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Abstract

Organ-on-a-chip is a microfluidic platform for studying complex biological
systems by developing biomimetic in vitro models. With the advancements of
microfluidic technology, which refers to the manipulation and control of small
amounts of fluid at microchannels, precise and dynamic control over cellular
microenvironments is enabled. This allows organ-on-a-chip models to become more
sophisticated, enabling the implementation of complex in vivo structures and diverse
cell culture environments.

Vascularized spheroids or organoids are becoming increasingly important
in research to recreate the actual tumor microenvironment. Vascularized models
offer a more sophisticated in vivo-like environment, allowing for the utilization of
diverse drug toxicity tests through microvessels and studies on flow circulation
systems with microfluidics, leading to more advanced results. In vascularized
models, important data regarding cultured tissues, tumor or microvessels
morphology, and cell-to-cell mechanisms by organ physiology and drug responses
can be obtained, allowing for valuable outcomes by tracking and analyzing such data.
Thus, organ-on-a-chip have been pivotal in engineering complex in vitro models,
such as cancer, infectious diseases, multi-organ system and lymphatic and interstitial
flow in the tumor microenvironment, allowing researchers to study disease
progression and mechanisms.

However, these platforms have encountered two main limitations. Firstly,
the microfluidics-based tumor microenvironment platforms were sufficient for co-
culturing small-size tumors, but with the emergence of 3D tissues or organoids,

designs that can accommodate larger tissues/explants/spheroids are _required.
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Secondly, as the platforms have advanced, the throughput of experirﬁentls" hés:



increased dramatically, but imaging systems have not kept pace. Typically, organ
chips implement 3D tumor microenvironments and use confocal microscopes for
detailed imaging. However, due to the cost and poor accessibility of confocal
microscopes, there is a bottleneck in screening large amounts of imaging data from
high-throughput imaging microscopes.

In this thesis, | introduce two new technologies:

Large scale Vascularized Tissue Mesh-Assisted Platform (VT-MAP). VT-
MAP is an innovative platform that combines the existing rail-assisted structure with
the mesh-assisted structure, enabling the development of large-scale vascularized
tissue or organoid models. The platform can provide not only co-cultivation of large-
sized single organoids but also enable the cultivation of clusters distributed in
various sizes. Additionally, VT-MAP is a platform applicable for drug screening and
precision medicine research, providing valuable insights into the drug response
evaluation of cells and enabling more accurate and reliable data acquisition. This
allows VT-MAP to offer a deeper understanding of the cultivation of vascularized
tissues or organoids and drug responses. VT-MAP is expected to overcome the
limitations of current in-vitro models and open new possibilities for drug
development and precision medicine research by vascularized tissues and organoids.

High-efficiency label-free virtual staining network based on deep learning.
Virtual staining provides an effective solution to obtain fluorescent-like images from
simple brightfield microscope images without the immuno staining process and
relying on traditional microscope equipment. Currently, researchers are exploring
methods to achieve virtual staining without the need for conventional cell staining
or tissue staining techniques in various fields of biology. Moreover, | have extended

the application of virtual staining to label-free live cell imaging. Virtla_a! live cetl)



imaging represents an innovative approach that allows for the real-time visualization
of cellular dynamics without relying on traditional staining techniques. Through the
utilization of advanced virtual staining networks and quantitative analysis algorithms,
real-time virtual live cell imaging enables the conversion of brightfield images into
label-free virtual fluorescence images. This technique provides valuable insights into

the behavior and interactions of live cells within their native microenvironment.

I believe that these two technologies have the potential to enhance the field
of organ-on-a-chip research in terms of throughput and data analysis. By overcoming
the limitations of current platforms, VT-MAP and virtual staining will enable the
development of more sophisticated and realistic models of human tissues and organs.
This will lead to a better understanding of disease mechanisms and the development

of more effective treatments.

Keyword : Organ-on-a-chip, Vascularized tissue, Microfluidics, Large scale, Live

cell imaging, Deep learning, Label-free

Student Number : 2017-24396



Table of Contents

Chapter 1. INtrodUCTION ........cciiiiieieieee s 18
1.1, 0Organ-0n-a-ChiP ...ccccueiiiiiie e 18
1.2. Requirements for high-throughput vascularized models............cccccoovevennens 21
1.3. Necessity of large-scale vascularized tissue Models ........c.occovvvveveveiiviiiennns 25
1.4. Bottleneck in high-throughput imaging SyStem ............ccccvvrerereieieiennn 29
1.5, PUIPOSE OF FESEAICH .....cviciiiiiie ettt e 33

Chapter 2. Large-Scale Vascularized Tissue Mesh-Assisted Platform (VT-

MAP): A Comprehensive Approach for Mimicking Tumor Microenvironment

and Analyzing Cluster Viability............ccccooiiiiiiiic e 35
2.1 INEFOTUCTION ...t 35
2.2. Material and Method...........cooiiiiiiiii e 37

2.2.1. Device fabriCation .........cccceoveieiiinisie e 37
2.2.2. Cll CUITUTE ... 37

2.2.3 3D vascular network formation and reconstruction of tumor organoid

MICTOBNVIFONIMENT .....ovviiiictiiee sttt ene s 37
2.2.4. Drug treatment........cooiiiiie et 38
2.2.5. LIVE/DEAA 8SSAY ...veveereeieiiie it steeniesie ettt ettt 38
2.2.6. Quantitative iIMage analysis ......ccceiveirriiieere e 39
2.3 RESUIL. ... _....40



2.3.1. Combination of rail-assisted strucutre with mesh-assisted structure for

capturing large height microfluidic injection ..........cccoccovevvvieii e 40

2.3.2. The development of Vascularized Tissue — Mesh Assisted Platform

(VT -MAP) ettt sttt nenreas 44
2.3.3. Microfluidic analysis approach of VT-MAP..........ccccoeiiiiviiiiiirenn, 52
2.3.4. Tumor microenvironment with vascularized organoid on VT-MAP ....55

2.3.5. Novel high-throughput algorithm for multiple organoids and

QUANTITALIVE ANAIYSIS ..cvviviiie e 60

2.3.6. Drug treatment in vascularized patient-derived colorectal cancer in VT-

VLA bbb r e 64
2.3.7. Comparing in-vivo and in-vitro results from VT-MAP ...........c..cc........ 68
2.4, DISCUSSION ...ttt etttk ettt 70
2.5, CONCIUSION. ...t 72

Chapter 3. Deep Learning-driven Virtual Staining for High-throughput

Microfluidic ANGIOGENESIS ASSAYS.......ccveireeieiieitieiie e ereste e sre e sresre e sre e e 73
3L INEOTUCTION . b 73
3.2. Materials and MEethOdS ..o 75

3.2.1. Design and manufacturing process for VS-IMPACT platform............. 75

3.2.2. Cell Preparation ...........ccooeieeiiieee et 75

3.2.3. Hydrogel and cell patterning ..........ccccoeveveieeveiiesiie e se e 76

3.2.4. ImMUNOCYLOCHEMISIIY ...c.vvivieiiciice e 76
.

3.2.5. Image data collection and post processing 77



3.2.6. Automatic image data analysSiS.........ccccceviiiieiiiiniiie i 77
3.2.7. NetWork arChiteCtUIe .........coveieieeie e 78
3.3 RESUIS . e 80

3.3.1. VS-IMAPCT: High-throughput screening using large-scale cell culture

systems and deep learning-based virtual staining. ..........cccocevevevenieiieviecienns 80
3.3.2. Exploring neural network architectures for image conversion.............. 83

3.3.3. Loss functions for generating virtual immunostaining images of blood

VESSEIS. .ttt ettt 87
3.3.4. Evaluating virtual immunostaining images using six loss conditions...92
3.3.5. Developing automated angiogenesis analysis algorithms. .................... 94

3.3.6. Classifying endpoint distribution for accurate assessment of virtual

IMMUNOSTAINING IMAQGES......eiieiiieiie et s re e 97

3.3.7. Evaluation of image quality and accuracy in loss functions for virtual

TITIAGES. ..otttk b bbbt bbbt nre s 99

3.3.8. Virtual live cell imaging by optical microscope brightfield images ...101

3.4, DISCUSSION. ..vieisiietese et 107
3.5, CONCIUSION. ....viiiiict e 110
Chapter 4. Concluding remMarks .........cccooviiiiiiineicees e 111
BIDHOGIrapny ....cc.o i 115
ADSEraCt IN KOMBAN......ccuiiiiiieiieee e 123



List of figures

FIGURE 1.1. DIFFERENCE BETWEEN IN-VIVO, AND IN-VITRO MODELS -+-+--- 20

FIGURE 1.2. VARIOUS MODELS OF ORGAN ON A CHIP FOR VASCULARIZED
V@] =4 IS 24

FIGURE 1.3. ORGAN ON A CHIP FOR TUMOR MICROENVIRONMENT USING
MICROFLUIDICS. +-cceceertntataeencntntatasescnacsesasescssssssnsasasessssssnsasansssnsnsn 27

FIGURE 1.4. DIFFERENCE BETWEEN SPHEROID AND ORGANOID CULTURE
CONDITIONS. EXISTING VASCULARIZED SPHEROID MODELS ARE
DIFFICULT TO CO-CULTURE ORGANOID. NEW PLATFORM FOR LARGE-
SCALE VASCULARIZED ORGANOID MODELS ARE REQUIRED. --+---se-u- 28

FIGURE 1.5. ADVANCEMENTS IN COMPUTER VISION TECHNOLOGY WITH
DEEP LEARNING FOR BIOLOGY FIELD. ---+--ncxeseeaesararaasararararamanraeannn 31

FIGURE 1.6. IMPORTANCE OF LABEL-FREE LIVE CELL IMAGING VIA DEEP
LEARNING. LABEL-FREE LIVE CELL IMAGING ALLOWS FOR THE
OBSERVATION OF SUBTLE CHANGES AND DETAILED INFORMATION
THROUGHOUT THE ENTIRE PROCESS, UNLIKE THE PREVIOUS
APPROACH THAT ONLY CAPTURED DATA AT THE ENDPOINT.
FURTHERMORE, BEING LABEL-FREE, IT ENABLES LONG-TERM CULTURE
OF CELLS WITHOUT CAUSING ANY DAMAGE, ENHANCING THE

RELIABILITY OF THE DATA OBTAINED. -+c+sseesreesaseesasrasaseasaseannneanans 32

FIGURE 2.1. MICROFLUIDIC PATTERNING PRINCIPLE OF RAIL-ASSISTED
STRUCTURE. (A) SPONTANEOUS CAPILLARY FORCE BY YOUNG-
LAPLACE EQUATION WERE UTILIZED FOR EFFICIENT AND SUCCESSFUL

CHANNEL PATTERNING IN ORGAN CHIPS. BUT THE GAP OF CHANNEL IS

LIMITATION OF SMALL SCALE. ACCORDING TO THE EQUATIONS OF; 1]



WEDGE AND RAIL, THE FORMULATIONS ARE ONLY VALID AT SMALL
GAPS, AND AS THE GAP EXPANDS, PATTERNING BECOMES
INCREASINGLY CHALLENGING. PARTICULARLY, WHEN SCALING UP TO
A LARGER DIMENSION, INCREASING THE GAP FIVEFOLD WHICH IS
SUITABLE FOR LARGE SCALE VASCULARIZED TISSUE MODEL, THE
FAILURE CONDITION FOR PATTERNING BECOMES CLEARLY APPARENT,
AS DENOTED BY THE RED DOTS ON THE GRAPH. (B) COMBINATION OF
MESH-ASSISTED STRUCTURE FOR SUPPLEMENT LARGE SCALE
PLATFORM. WHEN THE GAP INCREASES FIVEFOLD, THE FLUID
DISPERSES ALONG THE BOTTOM FILM BEFORE IT CAN PATTERN ALONG
THE RAIL, PREVENTING PROPER PATTERNING (C). TO RESOLVE THIS
ISSUE, THE INTRODUCTION OF A MESH-ASSISTED STRUCTURE CAN BE
OBSERVED. THE MESH STRUCTURE SERVES TO PREVENT THE SPREAD
OF THE FLUID, FACILITATING CORRECT PATTERNING. ------usueemununnnnee 42
FIGURE 2.2. MIMIC IN-VIVO TUMOR MICROENVIRONMENT OF
VASCULARIZED TUMOR. (A) PROCESS OF CANCER METASTASIS VIA
BLOOD VESSEL. CANCER SPREADS THROUGH BLOOD VESSELS, AND
SOME CANCER CELLS ESCAPE THROUGH THE VESSELS AND MIGRATE
TO NEARBY AREAS. THEY START ABSORBING NUTRIENTS FROM
SURROUNDING BLOOD VESSELS AND GRADUALLY DEVELOP. (B) MIMIC
THE VASCULARIZED TUMOR MORPHOLOGY BY ORGAN CHIP BY
SEPARATING SECTION AND SURROUNDED STRUCTURE WITH MESH-
ASSISTED PLATFEORM. -ceeeeaeammmamamananananananananananananananananananananannns 47
FIGURE 2.3. DEVICE SCHEMATIC OF VT-MAP AND PATTERNING PROCESS.
(A) THE VT-MAP IS DESIGNED AS A CHIP THE SIZE OF A STANDARD
SLIDE GLASS, WITH THE SIZES OF VARIOUS STRUCTURES INSIDE IT

PRECISELY DETERMINED. AS SHOWN IN THE FIGURE, THE DIAMETER
b _l ] 1|

.
1l

OF THE INNER REGION IS DESIGNED TO BE 1500UM TO EFFEC.T.I\EVEI;-IY'- L



CO-CULTURE ORGANOIDS. IN ADDITION, TO PREVENT ORGANOIDS
FROM LEAVING THE CHIP, THE OUTPUT WIDTH IS SET TO 800UM. THE
WIDTH AND HEIGHT OF THE MESH STRUCTURE ARE ALSO DETERMINED
TO BE 500UM EACH. (B), (C), (D) THE PATTERNING PROCESS OF THE VT-
MAP PROCEEDS IN TWO STEPS. THE FIRST STEP IS FILLING THE
VASCULAR AREA WITH THE AIM OF FORMING A VASCULAR NETWORK.
THE PRESENCE OF A MESH STRUCTURE PREVENTS THE FLUID FROM
SPREADING IN OTHER DIRECTIONS AND ALLOWS PATTERNING TO
OCCUR ONLY IN THE DESIRED AREA. IN THIS STEP, THE VASCULAR
AREA IS MARKED IN RED. THE SECOND STEP IS FILLING THE ORGANOID
AREA, WITH THE GOAL OF INJECTING LARGE-SCALE ORGANOIDS. IN
THIS STEP, THE ORGANOID AREA IS MARKED IN BLUE AND INTERACTS
DIRECTLY WITH THE VASCULAR AREA. THROUGH THESE TWO STEPS,
EFFECTIVE PATTERNING AND CO-CULTURE ARE POSSIBLE, ENABLING
THE STUDY AND MODELING OF COMPLEX BIOLOGICAL SYSTEMS. ---- 48

FIGURE 2.4. THE ROLE OF MICRO MESH STRUCTURE AND CONTACT ANGLE
CONDITION. (A) THE SUCCESS OF PATTERNING BASED ON THE
PRESENCE OR ABSENCE OF A MESH STRUCTURE AND CONTACT ANGLE
WHEN THE GAP IS 500UM. STABLE PATTERNS ARE ONLY
DEMONSTRATED WHEN THE CONTACT ANGLE IS LOW AND A MESH IS
PRESENT. (B) THIS IMAGE ILLUSTRATES THE FIRST PATTERNING
PROCESS OVER TIME (FOR 1 SECOND). -xxxsssssessaaraaamaaiiaaiaiaiaaaaaaaa. 50

FIGURE 2.5. PATTERNING PRINCIPLE OF VT-MAP. (A) LAPLACE PRESSURE OF
FORWARD CONDITION AND BURST LAPLACE PRESSURE CONDITION. (B)
SUCCESS AND FAILURE CONDITION OF APburst — APforward AND
SPECIFIC CONDITION OF THREE R1and 6. R1=0.75,R1 =

0.9 and R1 = 1.2 SHOW IN FIGURE. 0.75 IS THE DESIGN CONDI;I'lION_ FOR .

