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Abstract

Analysis of Ensemble Streamflow
Prediction Effect on Deriving Dam
Releases for Water Supply

Yeonju Kim
Department of Civil and Environmental Engineering
Civil and Environmental Engineering Major

The Graduate School of Seoul National University

Ensemble streamflow prediction (ESP) considers the uncertainty of streamflow in
water resources management, primarily in western regions of the United States. Con-
sequently, the ESP system is actively used in hydrological forecasting and water
resources management in the United States and Europe. However, in South Korea,
ESP has only been used for hydrological forecasting, with its application in water
resources management being limited. Despite the availability of ensemble forecasts,
current water resources management practices in South Korea still rely on single-
valued statistics such as the ensemble mean for decision-making.

This study aimed to promote the use of ESP in water resources management in

South Korea and thus demonstrate its effectiveness. A simple statistical exercise was



created to convince dam operators. A simple hypothetical illustrated that in case of
dams with the same capacity and demand but different inflow standard deviations, the
dam with a higher inflow standard deviation incurred higher costs.

Furthermore, further exercises were applied to actual dams in South Korea.
Multiple-purpose dams in the Han River basin with the same length of data were
selected according to the capacity-inflow ratio (CIR) as case study sites: Soyanggang
Dam (Dam SY) with a CIR of 1.345 and Chungju Dam (Dam CJ) with a CIR of 0.563.
The inflow data for each dam were divided into nine sets, and the last set from 2020
to 2022 was used to generate unbiased ensembles based on the standard deviation.
Consequently, two ensembles were created: A well-forecasted scenario (Scenario W)
and a poorly-forecasted scenario (Scenario P). Sampling stochastic dynamic program-
ming (SSDP), which enables optimal release calculation using ESP, was employed to
develop SSDP/Hist and SSDP/ESP models. A primary function of multiple-purpose
dams in South Korea is water supply, which was optimized by setting the objective
function to avoid water shortages. Considering the poor accuracy of long-term fore-
casts in South Korea, SSDP/ESP models were constructed by incorporating the future
value function from the SSDP/Hist model and then optimizing in the forward direc-
tion. The SSDP/Hist and SSDP/ESP models were built for Dam SY and Dam CJ, and
the optimal releases were calculated. Thereafter, the simulated operation using the

obtained optimal releases was evaluated in terms of total penalty, frequency, duration,

ii



and magnitude.

The simulation results confirmed that Scenario W exhibited better overall perfor-
mance compared to that of Scenario P in Dam CJ. This indicates that even with the
same mean, different inflow standard deviations result in different optimal releases and
require different operational strategies. Indeed, in the simulation study for Soyanggang
Dam, there was no significant difference observed between Scenario W and Scenario
P. This finding indicates that dams with lower CIR values and higher water demands
are more sensitive to uncertainty in inflow predictions. Thus, the management of
water resources based solely on mean values is a naive operation method that neglects
considerations for future climate change and other uncertainties. Therefore, this study
can serve as a motivation for improving water resources management techniques in

South Korea.

Keywords: Ensemble streamflow prediction, Sampling Stochastic Dynamic Program-
ming, Optimization

Student Number: 2021-24690
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Chapter 1. Introduction

1.1 Research Background and Necessity of Study

The importance of hydrological forecasting for natural disaster mitigation and water
resource management was recognized by researchers in 1975 by the World Mete-
orological Organization (WMO) (WMO, 1975). Since the mid-1970s, WMO has
conducted several projects to encourage the development of streamflow forecasting
systems and to provide information on the choice of methods and approaches for them
(WMO, 1986, 1990). Accordingly, a new approach to streamflow prediction referred
to as extended streamflow prediction was announced to supply water considering
the uncertainty of streamflow in the western United States (Day, 1985). Thereafter,
the National Weather Service (NWS) operated the ensemble streamflow prediction
(ESP) program to utilize this method for hydrological forecasting and water resource
management, and the concept of ESP was established (Riverside Technology, 1997;
Connelly et al., 1999; US Department of Commerce and NOAA, 2020).

ESP is a technique that first inputs all possible precipitation traces that may
occur in the future into a rainfall-runoff model. Consequently, it generates several
streamflow traces and performs statistical analysis to predict with probability. The
primary advantage of ESP is its ability to quantify forecast uncertainty by generating

a range of possible streamflow traces (ensembles). Moreover, as the input ensemble



can be selected flexibly, it can be applied to both long- and short-term predictions. In
addition, the initial condition of the watershed can be reflected through the physical
function of the deterministic rainfall-runoff model, which is in contrast to statistical
models that rely only on statistical techniques.

In Korea, the necessity of introducing ESP was raised in earnest only in
the 21st century. Kim et al. (2001) proved its excellence by applying ESP to the
Gongju branch to improve the "Water Supply Outlook" (current Water Resources
Status and Outlook) published at the beginning of every month by the Ministry
of Construction & Transportation and the Korea Institute of Civil Engineering and
Building Technology. Thereafter, K-water established ESP in practice for the Han,
Nakdong, and Seomjin river basins, confirming the effectiveness of ESP (K-water,
2004). Currently, the National Drought Information Analysis Center (NDIAC) is
conducting drought analysis of 35 dam basins nationwide using Bayesian ESP to
advance drought monitoring and forecasting technology. For the practical application
of the model, GUI-based user convenience environment improvement work is in
progress. (National Drought Information Analysis Center, 2018, 2021). In addition,
the Han River Flood Control Center reviewed ESP for practical use after Kim et al.
(2001) and converted the "Water Supply Outlook" (current Water Resources Status
and Outlook) into a probabilistic forecast (Han River Flood Control Office, 2009,

2022). They considered uncertainty in their probability for flood forecasting, which



became the basis for reliable forecasting (Kim et al., 2011).

However, beyond hydrological forecasting, the use of ESP in the real time
management of water resources is challenging. This is because even in developed
countries, in the field, a single value is more convenient than an ensemble of multiple
traces. To solve this problem, studies have attempted to prove the positive effect of
using ESP in water resource management for the past 25 years (Eum et al., 2006;
Faber and Stedinger, 2001; He et al., 2022; Ramaswamy and Saleh, 2020). Never-
theless, cases involving successful use of ESP in the practical field of water resource
management (including in Korea) are rare. Even after the creation of several traces for
predicting hydrological forecasting, the calculations for the amount of release from a
dam are reliant on a single representative value such as the median or average value.

This study was conducted to demonstrate the significant difference in the
effectiveness of ESP in water resource management, particularly when determining
dam releases. Based on this, we intend to support dam operators in the field to actively

utilize the streamflow prediction ensemble which is the result of ESP.



1.2 Research Objectives

The ultimate purpose of this study is to recommend the use of ESP considering the
inflow uncertainty in dam operations in Korea. The detailed goals for this are as

follows.

(a) Investigate research trends using ESP and demonstrate the use of the method in
water resources management. Further, exhibiting its excellent performance in

application cases.

(b) Induce policy-maker to easily understand the benefit of employing ESP in dam

operation by quantifying the effect of ESP through simple examples.

(c) Establish an optimal ESP-based dam operation model for two dams with differ-
ent capacity-inflow ratios (CIR) to demonstrate the feasibility of applying ESP

in real cases.



1.3 Organization of Research

Chapter 2 of this paper, titled "Theoretical Background," investigates the research
trends in probability optimization, ESP, and ESP in reservoir operations. A simple
reservoir example is applied to demonstrate the importance of probabilistic forecasting
(ESP) in dam releases, thereby highlighting the risks associated with operation based
on a single representative value. This section aims to facilitate a better understanding
of the significance of probability prediction in dam operation. Chapter 3 presents
the methodology, which outlines the overall research procedures, the calculation
formula and considerations of the sampling stochastic dynamic programming (SSDP)
technique employed in this study, and the approach for updating optimal discharge
using ESP. Chapter 4 presents sample studies, where multiple-purpose dams in South
Korea are grouped based on CIR. Two dams are selected from this grouping, and the
methodology described in Chapter 3 is applied to analyze the results. Finally, Chapter

5 summarizes the findings and implications of the study.



2 A & et i

SECHIL MATICAL LIMNERSTY



Chapter 2. Theoretical Background

Water resource system problems are complexly connected with hydrological, so-
cial infrastructure, ecological, economic, and anthropogenic factors related to water
(Loucks and Beek, 2017). Therefore, there exist several difficulties in defining the
water resource system problem. For example, "how to set the scope of the problem?,"
"which problem should be solved with the highest priority among many complexly
connected factors?," and "how to solve the problem?" are representative questions
that must first be defined in water resource system problem-solving. In this study, the
above questions were answered as follows and the water resource system problems
we aimed to address were defined.

The first question is "how to set the scope of the problem?" This study aimed
to show the positive effect of ESP on dam operation and thus recommend its usage.
Therefore, the current problem situation to be improved is set to dam operation
considering only a single value of inflow. Subsequently, among several dams, the
multi-purpose dams, which supply the maximum water in Korea, were selected as the
scope of the study.

The second question is "which problem should be solved with the highest
priority among the many complexly connected factors?" The term “multi-purpose

dam” refers to a dam constructed by the Minister of Environment, and is used for



two or more purposes among water for living, industrial, agricultural, environmental
improvement, power generation, flood control, and transportation by ship. Among
them, multi-purpose dams in Korea are particularly important for supplying water
such as water for living, agriculture, and environmental improvement. Therefore, in
this study, water supply was selected as the most important factor to be improved
among various other dam operation objectives.

Finally, the last question is "how to solve the water resource system problem?"
The water supply problem of dams primarily involves the use of modeling methods. A
model is a simplified version of a real system built into a computer. Models are built
to predict the outcome of decisions. In this chapter, existing studies and theoretical
backgrounds are summarized to answer the question of "how to solve the water
resource system problem?"

Models are used to simplify events that are very complex in the real world
and are caused by many factors. However, the consideration of the right assumptions
is crucial. The components of the model include constraints, parameters, decision
variables, state variables, and an objective function in the case of an optimization

model. The components of each model are summarized below.

