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- Abstract -

Comparison of Individualized Facial Growth Prediction

Models Based on the Multivariate Partial Least Squares

Method and Artificial Intelligence Developed by TabNet
Deep Neural Network
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Seoul National University

(Directed by Professor Shin-Jae Lee, DDS, MSD, PhD, PhD)

[Introduction]

Craniofacial growth has long been considered an important topic in the field of
clinical orthodontics. Several growth prediction methods have been developed,
however, individual variations in growth make prediction challenging. In addition,
growth prediction requires predicting numerous highly inter-correlated variables,

which limits the use of various statistical techniques.

When significant numbers of input and output variables are highly correlated with
each other, such as soft tissue responses after orthognathic surgery, prediction

models based on the partial least squares (PLS) method showed better



predictive performance than conventional ordinary least squares (OLS) methods.
Therefore, the PLS method might be useful in predicting growth by reflecting

individual growth variations and solving correlation issues.

Meanwhile, attempts to apply artificial intelligence (Al) in the field of dentistry
have been increasing. Recently, the TabNet algorithm has been developed to
apply deep neural networks (DNNSs) to tabular data. Applying TabNet algorithm to

tabular growth data might enable accurate growth predictions.

The purpose of this study was to develop and compare facial growth prediction
models incorporating individual skeletal and soft tissue characteristics based on

the PLS method and artificial intelligence.

[Materials and methods]

Serial longitudinal lateral cephalograms were collected from 303 children (166
girls and 137 boys), who had never undergone orthodontic treatment. Growth
prediction models were devised by applying the multivariate PLS algorithm and
Al developed by TabNet deep neural network, with 161 predictor variables.
Response variables comprised 78 lateral cephalogram landmarks. T-tests were
performed to compare the prediction accuracy between the two methods.
Multiple linear regression analysis was performed to investigate factors
influencing growth prediction errors. Confidence ellipses were depicted to
investigate the pattern of prediction errors and to evaluate the effect of growth

variability on the accuracy of prediction models.



[Results]

Using the leave-one-out cross-validation method, a PLS model with 30
components was developed. For the Al-based prediction model, optimal
hyperparameters were selected after hyperparameter tuning. Among the 78
landmarks, the Al-based model was more accurate in 55 landmarks. The PLS
method was more accurate in 10 landmarks, including cranial base landmarks,
which generally showed less growth variability. The remaining 13 landmarks
showed no statistical difference between two methods. When uncertainty was
high, it was more advantageous to use Al for growth prediction. On average, the
Al-based model showed less prediction error by 1.11mm than the PLS-based
model. Younger age at prediction resulted in greater prediction error (0.01 mm
per year). In addition, prediction error increased in proportion to the growth
prediction interval (0.14 mm per year). Girls, subjects with Class Il malocclusion,
skeletal landmarks, and landmarks on the maxilla showed more accurate
prediction results than boys, subjects with Class I or Ill malocclusion, soft tissue

landmarks, and landmarks on the mandible, respectively.

[Conclusions]

The Al-based model predicted growth more accurately than the PLS-based
model. The prediction error of the prediction model was proportional to the

remaining growth potential. PLS and Al growth prediction seemed to be a



versatile approach that can incorporate large numbers of predictor variables to

predict numerous landmarks for an individual subject.
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I.INTRODUCTION

Craniofacial growth is a fundamental topic in orthodontics. Particularly in clinical
practice, growth prediction assists orthodontists in formulating treatment plans
and visualizing therapeutic outcomes to accomplish satisfying results for growing
patients. Various growth prediction methods have been developed, with respect
to both direction and magnitude;**” however, accurate growth prediction remains

challenging, due to the extremely variable nature of growth in individuals.

Growth is a complex process affected by both genetic and environmental factors,
and varies according to sex and ethnicity.}*#%18 Variation in craniofacial growth
according to cephalometric characteristics has been reported previously.’18-2!
Growth prediction methods estimate a patient’s residual growth based on
average annual increments, as well as the anticipated amount of growth added to
the patient’s current state. As summarized in Table 1, growth prediction methods
included specific cephalometric templates and guides, such as mesh
diagrams,®? grids,>% templates,’® and Ricketts’ visual treatment objective
(VTO)1224 However, these approaches do not account for individual variation;
rather, average growth per year is applied to every patient. Subsequent studies
have used more sophisticated approaches based on multivariate statistical
methods,*?° such as Bayesian theorem,*®* a multilevel model,? and application of
nonlinear growth functions.®"’ Yet, growth prediction remains among the most

daunting challenges in orthodontics. Numerous factors, such as innate skeletal



and soft tissue variables, as well as a large amount of biological information,
such as age and sex, must be considered to produce accurate and clinically

applicable predictions.

