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Abstract

Motion Control of 6-DOF Hydraulic Excavators via
Data-Driven Model Inversion

Minsung Kang

Mechanical Engineering

The Graduate School

Seoul National University

In this study, we present the motion control of 6-degree-of-freedom (DOF) hy-

draulic excavators through data-driven model inversion. Due to their high degree

of freedom, operating such 6-DOF excavators can be challenging, therefore there

is a growing demand for autonomous control. However, their complex hydraulic

characteristics pose a significant challenge to control. To address this issue, we

adopt a modular approach to model the input delays, dead zones, and complex

dynamics of the excavator based on a physics-inspired manner, and then train

the model using real-world operation data. The resulting data-driven model is in-

verted to construct the controller. Our approach is validated through real-world

experiments involving 6-DOF digging and grading tasks on a commercial hy-

draulic excavator, demonstrating accurate control performance (i.e., root-mean-

square of horizontal and vertical path following errors under 4[cm]) even in the

presence of soil interactions.

Keywords: Hydraulic excavator, Tilt-Rotator, Motion control, Data-driven,

Soil interaction

Student Number: 2021-22988
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Chapter 1

Introduction

1.1 Motivation and Background

Hydraulic excavators have been widely used in various industries, such as con-

struction, mining, agriculture, and forestry, due to their high-power output. How-

ever, general excavators with standard buckets are typically limited to three de-

grees of freedom, consisting of the bucket, arm, and boom. Consequently, the

reach and versatility of general excavators are limited, often requiring frequent

movement of the excavator to reach inaccessible areas. For this reason, general

excavators with standard buckets have problems with low productivity and effi-

ciency. To address these challenges, third-party companies such as Engcon [1] or

Steelwrist [2] have introduced new attachments, such as tilt-rotator, to enhance

1
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Figure 1.1: Engcon tilt-rotator(left), Steelwrist tilt-rotator(right)

the functionality and flexibility of general excavators. A tilt-rotator attachment

allows the operator to control the rotation and tilt angle of the excavator arm

as shown in Figure 1.1, significantly improving the machine’s range of motion

and adaptability in various work environments. In recent years, tilt-rotator ex-

cavators have become increasingly popular due to their ability to handle more

complex tasks, improve work efficiency, and reduce excavator movement on the

job site.

Despite the advantages of tilt-rotators, it is difficult for unskilled users to use

them due to the difficulty of simultaneously operating high degrees of free-

dom. Moreover, the aging workforce in construction sites and the scarcity of

skilled workers have emphasized the need to develop automation technologies

that simplify the operation of tilt-rotators for unskilled users. The development

of such technologies not only aims to enhance usability but also improve safety in
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high-risk construction environments. By addressing these challenges, automation

technology can empower unskilled users to operate tilt-rotators more effectively

while ensuring a safer working environment. However, while research on general

excavators has been steadily progressing, the automatic control of tilt-rotator

excavators has not been well studied.

1.2 Related Works

In general, hydraulic excavators are difficult to control precisely due to their

nonlinearity, especially since they control the hydraulic fluid flow from the pump

by manipulating the spool of the main control valve (MCV) (as shown in Figure

1.2), which has input delays and dead zone characteristics.

Several conventional model-based control methods [3–7] have been employed in

the standard excavator. However, due to the high nonlinearity in hydraulics and

the complexity of MCV, accurate mathematical modeling of the MCV becomes

unfeasible, resulting in limited control accuracy due to the simplification of the

excavator model. To overcome these difficulties, recent studies have focused on

learning-based modeling approaches. Park [8, 9] employed recurrent neural net-

work (RNN) techniques for controlling a general hydraulic excavator; however,

the performance achieved was not highly satisfactory. Egli [10, 11] employed a

reinforcement learning (RL) method for control, but the study had limitations
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Figure 1.2: MCV(left), hydraulic circuit of MCV and TR control valve(right)

in terms of considering various tasks and soil interactions. Furthermore, the vali-

dation was limited to the slow-speed region, which is not representative of actual

construction sites.

