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- Abstract -

Comparison of Individualized Facial Growth Prediction
Models Based on the Multivariate Partial Least Squares
Method and Artificial Intelligence Developed by TabNet

Deep Neural Network

Jun-Ho Moon, BS, DDS

Department of Orthodontics, Graduate School,

Seoul National University

(Directed by Professor Shin-Jae Lee, DDS, MSD, PhD, PhD)

[Introduction]

Craniofacial growth has long been considered an important topic in the field of

clinical orthodontics. Several growth prediction methods have been developed,

however, individual variations in growth make prediction challenging. In addition,

growth prediction requires predicting numerous highly inter-correlated variables,

which limits the use of various statistical techniques.

When significant numbers of input and output variables are highly correlated with

each other, such as soft tissue responses after orthognathic surgery, prediction

models based on the partial least squares (PLS) method showed better



predictive performance than conventional ordinary least squares (OLS) methods.

Therefore, the PLS method might be useful in predicting growth by reflecting

individual growth variations and solving correlation issues.

Meanwhile, attempts to apply artificial intelligence (AI) in the field of dentistry

have been increasing. Recently, the TabNet algorithm has been developed to

apply deep neural networks (DNNs) to tabular data. Applying TabNet algorithm to

tabular growth data might enable accurate growth predictions.

The purpose of this study was to develop and compare facial growth prediction

models incorporating individual skeletal and soft tissue characteristics based on

the PLS method and artificial intelligence.

[Materials and methods]

Serial longitudinal lateral cephalograms were collected from 303 children (166

girls and 137 boys), who had never undergone orthodontic treatment. Growth

prediction models were devised by applying the multivariate PLS algorithm and

AI developed by TabNet deep neural network, with 161 predictor variables.

Response variables comprised 78 lateral cephalogram landmarks. T-tests were

performed to compare the prediction accuracy between the two methods.

Multiple linear regression analysis was performed to investigate factors

influencing growth prediction errors. Confidence ellipses were depicted to

investigate the pattern of prediction errors and to evaluate the effect of growth

variability on the accuracy of prediction models.



[Results]

Using the leave-one-out cross-validation method, a PLS model with 30

components was developed. For the AI-based prediction model, optimal

hyperparameters were selected after hyperparameter tuning. Among the 78

landmarks, the AI-based model was more accurate in 55 landmarks. The PLS

method was more accurate in 10 landmarks, including cranial base landmarks,

which generally showed less growth variability. The remaining 13 landmarks

showed no statistical difference between two methods. When uncertainty was

high, it was more advantageous to use AI for growth prediction. On average, the

AI-based model showed less prediction error by 1.11mm than the PLS-based

model. Younger age at prediction resulted in greater prediction error (0.01 mm

per year). In addition, prediction error increased in proportion to the growth

prediction interval (0.14 mm per year). Girls, subjects with Class II malocclusion,

skeletal landmarks, and landmarks on the maxilla showed more accurate

prediction results than boys, subjects with Class I or III malocclusion, soft tissue

landmarks, and landmarks on the mandible, respectively.

[Conclusions]

The AI-based model predicted growth more accurately than the PLS-based

model. The prediction error of the prediction model was proportional to the

remaining growth potential. PLS and AI growth prediction seemed to be a



versatile approach that can incorporate large numbers of predictor variables to

predict numerous landmarks for an individual subject.
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Ⅰ. INTRODUCTION

Craniofacial growth is a fundamental topic in orthodontics. Particularly in clinical

practice, growth prediction assists orthodontists in formulating treatment plans

and visualizing therapeutic outcomes to accomplish satisfying results for growing

patients. Various growth prediction methods have been developed, with respect

to both direction and magnitude;1-17 however, accurate growth prediction remains

challenging, due to the extremely variable nature of growth in individuals.

Growth is a complex process affected by both genetic and environmental factors,

and varies according to sex and ethnicity.1,3,4,15,18 Variation in craniofacial growth

according to cephalometric characteristics has been reported previously.7,18-21

Growth prediction methods estimate a patient’s residual growth based on

average annual increments, as well as the anticipated amount of growth added to

the patient’s current state. As summarized in Table 1, growth prediction methods

included specific cephalometric templates and guides, such as mesh

diagrams,9,22 grids,5,23 templates,10 and Ricketts’ visual treatment objective

(VTO)11,12,24. However, these approaches do not account for individual variation;

rather, average growth per year is applied to every patient. Subsequent studies

have used more sophisticated approaches based on multivariate statistical

methods,14,25 such as Bayesian theorem,13 a multilevel model,2 and application of

nonlinear growth functions.6,7,17 Yet, growth prediction remains among the most

daunting challenges in orthodontics. Numerous factors, such as innate skeletal
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and soft tissue variables, as well as a large amount of biological information,

such as age and sex, must be considered to produce accurate and clinically

applicable predictions.

