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Abstract 

It has been widely acknowledged that technical building performance can be 

influenced by many uncertain factors such as weather, scenarios, occupant 

behavior, simulation parameters, and numerical methods. For objective and 

reproducible performance assessment, the aforementioned uncertainties must 

be reflected in the performance simulation analysis.  

With this in mind, the authors present a stochastic assessment of model 

predictive control (MPC) performance of a variable refrigerant flow (VRF) 

cooling system for an office space. The office space was modeled using 

EnergyPlus, and surrogated models were employed for MPC studies. It is found 

that the energy savings by MPC can be highly stochastic, ranging from 0.2% to 

26.8% depending on weather data. Moreover, the uncertainty in MPC 

performance was significant, as evidenced by the notable differences in energy 

saving distributions observed between five different building usage scenarios. 

Furthermore, this study focuses on analyzing operational MPC strategies for a 

VRF system. The results show that the MPC adapts its control strategies based 

on different load conditions. The "drifting strategy" is optimal for low cooling 

load days, while the "high COP strategy" is more energy-efficient for high 

cooling load days. The advantage of each strategy changes at the inflection 

point (PLR = 33%), which is influenced by the dynamic characteristics of the 

system's COP and the thermal behavior of the room. 
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Chapter 1. Introduction 

1.1. Background 

Buildings account for approximately 40% of global energy consumption, with 

the operational phase being the primary contributor. Consequently, it is crucial 

to reduce energy consumption and operating costs during this phase of the 

building’s life cycle. Moreover, the control of heating, ventilation, and air 

conditioning (HVAC) systems is complex due to intricate interplay among 

various subsystems such as chillers, boilers, heat pumps, pipes, ducts, fans, 

pumps, heat exchangers, blinds, and lightings. The inherent complexity arises 

from a combination of these nonlinear dynamics in buildings and the presence 

of time-varying disturbances. As a result, there has been a growing demand for 

the development and implementation of efficient HVAC control technologies 

and strategies. 

Model predictive control (MPC) has been widely used in the building industry 

due to its energy saving potential. MPC employs optimization techniques to 

determine the optimal control variables that minimize a predefined cost 

function over a specific prediction time horizon (Afram and Janabi-Sharifi, 

2014). Numerous studies have proven that energy efficiency can be enhanced 

by advanced HVAC control with average energy savings of 13% to 28% 

(Gyalistras et al., 2010; del Mar, Alvarez, de A., and Berenguel, 2014; Roth et 

al., 2002). Liang et al. (2015) implemented MPC of an air handler for multi-
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zone VAVs for 9 days (01 Jul.-09 Jul.) and achieved energy savings of 25.7%. 

Ma et al. (2012) saved the energy consumption of a VAV system by 24.31% for 

7 days in July. As reported in many MPC studies (IBPSA 2001-2021), the MPC 

performance has been assessed with fixed simulation parameters for a certain 

period of time in a deterministic fashion. The short-term experiments last only 

weeks to months, limiting the insight on how MPC strategies perform during 

all seasons (Drgona et al., 2020).  

Since de Wit (2001), MacDonald (2002), and Hopfe (2009) studies, it has been 

widely acknowledged that a whole building performance assessment or any 

technical system performance assessment (e.g. chiller, AHU, cooling tower, etc.) 

can be biased by epistemic and aleatory uncertainties. Tian et al. (2018) 

reported different types of uncertainties in buildings including weather, thermal 

properties of building envelopes, occupant behavior, HVAC system’s 

specification data, and simulation parameters (e.g. heat transfer coefficients). 

Without taking the impact of such uncertainties in assessing the technical 

system performance, significant performance gap can occur (de Wilde, 2014).  

Several MPC studies have been reported to deal with the aforementioned 

uncertainties. Ma, Matusko, and Borrelli (2015) used stochastic weather 

information to develop a stochastic model-predictive control of building HVAC 

systems. Li, and Wang (2022) cross-compared several MPC strategies under 

uncertainties for optimal utilization of resources in buildings.  

In this paper, the authors present that MPC performance of a variable refrigerant 
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flow (VRF) cooling system for the entire cooling season (01 May – 30 Sep.) 

can be highly stochastic and thus, its performance must be assessed in a 

stochastic fashion. For this study, a typical office space equipped with the VRF 

cooling system was selected. Based on simulation results from EnergyPlus, two 

surrogated models were developed to predict energy consumption of the VRF 

and indoor air temperature. It is addressed in the following sections that there 

is significant variation in energy savings by MPC depending on uncertain and 

unknown variables. In addition, it is discussed how MPC itself finds optimal 

control strategies under different conditions. 
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Figure 1 As-is and To-be states of MPC performance assessment 
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1.2. Research Process 

In this thesis, the author investigates the stochastic nature of MPC performance 

and highlights the need for a probabilistic approach in assessing MPC 

performance, along with detailed analysis of daily energy savings.  

