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Abstract 

Organ-on-a-chip is a microfluidic platform for studying complex biological 

systems by developing biomimetic in vitro models. With the advancements of 

microfluidic technology, which refers to the manipulation and control of small 

amounts of fluid at microchannels, precise and dynamic control over cellular 

microenvironments is enabled. This allows organ-on-a-chip models to become more 

sophisticated, enabling the implementation of complex in vivo structures and diverse 

cell culture environments. 

Vascularized spheroids or organoids are becoming increasingly important 

in research to recreate the actual tumor microenvironment. Vascularized models 

offer a more sophisticated in vivo-like environment, allowing for the utilization of 

diverse drug toxicity tests through microvessels and studies on flow circulation 

systems with microfluidics, leading to more advanced results. In vascularized 

models, important data regarding cultured tissues, tumor or microvessels 

morphology, and cell-to-cell mechanisms by organ physiology and drug responses 

can be obtained, allowing for valuable outcomes by tracking and analyzing such data. 

Thus, organ-on-a-chip have been pivotal in engineering complex in vitro models, 

such as cancer, infectious diseases, multi-organ system and lymphatic and interstitial 

flow in the tumor microenvironment, allowing researchers to study disease 

progression and mechanisms. 

However, these platforms have encountered two main limitations. Firstly, 

the microfluidics-based tumor microenvironment platforms were sufficient for co-

culturing small-size tumors, but with the emergence of 3D tissues or organoids, 

designs that can accommodate larger tissues/explants/spheroids are required. 

Secondly, as the platforms have advanced, the throughput of experiments has 



 

 

increased dramatically, but imaging systems have not kept pace. Typically, organ 

chips implement 3D tumor microenvironments and use confocal microscopes for 

detailed imaging. However, due to the cost and poor accessibility of confocal 

microscopes, there is a bottleneck in screening large amounts of imaging data from 

high-throughput imaging microscopes. 

In this thesis, I introduce two new technologies: 

Large scale Vascularized Tissue Mesh-Assisted Platform (VT-MAP). VT-

MAP is an innovative platform that combines the existing rail-assisted structure with 

the mesh-assisted structure, enabling the development of large-scale vascularized 

tissue or organoid models. The platform can provide not only co-cultivation of large-

sized single organoids but also enable the cultivation of clusters distributed in 

various sizes. Additionally, VT-MAP is a platform applicable for drug screening and 

precision medicine research, providing valuable insights into the drug response 

evaluation of cells and enabling more accurate and reliable data acquisition. This 

allows VT-MAP to offer a deeper understanding of the cultivation of vascularized 

tissues or organoids and drug responses. VT-MAP is expected to overcome the 

limitations of current in-vitro models and open new possibilities for drug 

development and precision medicine research by vascularized tissues and organoids. 

High-efficiency label-free virtual staining network based on deep learning. 

Virtual staining provides an effective solution to obtain fluorescent-like images from 

simple brightfield microscope images without the immuno staining process and 

relying on traditional microscope equipment. Currently, researchers are exploring 

methods to achieve virtual staining without the need for conventional cell staining 

or tissue staining techniques in various fields of biology. Moreover, I have extended 

the application of virtual staining to label-free live cell imaging. Virtual live cell 



 

 

imaging represents an innovative approach that allows for the real-time visualization 

of cellular dynamics without relying on traditional staining techniques. Through the 

utilization of advanced virtual staining networks and quantitative analysis algorithms, 

real-time virtual live cell imaging enables the conversion of brightfield images into 

label-free virtual fluorescence images. This technique provides valuable insights into 

the behavior and interactions of live cells within their native microenvironment. 

I believe that these two technologies have the potential to enhance the field 

of organ-on-a-chip research in terms of throughput and data analysis. By overcoming 

the limitations of current platforms, VT-MAP and virtual staining will enable the 

development of more sophisticated and realistic models of human tissues and organs. 

This will lead to a better understanding of disease mechanisms and the development 

of more effective treatments. 
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Chapter 1. Introduction 

 

1.1. Organ-on-a-Chip 

Researchers have utilized various models for cancer and drug development. 

Until now, animal models (in vivo) and 2D well plate culture (in vitro) models are 

dominantly used, leading to the accumulation of extensive data. However, these 

approaches have limitations in adequately mimicking the human body due to 

constraints in animal experimentation, ethical problems, and inherent differences 

between humans and animals[1]. To overcome these limitations, there has been 

growing attention and importance placed on new in-vitro model, called organ 

chips[2-4], which can replicate the human body's cellular composition and 

physiological conditions. Organ chips are advanced technologies that mimic realistic 

human physiological conditions, enabling the evaluation of drug efficacy and the 

study of complex biological interactions in environments closely resembling the 

human body[5-8]. Still, fully mimicking the complexity and conditions within the 

body is difficult[9] (Figure 1.1). 

Considering these differences among in vivo, and in vitro, the emergence 

of organ chips holds significant importance. Organ chips are platforms that 

implement 3D tissue models outside the body[10], providing an environment similar 

to conditions within the body and enabling more accurate replication of cellular 

physiological functions. They offer the advantage of obtaining results closer to in 

vivo experiments by reproducing the complexity and interactions of tissues outside 

the body. Organ chips can incorporate crucial biological functions, such as 

vascularization, allowing for the regulation of factors like blood flow[11, 12], cell-



 

 

cell interactions[13], and circulation. Therefore, organ chips provide a model that is 

more representative of the body compared to in vitro experiments and can yield 

results comparable to in vivo experiments. This makes organ chips valuable tools in 

various applications, including drug development and disease mechanism 

research[14], as they bridge the advantages and limitations of in vivo, and in vitro 

models. 

The use of microfluidics in organ chips has expanded the possibilities for 

3D cell culture, including microfluidics systems that allow for greater control over 

the chemical and mechanical stimuli that cells experience; for example, by 

controlling the mechanical stress from fluid flow to match the natural flow within 

vasculature[11]; or, enabling the culture of polarized epithelium at the air-liquid 

interface[10]; or by matching the stiffness of the culture surface more closely to the 

stiffness modulus that exists in soft tissue[12]. Despite these advancements, 

challenges still remain in the development of 3D cell culture systems. These 

challenges include throughput, customizability, manufacturability, reproducibility, 

and design modification to meet specific applications. Researchers continue to work 

on nature materdeveloping new approaches to address these limitations and improve 

the capabilities of 3D cell culture systems.  

  



 

 

 

 

Figure 1.1. Difference between in-vivo, and in-vitro models 

  



 

 

1.2. Requirements for high-throughput vascularized models 

Microvessels play a crucial role in the functioning of organs, as most organs 

exist in conjunction with microvessels[6]. These are responsible for essential 

functions such as nutrient and oxygen supply, which are vital for cell survival. In 

vitro models based on 2D well plates, organ or tumor cells are typically cultured in 

the absence of vasculature, making it challenging to accurately replicate the actual 

microenvironment[14-18]. Consequently, one of the key roles of organ chips is to 

implement vascularized models that closely mimic the in vivo environment. By 

using organ chips to reproduce vascularized tissues, cells can interact within a 

vascular network and thrive in an appropriate environment. This enables the 

development of vascularized tissue models that exhibit physiological interactions 

similar to those observed in real tissues[13, 17, 19-21]. 

For example, to replicate tubular structures in vitro, vascular endothelial 

cells can be compartmentalized within a micropillar array, allowing them to self-

assemble into a 3D vascular network[22]. Similarly, microgrooves can function as 

capillary valves[23], enabling co-culture of endothelial cells with astrocytes and 

pericytes to mimic the blood-brain barrier[24]. Another approach involves using a 

sacrificial layer of a hollow rod on a 3D hydrogel block to mimic the shape of blood 

vessels[25]. In neuroscience research, microgrooves and channels within 

microphysiological systems (MPS) have been utilized to guide complex axons in the 

central nervous system[26]. Additionally, membrane-embedded models have been 

employed to simulate layered structures such as alveolar[27], intestinal[28], and 

placental barriers[29]. By creating a flexible membrane within the MPS, 

communication between multiple cell layers is facilitated, allowing for a variety of 



 

 

assays. MPS has also successfully modeled organs with spherical and radial 

structures, such as the eye, enabling the replication of blinking eyelids and radial 

angiogenesis. These approaches are driven by a design philosophy rooted in 

biology[30, 31]. 

Vascularized models are indeed vital in biology-driven design. The 

complex network of blood vessels plays a pivotal role to various organs and tissues 

in the body[17, 22, 32]. Therefore, the development of vascularized models is an 

ongoing pursuit in the field of organ-on-a-chip (Figure 1.2). These models aim to 

replicate the physiological relevance and functionality of blood vessels, allowing for 

the study of complex biological processes in a controlled and realistic environment. 

Efficient and consistent vascularization techniques are being actively researched to 

ensure the successful integration of vascular networks within organ-on-a-chip 

platforms. These techniques involve engineering microfluidic systems that mimic 

the structural and functional characteristics of blood vessels, enabling the perfusion 

of nutrients and the maintenance of cellular interactions. Vascularized models have 

immense potential in drug screening and disease research. They can accurately 

replicate the microenvironment and pathophysiological conditions of specific organs, 

facilitating the evaluation of drug efficacy and toxicity[33]. Additionally, these 

models enable the investigation of disease mechanisms, tissue regeneration, and 

personalized medicine approaches. 

Recently, efforts are underway in various research labs to develop 

vascularized models, including vascularized spheroids, vascularized brain organoids, 

and liver models[34], utilizing techniques such as bio printing[35-37]. The goal of 

these endeavors is to create tissue models that are more realistic and closely resemble 

the complexity of the human body compared to existing models. Despite these 



 

 

advancements, there is a continuous increase in the demand for vascularized models 

that offer high efficiency and reliable results. Therefore, the development and 

research of more advanced vascularized models that can meet these demands are 

ongoing.  



 

 

 

Figure 1.2. Various models of organ on a chip for vascularized models. 

 

  



 

 

1.3. Necessity of large-scale vascularized tissue models 

There has been an increasing number of research findings utilizing 3D 

tissues or organoids similar to in vivo condition[38-40]. In particular, research on 

organoids has become very active in recent years[27, 41]. Organoids are large tissue 

structures cultured in vitro that contain functional components of real tissues, as 

opposed to simple cell aggregates like spheroids. They can be implemented to 

closely mimic the in vivo tumor microenvironment[15, 42-44] (Figure 1.3). For 

mimicking in vivo like environment, it is necessary to not only culture organoids but 

also create a vascularized microenvironment. However, most existing in vitro 

models have primarily focused on small spheroid-based models[42, 43]. 

Consequently, there is a lack of models that allow for the co-culturing of large 

organoids[45] (Figure 1.4). Furthermore, conventional tumor-on-a-chip models 

typically involve culturing a single spheroid in a well to mimic the tumor 

microenvironment. However, the tumor microenvironment consists of various 

clusters distributed in different sizes, making it challenging to replicate by in vitro 

model. 

The emergence of large-scale vascularized tissue or organoid models has 

opened up new possibilities for studying complex biological processes, regenerative 

medicine, and drug development. However, current in vitro platforms face 

challenges in maintaining large-scale vascularization and the functionality of 

engineered tissues[46, 47]. Vascularization methods such as sacrificial templates or 

3D bioprinting[35, 48] have limitations in terms of scalability, reproducibility, and 

complexity. Additionally, the development of vascularized tissue models that 

accurately mimic the spatial organization and physiological functions of the human 



 

 

body's native environment remains a significant challenge. Large-scale vascularized 

tissue models have great potential in providing insights into disease mechanisms, 

personalized medicine, and drug screening. Therefore, there is a demand for 

innovative platforms that support the cultivation of large-scale vascularized tissue or 

organoids and provide representative models that are more suitable for studying 

complex biological systems[49].  

  



 

 

 

Figure 1.3. Organ on a chip for tumor microenvironment using microfluidics. 



 

 

 

Figure 1.4. Difference between spheroid and organoid culture conditions. Existing 

vascularized spheroid models are difficult to co-culture organoid. New platform for 

large-scale vascularized organoid models are required. 

  



 

 

1.4. Bottleneck in high-throughput imaging system 

In general, confocal microscope is commonly used for imaging in organ 

chips to reproduce the 3D tumor microenvironment. However, confocal microscope 

has the drawback of being expensive and slow, although it can provide high-quality 

images. With the recent advancement of organ chip technology, there has been a 

significant increase in throughput, leading to bottlenecks in the imaging system. 

While high-throughput platforms allow for processing multiple samples 

simultaneously and improve experimental efficiency, the imaging system struggles 

to keep up with such speed. As a result, there are limitations in capturing a large 

amount of data within a suitable timeframe[50]. 

