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1 Introduction

Understanding the Hilbert space is the most basic task in quantum physics. It has also
been a key problem of large N gauge theories and AdS/CFT, often with a focus on the
emergent bulk descriptions. For instance, consider 4d maximal super-Yang-Mills theory on
S3 × R, dual to the type IIB theory on global AdS5 × S5. We normalize the energy E to
be dimensionless by multiplying the AdS radius. At E ∼ N0, the spectrum is described
by the gas of gravitons. At E ∼

√
Ng2

YM, where gYM is the Yang-Mills coupling, stringy
excitations enter. At E ∼ N1, a novel finite N effect enters. On the QFT side, this comes
from the finite size of the N × N matrices, imposing trace relations on gauge-invariant
operators. In the gravity dual, this is realized as the gravitons polarizing to D3-branes.
The branes can stretch either in S5, called giant gravitons [1], or in AdS5, called dual giant
gravitons [2, 3]. The trace relations are realized either by giant gravitons having a maximal
size, or the dual giant gravitons having a maximal number [4, 5]. These descriptions use
probe D-brane approaches, whose validity requires that the energy is not too large, say
E � N2. This is merely a technical limitation, and the concept of giant gravitons may
exist at higher energies and provide useful insights. This turned out to be the case in the
half-BPS sector [6].

At E ∼ N2, semi-classical black hole solutions represent ensembles of states. In this
paper, we wish to clarify the giant graviton picture at E ∼ N2, studying how black holes
emerge from a giant graviton description of the spectral problem. We consider the BPS
sector of the maximal super-Yang-Mills theory through the index of [7, 8]. This index has
been studied to better understand the dual BPS black holes [9–12]. see [13–15] and references
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thereof. We shall study the recently suggested reformulation of this index [16–20], called
‘giant graviton expansion.’ We shall mainly consider the formula by Yosuke Imamura [16].1

The giant graviton expansion of the index is given by

Z(∆I , ωi) = ZKK(∆I , ωi)
∞∑

n1,n2,n3=0
e−N

∑3
I=1 nI∆IZn1,n2,n3(∆I , ωi) , I = 1, 2, 3 , i = 1, 2 .

(1.1)
See section 2 for detailed explanations. nI ’s are winding numbers of maximal giant gravitons
along three different S3 cycles in S5. Zn1,n2,n3 is ‘formally’ an index of a U(n1)×U(n2)×U(n3)
quiver gauge theory, consisting of 4d/2d fields on the D-branes or at their intersections.
When E ∼ N2, we expect all nI ’s are typically at the order of N1. Our strategy of
studying this index is roughly as follows. We first find certain large nI (∼ N1) saddle
points of the integral representation of Zn1,n2,n3 . The contour of this integral is complicated
and empirically determined only for low nI ’s. The contour information is in principle
important to decide whether a saddle is relevant for approximating the integral, through
the Picard-Lefschetz theory. As often done in practical studies of challenging integrals, we
ignore this issue and assume that our saddles are relevant. After Legendre transforming the
free energy at large fixed charges qI and nI ’s, one obtains a macroscopic entropy S(qI , nI).
Further maximizing it in nI ’s to find the dominant term Zn1,n2,n3 , one would naively find
the entropy at fixed qI . For a reason to be explained, this strategy is correct only in the
‘small black hole limit’ qI

N2 � 1.2

To understand why (1.1) is a subtle formula, one should note that nI ’s are the numbers
of determinant operators in gauge theory, which are morally baryons. Baryons and mesons
provide towers of confining spectrum, responsible for fast growth of the high energy density
of states. However, since the basic degrees of freedom are gluons, the growth for gauge
theories should be much slower. Therefore, for an expansion like (1.1) to correctly capture
the gauge theory entropy at high energies, one expects substantial cancellations of different
Zn1,n2,n3 ’s. For instance, if such cancellations do not happen, we shall see that the series (1.1)
exhibits very fast growth at large nI ’s and cause a Hagedorn-like pathology [21, 22]: due to
string and brane states, the canonical partition function becomes ill-defined. This implies
that individual S(qI , nI) and Zn1,n2,n3 lose physical meanings at high energies, while the
series (1.1) itself may be physical after cancellations. To address the cancellations rigorously,
one should be able to compute the subleading terms in the large N limit. This is beyond the
scope of this paper (and the subleading terms depend on the contour choice for Zn1,n2,n3).
We shall rather assume a particular mechanism of how the apparently leading contributions

1We understand that there is a subtlety in the contour choices in this formula, related to a chemical
potential called aloop [16, 19]. We shall comment on it in section 2 when it seems to be relevant.

2For the semi-classical black hole solution to be reliable, the normalized charge ε ≡ q
N2 has to be

independent of large N . The small black hole limit is defined by ε (independent of N) being parametrically
smaller than 1. Geometrically, the size of the small black hole r+ should be much smaller than AdS
radius (which we set to 1), but much larger than the 5d Planck length lP (defined by Newton constant
G ∼ l3P ∼ N−2) for semiclassical approximation: N−2/3 � r+ � 1. r+ and ε are related as r+ ∼ ε1/2, which
for instance can be easily seen from the entropy formula, S ∼ N2r3

+ ∼ q3/2

N
(see the first line of (2.27)). So ε

can be chosen to satisfy N−4/3 � ε � 1 for large N .
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eS(qI ,nI) cancel, and then proceed to compute the true entropy that exactly accounts for
the dual black holes. As we explain in section 2.2, the mechanism we suggest assumes that
the summations over discrete nI ’s can be approximated by integrations of these variables,
which is valid only if the subleading terms in the large N limit are arranged suitably.

As a byproduct, we find an emergent 2d QFT-like structure in our large N calculation
when the three chemical potentials for the U(1)3 ⊂ SO(6) electric charges are equal. This
has to do with the integrand of Zn1,n2,n3 reducing to the ratios of theta functions. This
concretely justifies a study of [8], which assumed the existence of a hypothetical 2d CFT on
the worldvolume of giant gravitons and then proceeded to count small black holes.

Our large N results can be interpreted as an analytic continuation of the maximal
super-Yang-Mills index, extending the idea of [17, 20]. After establishing this interpretation
on AdS5 × S5, we apply it to the large N index on AdS4 × S7 based on the expansion of
M5-brane giant gravitons [23]. Namely, just assuming the existence of such an expansion
and very basic structures, we explain the entropy of the AdS4 black holes from the large N
free energy of 6d SCFTs on M5-branes. Similarly, we find a relation between the entropies
of black holes on AdS7 × S4 and the large N free energies of 3d SCFTs on M2-branes.

The rest of this paper is organized as follows. In section 2.1, we present a saddle
point analysis of Zn1,n2,n3 , and show that it accounts for the small black hole entropy. In
section 2.2 we explain a possible way in which different Zn1,n2,n3 can cancel at general
charges. Then assuming this, we compute the true asymptotic large N entropy accounting
for the dual black holes. Section 2.3 comments on the similar analysis with three unequal
electric charges. In section 3, we make an interpretation of our results from analytic
continuations and generalize it to account for the entropies of BPS black holes in AdS4,7.
Section 4 concludes with discussions.

2 Giant graviton index and black holes

The index for the N = 4 Yang-Mills theory is defined by

Z(∆I , ωi) = Tr
[
(−1)F e−

∑3
I=1 ∆IQI−

∑2
i=1 ωiJi

]
(2.1)

subject to the condition
∑3
I=1 ∆I−

∑2
i=1 ωi = 2πiZ, where QI are U(1)3 ⊂ SO(6) R-charges

and Ji are U(1)2 ⊂ SO(4) angular momenta. See [7, 8] for a unitary matrix integral
representation of this index for the U(N) gauge group. Recently, an alternative expression
for this index was proposed. It takes the form of (1.1), where ZKK is the index of low
energy gravitons [8]. Zn1,n2,n3(∆I , ωi) is given by a U(n1)× U(n2)× U(n3) matrix integral
of the form [16]

Zn1,n2,n3 =
∮ 3∏

I=1

nI∏
a=1

du(I)
a ·

3∏
I=1

Z4d
I · Z2d

I,I+1 , where I + 3 ∼ I , (2.2)

while Z0,0,0 ≡ 1. The functions Z4d
I and Z2d

I,I+1 appearing in the integrand are given as
follows. From now on, let us define ∆I ≡ −2πiτI = −2πi(τ + zI) with

∑3
I=1 zI = 0, and

– 3 –
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ω1 = −2πi(3τ
2 + y − 1), ω2 = −2πi(3τ

2 − y). Then Z4d
3 from the 4d U(n3) adjoint fields is

given by

Z4d
3 =

∏
a,b

Γ(u(3)
ab − τ − z3; τ + z1, τ + z2)Γ(u(3)

ab + 3
2τ ± y; τ + z1, τ + z2)