VT-MAP THAT DEMONSTRATES SUCCESSFUL PATTERNING. ON THE



OTHER HAND, 0.9 AND 1.2 EXHIBIT UNSTABLE PATTERNING AS THEY
DEVIATE FROM THE SUCCESS CONDITION. -+xsssesseesseesseescesseasaeasnes 54

FIGURE 2.6. ANGIOGENESIS AND VASCULOGENESIS APPLICATION AND
PERFUSABLE TEST ON THE PLATFORM. (A) THIS IMAGE SHOWS THE
VASCULARIZATION TEST CONDUCTED ON VT-MAP, DEMONSTRATING
THE IMPLEMENTATION OF ANGIOGENESIS AND VASCULOGENESIS. THE
VASCULAR AREA AND THE ORGANOID AREA OF VT-MAP INTERACT
WITH EACH OTHER. (B) TO VERIFY THE VASCULARIZED VESSELS, RED
MICROBEADS (DIAMETER 4MM) WERE INTRODUCED INTO THE BLOOD
VESSELS. THE MICROBEADS FLOW THROUGH THE VESSELS FROM THE
MEDIA CHANNEL TO THE INNER AREA, DEMONSTRATING THEIR
DISTRIBUTION WITHIN THE BLOOD VESSELS. -++sssesseesseesurasrarieasuns 57

FIGURE 2.7. TUMOR MICROENVIRONMENT ON THE PLATFORM. (A) THIS
FIGURE REPRESENTS THE OVERALL PROCESS OF CO-CULTURE LARGE-
SCALE VASCULARIZED ORGANOIDS IN VT-MAP. (B) THE
VASCULARIZATION OF SPHEROIDS WITH A DIAMETER LARGER THAN
1000MM ON THE PLATFORM ARE INTRODUCED. GREEN SIGNAL IS
MICRO VESSEL SIGNAL BY LECTIN AND RED SIGNAL IS TUMOR SIGNAL
BY EPCAM STAINING. (C) ILLUSTRATION DEPICTING THE PROCESS OF
CO-CULTURING CLUSTERS OF VARIOUS SIZES. (D) RESULT OF
CULTURING ORGANOID CLUSTERS OF DIFFERENT SIZES WITHIN A
SINGLE WELL ON THE PLATEORIM., ==+« cxcxnsuemsataraatatamaasaeanaasaeanrarananaas 58

FIGURE 2.8. ORGANOID CLUSTER ANALYSIS ALGORITHM BY COMPUTER
VISION. (A) THE PROVIDED IMAGE DEPICTS THE LIVE/DEAD ASSAY
RESULTS AFTER DRUG TREATMENT, SHOWING CLUSTERS OF VARYING
SIZES. DESPITE BEING COMPOSED OF THE SAME CELLS, WE CAN

OBSERVE DIFFERENCES IN CELL VIABILITY BASED ON THE CLUSTER
L

4 T L
i

SIZE. (B) THE CONVENTIONAL APPROACH INVOLVES ANALYZING A- ||



SINGLE CLUSTER WITHIN A WELL AND CALCULATING OVERALL
VIABILITY BY CONSIDERING ALL THE LIVE AND DEAD SIGNALS IN THE
IMAGE TOGETHER, WHICH DOES NOT REFLECT THE IMPACT OF
CLUSTER SIZE. IN CONTRAST, THE NEWLY DEVELOPED ALGORITHM
ALLOWS FOR THE INDIVIDUAL CALCULATION OF SIZE-SPECIFIC
VIABILITY FOR EACH MULTI-CLUSTER, ENABLING THE EXTRACTION OF
THEIR RELATIONSHIP. THE RESULTS OF THE SAME IMAGE ANALYZED
USING THE PREVIOUS ALGORITHM AND THE NEW ALGORITHM SHOWS
THAT THE NEW ALGORITHM ALLOWS FOR A BETTER UNDERSTANDING
OF THE RELATIONSHIP BETWEEN VIABILITY AND SIZE, ENABLING
MORE DETAILED ANALYSIS. ON THE OTHER HAND, THE PREVIOUS
ALGORITHM HAD DIFFICULTIES IN CAPTURING SUCH DETAILED
TNI=0) =Y VN [0 N TP 62

FIGURE 2.9. DRUG SCREENING PROCESS AND LIVE/DEAD ASSAY RESULTS.
(A) DRUG TREATMENT PROCESS ON VT-MAP WITH MULTI CLUSTERS.
(B) DRUG SCREENING RESULTS OF CRC1 AND CRC2. CONTROL,
OXALIPLATIN, IRINOTECAN AND FOX 200UM ARE SHOWN IN FIGURES
AND SPECIEIC IMAGES OF EACH CLUSTER, =-+-cxcxesucaesasaeaasaraeamrarananrns 66

FIGURE 2.10. DRUG SCREENING RESULTS GRAPH OF CRC CLUSTERS. (A)
GRAPH SHOWED CRC1 AND CRC2 CLUSTERS’ VIABILITY DISTRIBUTION.
THE CONTROL CONDITION OF CRC1 EXHIBITS HIGH VIABILITY, WHILE
THE VIABILITY DECREASES GRADUALLY IN THE DRUG-TREATED
CONDITIONS. ON THE OTHER HAND, CRC2 SHOWS HIGH VIABILITY NOT
ONLY IN THE CONTROL CONDITION BUT ALSO IN THE DRUG-TREATED
CONDITIONS, UNLIKE CRCL. (B) THE PRESENTED GRAPH ILLUSTRATES
THE VARIATION IN VIABILITY BASED ON CLUSTER SIZE FOR CRC1 AND

CRC2. IT VISUALLY DEMONSTRATES THE CHANGES IN VIABILITY _

CORRESPONDING TO DIFFERENT CLUSTER SIZES. () et 67"



FIGURE 3.1. WORKFLOW OF DEEP LEARNING-BASED VIRTUAL
FLUORESCENCE STAINING AND HIGH THROUGHPUT ANALYSIS. (A)
STANDARD IMMUNOCYTOCHEMISTRY PROCESS WITH CONFOCAL
MICROSCOPE AND VIRTUAL STAINING PROCESS FOR DEVELOPING
LABEL-FREE FLUORESCENT IMAGE. (B) PHOTOGRAPHIC AND
SCHEMATIC IMAGE OF VS-IMPACT CHIP. VS-IMPACT CONSISTS OF 28
WELLS, ACCOMMODATES HIGH-THROUGHPUT ANGIOGENIC SPROUT
SCREENING. TOTAL OF 1036 PAIRED (BRIGHTFIELD, FLUORESCENCE)
IMAGES WERE OBTAINED. (C) HIGH-THROUGHPUT STAINING &
IMAGING VIA DEEP NEURAL NETWORK. (D) ANGIOGENESIS ANALYSIS
ALGORITHM FOR EVALUATING VIRTUAL STAINING IMAGES. (SCALE
BAR = 200M) «++cssessseessasssmsssassmssiasistisassstssassst ssasst st s 82

FIGURE 3.2. STRUCTURE OF SEGNET ARCHITECTURE DESIGN. GENERATOR
HAS AN ENCODER-DECODER STRUCTURE BASED ON SEGNET
NETWORK, WHICH CONSIST OF THREE PATHS(CONTRACTING PATH,
EXPANSIVE PATH, SKIP CONNECTION PATH). DISCRIMINATOR
OPTIMIZES THE PERCEPTUAL-LEVEL LOSS FUNCTION BY LEARNING A
GENERATIVE MODEL AND AN ADVERSARIAL DISCRIMINATIVE MODEL
AT THE SAME TIME. «-cccceemmamamaii e erateissssssesa s s s s sa s naamans 86

FIGURE 3.3. VIRTUAL IMMUNOSTAINING IMAGES FROM VARIOUS LOSS
FUNCTIONS. (A) LOSS FUNCTION CONDITIONS FROM L1 AND L2 LOSS
ONLY TO L1, L2, SSIM AND MS SSIM LOSS WITH GAN LOSS. (B) THE
VALUES OF LOSS FUNCTIONS WERE PLOTTED WITH EVERY EPOCH UP
TO 300 EPOCHS, «--n-xnrnrmrmrumammnramamanaamamaanamaasaaamamsaaamaasanamamsanamaasananans 89

FIGURE 3.4. DETAILED IMAGE BETWEEN INPUT, GROUND TRUTH AND

VIRTUAL IMMUNOSTAINING IMAGES WITH DIFFERENT LOSS ; { 2 1]



CONDITIONS. ENLARGED COMPARISON IMAGES BETWEEN GROUND
TRUTH AND VIRTUAL IMMUNOSTAINING IMAGES WITH (A) ENDPOINT,
(B) NETWORK (C) BRANCH AND (D) TORTUOSITY. (GT: GROUND TRUTH,
1: L1 LOSS, 2: L2 LOSS, 3: L1 LOSS + GAN, 4: L2 LOSS + GAN, 5: SSIM +
GAN, 6: MSSSIM + GAN, SCALE BAR = 200pM) ----xunumummmmnnnnnnn. 90
FIGURE 3.5. ANGIOGENESIS QUANTIFICATION ALGORITHM PROCESS. START
FROM PREPROCESSING GRAYSCALE IMAGE BY GAUSSIAN BLUR AND
THRESHOLD BINARY TO SKELETONIZATION NETWORK. THEN
SKELETONIZATION NETWORK IS CLASSIFIED UNDER THREE

CATEGORIES (SPROUT LENGTH, TIP CELL NUMBER, VASCULAR AREA).

FIGURE 3.6. EVALUATION OF PREDICTED MODEL. (A) ANGIOGENESIS
QUANTIFICATION ALGORITHM PROCESS FOR HIGH-THROUGHPUT
ANALYSIS. (B) VESSEL AREA, (C) LENGTH AND (D) ENDPOINT SPROUT
DISTRIBUTION NUMBER ARE PLOTTED BY BOX & WHISKERS WITH 208
TEST DATASET IN EACH CONDITION. (GT: GROUND TRUTH, 1: L1 LOSS, 2:

L2 LOSS, 3: L1 LOSS + GAN, 4: L2 LOSS + GAN, 5: SSIM + GAN, 6: MSSSIM +

FIGURE 3.7. INPUT IMAGE, GROUND TRUTH AND SIX VIRTUAL
IMMUNOSTAINING IMAGES FROM INPUT IMAGES IN CASE A, B AND C
WITH DIFFERENCE VESSEL GROWTH HEIGHT. (GT: GROUND TRUTH, 1:
L1 LOSS, 2: L2 LOSS, 3: L1 LOSS + GAN, 4: L2 LOSS + GAN, 5: SSIM + GAN,
6: MSSSIM + GAN, 200LM) «--cxseerureseruramsertansenstasesst et 98

FIGURE 3.8. TOTAL QUANTIFICATION DATA NORMALIZED BY GROUND
TRUTH. (A) IMAGE QUALITY MEASUREMENT SHOWS MEAN SQUARE
ERROR GRAPH BETWEEN GROUND TRUTH IMAGES AND VIRTUAL

IMMUNOSTAINING IMAGES PLOTTED BY BOX & WHISKERS (B]) . THE :

.