When considerable numbers of both input predictor variables and output

response variables are highly correlated with one another, prediction models

based on the partial least squares (PLS) method demonstrated superior

predictive performance over conventional ordinary least squares (OLS) methods,

such as linear regression models.26-30 A number of previous reports have

demonstrated that the PLS algorithm was significantly more accurate for

predicting treatment outcomes than OLS-based methods. The improved

prediction capability of the PLS method may be due to its ability to control for

significant correlations among the skeletal and soft tissue variables of individual

patients.26-30 Furthermore, post-treatment changes are affected by various factors,

including age and sex, among others. As predicting treatment outcomes and

growth changes likely involve similar aspects, the PLS method is expected to be

a useful tool for predicting growth by considering various factors. Through linear

combination of numerous variables via matrix algebra, PLS can reflect the

skeletal and soft tissue characteristics of an individual.

Recently, the use of artificial intelligence (AI) in the field of dentistry has gradually

attracted attention. In the field of orthodontics, there have been attempts to apply

AI in cephalometric landmark detection and orthodontic diagnosis.31-36 In these

cases, one of the deep learning methods, deep neural networks (DNN), are
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mainly used.37 A DNN, which is capable of modeling complex nonlinear

relationships, is an artificial neural network comprising multiple layers connecting

the input and output layers. Lately, the DNN architecture TabNet, developed to

apply deep learning to tabular data, was shown to outperform other DNN

algorithms on tabular datasets.38 Therefore, applying TabNet algorithm in growth

data, which can be considered as tabular, might show promising growth

prediction results.

The purpose of this study was to develop and compare facial growth prediction

models based on the PLS method and artificial intelligence.
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Ⅱ. REVIEW OF LITERATURE

As shown in Table 1, various growth prediction methods have been developed,

from the famous Ricketts’ VTO11,12,24 to using parental data, which was somewhat

different from preexisting methods, for predicting offspring’s growth.14 Previous

growth prediction methods could be categorized as follows: 1) adding increments

to present size, 2) using skeletal maturity to predict mandibular growth, 3) using

statistical methods to predict growth.

Adding increments to present size

The methods in the first category add an average increment to the present size to

predict growth. These are the most classical and well-known methods. The

advantage of these methods is that it is easy to understand and can be applied

without difficulty. However, in these methods, individual variations are not

considered, and only average growth is applied to every patient.

The mesh diagram is a grid system used for craniofacial growth analysis and

prediction.9,22 It consists of 24 rectangles of the same size drawn on a

cephalometric tracing. The middle four rectangles are called core rectangles. The

size of the core rectangle varies from person to person and determines the size

of the remaining rectangles. In the mesh diagram method, it was expected that

the size of the core rectangle would increase by a certain amount and other
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structures would grow in proportion to the size of the core rectangle.

Ricketts proposed arcial growth of the mandible.11 In this study, three arcs

passing through protuberance menti were presented. Ricketts insisted that when

arcial growth of the mandible and annual mandibular growth of 2.5 mm were

combined, the size and shape of the mandible can be predicted with

considerable accuracy. In addition to the arc-shaped growth of the mandible,

Ricketts developed a method called VTO that can predict facial growth and soft

tissue changes.12,24. Growth prediction was performed by dividing the craniofacial

region into six areas: cranial base prediction, mandibular growth prediction,

maxillary growth prediction, occlusal plane prediction, the location of dentition,

and the soft tissue of the face.

Some studies used forecast grid to predict growth.5,23 Different templates were

used by gender and age. In this growth prediction method, there were forecast

grids for several anatomic landmarks. The growth of a particular landmark was

anticipated to move from its current position along the axes of the forecast grid.

To increase the accuracy of prediction, grid units were set differently by the

starting age of prediction, years of prediction, and gender. The disadvantage of

this method was that the same amount of growth was assumed regardless of the

growth pattern of the face.

In the study by Popovich and Thompson, craniofacial templates were used to

predict growth.10 These templates were provided differently according to gender

and vertical growth patterns. Growth patterns were classified into horizontal,
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vertical, and average, and a total of six craniofacial templates were provided.

Using skeletal maturity to predict mandibular growth

The methods in the second category use skeletal maturity to predict mandibular

growth. These methods have primarily focused on predicting mandibular growth

potential in Class III subjects, since, clinically, the prediction of growth is

necessary for children with a skeletal discrepancy.

In the study by Sato et al., hand-wrist radiographs were used to predict

mandibular growth in Japanese girls.39 In this study, the ossification event method,

the growth potential method, the growth percentage method, the growth chart

method, and the multiple regression method were presented as prediction

models. Among these prediction models, the growth potential method and the

growth percentage method were proved to be the most accurate method for

predicting mandibular length in Japanese girls. In the growth potential method,

the relationship between bone age and growth potential was obtained by simple

linear regression. On the other hand, in the growth percentage method, the ratio

between the current mandibular length and the final mandibular length was

determined by bone age.

The study of Mito et al. used cervical vertebral bone age to predict mandibular

growth potential of growing Japanese girls.40 Simple linear regression analysis

was performed with cervical vertebral bone age as an independent variable.
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Chen et al. also made similar predictions using cervical vertebrae as an indicator

of skeletal maturation.41 The difference was that multiple linear regression was

used, and the dimensions of the third and fourth cervical vertebrae were used as

independent variables.

Using statistical methods to predict growth

Finally, the methods in the third category use statistical methods to predict

craniofacial growth. Multivariate method to predict craniofacial pattern was

proposed.25 In this study, craniofacial patterns were classified into nine types

using factor analysis and cluster analysis.42 The craniofacial pattern at 9.5 years

was used to predict the pattern of 17.5 years.