To overcome these bottlenecks, there is a need for rapid and efficient data 

acquisition methods. Recent advancements in computer vision and deep learning 

technologies[51-54] have been applied in various biological imaging 

applications[55-57]. For example, image segmentation is used in cell analysis[58, 

59], while image generation is utilized in virtual staining[60] (Figure 1.5). These 

deep learning techniques enable fast and accurate processing of images that 

previously relied on manual labor or human intervention. Virtual staining has been 

used as a technique to generate related results to actual staining, replacing the need 

for traditional staining methods. Furthermore, Virtual staining technique is 

incredibly important, especially the ability to obtain virtual-stained images without 

the need for immuno-staining in live-cell imaging, represents an innovative 

advancement. Previously, immuno-staining caused damage to cells and limited 

imaging to specific end points, making it challenging to observe data throughout the 

entire process. However, with the use of virtual staining, it is now possible to capture 



 

 

subtle changes and detailed information that was not previously visible, by 

examining data throughout the entire process (Figure 1.6). Moreover, the label-free 

nature of virtual staining allows for long-term cell culture without any damage to 

cells, resulting in higher reliability of the acquired data. 

Therefore, introducing innovative technologies such as deep learning-based 

virtual staining can provide a solution to overcome these bottlenecks and establish a 

system capable of generating high-quality images without relying on confocal 

microscope. By utilizing such technologies, efficiency in imaging workflows can be 

improved, bottlenecks can be addressed, and accurate and rapid data acquisition 

becomes possible. Thus, the integration of these advanced techniques can enhance 

the performance of the imaging system, allowing it to keep up with the increased 

throughput in organ chip technology. 

  



 

 

 

Figure 1.5. Advancements in computer vision technology with deep learning for 

biology field. 



 

 

 

Figure 1.6. Importance of label-free live cell imaging via deep learning. Label-free 

live cell imaging allows for the observation of subtle changes and detailed 

information throughout the entire process, unlike the previous approach that only 

captured data at the endpoint. Furthermore, being label-free, it enables long-term 

culture of cells without causing any damage, enhancing the reliability of the data 

obtained. 

  



 

 

1.5. Purpose of research 

The developed in vitro models thus far have played a significant role in 

recapitulating the tumor microenvironment and have successfully yielded various 

drug testing and in vivo-like results. These models have been successful in 

developing high-throughput tumor microenvironment models by transitioning from 

PDMS to Polystyrene (PS) and utilizing injection molding. They have demonstrated 

high reproducibility within the platform through microfluidic analysis, enabling the 

implementation of vascularized tumor environments that closely resemble in vivo 

conditions. However, these platforms were primarily designed for small spheroids 

and were not suitable for co-culturing large-scale organoids. Furthermore, with the 

advancement of high-throughput platforms, difficulties have arisen in capturing and 

processing all the data using existing imaging systems. Therefore, there is a need for 

a new spheroid chip on the hardware side and a need for technology to address the 

bottleneck of existing imaging systems on the software side. 

In this thesis, we propose a new platform that allows for co-culturing of 

large-scale organoids along with vasculature. This platform not only enables co-

culturing of large organoids but also accommodates multi-cluster organoids that 

mimic in vivo-like environments. Additionally, an algorithm for precise data 

extraction has been developed. Furthermore, to address the bottleneck of imaging 

systems, we introduce virtual staining technology to the field of organ-on-chip. By 

applying deep learning-based virtual staining, fluorescent images can be obtained 

from simple brightfield images without the need for a confocal microscope. 

Moreover, by applying this technology in real-time, we can track the morphological 

changes of vasculature and tumors within the organ-on-chip, thereby obtaining 

previously unobserved data. 



 

 

  



 

 

Chapter 2. Large-Scale Vascularized Tissue Mesh-

Assisted Platform (VT-MAP): A Comprehensive 

Approach for Mimicking Tumor Microenvironment 

and Analyzing Cluster Viability 

 

2.1. Introduction 

Until now, there has been rapid progress in understanding the pathological 

characteristics of cancer[61] and the importance of the tumor microenvironment[62]. 

Consequently, there is a growing need for reliable experimental models in cancer 

therapy development and tumor biology research[63-67]. Particularly, with the 

discrepancies between animal experimental results and clinical outcomes and the 

ethical concerns surrounding animal experiments, the importance of in-vitro models 

utilizing human cells has become even more pronounced[1]. In-vitro models have 

been developed to reflect the complexity of the tumor microenvironment[65] and 

provide valuable information for drug screening and tumor biology research. 

Recently, platforms simulating complex structures such as 3D tissue 

models and vascularized tissue models have emerged. These platforms are 

recognized as crucial tools for reproducing in-vivo like conditions of tumor 

microenvironment and investigating various biological processes associated with 

cancer development and progression[15, 17, 42, 49, 68]. Furthermore, these 

platforms play an important role in the development of cancer therapeutics and 

personalized treatment strategies[69-71]. However, the emergence of large-scale 



 

 

tissues and organoids poses challenges for the study of vascularized tissue or 

organoid models[72-74]. Previous platforms were effective at small scales[43, 75], 

but culturing large-scale tissues or incorporating clusters of diverse sizes and shapes 

proved challenging. These limitations constrain the ability to accurately reflect the 

complexity of the realistic tumor microenvironment and may affect the reliability 

and reproducibility of research outcomes. 

The need for in-vivo like and accurate mimicking of the tumor 

microenvironment in large scale vascularized tissue or organoid models has become 

increasingly important[49, 76]. However, current in-vitro models often fail to 

sufficiently replicate the large scale of the tumor microenvironment, highlighting the 

demand for more advanced models. The combination of 3D vascularized tumor 

models and mesh-assisted structure has emerged as a promising approach for large 

scale tumor microenvironment. Here, I present a large-scale vascularized tissue 

mesh-assisted platform called VT-MAP. VT-MAP overcomes the limitations of the 

previous rail-assisted approach and provides an effective platform for the cultivation 

of large-scale tissues, including vascularized tissues or organoids. By incorporating 

fluid dynamics analysis and a novel algorithm, VT-MAP enables the extraction of 

diverse information related to the size, growth rate, and viability of vascularized 

tissues. 

 

  



 

 

2.2. Material and method 

2.2.1. Device fabrication  

The device was designed using Solidworks (Dassault Systems) and 

fabricated with 3D printer, Figure 4 Standalone (3D systems). After printing, the 

device was washed with isopropanol and cured with ultraviolet light in 380nm for 1 

hour. The device was dried and single-sided PSA (Pressure sensitive adhesive) film 

(IS-00820, IS solution) was attached at the bottom side of device to obtain space for 

hydrogel patterning. Then, the device was sterilized with UV in a bio-hazard safe 

bench while cell preparation for experiment. O2 plasma (Femto Science) was treated 

for 3 minutes in 75W, 50kHz to make the device hydrophilic before hydrogel 

patterning in device. 

2.2.2. Cell culture 

Human umbilical vein endothelial cells (HUVECs, Lonza) and lung 

fibroblasts (LFs, Lonza) were cultured in endothelial growth medium-2 (EGM-2, 

Lonza) and fibroblast growth medium-2 (FGM-2, Lonza) respectively to reconstruct 

3D vascular network surrounding organoids. All cells were cultured in a humidified 

incubator at 37℃ and 5% CO2. 

2.2.3 3D vascular network formation and reconstruction of tumor 

organoid microenvironment 

For reconstruction of tumor organoid microenvironment, difference of cell 

proliferation speed between cancer cells and other cells related to vascular network 

formation (HUVECs and LFs). On day 0, HUVECs and LFs were firstly prepared to 

develop 3D vascular network surrounding tumor organoid in outer area. HUVECs 



 

 

and LFs were mixed with 2.5mg/mL of fibrinogen hydrogel (Sigma Aldrich) with a 

number ratio of 2:1 at a cell density of 4X106 cells/mL and 2X106 cells/mL as final 

concentration, respectively. On day 2, medium in inner area was sucked out and 

mixture of tumor organoids, HUVECs, LFs and hydrogel was filled inner area. 

Tumor organoids were dissociated as a single cell in 2X106 cells/mL as the final 

concentration and HUVECs and LFs were in same final concentration with 3D 

vascular network formation. The device was maintained in the incubator for whole 

experiment. 

2.2.4. Drug treatment  

For the observation of drug performance in the device, drugs were treated 

on the vascularized tumor organoid microenvironment in the device. The following 

chemotherapeutics were used: 5-Fluorouracil (5-FU, R&D Systems), Irinotecan 

(CPT11, R&D Systems), and Oxaliplatin (R&D Systems). Irinotecan and oxaliplatin 

were treated as the monotherapy or combination treatment with 5-FU. Control 

groups were treated with fresh EGM-2 and irinotecan and oxaliplatin were diluted 

in 200mM in EGM-2 for monotherapy. 50mM, 100mM, and 200mM of 5-FU were 

mixed in equal concentrations of irinotecan or oxaliplatin for combination treatment, 

respectively. The drug treatment was sustained for 24 hours in incubator to observe 

the drug performance. 

2.2.5. Live/Dead assay 

Alexa Fluor 488-tagged variants of anti-epithelial cell adhesion molecule 

(EpCAM, BioLegend) and propidium iodide (PI, Sigma Aldrich) were used to detect 

dead signal by drug treatment from tumor organoid microenvironment. Cells were 

stained using EGM-2 in the proportion 200:1 and 1000:1 for EpCAM and PI, 



 

 

respectively. EpCAM was added in the mixture of drug and cell culture medium 

while drug treatment. After 24 hours, the cells were washed with EGM-2 mixed with 

PI and imaged by confocal microscope (Nikon Ti 2) after 30 minutes. We calculated 

dead signal ratio by (the fluorescence intensity of dead cells overlapped with 

EpCAM signal)/(the fluorescence intensity of tumor organoid cells with EpCAM 

signal). 

2.2.6. Quantitative image analysis 

Image acquisition was conducted by confocal microscope (Nikon Ti-2) and 

imaging software (NIS-Elements). To quantify the viability and area of organoids, 

the confocal images were projected by Z-axis with max intensity method. As 

organoid images had various morphology and contrast, pre-process with histogram 

equalization and normalization was applied for detecting their contour line by Python 

3.7 and OpenCV package. Within the contour line, green signal pixels with EpCAM 

staining for entire area of one organoid and red signal pixels with PI staining for dead 

area of the organoid were calculated for quantifying the size and viability. We 

quantified pixel area data in terms of size and viability of the organoid in different 

drug conditions using Prism (GraphPad). 

 

  



 

 

2.3. Result 

2.3.1. Combination of rail-assisted strucutre with mesh-assisted 

structure for capturing large height microfluidic injection 

In the context of organ chips, the rail-assisted microfluidic patterning 

method is widely employed, which leverages the spontaneous capillary force (SCF). 

This technique involves patterning microfluidic channels through small gaps, a 

process that offers both rapid execution and high success rates, thereby facilitating a 

stable environment. Analyzed from a fluid dynamics perspective, SCF takes 

advantage of Laplace pressure, which is found to have a linear relationship with the 

height of the rail channel. In practical terms, a stable environment suitable for 

patterning is maintained when the channel height is 100um. However, when the 

channel height increases to 500um, it transitions into a region of patterning failure, 

making it difficult to anticipate successful patterning (Figure 2.1A). 

As the channel height increases to 500um, the condition shifts to Pw < Pr, 

which disrupts the intended operation of the SCF. Furthermore, as the channel height 

increases, the rail-assisted microfluidic patterning fails to function properly. 

Especially for SCF with a low contact angle, the fluid spreads along the bottom film 

before even filling a height of 500um (Figure 2.1B), which exacerbates this issue. 

However, to overcome this problem, we introduce a mesh-assisted structure. This 

mesh structure assists by enabling the fluid to fully cover areas with high gaps and 

effectively controls the fluid spreading laterally (Figure 2.1C). 

By combining rail and mesh structures, we have successfully developed a 

platform capable of culturing large-scale vascularized tissues or organoids, an 



 

 

achievement that was challenging with previous methodologies. Notably, the mesh 

structure provides greater design flexibility than the rail structure, enabling the 

creation of complex structures that were difficult to achieve with rails alone. This 

proves particularly beneficial in implementing complex structure and replicating 

intricate tumor microenvironments. 