(a) Constraints: the conditions the system has to satisfy

(b) Parameter: variables that are assigned known values

(c) Decision variables: variables having unknown values that are to be determined



by solving the model. Decision variables can include design and operating

policy variables of various water resources system components.

(d) State variables: variables that describe the state of the system

(e) Objective function (in case of optimization models): the function to be opti-

mized during the problem-solving procedures

Models used in water resource system problems are largely divided into op-
timization, simulation, and simulation-based optimization. A simulation model is a
model that presents results expected to occur when a specific action is undertaken.
The solution of the optimization model is based on the objective function to be max-
imized or minimized, which is in contrast to the simulation model. The optimization
model maximizes or minimizes the objective function to derive the alternative ac-
tion to achieve the most optimal performance under given constraints. Finally, the
simulation-based optimization model is a model that calculates the results of our
actions with a simulation model and then optimizes it using the optimization model
based on it. This model is the most used model in the field of water resource systems.
For instance, using the operating rules we calculated through simulation, we can cal-
culate the amount of future water shortage, perform optimization in preparation for

this, and derive operating rules that improve the water supply to the best extent.



a) Simulation Model

System Design and Operation Policy

L
Water Resources System System
Simulation Model outputs

b) Optimization Model

System Design and Operation Policy

*  Objective Function
*  Constraints

=  State Variable

»  Decision Variable

-~

Water Resources System
Optimization Model

System
outputs

Figure 2.1 Simulation and optimization model (Loucks and Beek, 2017; Kim, 2022)
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Figure 2.1 shows the difference between the simulation and optimization
models. Optimization models require an explicit expression of the goal, whereas
simulation models do not. Simulations simply assume certain scenarios or address
the “what if” scenarios that might occur if certain decisions are made. in addition,
users of simulation models must define the values of design and operational decision
variables before performing simulations. Once the values of all decision variables
are defined, the simulations can provide more accurate estimates of the possible
effects of these decisions. In contrast, optimization models indicate the best decision;
however, the solutions it leads to are often based on certain limiting assumptions.
Because of this, optimization models should be used not to find an optimal solution,
but as a method to define a relatively small number of good alternatives that can be
tested, evaluated, and improved later through more detailed simulations. Therefore,
the process of deriving multiple plans and policies using optimization and evaluating
them via simulations to reduce them to a small number is recommended(Loucks and
Beek, 2017).

In the field of water resources management, several notable optimization meth-
ods are commonly used, including linear programming (LP), dynamic programming
(DP), nonlinear programming (NLP), and genetic algorithm (GA). In this study, we
also utilized sampling stochastic dynamic programming (SSDP), which is a represen-

tative optimization method for water resources management, along with simulation-

11



based optimization based on the mass conservation equation. The following section
investigates the probabilistic optimization methods that account for the uncertainty in
inflow, ESP methodology, and research trends and examples of using ESP in reservoir

operation to understand the impact of ESP on optimal reservoir operation rules.
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2.1 Probabilistic Optimization

The greatest uncertainty in reservoir operation lies in the inflow, which necessitates
the development of approaches that incorporate this uncertainty. SSDP has been
devised to address this challenge by incorporating the traces of ESP directly into the
optimization formulation. In this section, we examine SSDP, which enables the direct
application of ensemble prediction data in the optimization framework, utilizing ESP
traces.

DP is a theory of multistage decision processes (Bellman, 1957). It provides
a systematic approach to transforming multistage problems into single-stage prob-
lems. In contrast to other mathematical programming techniques, DP does not impose
constraints on the use of objective functions. This renders it well-suited for handling
nonlinear problems. It is particularly useful for addressing problems with stochastic
characteristics through the framework of Markov decision processes. Further, DP
offers a systematic process for dealing with problems that involve multiple deci-
sion points and is thus a widely used optimization technique in the field of system

optimization.

(a) Stage refers to the points at which decisions are made. In the context of reservoir
operation, it represents the operational time step or the interval at which the

decisions are made.

(b) State variable represents the state of the system and aggregates past informa-

13



tion at a given stage, serving as a variable. In reservoir operation, it typically
represents the storage level and is commonly discretized for computational

convenience.

(c) Decision variable refers to the alternative actions that can be taken at each
stage, based on the knowledge of the state variable. In the context of reservoir

operation, it represents the release or discharge rate.

(d) Stage return is a scalar value that represents the effectiveness of the decision
made at each stage. It quantifies the operational benefits, such as hydropower

generation, associated with the decision made in reservoir operation.

DP is a process that seeks to find the optimal operating rules at each stage
for every possible state (Bellman, 1957). The underlying principle of DP, known as
the principle of optimality, states that the optimal decision at a particular state is
dependent solely on future decisions and is independent of past decisions. To address
optimization problems based on this principle, the backward method is commonly
employed. This study focused on the application of DP to reservoir operation planning
and explored the use of the backward method. The process is illustrated in Figure 2.2,
where the backward method is used to determine the optimal values at each stage,
considering the current returns and the maximum sum of future optimal values. This
iterative process continues for each state at every stage. Following the completion of

the iterations from stage 3 to stage 1, the optimal values at stage 1 are updated based
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Stage 1 Stage 2 Stage 3

State 1

State 2

State 3

Figure 2.2 Dynamic programming schema
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on those obtained at stage 3. This is followed by further iterations using the backward
method until convergence is achieved.

Deterministic dynamic programming (DDP) refers to the situation wherein
the state at the next stage is determined with certainty based on the current state
and decision in dynamic programming. In the context of reservoir operation, DDP is
applicable when the inflow to the reservoir, such as average inflow, is deterministic
and known precisely without any uncertainty; that is, there is only one inflow trace.
DDP commonly solves the following recursive equation iteratively to determine the

release policy (Bellman, 1957).

fi(S¥) = maz |O4(S¥, Qe Re) + { fia (S) || vSut € {12+, T} @)

Sir1 =5+ Q¢ — Ry (2.2)

Rt = T)’LZ?’L{?’TLCLZL‘[R:, St + Qt - Smax]a St + Qt - szn} (23)

where S} represents the k-th discrete value of the reservoir storage state
variable, which is discretized into K values at stage t. Further, f;(SK) denotes the
value of the objective function (optimal value function) that can vary based on the

research objective among the alternative actions available for the k-th reservoir storage
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state variable, and O,(-) represents the objective function determined by the reservoir
storage (Sf), inflow (Q;), and releases (R;) at stage t. This computation process
proceeds backward from the last stage to the initial stage (Eum, 2007).

DDP undergoes an exponential increase in computational complexity with
progress in the discretization process. To alleviate the curse of the dimensionality prob-
lem and consider the stochastic nature of inflow, an implicit stochastic optimization
(ISO) technique has been proposed. In ISO, a significant amount of historical data or
synthetic inflow is used to sufficiently consider the uncertainty of flow. Subsequently,
deterministic optimization techniques are employed to determine the optimal outflow.
Thereafter, a post-processing step such as regression analysis is applied to relate the
previously determined optimal outflow with variables such as initial reservoir storage,
inflow from the previous month, or the relationship with end-of-month storage. This
approach, inspired by Monte Carlo Simulation, utilizes mathematical techniques to
predict possible outcomes of uncertain events through computer calculations. As DDP
assumes knowledge of the entire inflow time series over the entire period, the deter-
mination of optimal outflow is dependent on having an adequate inflow time series
and employing post-processing methods such as linear regression analysis. Moreover,
certain studies have addressed the differences in post-processing methods, including
proposing suitable approaches for post-processing analysis (Shaikh and Pattanayek,

2022).
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ISO, which utilizes deterministic models, offers the advantage of convenience
in the application and reduced computation time. However, it yields distorted optimal
releases when applied in situations involving insufficient data, such as in the case
of South Korea. This is because it relies on assumed time series data and obtains
optimal solutions through post-processing techniques such as multiple regression
analysis (Eum, 2007). To address this limitation, the explicit stochastic optimization
(ESO) technique has been developed. ESO incorporates uncertainty into the equations
of dynamic programming itself by representing it probabilistically. Consequently, it
enables optimization under uncertainty and aims to overcome the shortcomings of
ISO.

One of the optimization methods within ESO is SDP. SDP is constructed
by incorporating probabilities that reflect the uncertainty of input variables into the
process of DDP. In the context of reservoir operation, wherein the uncertainty lies in
the inflow, SDP is computed by multiplying the probability of the inflow. Although
the exact inflow to the reservoir cannot be precisely predicted, SDP considers the
probability distribution of the inflow by fitting it to the discretized intervals of ().
This is realized by placing the inflow probability at the front of Eq. 2.1 in DDP.
Consequently, it can be expressed as Eq. 2.4 by introducing the expectation operator

(Tejada-Guibert et al., 1995).
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f1(S¥) = max E |O4(S¥, Qs, Ry) + {ft+1(si(+1)H VSt e {1,2,---,T}
Ry Q1

(2.4)

Expectation (E) can be obtained by multiplying the expected value of the
inflow for each probability and summing them. As mentioned earlier, in the case of
Eq. 2.4, the probability variable and the probability distribution function Pr(Qy) are
discretized to facilitate computation. Thus, the equation for SDP with the discretized

probability distribution function is expressed as Eq. 2.5.

I
() = rrggxz Pr(Qy) [Ot(Si‘, Qi Ry) + {ft+1(s}c{+1)H (2.5)
i=1

where SF represents the k-th value of the discretized reservoir storage at stage
t, and Q! represents the i-th value of the discretized inflow at stage t. Figure 2.3
illustrates the case where @), is discretized into four intervals, assuming a standard

normal distribution.
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A case study of dam operation using DP-family optimization is presented in
Celeste and Billib (2009). The study investigated the performance of probabilistic
models based on ISO and ESO, which were used to define optimal reservoir oper-
ation policies. Six optimization techniques based on ISO with different calculation
methods and post-processing approaches, as well as the SDP method, were compared
in the Paraiba river basin in Brazil. In general, ISO and PSO models demonstrated
better performance compared to SDP and SOP; however, this was attributed to the
assumption of perfect forecasting, which is a major limitation of DDP.

