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Abstract

Time series classification and clustering have become a significant challenge in

data mining with the availability of storing vast amounts of time series data.

Due to its tricky property, traditional methods, such as K-means, K-nn, and

SVM, do not directly apply to time series analysis. However, despite its chal-

lenging aspects, time series classification and clustering are helpful in under-

standing data structure and finding new patterns in unstructured time series.

For this reason, it has emerged as a popular topic in data mining, and there

are many relevant articles. This review holistically discusses the essential parts

of some existing research, focusing on a model-based approach to time series

classification and clustering. Although there are several comprehensive reviews

on this topic, they are too broad to get specific knowledge or insight quickly.

Thus, we give brief instructions about the overall process for those interested

in statistical applications.

Keywords: Time series clustering, classification, model-based approach
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Chapter 1

Introduction

Clustering and classification have become a popular and significant challenge in

the machine learning field throughout the years, owing to advanced data storage

systems. Thus, many researchers have attempted to develop various methods

or algorithms to enhance the overall process and to apply them to diverse

fields. However, due to the characteristics of time series data, practitioners must

conflict with some problems attributed to temporality. Despite these problems,

time series classification and clustering have rich applications in diverse areas

like engineering, finance, etc. (Keogh and Kasetty (2002); Geurts (2001)).

The clustering and classification process are somewhat different when one

deals with time series data other than classic (or static) data. This is attributed

to the tricky property of the time series data when one tries to solve problems

with a traditional statistical approach. Generally, the time series dataset has

large dimensions and heavy sizes because of ordinality. Also, each data point in

one series may have high autocorrelations. Thus in clustering or classification,

it is reasonable to consider the whole time series as one object. In literature,
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there are ways to transform the entire time series. But in this process, another

challenge arises, such as determining whether one object (the whole time se-

ries) is close to the other. Consequently, determining the distance (similarity)

between two time series in conjunction with specific representation methods

has been a central topic in recent years. So, researchers must consider both

the representation methods and similarity distances simultaneously. To cope

with this, the three ways, ”shape-based,” ”feature-based,” and ”model-based”

approaches, are adopted (see Abanda et al. (2019); Aghabozorgi et al. (2015)),

which are addressed below.

1.1 Time series clustering and classification (overview)

We can define time series as real-valued series which has its domain (typically)

in R+. Time series data is dynamic since its output values are function or

random elements depending on the varying time. As a result, dimension, size,

autocorrelation, and the unequal length of time series can be a problem. Thus,

in time series clustering and classification (abbreviated as from now on TSCL

and TSC, respectively), one usually regards the whole series as one object.

TSCL and TSC processes have similarities in approach though they are basically

different. More formally, we can summarize as follows:

Time series clustering : Given n time-series data set {S1,S2, . . . ,Sn}, where

each Si is whole time series, partition this to K-classes using similarity

measures.

Time series classification : Given n time-series data set {S1,S2, . . . ,Sn},

and assumption is given as each Si has specific label from 1 to K, assign

each Si to one of the labels using also similarity measures.
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The main difference is whether known labels exist, which is also a significant

challenge in some situations. Indeed, clustering is a pre-processing in many

cases before classification. Thus it is justifiable to view these processes in a

comprehensive view.

As mentioned above, in many literatures, TSCL and TSC methods are typ-

ically classified into three main categories. These are so-called ”shape,” ”fea-

ture,” and ”model”-based approaches. Though their names and taxonomies

can be somewhat different through literature, we use these three terms. In the

shaped-based method, time series is used in raw form or transformed by non-

linear transformation. This approach is mainly functional when dealing with a

relatively short time series. A main interest is then distinguishing just shape

profiles (Maharaj et al. (2019)). After this, an appropriate similarity measure

can be chosen for raw/transformed time series.

In the feature-based method, observed raw time series must be sent to (or

extracted to) some new vector space (usually has a lower dimension) to use

Euclidean distances. The feature-based approach can remedy many problems

of shaped-based approaches like high dimensionality and autocorrelation issues.