An attempt was made to predict the craniofacial growth pattern of offspring from

the craniofacial form of parents.14 Using parental information, rather than average

growth curves, in predicting growth was proposed, since it was known that there

is a high correlation between the offspring’s craniofacial form and the parents’.

Principal component analysis and cluster analysis were used to classify

craniofacial patterns into four types. The offspring’s parents were assigned as

similar parent or dissimilar parent depending on whether the craniofacial pattern

coincided. Multiple linear regression was used to predict five craniofacial

variables implying the distance between anatomical landmarks. For each variable,

parents' measurements were used as independent variables to predict offspring’s

measurement at given ages.
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In the study by Rudolph et al., multivariate analysis was used to predict the

growth  of skeletal Class II samples.13 While previous studies had predicted the

amount or direction of craniofacial growth, the study focused on predicting

whether growth was favorable or not. Skeletal Class II samples were divided into

favorable or unfavorable growth according to the degree of ANB angle

improvement from 8 to 18 years of age. Whether a sample would be a good

grower or not was predicted by cephalometric measurements and covariance

matrix of good growers using Bayesian theorem.

The study of Chvatal et al. used multilevel model to predict craniofacial growth.2

Longitudinal growth curves for various angular and horizontal cephalometric

measurements were developed. Unlike other studies, polynomial terms were

included in the growth prediction model.
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III. MATERIALS AND METHODS

Growth Data Collection

Subjects comprised 303 growing patients (166 girls and 137 boys), who had not

undergone any orthodontic or orthopedic treatment and had at least two serial

lateral cephalometric images taken at Seoul National University Dental Hospital,

Seoul, Korea, from June 29, 2006 to December 20, 2019. Mean subject ages at

the beginning and end of the growth observation period were 10.9 and 14.2 years,

respectively (Figure 1). Approximately three-quarters of patients had skeletal

Class II or III malocclusion (Table 2), consistent with the proportion of patients

with malocclusion visiting the university-affiliated hospital.43-45

Although subjects initially wanted to receive active orthodontic treatment at their

first visit, treatment did not begin immediately for various reasons. Some subjects

had such a severe skeletal discrepancy that observation was necessary until

their growth ceased, before they could receive combined surgical-orthodontic

treatment. For other subjects, reasons for treatment postponement included

finances, poor personal timing, and/or other unreported personal issues.

The institutional review board for the protection of human subjects of the Seoul

National University Dental Hospital, Seoul, Korea, reviewed and approved the

research protocol (ERI 19007).



10

Inclusion and Exclusion Criteria

The exclusion criteria were cleft lip and palate, and a syndromic or medically

compromised condition. Simple space maintainers were considered to have little

impact on growth; therefore, subjects who had used one were included in the

present study. For every patient, serial lateral cephalometric radiographs were

taken at least twice during the growth observation period. The characteristics of

the subjects included in this study are summarized in Table 2.

Cephalometric tracing and landmark identification, both at the beginning (T1) and

end (T2) of growth observation, were manually performed for all images by a

single examiner (SJL). A total of 46 hard tissue and 32 soft tissue landmarks

were identified. To orient consecutive images to the same head position, the

horizontal reference plane was set to Sella-Nasion +7°, with its origin at Sella

following along the Sella-Nasion plane.46 The anatomic landmarks, reference

planes, and coordinate system used in the study are presented in Figure 2.

Predictor Variables, Response Variables, and Validation

Predictor variables were a heterogeneous set, including individual characteristics

(Table 3) that could be categorized into 1) demographic (age and sex); 2) molar

relationship; 3) ages before and after the growth observation period; and 4)

Cartesian (x,y) coordinates of 78 anatomic landmarks. A total of 161 predictor

variables were incorporated into the input X matrix.
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Response variables comprised the x and y directions of 46 hard and 32 soft

tissue landmarks after the period of growth observation. A total of 156 response

variables were incorporated into the output Y matrix.

When developing a prediction model, a validation process is essential to evaluate

the prediction accuracy of subjects that are not used to construct the model.

Validation was performed by applying the prediction equation to new data (the

test data) that were not used in the prediction model building procedure. The

resultant test errors (also known as validation errors) were computed using the

leave-one-out cross-validation technique (LOOCV). Given a total number of

subjects, N, LOOCV constructs a prediction equation N times, with all the

subjects except one. Then, the prediction equation is applied to the excluded

subject.47

Predictor variables, response variables, and the validation process were identical

for both growth prediction models.

Predicting Growth with the Partial Least Squares Method

In constructing the prediction model based on the PLS method, this study

followed similar procedures to a previous study, where a detailed description of

building PLS models were presented.48 After construction of the prediction model,

training errors were calculated on sample data to evaluate the goodness-of-fit of

the prediction model.
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The optimal number of PLS components, a linear combination of predictor

variables including key information of the input X matrix, was determined by

comparing test errors (Figure 3). In this study, the root mean squared error of

prediction was used because the prediction errors in opposite directions offset

each other (Figure 3).49,50

Predicting growth with Artificial Intelligence TabNet Algorithm

As previously stated, the AI algorithm used in this study was TabNet, a DNN

architecture. The TabNet model was modified to build the growth prediction

model by using the Python programming language (Python Software Foundation,

Wilmington, Delaware, USA).

