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1 Extended operators in twisted Schur cohomology

Extended operators, such as Wilson-’t Hooft line operators, play a central role in our
understanding of gauge field theories. Progress on analytic control of correlation functions
of extended operators in strongly-coupled gauge theories has been made over the past
30 years by examining extended operators in supersymmetric gauge theories and the
closely related constructions of topological extended operators in topologically twisted
supersymmetric gauge theories. But the spectrum and correlators of supersymmetric
extended operators in strongly coupled non-lagrangian supersymmetric field theories — e.g.,
in isolated superconformal field theories (SCFTs) — is much less well understood.

In the last decade much insight into the structure of the local operator algebra of 4d
N=2 SCFTs has come from the realization [1] that the operator algebra of certain BPS
local operators — the twist-translated Schur operators — have the structure of a vertex
operator algebra (VOA), which is more or less the chiral half of a 2d CFT. Twist-translated
Schur operators are the local operators in the cohomology of a pair of nilpotent supercharges
in the superconformal algebra, T±, called twisted Schur supercharges, and their operator
algebra is the VOA.
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It is natural to ask, in this context, whether there are extended operators in twisted
Schur cohomology, and if so, what is the structure of their operator algebra. We will
show that there are, indeed, line, surface, and domain wall operators in twisted Schur
cohomology. They are constructed from the local Schur operators in a way that is analogous
to how extended topological operators are constructed from local operators by topological
descent [2]. However, unlike the topological extended operators constructed in [2], we will
see that the extended operators constructed from descent in twisted Schur cohomology
are not topological.1 The world volumes of the line operators and two of the surface
operators are supported only on light-like submanifolds of a light cone, and so only exist in
Lorentzian signature space-time. Furthermore, we will show that their correlators, with
each other and with twist-translated Schur operators, depend only on a single complex
coordinate, z, entering into the parameterization of the space-time position of each extended
operator insertion. The (z, z) coordinates parameterize a spatial 2-plane in space-time
which we will call the VOA plane. Thus, the combined operator algebra generated by the
extended operators and the twist-translated Schur operators expands the original VOA to a
vertex algebra.

This note provides a concise introduction to and summary of these results. A more
extensive derivation, including many technical details, is provided in [6].

Summary of results. VOAs corresponding to 4d N=2 SCFTs arise when one studies
the protected sector of Schur operators annihilated by the twisted Schur supercharges
introduced in [1]. We will consider the pair of nilpotent twisted Schur supercharges

T+
.= Q1

2 + S̃22̇, T−
.= S 2

1 − Q̃22̇. (1.1)

We follow the notation and conventions of [7] unless otherwise specified.2 Local operators
in T+-cohomology are automatically also in T−-cohomology in a unitary SCFT.

The set of extended operators that we analyze in this work are of a special type,
chosen in order to guarantee that they are non-trivial objects in the cohomology of the
twisted Schur supercharges. Starting from a local Schur operator, we perform a version of
topological descent [2] by T±-exact generators of the conformal algebra. This gives rise to
a web of descent operators obtained from a single local Schur operator, O,

O → DX1 [O] → DX2DX1 [O] → · · · . (1.2)

Here DX denotes the descent operation corresponding to the exact generator X.
While there is a continuum of exact generators with which to perform descent, by

combining T±-cohomology equivalences between various descent operations with the re-
quirement that descent operators be finite, the set of possible descent operators is reduced
to a finite set or web. Within this web, each successive descent increases the world volume
dimension of the descent operator by one. Each DX acts on the preceding operator by a

1Our surface operators are different from previously constructed examples of surface operators in twisted-
Schur cohomology [3–5].

2We use 1 and 2 for spinor indices in place of + and − used in [1, 7]. We reserve ± for lightcone indices.
T± are the same as Q1 and Q2 in [1] and are those of [7] with phase ζ = 1.
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Figure 1. The descent web for a general Schur operator O. Descent operations DX are shown
as arrows labeled by the generator X. The resulting descent operator cohomology classes are
labeled by L±, S, Ŝ..., Ŵ±

... which have line, surface, and domain wall world volumes. For example,
S[O] .= DP−DP+ [O] = −DP+DP− [O]. The ± superscripts denote U(1)r charges of the corresponding
descent procedure, while L, R subscripts denote the chirality of the action of M±3 on O(0). The
hatted descent operators are shown in red because, as discussed in sections 2.6 and 3.4, they have
exotic properties, and there may be equivalences between some of their cohomology classes not
shown in the figure.

(fermionic) supercharge, so flips the statistics of the descent operator; each DX changes
the U(1)r charge by ±1; DX preserves the chiral weight of O, hO, under the holomorphic
conformal sl2 symmetry of the VOA plane; and DX commutes with twist translations in
the sense that DX [∂zO] =T ∂zDX [O], so ∂z still acts as the translation generator of the
extended vertex algebra. Here “=T” means equal in T± cohomology.

The resulting descent web is shown in figure 1. The arrows are the descent operations
labeled by their corresponding generators. P± are certain light-like translations and M±3
are light-like combinations of boosts and rotations, defined below. These generators also
determine the space-time world volumes of the descent operators; they are illustrated in
figure 2 below. We have introduced shorthand names, L±, S, Ŝ..., Ŵ±

..., for the iterated
descent operations. The ± superscripts are correlated with the U(1)r charges. The statistics
of the descent operators alternate between the rows of figure 1, while their chiral weights
are all the same. This is reminiscent of the structure of the chiral half of a 2d topological
SCFT. But, as will become evident later, it is not at all clear whether the enlarged vertex
algebra has the structure of a superconformal vertex algebra.

The Ŝ... and Ŵ±
... extended surface and wall operators, which we will often refer to

as “hatted descent operators” and are shown in red in figure 1, can only be reached via
descent with an M±3 generator. These descent operators have the distinct feature that
their correlators have a sign discontinuity when other vertex operator insertions cross a
quasi-topological line emanating from them in the VOA plane. Unlike local Schur operators,
this behavior means they are not, strictly speaking, vertex operators in the vertex algebra,
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but suggests they should be viewed as “boundary” operators.3 We can describe this situation
by saying that the insertion of a hatted operator introduces a “cut”, or “cuts”, in the VOA
plane. In this paper, we describe many aspects of these interesting features of the hatted
descent operators, but only present explicit OPE computations for the subalgebra formed
from the O-L±-S operators, shown in black in figure 1.

All descent operators require a regularization prescription to ensure that their correlators
are absolutely convergent and satisfy the relevant Ward identities defining a consistent
T±-cohomology theory. We propose such a prescription which involves modifying the naive
definition of a descent operator via topological descent to include a “weight function”. These
weight functions comprise a class of functions that satisfy specific properties which ensure
descent operator correlators are absolutely convergent and obey all requisite T± Ward
identities. We also present preliminary evidence suggesting this prescription will produce
universal, i.e., weight function independent results, but we do not have a general proof
demonstrating that this is always true. Additionally, the regularization prescription may
obscure possible cohomological equivalences among descent operators at the level of the
vertex algebra.

In the next section, we define the twisted Schur descent operation and derive the
descent web, figure 1. In section 3, we first discuss the convergence and regularization of
descent operators. This is followed by an examination of the world volume intersections
and intricate T± Ward identity discontinuities that can exist in multi-descent correlators.
Then, in section 4, we compute some operator product expansions in the O-L±-S vertex
subalgebra for the free hypermultiplet SCFT. We finish in section 5 with remarks on future
directions and open problems.

2 Twisted Schur descent

2.1 Topological descent

Recall the topological descent procedure [2] for constructing extended operators from point
operators in topological field theories (TFTs) formed by twisting supersymmetric theories
by a nilpotent supercharge Q. In a TFT the translation generators Pµ are Q-exact, so there
exist fermionic generators Qµ such that4

Q ◦ Pµ = 0, and Pµ = Q ◦Qµ. (2.1)

3Ŵ±
... operators can literally be interpreted as boundaries in the VOA plane because their world volumes

intersect the VOA plane along a line; see figure 2. This line of intersection always sits orthogonal to the
quasi-topological “cut” all correlators of hatted operators possess, so is also quasi-topological. We expect
this physical intersection within the VOA plane to introduce additional “intersection” discontinuities in
correlators of Ŵ±

... descent operators.
4We use ◦ to denote the adjoint action for superalgebra and group elements. Thus ◦ is the (anti)commutator

between algebra generators, and also denotes conjugation of a generator by a group element. We use the
convention that when there are no parentheses ◦ acts on everything to its right.
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If O(0) is a Q-closed local operator, then so is O(x) .= exµPµ ◦ O(0). Define the
extended operator

Σ[O] .=
∫

Σ
(Q · dx) ◦ · · · ◦ (Q · dx) ◦ O(x), (2.2)

where there are p factors of Q · dx .= Qµdx
µ in the integrand, and Σ is some closed p-

manifold. Σ[O] is Q-closed since the Q-variation of the integrand is a total derivative by (2.1).
Furthermore, the integrand is a closed p-form in Q-cohomology, so the Q-cohomology class
of Σ[O] only depends on the homology class of Σ. These topological properties of descent
operators follow from

Qµ ◦Qν = 0, ∀ µ, ν, (2.3)

which is an additional property of Q in a TFT.

2.2 Generalized descent

Recast topological descent as an iterative process, where, starting with a perhaps extended
operator E in Q-cohomology, we define its descent with respect to the exact generator
n · P .= nµPµ, where nµ is a unit vector, as the new operator extended in the nµ direction
by an operation

Dn·P [E ] .=
∫
dα (n ·Q) ◦ eα n·P E . (2.4)

That Dn·P [E ] is in Q-cohomology and that [Dn·P ,Dm·P ] = 0 follow from (2.3).
Let us generalize this construction of extended operators in cohomology to any nilpotent

supercharge T in a superconformal algebra. For any T-exact real bosonic generator X, there
is a supercharge ξ such that

X = T ◦ ξ. (2.5)

Define the X-descent of any (perhaps extended) T-closed operator E as

DX [E ] .=
∫
dα ξ ◦ eαX ◦ E , (2.6)

where the integral is over the real line or a circle if the 1-parameter subgroup generated
by X is non-compact or compact, respectively. In all the cases of interest to us it will be
non-compact, so from now on

∫
dα =

∫∞
−∞ dα. Since X is real, eαX ◦ E is a conformally

transformed operator supported at the conformal transform of its original space-time
support. Then DX [E ] is T-closed up to boundary terms,

T ◦ DX [E ] =
∫
dαT ◦ ξ ◦ eαX ◦ E =

∫
dα
{

(T ◦ ξ) ◦ eαX ◦ E − ξ ◦ eαX ◦ (e−αX ◦ T) ◦ E
}

=
∫
dα
{
X ◦ eαX ◦ E − ξ ◦ eαX ◦ T ◦ E

}
=
∫
dα

d

dα

{
eαX ◦ E

}
=
[
eαX ◦ E

]α=+∞

α=−∞
= 0 if lim

α→±∞
eαX ◦ E = 0. (2.7)

– 5 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
5

We test whether “limα→±∞ eαX ◦ E = 0” by asking if the left side gives zero when inserted
into the integrand of T Ward identities. When the E are integrals of operators of sufficiently
positive conformal dimension, and to the extent that limα→±∞ eαX ◦ E moves the operator
support to space-time infinity, then in euclidean space, these boundary limits converge to
zero in correlators. But this convergence does not hold at light-like infinity in Minkowski
space-time for multi-descent correlators. As a result, a regularization for descent operators
is required for T-cohomology Ward identities to be satisfied. This regularization is presented
in section 3.

From (2.7), it similarly follows that if E = T ◦ F is T-exact, then its descent operators
are also T-exact,

DX [T ◦ F ] = −T ◦ DX [F ], (2.8)

again only up to boundary terms which must be checked to vanish. Using the T-closedness
of X and E , it is then easy to see that the T-cohomology class of DX [E ] does not depend
on the specific representative ξ chosen to solve (2.5).

If O is a point operator, say at the origin, then DX [O] is a line operator if eαX moves
the origin; otherwise it will be a new point operator. Similarly, when E is an extended
operator localized on some p-dimensional variety Σ, DX [E ] is either a (p+ 1)-dimensional
extended operator if eαX does not preserve Σ as a set, or is another p-dimensional extended
operator if it does. In our case, descents which preserve Σ all either vanish or diverge, so
only descents which increase the dimensionality of the operator support are interesting.
Note that the analog of the relations (2.3) which ensure the topological nature of the
dependence of descent operators on their Σ world volumes in TFTs need no longer hold in
the case of generalized descent.

The number and nature of the resulting T-cohomology classes of descent operators
depends on the details of the algebra of the real bosonic T-exact generators.

2.3 Twisted Schur cohomology of the superconformal algebra

We now specialize to descent with respect to the pair T± of twisted Schur supercharges
defined in (1.1). Unitarity ensures that point operators in T+-cohomology are automatically
also in T−-cohomology; these are the Schur operators of the SCFT. It is a non-obvious fact
that this continues to hold for the extended operators constructed from the Schur operators
by T± descent. Thus, if O is a Schur, and D+[O] is a descent operator by some T+-exact
generator, then by (2.7) D+[O] will be T+-closed (up to boundary terms which must, of
course, be shown to vanish). The non-obvious fact is that D+[O] is also T−-closed, even
though it is not found by descent with respect to any T−-exact generator.