In the model-based method, specific stochastic models are assumed, and

then time series are generated from one of the underlying models. This approach

can be considered parametric since the observed time series is first converted

to model parameter vectors. Then suitable metrics (similarity measures) are

given using these parameters. Herein, we will mainly focus on the model-based

approach.
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1.2 Agenda of the review

This review presents the overall literature on time series clustering and clas-

sification, emphasizing more detail in the model-based approach. This review

would be beneficial for those aiming to develop theoretical approaches since

most review papers focus on algorithms.

The next chapter will give a conventional framework and literature review

for the shape and feature-based approach. In Chapter 3, before going to the

model-based part, we briefly review some of the well-known stochastic models

and how they can be related to TSCL and TSC. Subsequently, the model-based

approach is presented in detail with explanations of time series models. Finally,

in Chapter 4, the conclusion and further discussion are provided.
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Chapter 2

Framework of shape and feature
based approach

2.1 Shape-based approach of TSCL and TSC

The shape-based approach is often called the observation-based approach as

it uses raw time series data. Hence, the standard Euclidean metric should be

modified to measure similarity. This section will briefly review the one-to-one

Euclidean distance-based approach called ”Lockstep measures” and the concept

of dynamic time warping.

Euclidean distance-based method is proper when dealing with local geo-

metric shapes. For example, point-wise Euclidean distance-based measures are

given in D’Urso (2000). See also D’Urso (2000) who proposed these measures

to cluster multivariate time series. For example, a straightforward form of this

measure is given as follows:

D’Urso (2000) : Put two multivariate time series data point as x
(i)
t = (x

(i)
1t , . . . , x

(i)
pt ),

x
(j)
t = (x

(j)
1t , . . . , x

(j)
pt ), where each component x

(i)
kt represents k-th feature
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of i-th observed time series at time t. And further assumes that time

domain is common set {1, . . . , T}. Then similarity measure between two

time series x(i), x(j) is given as :

d(x(i),x(j)) =

√√√√ T∑
t=1

(∥x(i)
t − x

(j)
t ∥wt)2

where wt is weight parameter at time t and ∥·∥ is standard euclidean

norm.

He also devised a similar metric using in place of vector at time t, namely

x
(i)
t , linearly transformed observed series to measure the deviation on slope

and convexity. Finally, he also devised the so-called polygonal coefficient to

measure the geometrical oscillation in terms of the time domain, which could

determine weight parameters in time intervals. Note that, as seen in the distance

equation, one needs an equal time point to measure the distance, which is

impossible when dealing with an unequal time series length. Furthermore, this

method will be computationally expensive and only locally applicable when

analyzing longer time series lengths. However, despite these drawbacks, this

distance-based method is proper when distinguishing local patterns. Also, one

can try the conventional clustering/classification method directly. For more

information, see also Coppi and D’Urso (2001).

Next, many distances are based on dynamic time warping (DTW). As we

can see in the above example, euclidean distance cannot capture the similarity

between the unequal length of two time series. Dynamic time warping emerged

to solve problems in lock step measures which finds optimal passage of time

points (Sakoe and Chiba (1978); Berndt and Clifford (1994)). Its main use in

conjunction with classic machine learning algorithms like k-NN, k-medoids, k-
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means, etc., shows substantial accuracy. For example, in Wang et al. (2013),

DTW presents significant accuracy in time series classification more than eu-

clidean distance.

DTW algorithm seeks minimal cost over all possible warping paths. So many

use dynamic programming to get DTW scores iteratively. However, despite

these algorithms, its algorithmic complexity amounts to O(nm) where n and

m represent each time series’ length, respectively. So its computational cost

is somewhat expensive and has limitations when dealing with long time series

(Berndt and Clifford (1994)). Also, in Wang et al. (2013), he concluded that

the DTW method’s accuracy converges with euclidean’s accuracy. Furthermore,

DTW is not a standard distance since it does not obey triangle inequality, mak-

ing it hard to use algorithms like the K-dimensional tree or the ball tree (Faouzi

(2022)). Although there are many drawbacks, DTW is used substantially in

many areas. For more examples, see Aach and Church (2001).

