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Abstract

Analysis of Ensemble Streamflow
Prediction Effect on Deriving Dam

Releases for Water Supply

Yeonju Kim

Department of Civil and Environmental Engineering

Civil and Environmental Engineering Major

The Graduate School of Seoul National University

Ensemble streamflow prediction (ESP) considers the uncertainty of streamflow in

water resources management, primarily in western regions of the United States. Con-

sequently, the ESP system is actively used in hydrological forecasting and water

resources management in the United States and Europe. However, in South Korea,

ESP has only been used for hydrological forecasting, with its application in water

resources management being limited. Despite the availability of ensemble forecasts,

current water resources management practices in South Korea still rely on single-

valued statistics such as the ensemble mean for decision-making.

This study aimed to promote the use of ESP in water resources management in

South Korea and thus demonstrate its effectiveness. A simple statistical exercise was
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created to convince dam operators. A simple hypothetical illustrated that in case of

dams with the same capacity and demand but different inflow standard deviations, the

dam with a higher inflow standard deviation incurred higher costs.

Furthermore, further exercises were applied to actual dams in South Korea.

Multiple-purpose dams in the Han River basin with the same length of data were

selected according to the capacity-inflow ratio (CIR) as case study sites: Soyanggang

Dam (Dam SY) with a CIR of 1.345 and Chungju Dam (DamCJ) with a CIR of 0.563.

The inflow data for each dam were divided into nine sets, and the last set from 2020

to 2022 was used to generate unbiased ensembles based on the standard deviation.

Consequently, two ensembles were created: A well-forecasted scenario (Scenario W)

and a poorly-forecasted scenario (Scenario P). Sampling stochastic dynamic program-

ming (SSDP), which enables optimal release calculation using ESP, was employed to

develop SSDP/Hist and SSDP/ESP models. A primary function of multiple-purpose

dams in South Korea is water supply, which was optimized by setting the objective

function to avoid water shortages. Considering the poor accuracy of long-term fore-

casts in South Korea, SSDP/ESP models were constructed by incorporating the future

value function from the SSDP/Hist model and then optimizing in the forward direc-

tion. The SSDP/Hist and SSDP/ESP models were built for Dam SY and Dam CJ, and

the optimal releases were calculated. Thereafter, the simulated operation using the

obtained optimal releases was evaluated in terms of total penalty, frequency, duration,

ii



and magnitude.

The simulation results confirmed that Scenario W exhibited better overall perfor-

mance compared to that of Scenario P in Dam CJ. This indicates that even with the

samemean, different inflow standard deviations result in different optimal releases and

require different operational strategies. Indeed, in the simulation study for Soyanggang

Dam, there was no significant difference observed between Scenario W and Scenario

P. This finding indicates that dams with lower CIR values and higher water demands

are more sensitive to uncertainty in inflow predictions. Thus, the management of

water resources based solely on mean values is a naive operation method that neglects

considerations for future climate change and other uncertainties. Therefore, this study

can serve as a motivation for improving water resources management techniques in

South Korea.

Keywords: Ensemble streamflow prediction, Sampling Stochastic Dynamic Program-

ming, Optimization

Student Number: 2021-24690
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Chapter 1. Introduction

1.1 Research Background and Necessity of Study

The importance of hydrological forecasting for natural disaster mitigation and water

resource management was recognized by researchers in 1975 by the World Mete-

orological Organization (WMO) (WMO, 1975). Since the mid-1970s, WMO has

conducted several projects to encourage the development of streamflow forecasting

systems and to provide information on the choice of methods and approaches for them

(WMO, 1986, 1990). Accordingly, a new approach to streamflow prediction referred

to as extended streamflow prediction was announced to supply water considering

the uncertainty of streamflow in the western United States (Day, 1985). Thereafter,

the National Weather Service (NWS) operated the ensemble streamflow prediction

(ESP) program to utilize this method for hydrological forecasting and water resource

management, and the concept of ESP was established (Riverside Technology, 1997;

Connelly et al., 1999; US Department of Commerce and NOAA, 2020).

ESP is a technique that first inputs all possible precipitation traces that may

occur in the future into a rainfall-runoff model. Consequently, it generates several

streamflow traces and performs statistical analysis to predict with probability. The

primary advantage of ESP is its ability to quantify forecast uncertainty by generating

a range of possible streamflow traces (ensembles). Moreover, as the input ensemble
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can be selected flexibly, it can be applied to both long- and short-term predictions. In

addition, the initial condition of the watershed can be reflected through the physical

function of the deterministic rainfall-runoff model, which is in contrast to statistical

models that rely only on statistical techniques.

In Korea, the necessity of introducing ESP was raised in earnest only in

the 21st century. Kim et al. (2001) proved its excellence by applying ESP to the

Gongju branch to improve the "Water Supply Outlook" (current Water Resources

Status and Outlook) published at the beginning of every month by the Ministry

of Construction & Transportation and the Korea Institute of Civil Engineering and

Building Technology. Thereafter, K-water established ESP in practice for the Han,

Nakdong, and Seomjin river basins, confirming the effectiveness of ESP (K-water,

2004). Currently, the National Drought Information Analysis Center (NDIAC) is

conducting drought analysis of 35 dam basins nationwide using Bayesian ESP to

advance drought monitoring and forecasting technology. For the practical application

of the model, GUI-based user convenience environment improvement work is in

progress. (National Drought Information Analysis Center, 2018, 2021). In addition,

the Han River Flood Control Center reviewed ESP for practical use after Kim et al.

(2001) and converted the "Water Supply Outlook" (current Water Resources Status

and Outlook) into a probabilistic forecast (Han River Flood Control Office, 2009,

2022). They considered uncertainty in their probability for flood forecasting, which
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became the basis for reliable forecasting (Kim et al., 2011).

However, beyond hydrological forecasting, the use of ESP in the real time

management of water resources is challenging. This is because even in developed

countries, in the field, a single value is more convenient than an ensemble of multiple

traces. To solve this problem, studies have attempted to prove the positive effect of

using ESP in water resource management for the past 25 years (Eum et al., 2006;

Faber and Stedinger, 2001; He et al., 2022; Ramaswamy and Saleh, 2020). Never-

theless, cases involving successful use of ESP in the practical field of water resource

management (including in Korea) are rare. Even after the creation of several traces for

predicting hydrological forecasting, the calculations for the amount of release from a

dam are reliant on a single representative value such as the median or average value.

This study was conducted to demonstrate the significant difference in the

effectiveness of ESP in water resource management, particularly when determining

dam releases. Based on this, we intend to support dam operators in the field to actively

utilize the streamflow prediction ensemble which is the result of ESP.
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1.2 Research Objectives

The ultimate purpose of this study is to recommend the use of ESP considering the

inflow uncertainty in dam operations in Korea. The detailed goals for this are as

follows.

(a) Investigate research trends using ESP and demonstrate the use of the method in

water resources management. Further, exhibiting its excellent performance in

application cases.

(b) Induce policy-maker to easily understand the benefit of employing ESP in dam

operation by quantifying the effect of ESP through simple examples.

(c) Establish an optimal ESP-based dam operation model for two dams with differ-

ent capacity-inflow ratios (CIR) to demonstrate the feasibility of applying ESP

in real cases.
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1.3 Organization of Research

Chapter 2 of this paper, titled "Theoretical Background," investigates the research

trends in probability optimization, ESP, and ESP in reservoir operations. A simple

reservoir example is applied to demonstrate the importance of probabilistic forecasting

(ESP) in dam releases, thereby highlighting the risks associated with operation based

on a single representative value. This section aims to facilitate a better understanding

of the significance of probability prediction in dam operation. Chapter 3 presents

the methodology, which outlines the overall research procedures, the calculation

formula and considerations of the sampling stochastic dynamic programming (SSDP)

technique employed in this study, and the approach for updating optimal discharge

using ESP. Chapter 4 presents sample studies, where multiple-purpose dams in South

Korea are grouped based on CIR. Two dams are selected from this grouping, and the

methodology described in Chapter 3 is applied to analyze the results. Finally, Chapter

5 summarizes the findings and implications of the study.
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Chapter 2. Theoretical Background

Water resource system problems are complexly connected with hydrological, so-

cial infrastructure, ecological, economic, and anthropogenic factors related to water

(Loucks and Beek, 2017). Therefore, there exist several difficulties in defining the

water resource system problem. For example, "how to set the scope of the problem?,"

"which problem should be solved with the highest priority among many complexly

connected factors?," and "how to solve the problem?" are representative questions

that must first be defined in water resource system problem-solving. In this study, the

above questions were answered as follows and the water resource system problems

we aimed to address were defined.

The first question is "how to set the scope of the problem?" This study aimed

to show the positive effect of ESP on dam operation and thus recommend its usage.

Therefore, the current problem situation to be improved is set to dam operation

considering only a single value of inflow. Subsequently, among several dams, the

multi-purpose dams, which supply the maximum water in Korea, were selected as the

scope of the study.

The second question is "which problem should be solved with the highest

priority among the many complexly connected factors?" The term “multi-purpose

dam” refers to a dam constructed by the Minister of Environment, and is used for

7



two or more purposes among water for living, industrial, agricultural, environmental

improvement, power generation, flood control, and transportation by ship. Among

them, multi-purpose dams in Korea are particularly important for supplying water

such as water for living, agriculture, and environmental improvement. Therefore, in

this study, water supply was selected as the most important factor to be improved

among various other dam operation objectives.

Finally, the last question is "how to solve the water resource system problem?"

The water supply problem of dams primarily involves the use of modeling methods. A

model is a simplified version of a real system built into a computer. Models are built

to predict the outcome of decisions. In this chapter, existing studies and theoretical

backgrounds are summarized to answer the question of "how to solve the water

resource system problem?"

Models are used to simplify events that are very complex in the real world

and are caused by many factors. However, the consideration of the right assumptions

is crucial. The components of the model include constraints, parameters, decision

variables, state variables, and an objective function in the case of an optimization

model. The components of each model are summarized below.

