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Abstract 

 
This study attempts to classify the risk factors for 

semiconductor industry’s supply chain and quantify their occurrence 

probability within the supply chain using the fuzzy Bayesian network 

methodology. Using the PESTEL classification system, a risk 

classification system is created for the semiconductor supply chain. In 

total, 9 experts participated in a survey regarding their opinions on the 

previously defined risk elements and risk categories. The overall 

supply chain disruption probability and the figures for each risk 

category and risk element are derived with the help of f-weighted 

approach and triangular fuzzy numbers. 

It is economic and social risk categories that show relatively 

high chances to occur, and, namely, such risk elements as volatile 

demand, fierce competition, or lack of talents are deemed risky by the 

experts. Still, sensitivity analysis techniques, including causal and 

diagnostic inference and tornado graphs imply that some of the risk 

elements with low probability of occurrence but high magnitude of 

impact, originating from the other categories (e.g. natural disasters 

from the environmental risk category) are of great interest as well. In 

compliance with the results, practical implications regarding the risks 

are made for the management. 

 

Keyword : risk management, risk classification, semiconductor 

industry, supply chain, fuzzy Bayesian network, disruption 

Student Number : 2021-20655 
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Chapter 1. Introduction 
 

 

1.1. Study Background 
 

The importance of semiconductor industry in the 21st century is 

inevitable: semiconductors serve as a key element of various 

industries, including healthcare, military, transportation etc. They can 

be undoubtedly called an integral part of modern life, as they can be 

easily found in such devices used daily, as mobile phones or laptops; 

moreover, they are the drivers of the 4th industrial revolution. It is 

estimated that the total market size of the semiconductor industry 

reaches USD 580bn (Alsop, 2023), and by 2029 it is projected to reach 

USD 1380bn (Fortune Business Insights, 2022). One of the leading 

players in the global market of semiconductor industry is the Republic 

of Korea: its total production value, export value and global market 

share are KRW 201tr, USD 129bn and 19.9% respectively (Yoon, 2023). 

 

One of the peculiarities of semiconductor supply chain is its 

complexity. Many materials are required to produce a single chip; 

moreover, some of the materials are rare. Besides, there are numerous 

sub-segment technologies needed to refine materials into finished 

chips. On average, each segment of semiconductor supply chain spans 

over 25 countries (Khan et al., 2021). Consequently, complexity of 

such a supply chain comes together with globality: for instance, largest 

companies in the market have plants and R&D centers outside of the 

countries where they are based. Samsung Electronics has a NAND 

flash plant in Xian, China; SK Hynix has a R&D center in the USA and 

Italy (Jeong et al., 2023). Possible reasons for globality to be chosen 

as another specific trait of the semiconductor supply chain include the 

natural inevitability of outsourcing due to a relatively large number of 

steps comprising the actual chip manufacturing processes 

(approximately 600 to 800), as well as the low international trade cost. 

Since 1996, for the past 30 years tariffs on semiconductors, as well as 

IT devices, have been constantly decreased by authorities. 
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However, globality itself may have negative sides to it, as the 

semiconductor industry is generally assessed as volatile, despite the 

overall efficiency of the industry. Possible risks for the industry’s 

supply chain may include the following: demand volatility, pricing 

volatility, political instability (e.g. USA-China trade war, terror 

attacks). Aside from those, natural disasters (e.g. Tohoku earthquake, 

2011) or global pandemics (COVID-19 pandemic) can also serve as 

impactful risks for supply chain operations. On a country level, leading 

players in the market also may face risks tailored to specific conditions: 

for instance, the Republic of Korea is facing such risks as visible 

weakness in the non-memory market, possible political issues with the 

USA, China, and Japan (given the relations with those states), labor 

force-related issues (e.g. lack of talents), and the need for localization 

(Daxue, 2023). Still, the preliminary analysis of the previously 

published literature sources yielded that such risks have not yet been 

classified for the semiconductor industry supply chain using any 

classification framework. 

 

Aside from risk classification, this study aims at setting causal 

relationships between risk elements and risk categories so that the 

risk elements’ possible impact on the semiconductor supply chain can 

be assessed in a proper manner. We pursue quantifying the occurrence 

probabilities for each risk element and risk category, with the goal of 

obtaining the overall disruption probability figure for the whole supply 

chain. From the previous literature, Bayesian networks are frequently 

used as a methodology for assessing risk elements or uncertainties in 

terms of such a scientific field like risk management, given the 

causality between observed elements. However, considering the lack 

of open-source data for the semiconductor industry due to highly 

protective nature of the industry, we proceed with using the fuzzy 

Bayesian network methodology, where the data is obtained with the 

help of industry experts’ opinions on certain matters – risk elements 

for the supply chain of semiconductor industry in this case. 
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Thus, the research questions for this study may be as follows: 

 

1) What risk elements can be extracted from the previous 

literatures for semiconductor supply chain in particular? 

2) Can these risk elements be classified in a single framework? 

3) Can the probability of the risk elements’ occurrence in the 

semiconductor supply chain be quantified? 

4) Can the overall probability of disruption in the semiconductor 

supply chain be quantified? 

5) What are the most impactful risk elements / categories for the 

semiconductor supply chain? 

6) What managerial and theoretical implications can be produced? 
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Chapter 2. Literature Review 
 

The literature review section can be divided into 3 main topics as 

shown below: supply chain risk management, semiconductor industry 

supply chain, and semiconductor industry risk management. 

 

2.1. Supply chain risk management 
 

Before the global pandemic of COVID-19, main developments in 

the field of supply chain risk management (SCRM) included risk 

classification or systemization-related studies. Shahbaz et al. (2019) 

assessed overall supply chain risks for manufacturing in Malaysia with 

the help of a systematic process and categorized them into 7 

constructs. Pournader et al. (2020) attempted to systemize the main 

topics emerging in the field of SCRM, concluding with promising 

avenues for the future research. 

 

The impact of pandemic on this field can be characterized by 

papers mixing the topic of supply chain resilience together with SCRM 

(El Baz & Ruel, 2021; Bag et al., 2021). Moreover, COVID-19 induced 

studies on its impact on various industries’ supply chains. For instance, 

McMaster et al. (2020) investigated the fashion industry’s supply chain 

agility and offered several strategies that can be adopted to control 

for risk elements. Sharma et al. (2020) analyzed the impact of 

pandemic on the Indian healthcare industry’s supply chains, stressing 

the need for amending policies to help local workforce. Spieske et al. 

(2022) studied empirically how supply chain networks in the 

automobile industry contributed to avoiding the worst consequences 

of the pandemic; Sudan & Taggar (2021) suggested robust strategies 

for mitigating the automobile industry-associated risks in the post-

COVID era. 
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2.2. Semiconductor industry supply chain 
 

The field of semiconductor industry supply chain has been studied 

actively since 2000s. Several studies have been conducted on various 

topics, including simulation techniques, control strategies and supply 

chain disruptions. For instance, Wang et al. (2007) attempted applying 

the model predictive control (MPC), originating from the process 

industries to the semiconductor manufacturing-related problems, and 

showed that it addresses such distinguishable features of the 

semiconductor supply chain as high stochasticity, nonlinearity in 

throughput times and customer demands. Matsuo (2015) focused on a 

real case of Toyota’s supply chain disruption, induced by the 2011 

Tohoku earthquake, and tried to identify which functions were missing 

in the supply chain coordination mechanism in the Toyota Production 

System (TPS), given that it took 3 months for the company to recover 

to the pre-earthquake production levels. Results of the analysis imply 

that direct control functions must be added to the mechanism so that 

disruption risks can be alleviated. 

