 > B4, each point
in U; has at least two negative eigenvalues. And for i € [2,q/2] NN and

B € (Bs,i,00) \ {q}, each point in V; has at least two negative eigenvalues.

Proof. By the proof of Lemma 5.7.4, u; for + > 3 has at least two negative
eigenvalues. Now, let i > 2, j = ¢ — 4, and § € (fs,4,00) \ {¢}. In this case,
each points in V; has eigenvalues a, b with multiplicative j — 1, ¢ —2, and the
roots of \* — (a + gb)A + b(ia + jb). If B,; < B < g, then v; < 1/q so that
a>0,b<0,and b(ia + jb) > 0. In this case,

a+gb=tda+jb+(1—i)a+(¢q—j)b < ia+jb <0,
so that the two roots of A* — (a + gb) A+ b(ia + jb) are negative. Hence, it has
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j — 1 positive eigenvalues and ¢ negative eigenvalues. If 5 > ¢, then v; > 1/q
so that a < 0, and points in V; have at least 7 — 1 negative eigenvalues, where
7 —12>2since g > 5. 0

Lemma 5.7.7. Let ¢ =4 and 8 > q. Then, we have Vo = Us.

Proof. Observe that 8s 9 = ¢. If 8 = ¢q, Vo = U, since there is only one

solution my to ¢ = g¢2(t). Suppose > ¢. By elementary computation, we

g2<;l—t) :g2<i+t> for t € [0,%) ,

so that vy = (1/2) — us. Hence, vo = (ug, ug, 2, v9) is a permutation of us,
that is, each element of Vs is one of the elements of Uy so that Vo =Uy. [

obtain

By lemmas in this subsection, i4;, i > 3, and V;, i > 2, are not of interest.

5.7.4 At critical temperature

In this subsection, we investigate the critical points at the critical tempera-
tures, that is, at § = (s, or 8 = ¢. The point u; = v; is degenerate when
B = Bs,; and the point p = v; is degenerate when 8 = ¢ by Lemma 5.7.2 and
5.7.3.

Lemma 5.7.8. If i < q/2 and B = Bs 4, the point u; = v; is not a local

minimum. If B = q, the point p = v; is not a local minimum.

Proof. Fix 1 <i < j < q—1such that i + j = ¢ and define ¢; : [0,1/j] — =

as - .
Li(s) = (s,...,s, _,]S,..., _,]S>.
i i

We therefore obtain

Fo(t(s)) = — {st i

1—]8 ] {]Sloger(l—JS)log(l_sz)]

(1- jS).(l —qs)

5 9i(s) + log S] :

= —l(Jqs —2js+1)+ %[
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By (5.25) and (5.26), we have

SR((s) = 10— as) +

|

T-las = ais) = (1= 45)(3 ~ (5)

We claim that Fj, ,(£;(m;)) and Fy(£;(1/q)) are not the local minima of
Fgs, ,(£(s)) and F,(€;(s)), respectively, and this completes the proof.

~

For the first claim, assume ¢ < j, and note that m; < 1/q. Then, 1—gs > 0

and fs ; — gi(s) < 0if s is in a neighborhood of m; and s # m,. In this case,
—Fp, ,(£(s)) < 0 near m; so that u; = v; is not a local minimum. If 7 = j,

ds
Bs,i = q so that it suffices to show the second assertion.

Next, note that v;(¢) = 1/¢ so that we have g;(s) < 5 =¢, 1 —¢qs > 0 if
d

s < 1/qand g;(s) > q, 1 —gs < 0if s > 1/q. Therefore, d—Fq(&-(s)) > ( near
s

1/q so that p = v; is not a local minimum. O

Even though u;, 7 > 3, is not a saddle point if 3 > ; ;, we cannot exclude
the possibility that u; is a saddle point when 3 = 3, ;; however, by the next

two lemmas, U;(5s,i), ¢ > 3, are irrelevant to the landscape of Fj.

Lemma 5.7.9. Let ¢ > 8 and ¢« > 4. Then, if B = B, w; = v, is not a
saddle point.

Proof. By Lemma 5.7.2, =1+1 /B i{—jui(Bs,:)}] is an eigenvalue of VFjp_,
at u; with a multiple of at least two. Hence, by Lemma 5.7.3, it has at least

two negative eigenvalues. O

Lemma 5.7.10. Let ¢ > 6. We have Fp, ,(u3) > Fp, ,(uz). Furthermore,
if ¢ > 7, we have Fg, ,(ug) > Fp, ,(v1). Hence, uz cannot be a saddle point

lower than us or vy.

The proof is presented in Section 5.8.3. We remark that if ¢ = 6, we have

Bs.3 = q so that vi(fs 3) = p and the second assertion is not needed.