When considerable numbers of both input predictor variables and output
response variables are highly correlated with one another, prediction models
based on the partial least squares (PLS) method demonstrated superior
predictive performance over conventional ordinary least squares (OLS) methods,
such as linear regression models.?%3° A number of previous reports have
demonstrated that the PLS algorithm was significantly more accurate for
predicting treatment outcomes than OLS-based methods. The improved
prediction capability of the PLS method may be due to its ability to control for
significant correlations among the skeletal and soft tissue variables of individual
patients.?5* Furthermore, post-treatment changes are affected by various factors,
including age and sex, among others. As predicting treatment outcomes and
growth changes likely involve similar aspects, the PLS method is expected to be
a useful tool for predicting growth by considering various factors. Through linear
combination of numerous variables via matrix algebra, PLS can reflect the

skeletal and soft tissue characteristics of an individual.

Recently, the use of artificial intelligence (Al) in the field of dentistry has gradually
attracted attention. In the field of orthodontics, there have been attempts to apply
Al in cephalometric landmark detection and orthodontic diagnosis.*!® In these

cases, one of the deep learning methods, deep neural networks (DNN), are



mainly used.®” A DNN, which is capable of modeling complex nonlinear
relationships, is an artificial neural network comprising multiple layers connecting
the input and output layers. Lately, the DNN architecture TabNet, developed to
apply deep learning to tabular data, was shown to outperform other DNN
algorithms on tabular datasets.® Therefore, applying TabNet algorithm in growth
data, which can be considered as tabular, might show promising growth

prediction results.

The purpose of this study was to develop and compare facial growth prediction

models based on the PLS method and artificial intelligence.



II. REVIEW OF LITERATURE

As shown in Table 1, various growth prediction methods have been developed,
from the famous Ricketts’ VTO1224 to using parental data, which was somewhat
different from preexisting methods, for predicting offspring’s growth.** Previous
growth prediction methods could be categorized as follows: 1) adding increments
to present size, 2) using skeletal maturity to predict mandibular growth, 3) using

statistical methods to predict growth.

Adding increments to present size

The methods in the first category add an average increment to the present size to
predict growth. These are the most classical and well-known methods. The
advantage of these methods is that it is easy to understand and can be applied
without difficulty. However, in these methods, individual variations are not

considered, and only average growth is applied to every patient.

The mesh diagram is a grid system used for craniofacial growth analysis and
prediction.®?? It consists of 24 rectangles of the same size drawn on a
cephalometric tracing. The middle four rectangles are called core rectangles. The
size of the core rectangle varies from person to person and determines the size
of the remaining rectangles. In the mesh diagram method, it was expected that

the size of the core rectangle would increase by a certain amount and other



structures would grow in proportion to the size of the core rectangle.

Ricketts proposed arcial growth of the mandible.! In this study, three arcs
passing through protuberance menti were presented. Ricketts insisted that when
arcial growth of the mandible and annual mandibular growth of 2.5 mm were
combined, the size and shape of the mandible can be predicted with
considerable accuracy. In addition to the arc-shaped growth of the mandible,
Ricketts developed a method called VTO that can predict facial growth and soft
tissue changes.'??4, Growth prediction was performed by dividing the craniofacial
region into six areas: cranial base prediction, mandibular growth prediction,
maxillary growth prediction, occlusal plane prediction, the location of dentition,

and the soft tissue of the face.

Some studies used forecast grid to predict growth.># Different templates were
used by gender and age. In this growth prediction method, there were forecast
grids for several anatomic landmarks. The growth of a particular landmark was
anticipated to move from its current position along the axes of the forecast grid.
To increase the accuracy of prediction, grid units were set differently by the
starting age of prediction, years of prediction, and gender. The disadvantage of
this method was that the same amount of growth was assumed regardless of the

growth pattern of the face.

In the study by Popovich and Thompson, craniofacial templates were used to
predict growth.'® These templates were provided differently according to gender

and vertical growth patterns. Growth patterns were classified into horizontal,



vertical, and average, and a total of six craniofacial templates were provided.

Using skeletal maturity to predict mandibular growth

The methods in the second category use skeletal maturity to predict mandibular
growth. These methods have primarily focused on predicting mandibular growth
potential in Class Il subjects, since, clinically, the prediction of growth is

necessary for children with a skeletal discrepancy.

In the study by Sato et al., hand-wrist radiographs were used to predict
mandibular growth in Japanese girls.® In this study, the ossification event method,
the growth potential method, the growth percentage method, the growth chart
method, and the multiple regression method were presented as prediction
models. Among these prediction models, the growth potential method and the
growth percentage method were proved to be the most accurate method for
predicting mandibular length in Japanese girls. In the growth potential method,
the relationship between bone age and growth potential was obtained by simple
linear regression. On the other hand, in the growth percentage method, the ratio
between the current mandibular length and the final mandibular length was

determined by bone age.

The study of Mito et al. used cervical vertebral bone age to predict mandibular
growth potential of growing Japanese girls.*® Simple linear regression analysis

was performed with cervical vertebral bone age as an independent variable.



