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Abstract

Sensitivity analysis (SA), which is the study of how uncertainty in the ‘output’ of a
model can be apportioned to different sources of uncertainty in the model ‘input’,
have been extensively performed in fields of engineering. Especially, many studies
on global sensitivity analysis (GSA) methodologies have been conducted based on
the Sobol’ method to take advantage of its applicability to various systems including
nonlinear ones.

However, in real engineering problems described by complex system models, i.e.,
high-dimensional and highly-nonlinear systems, sampling-based SA method has
limitations in that the analysis time increases with the input dimension and it is also
challenging to apply the surrogate modeling-based SA method to highly nonlinear
structures.

In this study, a new framework of GSA using actively-learned gaussian process is
introduced to efficiently perform GSA for computationally expensive system models.
The adaptively-learned gaussian process is intended to accurately build a surrogate
model even with much fewer model evaluations. Additionally, to pursue both
exploration and exploitation in the adaptive learning, Leave-One-Out Cross-
Validation (LOOCYV) error is applied as a weight to the objective function of the
existing design-of-experiment (DoE) method, which only considers the prediction
variance. Furthermore, we propose modified objective function for the adaptively-
learned GP, which allows the proposed algorithm to adaptively suggest an
appropriate number of experiments to perform effective GSA.

The validity and efficiency of the proposed GSA framework are demonstrated



through two structural numerical examples: 7-story shear building and 9-story frame

structure. The results confirm that the method facilitate convergence to the accurate

sensitivity index with a significantly reduced number of structural model evaluations.

Keywords: global sensitivity analysis, adaptive learning, gaussian process, design
of experiments
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Chapter 1. Introduction

1.1. Research Background

Sensitivity analysis (SA) is the study of how uncertainty in the ‘output’ of a model
can be apportioned to different sources of uncertainty in the model ‘input’ (Saltelli
et al., 2008). SA has been extensively used in engineering and scientific fields to
address several purposes of system analysis and modeling: (a) dimensionality
reduction to identify uninfluential factors in a system that may be redundant and
fixed or removed in subsequent analyses (e.g., Sobol’ et al., 2007); (b) data worth
assessment to identify processes, parameters and scales that dominantly control a
system, for which new data acquisition reduces targeted uncertainty the most (e.g.,
Guillaume et al., 2019; Partington et al., 2020); and (c) decision support to quantify
the sensitivity of an expected outcome to different decision options, constraints,

assumptions and/or uncertainties (Tarantola et al., 2002).

There are two main categories in SA: local sensitivity analysis (LSA) and global
sensitivity analysis (GSA). LSA focuses on sensitivity around a ‘nominal point’ in
the problem space. However, LSA has limitations as it provides only a localized view
of the problem space at the nominal point, especially when investigating parameter
importance in mathematical modeling (Saltelli and Annoni, 2010; Saltelli et al., 2019).
To address this limitation, GSA, which offers a comprehensive representation of how
different factors interact across the entire problem space to influence the system’s

output, has gained its prominence.

Many methodologies have been conducted to perform GSA, such as the Fpurierl_
I 2-1H &l

A -
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amplitude sensitivity test (FAST), methods based on correlation ration, Kullback-
Leibler divergence based approaches, and Sobol’ indices related methods. Among
these methods, the Sobol’ sensitivity indices method based on variance-
decomposition is a prominent one owing to its applicability to a wide range of

models, including both linear and nonlinear models.

The simplest way to compute the Sobol’ indices is to implement double-loop
Monte Carlo simulation (MCS), which requires a large number of evaluations of the
prediction model and is unaffordable if the prediction model is computationally
expensive. To reduce the computational cost of the Sobol’ indices, various
algorithms have been proposed roughly in the following two ways: metamodel-based
methods and sample-based methods. As explained earlier, the basic sample-based
method for GSA is the double-loop MCS based purely on model evaluations and the
double-loop MCS has expensive computational cost which is proportional to both
dimension of the input space and the number of a sample points. Thus, most of
various sample-based methods are developed to reduce the computational cost of SA.
For example, Sobol’ (1990) discussed how to efficiently estimate the Sobol’ indices
using MCS and the scheme was more accurately developed by Homma and Saltelli
(1996). In this scheme, the required number of samples in the double-loop procedure
is reduced to a number which is proportional to the dimension of the input variables.
Similarly, Glen and Issac (2012) developed an approach to compute the Sobol’
indices by switching the columns of two separately generated MCS sample matrices,

which is usually called quasi-MCS.