To show this and other special properties of twisted Schur descent, we compute the
subalgebras of T±-closed or exact bosonic generators of the N=2 superconformal algebra.
First, it is convenient to fix a space-time coordinate system. Let xµ, µ = 1, 2, 3, 4, be the
usual flat Minkowski coordinates with x1 the time, and define lightcone coordinates in the
x1-x2 and complex coordinates in the x3-x4 planes by

x±
.= ±x1 + x2, z

.= x3 − ix4. (2.9)
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Points at x± = 0 with coordinates (z, z) comprise the “VOA plane”. The tensor generators
of the conformal algebra, Pµ, Mµν , and Kµ, are related to their spinor components by5

(
P11̇ P12̇
P21̇ P22̇

)
=
(

2Pz −2iP−
2iP+ −2Pz

)
,

(
K 1̇1 K 1̇2

K 2̇1 K 2̇2

)
= 2

(
Kz −iK−
iK+ −Kz

)
, (2.10)(

M 1
1 M 2

1
M 1

2 M 2
2

)
=
(
−M 2

2 2iM−z

2iM+z M+−−Mzz

)
,

(
M̃1̇

1̇ M̃1̇
2̇

M̃2̇
1̇ M̃2̇

2̇

)
=
(
−M̃2̇

2̇ 2iM−z

2iM+z M+−+Mzz

)
.

Denote the subalgebras of the N=2 superconformal algebra S which are closed and
exact under twisted Schur supercharges T± by Z±

.= {X ∈ S | T± ◦X = 0} and B±
.=

{X ∈ S | X = T± ◦ Y for some Y ∈ S}, respectively. Then the even (bosonic) subalgebras
are6

Z± = sl2 ⊕ ŝl2 ⊕Z B m±, B± = ŝl2 ⊕Z B m±, (2.11)

where

sl2
.=
〈
L−1

.= Pz, L0
.= 1

2D +Mzz, L1
.= Kz

〉
, (2.12)

ŝl2
.=
〈
L̂−1

.= Pz −R−, L̂0
.= 1

2D −Mzz − 1
2R, L̂1

.= Kz +R+ 〉
,

Z .=
〈
Z .= 2M+− + 1

2r
〉
,

m+
.=
〈
P+, M+z, M+z, K+

〉
, m−

.=
〈
P−, M−z, M−z, K−

〉
.

Here r is the U(1)r generator and R, R± are SU(2)R generators normalized as in [8] so
that r(Q) = −1 and R ∈ Z.7 sl2 ⊕ ŝl2 is the algebra of holomorphic plus antiholomorphic
conformal transformations of the VOA plane, with the antiholomorphic half twisted by
SU(2)R rotations. Z generates boosts in the x± plane combined with a U(1)r rotation.8
Finally, m± are nilpotent ideals of the subalgebras in (2.11),

(sl2 ⊕ ŝl2 ⊕Z) ◦m± ⊂ m±. (2.13)

The m± ideals play a central role in twisted Schur descent.

2.4 The algebra of the twisted Schur descent operation

T± descent can be performed with respect to T±-exact generators with a real action in
space-time. From (2.12) these are real combinations of Z and m± for T±, respectively.
Though the ŝl2 generators are T±-exact, they all have complex action on space-time; real
combinations with the sl2 generators are necessary to generate a real action on space-time.
But since the sl2 generators are not exact, they are not suitable for performing twisted
Schur descent. We discuss the effect of real sl2 ⊕ ŝl2 generators on descent operators below.

5This differs slightly from the convention in [7] because we are working in Minkowski space-time.
6As indicated in (2.13), the m± subalgebras do not commute with the sl2 ⊕ ŝl2 ⊕Z subalgebra, which we

denote using the “semi-direct sum” symbol B.
7This differs from [7] only for the SU(2)R Cartan generator, which is R

.= R1
1 − R2

2 for us.
8Our Z is the negative of the Z of [1, 7].
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We now show that, starting from a primary Schur operator O(0),9 applying twisted
Schur descent by a sequence of T+ and/or T−-exact generators produces a series of extended
operators which share many of the same properties as their Schur “parent” O. For unitary
SCFTs, Schur operators at the origin satisfy

T± ◦ O(0) = 0, implying L̂0 ◦ O(0) = Z ◦ O(0) = 0, (2.14)

which, from (2.11), immediately implies

ŝl2 ◦ O(0) =T 0. (2.15)

Here “=T” means the equality holds in both T+ and T− cohomologies. Schur primaries at
the origin additionally satisfy

L−1 ◦ O(0) = ∂zO(0), L0 ◦ O(0) = hOO(0), L1 ◦ O(0) = 0, (2.16)

where the chiral weights are positive half-integers, hO ∈ N/2.
Let E denote any operator that satisfies

T± ◦ E = 0, L−1 ◦ E =T ∂zE , L0 ◦ E =T hE E , L1 ◦ E =T 0 (2.17)

from which it also follows Z ◦ E = 0 and L̂0 ◦ E =T 0. We will show that twisted Schur
descent extended operators DN± [E ](0) automatically satisfy the relations

T± ◦ DN± [E ](0) = 0, Z ◦ DN± [E ](0) = 0,
L̂0 ◦ DN± [E ](0) =T 0, L0 ◦ DN± [E ](0) =T hE DN± [E ](0), (2.18)
L−1 ◦ DN± [E ](0) =T DN± [∂zE ](0), L1 ◦ DN± [E ](0) =T 0.

These relations inductively imply any twisted Schur descent operators constructed from a
Schur operator at the origin, i.e. when E = O(0) and hE = hO, will automatically satisfy
the defining relations (2.14), (2.16) of a Schur operator in both T± cohomology.

Let N± ∈ m± be any real vector. Then, since N± is T±-exact, there is a fermionic
super generator ν± such that

T± ◦ ν± = N±. (2.19)

One then checks that

T∓ ◦ ν± = 0, T∓ ◦N± = ±ν±, (2.20)

which are related to

T± ◦ T∓ = Z, Z ◦N± = ±N±, Z ◦ ν± = ±ν±, (2.21)

and that

ν± ◦ ν± = 0, N± ◦ ν± = 0. (2.22)
9We show at the end of section 2.4 that it is sufficient to start from a primary Schur operator.
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Given the definition (2.19), the relations (2.20), (2.21), and (2.22) follow from the detailed
form of the N=2 superconformal algebra, i.e., they do not follow in any obvious way from
the automorphisms of that algebra (though half of them follow from the other half by virtue
of the anti-linear involution which exchanges T+ ↔ T−).

Denote by µ± the fermionic subalgebras satisfying T± ◦ µ± = m±. These algebras are
nilpotent,

m± ◦m± = m± ◦ µ± = µ± ◦ µ± = 0, (2.23)

(signs correlated), generalizing (2.22). An immediate consequence is that

DN±DN ′
± [E ] = −DN ′

±DN± [E ], (2.24)

which follows from the definition of descent (2.6).
Assume we have an operator E satisfying (2.17). We will show that the most general

T+ descent operation acting on E produces a new operator, DX [E ] as in (2.6), which
satisfies (2.18), and therefore also satisfies the induction hypothesis (2.17). (The same
argument works for T− descent.) We can choose as the descent generator X any real
T+-exact generator, which, up to an overall irrelevant rescaling, therefore has one of the
three possible forms Z, Z +N+, or N+, for some non-zero N+ ∈ m+. First,

DZ [E ] =
∫
dαT− ◦ eαZ ◦ E =

∫
dαT− ◦ E = 0, (2.25)

where we used (2.21), the induction hypotheses (2.18), and that E is T−-closed. So descent
by Z gives zero. Next,

DZ+N+ [E ] =
∫ +∞

−∞
dα (T− + ν+) ◦ eα(Z+N+) ◦ E =

∫ +∞

−1
dy ν+ ◦ eyN+ ◦ E , (2.26)

using that eα(Z+N+) = eyN+eαZ with y = eα − 1 which follows from Z ◦N+ = N+, and we
also used that e−yN+ ◦ T− = T− + yν+ which follows from T− ◦N+ = ν+ and ν+ ◦N+ = 0.
The final expression in (2.26) is like N+ descent except with a boundary at finite points
in space-time. We therefore expect it not to be T+-closed. Indeed, by the same argument
as in (2.7), T+ ◦ DZ+N+ [E ] = eyN+ ◦ E |y=∞

y=−1 ̸= 0. So descent by Z + N+ fails to give an
operator in cohomology.

We thus only ever need to consider descent operators of the form

DN+ [E ] =
∫
dα ν+ ◦ eαN+ ◦ E , N+ ∈ m+. (2.27)

A similar formula defines DN− [E ] for N− ∈ m−.
We now show DN+ [E ] is in both T± cohomologies. It is in T+-cohomology by the

generalized descent construction up to boundary terms as in (2.7). These boundary terms
need to be evaluated for particular choices of N+ and E . Assume for the moment that
these boundary terms vanish. Then we compute

T− ◦ DN+ [E ] = −
∫ +∞

−∞
dα ν+ ◦ eαN+ ◦ (T− + αν+) ◦ E = 0, (2.28)
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where in the first step we used the descent algebra identities (2.19) and (2.20) to commute
T− to the right, and the vanishing follows from the induction hypothesis that E is T−-closed
and from the nilpotency relations (2.22). The identity (2.28) — which does not have an
analog in topological descent — is crucial in allowing twisted Schur descent to extend
the vertex operator algebra of twist-translated Schur operators to the whole descent web.
Unlike in the case of Schur operators, which are in both T+ and T− cohomology by virtue
of unitarity, this property of the descent operators instead follows in a less obvious way by
virtue of the detailed structure of the superconformal algebra.

Note that the U(1)r charges of the twisted Schur supercharges are r(T±) = ∓1,
so by (2.19), r(ν±) = ±1 since bosonic generators have zero r-charge. Then it follows
from (2.27) that

r(DN± [E ]) = r(E ) ± 1. (2.29)

Note also that, using the relation ν+ = T− ◦ N+ in the definition of DN+ [E ] and
commuting a T− to the right to annihilate E , one derives an identity of the form DN+ [E ] =
DN+ [E ]+boundary terms. So these boundary terms must vanish if DN+ [E ] is well-
defined, giving

αν+ ◦ eαN+ ◦ E
∣∣α=+∞
α=−∞ = T− ◦

(
eαN+ ◦ E

∣∣α=+∞
α=−∞

)
. (2.30)

Since the boundary terms on the right vanish by (2.7) for DN+ [E ] to be T+-closed, it follows
that the apparently less convergent boundary terms on the left must also vanish.

We now show that DN+ [E ] satisfies the induction hypotheses (2.17) if E does. It
immediately follows that Z ◦ DN+ [E ] = ŝl2 ◦ DN+ [E ] =T 0 since Z and ŝl2 are both T±-
exact. To show the L0 ◦DN+ [E ] and L1 ◦DN+ [E ] relations we need the action of sl2 on the
m± and µ± subalgebras. Because sl2 is T±-closed, if N± ∈ m± and ν± ∈ µ± are related by
T± ◦ ν± = N±, then for any element X ∈ sl2, N ′

±
.= X ◦N± and ν ′±

.= X ◦ ν± are related
in the same way.

Consider X ∈ sl2. By commuting X to the right one finds10

X ◦ DN+ [E ] =T DN+ [X ◦ E ] +
∫
dα(ν ′++αN ′

+◦ν+)◦eαN+◦E . (2.31)

Using ν ′+ = T− ◦N ′
+, the integrated term in (2.31) is∫

dα · · · =T−

∫
dαN ′

+◦(−T−+αν+)◦eαN+◦E = −
∫
dαN ′

+◦eαN+◦(T−+αν+−αν+)◦E

which vanishes in T−-cohomology. Similarly, using N ′
+ = T+ ◦ ν ′+, N+ = T+ ◦ ν+, and

T+ ◦ eαN+ ◦ E = 0, this term is, in T+-cohomology, the boundary term∫
dα · · · =T+

∫
dαν ′+◦(1+αN+)◦eαN+◦E =

∫
dα

d

dα

{
αν ′+◦eαN+◦E

}
= αν ′+◦eαN+◦E

∣∣∣+∞

−∞
.

10We are violating our associativity convention in writing the last term which is meant to be N ′
+ ◦ ν+ ◦

eαN+ ◦ E , and not (N ′
+ ◦ ν+) ◦ eαN+ ◦ E which vanishes identically.
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This boundary term is closely related to the boundary term in (2.30) that vanishes for
DN+ [E ] to be a well-defined operator in T±-cohomology, making it plausible that it, too,
vanishes. But we do not have a general argument proving this, and resort to checking it on
a case-by-case basis. For all the descent operators we construct for the free hyper multiplet
in section 4, we find these boundary terms vanish, and so obey

X ◦ DN+ [E ] =T DN+ [X ◦ E ]. (2.32)

We will assume this is true in general from now on. The upshot is that, by taking
X ∈ {L−1, L0, L1} in (2.32) and assuming the induction hypothesis (2.17), we have shown
the DN+ [E ] descent operator satisfies (2.18).

Note that when we take E = O(0) to be a Schur primary and let X = L−1, (2.32)
inductively implies that any descent operator constructed from a Schur descendant (L−1)n ◦
O(0) is equivalent to (L−1)n acting on the same descent operator constructed from the
Schur primary O(0). Thus, it is sufficient to only consider descent operators constructed
from Schur primaries.

2.5 Cohomological equivalence among descent operators

We have now reduced each step of the twisted Schur descent procedure (2.27) to choosing
an element N+ ∈ m+ or an N− ∈ m− with which to perform descent. Since m± are
4-dimensional vector spaces, there is an RP3 of inequivalent choices of N±, since the overall
scale of N± can be absorbed into the integration measure of the descent operation. We will
now show that almost all these choices are, in fact, equivalent in T±-cohomology, and only
a finite set of choices of N± ∈ m± needs to be considered.

