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Abstract

Variable Selection Methods in
High-Dimensional Regression Analysis

Dohyup Shin
The Department of Statistics

The Graduate School
Seoul National University

High-dimensional data analysis is attracting attention in many fields these days. In

particular, it is a difficult and important problem to select a variable that has a signif-

icant effect among numerous variables. Several statistical methods exist to solve this

problem, such as multiple testing and LASSO in linear regression models. In this pa-

per, we introduce the case of Lasso, adaptive Lasso, Elastic net, and generalized linear

models in Bühlmann and Van De Geer (2011) [3]. Also, we review and cover the mul-

tiple testing procedures and introduce a recent method of false discovery rate(FDR)

control via data splitting proposed by Dai et al.(2022)[4]. Finally, if relevant variables

are sparse, we check whether the adaptive Lasso estimator gives better results than the

Lasso estimator through simulation. In addition, we confirm that the MDS method is

more stable and has higher empirical power than the DS method by simulation.

keywords: Variable Selection, Lasso, Adaptive Lasso, Elastic net, Generalized Lasso,

False Discovery Rate, BHq procedure, Mirror Statistic, Data Splitting, Multiple Data

Splitting

student number: 2021-28605
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Chapter 1

INTRODUCTION

Let Xn⇥p = (X1, X2, . . . , Xp) be the explanatory features with p � n. For each

feature has been normalized with zero mean and unit variance. Let Y = (y1, . . . , yn)

be the vector of n independent response variable. Consider the linear regression model

Y = �0 +X1�1 + · · ·+Xp�p + ✏ (1.1)

where ✏ = (✏1, ✏2, . . . , ✏n) is a noise vector with ✏i
iid⇠ (0,�2). Let S0 = {i : �i = 0}

be the index set of the null features and S1 = {i : �i 6= 0} be the index set of the

relevant features.

Various methods for high-dimensional linear regression have been developed. It

is important to select the relevant variables. The classical methods of variable se-

lection include forward selection, backward selection, stepwise selection, Akaike In-

formation Criterion(AIC) (Akaike (1998))[1], Bayesian Information criterion(BIC)

(Schwarz (1978)) [6], etc. Furthermore, there is another method by using a penalty

term. The most widely known method is the Lasso regression proposed by Tibshirani

(1996) [7]. Alternatively, there is a method of selecting significant variables by con-

trolling the false discovery rate. Benjamini and Hochberg (1995) [2] procedure first

proposed a method of using FDR control. After that, many methods of controlling
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FDR in various assumptions were announced. But, the BHq procedure is difficult to

apply in a high-dimensional model. This is because the BHq procedure requires the

calculation of p-values, which are difficult to compute in high-dimensional models.

To solve the above problem, we introduce the false discovery rate control via data

splitting, which is proposed by Dai et al. (2022) [4].

In chapter 2, we introduce the theory and good properties of LASSO regression. In

addition, we will cover the adaptive Lasso estimator and Elastic net estimator, which

are more advanced models, and introduce LASSO estimators in generalized linear

models.

In chapter 3, we briefly discuss multiple testing and the concept of False Discov-

ery Rate(FDR). And we introduce the variable selection method through FDR control

in the linear regression model and deal with FDR control via data splitting recently

announced by Dai et al. (2022) [4].

In chapter 4, we experimentally show that the Adaptive Lasso estimator performs

better in variable selection than LASSO in sparse linear models. Next, we show through

experiments that the MDS method is more stable and has higher power than DS in FDR

control by using data splitting.
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Chapter 2

Lasso Regression

2.1 The Lasso estimator

If p > n, the least square estimator of � is not unique and greatly overfits the data.

Therefore, we use the l1 penalty method among the regularization methods. The Lasso

estimator is defined as

�̂(�) = argmin
�

�
||Y �Xn⇥p�||22 + �||�||1

�
(2.1)

where � � 0 is the penalty parameter.

In general, we can select the proper � by using a cross-validation procedure. The

estimator has the property that it does variable selection in the sense that �j(�) = 0

for some j0s (depending on the choice of �) and �̂j(�) can be thought of as a shrunken

least squares estimator. Since the optimization in (2.1) is convex, (2.1) is equivalent to

�̂Primal(R) = argmin
�:||�||1R

�
||Y �Xn⇥p�||22/n

�
(2.2)

with 1-1 correspondence between � and R, depending on the data.