 

It is worth noting that among the academic papers published so far, 

prevailing are the papers of review nature. A notable work is produced 

by Mönch et al. (2018), who have summarized peculiarities of the 

semiconductor supply chain models in general. This work is divided 

into 3 parts and touches upon the following topics: strategic network 

design, supply chain simulation, demand planning, inventory 

management, capacity planning, master planning, production planning, 

and demand fulfillment. Still, this paper has not provided any insights 

on the field of risk management within the semiconductor supply chain. 

 

Moreover, COVID-19 has impacted studies in this field as well. 

For instance, Ramani et al. (2022) investigated the impact of 

semiconductor lack on the automotive industry as a COVID-19 

pandemic aftermath and studied the distinction between systematic 

disruptions impacting entire industries and normal disruptions 

affecting supply chains of a particular company. Ishak et al. (2022) 
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attempted to define the relationship between supply chain adaptive 

strategies and firm performance, given the influence of COVID-19 

pandemic, in a conceptual manner. They concluded that adaptive 

strategies influence the firm performance significantly when 

robustness, agility, and resilience are combined. Jaenichen et al. (2021) 

studied the supply chain disruption-related dangers in the 

semiconductor industry setting using the simulation techniques: a 

system dynamics simulation was modeled to investigate the response 

of a multi-echelon supply chain to the various end-market scenarios. 

Authors note that in case of unforeseen events of a large scale (i.e. 

global pandemic), a close collaboration among players in the supply 

chain can contribute to increase of robustness across the whole supply 

chain and, consecutively, mitigate the corresponding supply chain 

risks. 

 

2.3. Semiconductor industry risk management 
 

Narrowing the scope of the literature review to the field of risk 

management within semiconductor industry, we find out that most of 

the published academic papers are of a holistic nature. Besides, 

majority of them are not recent and contain only general guidelines for 

managing the risks in the semiconductor industry. For example, 

Chelton et al. (1993) assessed the risks related to chemical hazards 

used frequently in the manufacturing processes in the semiconductor 

supply chain, thus, touching upon only the production-related risks. 

Zafra-Cabeza et al. (2007) investigated a stochastic predictive control 

approach to managing risks in semiconductor manufacturing and 

optimizing costs and time of a project simultaneously. Effectiveness of 

the method is supported by a real risk management problem related to 

the construction of manufacturing facilities, solved with the help of the 

technique mentioned above. 

 

However, we notice that, to the best of our knowledge, no 

research on fuzzy Bayesian networks and semiconductor supply chain 

risk management has been conducted yet. Despite the visible progress 
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in the studies on semiconductor industry supply chain in general, the 

field of risk management in this industry’s settings lacks quantitative 

studies. In this sense, such a lack of academic work in this field calls 

for closing a corresponding research gap and the need to define main 

disruption drivers for this industry. Moreover, given the acceleration 

of research in this field induced by the occurrence of COVID-19 global 

pandemic, we suppose that moving towards quantitative studies in this 

field might bring more promising insights in the future.  
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Chapter 3. Methodology I: Systematic 

Literature Analysis 
 

 Systematic literature analysis (SLA) is known as a 

methodology used for selecting certain studies according to specific 

criteria and forming a cohort of such studies dedicated to a particular 

topic. In this study, SLA is used for extracting risk elements relevant 

to the semiconductor industry supply chain and using these risk 

elements to form a classification of risk elements placed under certain 

risk categories. 

 

 The choice of SLA as a primary methodology for extraction of 

risk elements can be well justified by a few reasons. One of the 

advantages of SLA is that it is effective at minimizing possible biases, 

as it sets prespecified relevance and quality criteria for selecting 

studies for the final sample and makes such criteria transparent to the 

readers (Denyer & Tranfield, 2009). Usefulness of SLA can be shown 

in terms of creating new knowledge (Light and Pillemer, 1984) or 

critical evaluation of eligible studies (Briner & Denyer, 2012) as well. 

Moreover, SLA has been frequently used in supply chain-related 

studies on the wide range of topics, including supply chain resilience 

(Ali et al., 2017; Hohenstein et al., 2015), blockchain technologies in 

the supply chains (Wang et al., 2019), or Industry 4.0 for supply chain 

management (Birkel & Müller, 2021). 

 

 The usage of SLA in this study complies with the well-

established principles of SLA. These principles include the following: 

 

1) Replicability: We are using the protocol and criteria for 

choosing the papers to form a sample or eliminating them at a 

later stage for not fitting the established criteria similar to 

those mentioned in the previously published academic papers 

(Han et al., 2020). 

2) Exclusiveness: We are accessing various academic databases 
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and journals in the paper collection process. 

3) Aggregation: We are conducting several rounds of adding new 

academic papers to the final sample. For instance, a few rounds 

were conducted over January-February 2023. 

 

Thus, the main research questions for SLA align with the research 

questions for the whole study and concern the following: 

 

1) What are the risk elements that are mentioned most frequently 

in the papers devoted to the field of supply chain risk 

management? 

2) Upon which criterion(-a) are the risk elements found in the 

papers to be classified? 

 

Initially, it is required to limit the range of literature sources. In 

compliance with the protocols used in the previously published 

sources, it was decided to use such academic databases as INFORMS, 

Taylor & Francis, and Wiley Online, with the condition of removing 

overlapping sources from the sample if required. Keywords for 

searching the papers included the following: supply chain risk 

management OR disruption OR resilience. As methodologies used in 

the analysis in the found papers can be different, it was also decided 

to attempt maintaining the balance between quantitative and qualitative 

papers (approximately 50% attained to each category). Only papers 

published between 2010 and 2022 were chosen for SLA, and the 

minimum quantity of papers for the sample was set at 90. 

 

From the initially formed sample, papers were eliminated step-

by-step according to the assessment of their relation to the field of 

supply chain risk management, semiconductor industry settings, and 

the language in which papers were written. Elimination protocol 

composed 3 stages, in which assessment was firstly assessed based 

on the paper title and its abstract, followed by introduction / conclusion 

of a paper, and, lastly, paper text itself. 
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Trend analysis, based on 96 papers in total, yielded the following 

results. 

 

 
Figure 3-1. Trend analysis: publications by years. 

 

From the Figure 3-1, it is observed that before 2018, the number 

of papers from our final sample published yearly was lower than 10. 

However, after 2019, the number increased to 14 in 20 and did not fall 

behind 10 until 2022. We suppose that this could be explained not only 

by solely growing interest of academia in supply chain risk 

management-related studies, but also by COVID-19 pandemic-

induced supply chain disruptions that might have induced studies in 

this direction as well. 
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Figure 3-2. Trend analysis: publications by journals. 

 

Figure 3-2 shows the distribution of journals in which the selected 

papers were published. As we have decided on including INFORMS in 

the list of academic databases for the paper search, it is inevitable that 

such journals as Management Science (MS) or Manufacturing & 

Service Operations Management (MSOM) are in the leading positions. 

Still, many papers were published in such journals as International 

Journal of Production Research (IJPR), International Journal of 

Production Economics (IJPE), Transportation Research, and European 

Journal of Operational Research (EJOR). Two papers were also 

published in the journal named Reliability Engineering and System 

Safety, signaling that risk management-related studies are naturally 

covered not only by business settings, but also engineering settings 

as well. For convenience, journals that had only one paper from the 

sample published in them were placed under the category “Other” with 

31 such journals in total. 

 

 

 

 

 

 

 

2

4

5

6

10

16

22

31

0 5 10 15 20 25 30 35

RELIABILITY ENG. AND SYS.SAFETY

EJOR

TRANSP.RESEARCH

IJPE

IJPR

MSOM

MS

OTHER

Trend - Publications by Journals



 

 １２ 

 
Figure 3-3. Trend analysis: publications by methodology. 