Chen et al. also made similar predictions using cervical vertebrae as an indicator
of skeletal maturation.*! The difference was that multiple linear regression was
used, and the dimensions of the third and fourth cervical vertebrae were used as

independent variables.

Using statistical methods to predict growth

Finally, the methods in the third category use statistical methods to predict
craniofacial growth. Multivariate method to predict craniofacial pattern was
proposed.?® In this study, craniofacial patterns were classified into nine types
using factor analysis and cluster analysis.*? The craniofacial pattern at 9.5 years

was used to predict the pattern of 17.5 years.

An attempt was made to predict the craniofacial growth pattern of offspring from
the craniofacial form of parents.** Using parental information, rather than average
growth curves, in predicting growth was proposed, since it was known that there
is a high correlation between the offspring’s craniofacial form and the parents’.
Principal component analysis and cluster analysis were used to classify
craniofacial patterns into four types. The offspring’s parents were assigned as
similar parent or dissimilar parent depending on whether the craniofacial pattern
coincided. Multiple linear regression was used to predict five craniofacial
variables implying the distance between anatomical landmarks. For each variable,
parents' measurements were used as independent variables to predict offspring’s

measurement at given ages.



In the study by Rudolph et al., multivariate analysis was used to predict the
growth of skeletal Class Il samples.®* While previous studies had predicted the
amount or direction of craniofacial growth, the study focused on predicting
whether growth was favorable or not. Skeletal Class 1l samples were divided into
favorable or unfavorable growth according to the degree of ANB angle
improvement from 8 to 18 years of age. Whether a sample would be a good
grower or not was predicted by cephalometric measurements and covariance

matrix of good growers using Bayesian theorem.

The study of Chvatal et al. used multilevel model to predict craniofacial growth.?
Longitudinal growth curves for various angular and horizontal cephalometric
measurements were developed. Unlike other studies, polynomial terms were

included in the growth prediction model.



[ll. MATERIALS AND METHODS

Growth Data Collection

Subjects comprised 303 growing patients (166 girls and 137 boys), who had not
undergone any orthodontic or orthopedic treatment and had at least two serial
lateral cephalometric images taken at Seoul National University Dental Hospital,
Seoul, Korea, from June 29, 2006 to December 20, 2019. Mean subject ages at
the beginning and end of the growth observation period were 10.9 and 14.2 years,
respectively (Figure 1). Approximately three-quarters of patients had skeletal
Class Il or 1l malocclusion (Table 2), consistent with the proportion of patients

with malocclusion visiting the university-affiliated hospital.*34°

Although subjects initially wanted to receive active orthodontic treatment at their
first visit, treatment did not begin immediately for various reasons. Some subjects
had such a severe skeletal discrepancy that observation was necessary until
their growth ceased, before they could receive combined surgical-orthodontic
treatment. For other subjects, reasons for treatment postponement included

finances, poor personal timing, and/or other unreported personal issues.

The institutional review board for the protection of human subjects of the Seoul
National University Dental Hospital, Seoul, Korea, reviewed and approved the

research protocol (ERI 19007).



Inclusion and Exclusion Criteria

The exclusion criteria were cleft lip and palate, and a syndromic or medically
compromised condition. Simple space maintainers were considered to have little
impact on growth; therefore, subjects who had used one were included in the
present study. For every patient, serial lateral cephalometric radiographs were
taken at least twice during the growth observation period. The characteristics of

the subjects included in this study are summarized in Table 2.

Cephalometric tracing and landmark identification, both at the beginning (T1) and
end (T2) of growth observation, were manually performed for all images by a
single examiner (SJL). A total of 46 hard tissue and 32 soft tissue landmarks
were identified. To orient consecutive images to the same head position, the
horizontal reference plane was set to Sella-Nasion +7°, with its origin at Sella
following along the Sella-Nasion plane.*® The anatomic landmarks, reference

planes, and coordinate system used in the study are presented in Figure 2.

Predictor Variables, Response Variables, and Validation

Predictor variables were a heterogeneous set, including individual characteristics
(Table 3) that could be categorized into 1) demographic (age and sex); 2) molar
relationship; 3) ages before and after the growth observation period; and 4)
Cartesian (x,y) coordinates of 78 anatomic landmarks. A total of 161 predictor

variables were incorporated into the input X matrix.
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Response variables comprised the x and y directions of 46 hard and 32 soft
tissue landmarks after the period of growth observation. A total of 156 response

variables were incorporated into the output Y matrix.

When developing a prediction model, a validation process is essential to evaluate
the prediction accuracy of subjects that are not used to construct the model.
Validation was performed by applying the prediction equation to new data (the
test data) that were not used in the prediction model building procedure. The
resultant test errors (also known as validation errors) were computed using the
leave-one-out cross-validation technique (LOOCYV). Given a total number of
subjects, N, LOOCYV constructs a prediction equation N times, with all the
subjects except one. Then, the prediction equation is applied to the excluded

subject.*’

Predictor variables, response variables, and the validation process were identical

for both growth prediction models.

