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Abstract 

 

Sensitivity analysis (SA), which is the study of how uncertainty in the ‘output’ of a 

model can be apportioned to different sources of uncertainty in the model ‘input’, 

have been extensively performed in fields of engineering. Especially, many studies 

on global sensitivity analysis (GSA) methodologies have been conducted based on 

the Sobol’ method to take advantage of its applicability to various systems including 

nonlinear ones. 

However, in real engineering problems described by complex system models, i.e., 

high-dimensional and highly-nonlinear systems, sampling-based SA method has 

limitations in that the analysis time increases with the input dimension and it is also 

challenging to apply the surrogate modeling-based SA method to highly nonlinear 

structures.  

In this study, a new framework of GSA using actively-learned gaussian process is 

introduced to efficiently perform GSA for computationally expensive system models. 

The adaptively-learned gaussian process is intended to accurately build a surrogate 

model even with much fewer model evaluations. Additionally, to pursue both 

exploration and exploitation in the adaptive learning, Leave-One-Out Cross-

Validation (LOOCV) error is applied as a weight to the objective function of the 

existing design-of-experiment (DoE) method, which only considers the prediction 

variance. Furthermore, we propose modified objective function for the adaptively-

learned GP, which allows the proposed algorithm to adaptively suggest an 

appropriate number of experiments to perform effective GSA. 

The validity and efficiency of the proposed GSA framework are demonstrated 
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through two structural numerical examples: 7-story shear building and 9-story frame 

structure. The results confirm that the method facilitate convergence to the accurate 

sensitivity index with a significantly reduced number of structural model evaluations. 

 

Keywords: global sensitivity analysis, adaptive learning, gaussian process, design 

of experiments 

Student Number: 2021-29502 
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Chapter 1. Introduction 

 

1.1. Research Background 

 

Sensitivity analysis (SA) is the study of how uncertainty in the ‘output’ of a model 

can be apportioned to different sources of uncertainty in the model ‘input’ (Saltelli 

et al., 2008). SA has been extensively used in engineering and scientific fields to 

address several purposes of system analysis and modeling: (a) dimensionality 

reduction to identify uninfluential factors in a system that may be redundant and 

fixed or removed in subsequent analyses (e.g., Sobol’ et al., 2007); (b) data worth 

assessment to identify processes, parameters and scales that dominantly control a 

system, for which new data acquisition reduces targeted uncertainty the most (e.g., 

Guillaume et al., 2019; Partington et al., 2020); and (c) decision support to quantify 

the sensitivity of an expected outcome to different decision options, constraints, 

assumptions and/or uncertainties (Tarantola et al., 2002). 

There are two main categories in SA: local sensitivity analysis (LSA) and global 

sensitivity analysis (GSA). LSA focuses on sensitivity around a ‘nominal point’ in 

the problem space. However, LSA has limitations as it provides only a localized view 

of the problem space at the nominal point, especially when investigating parameter 

importance in mathematical modeling (Saltelli and Annoni, 2010; Saltelli et al., 2019). 

To address this limitation, GSA, which offers a comprehensive representation of how 

different factors interact across the entire problem space to influence the system’s 

output, has gained its prominence. 

Many methodologies have been conducted to perform GSA, such as the Fourier 
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amplitude sensitivity test (FAST), methods based on correlation ration, Kullback-

Leibler divergence based approaches, and Sobol’ indices related methods. Among 

these methods, the Sobol’ sensitivity indices method based on variance-

decomposition is a prominent one owing to its applicability to a wide range of 

models, including both linear and nonlinear models.  

The simplest way to compute the Sobol’ indices is to implement double-loop 

Monte Carlo simulation (MCS), which requires a large number of evaluations of the 

prediction model and is unaffordable if the prediction model is computationally 

expensive. To reduce the computational cost of the Sobol’ indices, various 

algorithms have been proposed roughly in the following two ways: metamodel-based 

methods and sample-based methods. As explained earlier, the basic sample-based 

method for GSA is the double-loop MCS based purely on model evaluations and the 

double-loop MCS has expensive computational cost which is proportional to both 

dimension of the input space and the number of a sample points. Thus, most of 

various sample-based methods are developed to reduce the computational cost of SA. 

For example, Sobol’ (1990) discussed how to efficiently estimate the Sobol’ indices 

using MCS and the scheme was more accurately developed by Homma and Saltelli 

(1996). In this scheme, the required number of samples in the double-loop procedure 

is reduced to a number which is proportional to the dimension of the input variables. 

Similarly, Glen and Issac (2012) developed an approach to compute the Sobol’ 

indices by switching the columns of two separately generated MCS sample matrices, 

which is usually called quasi-MCS.   

In the metamodel-based methods, the original system model, which is 

computationally expensive, is replaced with a cheaper surrogate model such as a 
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gaussian process model, polynomial chaos expansion model or regression model. 

After building the surrogate model, the Sobol’ indices can be obtained using either 

analytical or direct MCS-based methods. Sudret proposed that if the original model 

is approximated by a polynomial chaos expansion (PCE), the Sobol’ index can be 

calculated by post-processing the PCE coefficients. Chen et al. proposed another 

analytical method for commonly used surrogate models such as the linear regression 

model, Gaussian process model, Gaussian radial basis model, and MARS model and 

analytical solution of the index is available if the inputs are normally or uniformly 

distributed. These analytical methods reduce the number of model evaluations 

significantly, but may require: 1) extra approximations and assumptions, and 2) extra 

computational cost in building the surrogate model. 

In practical engineering applications, the true analytical form of the given system 

may be unknown especially for the case of the computationally expensive systems. 

In that situation, sampling-based methods cannot be easily adopted due to the fact 

that the computational time rapidly increases with the required number of sample 

points. Metamodel-based methods are applicable in this situation since they 

approximate expensive model to a cheaper one, but limitations exist in the aspect of 

computational time due to the fact that they still need training points obtained by 

evaluating the true model, which is very time-consuming. 