In the metamodel-based methods, the original system model, which is

computationally expensive, is replaced with a cheaper surrogate model such as a
1 © +11



gaussian process model, polynomial chaos expansion model or regression model.
After building the surrogate model, the Sobol’ indices can be obtained using either
analytical or direct MCS-based methods. Sudret proposed that if the original model
is approximated by a polynomial chaos expansion (PCE), the Sobol’ index can be
calculated by post-processing the PCE coefficients. Chen et al. proposed another
analytical method for commonly used surrogate models such as the linear regression
model, Gaussian process model, Gaussian radial basis model, and MARS model and
analytical solution of the index is available if the inputs are normally or uniformly
distributed. These analytical methods reduce the number of model evaluations
significantly, but may require: 1) extra approximations and assumptions, and 2) extra

computational cost in building the surrogate model.

In practical engineering applications, the true analytical form of the given system
may be unknown especially for the case of the computationally expensive systems.
In that situation, sampling-based methods cannot be easily adopted due to the fact
that the computational time rapidly increases with the required number of sample
points. Metamodel-based methods are applicable in this situation since they
approximate expensive model to a cheaper one, but limitations exist in the aspect of
computational time due to the fact that they still need training points obtained by

evaluating the true model, which is very time-consuming.

Therefore, the main objective of this thesis is to develop a more efficient surrogate-
based method whose training points for building a surrogate are obtained by adaptive

gaussian process in order to reduce the number of model evaluations.



1.2. Research Objectives

This study has two main objectives. The first one is to suggest how to build a
surrogate model using adaptive gaussian process for the accurate and effective SA
of the complex systems, which requires expensive computational cost. Because
surrogate modeling needs several experiments to train the surrogate model, it takes
time to evaluate the true system to obtain the experiments. Therefore, this study
proposes using adaptive learning to build the surrogate, and then, once the surrogate
has been built, one would produce a number of test points with cheap evaluation cost

to obtain Sobol’ indices.

Second, this study proposes an adaptive gaussian process method with modified
convergence criteria, which is more appropriate in calculating the Sobol’ indices.
The existing one using Leave-One-Out Cross Validation (LOOCV) is also applicable
and valid for SA but the proposed algorithm automatically decides the proper number
of needed experiments to the user-defined confidence level. Therefore, this study
proposes a new framework to perform more adaptive GP specialized for the purpose

of SA.



1.3. Outlines

Chapter 1 is the introductions of the thesis, which present the research background,
objects, scopes and outlines. Chapter 2 provides the theoretical background about
global sensitivity analysis, gaussian process, and gaussian process using adaptive
learning, which are the basis for the proposed method in this thesis. Chapter 3
presents the proposed GSA methodology based on the methods presented in Chapter
2. Chapter 4 presents two structural model examples with seismic excitation to
validate the proposed method in Chapter 3. The first example deals with a shear
building to test the proposed algorithm’s validity. The second example investigates
a 9-story frame building to expand the algorithm’s applicability to more high-
dimensional and computationally expensive system. In this study, the structural
models are built by OpenSees with actual seismic data. Chapter 5 summarizes the
study and provides academic and practical implications, study limitations, and

suggestions for future research.



Chapter 2. Theoretical Backgrounds

2.1. Variance-based Global Sensitivity Analysis (GSA)

Assuming that y = f(x) is areal integrable function for a physics model or system,
where X = {X3, ..., X;;} € R™ is a vector of random input variables, the variance

Var(Y) of Y can be decomposed as follows (Saltelli et al., 2008):

Var(Y) = ZiL,V; + 2:?si<jVij + o+ Vizn, (2.1)

where V; = VarXi(EXNi(YIXi)) is the variance of Y caused by X; without
considering its interactions with other input variables (i.e., X.;), E(*) is the
expectation operator, and V; j, Vk =2,..,n,, represents the proportion of
Var(Y) caused by variables {X;, ..., Xi }.

Based on the above variance decomposition, the Sobol’ indices are defined as

(Saltelli et al., 2008)

__ Vi Vi _ Vi _
Si - Var(y)'sl] - Var(Y)'Sl“'k - var(y) ;Vk =2, vy Ny (22)

where n, is dimension of the input space, S; is the first-order index, S;; is the
second-order index, and S§; j is the higher-order index corresponding to input
variables {Xj, ..., Xi}.

