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Abstract 

Background The purpose of this study was to compare the segmentation performances of the 2D, 2.5D, and 3D net‑
works for maxillary sinuses (MSs) and lesions inside the maxillary sinus (MSL) with variations in sizes, shapes, and loca‑
tions in cone beam CT (CBCT) images under the same constraint of memory capacity.

Methods The 2D, 2.5D, and 3D networks were compared comprehensively for the segmentation of the MS and MSL 
in CBCT images under the same constraint of memory capacity. MSLs were obtained by subtracting the prediction 
of the air region of the maxillary sinus (MSA) from that of the MS.

Results The 2.5D network showed the highest segmentation performances for the MS and MSA compared to the 2D 
and 3D networks. The performances of the Jaccard coefficient, Dice similarity coefficient, precision, and recall 
by the 2.5D network of U‑net +  + reached 0.947, 0.973, 0.974, and 0.971 for the MS, respectively, and 0.787, 0.875, 
0.897, and 0.858 for the MSL, respectively.

Conclusions The 2.5D segmentation network demonstrated superior segmentation performance for various MSLs 
with an ensemble learning approach of combining the predictions from three orthogonal planes.

Keywords Deep learning, CBCT image, Maxillary sinus segmentation, Maxillary sinus lesion segmentation, 2.5D 
network

Introduction
Dental implants have become a prominent and promising 
treatment option for individuals with missing teeth [1]. 
In patients with missing maxillary teeth in the posterior 
region, the elevation of the maxillary sinus (MS) mem-
brane is used to appropriately achieve the bone augmen-
tation required for implant placement [2]. Thickening of 
the MS mucous membrane and pathological conditions 
of the MS can influence the results of bone augmentation 
procedures and implant treatment [3]. In the presence of 
mucosal thickening, determining a safe height for elevat-
ing the sinus membrane without blocking the ostium is 
significant [4]. According to the existing literature, most 
authors accepted that mucosal thickening greater than 
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2–3  mm is considered pathological [5]. In addition, the 
risk of perforation is lowest when the membrane thick-
ness falls between 1.5-2  mm, and membranes thicker 
than 3  mm are more prone to perforation when MS 
membrane elevation is performed [6]. Sinus membrane 
thickening may be related to various conditions such as 
chronic or acute sinusitis, pseudocyst, retention cyst, 
mucocele, peri-apical lesions, and periodontal disease [7]. 
There is a significant relationship between radiographic 
signs of patency of sinus ostium and the mucous mem-
brane thickness [5, 8, 9]. Therefore, accurate segmenta-
tion of the various lesions in the maxillary sinus (MSL) 
is essential for dental implant preoperative planning [4].

Clinicians should be cautious while planning sinus aug-
mentation procedures in patients with radiographic evi-
dence of sinus conditions such as mucosal thickening [4]. 
Cone beam CT (CBCT) has been widely used in the den-
tal field for dental implant surgery and treatment [10, 11]. 
The CBCT image has the advantage of lower radiation 
exposure and lower cost compared to multi-detector CT 
(MDCT) [10, 12, 13]. However, the manual segmentation 
process of the MS and MSL in CBCT images is laborious 
and time-consuming [14, 15]. Therefore, automatic seg-
mentation of the MS and MSL is necessary to reduce the 
workload of dental clinicians.

With the development of deep learning technology, 
there have been several recent studies on segmenting the 
MS and MSL using convolutional neural network (CNN) 
models on CBCT images [16–20]. Various segmentation 
networks have been proposed to automatically segment 
the anatomical structures from 3D medical data [21–25]. 
The simplest way was to sample the volume data along 
the orthogonal plane into 2D image sequences and train 
them with 2D CNN [22]. Other than 2D segmentation 
networks, the 3D CNN was also used to train networks 
for 3D information of anatomical structures from 3D vol-
ume data [23–26]. However, the 3D segmentation net-
work required larger memory capacity compared to 2D 
segmentation networks [24]. To solve this problem, the 
2.5D segmentation networks were proposed and applied 
to various medical image segmentation applications 
[27–34]. The 2.5D segmentation network based on 2D 
CNN was trained from data in axial, sagittal, and coronal 
planes, and the predictions from the individual 2D CNN 
in all three planes were ensembled [27] by unanimous 
[35], affirmative [35], or majority [36] voting methods. 
There are several different viewpoints on which train-
ing network is the best for medical image segmentation 
[37–40].