Γ(u(3)
ab ; τ + z1, τ + z2)

. (2.3)

Here and below, whenever the argument contains ±, corresponding two functions are
multiplied. u(I)

ab ≡ u
(I)
a − u(I)

b , and Γ(z;σ, τ) is the elliptic Gamma function defined by

Γ(z;σ, τ) =
∞∏

m,n=0

1− e−2πize2πi((m+1)σ+(n+1)τ)

1− e2πize2πi(mσ+nτ) . (2.4)

Other Z4d
I are given similarly by permuting the I = 1, 2, 3 indices. The integrand from the

2d U(n1)×U(n2) bifundamental fields is given by

Z2d
1,2 =

n1∏
a=1

n2∏
b=1

θ
(
±(u(12)

ab + a12) + τ3
2 + y, τ3

)
θ
(
±(u(12)

ab + a12)− τ + z3
2 , τ3

) , (2.5)

where u(I,I+1)
ab ≡ u

(I)
a − u

(I+1)
b . θ(z, τ) is the q-theta function (with ‘q’ given by e2πiτ )

defined by

θ(z, τ) =
∞∏
n=0

(1− e2πize2πinτ )(1− e−2πize2πi(n+1)τ ) . (2.6)

Other Z2d
I,I+1 are given similarly. The integration contour is complicated, and is related to

how the auxiliary parameters aI,I+1 are chosen. Only the value of aloop ≡ a12 + a23 + a31
is important. In [16] and [19], two different choices of aloop were made, also with different
choices of the integration contour. Both prescriptions are tested till certain low orders. One
of aloop = −3τ

2 ± y was chosen in [16], while aloop = 0 was chosen in [19]. The situation
might be that both prescriptions work to all orders in nI ’s, or one of the two is correct
for higher nI ’s. Although we have little to say about this issue, we simply note that our
saddle point ansatz below works with the choice aloop = 0 of [19]. Perhaps with the choice
of [16], residue contributions may be more important when the contour crosses poles during
its deformation towards the saddle point. (Such an issue may also arise in the original
Yang-Mills matrix integral for the index, as commented on in [24].) So we set aI,I+1 = 0
from now on.

We would like to study the large N behaviors of Zn1,n2,n3 . Since nI ’s contribute NnI
to the electric charges QI , which we want to scale as N2, we let nI ’s to scale linearly in N .

2.1 Large N saddle points and small black holes

In this subsection we shall consider the index at ∆1 = ∆2 = ∆3. (We shall comment on
the generalization to unequal ∆I ’s in section 2.3.) This corresponds to taking the zI → 0
limit. It was shown [16] that individual Zn1,n2,n3 diverges in this limit, while the full index
after summing them over remains finite. We are interested in the leading order free energy
logZn1,n2,n3 ∼ N2 in this limit. To understand this limit more precisely, we first decompose

– 4 –
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the contributions to Z4d
I from the N Cartans at a = b and the off-diagonals at a 6= b. The

former part can be written in the limit as[
−e2πiτθ

(
τ
2 − y, τ

)
(1− e2πizI+1,I )(1− e2πizI−1,I )E(τ)2

]nI
, (2.7)

where zI,J ≡ zI − zJ , E(τ) ≡
∏∞
n=1(1− e2πinτ ). So the Cartan parts diverge in the limit

zI → 0. This accounts for many of the divergences encountered in [16] in this limit. The
divergence is linear in N , ∼ N log ε at small zI ∼ ε. So we ignore this part since we are
interested in the leading free energy proportional to N2. (However, see the later part of this
subsection and section 2.2 for important roles of the subleading parts.) The off-diagonal
part with a 6= b contains extra divergences in the limit zI → 0, by the zI dependent poles
pinching the integration contour [16]. Our precise setting of taking the limit is as follows.
We are interested in the behaviors of the integrand near the saddle point of our interest,
to be presented below. The saddle point is away from the contour, and will not suffer in
any sense from the pinching of the zI dependent poles. So as for this part, we naively
take the zI → 0 limit and simplify the integrand. Using Γ(z + σ;σ, τ) = θ(z, τ)Γ(z;σ, τ),
Γ(z + τ ;σ, τ) = θ(z, σ)Γ(z;σ, τ) and Γ(z;σ, τ) = 1

Γ(σ+τ−z;σ,τ) , one obtains

Z4d
I

zI→0−→
∏

1≤a 6=b≤nI

θ
(
u

(I)
ab + τ

2 − y, τ
)

θ(u(I)
ab − τ, τ)

. (2.8)

We have ignored the Cartan part which only makes a subleading N1 contribution. At the
saddle point, all u(I)

a ’s will be different, so that this function remains finite in the zI → 0
limit. We realize that the contributions from the 4d fields are given in terms of the theta
functions after substantial cancellations. Similarly, Z2d

I,I+1 are given in the zI → 0 limit by

Z2d
I,I+1 =

nI∏
a=1

nI+1∏
b=1

θ
(
±u(I,I+1)

ab + τ
2 − y, τ

)
θ
(
±u(I,I+1)

ab − τ, τ
) . (2.9)

Z4d
I and Z2d

I,I+1 in this limit are invariant under shifting u(I)
a to u(I)

a + 1 or u(I)
a + τ .

As our large N (and large nI ∼ N) saddle point ansatz, we take each set of U(nI)
eigenvalues u(I)

a to be uniformly distributed along the τ -circle,

u(I) = xIτ , 0 < xI < 1 , ρ(xI) = 1 . (2.10)

This is a coarse-grained continuum description of the eigenvalues, which are separated from
their nearest neighbor by a distance at order 1

N . We can typically assume that none of
these eigenvalues are at precisely the same values. Therefore, (2.8) and (2.9) do not diverge
due to u(I)

a = u
(J)
b . If such a divergence apparently seems to happen in the continuum

description, it should be avoided by integrating over xI ’s with a principal-value prescription.
It is easy to see that this distribution solves the large nI saddle point equation. To check
this, it is convenient to first S-dualize the integrand using the identity

θ(z, τ) = e−πiB(z,τ)θ
(
z
τ ,−

1
τ

)
, B(z, τ) ≡ z2

τ + z
(

1
τ − 1

)
+ 1

6

(
τ + 1

τ

)
− 1

2 . (2.11)
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We shall set y to be in the range 0 < y1 < 1, where y ≡ y1 + y2τ with real y1, y2: this
convention can be chosen by a suitable period shift of y. Then, applying the S-dual identities,
one obtains

Z4d
I ∼ exp

[
πin2

I

(
y−y2

τ − 3
2 + 9τ

4

)] ∏
1≤a 6=b≤nI

θ

(
u

(I)
ab
−y
τ + 1

2 ,−
1
τ

)
θ

(
u

(I)
ab
τ ,− 1

τ

) (2.12)

Z2d
I,I+1 = exp

[
2πinInI+1

(
y−y2

τ − 3
2 + 9τ

4

)] nI∏
a=1

nI+1∏
b=1

θ

(
±uI,I+1

ab
−y

τ + 1
2 ,−

1
τ

)
θ

(
±uI,I+1

ab
τ ,− 1

τ

) .

Collecting all, the integrand is given by a constant factor

exp

πi(n1 + n2 + n3)2
(
y − 3τ

2

) (
1− y − 3τ

2

)
τ

 (2.13)

times

Z̃(u(I)) =
3∏
I=1

[
Z̃4d
I Z̃2d

I,I+1
]
≡

3∏
I=1

 ∏
1≤a 6=b≤nI

θ

(
u

(I)
ab
−y
τ + 1

2 ,−
1
τ

)
θ

(
u

(I)
ab

τ ,− 1
τ

) ·
nI∏
a=1

nI+1∏
b=1

θ

(
±uI,I+1

ab
−y

τ + 1
2 ,−

1
τ

)
θ

(
±uI,I+1

ab

τ ,− 1
τ

)
 .

(2.14)
In order to show that (2.10) is a saddle point, one should show that the force ∂

∂u
(I)
a

log Z̃
vanishes in the large N limit. More precisely, one should show that the leading N1 order
term of the force vanishes. This force is given by

−N
τ

∫ 1

0
dx′

∂

∂x′

[
log Z̃4d

I (u(x)−u(x′))+log Z̃2d
I,I+1(u(x)−u(x′))+log Z̃2d

I−1,I(u(x′)−u(x))
]
.