SIX CONDITIONS’ QUANTIFICATION SCORE ARE SHOWN IN THi{!EE'PIvaH-\I: ’



COMPONENTS. (C) TOTAL SCORE OF SIX CONDITIONS. (1:L1LOSS,2: L2

LOSS, 3: L1 LOSS + GAN, 4 : L2 LOSS + GAN, 5 : SSIM + GAN, 6 : MSSSIM +

FIGURE 3.9. U-NET NETWORK BASED ON PIX2PIX STRUCTURE AND
QUANTIFICATION RESULTS BETWEEN SEGNET AND U-NET. (A) U-NET
NETWORK FOR 256 X 256 IMAGE SET. VIRTUAL LIVE CELL STAINING
WAS CHALLENGING TO APPLY IN REAL-TIME WITH A 3 X 1 STITCHING
APPROACH. THEREFORE, THE MODELS WERE TRAINED USING SINGLE
IMAGES OF SIZE 256 X 256. (B) U-NET AND SEGNET WERE TRAINED ON
256 X 256 IMAGES AND COMPARED BASED ON QUANTITATIVE
ANALYSIS. THE RESULTS REVEALED THAT U-NET OUTPERFORMED

SEGNET, DEMONSTRATING SUPERIOR PERFORMANCE IN THE TASK AT

FIGURE 3.10. THE DIFFERENCES BETWEEN CONFOCAL AND OPTICAL
MICROSCOPES AND TRANSFER LEARNING A NETWORK TRAINED ON A
CONFOCAL MICROSCOPE DATASET TO AN OPTICAL MICROSCOPE
BRIGHTFIELD. IT IS A TRANSFER LEARNING THAT APPLIES A VIRTUAL
STAIN NETWORK TRAINED WITH A CONFOCAL MICROSCOPE DATASET
TO OPTICAL MICROSCOPE BRIGHTFIELD IMAGES. THIS ENABLES
VIRTUAL STAINING OF CONFOCAL MICROSCOPE FLUORESCENCE
IMAGES WITH THE QUALITY OF OPTICAL MICROSCOPE BRIGHTFIELD
IMAGES, WHICH ARE EASY TO TAKE, AND CAN BE USED FOR REAL-
TIME LIVE CELL IMAGING. -+-cecncrerueaasuramaatamammnraeamearanamaasananraeananann 104

FIGURE 3.11. VIRTUAL LIVE CELL IMAGING RESULTS AND QUANTIFICATION.
(A) THE RESULTS SHOW THE APPLICATION OF VIRTUAL STAINING ON
REAL-TIME IMAGES CAPTURED AT ONE-HOUR INTERVALS DURING THE
ANGIOGENESIS PROCESS. WE SELECTED IMAGES AT 10-HOUR _

—

INTERVALS FROM THE TOTAL OF 50 HOURS TO DISPLAY. (B) THIS = ||



FIGURE PRESENTS A GRAPH PLOTTING THE FOUR PARAMETERS OF THE
ACTUAL BLOOD VESSELS OVER TIME, QUANTIFIED FROM THE VIRTUAL
LIVE CELL IMAGES. THESE FOUR PARAMETERS ARE USED TO
QUANTITATIVELY MEASURE THE CHARACTERISTICS OF THE BLOOD
VESSELS. IT SHOWS THE CHANGES OVER THE COURSE OF 50 HOURS,

ALLOWING US TO OBSERVE THE TRENDS FOR EACH PARAMETER. ----105



Chapter 1. Introduction

1.1. Organ-on-a-Chip

Researchers have utilized various models for cancer and drug development.
Until now, animal models (in vivo) and 2D well plate culture (in vitro) models are
dominantly used, leading to the accumulation of extensive data. However, these
approaches have limitations in adequately mimicking the human body due to
constraints in animal experimentation, ethical problems, and inherent differences
between humans and animals[1]. To overcome these limitations, there has been
growing attention and importance placed on new in-vitro model, called organ
chips[2-4], which can replicate the human body's cellular composition and
physiological conditions. Organ chips are advanced technologies that mimic realistic
human physiological conditions, enabling the evaluation of drug efficacy and the
study of complex biological interactions in environments closely resembling the
human body[5-8]. Still, fully mimicking the complexity and conditions within the

body is difficult[9] (Figure 1.1).

Considering these differences among in vivo, and in vitro, the emergence
of organ chips holds significant importance. Organ chips are platforms that
implement 3D tissue models outside the body[10], providing an environment similar
to conditions within the body and enabling more accurate replication of cellular
physiological functions. They offer the advantage of obtaining results closer to in
vivo experiments by reproducing the complexity and interactions of tissues outside
the body. Organ chips can incorporate crucial biological functions, such as
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cell interactions[13], and circulation. Therefore, organ chips provide a model that is
more representative of the body compared to in vitro experiments and can yield
results comparable to in vivo experiments. This makes organ chips valuable tools in
various applications, including drug development and disease mechanism
research[14], as they bridge the advantages and limitations of in vivo, and in vitro

models.

The use of microfluidics in organ chips has expanded the possibilities for
3D cell culture, including microfluidics systems that allow for greater control over
the chemical and mechanical stimuli that cells experience; for example, by
controlling the mechanical stress from fluid flow to match the natural flow within
vasculature[11]; or, enabling the culture of polarized epithelium at the air-liquid
interface[10]; or by matching the stiffness of the culture surface more closely to the
stiffness modulus that exists in soft tissue[12]. Despite these advancements,
challenges still remain in the development of 3D cell culture systems. These
challenges include throughput, customizability, manufacturability, reproducibility,
and design modification to meet specific applications. Researchers continue to work
on nature materdeveloping new approaches to address these limitations and improve

the capabilities of 3D cell culture systems.
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1.2. Requirements for high-throughput vascularized models

Microvessels play a crucial role in the functioning of organs, as most organs
exist in conjunction with microvessels[6]. These are responsible for essential
functions such as nutrient and oxygen supply, which are vital for cell survival. In
vitro models based on 2D well plates, organ or tumor cells are typically cultured in
the absence of vasculature, making it challenging to accurately replicate the actual
microenvironment[14-18]. Consequently, one of the key roles of organ chips is to
implement vascularized models that closely mimic the in vivo environment. By
using organ chips to reproduce vascularized tissues, cells can interact within a
vascular network and thrive in an appropriate environment. This enables the
development of vascularized tissue models that exhibit physiological interactions

similar to those observed in real tissues[13, 17, 19-21].

For example, to replicate tubular structures in vitro, vascular endothelial
cells can be compartmentalized within a micropillar array, allowing them to self-
assemble into a 3D vascular network[22]. Similarly, microgrooves can function as
capillary valves[23], enabling co-culture of endothelial cells with astrocytes and
pericytes to mimic the blood-brain barrier[24]. Another approach involves using a
sacrificial layer of a hollow rod on a 3D hydrogel block to mimic the shape of blood
vessels[25]. In neuroscience research, microgrooves and channels within
microphysiological systems (MPS) have been utilized to guide complex axons in the
central nervous system[26]. Additionally, membrane-embedded models have been
employed to simulate layered structures such as alveolar[27], intestinal[28], and
placental barriers[29]. By creating a flexible membrane within the MPS,

communication between multiple cell layers is facilitated, allowing-for a Variety ¢f



assays. MPS has also successfully modeled organs with spherical and radial
structures, such as the eye, enabling the replication of blinking eyelids and radial
angiogenesis. These approaches are driven by a design philosophy rooted in

biology[30, 31].

Vascularized models are indeed vital in biology-driven design. The
complex network of blood vessels plays a pivotal role to various organs and tissues
in the body[17, 22, 32]. Therefore, the development of vascularized models is an
ongoing pursuit in the field of organ-on-a-chip (Figure 1.2). These models aim to
replicate the physiological relevance and functionality of blood vessels, allowing for
the study of complex biological processes in a controlled and realistic environment.
Efficient and consistent vascularization techniques are being actively researched to
ensure the successful integration of vascular networks within organ-on-a-chip
platforms. These techniques involve engineering microfluidic systems that mimic
the structural and functional characteristics of blood vessels, enabling the perfusion
of nutrients and the maintenance of cellular interactions. VVascularized models have
immense potential in drug screening and disease research. They can accurately
replicate the microenvironment and pathophysiological conditions of specific organs,
facilitating the evaluation of drug efficacy and toxicity[33]. Additionally, these
models enable the investigation of disease mechanisms, tissue regeneration, and

personalized medicine approaches.

Recently, efforts are underway in various research labs to develop
vascularized models, including vascularized spheroids, vascularized brain organoids,
and liver models[34], utilizing techniques such as bio printing[35-37]. The goal of
these endeavors is to create tissue models that are more realistic and closejlyé res_e_mb]ge_ :
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advancements, there is a continuous increase in the demand for vascularized models
that offer high efficiency and reliable results. Therefore, the development and
research of more advanced vascularized models that can meet these demands are

ongoing.
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1.3. Necessity of large-scale vascularized tissue models

There has been an increasing number of research findings utilizing 3D
tissues or organoids similar to in vivo condition[38-40]. In particular, research on
organoids has become very active in recent years[27, 41]. Organoids are large tissue
structures cultured in vitro that contain functional components of real tissues, as
opposed to simple cell aggregates like spheroids. They can be implemented to
closely mimic the in vivo tumor microenvironment[15, 42-44] (Figure 1.3). For
mimicking in vivo like environment, it is necessary to not only culture organoids but
also create a vascularized microenvironment. However, most existing in vitro
models have primarily focused on small spheroid-based models[42, 43].
Consequently, there is a lack of models that allow for the co-culturing of large
organoids[45] (Figure 1.4). Furthermore, conventional tumor-on-a-chip models
typically involve culturing a single spheroid in a well to mimic the tumor
microenvironment. However, the tumor microenvironment consists of various
clusters distributed in different sizes, making it challenging to replicate by in vitro

model.

The emergence of large-scale vascularized tissue or organoid models has
opened up new possibilities for studying complex biological processes, regenerative
medicine, and drug development. However, current in vitro platforms face
challenges in maintaining large-scale vascularization and the functionality of
engineered tissues[46, 47]. Vascularization methods such as sacrificial templates or
3D bioprinting[35, 48] have limitations in terms of scalability, reproducibility, and
complexity. Additionally, the development of vascularized tissue models that

accurately mimic the spatial organization and physiological functions of the humany]



body's native environment remains a significant challenge. Large-scale vascularized
tissue models have great potential in providing insights into disease mechanisms,
personalized medicine, and drug screening. Therefore, there is a demand for
innovative platforms that support the cultivation of large-scale vascularized tissue or
organoids and provide representative models that are more suitable for studying

complex biological systems[49].
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1.4. Bottleneck in high-throughput imaging system

In general, confocal microscope is commonly used for imaging in organ
chips to reproduce the 3D tumor microenvironment. However, confocal microscope
has the drawback of being expensive and slow, although it can provide high-quality
images. With the recent advancement of organ chip technology, there has been a
significant increase in throughput, leading to bottlenecks in the imaging system.
While high-throughput platforms allow for processing multiple samples
simultaneously and improve experimental efficiency, the imaging system struggles
to keep up with such speed. As a result, there are limitations in capturing a large

amount of data within a suitable timeframe[50].

To overcome these bottlenecks, there is a need for rapid and efficient data
acquisition methods. Recent advancements in computer vision and deep learning
technologies[51-54] have been applied in various biological imaging
applications[55-57]. For example, image segmentation is used in cell analysis[58,
59], while image generation is utilized in virtual staining[60] (Figure 1.5). These
deep learning techniques enable fast and accurate processing of images that
previously relied on manual labor or human intervention. Virtual staining has been
used as a technique to generate related results to actual staining, replacing the need
for traditional staining methods. Furthermore, Virtual staining technique is
incredibly important, especially the ability to obtain virtual-stained images without
the need for immuno-staining in live-cell imaging, represents an innovative
advancement. Previously, immuno-staining caused damage to cells and limited
imaging to specific end points, making it challenging to observe data throughout the

entire process. However, with the use of virtual staining, it is now possible to capture| |



subtle changes and detailed information that was not previously visible, by
examining data throughout the entire process (Figure 1.6). Moreover, the label-free
nature of virtual staining allows for long-term cell culture without any damage to

cells, resulting in higher reliability of the acquired data.

Therefore, introducing innovative technologies such as deep learning-based
virtual staining can provide a solution to overcome these bottlenecks and establish a
system capable of generating high-quality images without relying on confocal
microscope. By utilizing such technologies, efficiency in imaging workflows can be
improved, bottlenecks can be addressed, and accurate and rapid data acquisition
becomes possible. Thus, the integration of these advanced techniques can enhance
the performance of the imaging system, allowing it to keep up with the increased

throughput in organ chip technology.
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obtained.



1.5. Purpose of research

The developed in vitro models thus far have played a significant role in
recapitulating the tumor microenvironment and have successfully yielded various
drug testing and in vivo-like results. These models have been successful in
developing high-throughput tumor microenvironment models by transitioning from
PDMS to Polystyrene (PS) and utilizing injection molding. They have demonstrated
high reproducibility within the platform through microfluidic analysis, enabling the
implementation of vascularized tumor environments that closely resemble in vivo
conditions. However, these platforms were primarily designed for small spheroids
and were not suitable for co-culturing large-scale organoids. Furthermore, with the
advancement of high-throughput platforms, difficulties have arisen in capturing and
processing all the data using existing imaging systems. Therefore, there is a need for
a new spheroid chip on the hardware side and a need for technology to address the
bottleneck of existing imaging systems on the software side.

In this thesis, we propose a new platform that allows for co-culturing of
large-scale organoids along with vasculature. This platform not only enables co-
culturing of large organoids but also accommodates multi-cluster organoids that
mimic in vivo-like environments. Additionally, an algorithm for precise data
extraction has been developed. Furthermore, to address the bottleneck of imaging
systems, we introduce virtual staining technology to the field of organ-on-chip. By
applying deep learning-based virtual staining, fluorescent images can be obtained
from simple brightfield images without the need for a confocal microscope.
Moreover, by applying this technology in real-time, we can track the morphological

changes of vasculature and tumors within the organ-on-chip, thereby obtaining
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previously unobserved data.
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Chapter 2. Large-Scale Vascularized Tissue Mesh-
Assisted Platform (VT-MAP): A Comprehensive
Approach for Mimicking Tumor Microenvironment

and Analyzing Cluster Viability

2.1. Introduction

Until now, there has been rapid progress in understanding the pathological
characteristics of cancer[61] and the importance of the tumor microenvironment[62].
Consequently, there is a growing need for reliable experimental models in cancer
therapy development and tumor biology research[63-67]. Particularly, with the
discrepancies between animal experimental results and clinical outcomes and the
ethical concerns surrounding animal experiments, the importance of in-vitro models
utilizing human cells has become even more pronounced[1]. In-vitro models have
been developed to reflect the complexity of the tumor microenvironment[65] and

provide valuable information for drug screening and tumor biology research.