  



 

 

 

Figure 2.1. Microfluidic patterning principle of rail-assisted structure. (A) 

Spontaneous capillary force by Young-Laplace equation were utilized for efficient 

and successful channel patterning in organ chips. But the gap of channel is limitation 

of small scale. According to the equations of wedge and rail, the formulations are 

only valid at small gaps, and as the gap expands, patterning becomes increasingly 

challenging. Particularly, when scaling up to a larger dimension, increasing the gap 

fivefold which is suitable for large scale vascularized tissue model, the failure 

condition for patterning becomes clearly apparent, as denoted by the red dots on the 

graph. (B) Combination of mesh-assisted structure for supplement large scale 



 

 

platform. When the gap increases fivefold, the fluid disperses along the bottom film 

before it can pattern along the rail, preventing proper patterning (C). To resolve this 

issue, the introduction of a mesh-assisted structure can be observed. The mesh 

structure serves to prevent the spread of the fluid, facilitating correct patterning. 

  



 

 

2.3.2. The development of Vascularized Tissue – Mesh Assisted 

Platform (VT-MAP)  

VT-MAP is a platform that mimics the development process of 

vascularized tumors. In the process of tumor formation in the body, cancer cells first 

metastasize through fully developed blood vessels. Metastatic cancer cells establish 

themselves around the blood vessels and recruit nearby blood vessels to supply 

nutrients, gradually growing. Ultimately, they can be depicted as structures 

surrounded by blood vessels (Figure 2.2A). The process to simulate this environment 

in organ chip is shown in Figure 2.2B. To culture large-scale tissues in the previous 

rail-assisted chip, the system had to scaled up and the height was increased. A mesh-

assisted structure was added to pattern the fluid. Finally, the structure was completed 

by creating holes in the middle to accommodate the spheroid, simulating the 

structure surrounded by blood vessels. This represents the closest possible 

replication of the morphological microenvironment of a vascularized tumor. 

The overall chip structure of the VT-MAP can be seen in Figure 2.3A. This 

platform consists of a mesh-formed rail structure (both mesh width and height are 

500um), which curves around the center. This curved rail structure serves as the area 

for forming the vascular network. The open circular region surrounded by the rail 

(diameter 1500um) is the space for loading the vascularized organoids. The output 

width of the end of this circular region is designed to be 800um, preventing organoids 

larger than 1000um from exiting (Figure 2.3A). This open design is intended to allow 

easy injection of various sizes of organoids without size limitations. 

The mesh attached to the rail is located only on the perimeter, with the 

interior being a simple open structure (Figure 2.3B and Figure 2.3C). The externally 



 

 

placed mesh prevents fluid from spreading along the bottom film, and the internal 

open structure maximizes the interactive area between the vessels and organoids. 

This design benefits vascularized tissues in drug response or medium delivery. 

The VT-MAP undergoes a two-step patterning process (Figure 2.3B and 

Figure 2.3C). The first step is to pattern the vascular area with the primary goal of 

forming a vascular network. This process forms a pattern that neatly encapsulates 

the organoid area by injecting into the vascular area through a rectangular injection 

port. At this time, it can be confirmed from the cross-sectional view that a mesh 

structure is located on the outer edge of the vascular area, while the interior is an 

open structure (Figure 2.3D). 

The second step is the injection process into the organoid area. The 

organoid area created by patterning the vascular area is naturally open but is seen to 

be encapsulated by the vascular area. During injection, patterning occurs only in the 

organoid area. This two-step process enables the injection of large-scale tissues 

between vessels. In this way, the configured VT-MAP provides an effective platform 

for implementing complex biological models. 

Figure 2.4A shows the success of patterning depending on the presence or 

absence of a mesh structure and the contact angle in a 500um gap. The results 

indicate that more stable patterns are formed when the contact angle is low (that is, 

when the fluid adheres better to the surface) and when a mesh structure is present. 

This demonstrates that the mesh structure stabilizes the movement of the fluid and 

that the lower the contact angle, the better the fluid adheres to the surface, making it 

easier to form a pattern. Figure 2.4B presents a series of images that demonstrate 

how the first patterning process progresses over time. You can observe how the 



 

 

vascular area fills and patterns over time. This process provides insight into how VT-

MAP technology achieves high-precision patterning. 



 

 

 

Figure 2.2. Mimic in-vivo tumor microenvironment of vascularized tumor. (A) 

Process of cancer metastasis via blood vessel. Cancer spreads through blood vessels, 

and some cancer cells escape through the vessels and migrate to nearby areas. They 

start absorbing nutrients from surrounding blood vessels and gradually develop. (B) 

Mimic the vascularized tumor morphology by organ chip by separating section and 

surrounded structure with mesh-assisted platform. 

  



 

 

 

Figure 2.3. Device schematic of VT-MAP  and patterning process. (A) The VT-

MAP is designed as a chip the size of a standard slide glass, with the sizes of various 

structures inside it precisely determined. As shown in the figure, the diameter of the 

inner region is designed to be 1500um to effectively co-culture organoids. In addition, 

to prevent organoids from leaving the chip, the output width is set to 800um. The 

width and height of the mesh structure are also determined to be 500um each. (B), 

(C), (D) The patterning process of the VT-MAP proceeds in two steps. The first step 

is filling the vascular area with the aim of forming a vascular network. The presence 

of a mesh structure prevents the fluid from spreading in other directions and allows 



 

 

patterning to occur only in the desired area. In this step, the vascular area is marked 

in red. The second step is filling the organoid area, with the goal of injecting large-

scale organoids. In this step, the organoid area is marked in blue and interacts directly 

with the vascular area. Through these two steps, effective patterning and co-culture 

are possible, enabling the study and modeling of complex biological systems. 



 

 

 

Figure 2.4. The role of micro mesh structure and contact angle condition. (A) The 

success of patterning based on the presence or absence of a mesh structure and 

contact angle when the gap is 500um. Stable patterns are only demonstrated when 



 

 

the contact angle is low and a mesh is present. (B) This image illustrates the first 

patterning process over time (for 1 second). 

   



 

 

2.3.3. Microfluidic analysis approach of VT-MAP 

The Young-Laplace pressure is essential for understanding and explaining 

the movement of fluids and is a valuable tool for controlling fluid patterning (Eqs. 

1). In conventional rail-assisted platforms, this principle is utilized to design the fluid 

to form patterns along the rails in a specific direction. However, VT-MAP introduces 

a mesh structure, deviating from the conventional design, to prevent the fluid from 

bursting into the central organoid area while maintaining a circular pattern. To 

achieve this, two pressures, namely the Forward Laplace Pressure (FLP) and the 

Burst Laplace Pressure (BLP), are compared. Figure 2.5A illustrates how FLP and 

BLP act during the pattern formation process, represented by the red regions. The 

diameter of the vascular area is denoted as R2, and the diameter of the organoid area 

is denoted as R1. By utilizing the principles of Young-Laplace pressure in this 

manner, more precise control over the desired pattern formation becomes possible. 

 ∆𝑃 =  𝛾 (
𝑑𝐴𝐿𝐺

𝑑𝑉
− cos 𝜃

𝑑𝐴𝑆𝐿

𝑑𝑉
) Equation 1 

FLP represents the formation of a circular pattern along the Mesh-assisted 

structure, preventing the fluid from bursting into the central area. This can be 

expressed mathematically by defining theta as the degree to which the fluid rotates 

in a circular manner around the origin and w1 as the length of the forward face when 

FLP occurs. Additionally, the delta variable is used to represent changes over a short 

period of time. In this setup, each red point can be transformed into an orthogonal 

coordinate system composed of 𝑅1  and 𝜃 . Utilizing this, we can obtain the 

following equation (Eqs. 2), allowing us to understand the relationship between the 

rate of change in FLP and the various variables. By employing these equations, we 

can gain a more precise understanding and control of circular pattern formation in 



 

 

VT-MAP. If BLP is smaller than the FLP value, the fluid is pushed toward the central 

area due to the Young-Laplace pressure toward the organoid region, preventing the 

formation of a circular pattern and hindering the desired patterning. In this case, the 

fluid tends to move toward the central area rather than spreading in a circular manner, 

and this can be expressed mathematically as an equation involving 𝑅1 and 𝜃 (Eqs. 

3). 

 
∆𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑  =  𝛾 (

sin 𝜃 + 1

sin 𝜃 (𝑅2 − 𝑅1𝜃 sin 𝜃)
−

2 cos 𝜃∗

ℎ
) Equation 2 

 ∆𝑃𝑏𝑢𝑟𝑠𝑡 =  𝛾 (
2

𝑅1𝜃
−

2 cos 𝜃∗

ℎ
) Equation 3 

In order for the fluid to pattern in the desired manner, the Forward Young-

Laplace pressure must always be smaller than the Burst pressure (Eqs. 4). Figure 

2.5B represents the conditions that satisfy this criterion as a graph with respect to 

𝜃.The positive region in the graph represents successful conditions where stable 

patterning occurs along the circular path, while the negative region represents failure 

conditions where the fluid bursts towards the center instead of following the circular 

pattern. The graph depicts the conditions for 𝑅1 values of 0.5, 0.7, 1.0, 1.2, and 1.5. 

In VT-MAP, the actual 𝑅1 value used is 0.75, and the results from the image on the 

right confirm the successful formation of the pattern. Conversely, for 𝑅1 values of 

0.9 and 1.2, the pattern formation is observed to be almost failed. 

 ∆𝑷𝒇𝒐𝒓𝒘𝒂𝒓𝒅 < ∆𝑷𝒃𝒖𝒓𝒔𝒕 Equation 4 

 

  



 

 

 

Figure 2.5. Patterning principle of VT-MAP. (A) Laplace pressure of forward 

condition and burst Laplace pressure condition. (B) Success and failure condition of 

∆𝑷𝒃𝒖𝒓𝒔𝒕 − ∆𝑷𝒇𝒐𝒓𝒘𝒂𝒓𝒅 and specific condition of three 𝑹𝟏 𝒂𝒏𝒅 𝜽 . 𝑹𝟏 =

𝟎. 𝟕𝟓 , 𝑹𝟏 = 𝟎. 𝟗 𝒂𝒏𝒅 𝑹𝟏 = 𝟏. 𝟐 show in figure. 0.75 is the design condition for VT-

MAP that demonstrates successful patterning. On the other hand, 0.9 and 1.2 exhibit 

unstable patterning as they deviate from the success condition. 

  



 

 

2.3.4. Tumor microenvironment with vascularized organoid on VT-

MAP 

 To assess vascularization on the vascularized tissue platform, we conducted 

pre-experiments. In the vascular region, HUVECs and LF were injected at a final 

concentration of 4 million cells per ml and 2 million cells per ml, respectively. Fibrin 

gel was mixed with the cells for scaffold formation. Two vascularization phenomena, 

Angiogenesis and Vasculogenesis, were investigated during these experiments. For 

Angiogenesis experiments, LF and fibrin extracellular matrix were introduced into 

the vascular region, while HUVECs were attached in the organoid region. This setup 

allowed us to observe the process of vascular development and the interactions 

between the two regions. In Vasculogenesis experiments, both HUVECs and LF, 

along with fibrin extracellular matrix, were injected into both the vascular and 

organoid regions to observe the connection and formation of blood vessels between 

the two regions (Figure 2.6A). Lastly, to verify perfusion, red microbeads with a 

diameter of 4.0 μm were used. These microbeads were flowed through the vascular 

region and observed to reach the organoid region via the vascular channels, 

demonstrating a stable drug delivery model (Figure 2.6B). These experiments 

confirmed that the designed platform could successfully reproduce vascularized 

tissues and ensure stability in drug delivery. 

For large-scale vascularized tissue model, spheroids with a diameter of 

1000 μm or larger were prepared in a U-shaped 96-well plate and cultured for 3 days. 

The platform surface was treated with O2 plasma to facilitate cell attachment. On 

day 0, HUVECs and LF, along with fibrin extracellular matrix, were injected into 

the vascular region, while the remaining regions were filled with EGM-2 media. The 



 

 

cultures were allowed to develop for 2 days. Afterward, the EGM-2 media in the 

organoid region was removed, and previously cultured spheroids were injected into 

the region along with HUVECs and LF embedded in fibrin extracellular matrix 

(Figure 2.7A). The samples were then fixed and subjected to imaging for 3 days. 

Figure 2.7B demonstrates the formation of a tumor microenvironment, where the 

spheroids are surrounded by well-developed blood vessels. In contrast to previous 

organ chips, this approach successfully achieved the implementation of large-scale 

vascularized spheroids with robust vascularization in the surrounding area. 