(2.15)
The expression inside the square bracket of the right hand side is given by a linear combina-
tion of the function of the form log(1− e±2πi(x−x′)e−

2πi(n+α)
τ ) with n ∈ Z ≥ 0, α ≥ 0 and

x, x′ ∈ [0, 1]. (α may be either 0 or y.) So all these log functions are periodic in x′ → x′ + 1
shift without crossing the branch cut. Therefore, we integrate the derivative of a periodic
function over a circle, which vanishes. The terms with α = 0 and n = 0 have the branch
points on the circle x′ ∈ [0, 1], but employing the principal-valued integrals as explained,
they also vanish.

One can compute logZn1,n2,n3 at this saddle point. By evaluating log Z̃ in the continuum
limit, similar to the evaluation of (2.15), one finds log Z̃ = 0. This is because the integral of
log(1− e±2πi(x−x′)e−

2πi(n+α)
τ ) is zero at n ≥ 0, α ≥ 0. So the large N free energy is given by

logZn1,n2,n3 =
πin2

(
y − 3τ

2

) (
1− y − 3τ

2

)
τ

, (2.16)

where n ≡ n1 +n2 +n3. Note that the leading free energy depends only on one combination
of nI . So there apparently is a large number of degenerate terms if we only consider the

– 6 –
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leading free energy. One can Legendre transform this free energy to obtain the macroscopic
entropy at fixed charges q, j conjugate to τ , y, also at fixed n. This amounts to the
extremization of

S(q,j;τ,y,n) = πin2y(1−y)
τ

− 3πin2

2 + 9πin2

4 τ−2πiτ ·(3q−nN)−2πiy ·j . (2.17)

The charges correspond to q = Q1+Q2+Q3
3 + J1+J2

2 , j = J1 − J2. The solution is given by3

τ = i
n2

2
√

2n2P − j2 , y = 1
2 − i

j

2
√

2n2P − j2 (2.18)

where P ≡ 3q − nN − 9n2

8 , and the extremized entropy is given by

S(q, j, n) = π

2

√
n2(24q − 8nN − 9n2)− 4j2 − πij − 3πin2

2 . (2.19)

The constant imaginary term −πij can be ignored in the discussions below.
Before proceeding, let us comment on the structure of the asymptotic Zn1,n2,n3 that we

obtained in (2.16). We first investigate the structure of the expansion (1.1) in the grand
canonical ensemble with fixed τ , y. Since these parameters are complex, it is helpful to
focus on a region which contains the saddle point of the Legendre transformation (2.18).4

For instance, as for τ , let us take it to be purely imaginary with Im(τ) > 0. For y, let
us freeze y = 1

2 for simplicity of the discussion. This corresponds to setting j = 0 in the
microcanonical ensemble, or unrefining the chemical potential y for j in the grand canonical
ensemble. Then one finds that the giant graviton expansion (1.1) takes the form of

Z ∼
∑

n1,n2,n3

Ω(nI)e2πiNτn exp
[
πin2

4τ (1−3τ)2
]

=
∑

n1,n2,n3

Ω(nI)e−Nnβ exp
[
π2n2

2

(
1
β
− 3i
π
− 9β

4π2

)]
(2.20)

where β ≡ −2πiτ is real and positive. Recall that n ≡ n1 + n2 + n3, and Ω(nI) come from
the subleading contributions to logZn1,n2,n3 in the large n ∼ N expansion. At large n,
each |Zn1,n2,n3 | grows very fast like ean2 with certain a > 0 when β < βc ≡ 2π

3 . So at high
temperatures, unless the subleading factors Ω(nI) are given in a manner that various terms
substantially cancel, the sum will diverge very badly at large n. One can be more realistic
and insert the complex values of τ(q) as a function of real charge q, at which we know that
BPS black hole saddle points exist [14, 25]. Then one finds that Im

[
1

τ(q) − 9τ(q)
]
< 0 is

always met, again making |Zn1,n2,n3 | to grow fast. However, if the expansion (1.1) provides
an exact expression for the gauge theory partition function, we expect the series (2.20) to
better behave at high temperatures where the system deconfines [25, 27, 28].

Let us elaborate more on why we expect the series (2.20) to behave well for β < βc.
For instance, consider a series of the form∑

n

Ω(n)eβcne−nβ (2.21)

3During the saddle point analysis, it is essential for τ to be in the upper half-plane. For instance, when
q = εN2 and n = αN with ε, α � 1, one should take α < 3ε.

4See [25–27]. Basically, the phases of fugacities should be tuned in the index even in the grand canonical
ensemble, to minimize the unwanted boson-fermion ‘cancellations’ during macroscopic approximations.
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with βc > 0, and Ω(n) does not affect the exponential growth of eβcn. The series ceases to
converge at β < βc outside its radius of convergence. If this series is for a thermal partition
function, the divergence is the Hagedorn pathology [21] caused by exponential growth of the
density of states at high energy. It happens due to an infinite tower of mesonic states [21],
or an infinite tower of string oscillations [22]. The apparent divergence ∼ ean

2 of (2.20)
would make the series worse-behaved than (2.21). Namely, unless cancellations happen, the
radius of convergence is zero. One may interpret this divergence (if present) as coming from
a much faster asymptotic growth of baryonic states. However, the notion of baryonic states
should become ambiguous at large charge q for which τ(q) enters the deconfining regime.
For expressions like (1.1) or (2.20) to remain relevant, Ω(nI)’s should be arranged so that
the apparent asymptotic growth ean

2 cancels. The cancellation effects should be more
crucial for τ(q) with larger q, as the system is deeper inside the deconfining regime. If such
cancellations are not taken into account, each term in the series (2.19) may over-estimate
the microcanonical entropy.

With this caution in mind, let us try to extract the microcanonical entropy from the
formula (2.19). We first study the case with j = 0. Since n is not a physical charge, we
should try to maximize Re[S(q, n)] as a function of non-negative integer n. Re[S(q, n)] is
positive when

0 < n <
4
9

[
−N +

√
N2 + 27q

2

]
≡ n∗(q) . (2.22)

So to study the macroscopic entropy from this index, one only needs to sum over n till
n∗(q). Thus, we consider

eS(q) =
∮
dτe−2πiτ ·3q

∑
n1,n2,n3

e2πiNnτZn1,n2.n3 ∼
n≤n∗(q)∑
n1,n2,n3

Ω(nI)exp
[
πn

2

√
24q−8nN−9n2− 3πin2

2

]
.

(2.23)
We study this quantity at large N and large q ∝ N2, naively expecting at this moment that
the leading contribution comes from certain n at order N1. We first note that the overall
phase factor e−

3πin2
2 oscillates between i and 1, depending on whether n is odd or even. So

dividing the sum into even/odd n’s and naturally expecting that the maximization will not
be sensitive to the even/odd nature of n’s, this phase does not matter and the dominant
contribution to this entropy is given by the maximum of Re[S(q, n)]. This happens at

n0 = −N +
√
N2 + 12q
3 , (2.24)

which is in the range 0 < n0(q) < n∗(q). The maximal entropy is given by

Re[S(q)] = Re[S(q, n0(q))] = π(−N +
√
N2 + 12q)

3
√

6

√
N2 + 18q −N

√
N2 + 12q .

(2.25)
We first study its asymptotic behaviors at q � N2 and q � N2, which would respectively
correspond to the small and large black hole limits. In other words, we first rewrite the
entropy as a function of N2 and ε ≡ q

N2 . Then, S is given by N2 times a function of ε.

– 8 –



J
H
E
P
1
1
(
2
0
2
3
)
0
8
6

Expanding S in small and large ε (independent of N), one finds5

Re[S(q)] = π(2q)
3
2

N
− 9πq

5
2

√
2N3 + 351πq

7
2

8
√

2N5 −
8937πq

9
2

32
√

2N7 + 1048059πq
11
2

512
√

2N9 + · · · for q � N2

Re[S(q)] = 2πq − 4πNq
1
2

3
√

3
+ · · · for q � N2 . (2.26)

One can show that this Re[S(q)] is asymptotically equal to the Bekenstein-Hawking entropy

SBH(q) of the dual black hole when q � N2, in which case Re[S(q)] ≈ π(2q)
3
2

N ≈ SBH(q).
Away from the asymptotic limit q � N2, Re[S(q)] > SBH(q) always holds. In particular, in
the two asymptotic limits, SBH is expanded as

SBH(q) = π(2q)
3
2

N
− 21πq

5
2

√
2N3 + 1287πq

7
2

8
√

2N5 −
46189πq

9
2

32
√

2N7 + 7243275πq
11
2

512
√

2N9 + · · · for q � N2

SBH(q) =
√

3π
(
N2q2

2

) 1
3

+ · · · for q � N2 . (2.27)

These expansions are obtained from the Bekenstein-Hawking entropy of the BPS black holes,
as explained in appendix A. One finds a small over-estimating deviation Re[S(q)]−SBH(q) ≈
12πq

5
2√

2N3 > 0 in the small charge expansion, and Re[S(q)] � SBH(q) in the large charge
expansion. As already explained, our interpretation of this over-estimate is that we have
been ignoring the possible cancellations of the apparently leading order terms due to
nontrivial Ω(nI)’s in (2.20). The large charge behavior Re[S(q)] ∼ 2πq = 3βcq of (2.26) is a
Hagedorn growth.