Recently, platforms simulating complex structures such as 3D tissue
models and vascularized tissue models have emerged. These platforms are
recognized as crucial tools for reproducing in-vivo like conditions of tumor
microenvironment and investigating various biological processes associated with
cancer development and progression[15, 17, 42, 49, 68]. Furthermore, these
platforms play an important role in the development of cancer therapeutics and

personalized treatment strategies[69-71]. However, the emergence of. large-scale.;



tissues and organoids poses challenges for the study of vascularized tissue or
organoid models[72-74]. Previous platforms were effective at small scales[43, 75],
but culturing large-scale tissues or incorporating clusters of diverse sizes and shapes
proved challenging. These limitations constrain the ability to accurately reflect the
complexity of the realistic tumor microenvironment and may affect the reliability

and reproducibility of research outcomes.

The need for in-vivo like and accurate mimicking of the tumor
microenvironment in large scale vascularized tissue or organoid models has become
increasingly important[49, 76]. However, current in-vitro models often fail to
sufficiently replicate the large scale of the tumor microenvironment, highlighting the
demand for more advanced models. The combination of 3D vascularized tumor
models and mesh-assisted structure has emerged as a promising approach for large
scale tumor microenvironment. Here, | present a large-scale vascularized tissue
mesh-assisted platform called VT-MAP. VT-MAP overcomes the limitations of the
previous rail-assisted approach and provides an effective platform for the cultivation
of large-scale tissues, including vascularized tissues or organoids. By incorporating
fluid dynamics analysis and a novel algorithm, VT-MAP enables the extraction of
diverse information related to the size, growth rate, and viability of vascularized

tissues.



2.2. Material and method

2.2.1. Device fabrication

The device was designed using Solidworks (Dassault Systems) and
fabricated with 3D printer, Figure 4 Standalone (3D systems). After printing, the
device was washed with isopropanol and cured with ultraviolet light in 380nm for 1
hour. The device was dried and single-sided PSA (Pressure sensitive adhesive) film
(15-00820, IS solution) was attached at the bottom side of device to obtain space for
hydrogel patterning. Then, the device was sterilized with UV in a bio-hazard safe
bench while cell preparation for experiment. O2 plasma (Femto Science) was treated
for 3 minutes in 75W, 50kHz to make the device hydrophilic before hydrogel

patterning in device.
2.2.2. Cell culture

Human umbilical vein endothelial cells (HUVECs, Lonza) and lung
fibroblasts (LFs, Lonza) were cultured in endothelial growth medium-2 (EGM-2,
Lonza) and fibroblast growth medium-2 (FGM-2, Lonza) respectively to reconstruct
3D vascular network surrounding organoids. All cells were cultured in a humidified

incubator at 37°C and 5% CO2.

2.2.3 3D vascular network formation and reconstruction of tumor

organoid microenvironment

For reconstruction of tumor organoid microenvironment, difference of cell
proliferation speed between cancer cells and other cells related to vascular network
formation (HUVECs and LFs). On day 0, HUVECs and LFs were firstly prepared to

I N |

develop 3D vascular network surrounding tumor organoid in outer area. HUVECs'|



and LFs were mixed with 2.5mg/mL of fibrinogen hydrogel (Sigma Aldrich) with a
number ratio of 2:1 at a cell density of 4X106 cells/mL and 2X106 cells/mL as final
concentration, respectively. On day 2, medium in inner area was sucked out and
mixture of tumor organoids, HUVECSs, LFs and hydrogel was filled inner area.
Tumor organoids were dissociated as a single cell in 2X106 cells/mL as the final
concentration and HUVECs and LFs were in same final concentration with 3D
vascular network formation. The device was maintained in the incubator for whole

experiment.
2.2.4. Drug treatment

For the observation of drug performance in the device, drugs were treated
on the vascularized tumor organoid microenvironment in the device. The following
chemotherapeutics were used: 5-Fluorouracil (5-FU, R&D Systems), Irinotecan
(CPT11, R&D Systems), and Oxaliplatin (R&D Systems). Irinotecan and oxaliplatin
were treated as the monotherapy or combination treatment with 5-FU. Control
groups were treated with fresh EGM-2 and irinotecan and oxaliplatin were diluted
in 200mM in EGM-2 for monotherapy. 50mM, 100mM, and 200mM of 5-FU were
mixed in equal concentrations of irinotecan or oxaliplatin for combination treatment,
respectively. The drug treatment was sustained for 24 hours in incubator to observe

the drug performance.
2.2.5. Live/Dead assay

Alexa Fluor 488-tagged variants of anti-epithelial cell adhesion molecule
(EpCAM, BioLegend) and propidium iodide (PI, Sigma Aldrich) were used to detect

dead signal by drug treatment from tumor organoid microenvironment. Cells were
21 &

stained using EGM-2 in the proportion 200:1 and 1000:1 for EpCAM and PT,l|
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respectively. EpCAM was added in the mixture of drug and cell culture medium
while drug treatment. After 24 hours, the cells were washed with EGM-2 mixed with
Pl and imaged by confocal microscope (Nikon Ti 2) after 30 minutes. We calculated
dead signal ratio by (the fluorescence intensity of dead cells overlapped with
EpCAM signal)/(the fluorescence intensity of tumor organoid cells with EpCAM

signal).
2.2.6. Quantitative image analysis

Image acquisition was conducted by confocal microscope (Nikon Ti-2) and
imaging software (NIS-Elements). To quantify the viability and area of organoids,
the confocal images were projected by Z-axis with max intensity method. As
organoid images had various morphology and contrast, pre-process with histogram
equalization and normalization was applied for detecting their contour line by Python
3.7 and OpenCV package. Within the contour line, green signal pixels with EpCAM
staining for entire area of one organoid and red signal pixels with PI staining for dead
area of the organoid were calculated for quantifying the size and viability. We
quantified pixel area data in terms of size and viability of the organoid in different

drug conditions using Prism (GraphPad).



2.3. Result

2.3.1. Combination of rail-assisted strucutre with mesh-assisted

structure for capturing large height microfluidic injection

In the context of organ chips, the rail-assisted microfluidic patterning
method is widely employed, which leverages the spontaneous capillary force (SCF).
This technique involves patterning microfluidic channels through small gaps, a
process that offers both rapid execution and high success rates, thereby facilitating a
stable environment. Analyzed from a fluid dynamics perspective, SCF takes
advantage of Laplace pressure, which is found to have a linear relationship with the
height of the rail channel. In practical terms, a stable environment suitable for
patterning is maintained when the channel height is 100um. However, when the
channel height increases to 500um, it transitions into a region of patterning failure,

making it difficult to anticipate successful patterning (Figure 2.1A).

As the channel height increases to 500um, the condition shifts to Pw < Pr,
which disrupts the intended operation of the SCF. Furthermore, as the channel height
increases, the rail-assisted microfluidic patterning fails to function properly.
Especially for SCF with a low contact angle, the fluid spreads along the bottom film
before even filling a height of 500um (Figure 2.1B), which exacerbates this issue.
However, to overcome this problem, we introduce a mesh-assisted structure. This
mesh structure assists by enabling the fluid to fully cover areas with high gaps and

effectively controls the fluid spreading laterally (Figure 2.1C).

By combining rail and mesh structures, we have successfully developed a

platform capable of culturing large-scale vascularized tissues or organoids, an,,



achievement that was challenging with previous methodologies. Notably, the mesh
structure provides greater design flexibility than the rail structure, enabling the
creation of complex structures that were difficult to achieve with rails alone. This
proves particularly beneficial in implementing complex structure and replicating

intricate tumor microenvironments.
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platform. When the gap increases fivefold, the fluid disperses along the bottom film
before it can pattern along the rail, preventing proper patterning (C). To resolve this
issue, the introduction of a mesh-assisted structure can be observed. The mesh

structure serves to prevent the spread of the fluid, facilitating correct patterning.



2.3.2. The development of VVascularized Tissue — Mesh Assisted

Platform (VT-MAP)

VT-MAP is a platform that mimics the development process of
vascularized tumors. In the process of tumor formation in the body, cancer cells first
metastasize through fully developed blood vessels. Metastatic cancer cells establish
themselves around the blood vessels and recruit nearby blood vessels to supply
nutrients, gradually growing. Ultimately, they can be depicted as structures
surrounded by blood vessels (Figure 2.2A). The process to simulate this environment
in organ chip is shown in Figure 2.2B. To culture large-scale tissues in the previous
rail-assisted chip, the system had to scaled up and the height was increased. A mesh-
assisted structure was added to pattern the fluid. Finally, the structure was completed
by creating holes in the middle to accommodate the spheroid, simulating the
structure surrounded by blood vessels. This represents the closest possible

replication of the morphological microenvironment of a vascularized tumor.

The overall chip structure of the VT-MAP can be seen in Figure 2.3A. This
platform consists of a mesh-formed rail structure (both mesh width and height are
500um), which curves around the center. This curved rail structure serves as the area
for forming the vascular network. The open circular region surrounded by the rail
(diameter 1500um) is the space for loading the vascularized organoids. The output
width of the end of this circular region is designed to be 800um, preventing organoids
larger than 1000um from exiting (Figure 2.3A). This open design is intended to allow

easy injection of various sizes of organoids without size limitations.

The mesh attached to the rail is located only on the perimeter, with the

interior being a simple open structure (Figure 2.3B and Figure 2.3C). Th’e'.éxte'r'nallyii



placed mesh prevents fluid from spreading along the bottom film, and the internal
open structure maximizes the interactive area between the vessels and organoids.

This design benefits vascularized tissues in drug response or medium delivery.

The VT-MAP undergoes a two-step patterning process (Figure 2.3B and
Figure 2.3C). The first step is to pattern the vascular area with the primary goal of
forming a vascular network. This process forms a pattern that neatly encapsulates
the organoid area by injecting into the vascular area through a rectangular injection
port. At this time, it can be confirmed from the cross-sectional view that a mesh
structure is located on the outer edge of the vascular area, while the interior is an

open structure (Figure 2.3D).

The second step is the injection process into the organoid area. The
organoid area created by patterning the vascular area is naturally open but is seen to
be encapsulated by the vascular area. During injection, patterning occurs only in the
organoid area. This two-step process enables the injection of large-scale tissues
between vessels. In this way, the configured VT-MAP provides an effective platform

for implementing complex biological models.

Figure 2.4A shows the success of patterning depending on the presence or
absence of a mesh structure and the contact angle in a 500um gap. The results
indicate that more stable patterns are formed when the contact angle is low (that is,
when the fluid adheres better to the surface) and when a mesh structure is present.
This demonstrates that the mesh structure stabilizes the movement of the fluid and
that the lower the contact angle, the better the fluid adheres to the surface, making it
easier to form a pattern. Figure 2.4B presents a series of images that demonstrate

how the first patterning process progresses over time. You can obseryéf how_the] |



vascular area fills and patterns over time. This process provides insight into how VT-

MAP technology achieves high-precision patterning.
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Figure 2.3. Device schematic of VT-MAP and patterning process. (A) The VT-
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patterning to occur only in the desired area. In this step, the vascular area is marked
in red. The second step is filling the organoid area, with the goal of injecting large-
scale organoids. In this step, the organoid area is marked in blue and interacts directly
with the vascular area. Through these two steps, effective patterning and co-culture

are possible, enabling the study and modeling of complex biological systems.
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the contact angle is low and a mesh is present. (B) This image illustrates the first

patterning process over time (for 1 second).



2.3.3. Microfluidic analysis approach of VT-MAP

The Young-Laplace pressure is essential for understanding and explaining
the movement of fluids and is a valuable tool for controlling fluid patterning (Egs.
1). In conventional rail-assisted platforms, this principle is utilized to design the fluid
to form patterns along the rails in a specific direction. However, VT-MAP introduces
a mesh structure, deviating from the conventional design, to prevent the fluid from
bursting into the central organoid area while maintaining a circular pattern. To
achieve this, two pressures, namely the Forward Laplace Pressure (FLP) and the
Burst Laplace Pressure (BLP), are compared. Figure 2.5A illustrates how FLP and
BLP act during the pattern formation process, represented by the red regions. The
diameter of the vascular area is denoted as R2, and the diameter of the organoid area
is denoted as R1. By utilizing the principles of Young-Laplace pressure in this

manner, more precise control over the desired pattern formation becomes possible.

dAig dASL)

v SYay Equation 1

FLP represents the formation of a circular pattern along the Mesh-assisted
structure, preventing the fluid from bursting into the central area. This can be
expressed mathematically by defining theta as the degree to which the fluid rotates
in a circular manner around the origin and w1 as the length of the forward face when
FLP occurs. Additionally, the delta variable is used to represent changes over a short
period of time. In this setup, each red point can be transformed into an orthogonal
coordinate system composed of R; and 6. Utilizing this, we can obtain the
following equation (Egs. 2), allowing us to understand the relationship between the
rate of change in FLP and the various variables. By employing these eq]uqtion_s, we

—

can gain a more precise understanding and control of circular pattern formation in''



VT-MAP. If BLP is smaller than the FLP value, the fluid is pushed toward the central
area due to the Young-Laplace pressure toward the organoid region, preventing the
formation of a circular pattern and hindering the desired patterning. In this case, the
fluid tends to move toward the central area rather than spreading in a circular manner,

and this can be expressed mathematically as an equation involving R, and 6 (Egs.

3).
AP B sinf + 1 2cos@*
forwara =V (sin 0 (R, —R,0sinf)  h ) Equation 2
2 2cos@”
APpyrse =¥ (@ B ) Equation 3

In order for the fluid to pattern in the desired manner, the Forward Young-
Laplace pressure must always be smaller than the Burst pressure (Egs. 4). Figure
2.5B represents the conditions that satisfy this criterion as a graph with respect to
6.The positive region in the graph represents successful conditions where stable
patterning occurs along the circular path, while the negative region represents failure
conditions where the fluid bursts towards the center instead of following the circular
pattern. The graph depicts the conditions for R; values 0f 0.5,0.7,1.0, 1.2, and 1.5.
In VT-MAP, the actual R, value used is 0.75, and the results from the image on the
right confirm the successful formation of the pattern. Conversely, for R, values of

0.9 and 1.2, the pattern formation is observed to be almost failed.