Predicting Growth with the Partial Least Squares Method

In constructing the prediction model based on the PLS method, this study
followed similar procedures to a previous study, where a detailed description of
building PLS models were presented.*® After construction of the prediction model,
training errors were calculated on sample data to evaluate the goodness-of-fit of

the prediction model.

11



The optimal number of PLS components, a linear combination of predictor
variables including key information of the input X matrix, was determined by
comparing test errors (Figure 3). In this study, the root mean squared error of
prediction was used because the prediction errors in opposite directions offset

each other (Figure 3).49%0

Predicting growth with Artificial Intelligence TabNet Algorithm

As previously stated, the Al algorithm used in this study was TabNet, a DNN
architecture. The TabNet model was modified to build the growth prediction
model by using the Python programming language (Python Software Foundation,
Wilmington, Delaware, USA).

Neural networks are known to be parameterized by various hyperparameters.
These include epoch, patience, learning rate, batch size, etc. Adequate values for
each hyperparameter are known to be important for the model to function
properly.®* Among the hyperparameters, epoch refers to a one complete pass of
the training dataset through the algorithm. Early stopping condition of the training
process, when the performance of the model no longer improves with training, is
parametrized by hyperparameter patience. The Synthetic Minority Oversampling
Technique (SMOTE), one of the oversampling methods, was used to deal with
the class imbalance problem in the data.>® The hyperparameter SMOTE value

refers to the amount of oversampling applied to the raw data.

Hyperparameter tuning, the process of finding optimal hyperparameter values,

12



was performed by comparing the performance of models with various epoch,
patience, and SMOTE values. After hyperparameter tuning, the final prediction

model was constructed.

Analyzing Growth Prediction Accuracy and Comparing Prediction Models

All of the PLS and Al models were constructed and tested built on a single
desktop computer with recommended specifications for modeling process. Its
CPU processor that was critical for the PLS model building time was Intel Core
i19-12900K. The GPU graphic card that was crucial for constructing deep learning
models was NVIDIA GeForce RTX 3090 Ti. The Linux desktop was used on

Ubuntu version 22.04 LTS of Linux distribution.

After establishing the final growth prediction models using the PLS method and
the TabNet Al algorithm, predictions were made on the test data using LOOCYV to
evaluate and compare the predictive performance. The difference between
predicted and actual growth for 156 response variables, the x and y coordinates

of 46 skeletal and 32 soft tissue landmarks, was calculated for each method.

When a one-dimensional evaluation was performed, larger or smaller predictions
compared to actual values yielded positive and negative errors which offset each
other. Therefore, the Euclidean distance between actual growth and prediction

result of a given landmark was calculated. T-tests with Bonferroni correction was

used to compare the prediction accuracy between the PLS method and the

13



TabNet Al algorithm.

Multiple linear regression analysis, with the absolute value of the prediction error
as a dependent variable, was performed to investigate the influence of individual
characteristics and landmark attributes on the accuracy of the growth prediction

model.

For a two-dimensional evaluation, scatterplots with 95% confidence ellipses were

drawn to visualize the pattern of prediction errors.

To evaluate the effect of variability and pattern of growth on the accuracy of

prediction models, 95% confidence ellipses were depicted.

The open source statistics program, Language R,> was used.

14



IV. RESULTS

For the PLS growth prediction model, the optimal model was selected, based on
the root mean squared error of a prediction curve (Figure 3). As the number of
PLS components increased, test errors initially decreased, but gradually
increased as the maximum number of components was reached. Consequently,
in this study, the optimal prediction model chosen included 30 PLS components.
Figure 4 shows the training and test errors, in the form of mean absolute errors,
for several selected anatomical landmarks. Similar patterns were observed for
the training and test errors. The magnitude of errors and the differences between
the training and test errors tended to increase as landmarks were located at more

inferior parts of the face.

The optimal hyperparameters were selected by graphically comparing Al-based
growth prediction models with various hyperparameter values (Figure 5). In
addition, a linear model was used secondarily in hyperparameter tuning. As a
result, in this study, epoch 1,000,000, patience 30,000, and SMOTE 0.1 were

selected as the optimal hyperparameters.

The comparison results between prediction models using t-tests are summarized
in Table 4. Of the 78 anatomical landmarks, the Al-based prediction model
showed better prediction accuracy in 55 landmarks. The PLS-based prediction
model was more accurate in 10 landmarks. There was no statistical difference in

the remaining 13 landmarks.