181



CHAPTER 5. CURIE-WEISS-POTTS MODEL

5.8 Analysis of energy landscape

In this section, we prove lemmas introduced in Section 5.6.2 and Lemma
5.7.10. To prove these lemmas, we need numerical computation given in Ap-
pendix 5.11.

5.8.1 Proof of Lemma 5.6.5
_ 1
20— 1)

Proof. Fix B = [52 and write v; = v1(fs 2) for convenience. Since [, o =

Lemma 5.8.1. If g > 4, we have vi(fs,2) >

g2(ms) = g1(v1), we have

2 1—(¢g—2 1 1—(¢g—1
log L= 4 =2)m2 _ log L= (4= D (5.33)
1 — gms 2ms 1 —qu U1
et 1 1 2
v = — 2 , so that = . (5.34)
2q 2 1 —quy 1 —qgmg

We claim that ¢;(vy) < ¢1(v1), that is, by (5.33),

1 1—1(g—1)v] 2 1—(¢g—2
log (q )Ul S log (q )mQ ‘
1 —qu} v} 1 —gme 2my

By (5.34), the above inequality is equivalent to

L—(g—1Dvi _1-(g—=2)m,
v} - 2my '

By plugging v} given in (5.34) into this inequality, it becomes ¢*mgy — 2gms +
1 > 0. Hence, since ¢; is increasing at vy, we obtain vj < vy.
Finally, we claim that
1+ gmsy 1 1

v] = > , le,mog > ——— .
! 2q 2(q—1) q(q—1)
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According to Figure 5.7, we can show this by

1 ¢ —2q+2 qlg—1)(qg—2)
Q(ﬁ):lo — <0.

g—1 2 ¢ —2q+ 2

This holds if ¢ = 4 or ¢ = 5 by elementary computation. Now, assume ¢q > 6.

Therefore, we obtain

2
¢ —2q+2 ) ql¢ —1)(¢—2)
log —— <1 =21 -2
og B 0gq 0gq <q < Z—20+2
which completes the proof. n

We can prove Lemma 5.6.5 by the aforementioned lemma.

1 ) ( 1
- — g -
aa—1)" 21
Bs.1 < Be. By Lemma 5.8.1, since ¢ (t) is increasing on (my,1/(¢ — 1)) and
my < 1/(2¢ — 2), we obtain

Proof of Lemma 5.6.5. Since 5. = g1 ), we have

Bs,2 = g1(v1) > g1 (

5.8.2 Proof of Lemma 5.6.7

We first introduce two lemmas.

Lemma 5.8.2. Let ¢ > 5. When 8 = 5,2, we have Fp_,(vi) < Fp,,(us)
and when = q, we have Fy(vy) = Fy(p) > F,(uy).

The proof of the above lemma is given in Section 5.8.3.

d
Lemma 5.8.3. Let ¢ > 5. ﬁ2%[Fﬁ<UQ) — Fg(v1)] decreases as [ increases
n (ﬁs,% Q)
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Proof. For t = t(f), which satisfies 5 = g;(t), let

11—t 1— jt>
i = Cj = (t,...,t,——, . .., — . 5.35
¢ ci(8) ( it i ( )
Since c; is a critical point, by the proof of Corollary 5.3.7, we have
d 1

Define a function k; : (0,1) — R as

1— jt
it

(1 —jt)log + logt . (5.36)

By elementary computations, we obtain S(c;) = k;(t) so that we have

%F,@(Ci) = —%k’i(t) : (5.37)

Now, by (5.37), we obtain

d
62% [Fﬁ(uz) - Fﬁ(vl)] — k(01 (8)) — ka(us(B)) . (5.38)
Observe that the value uy(/3) decreases and the value vy (f) increases as

increases. By elementary computation, for ¢ € (0,1/q), we obtain

ki(t) = —jlog

]

t , —J 1 1 R
‘7+(1—jt)<—j——>+—=—jlog J <0,

i 1—jt t) 't it

(5.39)

so that k;(t) decreasing on (0,1/q). Hence, (5.38) decreases as [ increases in
(/BS, 2 Q) : O

We can now prove Lemma 5.6.7.

