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Abstract

Metastability of Langevin dynamics

Jung-Kyoung Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this thesis, we investigate metastability of non-reversible Langevin dy-

namics. We prove the Eyring–Kramers formula, which is a precise estimation

of the expectation of transition time, for non-reversible metastable diffusion

processes that have Gibbs invariant measures. In addition, we further de-

velop the Eyring–Kramers formula by proving that a suitably time-rescaled

non-reversible metastable diffusion process converges to a Markov chain on

the deepest metastable valleys.

Finally, we introduce the Curie–Weiss–Potts model as an example of a

metastable dynamics on complex potential function so that complex metasta-

bility occurs. We analyze the energy landscape of the Curie–Weiss–Potts

model and the metastable behavior of the heat-bath Glauber dynamics as-

sociated with the Curie–Weiss–Potts model.

Key words: Metastability, statistical physics, Langevin dynamics, Eyring–

Kramers formula, Markov chain model reduction, Curie–Weiss–Potts model

Student Number: 2017-29414
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Chapter 1

Introduction

Metastability is a wide-spread phenomenon that occurs in various stochastic

systems at the low temperature regime. This phenomenon exhibits transitions

between (meta)stable states. The mathematical study of metastability dates

back to the work of H. Eyring [28] and H.A. Kramers [43] in the early 20th

century. Later in the 1960s, its first successful mathematical treatment was

carried out in a sequence of pioneering studies by Freidlin and Wentzell from

a large-deviation theoretical perspective [29]. In this thesis, we introduce

mathematical study of metastability of Langevin dynamics considering sharp

asymptotics of the mean of the transition time and Markov chain description

of successive transitions. Also, we introduce the Curie–Weiss–Potts model as

an example of metastable dynamics on complex potential.

1.1 Mathematical study of metastability

Consider a physical system whose energy landscape is given as shown in

Figure 1.1. In this system, m is a metastable state, s is a stable state, and ∆

is an energy barrier from m to s. Suppose that the system is at state m. If a

sufficient impact larger than ∆ is applied to the system, the transition from

m to s occurs. In many probabilistic models, this impact is an accumulation

1



CHAPTER 1. INTRODUCTION

m σ s State

Energy

∆

Figure 1.1: Single ground state

m σ s State

Energy

Figure 1.2: Multiple ground states

of randomness.

Let τm→s be a transition time from m to s. The first metastability result,

called Freidlin–Wentzell theory [29], for this system is the following large-

deviation type estimation of the expectation of τm→s:

lim
ε→0

ε logE[τm→s] = ∆ , (1.1)

where ε > 0 denotes the temperature.

Eyring–Kramers formula

The first more quantitative question in metastability is the derivation of

the precise estimate of E[τm→s] as a refinement of the logarithmic estimate

(1.1). Such a precise estimate is called the Eyring–Kramers formula (e.g.,

[8, 14, 28, 43, 51, 57, 58]) and takes the form

E[τm→s] ' f(ε) exp
∆

ε
. (1.2)

Finding prefactor f(ε) is the main challenge in this problem.

2



CHAPTER 1. INTRODUCTION

Markov chain model reduction

If there are multiple ground states as shown Figure 1.2, we can expect that

there will be successive transitions between those states. The canonical way

to describe this kind of metastable behavior is the Markov chain model re-

duction (e.g., [2, 3, 49, 50, 52, 53, 54, 57, 59, 83]) which describes the suc-

cessive inter-valley hopping dynamics as a Markov chain on much simpler

state space. This also requires quantitatively precise information in the level

of (1.2) regarding the metastable transition.

1.2 Langevin dynamics

In the study of the metastability of stochastic dynamical systems, one of the

most important models is the overdamped Langevin dynamics given by a

stochastic differential equation (SDE) of the form

dyε(t) = −∇U(yε(t)) dt+
√

2ε dwt , (1.3)

where (wt)t≥0 represents the standard d-dimensional Brownian motion, ε > 0

is a small constant parameter corresponding to the magnitude of the noise,

and U : Rd → R is a smooth Morse function1 with finite critical points. In

addition to its importance in large-deviation theory, mathematical physics,

and engineering (cf. [29] and references therein), this process is also well-

known for approximating the minibatch gradient descent algorithm widely

used in deep learning (cf. [35] and references therin).

The metastable behaviors of the process yε(·), exhibited when U has mul-

tiple local minima, have attracted considerable attention in recent decades.

Its first successful mathematical treatment was carried out in a sequence of pi-

oneering studies by Freidlin and Wentzell in the 1960s from a large-deviation

1All the critical points of U are non-degenerate (i.e., the Hessian at each critical point
is invertible) and isolated from others.

3



CHAPTER 1. INTRODUCTION

theoretical perspective, and these achievements have been summarized in

[29]. Further, their accurate quantitative analysis has been thoroughly in-

vestigated in many studies. For instance, [14, 36] established the Eyring–

Kramers formula, [13] provided the sharp asymptotics of low-lying spectra,

[83, 86] described the metastable behavior as a limiting Markov chain under

a suitable exponential time-rescaling, and [21, 22, 23, 60, 61, 65, 73] devel-

oped the quasi-stationary distribution approach for this process. The last

approach is based on the theories from semi-classical analysis developed in

[36, 70]. We note that these approaches are the most typical methods for

quantitatively investigating the metastable behavior of a metastable process.

Metastable behavior of the dynamics

To heuristically explain the metastable behavior of the process yε(·), we

regard this process as a small random perturbation of the dynamical system

given by an ordinary differential equation (ODE) of the form

dy(t) = −∇U(y(t)) dt . (1.4)

Note that the stable equilibria of this dynamical system are given by the local

minima of U . Hence, provided that ε ' 0, the process yε(·) starting from a

neighborhood of a local minimum of U will remain there for a sufficiently

long time, as the noise is small compared to the drift term −∇U(yε(t))dt

that pushes the process toward the local minimum.

The metastability issue arises for the process yε(·) if U has multiple local

minima. To illustrate the corresponding metastable behavior more clearly,

we simply assume that U has two local minima m1 and m2 as shown in

Figure 1.3, and we suppose that the process yε(·) starts at m1. If there is no

noise, i.e., ε = 0, the process always remains at m1. However, when ε is small

but positive, random noise term
√

2ε dwt accumulates over a sufficiently long

time and enables the process yε(·) to make a transition to a neighborhood of

4



CHAPTER 1. INTRODUCTION

Figure 1.3: Double-well potential U with two minima m1 and m2 and a
saddle point σ between them.

another minimum m2 after an exponentially long time, and this can be un-

derstood via the large-deviation principle (cf. [29]). This movement is called

a metastable transition. Then, it remains for a long time in the neighborhood

of m2 before making another transition. Such rare transitions between the

neighborhoods of local minima constitute the dynamical metastable behav-

ior of the process yε(·). We can expect richer behaviors when U has a more

complex landscape.

Eyring–Kramers formula

The Eyring–Kramers formula is the sharp asymptotics, as ε → 0, of the

mean of the time required to observe the transition described above. It was

obtained for the one-dimensional case in classical studies [28, 43] conducted

in the 1930s on the basis of explicit computation. The generalization of this

result to arbitrary dimensions was finally accomplished in [14] a few decades

later. We recall the double-well situation illustrated in Figure 1.3 to explain

the Eyring–Kramers formula in a simple form. Let τDε(m2) denote the hitting

time with respect to the process yε(·) of the set Dε(m2), which is a ball of

radius ε centered at m2. Then, the Eyring–Kramers formula is the sharp

estimate of the mean transition time E[τDε(m2)|yε(0) = m1]. The Freidlin–

5



CHAPTER 1. INTRODUCTION

Wentzell theory gives the large deviation estimate for this quantity as

lim
ε→0

ε logE[ τDε(m2) |yε(0) = m1 ] = U(σ)− U(m1) , (1.5)

where σ is the saddle point between the two wells as shown in Figure 1.3. The

Eyring–Kramers formula is a refinement of this result (cf. Corollary 3.1.5 of

the thesis), and it gives the precise asymptotics of the expectation in (1.5).

The mean transition time is related to the quantification of the mixing

property of the process yε(·). To explain it more precisely, we remark that

the unique invariant measure for the process yε(·) is given by

µε(dx) =
1

Zε
e−U(x)/ε dx , (1.6)

where Zε is the constant given by

Zε =

∫
Rd
e−U(x)/ε dx < ∞ , (1.7)

where we will impose suitable growth conditions for U in Section 2.1 to

guarantee the finiteness of Zε. The measure µε(dx) corresponds to the Gibbs

measure associated with the energy function U and inverse temperature ε and

hence the constant Zε denotes the associated partition function. Therefore,

we can regard the process yε(·) as a sampler of the Gibbs distribution µε(dx),

which is exponentially concentrated on the global minima of U . There are two

representative quantities for measuring this mixing property of the sampler

yε(·): the spectral gap [13] and the mean transition time of the process from

one local minimum to another [14]. Thus, by estimating the latter using the

Eyring–Kramers formula, one can precisely measure the mixing property of

yε(·).

6



CHAPTER 1. INTRODUCTION

Figure 1.4: Example of potential U with multiple global minima.

Markov chain description of metastable behavior

The Eyring–Kramers formula focuses on a single metastable transition. Our

next focus is not on such a single transition but on the full description of

successive transitions via a suitable scaling limit. Now, suppose that U has

multiple global minima as shown in Figure 1.42 and that the process yε(·)
starts from a small fixed neighborhood of a minimum, which is called a

(metastable) valley. More precisely, we can expect that once the process

yε(·) makes a transition from one valley to another, then the next transi-

tion to another valley will take place after another exponentially long time.

Hence, to comprehensively describe the metastable behavior, it is natural to

prove that these successive metastable transitions converge in some sense to

a continuous-time Markov process whose state space consists of the valleys

of U . This limiting Markov process has a finite state space and is simpler

than the original process so that this argument is called Markov chain model

reduction. This proof of course requires highly accurate knowledge regard-

ing the transition time in the level of the Eyring–Kramers formula, thereby

providing a more detailed description of the metastable behavior.

Now, we review existing studies on the Markov chain description of meta-

stable behavior. In [2, 3], a robust methodology based on potential theory has

been introduced for the case in which the underlying dynamic is a Markov

process on a discrete set. This method has been applied to many models

2This figure has been excerpted from [83, Figure 1.2].

7



CHAPTER 1. INTRODUCTION

such as the zero-range process [4, 45, 84], the inclusion process [7, 40, 41],

the discrete version of the overdamped Langevin dynamics [52, 54], and the

ferromagnetic systems [47, 53]. On the other hand, for metastable diffusion

processes, a different methodology known as the PDE approach based on the

analysis of a certain Poisson equation has been introduced in [55, 83]. In [83],

a general methodology to deal with the solution to the corresponding Poisson

equation when the underlying dynamics is reversible has been developed and

successfully applied to the process yε(·).

1.3 Main contribution of the thesis

In this thesis, we consider a variant of the classical overdamped Langevin

dynamics yε(·), which is obtained by adding a vector field to the drift term

of the SDE (1.3). More precisely, we focus on the metastability of the diffusion

process given by an SDE of the form

dxε(t) = −(∇U + `)(xε(t)) dt+
√

2ε dwt ,

where U : Rd → R is the smooth potential function as described above.

Further, ` : Rd → Rd is a smooth vector field that is orthogonal to the

gradient field ∇U , i.e.,

∇U(x) · `(x) = 0 for all x ∈ Rd ,

and it is incompressible:

(∇ · `)(x) = 0 for all x ∈ Rd .

The first condition guarantees that the quasi-potential of the process xε(·) is

U (cf. [29, Theorem 3.3.1]), and the second condition ensures that the invari-

ant measure of the process xε(·) is the Gibbs measure µε(dx) (cf. Theorem

8
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2.1.3). In this sense, the process xε(·) is another sampler of the Gibbs mea-

sure µε(dx). Indeed, we prove in Theorem 2.1.3 that both of the conditions

are the necessary and sufficient conditions for the process xε(·) to have as

an invariant measure the Gibbs distribution µε(dx) defined in (1.6) for all

ε > 0. For this reason, this generalized model has been investigated in many

studies from different perspectives, e.g., [24, 37, 38, 62, 64, 81, 82].

Comparison to the process yε(·)

One of the main features of the process yε(·) is the fact that it is reversible

with respect to its Gibbs invariant measure µε(dx). Owing to this reversibil-

ity, many tools are available to investigate the process yε(·). However, nearly

none of these tools is applicable to non-reversible processes such as xε(·).
Hence, the quantitative analysis of the metastability of non-reversible pro-

cesses has long been an open issue. To this end, many innovative studies

such as [32, 45, 51, 54, 84] have been conducted in recent years, and several

non-reversible metastable processes have been analyzed. In particular, low-

lying spectra of xε(·) has been analyzed in [64]. In the thesis, we present the

Eyring–Kramers formula and the Markov chain description of the metastable

behavior of the process xε(·).
Moreover, it is widely believed that the non-reversible process xε(·) has

a better mixing property than the reversible process yε(·). In fact, this belief

has been quantitatively verified in Chapter 3 and [64] in view of the so-

called Eyring–Kramers formula and low-lying spectra, respectively. We verify

in Theorem 2.1.1 that the stable points of the process xε(·) are the local

minima of U and hence identical to those of the process yε(·). Hence, we

can compare the Eyring–Kramers formula of xε(·) with that of yε(·), and

this comparison reveals that the mean transition time of the dynamics xε(·)
from one local minimum of U to another is always faster than that of the

reversible dynamics yε(·). This implies that we can accelerate the stochastic

gradient descent algorithm by adding the incompressible field `, which is

9



CHAPTER 1. INTRODUCTION

orthogonal to ∇U . We remark that such an acceleration has been observed

for the model when the diffusivity ε is kept constant (see [24, 37, 38, 62, 81, 82]

and references therein). In particular, we refer to [31] for the explicit relation

with the stochastic gradient descent algorithm.

General methodology of capacity estimation

Another main result of our study is the establishment of a straightforward

and robust method for estimating a potential theoretic notion known as the

capacity. In the proof of Eyring–Kramers formula based on the potential theo-

retic approach developed in [14], it is crucial to estimate the capacity between

metastable valleys. In all the existing results based on this approach, such

an estimation is carried out via variational principles such as the Dirichlet

principle or the Thomson principle.

For the reversible case, this approach is less complex as the Dirichlet

principle is an optimization problem over a space of functions. Hence, by

taking a suitable test function that approximates the known optimizer of

the variational principle, we can bound the capacity in a precise manner.

This strategy is the essence of the potential theoretic approach to metasta-

bility. By contrast, for the non-reversible case, the variational expression of

the capacity is destined to involve both the function and the so-called flow

(cf. [54, Theorems 3.2 and 3.3]). Therefore, one must construct both the test

function and the test flow to estimate the capacity precisely. Accordingly,

when this approach is adopted for the non-reversible model, the major tech-

nical difficulty arises in the construction of the test flow. This problem has

been resolved in existing studies such as [51, 54, 84] based on considerable

computations.

In this thesis, we develop a robust methodology to estimate the capacity

without relying on these variational principles. We use only a test function

in the estimation of the capacity; no test flow is used even in the non-

reversible case . Hence, our methodology significantly reduces the complex-

10
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ity of the analysis of metastable non-reversible processes to the level of the

reversible models. Therefore, our methodology is expected to present new

possibilities for the analysis of non-reversible metastable random processes.

In summary, we develop a new methodology to estimate the capacity and

use it to establish the Eyring–Kramers formula for the non-reversible and

metastable diffusions xε(·).

Resolvent equation approach

The Markov model reduction has been presented for the reversible process

yε(·) in [83] based on the partial differential equation (PDE) approach. In this

thesis, we extend the PDE approach to the non-reversible setting in a robust

manner and apply this method to the process xε(·). We note that the method

of [83] relies on analysis of solutions of certain form of Poisson equations. It

has been observed in [49, 50] that considering resolvent equation , instead

of Poisson equation, simplifies several argument and provide more robust

and convenient methodology which in some sense provides a necessary and

sufficient condition for the Markov chain description of metastable behavior.

This method has been applied to a critical reversible zero-range process [49]

to which the method of [2, 3] is not applicable because the metastable valley

is too large. Hence, we will rely on this resolvent approach to analyze the

metastability of the process xε(·) in the current thesis and this is the first

application of this method to a non-reversible model.

Curie–Weiss–Potts model

The Potts model is a well-known mathematical model suitable for studying

ferromagnetic spin system consisting of q ≥ 3 spins. We refer to [89] a com-

prehensive review on the Potts model. In this thesis, we introduce the Potts

model defined on large complete graphs without an external field to under-

stand the associated energy landscape as well as the metastable behavior

11
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of the heat-bath Glauber dynamics to the highly precise level. This special

case of the Potts model defined on complete graphs is called the Curie–

Weiss–Potts model. First, we thoroughly analyze the energy landscape of the

Curie–Weiss–Potts model. In particular, for the Curie–Weiss–Potts model

with q ≥ 3 spins and zero external field, we completely characterize all criti-

cal temperatures and phase transitions in view of the global structure of the

energy landscape. We observe that there are three critical temperatures and

four different regimes for q < 5, whereas there are four critical temperatures

and five different regimes for q ≥ 5. Our analysis extends the investigations

performed in [18]; they provide the precise characterization of the second

critical temperatures for all q ≥ 3 and in [53], which provides a complete

analysis of the energy landscape for q = 3. Based on our precise analysis

of the energy landscape, we also perform a quantitative investigation of the

metastable behavior of the heat-bath Glauber dynamics associated with the

Curie–Weiss–Potts model.

1.4 General model

We conclude the introduction by explaining the importance of the process

xε(·) in the study of metastability. For a vector field b : Rd → Rd, consider

the dynamical system in Rd given by an ODE of the form

dz(t) = −b(z(t)) dt ; t ≥ 0 . (1.8)

Suppose that this dynamics has several stable equilibria. An open problem

in the study of metastability is to determine the metastable behavior for the

following small random perturbation of (1.8):

dzε(t) = −b(zε(t)) dt+
√

2ε dwt ; t ≥ 0 . (1.9)

12
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For this model, Freidlin and Wentzell [29] established the large-deviation-type

analysis of the metastable behavior. In [55], metastability of the process zε(·)
on a one-dimensional torus has been analyzed based on the explicit form of

the solution to the Poisson equation. However, rigorous accurate quantitative

analysis such as that based on the Eyring–Kramers formula or the Markov

chain description is unknown for this general model and remains as a primary

open question in this field. We refer to [8] for the Eyring–Kramers formula

for zε(·) under a special set of assumptions.

The difficulty in the rigorous analysis of the process zε(·) is due to two

factors: the non-reversibility and the lack of an explicit formula for the invari-

ant measure. In Theorem 2.1.3 below, we prove that the process zε(·) defined

in (1.9) has a Gibbs invariant measure (1.6) if and only if b = ∇U + ` for

some ` such that ∇U ·` ≡ 0 and ∇·` ≡ 0; hence, this is the model considered

in this thesis. Thus, we completely overcome the difficulty arising from the

non-reversibility in the study of the process zε(·) in this thesis. The problem

arising from the lack of an understanding of the invariant measure of zε(·) is

not addressed in our studies, as the model considered has an explicit Gibbs

invariant measure; this problem should be investigated in future research.

We finally remark that an important model which is not discussed in

this introduction is the underdamped Langevin dynamics. This dynamics is

non-reversible and has the Gibbs measure as the invariant measure so that

it seems at first glance that this model falls into our framework. However,

the main challenge in this model is the fact that the diffusion coefficient is

degenerate. Accordingly, rigorous quantitative study for this model is barely

known (cf. [63]) and is an important future research problem.

Structure of the thesis

First, we present a precise definition of non-reversible Langevin dynamics in

Chapter 2. Chapters 3 and 4 are devoted to the Eyring–Kramers formula

13



CHAPTER 1. INTRODUCTION

and Markov chain model reduction for non-reversible Langevin dynamics,

respectively. In Chapter 5, we introduce the Curie–Weiss–Potts model as

an example of metastable dynamics on complex potential. We completely

analyze the energy landscape of the model and prove the Eyring–Kramers

formula and Markov chain model reduction for the heat-bath Glauber dy-

namics associated with the Curie–Weiss–Potts model.

14



Chapter 2

Model

2.1 Non-reversible Langevin dynamics

In this section, we introduce the fundamental features of the model. Recall

the definition of xε(·):

dxε(t) = −(∇U + `)(xε(t)) dt+
√

2ε dwt , (2.1)

with two conditions on `:

∇U(x) · `(x) = 0 for all x ∈ Rd , (2.2)

and

(∇ · `)(x) = 0 for all x ∈ Rd . (2.3)

The results stated in this chapter regarding the process xε(·) constitute the

essence of this field.

Potential function U

To introduce the model rigorously, we must explain the potential function

U : Rd → R in the SDE (2.1). We assume that the potential function U ∈

15
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C3(Rd) is a Morse function that satisfies the growth conditions

lim
n→∞

inf
|x|≥n

U(x)

|x|
= ∞ , (2.4)

lim
|x|→∞

x

|x|
· ∇U(x) = ∞ , and (2.5)

lim
|x|→∞

{|∇U(x)| − 2∆U(x)} = ∞ , (2.6)

where |x| denotes the Euclidean distance in Rd. These conditions have been

introduced in previous studies such as [14, 51, 83] to guarantee the positive

recurrence of the diffusion process yε(·) given by (1.3) and the finiteness of

Zε in (1.7). More precisely, it is well known (cf. [14]) that these conditions

imply the tightness condition∫
{x:U(x)≥a}

e−U(x)/εdx ≤ Ca e
−a/ε for all a ∈ R , (2.7)

where Ca is a constant that depends only on a, and hence imply the finiteness

of the partition function Zε. Finally, we also assume that U is a Morse func-

tion, i.e., all the critical points of U are non-degenerate. We remark that the

metastability of the reversible process yε(·) has been analyzed in [14] under

the same set of assumptions.

Deterministic dynamical system x(·)

To explain the metastable behavior of the process xε(·), we first consider a

deterministic dynamical system given by the ODE

dx(t) = −(∇U + `)(x(t)) dt . (2.8)

We can demonstrate that this dynamical system has essentially the same

phase portrait as y(·) defined in (1.4).

Theorem 2.1.1. The following hold.

16
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1. We have `(c) = 0 for all critical points c ∈ Rd of U .

2. A point c ∈ Rd is an equilibrium of the dynamical system (2.8) if and

only if c ∈ Rd is a critical point of U .

3. An equilibrium c ∈ Rd of the dynamical system (2.8) is stable if and

only if c is a local minimum of U .

The proof is given in Section 2.2. We emphasize that the divergence-

free condition (2.3) is not used in the proof of this theorem, whereas the

orthogonality condition (2.2) plays a significant role. In view of part (3) of

the previous theorem, we can observe that the process xε(·) is expected to

exhibit metastable behavior when U has multiple local minima, and this is

the situation that we are going to discuss in the current thesis.

Diffusion process xε(·)

Now, we focus on the diffusion process xε(·). Under the condition (2.2) and

conditions (2.4)–(2.6), we can prove the following property of the process

xε(·). Note again that the condition (2.3) is not used.

Theorem 2.1.2. The following hold.

1. There is no explosion for the diffusion process xε(·).

2. The diffusion process xε(·) is positive recurrent.

The proof of this result is given in Section 2.3.

Invariant measure

Since the process xε(·) is positive recurrent, we know that this process has

an invariant measure. Now, we prove that µε(dx) is the unique invariant

measure for the process xε(·).

17
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Before proceeding to the statement of this result, we first explain the role

of the conditions (2.2) and (2.3). Recall the general model zε(·) given by the

SDE (1.9). It is known from [29, Theorem 3.3.1] that if the quasi-potential V

associated with (1.9) is of class C1, we can write b = ∇V +` where∇V ·` ≡ 0.

Hence, the assumption (2.2) is nothing more than the regularity assumption

on the quasi-potential. The special assumption regarding the field ` is (2.3),

and the role of this assumption is summarized below.

Theorem 2.1.3. The following hold.

1. If ` satisfies the conditions (2.2) and (2.3), then the Gibbs measure

µε(dx) is the unique invariant measure for the diffusion process xε(·).

2. On the other hand, suppose that the Gibbs measure µε(dx) is the in-

variant measure for the diffusion process zε(·) defined in (1.9) for all

ε > 0. Then, the vector field b can be written as b = ∇U + `, where U

and ` satisfy (2.2) and (2.3).

The proof of this theorem is given in Section 2.3. Therefore, heuristically,

the condition (2.3) can be regarded as a necessary and sufficient condition

(up to the regularity of the quasi-potential) for the diffusion process zε(·) to

have the Gibbs invariant measure.

Construction of `

The result obtained in this thesis might be nearly useless if it is extremely

difficult to find a non-trivial ` satisfying the conditions (2.2) and (2.3) si-

multaneously. However, there is a simple way to generate a variety of ` when

the potential U is given. Let Md×d(R) be a space of d × d real matrices

and let J : R → Md×d(R) be a smooth function such that the range of J

consists of only skew-symmetric matrices. Then, a vector field of the form

`(x) = J(U(x))∇U(x) satisfies the conditions (2.2) and (2.3) as observed in

[47, Section 1] and [64, Section 1]. Moreover, unless J is a constant function,

the model considered here is different from the one considered in [51].

18
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Notations regarding xε(·)

We conclude this section by defining some notations regarding the process

xε(·). Let Lε denote the generator associated with the process xε(·). Then,

Lε acts on f ∈ C2(Rd) such that

Lεf = −(∇U + `) · ∇f + ε∆f . (2.9)

Under the conditions (2.2) and (2.3) on `, we can rewrite this generator in

the divergence form as

Lεf = εeU/ε∇ ·
[
e−U/ε

(
∇f − 1

ε
f `
) ]

. (2.10)

Finally, let Pεx denote the law of the process xε(·) starting from x, and let

Eεx denote the expectation with respect to Pεx.

2.2 Deterministic dynamical system

In this section, we prove the properties of the dynamical systems x(·) given

by the ODE (2.8).

2.2.1 Preliminary results on matrix computations

In this subsection, we present few technical lemmas. We remark that all the

vectors and matrices in this subsection are real. The first lemma below will

be used to investigate the stable equilibria of the dynamical system x(·).

Lemma 2.2.1. Let A, B be square matrices of the same size and suppose

that A is symmetric positive definite and AB is skew-symmetric. Then, all

the eigenvalues of matrix A + B are either positive real or complex with a

positive real part. In particular, the matrix A + B is invertible.

Proof. By a change of basis, we may assume that A = diag(λ1, λ2, · · · , λd)
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for some λ1, . . . , λd > 0. Let α be a real eigenvalue of A + B and let u be

the corresponding non-zero eigenvector. Then, we have

0 < |Au|2 = Au · (A + B)u = α(Au · u) ,

where the first identity holds since AB is skew-symmetric. This proves that

α > 0 since A is positive definite.

Next, let z = a + ib be a complex eigenvalue of A + B and let u + iw

be the corresponding non-zero eigenvector, where u and w are real vectors.

Since A and B are real, we have

(A + B)u = au− bw and (A + B)w = bu+ aw .

Since AB is skew-symmetric, we get

|Au|2 = Au · (A + B)u = Au · (au− bw) ,

|Aw|2 = Aw · (A + B)w = Aw · (bu+ aw) .

By adding these two identities, we get

|Au|2 + |Aw|2 = a(Au · u+ Aw ·w) .

Therefore, we get a > 0 since A is positive definite.

The next lemma is used to analyze the saddle points of the dynamical

system (2.8). For a square matrix M, let M† denote its transpose, and we

write Ms =
1

2
(M + M†).

Lemma 2.2.2. Let A, B be square matrices of the same size and suppose

that As is positive definite and B is a non-singular, symmetric matrix that

has only one negative eigenvalue. Then, AB is invertible and has only one

negative eigenvalue with geometric multiplicity 1.
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Proof. By a change of basis, we may assume that B = diag(−λ1, λ2, . . . , λd)

for some λ1, . . . , λd > 0. It is well known that a matrix A such that As is

positive definite does not have a negative eigenvalue and detA > 0. Hence,

we have detAB < 0 so that AB is invertible and has at least one negative

eigenvalue.

First, assume that AB has two different negative eigenvalues, −a, −b, and

let u = (u1, . . . , ud), w = (w1, . . . , wd) be the corresponding eigenvectors.

We claim that u1, w1 6= 0. By contrast, suppose that u1 = 0. Then, we have

Bu · AsBu = Bu · ABu = −aBu · u = −a
d∑
j=2

λju
2
j < 0 , (2.11)

which is a contradiction since As is positive definite. By the same argument,

we get w1 6= 0.

By the definition of a, b and by the positive definiteness of As, for any

t ∈ R,

(u+ tw)† B (au+ btw) = −(u+ tw)† BAB (u+ tw) < 0 .

Let p = −u1/(bw1). By substituting t with ap in the previous equation, the

first coordinate of au+ btw = a(u+ bpw) is zero; thus, we have

0 > (u+ apw)† B (au+ abpw) = a

d∑
j=2

λj (uj + apwj) (uj + bpwj) . (2.12)

Similarly, substituting t with bp makes the first coordinate of u+ bpw zero,

and we get

0 > (u+ bpw)† B (au+ b2pw) =
d∑
j=2

λj (auj + b2pwj) (uj + bpwj) . (2.13)
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Computing (b/a× (2.12) + (2.13)) gives

0 >

d∑
j=2

λj (uj+bpwj)(buj+abpwj+auj+b
2pwj) = (a+b)

d∑
j=2

λj(uj+bpwj)
2 ,

which is a contradiction since we have assumed that λ2, . . . , λd > 0. There-

fore, AB has only one negative eigenvalue −a.

Now, let us assume that there are two eigenvectors u and w correspond-

ing to −a, which are linearly independent. Then, we can repeat the same

computation as that presented above to get a contradiction, as we did not

use the fact that a 6= b in the computation. Hence, the dimension of the

eigenspace corresponding to the eigenvalue −a is 1.

Remark 2.2.3. Indeed, we can show that the algebraic multiplicity of the

unique negative eigenvalue is also 1 by considering the Jordan decomposition.

The following lemma is a direct consequence of the previous one.

Lemma 2.2.4. Let A, B be square matrices of the same size and suppose that

A is a symmetric non-singular matrix with exactly one negative eigenvalue

and AB is a skew-symmetric matrix. Then, the matrix A + B is invertible

and has only one negative eigenvalue, and its geometric multiplicity is 1.

Proof. Since A is symmetric and AB is skew-symmetric, we have −AB =

(AB)† = B†A. Therefore, we get BA−1 = −A−1B† = −(BA−1)†; thus, the

matrix BA−1 is skew-symmetric. Let I be the identity matrix with the same

size as A. Then, by substituting I + BA−1 and A for A and B, respectively,

in Lemma 2.2.2, we conclude the proof since A + B = (I + BA−1)A.

2.2.2 Equilibria of the dynamical system x(·)

In the remainder of the thesis, we use the following notations.

Notation 2.2.5. For each critical point c of U , let Hc = (∇2U)(c) denote

the Hessian of U at c and let Lc = (D`)(c) denote the Jacobian of ` at c.
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In this subsection, we analyze the equilibria of the dynamical system (2.8)

by proving Theorem 2.1.1. First, we prove part (1) of the theorem.

Proof of part (1) of Theorem 2.1.1. Let c ∈ Rd be a critical point of U . Since

∇U · ` ≡ 0 by (2.2), we have

0 ≡ ∇ [∇U · ` ] = (∇2U) `+ (D`)∇U .

Thus, we have HcLc = 0 as ∇U(c) = 0. Since Hc is invertible as U is a

Morse function, we get `(c) = 0.

Now, we present a lemma that is a consequence of the condition (2.2) and

part (1) of Theorem 2.1.1 that we have just proved.

Lemma 2.2.6. For any critical point c of U , the matrix HcLc is skew-

symmetric.

Proof. For small ε > 0 and x ∈ Rd, the Taylor expansion implies that

∇U(c+ εx) = εHc x+O(ε2) and `(c+ εx) = εLc x+O(ε2) ,

since we have ∇U(c) = `(c) = 0 by part (1) of Theorem 2.1.1. By (2.2), we

have

[ εHc x+O(ε2) ] · [ εLc x+O(ε2) ] = 0 .

Dividing both sides by ε2 and letting ε → 0, we get (Hc x) · (Lc x) = 0.

Since the Hessian Hc is symmetric, we can deduce that x · Hc Lc x = 0 for

all x ∈ Rd. This completes the proof.

Now, we focus on parts (2) and (3) of Theorem 2.1.1.

Proof of parts (2) and (3) of Theorem 2.1.1. First, we focus on part (2). If

c is a critical point of U , we have (∇U + `)(c) = 0 by part (1); thus, c is

an equilibrium of the dynamical system (2.8). On the other hand, suppose
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that c is an equilibrium, i.e., (∇U + `)(c) = 0. Then, by (2.2), we have

0 = (∇U · `)(c) = −|∇U(c)|2; thus, ∇U(c) = 0.

For part (3), suppose that c is a local minimum of U such that the Hessian

Hc is positive definite. Since HcLc is skew-symmetric by Lemma 2.2.6, we

can insert A := Hc and B = Lc into Lemma 2.2.1 to conclude that all the

eigenvalues of the matrix Hc + Lc are either positive real or complex with a

positive real part; hence, c a is stable equilibrium of the dynamical system

x(·) since Hc + Lc is the Jacobian of the vector field ∇U + ` at c.

For the other direction, suppose that c is a stable equilibrium of the

dynamical system (2.8), i.e., the matrix Hc + Lc is positive definite in the

sense that

x · [Hc + Lc]x > 0 for all x 6= 0 . (2.14)

Suppose now that the symmetric matrix Hc is not positive definite so that

there is a negative eigenvalue −λ < 0. Let v be the corresponding unit eigen-

vector. Since HcLc is skew-symmetric by Lemma 2.2.6 and Hc is symmetric,

we have

2(Hc)2 = Hc[Hc + Lc] + [Hc + (Lc)†]Hc ,

and thus we get

2λ2 = v · 2(Hc)2v = Hcv · [Hc + Lc]v + v · [Hc + (Lc)†]Hcv

= −λv · [Hc + Lc + Hc + (Lc)†]v = −2λv · [Hc + Lc]v .

This contradicts with (2.14) and therefore Hc+Lc must be positive definite.

This completes the proof.

2.2.3 Saddle points of dynamical system (2.8)

Now, we focus on the saddle points. First, we prove that, for a saddle point

σ ∈ Rd, the matrix Hσ + Lσ has only one negative eigenvalue as the matrix

Hσ has only one negative eigenvalue.
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Lemma 2.2.7. Let σ ∈ Rd be a saddle point such that Hσ has only one neg-

ative eigenvalue. Then, the matrix Hσ +Lσ has only one negative eigenvalue

and is invertible.

Proof. Let σ ∈ Rd be a saddle point so that Hσ has exactly one negative

eigenvalue by the Morse lemma. Then, we can insert A := Hσ and B := Lσ

into Lemma 2.2.4 owing to Lemma 2.2.6, and we can conclude that the matrix

Hσ + Lσ has only one negative eigenvalue and is invertible.

Next, we compares the unique negative eigenvalues of Hσ and Hσ + Lσ

for saddle point σ ∈ Rd.

Lemma 2.2.8. Let λσ and µσ be unique negative eigenvalues of Hσ and

Hσ + Lσ, respectively. Then, we have µσ ≥ λσ

Proof. Denote by −λ1, λ2, . . . , λd the eigenvalues of the symmetric matrix

Hσ, where λ1, . . . , λd > 0. Thus, λσ = λ1. Let u1, . . . , ud denote the nor-

mal eigenvectors of Hσ corresponding to the eigenvalues −λ1, . . . , λd, re-

spectively. Let v denote the unit eigenvector of Hσ + Lσ corresponding to

the unique negative eigenvalue −µσ and write v =
d∑
i=1

aiui. Since HσLσ is

skew-symmetric by Lemma 2.2.6, we have

|Hσv|2 = v ·Hσ(Hσ + Lσ)v = −µσv ·Hσv .

Using the above-mentioned notations, we can rewrite this identity as

d∑
i=1

a2
iλ

2
i = −µσ

[
− a2

1λ1 +
d∑
i=2

a2
iλi

]
. (2.15)

First, suppose that a1 = 0. Then, we have
d∑
i=2

a2
iλ

2
i = −µσ

d∑
i=2

a2
iλi and hence

we get a2 = · · · = ad = 0. This implies that v = 0, which is a contradiction.
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Thus, a1 6= 0. By (2.15), we have

a2
1λ

2
1 ≤

d∑
i=1

a2
iλ

2
i = µσa2

1λ1 − µσ
d∑
i=2

a2
iλi ≤ µσa2

1λ1 .

Since a1 6= 0, we get µσ ≥ λ1 = λσ.

2.3 Properties of diffusion process

In this section, we prove the basic properties of the diffusion process xε(·).

2.3.1 Positive recurrence and non-explosion

First, we establish a technical lemma.

Lemma 2.3.1. For all ε > 0, there exists r0 = r0(ε) > 0 such that (LεU)(x)

≤ −3 for all x /∈ Dr0(0).

Proof. By (2.5) and (2.6), we can take r0 to be sufficiently large such that

| ∇U(x) | − 2 ∆U(x) >
ε

2
and | ∇U(x) | > 2 (2.16)

for all x /∈ Dr0(0). Then, for x /∈ Dr0(0), we have

∆U(x) ≤ − ε
4

+
1

2
| ∇U(x) | ≤ 1

4ε
| ∇U(x) |2 .

Therefore,

(LεU)(x) = −|∇U(x) |2 + ε∆U(x) ≤ −3

4
| ∇U(x) |2 ≤ −3 .

The last inequality follows from the second condition of (2.16).

Now, we prove Theorem 2.1.2
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Proof of Theorem 2.1.2. First, we prove part (1), i.e., the non-explosion prop-

erty. By [87, Theorem at page 197], it suffices to check that there exists a

smooth function u : Rd → (0, ∞) such that

u(x)→∞ as x→∞ and (Lεu)(x) ≤ u(x) for all x ∈ Rd . (2.17)

We claim that u = U + kε with a sufficiently large constant kε satisfies all

these conditions. First, we take kε to be sufficiently large such that u > 0. The

former condition of (2.17) is immediate from (2.4). Now, it suffices to check

the second condition. By Lemma 2.3.1, the function Lεu = LεU is bounded

from above. Denote this bound by Mε and then take kε to be sufficiently large

such that u(x) > Mε for all x ∈ Rd. Then, the second condition of (2.17)

follows.

The positive recurrence of xε(·) follows from Lemma 2.3.1 and [79, The-

orem 6.1.3].

2.3.2 Invariant measure

By a slight abuse of notation, we write µε(x) = Z−1
ε e−U(x)/ε (cf. (1.6)).

Now, we prove Theorem 2.1.3. We can observe from the expression (2.10)

of the generator Lε that the adjoint generator L a
ε of Lε with respect to the

Lebesgue measure dx can be written as

L a
ε f = ε∇ · [ e−U/ε∇(eU/εf) ] + ` · ∇(eU/ε f) . (2.18)

Proof of Theorem 2.1.3. First, we prove part (1). With the expression (2.18)

and the explicit form of µε(x), we can check that L a
ε µε = 0. Therefore, by

[87, Theorem at page 254] and part (1) of Theorem 2.1.2, the measure µε(dx)

is the invariant measure for the process xε(·). The uniqueness follows from

[87, Theorem at page 259 ] and [87, Theorem at page 260 ].