The agreement of the leading entropy Re[S(q)] ≈ π(2q)
3
2

N with the Bekenstein-Hawking
entropy of small black holes might still look a bit miraculous. To better appreciate this,
it is first worthwhile to note that small black holes are never dominant saddles in the
grand canonical ensemble. Also, they always stay in the confining region in the complex τ
space [27]. So it makes sense that they admit a description in terms of D-branes, which are
baryonic objects in the confining phase. On the other hand, as q gradually grows, giant
gravitons will eventually lose their meaning at high energy. This is because the fundamental
high energy degrees of freedom are gluons rather than their bound states. Interestingly,
the D3-brane giant graviton approach has been already employed in [8] to account for the
entropy of small black holes. The calculation we did with S(q, n) was discussed in [8], in
precisely the same computational procedure. The rough idea of [8] is to regard the maximal
giant gravitons to be similar to the wrapped D-branes which account for 5d asymptotically
flat black holes [29]. Since most of the microscopic accounts for asymptotically flat black
holes use branes, and since small AdS5 black holes are (at least mathematically) identical
to the 5d asymptotically flat black holes embedded in large AdS, it is natural that both
objects admit similar D-brane-based descriptions. We find that our studies provide precise
logical grounds for the calculations of [8].

5In these expansions, since we take the expansion parameter ε ≡ q
N2 to be independent of N , the charge

q scales like N2.
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From (2.18), the saddle point value of τ for the Legendre transformation at j = 0 is

τ(q, n) = in√
24q − 8nN − 9n2 = in

3
√

(n∗(q)− n)(n+ n∗(q) + 8N
9 )

. (2.28)

In the small black hole limit q � N2, n is ranged in 0 < n < n∗(q) ≈ 3q
N and the maximum

n0(q) of S(q, n) is approximately n0(q) ≈ 2q
N . Around the maximum n0(q), τ scales like

|τ | ∼ n
√
q
∼ q

1
2

N
� 1 . (2.29)

So the small black hole limit q � N2 corresponds to the ‘Cardy limit’ τ → i0 in the
2d-like integrand (2.8), (2.9). We find this to be a concrete realization of the studies made
in [8], which assumed the existence of a hypothetical 2d CFT living on the worldvolume of
maximal giant gravitons at fixed n = n1 + n2 + n3 and used its Cardy formula to account
for the small black hole entropy. The 2d CFT was supposed to live on the Hopf fiber circle
of the S5, which is wrapped by the D3-branes. However, there was no logical justification
for the existence of such a 2d CFT, since the 4d worldvolume has no scale separation which
justifies the 2d reduction. We found from our index in the limit zI → 0 that the 4d part of
the integrand Z4d

I partly canceled to yield Jacobi theta functions, which are 2 dimensional
objects. So what justifies the 2d reduction here is the boson-fermion cancellations in the
index. This is much more specific than a reduction based on the scale separation. This 2d
description may break down if one studies unprotected quantities beyond the index. For
instance, [8] studied the charge relation satisfied by small black holes, J1 + J2 ∼ q2

N2 . The
idea of [8] is as follows. If the 2d CFT exists, small AdS5 black holes are dual to its NS
sector. It is related to the CFT in the Ramond sector by a spectral flow. The Ramond
sector CFT describes 5 dimensional asymptotically flat black holes [29, 30] satisfying a
charge relation J1 + J2 = 0. So if the 2d description exists universally beyond the index,
the spectral flow will connect the charge relation J1 + J2 = 0 to that of the AdS black holes.
The relation obtained from this route does not agree with the charge relation of AdS black
holes [8]. We interpret this as the absence of the 2d description beyond the index.

We can generalize the studies to the case with j ≡ J1−J2 6= 0 by keeping y 6= 1
2 . Again

we are only able to successfully count small black holes by keeping the leading term

logZn1,n2,n3 ∼
πin2y(1− y)

τ
(2.30)

of (2.16) at small τ . Making a Legendre transformation of this free energy by extremizing

S(q, j;n) ∼ πin2y(1− y)
τ

− 2πiτ(3q − nN)− 2πiyj (2.31)

and then maximizing Re[S(q, j;n)] with n, one obtains the entropy given by

S(q, j) = π

√
8q3

N2 − j
2 . (2.32)
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τ , y at these saddles always satisfy |τ | � 1, Re(y) = 1
2 as long as the charges are away from

the closed timelike curve (CTC) bound j2 = 8q3

N2 , staying within the regime that we assumed.
This is precisely the entropy of small spinning BPS black holes in AdS5 × S5. This can also
be regarded as the BMPV black holes [30] embedded in large AdS5. We emphasize that this
is the first microscopic counting of small spinning AdS5 black holes at all allowed values
of J1 6= J2. In fact accounting for black holes at J1 6= J2 has been technically tricky from
the QFT dual. For instance, in the saddle point approach to the Yang-Mills matrix model,
general J1 6= J2 was discussed only in the 4d Cardy limit [14]. At general finite charges, [24]
found saddle points which cover substantial charge regions for j, but failed to cover the
whole parameter space of CTC-free black holes. More precisely, [24] found the saddles when
certain inequalities were met, like eq. (2.41) or (2.45) there. In the parametrization of BPS
black holes given by [11], these inequalities cover the region 0 < ag, bg < 1. On the other
hand, the CTC-free black holes exist in a bigger region ag, bg < 1, a+ b+ abg > 0. This
should be due to our limited understanding of the large N matrix model saddles. At least in
the small black hole limit, it is amusing that the giant graviton calculation of this paragraph
was able to cover the whole CTC-free black holes satisfying ag, bg � 1, a+ b > 0.

2.2 Comments on finite size black holes

From the absence of the Hagedorn behavior in gauge theories, we think it is obvious
that cancellations of different Zn1,n2,n3 ’s happen in general. However, computing such
cancellations at large N is technically very challenging. This is because the cancellations
happen due to relative minus signs, whose precise determination goes beyond the leading
order calculation. For instance, we tried to compute such subleading terms in the small τ
regime, but found that the precise integral contours for Zn1,n2,n3 are needed to compute
them. Also, with such a contour dependence, taking zI → 0 limit is trickier than in the
previous subsection.

In this subsection, leaving the full microscopic analysis to the future, we shall make a
simple assumption on how these subleading corrections should be arranged. This assumption
will allow us to compute the true entropy of this index after the cancellations, which precisely
reproduces the dual black hole entropy. The claim is that, once we include the 1

N effects to
each Zn1,n2,n3 ’s contribution, the degeneracy at given n will be lifted by small deviations
from (2.16) in a way that the sum over n can be replaced by an integral. The microcanonical
sum (2.23) over discrete n can be replaced by

eS(q) =
∮
dτe−2πiτ ·3q

∑
n1,n2,n3

e2πiNnτZn1,n2.n3 ∼
∫ n∗(q)

0
dnexp

[
πn

2
√

24q−8nN−9n2− 3πin2

2

]
.

(2.33)
The claim asserts that we use the same function S(q, n) but sum over a dense set of n’s.
Before explaining anything about this claim, we emphasize that we have no derivation
of (2.33) except that this formula will give the exact black hole entropy at an arbitrary size.

Let us first explain why this is a nontrivial claim, and in particular why it is related to
including 1

nI
subleading terms. Our claim is essentially that, once we include the subleading
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corrections at fixed n, Zn1,n2,n3 will behave like

Zn1,n2,n3 ∼ exp [S(q, n+ δn(nI))] , S(q, x) ≡ πx

2

√
24q − 8Nx− 9x2 − 3πix2

2
(2.34)

with a nontrivial function δn(nI) ∼ O(1) � n of nI . This makes the distribution of
n + δn(nI) dense over a range of O(1) width around n. (2.34) is a claim about the 1

N

subleading corrections of Zn1,n2,n3 , since all δn(nI) dependent terms are subleading. If this
happens to all values of n, one would obtain

n∗(q)∑
n=0

Zn1,n2,n3 =
∫ n∗(q)

0
ρ(n) exp [S(q, n)] (2.35)

where ρ(n) is a suitable distribution determined by δn(nI)’s. Since the total number of
summands satisfying n ≤ n∗(q) is proportional to n3

∗, one finds
∫ n∗(q)

0 dnρ(n) ∼ n3
∗ ∼ N3.