APforwara < APpyrst Equation 4
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Figure 2.5. Patterning principle of VT-MAP. (A) Laplace pressure of forward
condition and burst Laplace pressure condition. (B) Success and failure condition of
APpyrst — APforwarq and specific condition of three Ryand@ . Ry =
0.75,R; = 0.9 and Ry = 1.2 show infigure. 0.75 is the design condition for VT-
MAP that demonstrates successful patterning. On the other hand, 0.9 and 1.2 exhibit

unstable patterning as they deviate from the success condition.



2.3.4. Tumor microenvironment with vascularized organoid on VT-

MAP

To assess vascularization on the vascularized tissue platform, we conducted
pre-experiments. In the vascular region, HUVECs and LF were injected at a final
concentration of 4 million cells per ml and 2 million cells per ml, respectively. Fibrin
gel was mixed with the cells for scaffold formation. Two vascularization phenomena,
Angiogenesis and Vasculogenesis, were investigated during these experiments. For
Angiogenesis experiments, LF and fibrin extracellular matrix were introduced into
the vascular region, while HUVECSs were attached in the organoid region. This setup
allowed us to observe the process of vascular development and the interactions
between the two regions. In Vasculogenesis experiments, both HUVECs and LF,
along with fibrin extracellular matrix, were injected into both the vascular and
organoid regions to observe the connection and formation of blood vessels between
the two regions (Figure 2.6A). Lastly, to verify perfusion, red microbeads with a
diameter of 4.0 um were used. These microbeads were flowed through the vascular
region and observed to reach the organoid region via the vascular channels,
demonstrating a stable drug delivery model (Figure 2.6B). These experiments
confirmed that the designed platform could successfully reproduce vascularized

tissues and ensure stability in drug delivery.

For large-scale vascularized tissue model, spheroids with a diameter of
1000 pum or larger were prepared in a U-shaped 96-well plate and cultured for 3 days.
The platform surface was treated with O2 plasma to facilitate cell attachment. On
day 0, HUVECs and LF, along with fibrin extracellular matrix, were injected into

the vascular region, while the remaining regions were filled with EGM-2,media: The



cultures were allowed to develop for 2 days. Afterward, the EGM-2 media in the
organoid region was removed, and previously cultured spheroids were injected into
the region along with HUVECs and LF embedded in fibrin extracellular matrix
(Figure 2.7A). The samples were then fixed and subjected to imaging for 3 days.
Figure 2.7B demonstrates the formation of a tumor microenvironment, where the
spheroids are surrounded by well-developed blood vessels. In contrast to previous
organ chips, this approach successfully achieved the implementation of large-scale

vascularized spheroids with robust vascularization in the surrounding area.

Moreover, the co-culture method of vascularized multi-cluster organoids,
as shown in Figure 2.7C, is depicted. This approach differs from the previous method
in that it involves culturing organoid clusters of various sizes within the organoid
region, allowing them to grow at different rates. Diverse data, such as relationship
between growth rates and drug responses, can be obtained based on the varied
characteristics of organoids within a single sample. Figure 2.7D demonstrates the
injection of fragmented larger spheroids into the organoid region. This results in the

distribution of organoid clusters of different sizes within a single region.



Figure 2.6. Angiogenesis and vasculogenesis application and perfusable test on the
platform. (A) This image shows the vascularization test conducted on VT-MAP,
demonstrating the implementation of angiogenesis and vasculogenesis. The
Vascular area and the Organoid area of VT-MAP interact with each other. (B) To
verify the vascularized vessels, red microbeads (diameter 4pum) were introduced into
the blood vessels. The microbeads flow through the vessels from the media channel

to the inner area, demonstrating their distribution within the blood vessels.
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Figure 2.7. Tumor microenvironment on the platform. (A) This figure represents the
overall process of co-culture large-scale vascularized organoids in VT-MAP. (B)
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clusters of various sizes. (D) Result of culturing organoid clusters of different sizes

within a single well on the platform.



2.3.5. Novel high-throughput algorithm for multiple organoids and

quantitative analysis

Colorectal tumor organoids were dissociated as single cells and loaded in
the device to form vascularized microenvironment. Single tumor organoid cells
formed various size of clusters in hydrogel(Figure 2.8A). The individual viability of
clusters can vary depending on their size. The conventional analysis method, such as
a live-dead assay, measures the live and dead signals of all clusters within a single
well and calculates a single viability value. However, in platforms with diverse
cluster sizes, it is challenging to accurately assess the viability based on cluster size
using such conventional methods (Figure 2.8B). To address this issue, we have
developed an algorithm that can calculate the individual viability of diverse-sized
clusters within a single well. This allows us to consider the diversity of organoid
clusters and investigate the relationship between drug-induced growth rates and

viability.

Confocal microscope images of tumor organoid microenvironment were
taken as raw data with fluorescent green and red signals that represent tumor
organoid clusters and dead cells, respectively. Images should be preprocessed
because numerous noises interfere with the individual detection of tumor organoid
clusters. Firstly, the overall brightness was adjusted through histogram equalization
and normalization techniques. Then, blob removal and blur processes were carried
out to denoise images to facilitate the contour detection of each cluster. Thereafter,
the contour of clusters was separated independently, and individual cluster viability
was measured by computing red signals overlapped with cluster area (green signals).

Finally, average viability was quantified in groups classified by .cluster size iny



500um? intervals. This method allows to figure out the relationship between cluster
size and viability unlike conventional methods. Development of highly efficient
guantitative analysis algorithm is expected to promote diverse approaches in

experimental trends such as cell viability related with cluster size.
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Figure 2.8. Organoid cluster analysis algorithm by computer vision. (A) The
provided image depicts the Live/Dead assay results after drug treatment, showing
clusters of varying sizes. Despite being composed of the same cells, we can observe
differences in cell viability based on the cluster size. (B) The conventional approach
involves analyzing a single cluster within a well and calculating overall viability by
considering all the live and dead signals in the image together, which does not reflect
the impact of cluster size. In contrast, the newly developed algorithm allows for the
individual calculation of size-specific viability for each multi-cluster, enabling the
extraction of their relationship. The results of the same image analyzed using the
previous algorithm and the new algorithm shows that the new algorithm allows for

a better understanding of the relationship between viability and size, enabling more



detailed analysis. On the other hand, the previous algorithm had difficulties in

capturing such detailed information.



2.3.6. Drug treatment in vascularized patient-derived colorectal

cancer in VT-MAP

We cultured clusters of various sizes on the VT-MAP platform to utilize
the heterogeneity of organoids. Drugs for colorectal cancer (CRC), Oxaliplatin,
Irinotecan and FOX (Combination of 5-Fu and Oxaliplatin) were used for drug
treatment. The overall timeline of the drug treatment process is shown in Figure 2.9A.
Initially, in the vascular area, a mixture of HUVECs and LFs was injected along with
fibrin extracellular matrix. The remaining channels were filled with EGM-2 media,
and we waited for two days for vascular development. We used two patient-derived
xenograft models of colorectal cancer, namely CRC1 and CRC2. After two days, the
media in the organoid area was aspirated, and CRC cells were injected along with
HUVECs, CAFs, and fibrin extracellular matrix. After a day of stabilization, the
drugs were mixed into the media. Following a two-day drug treatment period, the
samples were fixed, and a Live/Dead assay was performed. Figure 2.9B shows the

results of drug treatment.

CRC 1 and CRC 2 are colorectal patient-derived tumor organoid clusters
that showed different reactions from drug treatments. CRC 1 is from a patient who
completely recovered with anticancer drug treatment and CRC 2 is from a patient
whose cancer was recurred after symptom relief and had resistance to anticancer
drugs. Both patient-derived tumor organoid clusters were treated in 3D in vitro
model using oxaliplatin, irinotecan and combination with 5-FU and oxaliplatin (FOX)
for 2 days. CRC 1 and CRC2 showed a significant difference in the distribution data

of cluster size and viability after drug treatment.



Figure 2.10A is a graph plotting the distribution of viability based on drug
treatment results. In the case of CRCL1, the viability under the control condition is
high, while the samples treated with drugs show consistently low viability. On the
other hand, for CRC2, not only the control condition but also all the drug-treated
conditions show high viability. Figure 2.10B, on the other hand, represents the
viability plotted based on the size of the clusters, rather than simply analyzing
viability. For the control group, CRC 1 and CRC 2 agglomerated and grew in larger
clusters with a wide range of size distribution up to about 6.0 x 10*um? and
3.2 x 10*um?respectively, and high viability ranging from 80% to 95%. For the
drug treated group, both in oxaliplatin 200uM and irinotecan 200uM, CRC1 clusters
decreased in size as 2.0 x 10*um?at maximum and CRC2 clusters decreased as
1.0 X 10*um? at maximum. However, CRC 1 showed 70% viability in small
clusters and 20% viability in large clusters while CRC 2 showed high viability in
70%-85% in overall clusters. It implies that drugs suppressed the growth of cancer
cells and lowered cell viability if cancer cells grew in large size for CRC 1. For
combination treatment group, we observed drug performance in concentration with
50uM, 100pM, and 200pM. In case of CRC 1, cluster size was highly decreased
under 1.0 x 10*um? and cell viability was decreased from 80% to 20% as drug
concentration increased from 50uM to 200uM. CRC 2 also showed decrease in size
for all drug concentration as 1.0 x 10*um? in maximum. In contrast to size
distribution, the viability of CRC 2 clusters was between 70% to 90% for all

conditions.



A

+——— EGM-2 EGM-2 + Organoid media —————
Vascularization CRC organoid . Live/Dead
(1%t Patterning) (2" Patterning) B ScrEening Assay
Day 0 2 3 5
B

Scale bar = 500um

. oxaliplatin 200uM Irinotecan 200uM m

CRC1

CRC2

Figure 2.9. Drug screening process and Live/Dead assay results. (A) Drug treatment
process on VT-MAP with multi clusters. (B) Drug screening results of CRC1 and
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Figure 2.10. Drug screening results graph of CRC clusters. (A) Graph showed CRC1

and CRC2 clusters’ viability distribution. The control condition of CRC1 exhibits

high viability, while the viability decreases gradually in the drug-treated conditions.

On the other hand, CRC2 shows high viability not only in the control condition but

also in the drug-treated conditions, unlike CRC1. (B) The presented graph illustrates

the variation in viability based on cluster size for CRC1 and CRC2. It visually

demonstrates the changes in viability corresponding to different cluster sizes.



2.3.7. Comparing in-vivo and in-vitro results from VT-MAP

In the case of CRC1, the control condition exhibits high viability, while the
treated conditions show a gradual decrease in viability. This suggests that CRC1 is
sensitive to the drug treatment, resulting in a decrease in viability. On the other hand,
both the control and treated conditions of CRC2 demonstrate high viability. This
indicates that CRC2 either has a higher resistance to the drug treatment or there might
exist different mechanisms of response to the drug. ,Therefore, CRC1 and CRC2
exhibit different patterns in terms of viability changes in response to drug treatment,
suggesting differences in susceptibility or resistance to the drug on their respective
aspects. As CRC 1 patient completely recovered and CRC 2 patient recurred after
symptom relief, CRC 1 tumor organoid clusters highly reacted to drug treatment in
cell size and viability and CRC 2 tumor organoid clusters only reacted in cell size

maintaining high viability.

CRC1 and CRC2 are patient-derived cells obtained from Samsung Hospital,
each with distinct characteristics. CRC1 represents cells from a patient who achieved
remission through drug treatment, while CRC2 represents cells from a patient who
experienced recurrence despite previous treatment. VT-MAP serves as an in vitro
model capable of reflecting the unique characteristics of these patients. In the case
of CRC1, we observe a decrease in both size and viability in response to drug
treatment. This indicates a sensitive response to drugs as cells from a patient who
achieved remission. On the other hand, CRC2 shows a decrease in size following
drug treatment, but the viability remains relatively unaffected. This suggests an
environment prone to recurrence. Conventional in vitro models could only observe

low viability for both CRC1 and CRC2. However, VT-MAP provides more detailed,,



and complex information. It not only reveals changes in cell size and viability in
response to drug treatment but also allows for the understanding of individual patient
characteristics. VT-MAP bridges the gap between in vivo, ex vivo, and in vitro
results, providing a platform to study personalized responses in a more

comprehensive manner.



2.4. Discussion

This research highlights the current limitations of in-vitro models and
underlines the urgent need for a more representative model to simulate the complex
tumor microenvironment for large scale vascularized tissue or organoid models[38,
41, 77]. Organ-on-a-chip technology holds significant promise in this regard[15, 68],
especially when paired with 3D vascularized tumor models[78]. This novel approach
allows for a more nuanced investigation of cellular behaviors in a controlled, yet

physiologically relevant, tumor microenvironment[79].

The development of a vascularized tumor model, however, remains a
considerable challenge[20, 32, 80]. The intricate network of the vasculature and its
physiological functions are complex to replicate in an in-vitro platform due to the
small scale of current vascularized tumor on a chips. Combination of rail-assisted
structure and mesh-assisted structure provides an enhanced platform for culturing
large scale vascularized tissues or organoids within tumor microenvironment.
Through this research, a large-scale vascularized tissue mesh-assisted platform (VT-
MAP) have been developed. By leveraging fluid dynamics analysis derived from the
previous rail-assisted approach, the limitations of scale hurdle have been overcome.
Additionally, by introducing a new analysis method for multi-cluster’s viability and

size relationship.

Furthermore, VT-MAP demonstrates the potential to mimic the tumor
microenvironment more realistically, which is characterized by dispersed clusters of
various sizes rather than a single solid form. Unfortunately, most existing tumor drug
screening models are limited to the culture of single spheroids in individual wells of

a 96-well plate or tumor chip model. However, in this research, VT-MA&-'@apéble 'r;'fi



accommodating clusters of various sizes within the tumor microenvironment was
proposed, allowing for a more realistic simulation of in vivo conditions. This
platform provides an environment and space where hundreds of clusters can grow
with diverse shapes and sizes within a single well. Moreover, the heterogeneity of
the clusters provides an opportunity to observe drug responses based on growth rate
and viability. VT-MAP have been successfully developed that allows for the

extraction of diverse data from a single well.