Moreover, the co-culture method of vascularized multi-cluster organoids, 

as shown in Figure 2.7C, is depicted. This approach differs from the previous method 

in that it involves culturing organoid clusters of various sizes within the organoid 

region, allowing them to grow at different rates. Diverse data, such as relationship 

between growth rates and drug responses, can be obtained based on the varied 

characteristics of organoids within a single sample. Figure 2.7D demonstrates the 

injection of fragmented larger spheroids into the organoid region. This results in the 

distribution of organoid clusters of different sizes within a single region. 

  



 

 

 

Figure 2.6. Angiogenesis and vasculogenesis application and perfusable test on the 

platform. (A) This image shows the vascularization test conducted on VT-MAP, 

demonstrating the implementation of angiogenesis and vasculogenesis. The 

Vascular area and the Organoid area of VT-MAP interact with each other. (B) To 

verify the vascularized vessels, red microbeads (diameter 4μm) were introduced into 

the blood vessels. The microbeads flow through the vessels from the media channel 

to the inner area, demonstrating their distribution within the blood vessels. 



 

 

 

Figure 2.7. Tumor microenvironment on the platform. (A) This figure represents the 

overall process of co-culture large-scale vascularized organoids in VT-MAP. (B) 

The vascularization of spheroids with a diameter larger than 1000μm on the platform 

are introduced. Green signal is micro vessel signal by Lectin and red signal is tumor 

signal by EpCAM staining. (C) Illustration depicting the process of co-culturing 



 

 

clusters of various sizes. (D) Result of culturing organoid clusters of different sizes 

within a single well on the platform. 

   



 

 

2.3.5. Novel high-throughput algorithm for multiple organoids and 

quantitative analysis 

Colorectal tumor organoids were dissociated as single cells and loaded in 

the device to form vascularized microenvironment. Single tumor organoid cells 

formed various size of clusters in hydrogel(Figure 2.8A). The individual viability of 

clusters can vary depending on their size. The conventional analysis method, such as 

a live-dead assay, measures the live and dead signals of all clusters within a single 

well and calculates a single viability value. However, in platforms with diverse 

cluster sizes, it is challenging to accurately assess the viability based on cluster size 

using such conventional methods (Figure 2.8B). To address this issue, we have 

developed an algorithm that can calculate the individual viability of diverse-sized 

clusters within a single well. This allows us to consider the diversity of organoid 

clusters and investigate the relationship between drug-induced growth rates and 

viability. 

Confocal microscope images of tumor organoid microenvironment were 

taken as raw data with fluorescent green and red signals that represent tumor 

organoid clusters and dead cells, respectively. Images should be preprocessed 

because numerous noises interfere with the individual detection of tumor organoid 

clusters. Firstly, the overall brightness was adjusted through histogram equalization 

and normalization techniques. Then, blob removal and blur processes were carried 

out to denoise images to facilitate the contour detection of each cluster. Thereafter, 

the contour of clusters was separated independently, and individual cluster viability 

was measured by computing red signals overlapped with cluster area (green signals). 

Finally, average viability was quantified in groups classified by cluster size in 



 

 

500𝜇𝑚2 intervals. This method allows to figure out the relationship between cluster 

size and viability unlike conventional methods. Development of highly efficient 

quantitative analysis algorithm is expected to promote diverse approaches in 

experimental trends such as cell viability related with cluster size.  



 

 

 

Figure 2.8. Organoid cluster analysis algorithm by computer vision. (A) The 

provided image depicts the Live/Dead assay results after drug treatment, showing 

clusters of varying sizes. Despite being composed of the same cells, we can observe 

differences in cell viability based on the cluster size. (B) The conventional approach 

involves analyzing a single cluster within a well and calculating overall viability by 

considering all the live and dead signals in the image together, which does not reflect 

the impact of cluster size. In contrast, the newly developed algorithm allows for the 

individual calculation of size-specific viability for each multi-cluster, enabling the 

extraction of their relationship. The results of the same image analyzed using the 

previous algorithm and the new algorithm shows that the new algorithm allows for 

a better understanding of the relationship between viability and size, enabling more 



 

 

detailed analysis. On the other hand, the previous algorithm had difficulties in 

capturing such detailed information.   



 

 

2.3.6. Drug treatment in vascularized patient-derived colorectal 

cancer in VT-MAP 

We cultured clusters of various sizes on the VT-MAP platform to utilize 

the heterogeneity of organoids. Drugs for colorectal cancer (CRC), Oxaliplatin, 

Irinotecan and FOX (Combination of 5-Fu and Oxaliplatin) were used for drug 

treatment. The overall timeline of the drug treatment process is shown in Figure 2.9A. 

Initially, in the vascular area, a mixture of HUVECs and LFs was injected along with 

fibrin extracellular matrix. The remaining channels were filled with EGM-2 media, 

and we waited for two days for vascular development. We used two patient-derived 

xenograft models of colorectal cancer, namely CRC1 and CRC2. After two days, the 

media in the organoid area was aspirated, and CRC cells were injected along with 

HUVECs, CAFs, and fibrin extracellular matrix. After a day of stabilization, the 

drugs were mixed into the media. Following a two-day drug treatment period, the 

samples were fixed, and a Live/Dead assay was performed. Figure 2.9B shows the 

results of drug treatment. 

CRC 1 and CRC 2 are colorectal patient-derived tumor organoid clusters 

that showed different reactions from drug treatments. CRC 1 is from a patient who 

completely recovered with anticancer drug treatment and CRC 2 is from a patient 

whose cancer was recurred after symptom relief and had resistance to anticancer 

drugs. Both patient-derived tumor organoid clusters were treated in 3D in vitro 

model using oxaliplatin, irinotecan and combination with 5-FU and oxaliplatin (FOX) 

for 2 days. CRC 1 and CRC2 showed a significant difference in the distribution data 

of cluster size and viability after drug treatment. 



 

 

Figure 2.10A is a graph plotting the distribution of viability based on drug 

treatment results. In the case of CRC1, the viability under the control condition is 

high, while the samples treated with drugs show consistently low viability. On the 

other hand, for CRC2, not only the control condition but also all the drug-treated 

conditions show high viability. Figure 2.10B, on the other hand, represents the 

viability plotted based on the size of the clusters, rather than simply analyzing 

viability. For the control group, CRC 1 and CRC 2 agglomerated and grew in larger 

clusters with a wide range of size distribution up to about 6.0 × 104𝜇𝑚2  and 

3.2 × 104𝜇𝑚2respectively, and high viability ranging from 80% to 95%. For the 

drug treated group, both in oxaliplatin 200μM and irinotecan 200μM, CRC1 clusters 

decreased in size as 2.0 × 104𝜇𝑚2at maximum and CRC2 clusters decreased as 

1.0 × 104𝜇𝑚2  at maximum. However, CRC 1 showed 70% viability in small 

clusters and 20% viability in large clusters while CRC 2 showed high viability in 

70%-85% in overall clusters. It implies that drugs suppressed the growth of cancer 

cells and lowered cell viability if cancer cells grew in large size for CRC 1. For 

combination treatment group, we observed drug performance in concentration with 

50μM, 100μM, and 200μM. In case of CRC 1, cluster size was highly decreased 

under 1.0 × 104𝜇𝑚2 and cell viability was decreased from 80% to 20% as drug 

concentration increased from 50μM to 200μM. CRC 2 also showed decrease in size 

for all drug concentration as 1.0 × 104𝜇𝑚2  in maximum. In contrast to size 

distribution, the viability of CRC 2 clusters was between 70% to 90% for all 

conditions.  



 

 

 

Figure 2.9. Drug screening process and Live/Dead assay results. (A) Drug treatment 

process on VT-MAP with multi clusters. (B) Drug screening results of CRC1 and 

CRC2. Control, Oxaliplatin, Irinotecan and FOX 200uM are shown in figures and 

specific images of each cluster. 

 



 

 

 

Figure 2.10. Drug screening results graph of CRC clusters. (A) Graph showed CRC1 

and CRC2 clusters’ viability distribution. The control condition of CRC1 exhibits 

high viability, while the viability decreases gradually in the drug-treated conditions. 

On the other hand, CRC2 shows high viability not only in the control condition but 

also in the drug-treated conditions, unlike CRC1. (B) The presented graph illustrates 

the variation in viability based on cluster size for CRC1 and CRC2. It visually 

demonstrates the changes in viability corresponding to different cluster sizes. 

   



 

 

2.3.7. Comparing in-vivo and in-vitro results from VT-MAP 

In the case of CRC1, the control condition exhibits high viability, while the 

treated conditions show a gradual decrease in viability. This suggests that CRC1 is 

sensitive to the drug treatment, resulting in a decrease in viability. On the other hand, 

both the control and treated conditions of CRC2 demonstrate high viability. This 

indicates that CRC2 either has a higher resistance to the drug treatment or there might 

exist different mechanisms of response to the drug. ,Therefore, CRC1 and CRC2 

exhibit different patterns in terms of viability changes in response to drug treatment, 

suggesting differences in susceptibility or resistance to the drug on their respective 

aspects. As CRC 1 patient completely recovered and CRC 2 patient recurred after 

symptom relief, CRC 1 tumor organoid clusters highly reacted to drug treatment in 

cell size and viability and CRC 2 tumor organoid clusters only reacted in cell size 

maintaining high viability. 

CRC1 and CRC2 are patient-derived cells obtained from Samsung Hospital, 

each with distinct characteristics. CRC1 represents cells from a patient who achieved 

remission through drug treatment, while CRC2 represents cells from a patient who 

experienced recurrence despite previous treatment. VT-MAP serves as an in vitro 

model capable of reflecting the unique characteristics of these patients. In the case 

of CRC1, we observe a decrease in both size and viability in response to drug 

treatment. This indicates a sensitive response to drugs as cells from a patient who 

achieved remission. On the other hand, CRC2 shows a decrease in size following 

drug treatment, but the viability remains relatively unaffected. This suggests an 

environment prone to recurrence. Conventional in vitro models could only observe 

low viability for both CRC1 and CRC2. However, VT-MAP provides more detailed 



 

 

and complex information. It not only reveals changes in cell size and viability in 

response to drug treatment but also allows for the understanding of individual patient 

characteristics. VT-MAP bridges the gap between in vivo, ex vivo, and in vitro 

results, providing a platform to study personalized responses in a more 

comprehensive manner. 

 

  



 

 

2.4. Discussion 

This research highlights the current limitations of in-vitro models and 

underlines the urgent need for a more representative model to simulate the complex 

tumor microenvironment for large scale vascularized tissue or organoid models[38, 

41, 77]. Organ-on-a-chip technology holds significant promise in this regard[15, 68], 

especially when paired with 3D vascularized tumor models[78]. This novel approach 

allows for a more nuanced investigation of cellular behaviors in a controlled, yet 

physiologically relevant, tumor microenvironment[79]. 

The development of a vascularized tumor model, however, remains a 

considerable challenge[20, 32, 80]. The intricate network of the vasculature and its 

physiological functions are complex to replicate in an in-vitro platform due to the 

small scale of current vascularized tumor on a chips. Combination of rail-assisted 

structure and mesh-assisted structure provides an enhanced platform for culturing 

large scale vascularized tissues or organoids within tumor microenvironment. 

Through this research, a large-scale vascularized tissue mesh-assisted platform (VT-

MAP) have been developed. By leveraging fluid dynamics analysis derived from the 

previous rail-assisted approach, the limitations of scale hurdle have been overcome. 

Additionally, by introducing a new analysis method for multi-cluster’s viability and 

size relationship.  

Furthermore, VT-MAP demonstrates the potential to mimic the tumor 

microenvironment more realistically, which is characterized by dispersed clusters of 

various sizes rather than a single solid form. Unfortunately, most existing tumor drug 

screening models are limited to the culture of single spheroids in individual wells of 

a 96-well plate or tumor chip model. However, in this research, VT-MAP capable of 



 

 

accommodating clusters of various sizes within the tumor microenvironment was 

proposed, allowing for a more realistic simulation of in vivo conditions. This 

platform provides an environment and space where hundreds of clusters can grow 

with diverse shapes and sizes within a single well. Moreover, the heterogeneity of 

the clusters provides an opportunity to observe drug responses based on growth rate 

and viability. VT-MAP have been successfully developed that allows for the 

extraction of diverse data from a single well. 

VT-MAP and the new algorithm allow for a better understanding of the 

relationship between viability and cluster size, and enables more detailed analysis. 

In contrast, the previous algorithm had difficulties in capturing detailed information. 

These results demonstrate that the new algorithm has the ability to comprehensively 

analyze the relationship between cluster size and viability, providing valuable 

insights. Therefore, this research can contribute to a deeper understanding of 

organoid clusters and yield results that are more similar to in-vivo conditions.  