Proof of Lemma 5.6.7. By Lemma 5.8.2, there is 5y € (fs,2,¢), such that
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d
%[Fﬁ(uz) — F3(v1)] < 0. Hence, by Lemma 5.8.3, we can deduce that there

is only one critical value f,,, € (8s,2,¢), such that
Fy, (az) = Fg,,(v1) . (5.40)

]

5.8.3 Proofs of Lemmas 5.7.10 and 5.8.2

Before we go further, we conduct some computations. Recall the definition
: 1= im,
of my from Lemma 5.6.1. Since S ; = ¢;(m;) = ! log Jm

- and m;
1 —gm; m;

is the minimum of g;, we have

'] 4 q

m; gm;(1 — jm;)
1= qmiﬁ 1 —qm;
B [ 2t gmi(1 = gmy)

so that .
i

_ﬁs,i .
For ¢; defined in (5.35), since S(c;) = k;(t) and 8 = g¢;(t), we can write

qjm? —qm; = qm;(jm; — 1) = (5.41)

1 1
Fyle) = [qth — gt + 1] + g logt (5.42)

Hence, by (5.41) and f3, ; = ¢;(m;), we have

1 —qm; 1 1
1 1—9m; 1 1
— 1 1 -
20, o8 1m; * Bs,i s 203,
185
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By (5.41) again, we obtain

Fp, (w;) = — 57— log(qefs,q) - (5.44)

1
255,72

Now, we introduce two technical lemmas required in the proof of Lemmas
5.7.10 and 5.8.2.

Lemma 5.8.4. For g > 6500, we have

1 (1 1) S
og gMmoy — —
55,2 g qmy 5

(q—1) , 1 —?+49+1
)= e )

The proof is given in Section 5.10.

1
Lemma 5.8.5. Let ¢ > 5. Define f.(8) = —%log(qeﬁ) and

@@zﬁmm—&m»

Then, we have ®(5) > 0 for 5> s 2.
Proof. We have

d
18 = 2%210?;(166— %1 = L logas .

go2p
By (5.37), we obtain

L

TSU8) = Fyfua)] = 3llog s+ 2h(ua)]

ﬁ2

By (5.39), the above expression is increasing function of 3 since uy decreases
as [ increases. Hence, it is sufficient to show ®(f; 2) > 0. First, let ¢ > 55 >
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e*. By (5.39)

1
log g8 + 2k (ug) > logqfBs, 2 + 2k32(2—j)

97 _ 1 )
= log ¢Bs,2 + log J : J + 2log — = log Q/B,’,Z
1 2) 419

)

where we use us < 1/(2j) for the inequality. Since 552 > f. > 2logq, we

obtain
B2 _ 2qlogqg g
415 8(q —2) qg—2
Finally, for 5 < ¢ < 54, by Proposition 5.11.1, we have ®(f5; 2) > 0. m

By the above lemmas, Lemma 5.8.2 can be proven.

Proof of Lemma 5.8.2. By Proposition 5.11.1 given in appendix, we can check
that Fjs, ,(uy) > Fg ,(vq1) holds for 5 < ¢ < 6500. Now, suppose that
q > 6500. By (5.42) and (5.43), we can write

1 1 1 1
Fg, ,(ug) = ——qmo + — + (log mo — —) ,

4 4 55,2 2
1 1 \2 1 1
E = Slala=1) (v - —=) - log vy .
5,.2(v1) 5 {Q(q ) v -1 = J + 5. og vy
By the proof of Lemma 5.8.1, we have
1 1
gms + <y <t
2q q
so that
1 qgmso + 1 1 \2 1 1
F < 5 |ata—1)( -—) - — —logq.
55,2(\’1) 9 {Q(q ) 2 -1 - 1] 5. s 0gq
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Hence, the lemma can be proven if we can prove

Lo g b1 1 1)
gama Tyt gleeme =3
1 qgms + 1 1 \2 1 1
(e Ly 1)Ly,
Q{Q(q ) 2q q—1 q—1 Bs,2 &4
1 1 (g+1)? 1
= —q(qg—1 2.2 1 — logq .
gdla = 1)(m2)” = 2 (a+ )m2+8q(q_1) 5., o8¢

This is the content of Lemma 5.8.4. Finally, by Lemma 5.8.5, we obtain
Fy(p) — Fy(uz) = fe(q) — Fy(uz) > 0 since fo(fs2) = Fp, »(u2). O

Now, we prove Lemma 5.7.10.

Proof of Lemma 5.7.10. Since the proof for Fp_ ,(u3) > Fjs, ,(vy) is exactly
the same as the proof of Lemma 5.8.2 including numerical verification, we

omit it. By (5.44), we can write

Fﬁs,s(u?)) = fc(ﬁs,S) .

Hence, by Lemma 5.8.5 and by Proposition 5.11.1, we have

Fﬁs,3<u3> = fC(BS,S) > Fﬁs,S(u2> :

5.9 Characterization of metastable sets

In this section, we prove Theorems 5.3.4-5.3.6. First, we prove Theorem 5.3.4.

