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With the development of the 4th industrial revolution, industrial systems are growing 

in size and complexity, and automation systems are increasingly being introduced to 

manage and control them. However, unexpected fault in these systems can have 

significant social, economic, and human consequences. To prevent and diagnose 

such failures, researchers are focusing on failure diagnosis techniques for various 

components of the system. These techniques aim to analyze potential failures in the 

system, quantify them using health indicators, and manage the health status of the 

system. 

In industry, a signal system is being developed to control and manage the 

industrial systems using various signals such as temperature, pressure, operation, 

vibration, and acoustic emission signals. Among these, vibration and acoustic 

emission signals are considered highly sensitive in evaluating the health of the 

system. These signals are typically acquired using data acquisition sensors and 
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systems with a high sampling frequency of 20 kHz or more. When such high-

frequency signals are measured, the main method used for evaluating the health of 

the system is to perform spectrum analysis and compare the results with those 

expected in a normal state. The high-sampling signal-based spectrum analysis 

method is particularly effective for diagnosing early-stage gradual failure or small 

energy changes such as fine cracks. This approach has been validated in numerous 

studies and has even been successfully applied in industrial settings. However, for 

large-scale systems such as modern industrial systems, utilizing high-sampling 

signals for diagnosis is challenging. The data acquisition systems used for each 

sensor typically have limited computational capabilities, only able to perform simple 

calculations such as pre-amplification and linear frequency filtering. Analyzing 

high-sampling signals through time frequency analysis and other similar techniques 

requires additional computational facilities that are not readily available in these 

systems. To overcome the computational burden of analyzing high-sampling signals, 

low-sampling signals such as root mean square and band pass energy are commonly 

used in industrial systems for fault diagnosis. However, the applicability of such low-

sampling signal-based methods is limited to detecting only radical or large-scale 

faults that increase energy in all frequency bands, and cannot detect specific 

frequency reactions. Additionally, a large number of sensors may be reacted to the 

fault because applicable range for fault diagnosis is restricted on the severe fault, 

causing inefficiency in maintenance after fault detection. Lastly, the signals 

measured in industrial sites are often affected by noise or external signals, which 

results in relatively greater uncertainty compared to signals acquired in laboratories. 

As a result, it is important to consider uncertainty in the methodology applied to 

industrial systems in order to estimate or prevent the degree of error that may occur 

during actual application. 

Given the current state of industrial systems, it is possible to conduct a fault 
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diagnosis study that efficiently utilizes both low-sampling and high-sampling signals. 

However, conventional fault diagnosis techniques for industrial systems face three 

main problems that need to be addressed. Firstly, in low-sampling signal based fault 

diagnosis, a large number of sensors could respond, making it necessary to estimate 

the location of the fault for efficient maintenance. Secondly, high-sampling signal-

based diagnosis requires a large amount of computation, so a technique capable of 

robust fault diagnosis is needed even when using a limited amount of data. Lastly, 

both low-sampling and high-sampling signal techniques need to consider the 

uncertainty of signals measured at industrial sites.  

Based on these considerations, this dissertation propose a framework for 

uncertainty-based fault diagnosis in industrial systems. The first study proposes a 

methodology for estimating the location of a fault using low-sampling signals. The 

proposed method presents an energy probability model of the signal measured by a 

sensor when a fault signal is converted into a low-sampling signal, taking into 

account the energy difference between the normal state and the fault state signals. 

When a fault signal occurs at a specific location, the energy measured by numerous 

sensors can be probabilistically quantified. Then, the fault location can then be 

estimated probabilistically by deriving a probability value at various specific 

locations based on the energy ratio between the measured sensors, using the 

Bayesian inversion. In the second study, a methodology for robust fault diagnosis 

using high sampling rate signals is proposed. The first step is to evaluate signal 

similarity using Kullback-Leibler divergence and group similar signals reflecting the 

operating condition. Then, a probabilistic model of the time-frequency expression of 

signals is developed to handle variations in operating conditions. Even for a newly 

measured signal with an unknown operating condition, it can be compared with a 

group of similar operating conditions using this model. Next, a new feature is 

proposed to discriminate the fault state by comparing the newly measured signal with 
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the probability models estimated from the signals from the normal state. An adaptive 

threshold is also suggested, which reflects the range of time-frequency result and 

corresponding proposed features that vary for the state of signal, to perform robust 

fault diagnosis. Finally, the data sampling technique is applied based on the result 

values obtained through the suggested low-sampling signal based approach. This 

enables the use of the suggested high-sampling rate signal based technique, which 

helps to reduce the computational time required for analysis while ensuring the 

stochastic robustness of the final results. By utilizing this combined approach, the 

diagnostic process becomes more efficient and reliable, leading to improved fault 

detection and characterization in industrial systems. 
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Chapter 1  

 

Introduction 

 
1.1 Motivation 

With the advent of the fourth industrial revolution, automation systems have 

become increasingly prevalent in society. In recent years, these systems have 

evolved to enable the implementation of increasingly sophisticated and complex 

mechanisms. However, as the size and complexity of these systems increase, the 

need to manage individual components within them also becomes more critical. This 

is because if any one component fails, it could result in issues with the entire system. 

As a result, industries are investing in research to prevent or promptly detect overall 

system failures at an early stage. This trend is evident from the increasing size of the 

condition monitoring market, which is expected to continue growing in the future. 

For example, the Asia Pacific Machine Condition Monitoring Market is forecasted 

to experience a Compound Annual Growth Rate (CAGR) of 7.8% during the period 

of 2022-2028. Thus, it is imperative to enhance the reliability of the system by 

developing a fault diagnosis framework that can be applied at a system level, while 

also meeting the demands of industry. 

Modern industrial systems are composed of numerous components, which 

require a large number of measurement sensors to be installed throughout the system 

in order to diagnose its state. While various data related to operating conditions can 

also be acquired (E.g., pressure, speed, power, temperature, etc.), they are generally 

less suitable for diagnosis than data obtained from sensors specifically installed for 

this purpose. Typically, vibration sensors [1-4] and acoustic emission sensors [5-7] 
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are utilized to diagnose the target component/system. Signals obtained from these 

high-sampling sensors are typically highly sensitive, meaning that even small 

changes in the target system can have a significant impact on the measured signal 

from the corresponding sensor [8]. Because of this high sensitivity, many studies 

have been conducted that can diagnose the condition through spectral analysis even 

with a small fault. However, there is still a risk of signal distortion caused by other 

components within the system. To address this issue, the signal can be directly 

measured by attaching the sensor directly to the target component or to a casing that 

protects the component. Ideally, fully utilizing high sampling rate data from these 

sensors is beneficial for fault diagnosis. However, due to the size of the system or 

the number of components involved, fully utilizing high sampling data from multiple 

sensors in terms of data storage or processing is often considered uneconomical from 

an industrial viewpoint. For example, in thermal power plants, there are over 20,000 

sensors used for system operation and maintenance [9]. Therefore, in the industrial 

field, signals are usually transformed and saved as features such as RMS (Root Mean 

Square) to address this economic issue. Additionally, one sensor can acquire 

information on multiple components rather than just one like the high sampling rate 

signal approach, making it a suitable methodology for large scale systems. However, 

since signals from various components are complexly received and converted into 

low-sampling signals, they are insensitive to diagnose the fault, and only the severe 

fault can be detectable. 

Specific limitations for each high sampling rate and low sampling rate signal 

approach are followed. Firstly, the use of high sampling rate signals for fault 

diagnosis has limited performance by the conventional spectral analysis method. 

This method is generally used to investigate changes in energy at physically defined 

characteristic fault frequencies (CFF) to diagnose the state of the target component 

[10, 11]. However, in reality, it cannot be guaranteed that the signal change due to 
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the fault condition occurs only in the CFF, leading to misestimation of the fault state 

even when using high sampling rate signals. Therefore, the use of high sampling rate 

signals for fault diagnosis requires more advanced and sophisticated methods to 

address this limitation. Secondly, the use of low sampling rate signals for fault 

diagnosis has disadvantageous in terms of the posterior maintenance. In general, 

fault that can be diagnosed with a low sampling rate signal are severe faults in which 

energy increases in the entire frequency range. Therefore, it is highly likely that 

signals related to faults are measured in various distributed sensors at the entire 

system. As a result, it becomes difficult to limit the scope of fault location when 

performing maintenance. Thirdly, there is a high possibility of misdiagnosis due to 

the uncertainty of the measured signal in the both low-sampling and high-sampling 

approach [12]. 

To overcome these suggested limitations, this research proposes a uncertainty-

aware fault diagnosis framework for industrial system using high and low sampling 

rate signal. Efficient fault diagnosis of industrial systems will be evaluated by 

utilizing the advantages of low-sampling and high-sampling signals and evaluating 

the reliability of the results with energy probabilistic modeling. 

 

1.2 Research Scope and Overview 

The goal of the research outlined in this doctoral dissertation is to develop two 

essential techniques using high sampling rate (HSR) / low sampling rate (LSR) 

signals measured in the system with considering the stochastic nature from the 

uncertainty in signals. Specific research thrusts include (1) Research Thrust 1 – LSR 

based fault localization with energy probabilistic modeling for LSRs; (2) Research 

Thrust 2 – HSR based robust fault diagnosis with energy probabilistic modeling for 

HSR’s time frequency analysis (TFA).  
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Research Thrust 1: Probabilistic Energy Ratio based Localization 

(PERL) for estimation of the fault location 

Research Thrust 1 proposes a novel method for fault localization considering 

the effect of signal transmission. In industrial settings, due to computational and 

storage capacity, the measured acoustic emission signal is often processed through 

the use of descriptors, such as the RMS, which is related to the signal energy. 

Computational and storage capacity issues make it difficult to use conventional 

methods, including time difference of arrival, which uses a high-sampling-rate signal. 

In addition, the measured RMS may have uncertainty that arises due to sensor 

disturbance or unpredictable process conditions. Thus, this study newly proposes an 

approach called probabilistic energy-ratio-based localization (PERL) to estimate the 

location of fault in the system. In the proposed approach, energy transmission model 

is used to calculate the ratio of the signal energy from the specific band energy. To 

account for background noises and sensor disturbance, the uncertainty of the 

measured RMS is characterized in a probabilistic manner. Using this information, 

the probability that fault has occurred at a specific location is estimated 

hypothetically. The first and second case study, which is for the localization of the 

leak position of thermal power plant, confirm that the proposed method enables 

localization of a boiler tube leak position with high accuracy. The third case study, 

which is for the localization of the fault in robot arm joint, confirm that the proposed 

method enables to find the location of fault joint. 
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Research Thrust 2: Fault-Affected Signal Energy Ratio (FASER) for 

robust fault diagnosis 

Because signals are known to be sensitive in response to weak faults, vibration 

signal analysis has become a preferred tool for fault diagnosis. In general, however, 

the signals from any components cannot be uniformly measured due to their 

stochastic nature, which arises due to sensor noises, irregular physical property (such 

as gearbox for meshing surfaces), and related factors. In addition, it is difficult to 

know exactly how a particular signal is affected by a fault, especially under time-

varying operating conditions. Therefore, it is hard to determine whether a change in 

a measured vibration signal is the result of the fault or if it is from the stochastic 

nature of the signal; this limitation has diminished the fault-diagnosis performance 

of currently proposed signal analysis approaches. Therefore, this paper proposes a 

new fault-diagnosis method that considers the uncertainty in the signals measured 

under nonstationary operating conditions; the new approach is named the fault-

affected signal extraction ratio (FASER) method. In the proposed method, the 

uncertainty is estimated by using the probability distributions of coefficients from 

short-time Fourier transform for one period of the vibration signal, which are 

extracted by applying the Kullback-Leibler divergence (KLD) to the consecutively 

measured signal, using kernel density estimation and n-degree-of-freedom (n-DoF) 

chi-squared distribution. These estimated probability distributions are used to define 

the indices that have fault information; therefore, any fault signal can be applied 

adaptively without any physical information. The energy ratio calculated by the 

indices of the signals is utilized as a health feature. In addition, the robustness of the 

feature is secured by newly defining an FASER’s adaptive threshold (FAT) that 

considers spectral leakage effect and correlation from the window function and 

overlap ratio. The proposed method is experimentally validated by applying it in two 

case studies, including a planetary gearbox and an industrial robot gearbox, which 
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are configured to imitate the non-stationary operating conditions of real-world 

manufacturing processes. The results show that the proposed method can accurately 

diagnose fault states in various speed conditions, while also being able to estimate 

the level of fault severity. 

 

1.3 Dissertation Layout 

The doctoral dissertation is organized as follows. Chapter 2 provides a technical 

background and literature review for the both HSR and LSR based fault diagnosis 

method. Chapter 3 shows a proposed PERL method for localization of the fault 

position using the uncertainty based probabilistic LSR’s transmission modeling 

(Research Thrust 1). Chapter 4 presents a proposed FASER method for robust fault 

diagnosis using the uncertainty based probabilistic modeling of the HSR’s energy 

represented as TFA (Research Thrust 2). Chapter 5 proposes a integration of the 

proposed PERL method and FASER method for efficient and robust fault diagnosis 

of industrial system. Finally, Chapter 6 concludes the doctoral dissertation with a 

summary of each thrust’s contribution and suggests the future research related with 

the proposed methods.  
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Chapter 2  

 

Technical Background and 

Literature Review  
 

 

This chapter provides the uncertainty-aware framework for fault diagnosis in 

industrial system using LSR and HSR signals. Firstly, the brief introduction for the 

low and high sampling rate signals from industrial system is provided in Section 2.1. 

In Section 2.2, LSR signal based conventional fault diagnosis methods are reviewed. 

Next, HSR signal based conventional fault diagnosis methods are reviewed in 

Section 2.3. Lastly, a summary and discussion of the conventional research is 

provided in Section 2.4. 

 

2.1 Low and High sampling rate signals from industrial 

system 

As introduced in Chapter 1, industrial systems are becoming larger over time 

and changing from various complex components to consist a single system [13, 14]. 

In line with these changes, it is becoming an important issue to prevent accidents 

through condition monitoring while measuring and controlling various sensor data 

even within one unit system. In industrial systems, vibration and acoustic emission 

signals are crucial in evaluating the system's health, and they are typically acquired 

through data acquisition sensors and systems with a high sampling frequency of 20 

kHz or more. The most common method used for analyzing these high-frequency 

signals is spectrum analysis, which is effective in diagnosing early-stage gradual 

failures or small energy changes such as fine cracks. However, for large-scale 
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systems, analyzing high-sampling signals is challenging due to the limited 

computational capabilities of data acquisition systems. Therefore, low-sampling 

signals like root mean square and band pass energy are commonly used for fault 

diagnosis in industrial systems. However, these methods are limited in their ability 

to detect only radical or large-scale faults that increase energy in all frequency bands, 

and they cannot detect specific frequency reactions. Furthermore, due to the limited 

applicable range of low-sampling signal-based methods, a large number of sensors 

may react to the fault, resulting in inefficiencies in maintenance after fault detection. 

 

2.2 Low sampling rate signal based fault diagnosis 

Before delving into the topic of LSR signal processing, this study provides a 

brief definition of LSR. The definition of LSR signal varies depending on the 

application. For example, in the case of acoustic emission (AE) signals, a signal 

below 20 kHz is considered an LSR signal. On the other hand, even if the signal is 

only about 1 kHz, it is not considered an LSR signal in the case of a tachometer. 