(a) Constraints: the conditions the system has to satisfy

(b) Parameter: variables that are assigned known values

(c) Decision variables: variables having unknown values that are to be determined
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by solving the model. Decision variables can include design and operating

policy variables of various water resources system components.

(d) State variables: variables that describe the state of the system

(e) Objective function (in case of optimization models): the function to be opti-

mized during the problem-solving procedures

Models used in water resource system problems are largely divided into op-

timization, simulation, and simulation-based optimization. A simulation model is a

model that presents results expected to occur when a specific action is undertaken.

The solution of the optimization model is based on the objective function to be max-

imized or minimized, which is in contrast to the simulation model. The optimization

model maximizes or minimizes the objective function to derive the alternative ac-

tion to achieve the most optimal performance under given constraints. Finally, the

simulation-based optimization model is a model that calculates the results of our

actions with a simulation model and then optimizes it using the optimization model

based on it. This model is the most used model in the field of water resource systems.

For instance, using the operating rules we calculated through simulation, we can cal-

culate the amount of future water shortage, perform optimization in preparation for

this, and derive operating rules that improve the water supply to the best extent.
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Figure 2.1 Simulation and optimization model (Loucks and Beek, 2017; Kim, 2022)
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Figure 2.1 shows the difference between the simulation and optimization

models. Optimization models require an explicit expression of the goal, whereas

simulation models do not. Simulations simply assume certain scenarios or address

the “what if” scenarios that might occur if certain decisions are made. in addition,

users of simulation models must define the values of design and operational decision

variables before performing simulations. Once the values of all decision variables

are defined, the simulations can provide more accurate estimates of the possible

effects of these decisions. In contrast, optimization models indicate the best decision;

however, the solutions it leads to are often based on certain limiting assumptions.

Because of this, optimization models should be used not to find an optimal solution,

but as a method to define a relatively small number of good alternatives that can be

tested, evaluated, and improved later through more detailed simulations. Therefore,

the process of deriving multiple plans and policies using optimization and evaluating

them via simulations to reduce them to a small number is recommended(Loucks and

Beek, 2017).

In the field of water resourcesmanagement, several notable optimizationmeth-

ods are commonly used, including linear programming (LP), dynamic programming

(DP), nonlinear programming (NLP), and genetic algorithm (GA). In this study, we

also utilized sampling stochastic dynamic programming (SSDP), which is a represen-

tative optimization method for water resources management, along with simulation-
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based optimization based on the mass conservation equation. The following section

investigates the probabilistic optimization methods that account for the uncertainty in

inflow, ESP methodology, and research trends and examples of using ESP in reservoir

operation to understand the impact of ESP on optimal reservoir operation rules.
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2.1 Probabilistic Optimization

The greatest uncertainty in reservoir operation lies in the inflow, which necessitates

the development of approaches that incorporate this uncertainty. SSDP has been

devised to address this challenge by incorporating the traces of ESP directly into the

optimization formulation. In this section, we examine SSDP, which enables the direct

application of ensemble prediction data in the optimization framework, utilizing ESP

traces.

DP is a theory of multistage decision processes (Bellman, 1957). It provides

a systematic approach to transforming multistage problems into single-stage prob-

lems. In contrast to other mathematical programming techniques, DP does not impose

constraints on the use of objective functions. This renders it well-suited for handling

nonlinear problems. It is particularly useful for addressing problems with stochastic

characteristics through the framework of Markov decision processes. Further, DP

offers a systematic process for dealing with problems that involve multiple deci-

sion points and is thus a widely used optimization technique in the field of system

optimization.

(a) Stage refers to the points at which decisions are made. In the context of reservoir

operation, it represents the operational time step or the interval at which the

decisions are made.

(b) State variable represents the state of the system and aggregates past informa-

13



tion at a given stage, serving as a variable. In reservoir operation, it typically

represents the storage level and is commonly discretized for computational

convenience.

(c) Decision variable refers to the alternative actions that can be taken at each

stage, based on the knowledge of the state variable. In the context of reservoir

operation, it represents the release or discharge rate.

(d) Stage return is a scalar value that represents the effectiveness of the decision

made at each stage. It quantifies the operational benefits, such as hydropower

generation, associated with the decision made in reservoir operation.

DP is a process that seeks to find the optimal operating rules at each stage

for every possible state (Bellman, 1957). The underlying principle of DP, known as

the principle of optimality, states that the optimal decision at a particular state is

dependent solely on future decisions and is independent of past decisions. To address

optimization problems based on this principle, the backward method is commonly

employed. This study focused on the application of DP to reservoir operation planning

and explored the use of the backward method. The process is illustrated in Figure 2.2,

where the backward method is used to determine the optimal values at each stage,

considering the current returns and the maximum sum of future optimal values. This

iterative process continues for each state at every stage. Following the completion of

the iterations from stage 3 to stage 1, the optimal values at stage 1 are updated based

14



Figure 2.2 Dynamic programming schema
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on those obtained at stage 3. This is followed by further iterations using the backward

method until convergence is achieved.

Deterministic dynamic programming (DDP) refers to the situation wherein

the state at the next stage is determined with certainty based on the current state

and decision in dynamic programming. In the context of reservoir operation, DDP is

applicable when the inflow to the reservoir, such as average inflow, is deterministic

and known precisely without any uncertainty; that is, there is only one inflow trace.

DDP commonly solves the following recursive equation iteratively to determine the

release policy (Bellman, 1957).

ft(S
k
t ) = max

R∗
t

[
Ot(S

k
t ,Qt,Rt) +

{
ft+1(S

k
t+1)

}]
∀St, t ∈ {1, 2, · · · , T} (2.1)

St+1 = St +Qt −Rt (2.2)

Rt = min{max[R∗t , St +Qt − Smax], St +Qt − Smin} (2.3)

where Sk
t represents the k-th discrete value of the reservoir storage state

variable, which is discretized into K values at stage t. Further, ft(Sk
t ) denotes the

value of the objective function (optimal value function) that can vary based on the

research objective among the alternative actions available for the k-th reservoir storage

16



state variable, andOt(·) represents the objective function determined by the reservoir

storage (Sk
t ), inflow (Qt), and releases (Rt) at stage t. This computation process

proceeds backward from the last stage to the initial stage (Eum, 2007).

DDP undergoes an exponential increase in computational complexity with

progress in the discretization process. To alleviate the curse of the dimensionality prob-

lem and consider the stochastic nature of inflow, an implicit stochastic optimization

(ISO) technique has been proposed. In ISO, a significant amount of historical data or

synthetic inflow is used to sufficiently consider the uncertainty of flow. Subsequently,

deterministic optimization techniques are employed to determine the optimal outflow.

Thereafter, a post-processing step such as regression analysis is applied to relate the

previously determined optimal outflow with variables such as initial reservoir storage,

inflow from the previous month, or the relationship with end-of-month storage. This

approach, inspired by Monte Carlo Simulation, utilizes mathematical techniques to

predict possible outcomes of uncertain events through computer calculations. As DDP

assumes knowledge of the entire inflow time series over the entire period, the deter-

mination of optimal outflow is dependent on having an adequate inflow time series

and employing post-processing methods such as linear regression analysis. Moreover,

certain studies have addressed the differences in post-processing methods, including

proposing suitable approaches for post-processing analysis (Shaikh and Pattanayek,

2022).
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ISO, which utilizes deterministic models, offers the advantage of convenience

in the application and reduced computation time. However, it yields distorted optimal

releases when applied in situations involving insufficient data, such as in the case

of South Korea. This is because it relies on assumed time series data and obtains

optimal solutions through post-processing techniques such as multiple regression

analysis (Eum, 2007). To address this limitation, the explicit stochastic optimization

(ESO) technique has been developed. ESO incorporates uncertainty into the equations

of dynamic programming itself by representing it probabilistically. Consequently, it

enables optimization under uncertainty and aims to overcome the shortcomings of

ISO.

One of the optimization methods within ESO is SDP. SDP is constructed

by incorporating probabilities that reflect the uncertainty of input variables into the

process of DDP. In the context of reservoir operation, wherein the uncertainty lies in

the inflow, SDP is computed by multiplying the probability of the inflow. Although

the exact inflow to the reservoir cannot be precisely predicted, SDP considers the

probability distribution of the inflow by fitting it to the discretized intervals of Qt.

This is realized by placing the inflow probability at the front of Eq. 2.1 in DDP.

Consequently, it can be expressed as Eq. 2.4 by introducing the expectation operator

(Tejada-Guibert et al., 1995).
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ft(S
k
t ) = max

Rt

E
Qt

[
Ot(S

k
t ,Qt,Rt) +

{
ft+1(S

k
t+1)

}]
∀St, t ∈ {1, 2, · · · , T}

(2.4)

Expectation (E) can be obtained by multiplying the expected value of the

inflow for each probability and summing them. As mentioned earlier, in the case of

Eq. 2.4, the probability variable and the probability distribution function Pr(Qt) are

discretized to facilitate computation. Thus, the equation for SDP with the discretized

probability distribution function is expressed as Eq. 2.5.

ft(S
k
t ) = max

Rt

I∑
i=1

Pr(Qi
t)
[
Ot(S

k
t ,Q

i
t,Rt) +

{
ft+1(S

k
t+1)

}]
(2.5)

where Sk
t represents the k-th value of the discretized reservoir storage at stage

t, and Qi
t represents the i-th value of the discretized inflow at stage t. Figure 2.3

illustrates the case where Qt is discretized into four intervals, assuming a standard

normal distribution.
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Figure 2.3 Example of discretization of probability distribution function
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A case study of dam operation using DP-family optimization is presented in

Celeste and Billib (2009). The study investigated the performance of probabilistic

models based on ISO and ESO, which were used to define optimal reservoir oper-

ation policies. Six optimization techniques based on ISO with different calculation

methods and post-processing approaches, as well as the SDP method, were compared

in the Paraiba river basin in Brazil. In general, ISO and PSO models demonstrated

better performance compared to SDP and SOP; however, this was attributed to the

assumption of perfect forecasting, which is a major limitation of DDP.