For part (2), let us assume that µε(dx) is the invariant measure for the
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dynamics zε(·) given in (1.9) for all ε > 0. Note that the generator associated

with the process zε(·) acts on f ∈ C2(Rd) as

L̃εf = −b · ∇f + ε∆f .

Hence, its adjoint generator with respect to the Lebesgue measure is given

by

L̃ a
ε f = ∇ · [ fb ] + ε∆f .

By [87, Theorem at page 259 ], we must have L̃ a
ε µε = 0. By writing ` =

b − ∇U , this equation can be expressed as e−U/ε
[

1

ε
∇U · `+∇ · `

]
= 0.

Since this holds for all ε > 0, the vector field ` must satisfy both (2.2) and

(2.3).
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Eyring–Kramers formula

This chapter is devoted to prove the Eyring–Kramers formula for the process

xε(·) (Theorem 3.1.3). We also remark that in a recent study [64], the model

considered in this thesis was investigated in view of the low-lying spectra.

Sharp estimates were established for the exponentially small eigenvalues of

the generator associated with the process xε(·). See Corollary 3.1.6 to under-

stand how our discovery is related to the result presented in [64].

3.1 Main result

In this section, we explain the Eyring–Kramers formula for the diffusion

process xε(·). The main result is stated in Theorem 3.1.3 (and Corollary

3.1.5 for the simple double-well case).

3.1.1 Structure of metastable valleys

Let M denote the set of local minima of U . The starting point m0 ∈ M of

the process xε(·) is fixed throughout the chapter. Note that m0 is a stable

equilibrium of x(·) by Theorem 2.1.1.

Let us fix H ∈ R such that U(m0) < H and define Σ = ΣH as the set of
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saddle points of level H:

Σ := {σ : U(σ) = H and σ is a saddle point of U } .

We take H such that Σ 6= ∅. We define

H = {x ∈ Rd : U(x) < H } , (3.1)

and we assume that H has multiple connected components; hence, metasta-

bility occurs.

We decompose H = H0 ∪ H1, where H0 is the connected component of

H containing m0 and H1 = H \ H0. Note that H1 may not be connected.

Let M0 and M1 denote the sets of local minima belonging to H0 and H1,

respectively. Let Dr(x) denote an open ball in Rd centered at x with radius

r, and define

Uε :=
⋃

m∈M1

Dε(m) .

In this chapter, we focus on the sharp asymptotics of the mean of the tran-

sition time from m0 to Uε. Figure 3.1 illustrates the notations introduced

above.

Notation 3.1.1. Since the sets such as Σ and Uε depend on H, we add the

superscript H to these notations, e.g., ΣH , when we want to emphasize the

dependency on H.

3.1.2 Eyring–Kramers constant for xε(·)

In this subsection, we fix σ ∈ Σ and suppose that Hσ has only one negative

eigenvalue −λσ. In the Eyring–Kramers formula for the reversible process

yε(·) obtained in [14], an important constant is the so-called Eyring–Kramers

constant defined by

ωσrev =
λσ

2π
√
− detHσ

. (3.2)
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Figure 3.1: Example of landscape of the potential function U with five local
minima {mi : 0 ≤ i ≤ 4} and four saddle points {σi : 0 ≤ i ≤ 3}. We assume
that U(m3) = U(m4) and write Hi = U(σi), 0 ≤ i ≤ 3. Our objective is
to compute the transition time from the local minimum m0 to other local
minima. We can select the level H according to our detailed objective. By
taking H = H1, we haveM1 = {m1, m2}; hence, we focus on the transition
time from m0 to Dε(m1) ∪Dε(m2). This occurs at the level of H1 since the
process must pass through σ1 to make such a transition. For this case, we have
M0 = {m0, m3, m4} and M?

0 = {m3, m4}. On the other hand, by taking
H = H2, we have M1 = {m1, m2, m3, m4}. For this case, we compute the
escape time from the metastable valley around m0. The selection H = H3 is
not available since the condition U(m0) < H is violated; hence H does not
contain m0. This level is meaningful when we start from, e.g., m3. Finally,
the selection H = H0 is not appropriate as Σ0 becomes an empty set. For
this case, we refer to Remark 3.1.4 (4) for further details.
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Now, we introduce the corresponding constant for the process xε(·). By

Lemma 2.2.7, Hσ + Lσ has only one negative eigenvalue and is invertible.

Let −µσ denote the unique negative eigenvalue obtained in this lemma and

define the Eyring–Kramers constant at σ by

ωσ =
µσ

2π
√
− detHσ

. (3.3)

Then, by Lemma 2.2.8, we can prove the following comparison result for the

Eyring–Kramers constant.

Lemma 3.1.2. We have ωσ ≥ ωσrev.

In Corollary 3.1.7, we prove that the process xε(·) is faster than yε(·) on

the basis of this comparison result.

3.1.3 Eyring–Kramers formula for xε(·)

For A ⊂ Rd, let A denote the closure of A. Define

Σ0 = H0 ∩H1 ⊂ Σ . (3.4)

We assume that Σ0 6= ∅1. For each σ ∈ Σ0, the Hessian Hσ has only one

negative eigenvalue as a consequence of the Morse lemma (cf. [71, Lemma

2.2]); hence, the Eyring–Kramers constant ωσ at σ ∈ Σ0 can be defined as

in the previous subsection. Then, define

ω0 =
∑
σ∈Σ0

ωσ . (3.5)

1The case Σ0 = ∅ may occur, for instance, if we take H = H0 in Figure 3.1. We can
deal with this situation using our result by modifying H; see Remark 3.1.4(4).

32



CHAPTER 3. EYRING–KRAMERS FORMULA

Let h0 denote the minimum of U on H0 and let M?
0 denote the set of the

deepest minima of U on H0:

M?
0 = {m ∈M0 : U(m) = h0} . (3.6)

Define

ν0 =
∑
m∈M?

0

1√
detHm

. (3.7)

Now, we are ready to state the Eyring–Kramers formula for the non-reversible

process xε(·), which is the main result of the current chapter. For a sequence

(aε)ε>0 of real numbers, we write aε = oε(1) if lim
ε→0

aε = 0.

Theorem 3.1.3. We have

Eεm0
[ τUε ] = [ 1 + oε(1) ]

ν0

ω0

exp
H − h0

ε
. (3.8)

Remark 3.1.4. We state the following with regard to Theorem 3.1.3.

1. Heuristically, the process xε(·) starting at m0 first mixes among the

neighborhoods of minima of M?
0, and then makes a transition to Uε

by passing through a neighborhood of the saddle in Σ0 according to

the Freidlin–Wentzell theory. This is the reason that the formula (3.8)

depends on the local properties of the potential U at M?
0 and Σ0. A

remarkable fact regarding the formula (3.8) is that the sub-exponential

prefactor is dominated only by these local properties. This is mainly

because the invariant measure is the Gibbs measure µε(dx). It is ob-

served in [8] that an additional factor called “non-Gibbsianness” of the

process should be introduced in the general case (i.e., in the analysis of

the metastable behavior of the process zε(·)).

2. Theorem 3.1.3 is a generalization of [14, Theorem 3.2], as the reversible

case is the special ` = 0 case of our model. Moreover, a careful reading
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of our arguments reveals that the error term oε(1) is indeed O(ε1/2 log
1

ε
)

which is the one that appeared in [14, Theorems 3.1 and 3.2].

3. The constants ω0, ν0, and h0 and the set Uε are not changed if we

take a different starting point m′0 ∈ M0. In view of Theorem 3.1.3,

this implies that all the transition times from a point in M0 to Uε are

asymptotically the same. For instance, if we take H = H1 in Figure 3.1,

the expectation of the hitting time τDε(m1)∪Dε(m2) is asymptotically the

same for the starting points m0, m3 and m4. This is because the pro-

cess xε(·) sufficiently mixes in the valley H0 before moving to another

valley.

4. Consider the case H = H2, where the potential U is given as Figure

3.1 so that we have UH2
ε = {m1, m2, m3, m4}. However, in time scale

exp

{
H2 − h0

ε

}
, the diffusion process cannot move to the neighborhoods

of m1 and m2, since σ2 is the only saddle point in ΣH2
0 and m3 and

m4 are the only minima in the connected components of H1 whose

boundary contains σ2. Our proof verifies this as well.

5. We can tune H such that m0 is the unique local minimum of H0.

For example, in Figure 3.1, we can achieve this by selecting H = H2.

Then, the formula (3.8) becomes the asymptotics of the transition time

from m0 to one of the other local minima, and this is the classic form

of the Eyring–Kramers formula. We remark that all the existing stud-

ies [14, 51] on the Eyring–Kramers formula for metastable diffusion

processes have dealt with only this situation. On the other hand, our

result is more comprehensive in that we analyzed all the possible lev-

els by carefully investigating the equilibrium potential in Section 3.5.

Such a comprehensive result for a diffusion setting was barely known

previously, see [70] where a similar setting along with the possibility of

degenerate critical points has been discussed.
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6. We use Notation 3.1.1 and suppose that ΣH0
0 = ∅. Then, we have

Eεm0
[ τUε ] � exp

{
H0 − h0

ε

}
and the level H0 is not appropriate to

investigate this mean transition time. Instead, we define

H∗ = sup {H : UHε = UH0
ε }

so that at level H∗ the gate path from m0 to UH0
ε firstly appears and

hence ΣH∗

0 6= ∅. Thus, we can estimate Eεm0
[ τUH0

ε
] by taking H = H∗.

For instance, in Figure 3.1, we have ΣH0
0 = ∅ and H∗ = H1.

7. By selecting ` appropriately, we can make ω0 arbitrarily large.

The proof of Theorem 3.1.3 is given in Section 3.3.

Double-well case

The Eyring–Kramers formula stated above has a simple form in the double-

well case. Recall the double-well situation illustrated in Figure 1.3. For this

case, the only meaningful selection of H is U(σ), and Σ0 = {σ} for this

choice. With this H, we can interpret Theorem 3.1.3 as following corollary.

Corollary 3.1.5. We have

Eεm1
[ τDε(m2) ] = [ 1 + oε(1) ]

2π

µσ

√
− detHσ
detHm1

exp
U(σ)− U(m1)

ε
. (3.9)

This is the classical form of the Eyring–Kramers formula. With this simple

case, we explain why this result is a refinement of the Freidlin–Wentzell the-

ory. By [29, Theorem 3.3.1], the quasi-potential V (· ;m1) of the process xε(·)
with respect to the local minimumm1 is given by V (x;m1) = U(x)−U(m1)

on the domain of attraction of m1 with respect to the process x(·). Hence,

we can deduce the following large-deviation type result from the Freidlin–
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Wentzell theory:

lim
ε→0

ε logEεm1
[ τDε(m2) ] = U(σ)− U(m1) .

In the formula (3.9), we find the precise sub-exponential pre-factor associated

with this large-deviation estimate.

We can also deduce from Corollary 3.1.5 a precise relation between the

mean transition time and a low-lying spectrum of the generator Lε for the

double-well case. In [64], the sharp asymptotics for the eigenvalue λε of Lε

with the smallest real part was obtained. Note that the generator Lε is not

self-adjoint; hence, the eigenvalue might be a complex number.

Corollary 3.1.6. For the double-well situation, we suppose that U(m1) ≥
U(m2). Let λε denote the one with smallest real part among the non-zero

eigenvalues of Lε. Then, the following holds:

Eεm1
[ τDε(m2) ] =

1 + oε(1)

λε
. (3.10)

Note that λε as well as the error term oε(1) in (3.10) is in general a non-

real complex number. Suprisingly, it is verified in [64, Remark 1.10] that λε is

indeed a real number if U is a double-well potential and ε is sufficiently small.

We remark that the inverse relationship between the low-lying spectrum and

the mean transition time as in (3.10) has been rigorously verified in [13, 14]

for a wide class of reversible models including yε(·).

Comparison with reversible case

The Eyring–Kramers formula for the reversible process yε(·) has been shown

in [14, Theorem 3.2]. We can also recover2 this result by inserting ` = 0. We

now explain this result using our terminology and we provide a comparison

2Indeed, our result with ` = 0 strictly contains what has been established in [14]. See
Remark 3.1.4-(3).
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between reversible and non-reversible cases. Write

ω0, rev =
∑
σ∈Σ0

ωσrev ,

and let Eεx, rev denote the expectation with respect to the reversible process

yε(·) starting from x ∈ Rd. Then, as a consequence of Theorem 3.1.3 with

` = 0, we get the following corollary.

Corollary 3.1.7. The following holds:

Eεm0, rev[ τUε ] = [ 1 + oε(1) ]
ν0

ω0, rev

exp
H − h0

ε
.

Therefore, we have Eεm0
[ τUε ] ≤ Eεm0, rev[ τUε ] for all small enough ε.

Proof. The first assertion follows immediately from the fact that ωσrev defined

in (3.2) corresponds to ωσ with ` = 0. The second assertion follows from

Lemma 3.1.2 which implies that ω0 ≥ ω0, rev.

In view of the fact that the dynamics yε(·) plays a crucial role in the

stochastic gradient descent algorithm, we might be able to accelerate this

algorithm by adding a suitable orthogonal, incompressible vector field to the

drift part.

3.2 Potential theory

In this section, we introduce the potential theory related to the process xε(·).
As in the previous studies, we prove the Eyring–Kramers formula based on

the relation between the mean transition time and the potential theoretic

notions, and this relation is recalled in Proposition 3.3.1. The difficulty, es-

pecially for the non-reversible process, in using this formula arises from the

estimation of the capacity term appearing in the formula. In this chapter, as

explained in the Introduction section, we develop a novel and simple way to
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estimate the capacity. In this section, we explain a formula given by Propo-

sition 3.2.2 for the capacity which plays a crucial role in our method. We

remark that this formula itself is not new; the method for handling this for-

mula is the innovation of the current study, and will be explained in the

remainder of this chapter. To explain this formula, we start by introducing

the adjoint process, equilibrium potential, and capacity.

3.2.1 Adjoint process

The adjoint operator L ∗
ε of Lε with respect to the invariant measure µε(dx)

can be written as

L ∗
ε f = εeU/ε∇ ·

[
e−U/ε

(
∇f +

1

ε
f`
) ]

= −(∇U − `) · ∇f + ε∆f . (3.11)

Note that the generator L a
ε defined in (2.18) is an adjoint with respect to

the Lebesgue measure, instead of µε(dx). The adjoint process x∗ε(·) is the

diffusion process associated with the generator L ∗
ε ; hence, it is given by the

SDE

dx∗ε(t) = −(∇U − `)(x∗ε(t)) dt+
√

2ε dwt .

Let Pε, ∗x denote the law of the process x∗ε(·). We can prove that the process

x∗ε(·) is positive recurrent and has the unique invariant measure µε(dx) by

an argument that is identical to that for xε(·).

3.2.2 Equilibrium potentials and capacities

In the remainder of this section, we fix two disjoint non-empty bounded

domains A and B of Rd with C2, α-boundaries for some α ∈ (0, 1) such that

the perimeters σ(A) and σ(B) are finite, and d(A, B) > 0. Now, we introduce

the equilibrium potential and capacity between the two sets A and B. Write

Ω = (A ∪ B)c so that ∂Ω = ∂A ∪ ∂B.

The equilibrium potentials hεA,B, hε, ∗A,B : Rd → R between A and B with
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respect to the processes xε(·) and x∗ε(·) are given by

hεA,B (x) = Pεx [ τA < τB ] and hε, ∗A,B (x) = Pε, ∗x [ τA < τB ]

for x ∈ Rd, respectively.

The capacity between A and B with respect to the processes xε(·) and

x∗ε(·) are respectively defined by

capε(A, B) = ε

∫
∂A

(∇hεA,B · nΩ)σ(dµε) and (3.12)

cap∗ε(A, B) = ε

∫
∂A

(∇hε, ∗A,B · nΩ)σ(dµε) ,

where nΩ(x) is the outward normal vector to Ω at x; hence, nΩ(x) = −nA(x)

for x ∈ ∂A. Here,

∫
∂A
f σ(dµε) is a shorthand of

∫
∂A
f(x)µε(x)σ(dx). These

capacities exhibit the following well-known properties.

Lemma 3.2.1. The following properties hold.

1. We have

capε(A, B) = cap∗ε(A, B) = cap∗ε(B, A) = capε(B, A) .

2. We have

capε(A, B) = ε

∫
Ω

|∇hεA,B|2 dµε = ε

∫
Ω

|∇hε, ∗A,B|
2 dµε .

Proof. We refer to [51, Lemmas 3.2 and 3.1] for the proof of parts (1) and

(2), respectively.

3.2.3 Representation of capacity

We keep the sets A, B, and Ω from the previous subsection. Then, for a

function f : Rd → R that is differentiable at x ∈ Rd, we define a vector field
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Φf at x as

Φf (x) = ∇f(x) +
1

ε
f(x) `(x) . (3.13)

Let C∞0 (Rd) denote the class of smooth and compactly supported functions

on Rd. Let

CA,B = { f ∈ C∞0 (Rd) : f ≡ 1 on A , f ≡ 0 on B }. (3.14)

Hence, for f ∈ CA,B, the vector field Φf is defined on Rd. The following

expression plays a crucial role in the estimation of the capacity.

Proposition 3.2.2. For all f ∈ CA,B, we have

ε

∫
Ω

[ Φf · ∇hεA,B ] dµε = capε(A, B) . (3.15)

Proof. Since f is compactly supported, we can apply the divergence theorem

to rewrite the left-hand side of (3.15) as

ε

∫
∂Ω

f [∇hεA,B · nΩ ]σ(dµε) −
∫

Ω

f (Lεh
ε
A,B) dµε .

Since f = 1∂A on ∂Ω by the condition f ∈ CA,B, the first term of the

above-mentioned expression is equal to capε(A, B) by (3.12). On the other

hand, the second integral is 0 since Lεh
ε
A,B ≡ 0 on Ω by the property of the

equilibrium potential.

3.3 Proof of Eyring–Kramers formula

In this section, we prove the Eyring–Kramers formula stated in Theorem

3.1.3 up to the construction of a test function and analysis of the equilibrium

potential.
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3.3.1 Proof of Theorem 3.1.3

For convenience of notation, we will use the following abbreviations for the

capacity and equilibrium potential between a small ball around the minimum

m0 and Uε:

capε = capε(Dε(m0), Uε ) ,

hε(·) = hεDε(m0),Uε(·) and h∗ε(·) = hε, ∗Dε(m0),Uε(·) . (3.16)

The proof of the Eyring–Kramers formula relies on the following formula

regarding the mean transition time.

Proposition 3.3.1. We have

Eεm0
[ τUε ] = [ 1 + oε(1) ]

1

capε

∫
Rd
h∗ε dµε . (3.17)

This remarkable relation between the mean transition time and the po-

tential theoretic notions was first observed in [14, Proposition 6.1] for the

reversible case. Then, it was extended to the general non-reversible case in

[51, Lemma 9.2]. Our proof is identical to that of the latter case; hence, we

omit the details. Now, the proof of Theorem 3.1.3 is reduced to computing

the right-hand side of (3.17). We shall estimate the capacity and integral

terms separately. We emphasize here that, even if we rely on the general

formula (3.17), the estimation of these two terms is carried out in a novel

manner. For simplicity of notation, hereafter, we write

αε = Z−1
ε e−H/ε (2πε)d/2 . (3.18)

Our main innovation in the proof of the Eyring–Kramers formula is the new

strategy to prove the following proposition.
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Proposition 3.3.2. For ω0 defined in (3.5), we have

capε = [ 1 + oε(1) ]αε ω0 . (3.19)

We present our proof, up to the construction of a test function, in the

next subsection. Further, we need to estimate the integral term in (3.17).

Proposition 3.3.3. For ν0 defined in (3.7), we have∫
Rd
h∗ε dµε = [ 1 + oε(1) ]Z−1

ε (2πε)d/2 e−h0/ε ν0 . (3.20)

We heuristically explain that the last proposition holds. Define G = {x :

U(x) < H − β} for small β > 0 and let Gi = Hi ∩ G for i = 0, 1. Since the

process starting from a point in G0 may touch the set Dε(m0) before climbing

to the saddle point at level H, we can expect that h∗ε ' 1 on G0. By a similar

logic, we have h∗ε ' 0 on G1. Since µε(Gc) is negligible by (2.7), we can

conclude that the left-hand side of (3.20) is approximately equal to µε(G0),

whose asymptotics is given by the right-hand side of (3.20). We turn this

into a rigorous argument in Section 3.5.4 on the basis of a delicate analysis

of the equilibrium potential.

Now, we formally conclude the proof of Eyring–Kramers formula.

Proof of Theorem 3.1.3. The proof is completed by combining Propositions

3.3.1, 3.3.2, and 3.3.3.

3.3.2 Strategy to prove Proposition 3.3.2

Instead of relying on the traditional approach, which uses the variational

expression of the capacity given by the Dirichlet principle or the Thomson

principle to estimate the capacity, we develop an alternative strategy in this

subsection. This strategy is suitable for non-reversible cases in that neither

the flow structure nor the test flow is used.
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In Section 3.6, we construct a smooth test function gε ∈ CDε(m0),Uε (cf.

(3.14)) satisfying the following property.

Theorem 3.3.4. We have

ε

∫
Ωε

[ Φgε · ∇hε ] dµε = [ 1 + oε(1) ]αε ω0 + oε(1) [αε capε ]1/2 , (3.21)

where Ωε = (Dε(m0) ∪ Uε )c.

The left-hand side of (3.21) corresponding to capε by Proposition 3.2.2 is

believed to be equal to the first term at the right-hand side. Thus, the second

error term is somewhat unwanted and appears just because of a technical

reason explained in more detail at Remark 3.3.5. We can however absorb

this second error term to the first error term at the right-hand side of (3.21)

as illustrated in the proof below of Proposition 3.3.2. Note that we assume

Theorem 3.3.4 at this moment.

Proof of Proposition 3.3.2. By Proposition 3.2.2 and Theorem 3.3.4, we get

capε = [ 1 + oε(1) ]αε ω0 + oε(1) [αε capε ]1/2 .

By dividing both sides by αε and substituting rε = [ capε/αε ]1/2, we can

rewrite the previous identity as

r2
ε = [ 1 + oε(1) ]ω0 + oε(1) rε .

By solving this quadratic equation in rε, we get rε = [ 1 + oε(1) ] (ω0)1/2.

Squaring this completes the proof.

Now we turn to Theorem 3.3.4. The core of our strategy is to find a

suitable test function gε and to compute the left-hand side of (3.21). Indeed,

we construct gε as an approximation of the equilibrium potential h∗ε(·) for the

adjoint process (cf. (3.16)). The reason is that, by the divergence theorem,
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we can write the left-hand side of (3.21) as

ε

∫
Ωε

[ Φgε · ∇hε ] dµε = −
∫

Ωε

hε L
∗
ε gε dµε + (boundary terms) . (3.22)

To control the integration on the right-hand side, we try to make L ∗
ε gε as

small as possible (cf. Proposition 3.4.5); hence, in view of the fact that L∗εh∗ε ≡
0 on Ωε by the property of the equilibrium potential, the test function gε

should be an approximation of h∗ε . The main contribution for the computation

of the left-hand side of (3.22) comes from the boundary terms, and relevant

computations are carried out in Proposition 3.4.6.

The construction of gε particularly focuses on the neighborhoods of the

saddle points of Σ0 as the equilibrium potential (and hence gε, which is

an approximation of the equilibrium potential) drastically falls from 1 to 0

there. We carry out this construction around the saddle point in Section 3.4

on the basis of a linearization procedure that is now routine in this field,

e.g., [14, 51]. Then, we extend these functions around the saddle points of Σ0

to a continuous function on Rd belonging to CDε(m0),Uε . This process will be

performed in Section 3.6, and we finally obtain gε in (3.81). Then, we prove

(3.21) on the basis of our analysis of the equilibrium potential carried out in

Section 3.5.

Remark 3.3.5 ((Comparison with reversible case)). Our strategy is rela-

tively simple when the underlying process is reversible. In order to get a con-

tinuous test function gε, we need a mollification procedure (cf. Proposition

3.6.2), and we must include an additional term oε(1) [αε capε]
1/2 in (3.21) to

compensate for this additional procedure. However, for the reversible case,

we can get a continuous test function without this mollification procedure (cf.

Remark 3.6.1) and we can prove that

ε

∫
Ωε

[ Φgε · ∇hε ] dµε = [ 1 + oε(1) ]αε ω0 ,
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instead of (3.21); hence, the proof of the Eyring–Kramers formula is more

straightforward. This is the only technical difference between the reversible

and non-reversible models in our methodology.

The remainder of this chapter is devoted to proving Theorem 3.3.4, and

in the course of the proof, Proposition 3.3.3 will also be demonstrated in

Section 3.5.

3.4 Construction of test function around sad-

dle point

We explain how we can construct the test function around a saddle point

σ ∈ Σ0. Section 3.4.1 presents a preliminary analysis of the geometry around

the saddle point. We acknowledge that several statements and proofs given

in these sections are similar to those given in [51]; however, we try not to

omit the proofs of these results, as the details of the computations are slightly

different owing to the differences between the models. Then, we construct the

test function pσε on a neighborhood of σ in Section 3.4.2. Finally, we explain

several computational properties of this test function in Sections 3.4.3–3.4.5.

These properties play crucial role in the proof of Theorem 3.3.4.

Setting

In this section, we fix a saddle point σ ∈ Σ0 and simply write H = Hσ =

(∇2U)(σ) and L = Lσ = (D`)(σ). Recall that H has only one negative

eigenvalue because of the Morse lemma. Let −λ1, λ2, · · · , λd denote the

eigenvalues of H, where −λ1 = −λσ1 denotes the unique negative eigenvalue.

Let ek = eσk denote the eigenvector associated with the eigenvalue λk (−λk
if k = 1). In addition, we assume the direction of e1 to be toward H0, i.e.,

for all sufficiently small r > 0, σ + re1 ∈ H0.
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By Lemma 2.2.7, the matrix H + L has a unique negative eigenvalue

−µ = −µσ. We can readily observe that the matrix H − L† is similar to

H + L. To see this, first note that, since HL is skew-symmetric by Lemma

2.2.6, we have HL = −(HL)† = −L†H. Therefore, we can check the similarity

as

H−1 (H− L†)H = H−1 (H2 + HL) = H + L . (3.23)

Hence, the matrix H − L† also has a unique negative eigenvalue −µ, and

let v = vσ denote the unit eigenvector of this matrix associated with the

eigenvalue −µ. Finally, we assume without loss of generality that v · e1 ≥ 0.

Indeed, this cannot be 0 because of the following lemma, which implies that

(v · e1)2 > 0.

Lemma 3.4.1. We have

v ·H−1v = −(v · e1)2

λ1

+
d∑

k=2

(v · ek)2

λk
= − 1

µ
< 0 .

Proof. The first equality is obvious if we write v =
d∑
i=1

aiei. Now, we focus

on the second equality. Note that H − L† is invertible by Lemma 2.2.1 and

(3.23). Hence, we can compute

v ·H−1v = v ·H−1(H− L†)(H− L†)−1v = − 1

µ
v ·H−1(H− L†)v

= − 1

µ
v · v +

1

µ
v ·H−1L†HH−1v .

Since |v|2 = 1, the first term in the last line is − 1

µ
. On the other hand, since

L†H = −(HL)† is skew-symmetric and H−1 is symmetric, the second term in

the last line is 0. This completes the proof.

For two vectors u, w ∈ Rd, let u⊗w ∈ Rd×d denote their tensor product,

i.e., (u ⊗ w)ij = uiwj, where ui and wj are the ith and jth elements of u
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and w, respectively. The following Lemma is a consequence of the previous

lemma and is similar to [54, Lemmas 4.1 and 4.2].

Lemma 3.4.2. The following hold.

1. The matrix H + 2µv ⊗ v is symmetric positive definite and det (H +

2µv ⊗ v) = − detH.

2. The matrix H+µv⊗v is symmetric non-negative definite and det (H+

µv⊗v) = 0. The null space of the matrix H+µv⊗v is one-dimensional

and spanned by the vector H−1v.

Proof. By a change of coordinate, we can assume that ei is the ith standard

unit vector of Rd such that H = diag(−λ1, λ2, . . . , λd). First, we show that

H + µv ⊗ v is non-negative definite. If v2 = · · · = vd = 0, then, we have

v2
1 = µ/λ1 by Lemma 3.4.1; thus, H + µv ⊗ v = diag(0, λ2, . . . , λd) is non-

negative definite. Otherwise, for x =
d∑
i=1

xiei ∈ Rd, we can compute

x · [H + µv ⊗ v ]x = −λ1x
2
1 +

d∑
k=2

λkx
2
k + µ

( d∑
i=1

xivi

)2

.

By minimizing the right-hand side over x1 and using Lemma 3.4.1, we get

d∑
k=2

λkx
2
k −

(
∑d

k=2 xkvk )2∑d
k=2 v

2
k/λk

,

which is non-negative by Cauchy–Schwarz inequality. This proves that H +

µv⊗v is non-negative definite. Then, the matrix H+2µv⊗v is non-negative

definite as well. By the well-known formula

det (A + x⊗ y) = (1 + y†A−1x) detA , (3.24)

along with Lemma 3.4.1, we can check that det (H+2µv⊗v) = − detH > 0,

and thus, H+ 2µv⊗v is indeed positive definite. Finally, we investigate the
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Figure 3.2: Illustration of the neighborhood structure around a saddle point
σ.

null space of H+µv⊗ v. Suppose that w ∈ Rd satisfies (H+µv⊗ v)w = 0.

Since H is invertible, we can rewrite this equation as w = −µ(v ·w)H−1v.

Hence, the null space is a subspace of 〈H−1v 〉. On the other hand, if w =

aH−1v for some a ∈ R, we can readily check that (H + µv ⊗ v)w = 0, and

hence, 〈H−1v 〉 is indeed the null space.

3.4.1 Neighborhood of saddle points

In this subsection, we specify the geometry around each saddle point σ.

Figure 3.2 illustrates the sets appearing in this section.

We focus on a neighborhood of σ with size of order δ, which is defined

by

δ = δ(ε) :=
(
ε log

1

ε

)1/2
. (3.25)

Let J be a sufficiently large constant that is independent of ε. There will be

several class, e.g., Lemma 3.6.4, that require J to be sufficiently large; we

suppose that J satisfies all such requirements. Define a box Cσε centered at
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σ as

Cσε =

{
σ +

d∑
i=1

αie
σ
i ∈ Rd :− Jδ

λ
1/2
1

≤ α1 ≤
Jδ

λ
1/2
1

and − 2Jδ

λ
1/2
j

≤ αj ≤
2Jδ

λ
1/2
j

for 2 ≤ j ≤ d

}
.

Now, decompose the boundary ∂Cσε into ∂+Cσε , ∂−Cσε , and ∂0Cσε such that

∂±Cσε =
{
σ +

d∑
i=1

αie
σ
i ∈ Rd : α1 = ± Jδ

λ
1/2
1

}
, (3.26)

∂0Cσε = ∂Cσε \ (∂+Cσε ∪ ∂−Cσε ) .

Lemma 3.4.3. For x ∈ ∂0Cσε , we have U(x) ≥ H+
5

4
J2δ2 for all sufficiently

small ε > 0.

Proof. For x ∈ Cσε , by the Taylor expansion of U at σ,

U(x) = H +
1

2

[
− λ1x

2
1 +

d∑
j=2

λjx
2
j

]
+ O(δ3) . (3.27)

For x ∈ ∂0Cσε , xi = ±2Jδ/
√
λi for some 2 ≤ i ≤ d. Therefore,

−λ1x
2
1 +

d∑
j=2

λjx
2
j ≥ −J2δ2 + λi

( 2Jδ

λ
1/2
i

)2

= 3J2δ2 .

Inserting this to (3.27) completes the proof.

Hereafter, we assume that ε > 0 is sufficiently small such that Lemma

3.4.3 holds. Define, for ε > 0,

Kε = {x ∈ Rd : U(x) < H + J2δ2 } and

K = {x ∈ Rd : U(x) < H + J2 } (3.28)
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so that H ⊂ Kε ⊂ K holds.

By Lemma 3.4.3, the boundary ∂0Cσε does not belong to Kε. The neigh-

borhood of σ in which we focus on the construction is the set Bσε = Cσε ∩Kε.
Now, we decompose the boundary ∂Bσε into ∂+Bσε , ∂−Bσε , and ∂0Bσε such that

∂±Bσε = ∂±Cσε ∩ Bσε and ∂0Bσε = ∂Bε \ ( ∂+Bσε ∪ ∂−Bσε )

so that we have U(x) = H + J2δ2 for all x ∈ ∂0Bσε by Lemma 3.4.3.

Now, the set Kε \∪σ∈Σ0Bσε consists of several connected components. Let

Hε
0 denote one such component containing M0 and let Hε

1 denote the union

of the other components such that M1 ⊂ Hε
1. By our convention on the

direction of the vector e1 = eσ1 mentioned earlier in the current section, we

have

∂+Bσε ⊂ ∂Hε
0 and ∂−Bσε ⊂ ∂Hε

1 . (3.29)

This is illustrated in Figure 3.2.

3.4.2 Construction of test function around σ via lin-

earization procedure

We construct a function pσε : Rd → R on Bσε , which acts as a building

block for the global construction carried out in the following sections. As

mentioned in Section 3.3.2, we would like to build a function approximating

the equilibrium potential h∗ε between Dε(m0) and Uε. Thus, we expect pσε to

satisfy L ∗
ε p
σ
ε ' 0, where L ∗

ε is defined in (3.11). To find this function, we

linearize the generator L ∗
ε around σ by the first-order Taylor expansion such

that, for smooth f ,

L̃ ∗
ε f = ε∆f(x)−∇f(x) · (H− L)(x) ,

and we solve the linearized equation L̃ ∗
ε p
σ
ε = 0. This equation can be ex-

plicitly solved using the separation of variables method. Note that in view of
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(3.29), we would like to impose boundary conditions of the form pσε ' 1 on

∂+Bσε and pσε ' 0 on ∂−Bσε . A test function satisfying all these requirements

is given by

pσε (x) =
1

cσε

∫ (x−σ)·v

−∞
e−

µ
2ε
t2 dt ; x ∈ Bσε , (3.30)

where

cσε =

∫ ∞
−∞

e−
µ
2ε
t2 dt =

√
2πε

µ
. (3.31)

Note that v and µ are defined at the beginning of the current section. The

crucial technical difficulty arises from the fact that the function pσε is not

constant along the boundary ∂±Bσε unless the dynamics is reversible since eσ1

and v are linearly independent if ` 6= 0. This makes it difficult to patch these

functions together. This issue will be thoroughly investigated in Section 3.6.

Since pσε is smooth on Bσε , we can define Φpσε on Bσε . Next, we must

investigate the properties of pσε and Φpσε . For the simplicity of notation, we

assume that σ = 0 in the remainder of the current section.

3.4.3 Negligibility of L ∗
ε p

σ
ε on Bσε

Our construction of pσε suggests that L ∗
ε p
σ
ε is small on Bσε . The next lemma

precisely quantifies this heuristic observation.

Notation 3.4.4. Let C > 0 denote a positive constant independent of ε and

x. Different appearances of C may express different values.

Proposition 3.4.5. We have

∫
Bσε
|L ∗

ε p
σ
ε | dµε = oε(1)αε.

Proof. By inserting the explicit formula (3.30), we get

(L ∗
ε p
σ
ε )(x) = (cσε )−1 e−

µ
2ε

(x·v)2
[
− (∇U − `)(x) · v − µ(x · v)

]
.
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Now, by applying the Taylor expansion of ∇U and ` around σ, for x ∈ Bσε ,

(L ∗
ε p
σ
ε )(x) = −(cσε )−1 e−

µ
2ε

(x·v)2
[
{ (H− L)x+O(δ2) } · v + µ(x · v)

]
= −(cσε )−1 e−

µ
2ε

(x·v)2
[
x · (−µv) + µ(x · v) +O(δ2)

]
,

where the last line follows from the fact that v is an eigenvector of (H−L)† =

H − L† associated with the eigenvalue −µ. Now, recall cσε from (3.31) to

deduce that, for some constant C > 0,

| (L ∗
ε p
σ
ε )(x) | ≤ C δ2

ε1/2
e−

µ
2ε

(x·v)2 .

By the second-order Taylor expansion, we can write

U(x) = H +
1

2
x ·Hx+O(δ3) for x ∈ Bσε .

This expansion will be repeatedly used in the subsequent computation. Since

e−O(δ3)/ε = 1 + oε(1) by the definition (3.25) of δ, we can conclude that∫
Bσε
|L ∗

ε p
σ
ε | dµε ≤ C

δ2

Zεε1/2
e−H/ε

∫
Bσε

e−
1
2ε
x·(H+µv⊗v)x dx . (3.32)

Now, the estimation of the last integral remains. This part is similar to [51,

Lemma 8.7]; however, we repeat the argument here for the completeness of

the proof. By part (2) of Lemma 3.4.2, let ρ1 = 0 and ρ2 , . . . , ρd > 0 denote

the eigenvalues of H + µv ⊗ v and let u1, . . . , ud denote the corresponding

unit eigenvectors. Let 〈u2, · · · ,ud〉 denote the subspace of Rd spanned by

vectors u2, · · · ,ud. Since Bσε ⊂ Cσε , there exists M > 0 such that

Bσε ⊂
⋃

a:|a|≤Mδ

( au1 + 〈u2, . . . ,ud 〉 ) .

Hence, along with the change of variables x =
∑

yiui, we can bound the
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last integral in (3.32) by

∫ Mδ

−Mδ

[ ∫
Rd−1

exp
{
− 1

2ε

d∑
k=2

ρky
2
k

}
dy2 · · · dyd

]
dy1 = C δ ε(d−1)/2 .

By inserting this into (3.32), we get

∫
Bσε
|L ∗

ε p
σ
ε | dµε ≤ C δ3 ε−1 αε. Since

δ3 ε−1 = oε(1), the proof is completed.

3.4.4 Property of Φpσε at the boundary of Bσε
Next, we prove the following property of the vector field Φpσε . Recall ωσ from

(3.3).

Proposition 3.4.6. We have

ε

∫
∂+Bσε

[ (
Φpσε −

1

ε
`
)
· e1

]
σ(dµε) = [ 1 + oε(1) ]αε ω

σ . (3.33)

This estimate is indeed the key estimate in the proof of Theorem 3.3.4.

The left-hand side of (3.33) corresponds to the boundary term in (3.22). The

proof of this proposition is slightly complicated. Hence, we first establish some

technical lemmas. For simplicity of notation, we assume in this subsection

that ei is the ith standard normal vector of Rd; hence, we can write

H = diag(−λ1, λ2, . . . , λd ) and v = ( v1, . . . , vd ) .