VT-MAP and the new algorithm allow for a better understanding of the
relationship between viability and cluster size, and enables more detailed analysis.
In contrast, the previous algorithm had difficulties in capturing detailed information.
These results demonstrate that the new algorithm has the ability to comprehensively
analyze the relationship between cluster size and viability, providing valuable
insights. Therefore, this research can contribute to a deeper understanding of

organoid clusters and yield results that are more similar to in-vivo conditions.



2.5. Conclusion

In this research, we developed a large-scale vascularized tissue mesh-
assisted platform called VT-MAP and evaluated organoids within it. This platform
overcomes the limitations of the previous rail-assisted model‘s approach and enables
efficient co-culture of large-scale tissues, including vascularized tissues or organoids.
VT-MAP mimics the complex tumor microenvironment where clusters of various

sizes and shapes grow and interact.

From the experimental results, VT-MAP has been demonstrated as a
valuable tool for analyzing and interpreting various factors such as cluster size,
viability, and drug responses. It allows for the investigation of the relationship
between cluster size and viability, which was challenging in previous in-vitro models,
and enables more detailed analysis. Importantly, the experimental results obtained
with VT-MAP showed similarities to in-vivo conditions, distinguishing it from
previous in-vitro models. This research contributes to the replication of a realistic
tumor microenvironment and the investigation of cellular behaviors based on cluster
size and viability using VT-MAP. Furthermore, VT-MAP accurately mimics the
heterogeneity of organoid clusters and provides results that are more representative

of in-vivo conditions, thus facilitating drug screening and drug screening research.

In conclusion, VT-MAP serves as a realistic and advanced platform for
studying large scale vascularized tissues or organoids, offering new insights into the
tumor microenvironment. It enhances our understanding of cancer treatment and
tumor biology, and can be instrumental in the development of personalized

therapeutic strategies.



Chapter 3. Deep Learning-driven Virtual Staining for

High-throughput Microfluidic Angiogenesis Assays

3.1. Introduction

Organ-on-a-chip (OoC) technology has emerged as a promising platform for
simulating human physiology and disease, with potential applications in drug
screening and precision medicine. Microfluidic-based OoC systems have made
progress in reproducing models of various organs similar to those in vivo, such as
eyes [18, 81], intestines [82, 83], and tumor microenvironments [17, 38, 43].
However, their widespread adoption requires high-throughput screening capabilities,
including mass device production, automated cell dispensing, and efficient data
analysis [24]. Efforts are underway to increase compatibility with traditional
laboratory equipment by integrating 3D co-culture systems within standard
microplates [84, 85] and to improve robust cell dispensing methods through 3D
printing and injection molding [44, 86, 87]. In particular, there are attempts to
increase compatibility with existing labware or bioassays by building a cell co-
culture system within a microplate standard [42, 88, 89].

Despite advances in high-throughput experimental equipment, effective data
acquisition and analysis remain a challenge in the field [90-92]. Fluorescence
imaging of OoC systems provides rich information, making functional parameter
analysis important. However, the current analysis process, which involves cell
fixation, fluorescence labeling, and confocal microscope, is cumbersome and time-

consuming, with labeling results often yielding inconsistent results.



Recently, deep neural networks have been applied to image enhancement for
immunocytochemistry research and medical imaging. Deep learning methods for
image reconstruction, including convolutional neural networks (CNNs) and
generative adversarial networks (GANSs) [93, 94], have been used in a variety of
biomedical images, such as super resolution microscope [95, 96], tumor
segmentation in Magnetic Resonance (MR) images [97], and virtual histological
staining [98-100]. However, deep learning technology is still not widely used in the
field of OoC [101-104], owing in part to the difficulty of obtaining a large number
of high-quality images for training [105].

In this study, we present the development of label-free fluorescent image
construction techniques using a GAN-based SegNet architecture. The process was
performed using large-scale, high-quality images obtained on the high-throughput
microfluidic cell culture platform, the VS-IMPACT (Virtual Staining-assisted
Injection Molded Plastic Array 3D Culture System). In particular, we demonstrate
the virtual staining for the vasculature, one of the most morphologically complex
organs in the human body. Our machine learning architecture, based on a large
dataset, successfully reconstructs brightfield images into artificial fluorescence
images, offering a promising tool for high-throughput screening in various disease

models and drug response evaluation in the field of OoC.



3.2. Materials and Methods

3.2.1. Design and manufacturing process for VS-IMPACT platform

The injection molded angiogenesis platform was manufactured by injection
molding. Polystyrene (PS) injection molding was performed at R&D Factory
(Korea). The aluminum alloy mold core was machined by processing and polishing.
The clamping force at injection was set at 130 ton at a maximum injection pressure
of 55 bar, cycle time of 15 seconds, and a nozzle temperature of 220 °C. The device
was completely made by adhering a film substrate to an injection molded PS
microfluidic body. The alloy mold core was designed by Solidworks at Dassault

System.

3.2.2. Cell preparation

Human umbilical vein endothelial cells (HUVECs; Lonza, Switzerland)
were cultured in endothelial growth medium 2 (EGM-2; Lonza), and the cell passage
numbers between 4 and 5 were used for experiments. Lung fibroblasts (LFs; Lonza)
were cultured in fibroblast growth medium 2 (FGM-2; Lonza), and cell passage
numbers between 5 and 6 times were used for experiments. The cells were incubated
at 37 °C in 5% CO2 for 2-3 days prior to chip loading. Cultured HUVECSs and LFs
were detached from the culture dish using 0.25% trypsin—EDTA (HyClone, USA).
The various cells were then re-suspended in bovine fibrinogen solutions at the

concentrations required for each experimental model.



3.2.3. Hydrogel and cell patterning

Prior to device seeding, every device was plasma surface treated at 70 W for
3 min to promote surface hydrophilicity (Femto Science, Korea). The central channel
was patterned with 1 pl of acellular bovine fibrinogen solution (final concentration
2.5 mg/ml; Sigma, USA) which was added to 2% of bovine thrombin solution (0.5
U/ml, Sigma). Subsequently, 3 ul of the LFs (final concentration: 6 million cells/ml)
and fibrinogen/thrombin mixture were patterned in the upper side channel. And the
HUVECSs suspension (final concentration: 3million cells/ml) was patterned in the
lower side channel. Patterned chips were tilted until HUVECs were fully attached to
the central acellular fibrin gel. Each media reservoir was filled with 100 pl of the
growth medium after 15 minutes. The growth medium was changed every day. In
order to generate shear stress and interstitial flow, all medium from the lower
reservoir was removed and 100 pl of medium was injected only into the upper

reservoir [106].

3.2.4. Immunocytochemistry

The samples in the device were fixed with 4% (w/v) paraformaldehyde
(Biosesang, Korea) in PBS (Gibco, USA) for 15 min, followed by permeabilization
with 20 minutes of immersion in 0.15% Triton X-100 (Sigma). The samples were
then treated with 3% BSA (Sigma) for 1 h. Endothelial cell (EC)-specific staining
was performed using 488 fluorescein-labeled Ulex Europaeus Agglutinin | (\Vector,

UK), which was prepared at a 1:500 ratio of dye in BSA for 12 h at 4 °C.



3.2.5. Image data collection and post processing

Imaging was performed using confocal microscope (Nikon Ti-2, Japan) to
produce slice and z-stackable images of the angiogenesis for generating paired
brightfield images and fluorescent images. High-throughput imaging software
(Nikon High Content NIS-Elements Package, Japan) was used for high-speed,
automated, well-plate formatted acquisition and efficient data management. Fiji
(http://fiji.sc), an open-access software, was used to analyze the confocal images.
Confocal 3D images were converted to 2D images by z-projection, then cropped to

a defined region of interest.

3.2.6. Automatic image data analysis

For better data quantification, fluorescence images of angiogenesis had to be
pre-processed. It was hard to get a clear result because the images had noise made
by brightness variation, contrast difference, and tiny particles. The entire process of
picture quantification is depicted in Figure 3.5. Image blurring was the first step in
removing noise, which included averaging filtering, median filtering, Gaussian
filtering, and so on, but in order to get the shape of the original vessel area, Gaussian
filtering was used with the Python OpenCV library, which reliably preserved the
value of the contour of vessels. The primary goal of gaussian filtering was to improve
value uniformity, as fluorescent images of angiogenesis had nonuniform values
overall. Following that, a proper threshold's binary value was entered to extract only
the actual vessel area, compensating for the spreading of vessel value as blur and
removing noise with a low fluorescence value. Even after Gaussian filtering and the

binary threshold process, the angiogenesis image contained numerous black-blobsy


http://fiji.sc.)/

due to the nonuniformity of the value inside the angiogenesis area and white blobs
from outside.

As aresult, the algorithm in OpenCV with the Find-contour library was used
to remove small islands or blobs of particles below a certain level of area. The
skeletonization algorithm was used to extract a skeleton of 1 pixel size from a binary
image of a vessel [107]. The total number of vessels and the number of angiogenesis
endpoints may be easily determined using the vascular skeleton image. For rational
counting of endpoints, our algorithm computed an average of the points' distances
from the baseline in the top 20% of endpoints and set 50% of the average as the
standard point to sort the endpoints that were growing more than others. The
analytical algorithm enabled automatic quantification of the several parameters’
tendency in images of angiogenesis. The entire quantification data were plotted by

PRISM (GraphPad Prism 9).

3.2.7. Network architecture

A network structure based on the pix2pix network is used to convert
unstained images into corresponding stained images. The network was configured
based on SegNet instead of U-Net. Both networks have an encoder-decoder structure
in common and consist of three paths. The first is the contracting path (left layers in
Figure 3.2), which is composed of a continuous convolutional layer and a
maxpooling layer and plays a role in capturing the overall context information of the
image while continuously reducing the size of the image through downsampling.
The second is an expansion path (right layers in Figure 3.2) that has the same

symmetrical structure as a contracting path. It serves to up-sample the down-sampled
] O |

image to its original size while passing through the contracting path. The'third.'is'theii



skip connection path and corresponds to the red arrow connecting the contracting
path and the expansive path in Figure 3.2. This path serves to provide information
from a corresponding layer on a contracting path to a layer of an expansive path by
one-to-one correspondence between the layers of the contracting path and the
expansive path, so that the associated local information is included when performing
upsampling.

The main difference between U-Net and SegNet is the difference in
information provided through the connection path. In U-Net, the output of the
corresponding layer on the reduced path is provided to the extension path through
the connection path, and in the extension path, the transmitted information is
concatenated with the output of the previous layer on the extension path [108]. On
the other hand, in the case of SegNet, the index information of the maxpooling
operation performed in the corresponding layer on the reduction path is transferred
to the corresponding layer on the extension path, and in the extension path,
upsampling is performed by inversely applying the index information [59]. In this
paper, only the size of the input layer and the output layer were modified to fit the
data. Since the encoder layers of SegNet are the same as the well-known VGG16
network, transfer learning was performed by applying the weight of the previously
learned VGG16 network [109]. The hyperbolic tangent function tanh was applied as
the activity function of the final layer. PatchedGAN technique was applied to the
discriminator as shown in Figure 3.2. PatchedGAN is a technique in which the
discriminator divides the image into small patches, determines the authenticity of
each patch, and adopts the average of the discriminant values instead of

discriminating the entire generated image.



3.3. Results

3.3.1. VS-IMAPCT: High-throughput screening using large-scale cell

culture systems and deep learning-based virtual staining.

Conventional fluorescent staining for the angiogenesis model typically
involves several procedures, including cell fixation, membrane permeabilization,
blockage, and fluorescent antibody tagging. Additionally, widefield fluorescent
microscope has limitations in detecting 3D organ structures over 100 mm in height.
Our approach, on the other hand, employs a neural network architecture and a virtual
fluorescent staining process that eliminates the need for conventional fluorescent
staining or confocal microscope. Specifically, our architecture is trained to convert
transmitted (brightfield) microscope images into fluorescent images, a process that
takes only a few milliseconds per image (as shown in Figure 3.1A).

Machine learning-based image analysis typically requires hundreds of pairs
of brightfield and fluorescence images, which can be challenging to obtain. To
address this, we developed VS-IMPACT, which can achieve high-throughput
screening using deep learning-based virtual staining of large-scale data obtained
from injection-molded plastic array 3D culture platforms and automated data
analysis (as shown in Figure 3.1C and D). The plate-scale microfluidic design we
developed contained 28 samples, which has the potential to expand experimental
yields for high throughput 3d cell culture (as shown in Figure 3.1B). Figure 3.1B
shows the internal structure of each well, which consists of three microchannels: the
center channel, lower channel, and upper channel.

We obtained image data from the VS-IMPACT platform using confocal

microscope, which resulted in 1,036 paired, z-stacked images (brig"hé:fietd_ and)|



fluorescent) that are each 512 x 512 pixels. Three images can be acquired in a single
unit, and they are stitched together into a continuous image for integration of the
complete image. The resulting image is resized to 1024 x 384 pixels for effective
machine learning processing. We separated the dataset into training and test sets

consisting of 828 and 208 pairs, respectively.
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3.3.2. Exploring neural network architectures for image conversion.

An encoder-decoder network is a neural network architecture where an
encoder and a decoder are connected in a symmetrical manner, as shown in Figure
3.2. The encoder is responsible for encoding the input into a specific state, while the
decoder generates the output from this state. Encoder-decoder networks are widely
used for image conversion purposes, where the input image is transformed into
another image having the same underlying structure. In an encoder-decoder network
for image conversion, the encoder is usually composed of several convolutional
layers, and the decoder is composed of symmetric layers as the encoder. The input
image is downsampled while passing through successive layers of the encoder, and
then upsampled again while passing through the decoding layers.

In most image conversion problems, the input and output images have a lot
in common, and this common information needs to be passed to the output layer by
skipping the network layers. To accomplish this, network structures that add a skip
connection to the encoder-decoder network are used. U-Net or SegNet generates
output by adding a skipping connection to the encoder-decoder structure and
receiving global information from the encoded state and local information from the
skipped connection. In the case of U-Net, the output of the corresponding layer is
transmitted through the skipped connection, and in the case of SegNet, the index
information of the max pooling operation is transmitted.