2.2 Feature based approach of TSCL and TSC

As discussed in the previous section, using lock step measures requires the same

time domain and comparing each data point independently. Thus it cannot cap-

ture the structure of autocorrelation, which is very common in time series data.

To escape from this, the concept of DTW-based metric appeared, which non-

linearly transforms time domains and uses a time path to compare two time

series. But it also has drawbacks like algorithmic complexity, semi-metric prop-

erty, and etc. Thus variants of the DTW metric have appeared. Although there

have been many improvements to overcome such problems, shape based ap-

proach has some intrinsic limitations. These include non-robustness attributed

to noise in data, which can classify or cluster series wrongly (Ratanamahatana
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and Keogh (2005); Ratanamahatana et al. (2005)). Furthermore, most shape-

based (or observed) approaches require high costs and make it expensive to

implement clustering/classifying analysis. In this perspective, the feature-based

method has arisen to overcome these problems. Because the feature-based ap-

proach aims at distinguishing generating process, it is superior to shape based

in some aspects since the shape-based method focuses mainly on geometric pro-

files. Furthermore, dimension reduction usually occurs when extracting certain

features in the original series. As a result, the computational cost reduces, which

is also an important goal in contemporary data science.

Typically, feature-based methods are based on the notion that one carries

time series to another transformed (vector) space. According to the many advan-

tages listed above, the feature extraction method is considered a base solution

for time series classification/clustering. In general, feature-based methods can

be classified into three types: time domain feature, frequency domain feature,

and wavelet-based feature approach. The remainder of this section will be de-

voted to a brief introduction to some well-known methods in this domain and

some of the literature using this.

The autocorrelation function (ACF) is used for time domain features to

measure the distance between two time series. This method is somewhat similar

to the model-based approach, which will be discussed in the next chapter. Other

autocorrelation types, like partial ACF(PACF) or inverse ACF(IACF), are also

used to define the metrics between two time series. Some examples of these

are illustrated in Alonso and Maharaj (2006); Caiado et al. (2009); D’Urso and

Maharaj (2009).

Next, in frequency domain features, periodogram-based distance measures

are used. This method can also be applied to unequal time series lengths based

on spectral analysis. Other approaches include discrete Fourier transform (DFT,
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Agrawal et al. (1993)) and discrete cosine transform (DCT). Also, see Caiado

et al. (2009); Maharaj and D’Urso (2011) for more detailed explanations. Fi-

nally, in the wavelet-based feature approach, discrete wavelet transform (DWT)

parameters are used to cluster/classify time series(Chan and Fu (1999); Kawa-

goe and Ueda (2002)). Other wavelet-based methods include Chebyshev Poly-

nomials (Cai and Ng (2004)).
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Chapter 3

Stochastic time series model
approach

3.1 Introduction

In the model-based approach, assuming each time series originates from a spe-

cific probabilistic model, the first step is to measure the distance between a pair

of models. Then, using these measures one can apply standard classification or

clustering methods to all of given time series datasets. This chapter presents a

framework for this approach and investigates the literature on this topic.

In the model-based approach, many literatures assume the ground stochastic

model to be linear and Gaussian. With this assumptions, Shumway and Unger

(1974) used Kullback-Liebler divergence to discriminate between the underly-

ing two models. Also, Kailath (1967) used Bhattacharyya distance to measure

the distance between two probabilistic models. These assume that underlying

stochastic processes are gaussian or stationary. See also Korzhik et al. (2008);

Sharif et al. (2010); Georgiou and Lindquist (2003); Grivel et al. (2021). Another
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approach is transforming the time series into well-known model parameter vec-

tors. Piccolo (1990) introduced the AR distance between ARIMA models, which

is calculated as the Euclidean distance between the coefficients of AR(∞) ex-

pansion. This research was based on the assumption that the underlying model

is an invertible and causal ARIMA process. Related works are presented in

Maharaj (1996, 2000) aiming to remedy the problem of controlling the number

of model parameters. These papers all provided hypothesis testing methods to

discriminate or cluster a given time series dataset and test statistics’ proper-

ties. Also, similarly to Corduas and Piccolo (2008), asymptotic distributional

properties of AR distance were provided.