Change of coordinate on ∂+Bσε

First, we introduce a change of coordinate that maps ∂+Bσε to a subset of

Rd−1 to simplify the integration in (3.33)

For A ∈ Rd×d and u = (u1, . . . , ud ) ∈ Rd, define Ã ∈ R(d−1)×(d−1) and
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ũ ∈ Rd−1 as

Ã = (Ai, j)2≤i, j≤d and ũ = (u2, . . . , ud ) , (3.34)

respectively. It is important to select a point of ∂+Bσε corresponding to

the origin of Rd−1 to simplify our computation. To this end, define γ =

(γ2, . . . , γd) ∈ Rd−1 as

γk =
λ

1/2
1

v1

· vk
λk
Jδ ; k = 2, . . . , d . (3.35)

Note that v1 6= 0 by Lemma 3.4.1. Define a map Πε : ∂+Bσε → Rd−1 that

represents the change of coordinate as

Πε(x) = x̃+ γ . (3.36)

Our careful selection of γ ensures that this map simplifies the computation

of the crucial quadratic form.

Lemma 3.4.7. For all x ∈ ∂+Bσε , we have

x · (H + µv ⊗ v )x = Πε(x) · ( H̃ + µ ṽ ⊗ ṽ ) Πε(x) .

Proof. Fix x =
( Jδ

λ
1/2
1

, x2, . . . , xd
)
∈ ∂+Bσε and write Πε(x) = y = (y2, . . . ,

yd). Then, by Lemma 3.4.1, we can write

x · v =
J δ

λ
1/2
1

v1 +
d∑

k=2

(yk − γk)vk = y · ṽ +
J δ λ

1/2
1

µ v1

.

Thus, we can write x · (H + µv ⊗ v)x as

−λ1x
2
1 +

d∑
k=2

λkx
2
k + µ

(
y · ṽ +

Jδλ
1/2
1

µv1

)2

= y · (H̃ + µṽ ⊗ ṽ)y.

54



CHAPTER 3. EYRING–KRAMERS FORMULA

The correction vector γ is designed to clear the linear terms and constant

term here.

We can now show that the image of Πε(∂+Bσε ) is comparable with a ball

centered at the origin with a radius of order δ.

Lemma 3.4.8. There exist constants r, R > 0 such that

D(d−1)
rδ (0) ⊂ Πε(∂+Bσε ) ⊂ D(d−1)

Rδ (0) , (3.37)

where D(d−1)
a (0) denotes a sphere on Rd−1 centered at the origin with radius

a.

Proof. Since ∂+Bσε ⊂ D
(d−1)
Cδ (0) for sufficiently large C > 0 and |γ| = O(δ),

the existence of R is immediate from the definition of Πε.

Now we focus on the first inclusion of (3.37). For γ ∈ Rd−1 defined in

(3.35), we write

Pδ =
{
x ∈ Rd : x1 =

Jδ

λ
1/2
1

}
⊂ Rd and

γ =
( Jδ

λ
1/2
1

, −γ2, . . . , −γd
)
∈ Pδ .

Then, by the Taylor expansion and Lemma 3.4.1, we can check that

U(γ) = H − λ1

2µ v2
1

J2 δ2 +O(δ3) < H − c0J
2δ2 (3.38)

for all sufficiently small ε > 0, provided that we take c0 to be sufficiently

small. Therefore, there exists r > 0 such that Drδ(γ) ∩ Pδ ⊂ ∂+Bσε . Since

Πε(γ) = 0, we have D(d−1)
rδ (0) = Πε(D(d−1)

rδ (γ) ∩ Pδ). This completes the

proof.

Now, we present three auxiliary lemmas (Lemmas 3.4.9, 3.4.10, and 3.4.11)

that will be used in several instances including the proof of Proposition 3.4.6.

The proofs of these technical results are deferred to the next subsection.
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Lemma 3.4.9. The matrix H̃ + µ ṽ ⊗ ṽ is positive definite and

det ( H̃ + µṽ ⊗ ṽ ) = µ
v2

1

λ1

d∏
k=2

λk .

Proof. By (3.24) and Lemma 3.4.1,

det ( H̃ + µṽ ⊗ ṽ ) = (1 + µṽ† H̃−1 ṽ) det H̃ =
µv2

1

λ1

det H̃ .

Recall ∂+Cσε from (3.26) and define, for a > 0,

∂1, a
+ Cσε = {x ∈ ∂+Cσε : x · v ≥ aJδ} , (3.39)

∂2, a
+ Cσε =

{
x ∈ ∂+Cσε : U(x) ≥ H + aJ2δ2

}
. (3.40)

Lemma 3.4.10. There exists a0 > 0 such that, for all a ∈ (0, a0),

∂1, a
+ Cσε ∪ ∂

2, a
+ Cσε = ∂+Cσε .

Hereafter, the constant a0 always refers to the one in the previous lemma.

For a > 0, we write

∂1, a
+ Bσε = ∂+Bσε ∩ ∂

1, a
+ Cσε = {x ∈ ∂+Bσε : x · v ≥ aJδ} , (3.41)

∂2, a
+ Bσε = ∂+Bσε ∩ ∂

2, a
+ Cσε =

{
x ∈ ∂+Bσε : U(x) ≥ H + aJ2δ2

}
; (3.42)

hence, we have

∂+Bσε = ∂1, a
+ Bσε ∪ ∂

2, a
+ Bσε (3.43)

for all a ∈ (0, a0) by the previous lemma. Now, we introduce the last lemma.

Lemma 3.4.11. Let D be a positive-definite (d− 1)× (d− 1) matrix, Then,
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for all u1, u2 ∈ Rd−1 and c ∈ (0, 1), we have∫
Πε(∂+Bσε )∩{y∈Rd−1:y·u1≥−cδ}

y · u2 + δ

y · u1 + δ
e−1/(2ε)y·Dy dy

= [ 1 + oε(1) ]
(2πε)(d−1)/2√

det(D)
.

Now, we are ready to prove Proposition 3.4.6.

Proof of Proposition 3.4.6. In view of the definition of Φpσε given in (3.13),

we can write

ε

∫
∂+Bσε

[
Φpσε −

1

ε
`
]
· e1 σ(dµε) = I1 − I2 , (3.44)

where

I1 = ε

∫
∂+Bσε

∇pσε (x) · e1 σ(dµε) and I2 =

∫
∂+Bσε

(1− pσε ) (` · e1)σ(dµε) .

First, we compute I1. By the explicit form of pσε and the Taylor expansion of

U , we can write

I1 = [ 1 + oε(1) ] v1
ε

Zε

√
µ

2πε
e−

H
ε

∫
∂+Bε

e−
1
2ε
x·(H+µv⊗v)xσ(dx) . (3.45)

By the change of variables y = Πε(x), the last integral can be expressed as∫
Πε(∂+Bε)

e−
1
2ε
y·(H̃+µṽ⊗ṽ)y dy = [ 1 + oε(1) ]

(2πε)(d−1)/2√
det ( H̃ + µṽ ⊗ ṽ )

,

where the equality follows from the change of variables z = ε−1/2y and
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Lemma 3.4.8. Summing up, we get

I1 = [ 1 + oε(1) ]
v1 µ

1/2 αε

2π

√
det ( H̃ + µṽ ⊗ ṽ )

. (3.46)

Next, we consider I2. Let us take a ∈ (0, a0), where a0 is the constant in

Lemma 3.4.10, and decompose

I2 = I2, 1 + I2, 2 , (3.47)

where

I2, 1 =

∫
∂1, a+ Bσε

(1− pσε ) (` · e1)σ(dµε) ,

I2, 2 =

∫
∂+Bσε \∂

1, a
+ Bσε

(1− pσε ) (` · e1)σ(dµε) .

First, we compute I2, 1. Recall the elementary inequality

b

b2 + 1
e−b

2/2 ≤
∫ ∞
b

e−t
2/2 dt ≤ 1

b
e−b

2/2 for b > 0 . (3.48)

Now, for x ∈ ∂1, a
+ Bσε , since we have

√
µ

ε
(x · v) → ∞ as ε → 0, we obtain

from the definition of pσε and (3.48) that

1− pσε (x) = [ 1 + oε(1) ]
ε1/2

(2πµ)1/2 (x · v)
exp

{
− µ

2ε
(x · v)2

}
. (3.49)

By the Taylor expansion of `, we have

`(x) · e1 = Lx · e1 +O(δ2) . (3.50)

Our plan is to insert (3.49) and (3.50) into I2, 1 to complete the proof. To this

end, we first explain that we can ignore the O(δ2) term in (3.50). By (3.49),
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the Taylor expansion of U , and Lemma 3.4.2, we have∣∣∣ δ2

∫
∂1, a+ Bσε

(1− pσε )σ(dµε)
∣∣∣

≤ C
δ ε1/2

Zε
e−H/ε

∫
∂1, a+ Bσε

exp
{
− µ

2ε
x · (H + µv ⊗ v)x

}
σ(dx)

≤ C
δ ε1/2

Zε
e−H/ε σ(∂+Bσε ) = C

δd ε1/2

Zε
e−H/ε = oε(1)αε . (3.51)

Hence, by combining (3.49), (3.50), and (3.51), we can write

I2, 1 = oε(1)αε +
[ 1 + oε(1) ]αε ε

(2πε)(d+1)/2 µ1/2

∫
∂1, a+ Bσε

e−
1
2ε
x·[H+µv⊗v ]x Lx · e1

x · v
σ(dx) .

(3.52)

By the change of variables y = Πε(x) and Lemma 3.4.7, we can write the

last integral as

∫
Π(∂+Bε)∩{y:y·ṽ≥c′Jδ}

e−
1
2ε
y·[H̃+µṽ⊗ṽ]y

y · L̃†ṽ − Jδλ1
v1

∑d
k=2 L1k

vk
λk

y · ṽ + Jδλ1
µv1

dy

= (−µLH−1v)

∫
Π(∂+Bε)∩{y:y·ṽ≥c′Jδ}

e−
1
2ε
y·[H̃+µṽ⊗ṽ]y

y ·w + Jδλ1
µv1

y · ṽ + Jδλ1
µv1

dy

for some w ∈ Rd−1 and c′ = a − λ1

µv1

. Take a ∈ (0, a0) to be sufficiently

small such that c′ < 0 (which is possible by the statement of Lemma 3.4.10).

Evaluating the last integral via Lemmas 3.4.8 and 3.4.11 and inserting the

result into (3.52), we conclude that

I2, 1 = oε(1)αε + [ 1 + oε(1) ]αε
µ1/2 (−LH−1v) · e1

2π

√
det (H̃ + µṽ ⊗ ṽ)

. (3.53)

Next, we consider I2, 2. By Lemma 3.4.10, we have ∂+Bσε \ ∂
1, a
+ Bσε ⊂
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∂2, a
+ Bσε ; hence,

| I2, 2 | ≤
C

Zε

∫
∂1, a+ Bσε

e−U(x)/ε σ(dx) ≤ C

Zε
e−H/ε e−cJ

2δ2/ε σ(∂+Bσε ) , (3.54)

where we applied trivial bounds3 for |1− pσε (x)| and ` in the first inequality,

while we used the condition U(x) ≥ H + aJ2δ2 for x ∈ ∂2, a
+ Bε in the second

one. Since σ(∂+Bε) = O(δd−1), we get

| I2, 2 | ≤
C δd−1

Zε
εcJ

2/2 = oε(1)αε (3.55)

for sufficiently large J . Hence, I2, 2 is negligible. By combining (3.47), (3.53),

and (3.55), we get

I2 = oε(1)αε + [ 1 + oε(1) ]αε
µ1/2 (−LH−1v) · e1

2π

√
det ( H̃ + µṽ ⊗ ṽ )

. (3.56)

By (3.46) and (3.56), we obtain

I1 − I2 = [ 1 + oε(1) ]αε
µ1/2 (v + LH−1v) · e1

2π

√
det ( H̃ + µṽ ⊗ ṽ )

. (3.57)

Since HL = −L†H by the skew-symmetry of HL, we have LH−1 = −H−1L†.
Hence,

(v + LH−1v) · e1 = (I−H−1L†)v · e1 = H−1(H− L†)v · e1

= −µH−1v · e1 =
µ

λ1

v · e1 =
µ v1

λ1

(3.58)

since −µ is an eigenvalue of H − L† associated with the eigenvector v and

3Since ∂+Bσε ⊂ K where K is defined in (3.28) we can bound ` by the L∞(K) norm of
`. This argument will be used repeatedly in the remainder of the chapter without further
mention.

60



CHAPTER 3. EYRING–KRAMERS FORMULA

H−1 = diag(−1/λ1, 1/λ2, · · · , 1/λd). Inserting this computation and Lemma

3.4.9 into (3.57), we get

I1 − I2 = [ 1 + oε(1) ]αε
µ

2π
√∏d

k=1 λk

= [1 + oε(1)]αε ω
σ .

This completes the proof.

3.4.5 Proof of Lemmas 3.4.10 and 3.4.11

Proof of Lemma 3.4.10. By Lemma 3.4.1, we have λ1

d∑
k=2

v2
k/λk < v2

1. Thus,

there exists ε0 ∈ (0, v1) such that

(λ1 + ε0)
d∑

k=2

v2
k

λk
< (v1 − ε0)2 . (3.59)

Let a0 = ε0 min{1, λ−1/2
1 , λ−1

1 }, and we claim that this constant a0 satisfies

the requirement of the lemma.

Fix a ∈ (0, a0), x ∈ ∂+Cε and suppose, on the other hand, that

x · v < aJδ ≤ ε0
Jδ

λ
1/2
1

and U(x)−H < aJ2δ2 ≤ ε0
J2δ2

λ1

. (3.60)

Since U(x) − H =
1

2
x · Hx + O(δ3) by the Taylor expansion, the latter

condition implies that x ·Hx < ε0
J2δ2

λ1

for all sufficiently small ε > 0.

Write x ∈ ∂+Cε as x =
Jδ

λ
1/2
1

(
e1 +

d∑
k=2

xkek
)

such that we can rewrite

the two conditions of (3.60) respectively as

0 < v1 − ε0 < −
d∑

k=2

vkxk and
d∑

k=2

λkx
2
k < λ1 + ε0 .
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By these two inequalities and (3.59), we have

d∑
j=2

λjx
2
j

d∑
k=2

v2
k

λk
< (λ1 + ε0)

d∑
k=2

v2
k

λk
< (v1 − ε0)2 <

( d∑
k=2

xkvk

)2

,

which contradicts the Cauchy–Schwarz inequality; hence, the claim is proven.

Proof of Lemma 3.4.11. Write ζ = ζ(ε) =

√
log

1

ε
and let Qε = Πε(∂+Bε).

Then, by the change of variables z = ε−1/2y, we can write the integral in the

statement of the lemma as

ε(d−1)/2

∫
ε−1/2Qε∩{z∈Rd−1:z·u1≥−cζ}

z · u2 + ζ

z · u1 + ζ
e−(1/2)z·Dzdz .

Fix 0 < α < 1. Then, since ζ →∞ as ε→ 0, by Lemma 3.4.8,

D(d−1)
rζα (0) ⊂ ε−1/2Qε ∩ {z ∈ Rd−1 : z · u1 ≥ −cζ}

for all sufficiently small ε > 0. Now we decompose the integral into[ ∫
D(d−1)
rζα (0)

+

∫
{ε−1/2Qε\D(d−1)

rζα (0)}∩{z∈Rd−1:z·u1≥−cζ}

] z · u2 + ζ

z · u1 + ζ
e−(1/2)z·Dzdz .

(3.61)

Let us consider the first integral. Note that

sup
z∈D(d−1)

rζα (0)

∣∣∣ z · u2 + ζ

z · u1 + ζ
− 1

∣∣∣ = oε(1) .

Thus, the first integral is

[ 1 + oε(1) ]

∫
D(d−1)
rζα (0)

e−(1/2)z·Dzdz = [ 1 + oε(1) ]
(2π)(d−1)/2√

det(D)
, (3.62)
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since D(d−1)
rζα (0) ↑ Rd−1 as ε→ 0.

Now, we focus on the second integral. Since ε−1/2Qε ⊂ D(d−1)
Rζ (0) by

Lemma 3.4.8, and since z · u1 ≥ −cζ for c ∈ (0, 1) by the statement of

the lemma, there exists C > 0 such that

sup
z∈ε−1/2Qε

∣∣∣ z · u2 + ζ

z · u1 + ζ

∣∣∣ ≤ C .

Hence, the absolute value of the second integral in (3.61) is bounded from

above by

C

∫
D(d−1)
Rζ (0) \D(d−1)

rζα (0)

e−(1/2)z·Dz dz = oε(1) . (3.63)

By combining (3.61), (3.62), and (3.63), we complete the proof.

3.5 Analysis of equilibrium potential

In this section, we establish a bound on the equilibrium potential hε and h∗ε

in Proposition 3.5.1. On the basis of this bound, we prove Proposition 3.3.3

in Section 3.5.4. Further, we remark that this bound plays an important role

in the proof of Theorem 3.3.4 (cf. Section 3.6.4).

For two disjoint non-empty sets A, B ⊂ Rd, let ΓA,B be a set of all C1-

paths γ : [0, 1] → Rd such that γ(0) ∈ A and γ(1) ∈ B. Then, let HA,B

denote the height of the saddle points between A and B:

HA,B := inf
γ∈ΓA,B

sup
t∈[0, 1]

U(γ(t) ) .

3.5.1 Estimates of equilibrium potentials hε and h∗ε

In this subsection, we prove the following proposition regarding the so-called

leveling property of the equilibrium potential.
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Proposition 3.5.1. We can find a constant C > 0 satisfying the following

bounds.

1. For all y ∈ H0, the following holds:

hε(y), h∗ε(y) ≥ 1− C ε−d exp
H{y},Dε(m0) −H

ε
.

2. For all y ∈ H1, the following holds:

hε(y), h∗ε(y) ≤ C ε−d exp
U(y)−H

ε
.

The proof of Proposition 3.5.1 relies on the following two bounds on the

capacity.

Lemma 3.5.2. There exists C > 0 such that for all y ∈ W0 and m ∈M0,

capε(Dε(y), Dε(m)) ≥ C εd Z−1
ε e−H{y},Dε(m)/ε .

Lemma 3.5.3. There exists C > 0 such that for all y ∈ H0,

capε(Dε(y), Uε) ≤ C Z−1
ε e−H/ε .

We prove Lemmas 3.5.2 and 3.5.3 in Sections 3.5.2 and 3.5.3, respectively.

Now, we prove Proposition 3.5.1

Proof of Proposition 3.5.1. Since the proofs for hε and h∗ε are identical, we

consider only hε. In [51, Proposition 7.9], it has been shown that there exists

C > 0 such that

hA,B(x) ≤ C
capε(Dε(x), A)

capε(Dε(x), B)
, (3.64)

provided that A and B are disjoint domains of sufficiently smooth bounds.
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For part (1), we can use this bound to get

1− hε(y) = hUε,Dε(m0)(y) ≤ C
capε(Dε(y), Uε)

capε(Dε(y), Dε(m0))
.

Now, by applying Lemmas 3.5.2 and 3.5.3, we complete the proof of part (1).

For part (2), we fix y ∈ H1. Then, again by (3.64),

hε(y) = hDε(m0),Uε(y) ≤ C
capε(Dε(y), Dε(m0))

capε(Dε(y), Uε)
.

By the same logic with the proofs of Lemmas 3.5.2 and 3.5.3, we get

capε(Dε(y), Dε(m0)) ≤ Ce−H/εe−H/ε

Zε
and

capε(Dε(y), Uε) ≥
Cεd

Zε
e−H{y},Uε/ε .

Since Uε contains all the local minima ofM1 andH1 is a subset of the domain

of attraction ofM1, we have H{y},Uε = U(y) and the proof is completed.

3.5.2 Proof of Lemma 3.5.2

For the lower bound case, the proof is a consequence of the existing estimate

for the reversible case. Let caps
ε(·, ·) denote the capacity with respect to the

reversible process yε(·) given in (1.3), whose generator is (1/2)(Lε + L ∗
ε ).

Then, it is well known that (cf. [32, Lemma 2.5]) for any two disjoint non-

empty domains A, B ⊂ Rd with smooth boundaries, we have the following

equation:

capε(A, B) ≥ caps
ε(A, B) . (3.65)

Therefore, it suffices to show the inequality for caps
ε(Dε(y), Dε(m)), instead.

The lower bound for this capacity can be obtained by optimizing the integra-

tion on the tube connecting Dε(y) and Dε(m). This is rigorously achieved by

a parametrization of this tube. When we parametrize the tube successfully,
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we can use the idea of [14, Proposition 4.7] to complete the proof.

Let ω : [0, L] → Rd be a smooth path such that |ω̇(t)| = 1 for all

t ∈ [0, L]. For r > 0, define Ar(0), Ar(L) by

Ar(0) = {x ∈ Rd : x · ω̇(0) < 0, |x− ω(0)| < r }

Ar(L) = {x ∈ Rd : x · ω̇(L) > 0, |x− ω(L)| < r }

and define the tubular neighborhood of ω of radius r by

ωr = {x ∈ Rd : |x− ω(t)| < r for some t ∈ [0, L]} \ (Ar(0) ∪ Ar(L) ).

For ρ > 0, let D(d−1)
ρ be a (d− 1)-dimensional sphere of radius ρ centered at

the origin.

Lemma 3.5.4. There exists r0 > 0 such that [0, L]×D(d−1)
r0

is diffeomorphic

to ωr0. Furthermore, we can find a diffeomorphism ϕ : [0, L]×D(d−1)
r0

→ ωr0

of the form

ϕ(t, z) = ω(t) + A(t)z (3.66)

for some smooth d× (d− 1) matrix-valued function A(·) of rank d− 1, and

it satisfies ∣∣∣ det
∂ϕ

∂(t, z)

∣∣∣ ≥ 1

2
on [0, L]×D(d−1)

r0
. (3.67)

Proof. The proof needs to recall several notions and results from differential

geometry. We refer to [56] for a reference. We regard ω = ω( [ 0, L ] ) as a

one-dimensional compact manifold. Let Nω ⊂ Rd × Rd denote the normal

bundle of ω. By the tubular neighborhood theorem (cf. [56, Theorem 6.24]),

there exists r0 > 0 such that ωr0 is diffeomorphic to Nωr0 = { (p, v) ∈ Nω :

|v| < r0 }. The diffeomorphism E : Nωr0 → ωr0 is given by E(p, v) = p+v.

Since ω is contractible, the vector bundle of ω is trivial; thus, Nω is diffeo-

morphic to ω × Rd−1. Let φ : ω × Rd−1 → Nω denote the corresponding

diffeomorphism. Since this diffeomorphism preserves the vector space struc-
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ture, the function φ(p, z) is linear in z and satisfies |π2(φ(p, z))| = |z| where

π2 : Rd × Rd → Rd is the projection function for the second coordinate.

Since ω × Rd−1 is a trivial bundle of rank d− 1, there are d− 1 smooth

sections σj : ω → Rd−1 which are linearly independent. By the Gram–

Schmidt operation, we may assume that they are pointwise orthonormal, i.e.,

σi(p) · σj(p) = δi, j for all i, j and p ∈ ω. Define a d× (d− 1) matrix B(p) =

[B1(p), . . . , Bd−1(p) ] by Bi(p) = π2(φ(p, σi(p))) for j = 1, . . . , d − 1. By

the smoothness of φ and σj, we can observe that all the elements of B(·) are

smooth. Then, the diffeomorphism ϕ : [0, L] × D(d−1)
r0

→ ωr0 can be written

as

ϕ(t, z) = φ(ω(t), z) = ω(t) + B(ω(t))z .

We can now take A = B ◦ ω to get (3.66). Now we consider (3.67). We can

write
∂ϕ

∂(t, z)
(t, 0) = [ ω̇(t), A(t) ] .

Since all the column vectors in the matrix on the right-hand sides are normal

and orthogonal to each other, we have
∣∣ det

∂ϕ

∂(t, z)
(t, 0)

∣∣ = 1. Hence, by

taking r0 to be sufficiently small, we get (3.67).

Proposition 3.5.5. Let ω : [0, L] → Rd be a C1-path connecting y and m

such that U(ω(t)) ≤M and |ω̇(t)| = 1 for all t. Moreover, let f be a smooth

function such that f ≡ 1 on Dε(y) and f ≡ 0 on Dε(m). Then, there exists

a constant C > 0 such that

ε

∫
ωr0

| ∇f |2 dµε ≥ C L−1 εd Z−1
ε e−M/ε ,

where r0 is the constant obtained in Lemma 3.5.4 for the path ω.
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Proof. By Lemma 3.5.4, we have

ε

∫
ωr0

| ∇f |2dµε

≥ ε

2Zε

∫
D(d−1)
ε

∫ L

0

| ∇f(ω(t) + A(t)z) |2 e−U(ω(t)+A(t)z)/ε dt dz

for ε ∈ (0, r0), where the factor of 2 appears because (3.67) is used for

bounding the Jacobian of the change of variables from below. For (t, z) ∈
[0, L]×D(d−1)

ε , we have

d

dt
f(ω(t) + A(t)z)

= ∇f(ω(t) + A(t)z) · (ω̇(t) + Ȧ(t)z) ≤ 2| ∇f(ω(t) + A(t)z) | ,

where the last inequality holds for sufficiently small ε since |ω̇(t)| = 1 and

|z| ≤ ε. Summing up, we can write

ε

∫
ωr0

| ∇f |2 dµε

≥ ε

4Zε

∫
D(d−1)
ε

∫ L

0

∣∣∣ d
dt
f(ω(t) + A(t)z)

∣∣∣2 e−U(w(t)+A(t)z)/ε dt dz . (3.68)

Now, we can apply the idea of [14, Proposition 4.7]. Indeed, we can fix z ∈
D(d−1)
ε and write fz(t) = f(ω(t)+A(t)z). Then, we can obtain the minimizer

of the integral

∫ L

0

∣∣∣∣ ddtfz(t)
∣∣∣∣2 e−U(w(t)+A(t)z)/εdt explicitly as

fz(t) =

∫ L
t
eU(ω(s)+A(s)z)/ε ds∫ L

0
eU(ω(s)+A(s)z)/ε ds

.
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Inserting this solution into (3.68) gives

ε

∫
ωr0

| ∇f |2dµε ≥
ε

4Zε

∫
D(d−1)
ε

[ ∫ L

0

eU(ω(t)+A(t)z)/εdt
]−1

dz .

Since |z| ≤ ε, we have U(ω(t) + A(t)z) ≤M +C ε for some constant C > 0,

and the proof is completed.

Now, we are ready to prove Lemma 3.5.2.

Proof of Lemma 3.5.2. Fix y ∈ H0 and for some L = L(y), let ω : [0, L]→
Rd be a C1-path connecting y to Dε(m) such that U(ω(t)) ≤ H{y},Dε(m)

and |ω̇(t)| = 1 for all t ∈ [0, L]. Since H0 is bounded, we can find L0

such that L(y) < L0 for all y ∈ H0. Then, recall the diffeomorphism ϕ :

[0, L]×D(d−1)
r0

→ ωr0 constructed in Lemma 3.5.4. Then, e

caps
ε(Dε(y), Dε(m) ) ≥ ε

∫
ωr0

| ∇hε, sDε(y),Dε(m) |
2 dµε ,

where hε, sDε(y),Dε(m)(·) is the equilibrium potential between Dε(y) and Dε(m)

with respect to the reversible process yε(·). Hence, by Proposition 3.5.5 and

the fact that we can take L(y) to be uniformly bounded by L0, the proof is

completed.

3.5.3 Proof of Lemma 3.5.3

The upper bound cannot be proven by a comparison with reversible dynam-

ics as in the lower bound case unless the dynamics satisfies the so-called

sector condition, and that is exactly what has been used in [51]. However,

the dynamics xε(·) does not necessarily satisfy the sector condition; hence,

we must develop a new argument. We believe that our argument presented

below is sufficiently robust to treat a wide class of models.
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Proof of Lemma 3.5.3. For each set A ⊂ Rd and r > 0, define

A[r] = {x ∈ Rd : |x− y| ≤ r for some y ∈A} . (3.69)

Suppose that ε is sufficiently small such that H[2ε]
0 is disjoint from Uε and

H[2ε]
0 ⊂ K (cf. (3.28)). Take a smooth function qε : Rd → R such that, for

some constant C > 0,

qε ≡ 1 on H[ε]
0 , qε ≡ 0 on Rd \ H[2ε]

0 , and |∇qε| ≤
C

ε
1H[2ε]

0 \H[ε]
0
.

(3.70)

Since qε ∈ CDε(y),Uε (cf. (3.14)), we can deduce from Proposition 3.2.2 that

capε(Dε(y), Uε) = ε

∫
Ωε

[
∇qε · ∇hε +

1

ε
qε` · ∇hε

]
dµε . (3.71)

By the divergence theorem and (2.3), the second term on the right-hand side

can be rewritten as∫
∂Ωε

hε qε [ ` · nΩε ]σ(dµε) −
∫

Ωε

hε [∇qε · ` ] dµε . (3.72)

Since hε = 1∂Dε(y) on ∂Ωε = ∂ Uε ∪ ∂Dε(y), qε ≡ 1 on ∂Dε(y), and nΩε =

−nDε(y), the first integral of (3.72) becomes

−
∫
∂Dε(y)

[ `·nDε(y) ]σ(dµε) =

∫
Dε(y)

(∇·` ) dµε+

∫
Dε(y)

[ `·∇µε ](x) dx (3.73)

by the divergence theorem again. Note that the last two integrals are 0 by

(2.3) and (2.2), respectively. Hence the first integral of (3.72) vanishes. For

the second integral of (3.72), by the trivial bound |hε| ≤ 1 and the last

condition of (3.70), we have∣∣∣ ∫
Ωε

hε [∇qε · `] dµε
∣∣∣ ≤ C

εZε

∫
H[2ε]

0 \H[ε]
0

e−U(x)/ε dx ≤ C

Zε
e−H/ε , (3.74)
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where the second inequality follows from the fact that U(x) = H + O(ε) on

H[2ε]
0 \ H[ε]

0 and that vol (H[2ε]
0 \ H[ε]

0 ) = O(ε). Summing up, we obtain from

(3.71) that

capε(Dε(y), Uε) ≤ ε

∫
Ωε

[∇qε · ∇hε] dµε +
C

Zε
e−H/ε . (3.75)

By the Cauchy–Schwarz inequality and part (2) of Lemma 3.2.1, the integral

on the right-hand side is bounded from above by the square root of

ε

∫
Ωε

| ∇qε |2 dµε × capε(Dε(y), Uε) .

By a computation similar to (3.74), we get

ε

∫
Ωε

|∇qε|2 dµε ≤
C

εZε

∫
H[2ε]

0 \H[ε]
0

e−U(x)/ε dx ≤ C

Zε
e−H/ε .

Therefore, we can bound the integral on the right-hand side of (3.75) by[ C
Zε
e−H/ε capε(Dε(y), Uε)

]1/2

≤ 1

2

[ C
Zε
e−H/ε + capε(Dε(y), Uε)

]
.

Inserting this into (3.75) completes the proof.

3.5.4 Proof of Proposition 3.3.3

Now, we are ready to prove Proposition 3.3.3, which is a crucial step in the

proof of the Eyring–Kramers formula.

Proof of Proposition 3.3.3. Take β > 0 to be sufficiently small such that

there is no critical point c of U such that U(c) ∈ [H − β, H). Then, we

can decompose G = {x : U(x) < H − β} into G0, G1, where G0 ⊂ H0 and

71



CHAPTER 3. EYRING–KRAMERS FORMULA

G1 ⊂ H1. Write ∫
Rd
h∗ε dµε =

[ ∫
G0

+

∫
G1

+

∫
Gc

]
h∗ε dµε (3.76)

and consider the three integrals separately. First, for y ∈ G0, we have

H{y},Dε(m0) < H−β; thus, by part (1) of Proposition 3.5.1, we have |h∗ε(y)−
1 | ≤ C ε−d e−β/ε = oε(1). This bound ensures that∫
G0
h∗ε dµε = [ 1+oε(1) ]µε(G0) = [ 1+oε(1) ]Z−1

ε (2πε)d/2 e−h0/ε ν0 , (3.77)

where the second identity follows from the Laplace asymptotics for the func-

tion e−U/ε.

For the second integral, by part (2) of Proposition 3.5.1,∫
G1
h∗ε dµε ≤

C

Zε εd

∫
G1
e[U(x)−H]/ε e−U(x)/ε dx = oε(1) Z−1

ε (2πε)d/2 e−h0/ε ν0 ,

(3.78)

where the last line follows from H > h0. Finally, for the last integral, by the

bound |h∗ε | ≤ 1 and (2.7),∫
Gc
h∗ε dµε ≤ µε(Gc) ≤ Z−1

ε e−(H−β)/ε = oε(1)Z−1
ε (2πε)d/2 e−h0/ε ν0 .

(3.79)

By inserting (3.77), (3.78), and (3.79) into (3.76), the proof is completed.

3.6 Construction of test function and proof

of Theorem 3.3.4

In this section, we finally construct the test function gε ∈ CDε(m0),Uε satisfying

Theorem 3.3.4.
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3.6.1 Construction of gε and proof of Theorem 3.3.4

Recall Hε
0 and pσε from Section 3.4.1 and (3.30), respectively, and define

fε : Rd → R as

fε(x) =

pσε (x) x ∈ Bσε for some σ ∈ Σ0 ,

1Hε0(x) otherwise .

The function fε is not continuous on Kε in general; instead, it is discontinuous

along the boundaries ∂±Bσε and ∂Kε.

Remark 3.6.1. It can be readily checked that the function fε is continuous

on Kε if we consider the reversible case, i.e., ` ≡ 0.

For convenience, we formally define ∇fε(x) as

∇fε(x) =

∇pσε (x) x ∈ Bσε for some σ ∈ Σ0 ,

0 otherwise .
(3.80)

Note that this is not a weak derivative of fε; hence, elementary theorems

such as the divergence theorem cannot be applied to this gradient. With this

formal gradient, we can define Φfε formally as

Φfε(x) = ∇fε(x) +
1

ε
fε(x) `(x) =


ε−1 `(x) x ∈ Hε

0 ,

Φpσε (x) x ∈ Bσε for some σ ∈ Σ0 ,

0 otherwise .

Note that this is a formal definition, and Proposition 3.2.2 is not applicable

to Φfε .

Now, we mollify the function fε as in [51] to get the genuine test function

gε. To this end, consider a smooth, positive, and symmetric function φ : Rd →
R that is supported on the unit sphere of Rd and satisfies

∫
Rd
φ(x) dx = 1.
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Then, for r > 0, define φr(x) = r−dφ(r−1x). For the function f : Rd → R
and vector field V : Rd → Rd, we write

f (r) = f ∗ φr and V (r) = V ∗ φr ,

where ∗ represents the usual convolution. In the remaining subsections, we

prove the following two propositions. Hereafter, we write η = ε2. The first

one asserts that we can approximate Φ
f
(η)
ε

by Φfε .

Proposition 3.6.2. We have

ε

∫
Rd
|Φ

f
(η)
ε
− Φfε |2 dµε = oε(1)αε .

Next, we prove the following estimate.

Proposition 3.6.3. We have

ε

∫
Rd

[ Φfε · ∇hε ] dµε = [ 1 + oε(1) ]αε ω0 .

Before proving these propositions, we explain why Theorem 3.3.4 is a

consequence of these propositions. We define the test function gε explicitly

as

gε = f (η)
ε where η = ε2 . (3.81)

Proof of Theorem 3.3.4. By Proposition 3.6.3, it suffices to prove that

ε

∫
Rd

[ (Φgε − Φfε) · ∇hε ] dµε = oε(1) [αε capε ]1/2 .

With the selection (3.81), this is immediate from the Cauchy–Schwarz in-

equality, Lemma 3.2.1, and Proposition 3.6.2.

In Sections 3.6.2 and 3.6.3, we shall prove Propositions 3.6.2 and 3.6.3,

respectively. We remark that the proof of Proposition 3.6.2 is nearly model-

independent and is similar to the proof of [51, Lemma 6.4]. Hence, we explain
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the structure of the proof and refer to [51] for most of the details. Of course,

there are several differences in the proofs, and we present the full details for

such parts.

3.6.2 Proof of Proposition 3.6.2

By the Cauchy–Schwarz inequality, we can write

ε

∫
Rd
|Φ

f
(η)
ε
− Φfε |2 dµε ≤ 3 (I1 + I2 + I3) ,

where

I1 = ε

∫
Rd
| ∇(f (η)

ε )− (∇fε)(η) |2 dµε ,

I2 = ε

∫
Rd
| (∇fε)(η) −∇fε |2 dµε , and

I3 =
1

ε

∫
Rd

(f (η)
ε − fε)2 |`|2 dµε .

To conclude the proof of Proposition 3.6.2, it suffices to prove that I1, I2, I3 =

oε(1)αε. The proofs of I1 = oε(1)αε and I2 = oε(1)αε are identical to those of

[51, Lemma 8.5] and [51, Assertions 8.C and 8.D], respectively. The term I3

has not been investigated previously. We present the proof of I3 = oε(1)αε.

Note that the functions f (η)
ε and fε are supported on K for sufficiently small

ε > 0, and since |`| is bounded on K, it suffices to prove the following lemma.

Lemma 3.6.4. We have

1

ε

∫
Rd

(f (η)
ε − fε)2 dµε = oε(1)αε . (3.82)
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Proof. Recall the notation A[r] from (3.69) and define

B̃σε = Bσε \ (∂Bσε )[η] , and

H̃ε
i = Hε

i \
[

(∂Kε)[η] ∪
(
σ∈Σ0(∂Bσε )[η]

) ]
; i = 1, 2 .

By the Cauchy–Schwarz inequality, we have

[ (f (η)
ε − fε)(x) ]2 =

( ∫
Rd

( fε(x)− fε(x− y) )φη(y) dy
)2

≤
∫
Rd

( fε(x)− fε(x− y) )2 φη(y) dy .

Since

fε(x) = fε(x− y) if x /∈ K[η]
ε and |y| ≤ η , (3.83)

the left-hand side of (3.82) is bounded from above by∫
K[η]
ε

∫
Rd

1

ε
|fε(x)− fε(x− y)|2 φη(y) dy µε(dx) .

Now, we divide the integral

∫
K[η]
ε

in the previous case into

∫
H̃ε0

+

∫
H̃ε1

+

∫
(∂Kε)[η]

+
∑
σ∈Σ0

∫
B̃σε

+
∑
σ∈Σ0

∫
(∂Bσε )[η]\(∂Kε)[η]

(3.84)

and consider the five integrals separately.

The first two integrals are 0 for the same reason with regard to (3.83).

Now, we consider the third one. Since | fε(x)−fε(x−y) | ≤ 1 for all x, y ∈ Rd,

the integral is bounded from above by∫
(∂Kε)[η]

∫
Rd

1

ε
φη(y) dy µε(dx) =

1

ε
µε( (∂Kε)[η] ) . (3.85)
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Since U(y) = H + J2 δ2 for y ∈ ∂Kε, there exists C > 0 such that

U(x) ≥ H + J2 δ2 − C η for all x ∈ (∂Kε)[η] .

Hence, the right-hand side of (3.85) is bounded by

C

εZε
e−H/ε

∫
(∂Kε)[η]

εJ
2

eCη/ε dx ≤ C εJ
2−d/2−1 αε vol((∂Kε)[η]) = oε(1)αε

for sufficiently large J , since vol ( (∂Kε)[η] ) = O(1).