 

 

2.5. Conclusion 

In this research, we developed a large-scale vascularized tissue mesh-

assisted platform called VT-MAP and evaluated organoids within it. This platform 

overcomes the limitations of the previous rail-assisted model‘s approach and enables 

efficient co-culture of large-scale tissues, including vascularized tissues or organoids. 

VT-MAP mimics the complex tumor microenvironment where clusters of various 

sizes and shapes grow and interact. 

From the experimental results, VT-MAP has been demonstrated as a 

valuable tool for analyzing and interpreting various factors such as cluster size, 

viability, and drug responses. It allows for the investigation of the relationship 

between cluster size and viability, which was challenging in previous in-vitro models, 

and enables more detailed analysis. Importantly, the experimental results obtained 

with VT-MAP showed similarities to in-vivo conditions, distinguishing it from 

previous in-vitro models. This research contributes to the replication of a realistic 

tumor microenvironment and the investigation of cellular behaviors based on cluster 

size and viability using VT-MAP. Furthermore, VT-MAP accurately mimics the 

heterogeneity of organoid clusters and provides results that are more representative 

of in-vivo conditions, thus facilitating drug screening and drug screening research. 

In conclusion, VT-MAP serves as a realistic and advanced platform for 

studying large scale vascularized tissues or organoids, offering new insights into the 

tumor microenvironment. It enhances our understanding of cancer treatment and 

tumor biology, and can be instrumental in the development of personalized 

therapeutic strategies. 

  



 

 

Chapter 3. Deep Learning-driven Virtual Staining for 

High-throughput Microfluidic Angiogenesis Assays 

 

3.1. Introduction 

Organ-on-a-chip (OoC) technology has emerged as a promising platform for 

simulating human physiology and disease, with potential applications in drug 

screening and precision medicine. Microfluidic-based OoC systems have made 

progress in reproducing models of various organs similar to those in vivo, such as 

eyes [18, 81], intestines [82, 83], and tumor microenvironments [17, 38, 43]. 

However, their widespread adoption requires high-throughput screening capabilities, 

including mass device production, automated cell dispensing, and efficient data 

analysis [24]. Efforts are underway to increase compatibility with traditional 

laboratory equipment by integrating 3D co-culture systems within standard 

microplates [84, 85] and to improve robust cell dispensing methods through 3D 

printing and injection molding [44, 86, 87]. In particular, there are attempts to 

increase compatibility with existing labware or bioassays by building a cell co-

culture system within a microplate standard [42, 88, 89]. 

Despite advances in high-throughput experimental equipment, effective data 

acquisition and analysis remain a challenge in the field [90-92]. Fluorescence 

imaging of OoC systems provides rich information, making functional parameter 

analysis important. However, the current analysis process, which involves cell 

fixation, fluorescence labeling, and confocal microscope, is cumbersome and time-

consuming, with labeling results often yielding inconsistent results. 



 

 

Recently, deep neural networks have been applied to image enhancement for 

immunocytochemistry research and medical imaging. Deep learning methods for 

image reconstruction, including convolutional neural networks (CNNs) and 

generative adversarial networks (GANs) [93, 94], have been used in a variety of 

biomedical images, such as super resolution microscope [95, 96], tumor 

segmentation in Magnetic Resonance (MR) images [97], and virtual histological 

staining [98-100]. However, deep learning technology is still not widely used in the 

field of OoC [101-104], owing in part to the difficulty of obtaining a large number 

of high-quality images for training [105]. 

In this study, we present the development of label-free fluorescent image 

construction techniques using a GAN-based SegNet architecture. The process was 

performed using large-scale, high-quality images obtained on the high-throughput 

microfluidic cell culture platform, the VS-IMPACT (Virtual Staining-assisted 

Injection Molded Plastic Array 3D Culture System). In particular, we demonstrate 

the virtual staining for the vasculature, one of the most morphologically complex 

organs in the human body. Our machine learning architecture, based on a large 

dataset, successfully reconstructs brightfield images into artificial fluorescence 

images, offering a promising tool for high-throughput screening in various disease 

models and drug response evaluation in the field of OoC. 

 

  



 

 

3.2. Materials and Methods 

3.2.1. Design and manufacturing process for VS-IMPACT platform 

The injection molded angiogenesis platform was manufactured by injection 

molding. Polystyrene (PS) injection molding was performed at R&D Factory 

(Korea). The aluminum alloy mold core was machined by processing and polishing. 

The clamping force at injection was set at 130 ton at a maximum injection pressure 

of 55 bar, cycle time of 15 seconds, and a nozzle temperature of 220 °C. The device 

was completely made by adhering a film substrate to an injection molded PS 

microfluidic body. The alloy mold core was designed by Solidworks at Dassault 

System. 

 

3.2.2. Cell preparation 

Human umbilical vein endothelial cells (HUVECs; Lonza, Switzerland) 

were cultured in endothelial growth medium 2 (EGM-2; Lonza), and the cell passage 

numbers between 4 and 5 were used for experiments. Lung fibroblasts (LFs; Lonza) 

were cultured in fibroblast growth medium 2 (FGM-2; Lonza), and cell passage 

numbers between 5 and 6 times were used for experiments. The cells were incubated 

at 37 °C in 5% CO2 for 2–3 days prior to chip loading. Cultured HUVECs and LFs 

were detached from the culture dish using 0.25% trypsin–EDTA (HyClone, USA). 

The various cells were then re-suspended in bovine fibrinogen solutions at the 

concentrations required for each experimental model. 

 



 

 

3.2.3. Hydrogel and cell patterning 

Prior to device seeding, every device was plasma surface treated at 70 W for 

3 min to promote surface hydrophilicity (Femto Science, Korea). The central channel 

was patterned with 1 μl of acellular bovine fibrinogen solution (final concentration 

2.5 mg/ml; Sigma, USA) which was added to 2% of bovine thrombin solution (0.5 

U/ml, Sigma). Subsequently, 3 μl of the LFs (final concentration: 6 million cells/ml) 

and fibrinogen/thrombin mixture were patterned in the upper side channel. And the 

HUVECs suspension (final concentration: 3million cells/ml) was patterned in the 

lower side channel. Patterned chips were tilted until HUVECs were fully attached to 

the central acellular fibrin gel. Each media reservoir was filled with 100 μl of the 

growth medium after 15 minutes. The growth medium was changed every day. In 

order to generate shear stress and interstitial flow, all medium from the lower 

reservoir was removed and 100 μl of medium was injected only into the upper 

reservoir [106].  

 

3.2.4. Immunocytochemistry 

The samples in the device were fixed with 4% (w/v) paraformaldehyde 

(Biosesang, Korea) in PBS (Gibco, USA) for 15 min, followed by permeabilization 

with 20 minutes of immersion in 0.15% Triton X-100 (Sigma). The samples were 

then treated with 3% BSA (Sigma) for 1 h. Endothelial cell (EC)-specific staining 

was performed using 488 fluorescein-labeled Ulex Europaeus Agglutinin I (Vector, 

UK), which was prepared at a 1:500 ratio of dye in BSA for 12 h at 4 °C. 

 



 

 

3.2.5. Image data collection and post processing 

Imaging was performed using confocal microscope (Nikon Ti-2, Japan) to 

produce slice and z-stackable images of the angiogenesis for generating paired 

brightfield images and fluorescent images. High-throughput imaging software 

(Nikon High Content NIS-Elements Package, Japan) was used for high-speed, 

automated, well-plate formatted acquisition and efficient data management. Fiji 

(http://fiji.sc), an open-access software, was used to analyze the confocal images. 

Confocal 3D images were converted to 2D images by z-projection, then cropped to 

a defined region of interest. 

 

3.2.6. Automatic image data analysis 

For better data quantification, fluorescence images of angiogenesis had to be 

pre-processed. It was hard to get a clear result because the images had noise made 

by brightness variation, contrast difference, and tiny particles. The entire process of 

picture quantification is depicted in Figure 3.5. Image blurring was the first step in 

removing noise, which included averaging filtering, median filtering, Gaussian 

filtering, and so on, but in order to get the shape of the original vessel area, Gaussian 

filtering was used with the Python OpenCV library, which reliably preserved the 

value of the contour of vessels. The primary goal of gaussian filtering was to improve 

value uniformity, as fluorescent images of angiogenesis had nonuniform values 

overall. Following that, a proper threshold's binary value was entered to extract only 

the actual vessel area, compensating for the spreading of vessel value as blur and 

removing noise with a low fluorescence value. Even after Gaussian filtering and the 

binary threshold process, the angiogenesis image contained numerous black blobs 

http://fiji.sc.)/


 

 

due to the nonuniformity of the value inside the angiogenesis area and white blobs 

from outside. 

As a result, the algorithm in OpenCV with the Find-contour library was used 

to remove small islands or blobs of particles below a certain level of area. The 

skeletonization algorithm was used to extract a skeleton of 1 pixel size from a binary 

image of a vessel [107]. The total number of vessels and the number of angiogenesis 

endpoints may be easily determined using the vascular skeleton image. For rational 

counting of endpoints, our algorithm computed an average of the points' distances 

from the baseline in the top 20% of endpoints and set 50% of the average as the 

standard point to sort the endpoints that were growing more than others. The 

analytical algorithm enabled automatic quantification of the several parameters’ 

tendency in images of angiogenesis. The entire quantification data were plotted by 

PRISM (GraphPad Prism 9). 

 

3.2.7. Network architecture 

A network structure based on the pix2pix network is used to convert 

unstained images into corresponding stained images. The network was configured 

based on SegNet instead of U-Net. Both networks have an encoder-decoder structure 

in common and consist of three paths. The first is the contracting path (left layers in 

Figure 3.2), which is composed of a continuous convolutional layer and a 

maxpooling layer and plays a role in capturing the overall context information of the 

image while continuously reducing the size of the image through downsampling. 

The second is an expansion path (right layers in Figure 3.2) that has the same 

symmetrical structure as a contracting path. It serves to up-sample the down-sampled 

image to its original size while passing through the contracting path. The third is the 



 

 

skip connection path and corresponds to the red arrow connecting the contracting 

path and the expansive path in Figure 3.2. This path serves to provide information 

from a corresponding layer on a contracting path to a layer of an expansive path by 

one-to-one correspondence between the layers of the contracting path and the 

expansive path, so that the associated local information is included when performing 

upsampling. 

The main difference between U-Net and SegNet is the difference in 

information provided through the connection path. In U-Net, the output of the 

corresponding layer on the reduced path is provided to the extension path through 

the connection path, and in the extension path, the transmitted information is 

concatenated with the output of the previous layer on the extension path [108]. On 

the other hand, in the case of SegNet, the index information of the maxpooling 

operation performed in the corresponding layer on the reduction path is transferred 

to the corresponding layer on the extension path, and in the extension path, 

upsampling is performed by inversely applying the index information [59]. In this 

paper, only the size of the input layer and the output layer were modified to fit the 

data. Since the encoder layers of SegNet are the same as the well-known VGG16 

network, transfer learning was performed by applying the weight of the previously 

learned VGG16 network [109]. The hyperbolic tangent function tanh was applied as 

the activity function of the final layer. PatchedGAN technique was applied to the 

discriminator as shown in Figure 3.2. PatchedGAN is a technique in which the 

discriminator divides the image into small patches, determines the authenticity of 

each patch, and adopts the average of the discriminant values instead of 

discriminating the entire generated image.  



 

 

3.3. Results 

3.3.1. VS-IMAPCT: High-throughput screening using large-scale cell 

culture systems and deep learning-based virtual staining. 

Conventional fluorescent staining for the angiogenesis model typically 

involves several procedures, including cell fixation, membrane permeabilization, 

blockage, and fluorescent antibody tagging. Additionally, widefield fluorescent 

microscope has limitations in detecting 3D organ structures over 100 mm in height. 

Our approach, on the other hand, employs a neural network architecture and a virtual 

fluorescent staining process that eliminates the need for conventional fluorescent 

staining or confocal microscope. Specifically, our architecture is trained to convert 

transmitted (brightfield) microscope images into fluorescent images, a process that 

takes only a few milliseconds per image (as shown in Figure 3.1A). 

Machine learning-based image analysis typically requires hundreds of pairs 

of brightfield and fluorescence images, which can be challenging to obtain. To 

address this, we developed VS-IMPACT, which can achieve high-throughput 

screening using deep learning-based virtual staining of large-scale data obtained 

from injection-molded plastic array 3D culture platforms and automated data 

analysis (as shown in Figure 3.1C and D). The plate-scale microfluidic design we 

developed contained 28 samples, which has the potential to expand experimental 

yields for high throughput 3d cell culture (as shown in Figure 3.1B). Figure 3.1B 

shows the internal structure of each well, which consists of three microchannels: the 

center channel, lower channel, and upper channel.  