Some studies have been researched on model-based control methods for tilt-

rotator excavators [12, 13]. Position and force control [12] has performed or veloc-

ity control [13] has been performed by simplifying the model, but these researches

have solely been validated through only simulations without real-world experi-

mental validation. While these studies have provided valuable insights, there

remains a gap in research regarding practical control approaches for tilt-rotator

excavators that consider the complexities of different tasks and soil interactions.

In the previous work [14], we successfully employed a physics-inspired data-driven

model inversion approach to achieve precise control of a general excavator. This

approach involved modeling the dead zone using a piecewise linear (PL) map,
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input delays through an infinite impulse response (IIR) unit, and representing

the excavator’s complex dynamics and actuator coupling with MLP networks. By

inversion of each of these modeled modules, we constructed an effective controller.

The framework demonstrated its capability to achieve precise control in diverse

work scenarios, accounting for soil interactions. In this paper, we extend the

physics-inspired data-driven model inversion method used in our previous work

to a 6-DOF tilt-rotator excavator.

1.3 Contribution

In this paper, we present the motion control for 6-degree-of-freedom (DOF) hy-

draulic excavators using data-driven model inversion. Our method focuses on

a commercial 38-ton class hydraulic tilt-rotator excavator, equipped with vari-

ous sensors such as IMUs, encoders, pressure sensors, and LiDAR. We extend

the physics-inspired data-driven model inversion method to the tilt-rotator ex-

cavator, enabling precise and efficient motion control. To create the data-driven

model, we gather real-world data from an autonomous excavator, ensuring the

accuracy and relevance of our approach. To validate our method, we perform a

comprehensive comparison between our data-driven model inversion and tradi-

tional trajectory tracking control methods. We evaluate the performance under

various soil interaction environments, demonstrating the advantages of our ap-

proach. To further demonstrate the effectiveness of our approach, we conduct
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real-world experiments involving 6-DOF digging and grading tasks on a commer-

cial hydraulic excavator DX380LC. These experiments provide valuable insights

into the practical applicability and robustness of our motion control strategy.

Overall, our research offers a promising solution for enhancing the motion con-

trol capabilities of 6-DOF hydraulic excavators, paving the way for more efficient

and accurate excavation operations in various scenarios.

The subsequent sections of this paper are organized as follows. Chapter 2 pro-

vides a comprehensive explanation of the system and base algorithm utilized in

this study. In Chapter 3, we delve into the data-driven model inversion control

method designed for autonomous excavators. Chapter 4 presents the detailed

results obtained from experiments, covering both grading and digging tasks. Fi-

nally, in Chapter 5, we conclude this paper and outline future research.



Chapter 2

Preliminary

2.1 System Description

We employ the 38-ton HD HYUNDAI DEVELON DX380LC industrial hydraulic

excavator, which is equipped with an Engcon tilt-rotator as shown in Figure 2.1.,

to validate the control performance. The excavator is attached with IMU sensors

on the boom, arm, bucket guide link, tilt link, and cabin frame to measure

their respective statuses. An encoder is also included to measure the swing and

rotate angle and angular velocity. To gauge the pressure of the cylinder, hydraulic

motor, and pump, pressure sensors are installed on the MCV. In addition, a

LiDAR sensor is mounted on the boom to scan the terrain and gather point

cloud data (PCD). Overall, the combined use of these sensors provides detailed

7
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Figure 2.1: HD HYUNDAI DEVELON, 38-ton class hydraulic excavator
equipped with tilt-rotator

and accurate data to analyze the excavator’s end-effector path following control

performances in real-world conditions.
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Figure 2.2: Tilt-Rotator excavator twists at the reference configuration

2.2 Tilt-Rotator Excavator Kinematic Analysis

For this study, we analyze the kinematic modeling of the 6-DOF rigid body

manipulator of the tilt-rotator excavator. Instead of employing the conventional

D-H (Denavit-Hartenberg) parameter method, we adopt the more efficient ap-

proach of analyzing the kinematics using screw theory. This method allows for

streamlined analysis of the high degree of freedom manipulator, enabling a more

effective representation of the tilt-rotator excavator kinematics.