 Step 1: Construct a building energy model 

This step involves developing a detailed building energy model using 

EnergyPlus that represents the thermal characteristics, room dynamics, 

HVAC systems, and energy consumption patterns of the target 

building. 

 Step 2: Select parameters for uncertainty analysis 

The author selects parameters that contribute to uncertainties in MPC 

performance. Five building usage scenarios are identified in order to 

understand the variability and impact of uncertainties on MPC 

performance. 

 Step 3: Build a surrogate model 

To facilitate efficiency, the author constructs a surrogate model using 

Artificial Neural Networks (ANN). The surrogate model serves as a 

simplified representation of the complex building energy model and 

can rapidly predict the building's response to different control inputs. 

The models are trained using data from the original building energy 
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model of EnergyPlus, which is generated using Latin hypercube 

sampling on the input variables.  

 Step 4: Set up MPC algorithm and conduct MPC for a whole cooling 

period 

In this step, the author develops an MPC algorithm tailored to the 

specific cooling requirements of the building, considering the 

uncertainty parameters identified in Step 2. The MPC algorithm 

optimizes control actions over a whole cooling period, aiming to 

minimize energy consumption while meeting comfort requirements. 

 Step 5: Conduct uncertainty analysis of MPC performance 

In this step, an uncertainty analysis is conducted to assess the 

performance of the MPC under different building usage scenarios 

mentioned in step 2. The energy savings are compared as distributions 

of the whole cooling period. 

 Step 6: Conduct energy saving analysis of MPC based on different 

conditions 

Energy-saving analysis is carried out to demonstrate the effectiveness 

of MPC strategies under different conditions. Daily controls between 

different weather conditions and occupancy schedules are compared. 

The control strategies are comprehended by considering the COP 

dynamics of the system. 
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1.3. Thesis Outline 

The objectives and the necessity of this study have been discussed. The contents 

of the following chapters are as follows: 

 Chapter 2 presents general backgrounds and schemes of model 

predictive control (MPC) in order to provide clearer understanding of 

this thesis.  

 Chapter 3 describes the properties and settings of the simulation model: 

the target building; building usage scenarios for uncertainty analysis of 

MPC performance; and the surrogate models which are the predictors 

used for predicting future states. 

 Chapter 4 illustrates the results and findings after performing MPC for 

a whole cooling season with five different building usage scenarios. 

The comparison between MPC results show its uncertainties, and 

proposes a stochastic approach. Moreover, daily MPC control analysis 

is illustrated in detail for a thorough understanding of MPC.  

 Chapter 5 closes the thesis by demonstrating the conclusion and 

discussing the limitations and future works of the study.  
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Chapter 2. Literature Review 

MPC is an optimal control strategy that generates the optimal control inputs by 

minimizing a certain cost function over a finite prediction horizon, with 

disturbances and constraints. The mathematical model of the building and its 

systems, the current state measurements, and weather forecast are used to 

predict and optimize the future behavior of the building (Drgona, 2020). Figure 

2 illustrates a typical MPC scheme with 𝑥 , 𝑦 , 𝑢 , 𝑁  each denoting state 

values, outputs, control action inputs, and prediction horizon.  

 

Figure 2 Schematic representation standard MPC  
(revised from Drgona et al., 2020) 

 

A typical MPC system consists of a system model, a cost function, constraints, 

a disturbance model, an optimization method, and a control horizon, with all of 

them impacting MPC performance.  

 The model of the building and its system must be able to describe 
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nonlinear and discontinuous phenomena, and processes occurred in 

buildings. The accuracy of the model influences the quality of MPC, 

while the simplicity of the model is also important for low 

computational demand and MPC implementation. Physics-based 

models, based on the principles of heat transfer and conservation of 

energy and mass, are accurate and reliable, but require significant effort. 

Data-driven black-box models have lower development cost, but 

require more training data (Afroz et al., 2018), and lack reliability when 

they are deployed outside the training range (Afram & Janabi-Sharifi, 

2014). Gray-box models are modeled with simplified physical data 

with parameter estimation based on measured data, making them 

reliable, adaptable, transferable, and in need of fewer data (Boodi et al., 

2018).  

 The cost function, also called the objective function, is the performance 

target based on the desired behavior of the building that needs to be 

minimized. It can be configured as a tracking error, control effort, 

energy cost, demand cost, power consumption, or a combination of 

these factors (Cigler et al, 2013; Cupeiro Figueroa, Cigler, and Helsen 

(2018). 