Neural networks are known to be parameterized by various hyperparameters.

These include epoch, patience, learning rate, batch size, etc. Adequate values for

each hyperparameter are known to be important for the model to function

properly.51 Among the hyperparameters, epoch refers to a one complete pass of

the training dataset through the algorithm. Early stopping condition of the training

process, when the performance of the model no longer improves with training, is

parametrized by hyperparameter patience. The Synthetic Minority Oversampling

Technique (SMOTE), one of the oversampling methods, was used to deal with

the class imbalance problem in the data.52 The hyperparameter SMOTE value

refers to the amount of oversampling applied to the raw data.

Hyperparameter tuning, the process of finding optimal hyperparameter values,
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was performed by comparing the performance of models with various epoch,

patience, and SMOTE values. After hyperparameter tuning, the final prediction

model was constructed.

Analyzing Growth Prediction Accuracy and Comparing Prediction Models

All of the PLS and AI models were constructed and tested built on a single

desktop computer with recommended specifications for modeling process. Its

CPU processor that was critical for the PLS model building time was Intel Core

i9-12900K. The GPU graphic card that was crucial for constructing deep learning

models was NVIDIA GeForce RTX 3090 Ti. The Linux desktop was used on

Ubuntu version 22.04 LTS of Linux distribution.

After establishing the final growth prediction models using the PLS method and

the TabNet AI algorithm, predictions were made on the test data using LOOCV to

evaluate and compare the predictive performance. The difference between

predicted and actual growth for 156 response variables, the x and y coordinates

of 46 skeletal and 32 soft tissue landmarks, was calculated for each method.

When a one-dimensional evaluation was performed, larger or smaller predictions

compared to actual values yielded positive and negative errors which offset each

other. Therefore, the Euclidean distance between actual growth and prediction

result of a given landmark was calculated. T-tests with Bonferroni correction was

used to compare the prediction accuracy between the PLS method and the
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TabNet AI algorithm.

Multiple linear regression analysis, with the absolute value of the prediction error

as a dependent variable, was performed to investigate the influence of individual

characteristics and landmark attributes on the accuracy of the growth prediction

model.

For a two-dimensional evaluation, scatterplots with 95% confidence ellipses were

drawn to visualize the pattern of prediction errors.

To evaluate the effect of variability and pattern of growth on the accuracy of

prediction models, 95% confidence ellipses were depicted.

The open source statistics program, Language R,53 was used.
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Ⅳ. RESULTS

For the PLS growth prediction model, the optimal model was selected, based on

the root mean squared error of a prediction curve (Figure 3). As the number of

PLS components increased, test errors initially decreased, but gradually

increased as the maximum number of components was reached. Consequently,

in this study, the optimal prediction model chosen included 30 PLS components.

Figure 4 shows the training and test errors, in the form of mean absolute errors,

for several selected anatomical landmarks. Similar patterns were observed for

the training and test errors. The magnitude of errors and the differences between

the training and test errors tended to increase as landmarks were located at more

inferior parts of the face.

The optimal hyperparameters were selected by graphically comparing AI-based

growth prediction models with various hyperparameter values (Figure 5). In

addition, a linear model was used secondarily in hyperparameter tuning. As a

result, in this study, epoch 1,000,000, patience 30,000, and SMOTE 0.1 were

selected as the optimal hyperparameters.

The comparison results between prediction models using t-tests are summarized

in Table 4. Of the 78 anatomical landmarks, the AI-based prediction model

showed better prediction accuracy in 55 landmarks. The PLS-based prediction

model was more accurate in 10 landmarks. There was no statistical difference in

the remaining 13 landmarks.
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As shown in Table 3, the results from multiple linear regression analysis indicated

that, on average, the prediction error of the AI-based model was about 1.11 mm

smaller than that of the PLS-based model. In addition, the prediction error

increased in proportion to the growth prediction interval (0.14 mm per year).

Further, prediction error was greater with younger age at prediction (0.01 mm per

year). Conversely, the older the age at the prediction, the more accurate the

prediction results.

Girls, subjects with Class II malocclusion, skeletal landmarks, and landmarks on

the maxilla had lower prediction errors than boys, subjects with Class I or III

malocclusion, soft tissue landmarks, and landmarks on the mandible, respectively.

There was no statistical difference in prediction errors according to the direction

of growth (Table 3).

The two-dimensional patterns of growth prediction errors for representative

landmarks are shown from figure 6, A to figure 6, S. Of the landmarks shown,

only the posterior nasal spine showed no statistical difference between the two

prediction methods. The PLS method showed better prediction accuracy in

cranial base landmarks. The prediction results using the AI method were

statistically more accurate for the remaining landmarks.

Confidence ellipses indicating the variability and pattern of growth of each

landmark are shown in figure 7. To increase the clarity of the graph, some of the

landmarks where AI-based prediction was more accurate in t-tests were omitted.