To alleviate the difficulties caused by the complexity of real-world problems,

Giuliani et al. (2016) explored the technical and practical significance of using evolu-

tionary multiobjective direct policy search (EMODPS). They addressed three issues:

dimensionality, modeling, and multiple objectives, and applied SDP and EMODPS

to the Hoa Binh, a multipurpose dam in Vietnam. The results demonstrated that

EMODPS outperformed SDP, indicating its greater success in handling the chal-

lenges associated with the aforementioned problems. Subsequently, in South Korea,

Kim and Kim (2021) constructed models for the Boryeong Dam, which had ex-

perienced multi-year droughts, using EMODPS and dynamic programming. Among

them, the EMODPS-Gaussianmodel demonstrated themost improved optimal release

policy for the dam.
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2.2 Ensemble Streamflow Prediction

Hydrological predictions are employed to anticipate future events to facilitate more

efficientwater resourcesmanagement. Over the past several decades, numerous studies

have been conducted to enhance the accuracy of hydrological predictions; however,

the complexity and interconnectedness of watershed-scale hydrological phenomena

render the achievement of perfect forecasts challenging. Hydrological predictions can

be categorized into deterministic and probabilistic forecasts. Deterministic forecasts

provide a single prediction value, facilitating straightforward and prompt decision-

making. Consequently, they are widely utilized as valuable information for water

resources operations. However, deterministic forecasts cannot account for outcomes

other than the predicted value, which renders the preparation for alternative situations

challenging. For instance, when determining dam releases based on a single value

using only the historical average inflow, it assumes a 100 % probability of that

average inflow occurring. However, this approach fails to consider the possibility of

different inflow values and does not incorporate the probabilities of lower or higher

inflow traces. Conversely, probabilistic forecasts offer the advantage of presenting the

likelihood of various outcomes, enabling water resources management that considers

the associated risks. Among these probabilistic forecasting methods, ESP stands out

as a prominent approach.

ESP is based on the assumption that past hydrological events can represent
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Figure 2.4 Schematic of ESP procedure (Day, 1985)

future hydrological events. Hence, it involves setting initial conditions such as humid-

ity, temperature, and soil moisture profiles in a deterministic rainfall-runoff model,

as shown in Figure 2.4, and inputting multiple rainfall traces that are likely to occur

in the future to obtain a range of streamflow traces. This approach, often referred

to as the conditional Monte Carlo simulation approach, generates streamflow traces

following the occurrence of initial conditions. A key advantage of ESP is its ability to

quantitatively assess prediction uncertainty via the generation of a range of possible

streamflow traces (ensembles) and offering a flexible selection of input ensembles

based on the objectives of the study, which are applicable to both long-term and

short-term predictions. Although the results delivered by ESP are interpretable in a
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probabilistic manner, the calculation process does not solely rely on a 100% proba-

bilistic approach. Asmentioned earlier, ESP combines the advantages of deterministic

models, which yield a single value using physical functions, and probabilistic models

that facilitate the quantification of uncertainty. It employs a scenario-based determin-

istic model that considers uncertainty by integrating physical processes. The National

Weather Service (NWS) in the United States is a prominent user of ESP. Since the

1990s, the NWS has been utilizing the ESPmethod to forecast streamflow nationwide.

In South Korea, the introduction of ESP began with the application of ESP

at the Gongju gauge station, as documented in Kim et al. (2001). This research was

initiated with the purpose of improving the "Water Supply Outlook," which was pub-

lished by the Ministry of Land, Infrastructure and Transport and the Korea Institute

of Construction Technology (KICT). Therefore, the same KICT rainfall-runoff model

used for the "Water Supply Outlook" was employed for the ESP implementation.

Historical rainfall data from 1919 to 1994, spanning 76 years, at the Gongju gauge

station, were used to generate 76 streamflow traces each month. These traces were

then utilized for streamflow predictions for a period of five years, from 1995 to 1999.

In addition, to enable probabilistic forecasting, the streamflow was statistically cate-

gorized to provide categorical forecasts. The results confirmed that the ESP method

outperformed the existing method in terms of streamflow prediction accuracy.

In K-water (2004), the streamflow synthesis and reservoir regulation (SSARR)
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model was used to develop ESP for the Han, Nakdong, and Seomjin river basins.

To ensure accurate validation, the focus was on multi-purpose dams with sufficient

length of observed data available for each basin. For the Nakdong river basin, the

Andong, Hapcheon, and Namgang dams were selected as the validation areas. For

the Han river basin, the Chungju and Soyanggang dams were chosen, and for the

Seomjin river basin, Seomjingang dam was selected as the validation area. In the

Han river basin, an ensemble of 17 streamflow traces was generated using rainfall

and temperature ensembles from 1981 to 1997, and streamflow predictions were

conducted for a period of six years from 1998 to 2003. For the Nakdong river basin,

an inflow ensemble was generated using 21 years of rainfall and temperature data from

1977 to 1997, and streamflow predictions were conducted for the period from 1998 to

2003. Lastly, for the Seomjin river basin, streamflow predictions were conducted from

1998 to 2003 using historical data from 1981 to 1997. The validation results based

on R-B and RMSE indicated that the ESP method was effective as a probabilistic

forecasting approach. This is because the average prediction scores were higher than

33.3 % for all validation points, even without the application of the optimal linear

correction technique.

Since 2016, the National Drought Information Analysis Center (NDIAC) has

been enhancing the reliability of drought prediction by applying ESP, a probabilistic

drought forecasting method, and quantitative precipitation-streamflow techniques.
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From 2017 onwards, NDIAC has been focused on further improving the reliability of

drought forecasting through the development and refinement of analysis techniques

at different stages: meteorological, hydrological, and drought forecasting (National

Drought Information Analysis Center, 2017, 2018, 2021). To achieve this, Bayesian

ESP streamflow prediction has been utilized. NDIAC has constructed a Bayesian ESP

framework for weekly and monthly hydrological forecasts (dam inflow prediction) in

35 dam basins nationwide, and it is actively employed in practical applications.

In 2009, the Han River Flood Control Office conducted a study to convert

"Water Supply Outlook" (current Water Resources Status and Outlook) into prob-

abilistic forecasts. They performed a 12-month ESP using the Tank model under

different initial conditions for the years 2000 to 2008 nationwide. The study aimed

to examine the applicability of a probabilistic streamflow system to various basins

and seasonal characteristics nationwide. Consequently, they proposed improved tech-

niques for preprocessing and postprocessing, which addressed the uncertainty factors

that affected the evaluation of the methods. They evaluated the techniques over dif-

ferent application periods and basins to identify superior approaches. Furthermore,

they examined potential issues and improvements related to the expansion of proba-

bilistic streamflow prediction and the establishment of an integrated system. Further,

they proposed prediction and trace periods that could minimize the uncertainty of

ESP. Consequently, they achieved more reliable medium to long-term probabilistic

27



streamflow prediction compared to previous methods. Moreover, they also developed

a user interface to make the "Water Supply Outlook" and other information available

to practitioners (Han River Flood Control Office, 2009, 2022).

In addition, the Han River Flood Control Office applied ESP to probabilistic

flood forecasting. They generated 3-hour meteorological ensemble traces and created

short-term ESP for a representative rainfall event that occurred in South Korea in

2011. Further, they performed probability analysis on the ESP results and categorized

them into three ranges: R1, R2, and R3. This categorization facilitated probabilistic

forecasting with reduced decision-making risks compared to deterministic forecasts.

Ultimately, this approach provided a stable and reliable probabilistic forecast that

mitigated the uncertainties associated with decision-making processes (Kim et al.,

2011).
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2.3 ESP in Reservoir Operations

In the previous sections, we have examined the theoretical background of reservoir

operation optimization techniques and ESP individually. In this section, we explore the

optimization technique referred to as SSDP, which has been developed to maximize

the utilization of inflow ensemble traces obtained from ESP. Further, methods for

incorporating SSDP with ESP to enhance their combined effectiveness in reservoir

operation decision-making are discussed.

SSDP is a non-parametric approach that incorporates the uncertainty of inflow

into the recursive equation of SDP via the direct application of the inflow data. It

aims to represent the uncertainty of inflow while accounting for the spatial-temporal

correlation and continuity of the inflow data (Eum, 2007). By substituting the inflow

traces Qt(i) instead of Qt into the recursive equation of SDP, Eq. 2.6 is obtained.

max
R∗

t

E{
[
Ot(S

k
t ,Qt(i),Rt) + E

j|i

{
ft+1(S

l
t+1, j)

}]
} ∀St, i and t ∈ {1, · · · , T}

(2.6)

whereQt(i) represents the i-th inflow trace at time t. Inflow traces range from

i to I , where j denotes the inflow trace that occurs after trace i (Figure 2.5). In the

case of SSDP, upon the determination of the target release for each stage and reservoir

state using Eq. 2.6, the residual optimal benefit function is updated using Eq. 2.7.
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ft(S
k
t , i) = Bt(S

k
t ,Qt(i),Rt) +

{
ft+1(S

l
t+1, j)

}
∀St, i and t ∈ {1, · · · , T}

(2.7)

In Faber and Stedinger (2001), ESP was combined with SSDP to determine

the optimal release for the operation of Williams Fork Reservoir in the United States,

while considering the conditions at the prediction horizon. In Eq. 2.7, the objective

functionBt(·) is determined based on the probabilities of trace j occurring after trace

i, using aMarkov chain. To estimate these transition probabilities, Faber and Stedinger

(2001) conducted regression analysis between the inflow trace i at the base period and

the cumulative outflow traces j during the subsequent period. Upon the occurrence of

ESP events based on the ESP technique computed byNWS, the transition probabilities

were updated using the new ensemble set of inflow traces, and the optimal release was

determined accordingly. The results showed that incorporating ESP in the calculation

of transition probabilities yielded improved release decisions than those obtained by

calculating transition probabilities based solely on historical data.