To alleviate the difficulties caused by the complexity of real-world problems,
Giuliani et al. (2016) explored the technical and practical significance of using evolu-
tionary multiobjective direct policy search (EMODPS). They addressed three issues:
dimensionality, modeling, and multiple objectives, and applied SDP and EMODPS
to the Hoa Binh, a multipurpose dam in Vietnam. The results demonstrated that
EMODPS outperformed SDP, indicating its greater success in handling the chal-
lenges associated with the aforementioned problems. Subsequently, in South Korea,
Kim and Kim (2021) constructed models for the Boryeong Dam, which had ex-
perienced multi-year droughts, using EMODPS and dynamic programming. Among
them, the EMODPS-Gaussian model demonstrated the most improved optimal release

policy for the dam.
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Table 2.1 Literature summary of probabilistic optimization

Author Title (Target Problem) Optimization | Key findings
(year)
Stedinger Stochastic ~ Dynamic .TomBEEwsm Stochastic Suggests the inclusion of best inflow forecast
Models for Reservoir Operation . . C 4
et al. (1984) ... DP (SDP) instead of proceeding period’s inflow
Optimization
Tejada- The value of hydrologic information in . Depending on the type of the objective func-
. . . . Stochastic . . .
Guibert et al. | stochastic dynamic programming mod- DP (SDP) tion, the value of hydrologic state variables
(1995) els of a multi-reservoir system differs in Stochastic DP
QP PSO All ISO and PSO models performed better
Celeste and | Evaluation of stochastic reservoir oper- ’ .| than SDP and the SOP and also provided re-
- . o Stochastic .. .
Billib (2009) | ation optimization models DP (SDP) lease rules similar to the ones determined by
perfect forecast optimization.
Curses, Tradeoffs, and Scalable Man- Stochastic RBF solutions are more effective than those
Giuliani agement: Advancing Evolutionary DP  (SDP) obtained by ANN in designing Pareto-
etal. (2016) | Multiobjective Direct Policy Search to " | approximate policies, and EMODPS success-
. . EMODPS . .
Improve Water Reservoir Operations fully improves the SDP solutions
Among (1) All possible regression, (2) step-
Shaikh and | Implicit Stochastic Optimization for wise regression, (3) decomposition and (4)
Pattanayek deriving operating rules for a multi- | DP simulation, decomposition model with less
(2022) purpose multi-reservoir system number of predictor variables is the most pre-

ferred.
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2.2 Ensemble Streamflow Prediction

Hydrological predictions are employed to anticipate future events to facilitate more
efficient water resources management. Over the past several decades, numerous studies
have been conducted to enhance the accuracy of hydrological predictions; however,
the complexity and interconnectedness of watershed-scale hydrological phenomena
render the achievement of perfect forecasts challenging. Hydrological predictions can
be categorized into deterministic and probabilistic forecasts. Deterministic forecasts
provide a single prediction value, facilitating straightforward and prompt decision-
making. Consequently, they are widely utilized as valuable information for water
resources operations. However, deterministic forecasts cannot account for outcomes
other than the predicted value, which renders the preparation for alternative situations
challenging. For instance, when determining dam releases based on a single value
using only the historical average inflow, it assumes a 100 % probability of that
average inflow occurring. However, this approach fails to consider the possibility of
different inflow values and does not incorporate the probabilities of lower or higher
inflow traces. Conversely, probabilistic forecasts offer the advantage of presenting the
likelihood of various outcomes, enabling water resources management that considers
the associated risks. Among these probabilistic forecasting methods, ESP stands out
as a prominent approach.

ESP is based on the assumption that past hydrological events can represent
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Figure 2.4 Schematic of ESP procedure (Day, 1985)

future hydrological events. Hence, it involves setting initial conditions such as humid-
ity, temperature, and soil moisture profiles in a deterministic rainfall-runoff model,
as shown in Figure 2.4, and inputting multiple rainfall traces that are likely to occur
in the future to obtain a range of streamflow traces. This approach, often referred
to as the conditional Monte Carlo simulation approach, generates streamflow traces
following the occurrence of initial conditions. A key advantage of ESP is its ability to
quantitatively assess prediction uncertainty via the generation of a range of possible
streamflow traces (ensembles) and offering a flexible selection of input ensembles
based on the objectives of the study, which are applicable to both long-term and

short-term predictions. Although the results delivered by ESP are interpretable in a
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probabilistic manner, the calculation process does not solely rely on a 100% proba-
bilistic approach. As mentioned earlier, ESP combines the advantages of deterministic
models, which yield a single value using physical functions, and probabilistic models
that facilitate the quantification of uncertainty. It employs a scenario-based determin-
istic model that considers uncertainty by integrating physical processes. The National
Weather Service (NWS) in the United States is a prominent user of ESP. Since the
1990s, the NWS has been utilizing the ESP method to forecast streamflow nationwide.
In South Korea, the introduction of ESP began with the application of ESP
at the Gongju gauge station, as documented in Kim et al. (2001). This research was
initiated with the purpose of improving the "Water Supply Outlook," which was pub-
lished by the Ministry of Land, Infrastructure and Transport and the Korea Institute
of Construction Technology (KICT). Therefore, the same KICT rainfall-runoff model
used for the "Water Supply Outlook" was employed for the ESP implementation.
Historical rainfall data from 1919 to 1994, spanning 76 years, at the Gongju gauge
station, were used to generate 76 streamflow traces each month. These traces were
then utilized for streamflow predictions for a period of five years, from 1995 to 1999.
In addition, to enable probabilistic forecasting, the streamflow was statistically cate-
gorized to provide categorical forecasts. The results confirmed that the ESP method
outperformed the existing method in terms of streamflow prediction accuracy.

In K-water (2004), the streamflow synthesis and reservoir regulation (SSARR)
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model was used to develop ESP for the Han, Nakdong, and Seomjin river basins.
To ensure accurate validation, the focus was on multi-purpose dams with sufficient
length of observed data available for each basin. For the Nakdong river basin, the
Andong, Hapcheon, and Namgang dams were selected as the validation areas. For
the Han river basin, the Chungju and Soyanggang dams were chosen, and for the
Seomjin river basin, Seomjingang dam was selected as the validation area. In the
Han river basin, an ensemble of 17 streamflow traces was generated using rainfall
and temperature ensembles from 1981 to 1997, and streamflow predictions were
conducted for a period of six years from 1998 to 2003. For the Nakdong river basin,
an inflow ensemble was generated using 21 years of rainfall and temperature data from
1977 to 1997, and streamflow predictions were conducted for the period from 1998 to
2003. Lastly, for the Seomjin river basin, streamflow predictions were conducted from
1998 to 2003 using historical data from 1981 to 1997. The validation results based
on R-B and RMSE indicated that the ESP method was effective as a probabilistic
forecasting approach. This is because the average prediction scores were higher than
33.3 % for all validation points, even without the application of the optimal linear
correction technique.

Since 2016, the National Drought Information Analysis Center (NDIAC) has
been enhancing the reliability of drought prediction by applying ESP, a probabilistic

drought forecasting method, and quantitative precipitation-streamflow techniques.
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From 2017 onwards, NDIAC has been focused on further improving the reliability of
drought forecasting through the development and refinement of analysis techniques
at different stages: meteorological, hydrological, and drought forecasting (National
Drought Information Analysis Center, 2017, 2018, 2021). To achieve this, Bayesian
ESP streamflow prediction has been utilized. NDIAC has constructed a Bayesian ESP
framework for weekly and monthly hydrological forecasts (dam inflow prediction) in
35 dam basins nationwide, and it is actively employed in practical applications.

In 2009, the Han River Flood Control Office conducted a study to convert
"Water Supply Outlook" (current Water Resources Status and Outlook) into prob-
abilistic forecasts. They performed a 12-month ESP using the Tank model under
different initial conditions for the years 2000 to 2008 nationwide. The study aimed
to examine the applicability of a probabilistic streamflow system to various basins
and seasonal characteristics nationwide. Consequently, they proposed improved tech-
niques for preprocessing and postprocessing, which addressed the uncertainty factors
that affected the evaluation of the methods. They evaluated the techniques over dif-
ferent application periods and basins to identify superior approaches. Furthermore,
they examined potential issues and improvements related to the expansion of proba-
bilistic streamflow prediction and the establishment of an integrated system. Further,
they proposed prediction and trace periods that could minimize the uncertainty of

ESP. Consequently, they achieved more reliable medium to long-term probabilistic
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streamflow prediction compared to previous methods. Moreover, they also developed
a user interface to make the "Water Supply Outlook" and other information available
to practitioners (Han River Flood Control Office, 2009, 2022).

In addition, the Han River Flood Control Office applied ESP to probabilistic
flood forecasting. They generated 3-hour meteorological ensemble traces and created
short-term ESP for a representative rainfall event that occurred in South Korea in
2011. Further, they performed probability analysis on the ESP results and categorized
them into three ranges: R1, R2, and R3. This categorization facilitated probabilistic
forecasting with reduced decision-making risks compared to deterministic forecasts.
Ultimately, this approach provided a stable and reliable probabilistic forecast that
mitigated the uncertainties associated with decision-making processes (Kim et al.,

2011).
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2.3 ESP in Reservoir Operations

In the previous sections, we have examined the theoretical background of reservoir
operation optimization techniques and ESP individually. In this section, we explore the
optimization technique referred to as SSDP, which has been developed to maximize
the utilization of inflow ensemble traces obtained from ESP. Further, methods for
incorporating SSDP with ESP to enhance their combined effectiveness in reservoir
operation decision-making are discussed.