Therefore, in this study, an LSR signal is defined as a signal that cannot be 

sufficiently analyzed through spectral analysis. For instance, in gearbox fault 

diagnosis, gear mesh frequency (GMF) analysis is generally required. If the signal 

satisfies fs/2 << GMF, where fs is the sampling frequency of the signal, it can be 

classified as an LSR signal. Figure 2-1 shows the components of the fault diagnosis 

methodology using LSR.
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Figure 2-1 Three main components of framework for fault diagnosis using LSR 
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2.2.1 Feature extraction for transforming to LSR signals 

Conventional LSR signal based fault diagnosis methods are generally utilized 

in the industrial site for the computational cost. For example, if only 20 sensors with 

a sampling frequency of 25.6 kHz, which are generally used in the vibration sensor 

for fault diagnosis, are used, the number of data to be processed per second exceeds 

500k. Processing such large amounts of data in the central management center can 

incur a significant economic cost. Thus, in practice, operators often store and utilize 

descriptors such as RMS or specific band energy due to hardware limitations in data 

processing. Consequently, previous studies have focused on featurizing signals to 

diagnose conditions through feature engineering, taking into account these practical 

considerations [15, 16]. In Table 2-1, several features for health monitoring is 

provided [17]. Most of these features can be calculated through simple summation 

operations in the time domain or are based on methods that enable continuous and 

fast data processing based on spectrum filtering [18-21]. 
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Table 2-1 Representative features for health monitoring 

Feature Statistical / physical meaning 

RMS 
Square root of the average of the sum of the squa

res of the signals 

Crest Factor 
Ratio of maximum positive peak value of the signal to 

RMS 

Standard 

Deviation 
The amount of variation from the mean value 

Kurtosis Fourth order normalized moment of the signal 

Energy ratio Ratio of RMS compared with the reference signal 

Energy operator Kurtosis of the resulting signal 

FM0 
Maximum peak-to-peak amplitude of the signal 

divided by the sum of energy from 1 to Nth harmonic 

M6A/M8A Sixth/eighth moment normalized by the variance 

SLF[22] 

The ratio of sum of the first order sideband about the 

fundamental frequency to the standard deviation of the 

time signal 
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In addition to the features introduced above, many studies have been conducted 

to diagnose faults through various features [23-25]. However, since most of the 

features introduce techniques that transform some signals from the mentioned 

features or utilize signals that have undergone preprocessing (such as a difference 

signal, residual signal), it can be said that they do not deviate greatly from the overall 

context. For instance, a difference signal and residual signal are generally used to 

diagnose the rotational operating mechanical components such as a bearing, gear, 

but the final feature is transformed as a feature related to the feature written in Table 

2-1. In particular, the introduced features generally correspond to diagnostic methods 

using vibration signals and acoustic emission signals. In addition to these signals, 

studies using various signals such as operating condition related signals, temperature, 

and pressure have been proposed, but in this study, the range is limited to dealing 

with low-sampling signals in terms of energy of measured signals. 

 

2.2.2 Analyzing feature trend and fault diagnosis 

Recently, industrial systems tend to operate the system according to the purpose 

by changing the operating conditions according to the changing demand. For 

example, in the case of a thermal power plant dealt with in this doctoral research, the 

operating environment is optimized by adjusting the composition ratio or quantity of 

coal, etc. according to the demand for electricity and the price of raw materials. In 

the case of another example, robot system in manufacturing system, the operating 

environment is changed according to the plan considering the demand condition, and 

sophisticated nonstationary operating conditions using complex motions are 

requested. Therefore, when the features presented in 2.2.1 are used for fault 

diagnosis without any trend analysis, deviations caused by these nonstationary 

operating conditions occur, which is highly likely to lower fault diagnosis 

performance.
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Figure 2-2 RMS feature tendency under the different operating condition 
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To overcome such difficulties, variables related to operating conditions such as 

temperature, speed, and load are often used to analyze the trends of features. For 

instance, the RMS of a vibration signal tends to increase as the temperature rises, 

irrespective of the machine's state whether the machine is healthy or not. Similarly, 

as the speed of the machine increases, the energy in the low-frequency band of the 

vibration signal also increases, leading to an overall increase in energy and hence an 

increase in the RMS value. Figure 2-2 demonstrates that the RMS value of a 

vibration signal varies significantly with changes in operating conditions, such as the 

position of a robot arm, temperature, and angular velocity of the fourth joint. Hence, 

the conventional fault diagnosis approach that employs LSR signals usually involves 

a design of experiments (DoE) as the initial step to estimate the variability of features 

for different operating conditions, as depicted in Figure 2-3. There are some 

commonly used DoE approaches for obtaining the dataset for constructing the model 

for the feature variation with respect to the operating conditions. It is clearly best to 

experiment for all the possible operating condition such as full factorial design, it 

needs too much time to take the experiment. Therefore, most DoE research aims to 

minimize experiments while minimizing the loss of information. For example, 

commonly used DoE approaches include fractional factorial design [26], Plackett-

Burman design [27], Taguchi method [28], central composite design [29], and others. 

As explained in section 2.2.1, diagnosing the condition involves considering a 

range of conventionally used or newly developed features. After conducting various 

experiments through DoE, modeling of these features is performed. The most 

commonly used feature modeling method is the response surface methodology 

(RSM). The general expression for RSMs is given as: 

Figure 2-3 General procedure for LSR based fault diagnosis 
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 1 2 1 2
ˆ ( , ,..., ) ( , ,..., )n nf f x x x x x x= +   (2.1) 

where 𝑓 is the response, which is the feature to model in our context, f is the true 

response function, which is generally unknown, xi is the controllable input, which is 

the variable for representing the operating condition in our context, and ε is a term 

representing unexplainable error including the aleatory and epistemic uncertainty. 

Recently, many studies have been conducted on modeling such as RSM using deep 

learning (such as DANN [30, 31], CNN [32, 33], LSTM [34, 35]). Through the above 

modeling, the feature distribution of the normal state can be calculated. If the 

distribution can be approximated by a normal distribution, the feature boundary of 

the normal state can be determined as follows. 

  X 1 2
ˆ E ( , ,..., )nf f x x x z −    (2.2) 

where EX[·] is the expectation operator with respect to the X, X is the state of the 

variable for xi, zα is the confidence intervals with the confidence level α, σε is the 

standard deviation depending on the controllable input. In general, if an energy-

related feature such as RMS is used as the feature, a threshold criterion for 

determining a fault state can be set by assuming that energy increases in a fault state. 

Otherwise, if a new feature is created through coupling between features, there are 

cases where it is diagnosed as the fault state simply by whether the new feature 

satisfies condition given in equation (2.2). In Figure 2-4, the fault diagnosis based 

on RMS under different operating condition is presented. As shown in the figure as 

blue line, the expected feature is calculated by the response surface modeling 

(Kriging model). Additionally, the thresholding value, which are plotted as the dot-

line, depends on the speed and temperature. 
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Figure 2-4 Examples of the fault diagnosis under different operating condition 
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2.3 High sampling rate signal based fault diagnosis 

High sampling rate signal based approach is generally utilized when the spectral 

analysis is additionally required for the fault diagnosis. In general, the LSR approach 

described in Section 2.2 often targets severe faults that can be detected even through 

low-sampling signals such as RMS. However, it is difficult to diagnose with the LSR 

method because a change in frequency energy occurs only in a very localized band 

when the fault is a very minute fault or the initial state of progressive fault. Therefore, 

in general, studies have been conducted to determine the type or severity of faults as 

well as fault diagnosis through spectrum-based analysis of signals. Additionally, the 

researches on the calculating the CFF based on the dynamic behavior or related 

mechanism have been conducted. Recently, as mentioned several times before, the 

recent industrial system is generally under the nonstationary condition. Therefore, 

the time frequency analysis for analyzing the signal is necessary to consider the 

signal’s nonstationary behavior. In conclusion, the recent HSR signal based fault 

diagnosis method is composed of three main contents as shown in Figure 2-5.
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Figure 2-5 Three main components of framework for fault diagnosis using HSR 
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2.3.1 Time frequency analysis 

Time frequency analysis (TFA) is widely utilized for analyzing the signal 

because the most of the signals measured in the real application have time-varying 

properties [36]. Specifically, the fault diagnosis using TFA has recently been 

conducted as the need for the diagnosis of the systems operated under the 

nonstationary condition increasing. Several generally utilized TFA method are given 

in this section briefly. 

 

Short time Fourier transform (STFT) 

 STFT{ ( )}( , ) ( ) ( ) j tx t x t w t e dt  


−

−
= −   (2.3) 

where x(t) is a signal, w(t) is a window function, τ is a time index consisting STFT, 

and ω is a frequency index consisting STFT. For the window function, there are 

several window functions to consider the behavior of signals. However, in generally, 

the Gaussian window (Hanning window) is most preferred to utilize. The STFT 

method can be regarded as a method in which fast Fourier transform (FFT) is 

concatenated along the time axis assuming a quasi-stationary condition for a short 

time duration. Therefore, the time and frequency resolutions are determined and are 

generally determined in a region that satisfies the Heisenberg’s uncertainty principle. 

Clearly, many researches based on the properties of STFT are conducted to diagnose 

the fault state of the system under nonstationary condition [37-39]. 

 

Wavelet transform (WT) 

 
1

WT{ ( )}( , ) ( )
t b

x t a b x t dt
aa




−

− 
=  

 
   (2.4) 

where x(t) is a signal, ψ(t) is a wavelet function, a is the scaling parameter for dilation, 
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and b is the moving parameter for translation. In the signal context, the scaling 

parameter can be interpreted as the frequency, and the moving parameter can be 

interpreted as the time. Many studies have been conducted to determine the optimal 

wavelet function for fault diagnosis using time-frequency analysis [40, 41]. The 

choice of wavelet function can significantly affect the performance of the analysis, 

and different wavelet functions may be more suitable for different types of signals 

or faults [42]. Some commonly used wavelet functions include the Haar wavelet [43], 

Daubechies wavelet [44], Symlet wavelet [45], and Coiflet wavelet [46]. 

Additionally, wavelet packet decomposition, which involves decomposing a signal 

into multiple frequency bands using wavelets, has been used to improve the accuracy 

of fault diagnosis [47, 48]. 

 

Wigner-Ville distribution (WVD) 

* 2WVD{ ( )}( , ) ( ) ( )
2 2

jx t x x e d  
    


−

−
= + −   (2.5) 

The equation (2.5) is one of the definitions for the WVD, but the most simple and 

zero-mean signal’s representation for WVD. On the contrary to the STFT and 

Wavelet, the formula is based on the correlation function as represented as xx*. 

Therefore, the WVD provides highest possible resolution in the view of temporal 

and frequency resolution, which is limited to the Heisenberg’s uncertainty principle. 

However, the cross terms can exist from the correlation term, which makes difficult 

to apply the multi-component signals. Because these kinds of cross term would 

makes confusion on the analysis on the results, which of them cannot be 

distinguishable whether they are from the cross term or noise. To address this 

problem, studies have proposed separating signals into mono-components using 

methods such as empirical mode decomposition (EMD), performing WVD, and 

diagnosing faults [49-51]. 
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In addition, there are various time frequency analysis techniques such as the Hilbert-

Huang transform. In addition, there are lots of method related with the calibration 

for the TFA results (E.g. reassignment method for STFT) and combining the above-

mentioned STFT, WT, and WVD methods (Gabor–Wigner distribution function). 

However, since dealing with all of these methodologies is out of scope, this doctoral 

dissertation proceeded with the scope aligned with the STFT considering the STFT 

is most intuitive representation and has the lowest computational cost. 

 

2.3.2 Analyzing time frequency analysis results for fault diagnosis 

In order to diagnose faults through TFA, the CFF must be calculated. In 

particular, it is not difficult to calculate the CFF if the dynamics of the machinery 

are known, since most machinery components with periodic properties are the main 

targets of spectral analysis. 

As written in Section 2.3.1, STFT, one of the most popular TFA based 

approaches, has a low computation cost, as compared to other TFA methods such as 

WVD and WT [52]. The low computation cost of STFT implies that STFT has much 

more potential applicability in industrial fields than do the other more 

computationally intensive TFA methods. However, when measuring the vibration 

signal and transforming it to STFT, uncertainty can arise due to: 1) phase-delay by 

improper truncation of the consecutively measured signal, 2) the uncertainty 

principle in time-frequency representation, and 3) background noises and impact 

signals from other adjacent components, such as bearings. Vibration signals are 

generally measured consecutively in industrial fields and are not stored separately 

for each period of operation with matched phase. This implies that even though the 

operating condition of a vibration signal is periodic, it is unclear how to segment the 

signal for estimating the uncertainty in STFT. Although the encoder information 

from a tachometer can be used to determine the segmentation of vibration signals, 
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this approach may also incur error due to the indirectivity between the sensor and 

the tachometer. When fault diagnosis is performed without considering the 

uncertainty in STFT, the signal energy changes that arise due to noise or phase-

mismatching could be misunderstood to be the effect of the fault, rather than the 

result of these other impacts. Further, there is the possibility that a small change in 

the signal energy can be ignored. Even though many STFT-based fault-diagnosis 

methods have been developed in prior research [53-57], to date, the uncertainty in 

STFT has only been considered in a limited way [58-61]. 

 

2.4 Summary and discussion 

This doctoral dissertation aims to propose a framework for the industrial system 

using both LSR and HSR with considering the stochastic behavior from the 

uncertainty via measuring and transforming process in the signal. As described in 

Section 1.1, the LSR signal based fault diagnosis methods have low computational 

cost, but has low sensitivity for diagnosing the fault, especially in the weak fault. 

Therefore, the severe and abrupt fault (such as boiler tube fracture) is the main target 

of LSR approach. However, this condition causes various sensors to react when 

performing fault diagnosis, thereby causing an issue of which area to perform 

maintenance work even when fault diagnosis is performed well. This approach has 

not been done in previous studies, and the proposed method will solve the problem 

by considering the transmission effect of the signal to solve this problem. 

Alternatively, fault diagnosis methods based on HSR signals have a high 

computational cost. While these methods have been shown to have high sensitivity 

for fault diagnosis in previous studies, their practical utilization has been difficult 

due to the high computational demands. Therefore, to solve this problem, we 

proposed a methodology to analyze the HSR signal through STFT with the lowest 

computational cost. In addition, considering the energy deviation and uncertainty 
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caused by operating conditions when analyzing the STFT, a robust fault diagnosis 

method is needed even if only a part of the HSR signal could be used.  

To achieve efficient and robust diagnosis at the system level, the proposed 

method and its limitations should be taken into account. Figure 2-6 illustrates a 

framework for integrating the LSR signal-based method and the HSR signal-based 

method in an industrial system, as proposed in the doctoral dissertation. The 

framework comprises two research thrusts to enable effective fault diagnosis. In the 

first research thrust, the fault location is probabilistically determined using signals 

acquired from multiple sensors. This probabilistic approach allows for the selection 

of samples that are likely to contain significant fault information. This step enhances 

the efficiency of the diagnosis process by focusing on relevant data. The second 

research thrust involves performing high sampling frequency analysis on the selected 

samples. By applying the proposed method, robust results can be obtained even when 

the root mean square (RMS) value does not exceed a predefined threshold. This 

aspect is crucial in addressing the uncertainty associated with signals and ensuring 

reliable fault diagnosis. By employing this integrated framework, it becomes 

possible to estimate fault location, perform fault diagnosis, and conduct fault 

frequency analysis while considering signal uncertainty. This comprehensive 

approach improves the effectiveness and reliability of fault analysis in industrial 

systems.. 
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Figure 2-6 Proposed framework for fault diagnosis of the industrial system based 

on LSR and HSR signals 



 

 25 

Chapter 3  

 

Probabilistic Energy Ratio based 

Fault Localization (PERL) 
 

 

In this chapter, we propose a new method to enhance the fault-related 

information from the low sampling rate signals measured by multiple equal type 

sensors. This chapter especially focuses on the estimation of fault location under the 

situation when low sampling rate signal (LSR) increases significantly enough to 

diagnose a fault. In industrial settings, due to computational and storage capacity, 

the measured signal is often processed through the use of descriptors, such as the 

root mean square (RMS), which is related to the signal energy. Computational and 

storage capacity issues make it difficult to use conventional methods, including time 

difference of arrival, which uses a high-sampling-rate signal. In addition, the 

measured RMS may have uncertainty that arises due to sensor disturbance or 

unpredictable process conditions. Thus, this study newly proposes an approach 

called probabilistic energy-ratio-based localization (PERL) to estimate the location 

of the fault. In the proposed approach, acoustic dissipation and attenuation theory 

are used to calculate the ratio of the signal energy from the specific band energy. To 

account for background noises and sensor disturbance, the uncertainty of the 

measured RMS is characterized in a probabilistic manner. Using this information, 

the probability that a boiler tube leak has occurred at a specific location is estimated 

hypothetically. Case studies from simulation data and industrial data confirm that 

the proposed method enables localization of a boiler tube leak position with high 

accuracy. Additionally, case study from experimental data of 6-DoF industrial robot 

system confirms the generality and applicability of the proposed. In this case, the 
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measured RMS based probabilistic modeling is based on the estimation for the 

transmission function of the vibration of sensor. 