In Bühlmann and Van De Geer (2011) [3], there are many properties for the Lasso

estimator. Under several conditions, the lasso estimator has variable screening and
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variable selection properties. The variable screening property is

P [Ŝ(�) ◆ S0] ! 1 (p � n ! 1)

which means that all relevant variables are included. Also, the variable selection prop-

erty is

P [Ŝ(�) = S0] ! 1 (p � n ! 1)

which means that all relevant are chosen exactly and where Ŝ(�) = {j : �̂j(�) 6=

0, j = 1, 2, . . . , p}. The proof of the above properties and other properties are detailed

in Bühlmann and Van De Geer (2011) [3].

2.2 Adaptive Lasso

In Zou, H. (2006) [8], the Adaptive Lasso estimator is defined by reweighed penalty

term

�̂adapt(�) = argmin
�

0

@||Y �X�||22/n+ �

pX

j=1

|�j |
|�̂init,j |

1

A (2.3)

where � � 0 is the penalty parameter and �̂init is an initial estimator. There is the two-

stage procedure for obtaining adaptive lasso in Bühlmann and Van De Geer (2011)

[3].

In the first stage, we use a Lasso estimator as the initial estimator which means

�̂init = �̂(�) = argmin
�

�
||Y �Xn⇥p�||22 + �||�||1

�
.

In the second stage, we use cross-validation again to choose the parameter � in the

adaptive Lasso (2.3). By proceeding in this way, the regularization parameters can be

selected sequentially. This is computationally much cheaper because it optimizes twice

for a single parameter instead of simultaneously optimizing for two tuning parameters.
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There is trivial property of the adaptive Lasso such that

�̂init,j = 0 ) �̂adapt,j = 0.

In addition, if |�̂init,j | is large, the adaptive Lasso uses a small penalty for the jth

coefficient �j . Therefore, we can use the adaptive lasso to generate sparse solutions

and reduce the number of false positives in the first step.

2.3 Elastic net

In Zou (2006) [9], the Elastic net estimator is defined by using a combination of the

l1, l2 penalties

�̂EN (�1,�2) = argmin
�

�
||Y �X�||22/n+ �1||�||1 + �2||�||22

�
(2.4)

where �1,�2 � 0 are regularization parameters.

The motivation for adding the l2-norm penalty is as follows. For strongly correlated

covariates, Lasso can choose one, but generally not both. From a sparsity point of view,

this method works well. However, in terms of interpretation, we may want to have

two strongly correlated variables between the selected variables. This is motivated by

the idea that we do not want to miss a true variable due to the selection of non-true

variables which are highly correlated with the true variable. The computation of the

elastic net estimator can be done by using an algorithm for the Lasso.

2.4 Lasso for Generalized Linear Models

Generalized Linear Models (McCullagh and Nelder (2019)) [5] are useful for process-

ing many extensions of a linear model. Let Y be the response variable and X 2 X ⇢
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Rp be the p-dimensional covariates:

Y1, Y2, . . . , Yn are independent.

g(E([Yi|Xi = x]) = f(x) = fµ,�(x) = µ+
pX

j=1

�jx
(j)

g(·) is known as the link function and µ is the intercept term. The conditional proba-

bility density function(pdf) of Y |X = x can be defined as p(y|x) = pµ,�(y|x). This

means the conditional pdf of Y |X = x depends on µ,�.

The Lasso can be applied to Generalized linear models. In this case, the Lasso esti-

mator is defined by penalizing the negative log-likelihood with the l1-norm. The nega-

tive log-likelihood is �
Pn

i=1 log (pµ,� (Yi | Xi)). The negative log-likelihood can be

rewritten with a loss function ⇢(., .):

n
�1

nX

i=1

⇢µ,� (Xi, Yi) ,

⇢µ,�(x, y) = � log(pµ,�(y|x)).

For many examples, for all x, y, the loss function ⇢µ,�(x, y) is often convex in µ,�.