 The MPC can find solutions that does not violate the given constraints 

of the inputs, outputs and actuators. The constraints are used commonly 

for limiting selected variables within given ranges, e.g., heat fluxes and 

room temperatures (Picard et al., 2017), supply air temperatures (Rehrl 
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& Horn, 2011) and airflow rates (Huang, 2011).  

 The internal and external disturbances refer to non-controllable inputs 

that act on the systems. They must be considered for the accurate 

prediction of the future state. Some examples are weather, occupant 

activities, equipment use, internal heat gain and solar irradiation.  

MPC inevitably face challenges due to the mismatch between the actual plant 

behavior and the model used for control, and inaccurate or corrupted 

measurements. There are two main types of uncertainties: parametric 

uncertainties and non-parametric uncertainties. Parametric uncertainties stem 

from errors in the models caused by unknown parameters, inaccurate equations, 

or components that do not function as intended. On the other hand, non-

parametric uncertainties are generated by uncertainties in measurements and 

predictions of factors like ambient temperature, solar irradiation, inaccuracies 

in temperature sensors, limited sensor availability, and unmeasured 

disturbances such as window openings (Drgona, 2020). Many studies have 

searched for methods to mitigate the effects of these uncertainties on MPC 

performance, e.g., offset-free MPC, robust MPC, stochastic MPC, adaptive 

MPC, and learning-based MPC, but despite these attempts, uncertainty is 

indispensable (Hopfe, 2009; MacDonald, 2002; Muske and Badgwell, 2002, 

Tian et al. 2018): they should be taken into consideration when assessing its 

performance.   

Comparison and assessment of MPC are crucial in determining the most 

effective approach and implementing in real buildings. However, there are 
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several challenges that make this process difficult. The variation in methods, 

factors and components of MPC result in a very large solution space, with each 

application having their own characteristics. Compared to this large available 

solution space, only a small number of field tests are available for short-term 

studies which is not enough to gain desirable insight. The metrics used in 

assessments are also diverse including energy savings, operating costs savings, 

occupant comfort improvement, computer hardware and software requirements, 

computation time, robustness to changing conditions, data requirements, 

implementation effort, and installer expertise. The lack of an official 

performance indicator makes the objective comparison more difficult.  
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Chapter 3. Simulation Model 

3.1. Target Building 

The target building is a single-story office located in Gyeong-gi, South Korea 

(Figure 3 (a)). It consists of a single zone with a floor area of 38.5m2 (7m × 

5.5m). The space has a south-facing window with a window-wall-ratio of 50%. 

Table 1 shows the details of the target space, with the thermal properties of the 

envelopes selected according to Korean building energy standards (KBES) 

(2022). The boundary conditions for all surfaces except the south-facing surface 

were set as adiabatic because this office was surrounded by identically 

conditioned spaces. The target building was modeled using EnergyPlus 

developed by the US DOE. It is assumed that the VRF system provides cold air 

during the cooling season. The VRF system changes the refrigerant mass flow 

rate with a variable speed compressor to meet the given cooling load (Aynur 

2010). The total capacity of the VRF system is 6,000W with a rated coefficient 

of performance (COP) of 3.2. The COP curve of the VRF system was simplified 

as shown in Equation 1, which was provided by the VRF manufacturer. Please 

note that in Equation 1, the highest COP is 4.2 at 60% of the part load ratio 

(PLR) (Figure 3 (b)). 
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(a) Target space 
 

 

(b) COP curve of VRF system 

Figure 3 Target building 

𝐶𝑂𝑃 =  −7.8 × 𝑃𝐿𝑅 + 10 × 𝑃𝐿𝑅 + 1   (1) 
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Table 1 Target office parameters according to Korean building energy 
standards (2022) 

Parameters Values 

Office  

Location  Gyeong-gi, South Korea 

Total floor area [m2] 38.5 

Number of floors  1 

Ceiling height [mm] 3200 

WWR [%] 50 

U-value [W/m2·K] 
Wall 0.15 

Window 0.9 

Fenestration SHGC 0.4 

Cooling 
system 

Cooling capacity [W] 6,000 

Rated COP  3.2 

Scenario 

Occupant density [m2/person] 9.0 

Equipment density [W/m2] 11.5 

Lighting density [W/m2] 8.0 
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3.2. Building Usage Scenarios 

In order to investigate the impacts of different factors to the uncertainty of 

energy savings by MPC, five different building usage scenarios were identified. 

As mentioned in Table 2, each scenario consists of different combinations of 

desired indoor temperature (Tdesired), and occupancy schedule (Occ). Scenario Ⅰ, 

Ⅱ, Ⅲ varies in the occupancy schedule with the desired room temperature of 

24℃, while Scenario Ⅰ, Ⅳ, Ⅴ vary in the desired room temperature with the 

occupancy schedule of Occ 1.  