Figure 8 illustrates real case comparisons between actual growth and prediction
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results. To generate a smooth curve for the soft tissue profile line, cephalometric

landmarks were connected using spline functions. The prediction results were far

from perfect, but varied among subjects. Overall, AI-based predictions seemed a

little closer to actual growth.
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Ⅴ. DISCUSSION

The primary purpose of this study was to develop an automated and reliable

growth prediction model that can reflect individual characteristics. Craniofacial

growth is considered complex and difficult to predict, since it is influenced by

various factors, including sex, ethnicity, and morphological characteristics, among

others. To predict such complex skeletal and soft tissue changes accompanied by

growth, the present study applied the PLS method, which is capable of reflecting

a vast number of predictor variables, and of predicting numerous soft and hard

tissue landmarks in an individual subject. This study also attempted to overcome

many challenges in predicting growth by using TabNet, a state-of-the-art deep

learning algorithm.

On the whole, the AI model predicted growth more accurately than the PLS

model. According to multiple linear regression analysis, on average, the

prediction error of AI-based model was 1.11 mm smaller than that of PLS-based

model. The growth prediction accuracy of the prediction models was different

according to the landmarks to be predicted. The results from t-tests indicated that,

among the cephalometric landmarks used in this study, the AI model was more

accurate in 71% (55 out of 78) of the landmarks. The PLS-based prediction

showed higher accuracy in 10 landmarks, mainly including cranial base

landmarks such as Nasion, Porion, Orbitale, and Basion. Regarding the growth

variability of each landmark (Figure 7), the PLS method showed better
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performance in landmarks with small variations. Conversely, landmarks where AI

was more accurate generally showed great variability in growth. In other words,

AI was powerful when uncertainty was high. This tendency might be useful in

choosing which method to use in building prediction models. To support this

hypothesis, other prediction models, such as predicting soft tissue responses

after orthognathic surgery or orthodontic treatment, are worth further research.

From the clinical perspective, the test error represents the criteria for prediction

accuracy, while the training error may reflect the goodness-of-fit of the model.

The results demonstrate that the test errors of the prediction model tended to

increase with landmarks located in more inferior positions. The reason for the low

predictive accuracy of landmarks located in the more inferior portion of the face

may be the distance from the cranial base. The prediction results for anatomical

landmarks located on the mandible were less accurate than those for landmarks

on the maxilla (Figures 4 and 8).

The growth prediction error was greater in boys with Class III malocclusion than

in girls with Class II malocclusion. We speculate that this may be because, if

other conditions, such as age at prediction and growth observation period, were

the same, then boys with Class III malocclusion would have greater residual

growth potential than girls with Class II malocclusion.

Prediction results were less accurate for soft tissue. We speculate that soft

tissues changes did not follow those of hard tissue in a one-to-one manner.

Further, soft tissue landmarks may have been affected by varying subject posture.
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The construction of prediction equations takes significant amount of time since

model building procedure requires multiple iterations and training process for

PLS and AI algorithms, respectively. In addition, applying the LOOCV technique

as a validation method takes much longer than applying any other type of

validation method.26,47 Consequently, the time spent in establishing prediction

equations was more than 10 days for the AI-based model, while about 20

minutes for the PLS-based model; however, once the prediction model was built,

the time to produce a prediction result was only a few milliseconds. This is

because, unlike the model building procedures, the prediction process involved

simple and fast computations without implementing complicated iteration or

training procedures. Regarding the large difference in model construction time, it

may seem reasonable that the prediction results of the AI-based model were

more accurate. Nevertheless, computer-aided clinical environments would be an

essential condition for practical application of this growth prediction model.

The current study applied advanced statistical and deep learning approaches;

however, growth prediction performance was not as accurate as envisaged.

Although imperfect and inaccurate, the prediction model presented here (see the

real case application shown in Figure 8) may be useful as a rough guide, which is

better than having no means of estimating growth changes – especially when

used alongside other digitally-derived methods by providing automated and rapid

results.
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A strength of the present study is that the data included a larger number of

patients and more input and output variables than previous growth prediction

studies (Table 1). A limitation of the current study is that the growth observation

period varied among patients (Figure 1). The way that growth is interpreted may

vary according to the measurement method applied and the observation

interval.6,7 In the present study, growth observation intervals were not

prearranged. Rather, subjects who had undergone serial cephalograms were

collected retrospectively through medical record collation. Consequently, the

interval for growth observation ranged from 1.0 to 13.2 years. Another limitation is

that the growth prediction model could not consider the effect of age-related

differential growth. Inclusion of additional variables that reflect skeletal age may

be necessary.
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ⅤI. CONCLUSIONS

1. The PLS and AI growth prediction models presented here are versatile and

incorporates a large number of predictor variables, as well as predicting

numerous landmarks in individual subjects.

2. In general, the TabNet AI algorithm predicted growth more accurately than the

PLS method. However, the PLS method was favorable in predicting landmarks

with low variability.

3. Further refinement using nonlinear age covariates and additional variables

reflecting skeletal age may result in a more accurate prediction formula.
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Table 1. Summary of Growth Prediction Methods

Md, mandibular; Ar, Articulare; Pog, Pogonion; Cd, Condylion; Gn, Gnathion.