So log ρ(n) is a logarithmic correction to S(q, n) ∼ N2. Thus, ignoring it, one obtains (2.33).
If the sum over n is replaced by an integral over n, it is no longer valid to find

the dominant contribution by maximizing Re[S(q, n)]. Rather, one should find a saddle
point of S(q, n) in the complex n plane. Regarding S(q, n) as a complex function of n,
the maxima n0(q) of Re[S(q, n)] on the real axis is not a saddle point, due to nontrivial
Im[S(q, n)] = −3πn2

2 for continuous n. In summary, part of our claim is about the 1
nI

subleading corrections of Im[S(q, n)], which lift the degeneracy and render substantial
cancellations of different Zn1,n2,n3 ’s.

Given (2.33), one can identify the saddle point on the complex n plane. In fact it
is inconvenient to work directly with the last expression of (2.33). Rather, we keep the
variables τ, y unintegrated, and consider the multiple integral formula for eS(q,j) given by

eS(q,j)∼
∮
dτ

∮
dy

∫ n∗(q)

0
dnelogZn1,n2,n3−2πiτ(3q−nN)−2πiy·j (2.36)

∼
∮
dτ

∮
dy

∫ n∗(q)

0
dn exp

πin2
(
y− 3τ

2

)(
1−y− 3τ

2

)
τ

−2πiτ(3q−nN)−2πiy ·j

 .
Note that at this stage we reintroduced the refinement with y or j, since the analysis is no
more difficult. To find the possible saddle points in the complex n plane, we can simply
extremize the 3-dimensional integral (2.36). (Later in this subsection, when numerically
discussing the contour deformation, it will be more convenient to use the original 1 dimen-
sional integral (2.33).) It is easy to first extremize in n, since the integrand is Gaussian
in n. One finds the saddle point ns = − Nτ2

(y− 3τ
2 )(1−y− 3τ

2 ) . Inserting this, the remaining τ, y
integral is given by

SS(q,j) ∼
∮
dτ

∮
dy exp

− πiN2τ3(
3τ
2 − y

) (
3τ
2 − 1 + y

) − 2πiτ · 3q − 2πiy · j

 . (2.37)

Reintroducing ω1 = −2πi
(

3τ
2 + y − 1

)
, ω2 = −2πi

(
3τ
2 − y

)
, the exponent is given by

N2

2

(
ω1+ω2

3 − 2πi
3

)3

ω1ω2
+ ω1(Q+ J1) + ω2(Q+ J2) (2.38)
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Figure 1. Contour deformations at various q. Green interval is the original integration contour
[0, x∗]. Blue arrows denote the gradient flow which determines the contour deformation. The
deformed contour is the union of two solid black lines C1, C3, and the solid red line C2. The solid
blue line is the steepest ascent contour.

where q ≡ Q+ J1+J2
2 , j ≡ J1 − J2. This is precisely the entropy function (at equal electric

charges QI) for the Bekenstein-Hawking entropy of BPS black holes in AdS5 × S5 [33].
Although we discussed the saddle points of the 3-dimensional integral (2.36), the same
entropy is obtained with S(q, n) from the last expression of (2.33).

We finally show that the contour can be deformed to pass through this saddle, by
extending the standard Picard-Lefschetz theory. Consider the following integral∫ x∗

(
q

N2
)

0
dxeN

2f(x) , f(x) ≡ πx

2

√
24 q

N2 − 8x− 9x2 − 3πix2

2 , (2.39)

where x = n
N and x∗( q

N2 ) = n∗(q)
N . If the integrand vanishes at the two ends x = 0, x∗,
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one can deform the integration contour to the steepest descent contour. The steepest
descent contour has maximal Re[f(x)] at the saddle point, and satisfies the stationary phase
condition Im[f(x)] = constant. The integration on this contour can be approximated at
large N by a Gaussian approximation around the saddle point. In our case, the integrand
does not vanish at the two ends. Then the steepest descent contour passing through our
complex saddle point xs ≡ ns

N does not end on x = 0, x∗, so we have to slightly extend this
standard method. We combine an interval C2 of the steepest descent contour (solid red
line of figure 1) with two more intervals C1, C2 of contours satisfying Re[f ] = constant and
ending on x = 0, x∗, respectively (solid black). The original contour C0 = [0, x∗] (green)
can be deformed to C1 ∪ C2 ∪ C3. As q decreases, one can see that the complex saddle xs
approaches the real maximum x0 ≡ n0(q)

N of Re[S(q, n)]. So the complex saddle approach
naturally converges the naive analysis with real n of section 2.1 in the small black hole limit.

The dominant term of the integral on C2 can be computed by the Gaussian approxima-
tion around x = xs, yielding a term of the form ∼ eN2f(xs). Then, denoting the two ends of
the interval C2 by x1 and x3, respectively, the integrands on C1 and C3 take the form of

eN
2Re[f(x1)]

∫
C1
dxeiN

2Im[f(x)] , eN
2Re[f(x3)]

∫
C3
dxeiN

2Im[f(x)] , (2.40)

respectively. Since C2 is the steepest descent contour, one finds eN2Re[f(x1,3)] � eN
2Re[f(xs)]

and these integrals are bounded as∣∣∣∣∣eN2Re[f(x1,3)]
∫
C1,3

dxeiN
2Im[f(x)]

∣∣∣∣∣ ≤ eN2Re[f(x1,3)]
∫
C1,3

dx
∣∣∣eiN2Im[f(x)]

∣∣∣� eN
2Re[f(xs)] .

(2.41)
Therefore, the contribution from C1 ∪ C3 is subdominant, justifying the approximation
using the Gaussian approximation near xs. As illustrated in figure 1, we checked for a wide
range of q

N2 that the contour can always be deformed in this way.

2.3 Comments on unequal electric charges

So far, we studied the index with the chemical potentials ∆I for the three electric charges QI
unrefined, ∆1 = ∆2 = ∆3 ≡ −2πiτ . In this subsection we comment on the generalizations
with unequal ∆I ’s. Note that in the original Yang-Mills matrix model of [7, 8], taking
independent ∆I was rather straightforward, while introducing the refinement y 6= 1

2 for
two independent angular momenta J1, J2 was much trickier [24, 27]. This was basically
because independent ω1, ω2 for the spacetime charges in QFT could introduce branch
points in the matrix model potentials which yield nonzero eigenvalue forces. In fact, as
explained in section 2.1, [24] found saddle points for the black holes at J1 6= J2 only when
certain inequalities are met: see eq. (2.41) or (2.45) of [24]. In the giant graviton index
Zn1,n2,n3 , since the role of internal and spacetime symmetries are partly exchanged, such as
∆1,∆2 ↔ ω1, ω2 for the giant gravitons with n3 6= 0, the situation is the other way round.
We have seen in section 2.1 that the giant graviton approach sees the black holes at J1 6= J2
(i.e. at y 6= 1

2) rather easily at least when the black hole size is small. This is because ω1,2
are the chemical potentials for internal symmetries in this approach. On the other hand,
we find it very difficult to construct saddle points of Zn1,n2,n3 when ∆I ’s are different.
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More concretely, we have tried to construct the large nI saddle points by noting that
the integrand Z4d

I resembles the integrand of a Yang-Mills index with U(nI) gauge group,
except for the tachyon and contour issues [16, 19]. So we tried to use the ansatz of [24] to
find the saddle point at unequal ∆I ’s. This almost solves the saddle point equations but not
quite, due to several branch points in the potential. During the course, however, we could
write down a free energy for logZn1,n2,n3 whose Legendre transformation and maximization
in nI ’s yield the dual black hole entropy. Although we have a gap in our derivation, we
strongly believe that we found the correct answer. So we simply report our findings without
any microscopic derivation.

We find that the refined free energy should be given by

logZn1,n2,n3 = πi(n1τ1 + n2τ2 + n3τ3)2

τ1τ2τ3

(
1
2
∑3
I=1τI − y

) (
1
2
∑3
I=1τI + y − 1

)
(2.42)

and the corresponding entropy function to extremize is

S(qI , j;nI , τI , y) = logZn1,n2,n3 − 2πi
∑
I

τI(qI − nIN)− 2πiy · j . (2.43)

Note that qI ≡ QI + J1+J2
2 , j ≡ J1−J2. Like the analysis we did for equal τI , we should first

extremize this in τI ’s, and then maximize the real part with nI . If we do this calculation,
again one generally obtains an entropy Re[S(qI , j)] which overestimates the degeneracy
unless cancellations of various Zn1,n2,n3 are taken into account.