Figure 4 presents the different occupancy schedules of OCC 1, OCC 2, and 

OCC 3. In OCC 1, the occupant density is constant during its operating hours 

(8:00 – 18:00) with a value of 1.0. Meanwhile, the occupant density of OCC 2 

and OCC 3 is assumed to vary stochastically from 0.0 to 0.7 during operational 

hours. OCC 2 operates for the longest hours until late evenings (7:00 – 22:00), 

and OCC 3 starts operating earlier (6:00 – 19:00) than other schedules, with 

high occupant density on mornings and early afternoons.  
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Table 2 Building usage scenarios 

 Desired indoor temperature [℃] 
Tdesired 

Occupancy schedule 
Occ 

Scenario Ⅰ 24℃ Occ 1 

Scenario Ⅱ 24℃ Occ 2 

Scenario Ⅲ 24℃ Occ 3 

Scenario Ⅳ 23℃ Occ 1 

Scenario Ⅴ 25℃ Occ 1 

 

 

 

 
Figure 4 Occupancy schedules 

  



 

 １７

3.3. Surrogate Model 

For the past decades, artificial neural network (ANN) has been successfully 

applied for estimating heating and cooling demands (Yokoyama, Wakui, and 

Satake 2009), predicting indoor environmental conditions (Moon, Yoon, and 

Kim 2013), and describing non-linear dynamics of cooling and heating systems 

(Ahn et al. 2020). Because an ANN model is capable of describing the dynamic 

characteristics of mechanical systems as well as the thermal behavior of 

buildings, an ANN model has been used as a surrogate model in many MPC 

studies (IBPSA 2001-2021). 

In this study, two ANN models were developed in order to predict the future 

states for the prediction time horizon. As will be explained in Chapter 4, the 

MPC algorithm must exhaustively search for 729 control actions at each 

timestep, and the use of ANN models will make it more practical in that it 

lowers the computational costs without compromising the ability to mimic the 

dynamic behaviors of the building and its system. The two ANN models predict 

the energy consumption of the VRF system and supply fan (ANN #1) and 

indoor air temperature of the target space (Figure 1) (ANN #2), respectively. 

ANN #1 uses three state variables (indoor/outdoor air temperatures and solar 

radiation) and two control variables (set-point air temperature and supply air 

flow rate) as inputs, as shown in Table 2. ANN #2 uses the aforementioned three 

state variables, heat removal rate obtained from ANN #1, and two control 

variables (set-point air temperature and supply air flow rate) as inputs (Table 

2). The input state variables are selected as the minimum information related to 
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the VRF system that can be measured in actual buildings. The ANN parameters 

were determined using a trial-and-error method (hidden layers: 4, hidden nodes: 

30, epochs: 1000, activation function: rectified linear unit (ReLU), optimization 

method: adaptive moment estimation (Adam), and loss function: mean squared 

error (MSE)). 

The control and prediction time horizons were set to 10 minutes and 30 minutes 

respectively so that the control actions can vary at the interval of 10 minutes 

based on the predicted state variables over the next 30 minutes. Train (80% of 

the total) and test (20% of the total) data were generated by EnergyPlus pre-

simulation from 01 May to 30 Sep. Figure 5 compares the ANN model 

predictions of the test data to the actual values of EnergyPlus simulation. The 

ANN models showed reliable accuracy in predicting the dynamic behavior of 

the VRF system and the indoor environment with the coefficients of variance 

root mean square error (CVRMSE) within 9.7% and 0.3%. 
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Table 3 Inputs and outputs of ANN models 

Model Variables Timesteps 

ANN #1 Inputs State variables Indoor air temperature [°C, IAT] t-2 
t-1 
t 
 

Outdoor air temperature [°C, OAT] 

Global solar radiation incident on vertical surface 
[W/m2, IG] 

Control variables Set-point air temperature [°C, SET] 
t+1 
t+2 
t+3 

Supply air flow rate [L/s, SA] 

Outputs Energy consumption by VRF and supply fan [Wh] 

Heat removal rate [W] 

ANN #2 Inputs State variables Heat removal rate obtained from ANN #1 [W] 

t-2 
t-1 
t 

Indoor air temperature [°C, IAT] 

Outdoor air temperature [°C, OAT] 

Global solar radiation incident on vertical surface 
[W/m2, IG] 

Control variables Set-point air temperature [°C, SET] t+1 
t+2 
t+3 

Supply air flow rate [L/s, SA] 

Outputs Indoor air temperature [°C, IAT] 



 

 ２０

 

 

(a) Energy consumption by ANN #1 (CVRMSE = 9.7%) 

 

 

(b) Indoor air temperature by ANN #2 (CVRMSE = 0.3%) 

 
Figure 5 Comparison between simulated (EnergyPlus) vs. predicted (ANN) 
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Chapter 4. MPC results 

4.1. Virtual Experiment Conditions 

The simulation was carried out using EnergyPlus, a dynamic simulation tool, 

for a cooling period in South Korea (01 May – 30 Sep). The control horizon is 

one timestep with a control action being maintained for 10 minutes (Figure 6). 