We obtained image data from the VS-IMPACT platform using confocal 

microscope, which resulted in 1,036 paired, z-stacked images (brightfield and 



 

 

fluorescent) that are each 512 x 512 pixels. Three images can be acquired in a single 

unit, and they are stitched together into a continuous image for integration of the 

complete image. The resulting image is resized to 1024 x 384 pixels for effective 

machine learning processing. We separated the dataset into training and test sets 

consisting of 828 and 208 pairs, respectively. 

  



 

 

 

Figure 3.1. Workflow of deep learning-based virtual fluorescence staining and high 

throughput analysis. (A) Standard immunocytochemistry process with confocal 

microscope and virtual staining process for developing label-free fluorescent image. 

(B) Photographic and schematic image of VS-IMPACT chip. VS-IMPACT consists 

of 28 wells, accommodates high-throughput angiogenic sprout screening. Total of 

1036 paired (brightfield, fluorescence) images were obtained. (C) High-throughput 

staining & imaging via deep neural network. (D) Angiogenesis analysis algorithm 

for evaluating virtual staining images. (Scale bar = 200𝜇m) 

  



 

 

3.3.2. Exploring neural network architectures for image conversion.  

An encoder-decoder network is a neural network architecture where an 

encoder and a decoder are connected in a symmetrical manner, as shown in Figure 

3.2. The encoder is responsible for encoding the input into a specific state, while the 

decoder generates the output from this state. Encoder-decoder networks are widely 

used for image conversion purposes, where the input image is transformed into 

another image having the same underlying structure. In an encoder-decoder network 

for image conversion, the encoder is usually composed of several convolutional 

layers, and the decoder is composed of symmetric layers as the encoder. The input 

image is downsampled while passing through successive layers of the encoder, and 

then upsampled again while passing through the decoding layers. 

In most image conversion problems, the input and output images have a lot 

in common, and this common information needs to be passed to the output layer by 

skipping the network layers. To accomplish this, network structures that add a skip 

connection to the encoder-decoder network are used. U-Net or SegNet generates 

output by adding a skipping connection to the encoder-decoder structure and 

receiving global information from the encoded state and local information from the 

skipped connection. In the case of U-Net, the output of the corresponding layer is 

transmitted through the skipped connection, and in the case of SegNet, the index 

information of the max pooling operation is transmitted. 

GAN is a neural network architecture based on Minmax game theory that 

optimizes the perceptual-level loss function by learning a generative model and an 

adversarial discriminative model simultaneously. GAN is widely used in the field of 

medical image processing, and its effectiveness has been proven for many problems 

such as image super-resolution reconstruction and brightfield holography. 



 

 

Conditional GAN (cGAN) is the conditionalization of the generated model and the 

discrimination model with additional information in the GAN. The objective 

function of cGAN is expressed as follows. 

 

𝓛𝒄𝑮𝑨𝑵(𝑮, 𝑫) =  𝔼𝒙,𝒚[𝐥𝐨𝐠 𝑫(𝒙, 𝒚)] + 𝔼𝒙,𝒛[𝐥𝐨𝐠(𝟏 − 𝑫(𝒙, 𝑮(𝒙, 𝒛))]       

Equation 5 

 

Here, x and y are a pair of an image to be converted and a target image 

corresponding to the image, and z is a random vector. The generative model G 

minimizes this objective function for the hostile discriminator D, which aims to 

maximize this objective function. cGAN does not directly compare the image used 

for conditioning with the generated image. In other words, instead of directly 

providing a metric that determines how close the generated image is to the target 

image, it expects the discriminator to create such a criterion. On the other hand, in 

the pix2pix network, we directly add a loss function to the cGAN that represents the 

difference between traditional images, such as L1-distance. Unlike general cGAN 

applications, this is possible when a target image is present. That is, the objective 

function is as follows. 

 

𝓛𝑳𝟏(𝑮) =  𝔼𝒙,𝒚,𝒛[‖𝒚 − 𝑮(𝒙, 𝒛)‖𝟏]                        Equation 6 

 

Our final objective is 

𝑮∗ = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝑮

𝐦𝐚𝐱
𝑫

𝓛𝒄𝑮𝑨𝑵(𝑮, 𝑫) +  𝝀𝓛𝑳𝟏(𝑮).              Equation 7 

 



 

 

In addition, the pix2pix network is different from cGAN in that it replaces 

the random vector z with the dropout layer and applies the PatchGAN technique to 

the discriminator. It is known that the PatchGAN has the effect of allowing the loss 

function to focus on precise details rather than the overall context of the image, that 

is, the high-frequency region of the image. This is related to the intention that the 

loss function comparing the target image and the generated image focuses on the 

overall contents of the image, and the discriminator focuses on the partial details of 

the image. 

  



 

 

 

Figure 3.2. Structure of SegNet architecture design. Generator has an encoder-

decoder structure based on SegNet network, which consist of three paths(contracting 

path, expansive path, skip connection path). Discriminator optimizes the perceptual-

level loss function by learning a generative model and an adversarial discriminative 

model at the same time. 

  

  



 

 

3.3.3. Loss functions for generating virtual immunostaining images 

of blood vessels. 

The loss function is largely composed of GAN loss (LcGAN), which expresses 

the discriminator's loss, and image loss (Limage), which compares the target image 

and the generated image. The choice of loss function is a key factor in the design of 

a neural network. For example, the most widely used traditional L2-norm is known 

to tend to produce rather blurry images. The pix2pix network applied the L1 loss 

function and showed that it produced a sharper image compared to L2. In addition 

to the traditional L1 and L2, there are metrics that focus on the perceptionally-

motivated image. Representative examples include the structural similarity index 

(SSIM) and the multiscale structural similarity index (MS-SSIM). SSIM is a metric 

that reflects the intention to measure the perceived quality of an image. While 

traditional mean squared error (MSE) or peak signal-to-noise ratio (PSNR) measures 

absolute error, SSIM is a model that measures the perceived change in structural 

information of an image. Since the human visual system is specialized in deriving 

structural information from images, the degree of distortion of the structural 

information has the greatest effect on the perceived quality. SSIM is calculated for a 

constant-sized window on the image and averages them to calculate an estimate of 

the structural difference between the two images. For two windows x and y, SSIM 

is defined as follows. Here, 𝜇𝑥 and 𝜇𝑦 are the averages of the pixel values of x and 

y, respectively, 𝜎𝑥
2  and 𝜎𝑦

2  are the variance of the pixel values, 𝜎𝑥𝑦  is the 

covariance, and 𝑐1 and 𝑐2 are constants for solving the division by zero error. 

𝑺𝑺𝑰𝑴(𝒙, 𝒚) =  
(𝟐𝝁𝒙𝝁𝒚+𝒄𝟏)(𝟐𝝈𝒙𝒚+ 𝒄𝟐)

(𝝁𝒙
𝟐+ 𝝁𝒚

𝟐+ 𝒄𝟏)(𝝈𝒙
𝟐+ 𝝈𝒚

𝟐+ 𝒄𝟐)
                  Equation 8 

 



 

 

Multiscale SSIM (MS-SSIM), an extended form of SSIM, is the addition of 

a scale space to SSIM, and after calculating SSIM at several scales, the final value 

is obtained by weighting it. As a result, the loss function considered in this paper can 

be expressed as follows. 

𝐿 = 𝑤𝐺𝐴𝑁 ∗ 𝐿𝐺𝐴𝑁 + 𝑤𝐿1 ∗ 𝐿𝐿1 + 𝑤𝐿2 ∗ 𝐿𝐿2 + 𝑤𝑆𝑆𝐼𝑀 ∗ 𝐿𝑆𝑆𝐼𝑀 + 𝑤𝑀𝑆−𝑆𝑆𝐼𝑀

∗ 𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 

Equation 9 

 

In our study, we reconstructed virtually stained images for two SegNet-only 

conditions using L1 and L2 loss functions and four conditions with MS-SSIM, SSIM, 

L1, L2 loss and GAN loss added as described in Figure 3.3A. We called the images 

from the deep learning network "virtual immuno-staining images." Figure 3.3B 

demonstrates how the loss for each condition gradually decreases as epochs run. It 

begins to decline dramatically around epoch 50, then gradually declines. The loss 

value did not significantly decrease after epoch 150. Virtual immunostaining images 

were generated using the weight values at this point from the input image. The left 

side of Figure 3.4 shows the result of generating the virtual staining image under six 

conditions. However, there are significant variations across the conditions when 

evaluating the micro vessel's characteristics, such as each endpoint, network, branch, 

and tortuosity. Therefore, it is necessary to confirm how much the difference 

between these images affects the analysis process. 

  



 

 

 

Figure 3.3. Virtual immunostaining images from various loss functions. (A) Loss 

function conditions from L1 and L2 loss only to L1, L2, SSIM and MS SSIM loss 

with GAN loss. (B) The values of loss functions were plotted with every epoch up 

to 300 epochs. 

 

  



 

 

 

Figure 3.4. Detailed image between input, ground truth and virtual 

immunostaining images with different loss conditions. Enlarged comparison 

images between ground truth and virtual immunostaining images with (A) 

Endpoint, (B) Network (C) Branch and (D) Tortuosity. (GT: Ground truth, 1: L1 

loss, 2: L2 loss, 3: L1 loss + GAN, 4: L2 loss + GAN, 5: SSIM + GAN, 6: 

MSSSIM + GAN, Scale bar = 𝟐𝟎𝟎𝝁m) 

  



 

 

  



 

 

3.3.4. Evaluating virtual immunostaining images using six loss 

conditions. 

The difference between the input image, the GT, and the virtual image under 

six loss conditions is depicted in Figure 3.4. The image displays four distinct regions 

that highlight the major discrepancies in endpoint, network, branch, and tortuosity. 

The endpoint (Figure 3.4A) refers to the termination point of angiogenic sprouts, 

while the network (Figure 3.4B) represents the intersection point of the vascular 

networks. The branch (shown in Figure 3.4C) is the line that connects two vessels, 

and the tortuosity (shown in Figure 3.4D) is the main part of the vessel. 

In some cases, the number of endpoints in the virtual fluorescent images may 

appear to be less clear than in the input image. This is because the endpoints in the 

input image are usually thinner than the main vessel. As the endpoints pass through 

the network, the information on their numbers is lost, causing them to move away 

from the GT image, as the white arrow in Figure 3.4A shows. 

Despite these challenges, the virtual image successfully reproduces the 

morphology of the blood vessels, as can be seen in Figure 3.4B and 4C. The virtual 

blood vessel is implemented correctly when the input image vessel is thick, but 

details are lost when the input image vessel is thin. There is minimal error in the 

dominant blood vessel, with only the detail of the small blood vessel being lost, 

which does not significantly impact the quantitative analysis. However, in Figure 

3.4D, the area disappears entirely due to the neural network's inability to adequately 

learn due to the input image's brightness, leading to a lower overall area value 

compared to the actual area. 

Comparing the virtual immunostaining images to the GT images, the images 

have similar morphology macroscopically, but there are discrepancies in the level of 



 

 

detail at the local scale. Conditions 1 to 6 in Figure 3.4 display the virtual 

immunostaining images with varying levels of detail. Conditions 1 and 2 depict a 

general vascular morphology, but the outline and interior of the vessels are blurred, 

with faint discoloration in luminance. The background and endpoint remain blurred, 

making it difficult to distinguish them clearly. Conditions 3 and 4 have a brighter 

interior and a slightly more distinct outline than conditions 1 and 2, but the endpoint 

still makes it challenging to distinguish between blurred endpoints and the black 

background. 

Conditions 5 and 6, on the other hand, display a remarkable resemblance to 

the GT, with a prominent outline and a bright interior. The endpoints exhibit a 

distinct morphology and can be easily counted. Among the conditions, Condition 5 

represents the optimal loss condition for application in virtual staining networks, as 

it implements a vessel morphology nearly identical to the GT. 