SSDP is a non-parametric approach that incorporates the uncertainty of inflow
into the recursive equation of SDP via the direct application of the inflow data. It
aims to represent the uncertainty of inflow while accounting for the spatial-temporal
correlation and continuity of the inflow data (Eum, 2007). By substituting the inflow

traces (Q¢(7) instead of )y into the recursive equation of SDP, Eq. 2.6 is obtained.

maz B{| Oy(S¥, Qs (i), Re) +J;{ft+1(8i+l,j)}}}vst,z’ and £ € {1,---, T}
t 7le

(2.6)

where Q) (i) represents the i-th inflow trace at time t. Inflow traces range from
1 to I, where j denotes the inflow trace that occurs after trace ¢ (Figure 2.5). In the
case of SSDP, upon the determination of the target release for each stage and reservoir

state using Eq. 2.6, the residual optimal benefit function is updated using Eq. 2.7.
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2.7)

In Faber and Stedinger (2001), ESP was combined with SSDP to determine
the optimal release for the operation of Williams Fork Reservoir in the United States,
while considering the conditions at the prediction horizon. In Eq. 2.7, the objective
function By(-) is determined based on the probabilities of trace j occurring after trace
1, using a Markov chain. To estimate these transition probabilities, Faber and Stedinger
(2001) conducted regression analysis between the inflow trace ¢ at the base period and
the cumulative outflow traces j during the subsequent period. Upon the occurrence of
ESP events based on the ESP technique computed by NWS, the transition probabilities
were updated using the new ensemble set of inflow traces, and the optimal release was
determined accordingly. The results showed that incorporating ESP in the calculation
of transition probabilities yielded improved release decisions than those obtained by
calculating transition probabilities based solely on historical data.

The optimal releases for the dry season of the Yongdam and Daecheong dams
in the Geum river basin were calculated using ESP and SSDP (Eum, 2007; Kim
et al., 2007). The objective function considered the minimization of water supply

shortage and the maximization of hydropower generation, while considering the multi-
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purpose nature of the dams in the Geum river basin. In addition, to account for flood
considerations, the minimization of deviations from the end-of-June target water level
was also considered. In contrast to the study by Faber and Stedinger (2001), an
online model was constructed. This involved conducting ensemble predictions for one
month at the beginning of each month, thus facilitating forward problem-solving and
updating of the optimal releases on a monthly basis. The model using the historical
inflow traces was referred to as SSDP/Hist, whereas that updated using ESP every
month was referred to as SSDP/ESP (Figure 2.6). The results showed that updating
the optimal releases generated by the SSDP/Hist model using the SSDP/ESP model
resulted in a reduction of water supply shortage in the Geum river basin by an annual
average of 0.6 x 10%m3 /year.

Ramaswamy and Saleh (2020) aimed to optimize real-time reservoir opera-
tions under extreme rainfall conditions using ESP generated by the HEC-HMS model
and DP. They calculated ESP for extreme rainfall events, specifically hurricanes Irene
and Sandy, and performed DP for all ESP traces. The results showed that the release
decisions varied based on the lead time of ESP, with shorter lead times suggesting
less conservative release strategies. However, conservative release strategies resulted
in a wide range of release decisions that indicated reservoir flooding as predictions
were updated during severe rainfall traces.

In a recent study by Shaikh and Pattanayek (2022), ESP was generated using
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a different approach compared to other studies that used rainfall-runoff models. This
study utilized long short-term memory (LSTM) to estimate ESP. The study focused on
the Upper Hanjiang river basin in China, where LSTM-generated ESP was employed
to determine optimal release strategies through NSGA-II. The results showed that
the LSTM-based ESP produced highly accurate outcomes. Furthermore, the optimal
release strategies derived from the forecast-based approach were more beneficial for

additional power generation compared to the no-forecast approach.
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2.4 Exercise for ESP Effect on Reservoir Operations

The previous section investigated the research trends in dam operations and the
application of ESP in academia, examining the use ESP methods in the field of
water resources and assessing their performance in various case studies. Several
studies have combined ESP with the SSDP technique to update the inflow traces,
resulting in significant improvements in performance. This section aims to facilitate
a better understanding of the practical utility of probabilistic ESP for dam operators
by quantifying the benefits of probabilistic forecasting through a simple example,
without the need for sophisticated ESP derivation or optimization techniques.

Here, we have a very simple reservoir (Figure 2.7) with maximum and min-
imum capacities of 10 and 0, respectively. The average inflow at each time step was
7, and our goal was to supply a constant demand of 5 of water throughout the opera-
tional period. We began with an initial reservoir capacity of 10 and aimed to operate it
successfully until the 3rd step, which represents the non-flood season while meeting

the demand.
e Maximum Storage (Syqz) = 10
e Minimum Storage (Syn) =0
* Average Inflow (u) =7

¢ Demand = 5 (constant)
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* Planning Period (T) = 3

* Initial Storage (Sp) = 10

Scenario W ~ N(7,1?) (2.3)

Scenario P ~ N(7,2.5%) (2.9)

We assumed that in this simple reservoir, at each time step, inflow followed
two different normal distributions with the same mean of 7, albeit with different
standard deviations of 1 and 2.5, respectively (Eq. 2.9), as illustrated in Figure 2.8.
Let us denote the inflow with a standard deviation of 1 as Scenario W and that with
a standard deviation of 2.5 as Scenario P. In addition, this reservoir incurs a cost for
water supply through water purchase if the reservoir capacity falls below 2. Therefore,
a cost of water supply, following a sigmoid function in Eq. 2.10, was incurred based
on the reservoir capacity x, as shown in Figure 2.9. Considering the Scenarios W and

P, the question is how should the operation of the reservoir differ.

10000

" exp (3x —5) 210

c(x)

Let us assume the worst-case scenario where an inflow with a probability of
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0.01 occurs over three-time steps in both inflow probability density functions. The
probability of this worst-case scenario occurring is 10~ for both Scenarios W and P,
as shown in Eq. 2.12. In this case, for Scenario W, the inflow with a probability of
0.01 has a value of 4.3, while for Scenario P, the inflow with a probability of 0.01 has

a value of 1.1, as indicated in Eq. 2.14.

Scenario W :Pr() I) =0.01 x 0.01 x 0.01 = 107° (2.11)
Scenario P :Pr() I) = 0.01 x 0.01 x 0.01 = 10~ (2.12)
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fw(0.01)"t =4.3 (2.13)

fp(0.01)" P =1.1 (2.14)

Sir1 =8 +Qr — Ry (2.15)

Through the application of the mass conservation equation (Eq. 2.15), we can
calculate the reservoir storage (.S3) after the three-time steps. If the demand of 5 is
satisfied at every time step, the final reservoir level would be 7.9 and -1.7 for Scenarios

W and P, respectively, as shown in Eq. 2.17.

Sy =10+ (12.9 — 15) = 7.9 (2.16)

Ssp =10+ (3.3—15) = —1.7 (2.17)

At each time step (t = 1, 2, 3), we can calculate the cost. Consequently, for
Scenario W, according to Eq. 2.15, no cost was incurred. However, for Scenario P, a

cost of 11680 was incurred.
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10000 10000

Cavy —
W S p(Bx10—5) exp(3x9.3—5)
10000 N 10000
exp(3x86—5) exp(3x7.9-05)
=0+04+0+0=0

oo 10000 . 10000
PP T exp(3x10—5) | exp (3 x 6.1 —5)
10000 10000

exp (3 x 2.2 —5) + exp (3 x (=1.7) = 5)

=0+ 0+ 1680 + 10000 = 11680

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The entire operation can be visualized in Figure 2.10 and Figure 2.11. Thus,

even with the same probability for the worst-case scenario, in case of different standard

deviations of the inflow probability density function, different results are observed in

terms of the dam’s cost function. This indicates that relying solely on past averages

without considering other statistics of inflow is not sufficient for optimal dam opera-

tion. Therefore, it is crucial to incorporate the distribution of inflow to the best extent

possible in the dam operation.
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Figure 2.10 Schematic of dam releases during the 3-time step for Scenario W
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Figure 2.11 Schematic of dam releases during the 3-time step for Scenario P
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Chapter 3. Methodology

3.1 Overall Procedure

In this chapter, we describe the overall procedure based on a survey of research trends.
The first step involved selecting the target multiple-purpose dams among the 21 dams
in South Korea. To analyze the characteristics of different multiple-purpose dams,
the CIR was employed as the selection criterion. Based on the CIR, the Soyanggang
and Chungju dams were chosen as the study sites. For each dam, a distribution was
assumed with the same ensemble mean but different variances, as demonstrated in the
exercise presented in Chapter 2, to capture the effect of ESP on reservoir operations.
Consequently, SSDP/Hist and SSDP/ESP models were developed for Scenarios W
and P, and the optimal release rates were calculated. In addition, the optimal release
rates assuming perfect forecasts (PERF) were determined using DDP for the purpose
of comparison. The calculated optimal release rates were then used for simulation,
and the results were analyzed in terms of frequency, duration, and magnitude (Figure.

3.1).
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Step 2: ESP Generation
Unbiased ESP log normal parameter setting

Dividing into 2 cases by adjusting the variance

[ ESP: Scenario W J [ ESP: Scenario P
| |

Step 3: Optimization
Historical Inflow Trace Analysis

SSDP/ESP
(forward)

[SSDP/ESP\:V] [ SSDP;ESPP J [ SSDP/HistJ

SSDP/Hist
(backward)

Step 4: Simulation
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Step 5: Performance Analysis
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Figure 3.1 Research overview
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3.2 Ensemble Streamflow Prediction

ESP assumes unbiased forecasting (Figure. 3.3) and considers two distributions with
the same ensemble mean albeit different standard deviations (Figure.3.2). The en-
semble mean values of ESP were determined based on the monthly inflow data from
the last set of the selected dams, spanning from 2020 to 2022, following the two

assumptions described below.

» Assumption 1: Monthly averages of ESP are identical to the corresponding

observations (i.e., unbiased forecasting)

* Assumption 2: Monthly variance of ESP comprises 2 Scenarios depending on

the variance.