Therefore, the main objective of this thesis is to develop a more efficient surrogate-

based method whose training points for building a surrogate are obtained by adaptive 

gaussian process in order to reduce the number of model evaluations.  
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This study has two main objectives. The first one is to suggest how to build a 

surrogate model using adaptive gaussian process for the accurate and effective SA 

of the complex systems, which requires expensive computational cost. Because 

surrogate modeling needs several experiments to train the surrogate model, it takes 

time to evaluate the true system to obtain the experiments. Therefore, this study 

proposes using adaptive learning to build the surrogate, and then, once the surrogate 

has been built, one would produce a number of test points with cheap evaluation cost 

to obtain Sobol’ indices. 

Second, this study proposes an adaptive gaussian process method with modified 

convergence criteria, which is more appropriate in calculating the Sobol’ indices. 

The existing one using Leave-One-Out Cross Validation (LOOCV) is also applicable 

and valid for SA but the proposed algorithm automatically decides the proper number 

of needed experiments to the user-defined confidence level. Therefore, this study 

proposes a new framework to perform more adaptive GP specialized for the purpose 

of SA. 
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1.3. Outlines 
 

Chapter 1 is the introductions of the thesis, which present the research background, 

objects, scopes and outlines. Chapter 2 provides the theoretical background about 

global sensitivity analysis, gaussian process, and gaussian process using adaptive 

learning, which are the basis for the proposed method in this thesis. Chapter 3 

presents the proposed GSA methodology based on the methods presented in Chapter 

2. Chapter 4 presents two structural model examples with seismic excitation to 

validate the proposed method in Chapter 3. The first example deals with a shear 

building to test the proposed algorithm’s validity. The second example investigates 

a 9-story frame building to expand the algorithm’s applicability to more high-

dimensional and computationally expensive system. In this study, the structural 

models are built by OpenSees with actual seismic data. Chapter 5 summarizes the 

study and provides academic and practical implications, study limitations, and 

suggestions for future research. 
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Chapter 2. Theoretical Backgrounds 

 

2.1. Variance-based Global Sensitivity Analysis (GSA) 
 

Assuming that 𝑦 = 𝑓(𝒙) is a real integrable function for a physics model or system, 

where 𝐗 = {𝑋1, … , 𝑋𝑛} ∈ ℝ𝑛𝑥 is a vector of random input variables, the variance 

Var(𝑌) of 𝑌 can be decomposed as follows (Saltelli et al., 2008): 

 Var(𝑌) = Σ𝑖=1
𝑛 𝑉𝑖 + Σ1≤𝑖<𝑗

𝑛 𝑉𝑖𝑗 + ⋯ + 𝑉12…𝑛𝑥
 (2.1) 

where 𝑉𝑖 =  Var𝑋𝑖
(𝐄𝐗~𝑖

(𝑌|𝑋𝑖))  is the variance of 𝑌  caused by 𝑋𝑖  without 

considering its interactions with other input variables (i.e., 𝐗~𝑖 ), 𝐄(∙)  is the 

expectation operator, and 𝑉1…𝑘 , ∀𝑘 = 2, … , 𝑛𝑥 , represents the proportion of 

Var(𝑌) caused by variables {𝑋1, … , 𝑋𝑘}. 

Based on the above variance decomposition, the Sobol’ indices are defined as 

(Saltelli et al., 2008) 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟(𝑌)
, 𝑆𝑖𝑗 =

𝑉𝑖𝑗

𝑉𝑎𝑟(𝑌)
, 𝑆1…𝑘 =

𝑉1…𝑘

𝑉𝑎𝑟(𝑌)
, ∀𝑘 = 2, … , 𝑛𝑥 (2.2) 

where 𝑛𝑥 is dimension of the input space, 𝑆𝑖 is the first-order index, 𝑆𝑖𝑗 is the 

second-order index, and 𝑆1…𝑘  is the higher-order index corresponding to input 

variables {𝑋1, … , 𝑋𝑘}.  

The number of indices will grow dramatically if the higher-order indices are used. 

For this reason, the first-order and total-effect Sobol’ indices are commonly used and 

are given by  

 𝑆𝑖 =
Var𝑋i

(𝐄𝐗~𝑖
(𝑌|𝑋𝑖))

Var(𝑌)
, ∀𝑖 = 𝑖, … , 𝑛𝑥   (2.3) 
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 𝑆𝑇𝑖
= 1 −

Var𝐗~i
(𝐄𝑋𝑖

(𝑌|𝐗~𝑖))

Var(𝑌)
, ∀𝑖 = 𝑖, … , 𝑛𝑥   (2.4) 

or  

 𝑆𝑇𝑖
=

𝐄𝐗~i
(Var𝑋𝑖

(𝑌|𝐗~𝑖))

Var(𝑌)
, ∀𝑖 = 𝑖, … , 𝑛𝑥  (2.5) 

where 𝑆𝑖  and 𝑆𝑇𝑖
  are the first-order and total-effect Sobol’ indices of 𝑋𝑖 , 

respectively.  

It should be noted that the above variance decomposition is derived based on the 

independence assumption of the input variables. When the input variables are 

correlated, Var(𝑌) cannot be decomposed as in Eq. (2.1). However, as Saltelli and 

Tarantola (2002) has pointed out, 𝑆𝑖 and 𝑆𝑇𝑖
 computed using the above formulas 

are still informative for the importance measure of dependent input variables. In 

addition, sensitivity indices are defined in two types, namely full sensitivity index 

and independent sensitivity index, to perform GSA of model output with dependent 

random variables (Mara TA & Tarantola S, 2012). The full sensitivity index includes 

the effects of the dependence of a VoI with other inputs while the independent 

sensitivity indices represent the effects of a VoI that are not due to its dependence 

with other variables (Mara et al., 2015). Mara et al. defined that the indices given in 

Eqs. (2.2) and (2.3) are, respectively, the full first-order sensitivity index and the 

independent total-effect index when they are applied to GSA of model output with 

dependent random variables. In this thesis, we therefore focus on how to compute 

Eqs. (2.2) or (2.3) for generalized problems with or without dependent input 

variables.  

As discussed in Chapter 1, directly solving Eqs. (2.2) or (2.3) requires a double-
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loop MCS. Assume that there is a data matrix 𝐗 ∈ ℝ𝑛×𝑛𝑥 given as follows: 

𝐗 = [
𝐗(1)

⋮
𝐗(𝑛)

] = [

𝑥1
(1)

⋯ 𝑥𝑛𝑥

(1)

⋮ ⋱ ⋮

𝑥1
(𝑛)

⋯ 𝑥𝑛𝑥

(𝑛)
]  (2.6) 

in which 𝐗(𝑞) = [𝑥1
(𝑞)

, … , 𝑥𝑛𝑥

(𝑞)
] , ∀𝑞 = 1, … , 𝑛 is the 𝑞𝑡ℎ sample of 𝑋 and n is the 

number of samples in the data matrix.  