 

3.1 Background: Multiple Sensor Based Source Localization 

In this section, the conventional studies about source localization techniques are 

reviewed. Conventionally utilized method for source localization technique is based 

on time difference of arrival (TDOA) method. A time difference of arrival (TDoA) 

method, which uses the difference in arrival time of acoustic emission (AE) signals 

[62-64], has been proposed by measuring sound pressure from multiple AE sensors 

with a high sampling rate and calculating the difference in time at which the AE 

sensors initially measured the leak signal using a generalized cross-correlation 

algorithm. Then, localization algorithms, such as Chan’s algorithm and Fang’s 

algorithm, can be performed using the calculated time difference [65, 66] to find the 

position of the leak. However, it is difficult to apply these methods in operating 

power plants for the following reasons. First, there is usually a significant amount of 

background noise in power plants, due to the combustion process and soot-blowing. 

In the case of soot-blowing, it is highly possible that the time delay found in the 

above-mentioned approaches might be calculated based on the soot-blowing, 

because the signal energy generated by soot-blowing could be dominant the energy 

of the measured signal, even in a leak situation. Second, the detection of a leak signal 

generally requires a high sampling frequency (e.g., more than 10 kHz [64]). In 

practice, however, operators typically store a descriptor (i.e., root mean square; RMS) 

of the AE signal or specific band energy because of the limitations of the hardware 

in data processing. In these cases, conventional methods are not usable because the 

time delay cannot be calculated properly with these data. In addition, the 

characteristic frequency of the leak signal generally depends on the leak type, flow 

rate, and internal pressure [67]. Therefore, even if we properly measure a high-
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sampling-rate signal, it may be difficult to apply it properly if physical analysis of 

the frequency components is not performed. Lastly, localization algorithms may 

need at least four or more sensors in a three-dimensional space; however, it has been 

experienced in some cases that even four or more sensors may not respond when a 

leak occurs. In this case, when calculating the time delay, the wrong sensor may be 

used, which will adversely affect the result, and the localization algorithm itself may 

not be solved mathematically. The drawbacks of conventional TDOA method are 

not restrictly applied to the AE data. Source localization using the vibration signal 

analysis based on the transmission of signal also has the same problem. 
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3.2 Probabilistic Energy Ratio Based Fault Localization 

The proposed probabilistic energy ratio based fault localization method is 

comprehensively discussed in this section with the mathematical expression and its 

following assumption. The goal of the method is to estimate the location of fault by 

comparing the energy of signals from the different, homogenous type sensors. The 

PERL method is predicated on the recognition of uncertainty in the energy level of 

a signal that may be classified as a fault signal. To address this uncertainty, a 

probabilistic model is utilized to estimate the location of the potential failure, based 

on the measured fault energy ratio between sensors. The proposed methodology 

involves three distinct steps as shown in Figure 3-1. In the first step, LSR signals are 

selected based on their potential to be classified as fault signals through conventional 

trend analysis. The second step entails the construction of a probabilistic model for 

the estimation of fault location, which involves the integration of two key elements. 

Firstly, an energy distribution model is developed based on the energy that can be 

measured in a normal state when a fault signal is detected. Secondly, a transmission 

model is established to account for the signal propagation from the candidate fault 

location (CFL) to the sensor. The resulting probabilistic energy ratio model for 

multiple sensors is then formulated. In the next stage, the fault probability model is 

computed using the measured sensor data and the probabilistic energy ratio model 

through Bayesian inversion. Finally, in step 3, the fault probability is calculated 

based on data obtained from three or more multi sensors, and time sequential data. 

This enables the determination of the final fault probability, thereby facilitating 

effective fault identification and subsequent maintenance and repair activities. The 

proposed method is described in detail with mathematical expressions in the 

following sections. 
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Figure 3-1 Flowchart of the proposed PERL method. 
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3.2.1 Find the fault-reacted data using trend analysis 

Multi-sensor fault diagnosis is a widely used approach to improve the 

robustness of fault diagnosis algorithms [68, 69]. Our proposed methodology adopts 

a multi-sensor system, which considers the ability of multiple sensors to capture fault 

signals during signal transmission. In practice, vibration sensors are typically 

installed in a manner that enables them to monitor the target system effectively. For 

example, in a boiler system, AE sensors are placed strategically to cover the entire 

boiler, including the superheater, reheater, waterwall, economizer, etc. The number 

of sensors required for monitoring the entire boiler system generally ranges from 30 

to 40, with some sensors specifically designed to detect leaks. Similarly, in a robot 

system, vibration sensors are installed on each joint to monitor the joint's condition, 

as it is typically the component most vulnerable to faults in terms of fault diagnosis. 

As a result, a n-DOF robot system would typically require n sensors to monitor the 

system as a whole.  

First, some sensors that respond statistically to outlier data can be selected as the 

sensors that respond to the fault as: 

  ,normal /2 ,normalRS( ) ( ) E[ ]i i it i s t s Z =  +   (3.1) 

where RS(t) is the leak-responsive sensor set at time t, E[•] is the expectation, Zα/2 is 

a critical value for the given confidence level α, si,normal is the energy of the normal-

state signal, and σi,normal is the standard deviation of the energy of the normal-state 

signal. It is worth pointing out that the operating condition has variations [38, 39]. 

Depending on the operating state, as well as the installation location of the sensor, 

environmental noises may be measured differently, even if the same sensor is used. 

Therefore, the standard deviation of the signals measured from individual sensors is 

considered, as shown in the equation (3.1). In particular, in a thermal power plant, 

the variability in the operating conditions that arises due to changes in combustion 

or soot-blowing could affect the calculation of the mean and standard deviation of 
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the amplitude of the normal-state signal. Therefore, the data corresponding to soot-

blowing should be excluded through the use of an additional outlier filtering 

technique, such as move-median outlier filtering. In addition, the mean and standard 

deviation are continuously updated to reduce the effect of variable operating 

conditions. In the research described in this chapter, the mean and standard deviation 

of the data are continuously updated for one day before the time when the leak is 

identified. If the fault-reacted signal is measured as suggested in Equation (3.1), there 

are cases where it is difficult to determine the fault as a fault if the variation of the 

signal due to the operating condition is too large. For this reason, we will introduce 

an example that can reduce the variation effect by operating conditions by utilizing 

specific conditions. In the case of an industrial robot, it generally repeats the same 

movement continuously and is often placed in a cyclo-stationary operating condition. 

In this case, even in the case of a signal converted to LSR, it has periodicity. 

Therefore, based on this periodicity, it is possible to calculate the mean value and 

standard deviation that the LSR signal can have for each operating state. In the case 

of a robot system to be presented as a case study in a later section, since the RMS 

variation due to these cyclostationary operating conditions is too large, the trend for 

this was analyzed in advance and the failure energy was extracted for the low-

sampling signal where the failure signal was measured. The graphical illustration for 

this contents are shown in Figure 3-2. 
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Figure 3-2 Graphical illustration for RMS based fault diagnosis under non-stationary 

operating condition. 
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3.2.2 Constituting the probabilistic model for the fault location 

To estimate the location of a fault, the first step involves selecting a candidate 

fault location (CFL), which can vary depending on the target system. Typically, the 

region where a sensor is capable of detecting a fault is selected as the CFL, based on 

the position of the sensor. For instance, in the case of an AE sensor, as described in 

Section 3.1, the CFL for diagnosing the leak or fracture state of a boiler tube can be 

set as the position of the tube. Similarly, in the case of a vibration sensor, the CFL 

can be limited to the target component by mounting the sensor on its casing. 

If the CFL is identified, it is possible to construct a model of the energy 

measured by the sensor when a fault signal is generated from the CFL. To develop 

such a model, the energy can be expressed as a sum of energies at each frequency 

component, according to Parseval's identity. To accomplish this, a signal 

transmission model is used that assumes a fault frequency is represented in the 

frequency domain. The fundamental equation used for modeling is as follows: 

 ( ) ( ) ( ) ( ) ( )s f n f p f k f e f= + +   (3.2) 

where s(f) is the Fourier transform of the measured signal at frequency f, n(f) is the 

Fourier transform of a normal state signal at frequency f, p(f) is the transfer function 

for the transmission of the signal at frequency f, k(f) is the Fourier transform of a 

fault state signal at frequency f, and e(f) is the uncertainty used to quantify the 

variation of the spectrum of the normal state signal at frequency f. All of them are 

complex value, and graphical illustration is suggested in Figure 3-3. 
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The next step is transforming the equation to RMS related term. There needs to basic 

assumption that 1) Phase difference is only in the direction of increasing energy 

compared with the normal state. 2) Error from the approximation of variation as 

Gaussian distribution is negligible. 

The energy from the normal signal n(f) and the transmitted fault signal k(f)p(f) can 

be quantified as: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 cosn f p f k f n f p f k f + −  (3.3) 

where θ is the difference of angle between the normal signal n(f) and the transmitted 

signal k(f)p(f). From the assumption 1 and symmetricity on θ, the mean energy of 

the fault signal can be calculated using the equation (3.3) integral with respect to θ 

from α to π where cos α =|p(f)k(f)|/(2|n(f)|). 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2sin

n f p f k f n f p f k f


 
+ +

−
 (3.4) 

From the simple mathematical implementation with trigonometric function, the 

equation (3.4) can be transformed as: 

( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

2

2

2 2

2 1
4

arccos
2

n f

p f k f
n f p f k f n f p f k f

p f k f

n f


−

+ +
 

−  
 
 

 (3.5) 

Figure 3-3 Graphical illustration for the assumed fault signal transmission model. 
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Recalling that the assumed condition is that the severe fault occurs. Therefore, such 

case when |p(f)k(f)|>2|n(f)|, then the equation (3.4) can be simply expressed as: 

 ( ) ( ) ( )
2 2

n f p f k f+   (3.6) 

For the first case, which is under the weak fault energy measured, the variation can 

be calculated as: 

( ) ( ) ( )
( ) ( ) ( ) ( )( )( )

( )

2

2 2

2

sin 2 2 cos 2 1
n f p f k f

     

 

− + − + −

−
  (3.7) 

From the second case when the severe fault occur, the variation is: 

 ( ) ( ) ( )
2 2

2 n f p f k f   (3.8) 

Under the weak fault symptom, and from the equations (3.5), and (3.7), the energy 

distribution from the phase difference can be modeled as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )( )
( )

( ) ( ) ( )

2 2 2

2

2

2sin

~ 0,
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a a
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s f n f p f k f n f p f k f e f

e f N

n f p f k f



 



     


 

= + + +
−

− + − + −

=
−

  (3.9) 

Similarly, the severe fault symptom, and from the equations (3.6), and (3.8), the 

energy distribution from the phase difference can be modeled as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )( )

2 2 2

2

~ 0, 2

a

a

s f n f p f k f e f

e f N n f p f k f

= + +

  (3.10) 

where ea(f) is the variation form the phase difference of the normal and the fault 

signal. From cos α =|p(f)k(f)|/(2|n(f)|), and summation for the all frequency based on 

the equations (3.9) and (3.10) makes the following equations: 
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( ) ( ) ( ) ( )
2 2 2tan

( )
f

a

f f f ff

s f n f p f k f e f


 
= + +

−
     (3.11) 

( ) ( ) ( ) ( )
2 2 2

( )a

f f f f

s f n f p f k f e f= + +      (3.12) 

where cos αf =|p(f)k(f)|/(2|n(f)|). Firstly, from the Parseval’s identity, the left term is 

same as square of RMS of the fault signal, and the first right term is same as 

expectation of square of RMS of the normal signal. Additionally, if the fault energy 

is distributed equally in the frequency domain, so the 2 cos αf  can be approximated 

as the same value, the square root of the ratio of the fault energy to the normal energy, 

which is denoted as square root of (RMSfault
2– E[RMSnormal

2])/E[RMSnormal
2]. 

Alternatively, if the fault energy is larger than |p(f)k(f)|>2|n(f)|, which is impossible 

to define αf, the square root of the ratio of the fault energy to the normal energy is 

newly defined as β. Lastly, the uncertainty from the normal signal is incorporated to 

the ea(f), then the following equation can be achieved: 

( )

( ) ( ) ( ) ( )( )( ) ( )

( )

2 22 2
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2

2 2

tan
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  (3.13) 
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f
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  +  •
     


  (3.14) 

where δnormal is the coefficient of variation (c.o.v.) of RMS2 from the normal state. 

For the simple notation, the c.o.v. of RMSfault
2 – E[RMSnormal

2] is denoted as δr. The 

equation (3.13) is for the weak fault, and the equation (3.14) is for the severe fault 

case. The validation for simulation is shown as Figure 3-4 and Figure 3-5. The 

simulation is based on the data satisfying the assumptions for deriving the equations.  
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Figure 3-5 Simulation based model validation of the proposed probabilistic model 

for the severe fault case. 

Figure 3-4 Simulation based model validation of the proposed probabilistic model 

for the weak fault case. 
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From equations (3.13) and (3.14), the uncertainty caused by amplitude variation 

from the phase difference is incorporated with the uncertainty caused by the noise 

observed from the variation of RMS of the normal state. Therefore, derived equation 

can be calculated from all the measurable and estimated terms except p(f)k(f). 

The next step is derivation of the probabilistic energy ratio model for the multi-

sensor RMS data. The graphical illustration for this step is given in Figure 3-6. 

From equation (3.11), the probabilistic distribution of energy ratio between two 

sensor can be approximately quantified as [45]: 

2

2 2

, ,2

( ) ( )

ln( ) ~ ln ,
( ) ( )

a

f

ab r a r b

b

f

p f k f

m N
p f k f

 

  
  

+  
  

  




  (3.15) 

where δr,a, δr,b is c.o.v. defined in the equations (3.13) and (3.14), and mab is the ratio 

of the measured fault energy at sensor a and b, calculated by the RMSfault,a
2 – 

E[RMSnormal,a
2] divided by RMSfault,b

2 – E[RMSnormal,b
2]. 

If the fault energy distribution in the frequency domain follows k2(f)~N(1,ς2), then 

the equation (3.15) can be approximated again by the ratio of two Gaussian 

distribution. Fortunately, it is the case that the mean value of equation (3.15) follows 

Gaussian distribution. Therefore, the closed form can be obtained as: 

Figure 3-6 Graphical illustration for the derivation of probabilistic energy ratio 

model. 
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  (3.16) 

From the equation (3.16), it is possible to quantify the probability of the measured 

fault RMS ratio from the transmission of signal from CFL with considering the 

transmission uncertainty in sensor a and b as δr,a, δr,b, and the fault energy distribution 

in the frequency domain as δk. Therefore, the derived equation (3.16) can be 

calculated by all the known (transfer function of the transmission), and estimated 

value by removing the unknown k(f). By removing the unknown k(f) from the 

equation (3.13), the resulting equation can be used to calculate the probability of 

fault occurrence given the measured fault energy signal ratio and the known transfer 

function of the transmission, as well as the uncertainties in the system. However, in 

practical situations, the actual fault location may be unknown. To account for this, 

the Bayesian inversion method is applied to the equation (3.16) using the measured 

fault energy signal ratio as the condition of probability. 

( )
( ) ( )
( ) ( )

P P
P

P P

ab fault i fault i

fault i ab

ab fault i fault i

i

m X al X al
X al m

m X al X al

= =
= =

= =
 (3.17) 

where P(Xfault = ali|mab) is the conditional probability that the location of fault is 

equal to ali when the measured fault energy ratio is mab, ali is the i-th candidate fault 

location (CFL), P(Xfault = ali) is the prior assumption for the CFL, and P(mab| Xfault = 

ali) is the conditional probability that the measured fault energy ratio, mab. In 

summary, the conditional probability of the fault location being equal to a specific 

candidate fault location (CFL), given the measured fault energy ratio mab, can be 

expressed as P(Xfault = ali|mab) in equation (3.17). In this equation, P(Xfault = ali) 
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represents the prior assumption for the ith CFL, while P(mab| Xfault = ali) is calculated 

using equation (3.13) and represents the conditional probability of the measured fault 

energy ratio being equal to mab, given the fault location ali. 

The final step is the calculating the fault probability of each CFL using the 

multiple (more than 2) and time sequential data. If more than 2 sensor has the fault 

energy, the following equation is derived: 
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 (3.18) 

where P(Xfault = ali, t) is the fault probability of ali at the time t, and Λ is a restriction 

for preventing similar information from being calculated twice. For instance, the 

ratio between two sensor can be achieved by selecting what is divided by the other. 