The inflow data was tested for goodness of fit and assessed using Q-Q plots to
determine if it followed a log-normal distribution. In this case, the relationship between
px and ox and the resulting py and oy after fitting the log-normal distribution are
described by Eqgs.3.1 and 3.2. For Assumption 2, the standard deviation was assumed
as ox = px and ox = 10px for Scenarios W and P, respectively. Consequently,

using Eq. 3.2, the resulting oy for Scenarios W and P were 0.83 and 2.15, respectively.
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3.3 Sampling Stochastic Dynamic Programming

Setting the objective function is crucial in formulating an optimization problem,
whether it involves minimization or maximization. In our case, the improvement
of water supply in multiple-purpose dams was deemed as the most urgent issue.
Therefore, the objective function was set as the water shortage amount, with an aim
to minimize it (Eq. 3.3). Here, D; and R; represent the demand and release at time t,

respectively.

Ot(St7 Qs Rt) = maac(O, Dy — Rt) (3.3)

As mentioned earlier, SSDP is a non-parametric approach that directly in-
corporates inflow data into the SDP recursion equation, thereby representing the
uncertainty of inflow while considering its continuity and spatiotemporal correla-
tions. This is in contrast to discretizing the inflow and using representative values and
probabilities for each interval in SDP (Eum, 2007).

In this study, the objective function was not a future benefit function to be
maximized, rather it was the water shortage amount to be minimized. Incorporating
this into Eq.2.4 yields Eq. 3.4, where [ is the number of inflow traces used for optimal

release calculation, and Q¢(7) represents the inflow of the i-th trace at time t.
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min £ [ot(s}f, Qe(i), Re) + {fm(siﬂ,i)}} VS, te (1,2, T} (3.4)

= 77}%@;”%;]37“(1') [Ot(S}f, Q¢(i), Re) + {ft+1(s‘lc+1a Z)H (3.5

The application of discretization of inflow to Eq.3.4 yields Eq. 3.6, which
represents the SSDP formulation. SSDP utilizes Eq. 3.6 to evaluate the residual
expected benefit function for each trace ¢ associated with the optimal release, once
the state variable representing each stage and the current state is determined. This is

realized using Eq. 3.7.

I

min 3 Prii) (0S¥, Qu(0), Re) + { fi1(Stir D) | (3.6)

fi(SE.1) = O4(S¥, Qe(i), Re) + {ft+1(s'lc+1, 1)} (3.7

Next, let us consider the constraints. The most fundamental constraints are that
the reservoir storage cannot be negative (less than 0) and cannot exceed the reservoir
capacity. Furthermore, water supply in multiple-purpose dams in South Korea is
conducted within the range between the normal high water level (NHWL) and the low
water level (LWL). To reflect a more realistic situation, it is ensured that the storage

at each stage did not fall below the LWL (Figure 3.4). Therefore, for each dam, the
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minimum storage level (Sy,;,) was set as the LWL, and the maximum storage level

(Smaz) represents the storage at the NHWL of the dam (Eq. 3.8).

FWL (Flood Water Level)

\\|4

NHWL (Normal High Water Level)

1] 4

RWL (Restricted Water Level)

[] 4

LWL (Low Water Level)

DSL (Dead Storage Level)

|||<] \H<]

Total Storage

Flood Control
Storage Capacity

—_—

y

Effective
Storage
Capacity

Inactive Storage Capacity

_—

Figure 3.4 Multi-purpose dam water level and capacity (K-water, 2021)
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Smm <S< Smax (38)

In the DP family of optimization algorithms, the calculations are performed
backward until a certain level of convergence is achieved. However, in this study, a
convergence condition was applied to determine to the point at which the calculations

were to be stopped. The convergence condition used in the research is shown in Eq.

3..

1(Fopt = fopt)| = 1(fop — fop Il < € (3.9)

where fgpt represents the optimal value in the i-th iteration, and € denotes the

tolerance. In this study, € was set to 1072,
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3.4 ESP in Sampling Stochastic Dynamic Programming

In the previous theoretical background, we examined a research case that utilized
ESP to determine accurate operational rules in the optimization equation of SSDP. As
evident from the recursive equation of SSDP, calculating the current value f; requires
the value of f;y1. Therefore, first, the entire inflow traces over the entire operational
period were predicted, and then the optimal releases and future value functions were
calculated in a backward manner. However, the backward calculation requires the
prediction of the entire inflow traces over the operational period, which poses chal-
lenges in accuracy, particularly when the prediction horizon exceeds one month in
the South Korean context. To address this, Eum (2007) proposed an improvement by
first calculating SSDP/Hist using past inflow data and using the obtained future value
function in the calculation of optimal releases in SSDP/ESP, which can be solved
in a forward manner (Figure 3.6). In this study, we adopted the same approach to
compute the optimal releases. The entire 27-year inflow traces were divided into three
sets, resulting in nine sets, and SSDP/Hist was calculated excluding the last set from
2020 to 2022. Subsequently, the final set was used for ESP generation and simulation
(Figure 3.5).

When denoting the inflow trace of ESP as 7 and the past inflow trace received
from SSDP/Hist as j, the calculation formula is expressed as Eq. 3.10. The expectation

term is multiplied because it represents the calculated f values for each trace ¢ and
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7 in ESP and Hist, respectively. It was assumed that the transition matrix from trace
7 to j was the same for all trace 7. Upon the application of the calculated optimal
releases to actual operations, the operation was conducted as follows: if Syy1 was less
than S,;n, no release was made, and if S; 11 exceeded Sy, the excess amount was
discharged as spill (Figure 3.7). In addition, to observe the results based on different
initial storage conditions, the minimum, average, and maximum historical water levels

were used as the initial storage.

I
n}?z*n Z PT(]) [Ot(SE, Qt(l), Rt) + ﬁ {ft+1(S};+1,‘])}:| (310)
t =1 ’
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Figure 3.5 Division of the inflow dataset
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Figure 3.6 Connection of SSDP/Hist and SSDP/ESP
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Figure 3.7 Simulation flowchart
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3.5 Performance Matrix

In reservoir operations, the performance evaluation can be divided into absolute and
relative evaluations. Absolute evaluation refers to the evaluation based on absolute
quantities, such as water supply, obtained through simulations. However, relative
evaluation refers to the evaluation of whether the system satisfies the criteria set by
the system users. Hashimoto et al. (1982) described the relative evaluation of the
system in terms of reliability, resiliency, and vulnerability. In addition, Kim et al.
(2019) and Kim et al. (2021) evaluated the performance of the Boryeong Dam in
South Korea using the Frequency of annual water deficit, duration of the longest
failure, and magnitude of annual water deficit. Subsequently, Kim et al. (2022) used
this performance matrix for the evaluation of adaptive reservoir management, enabling
amore intuitive assessment. These performance matrices are also applied in this study.
To assess water deficit, the success of the system is defined as R; satisfying D, at
each time step, as shown in Eq. 3.11. If the results owing to a random variable X, are

satisfactory for a certain period, it is defined as S'; otherwise, it is defined as F.

X €S Ry > Dy (3.11)

X e F otherwise (3.12)
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* Frequency: To what degree does the system experience satisfaction?
* Duration: How long does the system stay in a satisfactory state?
* Magnitude: What is the severity of the failures that occur in the system?

The Frequency (p) refers to the total number of successful operations during
the entire operational period. In categorical data representing the success and failure
of the system, a value of 1 is assigned to W; in Eq. 3.13 when the operation is
successful, whereas a value of 0 is assigned to W, in Eq. 3.14 when the operation is

a failure.

W,=1 X, eS8 3.13)

Wy=0 Xy eF (3.14)

The Frequency (p) can be expressed as Eq. 3.15.

T
1
p=Pr(X;€8) =7 tz_; Wy (3.15)
The Duration (vy) represents the average period during which the system re-
mains successful throughout the operation period. (-) calculates the number of con-

secutive occurrences of an event within parentheses, and L(-) calculates the duration

of consecutive occurrences of an event. The duration can be expressed as Eq. 3.16.
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_ 1 Zf:l L(Wt - 1)
T I(W,=1)

(3.16)

The Magnitude (v) represents the shortfall of the total demand relative to the
total supply in the system and is expressed as a complement to 1. Similar to frequency
and duration, magnitude is defined as an upward indicator. It is calculated as the
difference between 1 and the ratio of total shortfall to total demand, as expressed in

Eq. 3.17.

Zle maz (0, Dy — Ry)
Y1 Dy

v=1 (3.17)

This study evaluated the performance of the optimal release after simula-
tion using both absolute and relative assessment measures. The absolute evaluation
was performed through the penalty incurred, whereas the relative evaluation was
conducted using the frequency-duration-magnitude (FDM) framework (Figure 3.8).

These measures were employed to compare the performances of Scenarios W and P.
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Chapter 4. Sample Studies

4.1 Classification of Dams by CIR

To examine the operational behavior of dams under different conditions, various
multipurpose dams in South Korea were classified according to their CIR and arranged
in Table 4.1. Following the classification by Karamouz and Houck (1987), dams with
a CIR in the range of 0.5-1 were categorized as "Large," whereas those with a
CIR greater than 1 were classified as "Very Large." Based on this classification, the
Soyanggang and Chungju dams, which have similar capacities and data lengths within
the same Han river basin, were selected as the study areas. The CIR classification,
along with a map of South Korea, is shown in Figure 4.1.