Then, the computational cost of the double-loop MCS is proportion to 𝑛𝑛𝑥, which 

is expensive in case of high-dimensional and highly nonlinear systems. The 

computation can be reduced via existing short cuts using the instrument proposed by 

Saltelli (2008). Assume that two data matrices 𝐀 ∈ ℝ𝑛×𝑛𝑥  and 𝐁 ∈ ℝ𝑛×𝑛𝑥  are 

defined as follows: 

𝐀 = [

𝑥1
(1)

⋯ 𝑥𝑛𝑥

(1)

⋮ ⋱ ⋮

𝑥1
(𝑛)

⋯ 𝑥𝑛𝑥

(𝑛)
], 𝐁 = [

𝑥𝑛𝑥+1
(1)

⋯ 𝑥2𝑛𝑥

(1)

⋮ ⋱ ⋮

𝑥𝑛𝑥+1
(𝑛)

⋯ 𝑥2𝑛𝑥

(𝑛)
]  (2.7) 

and define a matrix 𝐂𝑖 formed by all columns of 𝐁 except the 𝑖th column, which 

is taken from 𝐀: 

𝐂𝑖 = [

𝑥𝑛𝑥+1
(1)

⋯ 𝑥𝑖
(1) ⋯ 𝑥2𝑛𝑥

(1)

⋮  ⋱  ⋮

𝑥𝑛𝑥+1
(𝑛)

⋯ 𝑥𝑖
(𝑛) ⋯ 𝑥2𝑛𝑥

(𝑛)
]  (2.8) 

Then compute the model output for all the input values in the sample matrices 𝐀, 𝐁 

and 𝐂𝑖, obtaining three vectors of model outputs: 

𝑦𝐀 = 𝑓(𝐀), 𝑦𝑩 = 𝑓(𝐁) and 𝑦𝐂𝑖
= 𝑓(𝐂𝑖)  (2.9) 
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Using the above output vectors, the Sobol’ indices can be obtained as follows: 

𝑆𝑖 =
Var𝑋i

(𝐄𝐗~𝑖
(𝑌|𝑋𝑖))

Var(𝑌)
=

𝑦𝐴∙𝑦𝐶𝑖−𝑓0
2

𝑦𝐴∙𝑦𝐴−𝑓0
2 =

(1/𝑛)Σ𝑗=1
𝑛 𝑦𝐴

𝑗
𝑦𝐶𝑖

𝑗
−𝑓0

2 

(1/𝑛)Σ𝑗=1
𝑛 (𝑦𝐴

𝑗
)

2
−𝑓0

2
 (2.10) 

𝑆𝑇𝑖
= 1 −

Var𝐗~i
(𝐄𝑋𝑖

(𝑌|𝐗~𝑖))

Var(𝑌)
= 1 −

(1/𝑛)Σ𝑗=1
𝑛 𝑦𝐵

𝑗
𝑦𝐶𝑖

𝑗
−𝑓0

2 

(1/𝑛)Σ𝑗=1
𝑛 (𝑦𝐴

𝑗
)

2
−𝑓0

2
 (2.11) 

where 𝑓0
2 = (

1

𝑛
Σ𝑗=1

𝑛 𝑦𝐴
𝑗
)

2
  is the mean, and the symbol (∙)  denotes the scalar 

product of two vectors.  
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2.2. Gaussian Process (GP) formulation 

Kriging combines two components: a global regression to capture underlying trends 

in the high-fidelity model behavior and a GP that performs a local fitting to the 

regression residuals. To formulate the metamodel, consider a high-fidelity simulation 

model with an input vector 𝐱 ∈ ℝ𝑛𝑥 and a scalar output 𝑧 ∈ ℝ. The fundamental 

hypothesis of Kriging is that the true model response is one realization of a stochastic 

process of the following form: 

�̃�(𝐱) = 𝐟(𝐱)𝑇𝛃 + ℎ(𝐱)  (2.12) 

where the first term is the global regression component, comprised by an 𝑛𝑝 × 1 

vector of 𝑛𝑝  dimensional basis functions 𝐟(𝐱) = [𝑓1(𝐱), … , 𝑓𝑛𝑝
(𝐱)]  (typically 

𝐟(𝐱) is a lower order polynomial), and a 𝑛𝑝 × 1 vector of regression coefficients 

𝛃 and the second term fits the regression residuals with a GP that has a zero mean, 

and a covariance function of the form: 

cov(𝐱𝑙 , 𝐱𝑚) = �̃�2𝑅(𝐱𝑙 , 𝐱𝑚|𝐬)  (2.13) 

where �̃�2  is the process variance and 𝑅(𝐱𝑙 , 𝐱𝑚|𝐬)  the selected correlation 

function, dependent on hyper-parameters. The correlation function between 

experiments 𝐱𝑙  and 𝐱𝑚  is defined through some distance measure 𝑑(𝐱𝑙 , 𝐱𝑚|𝐬) . 

Common choices for this correlation function include the generalized exponential, 

Gaussian, cubic, or Matérn correlation functions (Williams and Rasmussen 2006; 

Kleijnen 2009). In this thesis, the generalized exponential will be used for its 

flexibility, leading to: 
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𝑑(𝐱𝑙 , 𝐱𝑚) = ∑ 𝑠𝑘|𝑥𝑘
𝑙 − 𝑥𝑘

𝑚|
𝑆𝑛𝑥+1𝑛𝑥

𝑘=1 ; 𝐬 = [𝑠1, … , 𝑠𝑛𝑥
, 𝑠𝑛𝑥

+ 1 ] (2.14) 

𝑅(𝐱𝑙 , 𝐱𝑚) = exp (−𝑑(𝐱𝑙 , 𝐱𝑚)) = Π𝑘=1
𝑛𝑥 exp(−𝑠𝑘|𝑥𝑘

𝑙 − 𝑥𝑘
𝑚|

𝑆𝑛𝑥+1
)  (2.15) 