The number of indices will grow dramatically if the higher-order indices are used.
For this reason, the first-order and total-effect Sobol’ indices are commonly used and
are given by

_ Vary, (EXNL-(Y|X1'))
Si = Var(Y) !



o vang(BoX))
S, =1-— Vart) Vi=1,.,n, 2.4)

or

_Exy (Varxl.(leq-))
STl' - Var(Y) !

Vi=1i..,ny 2.5

where §; and Sy, are the first-order and total-effect Sobol’ indices of X;,
respectively.

It should be noted that the above variance decomposition is derived based on the
independence assumption of the input variables. When the input variables are
correlated, Var(Y) cannot be decomposed as in Eq. (2.1). However, as Saltelli and
Tarantola (2002) has pointed out, S; and Sy, computed using the above formulas
are still informative for the importance measure of dependent input variables. In
addition, sensitivity indices are defined in two types, namely full sensitivity index
and independent sensitivity index, to perform GSA of model output with dependent
random variables (Mara TA & Tarantola S, 2012). The full sensitivity index includes
the effects of the dependence of a Vol with other inputs while the independent
sensitivity indices represent the effects of a Vol that are not due to its dependence
with other variables (Mara et al., 2015). Mara et al. defined that the indices given in
Egs. (2.2) and (2.3) are, respectively, the full first-order sensitivity index and the
independent total-effect index when they are applied to GSA of model output with
dependent random variables. In this thesis, we therefore focus on how to compute
Egs. (2.2) or (2.3) for generalized problems with or without dependent input
variables.

As discussed in Chapter 1, directly solving Egs. (2.2) or (2.3) requires a double-



loop MCS. Assume that there is a data matrix X € R™ "™ given as follows:

X xil) x,(li)
X=| : |=] : : (2.6)
x™ x in) o x 1(11;)

in which X@ = [xiq), ...,xflz)],Vq =1,..,n isthe q”‘ sample of X andnisthe

number of samples in the data matrix.

Then, the computational cost of the double-loop MCS is proportion to n™*, which
is expensive in case of high-dimensional and highly nonlinear systems. The
computation can be reduced via existing short cuts using the instrument proposed by
Saltelli (2008). Assume that two data matrices A € R™"™ and B € R™"™ are

defined as follows:

1 1 (€] (€]
xf L x‘r(lx) Xne+1 7 Xom,
A=| : i, B= : : 2.7)
(
] I MR

and define a matrix C; formed by all columns of B except the ith column, which

is taken from A:

N OB Y

Xn+1 Xy
C, = ST 2.8)
(m
xnx+1 e xl(n) ces xéﬁl

Then compute the model output for all the input values in the sample matrices A, B

and C;, obtaining three vectors of model outputs:

ya = f(A), yp = f(B) and y¢, = f(C) (2.9)



Using the above output vectors, the Sobol’ indices can be obtained as follows:

Varg (Bx (1X0) 3 pycpz  UmZ vl -8

S = = -
i Var(Y) yaya—fé (1/71)27=1(3’51)2_f02

var_(Ex,(YIX-0) /syl -8
Sp.o=1— =1- i

L )
Var(Y) (1/71)27:1(3’1]4) 13

(2.10)

@2.11)

N2
where fZ = (%Z}lzly/{) is the mean, and the symbol (*) denotes the scalar

product of two vectors.



2.2. Gaussian Process (GP) formulation

Kriging combines two components: a global regression to capture underlying trends
in the high-fidelity model behavior and a GP that performs a local fitting to the
regression residuals. To formulate the metamodel, consider a high-fidelity simulation
model with an input vector X € R™ and a scalar output z € R. The fundamental
hypothesis of Kriging is that the true model response is one realization of a stochastic

process of the following form:
Z(x) = fX)TB + h(x) (2.12)

where the first term is the global regression component, comprised by an n, X 1
vector of n, dimensional basis functions f(x) = [f;(x), ..., fnp (x)] (typically
f(x) is a lower order polynomial), and a n, X 1 vector of regression coefficients