Proof of Theorem 5.3.4. The first assertion is immediate from Lemmas 5.6.2
and 5.6.4. The third assertion is proven by Proposition 5.6.3 and Lemma
5.7.8. The fourth assertion is Lemma 5.6.6.
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Now, it remains to show the second assertion. For § € (1, 53], since p
is the global minimum and v, is a saddle point, we have Fjs(p) < Fj(vy) so

that W, # (). By the same argument in the proof of Lemma 5.8.3, we have

d 1

%[FB(Vl) — Fs(p)] = —@[k‘l(vl(ﬁ)) +logq] .
By 5.39, k() is decreasing on (0, 1/¢) and increasing on (1/q, 1/(q¢ —1)).
Since k1(1/q) = —logq, we have ki(v(8)) + loggq > 0 for 8 € (51, q) so that

d

%[FB(W) — F3(p)] < 0.

Since v; = p when § = ¢, we have Fj(vy) > Fz(p) for § < g and Fp(vy) <
Fs(p) for 5> q. ]

5.9.1 Proof of Theorem 5.3.6

Before we go further, we recall the height between two points. Let a, b €
int =, and let T'yp be a set of all C'-path v : [0,1] — int=, such that
7(0) = @ and (1) = b. Then, we can define the height $(a, b) between a

and b as $(a,b) = inf sup Fjs(y(t)). We prove Theorem 5.3.6 in several
v€la, b 0<t<1

steps.

Lemma 5.9.1. Let ¢ > 4. If > B, the sets W;i(B), i € S, are different.

In particular, they are nonempty.

Proof. Since the elements of U, are the lowest minima, we have Fg(u;) < Hg
so that W;’s are nonempty. Without loss of generality, suppose W; = W;.
Since u}, u? € W, and W is connected, there is a C*-path v : [0, 1] — W,
such that 7(0) = uj, 7(1) = u]. Therefore, we have Fs(y(t)) < Hg for
0 <t <1, so that

F(uy) < H(uy,uf) < Hy .
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(a) n#m (b)n=m

Figure 5.8: Paths from ug’l to uj and uf"

Then, there is a saddle point o (uj, u?), such that Fs(o(uj,u?)) = H(uj, ui).
However, by Proposition 5.6.3, the values of saddle points are greater than

or equal to Hg. This is contradiction. Hence, W;’s are different. n

Lemma 5.9.2. Let ¢ > 4. If 8 > q, the set X; ; is singleton for alli,j € S.

Proof. First, we claim that ; ;’s are not empty. Suppose one of %; ;’s is
empty. Then, by symmetry, all of them are empty. We will derive a contra-
diction from this.

Let usfix 1 <k <1 < q. Since ug’l is a saddle point, there is a unit eigen-
vector w that corresponds to the unique negative eigenvalue of V2Fj(us'").
There exists 7 > 0, such that Fz(ub' + tw) < Hj for all 0 < |t| < 1. Now,

consider the path y(t) described by the ordinary differential equation

y(t) = —VE(y(1), y(0) = uy' +ryw. (5.45)

Then, y(t) converges to a critical point whose height is less than Hg as
t — oo. If this convergent point is not a local minimum, we can find an
eigenvector w, corresponding to a negative eigenvalue of the Hessian of I
at that point. Then, by the same argument defining the path (5.45), the next

path converges to another critical point whose height is lower than that of the
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previous critical point. Finally, this path converges to a local minimum. Since
there is no local minimum other than U;, y(t) converges to some elements
of Uy, say uf. Since W;’s are different, y(-) converges to only one minimum.
By the same argument, the similar path starting at ug’l — nw converges to
some uy, say uj’. If n # m, ug’l € X, m so that ¥, ,, is not empty. So, we
have m = n. In this case, we obtain ug’l € W, and ug’l ¢ W, for all a # n.
See Figure 5.8 for the visualization these paths.

By symmetry, since Us has g(q — 1)/2 elements and the number of W
is ¢, there are (¢ — 1)/2 elements in U, corresponding to each W;, that is,
Wi NUy| = (¢ — 1)/2, where |A| is the number of elements of set A. If
uy” € Wy, for some 2 < a < ¢, we obtain uy® € W, by symmetry, and
therefore 32; , = W) N W, # 0. Hence, we have u;’a ¢ W If ug’b € W, for
some 1 < a, b, since ¢ > 4 and by symmetry, ug’b € W, for some m # 2, a, b,
and this contradicts the assumption that ¥ ,, = W, N W,, = 0. Hence, all
of ¥; ;’s are nonempty.

Observe that the elements of ¥, ; are saddle points and Fp(x) = Hp for
all x € %; ;. Hence, by Proposition 5.6.3, ; ; C Uy. Since V?Fp(uy)’s are
nondegenerate and have only one negative eigenvalue, each element of Uy
connects only two wells, i.e., ¥; ;NE, ;= 0 if {4, j} # {k,[}. Therefore, since
Uy has q(qg — 1)/2 elements, ¥; ; has at most one point so that we obtain
X ;] =1. O

We can now prove Theorem 5.3.6.