GAN is a neural network architecture based on Minmax game theory that
optimizes the perceptual-level loss function by learning a generative model and an
adversarial discriminative model simultaneously. GAN is widely used in the field of

medical image processing, and its effectiveness has been proven for many problems
] O

such as image super-resolution reconstruction and brightfield h'o'!ogr'abh'y.:f



Conditional GAN (cGAN) is the conditionalization of the generated model and the
discrimination model with additional information in the GAN. The objective

function of cGAN is expressed as follows.

‘CCGAN(G’ D) = ]Ex,y [lOg D(x' y)] + IE:x,z [lOg(l - D(x; G(x! Z))]

Equation 5

Here, x and y are a pair of an image to be converted and a target image
corresponding to the image, and z is a random vector. The generative model G
minimizes this objective function for the hostile discriminator D, which aims to
maximize this objective function. cGAN does not directly compare the image used
for conditioning with the generated image. In other words, instead of directly
providing a metric that determines how close the generated image is to the target
image, it expects the discriminator to create such a criterion. On the other hand, in
the pix2pix network, we directly add a loss function to the cGAN that represents the
difference between traditional images, such as L1-distance. Unlike general cGAN
applications, this is possible when a target image is present. That is, the objective

function is as follows.

Ly = Ex,y,z[”y - G(x,2)|l4] Equation 6

Our final objective is

G =arg mGin ml?meAN(G, D) + AL;1(G). Equation 7



In addition, the pix2pix network is different from cGAN in that it replaces
the random vector z with the dropout layer and applies the PatchGAN technique to
the discriminator. It is known that the PatchGAN has the effect of allowing the loss
function to focus on precise details rather than the overall context of the image, that
is, the high-frequency region of the image. This is related to the intention that the
loss function comparing the target image and the generated image focuses on the
overall contents of the image, and the discriminator focuses on the partial details of

the image.
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3.3.3. Loss functions for generating virtual immunostaining images

of blood vessels.

The loss function is largely composed of GAN loss (Lccan), which expresses
the discriminator's loss, and image 10ss (Limage), Which compares the target image
and the generated image. The choice of loss function is a key factor in the design of
a neural network. For example, the most widely used traditional L2-norm is known
to tend to produce rather blurry images. The pix2pix network applied the L1 loss
function and showed that it produced a sharper image compared to L2. In addition
to the traditional L1 and L2, there are metrics that focus on the perceptionally-
motivated image. Representative examples include the structural similarity index
(SSIM) and the multiscale structural similarity index (MS-SSIM). SSIM is a metric
that reflects the intention to measure the perceived quality of an image. While
traditional mean squared error (MSE) or peak signal-to-noise ratio (PSNR) measures
absolute error, SSIM is a model that measures the perceived change in structural
information of an image. Since the human visual system is specialized in deriving
structural information from images, the degree of distortion of the structural
information has the greatest effect on the perceived quality. SSIM is calculated for a
constant-sized window on the image and averages them to calculate an estimate of
the structural difference between the two images. For two windows x and y, SSIM

is defined as follows. Here, u, and u, are the averages of the pixel values of x and
y, respectively, o,® and o,? are the variance of the pixel values, o, is the

covariance, and ¢; and c, are constants for solving the division by zero error.

pxpy+c1)(20xy+ c2)
U3+ 13+ c1)(0%2+ 03+ ¢2)

SSIM(x,y) =

Equation 8



Multiscale SSIM (MS-SSIM), an extended form of SSIM, is the addition of
a scale space to SSIM, and after calculating SSIM at several scales, the final value
is obtained by weighting it. As a result, the loss function considered in this paper can
be expressed as follows.
L = Wgan * Loan + Wpq * LT+ wip * L + wggpy * L™ + wiys_sou

« [MS—SSIM

Equation 9

In our study, we reconstructed virtually stained images for two SegNet-only
conditions using L1 and L2 loss functions and four conditions with MS-SSIM, SSIM,
L1, L2 loss and GAN loss added as described in Figure 3.3A. We called the images
from the deep learning network "virtual immuno-staining images." Figure 3.3B
demonstrates how the loss for each condition gradually decreases as epochs run. It
begins to decline dramatically around epoch 50, then gradually declines. The loss
value did not significantly decrease after epoch 150. Virtual immunostaining images
were generated using the weight values at this point from the input image. The left
side of Figure 3.4 shows the result of generating the virtual staining image under six
conditions. However, there are significant variations across the conditions when
evaluating the micro vessel's characteristics, such as each endpoint, network, branch,
and tortuosity. Therefore, it is necessary to confirm how much the difference

between these images affects the analysis process.
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Figure 3.4. Detailed image between input, ground truth and virtual
immunostaining images with different loss conditions. Enlarged comparison
images between ground truth and virtual immunostaining images with (A)
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3.3.4. Evaluating virtual immunostaining images using six loss

conditions.

The difference between the input image, the GT, and the virtual image under
six loss conditions is depicted in Figure 3.4. The image displays four distinct regions
that highlight the major discrepancies in endpoint, network, branch, and tortuosity.
The endpoint (Figure 3.4A) refers to the termination point of angiogenic sprouts,
while the network (Figure 3.4B) represents the intersection point of the vascular
networks. The branch (shown in Figure 3.4C) is the line that connects two vessels,
and the tortuosity (shown in Figure 3.4D) is the main part of the vessel.

In some cases, the number of endpoints in the virtual fluorescent images may
appear to be less clear than in the input image. This is because the endpoints in the
input image are usually thinner than the main vessel. As the endpoints pass through
the network, the information on their numbers is lost, causing them to move away
from the GT image, as the white arrow in Figure 3.4A shows.

Despite these challenges, the virtual image successfully reproduces the
morphology of the blood vessels, as can be seen in Figure 3.4B and 4C. The virtual
blood vessel is implemented correctly when the input image vessel is thick, but
details are lost when the input image vessel is thin. There is minimal error in the
dominant blood vessel, with only the detail of the small blood vessel being lost,
which does not significantly impact the quantitative analysis. However, in Figure
3.4D, the area disappears entirely due to the neural network'’s inability to adequately
learn due to the input image's brightness, leading to a lower overall area value
compared to the actual area.

Comparing the virtual immunostaining images to the GT images, the images
T | ] o | |
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have similar morphology macroscopically, but there are discrepancies in the level of! |



detail at the local scale. Conditions 1 to 6 in Figure 3.4 display the virtual
immunostaining images with varying levels of detail. Conditions 1 and 2 depict a
general vascular morphology, but the outline and interior of the vessels are blurred,
with faint discoloration in luminance. The background and endpoint remain blurred,
making it difficult to distinguish them clearly. Conditions 3 and 4 have a brighter
interior and a slightly more distinct outline than conditions 1 and 2, but the endpoint
still makes it challenging to distinguish between blurred endpoints and the black
background.

Conditions 5 and 6, on the other hand, display a remarkable resemblance to
the GT, with a prominent outline and a bright interior. The endpoints exhibit a
distinct morphology and can be easily counted. Among the conditions, Condition 5
represents the optimal loss condition for application in virtual staining networks, as

it implements a vessel morphology nearly identical to the GT.



3.3.5. Developing automated angiogenesis analysis algorithms.

In comparison to traditional 2D images, fluorescence images in OoC often
exhibit higher levels of noise due to their three-dimensional nature. While the
development of confocal microscopes has reduced noise caused by device thickness,
excessive noise remains a challenge for efficient analysis (Figure 3.5). The accuracy
of the image analysis tool and the labor-intensive analysis process are factors that
have negatively impacted the usability of OoC. To address this issue, we present a
method for reducing noise in stacked confocal images using the VS-IMPACT. This
allows for the accurate recognition of blood vessel areas and a quick analysis of the
number of sprouts, endpoints, and blood vessel length. The study processed 208 test
images and applied a quantification algorithm to determine the results as shown in
Figure 3.6A, which were then normalized against ground truth (GT) values. Figure
3.6B to 5D illustrate the normalized distribution of the virtual immunostaining
images for each loss condition, where the X-axis represents loss conditions (L1, L2,
L1 + GAN, L2 + GAN, SSIM + GAN, and MS-SSIM + GAN) and the Y-axis
represents normalized values, with 1.0 being the ground truth standard. The average
area value for each condition ranges from 0.74 to 0.95, with values for all conditions
ranging from 0.60 to 1.20 (Figure 3.6B). Differences in area levels are attributed to
differences in brightness between the internal area of the blood vessel and the ground
truth, as shown in Figure 3.4. The range of length values is from 0.65 to 1.18, with a
mean ranging from 0.77 to 1.00 (Figure 3.6C). The variation in endpoint values is

greater than that of the other two parameters.
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3.3.6. Classifying endpoint distribution for accurate assessment of

virtual immunostaining images.

To accurately assess the quantitative trend of virtual staining images, a new
reference point, the endpoint sprout distribution, was introduced. The endpoint
sprout distribution was used to quantify the actual degree of blood vessel growth,
and its value was found to remain relatively unchanged even when the number of
endpoints was altered. In this study, the endpoint sprout distribution was classified
into three cases, A, B, and C, based on the length of the sprout and the size of the
area (as shown in Figure 3.6D).

With a value of 318.55, case A had the highest average endpoint sprout for
the GT. The distribution of average values for the six conditions when normalized
to GT ranged from 88.44 to 94.01 %. Case B had an average GT of 269.92, with a
distribution of six conditions ranging from 95.21 to 101.48 % when normalized to
GT. Case C had the lowest average endpoint sprout among the cases, with a value of
188.44 for GT. The distribution of six conditions when normalized to GT ranged
from 94.10 to 110.23 %. And all images of case A, B, and C with GT and six
conditions are shown in Figure 3.7.

The results of the endpoint sprout inclination can be used as a metric to
compare GT to other conditions. This approach allows for the average sprout

distribution value of the test set to be quantified across all conditions.
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3.3.7. Evaluation of image quality and accuracy in loss functions for

virtual images.

The accuracy of loss functions was assessed using image quality
measurements based on L2 loss for each test set pair and total quantification data for
area, length, and endpoint distribution. The mean square error (MSE) between the
virtual images and the GT images was utilized as a metric for image quality
evaluation (as shown in Figure 3.8A). The average MSE was 0.049, 0.048, 0.053,
0.050, 0.052, and 0.072 from condition 1 to 6, with conditions 1 to 5 having similar
MSE values ranging from 0.048 to 0.052.

When analyzing the average quantification data of area, length, and number
as shown in Figure 3.8B, it was found that condition 5 was the most accurate, with
normalized values of 0.887, 0.903, and 1.015, respectively, which were all close to
the ground truth value of 1.000. In comparison, condition 1 had values of 0.863,
0.822, and 0.945, while condition 2 had values of 0.951, 0.867, and 0.959. Condition
3 had values of 0.748, 0.774, and 0.975; condition 4 had values of 0.872, 0.862, and
0.951; and condition 6 had values of 0.816, 1.002, and 0.974. These values were
generally lower compared to those in condition 5, indicating lower accuracy (Figure
3.8C).

In conclusion, condition 5 was found to have the highest accuracy among the six
conditions in terms of area, length, and number measurements, as evidenced by its
highest values for all three components. The other conditions had values that were

generally lower, suggesting lower accuracy.
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3.3.8. Virtual live cell imaging by optical microscope brightfield

images

Applying virtual staining only to fixed samples is a good approach to
address the bottleneck of the imaging system. However, it has the limitation of using
data from a fixed state of the samples, making it difficult to obtain information about
the previous stages of the process while angiogenesis step or vasculogenesis. To
overcome this issue, we applied virtual staining to real-time live cell imaging. For
live cell imaging, stitching the three images used in SegNet is inefficient, so we
utilized single images obtained from the microscope (Figure 3.9A). The network
suitable for the 1:1 ratio single image is a U-Net network based on the pix2pix
architecture, which is commonly used in biological staining. We virtually stained
and quantified the 1:1 ratio images of angiogenesis using both SegNet and U-Net for
comparison (Figure 3.9B). The overall score of U-Net was 0.952, while SegNet
scored 0.877. Therefore, we used U-Net for virtual staining of angiogenesis images
ata 1:1 ratio.

In live cell imaging, confocal microscope is commonly used for high-
quality results. However, confocal microscope, while providing high-quality
fluorescent images, is not suitable for imaging many samples due to its high cost and
slow performance. On the other hand, optical microscope is more affordable and
offers faster performance, although the quality of fluorescent images is lower. Also,
due to the size of the equipment, an optical microscope is ideal for observing sample
growth in real time inside the incubator. Therefore, we suggested a strategy to
combine the advantages of both types of microscopes. We utilized the brightfield

and fluorescent image datasets obtained from the confocal microscope to train a U-
T | ] o | |
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Net network, creating a pre-trained virtual stain network. Through transfer Iea'r-hing,::



we can input optical microscope brightfield images into this network to generate
virtual staining images. These virtual staining images can mimic the fluorescent
images from a confocal microscope when using an optical microscope (Figure 3.10)
and enhance the quality of optical microscope images by virtually staining them with
the characteristics of confocal microscope fluorescence images.

Figure 3.11A represents the results of virtual real-time live cell imaging.
We installed an optical microscope inside the incubator to capture angiogenesis
processes only using brightfield images, displaying the results at 10-hour intervals
over a total of 50 hours. By comparing the virtual stained images with the brightfield
images, we can accurately identify the vascular areas and observe the growth process
clearly. For quantitative analysis, we quantified the virtual staining at one-hour
intervals and presented the results in a graph in Figure 3.11B. This sample was not
subjected to any separate drug treatment, and the area and length measurements show
a linear increase, accurately reflecting the observed trends. The endpoint
measurement reflects the gradual increase at the end of blood vessels, where
differentiation does not occur continuously. The branch measurement, a parameter
indicating the branching of blood vessels, demonstrates little change in more

developed vessels, effectively capturing the observed pattern.
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Figure 3.9. U-Net network based on pix2pix structure and quantification results
between SegNet and U-Net. (A) U-Net network for 256 x 256 image set. Virtual live
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analysis. The results revealed that U-Net outperformed SegNet, demonstrating

superior performance in the task at hand.
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real-time live cell imaging.
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Figure 3.11. Virtual live cell imaging results and quantification. (A) The results

show the application of virtual staining on real-time images captured at one-hour

intervals during the angiogenesis process. We selected images at 10-hour intervals

from the total of 50 hours to display. (B) This figure presents a graph plotting the
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characteristics of the blood vessels. It shows the changes over the course of 50 hours,

allowing us to observe the trends for each parameter.
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3.4. Discussion.