In section 2.2.1, we will analyze the forward kinematics to calculate the bucket

tip position and orientation from the joint angle value, and in section 2.2.2, we

will analyze the inverse kinematics to calculate the joint angle value from the

position and orientation of the bucket tip.
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2.2.1 Forward Kinematics

We analyze the kinematics of the tilt-rotator excavator using the product of

exponentials method. The unit vector in the direction of the twist axis for the

revolute joint of the tilt-rotator excavator are

ω1 = ω5 =


0

0

1

 , ω2 = ω3 = ω4 =


0

−1

0

 , ω6 =


1

0

0

 (2.1)

The coordinate origins are (L12 = L1 + L2)

q1 =


0

0

l1

 , q2 =


L1

−l3

l12

 , q3 =


L12

−l3

l12



q4 =


L123

−l3

l12

 , q5 =


L1234

−l3

l12

 , q6 =


L1234

−l3

l124


(2.2)

Twists of the tilt-rotator excavator are
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ξ1 =



0

0

0

0

0

1


, ξ2 =



l12

0

−L1

0

−1

0


, ξ3 =



l12

0

−L12

0

−1

0



ξ4 =



l12

0

−L123

0

−1

0


, ξ5 =



−l3

−L1234

0

0

0

1


, ξ6 =



0

l124

l3

1

0

0



(2.3)

The forward kinematics eqeuation of the tilt-rotator excavator is

T (θ) = eξ1θ1eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6M(0) (2.4)

where M(0) ∈ SE(3) is the bucket tip position and orientation when the tilt-

rotator excavator is in its zero position.
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Figure 2.3: Screw motion of the swing, boom, arm, bucket joints

2.2.2 Inverse Kinematics

In general, inverse kinematics for high degree-of-freedom robots often pose chal-

lenges, as they can result in multiple solutions or even no solutions. To over-

come these complexities, we leverage the unique structural characteristics of the

tilt-rotator excavator to conduct an inverse kinematic analysis using analytical

methods.

� Structural Property (non-spherical wrist as shown in Fig. 2.2)

− ξ5, ξ6 are intersecting at a point (O6) (can cancel θ5, θ6)

− ξ2, ξ3, ξ4 are parallel to each other

→ cut the 6R-chain into 4R- and a 2R-chain to solve inverse kinematics
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〈
Step-1. Calculate - θ1

〉
Right-multiplying Eq. 2.4 by M(0).

T (θ)M(0)−1 = eξ1θ1eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6 (2.5)

Since the twist motions of ξ5, ξ6 do not move the point O6 as it is on both the

axes of ξ5, ξ6, so we right-multiply by O6 to omit both axes.

T (θ)M(0)−1O6 = eξ1θ1(eξ2θ2eξ3θ3eξ4θ4)eξ5θ5eξ6θ6O6

P1 = eξ1θ1(eξ2θ2eξ3θ3eξ4θ4)O6 = (Px1, Py1, Pz1)
T

(2.6)

The equation 2.6 represents that ξ2, ξ3, ξ4 all move O6 on the (x, z)-plane (i.e.,

sagittal plane), while only the ξ1-twist will produce the out plane motion of O6

from the (x, z)-plane. (as shown in Fig. 2.3)

According to the screw motion, we can solve


(P2 −O6) · ω2 = 0

(P2 − r1) · ω1 = 0

||P2 − r1|| = ||P1 − r1||

(2.7)

We can obtain point P2 using equation 2.7

P2 = (

√
Px1

2 + Py1
2 −O6(2)

2, O6(2), Pz1)
T (2.8)
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Finally, we can obtain θ1 by adopting the Paden-Kahan subproblem-1 [15].

P1 = eξ1θ1 · P2 (2.9)

〈
Step-2. Calculate - θ5, θ6

〉
Left-multiplying Eq. 2.6 by e−ξθ1

e−ξθ1T (θ)M(0)−1 = eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6

T2(θ) = eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6
(2.10)

T2(θ) =


Rx1 Ry1 Rz1 H1

Rx2 Ry2 Rz2 H2

Rx3 Ry3 Rz3 H3

0 0 0 1

 (2.11)

We use only orientation.

eω
′
θ234eω5θ5eω6θ6 =


Rx1 Ry1 Rz1

Rx2 Ry2 Rz2

Rx3 Ry3 Rz3

 , (ω2 = ω3 = ω4 = ω′) (2.12)