The key is to consider the action of the ŜO(1, 3) group of twisted conformal transforma-
tions of the VOA plane on descent operators. ŜO(1, 3) is generated by elements of sl2 ⊕ ŝl2
with real space-time action. “Twisted” refers to the accompanying SU(2)R transformation
that is part of ŝl2. To this end, define the superconformal group elements

ĝ(z) .= exp{zL−1 + zL̂−1}, twist translations,
ĝ(ℓ) .= exp{ℓL0 + ℓL̂0}, twist rotation and dilatation, (2.33)
ĝ(β) .= exp{βL1 + βL̂1}, twist special conformal transformations,

for z, ℓ, and β arbitrary complex numbers, which act on the VOA plane as indicated above.
Consider, say, ĝ(β) ◦ E = eβL1eβL̂1 ◦ E where E satisfies the induction hypothesis (2.17).
Since E is T±-closed and L̂1 is T±-exact, we have ĝ(β) ◦ E =T eβL1 ◦ E , by which we
simply mean that the cohomology class of ĝ(β) ◦E depends only on β.11 Furthermore, since
L1 ◦ E =T 0 by assumption, we have ĝ(β) ◦ E =T E .

A similar argument for ĝ(ℓ) and ĝ(z) using (2.17) implies

ĝ(β) ◦ E =T E , ĝ(ℓ) ◦ E =T e
ℓhE E , ĝ(z) ◦ E =T e

zPz ◦ E . (2.34)

11This does not mean that the eβL̂1 part of the twist special conformal transformation can be neglected:
it is needed to create a physical operator in Minkowski space. This holds for all ĝ twist transformations.
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The ĝ(z) relation shows, just as for Schur operators, that the twisted Schur cohomology
class of E only depends on the holomorphic z coordinate of the VOA plane. The ĝ(ℓ)
and ĝ(β) relations are much stronger, implying essentially that E cohomology classes are
independent of both ℓ and ℓ as well as β and β.

Applying the twisted ĝ transformations to DN+ [E ] gives

ĝ(β) ◦ DN+ [E ] =T DN+ [E ]
ĝ(ℓ) ◦ DN+ [E ] =T e

ℓhE DN+ [E ] (2.35)
ĝ(z) ◦ DN+ [E ] =T DN+ [ezPz ◦ E ]

where we used (2.32) to commute the ĝ’s past the descent operation in T± cohomology, and
the relations in (2.34) for E and (2.8).

Since m± are ideals of the superconformal algebra cohomology subalgebras, (2.13), it
follows that

ĝ ◦ DN+ [E ] =
∫
dα (ĝ ◦ ν+) ◦ eα ĝ◦N+ ◦ (ĝ ◦ E ) = Dĝ◦N+ [ĝ ◦ E ]. (2.36)

Then, using (2.8) and the relations in (2.34) gives

ĝ(β) ◦ DN+ [E ] =T Dĝ(β)◦N+ [E ],

ĝ(ℓ) ◦ DN+ [E ] =T e
ℓhE Dĝ(ℓ)◦N+ [E ], (2.37)

ĝ(z) ◦ DN+ [E ] =T Dĝ(z)◦N+ [ezPz ◦ E ].

Combining (2.37) and (2.35) implies

DN+ [E ] =T Dĝ(β)◦N+ [E ],

DN+ [E ] =T Dĝ(ℓ)◦N+ [E ], (2.38)

DN+ [ezPz ◦ E ] =T Dĝ(z)◦N+ [ezPz ◦ E ].

Note that the last equation in (2.35) shows that twist-translation commutes with descent,
while the last equation in (2.38) relates descent operators constructed from twist-translations
of cohomology classes E .

Now compute the ĝ(z), ĝ(ℓ), ĝ(β) actions on m± explicitly. Parameterize N+ as

m+ ∋ N+
.= pP+ +mM+z +mM+z + kK+, p, k ∈ R, m ∈ C. (2.39)

A short calculation gives

ĝ(β) :
(
p,m, k

)
7→
(
p , m+2pβ , k−Re(mβ)−pββ

)
,

ĝ(ℓ) :
(
p,m, k

)
7→ e(ℓ+ℓ)/2 ( p , e−ℓm, e−ℓ−ℓk

)
, (2.40)

ĝ(z) :
(
p,m, k

)
7→
(
p−Re(mz)−kzz , m+2kz , k

)
.

One can show that if p ̸= 0 there is a sequence of ĝ(β) and ĝ(ℓ) transformations which takes
(p,m, k) → (1, 0, sgnk). Likewise, if p = 0 and m ̸= 0 one can set (p,m, k) → (0, 1, 0), and
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if p = m = 0 one can set (p,m, k) → (0, 0, 1). There is a similar result for m−. Thus, at
any stage there are just 10 possible cohomologically inequivalent descent operations,

DP± ,DM±3 ,DK± ,DP±+K± , and DP±−K± . (2.41)

There is a subtle issue regarding the meaning of equivalence between descent operators.
What we have just shown is the following: assuming the induction hypothesis (2.17), if one
considers two descent operators DX1 [E ], DX2 [E ] constructed using two distinct descent
operations from (2.41), then there is no inner automorphism of the superconformal algebra
which maps DX1 [E ] =T DX2 [E ] in cohomology. However, this result does not imply DX1 [E ]
and DX2 [E ] are automatically inequivalent in cohomology. This is because additional
equivalences can exist that come in two types:

4d-type equivalence = equivalences between 4d operator expressions in the
4d twisted Schur cohomology theory (which could be equalities or only hold
in cohomology);

VA-type equivalence = equivalences between twisted Schur cohomology classes at
the level of OPEs and correlation functions of the vertex algebra.

4d-type equivalences could occur due to simplifications that result from additional properties
the parent operator E possesses that go beyond those assumed in (2.17). We will see instances
of both additional equalities and additional cohomology equivalences between operator
expressions in the next section. VA-type equivalences, on the other hand, occur when two
descent operators have identical OPEs and correlation functions within the vertex algebra.
A VA-type equivalence between two operators is the same as saying that their difference is
a null state in the vertex algebra. A 4d-type equivalence between two operators implies a
VA-type equivalence between them while the converse is not true.

Without detailed structural knowledge of the vertex algebra, such as the operators
defining a generating set for it, the question of a VA-type equivalence is difficult to prove a
priori from 4d. A VA-type equivalence can also appear between a descent operator and a
local Schur operator. In fact, such an equivalence already emerges in the O-L±-S subalgebra
for the free hypermultiplet we present in section 4.

As we derive the descent web of figure 1 in the next section, we will be careful to
identify where a 4d-type or VA-type equivalence might remain between various descent
operators.

2.6 The descent web

We now map out the possible inequivalent descent operators which constitute figure 1.
To begin, we show that a necessary condition for a descent operator DX [E ] to be

well-defined as an extended operator is that X must translate the world volume of the
parent operator E as a set.12 By (2.27), the DK± [O] and DM±3 [O] descents of a Schur

12The action of the generator X ∈ m± may still have fixed points on the E world volume, as is the case
for X = M±3.
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operator at the origin are
∫+∞
−∞ dα integrals of some local operators at the origin, because

eαK± and eαM±3 do not move the origin. Since K± ◦ O = 0 for O primary, the local
operator is just κ± ◦ O, where κ± are the descent supercharges ν± associated to K±. So
DK+ [O] = (∞) · κ± ◦ O. The operator eαM±3 ◦ O is an α-weighted linear combination of
spin components of the Lorentz multiplet that O belongs to, so it is at least as divergent
for a scalar Schur operator and more divergent for Schur operators with spins j > 0 or
ȷ̃ > 0. The conclusion is that these descent procedures do not produce convergent extended
operators. A similar pattern applies to each successive descent operation DX [E ]: if X does
not translate the world volume of E then the descent diverges, and if it does, it potentially
generates a convergent extended operator of one greater world volume dimension.

Starting from a Schur operator at the origin, we now map out the possible line, surface,
and domain wall world volumes that can be obtained by successively combining the ten
inequivalent descent operations of (2.41).

Lines. The transformations eαP± acting on the origin generate the lightlike lines

L± .= {x∓ = z = z = 0}. (2.42)

Also, eα(P+±K+) generate the L+ line while eα(P−±K−) generate the L− line. The remaining
generators, M±3 and K±, do not move the origin, so there are no further 1d world volumes.

Surfaces. eαP∓ acting on L± (signs correlated) generate the plane,

S
.= {z = z = 0}, (2.43)

which can also be generated by eα(P+±K+) acting on L− and eα(P−±K−) acting on L+.
Acting with eαM∓3 on L± (signs correlated) both generate the cone,

Ŝ
.= {x+x− + zz = 0, z = z}, (2.44)

which is the z = real (x4 = 0) slice of the light cone in Minkowski space-time. The remaining
generators, P±, M±3, K±, and K∓, do not move L±, so there are no further 2d world
volumes.

Domain walls. The action of eαP± , eα(P+±K+), eα(P−±K−) on Ŝ and eαM±3 acting on S

all generate the domain wall (3d hyperplane)

Ŵ
.= {z = z}. (2.45)

The remaining generators do not move S or Ŝ.

4d volume. None of the generators move the Ŵ world volume, so the descent procedure
terminates after the third order and we obtain no volume operators.
These world volumes are illustrated in figure 2, which shows the x4 = 0 (z = z) slice of
Minkowski space-time.

A descent operator is not defined solely by its world volume just as a local operator
is not solely defined by its location in space-time. Hence, despite there being multiple
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x1

x2

x3 ⊂ VOA planeO

L−

L+

S

Ŝ

Figure 2. The possible world volumes of twisted Schur descent operators. The figure shows the
x4 = 0 3d slice of Minkowski space-time; x1 is the time coordinate. The x3 axis is the z = z line in
the VOA plane. L± and Ŝ are in the light cone. The Ŵ 3d world volume fills the 3d slice shown in
the figure. The extension of the Ŝ and Ŵ world volumes in the x3-direction of the VOA plane is
conventional: this direction can be rotated while keeping the corresponding descent operators in the
same cohomology class.

routes to producing a given world volume, it is possible the associated descent operators
are inequivalent as operators. Starting with the descent line operators, we now describe the
inequivalent descent operators that persist among the various routes one can take to obtain
a given world volume. For each inequivalent descent operator, we will denote the result by
a corresponding boldfaced symbol, e.g. L±[O] .= DP± [O] or S[O] .= DP−DP+ [O].

Lines. Since P± translate the origin along the x± axes, the DP± [O] descent operators are
light-like line operators. We discuss the convergence of these line operators in more detail
in the next section. The descent operator DP+±K+ [O] is equivalent to DP+ [O], which we
can see through a brief computation:

DP+±K+ [O] =
∫
dα(π+ ± κ+) ◦ eα(P+±K+) ◦ O =

∫
dα(π+ ± κ+) ◦ eαP+ ◦ O

=
∫
dαeαP+ ◦ (π+ ± κ+) ◦ O =

∫
dαeαP+ ◦ π+ ◦ O = DP+ [O]. (2.46)

Here, T+ ◦π+ = P+, T+ ◦κ+ = K+, and we have used the fact that K+ ◦O = 0 for a Schur
primary in the second equality and the nilpotency relations (2.23) in the third equality.
The final result follows from the fact κ+ ◦ O = 0 for a Schur primary, which is explained
by the relation κ+ = T− ◦ K+ from (2.20), which implies κ+ ◦ O = (T− ◦ K+) ◦ O =
T− ◦K+ ◦ O −K+ ◦ T− ◦ O = 0 since a Schur primary is annihilated by K+ and by T−. A
similar computation indicates DP−±K− descent is equivalent to DP− descent. Thus, at the
first level of the descent web, the only inequivalent, convergent descent operators are the
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two lightlike line operators

L+[O] .= DP+ [O] and L−[O] .= DP− [O]. (2.47)

Furthermore, we know these two operators must be inequivalent at the level of the vertex
algebra because, from (2.29), they necessarily have opposite U(1)r charges, as indicated by
their superscript.

Surfaces. As indicated in the descent web of figure 1, the descent operations DP±L∓[O]
give equivalent descent operators. This follows from the anti-commutativity of the DP+

and DP− descent operations. To see this, let π± be the fermionic supercharges satisfying
T±◦π± = P± in the DP± descent procedures. Then by (2.20), π± = ±T∓◦P±. Substituting
these in π+ ◦ π−, using the Jacobi identities, that T± ◦ P± = 0, and that P+ ◦ P− = 0, one
finds that π+ ◦ π− = −P+ ◦ (Z ◦ P−) = P+ ◦ P− = 0 using (2.21) in the last steps. Then
DP+DP− [O] = −DP−DP+ [O] follows immediately from the definition (2.27) of the descent
operation. We denote the resulting surface operator by

S[O] .= DP−DP+ [O] = DP−L+[O]. (2.48)

In (2.46) we showed that DP+±K+ [O] = DP+ [O], but this relation is much harder to show
at higher levels of descent. Nonetheless, for surfaces it is possible to show the equivalences

DP−±K−L+[O] =T S[O] and DP+±K+L−[O] =T −S[O]. (2.49)

These results follow from a lengthy calculation and hold only in cohomology; the details
will be reported in [6].

Next, denote the descent operators DM+3L−[O] and DM−3L+[O] by

ŜL[O] .= DM+3L−[O], ŜR[O] .= DM−3L+[O]. (2.50)

The Ŝ... descent operators are not equivalent to the S descent operator. Intuitively, this
makes sense since they don’t have equal world volumes, but sufficient evidence stems from
the fact that their correlators display different behaviors at the level of the vertex algebra.
Specifically, Ŝ... correlators always come with a quasi-topological “cut”, while those of S
do not.