The utilization of OoC in drug development and as a preclinical model is the
subject of ongoing discussions. One of the challenges that remains to be addressed
is the standardization of data analysis [24, 110, 111]. The data analysis process in
OoC is prone to errors due to various factors that influence the image generation and
analysis process. To address this issue, machine learning techniques are being
applied to perform morphological analysis of cells or organoids with simple
structures [112, 113]. In this study, we have successfully applied machine learning
morphological analysis to one of the most complex organs, the vasculature.

The complexity of the micro-vascular structure, including networks,
endpoints, and tortuosity, presents numerous factors to consider in the morphological
analysis of 3D blood vessels. Furthermore, the uneven brightness of the 3D vessel
images makes it difficult to acquire precise blood vessel data through straightforward
skeletonization. To overcome these challenges, we developed an algorithm that
enhances the quantification method and preprocessing steps to provide more
accurate data. The integration of mass producible OoC, deep neural networks, and
analytics algorithms streamlines protocols and shortens the process.

Our study developed a high-throughput analysis process that uses widely
adopted elimination, skeletonization, and binarization techniques. Our algorithm
analyzes the number of endpoints, length, and area of angiogenesis, which are used
as standard indicators for vascular morphology analysis. The images generated by
deep learning were used to verify the results of the algorithm. Through the deep
learning architecture with six objective functions, we generated 208 pairs of test

images. A qualitative evaluation showed the most images in the six conditions
I N |
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of detailed information compared to the ground truth image. The model without
GAN loss weighting showed significant differences from the actual fluorescence
image, while the GAN loss-weighted model was difficult to distinguish from the
actual stained image, especially with the SSIM and MS-SSIM loss models (Figure
3.4).

Traditional manual counting methods and commonly used angiogenesis
evaluation tools, such as AngioTool [114, 115], are labor-intensive and subjective,
requiring different parameters for each image. These tools are also limited to flat 2D
blood vessels, making it challenging to evaluate 3D blood vessel data. Our system,
VS-IMPACT, provides a specialized analysis tool for 3D blood vessels, from
imaging to quantification. The system's method can replace the current
immunocytochemistry process, allowing for non-destructive real-time imaging and
the evaluation of 3D vasculature characteristics, which is useful for high-throughput
drug screening and creating a visible microenvironment. Additionally, the non-
destructive real-time imaging enables the end-user to continuously track the growth
of a 3D micro-vascular network while acquiring quantitative data.

Our research significantly shortened the data acquisition and analysis
processes in OoC. We acquired many images of complex vascular networks using
the high-throughput VS-IMPACT. Brightfield images were quickly acquired
without fluorescence filters or lasers, and the vascular network was specified through
the virtual staining process using the deep learning architecture. This algorithmic
analysis tool measures the morphological characteristics of angiogenesis without
human intervention, establishing a standardized protocol for data processing in OoC,

leading to significant time savings and error reduction.



Moreover, we explored the potential and usefulness of virtual live cell
imaging. We performed brightfield imaging using a real-time microscope and
generated virtual stained images using U-Net. Through this approach, results like
confocal microscope fluorescence images were obtained from an optical microscope.
Additionally, by quantifying and graphing the four parameters of the actual blood
vessels, we were able to accurately track the growth and differentiation processes of
the angiogenesis. These results demonstrate the feasibility of virtual staining in the
field of real-time live cell imaging and highlight the utility of combining the
advantages of optical microscope with the fluorescence imaging quality of confocal
microscope. Therefore, virtual staining for real-time microscope imaging holds great

promise as an important tool in biological research and medical applications.



3.5. Conclusion.

In this study, we aimed to advance high-throughput OoC experimentation
by introducing the innovative VS-IMPACT platform. This platform allows us to
obtain large-scale brightfield images of target objects without the use of fluorescent
staining. The images undergo a deep learning-based virtual staining process and
virtual live cell imaging that characterizes the objects as if they were stained using
traditional methods. Additionally, we optimized our algorithmic measurement tool
to provide automated morphological analysis, eliminating the need for manual
intervention. We successfully demonstrated the feasibility and efficacy of our
approach through its application to the complex structure of 3D blood vessels. Our
proposed model has the potential to streamline post-processing steps in various fields
of cell culture research, including OoC experiments. Furthermore, the non-
destructive real-time analysis of living cells offers various avenues for analysis, such

as evaluating immune-mediated tumor killing.



Chapter 4. Concluding remarks

In recent years, organ-on-a-chip technology has emerged as a
transformative approach for advancing drug development and precision medicine.
Organ chips, also known as microphysiological systems, are innovative platforms
that aim to replicate the structural and functional characteristics of human organs in
vitro. These microfluidic devices offer a unique opportunity to study complex
biological processes by incorporating various cell types and mimicking the
physiological conditions found in vivo. Organ chips have revolutionized traditional
in vitro models by providing a more accurate representation of human physiology
compared to conventional cell culture systems. They enable the integration of
multiple cell types, including parenchymal cells, endothelial cells, and immune cells,
allowing for the recreation of organ-specific microenvironments. By recapitulating
the organ's architecture, cell-cell interactions, and tissue-specific functions, organ
chips provide a sophisticated tool for studying organ-level responses and drug effects.

Despite their tremendous potential, organ chips face certain limitations that
need to be addressed. One notable challenge is the development of vascularized
tissue models within organ chips. The inclusion of functional blood vessels is crucial
for replicating the complex physiological processes that occur within organs. While
existing vascularized spheroid models have been successful in co-culturing small-
scale tumors, they are not well-suited for achieving large-scale vascularized organoid
models. This limitation hinders the scalability and clinical relevance of these models.

In chapter 2, to address the limitations of existing organ chip technology, |

propose the Vascularized Tissue Mesh-Assisted Platform (VT-MAP) as an

innovative solution. The VT-MAP combines the advantages of the eXiétind.'.fail-::



assisted structure with the mesh-assisted structure, enabling the development of
large-scale vascularized tissue or organoid models. By incorporating both structures,
VT-MAP offers enhanced scalability and adaptability, making it well-suited for
accommodating the complex and dynamic nature of vascularized tissues. VT-MAP
holds great promise in advancing drug screening and precision medicine research. It
provides an environment that closely resembles in vivo and ex vivo conditions,
offering a valuable tool for studying the drug response evaluation of cells in a more
physiologically relevant context. By maintaining high reproducibility and scalability,
VT-MAP enables the investigation of large-scale vascularized organoid models,
bridging the gap between traditional in vitro models and the complexity of in vivo
systems. This platform not only allows for the cultivation of vascularized tissues or
organoids but also facilitates the study of various biological processes, including
angiogenesis, tissue development, and disease progression.

The implementation of VT-MAP in drug development and precision
medicine research offers exciting opportunities to improve our understanding of
human physiology and advance therapeutic interventions. By overcoming the
limitations of existing models, VT-MAP provides a powerful tool for studying
complex biological systems and evaluating drug efficacy and safety with higher
accuracy and reliability. With its ability to replicate large-scale vascularized tissue
models, VT-MAP has the potential to transform the field of organ-on-a-chip
technology and drive advancements in personalized medicine and drug discovery.

Another limitation lies in the imaging systems used in these platforms. As
throughput has increased, imaging systems, particularly confocal microscopes
commonly used in organ chips, have struggled to keep up with the growing demand.

Cost and performance limitations have resulted in a bottleneck in captu_r-i:;ng q]l.th_e;g



necessary data. To address these limitations, | propose a solution in chapter 3. The
thesis introduces the Virtual Staining-assisted Injection Molded Plastic Array 3D
Culture System (VS-IMPACT), a high-throughput microfluidic system that
leverages deep learning-based virtual staining techniques. The VS-IMPACT
platform integrates various processes, ranging from large-scale image data
acquisition to quantitative analysis of angiogenesis, providing a valuable tool for
pharmaceutical and biological research. With the capability to transform brightfield
images into label-free virtual fluorescence images, VS-IMPACT eliminates the need
for traditional staining methods, enabling effective live cell imaging without the cell
fixation process. This revolutionary approach not only improves experimental
efficiency but also allows for the evaluation of responses to angiogenesis inhibitors
or anticancer drugs in the tumor microenvironment. By providing reliable and
reproducible vascular images, VS-IMPACT offers a high-throughput solution for
studying angiogenesis and its modulation in the context of tumor development and
treatment.

Moreover, | have extended the concept of virtual staining and integrated it
with a live cell imaging system, enabling the establishment of real-time virtual live
cell imaging using only brightfield images. Unlike conventional methods that require
fixing the samples at specific time points, our approach allows for the acquisition of
data throughout the entire growth process of the samples. By eliminating the need
for immunocytochemistry process for cell staining, we can obtain valuable data
without any damage of the samples, providing a significant competitive advantage.
The introduction of virtual live cell imaging opens new possibilities for studying
dynamic cellular processes and interactions. Researchers can now observe and

analyze the growth, migration, and behavior of cells in real-time_-'gwithin:_a;g



vascularized microenvironment, enabling a comprehensive understanding of
complex biological phenomena. This innovative approach not only improves the
efficiency and accuracy of data acquisition but also offers insights into the cellular
dynamics that were previously inaccessible. By combining the benefits of virtual
staining and live cell imaging, we have established a powerful tool for studying
cellular behavior and advancing our understanding of disease mechanisms,
ultimately contributing to the fields of biological research, drug discovery, and
precision medicine.

In summary, the development of VT-MAP and VS-IMPACT represents
significant advancements in the field of organ-on-a-chip technology. These
innovative platforms address the limitations of existing models, providing scalable
and high-throughput solutions for studying vascularized tissue models and
angiogenesis. By bridging the gap between in vitro and in vivo systems, VT-MAP
and VS-IMPACT offer valuable tools for drug screening, precision medicine, and
biological research, contributing to advancements in therapeutic interventions and
our understanding of complex biological processes. By addressing the limitations of
current in vitro models and leveraging these innovative approaches, the thesis holds

great potential for advancing drug development and precision medicine research.
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Abstract in Korean

715 (Organ—on—a—chio)< 1E2 XA AL FAMSHY
B33 A d4LS 22 v A fA (microfluidic) Z & 33
A Bdolth, uAlFA 7]« wHoZ EAIAF (Capillary flow) &

-3t

ixd

thekst o3&hA )4 (Concus—Finn condition, Spontaneous
Capillary Flow condition %)< &ste] wAl Aol Ao FAE
AdstA z#star Alojste] Hgst ME w AR Fdo] Theshod
A7 g% AuaiAa )& FdskH XPE 53t Al
T oeFst Wi 3 o] Jhesit E3] AAl FF
u] Al $7 (Tumor microenvironment) & TF&3s}7] ¢35t d#std FoF
(Vascularized spheroid) =& <2 7}x°]=(Vascularized organoid)
Edo] it A9 FoALS A AAL v dastd Ede
23t Al fAFsE 388 Alwete] ohekst kel st 54 A,
5 T8 AAE AT &y st @A o JIEE A3E U
Atk ddastd R wiYg x4, T EE 39
@ o} (morphology), 71¥# A2]8 (organ physiology), °F= ®¥& &
st Fo3 JHE IS 7 dow ojyst HolHES F4ste] thakst
A3E 25T F Sl

aey olgst EFHES 7 O7HA dARE AYa dd. AA,
A7tA el FF vAgdE  EFHAES ATE TS (~400um) 9
SHjekste] thekst ok AdRdd A7 AAEHIAH. s AA
Aol #AE olEn AR darE AAILE AA zA oy
Q7o) = (1000um ~ 2000um ) 7} ApetH] o] AHAAE FET 5 Qe
MEL ZF9F A7 ool dFdd. =4, AVIH Eokes
A&Hog wdste]l Ay &3 g&o] Ttk B o AF
A = e 3ol ZA Y. AR AVIHS 3D T
¥%274  @dn 7 (Confocal microscopy)=
3 A dAvAEE =2 EYyH 9

o}
ojmA s AFA;NFA HEo] HMH oju[R AJFlto] Au= dHOoR

o|
o|

SAS &8k Sl 7 7HA AR S ARbET A,
71E8] A7) elA &8st @AY 7% (Rail guided structure) 2} w5
TZ (Mesh—assisted structure) & 2Ag3sle] U5 AAILe daste
Aol Y erteoltE HlSE ¢ = MEE EHEQ] Vascularized
Tissue—Micromesh Assisted Platform (VT—-MAP)<S A7184Yt}
VIT-MAP & Z&9tE $¢F Rdg gloju &<s] iR 3 &5
HjeFe = ASERE ol dstE T RdE Alyete] d@s F3
ok A mEs A 5 du ol& Tl VI-MAP ;ﬁq Ay
Aolmdel AAS FEsm Aze ok ARz Ao wrh



MEZE 7Fsds & Fe= 7igst. &4, 71E9 23 dnA
ojuy  AlAHlE "oy A&SE Ayl Jhed Ml EAgA e
743l A (Label—free virtual staining method) 7]¥<Ql  Virtual
Staining—assisted Injection Molded Plastic Array 3D Culture System
(VS=IMPACT) & 27R%tt. VS—IMACT + SegNet ¥ cGAN =
8o "ed 7 darEgeln] @] brightfield o]n|AellA] whE

%4 o]u]A (confocal image) w2 & olvAE HES Al 34
o] =A] Oéé T Atk 7€YY w23 dud olulA Ao HEEA|
Q3 o A 3 3} 8 o A (immunocytochemistry staining

method)% Agkd 4 Qlom mjEA| el AR|ZE ME o]ulH
(label—free live cell imaging)°| 7}&3ste] B9z 2 2AA7E I3
BYgE o] 7heste] st s S84 Eelsta e R dAH
dolHE 92 4 Stk o] wES &8st T v 3
A A A Y LA e Jbg-S HrEe ¢ Sl

B o=Rox st VI-MAP ¥ VS—IMPACT & &&3phd
TF UME AT AP E FHET AR AT S AAE 5

o

o + A7, @%E} 24, vAFASE, R 2Ad, 7
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