For models dealing with heteroskedastic time series, GARCH models are

often used. In financial time series, estimating the volatility of financial data,

such as stock prices, market indices, etc., has become one of the main parts of

econometrics. Clustering models based on GARCH appeared in recent years,

see Otranto (2008), Caiado and Crato (2010), D’Urso et al. (2016), Khan et al.

(2019).

3.2 AR expansion based method

We will first present some general notation and definitions discussed in this sec-

tion. Put zero mean stationary stochastic process (Xt)t∈Z following ARMA(p,q)

process as

ϕp(B)Xt = θq(B)Zt

with each term ϕp(z) = 1 + ϕ1z + . . . + ϕpz
p, θq(z) = 1 + θ1z + . . . + θqz

q, B

is back-shift operator, and Zt is generally white noise with constant variance

σ2. It is well known that (see Brockwell and Davis (2002) or Montgomery et al.

(2015)) above Xt has a unique stationary solution and also causal and invertible
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if all roots of ϕp(z), θq(z) lie outside of the unit disk and are not common. That

is, ϕp(z)θq(z) ̸= 0 , if |z| ≤ 1. Then integrated process autoregressive integrated

moving average (ARIMA(p,d,q)) is defined as Yt = (1−B)dXt.

We define invertibility using the above notation as the existence of sequence

{πi} that the series absolutely converges and also satisfies the relationship:

Zt =
∞∑
i=0

πiXt−i, t ∈ Z.

And similarly, define causality as the existence of sequence {ψi} which the

series also absolutely converges and :

Xt =
∞∑
i=0

ψiZt−i, t ∈ Z.

As introduced above, one can cluster or classify time series data based on a

model-based approach with a minor assumption, not using specific models. The

next step is to use classic or general divergence measures such as kullback-leiber

distance, bhattacharyya distance, etc., rather than model-dependent specific

similarity measures. When a particular model holds(i.e., the model assump-

tion holds), the latter approach generally gives better results. Many time series

datasets are well suited to econometrics, finance, and biostatistics models. Thus,

we will explain from now on a model-based approach. The ARMA, ARIMA,

and related AR metric is our first topic.

If underlying model is causal and invertible ARMA(p,q), then by aforemen-

tioned definition, sequence {πi} is determined by :

π(z) =
∞∑
i=0

πiz
i = ϕ(z)/θ(z).

And each coefficient can be calculated by recursion algorithms. In Piccolo

(1990), he defined a dissimilarity measure between two ARIMA class processes
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using this AR(∞) expansion. As a remark, although we illustrate ARMA(p,q)

process (i.e., ARIMA(p,0,q) process), basically ARIMA(p,d,q) process can be

dealt with using the same method. Now the metric between two time series Xt,

and Yt from the ARIMA class is given as :

d =

√√√√ ∞∑
j=1

(πxj − πyj)2

where each πij , i = x, y represents AR(∞) coefficients from each time series.

This measurement satisfies all axioms of metrics: non-negativity, symmetry, tri-

angle inequality, and also convergent since each series are absolutely convergent.

Since π coefficients carry the structure of the underlying stochastic models, com-

paring the euclidean distance to measure the dissimilarity between two series

seems reasonable. Furthermore, since π coefficients and observations fully de-

termine prediction value at some specific time until the given time, a smaller

AR distance would imply similar prediction values. Thus in terms of forecasting

perspective, it also seems reasonable to use AR metrics. Subsequently, conven-

tional clustering, like hierarchical methods, can be applied based on this AR

distance. However, some limitations exist, like controlling the number of param-

eters of underlying models. Since in Piccolo (1990), he calculated distance after

fitting each ARMA model under consideration. Consequently, there needed to

consider the case of a different number of parameters of underlying models.