Therefore, it makes calculate the similar result twice. The equation involves the 

multiplication of the probabilities for each sensor's fault energy ratio, which is 

conditioned on the fault location ali. The product is then divided by the denominator, 

which is calculated by the all probability on each CFL. This equation allows for the 

incorporation of multiple sensor data to calculate the fault probability of each CFL. 
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Note that this equation assumes that the measurements from each sensor are 

independent, meaning that the measurement from one sensor does not affect the 

measurement from another sensor. If the measurements are not independent, then a 

more complex model would be needed to calculate the fault probability. Another 

assumption that can be made is that the sensors are located far enough from each 

other so that the fault occurrence at one sensor does not influence the fault occurrence 

at another sensor. This assumption ensures that the measurements from different 

sensors are independent of each other and can be considered separately. If the 

temporal information is independent, the measured fault energy at each time step is 

independent of the previous ones. In this case, the fault probability at time t, given 

the measured fault energy ratios for all candidate fault locations up to time t, can be 

calculated by multiplying the fault probabilities at the previous time step by the fault 

probabilities calculated using the current measured fault energy ratios. This can be 

expressed mathematically as: 
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  (3.19) 

where P(Xfault = ali|M) is the fault probability of ali given all the measured fault 

Figure 3-7 Graphical illustration for step 3. 
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energy ratios up to time t, which is denoted by M, P(Xfault = ali, t) is the fault 

probability of ali at time t given the measured fault energies. The graphical 

illustration for this step is given in Figure 3-7. 

The proposed method aims to locate the fault in power systems using multiple 

sensors by calculating the probability of fault occurrence at different candidate fault 

locations (CFLs). The method uses the measured fault energy signal ratio and 

considers the transmission uncertainty in the sensors and the fault energy distribution 

in the frequency domain. The method employs a Bayesian inversion technique to 

calculate the probability of the measured fault energy signal ratio, given a specific 

CFL. The final step involves calculating the fault probability of each CFL using the 

multiple and time sequential data. The method assumes that the sensors are 

independent, and the temporal information is also independent. Overall, the proposed 

method is a probabilistic approach that considers uncertainties in the system and 

sensor measurements to accurately locate faults in power systems. 
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3.3 Experimental validation of the proposed method 

This section describes the experimental validation of the proposed method. The 

validation consists of three case studies: a numerical simulation, and a practical 

application using actually measured data from an in-use power plant. In the 

numerical case study, the proposed algorithm is demonstrated to robustly estimate 

the leak position with a descriptor of the acoustic emission signal for a randomly 

selected leak position. In the practical application case study, the proposed algorithm 

is shown to estimate the leak position well in a real-world situation.  

 

3.3.1 Preliminary work for applying the proposed method using the 

transmission function of the signal 

In this section heading indicates that the following text will describe the preliminary 

work that was done to apply the proposed method using the transmission function of 

the signal. 
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Figure 3-8 Sonic wave propagation & boiler tube leak detection system. 
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This case study focuses on the case in which a leak occurs in the interior casing of a 

boiler. In general, it is difficult to directly attach sensors to the tube inside the boiler 

casing; further, the vibro-acoustic leak signal cannot be measured because of 

attenuation [70]. As shown in Figure 3-8, AE sensors are attached to the outside of 

the boiler so that the sensor is not exposed to a high-temperature environment [71]. 

If a leak occurs in a boiler tube, a sonic wave is emitted into the air [72, 73]. As the 

sonic wave hits the boiler casing and waveguides, the AE sensors attached at the end 

of the waveguides can measure the signals. This implies that some AE sensors 

located adjacent to the leak position react significantly when a boiler tube leak occurs. 

The assumed sonic wave can be regarded as a spherical wave; thus, the wave 

equation is followed: 

 
( )( )

( , ) j t krA
p r t e

r

 − −=   (3.20) 

where A(ω) is the amplitude of the leak signal for frequency ω, r is the radial distance 

from the leak source, and k is the wave length. 

The sonic wave signal is attenuated exponentially by its propagation into the high-

temperature air in the interior casing of the boiler [73, 74]. Therefore, the signal 

measured by the AE sensor is as follows: 
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where α1(ω) is the attenuation coefficient in air. Then, the power spectral density for 

a certain frequency ω can be calculated as follows: 

 

12 ( )2
2

2

( )
( )

r
A e

P j
r

 


−

=   (3.22) 

Assuming that the attenuation coefficient follows a quadratic form on frequency in 

the local frequency region [75], and using the equation (3.15), the following equation 

can be achieved: 
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where ra and rb are the distance of the sensor and assumed leak position. The mean 

of equation (3.20) can be expressed by an error function (erf) as followed: 
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where ωL and ωH is the lower and upper limit frequency of measured band-passed 

signal. Note that when the value of ωL is zero and ωH approaches zero frequency in 

equation (3.21), the attenuation effect is eliminated. This results in the expression of 

radial dissipation only, which can be represented as rb
2/ra

2, and it is same with the 

limit value of equation (3.21) is rb
2/ra

2. This result is utilized in the simulation case, 

which is described in case study 1, and experimental case, which is described in case 

study 2. The graphical illustration for easier understanding are shown in Figure 3-9.  

 

Figure 3-9 Graphical illustration of preliminary work for boiler system. 
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3.3.2 Case study 1: Numerical simulation with a randomly selected leak 

position 

A raw leak signal with a high-sampling rate at a source location was modeled based 

on data measured by a power plant. 

Figure 3-10 (a) shows the results of the fast Fourier transform (FFT) of the high-

sampling-rate (20,000 Hz) signals in normal- and leak-states, respectively. The 

difference in the amplitude can be interpreted as the tendency of the leak signal 

energy. Then, as shown in Figure 3-10 (b), the simulation data was modeled by 

considering the difference of the amplitude between the FFT of the leak- and normal-

states. 

Figure 3-10 (a) Fast Fourier transform results of normal and leak signals (really 

measured) and (b) base simulation leak data. 
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The attenuation of a sonic wave is generally proportional to the square of the 

frequency, as explained in the equation (3.21). In this study, we calculated the 

attenuation coefficient considering the air condition (relative humidity, local 

atmospheric pressure, and temperature) in a thermal power plant, by referring to the 

published literature [75]. Figure 3-11 clearly shows that the signal energy decreases 

over the whole frequency range due to the signal attenuation and radial dissipation. 

Since the attenuation effect is relatively larger in the higher frequency region, it can 

be shown that the decrease in the signal energy with the distance is more pronounced 

in the high-frequency region.

Figure 3-11 Signal attenuation and radial dissipation effect on distance. 
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Figure 3-12 Sensor locations and simulated leak position in a boiler’s final superheater (left) and trend of RMS at each sensor. 
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Table 3-1 Coordinates of AE sensors in the simulation study. 

Description 

Coordinate (mm) Distance  

from leak

 (mm) 

SNR X Y Z 

Sensor #1 12172 0 74150 7444 10.00 

Sensor #2 12172 0 63000 15598 12.50 

Sensor #3 21054 0 68500 13423 8.33 

Sensor #4 5395 17111 83899 14657 11.11 

Sensor #5 11251 12500 83899 9159 14.29 

Sensor #6 18554 4277 83899 9090 8.33 

Leak 13200 6800 77000 - - 

 

Figure 3-12 (left) shows the boiler dimensions and depicts the sensor locations in the 

final superheater of the boiler. The simulation is performed by referring to the 

locations and size of the sensor installations in the industrial power plant. The exact 

coordinates of the sensors’ positions and leak position are given in Table 3-1. 

Figure 3-12 (right) shows the trend of the simulation data of the six sensors when a 

leak occurs. The values of the signal-to-noise ratio (SNR) were set to 10.00, 12.50, 

8.33, 11.11, 14.29, and 8.33, for Sensors #1 to #6, respectively. These SNR values 

were randomly perturbed with the mean of 10 and the standard deviation of 2, 

considering the field engineer’s experience that the ratio of the leak signal to the 

noise is about 10. As shown in Figure 3-10, the base leak signal was generated by 

mimicking a high-sampling-rate signal measured from the actual leak signal. In order 

to apply the proposed method, it is necessary to transform the leak signal to the 

descriptor (i.e., RMS). First, the distance between the assumed leak position and the 

leak-responsive sensors is calculated. Then, the simulated leak signals at each sensor 

can be generated in the frequency domain through consideration of the SNR values 

given in Table 3-1 and the attenuation coefficient, as shown in Figure 3-12. Finally, 

the RMS shown in Figure 3-12 can be obtained by integrating with respect to ω for 

the simulated leak signals. In a real situation, it may be difficult to accurately 
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estimate the uncertainty of the sensor due to continuous changes in the surrounding 

environment. Therefore, there may be an error in estimating δnormal in equation (3.11); 

here, all delta values of the sensor were assumed to be 0.1. In other words, assuming 

that the SNR is estimated as 10, analysis is performed for the case where there is a 

difference from the actual value assumed in Table 3-1 when the measurement was 

performed. A mesh is created for the region corresponding to the boiler, and the 

leakage probability value for each mesh can be approximated through equation (3.14) 

under the assumption that the probability is the same within the mesh. Then, the most 

probable point (MPP) is chosen as the mesh with the highest probability.
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Figure 3-13 Simulation result: probability distribution from (a) sensors #5 and #6, (b) sensors #4 and #6, (c) sensors #4 and #5,  

(d) sensor #3 and #6. 
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Figure 3-14 Simulation result: probability distribution from (a) sensors #3 and #5, (b) sensors #3 and #4, (c) sensors #2 and #6,  

(d) sensor #2 and #5. 
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Figure 3-15 Simulation result: probability distribution from (a) sensors #2 and #4, (b) sensors #2 and #3, (c) sensors #1 and #6,  

(d) sensor #1 and #5. 
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Figure 3-16 Simulation result: probability distribution from (a) sensors #1 and #4, (b) sensors #1 and #3, (c) sensors #1 and #2. 
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Using equation (3.13) with δk = 0, the probability of the leakage at a specific point 

can be calculated by the energy ratio measured by sensors i and j. In the simulation, 

the number of leak-responsive sensors is 6, resulting in a total of 15 combinations. 

Figure 3-13 to Figure 3-16 show the probability distribution plots for all of 15 

combinations; As shown in Figure 3-12 and Table 3-1, two sensors with the similar 

distance from each sensor to the leak position measure the similar energy for each 

other. As shown in Figure 3-13 (a), these results are consistent with the fact that 

meshes where the distance from the leak position to Sensor #5 and the distance to 

Sensor #6 are similar have the high probability of the leakage. Similarly, as shown 

in Figure 3-13 (b), the probability of the leakage is high at meshes that are closer to 

Sensor #6 than that to Sensor #4, this is because the leak energy measured by Sensor 

#4 is relatively lower than that measured by Sensor #6, as shown Figure 3-12. 

Therefore, the position having the high probability of the leakage can be thus 

confirmed from the energy ratio measured by leak-responsive sensors. Additionally, 

as the distance between the sensor and the location where the probability is estimated 

increases, the energy ratio may not be significantly different from that of the adjacent 

area. As shown in Figure 3-13 (a) and (b), it can be confirmed that this tendency is 

also reflected from the fact that the probability distribution becomes wider as it goes 

down in the z-axis direction. A similar tendency can be confirmed in the probability 

distribution among other sensors. The probability distribution among other sensors 

exhibits a similar trend, Figure 3-13 (c), and Figure 3-16 (a), (b), (c) show a nearly 

spherical probability distribution. This outcome is a result of the short distance 

between sensors and the similarity in the vector direction with the actual leak 

location. If the attenuation effect is slight, such as when the distance from the sensor 

is large or limited to the low frequency band, the probability distribution will 

approximate a spherical shape. On the other hand, if the attenuation effect is strong, 

such as when the distance to the sensor is small or limited to the high frequency band, 

the probability distribution shape will approach a sphere, which may be 
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approximated as an ellipse. Additionally, as mentioned earlier, the probability value 

tends to decrease symmetrically for a specific curved surface in all cases, and this 

tendency gradually decreases as the uncertainty increases. Therefore, by examining 

the thickness of the probability distribution, one can indirectly predict the uncertainty 

of the measured leakage energy.
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Figure 3-17 Simulation result of the isosurface of probability distribution; (a) whole target region (b) nearby leak position. 
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Figure 3-17 shows the isosurface of the probability distribution. From equation 

(3.16), it is possible to calculate a probability distribution that estimates the leak 

position by considering the energy measured from all leak-responsive sensors. As 

seen in Figure 3-17 (a), the results of the isosurface of the probability distribution 

are affected not only by the energy ratio of the signals measured from each sensor 

but also by the positions of each sensor. Comparing Figure 3-17 (a) and (b), a higher 

probability value is obtained in the vicinity of the simulated leak position. There is 

an error between the MPP and the simulated leak position, because the ratio of the 

measured energy is different due to uncertainty in the actual ratio energy, which is 

determined by the distance between sensors and the leak position. However, it can 

be seen that the simulated leak position has also relatively high probability because 

the proposed method can calculate the probability of the leakage while considering 

the sensor uncertainty.  
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Figure 3-18 Simulation 1 results: probability distribution at sample times of  

(a) 1, (b) 15, (c) 30, and most probable point (MPP) at sample times of 

(d) 1, (e) 15, (f) 30. 
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Figure 3-19 Marginalized probability distribution: (a) x-z plane, (b) x-y plane, and (c) y-z plane at 1 sample times; and (d) x-z plane,  

(e) x-y plane, and (f) y-z plane at 30 sample times. 
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Figure 3-18 shows the simulation results of the probability distribution and most 

probable point (MPP) calculated by the proposed method. In the mesh area, which 

is 99.99 % or more in total, is expressed using a scatter plot, along with probability 

values, to secure visibility. As shown in Figure 3-19 (a) to (c), we used 6 sensors to 

calculate the probability; thus, the result converges to a specific point as the sample 

times go on. As shown in Figure 3-19 (d) to (f), the MPP is closer to the simulated 

leak point. This means that even though there are errors in the delta estimation and 

the probability modeling approximation in the equation (3.15), the result is good 

enough to estimate the leak point. Figure 3-19 shows the marginalized probability 

distribution result of the proposed method. Each figure shows the x-y, x-z, and y-z 

marginal planes in increasing order. Simulation results show that the proposed 

method works well, considering that the final MPP result is very close to the 

simulated leak position. The final converged MPP (using 30 samples) is (13176, 

6757, and 77061), which has an error of 78.3 mm from the simulated leak position 

(13200, 6800, and 77000), given in Table 3-1. Considering that the size of the mesh 

is (122, 86.6, and 110), the error is smaller than the size of the mesh itself (the length 

of a body diagonal = 185.7 mm); thus, it can be concluded that the estimated leak 

position is accurate. 
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3.3.3 Case study 2: Real-world industrial site data for the boiler tube 

fracture in the thermal power plant 

In this case study, the boiler tube leak occurred in the final superheater. The 

sensitivity of the AE sensor used was 100 mV/g, and the effective frequency range 

was 0 to 20 kHz. The sampling rate of the measured AE signal was 1 sample/min. 

The layout of the boiler dimension and sensor location is given in Fig. 11. The 

sensors are deployed throughout the boiler and are categorized into three groups. 

Sensor group 1 is installed on the front side of the boiler, Sensor group 2 on the rear 

side, and Sensor group 3 on the header.  

Figure 3-20 Layout of the boiler and sensor; (a) 2D layout for total structure, (b) 

3D layout for target region. 
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Table 3-2 Coordinates of AE sensors in the thermal power plant studied 

Description 
Coordinate (m) 

X Y Z 

Sensor #15 12.00 0.00 80.50 

Sensor #21 20.50 0.00 71.51 

Sensor #30 4.85 12.04 83.90 

Sensor #32 10.79 12.38 83.90 

 

The coordinates of the AE sensors that receive leak signals are given in Table 3-2. 