Like the case with equal qI , the entropy estimated with single Zn1,n2,n3 reproduces the
black hole entropy in the small black hole limit qI , j � N2. For simplicity, we show this
only at j = 0 (y = 1

2). The small black hole limit corresponds to |τI | � 1, in which case
one obtains

S(qI ;nI , τI) ≈
πi(n1τ1 + n2τ2 + n2τ3)2

4τ1τ2τ3
− 2πi

∑
I

τI(qI − nIN) . (2.44)

This is a real function for purely imaginary τI ’s. We shall extremize S with τI ’s on this
subspace. Since S is real, the next maximization of Re[S] with nI is just maximizing S.
We can exchange the order of the two extremizations. S(qI ;nI , τI) is quadratic in nI , and
depends only on n1τ1 + n2τ2 + n3τ3. Therefore, only this linear combination of three nI is
fixed after extremizing with nI , leaving two parameters unfixed. This is a generalization
of sections 2.1 and 2.2 where only n1 + n2 + n3 ≡ n was fixed. After this extremization,
one obtains

S(qI ; τI) ≈ −4πiN2τ1τ2τ3 − 2πi
∑
I

τIqI . (2.45)

This is precisely the entropy function for the small black holes, whose further extremization
yields the Bekenstein-Hawking entropy S(qI) ≈ π

N

√
8q1q2q3 of small AdS black holes.

Beyond small black holes, we also expect that subleading order terms should render
substantial cancellations of different Zn1,n2,n3 ’s, in order for the index not to exhibit a
Hagedorn-like pathology at large nI ’s. At complex τI , one can only fix

∑
I nIτI so that

one of the three parameters nI remains unfixed in the leading free energy. Summing over
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them could render cancellations. We also suggest that the concrete mechanism of such
cancellation is replacing the sum over discrete nI ’s by an integral, as we explained in
section 2.2. This allows one to seek a complex saddle point for nI ’s in (2.43). Since (2.42) is
quadratic in nI ’s, one first finds a Gaussian saddle point for n1τ1 + n2τ2 + n3τ3, obtaining

S(qI , j; τ, y) = − πiN2τ1τ2τ3(
1
2
∑
I τI − y

) (
1
2
∑
I τI + y − 1

) − 2πi
∑
I

τIqI − 2πiy · j . (2.46)

This is precisely the entropy function of BPS black holes in AdS5 × S5 [33], whose further
extremization yields the Bekenstein-Hawking entropies of the dual black holes.

3 Analytic continuation and AdS4,7 black holes

In this section, we interpret our results in section 2 as the analytic continuation of the
maximal super-Yang-Mills index. [17] established such an interpretation for Z0,0,n3 . See
also [20]. For general Zn1,n2,n3 , we find a similar interpretation of its large N free energy.

Let us first review [17] in the language of [16]. The integrand for Z0,0,n3 is simply Z4d
3

of our section 2.1, as the quiver consists only of one adjoint node. This is related to the
integrand ZYM

int of 4d maximal super-Yang-Mills index ZYM
U(n3) in a very simple manner. Let

us first note that, when we write the arguments of ZYM
int as ZYM

int (∆1,∆2,∆3;ω1, ω2;ua),
the first three denote the U(1)3 ⊂ SO(6) internal rotations while the next two denote the
U(1)2 ⊂ SO(4) rotations on the spacetime of the QFT. Then Z4d

3 is given by [16, 17]

Z4d
3 = ZYM

int (ω1, ω2,−∆3; ∆1,∆2;u(3)
a ) . (3.1)

This formula can be understood as follows. Since n3 D3-branes wrap S3 ⊂ S5, the two
worldvolume rotation parameters are ∆1,∆2. On the other hand, SO(4) rotations on AdS5
are internal symmetries on D3-branes. So ω1, ω2 are their internal rotation parameters.
Finally, since the maximal giant gravitons can shrink rather than grow, losing energies, the
corresponding transverse scalar is tachyonic. This demands replacing ∆3 by −∆3. In fact, as
emphasized in [16, 19], (3.1) has to be defined by analytic continuation since Re(−∆3) < 0.
Suitably choosing the integration contour, one finds that Z0,0,n3 is obtained from ZYM

U(n3) by
exchanging ω1,2 ↔ ∆1,2 and replacing ∆3 → −∆3 with analytic continuation [17].

One can also get its large n3 ∼ N free energy from analytic continuation. When ω1,2,
−∆3, ∆1,2 on the right hand side of (3.1) have positive real parts, its large N free energy is
given by

logZ0,0,n3 = logZYM
U(n3)(ω1, ω2,−∆3; ∆1,∆2) ∼ n2

3
2
ω1ω2(−∆3)

∆1∆2
(3.2)

where the imaginary parts of the chemical potentials are suitably shifted by their periods to
satisfy either ω1 +ω2−∆3−∆1−∆2 = ±2πi. This result can be understood in two different
ways. Firstly, it can be understood as derived from various calculations of the Yang-Mills
index [14, 15, 24, 31, 32]. Secondly, one can interpret it as the free energy of dual AdS5 black
holes [13, 33, 34]. For 4d maximal super-Yang-Mills, both viewpoints are available. Having
in mind less explored SCFT’s, to be explored later in this section, we emphasize the virtue
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of understanding logZSCFTD as the free energy of dual black holes in AdSD+1. Once (3.2) is
known in the region Re(−∆3) > 0, it is quite immediate to continue it to the physical region
Re(∆3) > 0. Namely, we just keep the expression on the right hand side of (3.2). This
continuation assumes the absence of the Stokes’ phenomena. Let us assume this and proceed.
In the parametrization of section 2, we take ∆I = −2πiτI , ω1 = −2πi

(
1
2
∑
I τI + y − 1

)
and ω2 = −2πi

(
1
2
∑
I τI − y

)
which satisfy ∆1 + ∆2 + ∆3 − ω1 − ω2 = −2πi. Then (3.2) is

given by

logZ0,0,n3 ∼
πin2

3τ3
(

1
2
∑
I τI − y

) (
1
2
∑
I τI + y − 1

)
τ1τ2

, (3.3)

which is the giant graviton free energy (2.42) or (2.16) at n1 = n2 = 0. Therefore, our
formulae of section 2 can be naturally understood as the analytic continuation of the
Yang-Mills index.

In fact one can similarly interpret our general formula (2.42) for Zn1,n2,n3 . Expanding
the complete square in the numerator, one obtains

logZn1,n2,n3 =
3∑
I=1

πin2
IτI

(
1
2
∑
J τJ − y

) (
1
2
∑
J τJ + y − 1

)
τI−1τI+1

(3.4)

+
3∑
I=1

2πinI−1nI+1
(

1
2
∑
J τJ − y

) (
1
2
∑
J τJ + y − 1

)
τI

where I ∼ I + 3 is understood. The three terms on the first line are logZn1,0,0, logZ0,n2,0
and logZ0,0,n3 . One can more concretely identify each of them as the saddle point value
of the integrand logZ4d

I . This was derived in section 2.1 at equal τI ’s. At equal τI ’s, the
three terms on the second line can also be separately identified as the saddle point values
of the integrands logZ2d

I,I+1. So we naturally find a picture of the large N giant graviton
free energy, as the sum of three maximal super-Yang-Mills free energies and three 2d free
energies at the intersections.

We comment on two features of (2.42) and (3.4). Firstly, the six 4d and 2d contributions
factorize in (3.4). This does not always have to be the case, as there is no reason for these
degrees of freedom to decouple. We find that it is a rather exceptional property, perhaps
for even dimensional QFT’s whose free energies can be read off from anomalies. A more
fundamental aspect is the nI dependence through

∑3
I=1 nI∆I . This may be heuristically

understood as follows. 1
8 -BPS giant graviton solutions of [35] are given by holomorphic

surfaces in C3 ⊃ S5

0 =
∞∑

n1,n2,n3=0
Cn1,n2,n3z

n1
1 zn2

2 zn3
3 (3.5)

where zI are the coordinates of C3. ∆I can be regarded as U(1)3 rotation parameters on the
moduli space, transforming zn1

1 zn2
2 zn3

3 → e
∑

I
nI∆Izn1

1 zn2
2 zn3

3 . The formula of [16] can be
interpreted as an ‘equivariant localization’ of an integration over the moduli space given by
Cn1,n2,n3 ’s (modded out by an overall multiplication of a complex number) [17, 36]. When
all ∆I ’s assume general values, (3.5) is invariant under the rotation only if a single term is
kept on the right hand side. So the moduli are completely lifted. In this case, nI ’s label
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a discrete set of points in the moduli space which are invariant under U(1)3. When ∆I ’s
assume rational ratios, one may keep multiple terms on the right hand side if the value of∑
I nI∆I is the same. In this case, the moduli are partly unlifted. If we can interpret the

integration over the unlifted moduli space as the 1-loop zero-mode integral in the large N
calculation, only

∑
I nI∆I would appear in the leading large N free energy since this is

the only invariant quantity on the unlifted moduli space. Of course this line of thinking
assumes many things, such as the equivariant localization picture of the index, etc. However,
we think it is a somewhat natural explanation of the appearance of

∑
I nI∆I .