15



As shown in Table 3, the results from multiple linear regression analysis indicated
that, on average, the prediction error of the Al-based model was about 1.11 mm
smaller than that of the PLS-based model. In addition, the prediction error
increased in proportion to the growth prediction interval (0.14 mm per year).
Further, prediction error was greater with younger age at prediction (0.01 mm per
year). Conversely, the older the age at the prediction, the more accurate the

prediction results.

Girls, subjects with Class Il malocclusion, skeletal landmarks, and landmarks on
the maxilla had lower prediction errors than boys, subjects with Class | or 11l
malocclusion, soft tissue landmarks, and landmarks on the mandible, respectively.
There was no statistical difference in prediction errors according to the direction

of growth (Table 3).

The two-dimensional patterns of growth prediction errors for representative
landmarks are shown from figure 6, A to figure 6, S. Of the landmarks shown,
only the posterior nasal spine showed no statistical difference between the two
prediction methods. The PLS method showed better prediction accuracy in
cranial base landmarks. The prediction results using the Al method were

statistically more accurate for the remaining landmarks.

Confidence ellipses indicating the variability and pattern of growth of each
landmark are shown in figure 7. To increase the clarity of the graph, some of the

landmarks where Al-based prediction was more accurate in t-tests were omitted.

Figure 8 illustrates real case comparisons between actual growth and prediction

16



results. To generate a smooth curve for the soft tissue profile line, cephalometric
landmarks were connected using spline functions. The prediction results were far
from perfect, but varied among subjects. Overall, Al-based predictions seemed a

little closer to actual growth.

17
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V. DISCUSSION

The primary purpose of this study was to develop an automated and reliable
growth prediction model that can reflect individual characteristics. Craniofacial
growth is considered complex and difficult to predict, since it is influenced by
various factors, including sex, ethnicity, and morphological characteristics, among
others. To predict such complex skeletal and soft tissue changes accompanied by
growth, the present study applied the PLS method, which is capable of reflecting
a vast number of predictor variables, and of predicting nhumerous soft and hard
tissue landmarks in an individual subject. This study also attempted to overcome
many challenges in predicting growth by using TabNet, a state-of-the-art deep

learning algorithm.

On the whole, the Al model predicted growth more accurately than the PLS
model. According to multiple linear regression analysis, on average, the
prediction error of Al-based model was 1.11 mm smaller than that of PLS-based
model. The growth prediction accuracy of the prediction models was different
according to the landmarks to be predicted. The results from t-tests indicated that,
among the cephalometric landmarks used in this study, the Al model was more
accurate in 71% (55 out of 78) of the landmarks. The PLS-based prediction
showed higher accuracy in 10 landmarks, mainly including cranial base
landmarks such as Nasion, Porion, Orbitale, and Basion. Regarding the growth

variability of each landmark (Figure 7), the PLS method showed better

18



performance in landmarks with small variations. Conversely, landmarks where Al
was more accurate generally showed great variability in growth. In other words,
Al was powerful when uncertainty was high. This tendency might be useful in
choosing which method to use in building prediction models. To support this
hypothesis, other prediction models, such as predicting soft tissue responses

after orthognathic surgery or orthodontic treatment, are worth further research.

From the clinical perspective, the test error represents the criteria for prediction
accuracy, while the training error may reflect the goodness-of-fit of the model.
The results demonstrate that the test errors of the prediction model tended to
increase with landmarks located in more inferior positions. The reason for the low
predictive accuracy of landmarks located in the more inferior portion of the face
may be the distance from the cranial base. The prediction results for anatomical
landmarks located on the mandible were less accurate than those for landmarks

on the maxilla (Figures 4 and 8).

The growth prediction error was greater in boys with Class Il malocclusion than
in girls with Class Il malocclusion. We speculate that this may be because, if
other conditions, such as age at prediction and growth observation period, were
the same, then boys with Class Il malocclusion would have greater residual

growth potential than girls with Class Il malocclusion.

Prediction results were less accurate for soft tissue. We speculate that soft
tissues changes did not follow those of hard tissue in a one-to-one manner.

Further, soft tissue landmarks may have been affected by varying subject posture.

19



The construction of prediction equations takes significant amount of time since
model building procedure requires multiple iterations and training process for
PLS and Al algorithms, respectively. In addition, applying the LOOCV technique
as a validation method takes much longer than applying any other type of
validation method.?**4’ Consequently, the time spent in establishing prediction
equations was more than 10 days for the Al-based model, while about 20
minutes for the PLS-based model; however, once the prediction model was built,
the time to produce a prediction result was only a few milliseconds. This is
because, unlike the model building procedures, the prediction process involved
simple and fast computations without implementing complicated iteration or
training procedures. Regarding the large difference in model construction time, it
may seem reasonable that the prediction results of the Al-based model were
more accurate. Nevertheless, computer-aided clinical environments would be an

essential condition for practical application of this growth prediction model.