The prediction horizon is three timesteps and thus, three control actions take 

place for 30 minutes. As demonstrated in Figure 7, for every 3 timesteps, the 

predictor predicts the energy consumption of the VRF and the indoor air 

temperature for the next prediction horizon (30 minutes). The predictor uses the 

possible future control actions and the state variables of the past, which are the 

outputs of the previous simulation of EnergyPlus. The possible control actions 

consist of three options for the set-point air temperatures (Tdesired-1℃, Tdesired℃, 

Tdesired+1℃) and three options for the supply air flow rates (low (150 L/s), mid 

(190 L/s), high (230 L/s)), resulting in 9(=3×3) control actions for each timestep 

(10 minutes) and a total of 729(=93) control actions for one prediction horizon 

(30 minutes). The optimizer exhaustively examines all 729 possible actions for 

the next prediction horizon. It selects the best control action that minimizes the 

cost function denoted by J, or energy consumption of the VRF’s cooling energy 

over the prediction time horizon while maintaining the indoor air temperature 

in the range of [Tdesired-1℃, Tdesired+1℃]. Finally, the selected control action is 

fed back to the EnergyPlus, and the next three timesteps are simulated. This 

MPC process is repeated every three timesteps.  
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For comparison, a baseline VRF control was assumed as follows: the set-point 

air temperature is 24℃, and the supply air flow rate is 230 L/s. Depending on 

the room’s instantaneous cooling load, the VRF automatically controls the 

current refrigerant’s flow rate without depending on any predicted state 

variables. Thus, the only difference between the baseline control and MPC is 

whether the predicted state variables are employed or not in determining the 

control actions. 
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Figure 6 MPC timesteps 



 

 ２４

 

Figure 7 MPC process 
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4.2. Uncertainty Quantification in MPC Performance  

In order to investigate the uncertainty of energy savings by MPC and analyze 

the daily variations in MPC performance, the simulation was carried out for the 

whole cooling period in South Korea (01 May – 30 Sep) with five different 

building usage scenarios. Figure 8 shows the distributions of daily energy 

savings by MPC based on different scenarios. The uncertainty of MPC 

performance based on scenario variables is explained as follows:  

 The energy savings of MPC exist stochastically depending on the 

weather conditions (Scenario Ⅰ): The daily energy savings of Scenario 

Ⅰ range from 0.2% (28 Jul) to 26.8% (10 May) with an average of 8.3%. 

The standard deviation (5.5%p) is non-negligible in that it equals 66.3% 

of the average value. It can be inferred from this result that the 

performance of MPC shows significant uncertainty depending on the 

outdoor environment (OAT, IG). In addition, it implies that the 

performance of a short period is not sufficient to represent the 

performance of the whole period.  

 The energy savings and the uncertainty of MPC performance can vary 

depending on the occupancy schedule (Scenario Ⅰ vs. Scenario Ⅱ vs. 

Scenario Ⅲ): As mentioned earlier, the occupancy schedules differ in 

both the occupant density and the operating hours. The average daily 

energy savings exhibit a notable disparity across the scenarios, with a 

maximum difference of 6.1%p (8.3% vs. 12.6% vs. 14.4%). Also, the 
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standard deviation of Scenario Ⅲ is 1.6 times that of Scenario Ⅱ (5.5%p 

vs. 4.6%p vs. 7.2%p). The distribution of daily energy savings in 

Scenario III yields both the highest average and standard deviation. 

This can be attributed to the reduced cooling load resulting from low 

occupant density and the high variance in occupant density over time. 

These observations highlight the significance of considering the 

inherent variability in occupancy patterns to accurately assess the 

effectiveness and uncertainties associated with MPC performance.  

 The impact of occupant behavior (Tdesired) on the uncertainty of energy 

savings is relatively small (Scenario Ⅰ vs. Scenario Ⅳ vs. Scenario Ⅴ): 

The maximum difference between the average daily energy savings is 

3.4%p (8.3% vs. 7.3% vs. 10.0%), and the standard deviation also 

shows no significant difference (5.5% vs. 4.8% vs. 6.3%). Thus, when 

quantifying the uncertainty of MPC performance, it is necessary to 

reflect the interactions between the external environment (OAT, IG), 

the internal environment (occupancy schedule, internal heat gain), the 

systems that make up a building, and the building’s whole self.  