 

Figure 3-3 shows the distribution of papers by the main 

methodology used for analysis. In contrast with the initially expected 

balance between quantitative and qualitative papers, the results turned 

out to be slightly different, with 68% of the papers concentrating on 

the various quantitative methodologies. 21% of the papers concerned 

literature reviews, and 8% - empirical studies, which shows a possible 

lack of empirically oriented research in the area. Conceptual papers, 

as well as case studies, turned out to be very scarce in the search 

process. 

 

As for the extraction of risk elements from the papers, it was 

considered reasonable to investigate papers touching upon the 

semiconductor supply chain settings separately from the already 

analyzed 96 papers. This was done with the intention of searching for 

additional risk elements that might be relevant to our study. A sample 

of 9 papers led to discovery of 10 new risk elements. The small 

number of papers aligns well with the fact mentioned in the literature 

review section that the papers on the semiconductor industry supply 

chain are relatively scarce. 

 

For building a final version of the risk elements’ framework, it was 
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decided to use the PESTEL framework frequently used in the risk 

management studies (Kilubi, 2016). PESTEL stands for the names of 

risk categories: political, economic, social, technical, environmental, 

and legal. Previously found risk elements are to be tailored to 

semiconductor supply chain settings with some of the risk elements 

excluded from the classification, where applicable due to a mismatch 

with the semiconductor supply chain peculiarities. For example, 

tailoring maritime supply chain risk elements to the semiconductor 

supply chain settings without prior assessment of how much such risk 

elements match the settings themselves might be questionable. 

 

The choice of PESTEL framework can also be supported by the 

nature of risks that we deal with in the study. If we proceed with 

internal risks only, the number of risk elements will be much higher, 

inevitably leading to increased analysis complexity. Another 

alternative is to tailor risk elements to every stage of the 

semiconductor supply chain; however, given that semiconductor 

industry is famous for having complex supply chain, this would 

contribute to analysis complexity as well. Lastly, mixing PESTEL 

framework with internal risks would only make analysis more complex. 

Hence, we proceed with exclusively external risks in our framework. 

 

While extracting and grouping the risk elements, we faced an issue 

of having imbalance between the risk categories in terms of the 

number of risk elements in each category. For example, political risk 

category contained 4 risk elements, compared to 16 in the economic 

risk category. However, previous papers concerning PESTEL 

framework report no issues with such imbalance. Additionally, it was 

decided to form sub-categories within the main 6 risk categories, as 

we expected to use the conditional probability concept in our 

quantitative analysis; having no sub-categories might lead to 

combinatorial explosion and serious difficulties with collecting data 

and opinions from the industry experts. This will be discussed in more 

detail in the next section. 
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As a part of SLA, frequency analysis was conducted for all 6 

categories to investigate the most frequently found risk elements. The 

results are shown below. 

 

 
Figure 3-4. Frequency analysis: political risks. 

 

Figure 3-4 shows 4 political risk elements contained in the 

political risk category. We can observe that political instability and 

piracy and terrorism were mentioned most frequently in the papers, 

while government oversight and corruption – least frequently. 
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Figure 3-5. Frequency analysis: economic risks. 

 

Figure 3-5 shows the economic risk elements. Among those, 

fluctuations of transportation cost, material costs, and labor strikes 

were mentioned most frequently in the papers from the sample. On the 

other side, such risk elements as market liquidity, economic 

instabilities (e.g. changes in CPI / GDP), financial market inefficiency, 

and tax rate changes (or fiscal risk) were mentioned only from 2 to 4 

times. 
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Figure 3-6. Frequency analysis: social risks. 

 

Figure 3-6 shows the social risk elements derived from the papers. 

New technology adoption was found only in 2 papers, while scrutiny 

on gender equality – in 3; the most frequent risk elements from the 

social risk category were green production / ESG compliance (10) and 

labor quality deterioration (12). 
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Figure 3-7. Frequency analysis: technical risks. 

 

Figure 3-7 concerns the technical risks, which are 9 in total. While 

production-associated accidents (human-involved) and information 

transmission delay / distortion were the most frequently mentioned 

risk elements (13 and 15 mentions respectively), we can notice that 

such risk elements related to technology as technology turbulence and 

technological obsolescence and IT system integration issues are at the 

bottom of the chart. 
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Figure 3-8. Frequency analysis: environmental risks. 

 

 
Figure 3-9. Frequency analysis: legal risks. 

 

Figure 3-8 and Figure 3-9 concern the last categories from 

PESTEL classification: environmental and legal risks. In the 

environmental risk category, natural disasters as a risk element 

prevail over the other 2 risk elements: global pandemic / disease and 

climate change (in legal terms). As for the legal risk elements, the 
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leading position is shared by 3 risk elements: intellectual property 

violation risk, violation of emission control, and legal disputes / 

litigation. The least frequently mentioned risk element in this category 

is the machinery deficiency with only 4% recorded. 

 

The last step of SLA before finalizing the risk classification 

concerned the process of validating the risk elements, categories, and 

the classification itself by the industry experts. This was done based 

on the aforementioned lack of academic papers concerning solely 

semiconductor supply chain settings – thus, the academic papers as 

the only judgment basis for matching the found risk elements with the 

semiconductor industry settings were insufficient. In total, 2 experts 

from the industry were asked to assess the validity of the framework. 

Changes in the framework that were induced after consultations 

include the following examples: 

 

l Volatility in costs was proposed as a risk element comprising 

4-sub costs (inventory, production, quality, and procurement), with the 

procurement cost comprising labor, material, and transportation costs. 

l Labor strikes were removed from the economic risk category 

due to the overlap with the social risk category (namely, labor quality 

deterioration due to the causal relationship). 

l Experts questioned the technological turbulence in the 

technical risk category as the risk factor, given the nature of the 

semiconductor industry, as well as the counterfeit as the economic risk 

factor. 

 

Upon assessment of validity conducted by the experts, we extract 

the finalized risk classification framework as follows: 

 

1. Political Risks: 

l Political instability (e.g. war) 

l Government oversight and corruption 

l Piracy and terrorism 

l Trading regulations and tariffs 
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2. Economic Risks: 

l Industry-specific risks 

n Short / long product life cycle 

n Long lead times 

n High capital intensity 

n Volatile demand 

l Financial market inefficiency 

n Interest rate changes 

n Tax rate changes 

n Exchange rate changes 

n Liquidity 

l Cost increase 

n Inventory cost increase 

n Production cost increase 

n Quality cost increase 

n Procurement cost increase 

u Labor cost increase 

u Material cost increase 

n Transportation cost increase 

l Global-scaled risks 

n Economic instability 

n Fierce competition 

3. Social Risks: 

l Labor quality deterioration 

l Labor availability 

l Stakeholders’ scrutiny on: 

n green production / ESG compliance 

n labor welfare 

l Lack of talents 

4. Technical Risks: 

l Technology-related risk elements 

n Technology access issues 

n IT system integration issues 

n Technological obsolescence 

l Equipment failure 
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l Production-associated accidents 

5. Environmental Risks: 

l Natural disasters 

l Global pandemic / disease 

l Regulations related to climate change 

6. Legal Risks: 

l Law and regulation changes 

l Intellectual property violation risk 

l Legal disputes / litigation 
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Chapter 4. Methodology II: Fuzzy Bayesian 

Network 
 

A fuzzy Bayesian network can be defined as a statistical 

methodology used for quantifying the probability, with which a certain 

event might occur. In this study, a risk element is deemed as a certain 

event that can happen within the risk elements’ classification 

framework, transformed into a network. Naturally, probabilities span 

from 0 to 1, and fuzzy Bayesian networks help establish causal 

relationships between the risk elements and observe how those 

influence the probabilities. We can justify the existence of causal 

relationships between the risk elements by the fact that given the large 

number of stages in the semiconductor supply chain and the demand 

for semiconductors defined by the demand for the finished products, 

the bullwhip effect might significantly impede the supply chain 

operations (Mönch et al., 2018). Additionally, such uncertainties of a 

relatively larger scale as COVID-19 pandemic or the Russia-Ukraine 

war only add to the reasoning behind the choice of this methodology. 