Furthermore, it can be proven that ŜL and ŜR are inequivalent cohomology classes as
operator expressions. This is an intricate result which will be discussed in [6], but it is a
direct consequence of the regularization prescription needed to define hatted operators in
general. We address the convergence properties and required regularization for the hatted
operators in section 3.

Lastly, although inequivalent as operators, preliminary evidence suggests that the
VA-type equivalence ŜL[O] = −ŜR[O] may still be consistent at the level of the vertex
algebra. We explain the consequences of this scenario for the descent web in the next
section, and will report on its viability more thoroughly in [6].
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Domain walls. Among the ten possible routes to producing the Ŵ world volume from
the S and Ŝ surfaces, the two equivalences

DP+ŜL[O] = −DM+3S[O] and DP−ŜR[O] = −DM−3S[O] (2.51)

follow directly from the nilpotency relation (2.24). The remaining eight routes produce
apparently inequivalent extended operators which we denote by

Ŵ−
L [O] .= DP−ŜL[O], Ŵ−

L±[O] .= DP−±K−ŜL[O], Ŵ+
L [O] .= DP+ŜL[O],

Ŵ+
R[O] .= DP+ŜR[O], Ŵ+

R±[O] .= DP+±K+ŜR[O], Ŵ−
R[O] .= DP−ŜR[O]. (2.52)

Depending on the VA-type equivalence between the ŜL and ŜR surface operators, there
can be a number of additional equivalences between the wall operators that would result in
only two distinct equivalence classes which differ in their U(1)r charge. Apart from this,
there could also be additional 4d-type equivalences among certain domain wall operators.
We elaborate on these possibilities in the next section.

2.7 Possible equivalences and their consequences

For the ŜL and ŜR descent operators, we have evidence in form of vertex algebra OPEs
and 2-point functions (for the free hypermultiplet and free vector multiplet) which relate
them by the VA-type equivalence,

ŜL[O] VA-type
≡ −ŜR[O]. (2.53)

Assuming this equivalence holds for general Schur operators, it implies the following
equivalences among the domain wall operators:

Ŵ−
L±[O] =T Ŵ−

R[O], Ŵ−
L [O] = Ŵ−

R[O],
Ŵ+

R±[O] =T −Ŵ+
L [O], Ŵ+

R[O] = −Ŵ+
L [O]. (2.54)

We can prove the first line of equivalences all at once by considering the descent operator
DP−+βK−ŜL for β ∈ {0,±1} which coincides with Ŵ−

L± when β = ±1 and Ŵ−
L when β = 0.

We have,

DP−+βK−ŜL
VA-type

≡ −DP−+βK−ŜR = −DP−+βK−DM−3L+

= +DM−3DP−+βK−L+ =T DM−3S = Ŵ−
R. (2.55)

The 2nd equality follows from the definition of ŜR, the 3rd equality follows from the
nilpotency relation (2.24), and the 4th equality only holds in cohomology for β = ±1 after
using the equivalence (2.49) between DP−±K−DP+ and S. Using DP++βK+ŜR to denote
Ŵ+

R± when β = ±1 and Ŵ+
R when β = 0, an identical computation can be done to prove

the other two domain wall equivalences.
Thus, with the assumption of the VA-type equivalence (2.53), we learn that there exist

only two inequivalent domain wall descent operators: Ŵ−
R[O] and Ŵ+

L [O]. We can be
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certain these two operators are inequivalent at the level of the vertex algebra because they
have opposite U(1)r charges.

In the event that the equivalence (2.53) is not true, it is still possible for there to
be 4d-type equivalences among certain domain walls as well as VA-type equivalences. A
necessary condition for either equivalence type to exist is the corresponding wall operators
must have the same U(1)r charge. Given the equivalence between DP−±K− =T DP− for
Schur operators (2.46) and descent lines (2.49), the most likely domain wall scenario is to
have the analogous 4d-type equivalences,

Ŵ−
L±[O] =T Ŵ−

L [O] and Ŵ+
R±[O] =T Ŵ+

R[O]. (2.56)

It is possible (though unlikely) to have an additional 4d-type equivalence between Ŵ−
L and

Ŵ−
R, though we have not checked this.

2.8 VOA plane twist translations and special conformal transformations

So far we have performed descent operations on Schur primaries at the origin of the VOA
plane. These are twist-translated to other points on the VOA plane using the ĝ(z) twist
translations of (2.33). We denote the resulting descent operator by

DX [E ](z) .= ĝ(z) ◦ DX [E ](0), (2.57)

where it should be understood that DX [E ](0) ≡ DX [E ]. For example,

L+[O](z) = exp
(
zL−1 + zL̂−1

)
◦ L+[O](0). (2.58)

By virtue of the last relation in (2.35), twist-translations commute with all descent operations.
Thus, we can apply this relation iteratively to a twist-translated descent operator to always
rewrite it as the same descent operator being constructed from a twist-translated Schur
operator. It follows that,

L±[O](z) =T L±[O(z)], S[O](z) =T S[O(z)], (2.59)
Ŝ...[O](z) =T Ŝ...[O(z)], Ŵ±

...[O](z) =T Ŵ±
...[O(z)],

where it is also understood that a twist-translated Schur operator is denoted as,

O(z) .= exp
(
zL−1 + zL̂−1

)
◦ O(0). (2.60)

Similar cohomology equivalences apply to twisted special conformal transformations ĝ(β, β).
Even though cohomology classes do not depend on either β or β, by (2.35), these can
still be important in correlators since they move world volumes and are needed to avoid
intersections at space-like infinity. We will use this to compute S-S OPEs for the free
hypermultiplet in section 4.
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3 Convergence, T± Ward identities, and intersections

Contributions to correlation functions from parallel time-, space-, or light-like lines in the
world volumes of two or more descent operators may result in conditionally convergent
expressions which require regularization. T±-boundaries refer to the boundary terms
of (2.7) that must vanish in an appropriate sense for descent operators to be T±-closed
so that all T± Ward identities — such as (2.18) and those of section 2.5 — are obeyed.
Formally, non-vanishing T±-boundary terms can occur in correlator configurations with
parallel time-, space-, or light-like world volume lines. However, determining when these
terms lead to violations of T± Ward identities is ambiguous unless integral expressions are
absolutely convergent. We find that there exists a rather tightly constrained regularization
prescription which renders descent operator correlators absolutely convergent, and ensures
all T± boundary terms vanish within T± Ward identities. Therefore, such regulated
descent operators represent well-defined twisted Schur cohomology classes, i.e., they yield
unambiguous, finite results and automatically satisfy the T± Ward identities. The specific
properties of the regularization prescription for the hatted descent operators Ŝ···,Ŵ±

··· differ
slightly from the prescription required for the unhatted descent operators L±,S.

This regulator is in addition to the usual Minkowski space-time regularization of
propagator poles at light-like separations. Since we require correlation functions to satisfy
the twisted Schur cohomology Ward identities, e.g., (2.34) and (2.38), we regulate light-cone
poles using the usual iϵ prescription (reviewed below) so they produce time-ordered operator
products in Minkowski space-time.

Local operator products or correlators must be finite only if all operator insertions
avoid space-time intersections with each other, including at the space-time boundaries. For
local (Schur) operators O1(z1), O2(z2), this simply means that their VOA plane coordinates
do not coincide, z1 ̸= z2, but for descent operators this may not be sufficient to avoid world
volume intersections. Even after removing intersections between descent operators at finite
points in space-time, they may still intersect at space-like, time-like, or light-like infinity.
These intersections are due to certain (sets of) parallel lines, and they generically occur
between all descent operators world volumes except for L+ relative to L−. For certain
descent correlators, some of these intersections can be removed while preserving both T+
and T− cohomology, or only one of them, depending on the cohomology properties of
relevant conformal transformation. In such cases, non-intersecting parallel lines might still
remain that can lead to conditional convergence issues but, our proposed regularization will
remedy these correlators. Furthermore, for those intersections which cannot be removed
with T±-exact conformal transformations, the regularization prescription will still make
such descent correlators absolutely convergent by removing any contribution intersecting
points might have to the local correlator integrals.

For reasons we will describe, it remains to be proven that descent operator cohomology
classes are independent of the choices involved in the regularization prescription.

3.1 Possible divergences in descent correlators

The basic defining properties of any T±-closed operator must be that its insertion into
a correlation function of twisted Schur cohomology classes in generic positions is finite,
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unambiguous, and obeys all T± Ward identities. After starting with an analysis of the
asymptotic limits of a generic local operator 2-point function, we will identify a potential
source of divergence within descent-descent 2-point functions that will serve as our primary
motivation for introducing a regularization prescription in the next section, which will render
these divergences finite and unambiguous. We end by briefly describing a potential source
for T± Ward identity violations that are ultimately cured by this regularization scheme.

Time-ordered correlators of descent operators are defined to be the world volume inte-
grals of the time-ordered correlators of the local operators appearing in their integrands, e.g.,〈∫

dα1O1(x1(α1))
∫
dα2O2(x2(α2))

〉 .=
∫
dα1dα2

〈
O1(x1(α1))O2(x2(α2))

〉
. (3.1)

The light-cone singularities of time-ordered correlators are regulated by the usual causal iϵ
prescription where the time-difference coordinate xµ=1

12
.= t12 is replaced by the complex

value (1 + iϵ)t12 and the limit ϵ→ 0+ is taken.13

A given local conformal primary operator O, or any of its descendants14 in the integrand
can only give a non-vanishing contribution if there is an OPE channel involving its conformal
conjugate field, O, contributing a 2-point function

⟨O(x1)O(x2)⟩ ∼ ((x12)ββ̇)j+ȷ̃|x12|−2(∆+ 1
2 (j+ȷ̃)) (3.2)

where |x12|2 = (x1 − x2)µ(x1 − x2)µ, ∆ is the conformal dimension of O, and (j, ȷ̃) are its
Lorentz spins.15 ((x12)ββ̇)j+ȷ̃ is an appropriately symmetrized sum of j + ȷ̃ powers of the
matrix elements (x12)ββ̇ . It follows from 4d unitarity that all operators (except the identity
operator) obey ∆ − 1

2(j + ȷ̃) ≥ 1. The invariant distance-squared (with iϵ regularization) is

|x12|2 = −x+
12x

−
12 + |z12|2 − 1

2 iϵ(x
+
12 + x−12)2 + 1

4ϵ
2(x+

12 + x−12)2. (3.3)

This grows as |x12|2 ∼ (x+
12)2 as |x+

12| → ∞, irrespective of how x−12 and z12 behave in this
limit. The weakest possible fall-off of (3.2) as |x+

12| → ∞ occurs when we take all spinor
components in the numerator to be (x12)12̇ ∼ x+

12, giving16

lim
|x+

12|→∞
⟨O(x1)O(x2)⟩ ≲ lim

|x+
12|→∞

(x+
12)−2∆ = 0. (3.4)

An analogous inequality can be obtained from assessing the weakest convergence of (3.2) in
the asymptotic limit of any direction of space-time.

This analysis ensures the integrand of a 2-point function between a local Schur operator
and a descent operator will have no divergences in the asymptotic world volume limits, and
we find that the world volume integrals are absolutely convergent for finite ϵ. However, for

13Other iϵ prescriptions, such as t12 → t12 + iϵ sgn(t12) also work, though ones for which the imaginary
shift goes to zero as |t12| → ∞ do not. The “Wick rotation” t → (1 + iϵ)t regularization seems more
consonant with scale invariance.

14Replacing O and O by descendants only improves the large-separation convergence of the 2-point function.
15We normalize our Lorentz spins to be integers, following the conventions of [8].
16For the more computationally convenient iϵ prescription, t12 → t12 + iϵ sgnt12, the fall-off of the 2-point

function is weaker, lim|α|→∞ ⟨O(x1)O(x2)⟩ ∼ α−∆+ 1
2 (j+ȷ̃), but still goes to zero by unitarity.
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a 2-point function ⟨O(w)L±[O′]⟩ between an L± descent operator with a local Schur, O(w),
the result diverges in the ϵ→ 0+ limit. Selection rules severely restrict when such 2-point
functions can occur [6].

Divergences can also appear in correlators with multiple descent operators. To see
this, let f(x12) ≡ ⟨O(x1)O(x2)⟩ be the local operator integrand of a descent-descent 2-point
function where the world volumes contain infinite parallel straight lines, x1 = x1(α) and
x2 = x2(β) for α, β ∈ R, such that x12 = x12(α − β). Then, f(x12) is a function only of
α− β.17 After performing the change of variables β → β̃ + α, the world volume integrals
factorize into the product of an integral of f(x12) over β̃ and other world volume parameters
(which has no poles by the above estimates) times

∫
dα · 1, which diverges.

This type of world volume divergence is kinematically allowed in any correlators
including a pair of descent operators with world volumes which are VOA plane translates
of L+L+, L−L−, L±S, L±Ŵ , SS, SŴ , and ŴŴ .18 Moreover, such a divergence can be
argued to always occur in the special case that the integrands of the two descent operators in
question are (derivatives of) conformally conjugate fields.19 The pairs of descent operators
with parallel lines in their world volumes and integrands that allow for conformally conjugate
operators are tightly constrained by the pattern of super-descendants acting on a Schur
primary that define a given descent operator [6]. For example, L+[O1](z)L+[O2] and
L+[O1](z)S[O2], though their world volumes contain infinite parallel lines, do not contain
conjugate integrands no matter what Schur operators Oj they are built from by descent. Still,
examples that can contain conjugate integrands do exist; two simple cases are S[O](z) S[O](0)
and L+[O](z) Ŵ−

...[O](0).