[17, 20, 23] explored the index of the 6d SCFTs on N M5-branes from M2-brane giant
gravitons, and also the index of the 3d SCFTs on N M2-branes from M5-brane giant
gravitons. We shall now study the 6d/3d indices accepting the existence of such giant
graviton expansions, only assuming the analytic continuation picture and the nI dependence
through

∑
I nI∆I . In the former case, the M2-brane giant gravitons wrap an internal

S2 ⊂ S4. So analytic continuations of the 3d maximal SCFT index will give the giant
graviton index in AdS7 × S4. In the latter case, the M5-brane giant gravitons wrap an
internal S5 ⊂ S7. So the 6d maximal SCFT index will provide the giant graviton index in
AdS4 × S7. Integrating out the giant graviton numbers, we indeed recover the free energies
and entropies of AdS7,4 black holes.

AdS4 black holes from M5-branes: we assume the following giant graviton expan-
sion [23] of the 3d index of maximal SCFT living on N M2-branes [37]:

Z3d(∆1,2,3,4;ω) = ZKK

∞∑
n1,n2,n3,n4=0

e−N
∑4

I=1 ∆InIZn1,n2,n3,n4(∆I ;ω) . (3.6)

∆I are for the U(1)4 ⊂ SO(8) R-symmetry and ω is for the U(1) ⊂ SO(3) rotation, satisfying∑
I ∆I − ω = 2πiZ. nI are the numbers of maximal giant gravitons wrapping four S5 ⊂ S7.
When only one nI is nonzero, say when n1 6= 0, logZn1,0,0,0 is obtain by analytically

continuing the free energy logZ6d
n1 of 6d (2, 0) SCFT of An1−1 type at large n1. The three

spacetime parameters are ∆2,3,4, and the two U(1)2 internal parameters are ω,−∆1. Either
from QFT [14, 38] or gravity [39] considerations, one obtains

logZn1,0,0,0 = logZ6d
n1 ≡ −

n3
1

24
ω2(−∆1)2

∆2∆3∆4
(3.7)

at
∑
I ∆I − ω = ±2πi. When all nI ’s are nonzero, there would be four different 6d QFT’s,

and also extra modes supported on the intersection S3 of two giants and on the intersection
S1 of three giants. We suggest that the net large nI free energy is given by

logZn1,n2,n3,n4 = −
ω2
(∑4

I=1 nI∆I

)3

24∆1∆2∆3∆4
. (3.8)

This formula reduces to the expected ones like (3.7) when only one nI is nonzero. This is
the unique expression with the correct limits and the

∑
I nI∆I dependence.
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Expanding the numerator of (3.8), one obtains contributions from the 6d/4d/2d modes:

logZn1,n2,n3,n4 =
3∑
I=1

logZ6d
nI

+
∑
I<J

logZ4d
nI ,nJ

+
∑

I<J<K

logZ2d
nI ,nJ ,nK

. (3.9)

logZ6d
nI

are given by (3.7) or its permuted versions, and the other terms are given by

logZ4d
n1,n2 = −n1n2ω

2 (n1∆1 + n2∆2)
8∆3∆4

, logZ2d
n1,n2,n3 = −n1n2n3ω

2

4∆4
. (3.10)

We can independently justify them. logZ4d
n1,n2 is the free energy of an SCFT at the

intersection of n2 M5-branes on 012345, and n1 M5-branes on 01236, 10. Its free energy
takes the form of P (−∆1,−∆2,ω)

∆3∆4
, where P is the cubic anomaly polynomial for SO(2)45,

SO(2)6,10, SO(3)789.6 The SO(2)45-SO(3)-SO(3) anomaly can be computed by separating
the n2 M5-branes along the 6’th direction, and compactifying the 10’th direction to obtain
Witten’s SU(n1)n2−1 MQCD [40]. (SO(2)6,10 is explicitly broken by the deformations.)
This is a linear quiver with n1 fundamentals attached to each SU(n1) node at the end. The
large nI anomaly is given by

k∆1ωω ≡ Tr [J45J78J78] = nV
4 = (n2

1 − 1)(n2 − 1)
4 ≈ n2

1n2
4 , (3.11)

where nV is the number of vector multiplets. This yields the following contribution to the
anomaly polynomial P (e.g. see eq. (2.34) of [41] and also [42]):

3k∆1ωω(−∆1)ω2

6 = −n
2
1n2∆1ω

2

8 . (3.12)

This explains the first term of logZ4d
n1,n2 in (3.10). Similarly, its second term is explained

from the SO(2)6,10-SO(3)2 anomaly of the SU(n2)n1−1 MQCD. logZ2d
n1,n2,n3 can also be

computed from anomalies, but here we just explain a quick check of its coefficient from the
entropy of 4d black holes obtained by triply intersecting M5-strings with momentum p. The
entropy is given by 2π√n1n2n3p, which is obtained by extremizing π2n1n2n3

β +pβ. This is the
Cardy limit of logZ2d

n1,n2,n3 in (3.10), upon taking ∆4 = β � 1 and ω =
∑
I ∆I∓2πi ≈ ∓2πi.

Now we extremize the entropy function given by

S(QI , J ; ∆I , ω, nI) = logZn1,n2,n3,n4 +
4∑
I=1

∆I(QI −NnI) + ωJ (3.13)

with (3.8). As in section 2, we may either understand it as maximizing Re[S] with real
nI ’s for small black holes, or extremizing S with complex nI ’s for generic black holes. We
present the calculation in the latter viewpoint. Extremizing S in nI ,

∑
I nI∆I is given by(∑

I

nI∆I

)2

= −8N∆1∆2∆3∆4
ω2 →

∑
I

nI∆I = ±2
√

2iN
1
2

√
∆1∆2∆3∆4

ω
. (3.14)

6−∆1, −∆2 are inserted since they correspond to the tachyonic transverse directions.
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We should pick one saddle point solution. To explain this, we employ the convention
of [43, 44] on the square-root, which sets

√
∆4 = −∆2 when all ∆I ’s are equal. Then, among

the two solutions of (3.14), one should choose the upper/lower sign at
∑4
I=1 ∆I −ω = ±2πi,

respectively. We showed this by a Picard-Lefschetz analysis like that of section 2.2. With
this choice, let us first discuss the small black hole limit, in which case ∆I � 1 are small
positive numbers and ω ≈ ∓2πi. Then (3.14) at equal ∆I ’s reduces to

∆
∑
I

nI ≈ ±2
√

2iN
1
2 · −∆2

∓2πi = 2
√

2N
3
2 ∆2 , (3.15)

yielding real positive
∑
I nI . This ensures that extremizing S with complex nI is equivalent

to maximizing Re[S] with real nI in the small black hole limit.
Inserting the solution picked in the previous paragraph into (3.13), one obtains

S(QI , J ; ∆I , ω) = ∓4
√

2iN
3
2

3

√
∆1∆2∆3∆4

ω
+

4∑
I=1

∆IQI + ωJ (3.16)

which perfectly reproduces the entropy function of BPS black holes in AdS4 × S7 [43].

AdS7 black holes from M2-branes: we assume the following giant graviton expan-
sion [23] of the index of 6d (2, 0) SCFT of AN−1 type [37]:

Z6d(∆1,∆2;ω1, ω2, ω3) = ZKK

∞∑
n1,n2=0

e−N
∑2

I=1 ∆InIZn1,n2(∆I ;ωi) . (3.17)

Here ∆1,2 are for the U(1)2 ⊂ SO(5) R-symmetry, and ω1,2,3 are for the U(1)3 ⊂ SO(6) in
the spacetime. They satisfy

∑
I ∆I −

∑
i ωi = 2πiZ. nI are the numbers of maximal giant

gravitons wrapping two different S2 ⊂ S4 cycles.
Assuming the analytic continuation picture, logZn1,0 at large n1 ∼ N will be given by

the 3d free energies on n1 M2-branes. Taking ω1,2,3,−∆1 as the internal parameters and
∆2 as the worldvolume parameter, the analytically continued free energy is given by [43–46]

± 4
√

2in
3
2
1

3

√
ω1ω2ω3(−∆1)

∆2
,

2∑
I=1

∆I −
3∑
i=1

ωi = ±2πi . (3.18)

Similar expression is obtained for logZ0,n2 . Now we suggest that the general logZn1,n2 at
large nI ∼ N is given by

logZn1,n2 ∼ ±
4
√

2i
3
√
ω1ω2ω3

(−n1∆1 − n2∆2)
3
2

−∆1∆2
. (3.19)

This gives the desired limits when either of n1, n2 vanishes, and depends only on
∑
I nI∆I .