 

In general, fuzzy Bayesian networks have been actively used in 

various academic fields. Most notable ones include quality control-

related studies and safety management area. For quality control, soft 

computing of embedded systems in quality control was blended well 

with fuzzy logic principles and fuzzy Bayesian networks for enhancing 

the quality levels (Koljonen et al., 2006). Enhancement of product 

quality can also be supported by using a fuzzy quality feature 

monitoring model, capable of calculating the operational risks for 

different stages of production (Jenab & Ahi, 2010). Data mining 

methods for ensuring the network quality also took advantage of fuzzy 

logic principles (Athanasiadis et al., 2010). As for the safety 

management-related studies, risk assessment and quantification 

studies prevail with implications derived for various industries: 

especially, those industries with complex dynamic environments show 

high frequency of implementing fuzzy logic and fuzzy Bayesian 
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networks. For instance, fuzzy Bayesian networks can be successfully 

used for assessing the risks related to offshore operations in ocean 

engineering and modeling corresponding causal relationships (Ren et 

al., 2009). Operational risks can also be calculated, as well as 

predicted, with the help of fuzzy algorithms and Bayesian networks in 

terms of building projects of various kind (Guo et al., 2010). In 

transportation, safety analysis of unmanned aircraft systems can also 

be supported by usage of fuzzy Bayesian networks contributing to 

formation of a regulatory-based approach (Luxhøj & Öztekin, 2009). 

 

Another reasoning behind choosing the fuzzy Bayesian network as 

a primary methodology for this study relates to its established 

presence in the academic papers dedicated to supply chain 

management, especially since 2010s. Several topics in this sense 

include fuzzy optimization for solving the supply chain network design 

problem (Tabrizi & Razmi, 2013), information risk assessment in 

supply chains for preventing the issues induced by information 

distortion (Sharma & Routroy, 2016), or modeling the supplier choice-

related decisions via integration of influence diagram and fuzzy logic 

(Ferreira & Borenstein, 2012). Moreover, the COVID-19 pandemic 

influenced the growth of research in this field with fuzzy Bayesian 

networks as a primary methodology, supporting the statement above 

regarding the influence of major uncertainties on the usefulness of 

fuzzy Bayesian networks: thus, such methodology can be implemented 

successfully in terms of risk assessment in various industries, 

including maritime industry (Sahin et al., 2021), cold chain (Chen et al., 

2021), healthcare (Rehman & Ali, 2022) etc. 

 

A Bayesian network is the basis of the fuzzy Bayesian network, as 

follows from its name, and is also called as a belief network, uniting 

the Bayes’ rule and the network theory to form a directed acyclic 

graph. A conceptual model of a Bayesian network applied to supply 

chain settings is shown below and concerns supply chain disruption 

triggers, supply chain risk events, and supply chain consequences. In 

our paper, risk elements serve as the triggers, categories from the 
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risk classification framework play the role of risk events, and supply 

chain disruption is the only consequence we are to have in the network. 

 

 
Figure 4-1. Bayesian network for supply chain: conceptual model (Hosseini and 

Ivanov, 2021). 

 

As an extension added to the original Bayesian network, fuzzy 

logic is applied to obtain the fuzzy Bayesian network methodology. 

Fuzzy logic is a form of many-valued logic, within which the value of 

variables ranges from 0 to 1. However, its peculiarity is that it 

complies with the principle that decisions are made based on the non-

numerical basis. Thus, in this sense, experts that participate in the 

data collection process with the help of surveys typically express their 

opinions using a certain linguistic scale rather than choosing a certain 

value in the range of 0 to 1. Linguistic scales commonly contain an odd 

number of elements for convenience: most frequently, variations of 5, 

7, and 9 elements are met in the literature. For this study, we proceed 

with a 7-point linguistic scale as shown below in the Table 4-2. 
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Table 4-2. A 7-point linguistic scale for data collection (survey-based). 

 

Linguistic terms selected by experts are then to be quantified. 

Although many approaches to quantification exist and have been tested 

in the literature, in this study, we proceed with the triangular fuzzy 

numbers (TFN) and the f-weighted approach for defuzzification and, 

consequently, obtaining the final, crisp risk values for risk elements 

and categories, as well the supply chain disruption as the supply chain 

consequence. A crisp risk value in this sense stands for the occurrence 

probability of a certain event. 

 

Typically, TFN is given as [a, b, c], and the notations for the 

letters are as follows: 

 

l a: lower limit of the occurrence probability 

l b: probability that a certain event occurs (most probable 

figure, on average) 

l c: upper limit of the occurrence probability 

 

Thus, in Table 4-3 below we propose the TFNs for the original 

linguistic scale shown in the Table 4-2. 

 

 
Table 4-3. Triangular fuzzy numbers for the 7-point linguistic scale. 
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The extraction of crisp risk values, as mentioned before, is 

conducted with the help of the f-weighted approach (Ramli et al., 2021). 

Given that a TFN is defined as [a, b, c], the crisp value extracted from 

a TFN via the f-weighted approach equals: 

 

 
Figure 4-4. F-weighted approach for extraction of crisp risk values. 

 

Consequently, we can calculate the crisp risk values for all 7 

elements of the linguistic scale. The values are shown in the Table 4-

5. We note here that the crisp risk values do not equal 0 and 1: they 

are sufficiently close to the minimum and maximum values of the 

probability range, but never reach those. 

 

 
Table 4-5. Crisp risk values for the 7-point linguistic scale. 

 

To account for the possible differences between experts in terms 

of, for instance, years of experience in the industry or their reliability 

levels (i.e. an expert may be familiar with the economic risks, but very 

far from the political risks due to peculiarities of his experience etc.), 

and consequent heterogeneity of the sample, we proceed with applying 

the weighted approach for aggregation of the experts’ opinions (Guan 

et al., 2020). Figure 4-6 shows the calculations for the weight of a 

single expert, including such elements as ability (measured in years of 

experience) and reliability (self-assessed by the experts), while 

Figure 4-7 shows the calculations for aggregating the opinions of all 
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experts in the cohort for a single risk element. 

 

 
Figure 4-6. Calculations for the single expert’s weight (Guan et al., 2020). 

 

 
Figure 4-7. Calculations for aggregation of experts’ opinions regarding a single risk 

element (Guan et al., 2020). 

 

However, the calculations above may be applied without any 

additional steps only to the root elements of the network – that is, risk 

elements that do not depend on any other risk elements. Hence, for 

those risk elements with dependency relations (i.e. risk categories or 

the main, leaf node of the network, supply chain disruption) we are to 

use the conditional probability theory together with defuzzification and 

extraction of crisp risk values. An example is given in the Figure 4-8 

below: if we suppose that a risk element FC depends on the risk 

elements FK, AC, and VC, then the conditional probability for the risk 

element FC comprises a sum of 8 elements in total (23 = 8 combinations 

in total), where elements themselves represent the products of the 

probabilities of the root risk elements’ occurrence and the experts’ 
opinions (Ramli et al., 2021). 
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Figure 4-8. An example of conditional probability theory application in the process 

of extracting the crisp risk values (Ramli et al., 2021). 