 

  



 

 

3.3.5. Developing automated angiogenesis analysis algorithms. 

In comparison to traditional 2D images, fluorescence images in OoC often 

exhibit higher levels of noise due to their three-dimensional nature. While the 

development of confocal microscopes has reduced noise caused by device thickness, 

excessive noise remains a challenge for efficient analysis (Figure 3.5). The accuracy 

of the image analysis tool and the labor-intensive analysis process are factors that 

have negatively impacted the usability of OoC. To address this issue, we present a 

method for reducing noise in stacked confocal images using the VS-IMPACT. This 

allows for the accurate recognition of blood vessel areas and a quick analysis of the 

number of sprouts, endpoints, and blood vessel length. The study processed 208 test 

images and applied a quantification algorithm to determine the results as shown in 

Figure 3.6A, which were then normalized against ground truth (GT) values. Figure 

3.6B to 5D illustrate the normalized distribution of the virtual immunostaining 

images for each loss condition, where the X-axis represents loss conditions (L1, L2, 

L1 + GAN, L2 + GAN, SSIM + GAN, and MS-SSIM + GAN) and the Y-axis 

represents normalized values, with 1.0 being the ground truth standard. The average 

area value for each condition ranges from 0.74 to 0.95, with values for all conditions 

ranging from 0.60 to 1.20 (Figure 3.6B). Differences in area levels are attributed to 

differences in brightness between the internal area of the blood vessel and the ground 

truth, as shown in Figure 3.4. The range of length values is from 0.65 to 1.18, with a 

mean ranging from 0.77 to 1.00 (Figure 3.6C). The variation in endpoint values is 

greater than that of the other two parameters. 

  



 

 

 

Figure 3.5. Angiogenesis quantification algorithm process. Start from 

preprocessing grayscale image by Gaussian Blur and Threshold binary to 

skeletonization network. Then skeletonization network is classified under three 

categories (sprout length, tip cell number, vascular area). 

 

  



 

 

 

Figure 3.6. Evaluation of predicted model. (A) Angiogenesis quantification 

algorithm process for high-throughput analysis. (B) vessel area, (C) length and (D) 

endpoint sprout distribution number are plotted by box & whiskers with 208 test 

dataset in each condition. (GT: Ground truth, 1: L1 loss, 2: L2 loss, 3: L1 loss + 

GAN, 4: L2 loss + GAN, 5: SSIM + GAN, 6: MSSSIM + GAN) 

  



 

 

3.3.6. Classifying endpoint distribution for accurate assessment of 

virtual immunostaining images. 

To accurately assess the quantitative trend of virtual staining images, a new 

reference point, the endpoint sprout distribution, was introduced. The endpoint 

sprout distribution was used to quantify the actual degree of blood vessel growth, 

and its value was found to remain relatively unchanged even when the number of 

endpoints was altered. In this study, the endpoint sprout distribution was classified 

into three cases, A, B, and C, based on the length of the sprout and the size of the 

area (as shown in Figure 3.6D). 

With a value of 318.55, case A had the highest average endpoint sprout for 

the GT. The distribution of average values for the six conditions when normalized 

to GT ranged from 88.44 to 94.01 %. Case B had an average GT of 269.92, with a 

distribution of six conditions ranging from 95.21 to 101.48 % when normalized to 

GT. Case C had the lowest average endpoint sprout among the cases, with a value of 

188.44 for GT. The distribution of six conditions when normalized to GT ranged 

from 94.10 to 110.23 %. And all images of case A, B, and C with GT and six 

conditions are shown in Figure 3.7. 

The results of the endpoint sprout inclination can be used as a metric to 

compare GT to other conditions. This approach allows for the average sprout 

distribution value of the test set to be quantified across all conditions. 

  



 

 

 

Figure 3.7. Input image, ground truth and six virtual immunostaining images from 

input images in case A, B and C with difference vessel growth height. (GT: Ground 

truth, 1: L1 loss, 2: L2 loss, 3: L1 loss + GAN, 4: L2 loss + GAN, 5: SSIM + GAN, 

6: MSSSIM + GAN, 𝟐𝟎𝟎𝝁m) 

 

  



 

 

3.3.7. Evaluation of image quality and accuracy in loss functions for 

virtual images. 

The accuracy of loss functions was assessed using image quality 

measurements based on L2 loss for each test set pair and total quantification data for 

area, length, and endpoint distribution. The mean square error (MSE) between the 

virtual images and the GT images was utilized as a metric for image quality 

evaluation (as shown in Figure 3.8A). The average MSE was 0.049, 0.048, 0.053, 

0.050, 0.052, and 0.072 from condition 1 to 6, with conditions 1 to 5 having similar 

MSE values ranging from 0.048 to 0.052. 

When analyzing the average quantification data of area, length, and number 

as shown in Figure 3.8B, it was found that condition 5 was the most accurate, with 

normalized values of 0.887, 0.903, and 1.015, respectively, which were all close to 

the ground truth value of 1.000. In comparison, condition 1 had values of 0.863, 

0.822, and 0.945, while condition 2 had values of 0.951, 0.867, and 0.959. Condition 

3 had values of 0.748, 0.774, and 0.975; condition 4 had values of 0.872, 0.862, and 

0.951; and condition 6 had values of 0.816, 1.002, and 0.974. These values were 

generally lower compared to those in condition 5, indicating lower accuracy (Figure 

3.8C). 

In conclusion, condition 5 was found to have the highest accuracy among the six 

conditions in terms of area, length, and number measurements, as evidenced by its 

highest values for all three components. The other conditions had values that were 

generally lower, suggesting lower accuracy.



 

 

 

Figure 3.8. Total quantification data normalized by ground truth. (A) Image quality 

measurement shows mean square error graph between ground truth images and 

virtual immunostaining images plotted by box & whiskers (B)  The six conditions’ 

quantification score are shown in three main components. (C) Total score of six 

conditions. (1 : L1 loss, 2 : L2 loss, 3 : L1 loss + GAN, 4 : L2 loss + GAN, 5 : SSIM 

+ GAN, 6 : MSSSIM + GAN) 

 

  



 

 

3.3.8. Virtual live cell imaging by optical microscope brightfield 

images 

Applying virtual staining only to fixed samples is a good approach to 

address the bottleneck of the imaging system. However, it has the limitation of using 

data from a fixed state of the samples, making it difficult to obtain information about 

the previous stages of the process while angiogenesis step or vasculogenesis. To 

overcome this issue, we applied virtual staining to real-time live cell imaging. For 

live cell imaging, stitching the three images used in SegNet is inefficient, so we 

utilized single images obtained from the microscope (Figure 3.9A). The network 

suitable for the 1:1 ratio single image is a U-Net network based on the pix2pix 

architecture, which is commonly used in biological staining. We virtually stained 

and quantified the 1:1 ratio images of angiogenesis using both SegNet and U-Net for 

comparison (Figure 3.9B). The overall score of U-Net was 0.952, while SegNet 

scored 0.877. Therefore, we used U-Net for virtual staining of angiogenesis images 

at a 1:1 ratio. 

In live cell imaging, confocal microscope is commonly used for high-

quality results. However, confocal microscope, while providing high-quality 

fluorescent images, is not suitable for imaging many samples due to its high cost and 

slow performance. On the other hand, optical microscope is more affordable and 

offers faster performance, although the quality of fluorescent images is lower. Also, 

due to the size of the equipment, an optical microscope is ideal for observing sample 

growth in real time inside the incubator. Therefore, we suggested a strategy to 

combine the advantages of both types of microscopes. We utilized the brightfield 

and fluorescent image datasets obtained from the confocal microscope to train a U-

Net network, creating a pre-trained virtual stain network. Through transfer learning, 



 

 

we can input optical microscope brightfield images into this network to generate 

virtual staining images. These virtual staining images can mimic the fluorescent 

images from a confocal microscope when using an optical microscope (Figure 3.10) 

and enhance the quality of optical microscope images by virtually staining them with 

the characteristics of confocal microscope fluorescence images. 

 Figure 3.11A represents the results of virtual real-time live cell imaging. 

We installed an optical microscope inside the incubator to capture angiogenesis 

processes only using brightfield images, displaying the results at 10-hour intervals 

over a total of 50 hours. By comparing the virtual stained images with the brightfield 

images, we can accurately identify the vascular areas and observe the growth process 

clearly. For quantitative analysis, we quantified the virtual staining at one-hour 

intervals and presented the results in a graph in Figure 3.11B. This sample was not 

subjected to any separate drug treatment, and the area and length measurements show 

a linear increase, accurately reflecting the observed trends. The endpoint 

measurement reflects the gradual increase at the end of blood vessels, where 

differentiation does not occur continuously. The branch measurement, a parameter 

indicating the branching of blood vessels, demonstrates little change in more 

developed vessels, effectively capturing the observed pattern. 

  



 

 

 

Figure 3.9. U-Net network based on pix2pix structure and quantification results 

between SegNet and U-Net. (A) U-Net network for 256 x 256 image set. Virtual live 

cell staining was challenging to apply in real-time with a 3 x 1 stitching approach. 

Therefore, the models were trained using single images of size 256 x 256. (B) U-Net 

and SegNet were trained on 256 x 256 images and compared based on quantitative 

analysis. The results revealed that U-Net outperformed SegNet, demonstrating 

superior performance in the task at hand. 



 

 

 

Figure 3.10. The differences between confocal and optical microscopes and transfer 

learning a network trained on a confocal microscope dataset to an optical microscope 

brightfield. It is a transfer learning that applies a virtual stain network trained with a 

confocal microscope dataset to optical microscope brightfield images. This enables 

virtual staining of confocal microscope fluorescence images with the quality of 

optical microscope brightfield images, which are easy to take, and can be used for 

real-time live cell imaging. 

  



 

 

 

Figure 3.11. Virtual live cell imaging results and quantification. (A) The results 

show the application of virtual staining on real-time images captured at one-hour 

intervals during the angiogenesis process. We selected images at 10-hour intervals 

from the total of 50 hours to display. (B) This figure presents a graph plotting the 

four parameters of the actual blood vessels over time, quantified from the virtual live 

cell images. These four parameters are used to quantitatively measure the 



 

 

characteristics of the blood vessels. It shows the changes over the course of 50 hours, 

allowing us to observe the trends for each parameter. 

  



 

 

3.4. Discussion. 

The utilization of OoC in drug development and as a preclinical model is the 

subject of ongoing discussions. One of the challenges that remains to be addressed 

is the standardization of data analysis [24, 110, 111]. The data analysis process in 

OoC is prone to errors due to various factors that influence the image generation and 

analysis process. To address this issue, machine learning techniques are being 

applied to perform morphological analysis of cells or organoids with simple 

structures [112, 113]. In this study, we have successfully applied machine learning 

morphological analysis to one of the most complex organs, the vasculature. 

The complexity of the micro-vascular structure, including networks, 

endpoints, and tortuosity, presents numerous factors to consider in the morphological 

analysis of 3D blood vessels. Furthermore, the uneven brightness of the 3D vessel 

images makes it difficult to acquire precise blood vessel data through straightforward 

skeletonization. To overcome these challenges, we developed an algorithm that 

enhances the quantification method and preprocessing steps to provide more 

accurate data. The integration of mass producible OoC, deep neural networks, and 

analytics algorithms streamlines protocols and shortens the process. 

Our study developed a high-throughput analysis process that uses widely 

adopted elimination, skeletonization, and binarization techniques. Our algorithm 

analyzes the number of endpoints, length, and area of angiogenesis, which are used 

as standard indicators for vascular morphology analysis. The images generated by 

deep learning were used to verify the results of the algorithm. Through the deep 

learning architecture with six objective functions, we generated 208 pairs of test 

images. A qualitative evaluation showed the most images in the six conditions 

maintained the overall shape and branching structure, although there was some loss 



 

 

of detailed information compared to the ground truth image. The model without 

GAN loss weighting showed significant differences from the actual fluorescence 

image, while the GAN loss-weighted model was difficult to distinguish from the 

actual stained image, especially with the SSIM and MS-SSIM loss models (Figure 

3.4). 

Traditional manual counting methods and commonly used angiogenesis 

evaluation tools, such as AngioTool [114, 115], are labor-intensive and subjective, 

requiring different parameters for each image. These tools are also limited to flat 2D 

blood vessels, making it challenging to evaluate 3D blood vessel data. Our system, 

VS-IMPACT, provides a specialized analysis tool for 3D blood vessels, from 

imaging to quantification. The system's method can replace the current 

immunocytochemistry process, allowing for non-destructive real-time imaging and 

the evaluation of 3D vasculature characteristics, which is useful for high-throughput 

drug screening and creating a visible microenvironment. Additionally, the non-

destructive real-time imaging enables the end-user to continuously track the growth 

of a 3D micro-vascular network while acquiring quantitative data. 

Our research significantly shortened the data acquisition and analysis 

processes in OoC. We acquired many images of complex vascular networks using 

the high-throughput VS-IMPACT. Brightfield images were quickly acquired 

without fluorescence filters or lasers, and the vascular network was specified through 

the virtual staining process using the deep learning architecture. This algorithmic 

analysis tool measures the morphological characteristics of angiogenesis without 

human intervention, establishing a standardized protocol for data processing in OoC, 

leading to significant time savings and error reduction. 