It defies factorization between 3d-1d degrees of freedom.
Now extremizing the entropy function given by

S(QI , Ji; ∆I , ωi, nI) = logZn1,n2 +
2∑
I=1

∆I(QI −NnI) +
3∑
i=1

ωiJi (3.20)
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with (3.19), one obtains

± 2
√

2i
√
ω1ω2ω3(−n1∆1 − n2∆2) = N∆1∆2 →

2∑
I=1

nI∆I = N2

8
(∆1∆2)2

ω1ω2ω3
. (3.21)

Inserting this back to the entropy function, one obtains

S(QI , Ji; ∆I , ωi) = −N
3

24
∆2

1∆2
2

ω1ω2ω3
+

2∑
I=2

∆IQI +
3∑
i=1

ωiJi (3.22)

which is precisely the entropy function of BPS black holes in AdS7 × S4 [39].
Before finishing this exercise on AdS7 × S4, we comment on a puzzle that we resolved

only partly. In section 2, it was important to have a leading order degeneracy after fixing∑
I nI∆I by extremization, for the continuum conjecture and cancellations of ZnI ’s. Here,

fixing n1∆1 + n2∆2 at general complex ∆I ’s does not leave any degeneracy. So one may
wonder whether the picture of section 2 is valid here. Curiously, we can see that the
apparent real maximum n0

I of Re[S(QI , Ji, nI)] is generally subject to severe cancellations
already with the leading free energy. To simplify the discussions, let us unrefine ∆I , ωi and
keep n ≡ n1 + n2, q ≡ Q1+Q2

2 + 1
3
∑
i Ji only. Then the entropy scales like

S(q, n) = N3f
(
q
N3 ,

n
N2

)
. (3.23)

The maximum n0 satisfies Re[f ′( n0
N2 )] = 0. Now considering a neighborhood of n0, one finds

S
(
n0+∆n
N2

)
= N3f

(
n0
N2

)
+Nf ′

(
n0
N2

)
∆n+ 1

2N f ′′
(
n0
N2

)
(∆n)2 + · · · . (3.24)

Since the real part of the second term vanishes at n0, the change of Re[S] is very slow in
a wide range of |∆n| (� N

1
2 ). However, Im[S] generally varies fast in this neighborhood

due to the second term N Im[f ′( n0
N2 )]∆n. This causes cancellations of nearby terms around

n = n0, reducing the apparently over-estimated entropy at n0. This cancellation happens
because of the large N scalings S ∼ N3 and n ∼ N2: similar cancellations do not happen
in AdS5/CFT4 with S ∼ N2 and n ∼ N . This provides the expected cancellations of the
giant graviton index. We would like to further understand what makes the full continuum
conjecture for nI ’s possible.

4 Conclusion

In this paper, we studied the microstate counting of BPS black holes in AdS4,5,7 from the
viewpoint of giant graviton expansions.

We employed a saddle point approach to compute the large N giant graviton index
Zn1,n2,n3 in AdS5 × S5, when the three electric chemical potentials are unrefined. Further
maximizing the corresponding entropy in nI , we successfully accounted for the microstates of
small AdS5 black holes. To understand the black holes at general sizes, one had to take into
account the cancellations of Zn1,n2,n3 ’s. We conjectured a particular cancellation mechanism
which successfully reproduces the entropies of the black holes at arbitrary sizes. We further
proposed the large N free energy for Zn1,n2,n3 with all chemical potentials refined.
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We interpreted the large N giant graviton free energies as the analytically continued
indices of SCFT’s. Extending this interpretation to other AdS/CFT examples, we found
intriguing connections between the SCFT free energies in various dimensions. We obtained
the large N free energies of 6d/3d SCFTs on M5/M2-branes from the analytic continuations
of vice versa, after suitably dressing them by certain defect free energies. This suggests
that the (BPS) spectrum of quantum gravity admits dual formulations, either in terms of
electric or magnetic variables. Presumably, there will be more duality relations of this sort
that one can find from giant gravitons and analytic continuation. As a crude but nontrivial
exercise, we also tried to account for the large N free energy of the 5d SCFTs dual to the
massive IIA theory on AdS6 × S4/Z2 [43, 47, 48], from analytic continuations of the free
energy of D2-brane SCFTs on an orbifold. Although the details need to be clarified, we find
that the N

5
2 scaling of the former free energy is obtained from the n

5
3 scaling for D2-branes

in massive IIA theory.
Perhaps we should also comment on our current understanding of the giant graviton

expansion. The formula was constructed from maximal giant gravitons, wrapping the largest
(non-topological) S3 ⊂ S5. The worldvolume degrees of freedom include tachyons which
shrink the giant gravitons. The tachyonic quiver theories on these branes were used in a
subtle way [16] to write down the giant graviton index formula. Technically, the tachyonic
part of the partition function was first analytically continued. Then one chose the path
integral contour for the holonomy zero modes empirically. After these ad hoc steps, the
resulting Zn1,n2,n3 appears to correctly describe the spectral problem of the Yang-Mills
index. However, its physics looks different from that of the original quiver system. Namely,
the ‘ground states’ of Zn1,n2,n3 describe the trace relation constraints, subtracting the
over-estimated states in the graviton index. We feel that a well-defined QFT cannot show
this behavior. So it seems desirable to better understand the relation between the quiver
and the formula.

Giant gravitons were originally conceived in [1] as a gravity mechanism of imposing trace
relation constraints at E ∼ N1. However, in this paper, we found that their worldvolume
degrees of freedom are also responsible for enhanced entropies at E ∼ N2. Perhaps new
BPS states exist thanks to the trace relations. Since crucial roles were played by the open
strings connecting various D-branes in our studies, one can construct an ansatz for the BPS
cohomologies in terms of open spin chains ending on determinant operators [49]. We expect
that such an ansatz will be relevant at least in the small black hole regime, q � N2.

In section 2.2, we conjectured a possible mechanism in which various Zn1,n2,n3 ’s are
partly canceled to account for the black hole entropies correctly. A key feature was the
discrete sums of nI ’s being effectively replaced by integrals. We have no a priori justification
for this conjecture, except that the final entropy derived with this assumption is correct.
Here we simply want to note that the discrete points labeled by (n1, n2, n3) are special
points on the moduli space of 1

8 -BPS giant gravitons [35]. As alluded to in [17, 36], they
could be the fixed points of the equivariant localization calculation of an integral over this
moduli space. Perhaps it may be helpful to seek such an integral reformulation of this sum
to justify our continuum conjecture.
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A BPS black holes and their small black hole limits

In this appendix, we summarize the properties of the BPS black holes of [11, 12] having
equal electric charges Q1 = Q2 = Q3 ≡ Q and two angular momenta J1, J2. The solutions
are labelled by two independent parameters. We shall also explain the small black hole
limit. More detailed discussions are given in appendix B of [27].

The metric and the gauge field of the 5d gauged supergravity are given in [11, 12],
which are eqs. (B.1) and (B.4) of [27]. Their charges and the entropy are given by eq. (B.6)
of [27]. For simplicity, here we explain the case with J1 = J2 in detail. In this case, the
charges and the entropy are given by

Q = N2

2

[
µ

`2
+ µ2

2`4
]
, J1 = J2 = N2

2

[3µ2

2`4 + µ3

`6

]
, SBH = πN2

√
µ3

`6
+ 3µ4

4`8 , (A.1)

where ` is the radius of the AdS5 (called g−1 in [27]). µ is µ1 = µ2 = µ3 of [10, 12].
The classical black hole solutions above reliably approximate the quantum gravity when

N2 � 1 and ε ≡ µ
`2 ∼ N

0 is held fixed. The small black hole limit of this paper is defined
by ε (a parameter independent of N) being parametrically smaller than 1. More precisely,
the large N limit with fixed ε is taken first and the small ε limit is taken later. With large
enough N2, the semi-classical description is still reliable because we can keep the curvature
to be small. In this limit, the charges and the entropy are all given by N2 times a nontrivial
series expansion in ε. Similarly, taking N2 � 1 and ε to be parametrically larger than 1
yields the large black hole limit. In both limits, SBH as a function of q ≡ Q+ J1+J2

2 can be
expanded in q/N2, which is (2.27).

When J1 6= J2, the small black hole limit can be taken similarly. It amounts to taking
N2 � 1, keeping Q

N2 , J1
N2 , and J2

N2 (independent of N) to be parametrically smaller than 1.
More technically, the limit is described by eq. (B.12) of [27].
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