Next, we consider the fourth term in (3.84). Fix σ ∈ Σ0 and assume, for

simplicity of notation, that σ = 0. By the mean value theorem, for x ∈ B̃σε
and y ∈ Dη(0),

| fε(x)− fε(x− y) | ≤ |y|
d∑

k=1

sup
z∈Dη(x)

| ∇kfε(z) | . (3.86)

First, we remark from the expression (3.80) that, for u ∈ Bσε ,

∇kfε(u) =
1

cσε
exp

{
− µ

2ε
(u · vσ)2

}
vk . (3.87)

Since η � δ and |x| = O(δ), we have

(z · vσ)2 ≥ (x · vσ)2 − Cηδ for x ∈ B̃σε and z ∈ Dη(x) . (3.88)

By combining (3.87) and (3.88), we get

|∇kfε(z)|2 ≤ C

ε
exp

{
− µ

ε
(x · vσ)2

}
.

Inserting this into (3.86), we obtain, for x ∈ B̃σε ,∫
Rd
| fε(x)− fε(x− y) |2 φη(y)dy ≤ Cη2

ε
exp

{
− µ

ε
(x · vσ)2

}
.
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Therefore, the integral in the fourth term of (3.84) is bounded by

1

ε Zε

C η2

ε
e−H/ε

∫
B̃σε

exp
{
− 1

2ε
x · (Hσ + 2µvσ ⊗ vσ)x

}
dx

by the Taylor expansion of U around σ. By Lemma 3.4.2, the last integral is

O(εd/2); hence, the whole expression is oε(1)αε.

Now, we consider the last integral of (3.84). We also fix σ and assume

that σ = 0. Since

(∂Bσε )[η] \ (∂Kε)[η] ⊂ (∂+Bσε )[η] ∪ (∂−Bσε )[η] ,

it suffices to prove that the integral over (∂+Bσε )[η] is small, as the argument

for (∂−Bσε )[η] is identical. Since η � δ, by Lemma 3.4.10, there exists a

constant a > 0 such that

U(x) ≥ aJ2δ2 or x · vσ ≥ aJδ (3.89)

holds for all x ∈ (∂+Bσε )[η]. Let us first assume that the former holds. Then,

since |fε| ≤ 1 and vol ( (∂+Bσε )[η] ) = O(1), by the first condition of (3.89),

the integral over x ∈ (∂+Bσε )[η] satisfying the former condition of (3.89) is

bounded from above by

C

εZε

∫
(∂+Bσε )[η]

e−U(x)/ε dx ≤ C

εZε
e−H/ε εaJ

2

vol( (∂+Bσε )[η] ) = oε(1)αε

(3.90)

for sufficiently large J .

Now, assume that the second condition of (3.89) holds for x ∈ (∂+Bσε )[η].
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As in the proof of Lemma 3.4.6, we can rewrite 1− fε(x) as

[ 1 + oε(1) ]
ε1/2

(2πµ)1/2 (x · vσ)
exp

{
− µ

2ε
(x · vσ)2

}
≤ C ε1/2

δ
exp

{
− µ

2ε
(x · vσ)2

}
.

Similarly, we can check that, for y ∈ Dη(0),

| 1− fε(x− y) | ≤ C ε1/2

δ
exp

{
− µ

2ε
(x · vσ)2

}
.

By the two bounds above, we can bound |fε(x)− fε(x− y)|2 from above by

2 [ |1− fε(x)|2 + |1− fε(x− y)|2 ] ≤ C ε

δ2
exp

{
− µ

ε
(x · vσ)2

}
.

Hence, we can bound the last integral of (3.84) and restrict it to x ∈
(∂+Bσε )[η], satisfying the second condition of (3.89), from above by

C

δ2

∫
(∂+Bσε )[η]

exp
{
− µ

ε
(x · vσ)2

}
µε(dx) .

By applying the Taylor expansion of U around σ, this is bounded by

1

δ2 Zε
e−H/ε

∫
(∂+Bσε )[η]

exp
{
− µ

2ε
x · [Hσ + 2µvσ ⊗ vσ ]x

}
dx .

By Lemma 3.4.2, there exists c > 0 such that x · [Hσ+2µvσ⊗vσ ]x ≥ c |x|2.

Furthermore, there exists C > 0 such that |x| ≥ Cδ for all x ∈ (∂+Bσε )[η].

Therefore, we can bound the last centered display from above by

1

Zε
e−H/ε εcJ

2

vol((∂+Bσε )[η]) = oε(1)αε (3.91)

for sufficiently large J since vol((∂+Bσε )[η]) = O(1). By (3.90) and (3.91), we

can verify that the last integral of (3.84) is oε(1)αε, and this completes the
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proof.

3.6.3 Proof of Proposition 3.6.3

First, note that we can write

ε

∫
Rd

[ Φfε · ∇hε ] dµε = A1 +
∑
σ∈Σ0

A2(σ) , (3.92)

where

A1 =

∫
Hε0

[ ` · ∇hε ] dµε and A2(σ) = ε

∫
Bσε

[ Φpσε · ∇hε ] dµε .

To estimate these integrals, we first mention a technical result.

Lemma 3.6.5. There exists C > 0 such that∫
∂Kε

σ(dµε) ≤ C εJ
2−d/2 αε .

Proof. Since U(x) = H + J2δ2 on ∂Kε, we have∫
∂Kε

σ(dµε) =

∫
∂Kε

µε(x)σ(dx) = Z−1
ε e−H/ε εJ

2

σ(∂Kε) .

Since σ(∂Kε) = O(1), the proof is completed by the definition (3.18) of

αε.

We now consider A1.

Lemma 3.6.6. We can write

A1 = oε(1)αε +
∑
σ∈Σ0

A1, 1(σ) ,

where

A1, 1(σ) =

∫
∂+Bσε

[ ` · nHε0 ]hε σ(dµε) . (3.93)
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Proof. By the divergence theorem, we have∫
Hε0

[ ` · ∇hε ] dµε =

∫
∂Hε0

[ ` · nHε0 ]hε σ(dµε) .

Write

∂Ĥε
0 = ∂Hε

0 \
[ ⋃
σ∈Σ0

∂+Bσε
]
⊂ ∂Kε .

Then, it suffices to prove that∫
∂Ĥε0

[ ` · nHε0 ]hε σ(dµε) = oε(1)αε .

Since |hε| and |`| are bounded on ∂Ĥε
0 ⊂ K, and since ∂Ĥε

0 ⊂ ∂Kε, the abso-

lute value of the left-hand side of the previous case is bounded by

∫
∂Kε

σ(dµε),

which is oε(1)αε for sufficiently large J by Lemma 3.6.5. This completes the

proof.

Now, we focus on A2(σ).

Lemma 3.6.7. For σ ∈ Σ0, we can write

A2(σ) = oε(1)αε + A2, 1(σ) ,

where

A2, 1(σ) = ε

∫
∂+Bσε ∪∂−Bσε

[ Φpσε · nBσε ]hε σ(dµε) . (3.94)

Proof. By the divergence theorem, we can write

A2(σ) = −
∫
Bσε

( L ∗
ε p

σ
ε )hε dµε + ε

∫
∂Bσε

[ Φpσε · nBσε ]hε σ(dµε) .

By Proposition 3.4.5, the first integral on the right-hand side is oε(1)αε.
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Hence, it suffices to prove that

ε

∫
∂0Bσε

[ Φpσε · nBσε ]hε σ(dµε) = oε(1)αε . (3.95)

By the explicit formula for pσε and by the boundedness of ` on K, we can

check that there exists C > 0 such that |Φpσε | ≤ Cε−1 on ∂0Bσε . Therefore,

the absolute value of the left-hand side of (3.95) is bounded from above by

C

∫
∂0Bσε

σ(dµε). Since ∂0Bσε ⊂ ∂Kε, the proof is completed by Lemma 3.6.5,

provided that we take J to be sufficiently large.

By (3.92) and Lemmas 3.6.6 and 3.6.7, it suffices to check the following

Lemma to complete the proof of Proposition 3.6.3.

Lemma 3.6.8. For σ ∈ Σ0, we have

A1, 1(σ) + A2, 1(σ) = [ 1 + oε(1) ]αε ω
σ .

We defer the proof of Lemma 3.6.8 to the next subsection and conclude

the proof of Proposition 3.6.3 first.

Proof of Proposition 3.6.3. The proof is completed by combining 3.92 and

Lemmas 3.6.6, 3.6.7, and 3.6.8.

3.6.4 Proof of Lemma 3.6.8

As a consequence of Proposition 3.5.1, we can get the following estimate of

the equilibrium potential at the boundaries ∂+Bσε and ∂−Bσε for σ ∈ Σ0.

Lemma 3.6.9. There exists a constant C > 0 such that, for all σ ∈ Σ0,

hε(x) ≥ 1− C ε−d exp
U(x)−H

2ε
∀x ∈ ∂+Bσε and

hε(x) ≤ C ε−d exp
U(x)−H

2ε
∀x ∈ ∂−Bσε .
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Proof. Let us consider the first inequality. If x ∈ ∂+Bε satisfies U(x) ≥ H,

then the inequality is obvious for all sufficiently small ε. Otherwise, x ∈ H0;

hence, the bound follows from part (1) of Proposition 3.5.1 since we have

H{x},Dε(m0) = U(x) for all sufficiently small ε. The proof of the second one is

similar and left to the reader.

In the next lemma, we provide a consequence of the previous lemma.

Lemma 3.6.10. For σ ∈ Σ0, we have

ε

∫
∂+Bσε

| ∇pσε | ( 1− hε )σ(dµε) = oε(1)αε , (3.96)∫
∂+Bσε

( 1− pσε ) ( 1− hε )σ(dµε) = oε(1)αε , (3.97)

ε

∫
∂−Bσε

| ∇pσε |hε σ(dµε) = oε(1)αε , (3.98)∫
∂−Bσε

pσε hε σ(dµε) = oε(1)αε . (3.99)

Proof. Since the proofs of (3.98) and (3.99) are identical to those of (3.96)

and (3.97), respectively, we focus only on (3.96) and (3.97).

Let us first consider (3.96). We use the explicit formula for pσε and Lemma

3.6.9 to bound the left-hand side of (3.96) by

C ε−1/2−3d/2 αε

∫
∂+Bσε

exp
{
− U(x)−H

2ε
− µ

2ε
(x · vσ)2

}
σ(dx) . (3.100)

By the Taylor expansion, the last line can be further bounded by

C ε−1/2−3d/2 αε

∫
∂+Bσε

exp
{
− 1

4ε
x · [Hσ + 2µvσ ⊗ vσ]x

}
σ(dx)

≤ C ε−1/2−3d/2 αε

∫
∂+Bσε

exp
{
− γ

4ε
|x|2

}
σ(dx) , (3.101)

where γ > 0 is the smallest eigenvalue of the positive-definite matrix H +
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2µv ⊗ v (cf. Lemma 3.4.2). Since there exists C > 0 such that |x| ≥ CJδ

for all x ∈ ∂+Bσε , and since σ(∂+Bσε ) = O(δd−1), we can bound (3.101) from

above, for some c, C > 0, by

C ε−1/2−3d/2 δd−1 εcJ
2

αε = C
(

log
1

ε

) d−1
2
εcJ

2−d−1 = oε(1)αε

for sufficiently large J . This completes the proof of (3.96).

For (3.97), recall ∂1, a
+ Bσε and ∂2, a

+ Bσε from (3.41) and (3.42), respectively.

By Lemma 3.4.10, it suffices to prove that, for a ∈ (0, a0),∫
∂k, a+ Bσε

( 1− pσε ) ( 1− hε )σ(dµε) = oε(1)αε ; k = 1, 2 . (3.102)

For k = 1, by (3.49) and Lemma 3.6.9, we can bound the integral from above

by
C e−H ε1/2

Zε εd δ

∫
∂+Bε

exp
{
− U(x)−H

2ε
− µ

2ε
(x · vσ)2

}
σ(dx) .

Hence, we can proceed as in the computation of (3.100) to prove that this is

oε(1)αε.

Now, we finally consider the k = 2 case of (3.102). Since U(x) ≥ H+aJ2δ2

for x ∈ ∂2, a
+ Bσε , the left-hand side of (3.102) with k = 2 is bounded from

above by

1

Zε
e−H/ε εaJ

2

σ(∂+Bσε ) ≤ C

Zε
e−H/ε εaJ

2

δd−1 = oε(1)αε

for sufficiently large J . This completes the proof.

Now, we are ready to prove Lemma 3.6.8.

Proof of Lemma 3.6.8. In view of the expressions (3.93) and (3.94) forA1, 1(σ)
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and A2, 1(σ), respectively, it suffices to prove the following estimates:

ε

∫
∂+Bσε

[ (
Φ− 1

ε
`
)
· nBσε

]
hε σ(dµε) = [ 1 + oε(1) ]αε ω

σ , (3.103)

ε

∫
∂−Bσε

[ Φpσε · nBσε ]hε σ(dµε) = oε(1)αε . (3.104)

Let us first consider (3.103). By (3.96) and (3.97) of Lemma 3.6.10, we can

replace the hε(x) term with 1 with an error term of order oε(1)αε. Then, we

can apply Proposition 3.4.6 to prove (3.103). On the other hand, the estimate

(3.104) is a direct consequence of (3.98) and (3.99) of Lemma 3.6.10.
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Chapter 4

Markov chain model reduction

This chapter is devoted to prove the Markov chain model reduction for the

process xε(·) (Theorem 4.1.5). The proof of the Markov chain model reduc-

tion for the reversible process yε(·) in [83] is based on the Poisson equation

approach. In this chapter, we extend this result to the non-reversible dynam-

ics by considering resolvent equation instead of Poisson equation.

Remark. Sets and constants including set of saddle points Σ and Eyring–

Kramers constants ωσ are already defined in the previous chapter. However,

our interest in this chapter is a different perspective of metastable behavior

so that we need different saddle structure and metastable valleys (cf. Σ∗ and

Vi defined below). Hence, in spite of their similarities, for the completeness

of the current chapter, we recall their definitions.

4.1 Main result

In this section, we explain our main result regarding the Markov chain de-

scription of the metastable behavior of the process xε(·) when U has several

local minima.
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Figure 4.1: Example of landscape of U . In this example, we have Σ =
{σ1, σ2, σ3, σ4} and the set {x : U(x) < H} consists of three compo-
nents W1, W2, W3. Hence, S = {1, 2, 3}. We have Σ1, 2 = {σ1}, Σ2, 3 =
{σ2, σ3}, and Σ1, 3 = ∅. Therefore, Σ∗ = {σ1, σ2, σ3} ( Σ. Suppose
that h1 = h2 = h < h3. Then, we have S? = {1, 2}. By assuming that
U(m2) = U(m3) = h, two metastable valleys are defined by V1 = Dr0(m1)
and V2 = Dr0(m2)∪Dr0(m3). Metastable valley is not defined for the shallow
well W3.

4.1.1 Landscape of U and invariant measure

We first analyze the landscape of U . We refer to Figure 4.1 for an illustration

of the notations introduced in this subsection.

For a concrete description, we fix a level H and define Σ = ΣH as the set

of saddle points of level H:

Σ := {σ : U(σ) = H and σ is a saddle point of U} .

By selecting H appropriately, we shall assume that Σ is a non-empty set. We

now define

H := {x ∈ Rd : U(x) < H} ,

and denote by W1, . . . , WK the connected components of the set H. These

sets are called (metastable) wells for the potential function U corresponding
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to the level H. We focus on the transition of the process xε(·) among these

wells. Various selections of H are possible; however, we focus on one fixed

level to get a concrete result. The last paragraph of the current section explain

how we can select various H to get a variety of results that provide a full

description of the metastable behavior.

If K = 1, there is no interesting metastable behavior at level H, and

we must take a smaller level to observe the metastable behavior. Therefore,

we assume that K ≥ 2. Now, we shall assume that the closure H of H is a

connected set. Otherwise, our analysis can be applied to each connected com-

ponent of H, and this general situation is explained later. See the discussion

after Theorem 4.1.5.

Write S = {1, · · · , K}. For i, j ∈ S,1 we write

Σi, j = W i ∩Wj ,

which denotes the set of saddle points between Wi and Wj of level H. Note

that this set can be empty. Now, assume further that Σi, j ∩ Σk, l = ∅ unless

{i, j} = {k, l}; hence, there is no saddle point connecting three or more wells

simultaneously. Write

Σ∗ =
⋃
i, j∈S

Σi, j . (4.1)

Then, we have Σ∗ ⊆ Σ, and the equality may not hold (cf. Figure 4.1). By the

Morse lemma, for each σ ∈ Σ∗, the Hessian (∇2U)(σ) has only one negative

eigenvalue and (d− 1) positive eigenvalues, as we have assumed that U is a

Morse function. We remark that this may not be true for σ ∈ Σ \ Σ∗.

1In this thesis, writing “a, b ∈ S” implies that a ∈ S, b ∈ S, and a 6= b.
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Metastable valleys

Now, we define the metastable valleys. We fix i ∈ S and denote by hi the

minimum value of the potential U on the well Wi, i.e.,

hi := min{U(x) : x ∈ Wi} . (4.2)

Define Mi as the set of the deepest minima of U on Wi:

Mi := {m ∈ Wi : U(m) = hi} .

Then, we can regard H − hi as the depth of the well Wi. We write the ball

in Rd centered at x with radius r as

Dr(x) := {y ∈ Rd : |y − x| < r} .

We take r0 > 0 to be sufficiently small so that, for all i ∈ S and for all

m ∈Mi,

D2r0(m) ⊂ Wi and D2r0(m) \ {m} does not contain a critical point of U.

(4.3)

Finally, the metastable valley corresponding to the well Wi is defined as

Vi :=
⋃

m∈Mi

Dr0 (m) , (4.4)

where Dr0 (m) = {y ∈ Rd : |y − x| ≤ r0} denotes the closed ball. Our

primary focus is the inter-valley dynamics among these sets Vi.

Deepest valleys

We now characterize the deepest valleys of U , which will be the state space

of the limiting Markov chain describing the metastable behavior. Recall hi
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from (4.2) and define

h := min
i∈S

hi and S? := {i ∈ S : hi = h} ,

so that {Wi : i ∈ S?} denotes the collection of the deepest wells. We assume

that |S?| ≥ 2 since the Markov chain description is trivial when |S?| = 1. Let

M? :=
⋃
i∈S?

Mi = {x ∈ Rd : U(x) = h} ,

so that the setM? denotes the set of global minima of U . Write V? =
⋃
i∈S?

Vi

so that V? denotes the set of deepest valleys. Finally, we write ∆ = Rd \ V?.

Invariant measure

With the construction of the metastable valleys, we can conclude that the

invariant measure µε(dx) is concentrated on the set V?. Moreover, we can

compute the precise asymptotics for µε(Vi) for each i ∈ S?. To this end, we

recall Notation 2.2.5.

Notation 4.1.1. For each x ∈ Rd, we write Hx = (∇2U)(x) as the Hessian

of U at x and Lx = D`(x) as the Jacobian of ` at x.

For each i ∈ S, we define

νi :=
∑
m∈Mi

1√
detHm

,

and write ν? =
∑
i∈S?

νi. For a sequence (aε)ε>0 of real numbers, we write aε =

oε(1) if lim
ε→0

aε = 0. The following asymptotics are useful in our discussion.
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Proposition 4.1.2. We have

Zε = [ 1 + oε(1) ] (2πε)d/2 e−h/ε ν? , (4.5)

µε(Vi) = [ 1 + oε(1) ]
νi
ν?

; i ∈ S? and µε(∆) = oε(1) .

Proof. The proof is a consequence of an elementary computation based on the

Laplace asymptotics. For further detail, we refer to [83, Proposition 2.2].

Eyring–Kramers constants

For σ ∈ Σ∗, we previously mentioned that the Hessian Hσ has only one

negative eigenvalue by the Morse lemma. Further, the matrix Hσ + Lσ also

has only one negative eigenvalue by Lemma 2.2.7. Denote by −µσ the unique

negative eigenvalue of Hσ +Lσ. Recall the Eyring–Kramers constant at σ ∈
Σ∗ defined by

ωσ :=
µσ

2π
√
− detHσ

. (4.6)

For i, j ∈ S, we define

ωi, j :=
∑
σ∈Σi, j

ωσ and ωi :=
∑
j∈S

ωi, j ,

where we set ωi, i = 0 for i ∈ S for convenience of notation. Note that the

connectedness of H implies that ωi > 0 for all i ∈ S.

4.1.2 Two Markov chains

Now, we construct two continuous-time Markov chains: (x(t))t≥0 and (y(t))t≥0.

The Markov chain y(·) describes the limiting metastable behavior of the dif-

fusion process xε(·). The auxiliary Markov chain x(·) is used in the construc-

tion of this limiting chain y(·); moreover, it plays a crucial role in the proof.

We refer to Remark 4.1.3 for the meaning of these Markov chains.
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The construction of the limiting chain y(·) is simple when all the wells

have the same depth, i.e., S? = S (cf. Remark 4.1.3). However, if S? ( S, the

behavior of the process xε(·) on each shallow valley Vi, i ∈ S \ S?, should be

properly reflected in the construction; hence, the definition of y(·) becomes

more complex and should be done via the auxiliary chain x(·) defined from

now on.

Auxiliary Markov chain x(·) on S

We define a probability measure m(·) on S by

m(i) := ωi/
∑
j∈S

ωj ; i ∈ S .

Let (x(t))t≥0 be the continuous-time Markov chain on S whose jump rate

from i ∈ S to j ∈ S is given by rx(i, j) = ωi, j/m(i). It is clear that the

invariant measure for the Markov chain x(·) is m(·), and moreover the process

x(·) is reversible with respect to m(·). We now introduce several potential

theoretic notions regarding the process x(·). These notions are used in the

definition of the limiting Markov chain y(·).
Denote by Lx the generator associated with the Markov chain x(·) acting

on f : S → R such that

(Lxf)(i) =
∑
j∈S

rx(i, j) [ f(j)− f(i) ] ; i ∈ S .

Denote by Pi the law of process x(·) starting at i ∈ S. For two disjoint non-

empty subsets A, B of S, the equilibrium potential between A and B with

respect to the process x(·) is a function hA,B : S → R defined by

hA,B(i) := Pi [ τA < τB ] ; i ∈ S ,

where τA, A ⊂ S, denotes the hitting time of the set A, i.e., τA = inf{t ≥ 0 :
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x(t) ∈ A}. Define a bi-linear form Dx(·, ·) by, for all f , g : S → R,

Dx(f , g) :=
∑
i∈S

µ(i) f(i) [−(Lxg)(i) ] =
1

2

∑
i, j∈S

ωi, j [ f(i)−f(j) ] [ g(i)−g(j) ] .

(4.7)

Note that Dx(f , f) represents the Dirichlet form associated with the Markov

chain x(·). Finally, the capacity between two disjoint non-empty subsets A

and B of S with respect to the process x(·) is defined by

capx(A, B) := Dx(hA,B, hA,B) . (4.8)

Limiting Markov chain y(·) on S?

Recall that we assumed |S?| ≥ 2. For i, j ∈ S?, define

βi, j :=
1

2
[capx({i}, S? \{i})+capx({j}, S? \{j})−capx({i, j}, S? \{i, j})] .

We set βi, i = 0, i ∈ S?, for convenience and note that we have βi, j = βj, i for

all i, j ∈ S?. Then, we define (y(t))t≥0 as a continuous-time Markov chain on

S? with jump rate ry(i, j) from i ∈ S? to j ∈ S? given by ry(i, j) = βi,j/νi.

The process y(·) defined in this manner is indeed the so-called trace process

of x(·) (cf. [2, Appendix])

Remark 4.1.3 (Comments on the processes x(·) and y(·)). The auxiliary

process x(·) represents the inter-valley dynamics of the process xε(·) by as-

suming that it spends the same time scale at all valleys (which is not true

in general). Since the process xε(·) spends a negligible time scale on shal-

low valleys, we can take the suitable trace of the process x(·) on the (indices

corresponding to) deepest valleys to get the correct process representing the

inter-(deepest) valley dynamics of the process xε(·). This trace process is y(·).
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4.1.3 Markov chain description via convergence of or-

der process

Recall that H − h represents the depth of the deepest wells. We can expect

from Eyring–Kramers formula for xε(·) obtained in Theorem 3.1.3 that the

order of the time scale for a metastable transition is

θε := exp
H − h
ε

.

Hence, we speed up the process xε(·) by a factor of θε and then observe the

index of the valley in which the speeded-up process is staying. To that end,

we write

x̃ε(t) = xε(θεt) ; t ≥ 0

the speeded-up process. In view of the fact that µε(V?) = 1−oε(1) (cf. Propo-

sition 4.1.2), this index belongs to the set S? with dominating probability.

We wish to prove that this index process converges to the process y(·) de-

fined in the previous subsection. The major technical issue in this heuristic

explanation is the fact that the speeded-up process x̃ε(·) may stay in the set

∆ = R \ V? with small probability, and for this case, the index process is not

defined. Thus, to formulate this convergent result in a rigorous manner, we

recall the notion of the order process introduced in [2, 3]. To define the order

process, define

Tε(t) :=

∫ t

0

1{x̃ε(s) ∈ V?} ds ; t ≥ 0 ,

which measures the amount of time for which the speeded-up process x̃ε(·)
stayed in V? until time t. Then, define Sε(t) as the generalized inverse of the

random increasing function Tε(·):

Sε(t) := sup{s ≥ 0 : Tε(s) ≤ t} ; t ≥ 0 . (4.9)
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Define the trace process ξε(·) as

ξε(t) := x̃ε(Sε(t)) ; t ≥ 0 .

This process the one is obtained from the process x̃ε(·) = xε(θε·) by turning

off the clock when the process x̃ε(·) does not belong to V?. In other words,

the trajectory of ξε(·) is obtained by removing the excursions of x̃ε(·) at ∆.

Hence, we have ξε(t) ∈ V? for all t ≥ 0; furthermore, the process ξε(·) is a

Markov process (with jump) on V?.
First, we show that the process ξε(·) is a relevant approximation of the

process x̃ε(·) in the sense that the excursion of x̃ε(·) at ∆ is negligible. Denote

by Pεx the law of the original process xε(·) starting from x ∈ Rd and by Eεx
the expectation with respect to it.

Theorem 4.1.4. For all t ≥ 0, it holds that

lim
ε→0

sup
x∈V?

Eεx
[ ∫ t

0

1∆(x̃ε(s)) ds
]

= 0 .

The proof of this result is a direct consequence of the analysis of resolvent

equation explained in Section 4.2 and will be explained therein.

By assuming this theorem, it now suffices to analyze the inter-valley be-

havior of the trace process ξε(·). To this end, we define a projection Ψ : V? →
S? simply by

Ψ(x) = i if x ∈ Vi ; i ∈ S? , (4.10)

which maps a point belonging to a deepest valley to the index of that valley.

Finally, define a process on S? as

yε(t) := Ψ(ξε(t)) ; t ≥ 0 ,

which represents the valley where the trace process ξε(t) is staying. This

process yε(·) is called the order process. Denote by Qε
πε the law of the order
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process yε(·) when the underlying process xε(·) starts from a distribution πε

on Rd, and denote by Qi the law of the limiting Markov chain y(·) starting

from i ∈ S?. The following convergence theorem is the main result of the

current chapter.

Theorem 4.1.5. For every i ∈ S? and for any sequence of Borel proba-

bility measures (πε)ε>0 concentrated on Vi, the law Qε
πε of the order process

converges to Qi as ε→ 0.

The proof of the theorem based on the resolvent approach developed in

[50] is given in the next subsection. We remark that this is a generalization

of [83, Theorem 2.3], as the reversible case is the special ` = 0 case of our

model. Moreover, a careful reading of our arguments reveals that, the speed

of the convergence of the finite dimensional marginals is given by

Qε
πε [yε(ti) ∈ Ai for i = 1, . . . , k]

=
(
1 +O

(
ε1/2 log

1

ε

))
Qi[y(ti) ∈ Ai for i = 1, . . . , k]

under the conditions of Theorem 4.1.5, where the error term O(ε1/2 log
1

ε
) is

identical to the one appeared in [14, Theorems 3.1 and 3.2] and depends on

t1, . . . , tk.

Discussion on general case

Thus far, we have assumed that H = {x ∈ Rd : U(x) ≤ H} is connected.

However, our argument can be readily applied to the general situation with-

out this assumption as follows. If H is not connected, we take a connected

component X and denote by W1, . . . , WK the connected component of H
contained in X . Let S = {1, . . . , K}. Then, we can define all the notations

as before, and Theorem 4.1.5 holds unchanged. This can be readily verified

by coupling with the same dynamical systems reflected at the boundary of

the connected component of the domain {x ∈ Rd : U(x) < H + a} for
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Figure 4.2: In this example of U , we have three possible choices of H: H1,
H2, and H3. By selecting H = H1, we analyze the transitions between two
deepest valleys Dr0(m1) and Dr0(m4)∪Dr0(m5)∪Dr0(m6). The time scale
for these transitions is e(H1−h)/ε, and Σ∗ with this choice of H is {σ1, σ3}.
Note that these two valleys are not directly connected, and all the transitions
must pass through shallow valleys aroundm2 andm3. Hence, to get a precise
Markov chain convergence, we must understand the behavior of the process in
these shallow valleys. If we take H = H2, we analyze the transitions between
two shallow valleys Dr0(m2) and Dr0(m3). The time scale is now e(H2−h′)/ε.
Finally, if we choose H = H3 , the successive transitions among three valleys
Dr0(m4), Dr0(m5), and Dr0(m6) are investigated in the time scale e(H3−h)/ε.
Note that these valleys are not distinguished at the level H = H1; hence, we
can analyze the metastable behavior with a higher resolution by taking this
smaller H.

small enough a containing X . This will be more precisely explained in [48] at

which all the inter-valley (not restricted to the deepest valleys) dynamics are

completely analyzed. Therefore, we can vary H to get different convergence

results, and an example is given in Figure 4.2.

Connection to Eyring–Kramers formula

Now, we explain the connection between our result and the Eyring–Kramers

formula obtained in Theorem 3.1.3. For simplicity, we suppose that S = S?

(i.e., hi = h for all i ∈ S) and that all the local minima of U are global
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minima. The explanation below is slightly more complicated without these

assumptions, and we leave the details to the interested readers. Write τA,

A ⊂ Rd, as the hitting time of the set A. Then, by the Eyring–Kramers

formula obtained in Theorem 3.1.3, we have, for i ∈ S and x ∈ Vi,

Eεx[ τV?\Vi ] = [ 1 + oε(1) ]
νi
ωi
θε .

In other words, for the speeded-up process xε(θε·) starting from a valley Vi,
the average of the transition time to other valleys is approximately νi/ωi. This

is in accordance with our result in that the limiting chain y(·) starting from i

jumps to one of the other sites at an average time of
[ ∑
j∈S

ry(i, j)
]−1

= νi/ωi.

On the other hand, our result provides more comprehensive information re-

garding the metastable behavior compared to the Eyring–Kramers formula,

especially when S 6= S?.

4.2 Proof based on resolvent approach

In this section we review the resolvent approach developed in [50] and then

prove Theorems 4.1.4 and 4.1.5 based on it.

4.2.1 Review of resolvent approach to metastability

Denote by Ly the generator associated with the limiting Markov chain y(·)
(defined in the previous section) that acts on f : S? → R such that

(Lyf)(i) =
∑
j∈S?

βi, j
νi

[ f(j)− f(i) ] . (4.11)

Recall (4.3) and define, for i ∈ S,

V̂i =
⋃

m∈Mi

D2r0(m) .
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The following analysis of a solution to the resolvent equation is the main

component of the resolvent approach.

Theorem 4.2.1. Let f : S? → R be a given function and let λ > 0 where

both f and λ are independent of ε. Then, the unique strong solution φf
ε to the

resolvent equation (on u) on Rd

(λ− θεLε)u =
∑
i∈S?

[(λ− Ly)f ](i) 1Vi (4.12)

satisfies

lim
ε→∞

sup
x∈V̂i
|φf

ε(x)− f(i) | = 0 for all i ∈ S? . (4.13)

In [50, Theorem 2.3], it has been proven that this theorem implies Theo-

rems 4.1.4 and 4.1.5 provided that the underlying metastable process xε(·) is

a Markov process on discrete set. On the other hand, the proof of Theorem

4.1.5 based on Theorem 4.2.1 requires a slight technical modification since

the solution φf
ε obtained in Theorem 4.2.1 does not belong to the core of the

generator Lε associated with the process xε(·). We provide the proof here

with emphasis on the modification. We remark that, we took supremum on

V̂i (instead of Vi as in [50]) in order to reserve enough space to carry out this

modification.

The main idea is to replace the indicators in the right-hand side of (4.12)

with smooth functions approximating the indicators so that we can recall the

resolvent theory. Then, by using comparison argument, we shall solve all the

technical problems. To that end, let us take r1 > r0 such that r1 also satisfies

the requirement (4.3) and define (cf. (4.4))

Vi,− =
⋃

m∈Mi

Dr0/2(m) and Vi,+ =
⋃

m∈Mi

Dr1(m)

so that Vi,− ⊂ Vi ⊂ Vi,+. Then, for each i ∈ S?, find smooth functions
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ζi,−, ζi,+ : Rd → [0, 1] such that

1Vi,− ≤ ζi,− ≤ 1Vi ≤ ζi,+ ≤ 1Vi,+ . (4.14)

The key idea is to consider the functions ψf
ε,− and ψf

ε,+ of the equations

(λ− θεLε)u =
∑
i∈S?

[(λ− Ly)f ](i) ζi,± , (4.15)

respectively. Then, ψf
ε,± is now a smooth function that also satisfies (4.13) in

the following sense.

Proposition 4.2.2. We have that

lim
ε→∞

sup
x∈Vi
|ψf

ε,±(x)− f(i) | = 0 for all i ∈ S? . (4.16)

Proof. Denote by φf
ε,± the solution to the equations

(λ− θεLε)u =
∑
i∈S?

[(λ− Ly)f ](i) 1Vi,± . (4.17)

Since Theorem 4.2.1 holds for all r0 > 0 satisfying (4.3), we can conclude

that φf
ε,± also satisfies (4.13) in the sense that

lim
ε→∞

sup
x∈Vi
|φf

ε,±(x)− f(i) | = 0 for all i ∈ S? . (4.18)

Note that the appearance of V̂i at (4.13) guarantees sup
x∈Vi

in the previous

estimate for φf
ε,−. Therefore, the statement of proposition follows from (4.14)

and the strong positivity of the operator λ− θεLε.

Now we use two functions ψf
ε,− and ψf

ε,+ to prove Theorems 4.1.4 and

4.1.5, respectively. The huge benefit with these functions is the well-known
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expressions

ψf
ε,±(x) = Eεx

[∫ ∞
0

e−λtG±(xε(t))dt

]
(4.19)

where G± =
∑
i∈S?

[(λ− Ly)f ](i) ζi,± are bounded functions.

4.2.2 Proof of Theorem 4.1.4

Proof of Theorem 4.1.4. For t > 0, we have∫ t

0

1∆(x̃ε(s)) ds ≤
∫ t

0

eλt−λs 1∆(x̃ε(s)) ds ≤ eλt
∫ ∞

0

e−λs 1∆(x̃ε(s)) ds .

(4.20)

Also, by (4.14) and by definition of ∆, we have

1∆ ≤ 1−
∑
i∈S?

ζi,− . (4.21)

By (4.20) and (4.21), the proof of Theorem 4.1.4 is reduced to show that, for

all i ∈ S?

lim
ε→0

sup
x∈Vi

Eεx
[ ∫ ∞

0

e−λs
(

1−
∑
i∈S?

ζi,−(x̃ε(s))
)
ds
]

= 0

or equivalently

lim
ε→0

sup
x∈Vi

Eεx
[ ∫ ∞

0

e−λs
∑
i∈S?

ζi,−(x̃ε(s)) ds
]

=
1

λ
. (4.22)

Note that the constant function c : S? → R defined by c ≡ 1

λ
satisfies

(λ− Ly)c ≡ 1 and therefore by (4.19), we can write

Eεx
[ ∫ ∞

0

e−λs
∑
i∈S?

ζi,−(x̃ε(s)) ds
]

= ψc
ε,−(x) .
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Therefore, (4.22) is a direct consequence of Proposition 4.2.2.

4.2.3 Proof of Theorem 4.1.5

Next we turn to the proof of Theorem 4.1.5. Here we need to use ψf
ε,+ instead.

We first recall the following technical lemma from [50, Lemma 4.3].

Lemma 4.2.3. Theorem 4.1.4 implies that, for all t > 0, (cf. (4.9))

lim
ε→0

sup
x∈V?

Eεx
[
e−λt − e−λSε(t)

]
= 0 and

lim
ε→0

sup
x∈V?

Eεx
[∫ t

0

{
e−λs − e−λSε(s)

}
ds

]
= 0 .

Now we turn to the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. The argument given in [50] uses the solution φf
ε to

prove Theorem 4.1.5 when the underlying metastable Markov process (in our

case, xε(·)) is defined on a discrete set. However, our proof requires a slight

modification since our underlying Markov process xε(·) is now defined on Rd.

Technically speaking, the problem is the fact that φf
ε /∈ C2(Rd) which implies

that φf
ε does not belong to the core of the generator Lε. Thus, we cannot

conclude that

Mφ
ε (t) = e−λtφf

ε(x̃ε(t))− φf
ε(x̃ε(0)) +

∫ t

0

e−λs(λ− θεLε)φ
f
ε(x̃ε(s))ds

is a martingale. This is the only place at which we can not use this function

as in the proof of [50, Proposition 4.4]. This is the reason that we introduced

the solution ψf
ε,+ which belongs to the core of Lε, and we instead consider

Mψ
ε (t) = e−λtψf

ε,+(x̃ε(t))− ψf
ε,+(x̃ε(0)) +

∫ t

0

e−λs(λ− θεLε)ψ
f
ε,+(x̃ε(s))ds

which is now a martingale.
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In the proof of [50, Proposition 4.4] at which Mφ
ε (t) was a martingale,

the crucial ingredient of the proof is to consider Mφ
ε (Sε(t)) which can be

rewritten in a simple form thanks to (4.12) and (4.13). Therefore, if we can

show that

lim
ε→0

sup
x∈V?

Eεx
[∣∣Mψ

ε (Sε(t))−Mφ
ε (Sε(t))

∣∣] = 0 for all t ≥ 0 , (4.23)

we can argue that Mφ
ε (t) is a negligible perturbation of a martingale and

therefore the proof of [50, Proposition 4.4] can still be applied. To prove

(4.23), we need to prove that

lim
ε→0

sup
x∈V?

Eεx
∣∣ψf

ε,+(x̃ε(Sε(t)))− φf
ε(x̃ε(Sε(t)))

∣∣ = 0 for all t ≥ 0, and (4.24)

lim
ε→0

sup
x∈V?

Eεx

[∫ Sε(t)

0

e−λs1∆(x̃ε(s))ds

]
= 0 (4.25)

where the second one follows from the observation that, for some C > 0,

∣∣(λ− θεLε)ψ
f
ε,+ − (λ− θεLε)φ

f
ε

∣∣ ≤ C
∑
i∈S?

1Vi,+\Vi ≤ C1∆ .

Since x̃ε(Sε(t)) ∈ V? by the definition (4.9) of Sε(t), the estimate (4.24) is a

direct consequence of (4.13) and Proposition 4.2.2.