As far as we know, no previous studies have compared 
the segmentation performance of the 2D, 2.5D, and 3D 
networks for the segmentation of the MS and MSL. 
Therefore, the purpose of this study was to compare the 

segmentation performances of the 2D, 2.5D, and 3D 
networks for the MS and MSL with variations in sizes, 
shapes, and locations in cone beam CT (CBCT) images 
under the same constraint of memory capacity. Our main 
contributions are as follows: 1) we performed a compre-
hensive and quantitative comparison of 2D, 2.5D, and 
3D networks for the segmentation of the MS and MSL 
in CBCT images under the same constraint of memory 
capacity and 2) the MSL was obtained by the post-pro-
cessing of subtracting predictions of the maxillary sinus 
air region (MSA) from MS to effectively segment MSLs 
with large variations in sizes, shapes, and locations.

Materials and methods
Data acquisition and preparation
We included 67 patients (46 females and 21 males; mean 
age 38.18 ± 18.81  years) who underwent dental implant 
surgeries at the Seoul National University Dental Hos-
pital (2020–2021). The patient data were obtained at 75 
to 120 kVp and 7 to 10 mA using CBCT (DENTRI, HDX 
WILL Corp, Seoul, South Korea). The CBCT images 
had dimensions of 670 × 670 × 400 pixels, voxel sizes of 
0.3 × 0.3 × 0.3  mm3, and 16-bit depth. This study was 
performed with approval from the institutional review 
board of the Seoul National University Dental Hospi-
tal (ERI18001). The institutional review board of Seoul 
National University Dental Hospital approved the waiver 
for the informed consent because this was a retrospective 
study. The study was performed in accordance with the 
Declaration of Helsinki.

Since it was difficult to radiologically distinguish 
various pathological conditions and mucosal thicken-
ing in the MS without contrast enhancement of the 
CBCT image, existing pathological conditions (includ-
ing mucosal thickening inside the MS) were collectively 
regarded as the MSL in this study. MS, MSA, and MSL 
were manually annotated by an oral and maxillofacial 
radiologist using software (3D Slicer for Windows 10, 
Version 4.10.2; MIT, Massachusetts, USA) [41]. Dur-
ing the labeling process for the maxillary sinus (MS), the 
labels assigned to the MS did not encompass the septa 
within it; instead, the septa were treated as a component 
of the maxillary bone. In this study, our primary empha-
sis was on the accurate segmentation of the MS, MSA, 
and MSL in CBCT images.

We estimated the minimum required sample size to 
detect significant differences in the accuracy among 2D, 
2.5D, and 3D segmentation networks when both assessed 
the same subjects. Based on an effect size of 0.80, a sig-
nificance level of 0.05, and a statistical power of 0.80, we 
acquired a sample size of N = 52 (G* Power for Windows 
10, Version 3.1.9.7; Universität Düsseldorf, Germany). 
Consequently, 67 patients were divided into 53 patients 
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and 14 patients for the training and test datasets, respec-
tively. Within the training dataset, 39 patients were used 
for training and 14 for validation dataset. For a fair com-
parison of 2D, 2.5D, and 3D segmentation networks 
while meeting the memory requirement, all 3D CBCT 
data were resized to 256 × 256 × 192 pixels. The number 
of axial images used in 2D and 3D networks were 12,864 
and 12,864, respectively. The number of images in 2.5D 
network were 12,864, 17,152, and 17,152 in axial, sagittal, 
and coronal planes, respectively, and they were separately 
used for training and ensembled afterwards. We used a 
multi-label segmentation approach by simultaneously 
segmenting the MS and MSA by deep learning, and the 
MSL was obtained by performing the post-processing of 
pixel-wise subtraction between prediction volumes of the 
MS and MSA to effectively segment the MSL (Fig. 1).