Research Group Year No. of
Study
Subjects

No. of
Prediction
Landmarks

Growth
Observation
Range (years)

Growth Prediction Methods

Present study 2022 303 80 13.2
Multivariate partial least
squares regression model;
TabNet Deep Neural
Network

Moon et al.48 2022 303 80 13.2 Multivariate partial least
squares regression model

Chvatal et al.2 2005 287 4 9.0  Multilevel model

Chen et al.41 2005 44 Md length
(Ar-Pog)

10.0 Multiple linear regression

Mito et al.40 2003 40 Md length
(Cd-Gn)

NA Multiple linear regression

Sato et al.39 2001 44 Md length
(Cd-Gn)

10.1 Multiple linear regression

Rudolph et al.13 1998 31 26 12.0 Multivariate statistical
method

Suzuki and
Takahama14 1991 250 67 6.4 Principal component

analysis;
Cluster analysis;
Discriminant analysis;
Multiple linear regression

Bhatia et al.25 1979 80 12 8.0 Factor analysis;
Cluster analysis;
Discriminant analysis

Popovich and
Thompson10 1977 210 20 16.0 Craniofacial templates

based on population norm

Moorrees et al.22

Moorrees and
Lebret9

1976
1962

93 34 NA Mesh diagram
based on population norm

Johnston5

Harris et al.23
1975
1963

45 7 12.0 Forecast grid
based on population norm

Ricketts24 1957 NA 20 NA Visual treatment objective
based on population norm
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Table 2. Characteristics of Subjects (n = 303)

SD, standard deviation; Min, minimum; Max, maximum.

Variable N (%) Mean SD Min Max

Age (years)

Female, beginning of growth observation 166 (54.8%) 11.0 3.0 4.2 18.6

Male, beginning of growth observation 137 (45.2%) 10.9 3.0 5.9 18.7

All subjects, beginning of growth observation 10.9 3.0 4.2 18.7

All subjects, end of growth observation 14.2 3.9 6.7 25.6

Growth observation period (years) 3.3 2.6 1.0 13.2

Number of serial radiographs taken

Two 251 (82.8%)

Three 39 (12.9%)

Four 13 (4.3%)

Molar relationship at first visit

Class I 78 (25.7%)

Class II 118 (38.9%)

Class III 107 (35.3%)
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Table 3. Multiple Linear Regression Analysis of Factors Influencing Growth Prediction
Error

Factor β SE (β) P-value

Age at prediction (years) -0.01 0.004 0.0112

Growth prediction interval (years) 0.14 0.004 < 0.0001

Prediction method

The partial least squares method Reference

Artificial Intelligence TabNet DNN

algorithm
-1.11 0.021 < 0.0001

Sex

Female Reference

Male 0.07 0.021  0.0005

Molar relationship

Class I Reference

Class II -0.18 0.028 < 0.0001

Class III -0.01 0.029 0.7735

Direction of growth

Anteroposterior direction (x axis) Reference

Vertical direction (y axis) -0.03 0.021 0.1680

Type of landmark

Hard tissue Reference

Soft tissue 0.18 0.021 < 0.0001

Position of landmark

Mandible Reference

Maxilla -0.67 0.021 < 0.0001

β, regression coefficients; SE, standard error; DNN, deep neural network.
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Table 4. Comparison of growth prediction models based on the partial least squares (PLS)
method and the TabNet artificial intelligence (AI) algorithm. Values are the Euclidean
distance between prediction results and actual growth in millimeter unit. For a given
landmark, the model that showed more accurate prediction results is indicated by symbol
√

a In this table, landmarks were selected to show the results succinctly. Soft tissue landmarks were indicated by

small case letters, and hard tissue landmarks by capital letters.
b Results from t-tests with Bonferroni correction. SD, standard deviation; Min, minimum; Max, maximum.