 

Therefore, the goal of applying the fuzzy Bayesian network 

methodology to the previously extracted risk elements united in a 

single risk classification framework is to obtain the probabilities of 

occurrence not only for the risk elements and corresponding 

categories in the supply chain, but also investigate how high the 

occurrence probability is for the overall disruption in the supply chain 

as the main consequence for the supply chain. A conceptual version of 

the fuzzy Bayesian network that we aim at obtaining is shown in Figure 

4-9 as an example. 
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Figure 4-9. Conceptual model of a fuzzy Bayesian network (Hosseini and Ivanov, 

2021). 
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Chapter 5. Data Collection 
 

As mentioned in Chapter 4, the analysis related to fuzzy Bayesian 

networks strongly depends on collecting responses from the industry 

experts in the case of this paper. Additionally, as follows from our 

attempt to control for heterogeneity of the experts in the final sample, 

it is needed to control for their educational level, work experience 

measured in years, position in the company etc. Even though the little 

experience does not critically impede the weighted approach to the 

experts’ cohort, a decision on limiting the minimum experience to 4 

years was made prior to searching for experts, given that the 

responses of experts are of relatively high value for this study; too 

little experience might not result in producing valuable outcomes for 

the analysis. 

 

Also, a minimum number of experts for the final sample was of 

great concern at the initial stage of data collection. Coming back to the 

analyzed papers from Chapter 3, where fuzzy Bayesian networks are 

implemented with the help of survey-based data collection, showed 

that the average number of experts in the sample equaled 5.5 

(minimum number of experts: 3; maximum number of experts: 10); 

hence, our goal was to at least exceed this figure and obtain access to 

6 experts. Additionally, no papers limited the sample to a certain 

country or nationality as well. A survey was produced in English first, 

then translated into Korean and verified by 4 native speakers for 

ensuring the clarity of the survey content, as according to our initial 

expectations, majority of the experts would be from the Republic of 

Korea and, presumably, native speakers of Korean language. 

 

In total, 9 experts of Korean nationality were found from a 

company in the semiconductor industry sector based in the Republic 

of Korea: 5 of them represented the purchasing team, and 4 – the sales 

team. This secured the homogeneity of sample in terms of nationality 

and allowed to conduct analysis not only for the whole sample with 
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complete aggregation, but also for separate samples of 5 and 4 experts 

with partial aggregation within those two samples. Due to data 

protection and security-related issues, the data on experts is shown 

in the Table 5-1 in a limited form. 

 

# Years of exp. Educational level Weight 

1 25 Undergraduate 15.5% 

2 16 Undergraduate 8.4% 

3 16 Master’s 9.8% 

4 22 Undergraduate 11.5% 

5 15 Undergraduate 7% 

6 18 Master’s 10.4% 

7 21 Master’s 12.6% 

8 19 Undergraduate 9.8% 

9 26 Undergraduate 15% 

Table 5-1. Data on experts. 

 

A survey that experts worked with took approximately 2 hours to 

be finished completely. Given that we have produced relatively many 

risk elements in the final version of the risk classification framework 

with sub-categories and main categories included and the need to use 

conditional probability theory to quantify the responses of the experts 

into the crisp risk values, it was decided, opposed to initial plan, to use 

only 2 states for all risk elements and categories: TRUE (a risk 

element occurs in the supply chain) and FALSE (a risk element does 

not occur in the supply chain). Inevitably, more insights can be 

produced if there are more states to the risk elements (i.e. low / 
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medium / high risk of occurrence in the supply chain; that is, 3 states); 

however, given the relatively large size of the network, proceeding 

with more states would only lead to combinatorial explosion and lower 

levels of eagerness for the experts to participate in the survey. 

 

Descriptions for the risk elements were also provided for the 

experts not only for convenience, but also for preventing various 

approaches to understanding what risk elements mean. Such 

descriptions were taken from the academic papers mentioned in 

Chapter 3. An example of descriptions for the technical risk elements 

are shown below in the Table 5-2. 

 

 
Table 5-2. Example of risk elements’ descriptions: technical risk category. 

 

At first, experts were asked to evaluate the probability for the root 

risk elements not dependent on any other risk elements in the section 

named prior occurrence probability. An example with 4 risk elements 

from the political risk category is given in Table 5-3: using the 7-

point linguistic scale, experts evaluated how likely the risk elements 

were to occur in the semiconductor industry supply chain. 

 

 
Table 5-3. Prior occurrence probability section. 

 

As explained previously, prior occurrence probability section is 
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followed by conditional occurrence probability assessment for the risk 

sub-categories / categories dependent on the root risk elements. An 

example of evaluating a risk element “Procurement and purchase cost 

increase”, dependent on such risk elements as “Labor cost increase”, 
“Material cost increase”, and “Transportation cost increase”, is shown 

in Table 5-4. In total, given three dependent risk elements, there are 

8 possible combinations that experts are to evaluate. For instance, 

when all three risk elements are deemed TRUE, an expert may 

consider the occurrence probability of the parent risk element 

(“Procurement and purchase cost increase”) to be CE (Certain). 

Another example is when “Labor cost increase” is TRUE, but the other 

two root risk elements are FALSE: in this case, the answer of an 

expert can be FC (Fair-chance). Lastly, when all three risk elements 

are deemed FALSE, it can be stated that the conditional occurrence 

probability is NI (Nearly impossible). 

 

 
Table 5-4. Conditional occurrence probability section. 

 

Lastly, aside from the occurrence probability assessment, experts 

are to evaluate the magnitude of impact for each risk factor upon their 

occurrence in the supply chain. This is done with the purpose of 

conducting sensitivity analyses for the fuzzy Bayesian network. For 

evaluating the magnitude of impact, a separate 7-point linguistic scale 

with several changes in the wording is used and shown in the Table 

5-5. 
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Table 5-5. A 7-point linguistic scale for assessment of magnitude of impact. 

 

Thus, experts are to choose a certain element from the linguistic 

scale when assessing the magnitude of impact, similar to prior 

occurrence probability section. Besides, in this part of the survey, 

experts must conduct self-assessment of their own reliability in terms 

of subjectivity. An example is given in Table 5-6: an expert deems the 

impact of the risk element “Political instability” to be VH (Very high) 

but considers subjectivity reliability to be 0.7. For subjectivity 

reliability self-assessment, we do not use a separate linguistic scale: 

instead, we use the range of values from 0.6 to 1.0 with a 0.1 step, 

where 0.6 stands for the lowest level of subjectivity reliability (an 

expert does not have sufficient experience with this risk element), and 

1.0 – for the highest level. 

 

 
Table 5-6. An example of magnitude of impact and subjectivity reliability 

assessment. 
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Chapter 6. Results & Sensitivity Analysis 

 

Upon running the GeNle Modeler 4.0 software (academic version), 

base network models for the whole sample of 9 experts, purchasing 

team, and sales team were obtained as follows in the Figures 6-1 to 

6-3. Here, the probability of supply chain disruption is located at the 

center of each network model and noted in green: for the whole sample 

of experts, such probability equals 67%, while for the purchasing and 

sales teams – 91% and 44% respectively. 

 

 
Figure 6-1. Base network model for the whole sample of experts. 

 

 
Figure 6-2. Base network model for the purchasing team. 
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Figure 6-3. Base network model for the sales team. 

 

Table 6-4 summarizes the order of the occurrence probabilities 

by 6 risk categories originating from the PESTEL for 3 samples. 

 

Order Whole Purchasing Sales 

1 Economic (69%) Social (79%) Economic (59%) 

2 Legal (60%) Economic (78%) Technical (54%) 

3 Technical (58%) Legal (77%) Social (50%) 

4 Environmental (57%) Environmental (76%) Legal (53%) 

5 Social (56%) Technical (67%) Environmental (40%) 

6 Political (47%) Political (59%) Political (31%) 

Table 6-4. Order of occurrence probabilities by risk categories. 

 

In Tables 6-5 and 6-6, top-5 risk elements with the highest 

occurrence probability and the risk elements with the highest 

occurrence probability for each of the 6 risk categories are noted. 