B and the second term fits the regression residuals with a GP that has a zero mean,

and a covariance function of the form:
cov(x!, x™) = 62R(x',x™|s) (2.13)

where &2 is the process variance and R(x!,x™|s) the selected correlation
function, dependent on hyper-parameters. The correlation function between
experiments x! and x™ is defined through some distance measure d(x!,x™|s).
Common choices for this correlation function include the generalized exponential,
Gaussian, cubic, or Matérn correlation functions (Williams and Rasmussen 2006;
Kleijnen 2009). In this thesis, the generalized exponential will be used for its

flexibility, leading to:

10



Sp 1
d(xh,x™) = ¥% sie| ok — x| g = sy, v Sp S, + 1] (2.14)

|snx+1

) (2.15)

R(x',x™) = exp (—d(xl,xm)) =M%, exp(—sy|xf — xi

Let {xj ;j = 1,...,n} represent the available simulation experiments and denote
by X = [x1,...,x"]T € R"™ the input matrix, and by Z = [z(x1),...,z(x™)] €
R™ , the corresponding output vector. We also denote by F(X)=
[f(x1), ..., f(x™)]T € R™™ the matrix of the basis functions and the correlation
matrix by R(X) € R™™" defined as R(x!,x™|s) for [,m =1,..,n. Also, for
every new point X, we denote by r(x) = [R(x,x![s), ..., R(X,x™|s) the correlation
vector between the new input and each element of X. Based on the given set of

experiments, the Kriging predictive mean is given by (Sacks et al. 1989):
2(xIX) = £ + r(xIX)"RX)"(Z - F(X)B") (2.16)

where B* = (F(X)TR(X)‘1F(X))_1F(X)TR(X)_1Z corresponds  to  the
generalized least squares estimate of B. Kriging also provides an estimate of the
predictive mean’s variability, ultimately an estimate of the metamodel error (Jin et

al. 2002), quantified through the predictive variance:
o?(xIX) = 6% (X)o7 (xIX)
with o2 (x|X) = [1 — rx|X)"R(X) 1r(x|X)

+ux|X)"{FX)"RX) *F(X)} tu(x|X)] (2.17)

11



where u(x|X) = FX)TR(X) r(x|X) — f(x).

This normalized variance describes the variation of the metamodel prediction error
in the X domain and is independent of observations Z, while the process variance
corresponds to an independent of X scaling constant, and is a function of the

observations Z. The maximum likelihood estimate of the process variance is:

_ T (7 _ *
52 = (Z-FX)B")" (Z-FX)B") (2.18)

n

Through proper tuning of the hyperparameter vector s, Kriging has been proven
efficient in approximating even highly complex functions (Simpson et al. 2001b). In
this work, this tuning is performed using maximum likelihood estimation (Lophaven
et al. 2002). The predictive capability of Kriging can be evaluated using LOOCY,
where each experiment X! is sequentially removed from the sample set, and the
remaining ones are utilized to provide prediction 2(Xi |X_ l-), with X_; denoting the
original dataset excluding x‘. Closed-form solutions exists for the LOOCV
(Dubrule 1983; Sundararajan and Keerthi 2001) statistics with no need to explicitly
evaluate the metamodels that correspond to observations 2(xi |X_l-). The predictive

mean and variance are given, respectively, by:

[R(X)~1(z-F(X)B")],
R

A(xiX_) = 2(x) — (2.19)

1

az(inX_i) =B

(2.20)

where [-],4 is used to denote the entry on the pth row and gth column in a matrix,

[], is the pth element of a vector, and matrix B is given by:

12



_[6?RX) FX)|

B= FX)Y o0

(2.21)

The estimate for the LOOCYV error, characterizing ultimately the metamodel bias, is:

_ [RO(@-FXOBY];
L [ROO~1];;

(2.22)
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2.3. Adaptive DoE Incorporating Bias Information

Let X4 denote the domain of interest within which the metamodel will be
eventually used to provide predictions. The general objective here is to establish a
metamodel that is globally accurate within X¢. Kriging’s ability to provide a local
estimate of the prediction error variability according to Eq. (2.17), is the basis for
many adaptive DoE approaches to satisfy this objective. Given the observation set
X these approaches search for the next experiment X, that will provide the
greatest anticipated improvement according to some score functions. The most
popular among such score functions is the integrated mean squared error given by

(Sacks et al. 1989):

IMSE (X, Xpew) = [

2 0n (XX, Xpew) dx (2.20)

where 02 (x|X,Xpew) is the normalized predictive variance considering the new

experiment Xpew, given by:

a7 (XIX, Xpew)