Then, we can obtain



Chapter 2. Preliminary 15

θ5 = atan2(Rx2,
√
1−R2

x2)

θ6 = atan2(
−Rz2

cos θ5
,
Ry2

cos θ5
)

θ234 = atan2(
Rz1

cos θ5
,
Rx1

cos θ5
)

(2.13)

〈
Step-3. Calculate - θ2, θ3, θ4

〉
Right-multiplying Eq. 2.10 by e−ξ6θ6, e−ξ5θ5

T2(θ)e
−ξ6θ6e−ξ5θ5 = eξ2θ2eξ3θ3eξ4θ4

T3(θ) = eξ2θ2eξ3θ3eξ4θ4
(2.14)

T3(θ) =


rx1 ry1 rz1 h1

rx2 ry2 rz2 h2

rx3 ry3 rz3 h3

0 0 0 1

 (2.15)

We use only position.

t1 = L1 + L2 cos θ2 + L3 cos(θ23)− (L123 cos(θ234) + l12 sin(θ234)

t3 = l12 + L2 sin θ2 + L3 sin(θ23)− (L123 sin(θ234)− l12 cos(θ234)

t4 = L2 cos θ2 + L3 cos(θ23)

t5 = L2 sin θ2 + L3 sin(θ23)

(2.16)
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Then, we can obtain

θ3 = atan2(−
√
(2L2L3)2 − (t24 + t25 − L2

2 − L2
3)

2, t24 + t25 − L2
2 − L2

3)

θ2 = atan2(x3,
√
1− x23)

θ4 = θ234 − (θ2 + θ3)

(2.17)

where, x3 =
(L2 + L3 cos θ3)t5 − L2 sin θ3t4
(L2 + L3 cos θ3)2 + (L2 sin θ3)2

2.3 Tilt-Rotator Excavator Dynamic Analysis

For this study, we analyze the dynamic modeling of the 6-DOF rigid body ma-

nipulator of the tilt-rotator excavator. The tilt-rotator excavator dynamic model

is

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + τf = τu + JT
tipFext (2.18)

where θ = [θswing, θboom, θarm, θbucket, θtilt, θrotor] ∈ ℜ6 is the joint angle of the

tilt-rotator excavator(as shown in Fig. 2.4), M(θ) is inertia matrix, C(θ, θ̇) is

the Coriolis and centripetal matrix, g(θ) is the gravity term, τf is the friction

torques, τu is input torque, and Fext is external wrenches.
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Figure 2.4: Joint configuration of the 6-DOF tilt-rotator excavator

2.4 External Wrench Estimation via Momentum Based

Observer

Excavators operate in diverse soil interaction scenarios, where predicting external

forces becomes challenging. To ensure precise control of the excavator, account-

ing for these external forces is imperative. However, measuring external forces

directly by attaching a force/torque sensor on the bucket tip is not feasible. To

overcome this limitation, our study adopts a momentum-based disturbance ob-

server [16], [17], enabling real-time estimation of digging forces. By leveraging

this method, we can calculate external forces while considering nonlinearities and

coupling effects on the robot’s inertia matrix. The equation is
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τext = K0

(
p(t)−

∫ t

0
(τu + τf − β̂(q, q̇) + τext)ds− p(0)

)
p(t) = M(q)q̇

β(q, q̇) = −CT (q, q̇)q̇ + g(q)

Fext = J−T
tip τext

(2.19)

where K0 is the gain of the momentum based observer, θ and θ̇ are the joint angle

and angular velocity can be gauged by IMU and encoder, τu can be calculated

by cylinder and motor pressure sensors.



Chapter 3

Data-Driven Control

3.1 Control Architecture

In the previous work [14], we introduced the data-driven control architecture

about standard excavator. This architecture is seamlessly applied to the tilt-

rotator excavator control, as shown in Fig 3.1. Here’s a step-by-step explanation

of the control process:

� Trajectory Planner: The trajectory planner generates trajectories for vari-

ous tasks that the excavator needs to perform, such as digging and grading.

It calculates the desired joint angles and angular velocities for these tra-

jectories.