The l1-norm penalized Lasso estimator is then defined as:

µ̂(�), �̂(�) = argmin
µ,�

 
n
�1

nX

i=1

⇢µ,� (Xi, Yi) + �k�k1

!
.

The properties of the Lasso estimator in the generalized linear models are very similar

to those of the Lasso estimator in the linear model. There are consistency and variable

screening(selection) properties.
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2.4.1 Logistic regression

We consider a model with binary response variable Y and p-dimensional covariates

X 2 R
p. Let Yi|Xi = x ⇠ Bernoulli(⇡(x)) with

log

✓
⇡(x)

1� ⇡(x)

◆
= µ+

pX

j=1

�jx
(j) = fµ,�(x)

where the link function g(⇡) = log( ⇡
1�⇡ ) with ⇡ 2 (0, 1).

So, the negative log-likelihood function is

�
nX

i=1

log (pµ,� (Yi | Xi)) =
nX

i=1

{�Yifµ,� (Xi) + log (1 + exp (fµ,� (Xi)))}

The corresponding loss function is

⇢µ,�(Xi, Yi) = �Yi

 
µ+

pX

i=1

�jX
(j)
i

!
+ log

 
1 + exp

 
µ+

pX

i=1

�jX
(j)
i

!!
.

Thus, we can define the Lasso estimator as:

µ̂(�), �̂(�) = argmin
µ,�

 
n
�1

nX

i=1

⇢µ,� (Xi, Yi) + �k�k1

!
.
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Chapter 3

FDR control via data splitting

3.1 Multiple testing

Suppose we test N hypotheses simultaneously, defined H0i vs H1i with i = 1, . . . , N .

The multiple testing or multiple comparisons problem is how to determine which null

hypothesis is rejected when observing a large number of test statistics. There are sev-

eral methods to solve this problem such as family-wise error rate(FWER) control and

false discovery rate(FDR) control.

First, the FWER is the probability of incorrectly rejecting a true null hypothesis at

least once,

FWER = P{reject any true null H0i}.

We’ll show that Bonferroni’s procedure controls FWER at significance level ↵.

Let I0 be the set of index the true H0i with N0 = #I0. Define pi be the p-values from

each hypothesis. Then, by using Boole’s inequality,

FWER = P

8
<

:
[

I0

⇣
pi 

↵

N

⌘
9
=

; 
X

I0

P
n
pi 

↵

N

o

= N0
↵

N
 ↵
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Therefore, if the significance level of each hypothesis is set to ↵/N and then tested,

the FWER is controlled at the significance level ↵.

The Bonferroni procedure is too conservative. That is, we reject too few hypothe-

ses. There is a more advanced method than this, Holm’s procedure. This method can

also control FWER at the same level ↵. Here’s holm’s procedure.

• Sort the observed p-values from smallest to largest,

p(1)  p(2)  p(3)  . . .  p(i)  . . .  p(N)

with H0(i) denoting the corresponding null hypotheses.

• Let i0 be the smallest index i 2 {1, . . . , N} such that p(i) > ↵/(N � i + 1).

This means,

i0 = min{i : p(i) > ↵/(N � i+ 1)}

• Reject all H0(i) for i < i0 and accept all H0(i) with i � i0.

Next, we define the false discovery rate(FDR). Similar to FWER, assume that

when N hypotheses are simultaneously tested to account for the false discovery rate,

the actual number of null hypotheses is N0. When the R null hypotheses were rejected,

we define the number of hypotheses that were incorrectly rejected as a. Let D be a de-

Accept Null Reject Null Total
Null hypothesis is true N0 � a a N0

Alternative hypothesis is true N1 � b b N1

Total N �R R N

Table 3.1: The possible outcomes when testing multiple null hypotheses.

cision rule that rejects R out of N null hypotheses. Then, the false discovery proportion

(Fdp) is defined as

Fdp(D) =
a

R
.
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We define Fdp(D) = 0 if R = 0. Since a is a random variable that cannot be observed,

the false discovery rate(FDR) is the expected value of Fdp(D), denoted

FDR(D) = E{Fdp(D)}.

We can find the decision rule D that controls FDR at level q, with q 2 (0, 1) a

preselected value. This means FDR(D) = E{Fdp(D)}  q.