=1+ u(xIX, Xpew) " {F(X, Xnew) "R(X, Xnew) " F(X, Xpew)} ™ " u(xIX, Xpew)
—1(XIX, Xpew) ' R(X, Xnew) "' T(XIX, Xnew) (2.21)

Note that this normalized variance ignores the process variance &2, since the latter
has no impact on the optimization, acting merely as a scaling constant (A. P. Kyprioti
et al., 2020). The term IMSE (X, Xpew) corresponds to the average error of the

metamodel established by using the dataset X and the new point Xy, as support

14



points, assuming no modification in the hyperparameters after the addition of Xpey-
The above equation requires the evaluation of the augmented correlation matrix
R(X, X,ew), the new basis function vector F(X, Xpew), and the correlation vector
r(x|X, X,ew), all considering augmenting the existing experiments X by the new
one Xpew- For adding a single new experiment Xpe., the potentially computational
demanding inversion of the updated correlation matrix, R(X,Xpew) required for Eq.

(2.21), can be simplified using the 1-rank update:

R + R(X)'lr(xnewlfr(xnew|X)TR<x)-1 _ R(X)_;r(xnewm)
-1 _ new new
R(Xl Xnew) - _ r(Xnew|X)TR(X)_1 1 (223)
NMnew Nnew

where Npew = 1 — r(Xpew!X)TR(X) " r(Xpew|X). This expression does not entail
any new matrix inversions beyond scalar ones, since the partitioned inversion

R(X)™! is known after developing the metamodel for the observation set X.

The optimal experiment(s) can be then selected to minimize the IMSE over the

domain of interest:

Xpew = arg min dIMSE(X, Xnew) (2.24)

XpewEX

Note that this corresponds to a challenging optimization problem, with multiple local
minima (Picheny et al. 2010) and a score function that requires a cumbersome
integration over X9 with respect to the updated variance for each X, examined.
An efficient optimization scheme will be discussed in the next section. An alternative
score function can be formulated by considering the maximum error over domain

X% instead of the integrated one (Sacks et al. 1989):

15



MMSE, (X, Xpew) = max a2 (XX, Xpew) (2.25)
XEX

Rather than using the updated predictive variance considering the new
experiment(s), given by Eq. (2.21), it is common in such instances (McKay et al.
1979; Jin et al. 2002) to use the variance for the current metamodel as it leads to a
computationally simpler DoE procedure. The corresponding maximum mean
squared error approach selects the new experiment based on the largest current
estimation of the prediction error, leading to a score function that considers strictly

the existing training set:
MMSE (x) = o2(x|X) (2.26)
and to an optimal new experiment identification:

Xpew = arg max MMSE (x) (2.27)

In this paper, MMSE has been used as the objective function since it is efficient

approximation of IMSE, i.e., more cheap and similar accuracy comparing to IMSE.

The previous discussion focuses on adding one new experiment at a time. When
multiple simulations for experiments can be simultaneously performed, it is often
preferred to add a batch of n,; new experiments at the same time according to either
IMSE or MMSE score functions (MMSE in this paper). This can be done by
sequentially identifying new experiments one-at-a-time as described above, adding
each of them to X and updating R,F and r, the essential components of the
normalized variance, without updating the Kriging hyperparameter structure as the

latter would require the output for the new experiments, and then proceeding to the

16



identification of the next experiment until the desired batch size has been reached.

The score function variants discussed in the above focus entirely on the metamodel
prediction variability, quantified through the normalized predictive variance, and
thus, ignore any possible bias in these predictions. To incorporate information about
the latter, an adjustment of these score functions is proposed here utilizing a
weighting term quantified through the LOOCYV error. This leads to the modification
of the MMSE presented in Eq. (2.26) to a weighted MMSE, MMSE,, defined as

follows:

MMSE,, (x) = ¢(X)? a2 (x|X) (2.28)

where weights @(x) use information regarding both the LOOCV mean and

variance as:

owi)[1+ef /o2 (x'X_)]
s owi(x)

Px) == (2.29)

with w;(x) obtained using Voronoi cells as explained later in Eq. (2.31)

Contrary to the predictive variance, the LOOCYV error is known only for the input
locations of the initial training set. In order to approximate the LOOCYV error across
the whole domain X, the weighted average interpolation over the set X is adopted,

leading to the following ¢(X) definition:

noo 2
o (x) = Zeiter (2.30)

Zizlwi(x)