Let {𝐱𝑗; 𝑗 = 1, … , 𝑛} represent the available simulation experiments and denote 

by 𝐗 = [𝐱1, … , 𝐱𝑛]𝑇 ∈ ℝ𝑛×𝑛𝑥  the input matrix, and by 𝐙 = [𝑧(𝐱1), … , 𝑧(𝐱𝑛)] ∈

ℝ𝑛 , the corresponding output vector. We also denote by 𝐅(𝐗) =

[𝐟(𝐱1), … , 𝐟(𝐱𝑛)]𝑇 ∈ ℝ𝑛×𝑛𝑝  the matrix of the basis functions and the correlation 

matrix by 𝐑(𝐗)  ∈ ℝ𝑛×𝑛  defined as 𝑅(𝐱𝑙 , 𝐱𝑚|𝐬)  for 𝑙, 𝑚 = 1, … , 𝑛 . Also, for 

every new point 𝐱, we denote by 𝐫(𝐱) = [𝑅(𝐱, 𝐱𝑙|𝐬), … , 𝑅(𝐱, 𝐱𝑛|𝐬) the correlation 

vector between the new input and each element of 𝐗. Based on the given set of 

experiments, the Kriging predictive mean is given by (Sacks et al. 1989): 

�̂�(𝐱|𝐗) = 𝐟(𝐱)𝑻𝛃∗ + 𝐫(𝐱|𝐗)𝑇𝐑(𝐗)−𝟏(𝐙 − 𝐅(𝐗)𝛃∗)  (2.16) 

where 𝛃∗ = (𝐅(𝐗)𝑇𝐑(𝐗)−1𝐅(𝐗))
−1

𝐅(𝐗)𝑇𝐑(𝐗)−1𝐙  corresponds to the 

generalized least squares estimate of 𝛃. Kriging also provides an estimate of the 

predictive mean’s variability, ultimately an estimate of the metamodel error (Jin et 

al. 2002), quantified through the predictive variance: 

σ2(𝐱|𝐗) = �̃�2(𝐗)σ𝑛
2 (𝐱|𝐗)  

with σ𝑛
2 (𝐱|𝐗) = [1 − 𝐫(𝐱|𝐗)𝑇𝐑(𝐗)−1𝐫(𝐱|𝐗) 

+𝐮(𝐱|𝐗)𝑇{𝐅(𝐗)𝑇𝐑(𝐗)−1𝐅(𝐗)}−1𝐮(𝐱|𝐗)] (2.17) 
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where 𝐮(𝐱|𝐗) = 𝐅(𝐗)𝑇𝐑(𝐗)−1𝐫(𝐱|𝐗) − 𝐟(𝐱).  

This normalized variance describes the variation of the metamodel prediction error 

in the 𝐱 domain and is independent of observations 𝐙, while the process variance 

corresponds to an independent of 𝐱  scaling constant, and is a function of the 

observations 𝐙. The maximum likelihood estimate of the process variance is: 

 �̃�2 =
(𝐙−𝐅(𝐗)𝛃∗)𝑇(𝐙−𝐅(𝐗)𝛃∗)

𝑛
 (2.18) 

Through proper tuning of the hyperparameter vector 𝐬, Kriging has been proven 

efficient in approximating even highly complex functions (Simpson et al. 2001b). In 

this work, this tuning is performed using maximum likelihood estimation (Lophaven 

et al. 2002). The predictive capability of Kriging can be evaluated using LOOCV, 

where each experiment 𝐱𝑖  is sequentially removed from the sample set, and the 

remaining ones are utilized to provide prediction �̂�(𝐱𝑖|𝐗−𝑖), with 𝐗−𝑖 denoting the 

original dataset excluding 𝐱𝑖 . Closed-form solutions exists for the LOOCV 

(Dubrule 1983; Sundararajan and Keerthi 2001) statistics with no need to explicitly 

evaluate the metamodels that correspond to observations �̂�(𝐱𝑖|𝐗−𝑖). The predictive 

mean and variance are given, respectively, by: 

�̂�(𝐱𝑖|𝐗−𝑖) = 𝑧(𝐱𝑖) −
[𝐑(𝐗)−1(𝐙−𝐅(𝐗)𝛃∗)]

𝑖

[𝐑(𝐗)−1]𝑖𝑖
 (2.19) 

𝜎2(𝐱𝑖|𝐗−𝑖) =
1

[𝐁]𝑖𝑖
 (2.20) 

where [∙]𝑝𝑞 is used to denote the entry on the pth row and qth column in a matrix, 

[∙]𝑝 is the pth element of a vector, and matrix 𝐁 is given by: 
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𝐁 = [
�̃�2𝐑(𝐗) 𝐅(𝐗)

𝐅(𝐗)𝑇 𝟎
]

−1

 (2.21) 

The estimate for the LOOCV error, characterizing ultimately the metamodel bias, is: 

𝑒𝑖 =
[𝐑(𝐗)−1(𝐙−𝐅(𝐗)𝛃∗)]

𝑖

[𝐑(𝐗)−1]𝑖𝑖
 (2.22) 
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2.3. Adaptive DoE Incorporating Bias Information 

 

Let 𝑋𝑑  denote the domain of interest within which the metamodel will be 

eventually used to provide predictions. The general objective here is to establish a 

metamodel that is globally accurate within 𝑋𝑑. Kriging’s ability to provide a local 

estimate of the prediction error variability according to Eq. (2.17), is the basis for 

many adaptive DoE approaches to satisfy this objective. Given the observation set 

𝐗  these approaches search for the next experiment 𝐱new  that will provide the 

greatest anticipated improvement according to some score functions. The most 

popular among such score functions is the integrated mean squared error given by 

(Sacks et al. 1989): 

𝐼𝑀𝑆𝐸(𝐗, 𝐱new) = ∫ 𝜎𝑛
2(𝐱|𝐗, 𝐱new)

 

𝑋𝑑 𝑑𝐱  (2.20) 

where 𝜎𝑛
2(𝐱|𝐗, 𝐱new)  is the normalized predictive variance considering the new 

experiment 𝐱new, given by:  

𝜎𝑛
2(𝐱|𝐗, 𝐱new) 

= 1 + 𝐮(𝐱|𝐗, 𝐱new)𝑇{𝐅(𝐗, 𝐱new)𝑇𝐑(𝐗, 𝐱new)−1𝐅(𝐗, 𝐱new)}−1𝐮(𝐱|𝐗, 𝐱new) 

−𝐫(𝐱|𝐗, 𝐱new)𝑇𝐑(𝐗, 𝐱new)−1𝐫(𝐱|𝐗, 𝐱new)  (2.21) 

Note that this normalized variance ignores the process variance �̃�2, since the latter 

has no impact on the optimization, acting merely as a scaling constant (A. P. Kyprioti 

et al., 2020). The term 𝐼𝑀𝑆𝐸(X, xnew)  corresponds to the average error of the 

metamodel established by using the dataset 𝐗 and the new point 𝐱new as support 
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points, assuming no modification in the hyperparameters after the addition of 𝐱new. 