PLS Method TabNet AI algorithm  More Accurate

Landmarka Mean SD Min Max Mean SD Min Max PLS AI P valueb

Nasion 1.0 0.8 0.0 4.9 1.7 1.3 0.0 6.8 √ <0.0001
Nasal tip 2.5 1.4 0.2 12.3 2.7 1.5 0.1 10.9 1.0000
Porion 1.9 1.2 0.0 13.0 3.0 1.6 0.1 12.1 √ <0.0001
Orbitale 2.0 1.2 0.1 11.7 2.4 1.3 0.1 7.1 √ 0.0001
Anterior nasal spine 2.6 1.8 0.1 22.0 2.1 1.3 0.1 7.1 √ <0.0001
Posterior nasal spine 2.4 1.6 0.1 18.5 2.3 1.3 0.1 8.0 1.0000
Point A 2.8 2.0 0.1 28.3 2.1 1.2 0.1 8.9 √ <0.0001
U1 root tip 2.9 2.1 0.0 32.1 2.1 1.2 0.1 6.7 √ <0.0001
U1 incisal edge 3.8 2.6 0.1 37.7 2.8 1.6 0.1 9.3 √ <0.0001
L1 incisal edge 3.9 2.9 0.2 41.7 2.5 1.5 0.0 9.3 √ <0.0001
L1 root tip 4.4 3.5 0.3 49.5 2.2 1.4 0.1 10.2 √ <0.0001
Point B 4.6 3.7 0.2 52.5 2.2 1.3 0.2 9.7 √ <0.0001
Protuberance menti 4.8 3.9 0.1 55.5 2.1 1.4 0.2 13.0 √ <0.0001
Pogonion 5.2 4.2 0.1 58.7 2.4 1.6 0.1 14.0 √ <0.0001
Gnathion 5.2 4.3 0.2 59.4 2.4 1.5 0.1 13.0 √ <0.0001
Menton 5.2 4.3 0.2 60.1 2.4 1.5 0.0 11.2 √ <0.0001
Gonion, constructed 4.0 3.0 0.2 37.3 3.1 1.9 0.1 13.1 √ <0.0001
Gonion, anatomic 4.0 3.0 0.1 37.1 3.1 1.9 0.1 10.8 √ <0.0001
Articulare 2.0 1.3 0.1 14.3 2.8 1.6 0.1 8.8 √ <0.0001
Condylion 1.7 1.1 0.1 12.6 2.8 1.6 0.3 11.2 √ <0.0001
Pterygoid 1.8 1.1 0.1 10.8 2.5 1.4 0.1 8.0 √ <0.0001
Basion 2.5 1.6 0.1 16.5 3.3 1.9 0.1 11.0 √ <0.0001
glabella 3.4 2.3 0.1 13.8 4.2 2.6 0.1 20.3 √ <0.0001
nasion 2.2 1.2 0.0 7.4 2.6 1.4 0.1 8.9 √ <0.0001
supranasal tip 3.0 1.8 0.2 16.0 2.6 1.4 0.1 10.9 √ 0.0263
pronasale 3.1 1.9 0.1 19.7 2.4 1.3 0.0 8.5 √ <0.0001
columella 3.1 2.0 0.2 23.4 2.3 1.3 0.1 7.6 √ <0.0001
subnasale 3.0 1.9 0.1 24.0 2.0 1.2 0.2 7.4 √ <0.0001
point A 3.0 1.9 0.0 25.0 1.9 1.1 0.1 6.5 √ <0.0001
superior labial sulcus 3.3 2.3 0.0 31.1 2.1 1.2 0.1 7.1 √ <0.0001
labiale superius 3.5 2.4 0.1 31.9 2.4 1.4 0.1 8.6 √ <0.0001
upper lip 3.6 2.6 0.3 33.1 2.4 1.4 0.1 8.7 √ <0.0001
stomion superius 3.8 2.7 0.0 35.5 2.3 1.4 0.1 10.4 √ <0.0001
stomion inferius 4.1 2.9 0.3 38.5 2.6 1.5 0.1 11.4 √ <0.0001
lower lip 4.6 3.2 0.2 41.8 2.7 1.6 0.1 10.3 √ <0.0001
labiale inferius 4.8 3.3 0.2 41.9 2.9 1.8 0.2 12.8 √ <0.0001
point B 4.9 3.6 0.1 50.3 2.8 1.6 0.3 9.9 √ <0.0001
protuberance menti 5.2 3.7 0.2 50.0 2.7 1.7 0.1 10.8 √ <0.0001
pogonion 5.5 3.9 0.1 47.6 3.1 2.0 0.1 13.0 √ <0.0001
gnathion 5.5 4.4 0.4 59.2 2.9 1.8 0.2 12.6 √ <0.0001
menton 5.5 4.6 0.2 62.5 2.6 1.6 0.2 11.3 √ <0.0001
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Figure 1. Growth observation period for each subject. Red and green dots

indicate when the first and second cephalometric images were taken, respectively.
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Figure 2. Reference planes and cephalometric landmarks used in present study.

A, Skeletal landmarks are shown in capital letters. B, Soft tissue landmarks are

presented in lowercase letters.
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Figure 3. Growth prediction error according to the number of PLS components.

Growth prediction errors for Gnathion were chosen to show the pattern of error in

the horizontal direction (top) and the vertical direction (bottom).



37

Figure 4. Growth prediction errors for selected landmarks in the training data

set (blue) and the test data set (red).
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Figure 5. The process of hyperparameter tuning. Growth prediction errors of AI-

based prediction models were graphically compared to find optimal

hyperparameter values. Prediction errors for “upper lip” were chosen as an

example.
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Figure 6, A. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Porion" case.
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Figure 6, B. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Orbitale" case.
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Figure 6, C. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Basion" case.
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Figure 6, D. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Anterior nasal spine" case.
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Figure 6, E. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the " Posterior nasal spine " case.
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Figure 6, F. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Point A" case.
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Figure 6, G. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Point B" case.
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Figure 6, H. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Pogonion" case.
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Figure 6, I. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Menton" case.
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Figure 6, J. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "U1 incisal edge" case.
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Figure 6, K. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "U6 mesial contact point" case.
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Figure 6, L. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "L1 incisal edge" case.
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Figure 6, M. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "L6 mesial contact point" case.
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Figure 6, N. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "pronasale" case.
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Figure 6, O. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "subnasale" case.
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Figure 6, P. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "upper lip" case.
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Figure 6, Q. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the " lower lip" case.
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Figure 6, R. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "point B" case.
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Figure 6, S. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "pogonion" case.
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Figure 7. Growth pattern and variability of each landmark according to the model
that showed more accurate predictions. Landmarks where PLS-based predictions
were superior tended to have less variability in growth than landmarks with
excellent AI-based predictions. Some landmarks, where AI-based prediction
showed better accuracy, were omitted to increase the visibility of the plot
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Figure 8, A. Comparisons between actual growth and prediction results in patient

with Class I malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.