The analysis of daily energy savings by MPC shows that its stochastic nature 

must be carefully reflected when assessing MPC performance. In addition, it 

can be inferred that for the objective assessment of MPC performance, other 

uncertain variables must also be considered, e.g., indoor heat generation from 

lights, equipment, infiltration/ventilation, etc. 



 

 ２７

 
(a) Scenario Ⅰ: Tdesired = 24℃, Occ 1 (8.3% savings) 

 

 
(b) Scenario Ⅱ: Tdesired = 24℃, Occ 2 (12.6% savings) 

 

 
(c) Scenario Ⅲ: Tdesired = 24℃, Occ 3 (14.4% savings) 
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(d) Scenario Ⅳ: Tdesired = 23℃, Occ 1 (7.3% savings) 

 

 
(e) Scenario Ⅴ: Tdesired = 25℃, Occ 1 (10.0% savings) 

 
Figure 8 Distribution of daily energy savings by MPC 

(01 May – 30 Sep, 154 days) 
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4.3. Optimal Control Strategies of MPC  

Figure 9 shows the relationship between the sum of hourly cooling loads and 

the daily energy savings by MPC of Scenario Ⅰ. The daily energy savings by 

MPC tend to increase as the sum of hourly cooling loads approach the extremes. 

Table 4 shows environmental data, the sum of hourly cooling loads, and energy 

savings by MPC of three specific days; 11 May, 08 Jun, 07 Aug. These days 

were chosen to each represent low, medium, and high cooling load conditions. 

In Figure 9, the energy savings corresponding to these days are depicted by blue, 

yellow, and red dots. Interestingly, despite the nearly threefold difference in the 

sum of hourly cooling loads between 11 May and 07 Aug, they exhibit similar 

levels of energy savings. Conversely, the energy savings achieved on 08 Jun is 

considerably lower compared to the other days.  
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Figure 9 Daily energy savings by MPC in relation to the sum of hourly 

cooling loads per day 

Table 4 Outdoor environmental conditions and energy savings by MPC 

 
Average OAT 

(‘C) 

Average I
G
 

(W/m
2
) 

Sum of 
hourly 

cooling loads 
(kW) 

Energy 
savings by 

MPC 

11 May 17.4 139.1 9.6 11.4 % 

08 Jun 25.7 120.9 20.0 5.7 % 

07 Aug 31.5 124.9 27.8 9.5 % 

 

Additional analysis of the daily energy savings on the three specific days (11 

May, 18 Jun, 2 Aug) was performed, and the results are presented in Figure 10. 

It is noteworthy that MPC intelligently adapts different control strategies 
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depending on the cooling load patterns as follows.  

(SET: Set-point air temperature [°C], IAT: Indoor air temperature [°C], SA: 

Supply air flow rate [L/s], refer to Table 2 for acronyms) 

 Low cooling load day (11 May): On 11 May, MPC continuously 

changes SET and SA throughout the day, and thus, IAT drifts between 

23°C and 25°C. Firstly, MPC takes priority to decrease IAT to the 

lower bound (23°C) despite a momentary high energy consumption 

and then keeps the VRF running on low energy consumption by 

having the IAT drift gradually from 23°C to 25°C (Figure 10 (a)). This 

‘drifting’ process is repeated over the day and saves energy by 11.4%. 

This strategy becomes viable because 11 May is a ‘low cooling load’ 

day, and the energy saving potential by this ‘drifting’ would diminish 

as the cooling load increases.  

 High cooling load day (08 Aug): On 08 Aug, when the OAT, IG, and 

cooling load are high (Table 4), MPC takes a different strategy, as 

shown in Figure 10 (c). The variations in SET and SA are relatively 

small throughout the day, and MPC maintains IAT close to the upper 

bound (25°C). The VRF runs at a constant PLR and hence, a constant 

COP of a high value while satisfying the temperature constraints. This 

‘high COP’ strategy makes sense because 08 Aug is a ‘high cooling 

load’ day.  

 Medium cooling load day (07 Jun): It is interesting that under a 
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medium cooling load day, the energy savings by MPC is relatively low 

(Figure 10 (b)). In the morning, when the cooling load is low, MPC 

takes the ‘drifting’ strategy similar to Figure 10 (a), and in the 

afternoon, when the cooling load is high, it switches to the ‘high COP’ 

strategy similar to Figure 10 (c). Despite employing a combination of 

two strategies, the resulting energy savings are not as satisfactory.  