The above equation requires the evaluation of the augmented correlation matrix 

𝐑(𝐗, 𝐱new), the new basis function vector 𝐅(𝐗, 𝐱new), and the correlation vector 

𝐫(𝐱|𝐗, 𝐱new), all considering augmenting the existing experiments 𝐗 by the new 

one 𝐱new. For adding a single new experiment 𝐱new, the potentially computational 

demanding inversion of the updated correlation matrix, R(X, xnew) required for Eq. 

(2.21), can be simplified using the 1-rank update: 

𝐑(𝐗, 𝐱new)−1 = [
𝐑(𝐗)−1 +

𝐑(𝐗)−1𝐫(𝐱new|𝐗)𝐫(𝐱new|𝐗)𝑇𝐑(𝐗)−1

𝜂𝑛𝑒𝑤
−

𝐑(𝐗)−1𝐫(𝐱new|𝐗)

𝜂𝑛𝑒𝑤

−
𝐫(𝐱new|𝐗)𝑇𝐑(𝐗)−1

𝜂𝑛𝑒𝑤

1

𝜂𝑛𝑒𝑤

]   (2.23) 

where 𝜂𝑛𝑒𝑤 = 1 − 𝐫(𝐱new|𝐗)𝑇𝐑(𝐗)−1𝐫(𝐱new|𝐗). This expression does not entail 

any new matrix inversions beyond scalar ones, since the partitioned inversion 

𝐑(𝐗)−1 is known after developing the metamodel for the observation set 𝐗. 

The optimal experiment(s) can be then selected to minimize the 𝐼𝑀𝑆𝐸 over the 

domain of interest:  

𝐱new
∗ = arg min

𝐱new∈𝑋𝑑
𝐼𝑀𝑆𝐸(𝐗, 𝐱new)  (2.24) 

Note that this corresponds to a challenging optimization problem, with multiple local 

minima (Picheny et al. 2010) and a score function that requires a cumbersome 

integration over 𝑋𝑑 with respect to the updated variance for each 𝐱new examined. 

An efficient optimization scheme will be discussed in the next section. An alternative 

score function can be formulated by considering the maximum error over domain 

𝑋𝑑 instead of the integrated one (Sacks et al. 1989):  
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𝑀𝑀𝑆𝐸u(𝐗, 𝐱new) = max
𝐱∈𝑋𝑑

𝜎𝑛
2(𝐱|𝐗, 𝐱new)  (2.25) 

Rather than using the updated predictive variance considering the new 

experiment(s), given by Eq. (2.21), it is common in such instances (McKay et al. 

1979; Jin et al. 2002) to use the variance for the current metamodel as it leads to a 

computationally simpler DoE procedure. The corresponding maximum mean 

squared error approach selects the new experiment based on the largest current 

estimation of the prediction error, leading to a score function that considers strictly 

the existing training set: 

𝑀𝑀𝑆𝐸(𝐱) = 𝜎𝑛
2(𝐱|𝐗)  (2.26) 

and to an optimal new experiment identification: 

𝐱new
∗ = arg max

𝐱∈𝑋𝑑
𝑀𝑀𝑆𝐸(𝐱) (2.27) 

In this paper, MMSE has been used as the objective function since it is efficient 

approximation of IMSE, i.e., more cheap and similar accuracy comparing to IMSE. 

The previous discussion focuses on adding one new experiment at a time. When 

multiple simulations for experiments can be simultaneously performed, it is often 

preferred to add a batch of 𝑛𝑞 new experiments at the same time according to either 

𝐼𝑀𝑆𝐸  or 𝑀𝑀𝑆𝐸  score functions (𝑀𝑀𝑆𝐸  in this paper). This can be done by 

sequentially identifying new experiments one-at-a-time as described above, adding 

each of them to 𝐗  and updating 𝐑, 𝐅  and 𝐫 , the essential components of the 

normalized variance, without updating the Kriging hyperparameter structure as the 

latter would require the output for the new experiments, and then proceeding to the 
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identification of the next experiment until the desired batch size has been reached. 

The score function variants discussed in the above focus entirely on the metamodel 

prediction variability, quantified through the normalized predictive variance, and 

thus, ignore any possible bias in these predictions. To incorporate information about 

the latter, an adjustment of these score functions is proposed here utilizing a 

weighting term quantified through the LOOCV error. This leads to the modification 

of the 𝑀𝑀𝑆𝐸 presented in Eq. (2.26) to a weighted 𝑀𝑀𝑆𝐸, 𝑀𝑀𝑆𝐸𝑤 defined as 

follows: 

𝑀𝑀𝑆𝐸𝑤(𝐱) = 𝜑(𝐱)𝜌𝜎𝑛
2(𝐱|𝐗)  (2.28) 

where weights 𝜑(𝐱)  use information regarding both the LOOCV mean and 

variance as: 

𝜑(𝐱) =
Σ𝑖=1

𝑛 𝑤𝑖(𝐱)[1+𝑒𝑖
2/𝜎2(𝐱𝑖|𝐗−𝑖)] 

Σ𝑖=1
𝑛 𝑤𝑖(𝐱)

  (2.29) 

with 𝑤𝑖(𝐱) obtained using Voronoi cells as explained later in Eq. (2.31) 

Contrary to the predictive variance, the LOOCV error is known only for the input 

locations of the initial training set. In order to approximate the LOOCV error across 

the whole domain 𝑋𝑑, the weighted average interpolation over the set 𝑋 is adopted, 

leading to the following 𝜑(𝐱) definition: 