The optimal releases for the dry season of the Yongdam and Daecheong dams

in the Geum river basin were calculated using ESP and SSDP (Eum, 2007; Kim

et al., 2007). The objective function considered the minimization of water supply

shortage and themaximization of hydropower generation, while considering themulti-
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purpose nature of the dams in the Geum river basin. In addition, to account for flood

considerations, the minimization of deviations from the end-of-June target water level

was also considered. In contrast to the study by Faber and Stedinger (2001), an

online model was constructed. This involved conducting ensemble predictions for one

month at the beginning of each month, thus facilitating forward problem-solving and

updating of the optimal releases on a monthly basis. The model using the historical

inflow traces was referred to as SSDP/Hist, whereas that updated using ESP every

month was referred to as SSDP/ESP (Figure 2.6). The results showed that updating

the optimal releases generated by the SSDP/Hist model using the SSDP/ESP model

resulted in a reduction of water supply shortage in the Geum river basin by an annual

average of 0.6× 106m3/year.

Ramaswamy and Saleh (2020) aimed to optimize real-time reservoir opera-

tions under extreme rainfall conditions using ESP generated by the HEC-HMS model

and DP. They calculated ESP for extreme rainfall events, specifically hurricanes Irene

and Sandy, and performed DP for all ESP traces. The results showed that the release

decisions varied based on the lead time of ESP, with shorter lead times suggesting

less conservative release strategies. However, conservative release strategies resulted

in a wide range of release decisions that indicated reservoir flooding as predictions

were updated during severe rainfall traces.

In a recent study by Shaikh and Pattanayek (2022), ESP was generated using
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Figure 2.5 ESP traces in SSDP

Figure 2.6 On and Off-line operation (Eum, 2007)
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a different approach compared to other studies that used rainfall-runoff models. This

study utilized long short-termmemory (LSTM) to estimate ESP. The study focused on

the Upper Hanjiang river basin in China, where LSTM-generated ESP was employed

to determine optimal release strategies through NSGA-II. The results showed that

the LSTM-based ESP produced highly accurate outcomes. Furthermore, the optimal

release strategies derived from the forecast-based approach were more beneficial for

additional power generation compared to the no-forecast approach.
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2.4 Exercise for ESP Effect on Reservoir Operations

The previous section investigated the research trends in dam operations and the

application of ESP in academia, examining the use ESP methods in the field of

water resources and assessing their performance in various case studies. Several

studies have combined ESP with the SSDP technique to update the inflow traces,

resulting in significant improvements in performance. This section aims to facilitate

a better understanding of the practical utility of probabilistic ESP for dam operators

by quantifying the benefits of probabilistic forecasting through a simple example,

without the need for sophisticated ESP derivation or optimization techniques.

Here, we have a very simple reservoir (Figure 2.7) with maximum and min-

imum capacities of 10 and 0, respectively. The average inflow at each time step was

7, and our goal was to supply a constant demand of 5 of water throughout the opera-

tional period. We began with an initial reservoir capacity of 10 and aimed to operate it

successfully until the 3rd step, which represents the non-flood season while meeting

the demand.

• Maximum Storage (Smax) = 10

• Minimum Storage (Smin) = 0

• Average Inflow (µ) = 7

• Demand = 5 (constant)
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• Planning Period (T) = 3

• Initial Storage (S0) = 10

Scenario W ∼ N(7, 12) (2.8)

Scenario P ∼ N(7, 2.52) (2.9)

We assumed that in this simple reservoir, at each time step, inflow followed

two different normal distributions with the same mean of 7, albeit with different

standard deviations of 1 and 2.5, respectively (Eq. 2.9), as illustrated in Figure 2.8.

Let us denote the inflow with a standard deviation of 1 as Scenario W and that with

a standard deviation of 2.5 as Scenario P. In addition, this reservoir incurs a cost for

water supply through water purchase if the reservoir capacity falls below 2. Therefore,

a cost of water supply, following a sigmoid function in Eq. 2.10, was incurred based

on the reservoir capacity x, as shown in Figure 2.9. Considering the Scenarios W and

P, the question is how should the operation of the reservoir differ.

c(x) =
10000

exp (3x− 5)
(2.10)

Let us assume the worst-case scenario where an inflow with a probability of
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Figure 2.7 Problem setting for exercise

Figure 2.8 Inflow probability density function for exercise
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Figure 2.9 Cost function for exercise

0.01 occurs over three-time steps in both inflow probability density functions. The

probability of this worst-case scenario occurring is 10−6 for both Scenarios W and P,

as shown in Eq. 2.12. In this case, for Scenario W, the inflow with a probability of

0.01 has a value of 4.3, while for Scenario P, the inflow with a probability of 0.01 has

a value of 1.1, as indicated in Eq. 2.14.

Scenario W :Pr(
∑

I) = 0.01× 0.01× 0.01 = 10−6 (2.11)

Scenario P :Pr(
∑

I) = 0.01× 0.01× 0.01 = 10−6 (2.12)
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fW (0.01)−1 = 4.3 (2.13)

fP (0.01)
−1 = 1.1 (2.14)

St+1 = St +Qt −Rt (2.15)

Through the application of the mass conservation equation (Eq. 2.15), we can

calculate the reservoir storage (S3) after the three-time steps. If the demand of 5 is

satisfied at every time step, the final reservoir level would be 7.9 and -1.7 for Scenarios

W and P, respectively, as shown in Eq. 2.17.

S3,W = 10 + (12.9− 15) = 7.9 (2.16)

S3,P = 10 + (3.3− 15) = −1.7 (2.17)

At each time step (t = 1, 2, 3), we can calculate the cost. Consequently, for

Scenario W, according to Eq. 2.15, no cost was incurred. However, for Scenario P, a

cost of 11680 was incurred.
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C3,W =
10000

exp (3× 10− 5)
+

10000

exp (3× 9.3− 5)
(2.18)

+
10000

exp (3× 8.6− 5)
+

10000

exp (3× 7.9− 5)
(2.19)

=0 + 0 + 0 + 0 = 0 (2.20)

C3,P =
10000

exp (3× 10− 5)
+

10000

exp (3× 6.1− 5)
(2.21)

+
10000

exp (3× 2.2− 5)
+

10000

exp (3× (−1.7)− 5)
(2.22)

=0 + 0 + 1680 + 10000 = 11680 (2.23)

The entire operation can be visualized in Figure 2.10 and Figure 2.11. Thus,

evenwith the same probability for the worst-case scenario, in case of different standard

deviations of the inflow probability density function, different results are observed in

terms of the dam’s cost function. This indicates that relying solely on past averages

without considering other statistics of inflow is not sufficient for optimal dam opera-

tion. Therefore, it is crucial to incorporate the distribution of inflow to the best extent

possible in the dam operation.
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Figure 2.10 Schematic of dam releases during the 3-time step for Scenario W

Figure 2.11 Schematic of dam releases during the 3-time step for Scenario P
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Chapter 3. Methodology

3.1 Overall Procedure

In this chapter, we describe the overall procedure based on a survey of research trends.

The first step involved selecting the target multiple-purpose dams among the 21 dams

in South Korea. To analyze the characteristics of different multiple-purpose dams,

the CIR was employed as the selection criterion. Based on the CIR, the Soyanggang

and Chungju dams were chosen as the study sites. For each dam, a distribution was

assumed with the same ensemble mean but different variances, as demonstrated in the

exercise presented in Chapter 2, to capture the effect of ESP on reservoir operations.

Consequently, SSDP/Hist and SSDP/ESP models were developed for Scenarios W

and P, and the optimal release rates were calculated. In addition, the optimal release

rates assuming perfect forecasts (PERF) were determined using DDP for the purpose

of comparison. The calculated optimal release rates were then used for simulation,

and the results were analyzed in terms of frequency, duration, and magnitude (Figure.

3.1).
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Figure 3.1 Research overview
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3.2 Ensemble Streamflow Prediction

ESP assumes unbiased forecasting (Figure. 3.3) and considers two distributions with

the same ensemble mean albeit different standard deviations (Figure.3.2). The en-

semble mean values of ESP were determined based on the monthly inflow data from

the last set of the selected dams, spanning from 2020 to 2022, following the two

assumptions described below.

• Assumption 1: Monthly averages of ESP are identical to the corresponding

observations (i.e., unbiased forecasting)

• Assumption 2: Monthly variance of ESP comprises 2 Scenarios depending on

the variance.

The inflow data was tested for goodness of fit and assessed using Q-Q plots to

determine if it followed a log-normal distribution. In this case, the relationship between

µX and σX and the resulting µY and σY after fitting the log-normal distribution are

described by Eqs.3.1 and 3.2. For Assumption 2, the standard deviation was assumed

as σX = µX and σX = 10µX for Scenarios W and P, respectively. Consequently,

using Eq. 3.2, the resulting σY for ScenariosW and Pwere 0.83 and 2.15, respectively.
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Figure 3.2 Schematic of Scenario W/P according to monthly ESP assumptions

µY = ln

 µ2X√
µ2X + σ2X

 (3.1)

σY =

[
ln

(
1 +

σ2X
µ2X

)] 1
2

(3.2)
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Figure 3.3 Bias and variance
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3.3 Sampling Stochastic Dynamic Programming

Setting the objective function is crucial in formulating an optimization problem,

whether it involves minimization or maximization. In our case, the improvement

of water supply in multiple-purpose dams was deemed as the most urgent issue.

Therefore, the objective function was set as the water shortage amount, with an aim

to minimize it (Eq. 3.3). Here,Dt and Rt represent the demand and release at time t,

respectively.

Ot(St, Qt, Rt) = max(0, Dt −Rt) (3.3)

As mentioned earlier, SSDP is a non-parametric approach that directly in-

corporates inflow data into the SDP recursion equation, thereby representing the

uncertainty of inflow while considering its continuity and spatiotemporal correla-

tions. This is in contrast to discretizing the inflow and using representative values and

probabilities for each interval in SDP (Eum, 2007).