3.2 BHq procedure

There are many ways to control FDR, the Benjamin-Hochberg procedure, which was

first introduced in 1995. There is an assumption that all variables are independent.

Theorem 1 ( Benjamini and Hochberg (1995) [2]) Let H1, . . . , HN be the N hypothe-

ses and p1, . . . , pN be the p-value corresponding to each hypothesis. Define p(1) 

p(2)  · · ·  p(N) as ordered p-value with H(i) denoting the corresponding hypothe-

ses. For given control level q 2 (0, 1), define imax = max{i : p(i)  i
N q}. We set the

decision rule Dq to reject all hypotheses H(i) for i  imax. Then,

FDR(Dq) =
N0

N
q  q

Furthermore, a method of controlling FDR in the case of dependency between fea-

tures was also introduced. Benjamini and Yekutieli (2001) [10] generalized the BHq

procedure to handle when p-values are dependent. Sarkar (2002) [11] generalized the

BHq procedure for general step-wise multiple testing procedures with positive depen-

dence. Storey et al. (2004) [12] handled the case of weak dependence.
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3.3 FDR control in Regression models

In high-dimesional linear regression model, the hypotheses are

H0i : �i = 0 vs H1i : �i 6= 0

Then, we can select the significant features by applying the FDR control procedures

as follows.

FDR = E[FDP ], FDP =
#{j : j 2 S0, j 2 Ŝ}
#{j : j 2 Ŝ} _ 1

(3.1)

where Ŝ = {j : H0j is rejected } is the selected relevant features.

3.4 Single Data Splitting(DS)

In Dai et al. (2022) [4], it is difficult to find the p-values and the joint distribution of

explanatory features in high dimensional. So, there are limitations and difficulties in

applying the BHq procedure.

Unlike the traditional method of selecting the features with a regression coeffi-

cient value estimated using the entire data, Dai et al. (2022) [4] introduced the single

data splitting(DS) method. We split the data into two halves, denoted as (y(1), X(1)),

(y(2), X(2)). Then, we estimate two independent coefficients by applying two poten-

tially different statistical procedures to each of the two groups, denoted as �̂(1)
j , �̂

(2)
j .

Since we do not use the p-values, Dai et al. (2022) [4] defined new statistics, called the

mirror statistics. The mirror statistics Mj for each feature Xj is

Mj = sign(�̂(1)
j �̂

(2)
j )f(|�̂(1)

j |, |�̂(2)
j |)

Here, f(u, v) has several conditions. It is non-negative, symmetric for u and v. Also,

it is a monotone increasing function of u and v. Then, Dai et al. (2022) [4] mentioned
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that the mirror statistics satisfy the following properties.

(a) If a feature has a large mirror statistic, the feature is likely to be a significant

feature.

(b) The mirror statistic of a non significant feature has symmetric sampling distri-

bution about 0.

Since we don’t know exactly the number of false positives {j 2 S0 : Mj > t}

for given threshold value t and the mirror statistics, we’ll find the upper bound of {j 2

S0 : Mj > t} which we can estimate. The symmetric assumption of the mirror statistic

for the null feature is used to show the following upper bound of {j 2 S0 : Mj > t}.

#{j 2 S0 : Mj > t} u #{j 2 S0 : Mj < �t}  #{j : Mj < �t}, 8t > 0.

(3.2)

We can select the index of relevant variables denoted Ŝt = {j : Mj > t}. Then,

the FDP(t) of the Ŝt is given by

FDP (t) =
#{j : Mj > t, j 2 S0}
#{j : Mj > t} _ 1

(3.3)

Thus, we use the estimator of FDP(t) by

\FDP (t) =
#{j : Mj < �t}
#{j : Mj > t} _ 1

(3.4)

Next, we set the level q 2 (0, 1) of FDR control. So we can define the cutoff value

⌧q = min{t > 0 : \FDP (t)  q}

Thus, we can finally choose the index set of the relevant variables by Ŝ⌧q = {j : Mj >

⌧q}.