Sensors #15, #21, #30, and #32 are leak-responsive, which provided the measured 

leak signals in this case study; they are located at a certain distance from the leak 

tube. The other AE sensors do not measure a leak signal due to noise from 

surrounding components or their inability reach over the transmission path.
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Figure 3-21 Signal trends of AE sensors in response to a leak (filtered vs raw); (a) Sensor 15, (b) Sensor 21, (c) Sensor 30, (d) Sensor 32. 
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Figure 3-22 Signal trends of AE sensors in response to a leak (filtered with boundary); (a) Sensor 15, (b) Sensor 21, (c) Sensor 30, (d) Sensor 

32. 
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Generally, the magnitude of the boiler signal depends on the operating condition. In 

particular, in-operation conditions (e.g., soot-blowing and extremely loud sound) 

may significantly affect the signal [30]. Therefore, this study considers si,normal 

when the operating condition is not dramatically changed by any unique operating 

state. As seen in Figure 3-19, the measured signals only have fluctuations when there 

is no change in the operating condition. The fluctuation of the signal varies for each 

sensor, because signals from surrounding components are introduced differently 

depending on the installed position of the sensor. For instance, Sensors #30 and #32, 

which are installed on the header of the boiler, could be affected by external noises, 

and thus the magnitude of the fluctuation is relatively larger; thereby, the 

corresponding δ is larger. To address the issue of soot-blowing signals, which are 

considered severe impulsiveness noise due to their significantly larger amplitude 

compared to the surrounding signals [30], a moving median outlier filtering method 

based on the three-sigma rule of thumb was employed for signal preprocessing. As 

illustrated in Figure 3-19 (a) and (b), this method effectively attenuates the soot-

blowing signal, thereby preventing overestimation of the mean and standard 

deviation, without affecting the leak signal. In cases where the soot-blowing signal 

is absent, the filtered signal may be preferred over the raw signal. As demonstrated 

in Figure 3-19 (c) and (d), the absence of soot-blowing artifacts in the filtered signal 

results in a very similar profile to the raw signal, thus yielding desirable results. 

Importantly, it can be seen that the signals gradually increase from the time when the 

leak occurs and that the RMS of the signal exceeds the boundary specified in the 

equation (3.1). The parameters used to calculate the probability equation are shown 

in Table 3-3. The attenuation coefficient constant for the equation (3.21) was 

calculated by considering the environmental condition and the upper and lower limit 

frequencies were set by sensor’s effective frequency range. The coefficient of 

variation of each sensor was calculated using the outlier-preprocessed signal, which 
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is considered as the normal state. 

Table 3-3 Parameters for calculating the probability equation. 

Parameter Description Value 

  
Attenuation coefficient constant 

(
-2 -1Hz m ) 

1.9363e-11 

ωH Upper limit frequency (Hz) 20000 

ωL Lower limit frequency (Hz) 0 

δ1 c.o.v. of Sensor #15 0.0603 

δ2 c.o.v. of Sensor #21 0.0397 

δ3 c.o.v. of Sensor #30 0.0679 

δ4 c.o.v. of Sensor #32 0.2275 
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Figure 3-23 Trend of δ for each sensor after the occurrence of leak. 
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Figure 3-23 illustrates the δ values for each sensor calculated from the measured data 

after the leak occurrence, which is described in Figure 3-22. Examining the trend of 

sensor 30, it is evident that it has a high δ value throughout the entire duration. This 

can be attributed to two reasons based on Figure 3-22. Firstly, the ratio of the 

increased energy (from the leak) to normal state energy increased from the time of 

the leak is the smallest compared to the other sensor data. Secondly, the energy 

variation in the normal state is more significant than other sensor data. According to 

the equation (3.12), which demonstrates that β can be approximated as the same 

value, the ratio of the normal energy to the fault energy, denoted as the square root 

of E[RMSnormal]/(RMSfault – E[RMSnormal]), should be larger when the fault energy 

(RMS) is small compared to other sensors, resulting in a larger δ. As indicated in 

equation (3.13), δ is proportional to δnormal, which should be larger for the second 

reason. Thus, sensor 30 has the highest δ value, as shown in Figure 3-23. Conversely, 

sensor 32 has the smallest δ value due to the largest increase in fault energy shown 

in Figure 3-22. Although the variation in normal state energy is higher than that of 

sensors 15 and 21, the effect of the increase on δ is more significant than the effect 

of the variation of the normal state on δ. The delta value of the data exhibits a rapid 

change after 18/01/13 23:40, which can be verified by the sudden surge in energy 

shown in Figure 3-22. However, this change in the delta value trend is not attributed 

to a shift in the fault energy, but rather to a shift in the operating state resulting from 

the recognition of the fault itself. As a consequence, data after this point were 

excluded from the calculation. 
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Figure 3-24 Experimental result: probability distribution from (a) sensors #15 and #21, (b) sensors #15 and #30,  

(c) sensors #15 and #32, (d) sensor #21 and #30, (e) sensor #21 and #32, (f) sensor #30 and #32. 
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The probability of a leak occurring at a specific point can be calculated using 

equation (3.15) with δk = 0 and the energy ratio measured by sensors i and j. In the 

simulation, four number of leak-responsive sensors were used, resulting in a total of 

6 combinations as depicted in Figure 3-24. The colored regions in each figure 

represent the probability, and their values are (0.1788, 0.1725, 0.3096, 0.1638, 

0.4203, 0.7580), which are the same volume for each figure. This indicates that the 

areas corresponding to Figure 3-24 (f) produced the most reliable results. As 

previously mentioned, the relatively high uncertainty of the sensor 30 makes it 

difficult to attribute this outcome to uncertainty. Instead, it is likely due to the 

proximity of sensors 30 and 32, resulting in a more limited high-probability area. 

Similarly, Figure 3-24 (d) obtained from sensors 21 and 30 reveals that it is difficult 

to obtain a point with a high probability if the area is distributed over a wide range. 

In contrast, the relatively small uncertainty of sensor 32, as discussed earlier, results 

in its combination with other sensors in Figure 3-24 (c), (e), and (f) having a higher 

probability compared to other values. The analysis results for other items, such as 

the latent curve surface of the distribution, are consistent with those presented in case 

study 1 and will not be discussed further.
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Figure 3-25 Experimental result of the isosurface of probability distribution; (a) whole target region (b) nearby leak position. 
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Figure 3-25 shows the isosurface of the probability distribution calculated using the 

proposed method. The probability distribution is obtained as 10 times updated from 

the measured signals from the sensor #15, #21, #30, and #32. The black circle is 

MPP obtained by the proposed method, and yellow circles are the position of sensors. 

It is worth noting that the proposed method was able to accurately identify the 

location of the leak using the measured signals from only four sensors. The black 

circle in Figure 3-25 (a) represents the MPP obtained by the proposed method, which 

corresponds to the location of the leak. Despite the fact that most of the sensors are 

distributed on a similar z-axis component, the proposed method was still able to 

accurately estimate the location of the leak. However, it should be noted that the 

precision of the z-axis value of the leak position may be poor due to the similar z-

axis components of the leak-responsive sensors. One can observe similarities 

between the color bar values in Figure 3-17 and Figure 3-25 when comparing them. 

This can be attributed to the fact that there is no notable difference between the 

simulation data and experimental data in terms of uncertainty. Overall, the 

probability distribution obtained from the proposed method is consistent with the 

simulation results, indicating that the proposed method is effective in detecting and 

locating leaks even with a small number of sensors. 
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Figure 3-26 Experimental results: probability distribution at sample times of  

(a) 1, (b) 15, (c) 30, and most probable point (MPP) at sample times of 

(d) 1, (e) 15, (f) 30. 
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Figure 3-27 The trend of the MPP (most probable point) over time, with each data point representing the MPP at a specific time.  

(updated by the time sequential data using 1 sample time to the specific time). 
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Figure 3-28 Marginalized probability distribution: (a) x-z plane, (b) x-y plane, and (c) y-z plane at 1 sample times; and (d) x-z plane,  

(e) x-y plane, and (f) y-z plane at 30 sample times. 
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Figure 3-29 Marginalized probability distribution: (a) x-z plane, (b) x-y plane, and (c) y-z plane at 60 sample times; and (d) x-z plane,  

(e) x-y plane, and (f) y-z plane at 90 sample times. 
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Figure 3-26 presents the experimental results of the probability distribution and 

most probable point (MPP) obtained using the proposed method. In contrast to 

Figure 3-18, which shows the mesh area representing 99.99% or more of the total 

probability distribution, the probability values are presented as a scatter plot to 

enhance visibility due to the high uncertainty of the utilized data. The probability 

distribution at one sample time is limited to 48.42%. The figure shows that the high 

probability area gradually decreases over time, and this trend is observed up to 30 

sample times, as indicated in Figure 3-27. Two reasons can explain this tendency: 1) 

the uncertainty of sensor location and measured data, and 2) changes in the measured 

energy ratio. In an ideal case such as the simulation case study presented in section 

3.3.2, for the results to continue to converge, the fault energy ratio should remain 

constant and not change significantly over time. However, in the real situation 

depicted in this case study, the transmitted fault energy in the frequency band of the 

fault energy ratio does not appear to be consistent or maintained constant by various 

internal components, as shown in Figure 3-23. Therefore, the updated probability 

distribution gradually shifts to fit the leakage energy trend even after a long sample 

time. The trend mentioned earlier can be observed more clearly in the results 

presented in Figure 3-28 (d), (e), (f), and Figure 3-29. In the marginalized probability 

distribution of each axis, it can be observed that the position of the MPP gradually 

moves to fit the trend on the line, without significantly damaging the shape of the 

probability distribution. This observation validates the proposed update method. 

Additionally, as stated previously, the marginalized probability distribution indicates 

a large relative uncertainty in the z-axis. As shown in Figure 3-29, which shows a 

converging probability distribution shape, it is evident that the variation in the z-axis 

is wider than that in the x/y-axis. Additionally, since the converged region in the x-

y plane is relatively small, it can be said that it is advantageous for the maintenance 

strategy to check the actual leak position while going down the z-axis in a specific 

region.  
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In summary of analysis of these probability distributions, Figure 3-28 shows the 

marginalized probability distributions for each axis at three different sample times. 

It can be observed that the distributions gradually become narrower and the peaks 

become sharper as more samples are acquired. This indicates that the uncertainty in 

the estimated leak location decreases over time, which is a desirable characteristic 

of the proposed method. Figure 3-29 shows the convergence of the probability 

distribution to a stable shape after a sufficient number of samples have been acquired. 

It can be observed that the shape of the distribution remains consistent beyond 

sample time 30, which suggests that the method has reached a stable estimate of the 

leak location. This is further supported by the fact that the MPP trend stabilizes after 

sample time 30 (as shown in Figure 3-26).
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Figure 3-30 Different δk for calculating the probability distribution of fault location; (a) δk = 0, (a) δk = 0.1, (a) δk = 1, (a) δk = 10 
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Figure 3-31 Different δk for obtaining MPP from the probability distribution of fault location; (a) x-axis, (b) y-axis, (c) z-axis 
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Figure 3-30 and Figure 3-31 show the effect of the δk value, which represents the 

uncertainty in the frequency domain of the fault energy, on the calculated probability 

distribution and MPP. As the δk value increases, the probability distribution becomes 

wider and the probability values decrease, indicating higher uncertainty in the 

estimated leak location. This is consistent with the intended effect of considering 

larger uncertainty in the measured energy. 

In Figure 3-30, specifically in panels (c) and (d), although they may appear similar 

at a glance, a closer look at the probability values in the corresponding areas reveals 

a significant difference. For example, in panel (c), the probability values are around 

0.9, while in panel (d), the probability values are much lower, around 0.06. This 

suggests that even a slight difference in the δk value can result in noticeable 

differences in the estimated probability distribution and MPP, as reflected in the 

colorbar values. This underscores the sensitivity of the method to the choice of δk 

value and the importance of properly accounting for uncertainty in the frequency 

domain of the fault energy in the estimation process.  

In Figure 3-31, it appears that the MPP value does not vary significantly with 

different δk values. Even when the difference in δk values is the largest, the variation 

in the MPP value does not exceed the size level of one mesh set in the approximate 

probability distribution represented as a mesh. This is likely due to the fact that the 

proposed method uses average values that are fitted to a general model, excluding 

the uncertainty, when estimating the MPP coordinates. 

When considering the results together, it can be inferred that the proposed method 

generates a wide probability distribution when the uncertainty around the MPP value 

increases (i.e., when the δk value increases), and a narrow probability distribution 

when the uncertainty is small. This suggests that the proposed method is able to 

effectively capture and represent the uncertainty in the estimated probability 
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distribution, and the reliability of the results is well demonstrated by the width or 

narrowness of the generated probability distribution.  

The δk values used in the analysis require prior knowledge. In this case, the fault 

energy distribution is assumed to follow a normal distribution N(1, ς2) as derived 

from Equation (3.15), which can be approximated using a transfer function that 

models the transmission effect. However, in practical scenarios, it may be 

challenging to accurately assume that the fault energy distribution in the frequency 

domain follows a normal distribution. Instead, it can be considered that the 

maximum available information has been derived from the probability distribution 

obtained, taking into account that when a severe fault occurs, the energy rise may 

happen across the entire frequency band and can only be approximated using a low-

sampling signal.
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Figure 3-32 Fault probability using prior assumption on CFL; (a) 1 sample time, (b) 5 sample time. 
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Figure 3-33 Fault probability using prior assumption on CFL; (a) 15 sample time, (b) 30 sample time. 
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Figure 3-32 and Figure 3-33 are the results when the probability distribution is 

obtained by limiting the CFL to the area of the boiler tube in the superheater, not the 

whole area of the superheater, which is the target system as shown until Figure 3-31. 

Based on the equation (3.16), it can be calculated by setting the prior probability of 

the area where the boiler tube exists to 1 and the rest to 0. Compared to Figure 3-26, 

it can be confirmed that the probability value is obtained as a large value for a 

narrower area because the area is limited. In addition, since the number of meshes to 

be calculated is reduced, the overall amount of calculation is also reduced. 

The probability distribution considering the tube location can provide more 

accurate information for fault detection and diagnosis. As shown in Figure 3-32 (b), 

the probability distribution is more concentrated and the MPP is located near the 

actual tube location. This implies that considering the tube location can reduce the 

uncertainty in fault detection and diagnosis. However, it should be noted that 

assuming the tube location is known is not always practical. In real-world scenarios, 

the location of the tube may not be accurately known or may change over time. 

Therefore, it is important to consider the trade-off between the accuracy of fault 

detection and diagnosis and the practicality of obtaining the tube location 

information. Overall, the results demonstrate the potential of considering additional 

prior information in improving the accuracy and reliability of fault detection and 

diagnosis. 

The probability distribution shown in Figure 3-33 may be considered to contain less 

information. However, assigning different initial probabilities to each tube location 

based on a more precise analysis of the tube location can lead to more reliable results 

than the probability distribution shown. For example, at joint points where horizontal 

and vertical tubes meet, a higher initial probability can be imposed due to the 

increased risk of leakage. Similarly, for bent parts of the tube where the flow of the 

internal fluid changes rapidly, a high initial probability can be assigned. Moreover, 



 

 88 

since the internal fluid receives energy as it is transferred, the temperature and 

pressure of the tube passing later may rise. Hence, it is possible to develop a method 

of gradually increasing the probability for the tube passing later by considering this 

flow. By incorporating these factors into the initial probability assignment, the 

accuracy and reliability of the fault diagnosis results can be improved. 
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Figure 3-34 Comparison of the proposed method with TDoA 
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To show the superiority of the proposed method, the proposed method is compared 

with the conventional method, TDoA. The MPP and the probability distribution are 

calculated by examining 30 sample times after the leak occurs. When estimating the 

leak position through TDoA, the time difference of arrival of the leak signal is 

calculated through cross-correlation between leak signals. Here, TDoA is calculated 

by using the temporal-cross correlation based on the descriptor. Therefore, TDoA 

can be calculated in units of the time step size (1 second) of the measured descriptor, 

which causes a large error, as shown in Figure 3-34. On the other hand, unlike TDoA, 

the proposed method does not require a high-sampling rate signal because it is 

calculated based on the energy ratio. 
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3.4 Summary and discussion 

This chapter proposed a probabilistic energy-ratio-based localization (PERL) 

method that used an energy-related descriptor of the signal. The radial dissipation of 

sonic waves and the attenuation in the the signal were considered. Since it is 

impossible to measure the signal energy directly at the fault source, the energy ratio 

equation was derived. To account for background noises and sensor disturbances, 

the uncertainty of the sensor energy was characterized in a probabilistic manner. 