2D segmentation networks
We used deep learning networks of U-net [22] and 
U-net +  + [42] with backbones of ResNet101 [43], and 
DenseNet169 [44] for 2D segmentation (Fig.  2a). The 
U-net [22] architecture consisted of the encoder and 
decoder parts. The encoder part consisted of repeated 
blocks of two convolution layers followed by batch nor-
malization, rectified linear units (ReLU), and a 2× 2 
max-pooling for down-sampling. The decoder part, 
similar to the encoder, consisted of repeated blocks of 
up-sampling. Each block was concatenated to a corre-
sponding feature map from the encoder block with a skip 
connection. The following layers were 3× 3 convolution, 
batch normalization, ReLU, and a 2× 2 transposed con-
volution for up-sampling.

The architecture of U-net +  + [42] was structurally 
similar to that of U-net. However, the main difference 
was that convolution blocks were added to the skip con-
nections as dense skip connections instead of simply con-
catenating encoder and decoder feature maps with skip 
connections. The purpose of adding convolution blocks 
to skip connections was to close the gap between the 
feature maps of the encoder and decoder [42]. In other 

words, using a dense skip connection for every convolu-
tion between the encoder and decoder instead of a simple 
skip connection reduced the gradient vanishing problem 
[42].

2.5D segmentation networks
In 2.5D segmentation networks, the same networks were 
utilized as the 2D networks with backbones of ResNet101 
[43] and DenseNet169 [44] (Fig. 2b). The difference was 
that all image data in the axial, sagittal, and coronal 
planes were separately used as input when training the 
model. The 2.5D network took a stack of continuous 2D 
slices in three different orthogonal planes. Each image in 
the three planes was used in an identical training envi-
ronment as the 2D segmentation network.

The ensemble learning approach was applied to the 
2.5D network for better predictive performance by com-
bining the predictions from three orthogonal planes. 
The prediction results from the sagittal and coronal 
planes after training were transposed back to the axial 
plane to produce an ensemble result, which combined 
information from the three planes. The unanimous [35], 
affirmative [35], and majority [36] methods were used to 
generate the ensemble results from all three planes. The 
ensemble result was considered true if the predictions 
from all three planes were true by the unanimous method 
[35], true if one of the three predictions was true by the 
affirmative method [35], and true if the majority of the 
three predictions were true by the majority method [36].

3D segmentation networks
We used 3D segmentation networks for capturing 3D 
information (Fig. 2c). While the 2.5D networks used the 
same network as 2D network architectures, the 3D net-
works of 3D U-net [24] and 3D V-net [26] used the 3D 
convolution block instead of the 2D convolution block. 
The 3D U-net, similar to U-net, consisted of encoder 
and decoder structures. At the encoder part, the input 
was first down-sampled with 3D max-pooling with a 
2× 2× 2 pool size followed by repeated 3D convolution 

Fig. 1 An axial slice image of a lesion inside the maxillary sinus in (a) CBCT images. The ground truth segmentation mask of (b) the maxillary sinus, 
(c) maxillary sinus air region, and (d) lesion inside the maxillary sinus
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blocks of 3× 3× 3 kernels and ReLU in each layer. At the 
decoder part, the corresponding size from the encoder 
was concatenated to the decoder block with a skip con-
nection. A 3D convolution block and ReLU repeated 
afterward.

We also employed 3D V-net [26] for comparison with 
the 3D U-net. The 3D V-net architecture resembled the 
encoder-decoder design of 3D U-net, but it utilized an 

attention gate instead of skip connections between the 
encoder and decoder. The application of attention gates 
allowed the 3D V-net to extract more features compared 
to the basic 3D U-net. Additionally, the 3D V-net dif-
fered from the 3D U-net in the use of convolution lay-
ers instead of max-pooling layers for the down-sampling 
block and 3D transpose convolution layers for the up-
sampling block.

Fig. 2 The architectures of (a) 2D, (b) 2.5D, and (c) 3D networks. Each network predicted the maxillary sinus and air region, and subtraction 
was applied to segment the lesion inside the maxillary sinus. In a 2.5D network, the same 2D network was parallelly trained with images in axial, 
sagittal, and coronal planes, and the predictions were ensembled before subtraction
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Training details for networks
To ensure a fair comparison between segmentation net-
works, all networks were trained using the same training 
setups. We designed our model as multi-task learning to 
simultaneously segment the background, MS, and MSA 
by adopting multi-label Dice loss [45]. All networks were 
trained using an Adam optimizer, and the learning rate of 
0.001 was reduced on a plateau by a factor of 0.5 every 5 
epochs over 200 epochs. The batch size was 8 for 2D and 
2.5D strategies, while it was 1 for 3D networks because 
of computational memory limitations. Data augmenta-
tion with rotation (− 20°–20°) and brightness (− 20%–
20%) was performed. The network structures were 
implemented with TensorFlow and Keras with NVIDIA 
GeForce GTX 1080 Ti 11 GB.