 

Order Whole Purchasing Sales 

1 Volatile demand (97%) Volatile demand (98%) Volatile demand (97%) 

2 
Industry-specific risks 

(91%) 

Industry-specific risks 

(96%) 
Fierce competition (96%) 

3 Product life cycle (87%) Product life cycle (91%) Long lead times (87%) 

4 
Fierce competition 

(87%) 
Fierce competition (91%) 

Industry-specific risks 

(85%) 

5 Long lead times (86%) Lack of talents (88%) 
High capital intensity 

(84%) 

Table 6-5. Top-5 risk elements with the highest occurrence probability. 
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Category Whole Purchasing Sales 

Political 
Political instability 

(56%) 

Trading regulations 

and tariffs (76%) 
Political instability (41%) 

Economic Volatile demand (97%) 
Volatile demand 

(98%) 
Volatile demand (97%) 

Social Lack of talents (75%) Lack of talents (88%) 
Scrutiny on green 

production / ESG (69%) 

Technical 
Technological 

obsolescence (54%) 

Tech-related risks 

(69%) 

IT system integration 

issues (44%) 

Environmental 
Global pandemic / 

disease (59%) 

Global pandemic / 

disease (59%) 

Global pandemic / 

disease (59%) 

Legal 
Legal disputes and 

litigation (53%) 

Legal disputes and 

litigation (63%) 

Legal disputes and 

litigation (48%) 

Table 6-6. Risk elements with the highest occurrence probability for each of the 6 

risk categories. 

 

Tables 6-7 to 6-12 contain probability figures for all risk elements 

that belong to a certain risk category. The maximum probability 

figures for a particular sample are colored in red. We provide detailed 

implications derived upon these results in the next chapter. 

 

Risk element Whole Purchasing Sales 

Political instability 56% 69% 41% 

Government oversight 

and corruption 
35% 47% 21% 

Piracy and terrorism 19% 24% 6.4% 

Trading regulations and 

tariffs 
54% 76% 31% 

Table 6-7. Probability figures for political risk elements. 

 

Risk element Whole Purchasing Sales 

Product life cycle 87% 91% 83% 

Long lead times 86% 85% 87% 

High capital intensity 82% 80% 84% 

Volatile demand 97% 98% 97% 

Interest rate change 55% 72% 39% 

Tax rate change 42% 55% 28% 

Exchange rate change 67% 72% 62% 

Liquidity 52% 60% 63% 

Inventory cost increase 82% 85% 80% 

Production cost increase 69% 65% 74% 
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Quality cost increase 70% 70% 69% 

Labor cost increase 61% 73% 48% 

Material cost increase 70% 72% 69% 

Transportation cost 

increase 

48% 50% 46% 

Economic instability 57% 51% 69% 

Fierce competition 87% 91% 96% 

Industry-specific risks 91% 96% 85% 

Financial market 

inefficiency 

61% 74% 56% 

Procurement cost 

increase 

61% 64% 55% 

Cost increase 69% 70% 68% 

Global-scaled risks 77% 78% 83% 

Table 6-8. Probability figures for economic risk elements. 

 

Risk element Whole Purchasing Sales 

Labor quality 

deterioration 
47% 59% 28% 

Labor availability 39% 46% 26% 

Scrutiny on green 

production / ESG 
68% 68% 69% 

Scrutiny on labor welfare 47% 55% 40% 

Lack of talents 75% 88% 61% 

Stakeholders’ scrutiny 51% 65% 49% 

Table 6-9. Probability figures for social risk elements. 

 

Risk element Whole Purchasing Sales 

Technology access 

issues 
51% 68% 33% 

IT system integration 

issues 
53% 61% 44% 

Technological 

obsolescence 
54% 56% 41% 

Equipment failure 47% 51% 42% 

Production-related 

accidents 

48% 54% 41% 

Tech-related risks 52% 69% 32% 

Table 6-10. Probability figures for technical risk elements. 
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Risk element Whole Purchasing Sales 

Natural disasters 46% 47% 46% 

Global pandemic / 

disease 
59% 59% 59% 

Regulations related to 

climate change 
43% 54% 31% 

Table 6-11. Probability figures for environmental risk elements. 

 

Risk element Whole Purchasing Sales 

Law and regulation 

changes 
49% 62% 34% 

Intellectual property 

violation risk 
51% 61% 41% 

Legal disputes / litigation 53% 63% 47% 

Table 6-12. Probability figures for legal risk elements. 

 

An important part of network analysis concerns the sensitivity 

analysis. In this paper, we investigate two kinds of inference, typical 

for Bayesian network analysis: causal and diagnostic, as well as 

tornado graphs for the main node of the network – supply chain 

disruption - to derive implications useful for the management. The 

latter ones are explained in detail in the next chapter. 

 

Firstly, causal inference is based on changes in the root nodes 

(risk elements on the lowest level) and aims at investigating to which 

extent the main node’s (supply chain disruption) probability can 

change because of these changes. Upon aggregation of magnitude of 

impact-related answers using the already defined weights, we can 

obtain a list of top-N risk elements that are deemed impactful by the 

experts and produce several scenarios with those risk elements’ 
occurrence probability either left as it is or increased to 100%, which 

implies that they always occur in the supply chain. For 3 samples, we 

develop 7 scenarios for each (21 scenarios in total), and define the 

most sensitive risk elements, changes in probabilities of which induce 

the highest change in the main node – supply chain disruption. Tables 

6-13 to 6-15 contain results of causal inference for 3 samples. 
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Scenario # 1 2 3 4 5 6 7 

P4 (Trading regulations and 

tariffs) 
As is As is 100% As is 100% 100% 100% 

EC16 (Fierce competition) As is 100% As is 100% As is 100% 100% 

EN1 (Natural disasters) 100% As is  As is 100% 100% As is 100% 

Change (in %) 0 0 3.0% 1.5% 3.0% 1.5% 3.0% 

Table 6-13. Causal inference for the whole sample. 

 

Scenario # 1 2 3 4 5 6 7 

P4 (Trading regulations and 

tariffs) 
As is As is 100% As is 100% 100% 100% 

EC16 (Fierce competition) As is 100% As is 100% As is 100% 100% 

EN1 (Natural disasters) 100% As is  As is 100% 100% As is 100% 

Change (in %) 0 0 0 0 1.1% 0 1.1% 

Table 6-14. Causal inference for the purchasing team. 

 

Scenario # 1 2 3 4 5 6 7 

P4 (Trading regulations and 

tariffs) 
As is As is 100% As is 100% 100% 100% 

EC16 (Fierce competition) As is 100% As is 100% As is 100% 100% 

EN1 (Natural disasters) 100% As is  As is 100% 100% As is 100% 

Change (in %) 0 4.5% 0 4.5% 4.5% 9.1% 9.1% 

Table 6-15. Causal inference for the sales team. 

 

Diagnostic inference is, to some extent, an opposite of the causal 

inference in the sense that the probability of the main, leaf node – 
supply chain disruption – is set to 100% (implying that disruption is to 

happen inevitably), so that it is possible to observe how much 

probabilities of 6 risk categories in our classification increase from 

their initial levels in the base network model. We measure the change 

in % (i.e. if original probability and probability after inference are 30% 

and 45% respectively, the change yields 50%). The larger change in %, 

the more sensitivity pertains to this category. Table 6-16 shows 3 

most sensitive categories for each sample with changes in % placed 

on the right from the categories’ names. 
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Order by change 

in % 
Whole Purchasing Sales 

TOP 1 Technical (8.6%) Political (5.2%) Economic (50%) 

TOP 2 Legal (6.7) Technical (3.0%) Environmental (15%) 

TOP 3 Political (6.3%) Legal (2.6%) Technical (14.8%) 

Table 6-16. Diagnostic inference results for 3 samples. 