T± boundary terms. One might worry that, in addition to non-convergence of correlators
of descent operators, they may violate the T± Ward identities by virtue of non-vanishing
T± boundary terms. In fact, such boundary terms only contribute to descent correlators
which possess parallel line kinematics.20

To see this, consider the T+ boundary limits (2.7) for L+ and S descent operators,
which place operators at light-like infinity since they come from P+-descent.21 In particular,
the T+ boundaries contribute terms of the form lim|x+|→∞ ex+P+ ◦E to correlator integrands

17This kinematic situation occurs if ∂αx1(α) = ∂βx2(β) and both x1 and x2 can be written as xµ
i = txµ

0 +cµ
i

for t ∈ R where xµ
0 is a constant four-vector that is independent of any world volume parameters and cµ

i is a
(potentially constant) four-vector containing remaining world volume parameters.

18This type of divergence doesn’t occur in 2-point functions involving Ŝ world volumes because the
light-like lines in such world volumes do not satisfy the properties described in footnote 17.

19In a generic correlator containing two descent operators with parallel line world volumes and conformally
conjugate integrands, we can apply the OPE between their integrands within the integration region of the
correlator where points along these parallel lines are asymptotically separated from all other local operator
insertion points in space-time. We can then apply the same reasoning which showed the 2-point functions of
such descent operators are divergent.

20Non-vanishing boundary terms can appear in parallel line correlators regardless of whether or not the
kinematics lead to the divergences previously described. This means they can occur for any descent operator,
including the Ŝ··· descent operators.

21The T± boundary terms for the Ŝ... and Ŵ±
... descent operators are qualitatively different, and are

discussed in section 3.4.
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where E is either a generic local operator O(x0) placed at an x+-independent point x0 or
an L− descent operator. (“General local operator” means not necessarily a twisted Schur
operator.) Analogous boundary limits are formed from the T− boundary terms of L−

and S. When inserted into an arbitrary correlation function of local operators inserted at
finite points in space-time, each boundary limit can only give a non-vanishing contribution
if there is an OPE channel involving the local conformal conjugate operator to E , O,
which contributes terms proportional to (derivatives of) the 2-point function (3.2). Since
the weakest possible fall-off of a 2-point function in any direction is given by (3.4), this
implies the T± boundary limits of L± or S all vanish in correlators with local operators
at finite points. However, it does not necessarily imply their vanishing in correlators with
other descent operators. This is because descent correlators integrate over local operator
correlators that can contain multiple insertions on the conformal boundary of space-time
for which the 2-point function doesn’t vanish in the boundary limits. For instance, consider
the boundary limit, lim|x+

1 |→∞ ex+
1 P+ ◦ E , as an insertion in some multi-descent T+ Ward

identity, where O(x2) is the integrand of another descent operator and the world volume
integral over x2 includes limits in which x2 goes to space-time infinity. From (3.3), it follows
that when x+

2 = x+
1 + c with c, x−2 , and z2 fixed, then lim|x+

1 |→∞ |x12|−2 ̸= 0, so the 2-point
function doesn’t vanish everywhere for this choice of integration. This corresponds to
inserting O(x2) at a point approaching light-like infinity along a direction parallel to an L+

line and at the same rate as the boundary limit, lim|x+
1 |→∞ ex+

1 P+ ◦E . When a multi-descent
correlator possesses the requisite kinematics, this potential non-vanishing of T± boundary
terms within the world volume integrals of T± Ward identities could then lead to the Ward
identities being violated.

Implicit in this argument were numerous choices on how to evaluate the boundary
limits, lim|x+

1 |→∞ ex+
1 P+ ◦ E , relative to the evaluation of other world volume integrals. This

can make the evaluation of T± boundary terms ambiguous since, in general, these different
choices do not commute with one another to yield a unique answer unless the descent
correlator was absolutely convergent to begin with. Furthermore, since these potential T±
boundary violations occur in descent correlators with parallel line world volumes, it means
such correlators will typically possess the divergences associated with such configurations
as well. Indeed, one can check that this formal non-vanishing of T± boundary terms can in
correlators which suffer from such divergences. These facts suggest that a regularization
procedure which makes descent correlators absolutely convergent by regulating parallel line
divergences, and additionally preserves T± Ward identities, will automatically be one which
removes all contributions of the T± boundary limits. In this way, the evaluation of T±
boundary terms in T± Ward identities becomes unambiguous, and any potential violations
of such T± Ward identities are avoided. We now describe a class of such regulators.

3.2 Regularization of descent operators

Regulate the descent operation (2.6) by adding a weight function, F (δ, α), to the integrand so,

DX [F ; E ] .= lim
δ→0+

∫ ∞

−∞
dαF (δ, α) ξ ◦ eαX ◦ E . (3.5)
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We demand F (δ, α) is differentiable for δ > 0 and α ∈ R, and on this domain has the
additional properties

(i) |F (δ, α)| ≤ 1,

(ii) lim
δ→0+

F (δ, α) ≡ 1, (3.6)

(iii) F (δ, α) < c(δ) |α|−N for some c(δ) > 0 and N > 1,

(iv) lim
δ→0+

∂F (δ, α)
∂α

≡ 0.

Property (i) means that the weight function can only improve the convergence of the descent
integral; property (ii) ensures that the δ → 0+ limit coincides with the unregulated descent
operation when the integral converges; (iii) means that F , and all of its α-derivatives,
suppress integrands by more than |α|−1 for large |α|; and (iv) ensures that the δ → 0+ limit
produces an operator in T± cohomology. In practice, the required value of N is fixed by
ensuring absolute convergence of the correlators for DX [F ; E ].

Some simple weight functions which satisfy these requirements are

FM
.= (1 + iδα)−M , 1 < M ∈ Z, and F∞

.= e−δα2
. (3.7)

For a given FM , property (iii) is satisfied for all N ≤ M while, for F∞, it is satisfied for
all N <∞. Note that while F∞ converges faster than any power of |α|, it may not be as
convenient as the FM in computations since it has an essential singularity at infinity in the
complex α plane.

Also, note that the conditions (i)-(iv) proposed above for the regulator may not be
the weakest possible ones. For instance, condition (iii) could be replaced by the two
slightly weaker conditions, lim|α|→∞ |α|NF < ∞ and lim|α|→∞ ∂αF/F < ∞. Ultimately,
any property (iii) condition must be strong enough so that this regularization unambiguously
renders all descent operators T±-closed. The following argument demonstrates that this is
true for the conditions in (3.6), and it applies equally well for the slightly weaker version of
property (iii).

Consider the descent by a T+-exact generator, DN+ [E ], of some T± cohomology class
E , regulated with weight function F (δ, α),

DN+ [F ; E ] .=
∫
dαF (δ, α) ν+ ◦ eαN+ ◦ E . (3.8)

We assume that F obeys (iii) with sufficiently large N so this integral is (absolutely)
convergent. For P± descent, which is all that’s used for the O-L±-S subalgebra, the

∫
dα · 1

divergences appearing in correlators of descent operators with parallel line world volumes
become

∫
dαF (δ, α) which converge by property (iii) for any N > 1. The same holds true

for the Ŝ··· and Ŵ±
··· operators, but larger values of N will be required; see the discussion

in section 3.4.
Even with the regulator, we still have T− ◦ DN+ [F ; E ] = 0, since this follows from the

conformal algebra without an integration by parts with respect to the descent parameter α,
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so the presence of F in the integrand is irrelevant. But, the action of T+ is now modified
relative to (2.7),

T+ ◦ DN+ [F ; E ] =
∫
dαF (δ, α) ∂αe

αN+ ◦ E

= −
∫
dα

dF (δ, α)
dα

eαN+ ◦ E +
[
F (δ, α)eαN+ ◦ E

]α=+∞

α=−∞
. (3.9)

We now view (3.9) as an insertion in the local operator integrand of some T+ Ward identity
(which is by assumption absolutely convergent). By property (iii), the α-derivatives of F
have increased convergence relative to F , so the first term will produce absolutely convergent
integrals. Thus, we can take the δ → 0+ limit inside the integral which, by property (iv),
means the first term vanishes in the limit. The boundary limits |α| → ∞ involved in the
second term both vanish for all δ > 0 by property (iii). This follows from our earlier analysis
of T± boundary terms in section 3.1. By applying the local OPE to such an integrand,
it is only non-zero if there is an OPE channel reducing to a 2-point function between E

and its (local operator) conformal conjugate. Then, this 2-point function can be at worst
finite as |α| → ∞ for all world volume points of the correlator. So, with the weight function
regularization factor F (δ, α), the boundary terms in (3.9) vanish by (iii). Note that in
arguing for this conclusion, it is understood that the regularization prescription requires
one to evaluate any T± boundary limits before taking the δ → 0+ limit.

Lastly, it is important to point out that this result implies all of the T± equivalence re-
lations between descent operators that were derived in sections 2.4–2.6. In those derivations,
it was crucial that various boundary terms of descent operators vanished. Once weight
functions are included in their definition and the δ → 0+ limits are appropriately taken,
the previous argument shows that all of these boundary terms do indeed vanish.

We have thus shown that there exists a large family of regulators that render descent
operator correlators convergent and preserve the T± Ward identities by ensuring that they
are always T±-closed. However, we have not shown that the resulting descent operator T±
cohomology classes are independent of the choice of regulator F . Despite this, there are many
correlators which are absolutely convergent without any regularization, and when regularized
with any F obeying (i)-(iv), they therefore give the same answers. Furthermore, although
we cannot convincingly prove that all results requiring this regularization are independent
of the choice of weight function, at the end of section 3.4, we discuss preliminary evidence
showing this regularization can indeed produce universal, i.e., regulator independent, results
when it is required.

For the free hypermultiplet examples we compute in the next section, all the O-L±-S
two-point functions are absolutely convergent (so do not need any regularization) with the
exception of the ⟨SS⟩ 2-point functions. This is because the ⟨S(z)S(0)⟩ 2-point functions
have a further subtlety related to the fact that the two VOA plane translated world
volumes intersect at space-like (and time-like) infinity. So we turn now to this question of
intersections at infinity.

3.3 OPEs and intersections in the O-L±-S subalgebra

We compute operator products by inserting operators separated in space-time, and taking
the limit as they approach one another. In the case of O(z), L±[O](z), and S[O](z), if
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their z coordinates are different their world volumes do not intersect at any finite points
in space-time. However, since their world volumes extend to infinity, we must be careful
when considering their intersections at points at infinity. For this, it is useful to work in
conformally compactified space-time, which is the familiar Penrose diamond with boundaries
the future and past light-like infinities I ± ≃ I ×S2 together with future and past time-like
infinity points i± and a space-like infinity point i0. Then L±(z) and L∓(0) do not intersect
at infinity, while L±(z) and L±(0) or S(0) intersect at 2 points on I ±, and S(z) and
S(0) intersect at 4 points on I ± and at i0 and i±. The intersections at light-like infinity
of L± with L± or S turn out to be innocuous when computing their OPEs with the iϵ
prescription. This is because none of these products can close on the identity operator,
which means a 2-point function can’t exist between them so no world volume integrals of
the corresponding propagators occur. By contrast, the S-S OPE closes on the identity, so
the S with S intersections at I ± and at i0 and i± give rise to divergences which must be
further regulated.

One might expect that since parallel space-like or time-like lines can be conformally
transformed into non-parallel configurations, that they do not give rise to the parallel line
divergences discussed in section 3.1. However, they are, in fact, transformed into intersecting
configurations, so possible divergences persist, and the intersections must be removed to
put the correlator into a generic non-intersecting configuration. By contrast, parallel
light-like lines remain parallel light-like lines intersecting at I ± under general conformal
transformations. Thus, intersections at space-like or time-like infinity are qualitatively
different from those at light-like infinity.

We start with the intersections at the space-like point at infinity, i0, and the past and
future time-like infinity points, i±. The space-like infinity point is also the point at infinity
on the VOA plane. Just as in previous discussions of VOA modules associated to surface
operators [3, 5], a surface operator insertion twist-translated to z on the VOA plane should
also be thought of as providing an insertion at the point at infinity.

The twist special conformal transformations of the VOA plane, ĝ(β) in (2.33), move
the points at space-like and time-like infinity to finite points. While the S(z) S(0) operator
product has intersections at i0 and i±, the S(z) ĝ(β)◦S(0) product where just one of the
insertions is acted on by a twist special conformal transformation, does not have any
such intersections for β ̸= 0. The first cohomology equivalence in (2.38) indicates that
the operator product should not depend on β, but the topological distinction between
intersections at i0,± when β = 0 and no intersections at these points when β ̸= 0 makes
it possible that there are two different (β-independent) answers in these two cases. This
is generically the case for any S-S 2-point function. For example, for the scalar ∆O = 1
Schur primaries O = qI of the free hypermultiplet SCFT discussed in section 4, we find that
⟨S[qI ](z) ĝ(β)◦S[qJ ](0)⟩ = −ϵIJz

−1 for β ̸= 0, but vanishes for β = 0 by a selection rule.22

When computing all S-S products, in addition to the weight function regularization, we
regulate these intersections at space- and time-like infinity using the ĝ(β) transformations.

22Typically, when no selection rules prevents such a 2-point function, a β-independent S-S 2-point function
is formally divergent due to parallel line divergences.
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In computing these β-regulated products, one must take into account that the ĝ(β)
transformations act discontinuously on Minkowski space-time since they are special con-
formal transformations. The natural way to compute these products is on the Lorentzian
cylinder, which is covered by an infinite number of copies of conformally compactified
Minkowski space-time, and on which conformal transformations act continuously [9]. Also,
time-ordered Lorentzian cylinder correlators of unitary CFTs are the analytic continuation
of correlators in the CFT on the euclidean 4-sphere [10].