In this study, the objective function was not a future benefit function to be

maximized, rather it was the water shortage amount to be minimized. Incorporating

this into Eq.2.4 yields Eq. 3.4, where I is the number of inflow traces used for optimal

release calculation, and Qt(i) represents the inflow of the i-th trace at time t.
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min
Rt

E
Qt

[
Ot(S

k
t ,Qt(i),Rt) +

{
ft+1(S

l
t+1, i)

}]
∀St, t ∈ {1, 2, · · · , T} (3.4)

= min
Rt

∑
Qt

Pr(i)
[
Ot(S

k
t ,Qt(i),Rt) +

{
ft+1(S

l
t+1, i)

}]
(3.5)

The application of discretization of inflow to Eq.3.4 yields Eq. 3.6, which

represents the SSDP formulation. SSDP utilizes Eq. 3.6 to evaluate the residual

expected benefit function for each trace i associated with the optimal release, once

the state variable representing each stage and the current state is determined. This is

realized using Eq. 3.7.

min
Rt

I∑
i=1

Pr(i)
[
Ot(S

k
t ,Qt(i),Rt) +

{
ft+1(S

l
t+1, i)

}]
(3.6)

ft(S
k
t , i) = Ot(S

k
t ,Qt(i),Rt) +

{
ft+1(S

l
t+1, i)

}
(3.7)

Next, let us consider the constraints. Themost fundamental constraints are that

the reservoir storage cannot be negative (less than 0) and cannot exceed the reservoir

capacity. Furthermore, water supply in multiple-purpose dams in South Korea is

conducted within the range between the normal high water level (NHWL) and the low

water level (LWL). To reflect a more realistic situation, it is ensured that the storage

at each stage did not fall below the LWL (Figure 3.4). Therefore, for each dam, the
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minimum storage level (Smin) was set as the LWL, and the maximum storage level

(Smax) represents the storage at the NHWL of the dam (Eq. 3.8).

Figure 3.4 Multi-purpose dam water level and capacity (K-water, 2021)
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Smin < S < Smax (3.8)

In the DP family of optimization algorithms, the calculations are performed

backward until a certain level of convergence is achieved. However, in this study, a

convergence condition was applied to determine to the point at which the calculations

were to be stopped. The convergence condition used in the research is shown in Eq.

3.9.

||(f i−1opt − f iopt)| − |(f iopt − f
i+1
opt )|| < ε (3.9)

where f iopt represents the optimal value in the i-th iteration, and ε denotes the

tolerance. In this study, ε was set to 10−5.
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3.4 ESP in Sampling Stochastic Dynamic Programming

In the previous theoretical background, we examined a research case that utilized

ESP to determine accurate operational rules in the optimization equation of SSDP. As

evident from the recursive equation of SSDP, calculating the current value ft requires

the value of ft+1. Therefore, first, the entire inflow traces over the entire operational

period were predicted, and then the optimal releases and future value functions were

calculated in a backward manner. However, the backward calculation requires the

prediction of the entire inflow traces over the operational period, which poses chal-

lenges in accuracy, particularly when the prediction horizon exceeds one month in

the South Korean context. To address this, Eum (2007) proposed an improvement by

first calculating SSDP/Hist using past inflow data and using the obtained future value

function in the calculation of optimal releases in SSDP/ESP, which can be solved

in a forward manner (Figure 3.6). In this study, we adopted the same approach to

compute the optimal releases. The entire 27-year inflow traces were divided into three

sets, resulting in nine sets, and SSDP/Hist was calculated excluding the last set from

2020 to 2022. Subsequently, the final set was used for ESP generation and simulation

(Figure 3.5).

When denoting the inflow trace of ESP as i and the past inflow trace received

from SSDP/Hist as j, the calculation formula is expressed as Eq. 3.10. The expectation

term is multiplied because it represents the calculated f values for each trace i and
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j in ESP and Hist, respectively. It was assumed that the transition matrix from trace

i to j was the same for all trace i. Upon the application of the calculated optimal

releases to actual operations, the operation was conducted as follows: if St+1 was less

than Smin, no release was made, and if St+1 exceeded Smax, the excess amount was

discharged as spill (Figure 3.7). In addition, to observe the results based on different

initial storage conditions, the minimum, average, andmaximum historical water levels

were used as the initial storage.

min
R∗

t

I∑
i=1

Pr(i)

[
Ot(S

k
t ,Qt(i),Rt) + E

j|i

{
ft+1(S

l
t+1, j)

}]
(3.10)
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Figure 3.5 Division of the inflow dataset

54



Figure 3.6 Connection of SSDP/Hist and SSDP/ESP
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Figure 3.7 Simulation flowchart
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3.5 Performance Matrix

In reservoir operations, the performance evaluation can be divided into absolute and

relative evaluations. Absolute evaluation refers to the evaluation based on absolute

quantities, such as water supply, obtained through simulations. However, relative

evaluation refers to the evaluation of whether the system satisfies the criteria set by

the system users. Hashimoto et al. (1982) described the relative evaluation of the

system in terms of reliability, resiliency, and vulnerability. In addition, Kim et al.

(2019) and Kim et al. (2021) evaluated the performance of the Boryeong Dam in

South Korea using the Frequency of annual water deficit, duration of the longest

failure, and magnitude of annual water deficit. Subsequently, Kim et al. (2022) used

this performancematrix for the evaluation of adaptive reservoirmanagement, enabling

amore intuitive assessment. These performancematrices are also applied in this study.

To assess water deficit, the success of the system is defined as Rt satisfying Dt at

each time step, as shown in Eq. 3.11. If the results owing to a random variableXt are

satisfactory for a certain period, it is defined as S; otherwise, it is defined as F .

Xt ∈ S Rt ≥ Dt (3.11)

Xt ∈ F otherwise (3.12)
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• Frequency: To what degree does the system experience satisfaction?

• Duration: How long does the system stay in a satisfactory state?

• Magnitude: What is the severity of the failures that occur in the system?

The Frequency (ρ) refers to the total number of successful operations during

the entire operational period. In categorical data representing the success and failure

of the system, a value of 1 is assigned to Wt in Eq. 3.13 when the operation is

successful, whereas a value of 0 is assigned toWt in Eq. 3.14 when the operation is

a failure.

Wt = 1 Xt ∈ S (3.13)

Wt = 0 Xt ∈ F (3.14)

The Frequency (ρ) can be expressed as Eq. 3.15.

ρ = Pr(Xt ∈ S) =
1

T

T∑
t=1

Wt (3.15)

The Duration (γ) represents the average period during which the system re-

mains successful throughout the operation period. I(·) calculates the number of con-

secutive occurrences of an event within parentheses, and L(·) calculates the duration

of consecutive occurrences of an event. The duration can be expressed as Eq. 3.16.
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γ =
1

T

∑T
t=1 L(Wt = 1)

I(Wt = 1)
(3.16)

The Magnitude (v) represents the shortfall of the total demand relative to the

total supply in the system and is expressed as a complement to 1. Similar to frequency

and duration, magnitude is defined as an upward indicator. It is calculated as the

difference between 1 and the ratio of total shortfall to total demand, as expressed in

Eq. 3.17.

v = 1−
∑T

t=1max(0, Dt −Rt)∑T
t=1Dt

(3.17)

This study evaluated the performance of the optimal release after simula-

tion using both absolute and relative assessment measures. The absolute evaluation

was performed through the penalty incurred, whereas the relative evaluation was

conducted using the frequency-duration-magnitude (FDM) framework (Figure 3.8).

These measures were employed to compare the performances of Scenarios W and P.
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Figure 3.8 System FDM performance criteria
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Chapter 4. Sample Studies

4.1 Classification of Dams by CIR

To examine the operational behavior of dams under different conditions, various

multipurpose dams in SouthKoreawere classified according to their CIR and arranged

in Table 4.1. Following the classification by Karamouz and Houck (1987), dams with

a CIR in the range of 0.5–1 were categorized as "Large," whereas those with a

CIR greater than 1 were classified as "Very Large." Based on this classification, the

Soyanggang and Chungju dams, which have similar capacities and data lengths within

the same Han river basin, were selected as the study areas. The CIR classification,

along with a map of South Korea, is shown in Figure 4.1.

The selected study area, the Han river basin, is located in central South Korea

and is the largest river system that runs through the capital city of Seoul. It connects

the Han and the Bukhan rivers. The total basin area is 25,953.6 km2 (or 35,770.41

km2 when including North Korea). With a river length and average width of 494.44

km and 75.5 km, respectively, the Han river basin is the primary river basin in South

Korea, covering approximately 23 % of the national territory. Within the Han River

basin, there are several multi-purpose dams such as the Soyanggang, Chungju, and

Hoengseong dams, which contribute to water supply operations. The water supply

mimetic diagram for this area is shown in Figure 4.2.
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Figure 4.1 Multi-purpose dam with CIR in Korea
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Table 4.1 CIR of multi-purpose dams in Korea

Dam Start year End year Capacity (MCM) Annual average inflow (MCM) CIR
Seongdeok 2012 2021 27.9 17.1 1.628
Gunwi 2011 2021 48.7 35.6 1.367

Soyanggang 1996 2021 2900.0 2156.1 1.345
Jangheung 2005 2021 191.0 148.5 1.286
Andong 1996 2021 1248.0 984.5 1.268
Hapcheon 1996 2021 48.7 35.6 1.185

GimcheonBuhang 2013 2021 54.3 49.3 1.100
Yongdam 2001 2021 815.0 751.8 1.084
Buan 1997 2021 50.3 47.0 1.070

Yeongju 2012 2021 181.1 198.0 0.915
Imha 1996 2021 595.0 652.9 0.911

Bohyeonsan 2014 2021 22.1 25.6 0.862
Miryang 2001 2021 73.6 89.1 0.826
Boryeong 1998 2021 116.9 144.0 0.812

Seomjingang 1996 2021 466.0 598.0 0.779
Daecheong 1996 2021 1490.0 2542.7 0.586
Juam Control 1996 2021 250.0 434.9 0.575
Chungju 1996 2021 2750.0 4888.8 0.563

Hoengseong 2001 2021 86.9 157.1 0.553
Juam 1996 2021 457.0 844.8 0.541

Namgang 2000 2021 309.2 2320.4 0.133
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Figure 4.2 Water supply mimetic diagram in Han River
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4.2 Sample Study 1: Dam SY