For the weights, w;(x) sets to 1 only for the closest experiment to X and 0

otherwise, corresponding to the natural neighbor (NN) interpolation:

17



wi(x) = {1 ifxeV, ={xexd|x—xi| <|x-x/|,vj#i}ij=1..,n (2.30)
0 else
where V; is the Voronoi cell associated with x! for set X, and the difference
between vectors ||*|| is chosen as the distance used for the Kriging correlation
function ||x - xi|| = d(x,x'|s). Note that this choice for w;(x), using Voronoi
cells, has been adopted in similar studies that relied on interpolation for LOOCV
error (Le Gratiet and Cannamela 2015; Liu et al. 2016). Thus, the two main
components in Eq. (2.28), bias and variance, show two fundamental strategies for

the identification of the new experiments

1. The LOOCYV error weight contains information about the metamodel bias. A
larger weight in certain regions suggests a smaller local metamodel accuracy,
which is due to the inadequate capturing of the local nonlinearities of the
original function, as will be shown later in the thesis. By introducing this

weight, a local exploitation is encouraged in such problematic domains.

2. Metamodel variance o2 (X|X,Xpew), ultimately quantifies the closeness
between the input X to all current experiments X, and to the new experiment
Xnew as well. A large variance suggests that the input region is “under-
sampled” considering the distribution of existing experiments X and the
added one X, in X%. By aiming to reduce such variance within the DoE, a

global exploration of the input domain is promoted.

Both components should be used within the DoE process. By incorporating
information about the metamodel bias, the LOOCV weight ¢(X) can be

particularly impactful for capturing local nonlinearities of the original function. On

18



the other hand, since it is fully formulated based on LOOCYV information, it inherits
the well-known LOOCV limitation, i.e., ignoring the existence of a specific
experiment at each localized domain (Kleijnen and Beers, 2004). Therefore, the
proposed LOOCYV weight can only offer incomplete details about the true bias given
X. Its drawback is partially compensated by using the updated predictive variance
02 (XX, Xpew)- As discussed, this quantity provides information about the influence
of adding the new experiment X, (through the variance updating), but more
importantly, incorporates the distribution of all existing experiments X in X¢ into
the DoE, and ultimately avoids putting new experiments within close proximity to

existing ones.

In summary, the identification of the new experiment(s) using the proposed
adaptive framework is performed through Eq. (2.27) simply using the weighted

MMSE,, ofEq. (2.28) as the objective function.

Algorithm 1. Adaptive DoE with MMSE

Step 1 Candidate experiments: generate n. candidate experiments {Xfew;C =

1,...,n.} following a uniform distribution in X%,

Step 2 Ranking and prescreening of  experiments: evaluate
(02 (X5ew!X), @(XSew); ¢ = 1,...,n} and retain only the a,n, candidate
experiments that correspond to the highest values of @ (XSew)? 02 (XSew!X),
with a, being the desired percentage of candidate experiments that have larger

weighted-variance values.

Step 3 Final selection: select as new experiment the one that provides the

19



minimum value for {MMSE (X§ew); ¢ =1, ..., aracn.}.

The prescreening in step 2 offers a substantial reduction of the computational
burden, as it avoids the estimation of the MMSE for candidate experiments that are
not expected to correspond to the optimum; proportion (1 —a,) of candidate
experiments in subdomains of X¢ with low current prediction variability are
ultimately ignored. Note that the current variance o;2(x|X) used in the prescreening
step can be estimated with small computational cost, so the overall computational

burden for this step is negligible.

The remaining characteristics of the numerical optimization scheme that need to
be discussed are the selection of N; and n.. The choice of N impacts the
estimation error. It is still important to set n,. large enough to promote an adequate
exploration of X% at each iteration, and the inclusion of the step 2 in the

optimization algorithm has been introduced to accommodate such a selection.
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Chapter 3. Proposed Algorithm of GSA using
Adaptively-learned Gaussian Process

3.1. GSA using Adaptive GP

As explained in Chapter 1, the motivation of the proposed method is to develop a
computationally efficient algorithm for SA. Here, computational efficiency has two
meanings — (1) taking less computational time for an evaluation of the model and (2)
reducing a number of the needed experiments by adaptively selecting the location of
them. To achieve these goals, we introduce a surrogate modeling method by GP to
replace the system model with a cheaper model and an adaptive GP method by
considering both predictive variance of GP and the LOOCYV error, which is explained
in algorithm 1 of Chapter 2. As shown in Figure 3.1, GSA using adaptive GP can be

performed with the proposed algorithm explained as follows:

Algorithm 2. GSA using Adaptive GP

Step 1 Initial experiments and corresponding outputs: generate n;,; initial
experiments {Xiinit €ERY; i =1,..,Mn} following auniform distributionin X¢

and run simulation to obtain n;,;; initial outputs {yiinit ER;i=1,..,Nipie}-

Step 2 Calibrate GP’s parameters: evaluate initial parameters of GP using the

initial data and calibrate the GP parameters.