But these correlators suffer from a second intersection problem. Turning on a relative
twist conformal transformation, β ̸= 0, does not remove the intersections at the four points
on I ± at light-like infinity. This is because ĝ(β) transformations fix the L± lines. Indeed,
there are no relative conformal transformations of the two S world volumes that both
preserve twisted Schur cohomology and also remove these intersection points. In fact,
these non-removable parallel light-like lines in the two S surfaces are the source of the
divergence of the ⟨SS⟩ 2-point function which is proportional to the volume of S. Due
to this, one must separately regulate the S descent operators using weight functions, as
discussed in section 3.2.

However, the calculation of the 2-point function when the surface operators have both
a relative twist-translation, a relative twist-special conformal transformation, and a weight
function regulator is difficult. We bypass this difficulty for the purposes of the calculations
presented in section 4 by “Wick rotating” S-S 2-point functions to euclidean space. There
are no light-like infinities in Euclidean space: there is just a single point, i0, at (spatial)
infinity compactifying Euclidean space to S4. A relative (euclidean) ĝ(β) special conformal
transformation separates the intersection of two 2-surfaces at i0, and completely regulates
their 2-point function. Mathematically, this Euclidean regularization is easy, but comes at
the cost of not having a physically satisfactory interpretation in terms of extended operator
world volumes in Minkowski space-time or analytically continued Wightman functions.
Because of this, a primary future goal of ours is to compute S-S 2-point functions using the
weight function regularization presented in section 3.2, with the intention of determining if
the answers are independent of the particular weight function chosen.

Configuration space discontinuities, intersections, and T± Ward identities. The
fact that the 2-point functions ⟨S(z) ĝ(β) ◦ S(0)⟩ and ⟨S(z)S(0)⟩ disagree in a discontin-
uous way indicates that multi-descent correlators can have discontinuities based on their
world volume configurations. For these 2-point functions, the discontinuity appears after
removing intersections at i0 and i± using a ĝ(β) twist special conformal transformation.
Such discontinuities can be viewed as existing within the cohomology configuration space of
the descent correlator. This space parameterizes the cohomology-allowed, non-intersecting,
world volume configurations of the operator insertions, or rather, the allowed T±-closed
transformations that can act on such insertions.23 In this language, we can rephrase the

23Cohomology configuration spaces of a descent operator can be viewed as coset spaces constructed from
the superconformal group where, physically, they parameterize the different points/world volumes of a
local/descent operator cohomology class. When working within twisted-Schur cohomology, these spaces are
drastically simplified for each descent operator. n-point descent correlators can be viewed as being valued in
(products of) certain quotients of descent operator cohomology configuration spaces and, locally about any
regular point, they look like n copies of Cz. This is equivalent to the statement that the twist-translated
correlators of the vertex algebra only depend on their z-insertion points within the VOA plane.
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disagreement between S-S 2-point functions as the statement that the S-S 2-point function
has an intersection discontinuity in the component of its configuration space that param-
eterizes the twist special conformal transformations, ĝ(β). This means the discontinuity
separates the configuration space into two regions: one where β = 0 and the correlator is
zero or divergent, and one where β ̸= 0 and the correlator is finite. For any correlator with
intersections at i0 and i±, we expect it to have this ĝ(β) intersection discontinuity.

The hatted descent operators can also have intersection discontinuities. For example,
they will occur in ⟨Ŝ···Ŝ···⟩ 2-point functions but, in this case, the associated intersections
typically occur at finite points in space-time. These discontinuities occur in the components
of the ⟨Ŝ···Ŝ···⟩ configuration space that parameterize the twist translations, ĝ(z), and twist
rotations, ĝ(iϕ), of (2.33). However, it is also true that every correlator of a hatted descent
operator contains ĝ(z) and ĝ(iϕ) discontinuities that are not intersection discontinuities.
This is the case for, e.g., the 2-point function between a free hyper Schur, qI , and its
corresponding Ŝ··· descent operator. These discontinuities are inherent to the M±3 descent
procedure, and their interplay is discussed in section 3.5. Since every wall operator includes
an M±3 descent procedure, we expect all of their correlators to possess the non-intersection,
ĝ(z) and ĝ(iϕ) discontinuities. For example, these discontinuities will appear in the 2-
point function between a wall operator and an L± line operator. In addition to these
non-intersection, M±3 discontinuities, we also expect the correlators of wall operators to
have ĝ(β) intersection discontinuities when they possess intersections at i0 and i±. For
instance, this would be true for the 2-point, ⟨Ŵ±

···Ŵ±
···⟩, between wall operators.

All of these configuration space discontinuities indicate that the T± Ward identities
leading to the twist transformation equivalence relations, (2.35), are violated for certain
pairs of descent operators that are related by a twist transformation but, are also separated
by a discontinuity of some kind. For physically reasonable correlators, the intersection
discontinuities are allowed to exist. However, the non-intersection discontinuities possessed
by vertex algebra correlators is a new feature that vertex operator algebra correlators

— constructed from only local Schur operators — do not possess. Instead of being an
inconsistency, this appears to be an allowed feature of descent correlators that is due to
their extended world volumes, and the fact that the twist transformations are composed
of the sl2 symmetry generators, which are T±-closed and not T±-exact.24 For this reason,
we do not expect there to exist discontinuities on the components of a descent correlator
configuration space that parameterize the real, T±-exact transformations generated by
m±. For all correlators and OPEs we’ve computed, including those that require the weight
function regularization, they remain invariant under all m± transformations.

This discussion also makes clear why, even though the light-like intersections on I ± in
certain descent correlators can be removed using m± transformations, they will not change
the value of such a correlator. Hence, there will not exist intersection discontinuities within
the m± components of such correlator configuration spaces. As discussed in section 3.2, the
remedy for these correlators is to employ the weight function regularization.25

24Formally, a twisted Schur cohomology correlator is allowed to depend on the transformations of any
symmetry generator that is T±-closed and not T±-exact.

25Invariance under all m± transformations serves as a constraint on the weight functions. Based on the
discussion in section 3.2, this is automatically satisfied since the weight function properties guarantee any
such regulated descent operator is T±-closed.
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3.4 T± boundaries and regularization of Ŝ··· and Ŵ±
··· descent operators

The construction of any Ŝ... or Ŵ±
... descent operator involves a single M±3 descent procedure.

The M±3 generators act on the Lorentz representation of a Schur operator at the origin
and, unlike the orbits of the P± translation generators, the infinite-parameter boundaries of
their space-time orbits include finite points in space-time. These facts make the Ŝ··· and
Ŵ±

··· operators less convergent than the L± and S operators. We will describe the conver-
gence properties of M±3 descent using ŜR which will motivate the precise regularization
prescription required to make any hatted descent operator a well-defined T± cohomology
class. Similar arguments will hold for ŜL and the Ŵ±

... operators.
Using its definition (2.50), write the fully regulated ŜR[FR;F+;O] as the double de-

scent integral

ŜR[FR;F+;O] = lim
δR→0+

lim
δ+→0+

∫
R2
dξ dv FRF+η−3 ◦ e−ξM−3 ◦ π+ ◦ evP+ ◦ O(0), (3.10)

where F+(δ+, v), FR(δR, ξ) are the weight function regulators for the P+ and M−3 descent
procedures, respectively, π+

.= −iQ̃11̇ is the descent supercharge satisfying T+ ◦ π+ = P+,
and η−3

.= − i
2(Q1

1 + S̃21̇) is the descent supercharge satisfying T− ◦ η−3 = M−3.26 M−3 is
a non-compact generator formed from a light-like combination of a rotation and a boost
which generates a subgroup of elements {g(ξ) .= e−ξM−3 , ξ ∈ (−∞,∞)}. Acting on the
light-like L+ line, g(ξ) has the effect of rotating L+ to other light-like lines in the light cone
Ŝ shown in figure 2, reaching the L− line only in the ξ → ±∞ limit. Thus, the ξ → ±∞
boundaries of the DM−3 descent operation include finite points in space-time, namely all
the points on L−. Parameterize the Ŝ light cone by the “cone” coordinates xµ(t, θ) with
(x1, x2, x3, x4) = t(1, cos θ, sin θ, 0) where t ∈ R and θ ∈ [−π, π]. Note that θ = 0 is L+ and
θ = ±π is L−.

In order for ŜR[FR;F+;O] to be well-defined as a cohomology class, the weight functions
F+ and FR must each satisfy certain convergence properties which are constrained by N+
and NR, respectively, as described in property (iii) of (3.6). To fix lower bounds on N+ and
NR, we examine the convergence of the T± boundary terms of ŜR[FR;F+;O].27 These have
different divergence behaviors depending on the Lorentz spins of the local Schur operator.
The T+ boundary term gives the most severe divergences and will therefore provide the
strongest convergence requirements on the weight functions FR and F+. Acting with T+ on
ŜR[FR;F+;O] yields a single boundary term at t = ±∞,

T+◦ŜR[FR;F+;O] = 1
2

∫ π

−π
dθFR sec2(θ/2)

[
F+ e

xµ(t,θ)Pµ ◦ (3.11)

◦
(
i(Q1

1+S̃21̇)+t
(
isinθQ2

1+(1+cosθ)Q2
2

))
◦eiξM̃1̇

2̇◦O(0)
]t=+∞

t=−∞
,

26Here Qa
α, Q̃aα̇, S α

a , and S̃aα̇ are the supertranslation and superconformal generators of the N=2
superconformal algebra in the notation of [1, 7]. In particular, α, α̇, a are Lorentz left and right spinor
indices and SU(2)R doublet indices, respectively.

27We cannot fix the lower bound on N+ from parallel line divergences as we did for the unhatted descent
operators because the Ŝ··· descent operators do not experience those kinematic divergences.
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where FR ≡ FR(δR, θ) and F+ ≡ F+(δ+, t, θ) for v = t(1 + cos θ), ξ = tan(θ/2). Regardless
of the order in which the t-limits and θ-integral are evaluated, the boundary limits of (3.11)
are required to vanish. There are two sources of divergence in (3.11) that occur in the limits
θ → ±π of the θ-integral. First, the θ-integral has a second order pole at θ = ±π due to
the sec2(θ/2) factor. Second, if the Schur O is a component of a field with Lorentz spins
(j, ȷ̃) then,

eiξM̃1̇
2̇ ◦ O(0) ∼ O1̇···1̇(0) + · · · + ξ ȷ̃O2̇···2̇(0), (3.12)

where we show only the ȷ̃ dotted spinor indices of O. Since ξ → ±∞ as θ → ±π, these
terms increase the divergence of T+ ◦ ŜR[FR;F+;O]. In [6] we will explicitly confirm that
this operator has divergent 2-point functions for the free hypermultiplet. The conclusion
is that, generically, the unregulated descent operator ŜR[O] will not be unambiguously
T+-closed for any Schur operator O.

A regularization of these divergences is achieved using the same prescription introduced
in section 3.2 once the weight functions F+ and FR satisfy property (iii) in (3.6) for
specific values of N+ and NR. In particular, the value of NR will depend on the Lorentz
representation of the Schur operator that the hatted descent operator is constructed from.
For ŜR[FR;F+;O], the convergence of (3.11) indicates,

ŜR[FR;F+;O] : NR > 1 + ȷ̃ and N+ > 2 for property (iii) , (3.13)

where the Schur O has Lorentz spins (j, ȷ̃). The value of NR is obtained by requiring the
θ-integral to be integrable near θ = ±π, and the value of N+ is obtained by requiring the
integrand of (3.11) to converge to zero in the t→ ±∞ limits.28 When this is satisfied, all
divergences that could occur in both T± ◦ ŜR[FR;F+;O] are regulated. Furthermore, the
arguments in section 3.2 following (3.9) prove that all T± boundary terms of ŜR[FR;F+;O]
will vanish in all T± Ward identities. A mirror analysis of the T− ◦ ŜR[FL;F−;O] boundary
term gives

ŜR[FL;F−;O] : NL > 1 + j and N− > 2 for property (iii) , (3.14)

where here, NL and N− are the property (iii) parameters bounding the weight functions FL

and F− corresponding to the M+3 and P− descent procedures of ŜL, respectively.
The T± boundary terms for the Ŵ±

··· operators can be examined in a similar fashion.
We will present the resulting property (iii) convergence bounds on their weight function
regulators in [6].

Unlike the P± weight functions of L± and S descent operators, the M±3 weight
functions of a hatted operator are needed in every correlator they’re involved in, even
when all other insertions are local Schur operators. This is because there are intrinsic
divergences associated with the M±3 descent procedure, and these do not depend on relative

28This value of N+ ensures the integrand of a non-zero 2-point function involving T+ ◦ ŜR[FR; F+;O] and
another extended operator will always vanish in the t → ±∞ limits even when the local operator 2-point
function doesn’t converge to zero because parallel line kinematics prevent |x12|−2 from converging to zero.
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world volume kinematics. Instead, they stem from the geometry of the Ŝ and Ŵ world
volumes, and the infinite boost limits of their Lorentz transformations on a local Schur
operator, O(0).

These M±3 divergences may not always appear in a twist-translated correlator of a
hatted descent operator, or in any twist transformation of such a correlator. For instance,
the twist-translated 2-point function, ⟨qI(z)ŜR[FR; qJ ](0)⟩, built from the Schur operator of
the free hyper presented in section 4, is absolutely convergent and obeys the twist-translate
Ward identity without the weight function FR.29 However, these divergences will generically
appear whenever a hatted correlator is transformed by a T±-exact transformation from the
m± subalgebras of (2.12). This means correlators of hatted descent operators will not obey
the m± Ward identities unless they are equipped with the weight function regularization
associated to the M±3 descent procedure.

For the 2-point function ⟨qI(z)ŜR[FR; qJ ](0)⟩, where FR(δR, ξ) is a any weight function
satisfying (3.6) and (3.13), we can prove the following:

• All integrals involved in m± transformations of it are absolutely convergent;

• It is invariant under the action of any m± transformation.