The selected study area, the Han river basin, is located in central South Korea
and is the largest river system that runs through the capital city of Seoul. It connects
the Han and the Bukhan rivers. The total basin area is 25,953.6 km? (or 35,770.41
km? when including North Korea). With a river length and average width of 494.44
km and 75.5 km, respectively, the Han river basin is the primary river basin in South
Korea, covering approximately 23 % of the national territory. Within the Han River
basin, there are several multi-purpose dams such as the Soyanggang, Chungju, and
Hoengseong dams, which contribute to water supply operations. The water supply

mimetic diagram for this area is shown in Figure 4.2.
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Figure 4.1 Multi-purpose dam with CIR in Korea
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Table 4.1 CIR of multi-purpose dams in Korea

Dam | Start year | End year | Capacity (MCM) | Annual average inflow (MCM) | CIR
Seongdeok 2012 2021 27.9 17.1 1.628
Gunwi 2011 2021 48.7 35.6 1.367
Soyanggang 1996 2021 2900.0 2156.1 1.345
Jangheung 2005 2021 191.0 148.5 1.286
Andong 1996 2021 1248.0 984.5 1.268
Hapcheon 1996 2021 48.7 35.6 1.185
GimcheonBuhang 2013 2021 54.3 49.3 1.100
Yongdam 2001 2021 815.0 751.8 1.084
Buan 1997 2021 50.3 47.0 1.070
Yeongju 2012 2021 181.1 198.0 0.915
Imha 1996 2021 595.0 652.9 0.911
Bohyeonsan 2014 2021 22.1 25.6 0.862
Miryang 2001 2021 73.6 89.1 0.826
Boryeong 1998 2021 116.9 144.0 0.812
Seomjingang 1996 2021 466.0 598.0 0.779
Daecheong 1996 2021 1490.0 2542.7 0.586
Juam Control 1996 2021 250.0 434.9 0.575
Chungju 1996 2021 2750.0 4888.8 0.563
Hoengseong 2001 2021 86.9 157.1 0.553
Juam 1996 2021 457.0 844.8 0.541
Namgang 2000 2021 309.2 23204 0.133
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Figure 4.2 Water supply mimetic diagram in Han River
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4.2 Sample Study 1: Dam SY

To set the constraints for SSDP according to the current status of the Soyanggang
Dam (Figure 4.3), the requisite information has been summarized in Table 4.2. The
storage was discretized into 100 intervals with equal spacing. In the case of multi-
purpose dams in South Korea, water supply operations occur between the LWL and
the NHWL. Therefore, the storage should not fall below the LWL and should not
exceed the NHWL. For each dam, the value of S,,;,, was set to the LWL, and S;,,42
was set to the NHWL, as shown in Eq. 3.8. According to the information, the LWL
and NHWL for the Soyanggang Dam were calculated as 693.574 and 2478.906 MCM,
respectively. Furthermore, the monthly demand was obtained by converting the daily

demand from K-water (2020) into monthly values, as shown in Table 4.3.
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Table 4.2 Information of Dam SY

Information Figure
Height (m) 123.0
Length (m) 530.0
Normal elevation (EL.m) 203.0
Volume (1000 m?) 9,591.0
Basin area (km?) 2,703.0
Annual water supply capacity (MCM) 1,213.0
Reservoir area (km?) 70.0
Design Flood Level (EL.m) 198.00

NHWL (Normal High Water Level) (EL.m) | 193.50
RWL (Restricted Water Level) (EL.m) 190.30

Spill Water Level (EL.m) 185.50
LWL (Low Water Level) (EL.m) 150.00
Total Storage (MCM) 2,900.0
Available Storage (MCM) 1,900.0

Flood Control Storage Capacity (MCM) 500.0

Table 4.3 Monthly demand of Dam SY (MCM) (K-water, 2020)

‘ anuary ‘ February‘ March ‘ April ‘ May ‘ June
Demand | 123752 [ 111.776 | 124.837 | 122340 | 126418 | 122.340

‘ July ‘ August ‘ September ‘ October ‘ November ‘ December
Demand | 126.418 | 126.418 | 122.340 | 124.558 | 119.760 | 123.752
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4.2.1 Ensemble Streamflow Prediction

To assume the ESP for the Soyanggang Dam, the goodness of fit of a log-normal
distribution to the historical inflow data was first tested. The results indicated that the
log-normal distribution was a good fit. Based on the monthly inflow data from 2020
to 2022, the ESP for Scenarios W and P were assumed. Table 4.4 lists the distribu-
tion parameters for Scenario W inflow in 2022, assuming a log-normal distribution.
Similarly, Table 4.5 lists the parameters for Scenario P inflow using the same data.
The assumed ESP distributions were then discretized into three quantiles, Q1, Q2,
and Q3, as shown in Table 4.7 and 4.8.

The average of the historical inflow traces used in SSDP/Hist from 1996 to
2019 was 2135.143 MCM. In comparison, the annual average inflow for SSDP/ESP
from 2020 to 2022 was 2522.661 MCM. This indicates that the inflow data used in
ESP was approximately 1.2 times richer than that used in SSDP/Hist. On an annual
basis, the total inflow in 2020 was approximately 1.6 times the historical average,
whereas the total inflow in 2021 was approximately 0.7 times the average, and the
total inflow in 2022 was approximately 1.3 times the average. Figure 4.4 shows the
box plot of the inflow data used in SSDP/Hist and the line graph of the inflow data

used in SSDP/ESP for each year.
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Dam SY
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4.2.2 SSDP/Hist Model

For SSDP/Hist, the historical inflow data was used to update the optimal release and
future value function in a backward direction. For the Soyanggang Dam, 27 years of
data are available from 1996 to 2022. However, the inflow data from the last trace
set (2020 to 2022) was excluded as it was used for ESP assumptions. Therefore,
the data from 1996 to 2019 (24 years) was incorporated into SSDP/Hist. When
using Eq. 3.6, the expectation is calculated by multiplying each trace by Pr(Q;).
However, in this study, instead of using Pr(Q;) directly, the total inflow for each trace
was calculated and fitted to a log-normal distribution. For inflows smaller than the
mode, the non-exceedance probability was used, whereas for inflows larger than the
mode, the exceedance probability was used for scaling. Consequently, these weighted

probabilities, denoted as w;, were applied.

24
min Y w; [Ot(Si‘, Qt(j), Re) + {ftH(SiH,j)H 4.1)
t ]:1

In Figure 4.5, the variable j represents the 24 years of historical inflow traces,
and w; denotes the weighted values obtained by scaling each trace according to its
probability of occurrence. The optimal release rates derived from this calculation are

presented in Figure 4.7 as a 3D plot and in Figure 4.8 as a heatmap.
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Figure 4.5 Historical inflow ensemble traces for SSDP/Hist in Dam SY
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Table 4.6 Weights of historical inflow traces for SSDP/Hist in Dam SY

] ‘ Year ‘ Total Inflow (MCM) ‘ Probability w;
1 1996 2740.262 0.141 0.025
2 1997 4801.645 0.434 0.076
3 1998 7073.309 0.153 0.027
4 1999 6004.869 0.255 0.045
5 2000 4457.013 0.500 0.088
6 2001 2217.853 0.061 0.011
7 2002 6490.264 0.203 0.036
8 2003 8273.953 0.085 0.015
9 2004 6768.576 0.177 0.031
10 | 2005 5531.790 0.316 0.055
11 | 2006 7718.257 0.112 0.020
12 | 2007 6691.002 0.184 0.032
13 | 2008 3045.128 0.200 0.035
14 | 2009 4038.329 0.586 0.103
15 | 2010 5328.235 0.346 0.061
16 | 2011 8929.272 0.062 0.011
17 | 2012 5049.912 0.391 0.069
18 | 2013 4566.692 0.478 0.084
19 | 2014 2317.540 0.074 0.013
20 | 2015 1751.987 0.020 0.003
21 | 2016 2898.965 0.171 0.030
22 | 2017 3429.478 0.281 0.049
23 | 2018 5074.974 0.387 0.068
24 | 2019 2354.596 0.079 0.014
Sum | | 5.697 1
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4.2.3 SSDP/ESP Model

For SSDP/ESP, the constraint conditions and objective function were the same as in
that of SSDP/Hist. However, instead of using the historical inflow data, SSDP/ESP
incorporated the future value function obtained from SSDP/Hist. Thus, the optimal
release was calculated via the application of the two assumed distributions with three
quantiles to the SSDP recursive equation. The resulting optimal release is referred to

as Scenario W (based on Table 4.7) and Scenario P (based on Table 4.8).

3
T%é” Z Pr(i) [Ot(sh Q:(i),R¢) + F {ft+1(S};+1,j)H 4.2)
t =1

In Eq. 4.2, ¢ represents the ESP trace, and j represents the historical inflow
data used in SSDP/Hist calculations. Therefore, there are three traces for ¢ as the ESP
distribution was discretized into three categories. The f;,1 obtained from SSDP/Hist
is the sum of the historical inflow data (24 years) multiplied by the transition prob-
ability. Further, the transition matrix F represents the conditional probability of the
occurrence of Q¢41(j) considering the current inflow (¢ (7), and it has the same prob-
ability for all ESP traces. This assumption implies that the transition probabilities are
uniform regardless of the predicted inflow (ESP) at the current time step.

In Figure 4.9, the release policy derived from the optimal release calculation

using the Scenario W inflow trace is visualized. Whereas, Figure 4.10 shows the
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release policy obtained when using the Scenario P inflow trace.
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Table 4.7 Inflow distribution quantiles Scenario W in 2022 of Dam SY (MCM)

7 Jan 7 Fed 7 Mar 7 Apr 7 May 7 Jun Jul Aug Sep 7 Oct 7 Nov | Dec
Ql | 457 | 249 | 3945 | 2550 | 8.92 | 109.83 | 201.22 | 373.76 | 23149 | 76.87 | 21.49 | 14.28
Q2 | 801 | 436 | 69.17 | 44.72 | 15.65 | 192.58 | 352.82 | 655.35 | 405.89 | 134.79 | 37.68 | 25.04
Q3 | 14.04 | 7.65 | 121.28 | 78.40 | 27.43 | 337.67 | 618.64 | 1149.08 | 711.69 | 236.33 | 66.07 | 43.90

S
Table 4.8 Inflow distribution quantiles Scenario P in 2022 of Dam SY (MCM)
Jan 7 Fed 7 Mar 7 Apr 7 May 7 Jun Jul Aug Sep 7 Oct 7 Nov 7 Dec

Q1 | 026 | 0.14 | 2.29 | 148 | 052 | 6.36 11.66 | 21.65 | 13.41 | 445 | 1.25 | 0.83

Q2| 1.13 ] 0.61 | 9.73 | 6.29 | 2.20 | 27.10 | 49.65 | 92.22 | 57.12 | 1897 | 530 | 3.52

Q3 | 480 | 2.62 | 41.45 | 26.80 | 938 | 115.41 | 211.45 | 392.75 | 243.25 | 80.78 | 22.58 | 15.00




4.2.4 Results

The derived optimal release exhibited different patterns depending on Scenarios W
and P. In Scenario W, a more aggressive release policy was obtained for all three
years (2020, 2021, and 2022) compared to that in case of Scenario P. This indicated
a higher level of releases even when the current storage was relatively low. The same
trend was also observed in DDP/PERF, where the optimal release policy was more
pronounced in its aggressiveness in Figure 4.11.