Step 3 Train GP using adaptive learning: repeat Algorithm 1 n.,;, times which

is user-defined parameter.

Step 4 Perform SA: obtain Sobol’ indices using the GP model built on Step 3.

» 3

-
|
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The most computationally demanding part of the algorithm above is calibrating the
GP model with a new experiment, which requires updating of the GP’s parameters.
However, it shows very similar degree of accuracy with much smaller number of
experiments compared to the original GP. Therefore, it is able to obtain the Sobol’

indices accurately and more efficiently by using the proposed algorithm.
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Figure 3.1 Flow chart of GSA using adaptive GP
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3.2. GSA using Modified Adaptive GP

The basic idea of adaptive learning is to find an optimal point by minimizing or
maximizing its objective function. MMSE minimize the maximum error, which is
defined as a multiplication of bias and variance while IMSE minimize the average

error expressed as the integration of the error over the whole input space as shown

in Eq. (2.28).

However, as mentioned earlier in Section 1.2, the objective function of the adaptive
learning proposed in Section 2.3 is not specialized for performing SA. To solve this
problem, this study proposes the modified adaptive gaussian process, which has
more appropriate objective function to obtain the Sobol’ indices and its own
convergence criteria in order to help users make decisions by suggesting a proper

number of experiments that are needed to guarantee an enough level of confidence.

In the original methods, the algorithm converges at the user-defined number of
training experiments, 1.4, Since it does not have its own convergence criteria.
Thus, there are some over-trained cases, which means that the training process of GP
goes far even if it already converged enough confidence level. In contrast, the
modified method has its own convergence criteria which incorporates the confidence

information of the Sobol’ indices. The overall flow of it is as follows (Figure 3.2):

Algorithm 3. GSA using Modified Adaptive GP

Step 1 Initial experiments and corresponding outputs: generate n;,;; initial

experiments {Xiinit €ERY;i=1,..,N} following auniform distributionin X¢

24



and run simulation to obtain n;,;; initial outputs {Yiinit ER;i=1,..,Nipie}

Step 2 Calibrate GP’s parameters: evaluate initial parameters of GP using the

initial data and calibrate the GP parameters.

Step 3 Train GP using modified adaptive learning: the algorithm repeats
Algorithm 1. and stops GP training automatically depend on its own convergence

criteria defined by the confidence level, which is

Step 4 Perform SA: obtain Sobol’ indices using the GP model built on Step 3.
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Start GP training
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Figure 3.2 Flow chart of GSA using modified adaptive GP

26

JﬁrJ A=t

.-'-f._“.'.."h SECHRIL hATIOMAL LIMIVERSTY

s,



Chapter 4. Verification of Proposed Method

In this chapter, two numerical examples are presented to confirm the validity of
the proposed algorithm in Chapter 3. The target structures are including a 7-story
shear building and a 9-story frame structure. Both structures are excitated by the
earthquake using the actual record data of ground acceleration, El Centro, as shown

in Figure 4.3.

Structural modeling and analysis are performed in OpenSees. Numerical
simulations were performed in MATLAB 2021b. Calibration of the GP parameters

was performed utilizing DACE toolbox developed by Lophaven et al (2002).

4.1. Example 1: 7-story Shear Building

The target structure is a 7-story of shear building as shown in Figure 4.1. As the
material property, uniaxial steel object with isotropic strain hardening is used

(Filippou, 1983) as shown in Figure 4.2.