The current study applied advanced statistical and deep learning approaches;
however, growth prediction performance was not as accurate as envisaged.
Although imperfect and inaccurate, the prediction model presented here (see the
real case application shown in Figure 8) may be useful as a rough guide, which is
better than having no means of estimating growth changes — especially when
used alongside other digitally-derived methods by providing automated and rapid

results.

20



A strength of the present study is that the data included a larger number of
patients and more input and output variables than previous growth prediction
studies (Table 1). A limitation of the current study is that the growth observation
period varied among patients (Figure 1). The way that growth is interpreted may
vary according to the measurement method applied and the observation
interval.®’ In the present study, growth observation intervals were not
prearranged. Rather, subjects who had undergone serial cephalograms were
collected retrospectively through medical record collation. Consequently, the
interval for growth observation ranged from 1.0 to 13.2 years. Another limitation is
that the growth prediction model could not consider the effect of age-related
differential growth. Inclusion of additional variables that reflect skeletal age may

be necessary.

21



V1. CONCLUSIONS

1. The PLS and Al growth prediction models presented here are versatile and
incorporates a large number of predictor variables, as well as predicting

numerous landmarks in individual subjects.

2. In general, the TabNet Al algorithm predicted growth more accurately than the
PLS method. However, the PLS method was favorable in predicting landmarks

with low variability.

3. Further refinement using nonlinear age covariates and additional variables

reflecting skeletal age may result in a more accurate prediction formula.
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Table 1. Summary of Growth Prediction Methods

Research Group Year No. of No. of Growth Growth Prediction Methods
Study Prediction Observation
Subjects  Landmarks Range (years)
Multivariate partial least
squares regression model;
Present study 2022 303 80 13.2 TabNet Deep Neural
Network
Moon et al 48 2022 303 80 13.2 Multivariate partl_al least
squares regression model
Chvatal et al.? 2005 287 4 9.0 Multilevel model
Chen et al.** 2005 44 Md length 10.0 Multiple linear regression
(Ar-Pog)
Mito et al.*° 2003 40 Md length NA Multiple linear regression
(Cd-Gn)
Sato et al.*® 2001 44 Md length 10.1 Multiple linear regression
(Cd-Gn)
Rudolph et al.2? 1998 31 26 12.0 Multivariate statistical
method
Suzuki and14 1991 250 67 6.4 Pnnmp_a! component
Takahama analysis;
Cluster analysis;
Discriminant analysis;
Multiple linear regression
Bhatia et al.?® 1979 80 12 8.0 Factor analysis;
Cluster analysis;
Discriminant analysis
Popovich "’}E}d 1977 210 20 16.0 Craniofacial templates
Thompson ;
based on population norm
22
Moorrees et al. 1976 93 34 NA  Mesh diagram
Moorrees and 1962 based on population norm
Lebret® pop
Johnston® 1975 45 7 12.0 Forecast grid
Harris et al.® 1963 based on population norm
Ricketts?* 1957 NA 20 NA Visual treatment objective

based on population norm

Md, mandibular; Ar, Articulare; Pog, Pogonion; Cd, Condylion; Gn, Gnathion.
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Table 2. Characteristics of Subjects (n = 303)

Variable N (%) Mean SD Min Max
Age (years)
Female, beginning of growth observation 166 (54.8%) 110 3.0 4.2 186
Male, beginning of growth observation 137 (45.2%) 109 3.0 59 187
All subjects, beginning of growth observation 109 3.0 4.2 187
All subjects, end of growth observation 142 39 6.7 256
Growth observation period (years) 33 26 1.0 132
Number of serial radiographs taken
Two 251 (82.8%)
Three 39 (12.9%)
Four 13 (4.3%)
Molar relationship at first visit
Class | 78 (25.7%)
Class I 118 (38.9%)
Class llI 107 (35.3%)

SD, standard deviation; Min, minimum; Max, maximum.
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Table 3. Multiple Linear Regression Analysis of Factors Influencing Growth Prediction

Error
Factor B SE (B) P-value

Age at prediction (years) -0.01 0.004 0.0112
Growth prediction interval (years) 0.14 0.004 < 0.0001
Prediction method

The partial least squares method Reference

Artificial  Intelligence  TabNet  DNN

-1.11 0.021 < 0.0001

algorithm
Sex

Female Reference

Male 0.07 0.021 0.0005
Molar relationship

Class | Reference

Class Il -0.18 0.028 <0.0001

Class llI -0.01 0.029 0.7735
Direction of growth

Anteroposterior direction (x axis) Reference

Vertical direction (y axis) -0.03 0.021 0.1680
Type of landmark

Hard tissue Reference

Soft tissue 0.18 0.021 <0.0001
Position of landmark

Mandible Reference

Maxilla -0.67 0.021 <0.0001

[, regression coefficients; SE, standard error; DNN, deep neural network.
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Table 4. Comparison of growth prediction models based on the partial least squares (PLS)

method and the TabNet artificial intelligence (Al) algorithm. Values are the Euclidean
distance between prediction results and actual growth in millimeter unit. For a given

landmark, the model that showed more accurate prediction results is indicated by symbol