In Maharaj (1996, 2000), he developed Piccolo’s idea by proposing a statis-

tical test and using p-value to cluster the given time series datasets. Also, he

tried to solve the problem above by directly fitting the π coefficients through

truncated AR(∞) models. In fitting the truncated AR(∞) model, selection cri-

teria such as Akaike’s information criteria (AIC) can be used. Also, in Corduas

and Piccolo (2008), he solved the problem of fitting the original ARIMA model
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by setting the number of π coefficients first and using ML estimators. Some of

the details will be followed from now on.

Using the above notation, an invertible ARMA model can be expressed as

AR(∞) type as :

Xt =
∞∑
i=1

πiXt−i + Zt

.

For two time series (Xt) and (Yt), the number of coefficients of AR(∞)

expression is chosen first respectively for (Xt) and (Yt) as m1, m2 by model

selection method such as AIC or BIC. Then we put m = m1 ∨m2, and corre-

sponding parameters and estimated vectors as :

πi = (π1i, . . . , πmi)
t, π̂i = (π̂1i, . . . , π̂mi)

t i = x, y

Then, assuming without loss of generality m1 < m2, component of vector

πx (π̂x also) would be considered as πjx = 0 if j > m1.

Now hypothesis is given as H0 : πx = πy H1 : πx ̸= πy, and test statistics

can be obtained by generalized least squares method implemented at combined

models. Then finally, obtained estimator π̂ follows asymptotical normal where

π =

 πx

πy

 and π̂ =

 π̂x

π̂y

. Also, converting null hypothesis H0 as equiva-

lent form using an augmented matrix :

πx = πy ⇐⇒ Dπ := [Im − Im]π = 0

, leads to Dπ̂ being asymptotically normal under the null hypothesis also. Fur-

thermore, a quadratic form based on these statistics can be obtained asymp-

totically as χ2(m). For more detailed explanations of the deriving procedure,

see Maharaj (2000) or chapter 7 on Maharaj et al. (2019).

14



A similar but somewhat different hypothesis testing is also given in Corduas

and Piccolo (2008). As mentioned, he suggested truncating π coefficients after

fitting each ARIMA model, leaving the possibility of a different number of orig-

inal parameters. Then with the same hypothesis H0 : πx = πy or alternatively

H0 : d = 0, distribution of π̂x− π̂y is derived as following asympotically normal.

Finally, since d̂ := (π̂x−π̂y)t(π̂x−π̂y) represents the estimated distance between

Xt and Yt, some well known quadratic theorem can be applied to use d̂ as a test

statistics. It is represented asymptotically as a linear combination of χ-squared

random variables.

After obtaining the p-value from this hypothesis framework, one can im-

plement clustering algorithms like hierarchical clustering, k-means clustering,

or k-medoids based on the obtained p-values. Although AR metrics can carry

conventional clustering algorithms, like agglomerative or divisive hierarchical

clustering, its interpretability is not better than p-value-based clustering. Two

time series objects are considered members of the same clusters at a given

significance level if the corresponding p-value is greater than the given level.

Subsequently, one cluster should have a property that all objects in that cluster

have pairwisely bigger p-values than the given level. As a result, the closeness

of each object can be measured or interpreted statistically.

In summary, the essence of using AR metric to measure the nearness be-

tween two items is converting the underlying probabilistic model to well known

Euclidean vector. Then by the AR metric, one can implement clustering algo-

rithms followed by elementary statistical procedures. Furthermore, classifica-

tion or discriminating analysis can be done in this framework. The asymptotic

normality of test statistics and estimated distance makes it possible to view

these procedures as equivalent to Fisher’s lda or qda type analysis (for more

information, see also Corduas and Piccolo (2008)).
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3.3 GARCH model approach

Approaches considered until now have mainly focused on dealing with the mean

values. But as mentioned earlier, the modeling approach has a significant draw-

back: the accuracy of the classification or clustering is highly dependent on

assumed models. Thus, the AR metric-based method would also fail if the ho-

moskedastic variance assumption fails. Furthermore, many financial time series

like stock market indices, risk indexes, and portfolio investments exhibit het-

eroskedastic variance. So, it is natural to focus on the variance part of the time

series instead of the mean part. Indeed, clustering or classification algorithms

is helpful to investors since clustering or classifying volatile financial items cor-

rectly will prevent investors’ failure.