𝜑(𝐱) =
Σ𝑖=1

𝑛 𝑤𝑖(𝐱)𝑒𝑖
2 

Σ𝑖=1
𝑛 𝑤𝑖(𝐱)

  (2.30) 

For the weights, 𝑤𝑖(𝐱)  sets to 1  only for the closest experiment to 𝐱  and 0 

otherwise, corresponding to the natural neighbor (NN) interpolation: 
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𝑤𝑖(𝐱) = {
1  if 𝐱 ∈ 𝑉𝑖 = {𝐱 ∈ 𝑋𝑑 , ‖𝐱 − 𝐱𝑖‖ ≤ ‖𝐱 − 𝐱𝑗‖, ∀𝑗 ≠ 𝑖}, 𝑖, 𝑗 = 1, … , 𝑛

0                                                                                                                else
 (2.30) 

where 𝑉𝑖  is the Voronoi cell associated with 𝐱𝑖  for set 𝐗 , and the difference 

between vectors ‖∙‖  is chosen as the distance used for the Kriging correlation 

function ‖𝐱 − 𝐱𝑖‖ = 𝑑(𝐱, 𝐱𝑖|𝐬) . Note that this choice for 𝑤𝑖(𝐱) , using Voronoi 

cells, has been adopted in similar studies that relied on interpolation for LOOCV 

error (Le Gratiet and Cannamela 2015; Liu et al. 2016). Thus, the two main 

components in Eq. (2.28), bias and variance, show two fundamental strategies for 

the identification of the new experiments 

1. The LOOCV error weight contains information about the metamodel bias. A 

larger weight in certain regions suggests a smaller local metamodel accuracy, 

which is due to the inadequate capturing of the local nonlinearities of the 

original function, as will be shown later in the thesis. By introducing this 

weight, a local exploitation is encouraged in such problematic domains. 

2. Metamodel variance 𝜎𝑛
2(𝐱|𝐗, 𝐱new) , ultimately quantifies the closeness 

between the input 𝐱 to all current experiments 𝐗, and to the new experiment 

𝐱new  as well. A large variance suggests that the input region is “under-

sampled” considering the distribution of existing experiments 𝐗  and the 

added one 𝐱new in 𝑋𝑑. By aiming to reduce such variance within the DoE, a 

global exploration of the input domain is promoted. 

Both components should be used within the DoE process. By incorporating 

information about the metamodel bias, the LOOCV weight 𝜑(𝐱)  can be 

particularly impactful for capturing local nonlinearities of the original function. On 
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the other hand, since it is fully formulated based on LOOCV information, it inherits 

the well-known LOOCV limitation, i.e., ignoring the existence of a specific 

experiment at each localized domain (Kleijnen and Beers, 2004). Therefore, the 

proposed LOOCV weight can only offer incomplete details about the true bias given 

𝐗. Its drawback is partially compensated by using the updated predictive variance 

𝜎𝑛
2(𝐱|𝐗, 𝐱new). As discussed, this quantity provides information about the influence 

of adding the new experiment 𝐱new  (through the variance updating), but more 

importantly, incorporates the distribution of all existing experiments 𝐗 in 𝑋𝑑 into 

the DoE, and ultimately avoids putting new experiments within close proximity to 

existing ones.  

In summary, the identification of the new experiment(s) using the proposed 

adaptive framework is performed through Eq. (2.27) simply using the weighted 

𝑀𝑀𝑆𝐸𝑤 of Eq. (2.28) as the objective function. 

Algorithm 1. Adaptive DoE with MMSE 

Step 1 Candidate experiments: generate 𝑛𝑐  candidate experiments {𝐱new
𝑐 ; 𝑐 =

1, … , 𝑛𝑐} following a uniform distribution in 𝑋𝑑. 

Step 2 Ranking and prescreening of experiments: evaluate 

{𝜎𝑛
2(𝐱new

𝑐 |𝐗), 𝜑(𝐱new
𝑐 ); 𝑐 = 1, … , 𝑛𝑐}  and retain only the 𝑎𝑟𝑛𝑐 candidate 

experiments that correspond to the highest values of 𝜑(𝐱new
𝑐 )𝜌𝜎𝑛

2(𝐱new
𝑐 |𝐗) ,  

with 𝑎𝑟 being the desired percentage of candidate experiments that have larger 

weighted-variance values.  

Step 3 Final selection: select as new experiment the one that provides the 
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minimum value for {𝑀𝑀𝑆𝐸(𝐱new
𝑐 ); 𝑐 = 1, … , 𝑎𝑟𝑎𝑐𝑛𝑐}. 

The prescreening in step 2 offers a substantial reduction of the computational 

burden, as it avoids the estimation of the 𝑀𝑀𝑆𝐸 for candidate experiments that are 

not expected to correspond to the optimum; proportion (1 − 𝑎𝑟)  of candidate 

experiments in subdomains of 𝑋𝑑  with low current prediction variability are 

ultimately ignored. Note that the current variance 𝜎𝑛
2(𝐱|𝐗) used in the prescreening 

step can be estimated with small computational cost, so the overall computational 

burden for this step is negligible. 

The remaining characteristics of the numerical optimization scheme that need to 

be discussed are the selection of 𝑁𝑠  and 𝑛𝑐 . The choice of 𝑁𝑠  impacts the 

estimation error. It is still important to set 𝑛𝑐 large enough to promote an adequate 

exploration of 𝑋𝑑  at each iteration, and the inclusion of the step 2 in the 

optimization algorithm has been introduced to accommodate such a selection. 
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Chapter 3. Proposed Algorithm of GSA using 

Adaptively-learned Gaussian Process 
 

 

3.1. GSA using Adaptive GP 
 

 

As explained in Chapter 1, the motivation of the proposed method is to develop a 

computationally efficient algorithm for SA. Here, computational efficiency has two 

meanings – (1) taking less computational time for an evaluation of the model and (2) 

reducing a number of the needed experiments by adaptively selecting the location of 

them. To achieve these goals, we introduce a surrogate modeling method by GP to 

replace the system model with a cheaper model and an adaptive GP method by 

considering both predictive variance of GP and the LOOCV error, which is explained 

in algorithm 1 of Chapter 2. As shown in Figure 3.1, GSA using adaptive GP can be 

performed with the proposed algorithm explained as follows: 

Algorithm 2. GSA using Adaptive GP 

Step 1 Initial experiments and corresponding outputs: generate 𝑛𝑖𝑛𝑖𝑡  initial 

experiments {𝐱init
𝑖 ∈ ℝ𝑥

𝑛; 𝑖 = 1, … , 𝑛𝑖𝑛𝑖𝑡} following a uniform distribution in 𝑋𝑑 

and run simulation to obtain 𝑛𝑖𝑛𝑖𝑡 initial outputs {yinit
𝑖 ∈ ℝ; 𝑖 = 1, … , 𝑛𝑖𝑛𝑖𝑡}. 