Now it remains to prove (4.25). By the change of variable s← Sε(u),∫ Sε(t)

0

e−λs1V?(x̃ε(s))ds =

∫ t

0

e−λSε(u)1V?(x̃ε(Sε(u)))du =

∫ t

0

e−λSε(u)du

where the first equality follows from the definition of Sε(·) and the second
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one follows from x̃ε(Sε(u)) ∈ V? for all u ≥ 0 by definition. Therefore,∫ Sε(t)

0

e−λs1∆(x̃ε(s))ds

=

∫ Sε(t)

0

e−λs {1− 1V?(x̃ε(s))} ds

=

∫ Sε(t)

0

e−λsds−
∫ t

0

e−λSε(u)du

=

[∫ Sε(t)

0

e−λsds−
∫ t

0

e−λsds

]
+

∫ t

0

{
e−λs − e−λSε(s)

}
ds .

Thus, (4.25) is a direct consequence of Lemma 4.2.3.

The remainder of the chapter is focused on the proof of Theorem

4.2.1. Hence, we shall assume in the remainder of the chapter that both f :

S? → R and λ > 0 are fixed and independent of ε. Moreover, we simply write

φε the solution φf
ε of equation (4.12). Moreover, we shall always implicitly

assume that ε > 0 is sufficiently small, as we are focusing on the asymptotics

as ε→ 0.

4.3 Analysis of resolvent equation

In this section, we prove Theorem 4.2.1 up to the construction of a certain

test function, which will be deferred to Sections 4.4 and 4.5.

4.3.1 Energy estimate

In this subsection, we present a crucial energy estimate for the solutions of

resolvent equation. Before proceeding to this estimate, we first remark that

φε is a bounded function as a consequence of [50, display (4.2)]. A detailed

statement is given as the following proposition.

Proposition 4.3.1. There exists C > 0 so that ‖φε‖L∞(Rd) < C for all ε > 0.
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Notation 4.3.2. Here and later, we write C > 0 as a constant independent of

ε and x (of course, C can possibly depend on f and λ). Different appearances

of C possibly express different values.

For sufficiently smooth function f , let us define the Dirichlet form Dε(f)

with respect to the process xε(·) as

Dε(f) :=

∫
Rd
f (−Lεf) dµε = ε

∫
Rd
|∇f |2 dµε , (4.26)

where the latter equality follows from an application of divergence theorem.

Then, the flatness of the solution of resolvent equation (4.12) on each valley

essentially follows from the following energy estimate (cf. [49, 76, 83]).

Proposition 4.3.3. There exists C > 0 such that, for the solution φε of

(4.12),

Dε(φε) ≤ C θ−1
ε . (4.27)

Proof. By multiplying both sides of (4.12) by φεdµε and by performing the

integral over Rd, we get∫
Rd
φε(λφε − θεLεφε) dµε ≤ C

by Proposition 4.3.1, since the right-hand side of (4.12) is a compactly sup-

ported bounded function independent of ε. The proof is completed by defi-

nition (4.26) of the Dirichlet form.

4.3.2 Flatness of solution on each well

We first define

δ := δ(ε) =
(
ε log

1

ε

)1/2

, (4.28)

which is an important scale in the analyses around saddle points carried out

in the next section. Let J > 0 be a sufficiently large constant, and let c0 > 0
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be a constant that will be specified later in (4.71). For i ∈ S, define

Ŵi := Ŵi, ε = {x ∈ Wi : U(x) ≤ H − c0J
2δ2} . (4.29)

Note that this set is connected if ε is sufficiently small, and we have Vi ⊂
V̂i ⊂ Ŵi ⊂ Wi. For i ∈ S, denote by mε(i) the average of φε on Ŵi, i.e.,

mε(i) =
1

vol(Ŵi)

∫
Ŵi

φε(x) dx ,

where vol(A) =

∫
A
dx denotes the volume of a Lebesgue measurable set

A ⊂ Rd with respect to the Lebesgue measure. Remark from Proposition

4.3.1 that there exists C > 0 such that

max
i∈S
|mε(i)| ≤ C (4.30)

for all ε > 0. Our next objective is to prove that the function ψε is close to

its average value mε(i) in Ŵi in the L∞-sense.

Proposition 4.3.4. For all i ∈ S, we have

‖φε −mε(i)‖L∞(Ŵi)
= oε(1) .

In [83, Section 4], it has been generally proven that the energy estimate of

the form (4.27) is sufficient to prove Proposition 4.3.4 for the solution φε. The

argument presented therein is quite robust, and the reversibility is used only

when the energy estimate is obtained. Hence, the methodology developed in

[83] can be applied to Proposition 4.3.4 without any modification.

Remark 4.3.5. In fact, the L∞-boundedness such as Proposition 4.3.1 was

not available when [83] started to prove the flatness result similar to Propo-

sition 4.3.4. They obtained this boundedness as a byproduct of the proof of

Proposition 4.3.4. Since we know this boundedness a priori owing to Propo-
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sition 4.3.1, the proof can indeed be written in even more concise form.

4.3.3 Characterization of mε on deepest valleys via a

test function

Since V̂i ⊂ Ŵi for all i ∈ S by (4.3), it remains to prove the following

proposition.

Proposition 4.3.6. We have that

|mε(i)− f(i) | = oε(1) for all i ∈ S? .

Before proving Proposition 4.3.6, let us formally conclude the proof of

Theorem 4.2.1 .

Proof of Theorem 4.2.1. By Propositions 4.3.4 and 4.3.6, we have

‖φε−f(i)‖L∞(Ŵi)
= oε(1) for all i ∈ S?. Since V̂i ⊂ Ŵi, the proof is completed.

Now, we turn to Proposition 4.3.6. The following proposition is the key

in the proof of Proposition 4.3.6.

Proposition 4.3.7. Let g = gε : S → R be a function that might depend on

ε which is uniformly bounded in the sense that

sup
ε>0

max
i∈S
|g(i)| <∞ . (4.31)

Then, there exists a uniformly (in ε) bounded continuous function Qg
ε : Rd →

R that satisfies, for all i ∈ S,

Qg
ε (x) ≡ g(i) for all x ∈ Vi and (4.32)

θε

∫
Rd
Qg
ε (Lεφε) dµε = − 1

ν?
Dx(g,mε) + oε(1) . (4.33)
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The construction of the test function Qg
ε stated in the proposition above

is the most crucial part of the proof and hence its proof is postponed to

the next sections. At this moment, we prove Proposition 4.3.6 by assuming

Proposition 4.3.7. Recall the bi-linear form Dx(·, ·) defined in (4.7) and define

another bi-linear form Dy(f , g) for f , g : S? → R as

Dy(f , g) :=
∑
i∈S?

f(i) (−Lyg)(i)
νi
ν?

=
1

ν?

∑
i∈S

βi, j (f(j)− f(i)) (g(j)− g(i)) .

(4.34)

We recall some relations between Dx(·, ·) and Dy(·, ·) proved in [83]. For

u : S? → R, we define the harmonic extension ũ : S → R as the extension of

u to S satisfying (Lxũ)(i) = 0 for all i ∈ S \ S?.

Lemma 4.3.8. Let u, v : S? → R and let ũ and ṽ be the harmonic extensions

of u and v, respectively. Then, we have Dx(ũ, ṽ) = ν?Dy(u, v). Moreover,

for any extensions v1,v2 of v, we have Dx(ũ, v1) = Dx(ũ, v2).

Proof. See [83, Lemma 4.3].

Now, we prove Proposition 4.3.6.

Proof of Proposition 4.3.6. Let us define hε : S? → R as

hε(i) := mε(i)− f(i) for all i ∈ S? , (4.35)

and let h̃ε be the harmonic extension of hε. Then, by the maximum principle

and (4.30), there exists C > 0 such that

max
i∈S

∣∣∣h̃ε(i)∣∣∣ = max
i∈S?
|hε(i)| ≤ C . (4.36)

Therefore, we can construct a test function Qh̃ε
ε constructed in Proposition

4.3.7.
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Now, by Proposition 4.1.2, (4.12) and (4.32), we have∫
Rd
Qh̃ε
ε (λφε − θεLεφε) dµε = (1 + oε(1))

∑
i∈S?

hε(i) (λf − Lyf)(i)
νi
ν?

(4.37)

= λ
∑
i∈S?

hε(i) f(i)
νi
ν?

+Dy(hε, f) + oε(1) ,

where the last line follows from the definition of Dy and (4.36). The crucial

idea in the proof is to compute the left-hand side of (4.37) in a different way

and to compare with the previous computation. To that end, we first observe

from Propositions 4.1.2, 4.3.1, 4.3.4 and (4.32) that

λ

∫
Rd
Qh̃ε
ε φε dµε = λ

∑
i∈S?

hε(i) mε(i)
νi
ν?

+ oε(1) . (4.38)

By Proposition 4.3.7 and uniform boundedness of Qh̃ε
ε , we have∫

Rd
Qh̃ε
ε (−θεLεφε) dµε =

1

ν?
Dx(h̃ε, mε) + oε(1) . (4.39)

Denote by m?
ε : S? → R the restriction of mε : S → R on S?, and denote by

m̃?
ε the harmonic extension of m?

ε . Then, by Lemma 4.3.8, we have

Dx(h̃ε, mε) = Dx(h̃ε, m̃?
ε) = ν?Dy(hε, m?

ε) .

Inserting this into (4.39) and combining with (4.38), we can conclude that∫
Rd
Qh̃ε
ε (λφε − θεLεφε) dµε = λ

∑
i∈S?

hε(i) mε(i)
νi
ν?

+Dy(hε, m?
ε) + oε(1) .

Comparing this with (4.37) and inserting (4.35), we get

λ
∑
i∈S?

hε(i)
2 νi
ν?

+Dy(hε, hε) = oε(1) .

109



CHAPTER 4. MARKOV CHAIN MODEL REDUCTION

This implies that max
i∈S?
|hε(i)| = oε(1) and therefore by recalling the definition

(4.35) of hε completes the proof.

4.4 Construction of test function

In this section, we explicitly define the test function Qg
ε , which is an approx-

imating solution to the following elliptic equation:L ∗
ε u = 0 on Rd \ (∪i∈SVi) and

u = g(i) on Vi for each i ∈ S .
(4.40)

Although we share the same philosophy is this construction with the re-

versible case [83], the detailed construction and entailed computations are

more complicated compared to the ones therein because of the non-reversibility.

4.4.1 Neighborhoods of saddle points

To construct the approximating solution to (4.40), we mainly focus on a

neighborhood of each saddle point σ ∈ Σi, j for some i, j ∈ S, as the function

u suddenly changes its value from g(i) to g(j) around such a saddle point.

Therefore, we carefully define several notations regarding this neighborhood.

In this subsection, we fix i, j ∈ S and consider a saddle point σ ∈ Σi, j. In

addition, we assume that i < j in this subsection.

Notation 4.4.1. We use the following notations in this subsection.

1. We abbreviate H = Hσ and L = Lσ.

2. Since the symmetric matrix H has only one negative eigenvalue, we

denote by −λ1, λ2, . . . , λd (= −λσ1 , λσ2 , . . . , λσd ) the eigenvalues of H,

where −λ1 denotes the unique negative eigenvalue.
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Figure 4.3: Illustration of various sets around a saddle point σ introduced in
Section 4.4.1.

3. Denote by eσ1 the unit eigenvector associated with the eigenvalue −λ1,

and by eσk , k ≥ 2, the unit eigenvector associated with the eigenvalue

λk. In addition, we assume that the direction of eσ1 is toward Wi, i.e.,

for all sufficiently small a > 0, σ + aeσ1 ∈ Wi. Then, for x ∈ Rd and

k = 1, . . . , d, we write xk = (x − σ) · eσk . In other words, we have

x = σ +
d∑

m=1

xme
σ
m.

Now, we define several sets around σ. Figure 4.3 illustrates the sets ap-

pearing in this section. Recall δ from (4.28) and recall that J > 0 is a

sufficiently large constant. Define an auxiliary set

T σε :=
{
x ∈ Rd : xk ∈

[
− 2Jδ

λ
1/2
k

,
2Jδ

λ
1/2
k

]
for 2 ≤ k ≤ d

}
.

Then, define a box Cσε centered at σ as

Cσε :=
{
x ∈ Rd : x1 ∈

[
− Jδ

λ
1/2
1

,
Jδ

λ
1/2
1

] }
∩ T σε .
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The boundary sets ∂+Cσε and ∂−Cσε defined below will be used later.

∂±Cσε =
{
x ∈ Cσε : x1 = ± Jδ

λ
1/2
1

}
. (4.41)

We define another scale

η := η(ε) = ε2 . (4.42)

Then, define the enlargements of boundaries ∂+Cσε and ∂−Cσε as

∂̂+Cσε =
{
x ∈ Rd : x1 ∈

[ Jδ
λ

1/2
1

,
Jδ

λ
1/2
1

+ η
] }
∩ T σε ,

∂̂−Cσε =
{
x ∈ Rd : x1 ∈

[
− Jδ

λ
1/2
1

− η, − Jδ

λ
1/2
1

] }
∩ T σε .

With these enlarged boundaries, we can expand Cσε to

Ĉσε = Cσε ∪ ∂̂+Cσε ∪ ∂̂−Cσε .

Let

∂0Ĉσε =
{
x ∈ Ĉσε : xk = ±2Jδ

λ
1/2
k

for some 2 ≤ k ≤ d
}
.

Then, by a Taylor expansion of U around σ, we can readily verify that

U(x) ≥ H +
3

2
J2 δ2 [ 1 + oε(1) ] for all x ∈ ∂0Ĉσε . (4.43)

For the detailed proof, we refer to Lemma 3.4.3. Now, we define

Kε = {x ∈ Rd : U(x) < H + J2δ2} ,

so that, by (4.43), the boundary ∂0Ĉσε does not belong to Kε provided that ε

is sufficiently small. Then, we define

Bσε = Cσε ∩ Kε , ∂̂±Bσε = ∂̂±Cσε ∩ Kε and Eσε = Ĉσε ∩ Kε
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so that Eσε = Bσε ∪ ∂̂+Bσε ∪ ∂̂−Bσε . Denote by ∂Eσε the boundary of the set Eσε
and decompose it into

∂Eσε = ∂+Eσε ∪ ∂−Eσε ∪ ∂0Eσε

such that

∂±Eσε =
{
x ∈ ∂Eσε : x1 = ±

( Jδ

λ
1/2
1

+ η
)}

and ,

∂0Eσε =
{
x ∈ ∂Eσε : x1 6= ±

( Jδ

λ
1/2
1

+ η
)}

.

Then, by (4.43) (one can readily check from Figure 4.3), for sufficiently small

ε > 0,

U(x) = H + J2δ2 for all x ∈ ∂0Eσε . (4.44)

Furthermore, by our selection of the direction of vector eσ1 (cf. Notation

4.4.1-(3)), we have

∂+Eσε ⊂ ∂Wε
i and ∂−Eσε ⊂ ∂Wε

j . (4.45)

Similarly, we decompose ∂Bσε into ∂+Bσε , ∂−Bσε , and ∂0Bσε such that

∂±Bσε =
{
x ∈ ∂Bσε : x1 = ± Jδ

λ
1/2
1

}
, and

∂0Bσε =
{
x ∈ ∂Bσε : x1 6= ±

Jδ

λ
1/2
1

}
. (4.46)

4.4.2 Decomposition of Kε
Now, we turn to the global picture. Recall Σ∗ from (4.1). By (4.44), we can

observe that Kε \ (∪σ∈Σ∗Eσε ) consists of K connected components, and we

denote by Wε
i , i ∈ S, the component among them containing Vi. Then, we
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can decompose Kε such that

Kε =
[ ⋃
i∈S

Wε
i

]
∪
[ ⋃
σ∈Σ∗

Eσε
]
. (4.47)

The test function Qg
ε is constructed on this global structure of Kε.

4.4.3 Construction of function Qg
ε

Construction around a saddle point

We start by introducing the building block for the construction of Qg
ε , which

is a function on Eσε = Bσε ∪ ∂̂+Bσε ∪ ∂̂−Bσε . First, let us focus on the set

Bσε . Recall that Hσ + Lσ has a unique negative eigenvalue −µσ. Denote

by A† the transpose of the matrix A. Then, we can readily verify that (cf.

(3.23)) the matrix Hσ−(Lσ)† is similar to Hσ+Lσ and hence has the unique

negative eigenvalue −µσ. We denote by vσ the unit eigenvector of Hσ−(Lσ)†

associated with −µσ. We assume that vσ ·eσ1 > 0, as we can take −vσ instead

if this inner product is negative. We note that vσ · eσ1 6= 0 by Lemma 3.4.1.

Recall the definition 3.30 of a function pσε : Rd → R as

pσε (x) :=
1

cσε

∫ (x−σ)·vσ

−∞
e−

µσ

2ε
t2 dt ; x ∈ Cσε , (4.48)

where the normalizing constant cσε is given by

cσε =

∫ ∞
−∞

e−
µσ

2ε
t2 dt =

√
2πε

µσ
. (4.49)

Note that we defined the function on Cσε containing Bσε . The function pσε

introduced here is identical to (3.30). It is remarkable that the test function

for the Eyring–Kramers formula and that for the Markov chain convergence

share the building block, while the global construction from this building

block is carried out in a different manner.
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The function pσε is an approximating solution L ∗
ε f ' 0 with approxi-

mating boundary conditions f ' 1 on ∂+Cσε and f ' 0 on ∂−Cσε by our

assumption that vσ · eσ1 > 0. The approximating property L ∗
ε p
σ
ε ' 0 can be

quantified in the following proposition, which has been proven in Proposition

3.4.5.

Proposition 4.4.2. For all σ ∈ Σ∗, we have

θε

∫
Bσε
|L ∗

ε p
σ
ε | dµε = oε(1) .

Now, we focus on the properties pσε ' 1 on ∂+Cσε and pσε ' 0 on ∂−Cσε .

When suitably extending this function to get a continuous function on Rd,

these asymptotic equalities along the boundaries cause technical problems.

They become the exact equality for the reversible case considered in [83] as

vσ = eσ1 . For our case, the discontinuity is a natural consequence of the non-

reversibility; hence, we need an additional continuation procedure. In Chap-

ter 3, this continuation has been carried out by mollification via a smooth

mollifier. For the current problem, such a procedure does not work, and we

take a different path of construction. The enlarged set Eσε is introduced for

performing this continuation procedure.

Now, we continuously extend pσε to Ĉσε . For each x = σ+
d∑

k=1

xke
σ
k ∈ ∂̂±Cσε ,

we write

x = σ ± Jδ

(λσ1 )1/2
eσ1 +

d∑
k=2

xk e
σ
k ∈ ∂±Cσε ,

where the boundaries ∂±Cσε are defined in (4.41). Then, define pσε on the

enlarged boundaries ∂̂±Cσε as

pσε (x) =


1 +

1

η

[
(x− σ) · eσ1 −

Jδ

(λσ1 )1/2
− η

]
(1− pσε (x)) for x ∈ ∂̂+Cσε ,

1

η

[
(x− σ) · eσ1 +

Jδ

(λσ1 )1/2
+ η

]
pσε (x) for x ∈ ∂̂−Cσε .

(4.50)
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By such an extension, we can check that pσε is continuous on Ĉσε . Now, we

regard pσε as a function on Eσε . Then, we can check that pσε satisfies the exact

boundary conditions

pσε (x) =

1 if x ∈ ∂+Eσε ,

0 if x ∈ ∂−Eσε .
(4.51)

Now, we claim that the cost of this continuation procedure is tolerable.

Lemma 4.4.3. For all σ ∈ Σ∗, we have

θε ε

∫
∂̂±Cσε

|∇pσε |2 dµε = oε(1) .

We defer the technical proof of this lemma to the next subsection.

Global construction

For g = gε : S → R, we can now define the function Qg
ε : Rd → R. First, we

define this function on Kε (cf. (4.47)) such that

Qg
ε (x) =

g(i) for x ∈ Wε
i , i ∈ S ,

g(j) + (g(i)− g(j)) pσε (x) for x ∈ Eσε , σ ∈ Σi, j for i < j .

(4.52)

By (4.45) and (4.51), the function Qg
ε is continuous on Kε. Since for all

σ ∈ Σ∗, it holds that

pσε (x) ∈ [0, 1] and —∇pσε (x) | ≤ C η−1 for all x ∈ Eσε ,

we can check that

‖Qg
ε ‖L∞(Kε) = ‖g ‖∞ and ‖∇Qg

ε ‖L∞(Kε) ≤ C η−1 ‖g ‖∞ ,
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where ‖g‖ = max
i∈S
|g(i)|. Note that Qg

ε is not differentiable along the bound-

ary of Eσε for each σ ∈ Σ∗. In this computation and subsequent computations,

we implicitly regard ∇Qg
ε as an a.e. defined function except for these discon-

tinuity surfaces. Then, we can continuously extend this function to Rd such

that

‖Qg
ε ‖L∞(Rd) = ‖g ‖∞ and ‖∇Qg

ε ‖L∞(Rd) ≤ C η−1 ‖g ‖∞ . (4.53)

In particular, we have uniformly boundedness of Qg
ε since we assumed in

Proposition 4.3.7 that ‖g‖ is uniformly bounded in ε. Note also that the

condition (4.32) of Proposition 4.3.7 is satisfied by Qg
ε immediately from its

definition in (4.52). The last and the most technical part is to check that

Qg
ε satisfies (4.33). This will be carried out in the next section. Before doing

that, we conclude the proof of Lemma 4.4.3.

4.4.4 Proof of Lemma 4.4.3

Before proving Lemma 4.4.3, we explain a decomposition of the extended

boundary ∂̂+Cσε , which will be used several times later. Define, for a > 0,

∂̂ 1, a
+ Cσε = {x ∈ ∂̂+Cσε : x · v ≥ aJδ } , (4.54)

∂̂ 2, a
+ Cσε = {x ∈ ∂̂+Cσε : U(x) ≥ H + aJ2δ2 } . (4.55)

Lemma 4.4.4. There exists a0 > 0 such that, for all a ∈ (0, a0),

∂̂ 1, a
+ Cσε ∪ ∂̂

2, a
+ Cσε = ∂̂+Cε .

The proof is a direct consequence of Lemma 3.4.10 as η � δ and is

omitted.

Proof of Lemma 4.4.3. Fix σ ∈ Σ∗, and for convenience of notation, we as-

sume that σ = 0. We only consider the integral on ∂̂+Cσε since the proof
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for the case ∂̂−Cσε is essentially the same. Write eσ1 = (e1, . . . , ed) and

vσ = (v1, . . . , vd). Then, by the explicit formula (4.50) for pσε , we have,

for x ∈ ∂̂+Cσε ,

∇1 p
σ
ε (x) =

e1

η
[ 1− pσε (x) ] , (4.56)

∇i p
σ
ε (x) =

ei
η

[ 1− pσε (x) ]

+
vσi
η cσε

e−
µ
2ε

(x·vσ)2
[
x · eσ1 −

Jδ

(λσ1 )1/2
− η

]
; i ≥ 2 . (4.57)

Since the absolute value of the term in the second pair of brackets in (4.57)

is bounded by η for x ∈ ∂̂+Cσε , we can conclude that

|∇pσε (x)|2 ≤ C

η2
[ 1− pσε (x) ]2 +

C

ε
e−

µ
ε

(x·vσ)2 .

Now, for a ∈ (0, a0) where a0 is the constant appearing in Lemma 4.4.4, it

suffices to prove that

θε ε

∫
∂̂ k, a+ Cσε

[ 1

η2
[ 1− pσε (x) ]2 +

1

ε
e−

µ
ε

(x·vσ)2
]
µε(x) dx = oε(1) for k = 1, 2 .

(4.58)

We first consider the case k = 1. By the elementary inequality

∫ ∞
b

e−t
2/2dt

≤ 1

b
e−b

2/2 for b > 0, we can deduce that

1− pσε (x) ≤ C

x · vσ
e−

µ
2ε

(x·vσ)2 ≤ C

δ
e−

µ
2ε

(x·vσ)2 for x ∈ ∂̂ 1, a
+ Cσε .

Hence, the left-hand side of (4.58) is bounded from above by

C
θεε

η2δ2

∫
∂̂+Cσε

e−
µ
ε

(x·vσ)2µε(x)dx ≤ C
1

εd/2+3δ2

∫
∂̂+Cσε

e−
1
2ε
x·[Hσ+2µσ vσ⊗vσ ]xdx ,

(4.59)

where we applied (4.5), the Taylor expansion of U around σ = 0, and the
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fact that

e−
µ
ε

(x·vσ)2 = [ 1 + oε(1) ] e−
µ
ε

(x·vσ)2 .

Since the matrix Hσ + 2µσvσ ⊗ vσ is positive definite by Lemma 3.4.2, we

can write

x · (Hσ + 2µσ vσ ⊗ vσ)x ≥ C |x|2 ≥ C J2 δ2 , (4.60)

as there exists C > 0 such that |x−σ| ≥ CJδ for all x ∈ ∂̂+Cσε . By inserting

(4.60) into (4.59), we can bound the right-hand side of (4.59) from above by

C
1

εd/2+3δ2
vol(∂̂+Cσε ) εCJ

2

= oε(1) ,

where the equality holds for sufficiently large J since vol(∂̂+Cσε ) = O(ηδd−1).

Next, we consider the case k = 2 of (4.58). For this case, by (4.5), the

left-hand side of (4.58) is bounded from above by

C ε1−d/2
∫
∂̂ 2, a
+ Cσε

1

η2
e−

U(x)−H
ε dx ≤ C ε1−d/2

η2
εaJ

2

vol(∂̂+Cσε ) = oε(1) ,

where the inequality holds from the definition of ∂̂ 2, a
+ Cσε , and the last equality

holds for sufficiently large J since vol(∂̂+Cσε ) = O(ηδd−1). This completes the

proof.

4.5 Proof of Proposition 4.3.7

We fix g = gε : S → R throughout this section which is uniformly bounded

in ε in the sense of (4.31). The function Qg
ε appearing in this section is the

one defined in (4.52).
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4.5.1 Reduction to local computations around saddle

points

In this subsection, we reduce the proof of Proposition 4.3.7 to two local

estimates around saddle point σ ∈ Σ∗. We perform this reduction via the

following proposition.

Proposition 4.5.1. It holds that

θε

∫
Rd
Qg
ε (Lεφε) dµε

= oε(1) +
∑

i, j∈S, i<j

∑
σ∈Σi, j

( g(i)− g(j) ) [A1(σ) + A+
2 (σ) + A−2 (σ) ] ,

where

A1(σ) = −θε ε
∫
Bσε
∇pσε ·

[
∇φε −

1

ε
φε`
]
dµε and

A±2 (σ) = θε

∫
∂̂±Bσε

φε (∇pσε · `) dµε .

Proof. By the divergence theorem, we can write

θε

∫
Rd
Qg
ε (Lεφε) dµε = −θε ε

∫
Rd
∇Qg

ε ·
[
∇φε −

1

ε
φε`
]
dµε .

Note that we can apply the divergence theorem since Qg
ε is continuous, while

its gradient is not defined along ∂Eσε . Now, let us investigate the right-hand

side. First, note that ∇Qg
ε ≡ 0 on Wε

i by definition. Hence, we can rewrite

the right-hand side as

− θε ε
( ∫

Rd\Kε
+
∑
σ∈Σ∗

∫
Eσε

)
∇Qg

ε ·
[
∇φε −

1

ε
φε`
]
dµε . (4.61)

Now we consider two integrals separately.
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First integral of (4.61): We will separately show that

θε ε

∫
Rd\Kε

(∇Qg
ε · ∇φε) dµε = oε(1) and (4.62)

θε

∫
Rd\Kε

(∇Qg
ε · `)φε dµε = oε(1) . (4.63)

For (4.62), by (4.53) and the Cauchy–Schwarz inequality,∣∣∣ θε ε ∫
Rd\Kε

∇Qg
ε · ∇φε dµε

∣∣∣2 ≤ C θ2
ε ε

1

η2
µε(Rd \ Kε) Dε(φε) . (4.64)

Note that the uniform boundedness of g is implicitly used here. We shall

repeatedly use this boundedness in the later arguments as well. Since U >

H + δ2J2 on Rd \ Kε, by (2.7) and Proposition 4.1.2,

µε(Rd \ Kε) ≤
C

Zε
e−

H+δ2J2

ε ≤ C θ−1
ε εJ

2− d
2 . (4.65)

Applying this and Proposition 4.3.3 to (4.64) yields∣∣∣ θε ε ∫
Rd\Kε

(∇Qg
ε · ∇φε) dµε

∣∣∣ ≤ C

η
ε
1
2
J2− d

4
+ 1

2 .

Since η = ε2, we obtain (4.62) by taking J to be sufficiently large.

Now, we turn to (4.63). By (4.53), Proposition 4.3.1, (4.65) we can bound

the absolute value of the left-hand side of (4.63) by Cθεη
−1µε(Rd\Kε) = oε(1).

Second integral of (4.61): For each σ ∈ Σi, j with i, j ∈ S, we have

∇Qg
ε = (g(i) − g(j))∇pσε on Eσε . Therefore, we can prove that this integral

is A1(σ) + A+
2 (σ) + A−2 (σ) provided that we can prove

θε ε

∫
∂̂±Bσε

(∇pσε · ∇φε) dµε = oε(1) .

This follows from the Cauchy–Schwarz inequality, Proposition 4.3.3, and
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Lemma 4.4.3.

Based on the previous proposition, it suffices to estimate A1(σ) and

A±2 (σ) for each σ ∈ Σ∗. These estimates are carried out via the following

proposition.

Proposition 4.5.2. For i, j ∈ S with i < j and σ ∈ Σi, j, we have

A1(σ) =
λσ1

2πν?
√
− detHσ

(mε(j)−mε(i)) + oε(1) , (4.66)

and

A+
2 (σ) = − λσ1

2πν?
√
− detHσ

(Lσ (Hσ)−1 vσ) · eσ1
vσ · eσ1

mε(i) + oε(1) , (4.67)

A−2 (σ) = +
λσ1

2πν?
√
− detHσ

(Lσ (Hσ)−1 vσ) · eσ1
vσ · eσ1

mε(j) + oε(1) . (4.68)

Before proving this proposition, we conclude the demonstration of Propo-

sition 4.3.7 by assuming this proposition.

Proof of Proposition 4.3.7. First, we check that

(vσ + Lσ (Hσ)−1 vσ) · eσ1 = (I− (Hσ)−1 (Lσ)†)vσ · eσ1

= (Hσ)−1 (Hσ − (Lσ)†)vσ · eσ1 = −µσ (Hσ)−1 vσ · eσ1 =
µσ

λσ1
(vσ · eσ1 ) ,

where the first identity follows from the fact that the matrix HσLσ is a skew-

symmetric matrix by Lemma 2.2.6, and the last identity follows from the fact

that eσ1 is the eigenvector of Hσ associated with the eigenvalue −λσ1 . We can

combine this computation with Proposition 4.5.2 to get

A1(σ) + A+
2 (σ) + A−2 (σ) =

ωσ

ν?
(mε(j)−mε(i)) + oε(1) , (4.69)

where the Eyring–Kramers constant ωσ is defined in (4.6), and we implicitly

used (4.30). Inserting (4.69) into Proposition 4.5.1 completes the proof.
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Now, it remains to prove Proposition 4.5.2. We provide the estimates of

A1(σ) and A±2 (σ) in Sections 4.5.3 and 4.5.4, respectively.

4.5.2 Change of coordinates on ∂+Bσε
Hereafter, it suffices to focus only on a single saddle point σ; hence, in the

remainder of the current section, we recall Notation 4.4.1 and use the fol-

lowing conventions: we fix σ ∈ Σi, j for some i, j ∈ S with i < j, assume

that σ = 0 for simplicity of notation, and drop the superscript σ from the

notations, e.g., we write pε and Bε instead of pσε and Bσε , respectively.

Before proceeding to the proof of Proposition 4.5.2, we recall in this sub-

section a change of coordinate introduced in Section 3.4.4, which maps ∂+Bε
to a subset of Rd−1. For A ∈ Rd×d and u = (u1, . . . , ud) ∈ Rd, we define

Ã ∈ R(d−1)×(d−1) and ũ ∈ Rd−1 as

Ã := (Ai, j)2≤i, j≤d and ũ := (u2, . . . , ud) , (4.70)

respectively. Define a vector γ = (γ2, . . . , γd) ∈ Rd−1 by γk =
vk
v1

· λ
1/2
1

λk
Jδ for

2 ≤ k ≤ d, where v = vσ = (v1, . . . , vd) denotes the eigenvector introduced

in Section 4.4.3, at which it has been mentioned that v1 = v · e 6= 0. Define

Pδ :=
{
x = (x1, . . . , xd) ∈ Rd : x1 =

Jδ

λ
1/2
1

}
⊂ Rd ,

so that ∂+Bε, ∂+Cε ⊂ Pδ, and define a map Πε : Pδ → Rd−1 by Πε(x) = x̃+γ.

This maps the change of coordinate from ∂+Bε to Rd−1, which simplifies

computations significantly. For instance, we have the following result.

Lemma 4.5.3. For all x ∈ ∂+Bε, we have

x · (H + µv ⊗ v)x = Πε(x) · (H̃ + µ ṽ ⊗ ṽ) Πε(x) .
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In addition, the matrix H̃ + µ ṽ ⊗ ṽ is positive definite and

det (H̃ + µ ṽ ⊗ ṽ) = (v · e1)2 µ

λ1

d∏
k=2

λk .

Proof. We refer to Lemmas 3.4.7 and 3.4.9 for the proof.

In Lemma 3.4.8, it has been verified that the image of Πε(∂+Bσε ) is com-

parable with a ball in Rd−1 centered at the origin with radius of order δ. In

the next lemma, we slightly strengthen this result. Recall the definition of

Ŵi from (4.29).

Lemma 4.5.4. There exist constants r, R > 0 such that

D(d−1)
rδ ⊂ Πε(∂+Bσε ∩ Ŵi) ⊂ Πε(∂+Bσε ) ⊂ D(d−1)

Rδ ,

where D(d−1)
a represents a ball in Rd−1 of radius a centered at the origin.

Proof. In view of Lemma 3.4.8, it suffices to show the first inclusion. Define

Pδ :=
{
x = (x1, . . . , xd) ∈ Rd : x1 =

Jδ

λ
1/2
1

}
⊂ Rd and

γ :=
( Jδ

λ
1/2
1

, −γ2, · · · , −γd
)
∈ Pδ .

Then, it has been shown in (3.38) that

U(γ) = H − λ1

2µ v2
1

J2 δ2 +O(δ3) < H − 2 c0 J
2 δ2 (4.71)

for all sufficiently small ε > 0 if we take c0 > 0 as a sufficiently small constant.

By inserting this c0 into the definition of Ŵi in (4.29), we can find sufficiently

small r > 0 such that Drδ(γ) ∩ Pδ ⊂ ∂+Bσε ∩ Ŵi. Since Πε(γ) = 0, we have

D(d−1)
rδ = Πε(Drδ(γ) ∩ Pδ) and the proof is completed.
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4.5.3 Estimate of A1(σ)

Now, we prove (4.66) of Proposition 4.5.2. By the divergence theorem, we

can write

A1(σ) = −θε ε
∫
∂Bε

φε [∇pε · nBε ]σ(dµε) + θε

∫
Bε

(L ∗
ε pε)φε dµε .

By Propositions 4.3.1 and 4.4.2, we can observe that the second term at the

right-hand side is oε(1). Therefore, we can write

A1(σ) = K0 +K+ +K− + oε(1) , (4.72)

where

K0 = −θε ε
∫
∂0Bε

φε [∇pε · nBε ]σ(dµε) and

K± = −θε ε
∫
∂±Bε

φε [∇pε · nBε ]σ(dµε) .

First, we show that K0 = oε(1). For x ∈ ∂0Bε, by (4.48) and (4.49),

| ∇pε(x) · nBε(x) | =
∣∣∣ 1

cσε
e−

µ
2ε

(x·v)2 v · nBε(x)
∣∣∣ ≤ C

ε1/2
.

Therefore, by Proposition 4.3.1 and (4.44) along with the fact that ∂0Bσε ⊂
∂0Eσε , we have

|K0 | ≤ C θε ε
1/2 Z−1

ε e−(H+J2δ2)/ε σ(∂0Bε) ≤ C εJ
2−(d+1)/2 δd−1 = oε(1)

(4.73)

for sufficiently large J , where we used σ(∂0Bε) = O(δd−1) in the second

inequality. Next, we estimate K+ and K−.
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Lemma 4.5.5. We have

K+ = − λ1

2πν?
√
− detH

mε(i) + oε(1) and

K− =
λ1

2πν?
√
− detH

mε(j) + oε(1) .

Proof. We only prove the estimate for K+ since the proof for K− is identical.

Since nBε = e1 on ∂+Bε, by the Taylor expansion of U around σ, explicit

formula (4.48) for pε, and (4.5), we can write

K+ = −[ 1 + oε(1) ]
ε µ1/2 (v · e1)

(2πε)(d+1)/2 ν?

∫
∂+Bε

e−
1
2ε
x· (H+µv⊗v)x φε(x)σ(dx) .

With the notations introduced in Section 4.5.2, we perform the change of

variable y = Πε(x) in the previous integral to deduce that

K+ = −[ 1 + oε(1) ]
ε µ1/2 (v · e1)

(2πε)(d+1)/2 ν?

∫
Πε(∂+Bε)

e−
1
2ε
y· (H̃+µ ṽ⊗ṽ)y φε(Π

−1
ε (y)) dy ,

(4.74)

where we applied Lemma 4.5.3 to the exponential term. Let r > 0 be the

constant appearing in Lemma 4.5.4. By Proposition 4.3.4 and Lemma 4.5.4,

we have φε(Π
−1
ε (y)) = mε(i) + oε(1) for y ∈ D(d−1)

rδ . Thus, we have∫
D(d−1)
rδ (0)

e−
1
2ε
y· (H̃+µ ṽ⊗ṽ)y φε(Π

−1
ε (y)) dy

=
(2πε)(d−1)/2√

det (H̃ + µṽ ⊗ ṽ)
[ mε(i) + oε(1) ] .

Since the integral on Πε(∂+Bε) \ D(d−1)
rδ (0) ⊂ Rd−1 \ D(d−1)

rδ (0) is oε(1) by

Proposition 4.3.1, we can conclude from (4.74) that

K+ = − [ 1 + oε(1) ]
µ1/2 (v · e1)

2πν?

√
det (H̃ + µṽ ⊗ ṽ)

mε(i) + oε(1) .
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The proof is completed by the second part of Lemma 4.5.3.

Now, (4.66) can be obtained by combining (4.72), (4.73), and Lemma

4.5.5.

4.5.4 Estimate of A±2 (σ)

Now, we estimate A+
2 (σ) and A−2 (σ). Since the proof is identical, it suffices

to consider A+
2 (σ), i.e., (4.67). Write ` = (`1, . . . , `d) and v = (v1, . . . , vd).

Then, by (4.56) and (4.57), we can write

A+
2 (σ) = M1 +M2 , (4.75)

where

M1 =
θε
ηCε

∫
∂̂+Bε

φε(x)
[
x · e1 −

Jδ

λ
1/2
1

− η
]
e−

µ
2ε

(x·v)2
d∑

k=2

vk `k(x)µε(dx) ,

M2 = θε

∫
∂̂+Bε

φε(x)
1− pε(x)

η
`1(x)µε(dx) .

First, we show that M1 is negligible.

Lemma 4.5.6. We have that M1 = oε(1).