Below, we consider the GARCH model (Bollerslev (1986)):

Yt = µt + ϵt

ϵt =
√
htut,

where ut is usually i.i.d normal with mean 0, variance one (or more generally

just white noise) and ϵt is disturbance term. Also we call ht as conditional

variance following GARCH(p,q) if:

ht =

p∑
i=0

αiϵ
2
t−i +

q∑
j=1

βjht−j ,

with the restriction α0 > 0 and all αk, βk ≥ 0.

Assuming GARCH(p,q) model, Otranto (2008) introduced AR metric-based

clustering, who represented model volatility as unconditional, time-varying, and

structural volatility. Putting et := ϵ2t − ht leads to ARMA(p*,q) model and

assuming suitable coefficients condition, AR(∞) expression can be derived:

ϵ2t =
α0

1−
∑q

j=1 βj
+

∞∑
k=1

πkϵ
2
t−k + et.
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Now, the conditional expectation of squared disturbance term at time t+1

given the information until t is:

E[ϵ2t+1|Ht] =
α0

1−
∑q

j=1 βj
+

∞∑
k=1

πkϵ
2
t−k,

where Ht represents information till time t. The first term represents constant

volatility or risk, and the second is time-varying volatility. Subsequently, taking

expectation gives unconditional volatility, which is represented as:

E[ϵ2t+1] =
α0

(1−
∑q

j=1 βj)(1−
∑∞

k=1 πk)
.

He measured the similarity of time-varying volatility by π coefficients, some-

what similar to AR metric approach. Since the same AR distance between two

AR expressions yields the same time-varying volatility term, these can capture

similar volatility structures. Furthermore, divergence from the null model (all

πk = 0) was used as an amount of volatility.

Using these unconditional and time-varying volatilities, he clustered follow-

ing the three steps using hypothesis testing and p-value as before: first by un-

conditional volatility, second by time-varying volatility, and finally by similar

parametric structure. This is because similar unconditional and time-varying

volatility does not guarantee the same underlying model due to the nonlinear

combination of the parameters. On the other hand, similar parameter estimates

(i.e., similar structure estimates) will guarantee other ones. To test the last step,

one should check that whole GARCH parameter (α0, α1, . . . , αp, β1, . . . , βq) are

equivalent in the whole time series dataset under consideration. This test of

volatility structure was introduced in Otrano and Triacca (2007). Major differ-

ences with the previous section’s AR metric-based clustering approach are that

hypothesis testing is conducted holistically, and at steps 1 and 2, each cluster
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has a numerical hierarchy. Thus, one can readily see that the top-down cluster-

ing method is justifiable for these reasons. Also, benchmark series are chosen

automatically to cluster at each step, and Wald statistical test is implemented.

In D’Urso et al. (2016), weighted distance using the above unconditional,

time-varying volatility term is introduced. For given two time series Xt and Yt,

and weight parameter w1, w2, metric is given accordingly :

dxy =
√

[w2
1(uvx − uvy)2 + w2

2(tvvx − tvvy)2],

where uv and tvv stand for each series’ unconditional volatility and time-varying

volatility terms. Furthermore, restrictions on weight w1, w2 are imposed as

w1+w2 = 1 and w1, w2 ≥ 0. Based on this distance, he introduced some robust

clustering models by a fuzzy-clustering method which assigns a certain proba-

bility of belonging to a cluster to each object. These models are constructed by

partitioning around the medoids (PAM) procedure and have the robustness to

the anomalies.