Together, these results provide promising support for the claim that descent operator
cohomology classes are independent of the choice of weight function regulator that is used
to define them. We will present these results in [6].

3.5 OPEs and intersections of Ŝ··· and Ŵ±
··· descent operators

The Ŝ and Ŵ world volumes break the rotational invariance of the VOA plane by picking
out the z = z direction. Acting on these world volumes with the twist transformation,
ĝ(ℓ) of (2.33) for imaginary ℓ = iϕ, produces VOA-plane rotated world volumes which we
denote by Ŝϕ and Ŵϕ. Here, ϕ represents the angle from the real z-axis in the VOA plane,
so the Ŝϕ world volume is thus extended in the z = e2iϕz direction. The corresponding
descent operators, Ŝ···(ϕ) .= ĝ(iϕ) ◦ Ŝ··· and Ŵ±

···(ϕ) .= ĝ(iϕ) ◦ Ŵ±
···, are generated by

descent using ML(ϕ) .= cosϕM+3 + sinϕM+4 for the “L” descent operators or MR(ϕ) .=
cosϕM−3 + sinϕM−4 for the “R” descent operators. The ĝ(ℓ) cohomology equivalence
of (2.38) shows that these ĝ(iϕ)-transformed descent operators satisfy the equivalence
relations,30

Ŝ···[O](ϕ) =T Ŝ···[O], Ŵ±
···[O](ϕ) =T Ŵ±

···[O]. (3.15)

Thus, formally, there seems to be nothing special about the z = z direction in the VOA
plane in the extended vertex algebra.

However, as mentioned at the end of section 3.3, we find that the correlators of Ŝ···(ϕ)
and Ŵ±

···(ϕ) operators will generically experience non-intersection discontinuities across
29We don’t show the weight function F+ associated to the P+ descent procedure of ŜR because it has no

effect on this correlator, or any T± cohomology transformations of it.
30Note that when these equivalences hold, they also hold in the presence of weight function regulators.

For this reason, we do not always write out the weight functions explicitly in this section.
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certain lines in the VOA plane, even in their 2-point functions with local Schur operators.31

This means the equivalence relations in (3.15) will only hold within certain regions of the
VOA plane whose boundaries are these lines of discontinuity, which depend on ϕ and the
twist-translation parameter(s), z. Therefore, such discontinuities break the equivalence
between, say, Ŝ···[O](ϕ) and Ŝ···[O], for a generic value of ϕ.

As an example, the 2-point functions ⟨qI(z)ŜR[FR; qJ ](ϕ, 0)⟩ contain a factor of,
sgn(Re(eiϕz)), which characterize these lines discontinuity, and the regions within which the
equivalence (3.15) holds. In particular, the equivalence Ŝ···(ϕ)[O] =T Ŝ···[O] will only hold
in the region of (ϕ, z)-configuration space where sgn(Re(eiϕz)) = sgn(Re(z)). Within this
region, these discontinuities are “quasi-topological” in the sense that they can be rotated
using a ĝ(iϕ) transformation without changing the value of the 2-point function.

Since these discontinuities only appear in descent operators built from the Lorentz
boosts, ML(ϕ) and MR(ϕ), we will refer to them as “boost discontinuities”. We expect
boost discontinuities to appear in all correlators of a hatted descent operator and, when
they do, they will restrict the region of (ϕ, z)-configuration space where the equivalences
in (3.15) hold.32

Generically, the world volumes of an Ŝ···(ϕ, 0) operator and a twist-translated Ŝ···(ϕ′, z)
operator do not intersect at any finite points in space-time. The exception is the specific
arrangement where arg(z) = (ϕ+ ϕ′ + π)/2. Thus, correlators ⟨Ŝ···(ϕ1, z1)Ŝ···(ϕ2, z2) · · · ⟩
will have regions in their (ϕi, zi)-configuration space where the cohomological equivalence
in (3.15) is satisfied. The boundaries of these regions correspond to intersection discon-
tinuities in the (ϕi, zi)-configuration space, and points on the boundary are the excluded
configurations where pairs of Ŝϕ world volumes intersect in space-time. The geometry and
topology of these intersection discontinuities within (ϕ, z)-configuration spaces is compli-
cated, and we defer further study of them to [6].

Once we insert a Ŵ±
···(ϕ) operator in a correlator, then any other Ŝ···(ϕ′) or Ŵ±

···(ϕ′)
insertions must have parallel world volumes, i.e., all must have ϕ′ = ϕ+ nπ. This is simply
because, if their world volumes are not parallel in this sense, they will intersect the Ŵ±

···(ϕ)
insertion at finite points in space-time.

Lastly, the Ŵ±
···(ϕ) world volume intersects the VOA plane along the z = e2iϕz line.

Thus, we expect correlators of Ŵ±
···(ϕ) operators to have intersection discontinuities along this

line of intersection with the VOA plane.33 Within a correlator containing a Ŵ±
···(ϕ) operator,

its boost and VOA-plane intersection discontinuities will always lie orthogonal to one another
within the VOA plane. For this reason, the VOA-plane intersection discontinuities will

31The existence of such discontinuities in vertex algebra correlators is in stark contrast to the correlators
of the vertex operator algebra that are constructed from twist-translations of local Schur operators. At
non-intersecting points, the latter correlators are guaranteed to be meromorphic and, therefore, have no
branch cuts or discontinuities in them.

32This is very similar to what happens for the ⟨SS⟩ 2-point functions discussed in section 3.3. There, the ĝ(β)
equivalence relation of (2.35) only holds in S-S 2-point functions that have already been ĝ(β)-transformed,
i.e., ⟨S(z)S(β)⟩ = ⟨S(z)ĝ(β′) ◦ S(β)⟩ only if β ̸= 0. Here, we are saying that the ĝ(iϕ′) equivalence relation
of (2.35) only holds within the 2-point function ⟨qI(z)ŜR[qJ ](ϕ, 0)⟩ if sgn(Re(eiϕz)) = sgn(Re(ei(ϕ+ϕ′)z)).

33There are also possible intersection discontinuities coming from the world volume intersection of a wall
operator with the points i0 and i± of space- and time-like infinity.
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also be quasi-topological within certain components of the (ϕ, z)-configuration space. This
means a ĝ(iϕ) rotation of the intersection line in the VOA plane will not change a Ŵ±

···(ϕ)
correlator in cohomology until the rotation moves the intersection line across the VOA-plane
insertion point of another vertex operator. The effect is that correlators of a Ŵ±

···(ϕ)
operator are only well-defined if all other vertex algebra insertions avoid this line.

The existence of boost and VOA-plane intersection discontinuities means the hatted
descent operators are not, strictly speaking, vertex operators. Instead, their existence
suggests these operators behave more like boundary or line operators in the VOA plane.
This characterization applies in a literal sense to the Ŵ±

···(ϕ) operators since their world
volumes physically intersect the VOA plane along a line.

4 Vertex algebra of the free hypermultiplet theory

The set of vertex operators (at the origin of the VOA plane, say) containing Schur operators
O(0) and their corresponding descent operators, L±[O] and S[O], is characterized by having
support in the z = z = 0 plane in space-time, and so, in particular, does not contain the
Ŝ... or Ŵ±

... descent operators. We now calculate some operator products in this O-L±-S
sub-vertex algebra within the free hypermultiplet SCFT. In particular, we will calculate the
OPEs among the free dimension-1 scalar Schur, q, the dimension-3 vector Schur operator,
T , and their L± and S descent operators. T is the Virasoro operator in the VOA which is
the chiral theory of a free symplectic boson.

Since the fermionic super generators π± satisfying T± ◦ π± = P± are

π+ = −iQ̃11̇, π− = −iQ2
1, (4.1)

it follows from the definition (2.27) of the descent operation that

L+[O] = −iN
∫
dx+ Q̃11̇ ◦ e

x+P+ ◦ O(0), L−[O] = −iN
∫
dx−Q2

1 ◦ ex−P− ◦ O(0),

S[O] = −N2
∫
dx+dx−Q2

1 ◦ Q̃11̇ ◦ e
x+P++x−P− ◦ O(0). (4.2)

Their normalizations are a matter of choice; we have put in the factors of N for later
convenience. These descent operators are especially easy to work with since π± and P±
all commute. L±[O] are reminiscent34 of the light-ray transform operators introduced
in [11], and some of the discussion of [11–13] on the computation of their correlators and
OPEs applies.

34The L±[O] descent lines are not quite primary light-ray transforms. The natural generalization
of the light-ray transform to a conformal primary with general Lorentz spins (j, ȷ̃) is L[O][ζ, ζ̃] =∫

dsOα1···αj α̇1···α̇
ȷ̃
(sζαζ̃α̇) ζα1 · · · ζαj ζ̃α̇1 · · · ζ̃

α̇
ȷ̃ , where O is integrated over the lightline xµσαα̇

µ = sζαζ̃α̇

where ζα and ζ̃α̇ are polarization spinors such that xµ is real. The L±[O] light-like line operators are not of
this form: their spinor polarizations do not line up with the L± world lines. This means they have transverse
spin relative to the null-plane, and should therefore be interpreted as a kind of “primary descendant” of the
corresponding primary light-ray transform constructed from the Schur operator they are built from. We
thank David Simons-Duffin for explaining this point to us.
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The free hypermultiplet superconformal primaries are the free complex scalars, ρa
I ,

satisfying the reality conditions (ρa
I )† = ϵIJϵabρ

b
J , where a, b ∈ {1, 2} are fundamental

su(2)R indices and I, J ∈ {1, 2} are fundamental su(2)F flavor indices.35 There are also free
fermions given by ψαI

.= 1
2ϵbaQ

a
αρ

b
I and ψ̃α̇I

.= 1
2Q̃aα̇ρ

a
I . Their 2-point functions are

⟨ρa
I (x1)ρb

J(x2)⟩ = ϵabϵIJ

|x12|2
, ⟨ψαI(x1)ψ̃α̇J(x2)⟩ = ϵIJ(x12)αα̇

|x12|4
, (4.3)

where

xαα̇
.= xµσµαα̇ =

(
z −ix+

ix− −z

)
. (4.4)

We consider the twist-translated Schur operators

qI(z) .= uaρ
a
I (z, z), T (z) .= uaub

1
2ϵ

IJ :ρa
I∂zρ

b
J :(z, z), (4.5)

where ua = (1,−z). In the VOA, qI is a free symplectic boson of chiral weight hq = 1/2,
and T is the Virasoro operator of weight hT = 2.

L± and S descent operators. Using the definitions of the descent operators given in
section 2, the twist translated descent operators for qI are

L+[qI ](z) = −iN
∫

L+
dx+ ψ̃1̇I(x+, 0, z, z),

L−[qI ](z) = −iN
∫

L−
dx− ψ1I(0, x−, z, z), (4.6)

S[qI ](z) = −N2
∫

S
dx+dx− ∂zρ

2
I(x+, x−, z, z)

where we choose the normalization factor

N = (−2πi)−1/2, (4.7)

to simplify the form of the OPEs. The twist translations act trivially on these descent
operators because the local operators being integrated are all su(2)R singlets or of lowest
su(2)R weight. This is not the case for the twist translated descent operators of T which are

L+[T ](z) = −i
2 ϵIJN

∫
L+
dx+ ua

(
:ψ̃1̇I∂zρ

a
J : + :ρa

I∂zψ̃1̇J :
)

(x+, 0, z, z),

L−[T ](z) = −i
2 ϵIJN

∫
L−

dx− ua (:ψ1I∂zρ
a
J : + :ρa

I∂zψ1J :) (0, x−, z, z), (4.8)

S[T ](z) = −ϵ
IJ

2 N2
∫

S
dx+dx−

{
ua(:∂zρ

2
I∂zρ

a
J : + :ρa

I∂z∂zρ
2
J :)(x+, x−, z, z)

+ (:ψ1I∂zψ̃1̇J : − :ψ̃1̇I∂zψ1J :)(x+, x−, z, z)
}
.

35All ϵ symbols satisfy ϵ12 = −ϵ12 = 1.
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O-L±-S OPEs. For the OPEs involving a descent operator, one must often compute
integrals of propagator-like expressions to simplify the result. Whenever possible we perform
such integrals in Minkowski space-time using the standard iϵ prescription but, as is the case
with 2-point functions of S, this is not always sufficient. Curiously, in cases where there are
space-time intersections and the computation of integrals are involved, we have checked
that the iϵ prescription is sufficient to compute them, as long as these integrals come from
terms not closing on the identity.

An important property of these OPEs is that they are meromorphic functions of z as
required by cohomology Ward identities. This is a check that we are computing descent
operator products correctly.

A priori, additional T±-closed extended operators might appear on the right sides of
the OPEs which are not equivalent in cohomology to the descent operators of qI and T .
This would indicate we were “missing” distinct extended operators in the O-L±-S subset
which are not necessarily captured by descent. In practice, seemingly distinct T±-closed
surface/line operators indeed appear in the OPEs involving a descent operator. However,
whenever this occurs, we have always found that subtle integral cohomology identities
end up showing these seemingly new extended operators are in fact T±-equivalent to the
descent operators of qI and T or their normal-ordered products. We detail these cohomology
identities in [6].

In the end, we find that the OPEs among these Schur operators and their descent
operators can all be put into canonical forms which we specify in a condensed notation with
the following tables.

qI , L±[qI ] and S[qI ] OPEs:

XI(z)YJ(0) ∼ ϵIJ
a

z
for a ∈ R

XI\YJ qJ S[qJ ] L+[qJ ] L−[qJ ]

qI −1 −1 0 0

S[qI ] −1 −1 0 0

L+[qI ] 0 0 0 −1

L−[qI ] 0 0 1 0

(4.9)

The coefficient of the S[qI ]S[qJ ] OPE comes from performing the integrals involved in
Euclidean space; see the discussion in section 3.