Proof of Theorem 5.3.6. The first assertion follows from the definition of crit-
ical temperatures (5.31) and Lemma 5.6.7.

Let f > ¢. By Lemma 5.9.2, to prove %; ; = {ub’}, without loss of
generality, it is sufficient to show that ¥, 5 # {uy*} and ¥, , # {uy*}.
First, suppose ¥ o = {uy*}. Then, by symmetry, we obtain uy* € Y13,
which contradicts to X1 2 N Xy 3 = 0. Second, suppose X o = {u3’4} so that
by symmetry, we have ¥, 5 = {u§’4} which is also contradiction. Hence, we

: 1,2
obtain ¥; o = {uy “}.
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Since Fj is continuous in 3, the values Hg and $(u(5),w)(8)), i,7 € S,
are continuous in f. Note that H(ul(8),w}(8)) = Fs(uy) = Hps for 8 > ¢
since there is no saddle point other than Us,. Since Fpg(vy) > Hg if B >
Bm = B3 and there is no saddle point other than the elements of Uy U Vi, by

continuity, we obtain

H(wi(8),u}(8)) = Hys if 5> By .

Hence, uj”’ is a saddle point between u} and u} and ¥; ; = {ub’} if 3 > Ss.
Coupled with Lemma 5.9.1, the fourth assertion holds except that ¥, ; = 0.

If 3>q, W, =0. Let B3 < 8 < q. Without loss of generality, suppose
that ¥, 1 = W,NW, # 0. Let a € W,NW,. Note that a € W, since Fs(a) <
Hg < Fjs(vy). Since @ € Wy, a is connected to u; in {z : Fs(x) < Hz}. In
addition, since Hg < Fj(v;) and @ € W,, W, must contain u;. We, therefore,
obtain H(p,u;(8)) < Fs(vy) so that H(p,u;(8)) = Hg. By continuity, we
get

H(p,ui(B)) = Hp for B3 < < q,

so that Fj(p) < Hz. However, it is in contradiction to F,(p) = F,(v1) > H,.
Hence, we obtain X, ; = () for i € S.

By the same argument and symmetry, the second assertion can be proven
for B € (Bs,1,0s2) = (B1,0s,2). By continuity argument, we can extend
these to B € (B1,3). The third assertion holds because of the first and
fourth assertions, symmetry, and continuity. Finally, the fifth assertion can

be proven by the same argument. O

5.9.2 Proof of Theorem 5.3.5

If g =4, ¥y 5 # {ud"'} cannot be proven by symmetry argument. Hence, we

directly prove the Theorem 5.3.5.

Proof of Theorem 5.3.5. By Lemma 5.6.7 and (5.31), we obtain the first as-
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sertion.

Consider K; ; = {x € = : 2; = x; = max{xy,..., x4} }. It can be ob-
served that these six planes divide = into four pieces, and each plain contains
one element of Uy and ul’ € K; ;. We claim that Hs = Fz(us?) < Fs(x) for
all x € K, ; if B > ¢. Note that p is not local minimum if 8 > g¢.

Let fﬂ(w) be a restriction of Fj to K3 4 and let K3 , = {x € K34 : 73 =

1
x4 > T1,To}. Since x3 = 14 = 5(1 — I — X3),

0 ~ 1 1
8xiF6(w) = —z; + Eloga:i + x5 — Blogwg ,

so that if © € K3 4 is a critical point, we have

1 1 1
—xr1+ —=logxr; = —x9+ = logwe = —x3+ = logzs .

g g B
Since w3 = x4 > w1, T, if § > g, the critical points in K3 , are u§’4, v%’z.
From the proof Lemma 5.7.7, we obtain uy* = v3'> = (uy, ug, va, v3).
1 1
Let a = -1 4+ — and b = —1 + —. We therefore obtain
Bug Cp)
1 1
~  ay a+=b =b
ViEs(uy ") = 1 2 2 1
—b —-b
2" 4T3

The eigenvalues of VQﬁﬁ(ugA) are a and a + b. By Lemma 5.7.3, a, b > 0 so
that ug”4 is a local minimum in K3 4. Since this is the unique critical point,
uy* is the unique minimum in K3, 4- Since K3 4 is a closure of K5 ; and there
is no critical point in K5, \ {ud*}, ud* is the unique minimum in Ks 4.
Hence, W;’s are different if 5 > q.

Let 8 > ¢. By the definition of K; ;, we obtain Wy N K; ; = 0 if k # i, j
so that ¥; ; C K; ;. By Lemma 5.9.2, ¥, ; are not empty. It can be observed
Fs(x) = Hp and VFs(x) = 0 if € %, ;. Since ¥, ; C K, ;, we have
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;= {ub’}, thus the fourth assertion is proved.