Performance evaluation for segmentation
We evaluated the volume-based performances for com-
parisons among the prediction results by different seg-
mentation networks. To effectively segment the MSL 
with large variations in sizes, shapes, and locations, we 
first trained the models to segment the MS and MSA, 
and then the MSL was obtained by performing the post-
processing of pixel-wise subtraction between prediction 
volumes of the MS and MSA. Segmentation perfor-
mances of the MS, MSA, and MSL were evaluated using 
the Jaccard coefficient ( JC =

TP
TP+FN+FP

 ), Dice similarity 
coefficient ( DSC =

2TP
2TP+FN+FP

 ), precision(PR =
TP

TP+FP
 ), 

and recall ( RC =
TP

TP+FN
 ) for evaluating network predic-

tion results, where TP, FP, and FN were true positive, 
false positive, and false negative, respectively.

We used one-way ANOVA tests to compare perfor-
mances among 2D (U-net + +), 2.5D (U-net + +), and 
3D (3D U-net) networks, one-way ANOVA tests among 
2D (U-net + +) networks trained with three different 
orthogonal planes (axial, sagittal, and coronal), one-way 
ANOVA tests among 2.5D (U-net + +) networks with dif-
ferent ensemble methods (unanimous, affirmative, and 
majority), and paired two-tailed t-tests between 2.5D 
(U-net + +) of ResNet101 [43] and Densenet169 [44] 
with the majority method [36] using SPSS for Windows 
10 (Version 26.0, IBM, Armonk, USA). The statistical sig-
nificance level was set to 0.05.

Results
The performances of the networks were evaluated for 
a dataset with 14 CBCT volumes not used for training. 
The results in Table  1 show the segmentation perfor-
mances of the JC, DSC, PR, RC, frame rate of test time 
(FPS), and the number of parameters (NOP) by 2D 
(U-net and U-net + +), 2.5D (U-net and U-net + +), and 
3D (3D U-net and 3D V-net) networks. The 2.5D net-
work showed the highest values of JC, DSC, PR, and 

RC for the MS, MSA, and MSL segmentation compared 
to other 2D and 3D networks (p < 0.05). The segmen-
tation performances of JC, DSC, PR, and RC by 2.5D 
network (U-net + +) reached 0.947, 0.973, 0.974, and 
0.971 for the MS, respectively, and 0.787, 0.875, 0.897, 
and 0.858 for the MSL, respectively. The 2.5D network 
of U-net +  + outperformed that of U-net for the MSL 
(p < 0.05). Due to the GPU memory constraint, the 3D 
networks resulted in lower NOP of 8.9 and 5.6 for 3D 
U-net and 3D V-net, respectively, however, higher FPS 
of 142 and 447 for 3D U-net and 3D V-net, respectively, 
than 2D and 2.5D networks (Table 1). As a result, the 3D 
networks achieved lower DSC scores with lower NOPs 
compared to the 2D and 2.5D networks. Therefore, the 
3D network with low NOP could not sufficiently learn 
the structural variations in the MSA and MS, and the 
contrast variations of CBCT images.

In Fig.  3, the segmentation prediction for the various 
MSL by 2D, 2.5D, and 3D networks, and the ground truth 
were superimposed on the CBCT images. The 2.5D net-
works exhibited the most accurate predictions with more 
true positives (yellow), fewer false positives (red), and 
fewer false negatives (blue) compared to the other 2D and 
3D networks for MSL areas of all sizes. The 2.5D network 
could more accurately segment the small narrow mucous 
membrane thickening of the MSL even just a few pixels 
thick, which was falsely predicted by the 3D networks. 
As the size of the MSL increased, there were more areas 
of true positive segmentation (yellow) and fewer areas of 
false positive (red) in 2D and 2.5D networks compared 
with the 3D network (Fig. 3).