 

 
(a) Low cooling load day (11 May) 

 

 
(b) Medium cooling load day (8 Jun) 
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(c) High cooling load day (7 Aug)  

 
Figure 10 Energy saving analysis of MPC (Scenario Ⅰ) 

 

Indeed, the control strategy employed by MPC can vary based on various 

conditions, including occupancy schedules. Figure 11 provides an energy 

saving analysis for Scenario Ⅱ and Scenario Ⅲ on the same high cooling load 

day (07 Aug) mentioned earlier (Figure 10 (c)), in order to demonstrate the 

comparison of control strategies based on occupancy schedules. In Scenario Ⅱ 

(Figure 11 (a)), where the overall occupant density is low, the drifting strategy 

is utilized instead of the high COP strategy seen in Scenario Ⅰ. In Scenario Ⅲ 

(Figure 11 (b)), the control strategy varies throughout the day based on cooling 

load variations. In the morning and afternoon, when occupant density and solar 

radiation are high, the high COP strategy is employed to optimize energy 

consumption. However, in the evenings, as the occupant density and solar 

radiation decrease, the drifting strategy is implemented. Despite the same 

weather conditions, the cooling loads are affected by differences in occupant 

density and operating hours. These variations lead MPC to adapt its control 
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strategies accordingly. This proves the flexibility and adaptability of the MPC 

algorithm in response to the corresponding conditions and the importance of 

considering occupancy schedules as well as other dynamic factors in MPC 

performance. 

 
(a) Scenario Ⅱ : Tdesired = 24℃, Occ 2  

 

 
(b) Scenario Ⅲ : Tdesired = 24℃, Occ 3 

 
Figure 11 Energy saving analysis of MPC with different occupancy schedule 
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As demonstrated above, the efficient control strategy varies depending on 

operating conditions. Figure 12 presents a relationship curve that illustrates the 

correlation between the system's COP and energy consumption, with the 

inflection point occurring at PLR = 33%. The COP dynamics of the system 

must be considered in order to better understand the energy saving potential of 

each control strategy: 

 In Section 1 (PLR < 33%): The curve exhibits a convex shape which 

indicates that the drifting strategy (represented by blue dotted line) is 

more advantageous in terms of energy consumption. A straight line 

connecting two arbitrary points of the curve always lies below the 

curve in between those points. This implies that the average energy 

consumption of the connected points, is lower than the average energy 

consumption of the constantly repeated points of the curve in between. 

Consequently, the drifting strategy, which operates with changing 

PLRs, consumes less energy compared to the high COP strategy, 

which operates at a constant PLR. The range of changing PLRs that 

satisfies the comfortable IAT range may vary at each timestep 

depending on the dynamic behavior of the room. 

 In Section 2 (PLR > 33%): The curve takes on a concave shape which 

indicates that the high COP control strategy (represented by red dotted 

line) offers a greater advantage in terms of energy consumption. The 

straight line connecting two arbitrary points of the curve always exists 

above the curve in between. This implies that the average energy 
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consumption of the connected points is larger than the average energy 

consumption of the constantly repeated points on the curve in between. 

Therefore, the MPC utilizes high COP strategy operating with steady 

PLR, unlike in section 1. By employing this strategy, IAT remains 

within the allowable range with minimal fluctuations, resulting in 

reduced energy consumption. 

Due to the variations in environmental conditions, the relations between the 

PLR, COP, and the energy consumption changes, resulting in different optimal 

control strategies. This result provides insights into the energy saving potentials 

of the drifting strategy and the high COP strategy (Figure 13). The energy 

saving potentials of the drifting strategy increase as the cooling load decrease, 

while conversely, the energy saving potentials of the high COP strategy increase 

as the cooling load increase. When the cooling load is moderate, neither 

strategy is distinctly advantageous, so both strategies are mingled, resulting in 

diminished energy saving potentials.  
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Figure 12 Control strategy analysis considering the COP of the system 

 

 
Figure 13 Energy saving potentials of the drifting strategy and the high COP 

strategy 



 

 ３８

Chapter 5. Conclusion 

In this paper, the author presented a stochastic assessment of MPC performance 

of a VRF cooling system for a single-zone office space during the cooling 

season (01 May – 30 Sep). For this purpose, EnergyPlus was used for modeling 

and simulation, and two surrogate models (ANN #1, ANN #2) generated from 

EnergyPlus data were used for prediction. As a result, it is found that the daily 

energy savings by MPC can vary from 0.2% to 26.8% depending on the weather 

conditions, which proves to be highly stochastic. Moreover, notable variations 

were demonstrated in the mean values and standard deviations of MPC results 

between each scenario, indicating non-negligible uncertainties of MPC 

performance. The degree of uncertainty also differed depending on the types of 

variables, in that the occupancy schedule had a more significant impact than 

the occupant behavior.  