Proof. Since
∣∣x · e1 −

Jδ

λ
1/2
1

− η
∣∣ ≤ η for x ∈ ∂̂+Bε, by Proposition 4.3.1, it

suffices to prove that

θε
Cε

1

Zε

∫
∂̂+Cε

e−
µ
2ε

(x·v)2 e−
U(x)
ε dx = oε(1) . (4.76)

By applying U(x) = U(x) + O(ε2) and then applying the Taylor expansion

to U(x) (with respect to σ = 0), the left-hand side of the above equality can
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be bounded from above by

C

ε(d+1)/2

∫
∂̂+Cε

e−
1
2ε
x·(H+µv⊗v)x dx =

Cη

ε(d+1)/2

∫
∂+Cε

e−
1
2ε
x· (H+µv⊗v)x σ(dx) .

Using the change of variable y = Πε(x) and applying Lemma 4.5.3, we can

check that the last integral is bounded by Cε(d−1)/2. Hence, the left-hand side

of (4.76) is bounded from above by
Cη

ε(d+1)/2
× Cε(d−1)/2 = oε(1). This proves

the lemma.

Next, we estimate M2.

Lemma 4.5.7. We have

M2 = − 1

2πν?

√
µ

det(H̃ + µṽ ⊗ ṽ)
[ (LH−1 v) · e1 ] mε(i) + oε(1) . (4.77)

Proof. Let a ∈ (0, a0), where a0 is the constant appearing in Lemma 4.4.4.

Let us define

∂̂ 2, a
+ Bσε := ∂̂+Bσε ∩ ∂̂ 2, a

+ Cσε

and write

M2 = M2, 1 +M2, 2 , (4.78)

where

M2, 1 = θε

∫
∂̂ 2, a
+ Bε

φε(x)
1− pε(x)

η
`1(x)µε(x) dx , and

M2, 2 = θε

∫
∂̂+Bε\∂̂ 2, a

+ Bε
φε(x)

1− pε(x)

η
`1(x)µε(x) dx .

First, we check that M2, 1 = oε(1). By Proposition 4.3.1, it suffices to show

that
θε
η
µε(∂̂

2, a
+ Bε) = oε(1). This is a consequence of the bound U(x) ≥

H + aJ2δ2 on ∂̂2, a
+ Bε, which holds by definition, the bound vol(∂̂2, a

+ Bε) ≤
vol(∂̂+Bε) ≤ Cηδd−1, and (4.5).
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Now, we turn to M2, 2. By Lemma 4.4.4, we have x · v ≥ cJδ for x ∈
∂̂+Bε \ ∂̂2, a

+ Bε; hence, we can use the elementary inequality

b

b2 + 1
e−b

2/2 ≤
∫ ∞
b

e−t
2/2dt ≤ 1

b
e−b

2/2 for b > 0

to obtain

1− pε(x) = [ 1 + oε(1) ]
ε1/2

(2πµ)1/2 (x · v)
e−

µ
2ε

(x·v)2 .

Now, we apply this result along with the Taylor expansions of U and ` around

σ = 0 to M2, 2 to get

M2, 2

=
1 + oε(1)

(2π)(d+1)/2 ν? µ1/2 ε(d+3)/2

∫
∂̂+Bε\∂̂ 2, a

+ Bε
φε(x)

Lx · e1

x · v
e−

1
2ε
x· (H+µv⊗v)x dx .

Note here that we have replaced several x’s with x’s without changing the

error term since |x − x| = O(η). Let r > 0 be the constant appearing in

Lemma 4.5.4. Then, we claim that, for all sufficiently small ε > 0,( Jδ

λ
1/2
1

,
Jδ

λ
1/2
1

+ η
]
× Π−1

ε (Drδ/2(0)) ⊂ ∂̂+Bε ∩ Ŵi ⊂ ∂̂+Bε \ ∂̂ 2, a
+ Bε .

The second inclusion is immediate from the definitions of Ŵi and ∂̂ 2, a
+ Bε. On

the other hand, the first inclusion is a consequence of Lemma 4.5.4 and the

fact that η = ε2. For convenience, we write

Aε =
( Jδ

λ
1/2
1

,
Jδ

λ
1/2
1

+ η
]
× Π−1

ε (Drδ/2(0)) .

We further decompose M2, 2 = M2, 2, 1 + M2, 2, 2 where M2, 2, 1 and M2, 2, 2

are obtained from M2, 2 by replacing the integral

∫
∂̂+Bε\∂̂2, a+ Bε

with
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∫
(∂̂+Bε\∂̂2, a+ Bε)\Aε

and

∫
Aε

, respectively. We argue that M2, 2, 1 = oε(1). By

Proposition 4.3.1 and the fact that x · v ≥ aJδ on ∂̂+Bε \ ∂̂ 2, a
+ Bε, it suffices

to show that∫
Rd−1\Π−1

ε (Drδ/2(0))

e−
1
2ε
x· (H+µv⊗v)x dx̃ = ε(d−1)/2 oε(1) ,

where x̃ is defined in (4.70). The previous identity can be directly verified

by the change of variable y = Πε(x).

Next, we turn to M2, 2, 2. On Aε, we have φε(x) = mε(i)+oε(1) by Propo-

sition 4.3.4. Hence, we can write

M2, 2, 2 =
1 + oε(1)

(2π)(d+1)/2 ν? µ1/2 ε(d−1)/2
[ mε(i) + oε(1) ]

;×
∫

Π−1
ε (Drδ/2(0))

Lx · e1

x · v
e−

1
2ε
x· (H+µv⊗v)x dx̃ . (4.79)

We can use Lemma 3.4.11 to show that the last integral can be written as

[ 1 + oε(1) ]
(2πε)(d−1)/2 (−µLH−1v) · e1√

det (H̃ + µṽ ⊗ ṽ)
.

Inserting this into (4.79) along with the fact that M2, 2, 1 = oε(1) proves that

M2, 2 = − 1

2πν?

√
µ

det(H̃ + µṽ ⊗ ṽ)
[ (LH−1v) · e1 ] mε(i) + oε(1) . (4.80)

Combining this estimate with the fact that M2, 1 = oε(1) completes the proof.

Now, the proof of (4.67) follows immediately from (4.75) and Lemmas

4.5.3, 4.5.6, 4.5.7. This concludes the proof of Proposition 4.3.7.
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Curie–Weiss–Potts model

In this chapter, we completely analyze the energy landscape of the Curie–

Weiss–Potts model for all q ≥ 4. Based on this result, we prove metastable

behavior of heat-bath Glauber dynamics associated with the Curie–Weiss–

Potts model. The model exhibits phase transitions as an inverse temperature

β varies so that different aspects of metastable behavior are observed. Our

result reveals that different phase transitions are observed in the case of q ≤ 4

and the case of q ≥ 5 because the number of critical temperatures is different.

5.1 Studies on the Curie–Weiss–Potts model

The Curie–Weiss–Potts model is investigated in various studies; e.g., [6, 12,

18, 19, 25, 26, 44, 53, 85, 88] and references therein. We note that the rigorous

mathematical definition of the Curie–Weiss–Potts model is presented in the

next section.

The Curie–Weiss model

The Ising case of the Curie–Weiss–Potts model, i.e., the corresponding spin

system consisting only of q = 2 spins, is the famous Curie–Weiss model. It

is well-known that the Curie–Weiss model without an external field exhibits
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a phase transition at the critical (inverse) temperature βc > 0. It is mainly

because the number of global minima of the potential function associated

with the empirical magnetization is one for the high temperature regime β ≤
βc while it becomes two for the low temperature regime β > βc, where β > 0

represents the inverse temperature (cf. [80, Chapter 9] for more detail). It is

also well-known that such a phase transition for the structure of the energy

landscape is closely related to the mixing property of the associated heat-

bath Glauber dynamics. In [66], it has been shown that the Glauber dynamics

exhibits the so-called cut-off phenomenon which is a signature of the fast

mixing for the high-temperature regime (i.e., β < βc) and the metastability

for the low-temperature regime (i.e., β > βc). The metastability for the low-

temperature regime has been more deeply investigated in [17].

The Curie–Weiss–Potts model with q = 3

The picture for the Curie–Weiss model explained above has been fully ex-

tended to the Curie–Weiss–Potts model consisting of q = 3 spins. The

complete description of the energy landscape has been obtained recently in

[44, 53], where three critical temperatures

0 < β1 < β2 < β3 = 3

are characterized. More precisely, it has been shown that the potential func-

tion associated with the empirical magnetization (which will be explained in

detail in section 5.2.3) has

• the unique global minimum for β ∈ (0, β1),

• one global minimum and three local minima for β ∈ (β1, β2),

• three global minima and one local minimum for β ∈ (β2, β3), and

• three global minima for β ∈ (β3,∞).
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The articles [44, 53] also analyzed the associated saddle structure. Based

on this analysis, [53] discussed the quantitative feature of the metastable

behavior of the heat-bath Glauber dynamics in view of the Eyring–Kramers

formula and Markov chain model reduction (cf. [2, 3, 46]) for all the low-

temperature regime β > β1. Because of the abrupt change in the structure

of the potential function at β = β2 and β = β3, the metastable behaviors

of the Glauber dynamics in three low-temperature regimes (β1, β2), (β2, β3),

and (β3,∞) turned out to be both quantitatively and qualitatively different.

For the high-temperature regime (0, β1), the cut-off phenomenon has been

verified in [19] for all q ≥ 3. Adjoining all these works completes the picture

for the Curie–Weiss–Potts model with q = 3 spins.

The Curie–Weiss–Potts model with q ≥ 4

Compared to the Curie–Weiss–Potts model with q = 2 or 3 spins, the analysis

of the case with q ≥ 4 spins is not completed so far. In many literature,

two critical temperatures β1(q) < β2(q) for the Curie–Weiss–Potts model

with q ≥ 4 spins are observed and the phase transitions near these critical

temperatures have been analyzed. For instance, in [19], the phase transition

from the fast mixing (the cut-off phenomenon) to the slow mixing (due to

the appearance of new local minima) at β = β1(q) has been confirmed. In

[26], it has been observed that the limiting distributions of the empirical

magnetization exhibits the abrupt change at β = β2(q). In [18], the phase

transition around β2(q) also has been studied in view of the equivalence and

non-equivalence of ensembles.

These studies focus on the phase transitions involved with the local and

the global minima of the potential function. However, in order to investigate

the metastable behavior whose main objective is to analyze the transitions

between neighborhoods of local minima (i.e., the metastable states), the pre-

cise understanding of the saddle structure is also required. To the best of

our knowledge, the analysis of the saddle structure as well as the metastable
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behavior of the heat-bath Glauber dynamics for q ≥ 4 has not been analyzed

yet.

Main contribution of the chapter

The main result of the present work is to provide the complete description of

the energy landscape including the saddle structure and to analyze dynami-

cal features of the Glauber dynamics based on it for the Curie–Weiss–Potts

models with q ≥ 4 spins.

First, we observe that for q = 4, as in the case of q = 3, the potential

function has three critical temperatures

0 < β1(4) < β2(4) < β3(4) = 4 ,

and moreover the associated metastable behavior is quite similar to that of

the case q = 3. On the other hand, for q ≥ 5, we will deduce that there are

four critical temperatures

0 < β1(q) < β2(q) < β3(q) < β4(q) = q ,

where two critical temperatures β1(q) and β2(q) play essentially the same role

with β1(3) and β2(3) (and hence β1(4) and β2(4)), respectively. Surprisingly,

our work reveals that the role of the third critical temperature β3(q) for q ≤ 4

is divided into the third and fourth critical temperatures β3(q) and β4(q) for

q ≥ 5. More precisely, for q ≤ 4, the change in the saddle gates between global

minima and the disappearance of the local minimum representing the chaotic

configuration happen simultaneously at β = β3(q) = q; however, for q ≥ 5,

the change of saddle gates happens at β = β3(q) < q and the disappearance

of the chaotic local minimum occurs at β = β4(q) = q. Hence, for q ≥ 5, we

observe another type of metastable behavior at β ∈ [β3(q), β4(q)) compared

to the case q ≤ 4.
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Remark. We can also consider the Curie–Weiss–Potts model under an ex-

ternal field. For such models with q = 3 spins, the energy landscape has been

completely analyzed in [53, Sections 5, 6]. We expect similar results but rig-

orous demonstration seems to be very complicated for general q ≥ 4; hence

we leave it for future research. We also remark that the Curie–Weiss–Potts

model with an random external field has been studied in [85, Section 5].

Other studies on the Potts model

Although the present work focuses on the Potts model on complete graphs,

we also note that the Ising and Potts models on the lattice are widely studied

as well. For instance, we refer to [80] and the references therein for the phase

transition, to [67, 68, 69] for the cut-off phenomenon in the high-temperature

regime, and to [1, 5, 9, 10, 11, 15, 42, 72, 74, 75, 77] for the metastability

in the low-temperature regime. In addition, we refer to [34, 39] for the Potts

model in many spins or large dimensions and to [16, 20] for the study of

metastability of the Ising model on random graphs.

5.2 Model

In this section, we introduce the formal definition of the Curie–Weiss–Potts

model, which will be analyzed in the present work. Fix an integer q ≥ 3 and

let S = {1, . . . , q} be the set of spins.

5.2.1 Curie–Weiss–Potts measure

For a positive integer N , let us denote by1 KN = {1, . . . , N} the set of sites.

Let ΩN = SKN be the configuration space of spins on KN . Each configuration

is represented as σ = (σ1, . . . , σN) ∈ ΩN where σv ∈ S denotes a spin at

site v ∈ KN . Let h = (h1, . . . , hq) ∈ Rq be the external magnetic field. The

1We write KN to emphasize that our model is on the complete graph
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Hamiltonian associated with the Curie–Weiss–Potts model with the external

field h is given by

HN(σ) = − 1

2N

∑
1≤u,v≤N

1(σu = σv) −
N∑
v=1

q∑
j=1

hj1(σv = j) ; σ ∈ ΩN ,

where 1 denotes the usual indicator function. Then, the Gibbs measure as-

sociated with the Hamiltonian at the (inverse) temperature β > 0 is given

by

µβN(σ) =
1

ZN(β)
e−βHN (σ) ; σ ∈ ΩN ,

where ZN(β) =
∑
σ∈ΩN

e−βHN (σ) is the partition function. The measure µβN(·)

denotes the Curie–Weiss–Potts measure on ΩN at the inverse temperature β.

5.2.2 Heat-bath Glauber dynamics

Now, we define a heat-bath Glauber dynamics associated with the Curie–

Weiss–Potts measure µβN(·). For σ ∈ ΩN , v ∈ KN , and k ∈ S, denote by σv, k

the configuration whose spin σv at site v is flipped to k, i.e.,

(σv, k)u =

σu u 6= v ,

k u = v .

Then, we will consider a heat-bath Glauber dynamics associated with gener-

ator LN which acts on f : ΩN → R as

(LNf)(σ) =
1

N

N∑
v=1

q∑
k=1

cv, k(σ)[f(σv, k)− f(σ)] ,

where

cv, k(σ) = exp

{
−β

2
[HN(σv, k)−HN(σ)]

}
.
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It can be observed that this dynamics is reversible with respect to the

Curie–Weiss–Potts measure µβN(·). Henceforth, denote by σ(t) = σKN (t) =

(σ1(t), . . . , σN(t)) the continuous time Markov process associated with the

generator LN .

5.2.3 Empirical magnetization

For each spin k ∈ S, denote by rkN(σ) the proportion of spin k of configuration

σ ∈ ΩN , i.e.,

rkN(σ) :=
1

N

N∑
v=1

1(σv = k) ,

and define the proportional vector rN(σ) as

rN(σ) := (r1
N(σ), . . . , rq−1

N (σ)) ,

which represents the empirical magnetization of the configuration σ contain-

ing the macroscopic information of σ.

Define Ξ as

Ξ = {x = (x1, . . . , xq−1) ∈ (R≥0)q−1 : x1 + · · ·+ xq−1 ≤ 1} , (5.1)

and then define a discretization of Ξ as

ΞN = Ξ ∩ (Z/N)q−1 .

With this notation, we immediately have rN(σ) ∈ ΞN for σ ∈ ΩN .

For the Markov process
(
σ(t)

)
t≥0

, we write rN(·) = rN(σ(·)) which is a

stochastic process on ΞN expressing the evolution of the empirical magneti-

zation. Since the model is defined on the complete graph KN , we obtain the

following proposition.

Proposition 5.2.1. The process
(
rN(t)

)
t≥0

is a continuous time Markov
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chain on ΞN whose invariant measure is given by

νβN(x) := µβN(r−1
N (x)) ; x ∈ ΞN

where r−1
N (x) denotes the set {σ ∈ ΩN : rN(σ) = x}. Furthermore, rN(·) is

reversible with respect to νβN .

The proof of this proposition including jump rates is given in Section

5.5.1. Let PN, βx be the law of the Markov chain rN(·) starting at x ∈ ΞN and

let EN, βx be the corresponding expectation.

More on the measure νβN(·)

For y ∈ Ξ, let ŷ = (y, . . . , yq−1, yq) ∈ Rq where yq = 1 − (y1 + · · · + yq−1).

Then, the Hamiltonian HN can be written as

HN(σ) = NH(rN(σ)) ; σ ∈ ΩN

where

H(x) = −1

2
|x̂|2 − h · x̂ ; x ∈ Ξ . (5.2)

Therefore, by Proposition 5.2.1, the invariant measure νβN(·) of the process

rN(t) on ΞN can be written as

νβN(x) =
∑

σ:rN (σ)=x

1

ZN(β)
exp{−βHN(σ)}

=

(
N

(Nx1) · · · (Nxq)

)
1

ZN(β)
exp{−βNH(x)}

=:
1

(2πN)(q−1)/2ZN(β)
exp{−βNFβ,N(x)} , (5.3)

where, by Stirling’s formula, we can write

Fβ,N(x) = Fβ(x) +
1

N
Gβ,N(x) ,
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where

Fβ(x) = H(x) +
1

β
S(x) and Gβ,N(x) =

log(x1 · · ·xq)
2β

+O(N−1) . (5.4)

In this equation, H(·) is the energy functional defined in (5.2) and S(·) is the

entropy functional defined by

S(x) =

q∑
i=1

xi log(xi) ,

and Gβ,N(x) converges to log(x1 · · ·xq)/(2β) uniformly on every compact

subsets of int Ξ.

Main objectives of the chapter

Now, we can express the main purpose of the current chapter in a more

concrete manner. In this chapter, we consider the Curie–Weiss–Potts model

when there is no external magnetic field; i.e., h = 0. Therefore, from now on,

we assume h = 0. Under this assumption, the first objective is to analyze the

function Fβ(·) expressing the energy landscape of the empirical magnetization

of the Curie–Weiss–Potts model. This result will be explained in Section 5.3.

The second concern is to investigate the metastable behavior of the process

rN(·) in the low-temperature regime. This will be explained in Section 5.4.

Latter part of the chapter is devoted to proofs of these results.

5.3 Main result for energy landscape

In view of Proposition 5.2.1, (5.3), and (5.4), the structure of the invariant

measure νβN(·) of the process rN(·) is essentially captured by the potential

function Fβ(·); hence, the investigation of Fβ(·) is crucial in the analysis of

the energy landscape and the metastable behavior of rN(·). In this section,

we explain our detailed analysis of the function Fβ(·).
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Note that the function Fβ(·) = H(·) + β−1S(·) express the competition

between the energy and the entropy represented by H(·) and S(·), respec-

tively. Since there is a β−1 factor in front of the entropy functional, we can

expect that the entropy dominates the competition when β is small (i.e., the

temperature is high). Since entropy is uniquely minimized at the equally dis-

tributed configuration (1/q, . . . , 1/q) ∈ Ξ, we can expect that the potential

Fβ(·) also has the unique minimum when β is small. On the other hand, if β

is large enough (i.e., the temperature is low), the energy H(·) with q minima

dominates the system, and therefore, we can expect that the potential Fβ

also has q global minima. In this section we provide the complete character-

ization of the complicated pattern of transition from this high-temperature

regime to low-temperature regime in a precise level.

In Section 5.3.1, we define several points that will be shown to be criti-

cal points. In Section 5.3.2, we introduce several critical values of (inverse)

temperature β. In Section 5.3.3, we summarize the results on the energy land-

scape Fβ(·). In Section 5.3.4, as a by-product of these results, we compute

the mean-field free energy.

5.3.1 Critical points of Fβ(·)

Let us first investigate critical points of Fβ(·). We recall that

Fβ(x) = −1

2

q∑
k=1

x2
k +

1

β

q∑
k=1

xk log xk ; x ∈ Ξ .

Notation 5.3.1. We have following notations for convenience.

1. Since there is no risk of confusion, we will write the point x = (x1, . . . ,

xq−1) ∈ Ξ as x = (x1, . . . , xq−1, xq) ∈ Rq where xq = 1−x1−· · ·−xq−1.

2. Let {e1, . . . , eq−1} be the orthonormal basis of Rq−1 and eq = 0 ∈
Rq−1. According to the convention above, the vectors e1, . . . , eq can be

regarded as an orthonormal basis of Rq.
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Figure 5.1: Graph of g2(t) for q = 10.

Now, we explain the candidates for the critical points of Fβ(·) playing

important role in the analysis of the energy landscape. The first candidate is

p := (1/q, . . . , 1/q) ∈ Ξ ,

which represents the state where the spins are equally distributed.

In order to introduce the other candidates, we fix i ∈ N ∩ [1, q/2] and let

j = q − i. Define gi : (0, 1/j)→ R as

gi(t) :=
i

1− qt
log
(1− jt

it

)
, (5.5)

where we set gi(1/q) = q so that gi becomes a continuous function on (0, 1/j).

We refer to Figure 5.1 for an illustration of graph of gi. Then, it will be

verified by Lemma 5.6.1 in Section 5.6.1 (and we can expect from the graph

illustrated in Figure 5.1) that gi(t) = β has at most two solutions. We denote

by ui(β) ≤ vi(β) these solutions, provided that they exist. If there is only

one solution, we let ui(β) = vi(β) be this solution.
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For k ∈ S, let

uk1 = uk1(β) :=
(
u1(β), . . . , 1− (q − 1)u1(β), . . . , u1(β)

)
∈ Ξ , (5.6)

vk1 = vk1(β) :=
(
v1(β), . . . , 1− (q − 1)v1(β), . . . , v1(β)

)
∈ Ξ , (5.7)

where 1−(q−1)u1(β) and 1−(q−1)v1(β) are located at the k-th component

of uk1 and vk1 , respectively. For k, l ∈ S, let

uk, l2 = uk, l2 (β) :=
(
u2(β), . . . ,

1− (q − 2)u2(β)

2
, . . . , (5.8)

. . . ,
1− (q − 2)u2(β)

2
, . . . , u2(β)

)
∈ Ξ ,

where
1− (q − 2)u2(β)

2
is located at the k-th and l-th components. Of course,

each of these points is well defined only when u1(β),v1(β), or u2(β) exists,

respectively. Then, let

U1 := {uk1 : k ∈ S} , U2 := {uk, l2 : k, l ∈ S} , and V1 := {vk1 : k ∈ S} .

We remark that these sets depend on β although we omit β in the expressions

for the simplicity of the notation.

Since we assumed that h = 0, by symmetry, we can expect that the

elements in U1 have the same properties; for instance, for all k, l ∈ S, we have

Fβ(uk1) = Fβ(ul1), and uk1 is a critical point of Fβ(·) if and only if ul1 is. Of

course the elements in U2 or V1 respectively have the same properties. Thus, it

suffices to analyze their representatives, and hence select these representatives

as

u1 = uq1 , u2 = uq−1, q
2 , and v1 = vq1 . (5.9)

Now, we have the following preliminary classification of critical points.

We remark that a saddle point is a critical point at which the Hessian has

only one negative eigenvalue.
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Proposition 5.3.2. The following hold.

1. If c ∈ Ξ is a local minimum of Fβ, then c ∈ {p} ∪ U1.

2. If s ∈ Ξ is a saddle point of Fβ, then s ∈ V1 ∪ U2 for q ≥ 4 and s ∈ V1

for q = 3.

Remark 5.3.3. The set U2 is not defined for q = 3 since the set Ui is defined

only when i ≤ q/2. This will be explained in Section 5.6.1.

The proof of this proposition is an immediate consequence of Proposition

5.6.3 in Section 5.6.1. The above proposition permits us to focus only on {p}∪
U1∪U2∪V1 when we analyze the energy landscape in view of the metastable

behavior, since the critical points of index greater than 1 cannot play any

role, as the metastable transition always happens at the neighborhood of a

saddle point (a critical point of index 1).

5.3.2 Critical temperatures

In this subsection, we introduce critical temperatures

0 < β1(q) < β2(q) < β3(q) ≤ q ,

at which the phase transitions in the energy landscape occur. The precise

definition of these critical temperatures are given in (5.31) of Section 5.6.2.

Henceforth, we write βi = βi(q), 1 ≤ i ≤ 3, since there is no risk of confusion.

To describe the role of these critical temperatures, we regard β as increas-

ing from 0 to ∞. Figure 5.2 shows the role of p, U1, V1, and U2 according to

inverse temperature. Section 5.6 will prove this figure.

At β = β1, the dynamics exhibits phase transition from fast mixing to slow

mixing, and this is proven in [19]. Furthermore, the behavior of the dynamics

changes from cutoff phenomenon to metastability. This phase transition is

due to the appearance of new local minima U1 of Fβ(·) other than p at β = β1.
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(a) q = 4 (b) q ≥ 5

Figure 5.2: Role of each critical point according to temperature. Solid lines
imply local minima and dashed lines imply saddle points.

At β = β2, the ground states of dynamics change from p to elements of U1, as

observed in [18, Theorem 3.1(b)]. To explain the role of critical temperatures

β3 and q, we have to divide the explanation into several cases. Let us first

assume that q ≥ 5 so that β3 < q. At β = β3, the saddle gates among the

ground states in U1 is changed from V1 to U2 (since the heights Fβ(v1) and

Fβ(u2) are reversed at this point) and at β = q, the local minimum p becomes

a local maximum. On the other hand, for q ≤ 4, we have β3 = q. At β = β3,

the change of the saddle gates and the disappearance of the local minimum

p occur simultaneously. We refer to [53] for the detailed description when

q = 3.

5.3.3 Stable and metastable sets

We define some metastable sets based on the results explained earlier. If

q ≥ 4, define Hβ as (cf. (5.9))

Hβ =

Fβ(v1) , β ∈ (β1, β3) ,

Fβ(u2) , β ∈ [β3,∞) .
(5.10)

When q = 3, we set Hβ = Fβ(v1) for all β > β1 (cf. Remark 5.3.3). It will be

verified in Lemma 5.6.7 and (5.31) that Hβ is the height of the lowest saddle
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(a) β ∈ (0, β1] (b) β ∈ (β1, β2)

(c) β = β2 (d) β ∈ (β2, β3)

(e) β = β3 (f) β ∈ (β3,∞)

Figure 5.3: Energy landscape of Fβ when q = 3.

points.

Let Ŝ := S ∪ {o} and uo
1 := p. Let2 Wk = Wk(β), k ∈ S, be the

connected component of {Fβ < Hβ} containing uk1 and let Wo = Wo(β) be

the connected component of {Fβ < Fβ(v1)} containing uo
1. For k, l ∈ Ŝ, let

Σk, l = Σk, l(β) :=Wk ∩Wl be a set of saddle gates of height Hβ between uk1

and ul1.

Now, we can state the main result on energy landscape and the proofs of

2We define the set Wk, k ∈ S, and Wo as the empty set if the set {Fβ < Hβ} does not
contain uk1 and {Fβ < Fβ(v1)} does not contain uo

1 respectively.
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theorems in this section will presented in Section 5.9. The first result holds

for all q ≥ 3.

Theorem 5.3.4. For q ≥ 3, the following hold.

1. If β ≤ β1, there is no critical point other than p, which is the global

minimum.

2. For β ∈ (β1, q), we have Wo 6= ∅ and for β ∈ [q,∞), we have Wo = ∅.

3. Let Mβ be a set of local minima of Fβ. Then, we have

Mβ =


{p} β ∈ (0, β1] ,

{p} ∪ U1 β ∈ (β1, q) ,

U1 β ∈ [q,∞) .

4. Let M?
β be a set of global minima of Fβ. Then, we have

M?
β =


{p} β ∈ (0, β2) ,

{p} ∪ U1 β = β2 ,

U1 β ∈ (β2,∞) .

Since there is only one minimum if β ≤ β1, we now consider β > β1. Before

we write the main result on metastable sets, we would like to emphasize that

[53, Proposition 4.4] proved the case when q = 3, while the proof for the case

q ≥ 4 is the main novel contents of the current chapter. We first consider the

case q ≤ 4. See Figure 5.33 for the visualization of the following and above

theorem.

Theorem 5.3.5. For q ≤ 4, the following hold.

1. β3 = q.

3This figures are excerpt from [53, Fig 4]
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2. For β ∈ (β1, q), the sets Wk, k ∈ Ŝ, are nonempty and disjoint. For

k, l ∈ S, Σk, l = ∅ and for k ∈ S, Σo, k = {vk1}.

3. For β = q, we have Wo = ∅. The sets Wk, k ∈ S, are nonempty and

disjoint. For k, l ∈ S, Σk, l = {p}.

4. For β ∈ (q,∞), we have Wo = ∅. The sets Wk, k ∈ S, are nonempty

and disjoint. For k, l ∈ S,

Σk, l =

{vm1 } , where m ∈ S \ {k, l} , if q = 3 ,

{uk, l2 } , if q = 4 .

Next, we consider the case q ≥ 5. Note that the crucial difference com-

pared to the previous theorem lies in the third and fifth statements. See

Figures 5.4 and 5.5 for the visualization of the following theorem and Theo-

rem 5.3.4.

Theorem 5.3.6. For q ≥ 5, the following hold.

1. β3 < q.

2. For β ∈ (β1, β3), the sets Wk, k ∈ Ŝ, are nonempty and disjoint. For

k, l ∈ S, Σk, l = ∅ and for k ∈ S, Σo, k = {vk1}

3. For β = β3, the sets Wk, k ∈ Ŝ, are nonempty and disjoint. For k, l ∈
S, Σk, l = {uk, l2 } and for k ∈ S, Σo, k = {vk1}.

4. For β ∈ (β3,∞), the sets Wk, k ∈ S, are nonempty and disjoint. For

k, l ∈ S, Σk, l = {uk, l2 } and for k ∈ S, Σo, k = ∅.

5. For β ∈ (β3, q), we have Fβ(v1) > Hβ. Furthermore, the set {Fβ <

Fβ(v1)} has only two connected components, the well Wo and the other

containing U1. The saddle points between them are V1.
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(a) (β1, β2) (b) β = β2

(c) (β2, β3) (d) (β3,∞)

(e) (β3, q)

Figure 5.4: Illustration of energy landscape of Fβ when q = 5. The first four
figures are {Fβ ≤ Hβ} and the last figure is {Fβ ≤ Fβ(v1)}. The star-shaped
vertices and circles represent saddle points and local minima, respectively.
The empty circles are shallower minima. Each arrow represents a path from
one shallower minimum to another deeper minimum passing through a saddle
point.
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(a) U1 and V1 (b) U1 and U2

(c) U1, V1, and U2

Figure 5.5: Illustration of energy landscape of Fβ when q = 5 and β = β3. The
figures are {Fβ ≤ Hβ}. The star-shaped vertices and circles represent saddle
points and local minima, respectively. The empty circles are shallower min-
ima. Each arrow represents a path from one shallower minimum to another
deeper minimum passing through a saddle point. Note that when β = β3, U2

and V1 exist simultaneously. The first two figures are illustrations of saddle
structures of V1 and U2, respectively. The last figures is a combination of the
previous two figures.
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5.3.4 Mean-field free energy

In this subsection, we compute the mean-field free energy of the Curie–Weiss–

Potts model defined by

ψ(β) := − lim
N→∞

1

βN
logZN(β) . (5.11)

It is well known that the Curie–Weiss model with q = 2 spins exhibits the

second-order phase transition at the unique critical temperature β = βc,

while the Curie–Weiss–Potts model with q ≥ 3 spins exhibits the first-order

phase transition at β = β2 (cf. [18, 26, 78]). We now reconfirm this folklore

by computing the free energy explicitly. This computation is based on the

following observation (cf. [26, display (2.4)]):

lim
N→∞

1

βN
logZN(β) = sup

x∈Ξ
{−Fβ(x)} . (5.12)

We give a rigorous proof in Appendix B.

Now, let us assume that q ≥ 3 so that by (5.11), (5.12), and Theorems

5.3.4, we can deduce that

ψ(β) =

Fβ(p) if β ≤ β2 ,

Fβ(u1) if β > β2 .
(5.13)

Corollary 5.3.7. We have that

ψ′(β) =


− 1

β2
S(p) if β < β2 ,

− 1

β2
S(u1) if β > β2 .

(5.14)

In particular, the Curie–Weiss–Potts model with q ≥ 3 exhibits the first-order

phase transition at β = β2.

Proof. Let c(β) ∈ Ξ be a critical point of Fβ(·). Then, since Fβ = H +β−1S,
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we have
d

dβ
Fβ(c(β)) = ∇Fβ(c(β)) · ċ(β)− 1

β2
S(c(β)) .

Since ∇Fβ(c(β)) = 0, we get (5.14) from (5.13). Since S attains its unique

local minimum at p and u1 6= p, ψ′(·) is discontinuous at β = β2.

5.4 Main result for metastability

In this section, we analyze the metastable behavior of rN(·) based on the

analysis of the energy landscape carried out in the previous section and the

general results obtained by [54]. As inverse temperature β varies, the behavior

of this dynamics changes both qualitatively and quantitatively thanks to the

structural phase transitions explained in the previous section.

Since the invariant measure νβN is exponentially concentrated in neighbor-

hoods of ground states, the corresponding Markov process rN(·) stays most

of the time at these neighborhoods. The abrupt transitions between such

stable states are the metastable behavior of the process rN(·) and one of the

natural ways of describing these hopping dynamics among the neighborhoods

of the ground states is the Markov chain model reduction. A comprehensive

understanding of such approaches can be obtained from [2, 3, 46].

When the dynamics starts from a local minimum which is not a global

minimum, we have to estimate the mean of the transition time to the global

minimum in order to quantitatively understand the metastable behavior.

This estimation is known as the Eyring–Kramers formula. In this section we

provide the Markov chain model reduction and Eyring–Kramers formula for

the metastable process rN(·).
Such a metastable behavior is observed only when there are multiple

local minima; and hence we cannot expect metastable behavior at the high-

temperature regime β ≤ β1 for which p is the unique local (and global)

minimum. Hence, we assume β > β1 in this section.
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5.4.1 Some preliminaries

In this subsection, we introduce several notions crucial to the description of

the metastable behavior.

Some constants

We first define the so-called Eyring–Kramers constants which play fundamen-

tal role in the quantitative analysis of metastability. Recall the definition of

{e1, . . . , eq} from Notation 5.3.1. Define (q − 1) × (q − 1) matrices Ai, j,

i, j ∈ S, and A(x) as

Ai, j = (ej − ei)(ej − ei)† and A(x) =
∑

1≤i<j≤q

wi, j(x)Ai, j .

As we will see in Section 5.5.3, these constants are related to the drift of

empirical magnetization as a consequence of spin update from i to j or j to i.

Since Ai, j, i, j ∈ S, are positive definite, A(x) satisfies [54, display (A.1)] and

hence, by [54, Lemma A.1], for all k, l ∈ S, the matrices (∇2Fβ)(uk, l2 )A(uk, l2 )†

and (∇2Fβ)(vk1)A(vk1)† have the unique negative eigenvalue which will be

denoted respectively by −µk, l = −µk, l(β) and −µo, k = −µo, k(β).

Now, let us define the Eyring–Kramers constants corresponding to our

model as

ωk, l = ωk, l(β) :=
µk, l(β)√

− det[(∇2Fβ)(uk, l2 )]
e−βGβ(uk, l2 ) , k, l ∈ S , (5.15)

ωo, k = ωo, k(β) :=
µo, k(β)√

− det[(∇2Fβ)(vk1)]
e−βGβ(vk1 ) , k ∈ S . (5.16)

By symmetry, we have ωk, l = ωk′, l′ for all k, l ∈ S and k′, l′ ∈ S and

ωo, k = ωo, k′ for all k, k′ ∈ S. Hence, let us write ωo = ωo, 1 and ω1 = ω1, 2.
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Next, define

νk = νk(β) :=
exp(−βGβ(uk1))√
β2 det[(∇2Fβ)(uk1)]

, k ∈ S , (5.17)

νo = νo(β) :=
exp(−βGβ(p))√
β2 det[(∇2Fβ)(p)]

. (5.18)

As explained in [54, display (2.8)], the constants νk, k ∈ S, and νo are the

normalized asymptotic mass of the neighborhood of uk1 and p, respectively.

By the symmetry, we also obtain ν1 = · · · = νq.

Time scales

The constant Hβ defined in (5.10) denotes the height of the lowest saddle

points. Let θk = θk(β), k ∈ Ŝ, be the depth of well Wk(β), i.e., θ1 = · · · = θq = β[Hβ − Fβ(u1)] ,

θo = β[Fβ(v1)− Fβ(p)] .

Then, eNθ1 and eNθo represent the time scales on which rN(·) exhibits metasta-

bility. For β ≥ q, the constant θo is meaningless since Wo = ∅.

Order process and Markov chain model reduction

Let δ = δ(β) > 0 be a small enough number such that δ < min{θo, θ1}. If

β ≥ q, since θo is not defined, let δ = (1/2)θ1. For k ∈ S, define

Wδ
k =Wk ∩ {x ∈ Ξ : Fβ(x) < Hβ − δ} ,

Wδ
o =Wo ∩ {x ∈ Ξ : Fβ(x) < Fβ(v1)− δ} .

For k ∈ Ŝ, define EkN = EkN(β) as

EkN =Wδ
k ∩ ΞN .
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This set EkN is called the metastable set, provided that it is not an empty set.

For A ⊂ Ŝ, we write

EAN =
⋃
k∈A

EkN .

Let T be S, Ŝ, or {o, S}. Denote by ΨN = Ψβ
N : ΞN → T∪{N} the projection

map given by

ΨN(x) =
∑
k∈T

k1{x ∈ EkN}+N1{x ∈ ΞN \ ETN} .

Let us define the so-called order process by XN(t) = ΨN(rN(t)) which rep-

resents the index of metastable set at which the process rN(·) is staying.

Definition 5.4.1 (Markov chain model reduction). Let X(·) be a continuous

time Markov chain on T . We say that the metastable behavior of the process

rN(·) is described by a Markov Process X(·) in the time scale θN if, for all

k ∈ T and for all sequence (xN)N≥1 such that xN ∈ EkN for all N ≥ 1, the

finite dimensional marginals of the process XN(θN ·) under PN, βxN
converges to

that of the Markov chain X(·) as N →∞.

In the previous definition, it is clear that the Markov chain X(·) describes

the inter-valley dynamics of the process rN(·) accelerated by a factor of θN .

5.4.2 Metastability results for q ≤ 4

We can now state the main result for the metastable behavior. First, we

consider the case q ≤ 4 whose result is essentially the same as that in [53,

Section 4.3] where only the case q = 3 was considered.

We define limiting Markov chains when q ≤ 4.

Definition. Let q ≤ 4 and4 i ∈ { (1, 2), (2), (2, 3), (3,∞), (4) }. Let Yi
q(·)

be a Markov chain on T with jump rate riq : T × T → R given by

4Here, (1, 2), (2, 3), (3,∞) are single element of the given set.
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1. r(1,2)
q (k, l) = 1{l = o}ωo

ν1

, T = Ŝ.