Bayes theorem was used to calculate the probability that the signal was measured at 

the hypothesized location of the fault source. A probability distribution obtained for 

every sample time was utilized to localize the fault source and to prevent a local bias 

error that might arise due to outsourced large signals. Using the proposed method, it 

was found to be possible to calculate the probability that a boiler tube leak occurred 

at each mesh. In case study 1, for simulation data, the proposed method was able to 

estimate the leak position with an error of 78.3mm, which was less than the length 

of the body diagonal of the mesh. In case study 2, for the real-world industrial site 

data, the proposed method was able to estimate the leak position with an error of less 

than 5m.  

1) The proposed probabilistic model can estimate the location of a fault using 

only the energy-related descriptor of the signal. By accurately reflecting the 

measurement uncertainty caused by the operating conditions or the disturbance noise 

of the sensor itself, it is possible to estimate a probable leak without much error, even 

in real-world operating conditions.  

2) The results derived by the proposed method can be calculated effectively 

even if only two or three sensors respond to the fault. This has a great effect when 

the system’s size is huge and does not meet the conditions for reacting to four or 

more sensors, as required by conventional methods. Thus, this can solve the 

difficulty in finding a convergence point that must arise for success of conventional 
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methods; this issue can arise in real-world situations due to an insufficient number 

of fault-responsive sensors. 

3) From the point of view of establishing a maintenance strategy in the case 

of the large scale system, efficient operation is possible by considering the 

probability distribution in three-dimensional space. 

The proposed research assumes a situation where the leakage signal is significantly 

distorted due to the adjacent components or tubes in the propagation. It is generally 

reasonable to assume that the leaks occur in the bent ends that change the direction 

of the fluid flow; however, the error can be large when a leak occurs deep inside of 

the boiler, which results in serious distortion in the signal propagation. In this case, 

it is expected that the issue can be solved by utilizing the differential pressure signal 

that considers the internal fluid flow and by performing spectral analysis through the 

high-sampling signal. In future research, a method of applying a probabilistic model 

that considers these aspects for more precise localization will be studied, for use 

when high-sampling-rate data can be measured. 

 

 

Sections of this chapter have been published as the following journal articles: 
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230 (2023): 108923. 
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Chapter 4  

 

Fault Affected Signal Energy Ratio 

(FASER) 
 

 

In this chapter, we propose a novel method for extracting fault-affected signals 

from high-sampling-rate vibration signals using time-frequency analysis (TFA). 

Time-frequency analysis is a well-established approach for analyzing non-stationary 

signals in both the time and frequency domains. Among various TFA methods, short-

time Fourier transform (STFT) is widely used due to its low computational cost 

compared to other methods such as the Wigner-Ville distribution (WVD) and 

wavelet transform (WT) [76]. The lower computational cost of STFT makes it more 

practical for industrial applications. However, transforming a vibration signal to 

STFT can result in uncertainties due to the uncertainty principle in time-frequency 

representation and the presence of background noise and impact signals from 

adjacent components, such as bearings. Moreover, as vibration signals are typically 

measured consecutively in industrial settings, it is challenging to store them 

separately while considering varying operating conditions. Therefore, it is unclear 

how to segment the signal for estimating the uncertainty in STFT even if the 

operating conditions are periodic. Although encoder information from a tachometer 

can be used to process consecutively measured vibration signals, this approach may 

also incur errors due to the indirectivity between the sensor and the tachometer. 

Furthermore, the use of encoder information may not be feasible due to economic 

considerations. These challenges make it difficult to accurately measure the 

uncertainty of non-stationary signals and approach them effectively. Neglecting the 

uncertainty in Short-time Fourier Transform (STFT) can result in misinterpreting 
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signal energy changes that are caused by noise or unsynchronized operating 

conditions as the effect of faults, rather than their underlying causes. Moreover, it 

may lead to the oversight of small changes in the signal energy originating from 

faults.  

Despite the development of various STFT-based fault-diagnosis methods in 

previous studies [77-80], the uncertainty in STFT has only been partially considered. 

Therefore, this study proposes a novel probabilistic approach, called the fault-

affected signal energy ratio (FASER) method, for diagnosing gearbox faults under 

variable-speed conditions. To extract signals affected by faults, it is essential to 

model the energy distribution of non-faulty signals in a probabilistic manner, 

accounting for operating conditions. To achieve this, we first build probabilistic 

models for each time-frequency index of the short-time Fourier transform (STFT) of 

the normal signal. STFT can be viewed as a concatenation of Fast Fourier Transform 

(FFT) results over short time periods, with each period's FFT depending on the 

operating condition. By computing the Kullback-Leibler divergence (KLD) between 

FFT results for each time period, their similarity can be evaluated, and uncertainty 

can be estimated by collecting signals under similar operating conditions. This 

enables us to quantify the uncertainty in the STFT of the normal signal and extract 

fault-affected signals more accurately. Two assumptions are made for this process 

to apply a newly measured signal: 1) the newly measured signal does not deviate 

from the operating state of the signal used to build the probability model, and 2) the 

fault state does not cause significant changes in the frequency energy distribution. 

With these assumptions, the newly measured signal can be matched with a 

probabilistic model from similar operating conditions. Then, the regions that have 

fault information in STFT are adaptively extracted using the matched probabilistic 

models and STFTs of the fault signals. The extracted time-frequency indices are then 

used as a time-frequency filter to calculate FASER as a fault feature. The last step is 
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to calculate an adaptive threshold of FASER to robustly classify the health state of 

the signal. To calculate the adaptive threshold for FASER, the covariance between 

the energies of time-frequency indices are computed, taking into account the window 

function employed to calculate the short-time Fourier transform. Specifically, we 

considered a scenario where the energy is located at a high value in the probabilistic 

view, which affected the boundary of the fault-affected signal energy ratio (FASER). 

This allowed us to determine an appropriate threshold for identifying the presence 

of fault symptom in the signal. In this research, the proposed method is 

experimentally validated by applying it in two case studies, including a planetary 

gearbox and an industrial robot gearbox; both cases are configured to imitate the 

operating conditions of real-world manufacturing processes. 

The remainder of this paper is organized as follows. Section 4.1 provides a brief 

review of STFT and KLD. Section 4.2 illustrates the procedure of the proposed 

method, with detailed mathematical descriptions. The experimental setup and results 

are given in Section 4.3. Section 4.4 provides the conclusions of this research. 

 

4.1 Background: Short Time Fourier Transform (STFT), 

Kullback-Leibler Divergence 

This section provides the theoretical background of short-time Fourier 

transform (STFT) and Kullback-Leibler Divergence to understand the proposed 

method. In this section, we will first investigate the definition of the Short-Time 

Fourier Transform (STFT) and its advantages for diagnosing non-stationary signals, 

as demonstrated through simple simulation results. We will then explore the concept 

of Kullback-Leibler divergence (KLD), which can serve as a measure of signal 

similarity. 
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4.1.1 Short-time Fourier Transform (STFT) 

 

The basic formulation of STFT can be represented as: 

 ( , ) ( ) ( )
j t

SX s t w t e dt


  
−

= −  (4.1) 

where τ is the time domain index, ω is the frequency domain index, s(t) is the target 

signal, and w is the window function. As can be seen in Eq. (1), the STFT is 

calculated by introducing an appropriate window function in the Fourier transform 

to describe how the spectral information changes over time [81]. Therefore, the 

selection of the window function is also important issue in the fault diagnosis. There 

are several researches on the window function in the view of the fault diagnosis [82, 

83]. The window function moves along the time axis so that it can selectively choose 

the signal in a short duration. The selected signal can be considered to be quasi-

stationary; thus, the selected signal can be properly analyzed by fast Fourier 

transform (FFT) [84]. Additionally, STFT has no cross term, unlike WVD as 

illustrated in Section 2.3.1; this is advantageous because a cross term can result in 

misunderstandings about the vibration signals. 

Because the window function of STFT does not change with time and frequency, 

STFT gives a fixed resolution in the frequency domain. Therefore, STFT can 

efficiently calculate time-localized frequency information based on FFT, which 

needs much lower computation time compared with the other type of time frequency 

analysis such as Wavelet, Wigner-Ville distribution, and the similar Cohen class’ 

time frequency analysis [52]. 

The result of STFT generally has a complex value; thus, it is hard to visualize in the 

time and frequency domains. Therefore, a spectrogram, which can be formulated as 

shown in the equation (4.2), can be used for visual representation of the time-varying 

signal. 
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*( , ) ( , ) ( , )s s sC X X     =  (4.2) 

where Cs(τ, ω) is the spectrogram of the target signal s and the symbol * means 

complex conjugate. 

In order to evaluate the performance of short-time Fourier transform (STFT) in 

extracting fault signals under varying conditions, the study performed modeling of 

signals that decay in amplitude to simulate fault symptoms as shown in the equation 

(4.3) and equation (4.4). 
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where sn(t) indicates normal state simulation signal under the sinusoidal operating 

condition, sf(t) indicates fault state simulation signal, and tfc is the time when fault 

signal occurs. For the simulation, 4 fault signal is imposed at tfc = 2, 4, 6, 8 (s). The 

performance of STFT was then compared to that of fast Fourier transform (FFT) 

using the generated signals. The window function is the most generally used Hanning 

function with the length 1024, and sampling rate is 25600Hz. Figure 4-1 (a) and (b) 

presents time-varying, frequency-modulated sinusoidal signals with added impulse 

peak signals to model gear fault symptoms. FFT analysis of the signal in Figure 4-1 

(c) and (d) showed no significant changes due to the presence of the peak, whereas 

STFT analysis in Figure 4-1 (e) and (f) revealed a spread vertical line in all frequency 

regions at the corresponding time where the peaks existed. Therefore, in cases where 

the energy of the peak is not sufficient to differentiate the gear state in the FFT 

domain, it is crucial to consider the TF domain and the effect of the peak signal. 

STFT analysis allows for the isolation of the peak signal over a short time, capturing 

the instantaneously changed signal in the corresponding indices. This approach 

allowed for an assessment of STFT's ability to accurately extract fault signals in real-

world scenarios. 
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Figure 4-1 Comparison of normal and fault signal in time, frequency, time-frequency domain; (a) normal signal in time domain, (b) Fault signal 

in time domain, (c) normal signal in frequency domain, (d) fault signal in frequency domain, (e) normal signal in time-frequency 

domain, and (f) fault signal in time-frequency domain. 
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4.1.2 Kullback-Leibler Divergence (KLD) 

KLD is a measure of how one probability distribution is different from a 

reference probability distribution [85]. If the KLD is 0, this indicates that the 

compared distributions are identical to each other. Additionally, if one KLD is larger 

than another KLD, the former probability distribution is more similar to the reference 

distribution than the latter probability distribution. Therefore, if the Fourier 

transform result of a particular signal is viewed from the perspective of energy 

distribution in the frequency domain, the Fourier transform result can be used as a 

measure to evaluate the similarity between signals when compared using the 

Kullback-Leibler Divergence (KLD).  

The discrete version of KLD for univariate probability density functions P(x) 

and Q(x) is given as: 

 ( )
( )

( ) ( ) ( ) log
( )
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x X
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= −  
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where P(x) is an observed probability distribution, Q(x) is a reference probability 

distribution, and X is the domain of x. Additionally, it is calculated only as Q(x)>0 

for all x where P(x)>0. In the 2-dimensional case, this formula can be transformed 

as: 

KL
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where P(x,y) is an observed bi-variate probability distribution, and Q(x,y) is a 

reference bi-variate probability distribution, and (X,Y) is the domain of (x,y). 

Similarly, it is calculated only as Q(x,y)>0 for all (x,y) where P(x,y)>0. To evaluate 

the similarity of signals using the KLD defined in Eq. (4.5) and Eq. (4.6), some 

procedures are required to apply the spectral analysis result. Detailed information on 

this process will be presented in section 4.2.1. 
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4.2 Fault-affected Signal Energy Ratio (FASER) for Robust 

Fault Diagnosis of Non-stationary signal  

In this section, we present a detailed discussion of the proposed FASER method, 

including mathematical derivations and assumptions. The goal of the method is to 

extract fault-affected signals by comparing probabilistic models and actual measured 

energy based on STFT while minimizing errors from differences in operating 

conditions. Figure 4-2 depicts the overall procedure of the proposed FASER method. 

In Step 1, a high-sampling signal is transformed into a spectrogram using pre-defined 

parameters such as the window function and FFT length to prevent energy 

differences due to changes in parameters. In Step 2, the spectrogram is segmented 

along the time axis, and each segmented spectrogram vector or matrix is matched 

with the probability distribution model of spectral energy to identify fault-affected 

indices. In Step 3, the FASER and its adaptive threshold are calculated based on the 

fault-affected indices to diagnose the signal state. The proposed method is described 

in detail with mathematical expressions in the following sections. 
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Figure 4-2 Proposed FASER’s overall flowchart. 
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4.2.1 Spectral energy’s probability distribution modeling 

Vibration signals measured from the machinery with the same operating profile have 

a similar energy distribution in the time and frequency domains, provided the noise 

is not severe. A spectrogram using STFT can be interpreted as the energy distribution 

in the time and frequency domains. Since the spectrogram is always not negative, it 

can be used to compare the similarity of the signals without any loss of information. 

Because the measured signal is not a normalized signal, the spectrogram itself does 

not satisfy the probability distribution property, which requires that the 

marginalization of the energy in the time and frequency domains be 1. Therefore, the 

normalized spectrogram is calculated by dividing the spectrogram by the signal 

energy as: 
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where Ys(τ, ω) is the normalized spectrogram of the target signal s, E[∙] is the 

expectation operator, and (T, Ω) is the possible domain of (τ, ω) calculated by the 

signal length, and Nyquist frequency. Therefore, if one signal is more similar to the 

reference signal than another signal, the KLD of the spectrogram of the first signal 

should be less than the KLD of the other one. This study uses a 2-dimensional 

distribution in the time and frequency domains; KLD can be thus represented as: 
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    (4.8) 

where r(t) is the reference signal and Yr(τ, ω) is the normalized spectrogram of the 

reference signal. Thus, the similarity between any target signal and the reference 

signal can be quantified by the equation (4.8). Generally, the variability in the speed 

condition has a great influence on the energy distribution of the vibration signal. 

Therefore, the difference in the operation phases could have a bias effect on the 

building of probabilistic models for each time-frequency index of STFT of the 

normal signal, which will be shown in later. 
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Estimating uncertainty requires a diverse set of data. However, it is commonly easier 

to obtain signals in a normal state, which is why it is a self-evident approach to 

estimate uncertainty based on normal state signals and perform energy modeling to 

ensure robustness. This process is illustrated in Figure 4-2. To model the spectral 

energy distribution in a probabilistic manner, reference signals are first extracted to 

sufficiently explain changes in spectral energy from changes in the operating 

condition. Since the spectrogram is quasi-stationary within each time index and the 

operating speed greatly influences changes in energy distribution of frequency, a set 

of reference signals should be extracted for any of signal measured at a specific 

possible operating speed and acceleration. An initial set of reference signals, denoted 

as RFS=ri(t), i = 1, …, N, where N is the number of reference signals, can be 

extracted from consecutively measured signal. The normalized spectrogram of each 

reference signal is then calculated using Eq. (4.9), where Yr,i(τ, ω) represents the 

normalized spectrogram of the i-th reference signal.  

From the consecutively measured signal, there can be extracted initial set of 

reference signals, referred as RFS, i = 1, …, N, and N is the number of the reference 

signals. Then, the normalized spectrogram of the reference signals are followed: 
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where Yr,i(τ, ω) represents the normalized spectrogram of the i-th reference signal. 

For non-reference signals, labeling is performed using Eq. (4.8) and Eq. (4.9), as 

shown in Eq. (4.10). 