In the process of design and assessment, numerous decisions need to be made, 

despite the presence of unpredictable uncertainties. In most cases, these 

decisions are based on deterministic rankings and numbers, assuming that one 

alternative will consistently outperform others. However, with the 

implementation of MPC, it becomes evident that the performance of a particular 

alternative cannot be guaranteed to be superior to others at all times due to the 

inherent uncertainties associated with MPC performance. This paper 

emphasizes the importance of considering the stochastic nature of MPC 

performance, as well as the performance of any HVAC system, during the 

assessment and decision-making processes. Merely relying on deterministic 

numbers without accounting for aforementioned uncertainties can result in 
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significant performance gaps. Therefore, for objective and reproducible 

decision-making, uncertainty quantification must be integrated over an entire 

period of time with its uncertain and unknown variables considered.  

Furthermore, the MPC algorithm dynamically adjusts the control strategy based 

on environmental conditions to optimize energy efficiency. On days with low 

cooling loads, MPC employs a drifting process that keeps IAT fluctuating by 

operating the VRF system with constantly changing PLR. Conversely, on high 

cooling load days, MPC intelligently adopts a high COP strategy that 

maximizes the COP by keeping the VRF system operating at a constant PLR. 

The strategies are intertwined in medium load cases, and the energy saving 

potentials tend to decrease when the strategies are mixed. A thorough 

understanding of the MPC control strategies will enable engineers and 

occupants to gain intuitive insights into the behaviors of the MPC and 

effectively implement them in real-world buildings. 

One limitation of this study is the simplification of the system's COP curve to 

a unity curve. In reality, the COP curve exists as a surface and exhibits 

variations based on different operating conditions, such as outdoor air 

temperature. This variability makes it challenging to precisely determine when 

a particular control strategy becomes more efficient. It is important to be aware 

that these uncertainties can influence the simulation results. In the follow-up 

study, the authors intend to explore decision-making processes while taking 

into account the uncertainties of MPC performance. 
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국문초록 

건물의 기술 성능은 기후, 시나리오, 사용자 행동, 시뮬레이션 

매개변수 및 수치 해석과 같은 다양한 불확실한 요소들에 영향을 

받을 수 있다. 따라서, 객관적이고 재현 가능한 성능 평가를 

위해서는 이러한 불확실성 요소들을 시뮬레이션 분석에 반영해야 

한다. 

본 연구에서는, 전 냉방기간(01 May – 30 Sep)동안 경기도 소재의 

단층 사무용 건물에 대해, 가변형 냉매 유량(VRF) 냉방 시스템의 

최적제어(MPC)를 수행하고, 최적제어의 성능평가를 위한 확률적인 

접근을 제시하였다. 이를 위해 VRF 시스템의 에너지 소비량과 실내 

온도를 예측하는 인경신경망 기반 대리모델을 구축하였다.  

서로 다른 다섯 가지의 건물 사용 시나리에 따른 MPC 성능의 

불확실성이 존재함을 보이고, 이를 정량화 하였다. MPC 에 의한 

에너지 절감율은 기상에 따라, 0.2%부터 26.8%까지 매우 확률적으로 

나타났고, 건물 스케줄과 재실자 행동을 포함한 불확실한 변수에 

의해 그 불확실성이 달라짐을 알 수 있었다. 이러한 불확실성을 

고려하지 않은 성능평가는 실제와의 차이를 유발하여, 의사결정의 

오류를 초래할 수 있으므로, 성능평가 시 MPC 성능의 확률적인 

특성을 반영해야 한다는 것을 알 수 있다.  

또한, 조건에 따른 VRF 시스템의 최적제어 전략을 분석하여, MPC가 

다양한 부하 조건에 따라 지능적으로 제어 전략을 바꾸며 대응하는 

것을 확인하였다. 낮은 냉방 부하일에는 "drifting"전략이, 높은 냉방 

부하일에는 "high COP"전략이 유리하게 작동하였고, 중간 냉방 

부하일에는 두 전략이 석여 나타남을 확인하였다. 각 전략의 에너지 
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절감 가능성의 차이는 시스템 COP의 동특성과 공간의 열적 거동의 

상호작용을 통해 이해할 수 있다. 최적제어 전략에 대한 이해를 

통해, 실제 건물에서 MPC 를 통한 효율적인 시스템 운영 및 에너지 

절감에 기여할 수 있을 것으로 기대된다. 

 

 

주요어 : 최적제어, 불확실성, 인공신경망, 가변형 냉매 유량 시스템, 

성능평가, 제어전략, COP, 냉방 
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