The 2D network showed more false negatives for the 
MSL in sagittal and coronal planes than in the axial plane 
where the MS was connected to the ethmoid sinus or the 
nasal cavity with ambiguous boundaries between them. 
Similarly, it was also difficult to segment the MSL around 
the floor of the MS between teeth in the axial plane 
(Fig. 4). In 3D results, the 2.5D U-net demonstrated bet-
ter prediction with fewer false positives and false nega-
tives in boundary details for the regions with ambiguous 
boundaries between sinuses and around the floor of the 
MS compared to the other networks (Fig. 5). As a result, 
the 2.5D networks generally exhibited higher perfor-
mances compared to the 2D and 3D networks when the 
DSC for the whole volume of the MS was plotted from 
the inferior slice to the superior slice (Fig. 6). Therefore, 
the 2.5D network demonstrated the most robust perfor-
mance of segmentation to the large variations in the MSL 
compared to the other networks.

The segmentation performances of JC, DSC, PR, and 
RC for the MSL by the networks are plotted in boxplots 
(Fig.  7). The 2.5D networks achieved higher perfor-
mances than the other networks with a smaller dispersion 
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of data, shorter whiskers, and fewer outliers (Fig. 7). The 
lower segmentation performance of 3D networks for the 
MS and MSA compared to other networks resulted in 
the lowest performance for the MSL when MSA was sub-
tracted from the MS. Therefore, the 2.5D network dem-
onstrated the best segmentation accuracies of JC, DSC, 
PR, and RC for the MS and MSL among the networks.

The results in Table  2 show the segmentation perfor-
mances of JC, DSC, PR, and RC by 2D (U-net + +) net-
works with the different backbones of ResNet101 and 
Densenet169, which were trained with the image data 
in three orthogonal planes. Some performance metrics 
for MS, MSA, and MSL by the 2D network trained with 

the axial plane showed higher values than those with the 
other planes (p < 0.05).

The results in Table 3 show segmentation performances 
of JC, DSC, PR, and RC by 2.5D (U-net + +) networks 
with the backbones of ResNet101 and Densenet169 
and with different ensemble methods (unanimous, 
affirmative, and majority). The 2.5D (U-net + +) net-
work with the majority ensemble method achieved 
the highest values of the JC, DSC, PR, and RC for the 
MS and MSL (p < 0.05). The 2.5D (U-net + +) networks 
of DenseNet169, and the majority ensemble method 
showed better performance compared to ResNet101 for 
the MS and MSL (p < 0.05).

Fig. 3 The final segmentation results of the lesion inside the maxillary sinus (MSL) by 2D, 2.5D, and 3D networks. The ground truths of the MSL 
(yellow) are shown in CBCT images (a). The false negative (blue), false positive (red), and true positive (yellow) areas are shown for the MSL 
segmentation by (b) 2D U‑net, (c) 2D U‑net +  + , (d) 2.5D U‑net, (e) 2.5D U‑net +  + , (f) 3D U‑net, and (g) 3D V‑net networks
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Discussion
CBCT images are extensively used for dental implant sur-
gical planning in the field of dentistry [10], and they offer 
several advantages, including reduced radiation exposure 
and lower cost compared to multi-detector CT [10]. The 
accurate segmentation of MS and MSL in CBCT images 
enables dental clinicians to precisely visualize the size, 
shape, and location of the MSL. The 3D segmentation 
information of the MSL is essential for determining the 
appropriate treatment approach [4]. However, the man-
ual segmentation process of the MS and MSL in CBCT 
images is laborious and time-consuming [14, 15]. There-
fore, automatic segmentation methods were required to 
alleviate the workload of dental clinicians.

Advancements in deep learning led to the development 
of various deep learning models designed for the auto-
matic segmentation of the MS and MSL in CBCT images 
[16–20]. Morgan et al. [16], Nogueira-Reis et al. [18], and 
Choi et al. [19] showed DSC values of 0.996, 0.984, and 
0.910, respectively for the MS using 2D or 3D networks, 
and Jung et  al. [17] showed DSC values of 0.930, 0.760 
for the MSA and MSL in CBCT images using a 3D net-
work. Hung et al. [20] showed DSC values of 0.972, 0.729, 
and 0.678 for the MSA, mucosal thickening and mucosal 

retention cysts, respectively, in CBCT images by 3D net-
work. These 2D or 3D networks provided efficient and 
accurate segmentation results of the MS, MSA, and MSL 
in CBCT images, which could be alternatives to manual 
segmentation. Although previous studies performed 
the MS, MSA, and MSL segmentation in CBCT or CT 
images using 2D or 3D networks, it was unclear which 
network (2D or 3D) was best in terms of segmentation 
performance. Therefore, we compared the segmenta-
tion performances of the MS and MSL by the different 
2D, 2.5D, and 3D networks with various backbones and 
ensemble methods. As far as we know, no previous stud-
ies have been performed to compare the segmentation 
performance of the MS and MSL among 2D, 2.5D, and 
3D networks.