To set the constraints for SSDP according to the current status of the Soyanggang

Dam (Figure 4.3), the requisite information has been summarized in Table 4.2. The

storage was discretized into 100 intervals with equal spacing. In the case of multi-

purpose dams in South Korea, water supply operations occur between the LWL and

the NHWL. Therefore, the storage should not fall below the LWL and should not

exceed the NHWL. For each dam, the value of Smin was set to the LWL, and Smax

was set to the NHWL, as shown in Eq. 3.8. According to the information, the LWL

and NHWL for the Soyanggang Damwere calculated as 693.574 and 2478.906MCM,

respectively. Furthermore, the monthly demand was obtained by converting the daily

demand from K-water (2020) into monthly values, as shown in Table 4.3.
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Figure 4.3 Dam SY basin
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Table 4.2 Information of Dam SY

Information Figure
Height (m) 123.0
Length (m) 530.0

Normal elevation (EL.m) 203.0
Volume (1000m3) 9,591.0
Basin area (km2) 2,703.0

Annual water supply capacity (MCM) 1,213.0
Reservoir area (km2) 70.0

Design Flood Level (EL.m) 198.00
NHWL (Normal High Water Level) (EL.m) 193.50

RWL (Restricted Water Level) (EL.m) 190.30
Spill Water Level (EL.m) 185.50

LWL (Low Water Level) (EL.m) 150.00
Total Storage (MCM) 2,900.0

Available Storage (MCM) 1,900.0
Flood Control Storage Capacity (MCM) 500.0

Table 4.3 Monthly demand of Dam SY (MCM) (K-water, 2020)

January February March April May June
Demand 123.752 111.776 124.837 122.340 126.418 122.340

July August September October November December
Demand 126.418 126.418 122.340 124.558 119.760 123.752
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4.2.1 Ensemble Streamflow Prediction

To assume the ESP for the Soyanggang Dam, the goodness of fit of a log-normal

distribution to the historical inflow data was first tested. The results indicated that the

log-normal distribution was a good fit. Based on the monthly inflow data from 2020

to 2022, the ESP for Scenarios W and P were assumed. Table 4.4 lists the distribu-

tion parameters for Scenario W inflow in 2022, assuming a log-normal distribution.

Similarly, Table 4.5 lists the parameters for Scenario P inflow using the same data.

The assumed ESP distributions were then discretized into three quantiles, Q1, Q2,

and Q3, as shown in Table 4.7 and 4.8.

The average of the historical inflow traces used in SSDP/Hist from 1996 to

2019 was 2135.143 MCM. In comparison, the annual average inflow for SSDP/ESP

from 2020 to 2022 was 2522.661 MCM. This indicates that the inflow data used in

ESP was approximately 1.2 times richer than that used in SSDP/Hist. On an annual

basis, the total inflow in 2020 was approximately 1.6 times the historical average,

whereas the total inflow in 2021 was approximately 0.7 times the average, and the

total inflow in 2022 was approximately 1.3 times the average. Figure 4.4 shows the

box plot of the inflow data used in SSDP/Hist and the line graph of the inflow data

used in SSDP/ESP for each year.
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Figure 4.4 Comparison of monthly inflow data used for SSDP/Hist and SSDP/ESP in
Dam SY
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4.2.2 SSDP/Hist Model

For SSDP/Hist, the historical inflow data was used to update the optimal release and

future value function in a backward direction. For the Soyanggang Dam, 27 years of

data are available from 1996 to 2022. However, the inflow data from the last trace

set (2020 to 2022) was excluded as it was used for ESP assumptions. Therefore,

the data from 1996 to 2019 (24 years) was incorporated into SSDP/Hist. When

using Eq. 3.6, the expectation is calculated by multiplying each trace by Pr(Qt).

However, in this study, instead of using Pr(Qt) directly, the total inflow for each trace

was calculated and fitted to a log-normal distribution. For inflows smaller than the

mode, the non-exceedance probability was used, whereas for inflows larger than the

mode, the exceedance probability was used for scaling. Consequently, these weighted

probabilities, denoted as wj , were applied.

min
R∗

t

24∑
j=1

wj

[
Ot(S

k
t ,Qt(j),Rt) +

{
ft+1(S

l
t+1, j)

}]
(4.1)

In Figure 4.5, the variable j represents the 24 years of historical inflow traces,

and wj denotes the weighted values obtained by scaling each trace according to its

probability of occurrence. The optimal release rates derived from this calculation are

presented in Figure 4.7 as a 3D plot and in Figure 4.8 as a heatmap.
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Figure 4.5 Historical inflow ensemble traces for SSDP/Hist in Dam SY
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Figure 4.6 Historical inflow traces fitted log-normal distribution for weights of
SSDP/Hist in Dam SY
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Table 4.6 Weights of historical inflow traces for SSDP/Hist in Dam SY

j Year Total Inflow (MCM) Probability wj

1 1996 2740.262 0.141 0.025
2 1997 4801.645 0.434 0.076
3 1998 7073.309 0.153 0.027
4 1999 6004.869 0.255 0.045
5 2000 4457.013 0.500 0.088
6 2001 2217.853 0.061 0.011
7 2002 6490.264 0.203 0.036
8 2003 8273.953 0.085 0.015
9 2004 6768.576 0.177 0.031
10 2005 5531.790 0.316 0.055
11 2006 7718.257 0.112 0.020
12 2007 6691.002 0.184 0.032
13 2008 3045.128 0.200 0.035
14 2009 4038.329 0.586 0.103
15 2010 5328.235 0.346 0.061
16 2011 8929.272 0.062 0.011
17 2012 5049.912 0.391 0.069
18 2013 4566.692 0.478 0.084
19 2014 2317.540 0.074 0.013
20 2015 1751.987 0.020 0.003
21 2016 2898.965 0.171 0.030
22 2017 3429.478 0.281 0.049
23 2018 5074.974 0.387 0.068
24 2019 2354.596 0.079 0.014

Sum 5.697 1
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Figure 4.7 Release 3D policy of SSDP/Hist in Dam SY

Figure 4.8 Release heatmap policy of SSDP/Hist in Dam SY
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4.2.3 SSDP/ESP Model

For SSDP/ESP, the constraint conditions and objective function were the same as in

that of SSDP/Hist. However, instead of using the historical inflow data, SSDP/ESP

incorporated the future value function obtained from SSDP/Hist. Thus, the optimal

release was calculated via the application of the two assumed distributions with three

quantiles to the SSDP recursive equation. The resulting optimal release is referred to

as Scenario W (based on Table 4.7) and Scenario P (based on Table 4.8).

min
R∗

t

3∑
i=1

Pr(i)
[
Ot(S

k
t ,Qt(i),Rt) + E

{
ft+1(S

l
t+1, j)

}]
(4.2)

In Eq. 4.2, i represents the ESP trace, and j represents the historical inflow

data used in SSDP/Hist calculations. Therefore, there are three traces for i as the ESP

distribution was discretized into three categories. The ft+1 obtained from SSDP/Hist

is the sum of the historical inflow data (24 years) multiplied by the transition prob-

ability. Further, the transition matrix E represents the conditional probability of the

occurrence ofQt+1(j) considering the current inflowQt(i), and it has the same prob-

ability for all ESP traces. This assumption implies that the transition probabilities are

uniform regardless of the predicted inflow (ESP) at the current time step.

In Figure 4.9, the release policy derived from the optimal release calculation

using the Scenario W inflow trace is visualized. Whereas, Figure 4.10 shows the
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release policy obtained when using the Scenario P inflow trace.
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4.2.4 Results

The derived optimal release exhibited different patterns depending on Scenarios W

and P. In Scenario W, a more aggressive release policy was obtained for all three

years (2020, 2021, and 2022) compared to that in case of Scenario P. This indicated

a higher level of releases even when the current storage was relatively low. The same

trend was also observed in DDP/PERF, where the optimal release policy was more

pronounced in its aggressiveness in Figure 4.11.

The simulation was conducted by varying the initial storage using the inflow

data from 2020 to 2022. For Dam SY, the maximum, average and minimum historical

storage at the end of December were 2159.658, 1616.219, and 1086.166 MCM,

respectively. However, no significant difference in the optimal release policy between

Scenarios W and P were observed in Dam SY. This can be attributed to Dam SY

having a CIR of 1.345, thus, classifying it as a "Very Large" dam, but with relatively

low monthly demand. Consequently, the difference in the optimal release policy

between Scenarios W and P was below the threshold set by Smin. Therefore, despite

a difference in the optimal release policy between Scenarios W and P from the

perspective of release optimization, this difference was not observed in the simulation

results for Dam SY.
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.9 Release policy of SSDP/ESP Scenario W in Dam SY
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.10 Release policy of SSDP/ESP Scenario P in Dam SY
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.11 Release policy of DDP/PERF in Dam SY
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4.3 Sample Study 2: Dam CJ

To set up the constraints for SSDP according to the characteristics of Chungju dam’s

basin (Figure 4.12), the information on Chungju Dam is summarized in Table 4.9.

The minimum and maximum storage levels corresponding to the LWL and NHWL of

the Chungju dam were determined to be 454.027 and 2251.672 MCM, respectively.

These values were used as constraints for the SDP. Therefore, the constraint values

for the Chungju dam were Smin = 454.027MCM and Smax = 2251.672MCM. The

storage was discretized into 100 equally spaced intervals. The monthly demands to

be used in the optimization are summarized in Table 4.10.