For the third assertion, note that F,(x) = H, for all z € ¥, ; and p is
the only point in K; ;, such that F,(x) = H,. Moreover, we obtain F,(x) >
H, = Fy(p) if x € K7 ;, and finally we can deduce Fy(x) > H, = F,(p) if
x € K; ; \ {p} using elementary calculus. Hence, W,’s are different if § = gq.

For the second assertion, we can use the symmetry argument and the

proofs are the same as the proof of Theorem 5.3.6. O

5.10 Proof of Lemma 5.8.4

This section is devoted to the proof of Lemma 5.8.4. In Section 5.10.1, we
provide an auxiliary lemma to prove Lemma 5.10.1. In section 5.10.2, we
prove this auxiliary lemma. So far, we have fixed an integer ¢ > 3; however, in

this section, we consider ¢ as a real number and several variables as functions

of ¢g. For example, my = ma(q), j(q) = ¢ — 2, and S, 2 = S5 2(q).

5.10.1 Proof of Lemma 5.8.4

Lemma 5.10.1. The function f, of q is defined as

1) 1 1 251

1
(q) = ] _ - - 24 - — 4
1+(q) ﬁs,2< 0g gy 5 8(qm2) + 4m2 + 5002 (5.46)

. , d
Then, if ¢ > €°, fi(q) = d—qf*(CJ) > 0.

Proof of Lemma 5.8.4. By Proposition 5.11.1, we obtain f,(6500) > 0. We

-1 1 —¢® +4q+1 251
observe that (g ) < 3 and % < ~5002 if ¢ > 1000. Hence,
Lemma 5.10.1 proves Lemma 5.8.4. O
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5.10.2 Proof of Lemma 5.10.1

Let so = s2(q) = gmo. In the first lemma, we compute mjy = (d/dq)ma,
sy = (d/dq)sz, and f; 5 = (d/dq) B,

Lemma 5.10.2. We have

I d o m2(1_jm2_Qjm§)
My = —Mgy = — ;
dq q(1 — 2jms)
d js2(1 —
812:—82::—j82< .82) ’
dq q(q — 2js2)
d 1 —89 + 82 + qs!
r — 9 2 2 )
6572 dq6872 1— sy (65,232 ((] — ].82)82
Proof. We observe that
2 1— jmy 2
a2 = galma) T—qmy ° 2m, qma(1 — jmo)
so that 5, 1 .
log(1 — jms) — log 2my = -( . ) .
og( jma) = log 2my q\2my 1 —73msy

By differentiating this equation in g, we get

—mg — jmh My 2( 1 1 > 2< mb —mg—jmg)
1 — jmy me @2 \2my 1 — jmy q 2m3 (1 — jmy)?
By elementary computation, we can write
1 . . - . 2
i, = M2l = Jmz = ajmy) (5.47)
q(1 — 2jmy)
Let s, = gmo. Then,
53(1 — s9)
sh=m —i—qm':—“—.. 5.48
2 2 2 q(q _ 2]82) ( )
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Next, we compute /3, ,. Note that

2 q—Js2
= |
65,2 1 — 5o 0og 282 )
so that
g, = 254 logq_jSQ 2 1—82—j3/2_3_/2>
»? (1 —s9)2 259 1—5y" qg—7Jso S9
1 2 4 2 _ /o / . /
_ <s’2 log 4192 | 9% = 55— J52%) — 45} +18282)
1— 59 1— 59 259 (q — js2)s2
1 _ 2 /
= (65,28’2 PR h R qs?) . (5.49)
1—s9 (g — jsa2)s2
Il

The next lemma provides the bound of ms(q).

Lemma 5.10.3. Let ¢ > €®. We have

1 < malg) < 1
maolq .
2qlogq qlogq

Proof. 1t can be observed that ho(ms) = 0 and ho(t) > 0 if ms < t < 1/q.
We claim that

1—9a a—1
J . q

ho(a) = log >0,

2a qa(l — ja)

where a = 1/qlog g. The above inequality can be written as

1 —J 1 —
logq 0gq—1J > (q 0gq—4¢

- ) log q .
2 qlogq—])

Since the right-hand side is smaller than log ¢, it suffices to show that

logg —1+2/q
2

log g + log > logq ,
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which is true if ¢ > €. Hence, my < 1/qlog q. Next, we have my > (1/2¢) log q
since ' | /2
J qlogq —¢q
log (qlogq — —> — 2{+}logq <0,
2 (¢logq —3j/2)
which is true if ¢ > €®. m

In the next two lemmas, we prove that some quantities are positive.