N
PLS Method TabNet Al algorithm More Accurate

Landmark?® Mean SD Min Max Mean SD Min Max PLS Al P value®
Nasion 1.0 08 0.0 4.9 17 13 0.0 6.8 N <0.0001
Nasal tip 25 14 0.2 123 27 15 0.1 109 1.0000
Porion 1.9 1.2 0.0 13.0 3.0 16 01 121 \ <0.0001
Orbitale 20 12 01 117 24 13 0.1 7.1 \ 0.0001
Anterior nasal spine 26 18 01 220 21 13 0.1 7.1 \ <0.0001
Posterior nasal spine 24 16 0.1 185 23 13 0.1 8.0 1.0000
Point A 28 20 0.1 283 21 1.2 0.1 8.9 \ <0.0001
U1 root tip 29 21 0.0 321 21 1.2 0.1 6.7 \ <0.0001
U1l incisal edge 38 26 01 377 28 1.6 0.1 9.3 \ <0.0001
L1 incisal edge 39 29 0.2 417 25 15 0.0 9.3 \ <0.0001
L1 root tip 44 35 0.3 495 22 14 0.1 102 \ <0.0001
Point B 46 37 0.2 525 22 13 0.2 9.7 \ <0.0001
Protuberance menti 48 39 0.1 555 21 14 0.2 130 N <0.0001
Pogonion 52 42 0.1 587 24 16 0.1 140 \ <0.0001
Gnathion 52 43 0.2 594 24 15 0.1 13.0 \ <0.0001
Menton 52 43 0.2 60.1 24 15 0.0 112 \ <0.0001
Gonion, constructed 40 30 0.2 373 31 19 01 131 N <0.0001
Gonion, anatomic 40 30 01 371 31 19 0.1 1038 N <0.0001
Articulare 20 13 0.1 143 28 16 0.1 8.8 \ <0.0001
Condylion 1.7 11 0.1 126 28 1.6 03 112 \ <0.0001
Pterygoid 1.8 1.1 0.1 108 25 1.4 0.1 8.0 \ <0.0001
Basion 25 16 0.1 165 33 19 01 110 \ <0.0001
glabella 3.4 23 0.1 138 42 26 0.1 203 \ <0.0001
nasion 22 12 0.0 7.4 26 1.4 0.1 8.9 \ <0.0001
supranasal tip 3.0 18 0.2 16.0 26 14 0.1 109 N 0.0263
pronasale 31 19 01 197 24 13 0.0 8.5 \ <0.0001
columella 31 20 0.2 234 23 13 0.1 7.6 \ <0.0001
subnasale 3.0 19 0.1 240 20 1.2 0.2 7.4 \ <0.0001
point A 3.0 19 0.0 250 19 11 0.1 6.5 \ <0.0001
superior labial sulcus 33 23 0.0 311 21 12 0.1 7.1 N <0.0001
labiale superius 35 24 0.1 319 24 14 0.1 8.6 N <0.0001
upper lip 36 26 03 331 24 14 0.1 8.7 \ <0.0001
stomion superius 38 27 0.0 355 23 14 0.1 104 N <0.0001
stomion inferius 41 29 0.3 385 26 15 01 114 N <0.0001
lower lip 46 32 0.2 418 27 16 0.1 103 \ <0.0001
labiale inferius 48 33 0.2 419 29 1.8 0.2 1238 \ <0.0001
point B 49 36 0.1 503 28 16 0.3 9.9 \ <0.0001
protuberance menti 52 37 0.2 50.0 27 17 0.1 1038 N <0.0001
pogonion 55 39 0.1 476 31 20 0.1 13.0 \ <0.0001
gnathion 55 44 0.4 592 29 1.8 0.2 126 \ <0.0001
menton 55 46 0.2 625 26 16 02 113 \ <0.0001

#1n this table, landmarks were selected to show the results succinctly. Soft tissue landmarks were indicated by

small case letters, and hard tissue landmarks by capital letters.

b Results from t-tests with Bonferroni correction. SD, standard deviation; Min, minimum; Max, maximum.
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Figure 1.

Growth observation period for each subject. Red and green dots

indicate when the first and second cephalometric images were taken, respectively.