The limited size of the MSL dataset presented chal-
lenges for the deep learning model to effectively learn 
contextual information of the MSL. The varying sizes, 
shapes, and locations of the MSL, which only occupied a 
small portion of the sinus, made it difficult for the model 
to generalize from a limited dataset [4]. As a result, the 
model encountered difficulties in accurately identify-
ing and delineating the anatomical structure of the MSL 
due to the insufficient training dataset. To address this 

Fig. 4 Segmentation results of the various lesions inside the maxillary sinus by 2D network in (a) axial, (b) sagittal, and (c) coronal planes in CBCT 
images. False negative (blue) and false positive (red) areas are shown in (a) axial, (b) sagittal, and (c) coronal planes for the lesion inside the maxillary 
sinus (MSL) segmentation. The true positive of the MSL segmentation is shown in yellow
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issue, we adopted an alternative approach to segmenting 
the MSL, where we performed an indirect segmentation 
method by subtraction between prediction volumes of 
the MS and MSA. This involved pixel-wise subtraction of 

the segmentation volume of the MSA from the MS pre-
diction. By utilizing the subtraction approach between 
the MSA and MSL predicted by the model, we were able 
to obtain a more accurate segmentation of the various 
MSLs in CBCT images.

The segmentation of the MS and the MSL by the 2.5D 
network exhibited superior performance in terms of JC, 
DSC, PR, and RC compared to 2D and 3D networks. 
Although the performance of the 2D network was com-
parable with the 2.5D network in segmenting the MS and 
MSA, there was a significant difference in MSL segmen-
tation. In the MSL of small narrow mucous membrane 
thickening (even when it is just a few pixels thick), false 
predictions in the segmentation of the MS and the MSA 
could result in false segmentation of the entire MSL. Like 
2D networks, 2.5D networks were trained using 2D slice 
images acquired from three orthogonal planes (i.e., axial, 
sagittal, and coronal). Despite working with only the 2D 
slice images, the 2.5D networks were able to leverage 
the 3D information inherent in combining the multiple 
planes by ensemble methods. This enabled more accurate 
segmentation results compared to conventional 2D net-
works with the advantage of requiring only the memory 
capacity of a 2D network [27].

The 2D network was trained with 2D slices from three 
orthogonal planes (axial, sagittal, coronal). Generally, the 

Fig. 5 The 3D reconstruction of the maxillary sinus segmentation from (a) the ground truth, and by (b) 2D U‑net, (c) 2D U‑net +  + , (d) 2.5D U‑net, 
(e) 2.5D U‑net +  + , (f) 3D U‑net, and (g) 3D V‑net. The 2D and 3D networks show more false positives (red circles) than 2.5D networks, and the 2.5D 
networks less false negatives (blue circles) than 2D and 3D networks compared with the ground truth

Fig. 6 The line plots of the Dice similarity coefficient (DSC) 
from the inferior slice to the superior slice of the maxillary sinus by 2D 
U‑net +  + , 2.5D U‑net +  + , and 3D U‑net
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result trained with the axial plane outperformed some 
evaluation metrics compared to the two other planes. 
Although the 2D networks effectively segmented the MS 
and MSA, they had some limitations in capturing the 3D 
information of the MS and MSL by only learning the 2D 
information of each plane in CBCT images. The 2D net-
work showed more false negatives for the MS in the sag-
ittal and coronal planes than in the axial plane when the 
MS was connected to the ethmoid sinus or the nasal cav-
ity with ambiguous boundaries between them. Similarly, 
it was more difficult to segment the MS around the floor 
of the MS between teeth in the axial plane. As a result, an 
MSL with large variations in size, shape, and location of 
the MS was more visible in a specific plane than in oth-
ers. Therefore, a 2.5D network ensemble of the predic-
tions in the axial, sagittal, and coronal planes resulted in 
improvements in segmentation performance compared 
to 2D networks.