60

Figure 8, B. Comparisons between actual growth and prediction results in patient

with Class II malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.
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Figure 8, C. Comparisons between actual growth and prediction results in patient

with Class III malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.



국문초록

부분최소제곱 방법과 인공지능을 이용한

측모 성장 예측 방법 개발 및 비교 연구

문 준 호

서울대학교 대학원 치의과학과 치과교정학 전공

(지도교수: 이 신 재)

연구 목적: 두개안면 성장은 오랫동안 임상 교정 영역에서 중요한 주제로

여겨져 왔다. 성장을 정확하게 예측하고자 다양한 방법들이 개발되었으나,

성장의 개인 간 변이가 이를 예측하는 것을 어렵게 만든다. 또한, 기존의

통계적인 기법을 사용하는 것의 한계는, 예측해야 할 변수와 예측에 사용되는

변수들의 수가 많으며 서로 상관관계가 높다는 것이다.

부분최소제곱 (Partial least squares, PLS) 방법은 변수가 많고 상관관계가

높은 경우에도 통계적인 예측에 사용할 수 있으며, 양악수술 후 연조직

변화를 기존의 최소제곱 (Ordinary least squares, OLS) 방법보다 더 정확하게

예측할 수 있는 것으로 밝혀졌다. 이러한 PLS 방법은 개인의 성장 차이를

고려하고 상관관계 문제를 해결함으로써 성장을 예측하는 데 유용할 수 있다.



한편, 치과 영역에서 인공지능 (Artificial Intelligence, AI)의 활용이 주목받고

있다. 최근에 개발된 TabNet 은 도표 데이터에 심층 신경망 (Deep neural

network, DNN)을 적용하기 위해 개발되었다. 도표로 정리된 성장 데이터에

TabNet 알고리즘을 적용한다면 정확한 성장 예측이 가능할 수도 있다.

본 연구의 목적은 개인의 골격과 연조직 특성을 반영한 성장 예측 모형을

개발하는 것이다. 이를 위하여 PLS 방법과 AI 를 이용한다. 그리고 두 가지

예측 모형의 성능을 평가하고 비교하는 것이다.

재료 및 방법: 교정 치료를 받은 적이 없는 303 명의 성장 환자 (여아 166 명,

남아 137 명)의 연속된 측면 두부계측방사선사진을 연구 대상으로 하였다.

다변량 PLS 알고리즘과 TabNet 심층 신경망 AI 알고리즘을 적용하여 성장

예측 모형을 개발하였으며, 예측 변수는 161 개였다. 반응 변수는 78 개의

두부계측점으로 구성되었다. 두 예측 모형의 정확성을 비교하기 위해 T-

검정이 시행되었다. 성장 예측 오차에 영향을 미치는 요인을 조사하기 위해

다중 선형 회귀 분석이 시행되었다. 예측 오차의 패턴을 조사하고 예측의

정확성에 대한 성장 변동성의 영향을 평가하기 위해 신뢰 타원을 도해하였다.

결과: Leave-one-out 교차 검증을 사용하여 30 개의 PLS 성분을 가진 PLS

모형을 개발하였다. AI 기반 예측 모형의 경우, 하이퍼파라미터 튜닝 후

최적의 하이퍼파라미터가 선택되었다. 78 개의 계측점 중 55 개의 계측점에서

AI 기반 모형이 더 정확했다. PLS 방법은 두개저의 계측점을 포함한 10 개의

계측점에서 더 정확했는데, 이러한 계측점에서는 성장 변동성이 적었다.



나머지 13 개의 계측점에서는 두 방법 사이에 통계적 차이가 관찰되지 않았다.

불확실성이 높을 때는 성장 예측에 AI 를 활용하는 것이 더 유리했다.

평균적으로 AI 기반 모형은 PLS 기반 모형보다 1.11  mm 적은 예측 오차를

보였다. 예측을 시행하는 나이가 낮을수록 예측 오차가 더 컸다 (연간 0.01

mm). 또한 성장 예측 기간에 비례하여 예측 오차가 증가하였다 (연간 0.14

mm). 여자아이, II 급 부정교합, 골격 계측점, 상악골 계측점의 예측 결과는

남자아이,  I 급 또는 III 급 부정교합, 연조직 계측점, 하악골 계측점 각각에

비해 더 정확했다.

결론: AI 를 이용한 성장 예측은 PLS 를 이용한 예측보다 더 정확했다. 이때,

예측 모형의 예측 오차는 성장 잠재력에 비례했다. PLS 와 AI 를 이용한 성장

예측은 개인의 특성을 반영하고 많은 수의 계측점을 예측하기 위해 다수의

예측 변수를 포함시킬 수 있는 접근 방식으로 보인다.

주요어: 성장 예측, 부분최소제곱 방법, 인공지능, 딥 러닝

학번: 2018-38862
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