34

L]
Ll el



® Inferior tip of nasal bone

'@ deepest point of the nose

supranasal tip

pronasale

columella-lobular junction
subnasale

A point

superior labial sulcus

labrale superius.

upper lip

stomion superius/inferius
lower lip

labrale inferius

8 point

protuberance menti

pogonion

gnathion

menton. a

terminal point

Figure 2. Reference planes and cephalometric landmarks used in present study.
A, Skeletal landmarks are shown in capital letters. B, Soft tissue landmarks are

presented in lowercase letters.
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Figure 3. Growth prediction error according to the number of PLS components.
Growth prediction errors for Gnathion were chosen to show the pattern of error in

the horizontal direction (top) and the vertical direction (bottom).
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Mean Absolute Errors of Hard Tissue Landmarks
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Growth prediction errors for selected landmarks in the training data

Figure 4.
set (blue) and the test data set (red).



upper lip

Linear regression (ordinary least squares)
—©— Partial least squares regression
~+ TabNet epoch 1000000; patience 100
—&— TabNet epoch 1000000; patience 1000
—=— TabNet epoch 1000000; patience 10000

Vertical (y axis) error
o
|

-10 —

-15 -

T I T T T T T
-15 -10 -5 0 5 10 15

Anteroposterior (x axis) error
Figure 5. The process of hyperparameter tuning. Growth prediction errors of Al-
based prediction models were graphically compared to find optimal
hyperparameter values. Prediction errors for “upper lip” were chosen as an

example.
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Porion

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network

Vertical (y axis) error
=3
]

T T T T T
=10 -5 0 5 10

Anteroposterior (x axis) error

Figure 6, A. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Porion” case.
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Orbitale

—e— Linear regression (ordinary least squares)

—o— Partial least squares method

—e— Al developed by Tabnet Deep Neural Network

Vertical (y axis) error
=3
]

T T T
=10 -5 0

Anteroposterior (x axis) error

10

Figure 6, B. Scatterplots and 95% confidence ellipse illustrating the pattern of

growth prediction errors in the "Orbitale” case.
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Basion

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network

Vertical (y axis) error
=3
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T T T T T
=10 -5 0 5 10

Anteroposterior (x axis) error

Figure 6, C. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Basion” case.
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ANS

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, D. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Anterior nasal spine" case.
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PNS

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network

Vertical (y axis) error
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Anteroposterior (x axis) error

Figure 6, E. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the " Posterior nasal spine " case.
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gression (ordinary least squares)

—o— Partial least squares method

—e— Al developed by Tabnet Deep Neural Network

—e— Linear re
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Figure 6, F. Scatterplots and 95% confidence ellipse illustrating the pattern of

growth prediction errors in the

case.

"Point A"
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—e— Linear regression (ordinary least squares)
—O— ial least squares method
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Figure 6, G. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Point B" case.
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Pogonion

—e— Linear reg ion (ordindry least squares)

artial least squ
—»— Al de ed by Tabn: eep Neural Network

Vertical (y axis) error
=3
]

Anteroposterior (x axis) error

Figure 6, H. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Pogonion” case.
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Menton

Vertical (y axis) error
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Anteroposterior (x axis) error

Figure 6, I. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "Menton" case.
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U1

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, J. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "U1 incisal edge" case.
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U6 crown mesial edge

—e— Linear regression (ordinary least squares)
—o— Partial least squares methed
—— Al deveJ)oped by Tabnet Deep Neural Network

Vertical (y axis) error
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T T T T T
=10 -5 0 5 10

Anteroposterior (x axis) error

Figure 6, K. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "U6 mesial contact point" case.
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L1

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, L. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "L1 incisal edge" case.
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L6 crown mesial edge

Linear regression (ordinary least squares)

Partial least squares method

Al developed by Tabnet Deep Neural Network
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Vertical (y axis) error
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Figure 6, M. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "L6 mesial contact point" case.

51

s - i)



pronasale
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—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, N. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "pronasale" case.
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subnasale

Vertical (y axis) error
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—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, O. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "subnasale"” case.
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upper lip

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
—e— Al developed by Tabnet Deep Neural Network
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Figure 6, P. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the "upper lip" case.
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lower lip

—e— Linear regression (ordinary least squares)
—o— Partial least squares method
Neveloped by Tabnet Deep Neural Network
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Figure 6, Q. Scatterplots and 95% confidence ellipse illustrating the pattern of
growth prediction errors in the " lower lip" case.
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Figure 6, R. Scatterplots and 95% confidence ellipse illustrating the pattern of

growth prediction errors in the

case.
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Figure 6, S. Scatterplots and 95% confidence ellipse illustrating the pattern of

growth prediction errors in the "pogonion

" case.
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Figure 7. Growth pattern and variability of each landmark according to the model
that showed more accurate predictions. Landmarks where PLS-based predictions
were superior tended to have less variability in growth than landmarks with
excellent Al-based predictions. Some landmarks, where Al-based prediction
showed better accuracy, were omitted to increase the visibility of the plot

0 ]
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Figure 8, A. Comparisons between actual growth and prediction results in patient

with Class | malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.
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Figure 8, B. Comparisons between actual growth and prediction results in patient

with Class Il malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.
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Figure 8, C. Comparisons between actual growth and prediction results in patient

with Class Il malocclusion. To concisely showcase the prediction result, only soft

tissue outlines are shown.
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