T, L±[T ], S[T ] and qI , L±[qI ], S[qI ] OPEs:

XT (z)YI(0) ∼
( 1

2z2 + 1
z
∂z

)
VI(0) for VI ∈ {qI , L±[qI ], S[qI ]}
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XT \YI qI S[qI ] L+[qI ] L−[qI ]

T qI qI 0 0

S[T ] S[qI ] S[qI ] L+[qI ] L−[qI ]

L+[T ] L+[qI ] L+[qI ] 0 qI

L−[T ] L−[qI ] L−[qI ] qI 0

(4.10)

T, L±[T ], S[T ] OPEs:

XT (z)YT (0) ∼ − a

2z4 + 2(UV )
z3 + ∂z(UV )

z2 + ∂2
z (UV )
z

+ 2(U∧V ′)
z2 + ∂z(U∧V ′)

z

+ (U ′V ′)
z

(4.11)

≡ (a, U, V ) for a ∈ R and U, V ∈ {q, L±[q], S[q]},

where we have defined the normal ordered products

(UV ) .= −ϵ
IJ

4 :UIVJ :(0) ,

(U∧V ′) .= +ϵIJ

4 :(UI ∂zVJ − ∂zUI VJ):(0) , (4.12)

(U ′V ′) .= ϵIJ :∂zUI ∂zVJ :(0) .

Then

XT \YT T S[T ] L+[T ] L−[T ]

T (1, q, q) (1, q,S[q]) (0, q,L+[q]) (0, q,L−[q])

S[T ] (1,S[q], q) (1,S[q],S[q]) (0,S[q],L+[q]) (0,S[q],L−[q])

L+[T ] (0,L+[q], q) (0,L+[q],S[q]) (0,L+[q],L+[q]) (1,L+[q],L−[q])

L−[T ] (0,L−[q], q) (0,L−[q],S[q]) (−1,L−[q],L+[q]) (0,L−[q],L−[q])

(4.13)

Note that

(UV ) = −(−)|U |·|V |(V U), (U∧V ′) = +(−)|U |·|V |(V ∧U ′), (U ′V ′) = −(−)|U |·|V |(V ′U ′),

where |U | = 0 for a boson, and |U | = 1 for a fermion.

Remarks and observations. We now make a few preliminary observations on the
structure of this operator algebra. The most striking observation is that while the L±[q]
OPEs in (4.9) describe a pair of conjugate free complex fermions, upon diagonalizing the
bosonic 2-point functions (4.9) by defining the new basis (suppressing flavor indices)

q±
.= 1

2(q ± S[q]), (4.14)
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their OPEs, in the notation of (4.9), become

X\Y q− q+

q− 0 0

q+ 0 −1

. (4.15)

This means that q+ is a free symplectic boson. But q− has a completely regular OPE,
analogous to a chiral ring element. In fact, it is immediate from (4.9) and (4.10) that q−
has completely regular operator products with all the fields we have constructed.

This raises the question of whether q− vanishes in cohomology: does

S[qI ] =T qI ? (4.16)

Clearly, such an equivalence would correspond to a VA-type equivalence. We do not see
a direct way of proving such a relation just on the basis of their expressions as operator
representatives of twisted Schur cohomology classes in the 4d SCFT. An indirect way is to
show that all their operator products coincide with a generating set of operators for the
extended vertex algebra. The VOA of the free hyper SCFT is the free symplectic boson
that is (strongly) generated by qI , but we do not know of a generating set of operators
for the extended vertex algebra, even though the underlying 4d SCFT is free. Indeed,
determining a generating set requires understanding the cohomological equivalences among
descent operators and their normal-ordered products. Note that even if the equivalence
in (4.16) between a local operator and its surface descent operator were true, this would
have to be a property particular to qI . For instance, we must have T ̸=T S[T ] since their
operator products with L±[qI ] shown in (4.10) are different.

Another observation is that, as expected, the T vertex operator has the usual Virasoro
OPE with central charge −1,

T (z)T (0) ∼ −1
2z4 + 2T (0)

z2 + ∂zT (0)
z

, (4.17)

by virtue of the fact that T = (q∧q′) = 1
2ϵ

IJqI∂zqJ by (4.5). But although T is a Virasoro
operator, it is not the stress-energy operator of the vertex algebra. This is because to be a
stress-energy operator of a vertex algebra, the algebra must be decomposable into a basis
of primary operators, Φi(z), and their descendants, ∂n

z Φi(z), such that

T (z)Φi(0) ∼ hiΦi(0)
z2 + ∂zΦi(0)

z
, (4.18)

for some hi ∈ N/2. If a stress-energy operator exists obeying (4.17) and (4.18), then the
vertex algebra is called a conformal vertex algebra [14] or, somewhat confusingly, a vertex
operator algebra. Define the modes of T by the expansion T (z) = ∑

n Tnz
−n−2 in the usual

way. The conformal vertex algebra conditions imply that the action of these modes on vertex
operators coincides with that of the Ln sl2 generators, i.e., Tn = Ln for n ∈ {−1, 0, 1}. In
particular, T−1 = ∂z and the eigenvalues of T0 are the chiral weights hi. The chiral weight
of T (z) is hT = 2.
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In our case T does not obey (4.18), so it is not a stress-energy operator for the extended
vertex algebra. This is clear from (4.10) since T (z)S[q](0) ∼ (· · · )q(0). A key question is
then whether there exists a stress-energy operator for our extended vertex algebra. We look
for one by searching for suitable bosonic operators with chiral weight 2. Recalling that q
and its descent operators L±[q] and S[q] all have weight hq = 1/2, while T and its descent
operators all have weight hT = 2, the possible weight-2 bosonic operators appearing in the
OPEs we have calculated are

(q∧q′), (q∧S[q]′), (S[q]∧S[q]′), T, S[T ], (L+[q]∧L−[q]′), (4.19)

in the notation of (4.12).36 We have already remarked that T = (q∧q′). If (4.16) were true,
then the first four operators of (4.19) would be equivalent. Equivalences in T± cohomology
among the remaining weight-2 operators, though possible, are not apparent. We find no
linear combination of these operators which satisfies both (4.17) and (4.18) for the subset
of operators we are examining, even if we assume (4.16) is true. This, unfortunately, does
not settle the question of whether the extended vertex algebra is a conformal vertex algebra
since we have only looked at a limited number of operators and their OPEs.37

We end this section by making some more general remarks about the computation of
descent operator OPEs which are motivated by the following questions,38

• What 4d local operator OPE data contributes to the descent operator OPEs that give
rise to the vertex algebra?

• Is this local operator OPE data determined by the OPEs of Schur operators which
compose the VOA?

It is easiest to answer these questions by distinguishing between free and interacting theories,
and we will first talk about the former. Recall from (3.1) that a time-ordered descent
correlator is defined to be the world volume integral of the time-ordered correlator of
its integrand. For descent operator OPEs, a similar definition will hold only if (in every
correlation function) we can apply the OPE channel between their local operator integrands
for all pairs of points on their relative world volumes. In a free theory, where all local
correlators are reduced to two-point functions via Wick contractions, we believe that this
is true because the OPE radius of convergence between any two local operators does not
depend on the location of other local operator insertions in the correlator.39 Thus, the

36Note that L+[q] ∧ L+[q]′ = 0 and similarly for L−[q].
37For example, we did not take into account the various dimension two flavor singlets that come from flavor

contractions between the moment map operator, µIJ ∼ :qIqJ :, of the flavor multiplet for the free hyper and
its corresponding descent operators. Examples of these Sugawara-like operators are, :X[qI ]Y[qJ ]qIqJ : or
:X[:qIqJ :]qIqJ :, where X, Y ∈ {L±, S}. We will report on these questions and the general properties of the
flavor multiplet for the free hyper in [6].

38We thank the referees for prompting us to answer these.
39It is possible new T±-closed extended operators may appear in this process, but the free field argument

implies their integrand OPEs will still be determined by 4d local operator data. From the results of the free
hypermultiplet we’ve presented, we expect that it will always be possible to rewrite these operators in terms
of descent operators and their ∂z descendants.
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OPEs of free field descent operator integrands are entirely determined in terms of the
OPEs of their integrands, which are ordered combinations of certain super-descendants of
a (twist-translated) Schur operator that are simultaneously composed with correlated m±
transformations (see (2.5)–(2.6)). The OPE coefficients of these super-descendants represent
the additional 4d local operator data that contributes to free field descent correlators and
OPEs. However, note that there is no sense in which the result of performing world
volume integrals can be determined by local operator data — these are independent
computations and their results are predicted beforehand by the T± Ward identities that
descent operators satisfy.

It’s well known that the OPEs of primary operators in a superconformal multiplet are
not determined in terms of the OPEs of the corresponding superconformal primary [15].
Hence, we do not expect the OPEs of the integrands of free field descent OPEs to be
determined by the VOA OPEs of Schur operators, and we have not found this to be the
case for the OPEs we’ve computed for the free hypermultiplet in this section. Furthermore,
in the simplest (non-zero) descent operator OPE, L+[qI ](z)L−[qJ ](0), one can immediately
see that the OPE of their integrands cannot be obtained from the VOA OPE, qI(z)qJ(0),
using cohomological arguments because the former involves transformations using relative
P± translations which break simultaneous T±-cohomology.

In interacting SCFTs, the radius of convergence between local operators becomes
finite [16]. This implies it is not possible to compute the OPEs of descent operators in
a generic VA correlator as we did for free fields, because the OPE channel between their
integrands does not (generically) converge for all pairs of points on their relative world
volumes. This means interacting descent operator OPEs cannot be partially determined
by the full set of local operator data of the SCFT in any direct way, if at all. Instead,
following the OPE work on light-ray operators (e.g. [12, 13]), one can resort to a more
abstract approach where the OPEs of descent operators are inferred from their insertion
into 4-point functions containing (at least) two other Schur operators.40 Because they can
be applied in general SCFTs, these more abstract methods can serve as a check on the
simpler free field approach previously described.41

Because one can’t rely on local operator data to compute them, it is possible that
interacting descent OPEs contain additional information that goes beyond the 4d OPE data
of local operators, which would be an expression of the fact that they are truly non-local
operators. Furthermore, this also means it is possible that interacting descent OPEs will
contain new T±-closed extended operators that can’t be rewritten in terms of the descent
operators we’ve constructed. Because we used free field methods to obtain the OPEs
among T and its descent operators in (4.11)–(4.13), this discussion makes it clear that these
results cannot be extrapolated to the VOA stress tensor for a generic interacting SCFT —
additional data and extended operators may be needed to reproduce such OPEs.

40We do not know if these 4-point functions are sufficient to deduce the full OPE of descent operators
— it is possible we must consider more general 4-point functions containing mixtures of descent operator
insertions as well.

41Checking the free hypermultiplet and vector multiplet results should inform us of the necessary 4-point
functions one needs to consider when applying the abstract approach.

– 38 –



J
H
E
P
1
0
(
2
0
2
3
)
1
7
5

5 Future directions

We have shown how a version of topological descent applied to twist-translated Schur
operators gives rise to a large set of new protected line, surface, and wall operators, which
enlarges the vertex operator algebra of any 4d N=2 SCFT. Some details of this construction
were deferred to [6].

A computational hurdle is to formulate an appropriate regularization of descent corre-
lators since, as discussed in section 3, they generically contain divergences. For the ⟨SS⟩
2-point functions presented in section 4, we sidestepped this problem by computing them in
euclidean signature. In section 3, we proposed a regularization prescription for all descent
operators that involves the inclusion of a weight function in their definition. These weight
functions render descent correlator integrals absolutely convergent and their cohomology
classes are well-defined.

An outstanding question regarding this proposed regularization is whether or not the
resulting cohomology classes depend on the specific choice of weight function. At the end of
section 3.4, we gave preliminary evidence indicating descent operator cohomology classes are
independent of this choice. In [6], we will analyze this question more thoroughly by reporting
on whether the regulated S-S 2-point functions are unique and weight function independent.
Showing this would provide strong evidence that our proposed regularization will produce
universal results for all descent operators and, hence, for the extended vertex algebra.

Additional tasks are understanding the analytic structure of correlators involving the
Ŝ··· and Ŵ±

··· quasi-topological operators, and understanding the 4d-type equivalences among
the wall operators, Ŵ±

···.
A key question is whether the extended vertex algebra is a conformal vertex algebra

(a.k.a., a vertex operator algebra). A number of open questions were also raised in section 4
concerning the structure of the O-L±-S subalgebra. The computation of the OPEs recorded
in section 4 relied crucially on various series of cohomological operator identities, whose
derivation is given in [6]. To sort out these central structural questions it seems necessary
to find a way of systematically organizing and generating these identities.

Extended vertex algebra OPE computations in the free vector multiplet SCFT is a next
obvious step. By combining free hypermultiplet and vector multiplet results, weak coupling
extended vertex algebras in conformal gauge theories can also be obtained. It would be
interesting to study extended vertex algebra modules built on light-like Wilson-’t Hooft-type
line operators in twisted Schur cohomology. These should also be computationally accessible
in conformal gauge theories.

More broadly, we would like to identify the ways in which the extended vertex algebra
differs from the vertex operator algebra composed of Schur operators. For instance, in [1] it
was shown using the non-renormalization results of [17] that the VOA of Schur operators is
independent of exactly marginal couplings. It is not clear if the required arguments for this
result continue to hold for the descent operator correlators of the VA.
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