2. r(2)
q (k, l) = 1{l = o}ωo

ν1

+ 1{k = o}ωo

νo
, T = Ŝ.

3. r(2,3)
q (k, l) =

ωo

qν1

, T = S.

4. r(3,∞)
q (k, l) =


ω0

ν1

, q = 3

ω1

ν1

, q = 4
, T = S.

5. r(4)
q (k, l) = 1{k = o}ωo

νo
, T = Ŝ.

The following theorem is the metastability result for q ≤ 4. We remark

that the case when q = 3 is proven in [53, Section 4.3].

Theorem 5.4.2. Let q ≤ 4. Then, the metastable behavior of the process

rN(·) is described by (cf. Definition 5.4.1)

1. β ∈ (β1, β2): the process Y(1,2)
q (·) in the time scale 2πNeθ1.

2. β = β2: the process Y(2)
q (·) in the time scale 2πNeθ1.

3. β ∈ (β2, q): the process Y(2,3)
q (·) in the time scale 2πNeθ1 and by the

process Y(4)
q (·) in the time scale 2πNeθo.

4. β ∈ (q,∞): the process Y(3,∞)
q (·) in the time scale 2πNeθ1.

The proof follows from Theorems 5.3.4 and 5.3.5, Proposition 5.5.3, and

[53, Theorem 2.2, Remark 2.10, 2.11].

Remark 5.4.3. As mentioned in [53], we cannot investigate the case β =

β3 = q with the current method since p is a degenerate saddle point.

Remark 5.4.4. The qualitative feature of the metastable behavior of rN(·)
is essentially same for q = 3 and q = 4. The only difference is that the saddle

155



CHAPTER 5. CURIE–WEISS–POTTS MODEL

points between metastable sets are defined in different ways; however, when

β > β3, the points in V1 for q = 3 and U2 for q = 4 play the same role since

all the points belonging to these sets represent states in which most sites are

aligned to two spins equally.

5.4.3 Metastability results for q ≥ 5

As in the previous subsection, we start by defining limiting Markov chains.

Note that there are two different Markov chains.

Definition. Let q ≥ 5 and i ∈ { (1, 2), (2), (2, 3), (3), (3,∞), (4), (5) }. Let

Yi
q(·) be a Markov chain on T with jump rate riq : T ×T → R with jump rate

riq : T × T → R given by

1. r(1,2)
q (k, l) = 1{l = o}ωo

ν1

, T = Ŝ.

2. r(2)
q (k, l) = 1{l = o}ωo

ν1

+ 1{k = o}ωo

νo
, T = Ŝ.

3. r(2,3)
q (k, l) =

ωo

qν1

, T = S.

4. r(3)
q (k, l) =

1

ν1

(
ωo

q
+ ω1) , T = S.

5. r(3,∞)
q (k, l) =

ω1

ν1

, T = S.

6. r(4)
q (k, l) = 1{k = o}ωo

νo
, T = Ŝ.

7. r(5)
q (k, l) = 1{k = o}qωo

νo
, T = {o, S}.

Now, we present the metastability result for q ≥ 5. The new metastable

behaviors are observed when β = β3 and β ∈ (β3, q).

Theorem 5.4.5. Let q ≥ 5. Then, the metastable behavior of the process

rN(·) is described by
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1. β ∈ (β1, β2): the process Y(1,2)
q (·) in the time scale 2πNeθ1.

2. β = β2: the process Y(2)
q (·) in the time scale 2πNeθ1.

3. β ∈ (β2, β3): the process Y(2,3)
q (·) in the time scale 2πNeθ1 and by the

process Y(4)
q (·) in the time scale 2πNeθo.

4. β = β3: the process Y(3)
q (·) in the time scale 2πNeθ1 and by the process

Y(4)
q (·) in the time scale 2πNeθo.

5. β ∈ (β3, q): the process Y(3,∞)
q (·) in the time scale 2πNeθ1and by the

process Y(5)
q (·) in the time scale 2πNeθo.

6. β ∈ [q,∞): the process Y(3,∞)
q (·) in the time scale 2πNeθ1.

The proof follows from Theorems 5.3.4 and 5.3.6, Proposition 5.5.3, and

[54, Theorem 2.2, Remarks 2.10, 2.11].

Remark 5.4.6. Notably, in contrast to the case q ≤ 4, we can describe the

metastable behavior for all β ∈ (β1,∞) since the saddle points are nondegen-

erate when β = β3.

We can now provide a more intuitive explanation of Theorem 5.4.5. See

Figure 5.6 also for the description of metastable behavior. Note that if β2 <

β < q, there are two time scales.

• Y(1,2)
q : If β1 < β < β2, in the time scale 2πNeθ1 , rN(·) starting from

ESN , reaches EoN and stays there forever. When it goes from EkN , k ∈ S,

to EoN , it visits the neighborhood of vk1 .

• Y(2)
q : If β = β2, in the time scale 2πNeθ1 , the process rN(·) goes around

each well in E ŜN . However, when rN(·) starting from EkN , k ∈ S, goes to

E lN , l ∈ S \{k}, it must pass through EoN and as in the case β ∈ (β1, β2),

it visits the neighborhood of vk1 and then the neighborhood of vl1.

157



CHAPTER 5. CURIE–WEISS–POTTS MODEL

(a) Y(1,2)
q (b) Y(2)

q

(c) Y(2,3)
q (d) Y(3)

q

(e) Y(3,∞)
q (f) Y(4)

q

Figure 5.6: Figure about metastability when q = 5
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• Y(2,3)
q : If β2 < β < β3, in the time scale 2πNeθ1 , the process rN(·)

starting from ESN travels E ŜN , however, it stays in EoN in negligible time.

Furthermore, when rN(·) goes from EkN , k ∈ S, to E lN , l ∈ S \ {k}, it

must visit EoN .

• Y(3)
q : If β = β3, in the time scale 2πNeθ1 , the process rN(·) starting

from ESN travels E ŜN , however, it stays in EoN in negligible time. Fur-

thermore, there are two ways in which rN(·) goes from EkN , k ∈ S, to

E lN , l ∈ S \ {k}. First, it goes to E lN directly and must pass through

the neighborhood of uk, l2 . Second, it visits EoN and stays there for a

negligible period of time.

• Y(3,∞)
q : If β > β3, in the time scale 2πNeθ1 , the process rN(·) starting

from ESN travels ESN without visiting EoN . As in the case β = β3, it must

pass through the neighborhood of uk l2 , k, l ∈ S, when it goes from EkN
to E lN .

• Y(4)
q : If β2 < β ≤ β3, in the second time scale 2πNeθo , the process

rN(·) starting from EoN , goes to EkN , k ∈ S, and stays there forever. As

Y(1,2)
q , Y(2)

q , and Y(2,3)
q , it passes through the neighborhood of vk1 when

it moves to EkN from EoN .

• Y(5)
q : If β3 < β < q, in the second time scale 2πNeθo , the process rN(·)

starting from EoN , goes to ESN and stays there forever. This dynamics is

similar to Y(4)
q ; however, EkN , k ∈ S, are not distinguishable.

5.4.4 Eyring–Kramers formulae

In this subsection, we present the Eyring–Kramers formula with regard to

metastable behavior.

Before we state the result, we introduce some notations. Let [x]N be the

nearest point in ΞN of x ∈ Ξ. If there is more than one such point, one of
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them is chosen arbitrarily. For A ⊂ Ξ, define [A]N as

[A]N = {[x]N : x ∈ A} .

Denote by HA the hitting time of the set [A]N by the process rN(·):

HA = inf{t > 0 : rN(t) ∈ [A]N} .

If A = {x}, we simply write HA = Hx.

We have the following theorem.

Theorem 5.4.7. Let q ≥ 3. We have the following.

1. For β1 < β ≤ β2 and k ∈ S, we have

EN, β
uk1

[Hp] = [1 + oN(1)]
ν1

ωo

2πN exp(Nθ1) .

2. For β2 ≤ β < q, we have

EN, βp [HU1 ] = [1 + oN(1)]
νo
qωo

2πN exp(Nθ0) .

3. For β > β3 and k ∈ S, we have

EN, β
uk1

[HU1\{uk1}] = [1 + oN(1)]
ν1

(q − 1)ω1

2πN exp(Nθ1) .

The proof follows from Theorems 5.3.4-5.3.6, Proposition 5.5.3, and [54,

Theorem 2.5, Remarks 2.10, 2.11].

Because of the Eyring–Kramers formula, we can derive the large-deviation-

type estimates on spectral gap and mixing time. To explain this more con-

cretely, let λN be the spectral gap of the process rN(·) (which will be defined
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explicitly in (5.20)), and define the mixing time as

tNmix = tNmix(δ) := inf

{
t > 0 : sup

x∈ΞN

∥∥∥P t(x, ·)− νβN
∥∥∥

TV
< δ

}
; δ ∈ (0, 1) ,

where P t(x, ·) is a distribution of rN(t) with initial condition rN(0) = x and

‖ · ‖TV denotes the total variation distance defined by

‖µ− ν‖TV :=
1

2

∑
x∈ΞN

|µ(x)− ν(x)|

for any two probability measures µ and ν on ΞN . Then, by the arguments in

[13, 85], we can observe that

lim
N→∞

1

N
log tNmix = lim

N→∞

1

N
log

1

λN
= max{θo, θ1} .

Note that the Eyring–Kramers type estimate on the spectral gap cannot

follow immediately from the results of [13, 85] since there are several valleys

with same depth.

5.5 Preliminary analysis on potential and gen-

erator

In this section, we conduct several preliminary analyses. In Section 5.5.1, we

prove Proposition 5.2.1. In particular, we compute the jump rates of Markov

chain rN(·). In Section 5.5.2, we decompose the generator LN into several

simple generators L i, j
N,x, x ∈ ΞN , i, j ∈ S. Via this decomposition of LN ,

we can handle LN using the method developed in [54] since our model is a

special case of [54, Remarks 2.10, 2.11]; this correspondence will be explained

in Section 5.5.3.
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5.5.1 Dynamics of proportion vector.

We prove Proposition 5.2.1 in this section.

Proof of Proposition 5.2.1. Let eNj :=
1

N
ej, j ∈ S (cf. Notation 5.3.1). Fix

configurations σ, τ ∈ ΩN such that rN(σ) = rN(τ) and let

x = (x1, . . . , xq−1) = rN(σ) = rN(τ) ∈ ΞN .

For some sites u1, u2, v1, v2 ∈ KN such that σu1 = σv1 = τu2 = τv2 , let i = σv1 .

Then, the Markovity of the process rN(t) can be inferred from the identity

cu1, j(σ) = cv1, j(σ) = cu2, j(τ) = cv2, j(τ)

= exp

{
−Nβ

2
[H(rN(σv1, j))−H(rN(σ))]

}
= exp

{
−Nβ

2
[H(x+ eNj − eNi )−H(x)]

}
,

for j 6= i. Hence, rN(·) is a Markov chain.

Since there are Nxi sites whose spins are i, the jump rate RN(·, ·) of rN(·)
can be written as

RN(x,x+ eNj − eNi ) =
Nxi
N

exp

{
−Nβ

2
[H(x+ eNj − eNi )−H(x)]

}
.

(5.19)

Hence, the generator LN of rN(·) is given as

LNf(x) =
∑
i, j∈S

RN(x,x+ eNj − eNi ) [f(x+ eNj − eNi )− f(x)] , (5.20)

for f : ΞN → R.

Finally, this dynamics is reversible with respect to νNβ since we have the

following detailed balance condition

νNβ (x)RN(x,x+ eNj − eNi ) = νNβ (x+ eNj − eNi )RN(x+ eNj − eNi ,x) ,

162



CHAPTER 5. CURIE–WEISS–POTTS MODEL

so that νNβ is the invariant measure.

5.5.2 Cyclic decomposition

For 1 ≤ i < j ≤ q, let γi, jN be the cycle (eN0 , e
N
j − eNi , eN0 ) of length 2 on

(Z/N)q−1 and let (γi, jN )x = x+ γi, jN . Define Ξ̂i, j
N as

Ξ̂i, j
N = {x ∈ ΞN : (γi, jN )x ⊂ ΞN} = {x ∈ ΞN : xj ≤ 1−N−1, xi ≥ N−1} .

Define a jump rate R̃i, j
N associated with this cycle as

R̃i, j
N, 0(x) = exp

{
−Nβ[F

i, j

β,N(x)− Fβ,N(x)]
}
,

R̃i, j
N, 1(x) = exp

{
−Nβ[F

i, j

β,N(x)− Fβ,N(x+ eNj − eNi )]
}
,

where

F
i, j

β,N(x) =
1

2
[Fβ,N(x) + Fβ,N(x+ eNj − eNi )] .

Let L i, j
N,x, x ∈ Ξ̂N , be a generator acting on f : ΞN → R as

(L i, j
N,xf)(y) =


R̃i, j
N, 0(x)

[
f(x+ eNj − eNi )− f(x)

]
y = x ,

R̃i, j
N, 1(x)

[
f(x)− f(x+ eNj − eNi )

]
y = x+ eNj − eNi ,

0 otherwise .

(5.21)

Here, L i, j
N,x can be regarded as a generator of a Markov chain on the cycle

(γi, jN )x.

Let

wi, j(x) :=
√
xixj , and wi, jN (x) :=

√
xi(xj +

1

N
) .

By (5.3), we can write

exp{−βN [Fβ,N(x)−H(x)]} = (2πN)(q−1)/2

(
N

(Nx1) · · · (Nxq)

)
.
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By elementary computations, we obtain

RN(x,x+ eNj − eNi )/R̃i, j
N, 0(x) = RN(x+ eNj − eNi ,x)/R̃i, j

N, 1(x) = wi, jN (x) ,

so that

RN(x,x+ eNj − eNi )[f(x+ eNj − eNi )− f(x)]

= wi, jN (x) L i, j
N,xf(x) and

RN(x,x+ eNi − eNj )[f(x+ eNi − eNj )− f(x)]

= wi, jN (x+ eNi − eNj ) L i, j

N,x+eNi −eNj
f(x) .

Hence, by (5.21), we can write

LNf(x) =
∑

1≤i<j≤q

[wi, jN (x) L i, j
N,x + wi, jN (x+ eNi − eNj ) L i, j

N,x+eNi −eNj
]f(x)

=
∑

1≤i<j≤q

∑
y∈Ξ̂i, jN

wi, jN (y)L i, j
N,yf(x) . (5.22)

Since wi, jN converges uniformly to wi, j and is uniformly Lipschitz on every

compact subset of int Ξ, our model is a special case of [54, Remarks 2.10, 2.11]

provided that several technical requirements are verified. These requirements

will be verified in the next subsection.

Remark 5.5.1. [54, Section 2] assumes that for γi, jN = (z0, z1), z1−z0 gen-

erates Zq−1; however, this requirement is needed to make rN(·) be irreducible.

Since (γi, jN )1≤i<j≤q generate Zq−1, we do not need this assumption.

5.5.3 Requirements for Fβ,N and LN

In this subsection, we verify that our model is a special case of [54, Remarks

2.10, 2.11].

First, we give some properties of Fβ(·) and Gβ,N(·). By the following
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proposition, Fβ(·) and Gβ,N(·) fulfill the requirements in the first paragraph

of [54, Section 2].

Proposition 5.5.2. The functions Fβ(·) and Gβ,N(·) satisfy the following

properties.

1. Fβ is twice-differentiable and there is no critical points at ∂ Ξ. For all

x ∈ ∂Ξ, ∇Fβ(x) · n(x) > 0.

2. The second partial derivatives of Fβ(·) are Lipschitz-continuous on ev-

ery compact subset of int Ξ.

3. On each compact subset of int Ξ, Gβ,N(·) is uniformly Lipschitz and

converges uniformly to Gβ(x) := (1/2β) log(x1 · · ·xq) as N →∞.

4. There are finitely many critical points of Fβ(·).

Proof. (1)-(3) are straightforward. By Lemma 5.6.2 in Section 5.6.1, there

are finitely many critical points of Fβ(·).

Next, fix one of saddle points s. Note that ∇2Fβ(s) has a unique negative

eigenvalue. As in [54, Section 4.3], define (L i, j
N )s as

(L i, j
N )sf(x) =

1

N2
(ej−ei)†∇2f(x)(ej−ei)−

1

N
Ai, j∇2F (s)(x−s) ·∇f(x) .

Denote by −λs
1, λ

s
2, . . . , λ

s
q−1 the eigenvalues of ∇2Fβ(s) where λs

i > 0 for all

i = 1, . . . q − 1, and by as
1,a

s
2, . . . ,a

s
q−1 the corresponding eigenvectors. Let

εN := N−2/5 � N−1 so that εN satisfies [54, displays (4.7), (4.8)]. Define a

neighborhood of s as

Cs
N :=

{
s +

q−1∑
k=1

xka
s
k : |x1| ≤ εN , |xk| ≤

√
2λs

1

λk
εN , 2 ≤ k ≤ q − 1

}
∩ ΞN .

Then, by the next proposition, definitions (5.15)-(5.18) are consistent with

[54, Remarks 2.10, 2.11].

165



CHAPTER 5. CURIE–WEISS–POTTS MODEL

Proposition 5.5.3. For a smooth function f : Ξ → R, we have uniformly

on Cs
N ,

LNf = [1 +O(εN)]
∑

1≤i<j≤q

wi, j(s)(L i, j
N )sf .

Proof. Since |x−s| = O(εN), by (5.21) and the second order Taylor expansion

on Cs
N , we have ∑

y∈Ξ̂i, jN

L i, j
N,yf(x) = [1 +O(εN)](L i, j

N )sf(x) .

Hence, on Cs
N , since wi, jN (x) = [1 +O(N−1)]wi, j(x) = [1 +O(εN)]wi, j(s), we

have

LNf(x) =
∑

1≤i<j≤q

∑
y∈Ξ̂i, jN

wi, jN (y)L i, j
N,yf(x)

= [1 +O(εN)]
∑

1≤i<j≤q

wi, j(s)
∑
y∈Ξ̂i, jN

L i, j
N,yf(x)

= [1 +O(εN)]
∑

1≤i<j≤q

wi, j(s)(L i, j
N )sf(x) .

5.6 Investigation of critical points and tem-

peratures

This section is devoted to the investigation of critical points and tempera-

tures including their definitions. We will provide a preliminary analysis of

the critical points in Section 5.6.1 and of the critical temperatures in section

5.6.2.
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5.6.1 Classification of critical points

We recall that

Fβ(x) = −1

2

q∑
k=1

x2
k +

1

β

q∑
k=1

xk log xk ,

and that xq = 1− (x1 + · · ·+ xq−1). For 1 ≤ k ≤ q − 1,

∂

∂xk
Fβ(x) = −(xk − xq) +

1

β
(log xk − log xq) .

If
∂

∂xk
Fβ(x) = 0, we must have xk −

1

β
log xk = xq −

1

β
log xq. Hence,

∇Fβ(x) = 0 if and only if xk −
1

β
log xk, 1 ≤ k ≤ q, are the same . (5.23)

By (5.23), p = (1/q, . . . , 1/q) is a critical point.

By elementary computation, we can check that the equation t− 1

β
log t = c

has at most two positive real solutions for fixed β, c > 0. Hence, if (x1, . . . , xq)

is a critical point5, xk’s can have at most 2 values by (5.23). Hereafter, we

assume c is a critical point and

c = (t, . . . , t, (1− jt)/i, . . . , (1− jt)/i) ,

where j is the number of t’s and i = q − j. Observe that by symmetry, each

permutation of coordinates of c has the same properties. Without loss of

generality, we may assume

1 ≤ i ≤ q/2 ≤ j ≤ q − 1 and t 6= 1/q .

The point p will be analyzed separately.

5Recall Notaion 5.3.1.
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(a) i = 2. (b) i = q/2.

Figure 5.7: Graphs of gi(t), hi(t), and h′i(t) when q = 10.
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By (5.23), we obtain

t− 1

β
log t =

1− jt
i
− 1

β
log
(1− jt

i

)
,

which implies

β =
i

1− qt
log
(1− jt

it

)
= gi(t) . (5.24)

Lemma 5.6.1. Fix q ≥ 3, 1 ≤ i ≤ q/2 and j = q − iP. Then, the function

gi : (0, 1/j) → R has the unique minimum, say mi. Furthermore, if β >

gi(mi), β = gi(t) has two solutions.

Proof. Define hi : (0, 1/j)→ R as6

hi(t) := log
1− jt
it

+
qt− 1

qt(1− jt)
. (5.25)

By elementary computation, we obtain

g′i(t) =
qi

(1− qt)2
hi(t) and h′i(t) =

(qt− 1)(2jt− 1)

q(1− jt)2t2
. (5.26)

There are two cases, where i < q/2 and i = q/2. By elementary computa-

tion, we can show that the graphs of gi, hi, h
′
i are given by Figure 5.7, which

completes the proof.

For 1 ≤ i ≤ q/2, let

βs, i = βs, i(q) := gi(mi) , (5.27)

where mi is the unique minimum of gi(·) given in the above lemma.

If β ≥ βs, i, there are one or two solutions of β = gi(t) which will be

6As gi(·); the function hi(·) can be continuously extended to (1, 1/j).
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denoted by ui = ui(β), vi = vi(β) where ui ≤ vi. Let

Ui = Ui(β) = {permutations of (ui, . . . , ui, (1− jui)/i, . . . , (1− jui)/i)} ,

Vi = Vi(β) = {permutations of (vi, . . . , vi, (1− jvi)/i, . . . , (1− jvi)/i)} ,

for β ≥ βs, i . We have the following candidates of the critical points of Fβ.

Lemma 5.6.2. A critical point of Fβ is exactly one of the following cases.

1. p = (1/q, . . . , 1/q).

2. For 1 ≤ i ≤ q/2 and β ∈ (βs, i,∞), elements of Ui.

3. For 1 ≤ i ≤ q/2 and β ∈ (βs, i,∞) \ {q}, elements of Vi.

4. For 1 ≤ i < q/2 and β = βs, i, elements of Ui = Vi.

Proof. By part (1) of Proposition 5.5.2, points in ∂Ξ cannot be critical points.

Then, the proof follows from (5.23) and Lemma 5.6.1.

Finally, we have the following results for critical points. The proof for

q = 3 is given in [53, Proposition 4.2].

Proposition 5.6.3. The minima and saddle points of Fβ for q = 3, q = 4,

and q ≥ 5 are given by Tables 5.1, 5.2, and 5.3, respectively.

p U1(β) V1(β)

β ∈ (0, βs, 1) minimum

β = βs, 1 minimum degenerate degenerate

β ∈ (βs, 1, q) minimum minima saddle points

β = q degenerate minima degenerate

β ∈ (q,∞) maximum minima saddle points

Table 5.1: Classification of critical points when q = 3
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p U1(β) V1(β) U2(β) = V2(β)

β ∈ (0, βs, 1) minimum

β = βs, 1 minimum degenerate degenerate

β ∈ (βs, 1, q) minimum minima saddle points

β = q degenerate minima degenerate degenerate

β ∈ (q,∞) maximum minima index ≥ 2 saddle points

Table 5.2: Classification of critical points when q = 4

p U1(β) V1(β) U2(β)

β ∈ (0, βs, 1) minimum

β = βs, 1 minimum degenerate degenerate

β ∈ (βs, 1, βs, 2) minimum minima saddle points

β = βs, 2 minimum minima saddle points degenerate

β ∈ (βs, 2, q) minimum minima saddle points saddle points

β = q degenerate minima degenerate degenerate

β ∈ (q,∞) maximum minima index ≥ 2 saddle points

Table 5.3: Classification of critical points when q = 5

Section 5.7 proves the above proposition. Until now, we classified all min-

ima and saddle points for all q ≥ 3.

5.6.2 Definition of critical temperatures

In the previous subsection, we defined several temperatures βs, i, 1 ≤ i ≤ q/2.

In this subsection, we prove several properties of such temperatures and more-

over introduce new temperatures. Then, we select the critical temperatures

at which phase transitions occur.

The first lemma is about the order of βs, i.
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Lemma 5.6.4. We have βs, 1 < βs, 2 < · · · < βs, bq/2c. If q is even, we have

βs, q/2 = q and otherwise, βs, bq/2c < q.

Proof. In this proof, we regard i as a real number and claim that gi(t) in-

creases as i ∈ [1, q] increases for fixed t < 1/q. By elementary computation,

we obtain
d

di
gi(t) =

1

1− qt

(
log

1− jt
it

+
it

1− jt
− 1
)
.

By the inequality x − 1 > log x, we can conclude that
d

di
gi(t) > 0. Hence,

gi(t) < gi+1(t) if t < 1/q.

Hereafter, let i ∈ Z. Suppose i < q/2−1. Since mi, mi+1 < 1/q, we obtain

βs, i = gi(mi) ≤ gi(mi+1) < gi+1(mi+1) = βs, i+1 ,

by the above claim. The first inequality holds since mi is a minimum of gi.

If i = q/2− 1, since mi < 1/q = mi+1, we obtain

βs, i = gi(mi) < gi(mi+1) = q = βs, q/2 .

If i < q/2, we have mi < 1/q so that βs, i < gi(1/q) = q. This with the

above argument prove the second assertion.

Remark. In particular, by the above lemma, we have βs, 1 < βs, 2 = q for

q = 4 and βs, 1 < βs, 2 < q for q ≥ 5.

The relative order of heights of critical points changes with changes in β,

and the phase transition is owing to this fact. We will explain when and how

this order is changed. Since the proofs are technical, they are postponed to

Section 5.8.

Order of heights of p and U1

Define βc as

βc(q) :=
2(q − 1)

q − 2
log(q − 1) , (5.28)
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which is introduced in [18, display (3.3)]. Then, we obtain the following.

Lemma 5.6.5. For q ≥ 3, we have βs, 1 < βc and for q ≥ 4, we have

βs, 1 < βc < βs, 2.

The proof of the lemma is given in Section 5.8.1. The following lemma is

an important property of βc.

Lemma 5.6.6. Let q ≥ 3. Then, we have
Fβ(p) < Fβ(u1) if β ∈ (βs, 1, βc) ,

Fβ(p) = Fβ(u1) if β = βc ,

Fβ(p) > Fβ(u1) if β ∈ (βc,∞) .

(5.29)

This result is the same as [18, Theorem 3.1(b)]. The proof is provided in

[18, Appendices A, B] via convex-duality.

We may assume that β increases from a very small positive number.

Observe that the elements of U1 and V1 simultaneously appear when β = βs, 1

and the elements of U2 appear when β = βs, 2 . By the above two lemmas,

before the appearance of critical points in U2, the heights of p and u1 are

reversed.

Order of heights of V1 and U2

We have the following lemma about the heights of u2 and v1. The critical

temperature βm given in the following lemma is the crucial development of

this chapter.

Lemma 5.6.7. Let q ≥ 5. We have a critical temperature βm ∈ (βs, 2, q) such

that 
Fβ(v1) < Fβ(u2) if βs, 2 ≤ β < βm ,

Fβ(v1) = Fβ(u2) if β = βm ,

Fβ(v1) > Fβ(u2) if βm < β ≤ q .

(5.30)
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The proof of the lemma is given in Section 5.8.2.

Up to this point, we have obtained four critical values

0 < βs, 1 < βc < βs, 2 < βm < q ,

when q ≥ 5. If q = 4, we have βs, 2 = q, else if q = 3, βs, 2 is not defined.

Thus, if q ≤ 4, define βm = q so that

0 < βs, 1 < βc < βm = q .

We conclude this section with the definition of the critical temperatures

at which the phase transitions occur. We can now define critical temperatures

β1, β2, β3 appearing in Section 5.3.2. The critical temperatures are given by

β1(q) := βs, 1(q), β2(q) := βc(q), β3(q) := βm(q) . (5.31)

5.7 Critical points of Fβ

In this section, we prove Proposition 5.6.3 for q ≥ 4. For the case q = 3, we

refer to [53] and we will only highlight the difference.

5.7.1 Eigenvalues of Hessian of Fβ at critical points

First, we investigate p = (1/q, . . . , 1/q), which is always a critical point for

all β > 0. The following lemma proves the property of p.

Lemma 5.7.1. The point p is a local minimum of Fβ if β < q, a local

maximum of Fβ if β > q, and a degenerate critical point when β = q.

Proof. Let 1 = (1, . . . , 1)† be a (q−1)×1 matrix. By elementary computation,

we obtain

∇2Fβ(p) =
q − β
β

(
diag(1, . . . , 1) + 11

†
)
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whose eigenvalues are (q− β)/β with multiplicity q− 2 and q(q− β)/β with

1. This completes the proof.

Now, for i ∈ [1, q/2]∩N, j = q− i, and β = gi(t), define a ∈ R and b ∈ R
as

a = a(i, t) = −1 + 1/βt , b = b(i, t) = −1 + i/β(1− jt) . (5.32)

We have the following lemma about eigenvalues of Hessian of Fβ at critical

points.

Lemma 5.7.2. Let i ∈ [1, q/2] ∩ N and j = q − i. Moreover, let t ∈ (0, 1/j)

and β = gi(t). Then, c = (t, . . . , t, (1− jt)/i, . . . , (1− jt)/i) is a critical point

of Fβ and eigenvalues of ∇2Fβ(c) constitute one of the following cases.

1. If i ≥ 2, all eigenvalues of ∇2Fβ(c) are a, b with multiplicative j − 1,

i− 2, respectively, and the roots of λ2 − (a+ qb)λ+ b(ia+ jb).

2. If i = 1, all eigenvalues of ∇2Fβ(c) are a with multiplicative j − 1 and

a+ (q − 1)b with multiplicative 1.

Proof. By Lemma 5.6.2, c is a critical point of Fβ since β = gi(t). By ele-

mentary computation, we have

∂2

∂x2
k

Fβ(x) = −1 +
1

βxk
+
(
− 1 +

1

βxq

)
,

∂2

∂xk∂xl
Fβ(x) = −1 +

1

βxq
,

so that

∂2

∂xk∂xl
Fβ(c) =


−1 +

1

βt
+ (−1 +

i

β(1− jt)
) if 1 ≤ k = l ≤ j

2(−1 +
i

β(1− jt)
) if j + 1 ≤ k = l ≤ q − 1

−1 +
i

β(1− jt)
if k 6= l
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Then, we can write ∇2Fβ(c) as

∇2Fβ(c) = D + b11† ,

where

D = diag(a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
q−1−j

) .

Let I = Iq−1 be a (q − 1)-identity matrix. By the formula

det(A+ vw†) = detA(1 + v†A−1w) ,

we can write

det(∇2Fβ(c)− λI) = det(D− λI + b11†)

= (a− λ)j(b− λ)i−1
[
1 + b

( j

a− λ
+
i− 1

b− λ
)]
.

Hence, we obtain

det(∇2Fβ(c)− λI)

=

(a− λ)j−1(b− λ)i−2(λ2 − (a+ qb)λ+ b(ia+ jb)) if i ≥ 2 ,

(a− λ)j−1(a+ jb− λ) = (a− λ)q−2(a+ (q − 1)b− λ) if i = 1 .

The proof of the lemma arises directly from this explicit computation of

characteristic polynomial of Hessian of Fβ(c).

We have the following lemma about the sign of the eigenvalues of∇2Fβ(c).

Recall the definition of mi from Lemma 5.6.1.

Lemma 5.7.3. Let i ∈ [1, q/2] ∩ N and j = q − i. Moreover, let t ∈ (0, 1/j)

and β = gi(t). Then, we have the following table regarding the sign of each

value. If i = q/2, we ignore t = mi and t ∈ (mi, 1/q).
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t ∈ (0,mi) t = mi t ∈ (mi, 1/q) t = 1/q t ∈ (1/q, 1/j)

a + + + 0 −
b − − − 0 +

ia+ jb + 0 − 0 +

b(ia+ jb) − 0 + 0 +

Proof. First, suppose that t < 1/q. Then,

a > 0 ⇐⇒ 1

t
> β =

i

1− qt
log
(1− jt

it

)
⇔ 1− qt

it
> log

(1− jt
it

)
.

By substituting x = (1 − jt)/(it), one can deduce that a > 0 is equivalent

to t 6= 1/q which implies a > 0. Moreover, by the same argument above, we

have b < 0. In the same manner, if t > 1/q, we obtain a < 0 and b > 0.

Now, we investigate the sign of ia+ jb. We write

ia+ jb = −i+
i

βt
− j +

ij

β(1− jt)
= −q +

i

βt(1− jt)
.

By elementary computation, ia+ jb = 0 if t = 1/q. Hence, ia+ jb > 0 if and

only if
i

qt(1− jt)
> β =

i

1− qt
log
(1− jt

it

)
.

First, assume t < 1/q. Then, ia+ jb > 0 if and only if

hi(t) = log
(1− jt

it

)
+

qt− 1

qt(1− jt)
< 0 .

By investigating the graph of hi (cf. Figure 5.7), the above inequality holds

if and only if t < mi. Second, assume t > 1/q. Then, ia+ jb > 0 if and only

if hi(t) > 0 if and only if t > 1/q. Hence, ia+ jb > 0 if and only if t < mi or

t > 1/q.

The case when t = 1/q can be proven by the argument in the first para-

graph of this proof. If t = mi, then ia + jb = 0 since hi(mi) = 0. The above
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argument can prove the case when i = q/2 since mq/2 = 1/q.

Now, we study the critical points more deeply. We note that the Morse

index of a critical point is the number of negative eigenvalues of the Hessian

at that point.

5.7.2 Critical points of Morse index 0 or 1

When we consider critical points in Ui or Vi , we assume that β > βs, i

since when β = βs, i, the elements of Ui = Vi are degenerate. The case when

β = βs, i is treated in Section 5.7.4.

By the Morse theory, critical points with more than 2 negative eigenvalues

can be neither saddle points nor minima. Hence, the critical points with

only positive eigenvalues or only one negative eigenvalue and q − 2 positive

eigenvalues are relevant to the landscape of Fβ. We select these critical points

in this subsection.

As in (5.32), for i ∈ [1, q/2]∩N, j = q− i, and β > βs, i, when we consider

ui ∈ Ui, let

a = a(ui) := −1 +
1

βui
, b = b(ui) := −1 +

1

β(1− jui)
,

and when we consider vi ∈ Vi, let

a = a(vi) := −1 +
1

βvi
, b = b(vi) := −1 +

1

β(1− jvi)
.

Lemma 5.7.4. Let q ≥ 4. If β > βs, 1 , U1 is a set of local minima. If

β > βs, 2 , U2 is a set of saddle points. If βs, 1 < β < q, V1 is a set of saddle

points else if β > q, each point in V1 has at least two negative eigenvalues.

Proof. Consider u1 ∈ U1. Eigenvalues of ∇2Fβ(u1) are a with multiplicative

q − 2 and a + (q − 1)b with multiplicative 1. By Lemma 5.7.3, if β > βs, 1,
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then since u1 < m1 < 1/q, we obtain a, a+ (q− 1)b > 0; hence, u1 is a local

minimum.

Next, consider v1 ∈ V1. Eigenvalues of ∇2Fβ(v1) are a with multiplicative

q−2 and a+ (q−1)b with multiplicative 1. By Lemma 5.7.3, if βs, 1 < β < q,

then since m1 < v1 < 1/q, we obtain a > 0 and a + (q − 1)b < 0; hence,

it is a saddle point. If β > q, then since v1 > 1/q, we obtain a < 0 and

a+ (q − 1)b > 0 so that v1 has more than two negative eigenvalues.

Finally, let i ≥ 2, j = q − i, and β > βs, i. In this case, ui has eigenvalues

a, b with multiplicative j−1, i−2 and the roots of λ2−(a+qb)λ+b(ia+jb).

Since ui < mi ≤ 1/q for all i and β > βs, i, by Lemma 5.7.3, a > 0, b < 0,

and b(ia + jb) < 0 so that it has j positive eigenvalues and i − 1 negative

eigenvalues. Hence, u2 is a saddle point.

Remark 5.7.5. For q = 3, by the same argument, ∇2Fβ(v1) has only one

negative eigenvalue and two positive eigenvalues for β ∈ (βs, 1,∞) \ {q}.

5.7.3 Critical points of Morse index larger than 1

In this subsection, we eliminate unneeded critical points.

Lemma 5.7.6. Let q ≥ 5. For i ∈ [3, q/2] ∩ N and β > βs, i, each point

in Ui has at least two negative eigenvalues. And for i ∈ [2, q/2] ∩ N and

β ∈ (βs, i,∞) \ {q}, each point in Vi has at least two negative eigenvalues.

Proof. By the proof of Lemma 5.7.4, ui for i ≥ 3 has at least two negative

eigenvalues. Now, let i ≥ 2, j = q − i, and β ∈ (βs, i,∞) \ {q}. In this case,

each points in Vi has eigenvalues a, b with multiplicative j−1, i−2, and the

roots of λ2 − (a + qb)λ + b(ia + jb). If βs, i < β < q, then vi < 1/q so that

a > 0, b < 0, and b(ia+ jb) > 0. In this case,

a+ qb = ia+ jb+ (1− i)a+ (q − j)b < ia+ jb < 0 ,

so that the two roots of λ2− (a+ qb)λ+ b(ia+ jb) are negative. Hence, it has
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j − 1 positive eigenvalues and i negative eigenvalues. If β > q, then vi > 1/q

so that a < 0, and points in Vi have at least j−1 negative eigenvalues, where

j − 1 ≥ 2 since q ≥ 5.

Lemma 5.7.7. Let q = 4 and β ≥ q. Then, we have V2 = U2.

Proof. Observe that βs, 2 = q. If β = q, V2 = U2 since there is only one

solution m2 to q = g2(t). Suppose β > q. By elementary computation, we

obtain

g2

(1

4
− t
)

= g2

(1

4
+ t
)

for t ∈
[
0,

1

4

)
,

so that v2 = (1/2) − u2. Hence, v2 = (u2, u2, v2, v2) is a permutation of u2,

that is, each element of V2 is one of the elements of U2 so that V2 = U2.

By lemmas in this subsection, Ui, i ≥ 3, and Vi, i ≥ 2, are not of interest.

5.7.4 At critical temperature

In this subsection, we investigate the critical points at the critical tempera-

tures, that is, at β = βs, i or β = q. The point ui = vi is degenerate when

β = βs, i and the point p = vi is degenerate when β = q by Lemma 5.7.2 and

5.7.3.

Lemma 5.7.8. If i ≤ q/2 and β = βs, i, the point ui = vi is not a local

minimum. If β = q, the point p = vi is not a local minimum.

Proof. Fix 1 ≤ i ≤ j ≤ q − 1 such that i+ j = q and define `i : [0, 1/j]→ Ξ

as

`i(s) =
(
s, . . . , s,

1− js
i

, . . . ,
1− js
i

)
.

We therefore obtain

Fβ(`i(s)) = −1

2

[
js2 + i

(1− js
i

)]
+

1

β

[
js log s+ (1− js) log

(1− js
i

)]
= − 1

2i
(jqs2 − 2js+ 1) +

1

β

[
(1− js)(1− qs)

i
gi(s) + log s

]
.
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By (5.25) and (5.26), we have

d

ds
Fβ(`i(s)) =

j

i
(1− qs) +

j

βi
(qs− 1)gi(s) =

j

βi
(1− qs)(β − gi(s)) .

We claim that Fβs, i(`i(mi)) and Fq(`i(1/q)) are not the local minima of

Fβs, i(`i(s)) and Fq(`i(s)), respectively, and this completes the proof.