( )( ) KLlabel for signal ( ) argmin ( )j i j inr t D nr t r t=  (4.10) 

where nrj(t) is j-th non-reference signal. Graphical illustrations for these processes 

are given in Figure 4-3. 
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Figure 4-3 Graphical illustration for selecting reference signals and 

finding optimal label of non-reference signal. 
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From these labeling, the representativeness of the reference signals can be evaluated 

in two way: 

(1) Number of signal labeled as i > 5 

(2) ( )( ) KLmin ( )i j iD nr t r t threshold  

If condition (1) is not satisfied for a reference signal ri(t), it should be removed from 

the RFS because it would not provide sufficient representativeness for the specific 

operating condition and would not allow for accurate estimation of uncertainty due 

to a lack of data. In the case of condition (2), the threshold can be calculated using 

the median and standard deviation (std.) of the values, which expressed simply as 

(median + 3 × std.) of mini{DKL(nrj(t)∥ri(t))}. If this condition is satisfied, it 

implies that the non-reference signal nrj(t) could have a different operating condition 

that is not matched with any of the reference signals. Therefore, in such cases, the 

non-reference signal nrj(t) should be added to the RFS. From these conditions, RFS 

can be properly selected with having 1) enough data to estimate the uncertainty, 2) a 

set of reference signals could be extracted for any of signal measured at a specific 

possible operating speed and acceleration. The graphical illustration for these steps 

is given in Figure 4-4. 

. 
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Figure 4-4 Graphical illustration for evaluation of representativeness of the 

reference signals; (a) condition (1), (b) condition (2). 
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The final step is probabilistic energy distribution modeling for each RFS. From the 

previous step, signals under similar operating conditions were clustered by reference 

signal number. To simplify the mathematical equation, we let the RFS be composed 

of N signal's spectrogram by the previous procedure, and the signals labeled as i (i = 

1, 2, …, N) is denoted as ηj
(i)(t) where j is the jth sample of them (j = 1, 2, …, number 

of signals labeled as i). The expression is followed: 

 ( ) ( )

KLargmin ( ) ( )i

k j kD t r t i =   (4.11) 

As delineated in the introduction of Chapter 4, when dealing with signals, it is 

imperative to consider the presence of uncertainty, which necessitates the use of a 

suitable probability model. With the removal of variance associated with operational 

conditions through the previous step, it is plausible to assume that modeling can be 

accomplished with two signals: a Gaussian noise and a deterministic signal featuring 

only phase changes. Figure 4-5 (a) and (b) depict conceptual illustrations for 

spectrum analysis on the complex domain, which can manifest in two distinct ways 

contingent upon the presence or absence of a deterministic signal. 

It is well known that when only Gaussian noise signals exist, the following 

distribution follows. 
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where σ is variance of noise and χ2(2) is 2-degree of freedom (DOF) chi-square 

distribution described as followed: 
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where fchi is probability density function (PDF) of the chi-square distribution with 

variable x, k is DOF parameter, and the function is valid for x>0, otherwise 0. In 
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order to estimate the parameter σ in Eq. (4.12), a probability function must be 

employed. The clustered ηj
(i)(t) from the previous step can serve as a basis for 

estimating σ. Assuming that the energy in the spectrogram index (τ, ω) conforms to 

Eq. (4.12) with parameter σ = σ(i)(τ, ω), the mean can be computed as shown in Eq. 

(4.14). 

 ( ) ( )( )

2( )E , ,i
j

i

j C


      =
  

  (4.14) 

where Ej[∙] denotes the expectation operator with respect to j. Thus, the method of 

moments can be readily implemented for parameter estimation. Subsequently, it is 

imperative to verify whether the energy probability distribution, which was 

estimated by validating the model, accurately represents the acquired energy. 

However, the conventional method of model validation is limited to check the 

normality, thus requiring the use of the Lilliefors test for validating the estimated 

energy probability distribution. The Lilliefors test, a variant of the well-established 

Kolmogorov-Smirnov test, performs better when the distribution's expectation and 

variance are unknown. Recalling that the parameter σ is estimated from the data, 

which is same situation when the true values of expectation and variance are 

unknown. Furthermore, it can also be used to test the null hypothesis that the data 

follows an exponentially distributed scenario. Fortunately, for our research, the chi-

square distribution with degrees of freedom equal to two is an exponentially 

distributed situation, enabling the possibility of testing the estimated distribution. 

If the Lilliefors test rejects the null hypothesis (indicating that the distribution cannot 

be modeled by the chi-square distribution), it suggests the presence of non-Gaussian 

noise or a deterministic signal. In this scenario, we will initially proceed with 

modeling for the cases of deterministic signals and Gaussian noise. It is derived in 

published literature [58] that when both Gaussian noise signal and deterministic 

signal exist, the following distribution follows. Additionally, There was an error in 

the non-centrality parameter of the derived expression, so it was corrected and 
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reflected: 
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where σ is variance of noise and χ2(2, λ) is a noncentral chi-square distribution with 

2-DOF, and the noncentrality parameter λ. And, the noncentral chi-square 

distribution described as followed: 
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where fnc-chi is probability density function of the noncentral chi-square distribution 

with variable x, k is DOF parameter, λ is noncentrality parameter, and I(∙) is a 

modified Bessel function of the first kind, and the function is valid for x > 0, 

otherwise 0 for k ≠ 1. To estimate the parameters σ and γ in Eq. (4.15), a probability 

function needs to be used, similar to the previous probability distribution’s 

estimation process. The clustered ηj
(i)(t) obtained from the previous step can be used 

as a basis for estimating σ and γ. We assume that the energy in the spectrogram index 

(τ, ω) follows Eq. (4.15) with parameters σ = σ(i)(τ, ω) and γ = γ (i)(τ, ω). Additionally, 

in the view of signal processing, σ is the energy of noise, and γ is the energy of 

deterministic signal. Clearly, both the energy of the noise and deterministic signal 

can be different for different (i, τ, ω). Using this assumption, we can compute the 

mean and variance as shown in Eq. (4.17) and Eq. (4.18). 

 ( ) ( ) ( )( )

2( ) ( )E , , ,i
j

i i

j C


         = +
  

  (4.17) 

( ) ( ) ( ) ( )( )

4 2( ) ( ) ( )Var , , 2 , ,i
j

i i i

j C


            = +
  

 (4.18) 

where Varj[∙] denotes the variance operator with respect to j, and the other 

description is same as the equation (4.14). Thus, the method of moments for 1st and 

2nd can be readily implemented for parameters estimation. From the simple 

mathematical implementation, and the constraint that γ = γ(i)(τ, ω) > 0, the parameters 
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can be estimated as: 

( ) ( ) ( ) ( )( ) ( ) ( )
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         = −
      

   (4.20) 

Regrettably, unlike the scenario where only a noise signal is present, the distribution 

is neither exponentially nor normally distributed. Therefore, there is no appropriate 

test method available for validating the model. Instead, we can evaluate the 

suitability of the model based on the fact that σ and γ, which serve as constraints for 

the parameters, are real numbers. Therefore, the constraint for applying the 

probabilistic modeling suggested in the equations (4.15), (4.19), (4.20) is simply 

expressed as: 

 ( ) ( )( ) ( )

2

E , Var ,i i
j j

j jC C
 

      
      

  (4.21) 

To verify the effectiveness of the proposed estimation method and equation, a 

simulation was conducted on a basic sinusoidal signal s(t) = 0.5sin(2000πt + φ) + ε, 

φ ~ U(0, 2π), ε ~ N(0,1) as illustrated in Figure 4-7 (c) to (f). The window function 

is Hanning function with the length 1024, and the spectrum results are analyzed at 

frequency = 1000 (Hz). 
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Figure 4-5 Conceptual illustration of (a) Noise signal, (b) Noise + Deterministic 

signal, simulation result of (c) Noise signal, (d) Noise + Deterministic 

signal, histogram of simulation (e) Noise signal, (f) Noise + 

Deterministic signal. 
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The final stage of probabilistic modeling involves modeling the energy distribution 

that cannot be captured by any combination of the probabilistic distributions 

suggested earlier. There are various reasons why this energy distribution cannot be 

modeled by the previous suggestions. These include: 

1) When multicomponent signals overlap, irrespective of the driving conditions 

2) When the randomness of the noise itself varies, irrespective of the driving 

conditions 

3) When signals with unknown sources are transmitted or generated in a non-

periodic manner. 

Thus, it would be inefficient and beyond the scope to create individual probability 

distributions by making assumptions in such cases. To address this issue, we can use 

a well-known nonparametric probabilistic modeling method called Kernel Density 

Estimation (KDE). The KDE is defined as: 

 ( ) ( )KDE

1

1
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n

i

i

f x x x h
n


=

=    (4.22) 

where fKDE is probability density function using KDE with variable x, ϕ is kernel, h 

is hyper-parameter of ϕ, and xi is the i-th observation of x, and n is the number of 

observation. In our research, the kernel is Gaussian basis function, and h is generally 

used optimal value given as [86]: 
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  (4.23) 

where σ is estimated standard deviation from xi. Therefore, the equations (4.22) and 

(4.23) can be modified for our expression as: 
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Here, f(i)(X(τ, ω)) represents the KDE-based probabilistic energy distribution model 

for the spectrogram index (τ, ω) corresponding to the signal labeled as i. The value 

n(i) represents the number of signals labeled as i. The function h(i)(X(τ, ω)) denotes 

the optimal bandwidth calculated using Eq. (4.23), and G(∙) represents the Gaussian 

kernel defined by the parameter h(i)(X(τ, ω)). In fact, the KDE method can be used 

to model the probability distribution for any kind of situation, including those 

mentioned previously. However, it can be vulnerable to outlier data, requires a 

sufficient number of data points, has a high computational cost, and lacks physical 

interpretation. Therefore, it was used as a last resort in this study. 
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4.2.2 Fault-affected signal extraction 

Based on the probabilistic energy modeling for all ηj
(i)(t) described above, we now 

discuss how the fault-affected signal can be extracted from the newly measured 

signal by probabilistic manner. From this section, the individual samples of each i 

labeled data for constructing the probabilistic modeling do not need. Therefore, the 

mean value of energy ηj
(i)(t) at (τ, ω), denoted as C(i)(τ, ω), is used for matching the 

new signal to the constructed energy probabilistic modeling, which has similar 

operating condition. The expression for C(i)(τ, ω) are followed: 

 ( ) ( )

( )( , ) E ( , )
j

i i

j tC C    =
 

  (4.25) 

Additionally, the PDF for C(i)(τ, ω) can be denoted as f(i,τ,ω)(C(i)(τ, ω)). Then, the 

probabilistic boundary is calculated by cumulative density function (CDF) expressed 

as: 
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 (4.26) 

where kp is a margin value for the probabilistic boundary and b(i)(τ, ω) is the 

probabilistic boundary of the time-frequency indices (τ, ω) of i labeled signal, 

satisfying 0 < kp < 1. Even if a new signal is a consecutively measured fault signal, 

it can still be truncated by phase-matching to improve its suitability for analysis. 

Then, whether or not each time-frequency index is statistically regarded as the fault 

symptom is determined by comparing the TFR of the truncated signal with the 

probabilistic boundary b(τ, ω). If the energy of the fault signal in a certain time-

frequency index is larger than the b(τ, ω) when kp > 0.5, the corresponding index can 

be regarded as being fault affected. On the other hand, when kp <=0.5, the 

corresponding index does not statistically have enough separability for fault 

detection. Therefore, kp > 0.5 in experimental validation of our research in Section 

4.3. This process allows us to explain why probabilistic modeling should be 

conducted while considering the operating condition mentioned in section 4.2.1. As 
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illustrated in Figure 4-6, if the probabilistic model is constructed from a set of 

different operation signals, the resulting energy distribution may vary. Specifically, 

the 'sync' case represents a scenario where the operating condition is synchronized, 

and the energy distribution is accurately modeled. In contrast, the 'async' case arises 

when the energy is overestimated due to unsynchronized conditions, and the 'async2' 

case arises when the energy is underestimated for the same reason. This suggests that 

a fault signal could be misclassified as a normal state, as the probabilistic boundary 

shifts from b(τ, ω)
(s) to b(τ, ω)

(a2). Conversely, even if another signal is from the same 

state, it is more likely to be misclassified as a fault state because the probabilistic 

boundary is decreased from b(τ, ω)
(s) to b(τ, ω)

(a). 

So far, it have been organized x to find the operating condition when new data comes 

in, and set the energy boundary on the time and frequency index for each. Then, the 

newly measured signal denoted as a(t) can be applied to the algorithm with following 

steps. 

The first step of the proposed method involves transforming the input signal a(t) 

into a spectrogram using the equations (4.1) and (4.2). To ensure consistency in 

energy measurements, the same parameter values are used for calculating the 

Figure 4-6 The effect of operation phase mismatching to the probabilistic modeling 

and probabilistic boundary. 
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spectrogram and for probabilistic modeling. These parameters include the window 

function type (e.g. Gabor, Hanning), window function length, window function 

hyperparameter, overlap ratio of the window function, and FFT length for frequency 

resolution. By applying these parameters, Ca(τ, ω) is calculated, and the spectrogram 

is segmented into several spectrograms having the same number of time indices, 

which are used for probabilistic modeling. Additionally, STFT involves performing 

FFT by dividing the vibration signal by the size corresponding to each time index's 

resolution. Since the spectrogram obtained energy by multiplying the conjugate of 

the coefficients calculated in STFT, independent calculation of the trailing process 

does not change the results. 

During the segmentation process, the number of time indices of Ca(τ, ω) is not an 

integer multiple of C(i)(τ, ω), it makes the scenario that some of segmented Ca(τ, ω) 

can be ignored. When building an energy probability model, a large amount of data 

is required to express the range of possible operating conditions for the reference 

signals if several time indices are included so the length of the reference signal is 

long. This may result in inaccurate results due to the lack of representativeness of 

reference signals. To avoid this, the number of time indices for probabilistic 

modeling should not be long. This ensures that the remaining part to be discarded is 

only a small part of the overall data and does not significantly affect the result. 

The segmented spectrograms, denoted as Caj(τ, ω), which correspond to the 

spectrogram of the signal aj(t), are now compared with C(i)(τ, ω), which is the 

spectrogram of the i-th reference signal η(i)(t), using the Kullback-Leibler 

Divergence (KLD) as described in the equation (4.8). The expression for this is as 

follows: 

  ( )

KLargmin ( ) ( ) ( )i

iD aj t t h j =   (4.27) 

where aj(t) is jth segmented signal from the newly measured signal a(t), and h(j) is 
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the labeling for the aj(t) by comparing the set of reference signals based on KLD. 

From this step, the operating condition matched probabilistic energy distribution 

modeling, denoted as f(h(j), τ, ω)(C(h(j))(τ, ω)) , for each segmented spectrogram, denoted 

as Saj(τ, ω), is prepared.  

On the assumption that the fault symptom increases the energy of the corresponding 

time-frequency index, the fault affected time-frequency index for signal aj(t) labeled 

as h(j) can be expressed as: 

 
( )( )

( )
1 if ( , ) ,

( , )
0 otherwise

h j

j ajC b
W

   
 

 
= 


  (4.28) 

where W(j)(τ, ω) is matrix for selecting the time-frequency index (τ, ω) having the 

fault information, Caj(τ, ω) is the energy of the signal aj(t) in the corresponding index 

(τ, ω), and bh(j)(τ, ω) is the probabilistic boundary calculated by the equation (4.26). 

Based on the results of the statistically separable calculated indices, W(τ , ω) can be 

used as a time-frequency filter to calculate FASER as a fault feature. Graphical 

illustration for section 4.2.2 is given in Figure 4-7 for the summary.
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Figure 4-7 Graphical illustration for Section 4.2.2. 
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4.2.3 FASER calculation and adaptive thresholding 

In section 4.2.2, the signals are segmented into several spectrograms, denoted as Saj(τ, 

ω), and then matched with the probabilistic energy distribution model, denoted as 

f(h(j), τ, ω)(C(h(j))(τ, ω)), that is suitable for the operating environment. This matching is 

performed using the KLD method described in the equation (4.8), which allows for 

the identification of indexes that can be considered to be affected by fault, based on 

the probabilistic boundary, denoted as bh(j)(τ, ω), obtained from the matched 

probabilistic energy distribution model. This process enables the detection of fault 

signals that deviate from the normal state, and facilitates the diagnosis of faults in 

the system. In this section, the fault-affected index obtained in Section 4.2.2 is used 

to calculate the fault-affected signal energy ratio (FASER). The FASER is a measure 

of the energy ratio of the fault-affected signal to the total signal energy, and it can be 

used to detect the presence of a fault. The threshold for FASER is calculated based 

on the energy probability model and the energy correlation between the STFT 

indices. The threshold can vary depending on the signal being analyzed. 