19
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Figure 3.1: Control architecture of the data-driven model inversion

� P Controller: The generated joint desired angles undergo P controller pro-

cessing to enhance controller robustness. The P controller generates joint

angular velocity commands based on the desired angles and angular veloc-

ities, ensuring robust control during operation.

� Inversion Controller: The model inversion controller is responsible for au-

tonomous operation. It generates a joystick signal using the joint angular

velocity commands obtained from the P controller. This enables the exca-

vator to execute tasks autonomously.

The model inversion controller is developed by inversion the excavator plant

model, which is created based on real excavator work data. This approach ensures

that the excavator’s control system effectively adapts to real-world conditions and

facilitates accurate and reliable autonomous operation.
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3.2 Designing Data-Driven Model Inversion

The tilt-rotator excavator plant model is presented, comprising three modules,

as illustrated in Fig. 3.2. The plant model consists of a pre-delay map, that is

piecewise linear (PL) map, which considers the dead zone of excavator hydraulics,

a delaying system, that is an infinite impulse response (IIR) unit, which considers

the input delay, and a post-delay map, that is multi-layer perceptron (MLP),

which considers the coupled dynamics of complex main control valve(MCV).

The equations for each module are provided below.

ηf,t = fΓt(ut)

Z{ηh,t} = P (z)Z{ηf,t}

ω̂t = hΓtut

(3.1)

where P (z) is the delaying system (IIR unit), and Z is z-transform. The joystick

input is expressed in ut ∈ R6, the joint angular velocity is expressed in ωt ∈ R6,

t is the time step, and the tilt-rotator excavator state is expressed in

Γt = (θt, P
cyl
t , Pmotor

t , P pump
t , F ext

t ) ∈ R19 (3.2)

where θt = (θswing
t , θboomt , θarmt , θbuckett , θtiltt , θrotort ) ∈ R6 in the joint angle, P cyl

t ∈

R6 is the pressure of both side cylinder, Pmotor
t ∈ R2 is the pressure of left and

right swing motor, P pump
t ∈ R2 is the pressure of master and slave pumps, and

F ext
t ∈ R3 is the external forces acting on the bucket tip.
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Figure 3.2: Tilt-rotator excavator plant model

The plant model inversion control is constructed by inverting the plant model,

as shown in Fig. 3.3. The plant model inversion control consists of a pre-control

map, which is the inversion of a post-delay map, a delaying-tracking, which is

the inversion of a delaying system, and a post-control map, which is the inversion

of a pre-delay map. The equations for each module are provided below.

ζh,t = gh,Γt(ω
cmd
t )

Z{ζf,t} = CP (z)Z{ζh,t}

ut = gf,Γtζf,t

(3.3)

where CP (z) is the delay-tracking system, it is calculated from the final value

theorem.
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Figure 3.3: Tilt-rotator excavator model inversion control

3.3 Learning Data-Driven Model Inversion

The data-driven model inversion construction involves two essential steps, as

illustrated in Fig. 3.4. In the first step, we focus on learning the tilt-rotator

excavator plant model, which encompasses the pre-delay map, delaying map,

and post-delay map. The subsequent step involves obtaining the pre-control map

through inversion learning of the post-delay map.

To facilitate the learning process, we collect sensor data from the DX380LC ex-

cavator, equipped with a tilt-rotator, specifically focusing on digging and grading

tasks involving all 6-DOF as shown in Fig. 3.5. The data acquisition is executed

through automated operations, while the reference path for autonomous opera-

tion is derived from scaling and transforming the nominal trajectory from human

expert patterns [18].
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Figure 3.4: Model and inversion control learning schema

Our training dataset comprises 2 million time steps collected at a 100 [Hz],

equivalent to approximately 5.5 hours of operational data. For training, we utilize

a PC with an Intel(R) Xeon(R) Gold 6234 CPU (@ 3.30 GHz), 64.0GB of RAM,

and an NVIDIA Quadro RTX 8000. The training process, until convergence,

typically takes around 1.5 hours, ensuring the efficiency and effectiveness of the

model inversion construction.