 

Tornado graph is another variation of sensitivity analysis that was 

tackled in this paper. It shows how much the target node (supply chain 

disruption) changes due to the changes in the parameter nodes that is, 

experts’ opinions expressed through survey and quantified upon 

proposed methodology) across the whole network. That is, all opinions 

of experts are investigated to build the tornado graph. Usefulness of 

tornado graph in our settings can be supported by the fact that the 

main node, supply chain disruption, is not the only node that can be 

chosen as the target node: for instance, a tornado graph can be 

produced for a risk category and show the sensitive risk elements that 

belong to this specific category. Commonly, it is considered that 

parameter nodes change in the range of 10% (both negative and 

positive changes apply). Figures 6-17 to 6-19 contain tornado graphs 

for 3 samples.  

 

 
Figure 6-17. Tornado graph for the whole sample. 
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Figure 6-18. Tornado graph for the purchasing team. 

 

 
Figure 6-19. Tornado graph for the sales team. 

 

As a sort of extension to sensitivity analysis, we have decided to 

investigate how different risk elements in the risk classification 

network differ from each other depending on their occurrence 

probability and magnitude of impact. Even though we do not 

incorporate dynamics in the fuzzy Bayesian network in this paper, this 

analysis could contribute to predicting the risk elements that would be, 

for instance, marked as sensitive, given that we conducted the analysis 

using the dynamic fuzzy Bayesian network. Investigations yielded the 

following observations for the samples: 

 

l Whole sample: Volatile demand showed both high occurrence 

probability and magnitude of impact. For natural disasters, 

equipment failures, and regulations related to climate change, 
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the occurrence probability was low, yet the magnitude of 

impact was deemed high by the experts. For piracy and 

terrorism, both measures were recorded as low. 

l Purchasing team: The results for purchasing team aligned well 

with the whole sample’s results, with a difference in the risk 

elements with low occurrence probability and high magnitude 

of impact; instead, natural disasters and labor availability were 

placed under this category. 

l Sales team: Together with volatile demand, fierce competition 

also showed high figures for occurrence probability and 

magnitude of impact. Interestingly, results for this sample 

were different from above in the sense that it was trading 

regulations and tariffs and tech-related risks (as a sub-

category under technical risk category) that showed low 

occurrence probability, but high magnitude of impact. Lastly, 

labor availability recorded both low occurrence probability and 

magnitude of impact, which is different from the results of the 

purchasing team. 
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Chapter 7. Implications 

 

In general, this study may be viewed as a certain call for more 

research conducted in semiconductor supply chain risk management, 

given relatively high figures of disruption occurrence probability for 

the whole sample of 9 experts (67%). Moreover, more quantitative 

research can be demanded upon this paper: to capture the dynamics 

of the industry, other methodologies apart from fuzzy Bayesian 

networks can be applied to the same settings. 

 

From a practical point of view, as the disruption may occur with 

probability equal to almost 70% in case of the whole sample, 

management should be aware of disruption-related risks in the 

operations. As expected, economic and legal risks play a great role for 

the field as of now; yet it does not negate the fact that risk elements 

from the other categories can be sensitive on their own as well. It is 

important to consider such risk elements, including trading regulations 

and tariffs or production-related accidents. Another threat is the risks 

with low probabilities of occurrence but, presumably, big impact on 

supply chain operations: those, for instance, include piracy and 

terrorism, natural disasters, and labor availability. Besides, drastic 

difference between the occurrence probability of the supply chain 

disruption for purchasing and sales teams – 91% versus 44% - might 

imply that to some point, alignment of two teams’ efforts can be useful 

for preventing disruptions in the supply chain. 

 

As for the order of categories in terms of the occurrence 

probability figures for each sample, it is worth mentioning that the 

political risk category was deemed by experts from all samples as the 

least risky category. This may be explained by the fact that 

semiconductor industry companies, when selecting the outsourcing 

partners, tend to choose relatively safe countries in which such 

partners are based, given that the selection process itself might take 

relatively long time. At the same time, economic risk category was 
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deemed sufficiently prone to occurrence, taking the first place in the 

order in all samples, except for the purchasing team. 

 

Summarizing the occurrence probability figures among all risk 

elements for all three samples yielded that volatility in demand is 

indeed the most likely to occur in the supply chain, as its probability 

ranges from 97% to 98%. Moreover, in the top-5 risk elements list for 

each sample, risk elements originating from the economic risk 

category prevail; examples include industry-specific risks as a sub-

category, fierce competition, product life cycle, long lead time etc. 

Having product life cycle in this list is not surprising: Uzsoy et al. 

(2018) noted that product life cycle itself impacts the demand 

prediction process drastically and contributes to complexity of this 

process. 

 

Among political risk elements, there is a need to pay attention to 

such risk elements as political instability and trading regulations and 

tariffs. The first one showed the highest occurrence probability figures 

for two samples – sales team and the whole sample (41% and 56% 

respectively); while trading regulations and tariffs were of great 

concern for the purchasing team (76%). For economic risk elements, 

even though volatile demand was placed first in all 3 samples, it does 

not negate the fact that given the large number of risk elements in this 

category, management still must pay attention to the risk elements 

located, for instance, in the middle of the risk elements’ list by 

occurrence probabilities. Such elements include, for example, high 

capital intensity (80%~84%) or inventory cost increase (80%~85%). 

 

As for the social risk category, two risk elements may cause 

concern for the management: those are the lack of talents and the 

scrutiny of stakeholders regarding green production or ESG 

compliance. The lack of talents recorded 75% and 88% of occurrence 

probability for the whole sample and purchasing team respectively; in 

this study, the lack of talents can be defined as the lack of mainly 

engineering talents. However, the sales team had this risk element on 
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the second place: the first one belongs to the scrutiny of stakeholders 

on green production and ESG. Given that its occurrence probability is 

sufficiently close to 70%, it may be important for the management to 

pay attention to this kind of scrutiny as well. Technical risk elements 

did not show notably large variations in terms of occurrence 

probability figures: they mainly varied in the range of 40% to 69%. 

Experts were concerned by IT system integration issues, given the 

large number of steps involved in the semiconductor industry supply 

chain, and technological obsolescence for its direct impact on the 

inventory management. 

 

Environmental risk category showed understandable inclining of 

experts towards the global pandemic / disease risk element. Clearly, 

responses of experts could have been affected by recent experiences 

with the global pandemic of COVID-19: the latter is considered an 

event of high uncertainty and low frequency at the same time (Hosseini 

and Ivanov, 2021). Interestingly, the figures for the whole risk 

category are quite high for the whole sample and the purchasing team, 

and yet the lack of visible differences between risk elements 

themselves across 3 samples in terms of their occurrence probability 

values implies that, to some extent, experts valued all 3 risk elements 

in this category to be of relatively similar importance for the 

semiconductor’s supply chain operations. Similarly, in the legal risk 

category, experts assume 3 risk elements in total to be important for 

the supply chain operations. 