There are more assumptions to obtain a good estimate of the number of false pos-

12



itives. First, the mirror statistics for null features should not be too correlated. Second,

the variance of mirror statistics converges to finite. Then, Dai et al. (2022) [4] showed

that FDR(⌧q) is controlled to the level q. The proof of this is detailed in Dai et al.

(2022) [4].

3.5 Multiple Data Splitting(MDS)

Dai et al. (2022) [4] mentioned that there are two problems with single data split-

ting(DS). First, splitting the data into two halves inflates the variance of the estimated

regression coefficient. So, DS can potentially suffer a power loss. Second, the selec-

tion result of DS may not be stable and can vary substantially across different sample

splits.

To solve this problem, Dai et al. (2022) [4] proposed that we collect the selection

results obtained from independent replication of DS using multiple data segmentation

procedures. Suppose we use random sample splits to independently repeat DS m times.

Define the Ŝ
(k) to be the set of selected features in the kth trials for k = 1, 2, . . . ,m

and the associated inclusion rate Ij and its estimate Îj as

Ij = E
"
1(j 2 Ŝ)

|Ŝ| _ 1
|X, y

#
, Îj =

1

m

mX

k=1

1(j 2 Ŝ
(k))

|Ŝ(k)| _ 1
.

This ratio is a measure of the importance of each feature related to the data splitting

procedure. In other words, if a feature is selected with a small frequency, it tends to be

not a significant feature. Then, similar to DS, the cutoff value of the inclusion rate that

controls the FDR can be found.

Dai et al. (2022) [4] mentioned that there are three steps to finding the cutoff value.

First, we sort the estimated values of the inclusion rate, denoted 0  Î(1)  Î(2) 

· · ·  Î(p). Second, we find the largest index l 2 {1, . . . , p} such that Î(1) + Î(2) +

· · · + Î(l)  q. Finally, we select the relevant features Ŝ = {j : Îj > Î(l)}. Similar to

DS, the FDR of MDS is controlled to the level q. The proof of this is detailed in Dai et

13



al. (2022) [4].

3.6 Application for linear models

Let the design matrix X be random which means each row of X follows independently

p-dimensional distribution and �
⇤ be the true coefficient with p � n. We estimate the

S1 = {j : �j 6= 0} which is contained true relevant features.

Dai et al. (2022) [4] proposed LASSO + OLS procedure. Firstly, to reduce the

dimension, we apply the LASSO to the first data (y(1), X(1)). Then, �̂(1) is defined as

the lasso estimator. Let Ŝ(1) = {j, �̂(1)
j 6= 0}. Next, we use the restricted features set

Ŝ
(1). Let X(2)

Ŝ(1)
be the restricted design matrix of X(2). Then, we proceed the ordinary

least square method for (y(2), X(2)

Ŝ(1)
). Let �̂(2) be the least square estimator. Finally,

using �̂
(1)

, �̂
(2), we obtain the mirror statistics. So, we can apply the DS or MDS

procedures.
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Chapter 4

Simulation Study

In this chapter, we assume the linear model and do simulations. Firstly, we will use

the Lasso, adaptive Lasso. Secondly. We will use DS and MDS methods. We compare

which methods find more significant features.

4.1 Lasso vs Adaptive Lasso

Using p = 500 and n = 50, we describe Lasso and adaptive Lasso in some simulation

data of the linear model. We select �1 = 1.5,�2 = 2.3,�3 = �1.3,�4 = 0.7 and �5 =

· · · = �500 = 0, ✏ ⇠ N(0, 1) and X
(1)

, . . . , X
(500) i.i.d⇠ N(0, 1) where Y = f(X) +

✏ = X� + ✏.

Figure 4.1 shows the coefficient estimates for Lasso and adaptive Lasso, respec-

tively, using the initial estimator from Lasso. The tuning parameters are chosen as

follows: For Lasso, we use the optimal � in 10-fold cross-validation. This Lasso fit is

used as an initial estimator and then re-optimizes the 10-fold cross-validation to select

� for the second step of the adaptive Lasso. We can empirically see that Lasso is a

powerful screening method here. All four relevant variables �1,�2,�3,�4 are chosen.