Three input variables are chosen as Table 4.1; E, is young’s modulus, F, is
yielding stress, and a is post-ratio. They are the interest variables and the Sobol’
indices are obtained for each input variables. GSA was performed by modified
adaptive GP. It is tested by changing the number of initial experiments and the
proposed algorithm automatically decided the number of new experiments which are
adaptively found by the algorithm. The results of the 7-story shear building using the

proposed algorithm for each case; GSA using modified adaptive GP are shown in

27



Figure 4.4, Figure 4.5 and Figure 4.6. Comparing the results from Figure 4.4, 4.5
and 4.6, one can find that there is not significant difference between them, which
means that the proposed algorithm is even valid for smaller number of initial points.
The convergence graph comparing the proposed algorithm and the Quasi-MCS
explained in Eq. (2.10) is shown in Figure 4.7 and the proposed one shows similar

accuracy compared with the Quasi-MCS.
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Figure 4.1 Configuration of the 7-story shear building
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Figure 4.2 Material used for the 7-story shear building
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Figure 4.3 Ground acceleration time history of El Centro earthquake

(ksi unit) u )
E, 326 0.1
F, 50 0.1
a 0.2 0.1

Table 4.1 Input variables of the 7-story shear building
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Case 1 Case 2 Case 3

#. of Initial points 50 25 10
#. of new DoE 93 102 118
Time(sec) 131.53 145.81 146.53

Table 4.2 The number of experiments and computation cost
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Figure 4.4 First order Sobol’ index of example 1, case 1
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Figure 4.5 First order Sobol” index of example 1, case 2
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Figure 4.6 First order Sobol” index of example 1, case 3
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Figure 4.7 Convergence graph along the number of evaluations
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4.2. Example 2: 9-story Frame

As shown in Figure 4.8, the second target structure is 9-story frame building. It is
excitated by the same earthquake with Example 1, i.e., El Centro. The SteelOl
material of OpenSees in Figure 4.9, which is a uniaxial bilinear steel material object
with kinematic hardening and isotropic hardening described by a nonlinear evolution

equation, is used for the structure.

To test the validity of the proposed algorithm in the higher dimension than the
example 1, six input parameters are chosen as shown in Table 4.2. The OpenSees
model is tested its validity with pushover and quasi-cyclic test and the results are
shown in Figure 4.10 and 4.11. Four input variables are chosen as Table 4.3; E, is
young’s modulus, F, isyielding stress, a ispost-ratio,and PGA is factor for peak
ground acceleration. They are the interest variables and the Sobol’ indices are
obtained for story 1 and story 9 and the results of the 9-story frame using the
proposed algorithm are shown in Figure 4.12. One can find that the impact of PGA
becomes larger in story 9. As shown in Figure 4.14, the proposed algorithm’s
advantage is that one can obtain both the confidence level and prediction about the

model.
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Figure 4.8 Configuration of the 9-story frame
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Figure 4.9 Material used for the 9-story frame
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Pushover 2, support 11, 10% of H
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Figure 4.10 Pushover curve of the 9-story frame

Quasi Cyclic Test, support 11
0.1

0.08

-0.025 -0.02

0.015 0.02 0.025

Figure 4.11 Quasi-Cyclic test curve of the 9-story frame

(SI Unit) u 5
Eocomumn | 200,000 0.1
Fy cotumn 345 0.1
@ oo lumm 0.01 0.1

PGA
Weight factor 0.01 0.1

Table 4.3 The input variables of 9-story frame
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Case 1 Case 2 Case 3

#. of Initial points 50 25 10
#. of new DoE 213 242 258
Time(sec) 259.53 260.81 263.53

Table 4.4 The number of experiments and computation cost of 9-story frame
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Figure 4.12 First order Sobol” index of example 2
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NRMSE: AGP vs. GP
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Figure 4.15 NRMSE, example 2
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Chapter 5. Conclusions

In this thesis, GSA algorithm using adaptive GP that can be effectively used for
complex systems is introduced. It is confirmed that the proposed algorithm enables
the accurate estimation of the Sobol’ indices. Furthermore, the algorithm can identify
the variability of the Sobol’ indices in order to help user’s decision making and it has
its own convergence criteria to stop the algorithm automatically.

There are two major further studies based on this study. First, expanded algorithm
for total-effect Sobol’ indices can be developed. It would give a comprehensive
understanding of the given system if the total-effect Sobol’ indices could be found
even in the complex systems.

Second is to develop more adaptivity that even can identify the number of initial
experiments. Even though the proposed one decides the number of new experiments,
it could be more helpful for the user if the algorithm can determine the number of
initial experiments.

Further studies based on results of this study are expected to enhance the effective

GSA for the more complex systems.
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