For other GARCH-based or volatility approaches, in Caiado and Crato

(2010), they introduced Mahalanobis-type distance between the dynamic fea-

tures using a threshold GARCH model. Another recent GARCH-based fuzzy

clustering work is illustrated in Cerqueti et al. (2021). This paper extended

the original GARCH-based fuzzy clustering methods using higher conditional

moments. Also, some applications of GARCH model clustering can be found in

Niyitegeka and Tewar (2013); Caiado and Crato (2007).

3.4 Remark

The essence of the model-based approach is that it assumes a stochastic model

as a generating process, which is a parametric approach unlike the shape or

feature-based approach. Although some intrinsic limitations could cause low
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accuracy in a specific situation, its careful use can yield a substantial accuracy

in financial, econometric, and other applied fields. This section presented model-

based distance and how it can be applied to clustering/classifying procedures.

At the clustering/classifying stage, the p-value of the hypothesis testing plays

a significant role as a base instrument for many clustering algorithms. Thus, it

is crucial to understand that constructing hypothesis testing is essential in a

model-based approach.
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Chapter 4

Conclusions

In this review, we have introduced various time series clustering/classification

methods. In particular, to ease the difficulty of understanding the vast amount

of research work, we first classified the types of approaches: shape-based, feature-

based, and model-based. Also, this review did not try to emphasize each specific

methodology but focused on understanding the framework of whole procedures.

As may be noticed, shape-based, feature-based, and model-based approaches

are classified according to how dissimilarity is measured. In the shape-based

approach, one mainly focuses on the dissimilarity in a geometric shape. On the

other hand, characterizing the underlying process is a major issue in a feature

or model-based approach. The feature-based method is nonparametric, while

the model-based approach is parametric. Considering the characteristics and

limitations of each type of approach, one should choose proper methods when

dealing with time series data.

Since the model-based method is essentially parametric, well-known statis-

tical tools can be applied easily. Many famous literatures use the distance ob-

20



tained by coefficients of the underlying stochastic model. In this paper, an AR-

based metric and its variant have been introduced. Also, for the heteroscedastic

variance model, a GARCH-based metric was also introduced. In many situa-

tions, p-value and hypothesis testing is used to cluster or discriminate time

series data.

In recent studies, many dissimilarity measures have been combined with post

hoc clustering/classifying algorithms to find the highest accuracy procedure. As

there is no typical standard for selecting specific metrics in conjunction with

post hoc clustering or classifying method, it has become a significant challenge

to combine proper metrics and algorithms. Also, for statisticians who mainly

deal with model-based approaches, choosing the best models in each case and

modifying the metrics is a quite challenging task. Furthermore, since time se-

ries datasets are generally large, reducing the complexity remains a significant

problem.
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국문초록

시계열분류,군집분석은시간에따른방대한데이터를저장하는능력과함께데이

터마이닝분야에서주요한과제로떠오르고있다.시계열자료의까다로운성질에

의해 전통적 기법인 K-평균, K-근접이웃, SVM 등등은 직접적으로 적용이 쉽지

않다. 그러나 이러한 어려움에도 불구하고 시계열 분류, 군집분석은 데이터의 구

조를 이해하는데 도움을 주고 구조화 되지않은 데이터에서 새로운 패턴을 발견할

수 있도록 도움을 준다. 이러한 이유로 데이터 마이닝 분야에서 인기있는 주제로

여겨지고 있고 수 많은 해당 연구들이 존재하고 있다. 이번 재검토 연구에서는

전체적으로 여러 연구들을 검토한 다음 통계적 응용에 목적이 있는 모델 기반의

접근법을알아본다.비록이분야에서벌써몇가지의재검토연구가존재하지만대

부분의 재검토 연구는 특정한 지식이나 통찰을 얻기에는 너무 방대하게 설명되고

있다. 따라서 이 연구에서는 처음 주제를 접하는 연구자를 위해 전반적인 과정들

에 대한 간단한 설명을 하고 특히 통계적 응용과 연구에 관심이 있는 이들을 위해

모델 기반의 접근법을 소개한다.

주요어: 시계열 군집 분석, 시계열 분류, 모델 기반의 접근.

학번: 2021-25928
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