This means that Ŝ ◆ S0, but it also selects 26 noise covariates. The adaptive Lasso

provides a fairly sparse fit. All of the 4 relevant variables and 2 noise covariates are
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Figure 4.1: Estimated regression coefficients using lasso and adaptive lasso

selected. Therefore, if the number of significant variables is sparse, the Adaptive Lasso

provides a better estimate.

4.2 DS vs MDS

Also, we will check that the MDS method is more stable than the DS method. We

proceed with the simulation setting in Dai et al. (2022) [4] in more various ways. Let

yn⇥1 = Xn⇥p�
⇤
p⇥1 + ✏n⇥1 with ✏ ⇠ N(0, In) and randomly locate the significant

index set S1. The distribution of �⇤
j for j 2 S1 is �⇤

j ⇠ N(0, �
p
log p/n) where � is

signal strength. The distribution of each row of Xn⇥p follows N(0,⌃) where ⌃ is a

Toeplitz covariance matrix with correlation ⇢. We set the FDR control level q = 0.1.

In this simulation, we set various situations and measure the empirical power of MDS.
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Figure 4.2: ⇢ = 0, 0.3 with � = 3, n = 500, p = 500, p1 = 50

Figure 4.3: ⇢ = 0.5, 0.8 with � = 3, n = 500, p = 500, p1 = 50
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Figure 4.4: ⇢ = 0, 0.3 with � = 3, n = 500, p = 1000, p1 = 100

Figure 4.5: ⇢ = 0.5, 0.8 with � = 3, n = 500, p = 1000, p1 = 100
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Let m be the number of DS replication. The empirical power of MDS is obtained

as

\Power =
#(S1 \ Ŝ1)

p1
.

We calculate the empirical power of MDS with different m. For all case, the empirical

power of MDS increases with m and is stable after m � 50. Therefore, the MDS

method is empirically more stable and has more power than the DS method.
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Chapter 5

R Code

We attach the R code for the simulation results. The following code compares Lasso

and Adaptive Lasso.

library(glmnet)

library(MASS)

covariance <- diag(500)

### Generate Data

generate_data <- function(p, n){

beta_star <- rep(0, p)

signal = c(1,2,3,4)

beta_star[signal] <- c(1.5, 2.3, -1.3, 0.7)

set.seed(123)

X = mvrnorm(n, mu = rep(0, p), Sigma = covariance)

y <- X%*%beta_star + rnorm(n, mean = 0, sd = 1)

return(list(X = X, y = y))
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}

a = generate_data(500, 50)

X = a$X # design matrix : 50 x 1000

y = a$y # dependent variable : 50 x 1

# Lasso

set.seed(123)

cv1 <- cv.glmnet(X, y, alpha = 1, intercept = F)

best_lambda <- cv1$lambda.min #best lambda

## lasso estimator

beta = coef(cv1, s = "lambda.min")

tmp <- as.data.frame(as.matrix(beta))

rel_coef_index = which(tmp$s1 != 0)

est_coef = tmp$s1[rel_coef_index]

par(mfrow = c(1, 2))

plot(seq(0,500), tmp$s1, type = "p", main = "Lasso",

xlab="coefficients", ylab = "variables", ylim = c(-2, 2.5))

abline(h=0,col="black",lty=2)

abline(v=0, col ="black",lty=2)

points(c(1,2,3,4), c(1.5, 2.3, -1.3, 0.7), col = "red", pch = 2)

# adaptive lasso

set.seed(123)

alasso1 <- cv.glmnet(X, y, alpha = 1,

penalty.factor = 1 / abs(tmp$s1[2:501]), intercept = F)
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best_lambda_adaptive <- alasso1$lambda.min

## adaptive lasso estimator

beta_adaptive <- coef(alasso1, s = "lambda.min")

tmp_adap <- as.data.frame(as.matrix(beta_adaptive))

rel_coef_index_adap = which(tmp_adap$s1 != 0)

est_coef = tmp_adap$s1[rel_coef_index_adap]

plot(seq(0,500), tmp_adap$s1, type = "p", main = "Adaptive Lasso",

xlab="coefficients", ylab = "variables", ylim = c(-2, 2.5))

abline(h=0,col="black",lty=2)

abline(v=0, col ="black",lty=2)

points(c(1,2,3,4), c(1.5, 2.3, -1.3, 0.7), col = "red", pch = 2)

Next, the code to compare DS and MDS is on the Dai et al. (2022) [4] Github.