Table 4.9 Information of Dam CJ

Information Figure
Height (m) 97.5
Length (m) 447.0

Normal elevation (EL.m) 147.5
Volume (1000m3) 902.0
Basin area (km2) 6648.0

Annual water supply capacity (MCM) 3380.0
Reservoir area (km2) 97.0

Design Flood Level (EL.m) 145.00
NHWL (Normal High Water Level) (EL.m) 141.00

RWL (Restricted Water Level) (EL.m) 138.00
Spill Water Level (EL.m) 126.00

LWL (Low Water Level) (EL.m) 110.00
Total Storage (MCM) 2750.0

Available Storage (MCM) 1786.0
Flood Control Storage Capacity (MCM) 616.0
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Figure 4.12 Dam CJ basin
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Table 4.10 Monthly demand of Dam CJ (MCM) (K-water, 2020)

January February March April May June
Demand 260.338 235.144 260.338 275.520 318.742 324.510

July August September October November December
Demand 308.543 308.543 279.420 281.759 251.940 260.338
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4.3.1 Ensemble Streamflow Prediction

The goodness-of-fit test was performed to assess the suitability of the log-normal

distribution for fitting the historical inflow data of the Chungju dam. The test results

indicated that assuming the log-normal distribution for the Chungju dam’s ESP was

appropriate. Using themonthly inflow data from 2020 to 2022, The ESPs for Scenarios

W and P were established. Table 4.11 lists the parameters for Scenario W in 2022,

and Table 4.12 lists the parameters for Scenario P. Similar to the Soyanggang dam,

the ESP distributions were discretized into three quantiles: Q1, Q2, and Q3 (Table

4.14, 4.15).

For the historical inflow traces used in SSDP/Hist, the average inflow was

4898.079 MCM from 1996 to 2019. In contrast, for SSDP/ESP, the average annual

inflow from 2020 to 2022 was 4949.233 MCM. This indicates that the inflow used

in SSDP/ESP was approximately the same as the average inflow in SSDP/Hist, rep-

resenting a typical inflow amount. Upon examining each year, the inflow in 2020

was 1.3 times the historical inflow, in 2021 it was 0.7 times, and in 2022 it was 1.1

times. This indicates a pattern similar to that in case of the Soyanggang dam, which is

located in the same basin. Figure 4.13 shows the inflow traces used in SSDP/Hist as a

box plot, and the inflow used in SSDP/ESP as a line graph. As evident, larger inflows

occurred during the flood seasons (July to September) of 2020 and 2022 compared

to the previous historical inflows. This can be attributed to the impact of typhoons
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BAVI, MAYSAK, and HAISHEN in 2020, and HINNAMNOR in September 2022,

which affected the Han river basin.

Figure 4.13 Comparison of inflow data used for SSDP/Hist and SSDP/ESP in Dam
CJ
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4.3.2 SSDP/Hist Model

The Chungju dam has data available for the period from 1996 to 2022 (27 years).

However, for the application of SSDP/Hist, the inflow data for the year 2022, which

was used for ESP assumption, was excluded. Therefore, the data from 1996 to 2019

(24 years) was utilized for SSDP/Hist calculations (Figure 4.14). The total inflow for

each trace was scaled using the log-normal distribution by considering the exceedance

and non-exceedance probabilities. Figure 4.15 visualizes the log-normal distribution-

fitted inflow traces, and Table 4.13 presents the corresponding weights used in the

analysis.

min
R∗

t

24∑
j=1

wj

[
Ot(S

k
t ,Qt(j),Rt) +

{
ft+1(S

l
t+1, j)

}]
(4.3)

Equation 4.3 represents the formulation used to derive the optimal release

policy by incorporating the weights. In Figure 4.14, the variable j corresponds to

the 24-year inflow traces from the past, whereas wj denotes the weights calculated

as the probability of occurrence for each trace. The resulting optimal release policy,

obtained through these calculations, is shown in Figure 4.16 as a 3D plot and in Figure

4.17 as a heatmap.
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Figure 4.14 Historical inflow ensemble traces for SSDP/Hist in Dam CJ
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Figure 4.15 Historical inflow traces fitted log-normal distribution for weights of
SSDP/Hist in Dam CJ
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Table 4.13 Weights of historical inflow traces for SSDP/Hist in Dam CJ

j Year Total Inflow (MCM) Probability wj

1 1996 2740.262 0.141 0.025
2 1997 4801.645 0.434 0.076
3 1998 7073.309 0.153 0.027
4 1999 6004.869 0.255 0.045
5 2000 4457.013 0.500 0.088
6 2001 2217.853 0.061 0.011
7 2002 6490.264 0.203 0.036
8 2003 8273.953 0.085 0.015
9 2004 6768.576 0.177 0.031
10 2005 5531.790 0.316 0.055
11 2006 7718.257 0.112 0.020
12 2007 6691.002 0.184 0.032
13 2008 3045.128 0.200 0.035
14 2009 4038.329 0.586 0.103
15 2010 5328.235 0.346 0.061
16 2011 8929.272 0.062 0.011
17 2012 5049.912 0.391 0.069
18 2013 4566.692 0.478 0.084
19 2014 2317.540 0.074 0.013
20 2015 1751.987 0.020 0.003
21 2016 2898.965 0.171 0.030
22 2017 3429.478 0.281 0.049
23 2018 5074.974 0.387 0.068
24 2019 2354.596 0.079 0.014

Sum 5.697 1
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4.3.3 SSDP/ESP Model

The constraints and objective function were the same, and SSDP/ESP utilized the

future value function from SSDP/Hist for its calculations. In the ESP approach, that

is, the inflow distribution fitted with a log-normal distribution, provided the Q1, Q2,

and Q3 values. These values were then substituted into Eq. 4.4 as Qt(i) to determine

the optimal release policy. The resulting optimal release policy obtained from the

calculations using Table 4.14 is referred to as Scenario W, whereas that derived from

Table 4.15 is referred to as Scenario P.

min
R∗

t

3∑
i=1

Pr(i)
[
Ot(S

k
t ,Qt(i),Rt) + E

{
ft+1(S

l
t+1, j)

}]
(4.4)

In Eq. 4.4, i is the ESP trace and j is the historical inflow data used for

SSDP/Hist calculation. Therefore, as i discretized the ESP distribution in 3, there

were traces up to 3, and ft+1 imported from SSDP/Hist multiplied 24 traces by the

transition probability and summed them up. Further, E is a transition matrix with a

transition probability equal to the number of ft+1 traces. When the current inflow

Qt(i) occurred, Qt+1(j) at the next instance is defined as the conditional probability

that would occur. However, in this study, it was assumed to have the same probability

regardless of the predicted inflow (ESP) at the current time.

The calculated results are visualized as follows. Figure 4.18 shows the release
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Figure 4.16 Release 3D policy of SSDP/Hist in Dam CJ

Figure 4.17 Release heatmap policy of SSDP/Hist in Dam CJ
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policy derived from the Scenario W inflow trace, covering the period from 2020 to

2022. Figure 4.19 shows the release policy obtained from the Scenario P inflow trace.

In addition, for comparison with ScenarioW/P, DDP/PERFmodel assuming a perfect

forecast was also calculated and visualized in Figure 4.20.

95



Table
4.14

Inflow
distribution

quantilesScenario
W

in
2022

ofD
am

CJ(M
CM

)

Jan
Fed

M
ar

A
pr

M
ay

Jun
Jul

A
ug

Sep
O
ct

N
ov

D
ec

Q
1

16.30
8.84

66.00
61.42

27.54
75.31

436.46
872.72

378.84
109.48

41.80
39.47

Q
2

28.58
15.49

115.72
107.69

48.29
132.05

765.28
1530.22

664.26
191.97

73.30
69.21

Q
3

50.11
27.16

202.90
188.82

84.67
231.53

1341.83
2683.07

1164.70
336.60

128.52
121.35

Table
4.15

Inflow
distribution

quantilesScenario
P
in

2022
ofD

am
CJ(M

CM
)

Jan
Fed

M
ar

A
pr

M
ay

Jun
Jul

A
ug

Sep
O
ct

N
ov

D
ec

Q
1

0.94
0.51

3.82
3.56

1.60
4.36

25.29
50.56

21.95
6.34

2.42
2.29

Q
2

4.02
2.18

16.28
15.15

6.79
18.58

107.69
215.33

93.47
27.01

10.31
9.74

Q
3

17.13
9.28

69.35
64.54

28.94
79.14

458.63
917.06

398.09
115.05

43.93
41.48

96



4.3.4 Results

To perform the simulation with different initial storages, the maximum, average,

and minimum storage levels at the end of December were used for each respective

scenario. For the Chungju dam, these values were 2153.748, 1538.924, and 892.698

MCM, respectively. The results of the simulation using the maximum, average, and

minimum historical storage as the initial storage are presented in Tables 4.18, 4.17,

and 4.16, respectively. Each table provides information on total penalty, total releases,

frequency, duration, and magnitude for both the ESP Scenario W/P and PERF. And

it was visualized using bar charts in Figure 4.21.

In all three initial storage scenarios, the year 2021 exhibited a lower inflow,

resulting in differences in the optimal releases between Scenarios W and P. Scenario

W showed a decrease in total penalty and an increase in total releases compared to

Scenario P. In terms of frequency and magnitude, Scenario W performed better than

Scenario P; however, Scenario P exhibited subtle better results in terms of duration.

This indicates that a smaller standard deviation of the predicted inflow distribution

results in overall improved performance in the optimal release strategy.
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.18 Release policy of SSDP/ESP Scenario W in Dam CJ
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.19 Release policy of SSDP/ESP Scenario P in Dam CJ
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(a) Release 3D and heatmap policy in 2020

(b) Release 3D and heatmap policy in 2021

(c) Release 3D and heatmap policy in 2022

Figure 4.20 Release policy of DDP/PERF in Dam CJ
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Table 4.16 Summary of simulation results corresponding minimum initial storage in
Dam CJ

Scenario Total Penalty Total Releases Frequency Duration Magnitude
(MCM) (MCM) (%) (%) (%)

W 667.086 9900.0 77.8 13.9 93.4
P 673.129 9872.5 75.0 16.4 93.3

PERF 649.020 10065.0 94.4 44.4 93.6

Table 4.17 Summary of simulation results corresponding average initial storage in
Dam CJ

Scenario Total Penalty Total Releases Frequency Duration Magnitude
(MCM) (MCM) (%) (%) (%)

W 342.576 10230.0 80.6 18.3 96.6
P 348.619 10202.5 75.0 23.1 96.6

PERF 324.510 10395.0 97.2 94.4 96.8

Table 4.18 Summary of simulation results corresponding maximum initial storage in
Dam CJ

Scenario Total Penalty Total Releases Frequency Duration Magnitude
(MCM) (MCM) (%) (%) (%)

W 336.533 10257.5 83.3 19.2 96.7
P 348.619 10202.5 77.8 23.1 96.6

PERF 324.510 10395.0 97.2 94.4 96.8
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(a) Frequency corresponding initial storage

(b) Duration corresponding initial storage

(c) Magnitude corresponding initial storage

Figure 4.21 Bar chart of FDM performance criteria results in Dam CJ
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Chapter 5. Conclusion

5.1 Summary and Conclusion

This study investigated the importance of ESP in water resources management in

South Korea. The specific research objectives were as follows:

(a) The research trends using ESPwere investigated and the adoption of the method

used in water resources management and its performance in application cases

was demonstrated.