Lemma 5.10.4. Let ¢ > €®. We have

!/
m2_

S285 >0 .
Proof. We have

ma(1 — jmae — jgm3)  js3(1 — ss)

My — S9Sy = —

q(1 —2jmo) q(q — 2js2)
_ sa(=1 4 jma + ja(g + Dmi — jg*m3)
q(q — 2js2)

It suffices to show that
jalg+1)m3 — jg*mi —1>0 .

Sin

ce < my < ——, we obtain
2qlogq qlogq

jalg + 1)ym3 — jg*ms — 1
jalg+1) g
4¢*(logq)*  ¢*(logq)?

1 [(q +1)(¢ —2)
q(log q)* 4

. @mq +1)(q —2) — qlq — 2) — q(log ¢)°]
1 2 3
= m[q —q(logq)” —4] > 0.

logq — q(q — 2) — q(log q)g]
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In the second and third inequalities, we use ¢ > e®. Hence, m} —sys5 > 0. [

Lemma 5.10.5. Let g > €®. We have

/

1
(- —log sz>ﬁ; s+ Bn2 >0, (5.50)
2 ’ So
1 .
Proof. Let A(q) = 5 log so. From Lemma 5.10.3, we obtain

5) 1 1 1
- < —+4log8< §+loglogq < Alq) < §+log(210gq) ,

2 2
and
st st 2q A(qg) sy 11— s9
A / °2 _ 2 A o 2
(@)Bs2+ 55’232 1— s9 [ (4)s.2 q—2 s3 } Tz S9 [ S9 58’2]
53 1 2q9 Alg)
_ S p A —1) - 2L .
1 — 59 [Bs’2<32+ (9) ) q—2 s3 ]

Hence, since s, < 0, it suffices to show that

(ﬂ> Alg) 58’2<s% + A(q) — 1) _ P2 (14 (A(g) — 1)s2] ,

q—2/ s3 S5

ie.,
1 20 Ag)
1+ (A(g) = 1)s2 q—=2 s

Since, sy < 1/logq, the right-hand side is greater than

65,2 <

1 2qA(q) 1 5q
. 1 > 1
1+ (Alq) — sy q—2 o1 1+(A(q)—1)32<q—2> e d
5
> logq ,

L+ (A(g) — 1)s2
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and

2log g 1qulogq— (¢—2)

0 < 1/ql =
Bs,2 < g2(1/qlogq) logq —1 5

5 15
< glog(qlogQ) < Zlogq,

where the last inequality is equivalent to 1/2 > log(log ¢q)/log ¢ which is true

for ¢ > €.
Hence, it is enough to show that

1

1+ (A(g) = 1)s2 > (Alg) — 1)sa .

W

— 1.€.
| ) )

Since 0 < A(q) < 1/2 +log(2log q) and s, < 1/log g, we obtain, for ¢ > ¥,

log(2logq) — 1/2 _ 1
log q 3

(Alg) = Ds2 <

Now, we derive the proof of Lemma 5.10.1.

Proof of Lemma 5.10.1. By Lemma 5.10.2,

is2(1 — s ]
L 1GNNS

—So + 85+ qsh = .
LA q — 2] 752
so that
1 q 1 2q
o= T 58’—2—8')=—<s ——)s’.
Fs.2 1—52<5’2 2 Tysd? 1 — s9 f2 js3/) 2
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Now, we return to f,(q). We have

1 1 1 1 251
* = 1 —_ =) — = 2 —
hla) Bs,z( ogamz = 5) = glama)”+ 3ma + o555
1 1 1 1 251
- ] D) (e 4=
55,2( 082~ 5) — gls) + gmat o
so that
52 1 1 4 1
filq) = —%Oog Sg — 5) + 3 2(S—z) + Z(m’2 — S955)
s, 2 s
1 1 st 1
= —— [522(5 —log s9) + 55,2(5) + Z(mg — $955) .
s, 2
Finally, Lemmas 5.10.4 and 5.10.5 prove Lemma 5.10.1. O

5.11 Numerical computations

Recall the definition (5.46) of f.(-). In this section, we verify several in-
equalities numerically. Our purpose is the following proposition. The proof

is presented at the end of this section.
Proposition 5.11.1. The following hold.

1. For 5 < q <6500, we have Fg, ,(ug) > Fp, ,(v1).

d
2. For 6 < q <54, we have —|f.(8) — Fz(u > 0.
<q< U0 = Potu)]]

3. f.(6500) > 0.

Bounds of ;2 , my and v;.

We will obtain the bounds of 3 2, ms, and v;. Fix ¢ > 5 and let j = ¢ — 2.
By gradient descent method, we obtain the following.