The link to GitHub is “https://github.com/Jeremy690/False-Discovery-Rate-via-Data-

Splitting”.
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Chapter 6

Conclusion

In high-dimensional regression analysis, we introduce the classic methods of variable

selection methods to the latest methods. Among the classical methods, we explain

several properties of the Lasso estimator and the Adaptive Lasso, Elastic net and gen-

eralized linear models.

Next, we introduce a method of variable selection by controlling the false discov-

ery rate. Among the multiple test methods, the BHq procedure method and the method

for controlling FDR in linear models are introduced. In addition, the FDR control via

data splitting proposed by Dai et al. (2022) [4] is introduced.

Dai et al. (2022) [4] define a new statistic, the mirror statistic, and use the property

that this statistic has a distribution symmetrical to 0 in the case of the null hypothesis,

and large positive values in the case of the alternative hypothesis. In this way, FDP,

which is an approximate value of the FDR value, is estimated, and significant variables

are selected by adjusting the threshold so as not to exceed a predetermined FDR level.

Dai’s method allows us to select relevant features without looking for p-values or

joint distributions of high dimensional features.
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¯ |8–⌧ ∞¨î Bühlmann and Van De Geer (2011) [3]–⌧ ‰Ëî Lasso,

Adaptive Lasso, Elastic net ✏ |⇠T⌧  � ®x ¨@| å⌧\‰. ⇣\, ∞¨î

ÏÏ‰⌘Ä��(|‰Ë‡ Dai ei al. (2022) [4]�\¸–⌧H\pt0Ñ`D

µ\ »⌅ ⌧¨`(FDR) ⌧¥ )ïD å⌧\‰. »¿…<\  X\ ¿⇠� lå\

Ω∞ Lasso î�…Ù‰ �Q� Lasso î�…t T ã@ ∞¸| ¸î¿ ‹¨�tX

<\Uxt¯‰.¯¨‡ DS@MDS)ï<\ FDRDµ⌧XîΩ∞MDS)ït

DS)ïÙ‰TH��t‡Ωÿ�Ä�%tí@ÉD‹¨�tXDµtUxt

¯‰.

¸î¥: ¿⇠  › )ï`, Lasso, Adaptive Lasso, Elastic net, Generalized Lasso,

p” ⌧¨((FDR), BHq �(, p∏ µƒ…, pt0 Ñ` (DS), ‰⌘ pt0 Ñ`

(MDS)

Yà: 2021-28605

26


	1. INTRODUCTION                                            
	2. Lasso Regression                                          
	2.1 The Lasso estimator                               
	2.2  Adaptive Lasso                                      
	2.3  Elastic net                                              
	2.4  Lasso for Generalized Linear Models   
	2.4.1 Logistic regression                        


	3. FDR control via data splitting                      
	3.1 Multiple testing                                      
	3.2  BHq procedure                                     
	3.3  FDR control in Regression models       
	3.4  Single Data Splitting(DS)                      
	3.5  Multiple Data Splitting(MDS)               
	3.6  Application for linear models              

	4. Simulation Study                                          
	4.1 Lasso vs Adaptive Lasso                         
	4.2  DS vs MDS                                             

	5. R code                                                           
	6. Conclusion                                                    


<startpage>9
1. INTRODUCTION                                             1
2. Lasso Regression                                           3
    2.1 The Lasso estimator                                3
    2.2  Adaptive Lasso                                       4
    2.3  Elastic net                                               5
    2.4  Lasso for Generalized Linear Models    5
          2.4.1 Logistic regression                         7
3. FDR control via data splitting                       8
    3.1 Multiple testing                                       8
    3.2  BHq procedure                                      10
    3.3  FDR control in Regression models        11
    3.4  Single Data Splitting(DS)                       11
    3.5  Multiple Data Splitting(MDS)                13
    3.6  Application for linear models               14
4. Simulation Study                                           15
    4.1 Lasso vs Adaptive Lasso                          15
    4.2  DS vs MDS                                              16
5. R code                                                            20
6. Conclusion                                                     23
</body>