 

 

Moreover, we explored the potential and usefulness of virtual live cell 

imaging. We performed brightfield imaging using a real-time microscope and 

generated virtual stained images using U-Net. Through this approach, results like 

confocal microscope fluorescence images were obtained from an optical microscope. 

Additionally, by quantifying and graphing the four parameters of the actual blood 

vessels, we were able to accurately track the growth and differentiation processes of 

the angiogenesis. These results demonstrate the feasibility of virtual staining in the 

field of real-time live cell imaging and highlight the utility of combining the 

advantages of optical microscope with the fluorescence imaging quality of confocal 

microscope. Therefore, virtual staining for real-time microscope imaging holds great 

promise as an important tool in biological research and medical applications. 

 

  



 

 

3.5. Conclusion. 

In this study, we aimed to advance high-throughput OoC experimentation 

by introducing the innovative VS-IMPACT platform. This platform allows us to 

obtain large-scale brightfield images of target objects without the use of fluorescent 

staining. The images undergo a deep learning-based virtual staining process and 

virtual live cell imaging that characterizes the objects as if they were stained using 

traditional methods. Additionally, we optimized our algorithmic measurement tool 

to provide automated morphological analysis, eliminating the need for manual 

intervention. We successfully demonstrated the feasibility and efficacy of our 

approach through its application to the complex structure of 3D blood vessels. Our 

proposed model has the potential to streamline post-processing steps in various fields 

of cell culture research, including OoC experiments. Furthermore, the non-

destructive real-time analysis of living cells offers various avenues for analysis, such 

as evaluating immune-mediated tumor killing. 

  



 

 

Chapter 4. Concluding remarks 

 

In recent years, organ-on-a-chip technology has emerged as a 

transformative approach for advancing drug development and precision medicine. 

Organ chips, also known as microphysiological systems, are innovative platforms 

that aim to replicate the structural and functional characteristics of human organs in 

vitro. These microfluidic devices offer a unique opportunity to study complex 

biological processes by incorporating various cell types and mimicking the 

physiological conditions found in vivo. Organ chips have revolutionized traditional 

in vitro models by providing a more accurate representation of human physiology 

compared to conventional cell culture systems. They enable the integration of 

multiple cell types, including parenchymal cells, endothelial cells, and immune cells, 

allowing for the recreation of organ-specific microenvironments. By recapitulating 

the organ's architecture, cell-cell interactions, and tissue-specific functions, organ 

chips provide a sophisticated tool for studying organ-level responses and drug effects. 

Despite their tremendous potential, organ chips face certain limitations that 

need to be addressed. One notable challenge is the development of vascularized 

tissue models within organ chips. The inclusion of functional blood vessels is crucial 

for replicating the complex physiological processes that occur within organs. While 

existing vascularized spheroid models have been successful in co-culturing small-

scale tumors, they are not well-suited for achieving large-scale vascularized organoid 

models. This limitation hinders the scalability and clinical relevance of these models.  

In chapter 2, to address the limitations of existing organ chip technology, I 

propose the Vascularized Tissue Mesh-Assisted Platform (VT-MAP) as an 

innovative solution. The VT-MAP combines the advantages of the existing rail-



 

 

assisted structure with the mesh-assisted structure, enabling the development of 

large-scale vascularized tissue or organoid models. By incorporating both structures, 

VT-MAP offers enhanced scalability and adaptability, making it well-suited for 

accommodating the complex and dynamic nature of vascularized tissues. VT-MAP 

holds great promise in advancing drug screening and precision medicine research. It 

provides an environment that closely resembles in vivo and ex vivo conditions, 

offering a valuable tool for studying the drug response evaluation of cells in a more 

physiologically relevant context. By maintaining high reproducibility and scalability, 

VT-MAP enables the investigation of large-scale vascularized organoid models, 

bridging the gap between traditional in vitro models and the complexity of in vivo 

systems. This platform not only allows for the cultivation of vascularized tissues or 

organoids but also facilitates the study of various biological processes, including 

angiogenesis, tissue development, and disease progression. 

The implementation of VT-MAP in drug development and precision 

medicine research offers exciting opportunities to improve our understanding of 

human physiology and advance therapeutic interventions. By overcoming the 

limitations of existing models, VT-MAP provides a powerful tool for studying 

complex biological systems and evaluating drug efficacy and safety with higher 

accuracy and reliability. With its ability to replicate large-scale vascularized tissue 

models, VT-MAP has the potential to transform the field of organ-on-a-chip 

technology and drive advancements in personalized medicine and drug discovery. 

Another limitation lies in the imaging systems used in these platforms. As 

throughput has increased, imaging systems, particularly confocal microscopes 

commonly used in organ chips, have struggled to keep up with the growing demand. 

Cost and performance limitations have resulted in a bottleneck in capturing all the 



 

 

necessary data. To address these limitations, I propose a solution in chapter 3. The 

thesis introduces the Virtual Staining-assisted Injection Molded Plastic Array 3D 

Culture System (VS-IMPACT), a high-throughput microfluidic system that 

leverages deep learning-based virtual staining techniques. The VS-IMPACT 

platform integrates various processes, ranging from large-scale image data 

acquisition to quantitative analysis of angiogenesis, providing a valuable tool for 

pharmaceutical and biological research. With the capability to transform brightfield 

images into label-free virtual fluorescence images, VS-IMPACT eliminates the need 

for traditional staining methods, enabling effective live cell imaging without the cell 

fixation process. This revolutionary approach not only improves experimental 

efficiency but also allows for the evaluation of responses to angiogenesis inhibitors 

or anticancer drugs in the tumor microenvironment. By providing reliable and 

reproducible vascular images, VS-IMPACT offers a high-throughput solution for 

studying angiogenesis and its modulation in the context of tumor development and 

treatment.  

Moreover, I have extended the concept of virtual staining and integrated it 

with a live cell imaging system, enabling the establishment of real-time virtual live 

cell imaging using only brightfield images. Unlike conventional methods that require 

fixing the samples at specific time points, our approach allows for the acquisition of 

data throughout the entire growth process of the samples. By eliminating the need 

for immunocytochemistry process for cell staining, we can obtain valuable data 

without any damage of the samples, providing a significant competitive advantage. 

The introduction of virtual live cell imaging opens new possibilities for studying 

dynamic cellular processes and interactions. Researchers can now observe and 

analyze the growth, migration, and behavior of cells in real-time within a 



 

 

vascularized microenvironment, enabling a comprehensive understanding of 

complex biological phenomena. This innovative approach not only improves the 

efficiency and accuracy of data acquisition but also offers insights into the cellular 

dynamics that were previously inaccessible. By combining the benefits of virtual 

staining and live cell imaging, we have established a powerful tool for studying 

cellular behavior and advancing our understanding of disease mechanisms, 

ultimately contributing to the fields of biological research, drug discovery, and 

precision medicine. 

In summary, the development of VT-MAP and VS-IMPACT represents 

significant advancements in the field of organ-on-a-chip technology. These 

innovative platforms address the limitations of existing models, providing scalable 

and high-throughput solutions for studying vascularized tissue models and 

angiogenesis. By bridging the gap between in vitro and in vivo systems, VT-MAP 

and VS-IMPACT offer valuable tools for drug screening, precision medicine, and 

biological research, contributing to advancements in therapeutic interventions and 

our understanding of complex biological processes. By addressing the limitations of 

current in vitro models and leveraging these innovative approaches, the thesis holds 

great potential for advancing drug development and precision medicine research. 
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Abstract in Korean 

장기칩(Organ-on-a-chio)은 고도로 생체 환경을 모사하여 

복잡한 생체 환경을 작은 미세유체(microfluidic) 플랫폼에 구현하는 

체외 모델이다. 미세유체 기술의 발전으로 모세관류(Capillary flow)를 

활용한 다양한 역학적 해석(Concus-Finn condition, Spontaneous 

Capillary Flow condition 등)을 통하여 미세 채널에 소량의 유체를 

정밀하게 조작하고 제어하여 복잡한 세포 미세환경 구현이 가능하여 

장기칩은 더욱 정교해지고 기존에서 구현하지 못했던 복잡한 체내 

구조나 다양한 배양 환경 구현이 가능하다. 특히 실제 종양 

미세환경(Tumor microenvironment)를 구현하기 위하여 혈관화된 종양 

(Vascularized spheroid) 혹은 오가노이드(Vascularized organoid) 

모델에 대한 연구의 중요성은 점점 커지고 있다. 혈관화된 모델은 

복잡한 체내와 유사한 환경을 제공하여 다양한 약물에 대한 독성 시험, 

유동 순환 시스템 연구에 활용되어 한 단계 더 진보된 결과를 기대할 수 

있다. 혈관화된 모델에서는 배양 조직, 종양 또는 혈관의 

형태(morphology), 기관 생리학(organ physiology), 약물 반응 등에 

대한 중요한 정보를 얻을 수 있으며 이러한 데이터들을 추적하여 다양한 

결과를 도출할 수 있다. 

그러나 이러한 플랫폼은 두 가지 한계점을 지니고 있다. 첫째, 

지금까지의 종양 미세환경 플랫폼은 소규모 종양 (~400𝜇𝑚) 의 

공배양하여 다양한 약물 스크리닝과 연구가 진행되었다. 허나 실제 

체내의 환경은 이보다 훨씬 대규모 스케일의 실제 조직이나 

오가노이드 (1000𝜇𝑚 ~ 2000𝜇𝑚 )가 자라며 이를 실제로 구현할 수 있는 

새로운 플랫폼 연구의 필요성이 대두된다. 둘째, 장기칩 분야는 

지속적으로 발전하여 실험 수율과 효율이 증가하기에 많은 양의 실험 

데이터를 생산할 수 있는 조건이 갖춰졌다. 하지만 장기칩은 3D 종양 

미세환경을 구현하였기에 공초점 현미경(Confocal microscopy)을 

활용하여 이미징 데이터를 생산한다. 공초점 현미경은 높은 퀄리티의 

이미징을 제공해주지만 비용이 비싸며 이미징 시간이 길다는 단점으로 

모든 데이터를 처리할 때 병목 현상이 발생한다. 

한계점을 극복하기 위해 두 가지 해결책을 제안한다. 첫째, 

기존의 장기칩에서 활용하는 레일 구조(Rail guided structure)와 메쉬 

구조(Mesh-assisted structure)를 결합하여 대규모 스케일의 혈관화된 

조직이나 오가노이드를 배양할 수 있는 새로운 플랫폼인 Vascularized 

Tissue-Micromesh Assisted Platform (VT-MAP)을 소개합니다. 

VT-MAP 은 소규모 종양 모델을 벗어나 단순히 대규모 종양을 손쉽게 

배양할 수 있을뿐만 아니라 혈관화된 종양 모델을 제공하여 혈관을 통한 

약물 전달 모델을 제공할 수 있다. 이를 통해 VT-MAP 은 기존의 

체외모델의 한계를 극복하고 새로운 약물 개발과 정밀의학 연구에 



 

 

새로운 가능성을 줄 것으로 기대한다. 둘째, 기존의 공초점 현미경 

이미징 시스템을 벗어나 신속한 처리가 가능한 비표지방식의 

가상염색(Label-free virtual staining method) 기법인 Virtual 

Staining-assisted Injection Molded Plastic Array 3D Culture System 

(VS-IMPACT)을 소개한다. VS-IMACT 는 SegNet 과 cGAN 을 

활용한 딥러닝 기반 알고리즘이며 혈관의 brightfield 이미지에서 바로 

공초점 이미지(confocal image) 급의 형광 이미지를 별도의 처리 과정 

없이 즉시 얻을 수 있다. 기존의 공초점 현미경 이미징 과정에서 반드시 

필요한 면역세포화학 염색법(immunocytochemistry staining 

method)을 생략할 수 있으며 비표지방식의 실시간 세포 이미징 

(label-free live cell imaging)이 가능하여 비파괴 및 실시간 혈관 

모니터링이 가능하여 성장하는 양상을 손쉽게 확인하고 가상으로 염색된 

데이터를 얻을 수 있다. 이 방식을 활용하면 종양 미세환경에서 혈관 

생성 억제제나 항암제에 대한 반응을 평가할 수 있다.  

본 논문에서 개발한 VT-MAP 과 VS-IMPACT 를 활용하면 

종양 미세환경 연구의 한계점을 극복하고 새로운 연구 방식을 제시할 수 

있을 것으로 기대한다. 

 

주요어 : 장기칩, 혈관화된 조직, 미세유체역학, 대규모 스케일, 가상 

염색, 딥러닝, 고효율 플랫폼 
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