(b) The study aimed to make policy-makers easily understand the benefit of utiliza-

tion of ESP in dam operations by quantifying the effect of ESP through simple

examples.

(c) An optimal ESP-based dam operation model was established for two dams with

different CIR to demonstrate the feasibility of applying ESP in real cases.

This study aimed to address the current limitations in water resources man-

agement in South Korea by introducing and demonstrating the effectiveness of ESP.

Although ESP has been utilized for hydrological forecasting in South Korea, its ap-

plication in water resources management remains limited. This study attempted to

bridge this gap and thus contribute to the improvement of water resources manage-

ment techniques.

103



To render the concept of ESP more accessible to dam operators, a simple

statistical example was presented, highlighting the importance of considering the

uncertainty of inflow when making operational decisions. Through demonstrations

indicating that dams with different inflow standard deviations incurred different costs,

even with the same mean inflow, the study emphasized the need to go beyond relying

solely on the ensemble mean values in water resources management.

Multiple-purpose dams in the Han river basin, specifically the Soyanggang and

Chungju dams, were selected as sample study sites based on their CIR. The inflow

data from 27 years were divided into 9 sets, with the last set from 2020 to 2022 used for

generating unbiased ensembles. The SSDP/Hist and SSDP/ESP models, developed

by integrating ESP into the SSDP approach, were applied to optimize the release

calculations for the dams. Consequently, the optimal releases were determined to

be aggressive and conservative in Scenarios W and P, respectively, for both dams.

The simulation was conducted using the obtained optimal releases for the last set,

and the results were evaluated using performance metrics such as penalty, frequency,

duration, and magnitude (Figure 5.1). The Soyanggang dam exhibited consistent

performance across the scenarios; however, the Chungju dam demonstrated better

overall performance in Scenario W, indicating the sensitivity of dams with lower

CIR and higher demands to the uncertainty of inflow (Table 5.1). Thus, the findings

underscore the importance of considering the full distribution of ensemble forecasts
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and reacting accordingly in water resources management.

In conclusion, this study effectively communicated the significance of con-

sidering uncertainty in inflow and showcased the benefits of integrating ESP into

the decision-making process. Through a simple example and conduction of sample

studies, the study provided practical insights for dam operators and demonstrated the

potential of ESP in improving water resources management practices. This research is

expected to contribute to the enhancement of water resources management techniques

in South Korea, particularly in the face of climate change and other uncertainties.

Table 5.1 Summary of sample study results

Dam SY Dam CJ
Demand Small Large
CIR Very Large (1.345) Large (0.563)

Scenario W/P differences
(in terms of optimal

releases)
O O

Scenario W/P differences
(in terms of simulation) X O
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Figure 5.1 Summary of overall results
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5.2 Limitations

In this study, we assumed that the inner expectation (transition matrix) for the calcula-

tion of optimal releases using SSDP was the same for all time steps. This implies that

the probability of inflow occurring at time t+1 is equal for all predicted inflow val-

ues, regardless of their actual values. However, in real-world scenarios, the predicted

inflow is influenced by current watershed information and meteorological conditions,

which in turn affects the probability of inflow at the next time step.

Moreover, as the objective function was designed to focus solely on water

supply, the differences in optimal releases between Scenarios W and Scenario P

were observed mainly when the storage level was low. Thus, when considering water

supply alone, the strategies for managing predicted inflow vary primarily in drought

conditions.

Furthermore, the simulation was conducted only for the last set of data, which

represented a period with relatively abundant inflow similar to the past. Consequently,

the research findings did not encompass an analysis of extreme inflow events.

Therefore, future research must consider the uncertainty of predicted inflow

and the influence of watershed characteristics and meteorological conditions. Fur-

thermore, the impact of extreme inflow events on optimal release strategies must be

analyzed.
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5.3 Future Study

As mentioned in the Limitations section, future research can address the following

aspects to enhance the accuracy and applicability of optimal release strategies:

(a) Improved Expectation Calculation: Rather than assuming equal proba-

bilities for all predicted inflow values, future studies can accurately estimate the

expectations based on the predicted inflow data. This would provide a more realistic

representation of the actual situation and result in a more accurate determination of

optimal release quantities.

(b) Cross-Validation using all Sets: In this study, only the last set of data from

2020 to 2022 was used for SSDP/ESP and simulation. Future research can perform

cross-validation by utilizing all sets of data. This would result in the validation of the

robustness of the optimal release strategies across different time periods.

(c) Consideration ofMultiple Scenarios: Rather than focusing on only two sce-

narios (ScenariosW and P), future studies can explore a wider range of scenarios. The

incorporation of various scenarios can provide a more comprehensive understanding

of the system’s response and optimize release strategies under different conditions.

(d) Integration of Multiple Dam Functions: While this study focused solely on

water supply objectives, future research can consider the functions of dams related to

irrigation and flood control. Through the incorporation of multiple dam functions into

the optimization framework, more meaningful and holistic results can be obtained.
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Thus, by addressing these aspects in future research, we can further enhance

the effectiveness and practicality of optimal release strategies for reservoir operations.
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국문초록

앙상블유량예측은미국서부에서하천유량의불확실성을고려하여수자

원관리를하기위해고안되었다.이후미국전역으로앙상블유량예측시스템이

구축되었으며현재까지도활발히수문예측과수자원관리분야에사용되고있다.

반면 대한민국의 경우에는 21세기에 들어서야 수문예측에 앙상블 유량 예측이

사용되게 되었으며, 뒤이은 연구에 따라 앙상블 유량 예측이 효과적인 방법임이

입증되었다.

하지만 아직 대한민국에서는 앙상블 유량 예측이 수문예측까지만 사용이

되고있으며,초기에고안되었던수자원관리에는여전히제한적으로사용중이다.

현재수자원관리에서는어렵게앙상블을구득하였음에도불구하고계산의용이상

평균등대푯값하나만을가지고의사결정을하고있는실정이다.본연구는앙상

블 유량 예측을 수자원 관리에 사용하는 것을 권고하고 이에 대한 효과를 보이는

것을목적으로삼았다.이를위해먼저댐운영실무자들을설득할수있는간단한

통계학적 예제를 만들었다. 예제는 같은 용량과 방류요구량을 가지는 댐에서 평

균은같으나다른표준편차를가지는유입량이발생할때유입량의표준편차가큰

댐에서더많은비용이발생함을보여주었다.

그리고 같은 예제를 실제 대한민국의 댐에 적용해보았다. 대한민국의 다
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목적댐을 Capacity-Inflow Ratio (CIR)에 따라 분류하였고 이 중 같은 한강유역이

면서자료길이가동일하지만 CIR는상이한소양강댐(CIR = 1.345)과충주댐(CIR

= 0.563)을 사례연구 대상지로 선정하였다. 그리고 각 댐의 유입량 자료를 9개의

세트로나누어마지막세트인 2020년부터 2022년까지의유입량을이용하여표준

편차에 따라 편향되지 않은 두가지 앙상블을 가정하였다. 그리고 이를 각각 Well

forecasted scenario (ScenarioW), Poorly forecasted scenario (Scenario P)라명명하였

다.대한민국의다목적댐의가장중요한기능중하나인용수공급을개선하기위해

목적함수를용수부족량을최소화하는것으로설정하였다.그리고이를앙상블유

량 예측을 활용하여 최적 방류량을 도출하기 위해 널리 사용되는 표본 추계학적

동적계획법(Sampling StochasticDynamic Programming, SSDP)으로최적화하였다.

과거유입량자료를사용한 SSDP/Hist모형에서다음시점의잔여최적편익함수를

가져와전진방향으로계산하는 SSDP/ESP모형을구축하였다.그결과,소양강댐과

충주댐모두 Scenario W가 Scenario P보다공격적인운영룰을도출하였다.

도출된최적방류량을실제 2020년부터 2022년까지의유입량으로모의운

영하여 패널티, 성공 빈도수(Frequency), 성공이 지속된 평균 기간(Duration) 그리

고용수부족규모의여집합(Magnitude)으로평가하였다.모의결과소양강댐에서는

Scenario W/P간의 차이가 나타나지 않았지만 충주댐에서 Scenario W가 Scenario

P보다 전반적으로 성능이 높은 것을 확인하였다. 이는 평균은 같아도 표준편차

가 다른 유입량이 들어오면 그에 따른 최적 방류량도 달라지며 운영시에 취해야

하는전략도달라져야함을의미한다.그리고충주댐에서이러한차이가두드러진
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사실은 CIR이 작고 방류요구량이 많은 댐일수록 예측유입량의 불확실성에 더욱

예민하게반응한다는것을시사한다.

결론적으로 댐 운영에서 유입량의 평균이 같아도 표준편차가 증가할수록

최적방류량과모의평가에서부정적인영향이나타남을보였다.이는현재평균값

으로만수자원관리를하는방법이앞으로다가올기후변화와그밖의불확실성에

대한고려를하지않은관리방법임을시사하며현재대한민국의수자원관리방법에

개선될여지가있다는것을나타낸다.

주요어:앙상블유량예측 ,최적방류량,표본추계학적동적계획법

학번: 2021-24690
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