Step 2 Calibrate GP’s parameters: evaluate initial parameters of GP using the 

initial data and calibrate the GP parameters.   

Step 3 Train GP using adaptive learning: repeat Algorithm 1 𝑛𝑡𝑟𝑎𝑖𝑛 times which 

is user-defined parameter.  

Step 4 Perform SA: obtain Sobol’ indices using the GP model built on Step 3. 
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The most computationally demanding part of the algorithm above is calibrating the 

GP model with a new experiment, which requires updating of the GP’s parameters. 

However, it shows very similar degree of accuracy with much smaller number of 

experiments compared to the original GP. Therefore, it is able to obtain the Sobol’ 

indices accurately and more efficiently by using the proposed algorithm. 
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Figure 3.1 Flow chart of GSA using adaptive GP 
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3.2. GSA using Modified Adaptive GP  
 

The basic idea of adaptive learning is to find an optimal point by minimizing or 

maximizing its objective function. 𝑀𝑀𝑆𝐸 minimize the maximum error, which is 

defined as a multiplication of bias and variance while 𝐼𝑀𝑆𝐸 minimize the average 

error expressed as the integration of the error over the whole input space as shown 

in Eq. (2.28).  

However, as mentioned earlier in Section 1.2, the objective function of the adaptive 

learning proposed in Section 2.3 is not specialized for performing SA. To solve this 

problem, this study proposes the modified adaptive gaussian process, which has 

more appropriate objective function to obtain the Sobol’ indices and its own 

convergence criteria in order to help users make decisions by suggesting a proper 

number of experiments that are needed to guarantee an enough level of confidence. 

In the original methods, the algorithm converges at the user-defined number of 

training experiments, 𝑛𝑡𝑟𝑎𝑖𝑛, since it does not have its own convergence criteria. 

Thus, there are some over-trained cases, which means that the training process of GP 

goes far even if it already converged enough confidence level. In contrast, the 

modified method has its own convergence criteria which incorporates the confidence 

information of the Sobol’ indices. The overall flow of it is as follows (Figure 3.2): 

 

Algorithm 3. GSA using Modified Adaptive GP 

Step 1 Initial experiments and corresponding outputs: generate 𝑛𝑖𝑛𝑖𝑡  initial 

experiments {𝐱init
𝑖 ∈ ℝ𝑥

𝑛; 𝑖 = 1, … , 𝑛𝑖𝑛𝑖𝑡} following a uniform distribution in 𝑋𝑑 
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and run simulation to obtain 𝑛𝑖𝑛𝑖𝑡 initial outputs {yinit
𝑖 ∈ ℝ; 𝑖 = 1, … , 𝑛𝑖𝑛𝑖𝑡}. 

Step 2 Calibrate GP’s parameters: evaluate initial parameters of GP using the 

initial data and calibrate the GP parameters.   

Step 3 Train GP using modified adaptive learning: the algorithm repeats 

Algorithm 1. and stops GP training automatically depend on its own convergence 

criteria defined by the confidence level, which is  

Step 4 Perform SA: obtain Sobol’ indices using the GP model built on Step 3. 
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Figure 3.2 Flow chart of GSA using modified adaptive GP 
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Chapter 4. Verification of Proposed Method 
 

 

In this chapter, two numerical examples are presented to confirm the validity of 

the proposed algorithm in Chapter 3. The target structures are including a 7-story 

shear building and a 9-story frame structure. Both structures are excitated by the 

earthquake using the actual record data of ground acceleration, El Centro, as shown 

in Figure 4.3.  

Structural modeling and analysis are performed in OpenSees. Numerical 

simulations were performed in MATLAB 2021b. Calibration of the GP parameters 

was performed utilizing DACE toolbox developed by Lophaven et al (2002). 

 

 4.1. Example 1: 7-story Shear Building 
 

 

The target structure is a 7-story of shear building as shown in Figure 4.1. As the 

material property, uniaxial steel object with isotropic strain hardening is used 

(Filippou, 1983) as shown in Figure 4.2. 

Three input variables are chosen as Table 4.1; 𝐸0  is young’s modulus, 𝐹𝑦  is 

yielding stress, and 𝛼 is post-ratio. They are the interest variables and the Sobol’ 

indices are obtained for each input variables. GSA was performed by modified 

adaptive GP. It is tested by changing the number of initial experiments and the 

proposed algorithm automatically decided the number of new experiments which are 

adaptively found by the algorithm. The results of the 7-story shear building using the 

proposed algorithm for each case; GSA using modified adaptive GP are shown in 
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Figure 4.4, Figure 4.5 and Figure 4.6. Comparing the results from Figure 4.4, 4.5 

and 4.6, one can find that there is not significant difference between them, which 

means that the proposed algorithm is even valid for smaller number of initial points. 