The first step involves learning the plant model of the tilt-rotator excavator using

a supervised learning approach as shown in the top of Fig. 3.4. To achieve this,
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Figure 3.5: Tilt-rotator digging and grading tasks

we utilized the neural network modules (PL map, IIR unit, MLP) that were

previously employed in our previous study for training purposes. The second

step involves learning the pre-control map of the model inversion control using

a supervised learning approach. We use a distal learning approach [19]. Fig. 3.6

and Fig. 3.7 show the trained PL map and characteristics of the delaying system.
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Figure 3.6: Pre-delay maps of the tilt-rotator excavator(PL map)
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Figure 3.7: Delaying system of the tilt-rotator excavator(IIR unit)



Chapter 4

Experiment Results

4.1 Experiment Set Up

To evaluate the control performance of our approach, we conduct experiments us-

ing a commercially available 38-ton class tilt-rotator excavator, the HD HYUNDAI

DEVELON (as shown in Figure 4.1), in digging and grading tasks. For the model

inversion input, we select a proportional gain value of Kp = 1.0I6. Based on the

findings from the previous work, we determine that incorporating integral feed-

back was not necessary as the error remained small with P control alone, thus

ensuring sufficient control performance.

We utilize the calculated position of the bucket tip pt=(px,t,py,t,pz,t) (as shown in

Figure 2.4) to evaluate the control performance. The vertical error, consisting of

28
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Figure 4.1: Experiment environment using tilt-rotator excavator

the px,t and pz,t positions, and the horizontal error, consisting of the px,t and pz,t

positions, are defined for evaluation purposes. To establish a basis for comparison,

we contrast our control approach with the manufacturer’s PI control system. By

comparing our approach to the manufacturer’s PI control, we can effectively

evaluate the performance and effectiveness of our method.

4.2 Grading Result

Grading is leveling or shaping the ground surface to achieve a desired slope or

contour (as shown in Figure 4.2). The manufacturer’s PI control system results

showed a path following RMSE of 7.85 [cm] in the vertical direction and 7.21
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Figure 4.2: Bucket tip position during the grading operation

[cm] in the horizontal direction. Additionally, the trajectory RMSE is found

to be 16.99 [cm] vertically and 15.46 [cm] horizontally. In contrast, our system

demonstrates superior performance, outperforming the manufacturer-provided

PI control. Specifically, our framework achieves a significant reduction in path

following RMSE, with vertical and horizontal values of 3.58 [cm] and 2.94 [cm],

respectively. Moreover, the trajectory RMSE is significantly improved to 4.88

[cm] vertically and 4.35 [cm] horizontally (see Table 4.1). As more data is added,

we observe a progressive improvement in the control performance (as shown in

Fig. 4.4).
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Manufacture PI Data-driven inv.

Trj. Tracking Vert. 16.99 4.88

RMSE [cm] Hori. 15.46 4.35

Path Following Vert. 7.85 3.58

RMSE [cm] Hori. 7.21 2.94

Table 4.1: Control accuracy of the bucket tip positions during the grading tasks

4.3 Digging Result

Digging, a fundamental process involving the removal of materials such as soil

and rocks from the ground, is performed extensively to reach the desired ground

level in our experiments (as shown in Figure 4.3). The manufacturer’s PI control

system results showed a path following RMSE of 5.06 [cm] in the vertical direction

and 5.03 [cm] in the horizontal direction. Additionally, the trajectory RMSE

is found to be 17.65 [cm] vertically and 17.95 [cm] horizontally. In contrast,

our system demonstrates superior performance, outperforming the manufacturer-

provided PI control. Specifically, our framework achieves a significant reduction

in path following RMSE, with vertical and horizontal values of 3.45 [cm] and

2.97 [cm], respectively. Moreover, the trajectory RMSE is significantly improved

to 8.11 [cm] vertically and 8.06 [cm] horizontally (see Table 4.2). As more data
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Figure 4.3: Bucket tip position during the digging operation

is added, we observe a progressive improvement in the control performance (as

shown in Fig. 4.4).
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Manufacture PI Data-driven inv.