Algorithm 5.11.2. We define 3¢, and BéyQ in the following way.
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1.ty 1/(2¢ —4).
2. While gh(t;) > 107% | let t;1 + t; — gh(t;)/(30047) .

3. If gh(t:) < 107° | let mb ;.

Let B 5 = g2(m3) + (36/q)|g5(m3)| and B, 5 := g2(m3) — (36/q)|g5(m3)] -

We record mj in the above algorithm and let

pm = g5(m3)/q -
Algorithm 5.11.3. We define m% and m) in the following way.
1. If ho(m3) > 0, let mg :=m3 + pum.

(a) to < mj.
(b) While ho(t;) > 0, let tiyq < t; — pm-
(¢) If ha(ti) <0, let my = t; — pp,.

2. If hy(m3) <0, let mh := m} — pp,.
(a) to < m3.
(b) While ho(t;) <0, let tiv1 < ti + pm-
(¢) If ho(t;) > 0, let my :=t; + pp.

By Newton method, we approximate v; which satisfies g1 (v1) = fs, 2.
Algorithm 5.11.4. We define v¥ and v} in the following way.

1. Letty = 0.8/q and t_1 = 0.

((l) While |tz — ti,1| > 1075/617 let ti+1 —t; — (g1<tl> — :2>/g/1(t2)
(b) If [t; — ti_1| <107%/q, let v :=t; and p, = [t; — t;_1].

2. If g1(v]) > By o, let v)' :=v] + py.
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3. If gi(vy) < Bsy, let
(a) ag < vy.
(b) While gi(a;) < B¢ o, let airq < a; + py.
(c) If gi(a;) > Bi o, let vy = a; + p,.

4o () < By, let vl i= v} — py.

5. If gi(vy) = ﬁs 2
(a) by < v7.
(b) While g1(b;) > BS o, let by < by — py
(¢) If gi(bi) < By o, let vy == bi = p,

Lemma 5.11.5. We have BQQ < Bs2 < By, mh < my < my , and v} <

v <.

Proof. From the Taylor’s theorem, we obtain
gg(mQ + t) = gg(mg) + gé(mg + t*)t

for some t* € (0,¢) if t > 0 or t* € (¢,0) if ¢ < 0. Since hy is increasing in the

neighborhood of my, we obtain

e + )] = | o talma 1)
< [T + )
(Lama )Y
= (A DY s+ .

Since may + t*, mo < 1/(2j), we obtain

1—q(mg+yt\)S 1 - 1 ‘:2q—4§6’
L—gqima+t) = 1—qima+1t) = 1—q/(2)) q—4
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where the last inequality is from ¢ > 5. Hence, we have
|g5(ma2 + £7)| < 36]g5(ma + [t])]
so that we have

|Bs,2 — ga(ma +1)| = [g2(ma) — g2(ma + 1)]

. 36
< lga(ma + )|t < ;Igé(mz+lt|)l,

which proves the first claim. In the last inequality, we use the fact that
1l < 1/q.
Since ho(t) > 0 if ¢t > my and hy(t) < 0 if t < mg, the second claim is

true. Finally, since g; is increasing in the neighborhood of vy, the third claim
holds. O

We finally prove Proposition 5.11.1.

Proof of Proposition 5.11.1. From Lemma 5.11.5, we obtain
Bé}2<65,2<6§,2, mb < my <mY , and v} < vy <o .

By elementary computation, we have

1 1N\ 2

Fp, 5 (u2) = Fy, ,(vi) = 7lalg — 2)<m2 - m) - m] + zlogmlg

1[ 1y 1 1

S R P T B

2 og—1 g—1 v, !

lOg Qﬁs,Q + 2k2(m2) Z log(qﬂiﬂ) + 2k2(mg) )
1 o1y 1, ., 1, 251
f.(6500) > z(hgqmg - 5) - g(me) Tyt 2002

The second inequality holds since ks(-) is decreasing according to (5.39).

From the numerical computations, we find that the right-hand sides of the
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displayed equations are positive for 5 < ¢ < 6500, and this completes the
proof. O]

5.12 Proof of (5.12)

Proof of (5.12). Since we have

Z0(0) = 3 e SN H @)

rE=

we can use the elementary bound
klogk —k <logk! < (k+1)log(k+1) -k,

to obtain

Zexp{—ﬁ [ BZ x; + log xz—i—%)] —qlogN}

xrEeE

< Zn(B) < Zexp{ — BN Fs(x) + log(N + 1) + Nlog (1 + %)} .

SIS

Hence, by the definition of Fj (5.4), we can obtain

log N log N
—-F < —1 Z < —F
sup{ ﬁ(fv)}+0( N ) g o8 Zn(B) < supf ﬁ(w)}+0< N )
and the proof is completed. O]
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