The simulation was conducted by varying the initial storage using the inflow
data from 2020 to 2022. For Dam SY, the maximum, average and minimum historical
storage at the end of December were 2159.658, 1616.219, and 1086.166 MCM,
respectively. However, no significant difference in the optimal release policy between
Scenarios W and P were observed in Dam SY. This can be attributed to Dam SY
having a CIR of 1.345, thus, classifying it as a "Very Large" dam, but with relatively
low monthly demand. Consequently, the difference in the optimal release policy
between Scenarios W and P was below the threshold set by .S;;,,. Therefore, despite
a difference in the optimal release policy between Scenarios W and P from the
perspective of release optimization, this difference was not observed in the simulation

results for Dam SY.
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4.3 Sample Study 2: Dam CJ

To set up the constraints for SSDP according to the characteristics of Chungju dam’s
basin (Figure 4.12), the information on Chungju Dam is summarized in Table 4.9.
The minimum and maximum storage levels corresponding to the LWL and NHWL of
the Chungju dam were determined to be 454.027 and 2251.672 MCM, respectively.
These values were used as constraints for the SDP. Therefore, the constraint values
for the Chungju dam were S,,;, = 454.027 MCM and S, = 2251.672 MCM. The
storage was discretized into 100 equally spaced intervals. The monthly demands to

be used in the optimization are summarized in Table 4.10.

Table 4.9 Information of Dam CJ

Information Figure
Height (m) 97.5

Length (m) 447.0

Normal elevation (EL.m) 147.5
Volume (1000m?) 902.0

Basin area (km?) 6648.0

Annual water supply capacity (MCM) 3380.0
Reservoir area (km?) 97.0

Design Flood Level (EL.m) 145.00

NHWL (Normal High Water Level) (EL.m) | 141.00
RWL (Restricted Water Level) (EL.m) 138.00

Spill Water Level (EL.m) 126.00
LWL (Low Water Level) (EL.m) 110.00
Total Storage (MCM) 2750.0
Available Storage (MCM) 1786.0

Flood Control Storage Capacity (MCM) 616.0
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Figure 4.12 Dam CJ basin
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Table 4.10 Monthly demand of Dam CJ (MCM) (K-water, 2020)

‘ January ‘ February‘ March ‘ April ‘ May ‘ June
Demand | 260.338 | 235.144 | 260.338 | 275.520 | 318.742 [ 324510

‘ July ‘ August ‘ September ‘ October ‘ November ‘ December
Demand | 308.543 | 308.543 | 279.420 |[281.759 | 251.940 | 260.338
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4.3.1 Ensemble Streamflow Prediction

The goodness-of-fit test was performed to assess the suitability of the log-normal
distribution for fitting the historical inflow data of the Chungju dam. The test results
indicated that assuming the log-normal distribution for the Chungju dam’s ESP was
appropriate. Using the monthly inflow data from 2020 to 2022, The ESPs for Scenarios
W and P were established. Table 4.11 lists the parameters for Scenario W in 2022,
and Table 4.12 lists the parameters for Scenario P. Similar to the Soyanggang dam,
the ESP distributions were discretized into three quantiles: Q1, Q2, and Q3 (Table
4.14, 4.15).

For the historical inflow traces used in SSDP/Hist, the average inflow was
4898.079 MCM from 1996 to 2019. In contrast, for SSDP/ESP, the average annual
inflow from 2020 to 2022 was 4949.233 MCM. This indicates that the inflow used
in SSDP/ESP was approximately the same as the average inflow in SSDP/Hist, rep-
resenting a typical inflow amount. Upon examining each year, the inflow in 2020
was 1.3 times the historical inflow, in 2021 it was 0.7 times, and in 2022 it was 1.1
times. This indicates a pattern similar to that in case of the Soyanggang dam, which is
located in the same basin. Figure 4.13 shows the inflow traces used in SSDP/Hist as a
box plot, and the inflow used in SSDP/ESP as a line graph. As evident, larger inflows
occurred during the flood seasons (July to September) of 2020 and 2022 compared

to the previous historical inflows. This can be attributed to the impact of typhoons
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BAVI, MAYSAK, and HAISHEN in 2020, and HINNAMNOR in September 2022,

which affected the Han river basin.
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Figure 4.13 Comparison of inflow data used for SSDP/Hist and SSDP/ESP in Dam
cJ

87 A
M=t g



Table 4.11 Inflow distribution parameters of Scenario W in 2022 of Dam CJ (MCM)

7 Jan 7 Fed 7 Mar Apr 7 May 7 Jun Jul Aug Sep 7 Oct 7 Nov 7 Dec
px | 4042 1 21.91 | 163.65 | 152.30 | 68.29 | 186.75 | 1082.26 | 2164.06 | 939.41 | 271.49 | 103.66 | 97.87
ox | 4042 | 21.91 | 163.65 | 152.30 | 68.29 | 186.75 | 1082.26 | 2164.06 | 939.41 | 271.49 | 103.66 | 97.87
pwy | 335 | 2.74 4.75 4.68 3.88 4.88 6.64 7.33 6.50 5.26 4.29 4.24
oy | 0.83 | 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
o0
[ee]
Table 4.12 Inflow distribution parameters of Scenario P in 2022 of Dam CJ (MCM)
Jan Fed Mar Apr May Jun Jul Aug 7 Sep 7 Oct Nov Dec
px | 4042 | 2191 163.65 | 15230 | 68.29 | 186.75 | 1082.26 | 2164.06 | 939.41 | 27149 | 103.66 | 97.87
ox | 404.20 | 219.09 | 1636.52 | 1522.99 | 682.88 | 1867.47 | 10822.64 | 21640.58 | 9394.05 | 2714.86 | 1036.61 | 978.73
In% 1.39 0.78 2.79 2.72 1.92 2.92 4.68 5.37 4.54 3.30 2.33 2.28
oy | 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15




4.3.2 SSDP/Hist Model

The Chungju dam has data available for the period from 1996 to 2022 (27 years).
However, for the application of SSDP/Hist, the inflow data for the year 2022, which
was used for ESP assumption, was excluded. Therefore, the data from 1996 to 2019
(24 years) was utilized for SSDP/Hist calculations (Figure 4.14). The total inflow for
each trace was scaled using the log-normal distribution by considering the exceedance
and non-exceedance probabilities. Figure 4.15 visualizes the log-normal distribution-
fitted inflow traces, and Table 4.13 presents the corresponding weights used in the

analysis.

24
min Y w; |O:(SK, Qu(i). Re) + { fi1(Ski1.9)} (43)
t =1

Equation 4.3 represents the formulation used to derive the optimal release
policy by incorporating the weights. In Figure 4.14, the variable j corresponds to
the 24-year inflow traces from the past, whereas w; denotes the weights calculated
as the probability of occurrence for each trace. The resulting optimal release policy,
obtained through these calculations, is shown in Figure 4.16 as a 3D plot and in Figure

4.17 as a heatmap.
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Table 4.13 Weights of historical inflow traces for SSDP/Hist in Dam CJ

] ‘ Year ‘ Total Inflow (MCM) ‘ Probability w;
1 1996 2740.262 0.141 0.025
2 1997 4801.645 0.434 0.076
3 1998 7073.309 0.153 0.027
4 1999 6004.869 0.255 0.045
5 2000 4457.013 0.500 0.088
6 2001 2217.853 0.061 0.011
7 2002 6490.264 0.203 0.036
8 2003 8273.953 0.085 0.015
9 2004 6768.576 0.177 0.031
10 | 2005 5531.790 0.316 0.055
11 | 2006 7718.257 0.112 0.020
12 | 2007 6691.002 0.184 0.032
13 | 2008 3045.128 0.200 0.035
14 | 2009 4038.329 0.586 0.103
15 | 2010 5328.235 0.346 0.061
16 | 2011 8929.272 0.062 0.011
17 | 2012 5049.912 0.391 0.069
18 | 2013 4566.692 0.478 0.084
19 | 2014 2317.540 0.074 0.013
20 | 2015 1751.987 0.020 0.003
21 | 2016 2898.965 0.171 0.030
22 | 2017 3429.478 0.281 0.049
23 | 2018 5074.974 0.387 0.068
24 | 2019 2354.596 0.079 0.014
Sum | | 5.697 1
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4.3.3 SSDP/ESP Model

The constraints and objective function were the same, and SSDP/ESP utilized the
future value function from SSDP/Hist for its calculations. In the ESP approach, that
is, the inflow distribution fitted with a log-normal distribution, provided the Q1, Q2,
and Q3 values. These values were then substituted into Eq. 4.4 as (;(¢) to determine
the optimal release policy. The resulting optimal release policy obtained from the
calculations using Table 4.14 is referred to as Scenario W, whereas that derived from

Table 4.15 is referred to as Scenario P.