For the first claim, assume i < j, and note that mi < 1/q. Then, 1−qs > 0

and βs, i − gi(s) < 0 if s is in a neighborhood of mi and s 6= mi. In this case,
d

ds
Fβs, i(`i(s)) < 0 near mi so that ui = vi is not a local minimum. If i = j,

βs, i = q so that it suffices to show the second assertion.

Next, note that vi(q) = 1/q so that we have gi(s) < β = q, 1− qs > 0 if

s < 1/q and gi(s) > q, 1− qs < 0 if s > 1/q. Therefore,
d

ds
Fq(`i(s)) > 0 near

1/q so that p = vi is not a local minimum.

Even though ui, i ≥ 3, is not a saddle point if β > βs, i, we cannot exclude

the possibility that ui is a saddle point when β = βs, i; however, by the next

two lemmas, Ui(βs, i), i ≥ 3, are irrelevant to the landscape of Fβ.

Lemma 5.7.9. Let q ≥ 8 and i ≥ 4. Then, if β = βs, i, ui = vi is not a

saddle point.

Proof. By Lemma 5.7.2, −1+1 / [βs, i{−jui(βs, i)}] is an eigenvalue of ∇Fβs, i
at ui with a multiple of at least two. Hence, by Lemma 5.7.3, it has at least

two negative eigenvalues.

Lemma 5.7.10. Let q ≥ 6. We have Fβs, 3(u3) > Fβs, 3(u2). Furthermore,

if q ≥ 7, we have Fβs, 3(u3) > Fβs, 3(v1). Hence, u3 cannot be a saddle point

lower than u2 or v1.

The proof is presented in Section 5.8.3. We remark that if q = 6, we have

βs, 3 = q so that v1(βs, 3) = p and the second assertion is not needed.
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5.8 Analysis of energy landscape

In this section, we prove lemmas introduced in Section 5.6.2 and Lemma

5.7.10. To prove these lemmas, we need numerical computation given in Ap-

pendix 5.11.

5.8.1 Proof of Lemma 5.6.5

Lemma 5.8.1. If q ≥ 4, we have v1(βs, 2) >
1

2(q − 1)
.

Proof. Fix β = βs, 2 and write v1 = v1(βs, 2) for convenience. Since βs, 2 =

g2(m2) = g1(v1), we have

2

1− qm2

log
1− (q − 2)m2

2m2

=
1

1− qv1

log
1− (q − 1)v1

v1

(5.33)

Let

v∗1 =
1

2q
+
m2

2
, so that

1

1− qv∗1
=

2

1− qm2

. (5.34)

We claim that g1(v∗1) ≤ g1(v1), that is, by (5.33),

1

1− qv∗1
log

1− (q − 1)v∗1
v∗1

≤ 2

1− qm2

log
1− (q − 2)m2

2m2

.

By (5.34), the above inequality is equivalent to

1− (q − 1)v∗1
v∗1

≤ 1− (q − 2)m2

2m2

.

By plugging v∗1 given in (5.34) into this inequality, it becomes q2m2−2qm2 +

1 ≥ 0. Hence, since g1 is increasing at v1, we obtain v∗1 ≤ v1.

Finally, we claim that

v∗1 =
1 + qm2

2q
>

1

2(q − 1)
, i.e., m2 >

1

q(q − 1)
.
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According to Figure 5.7, we can show this by

h2

( 1

q(q − 1)

)
= log

q2 − 2q + 2

2
− q(q − 1)(q − 2)

q2 − 2q + 2
< 0 .

This holds if q = 4 or q = 5 by elementary computation. Now, assume q ≥ 6.

Therefore, we obtain

log
q2 − 2q + 2

2
< log q2 = 2 log q < q − 2 <

q(q − 1)(q − 2)

q2 − 2q + 2
,

which completes the proof.

We can prove Lemma 5.6.5 by the aforementioned lemma.

Proof of Lemma 5.6.5. Since βc = g1(
1

q(q − 1)
) = g1(

1

2(q − 1)
), we have

βs, 1 < βc. By Lemma 5.8.1, since g1(t) is increasing on (m1, 1/(q − 1) ) and

m1 < 1/(2q − 2), we obtain

βs, 2 = g1(v1) > g1(
1

2(q − 1)
) = βc .

5.8.2 Proof of Lemma 5.6.7

We first introduce two lemmas.

Lemma 5.8.2. Let q ≥ 5. When β = βs, 2, we have Fβs, 2(v1) < Fβs, 2(u2)

and when β = q, we have Fq(v1) = Fq(p) > Fq(u2).

The proof of the above lemma is given in Section 5.8.3.

Lemma 5.8.3. Let q ≥ 5. β2 d

dβ
[Fβ(u2) − Fβ(v1)] decreases as β increases

in (βs, 2, q).
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Proof. For t = t(β), which satisfies β = gi(t), let

ci = ci(β) =
(
t, . . . , t,

1− jt
it

, . . . ,
1− jt
it

)
. (5.35)

Since ci is a critical point, by the proof of Corollary 5.3.7, we have

d

dβ
Fβ(ci) = − 1

β2
S(ci) .

Define a function ki : (0, 1)→ R as

ki(t) := (1− jt) log
1− jt
it

+ log t . (5.36)

By elementary computations, we obtain S(ci) = ki(t) so that we have

d

dβ
Fβ(ci) = − 1

β2
ki(t) . (5.37)

Now, by (5.37), we obtain

β2 d

dβ

[
Fβ(u2)− Fβ(v1)

]
= k1(v1(β))− k2(u2(β)) . (5.38)

Observe that the value u2(β) decreases and the value v1(β) increases as β

increases. By elementary computation, for t ∈ (0, 1/q), we obtain

k′i(t) = −j log
1− jt
it

+ (1 − jt)
( −j

1− jt
− 1

t

)
+

1

t
= −j log

1− jt
it

< 0 ,

(5.39)

so that ki(t) decreasing on (0, 1/q). Hence, (5.38) decreases as β increases in

(βs, 2, q).

We can now prove Lemma 5.6.7.

Proof of Lemma 5.6.7. By Lemma 5.8.2, there is β0 ∈ (βs, 2, q), such that
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d

dβ
[Fβ(u2)−Fβ(v1)] < 0. Hence, by Lemma 5.8.3, we can deduce that there

is only one critical value βm ∈ (βs, 2, q), such that

Fβm(u2) = Fβm(v1) . (5.40)

5.8.3 Proofs of Lemmas 5.7.10 and 5.8.2

Before we go further, we conduct some computations. Recall the definition

of m2 from Lemma 5.6.1. Since βs, i = gi(mi) =
i

1− qmi

log
1− jmi

imi

and mi

is the minimum of gi, we have

0 = hi(mi) = log
1− jmi

imi

+
qmi − 1

qmi(1− jmi)

=
1− qmi

i
βs, i −

1− qmi

qmi(1− jmi)
,

so that

qjm2
i − qmi = qmi(jmi − 1) = − i

βs, i
. (5.41)

For ci defined in (5.35), since S(ci) = ki(t) and β = gi(t), we can write

Fβ(ci) =
1

2i

[
qjt2 − 2qt+ 1

]
+

1

β
log t . (5.42)

Hence, by (5.41) and βs, i = gi(mi), we have

Fβs, i(ui) =
1− qmi

2i
+

1

βs, i

(
logmi −

1

2

)
(5.43)

=
1

2βs, i
log

1− jmi

imi

+
1

βs, i
logmi −

1

2βs, i
.
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By (5.41) again, we obtain

Fβs, i(ui) = − 1

2βs, i
log(qeβs, i) . (5.44)

Now, we introduce two technical lemmas required in the proof of Lemmas

5.7.10 and 5.8.2.

Lemma 5.8.4. For q ≥ 6500, we have

1

βs, 2

(
log qm2 −

1

2

)
>

(q − 1)

8q
(qm2)2 − 1

4
m2 +

−q2 + 4q + 1

8q(q − 1)
.

The proof is given in Section 5.10.

Lemma 5.8.5. Let q ≥ 5. Define fc(β) = − 1

2β
log(qeβ) and

Φ(β) =
d

dβ
[fc(β)− Fβ(u2)] .

Then, we have Φ(β) > 0 for β > βs, 2.

Proof. We have

d

dβ
fc(β) =

1

2β2
log qeβ − 1

2β

1

β
=

1

2β2
log qβ .

By (5.37), we obtain

β2 d

dβ
[fc(β)− Fβ(u2)] =

1

2
[log qβ + 2k2(u2)] .

By (5.39), the above expression is increasing function of β since u2 decreases

as β increases. Hence, it is sufficient to show Φ(βs, 2) > 0. First, let q ≥ 55 >
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e4. By (5.39)

log qβ + 2k2(u2) > log qβs, 2 + 2k2(
1

2j
)

= log qβs, 2 + log
2j − j
i

+ 2 log
1

2j
= log

qβs, 2
4ij

,

where we use u2 < 1/(2j) for the inequality. Since βs, 2 > βc > 2 log q, we

obtain
qβs, 2
4ij

>
2q log q

8(q − 2)
>

q

q − 2
.

Finally, for 5 ≤ q ≤ 54, by Proposition 5.11.1, we have Φ(βs, 2) > 0.

By the above lemmas, Lemma 5.8.2 can be proven.

Proof of Lemma 5.8.2. By Proposition 5.11.1 given in appendix, we can check

that Fβs, 2(u2) > Fβs, 2(v1) holds for 5 ≤ q ≤ 6500. Now, suppose that

q > 6500. By (5.42) and (5.43), we can write

Fβs, 2(u2) = −1

4
qm2 +

1

4
+

1

βs, 2

(
logm2 −

1

2

)
,

Fβs, 2(v1) =
1

2

[
q(q − 1)

(
v1 −

1

q − 1

)2

− 1

q − 1

]
+

1

βs, 2
log v1 .

By the proof of Lemma 5.8.1, we have

qm2 + 1

2q
= v∗1 ≤ v1 <

1

q
,

so that

Fβs, 2(v1) <
1

2

[
q(q − 1)

(qm2 + 1

2q
− 1

q − 1

)2

− 1

q − 1

]
− 1

βs, 2
log q .
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Hence, the lemma can be proven if we can prove

− 1

4
qm2 +

1

4
+

1

βs, 2
(logm2 −

1

2
)

>
1

2

[
q(q − 1)

(qm2 + 1

2q
− 1

q − 1

)2

− 1

q − 1

]
− 1

βs, 2
log q

=
1

8
q(q − 1)(m2)2 − 1

4
(q + 1)m2 +

(q + 1)2

8q(q − 1)
− 1

βs, 2
log q .

This is the content of Lemma 5.8.4. Finally, by Lemma 5.8.5, we obtain

Fq(p)− Fq(u2) = fc(q)− Fq(u2) > 0 since fc(βs, 2) = Fβx, 2(u2).

Now, we prove Lemma 5.7.10.

Proof of Lemma 5.7.10. Since the proof for Fβs, 3(u3) > Fβs, 3(v1) is exactly

the same as the proof of Lemma 5.8.2 including numerical verification, we

omit it. By (5.44), we can write

Fβs, 3(u3) = fc(βs, 3) .

Hence, by Lemma 5.8.5 and by Proposition 5.11.1, we have

Fβs, 3(u3) = fc(βs, 3) > Fβs, 3(u2) .

5.9 Characterization of metastable sets

In this section, we prove Theorems 5.3.4-5.3.6. First, we prove Theorem 5.3.4.

Proof of Theorem 5.3.4. The first assertion is immediate from Lemmas 5.6.2

and 5.6.4. The third assertion is proven by Proposition 5.6.3 and Lemma

5.7.8. The fourth assertion is Lemma 5.6.6.
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Now, it remains to show the second assertion. For β ∈ (β1, β2], since p

is the global minimum and v1 is a saddle point, we have Fβ(p) < Fβ(v1) so

that Wo 6= ∅. By the same argument in the proof of Lemma 5.8.3, we have

d

dβ
[Fβ(v1)− Fβ(p)] = − 1

β2
[k1(v1(β)) + log q] .

By 5.39, k1(·) is decreasing on (0, 1/q) and increasing on (1/q, 1/(q − 1) ).

Since k1(1/q) = − log q, we have k1(v1(β)) + log q > 0 for β ∈ (β1, q) so that

d

dβ
[Fβ(v1)− Fβ(p)] < 0 .

Since v1 = p when β = q, we have Fβ(v1) > Fβ(p) for β < q and Fβ(v1) <

Fβ(p) for β > q.

5.9.1 Proof of Theorem 5.3.6

Before we go further, we recall the height between two points. Let a, b ∈
int Ξ, and let Γa, b be a set of all C1-path γ : [0, 1] → int Ξ, such that

γ(0) = a and γ(1) = b. Then, we can define the height H(a, b) between a

and b as H(a, b) = inf
γ∈Γa, b

sup
0≤t≤1

Fβ(γ(t)). We prove Theorem 5.3.6 in several

steps.

Lemma 5.9.1. Let q ≥ 4. If β > βm, the sets Wi(β), i ∈ S, are different.

In particular, they are nonempty.

Proof. Since the elements of U1 are the lowest minima, we have Fβ(u1) < Hβ

so that Wi’s are nonempty. Without loss of generality, suppose W1 = W2.

Since u1
1, u2

1 ∈ W1 and W1 is connected, there is a C1-path γ : [0, 1] → W1,

such that γ(0) = u1
1, γ(1) = u2

1. Therefore, we have Fβ(γ(t)) < Hβ for

0 ≤ t ≤ 1, so that

Fβ(u1
1) < H(u1

1,u
2
1) < Hβ .
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(a) n 6= m (b) n = m

Figure 5.8: Paths from uk, l2 to u1
1 and um1

Then, there is a saddle point σ(u1
1,u

2
1), such that Fβ(σ(u1

1,u
2
1)) = H(u1

1,u
2
1).

However, by Proposition 5.6.3, the values of saddle points are greater than

or equal to Hβ. This is contradiction. Hence, Wi’s are different.

Lemma 5.9.2. Let q ≥ 4. If β > q, the set Σi, j is singleton for all i, j ∈ S.

Proof. First, we claim that Σi, j’s are not empty. Suppose one of Σi, j’s is

empty. Then, by symmetry, all of them are empty. We will derive a contra-

diction from this.

Let us fix 1 ≤ k < l ≤ q. Since uk, l2 is a saddle point, there is a unit eigen-

vector w that corresponds to the unique negative eigenvalue of ∇2Fβ(uk, l2 ).

There exists η > 0, such that Fβ(uk, l2 + tw) < Hβ for all 0 < |t| < η. Now,

consider the path y(t) described by the ordinary differential equation

ẏ(t) = −∇Fβ(y(t)), y(0) = uk, l2 + ηw . (5.45)

Then, y(t) converges to a critical point whose height is less than Hβ as

t → ∞. If this convergent point is not a local minimum, we can find an

eigenvector w1 corresponding to a negative eigenvalue of the Hessian of Fβ

at that point. Then, by the same argument defining the path (5.45), the next

path converges to another critical point whose height is lower than that of the
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previous critical point. Finally, this path converges to a local minimum. Since

there is no local minimum other than U1, y(t) converges to some elements

of U1, say un1 . Since Wi’s are different, y(·) converges to only one minimum.

By the same argument, the similar path starting at uk, l2 − ηw converges to

some u1, say um1 . If n 6= m, uk, l2 ∈ Σn,m so that Σn,m is not empty. So, we

have m = n. In this case, we obtain uk, l2 ∈ W1 and uk, l2 /∈ Wa for all a 6= n.

See Figure 5.8 for the visualization these paths.

By symmetry, since U2 has q(q − 1)/2 elements and the number of Wi

is q, there are (q − 1)/2 elements in U2 corresponding to each Wi, that is,

|W1 ∩ U2| = (q − 1)/2, where |A| is the number of elements of set A. If

u1, a
2 ∈ W1, for some 2 ≤ a ≤ q, we obtain u1, a

2 ∈ Wa by symmetry, and

therefore Σ1, a = W1 ∩Wa 6= ∅. Hence, we have u1, a
2 /∈ W1. If ua, b2 ∈ W1 for

some 1 < a, b, since q ≥ 4 and by symmetry, ua, b2 ∈ Wm for some m 6= 2, a, b,

and this contradicts the assumption that Σ1,m = W1 ∩Wm = ∅. Hence, all

of Σi, j’s are nonempty.

Observe that the elements of Σi, j are saddle points and Fβ(x) = Hβ for

all x ∈ Σi, j. Hence, by Proposition 5.6.3, Σi, j ⊂ U2. Since ∇2Fβ(u2)’s are

nondegenerate and have only one negative eigenvalue, each element of U2

connects only two wells, i.e., Σi, j ∩Σk, l = ∅ if {i, j} 6= {k, l}. Therefore, since

U2 has q(q − 1)/2 elements, Σi, j has at most one point so that we obtain

|Σi, j| = 1.

We can now prove Theorem 5.3.6.

Proof of Theorem 5.3.6. The first assertion follows from the definition of crit-

ical temperatures (5.31) and Lemma 5.6.7.

Let β > q. By Lemma 5.9.2, to prove Σi, j = {ui, j2 }, without loss of

generality, it is sufficient to show that Σ1, 2 6= {u1, 4
2 } and Σ1, 2 6= {u3, 4

2 }.
First, suppose Σ1, 2 = {u1, 4

2 }. Then, by symmetry, we obtain u1, 4
2 ∈ Σ1, 3,

which contradicts to Σ1, 2 ∩ Σ1, 3 = ∅. Second, suppose Σ1, 2 = {u3, 4
2 } so that

by symmetry, we have Σ1, 5 = {u3, 4
2 } which is also contradiction. Hence, we

obtain Σ1, 2 = {u1, 2
2 }.
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Since Fβ is continuous in β, the values Hβ and H(ui1(β),uj1(β)), i, j ∈ S,

are continuous in β. Note that H(ui1(β),uj1(β)) = Fβ(u2) = Hβ for β ≥ q

since there is no saddle point other than U2. Since Fβ(v1) > Hβ if β >

βm = β3 and there is no saddle point other than the elements of U2 ∪ V1, by

continuity, we obtain

H(ui1(β),uj1(β)) = Hβ if β ≥ β3 .

Hence, ui, j2 is a saddle point between ui1 and uj1 and Σi, j = {ui, j2 } if β > β3.

Coupled with Lemma 5.9.1, the fourth assertion holds except that Σo, i = ∅.
If β ≥ q, Wo = ∅. Let β3 ≤ β < q. Without loss of generality, suppose

that Σo, 1 =Wo∩W1 6= ∅. Let a ∈ Wo∩W1. Note that a ∈ Wo since Fβ(a) ≤
Hβ < Fβ(v1). Since a ∈ W1, a is connected to u1

1 in {x : Fβ(x) ≤ Hβ}. In

addition, since Hβ < Fβ(v1) and a ∈ Wo,Wo must contain u1
1. We, therefore,

obtain H(p,u1
1(β)) < Fβ(v1) so that H(p,u1

1(β)) = Hβ. By continuity, we

get

H(p,u1
1(β)) = Hβ for β3 ≤ β < q ,

so that Fβ(p) ≤ Hβ. However, it is in contradiction to Fq(p) = Fq(v1) > Hq.

Hence, we obtain Σo, i = ∅ for i ∈ S.

By the same argument and symmetry, the second assertion can be proven

for β ∈ (βs, 1, βs, 2) = (β1, βs, 2). By continuity argument, we can extend

these to β ∈ (β1, β3). The third assertion holds because of the first and

fourth assertions, symmetry, and continuity. Finally, the fifth assertion can

be proven by the same argument.

5.9.2 Proof of Theorem 5.3.5

If q = 4, Σ1, 2 6= {u3, 4
2 } cannot be proven by symmetry argument. Hence, we

directly prove the Theorem 5.3.5.

Proof of Theorem 5.3.5. By Lemma 5.6.7 and (5.31), we obtain the first as-
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sertion.

Consider Ki, j = {x ∈ Ξ : xi = xj = max{x1, . . . , x4} }. It can be ob-

served that these six planes divide Ξ into four pieces, and each plain contains

one element of U2 and ui, j2 ∈ Ki, j. We claim that Hβ = Fβ(ui, j2 ) < Fβ(x) for

all x ∈ Ki, j if β > q. Note that p is not local minimum if β ≥ q.

Let F̃β(x) be a restriction of Fβ to K3, 4 and let Ko3, 4 = {x ∈ K3, 4 : x3 =

x4 > x1, x2}. Since x3 = x4 =
1

2
(1− x1 − x2),

∂

∂xi
F̃β(x) = −xi +

1

β
log xi + x3 −

1

β
log x3 ,

so that if x ∈ K3, 4 is a critical point, we have

−x1 +
1

β
log x1 = −x2 +

1

β
log x2 = −x3 +

1

β
log x3 .

Since x3 = x4 > x1, x2, if β ≥ q, the critical points in Ko3, 4 are u3, 4
2 , v1, 2

2 .

From the proof Lemma 5.7.7, we obtain u3, 4
2 = v1, 2

2 = (u2, u2, v2, v2).

Let a = −1 +
1

βu2

and b = −1 +
1

βv2

. We therefore obtain

∇2F̃β(u3, 4
2 ) =

 a+
1

2
b

1

2
b

1

2
b a+

1

2
b

 .

The eigenvalues of ∇2F̃β(u3, 4
2 ) are a and a+ b. By Lemma 5.7.3, a, b > 0 so

that u3, 4
2 is a local minimum in Ko3, 4. Since this is the unique critical point,

u3, 4
2 is the unique minimum in Ko3, 4. Since K3, 4 is a closure of Ko3, 4 and there

is no critical point in Ko3, 4 \ {u
3, 4
2 }, u3, 4

2 is the unique minimum in K3, 4.

Hence, Wi’s are different if β > q.

Let β > q. By the definition of Ki, j, we obtain Wk ∩ Ki, j = ∅ if k 6= i, j

so that Σi, j ⊂ Ki, j. By Lemma 5.9.2, Σi, j are not empty. It can be observed

Fβ(x) = Hβ and ∇Fβ(x) = 0 if x ∈ Σi, j. Since Σi, j ⊂ Ki, j, we have

193



CHAPTER 5. CURIE–WEISS–POTTS MODEL

Σi, j = {ui, j2 }, thus the fourth assertion is proved.

For the third assertion, note that Fq(x) = Hq for all x ∈ Σi, j and p is

the only point in Ki, j, such that Fq(x) = Hq. Moreover, we obtain Fq(x) >

Hq = Fq(p) if x ∈ Koi, j, and finally we can deduce Fq(x) > Hq = Fq(p) if

x ∈ Ki, j \ {p} using elementary calculus. Hence, Wi’s are different if β = q.

For the second assertion, we can use the symmetry argument and the

proofs are the same as the proof of Theorem 5.3.6.

5.10 Proof of Lemma 5.8.4

This section is devoted to the proof of Lemma 5.8.4. In Section 5.10.1, we

provide an auxiliary lemma to prove Lemma 5.10.1. In section 5.10.2, we

prove this auxiliary lemma. So far, we have fixed an integer q ≥ 3; however, in

this section, we consider q as a real number and several variables as functions

of q. For example, m2 = m2(q), j(q) = q − 2, and βs, 2 = βs, 2(q).

5.10.1 Proof of Lemma 5.8.4

Lemma 5.10.1. The function f? of q is defined as

f?(q) =
1

βs, 2

(
log qm2 −

1

2

)
− 1

8
(qm2)2 +

1

4
m2 +

251

2002
. (5.46)

Then, if q > e8, f ′?(q) =
d

dq
f?(q) > 0.

Proof of Lemma 5.8.4. By Proposition 5.11.1, we obtain f?(6500) > 0. We

observe that
(q − 1)

8q
<

1

8
and

−q2 + 4q + 1

8q(q − 1)
< − 251

2002
if q > 1000. Hence,

Lemma 5.10.1 proves Lemma 5.8.4.
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5.10.2 Proof of Lemma 5.10.1

Let s2 = s2(q) = qm2. In the first lemma, we compute m′2 = (d/dq)m2,

s′2 = (d/dq)s2, and β′s, 2 = (d/dq)βs, 2.

Lemma 5.10.2. We have

m′2 =
d

dq
m2 = −m2(1− jm2 − qjm2

2)

q(1− 2jm2)
,

s′2 =
d

dq
s2 = = − js

2
2(1− s2)

q(q − 2js2)
,

β′s, 2 =
d

dq
βs, 2 =

1

1− s2

(
βs, 2s

′
2 − 2

−s2 + s2
2 + qs′2

(q − js2)s2

)
.

Proof. We observe that

βs, 2 = g2(m2) =
2

1− qm2

log
1− jm2

2m2

=
2

qm2(1− jm2)
,

so that

log(1− jm2)− log 2m2 =
2

q

( 1

2m2

− 1

1− jm2

)
.

By differentiating this equation in q, we get

−m2 − jm′2
1− jm2

− m′2
m2

= − 2

q2

( 1

2m2

− 1

1− jm2

)
+

2

q

(
− m′2

2m2
2

+
−m2 − jm′2
(1− jm2)2

)
.

By elementary computation, we can write

m′2 = −m2(1− jm2 − qjm2
2)

q(1− 2jm2)
. (5.47)

Let s2 = qm2. Then,

s′2 = m2 + qm′2 = − js
2
2(1− s2)

q(q − 2js2)
. (5.48)
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Next, we compute β′s, 2. Note that

βs, 2 =
2

1− s2

log
q − js2

2s2

,

so that

β′s, 2 = − 2s′2
(1− s2)2

log
q − js2

2s2

+
2

1− s2

(
1− s2 − js′2
q − js2

− s′2
s2

)

=
1

1− s2

(
s′2

2

1− s2

log
q − js2

2s2

+ 2
s2 − s2

2 − js2s
′
2 − qs′2 + js2s

′
2

(q − js2)s2

)
=

1

1− s2

(
βs, 2s

′
2 − 2

−s2 + s2
2 + qs′2

(q − js2)s2

)
. (5.49)

The next lemma provides the bound of m2(q).

Lemma 5.10.3. Let q > e8. We have

1

2q log q
< m2(q) <

1

q log q
.

Proof. It can be observed that h2(m2) = 0 and h2(t) > 0 if m2 < t < 1/q.

We claim that

h2(a) = log
1− ja

2a
+

qa− 1

qa(1− ja)
> 0 ,

where a = 1/q log q. The above inequality can be written as

log
q log q − j

2
>
(q log q − q
q log q − j

)
log q .

Since the right-hand side is smaller than log q, it suffices to show that

log q + log
log q − 1 + 2/q

2
> log q ,
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which is true if q > e3. Hence,m2 < 1/q log q. Next, we havem2 > (1/2q) log q

since

log
(
q log q − j

2

)
− 2
{ q log q − q/2

(q log q − j/2)

}
log q < 0 ,

which is true if q > e8.

In the next two lemmas, we prove that some quantities are positive.

Lemma 5.10.4. Let q > e8. We have

m′2 − s2s
′
2 > 0 .

Proof. We have

m′2 − s2s
′
2 = −m2(1− jm2 − jqm2

2)

q(1− 2jm2)
+
js3

2(1− s2)

q(q − 2js2)

=
s2(−1 + jm2 + jq(q + 1)m2

2 − jq3m3
2)

q(q − 2js2)
.

It suffices to show that

jq(q + 1)m2
2 − jq3m3

2 − 1 > 0 .

Since
1

2q log q
< m2 <

1

q log q
, we obtain

jq(q + 1)m2
2 − jq3m3

2 − 1

>
jq(q + 1)

4q2(log q)2
− jq3

q3(log q)3
− 1

=
1

q(log q)3

[(q + 1)(q − 2)

4
log q − q(q − 2)− q(log q)3

]
>

1

q(log q)3
[2(q + 1)(q − 2)− q(q − 2)− q(log q)3]

=
1

q(log q)3
[q2 − q(log q)3 − 4] > 0 .
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In the second and third inequalities, we use q > e8. Hence, m′2−s2s
′
2 > 0.

Lemma 5.10.5. Let q > e8. We have(1

2
− log s2

)
β′s, 2 + βs, 2

s′2
s2

> 0 . (5.50)

Proof. Let A(q) =
1

2
− log s2. From Lemma 5.10.3, we obtain

5

2
<

1

2
+ log 8 <

1

2
+ log log q < A(q) <

1

2
+ log(2 log q) ,

and

A(q)β′s, 2 + βs, 2
s′2
s2

=
s′2

1− s2

[
A(q)βs, 2 −

2q

q − 2

A(q)

s2
2

]
+

s′2
1− s2

[1− s2

s2

βs, 2

]
=

s′2
1− s2

[
βs, 2

( 1

s2

+ A(q)− 1
)
− 2q

q − 2

A(q)

s2
2

]
.

Hence, since s′2 < 0, it suffices to show that

( 2q

q − 2

)A(q)

s2
2

> βs, 2

( 1

s2

+ A(q)− 1
)

=
βs, 2
s2

[1 + (A(q)− 1)s2] ,

i.e.,

βs, 2 <
1

1 + (A(q)− 1)s2

· 2q

q − 2
· A(q)

s2

.

Since, s2 < 1/ log q, the right-hand side is greater than

1

1 + (A(q)− 1)s2

· 2qA(q)

q − 2
log q >

1

1 + (A(q)− 1)s2

( 5q

q − 2

)
log q

>
5

1 + (A(q)− 1)s2

log q ,
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and

βs, 2 < g2(1/q log q) =
2 log q

log q − 1
log

q log q − (q − 2)

2

<
5

2
log(q log q) <

15

4
log q ,

where the last inequality is equivalent to 1/2 > log(log q)/ log q which is true

for q > e8.

Hence, it is enough to show that

1

1 + (A(q)− 1)s2

>
3

4
, i.e.,

1

3
> (A(q)− 1)s2 .

Since 0 < A(q) < 1/2 + log(2 log q) and s2 < 1/ log q, we obtain, for q > e8,

(A(q)− 1)s2 <
log(2 log q)− 1/2

log q
<

1

3
.

Now, we derive the proof of Lemma 5.10.1.

Proof of Lemma 5.10.1. By Lemma 5.10.2,

−s2 + s2
2 + qs′2 = −js

2
2(1− s2)

q − 2js2

− s2(1− s2) = (q − js2)
q

js2

s′2 ,

so that

β′s, 2 =
1

1− s2

(
βs, 2s

′
2 − 2

q

js2
2

s′2

)
=

1

1− s2

(
βs, 2 −

2q

js2
2

)
s′2 .
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Now, we return to f?(q). We have

f?(q) =
1

βs, 2
(log qm2 −

1

2
)− 1

8
(qm2)2 +

1

4
m2 +

251

2002

=
1

βs, 2
(log s2 −

1

2
)− 1

8
(s2)2 +

1

4
m2 +

251

2002
,

so that

f ′?(q) = −
β′s, 2
β2
s, 2

(
log s2 −

1

2

)
+

1

βs, 2
(
s′2
s2

) +
1

4
(m′2 − s2s

′
2)

=
1

β2
s, 2

[
β′s, 2(

1

2
− log s2) + βs, 2(

s′2
s2

)
]

+
1

4
(m′2 − s2s

′
2) .

Finally, Lemmas 5.10.4 and 5.10.5 prove Lemma 5.10.1.

5.11 Numerical computations

Recall the definition (5.46) of f?(·). In this section, we verify several in-

equalities numerically. Our purpose is the following proposition. The proof

is presented at the end of this section.

Proposition 5.11.1. The following hold.

1. For 5 ≤ q ≤ 6500, we have Fβs, 2(u2) > Fβs, 2(v1).

2. For 6 ≤ q ≤ 54, we have
d

dβ
[fc(β)− Fβ(u2)]

∣∣∣
β=βs, 2

> 0.

3. f?(6500) > 0.

Bounds of βs, 2 , m2 and v1.

We will obtain the bounds of βs, 2, m2, and v1. Fix q ≥ 5 and let j = q − 2.

By gradient descent method, we obtain the following.

Algorithm 5.11.2. We define βus, 2 and βls, 2 in the following way.
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1. t0 ← 1 / (2q − 4).

2. While g′2(ti) > 10−6 , let ti+1 ← ti − g′2(ti)/(300q2) .

3. If g′2(ti) ≤ 10−6 , let m∗2 ← ti.

Let βus, 2 := g2(m∗2) + (36/q)|g′2(m∗2)| and βls, 2 := g2(m∗2)− (36/q)|g′2(m∗2)| .

We record m∗2 in the above algorithm and let

ρm := g′2(m∗2)/q .

Algorithm 5.11.3. We define mu
2 and ml

2 in the following way.

1. If h2(m∗2) ≥ 0, let mu
2 := m∗2 + ρm.

(a) t0 ← m∗2.

(b) While h2(ti) ≥ 0, let ti+1 ← ti − ρm.

(c) If h2(ti) < 0, let ml
2 := ti − ρm.

2. If h2(m∗2) < 0, let ml
2 := m∗2 − ρm.

(a) t0 ← m∗2.

(b) While h2(ti) ≤ 0, let ti+1 ← ti + ρm.

(c) If h2(ti) > 0, let mu
2 := ti + ρm.

By Newton method, we approximate v1 which satisfies g1(v1) = βs, 2.

Algorithm 5.11.4. We define vu1 and vl1 in the following way.

1. Let t0 = 0.8/q and t−1 = 0.

(a) While |ti − ti−1| > 10−5/q, let ti+1 ← ti − (g1(ti)− βus, 2)/g′1(ti).

(b) If |ti − ti−1| ≤ 10−5/q, let v∗1 := ti and ρv := |ti − ti−1|.

2. If g1(v∗1) > βus, 2, let vu1 := v∗1 + ρv.
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3. If g1(v∗1) ≤ βus, 2, let

(a) a0 ← v∗1.

(b) While g1(ai) ≤ βus, 2, let ai+1 ← ai + ρv.

(c) If g1(ai) > βus, 2, let vu1 := ai + ρv.

4. If g1(v∗1) < βls, 2, let vl1 := v∗1 − ρv.

5. If g1(v∗1) ≥ βls, 2, let

(a) b0 ← v∗1.

(b) While g1(bi) ≥ βls, 2, let bi+1 ← bi − ρv.

(c) If g1(bi) < βls, 2, let vl1 := bi − ρv.

Lemma 5.11.5. We have βls, 2 < βs, 2 < βus, 2 , ml
2 < m2 < mu

2 , and vl1 <

v1 < vu1 .

Proof. From the Taylor’s theorem, we obtain

g2(m2 + t) = g2(m2) + g′2(m2 + t∗)t

for some t∗ ∈ (0, t) if t > 0 or t∗ ∈ (t, 0) if t < 0. Since h2 is increasing in the

neighborhood of m2, we obtain

|g′2(m2 + t∗)| =

∣∣∣∣ 2q

[1− q(m2 + t∗)]2
h2(m2 + t∗)

∣∣∣∣
≤
∣∣∣∣ 2q

[1− q(m2 + t∗)]2
h2(m2 + |t|)

∣∣∣∣
=

(
1− q(m2 + |t|)
1− q(m2 + t∗)

)2

|g′2(m2 + |t|)| .

Since m2 + t∗, m2 < 1/(2j), we obtain

1− q(m2 + |t|)
1− q(m2 + t∗)

≤ 1

1− q(m2 + t∗)
≤ 1

1− q/(2j)
=

2q − 4

q − 4
≤ 6 ,
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where the last inequality is from q ≥ 5. Hence, we have

|g′2(m2 + t∗)| ≤ 36|g′2(m2 + |t|)| ,

so that we have

|βs, 2 − g2(m2 + t)| = |g2(m2)− g2(m2 + t)|

≤ |g′2(m2 + t∗)||t| ≤ 36

q
|g′2(m2 + |t|)| ,

which proves the first claim. In the last inequality, we use the fact that

|t| < 1/q.

Since h2(t) > 0 if t > m2 and h2(t) < 0 if t < m2, the second claim is

true. Finally, since g1 is increasing in the neighborhood of v1, the third claim

holds.

We finally prove Proposition 5.11.1.

Proof of Proposition 5.11.1. From Lemma 5.11.5, we obtain

βls, 2 < βs, 2 < βus, 2 , m
l
2 < m2 < mu

2 , and vl1 < v1 < vu1 .

By elementary computation, we have

Fβs, 2(u2)− Fβs, 2(v1) ≥ 1

4
[q(q − 2)

(
mu

2 −
1

q − 2

)2

− 2

q − 2
] +

1

βls, 2
logml

2

− 1

2

[
q(q − 1)

(
vl1 −

1

q − 1

)2

− 1

q − 1

]
− 1

βus, 2
log vu1 ,

log qβs, 2 + 2k2(m2) ≥ log(qβls, 2) + 2k2(mu
2) ,

f?(6500) ≥ 1

βls, 2

(
log qml

2 −
1

2

)
− 1

8
(qmu

2)2 +
1

4
ml

2 +
251

2002
.

The second inequality holds since k2(·) is decreasing according to (5.39).

From the numerical computations, we find that the right-hand sides of the
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displayed equations are positive for 5 ≤ q ≤ 6500, and this completes the

proof.

5.12 Proof of (5.12)

Proof of (5.12). Since we have

ZN(β) =
∑
x∈Ξ

N !

(Nx1)! · · · (Nxq)!
exp{−βNH(x)} ,

we can use the elementary bound

k log k − k ≤ log k! ≤ (k + 1) log(k + 1)− k ,

to obtain

∑
x∈Ξ

exp
{
− βN

[
H(x) +

1

β

q∑
i=1

(
xi +

1

N

)
log
(
xi +

1

N

)]
− q logN

}
≤ ZN(β) ≤

∑
x∈Ξ

exp
{
− βNFβ(x) + log(N + 1) +N log

(
1 +

1

N

)}
.

Hence, by the definition of Fβ (5.4), we can obtain

sup
x∈Ξ
{−Fβ(x)}+O

( logN

N

)
≤ 1

βN
logZN(β) ≤ sup

x∈Ξ
{−Fβ(x)}+O

( logN

N

)
and the proof is completed.
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[61] T. Leliévre, D. Le Peutrec, B. Nectoux: The exit from a metastable

state: concentration of the exit point distribution on the low energy

saddle points, part 2. arXiv:2012.08311 (2020)

[62] T. Leliévre, F. Nier, G.A. Pavliotis: Optimal non-reversible linear drift

for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152,

237–274 (2013)
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국문초록

본 학위논문에서는 비가역적 랑주뱅 동역학의 메타안정성을 연구했다. 그

결과로 Gibbs 불변분포를 갖는 비가역적 확산확률과정의 Eyring–Kramers 공

식을 증명했는데, 이 공식은 전이 시간의 기댓값을 정확히 추산하는 것이다.

이에 더해 Eyring–Kramers 공식을 발전시켜, 적절한 시간 규모에서 비가역적

확산확률과정이 최솟값 사이의 마르코프 사슬로 수렴한다는 것을 증명했다.

마지막으로, 복잡한 메타안정성을 나타내는 복잡한 잠재함수 위의 메타

안정적 동역학의 예시로써 Curie–Weiss–Potts 모형을 소개한다. 이 모형의

에너지 분포와 해당 모형 연관 된 heat-bath Glauber 동역학의 메타안정성을

연구했다.

주요어휘: 메타안정성, 통계물리, 랑주뱅 동역학, 마르코프사슬 모형 단순화,

Curie–Weiss–Potts 모형

학번: 2017-29414
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