The convergence graph comparing the proposed algorithm and the Quasi-MCS 

explained in Eq. (2.10) is shown in Figure 4.7 and the proposed one shows similar 

accuracy compared with the Quasi-MCS.  
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Figure 4.1 Configuration of the 7-story shear building 

 

 

Figure 4.2 Material used for the 7-story shear building 
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Figure 4.3 Ground acceleration time history of El Centro earthquake 

 

   

Table 4.1 Input variables of the 7-story shear building 

(ksi unit) 𝝁 𝜹 

𝑬𝟎 326 0.1 

𝑭𝒚 50 0.1 

𝜶 0.2 0.1 
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 Case 1 Case 2 Case 3 

#. of Initial points 50 25 10 

#. of new DoE 93 102 118 

Time(sec) 131.53 145.81 146.53 

Table 4.2 The number of experiments and computation cost  

Figure 4.4 First order Sobol’ index of example 1, case 1 
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Figure 4.5 First order Sobol’ index of example 1, case 2 

Figure 4.6 First order Sobol’ index of example 1, case 3 
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Figure 4.7 Convergence graph along the number of evaluations 



 

34 

4.2. Example 2: 9-story Frame 
 

 

As shown in Figure 4.8, the second target structure is 9-story frame building. It is 

excitated by the same earthquake with Example 1, i.e., El Centro. The Steel01 

material of OpenSees in Figure 4.9, which is a uniaxial bilinear steel material object 

with kinematic hardening and isotropic hardening described by a nonlinear evolution 

equation, is used for the structure. 

To test the validity of the proposed algorithm in the higher dimension than the 

example 1, six input parameters are chosen as shown in Table 4.2. The OpenSees 

model is tested its validity with pushover and quasi-cyclic test and the results are 

shown in Figure 4.10 and 4.11. Four input variables are chosen as Table 4.3; 𝐸0 is 

young’s modulus, 𝐹𝑦 is yielding stress, 𝛼 is post-ratio, and 𝑃𝐺𝐴 is factor for peak 

ground acceleration. They are the interest variables and the Sobol’ indices are 

obtained for story 1 and story 9 and the results of the 9-story frame using the 

proposed algorithm are shown in Figure 4.12. One can find that the impact of PGA 

becomes larger in story 9. As shown in Figure 4.14, the proposed algorithm’s 

advantage is that one can obtain both the confidence level and prediction about the 

model. 
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Figure 4.8 Configuration of the 9-story frame 

Figure 4.9 Material used for the 9-story frame 
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Table 4.3 Input variables of 9-story frame 

(SI Unit) 𝝁 𝜹 

𝑬𝟎,𝒄𝒐𝒍𝒖𝒎𝒏 200,000 0.1 

𝑭𝒚, 𝒄𝒐𝒍𝒖𝒎𝒏 345 0.1 

𝜶𝒄𝒐𝒍𝒖𝒎𝒏 0.01 0.1 

PGA  
Weight factor 

0.01 0.1 

Table 4.3 The input variables of 9-story frame 

Figure 4.10 Pushover curve of the 9-story frame 

Figure 4.11 Quasi-Cyclic test curve of the 9-story frame 
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 Case 1 Case 2 Case 3 

#. of Initial points 50 25 10 

#. of new DoE 213 242 258 

Time(sec) 259.53 260.81 263.53 

 

 

 

 

 

 

 

Table 4.4 The number of experiments and computation cost of 9-story frame 

Figure 4.12 First order Sobol’ index of example 2 
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Figure 4.13 Convergence graph along the number of evaluations, example 2 
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Figure 4.14 Convergence graph with confidence 

level, Example 2 
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Figure 4.15 NRMSE, example 2 
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Chapter 5. Conclusions 
 

 

In this thesis, GSA algorithm using adaptive GP that can be effectively used for 

complex systems is introduced. It is confirmed that the proposed algorithm enables 

the accurate estimation of the Sobol’ indices. Furthermore, the algorithm can identify 

the variability of the Sobol’ indices in order to help user’s decision making and it has 

its own convergence criteria to stop the algorithm automatically.  

There are two major further studies based on this study. First, expanded algorithm 

for total-effect Sobol’ indices can be developed. It would give a comprehensive 

understanding of the given system if the total-effect Sobol’ indices could be found 

even in the complex systems.  

Second is to develop more adaptivity that even can identify the number of initial 

experiments. Even though the proposed one decides the number of new experiments, 

it could be more helpful for the user if the algorithm can determine the number of 

initial experiments. 

Further studies based on results of this study are expected to enhance the effective 

GSA for the more complex systems.  
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국문 초록 
 

 

민감도 해석은 시스템의 출력값이 가지는 불확실성에 대해 입력값들 

각각의 불확실성이 차지하는 중요도를 정량화하는 연구로, 공학적 

시스템의 외부환경에 대한 응답에서 입력변수들의 중요도, 구조물 최적 

설계의 변수 설정 등과 같이 다양한 공학 분야에서 사용되고 있다. 특히, 

소볼의 전역 민감도 해석 방법론이 비선형 시스템에도 적용될 수 있는 

이의 범용성으로 인해 주로 연구되어 왔다. 

그러나, 출력값의 표본을 필요로 하는 샘플링 기반 및 대리모형 기반 

방법론과 같은 기존 방법론들은 긴 해석 시간을 필요로 하는 실제 

공학적 문제의 고도화된 시스템에 적용하기 어렵다는 한계를 가진다. 

따라서 이 연구에서는 계산이 어려운 복잡 시스템에 효율적으로 적용될 

수 있는 적응형 가우시안 프로세스를 이용한 전역 민감도 해석 방법론을 

제안한다. 훨씬 적은 수의 모델 해석으로도 실제 시스템과 매우 유사한 

대리 모형을 수립할 수 있도록 적응형 학습 방법론을 가우시안 

프로세스에 도입했다. 특히, 예측 분산만을 사용하는 기존 방법론들과 

달리 Leave-One-Out Cross-Validation을 이용하여 편향 정보 또한 고려하는 

적응형 가우시안 프로세스를 사용하여 탐색과 탐험 모두를 수행할 수 

있는 방법론을 제안한다.  

마지막으로, 해석 대상 시스템에 필요한 출력값 표본의 적절한 수를 

알고리즘이 구할 수 있도록 민감도 해석에 맞는 적응형 가우시안 

프로세스의 목적 함수를 제안한다. 
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전단 빌딩 및 9층 골조 구조물로 구성된 두 가지 구조물 예제를 통해 

제안한 전역 민감도 해석 알고리즘을 검증하였고, 본 연구에서 제안한 

방법을 통해 더 적은 수의 시스템 해석으로 상당히 정확한 민감도 지표 

값에 수렴하는 효과적인 민감도 해석을 수행할 수 있을 것으로 기대된다. 

 

주요어 : 전역 민감도 해석, 적응형 학습, 가우시안 프로세스, 

실험계획법 

학번 : 2021-29502 
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