We compared different ensemble methods (unani-
mous, affirmative, and majority) for the 2.5D network 
(U-net + +) with two backbones. The ensemble method 
of the majority voting for predictions in the axial, sagit-
tal, and coronal planes was found to be more effective 
in improving the performance of the MSL segmenta-
tion in CBCT images. The affirmative method achieved 
the highest RC value for the MSL segmentation, indicat-
ing that this method was more effective in reducing the 
false negatives. However, there was a decrease in the PR 
value, showing that it increased the false positives and 
resulted in a lower DSC value compared to the major-
ity method. If the segmentation predictions in sagittal or 
coronal planes had lower false positives, then the affirma-
tive method could result in a similar performance to the 
majority method.

We observed that 3D networks were not always better 
than 2D or 2.5D networks in segmentation of the MS and 

MSL under the same constraint of GPU memory capac-
ity. These results were attributed to two main reasons. 
First, the reduced number of parameters of 3D networks 
was used due to the GPU memory constraints [46]. The 
3D networks with the reduced number of parameters 
could negatively affect 3D networks in learning contex-
tual information sufficiently about the different sizes, 
shapes, and locations of the MSLs (Table 1). Second, as 
the data augmentation for 3D networks had limited vari-
ation in the dataset than 2D networks by the GPU mem-
ory constraints, the 3D network did not sufficiently learn 
the structural variations in the MSA and MS and the 
contrast variations of CBCT images. Specifically, even 
though the 3D network was capable of capturing more 
3D information than the 2D network, the 3D networks 
weren’t able to learn enough 3D anatomical variation to 
achieve better performance, due to an insufficient num-
ber of data and model parameters. The 3D network had 
more false negatives, particularly in the posterior region 
where there was substantial variation in the shapes of the 
MS and MSL across patients (Fig. 5). As a result, the 3D 
networks were more likely to overfit the training set com-
pared to the 2D networks [27, 29].

The major finding in this study was that 2.5D net-
works resulted in more effective and accurate segmen-
tation of the MSL by subtraction between predictions of 
the MS and MSA than 2D and 3D networks under the 
same constraint of GPU memory capacity. Neverthe-
less, there were several limitations in this study. First, 
we only used an internal dataset from a single organiza-
tion to train deep learning models, which resulted in a 
potential limitation of generalization. The performance 
of the 2D, 2.5D, and 3D networks might have differ-
ent results by changing the dataset with external data. 
The networks need to be trained and evaluated using 
large datasets from multiple organizations or devices 

Fig. 7 The boxplots of segmentation performance of the lesion inside the maxillary sinus for (a) Jaccard coefficient (JC), (b) Dice similarity 
coefficient (DSC), (c) precision (PR), and (d) recall (RC) by the 2D U‑net, 2D U‑net +  + , 2.5D U‑net, 2.5D U‑net +  + , 3D U‑net, and 3D V‑net. Each 
boxplot contains the first and third quartiles of data. The medians are located inside the boxes, visualized as red lines. The whiskers are extended 
above and below each box in ± 1.5 times the interquartile range (IQR), and the outliers are visualized as red + marks defining values 1.5 IQR away 
from the box
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for generalization. Second, further research is needed 
to investigate whether the findings of this study also 
remain consistent when applying different network 
architectures such as transformer [47], UNETR [48], 
Swin Transformer [49], and SegFormer [50] for seg-
mentation of the MS, MSA, and MSL in CBCT images.

Conclusions
In this study, we compared the segmentation perfor-
mance of the MS and MSL in CBCT images using 2D, 
2.5D, and 3D networks under the same constraint of 
memory capacity. The 2.5D network demonstrated 
superior performance for segmentation of the various 
MSL with the ensemble learning approach of combin-
ing the predictions from three orthogonal planes. Fur-
thermore, the networks could effectively segment the 
various MSL by subtraction between predictions of the 
MS and MSA. The 2.5D network contributed to a more 
accurate evaluation of both the MS and MSL structures 
by improving robustness to structural variations and 
providing details on anatomical boundaries in CBCT 
images for the preoperative planning of implant surger-
ies to minimize surgical complications.
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