3
min 3 Pr(i) [Ou(SE, Q). Re) + E{ fin(Shad) )] @4
b=l

In Eq. 4.4, ¢ is the ESP trace and j is the historical inflow data used for
SSDP/Hist calculation. Therefore, as ¢ discretized the ESP distribution in 3, there
were traces up to 3, and f;11 imported from SSDP/Hist multiplied 24 traces by the
transition probability and summed them up. Further, F is a transition matrix with a
transition probability equal to the number of f;;; traces. When the current inflow
Q+(7) occurred, Q;+1(j) at the next instance is defined as the conditional probability
that would occur. However, in this study, it was assumed to have the same probability
regardless of the predicted inflow (ESP) at the current time.

The calculated results are visualized as follows. Figure 4.18 shows the release
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policy derived from the Scenario W inflow trace, covering the period from 2020 to
2022. Figure 4.19 shows the release policy obtained from the Scenario P inflow trace.
In addition, for comparison with Scenario W/P, DDP/PERF model assuming a perfect

forecast was also calculated and visualized in Figure 4.20.
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Table 4.14 Inflow distribution quantiles Scenario W in 2022 of Dam CJ (MCM)

7 Jan 7 Fed 7 Mar Apr 7 May 7 Jun Jul Aug Sep 7 Oct Nov Dec
Q1 | 1630 | 8.84 | 66.00 | 61.42 | 27.54 | 7531 | 436.46 | 872.72 | 378.84 | 109.48 | 41.80 | 39.47
Q2 | 28.58 | 1549 | 115.72 | 107.69 | 48.29 | 132.05 | 765.28 | 1530.22 | 664.26 | 191.97 | 73.30 | 69.21
Q3 | 50.11 | 27.16 | 202.90 | 188.82 | 84.67 | 231.53 | 1341.83 | 2683.07 | 1164.70 | 336.60 | 128.52 | 121.35

Table 4.15 Inflow distribution quantiles Scenario P in 2022 of Dam CJ (MCM)
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7 Jan 7 Fed 7 Mar 7 Apr 7 May 7 Jun 7 Jul Aug Sep 7 Oct 7 Nov 7 Dec
Q1] 094 | 051 | 382 | 356 | 1.60 | 436 | 25.29 | 50.56 | 21.95 6.34 242 | 2.29
Q2| 4.02 | 2.18 | 16.28 | 15.15 | 6.79 | 18.58 | 107.69 | 215.33 | 93.47 | 27.01 | 10.31 | 9.74
Q3| 17.13 | 9.28 | 69.35 | 64.54 | 2894 | 79.14 | 458.63 | 917.06 | 398.09 | 115.05 | 43.93 | 41.48




4.3.4 Results

To perform the simulation with different initial storages, the maximum, average,
and minimum storage levels at the end of December were used for each respective
scenario. For the Chungju dam, these values were 2153.748, 1538.924, and 892.698
MCM, respectively. The results of the simulation using the maximum, average, and
minimum historical storage as the initial storage are presented in Tables 4.18, 4.17,
and 4.16, respectively. Each table provides information on total penalty, total releases,
frequency, duration, and magnitude for both the ESP Scenario W/P and PERF. And
it was visualized using bar charts in Figure 4.21.

In all three initial storage scenarios, the year 2021 exhibited a lower inflow,
resulting in differences in the optimal releases between Scenarios W and P. Scenario
W showed a decrease in total penalty and an increase in total releases compared to
Scenario P. In terms of frequency and magnitude, Scenario W performed better than
Scenario P; however, Scenario P exhibited subtle better results in terms of duration.
This indicates that a smaller standard deviation of the predicted inflow distribution

results in overall improved performance in the optimal release strategy.
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Table 4.16 Summary of simulation results corresponding minimum initial storage in
Dam CJ

Scenario | Total Penalty | Total Releases | Frequency | Duration | Magnitude
(MCM) (MCM) (%0) (%o) (%)
W 667.086 9900.0 77.8 13.9 934
P 673.129 9872.5 75.0 16.4 93.3
PERF 649.020 10065.0 94.4 44.4 93.6

Table 4.17 Summary of simulation results corresponding average initial storage in
Dam CJ

Scenario | Total Penalty | Total Releases | Frequency | Duration | Magnitude
(MCM) (MCM) (%o) (%) (%)
W 342.576 10230.0 80.6 18.3 96.6
P 348.619 10202.5 75.0 23.1 96.6
PERF 324510 10395.0 97.2 94.4 96.8

Table 4.18 Summary of simulation results corresponding maximum initial storage in
Dam CJ

Scenario | Total Penalty | Total Releases | Frequency | Duration | Magnitude
(MCM) MCM) (%o) (%) (%)
\ 336.533 10257.5 83.3 19.2 96.7
P 348.619 10202.5 77.8 23.1 96.6
PERF 324.510 10395.0 97.2 94.4 96.8
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Chapter 5. Conclusion

5.1 Summary and Conclusion

This study investigated the importance of ESP in water resources management in

South Korea. The specific research objectives were as follows:

(a) The research trends using ESP were investigated and the adoption of the method
used in water resources management and its performance in application cases

was demonstrated.

(b) The study aimed to make policy-makers easily understand the benefit of utiliza-
tion of ESP in dam operations by quantifying the effect of ESP through simple

examples.

(c) An optimal ESP-based dam operation model was established for two dams with

different CIR to demonstrate the feasibility of applying ESP in real cases.

This study aimed to address the current limitations in water resources man-
agement in South Korea by introducing and demonstrating the effectiveness of ESP.
Although ESP has been utilized for hydrological forecasting in South Korea, its ap-
plication in water resources management remains limited. This study attempted to
bridge this gap and thus contribute to the improvement of water resources manage-

ment techniques.
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To render the concept of ESP more accessible to dam operators, a simple
statistical example was presented, highlighting the importance of considering the
uncertainty of inflow when making operational decisions. Through demonstrations
indicating that dams with different inflow standard deviations incurred different costs,
even with the same mean inflow, the study emphasized the need to go beyond relying
solely on the ensemble mean values in water resources management.

Multiple-purpose dams in the Han river basin, specifically the Soyanggang and
Chungju dams, were selected as sample study sites based on their CIR. The inflow
data from 27 years were divided into 9 sets, with the last set from 2020 to 2022 used for
generating unbiased ensembles. The SSDP/Hist and SSDP/ESP models, developed
by integrating ESP into the SSDP approach, were applied to optimize the release
calculations for the dams. Consequently, the optimal releases were determined to
be aggressive and conservative in Scenarios W and P, respectively, for both dams.
The simulation was conducted using the obtained optimal releases for the last set,
and the results were evaluated using performance metrics such as penalty, frequency,
duration, and magnitude (Figure 5.1). The Soyanggang dam exhibited consistent
performance across the scenarios; however, the Chungju dam demonstrated better
overall performance in Scenario W, indicating the sensitivity of dams with lower
CIR and higher demands to the uncertainty of inflow (Table 5.1). Thus, the findings

underscore the importance of considering the full distribution of ensemble forecasts
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and reacting accordingly in water resources management.

In conclusion, this study effectively communicated the significance of con-
sidering uncertainty in inflow and showcased the benefits of integrating ESP into
the decision-making process. Through a simple example and conduction of sample
studies, the study provided practical insights for dam operators and demonstrated the
potential of ESP in improving water resources management practices. This research is
expected to contribute to the enhancement of water resources management techniques

in South Korea, particularly in the face of climate change and other uncertainties.

Table 5.1 Summary of sample study results

Dam SY \ Dam CJ
Demand Small Large
CIR Very Large (1.345) Large (0.563)
Scenario W/P differences
(in terms of optimal o O
releases)
Scenario W/P differences
. . . X (0]
(in terms of simulation)
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5.2 Limitations

In this study, we assumed that the inner expectation (transition matrix) for the calcula-
tion of optimal releases using SSDP was the same for all time steps. This implies that
the probability of inflow occurring at time t+1 is equal for all predicted inflow val-
ues, regardless of their actual values. However, in real-world scenarios, the predicted
inflow is influenced by current watershed information and meteorological conditions,
which in turn affects the probability of inflow at the next time step.

Moreover, as the objective function was designed to focus solely on water
supply, the differences in optimal releases between Scenarios W and Scenario P
were observed mainly when the storage level was low. Thus, when considering water
supply alone, the strategies for managing predicted inflow vary primarily in drought
conditions.

Furthermore, the simulation was conducted only for the last set of data, which
represented a period with relatively abundant inflow similar to the past. Consequently,
the research findings did not encompass an analysis of extreme inflow events.

Therefore, future research must consider the uncertainty of predicted inflow
and the influence of watershed characteristics and meteorological conditions. Fur-
thermore, the impact of extreme inflow events on optimal release strategies must be

analyzed.
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5.3 Future Study

As mentioned in the Limitations section, future research can address the following
aspects to enhance the accuracy and applicability of optimal release strategies:

(a) Improved Expectation Calculation: Rather than assuming equal proba-
bilities for all predicted inflow values, future studies can accurately estimate the
expectations based on the predicted inflow data. This would provide a more realistic
representation of the actual situation and result in a more accurate determination of
optimal release quantities.

(b) Cross-Validation using all Sets: In this study, only the last set of data from
2020 to 2022 was used for SSDP/ESP and simulation. Future research can perform
cross-validation by utilizing all sets of data. This would result in the validation of the
robustness of the optimal release strategies across different time periods.

(c) Consideration of Multiple Scenarios: Rather than focusing on only two sce-
narios (Scenarios W and P), future studies can explore a wider range of scenarios. The
incorporation of various scenarios can provide a more comprehensive understanding
of the system’s response and optimize release strategies under different conditions.

(d) Integration of Multiple Dam Functions: While this study focused solely on
water supply objectives, future research can consider the functions of dams related to
irrigation and flood control. Through the incorporation of multiple dam functions into

the optimization framework, more meaningful and holistic results can be obtained.

108



Thus, by addressing these aspects in future research, we can further enhance

the effectiveness and practicality of optimal release strategies for reservoir operations.
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