 

Sensitivity analysis results yielded the following: 

 

l For the causal inference, the whole sample showed that trading 

regulations and tariffs were the most sensitive, as increasing its 

probability alone to 100% already yields a positive change of 

3.0% in the occurrence probability of the supply chain 

disruption, the main node of the network. For the purchasing 

team, trading regulations and tariffs were the most sensitive 

together with production-associated accidents, as sending 



 

 ４７ 

these two risk elements’ probabilities to 100% yielded the 

maximum change of 1,1%. Lastly, for the sales team, natural 

disasters and production-associated accidents were deemed 

the most sensitive, and the maximum change that could be taken 

by the main node was 9.1%. Thus, management may need to 

keep in mind the consequences that might come out of these 

risk elements deemed most sensitive upon the causal inference. 

l Diagnostic inference showed that the technical risk category is 

met in every sample, despite taking different places in every 

sample. Still, this implies that this risk category might be of 

great importance for the supply chain operations. For the sales 

team, we notice the visible gap with the other samples in terms 

of the magnitude of change measured in %: this might be 

explained by the fact that the overall disruption probability was 

lower for this sample, compared to the whole sample of experts 

or purchasing team only (44% versus 67% or 91%). Additionally, 

results of the diagnostic inference stress the fact that 

purchasing and sales teams might indeed have different views 

on the same issues or questions – in this analysis, except for 

the technical risk category, the other risk categories for each 

sample are different and do not overlap with each other: the 

purchasing team’s results consider political and legal risk 

categories to be of great importance, but the sales team’s 

results stress the importance of economic and environmental 

risk categories. 

l As for the tornado graphs, in the whole sample’s results, we 

can observe that the most sensitive combination for the network 

model is “P = FALSE, EC, S, T, EN, L = TRUE”, implying that 

all categories, except for the political risk category, matter for 

the supply chain disruption occurrence. For the purchasing team, 

all categories are of high importance for the supply chain 

disruption, while for the sales team it turned out that “T5 = 

TRUE” (production-related accidents happen in the supply 

chain) is the most sensitive combination. The supply chain 

disruption occurrence probability is vulnerable to shifts from 
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67.3% in the range of 67.06% ~ 67.71%, 90.9% in the range of 

89.5% ~ 91.25%, and 44.39% in the range of 44.18% ~ 44.6% 

for the whole sample, purchasing team, and sales team 

respectively. The most sensitive combinations are to be 

considered by the management as well; though tailoring them 

to the real-life events might be complicated given that a certain 

risk category cannot be defined by one single event possessing 

risks for the supply chain, this still can be useful for the 

management, considering the potential of tornado graph 

analysis in terms of changing the magnitude of the experts’ 
answers from 10% used in this study to, for instance, 20% or 

30%. 

l An extension of sensitivity analysis – a search for the risk 

elements depending on how small or large their occurrence 

probability and magnitude of impact are – indeed proved the fact 

that since the risk elements mentioned for multiple times 

previously in the main results and sensitivity analysis section 

are met under the groups of risk elements with low or high 

chance of probability and large magnitude of impact, 

management must attentively investigate such risk elements as 

well, especially in the case of incorporating the dynamic 

settings in such investigations. Examples of such risk elements, 

about which management must be cautious, include volatile 

demand, natural disasters, or fierce competition. 
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Chapter 8. Conclusion 

 

Despite the implications obtained in the previous chapter, this 

study has several limitations that must be considered when developing 

research in this direction. Firstly, it can be argued that using risk 

elements mentioned only in the academic sources may not reflect the 

nature of the industry fully given the typical gap between research and 

practice. To investigate whether typical risk elements mentioned in 

academic papers differ from reality and whether our proposed risk 

classification system is viable for the future research, it was decided 

to study industrial reports published between 2021 and 2023 by 

leading consulting firms. 6 reports showed that the common trends for 

the semiconductor industry were the visible lack of talents and risks 

such a lack possesses for the future of industry and a sufficiently big 

need for enhancing resilience for the supply chains, which is aligned 

with the key points taken from the results of our study. Legal risk 

elements were deemed important in such reports for the future 3-5 

years as well; however, while our risk classification system, 

originating from the PESTEL classification principles, maintains 

generalizability of the risk elements, the industrial reports considered 

legal risk elements to be more detailed. For instance, our classification 

has only intellectual property violation risk as a single risk element, 

but industrial reports deem each intellectual property type as a 

separate risk element: topography right, patents, trade secrets, 

designs etc. It was thus deemed viable to consider outcomes of the 

report analysis for the future studies in this field with a possibility to 

bring changes to the risk classification system. 

 

For causal inference, the process of developing scenarios can be 

criticized to some extent for not matching the real-life scenarios or 

incidents that have already happened across supply chains worldwide. 

A search for real-life examples in accordance with the obtained most 

sensitive risk elements would bring us to forming a real disruption 

induced by the risk combinations. However, one knows that 
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semiconductor industry is not eager to share information related to 

accidents in a voluntary manner, as the industry is not only protective 

in terms of information spread, but also aware of how big the impact 

of negative information disclosure on the stakeholders or company 

image is. Additionally, capturing the disruption itself and proving that 

the occurrence of a disruption was due to solely certain risk factors 

without sufficient background information is a complicated task. 

 

As mentioned previously in Chapter 6, continuous disruptions 

cannot be captured in our fuzzy Bayesian network as we do not work 

with dynamic Bayesian networks in our study. This leaves room for 

future research with dynamic settings incorporated in the network 

model. Moreover, since the fuzzy Bayesian network used in this study 

is static, there is a chance that experts expressed their opinion under 

influence of, for instance, COVID-19 and its current influence on the 

state of their respective companies. 

 

Based on the limitations mentioned above, we can conclude that 

there are several directions in which this study could be extended, not 

limited to incorporation of dynamic settings in the network. Possibly, 

PESTEL classification could be mixed with the other existing risk 

classification systems to include, for instance, internal risks. Fuzzy 

Bayesian network as a methodology can be implemented in the 

research dedicated to supply chain resilience, and the outcomes of this 

study could be connected in a natural manner with the studies from 

the field of supply chain analytics, given the implementation of the 

newest technologies in practice in many companies. 

 

In general, this study serves as an attempt to classify risk factors 

for the semiconductor industry supply chain and quantify their possible 

impact on the supply chain using the fuzzy Bayesian network 

methodology. It also attempts to close the research gap, characterized 

by lack of quantitative studies in the field of risk management in the 

semiconductor supply chain. In total, 6 categories are produced for the 

whole sample of risk events with the help of PESTEL classification 



 

 ５１ 

system. 

 

Overall disruption probability figures, as well as figures for each 

risk category and risk element in all 3 samples, are produced for 

comparative analysis using the f-weighted approach and triangular 

fuzzy numbers. It is economic, social, and legal risk categories that 

pertain to high-risk figures; yet sensitivity analysis techniques implied 

that some of the risk elements with low probability of occurrence but 

high magnitude of impact, originating from the other categories (e.g. 

natural disasters) need special attention from the management as well. 

In compliance with the results, practical implications are produced for 

the management, and the latter must consider those to make 

conclusions regarding their own entities. 
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Abstract in Korean 

 

본 연구에서는 퍼지-베이지안 네트워크를 활용하여 반도체 산업의 

공급망 리스크 요인을 분류하고, 공급망에 미칠 수 있는 영향을 

수치화하고자 한다. PESTEL 분류 시스템을 이용하여 반도체 공급망에 

관한 리스크 요인 분류 시스템을 생성한다. 총 9명의 반도체 산업의 

전문가가 앞서 정의된 리스크 요인/카테고리에 대한 설문 조사에 

참여하여 의견을 제시하였다. 전체적인 공급망 붕괴 확률 수치와 각 

리스크 요인/카테고리에 대한 수치는 f-가중치 접근법과 삼각 퍼지 

수치를 통하여 도출된다. 

 

붕괴 발생 가능성이 상대적으로 높은 카테고리는 경제적 및 사회적 

리스크 카테고리이며, 2 개의 카테고리에 속한 수요 변동의 불확실성, 

치열한 경쟁 또는 인재 부족과 같은 리스크 요인은 전문가에 의하여 

위험하다고 간주된다. 그러나 인과/진단 추론 및 토네이도 그래프를 

포함한 민감도 분석 기법은 발생 가능성은 낮고, 영향의 크기가 높은 

리스크 요인 중 일부가 다른 카테고리에 속해도 (예: 자연 재해) 위험할 

수도 있음을 증명한다. 마지막으로 본 연구에서 리스크와 관련된 실무적 

시사점은 경영진에게 제공된다. 

 

주요어: 리스크 관리, 리스크 분류, 반도체 산업, 공급망, 퍼지-

베이시안 네트워크, 붕괴 

학번: 2021-20655 
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