Trj. Tracking Vert. 17.65 8.11

RMSE [cm] Hori. 17.95 8.06

Path Following Vert. 5.06 3.45

RMSE [cm] Hori. 5.03 2.97

Table 4.2: Control accuracy of the bucket tip positions during the digging tasks

Figure 4.4: Bucket tip accuracy about grading and digging tasks by adding
the number of data
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Conclusion and Future Work

5.1 Conclusion

In this paper, we successfully construct an autonomous 6-DOF tilt-rotator exca-

vator that applied the data-driven model inversion method. First, we analyzed

the kinematics and dynamics of a 6-DOF tilt-rotator excavator. Then, we applied

an MBO-based external force estimator to calculate the external force acting on

the bucket tip in real-time. For autonomous excavator control, we generate a

tilt-rotator excavator model based on real-world data and construct a controller

by inversion of the generated model.

34
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To validate our study, we conduct an experiment using an actual excavator and

compare its performance with the traditional PI control provided by the man-

ufacturer. The results of the experiment clearly demonstrate that our control

method outperforms the manufacturer’s PI control in terms of performance and

precision (i.e., root-mean-square of horizontal and vertical path following errors

under 4[cm]) even in the presence of soil interactions. These findings highlight

the potential of the data-driven model inversion approach in enhancing the con-

trol capabilities of tilt-rotator excavators, leading to more precise and effective

operation in various tasks and work environments.

Overall, our research represents an important step forward in the automation

of 6-DOF tilt-rotator excavators. By leveraging data-driven model inversion, we

pave the way for more precise and effective excavation operations across various

tasks and work environments.
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Figure 5.1: Various attachments for the excavator

5.2 Future Work

In future works, we aim to extend the application of our framework to encompass

a wider range of attachments. While recent research focuses on gripper [20–22] or

harvester [23, 24] attachments, other essential attachments, such as pallet forks,
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Figure 5.2: Number of fatal work injuries by industry sector

rollers, ripper, and compactors (as shown in Fig. 5.1), have received less atten-

tion. By encompassing these attachments in our framework, we aim to achieve

precise control over various tasks and operational scenarios, further enhancing

the versatility and applicability of our approach.

We also acknowledge the significance of addressing the aging characteristics of

excavators and their implications on dynamic behavior. To tackle this challenge,

we plan to develop a robust control framework capable of effectively adapting

and responding to such variations. This enhancement will bolster the system’s

resilience, ensuring consistent and precise performance over extended periods.
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Safety remains a paramount concern at construction sites, particularly consider-

ing the significant force exerted by excavators, resulting in heightened risks and

an elevated probability of fatal accidents compared to other industries [25] as

shown in Fig. 5.2. In response, we aim to conduct research from a safety per-

spective, focusing on preventing accidents during excavator autonomous work.

Specifically, our objective is to implement real-time path regeneration to avert

tipping-over or slipping incidents, proactively mitigating potential safety hazards.

By addressing these future works, we aspire to push the boundaries of our re-

search, improving not only the operational capabilities but also the safety stan-

dards of excavator automation, and making a meaningful impact in the industry.
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요약

본 논문에서는 데이터 기반 모델 반전을 통해 6자유도(DOF) 유압 굴착기의 자율

작업을 위한 모션 제어를 제시한다. 틸트로테이터가 장착된 6자유도 굴착기는 높은

자유도로 인해 작동이 까다로워 자율 제어에 대한 수요가 증가하고 있다. 그러나

복잡한 유압 특성으로 인해 제어에 상당한 어려움이 있다. 이러한 문제를 해결하기

위해 실제 굴착기 구조를 기반으로 모듈러 방식으로 굴착기의 입력 지연, 데드존,

복잡한 동역학을 모델링한 후에 실제 동작 데이터를 사용하여 모델을 학습하였다.

이렇게만들어진데이터기반모델을반전시켜컨트롤러를구성하였다.이러한접근

방식은 상용 유압 굴착기에서 6-DOF 굴착 및 그레이딩 작업을 포함한 실제 실험을

통해 검증되었으며, 토양 상호작용이 있는 상황에서도 정확한 제어 성능(즉, 수평

및 수직 경로 추종 오차가 4[cm] 미만)을 입증하였다.

주요어: Hydraulic excavator, Tilt-Rotator, Motion control, Data-driven, Soil in-

teraction

학번: 2021-22988
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