First, the segmented spectrogram and fault-affected indices are concatenated as 

follows in the opposite way of segmentation. 

(1) (2) ( )( , ) ( , ), ( , ), ..., ( , )n

aW ct W W W       =     (4.29) 

( ) ( ) ( )1 2( , ) , , , ,..., ,a a a anC ct C C C      =       (4.30) 

( ) ( ) ( )( (1)) ( (2)) ( ( ))( , ) , , , ,..., ,h h h nC ct C C C        =    (4.31) 

where Wa(ct, ω) is concatenated fault-affected indices, Ca(ct, ω) is concatenated 

spectrogram, Cμ(ct, ω) is the mean of concatenated reference spectrogram, ct is 

concatenated time index, and n is number of segmented signal a(t). From the 

equations (4.29) ~ (4.31), FASER is defined as: 
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where 1 is a column vector of one, Ω is domain of frequency ω, and ○ is Hadamard 

product, which is the elementwise multiplication between two matrix. It represents 

the deviation of FASER from the normal signal's energy tendency. The 

normalization is done by dividing the energy of the filtered signal by the mean energy 

of the filtered normal signal, considering the nonhomogeneous uncertainty of the 

energy in the time-frequency domain. 

To classify the health state of a measured signal, the threshold for FASER must be 

determined. If a new signal is measured in a fault state, W(τ , ω) = 1 in Eq. (4.28). If 

a new signal is measured in the normal state, it is desired that W(τ , ω) = 0 for all the 

time-frequency indices (τ , ω); however, this is unlikely due to the definition of W(τ , 

ω). Statistically, from the equation (4.26), k × (the total number of indices) indices 

is expected to be W(τ , ω) = 1, even when the signal is measured in the normal state. 

Furthermore, the correlation between time-frequency indices exists [59]. Therefore, 

the threshold for FASER is calculated based on the probabilistic properties of 

FASER and the window function of the spectrogram. The threshold is determined 

by analyzing the energy probability model and the energy correlation between the 

STFT indices. Specifically, the threshold is calculated by considering the mean and 

standard deviation of the FASER values of the normal signals with considering the 

selected probabilistic energy model. The threshold is set such that the probability of 

false positives is minimized while maintaining a high probability of detection. In 

addition, the threshold can be adjusted depending on the specific signal and the 

desired level of detection accuracy. The conditional probability distribution when a 

specific time frequency index’s energy exceeds the time-frequency energy boundary 

can be expressed as: 
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where fb(τ, ω)(x(τ, ω)) is the conditional probability when the energy in (τ, ω) exceeds 

the probabilistic boundary of the (τ, ω) domain index, denoted as b(τ , ω). Therefore, 

if a new signal is in the normal state, the energy of the time-frequency index where 

W(τ , ω) = 1 follows fb(τ, ω)(x(τ, ω)). If the energy in each time-frequency index is 

independent from each other index, when the signal is in the normal state, the 

expectation and the variance of the filtered spectrogram follow, respectively, as: 
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where Var[·] is the variance operator. 

Correlation between time-frequency indices may exist due to the window function 

and overlap ratio used in spectrogram calculation [59]. Therefore, the variance 

should be calculated considering the covariance of the time-frequency indices where 

W(τ, ω) = 1. Also, it is possible to estimate the correlation with the observed energy 

to construct the energy distribution of each of the time-frequency indices; however, 

the condition W(τ, ω) = 1 can make it hard to gather enough samples to estimate the 

correlation. Therefore, the effects of the window function are considered. The 

correlation between the time-frequency indices in the case of the time-adjacent 
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indices (τ + ∆τ, ω) satisfying W(τ + ∆τ, ω) = 1 together is estimated from the window 

function, considering the overlapped region. 

( ) ( )
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where Corr[·] is the correlation operator, w[·] is the window function used in the 

discrete notation, and l is the sample hop size corresponding to ∆τ. From Eq. (15), it 

is possible to calculate the covariance when W(τ , ω) = 1 and W(τ + ∆τ, ω) = 1. 

Additionally, ∆τ≤(overlap length). 

Similarly, it is possible that a correlation exists between time-frequency indices 

because of the spectral leakage when the length of the FFT is larger than the window 

size. It is impossible to know exactly at what frequency the signal comes out; 

however, it is possible to know how much the energy of each of the time-frequency 

indices could be affected by considering the frequency response function of the 

window function. Therefore, the correlation effect of the spectral leakage is used for 

the estimation, considering the magnitude of the frequency response function of the 

window function. When the uncertainty is only from Gaussian noise, the correlation 

can be calculated using the published method [59]; however, as explained in Chapter 

1, there is a high possibility that the noise is different for each frequency in a 

mechanical system. Therefore, the correlation is estimated in a form similar to the 

time-adjacent case. Unlike the time-adjacent case, spectral leakage occurs in all 

frequency domains; however, it has a negligible value outside the main lobe, so the 

calculation is performed only within the main lobe. 
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where ωeff is half the width of the main lobe of the window's frequency response 

function, Fw is the frequency response function of the window function, ∆ω is the 

spectral resolution of the spectrogram, which is determined by the window function 

and the length of FFT, and m∆ω is the frequency gap corresponding to ∆ω. 

Additionally, ∆ω ≤ (main lobe width)/2. Moreover, it is possible to utilize the 

observation that a high amount of energy can be obtained even in the normal state. 

Specifically, when a significant amount of energy is acquired at two adjacent 

frequency indices, it implies that the ideal frequency energy is high even without the 

presence of spectral leakage. Based on this observation, it can be assumed that only 

the energies of the corresponding frequencies affect each other through spectral 

leakage, leading to the derivation of the following equation. The detailed derivation 

process can be found in Appendix. The conceptual illustration for this condition is 

shown in Figure 4-8.  

 

Figure 4-8 Graphical illustration for deriving correlation effect from spectral 

leakage. 
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where Eω is mean energy of signal’s spectrogram, Vω is variance of signal’s 

spectrogram, ψω refers the energy variance from the noise at frequency ω, rω is the 

deterministic signal’s STFT coefficients, * is conjugate symbol, and kw is spectral 

leakage effect from window function w at difference of frequency is ∆ω. Equations 

(4.38) to (4.41) show the covariance between two adjacent frequency indices 

affected by spectral leakage. However, certain constraints exist for these equations. 

Firstly, according to Eq. (4.38), ψω must be a real value, which means that it cannot 

be obtained from the third probability model proposed in section 4.2.1 (as this model 

cannot be constructed as Gaussian noise + deterministic signal). Specifically, ψω 

represents the variance of energy excluding the deterministic signal. Thus, if the 

variance of the deterministic signal is considered as a noise effect, ψω can be regarded 

as the variance value of the energy distribution estimated by KDE. Secondly, Eq. 

(4.39) introduces another constraint, which states that k2 should be less than the 

minimum value of (ψω/ψω+∆ω, ψω+∆ω/ψω) in order to satisfy σω as a real number. This 

is because the assumption used to derive the equation is that the energy of two 

frequencies (X(ω) and X(ω+∆ω)) other than the other frequencies is negligible. If 

this assumption is violated, then correlation cannot be calculated from Eq. (4.41), 

and instead must be calculated using Eq. (4.37). Using both the covariance effect 

derived above and the variance by conditional distribution, the threshold can be set 

as follows. 
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where ΩA is the set of time-frequency indices where W(τ, ω) = 1 and W(τ + ∆τ, ω) = 

1 and ΩB is the set of time-frequency indices where W(τ, ω) = 1 and W(τ, ω+ ∆ω) = 

1. σ2(τ, ω) is the square of the standard deviation using the conditional probability 

given in the equation (4.33). 

Finally, FAT, which is FASER’s adaptive threshold, can be determined adaptively 

by normalizing the expectation of the filtered spectrogram as: 
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  (4.44) 

As assumed in Section 4.2.2, the time-frequency indices are W(τ , ω) = 1 when a 

fault symptom increases the energy of the corresponding indices. If the FASER result 

of the measured signal is larger than the threshold FAT, it can be inferred that the 

measured signal is in a fault state. 
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4.3 Experimental Validation of the Propose Method 

This section describes how we validate the propose method, FASER, by measuring 

the vibration signal under the non-stationary operating condition. The first case is 

for a wind-turbine simulator, and the second case is for a 6-DOF industrial robot 

used in Chapter 3. We also compare the proposed method with conventional non-

stationary signal diagnosis method. In this case study, a wind turbine simulator with 

a two-stage planetary gearbox is employed. The drive motor speed controls the 

overall operating condition. A fault is artificially introduced in the planet gear of the 

second stage planetary gearbox. To validate the proposed method, three levels of 

tooth with line spall defects were demonstrated under the same operating conditions 

as the normal signal. This is done under the assumption that the constructed 

probabilistic modeling should contain the operating condition of the newly measured 

signal. The testbed setup and location of the accelerometer sensors to measure the 

vibration signal are shown in Figure 4-9. Additionally, Figure 4-10 shows the target 

planetary gearbox and the normal/ three-level fault specimens for the planet gear. 

The study employed three different levels of spall diameter, namely 0.75mm (F1), 

1.00mm (F2), and 1.25mm (F3).



 

 127 

 

Figure 4-9 (a) A wind turbine testbed, (b) The location of the accelerometer sensor attached on the casing of the gearbox. 
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Figure 4-10 Faulty planet gear having half-circle-shaped line spall; (a) Cross section of the target planetary gearbox, (b) Different 3-level fault 

specimen (c) Upper view of fault specimen. 
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As shown in Figure 4-11, sinusoidal speed condition with a period of 20 seconds was 

imposed as a variable-speed condition; the speed varies from 1100 to 1500 rpm. 

These operating conditions were set to consider non-stationary conditions, to 

validate the proposed method. The inverse torque and temperature values were 

controlled at 2 N•m and 60 ◦C, respectively, to remove the effects from the 

uncertainty that arise from the temperature and the torque.  

Figure 4-11 The variable-speed profile used in the experiment. 
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Figure 4-12 shows the vibration signals and the corresponding STFT results under a 

normal condition and for three different levels of fault conditions. The parameters 

for the spectrogram are selected as follows: the window function is a Hanning 

function with length of 1024, the overlap ratio is 0.5 (512 samples), and the length 

of the FFT is 4096. As shown in both figures, the signals are both frequency and 

amplitude modulated. The fault symptom can be observed in the time domain as a 

peak, where the amplitude increases as the fault size increases. In the STFT domain, 

however, the existence of a fault is not clear, due to the noise effect, as described in 

Section 4.1.

Figure 4-12 Vibration signals for a normal condition and fault conditions with three 

different levels of severity: (a) in the time domain, (b) in the time-

frequency domain. 
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Figure 4-13 KLD based similar operating condition model matching for the normal signal (left) and  

comparison of spectrum (right); (a) 1st point (b) 2nd point. 
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Figure 4-14 KLD based similar operating condition model matching for the normal signal (left) and  

comparison of spectrum (right); (a) 3rd point (b) 4th point. 
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Figure 4-15 KLD based similar operating condition model matching for the fault level 3 signal (left) and  

comparison of spectrum (right); (a) 1st point (b) 2nd point. 
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Figure 4-16 KLD based similar operating condition model matching for the fault level 3 signal (left) and  

comparison of spectrum (right); (a) 3rd point (b) 4th point. 
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Figure 4-13 to Figure 4-16 demonstrate the process of constructing a probability 

model using KLD for signals measured under different operating conditions and the 

corresponding spectrum results. Figure 4-17 shows the speed and acceleration 

conditions at each point corresponding to Figure 4-13 to Figure 4-16. The operating 

speeds and accelerations at each point are as follows: (21.7, 1.05), (25, 0), (21.7, -

1.05), and (18.3, 0). The process of finding a probability model built for signals with 

different operating environments through KLD and the results through the spectrum 

are presented in Figure 4-13 (a) to Figure 4-16 (a). The results indicate that the 

proposed KLD method finds a model with a uniquely small minimum number of 

models, which is the optimum model's number, compared to other model numbers. 

Interestingly, in several models, a local minimum that is not the optimum model 

number appears because each corresponding model does not have a significant 

difference in frequency energy distribution. This indirectly indicates that there is no 

significant difference in terms of operating conditions of the corresponding models. 

Secondly, the proposed model matching process can identify whether the signal in a 

faulty state causes a significant change in the frequency energy distribution due to 

the fault. As depicted in Figure 4-15 and Figure 4-16, it can be observed that the 

energy in the frequency domain with high energy is generally greater than that of the 

reference signal in the faulty state. However, the KLD shows a high probability value 

Figure 4-17 Speed condition of points for Figure 4-13 to 4-16. 
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only in the frequencies with a high probability value, indicating that the results 

obtained are in good accordance with the operating condition. This is further 

supported by the similarity between the optimal model numbers Figure 4-15 and 

Figure 4-16, and the optimal model numbers in Figure 4-13 and Figure 4-16. In 

conclusion, the proposed method showed good results even in the most severe fault 

condition and under the largest velocity/acceleration, as shown in Figure 4-13 to 

Figure 4-16. Therefore, it is predicted that the results will also be satisfactory for 

fault levels 1 and 2, as well as for regions where the velocity/acceleration is not at 

its maximum value.
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Figure 4-18 Type of the probabilistic energy modeling; (a) Noise dominant signal’s indices, (b) Noise + deterministic signal’s indices,  

(c) Neither of two types signal’s indices. 
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Figure 4-18 illustrates the modeling type of each time-frequency index for one period 

of the vibration signal shown in Figure 4-12, obtained through the probabilistic 

energy modeling proposed in Section 4.2.1. Since the accelerometer sensor is 

mounted on the casing of the 2nd stage gearbox, the time-frequency indices 

corresponding to the gear mesh frequency (GMF) and its harmonic of the 2nd stage 

gearbox should include the deterministic signals. As depicted in Figure 4-18 (b), the 

modeling region of ‘deterministic signal + noise’ is the GMF and its harmonic. 

Moreover, the modeling of energy distribution for low-frequency indices (less than 

100Hz) should also consider the deterministic signal because the signal carries the 

shaft rotational frequency of the gearbox, which can be treated as a deterministic 

signal. Figure 4-18 (c) shows that although most of the frequency ranges 

corresponding to 7000 ~ 8000 Hz were modeled dominantly with noise, some indices 

exhibit deterministic signals, but the energy distribution modeling failed with only 

simple phase changes in the noise + deterministic signal model. Therefore, the 

modeling was performed using KDE, which does not assume any specific energy 

distribution model. Finally, in the high-frequency region above 10kHz, the assumed 

modeling could not be applied, indicating that KDE modeling was utilized. Although 

the pattern is similar to the operating speed, this is attributed to the significant 

influence of the aliasing effect on the energy observed at the index of 10kHz or 

higher because the Nyquist sampling frequency is 12.8kHz.
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Figure 4-19 Probabilistic boundary (upper) & fault affected indices (lower) for the normal; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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Figure 4-20 Probabilistic boundary (upper) & fault affected indices (lower) for the F1; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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Figure 4-21 Probabilistic boundary (upper) & fault affected indices (lower) for the F2; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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Figure 4-22 Probabilistic boundary (upper) & fault affected indices (lower) for the F3; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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The selection of the parameter kp is related to how robustly the indices activate and 

how well they secure separability. If the probabilistic boundary is set too low, which 

can occur by selecting kp near 0.5, there is a high possibility that small energy 

increases due to noise can be regarded instead as a symptom of a fault. This means 

that the indices where W(τ, ω) = 1 could show meaningless information. On the other 

hand, if the probabilistic boundary is set too high, which can occur by selecting kp to 

be close to 1, there is a high possibility that the energy increases due to a fault 

symptom could be thought to be an uncertainty issue from the noise. Therefore, in 

the case of a small fault, the feature FASER may not have sufficient separability 

because the fault-informative indices would be W(τ, ω) = 0. 

To determine the appropriate kp value, the conditional distribution of the probability 

model is considered, and an adaptive threshold value is set. Figure 4-19 shows W(τ, 

ω) = 1 when the new signal is from the normal state. From the definition of W 

described in the equation (4.26) and equation (4.28), the energy Cs(τ, ω) could be 

larger than b(τ, ω) because of the energy variation from the uncertainty. As shown 

in the figure, the indices where W(τ, ω) = 1 are randomly distributed without a pattern. 

The spectral leakage effect from the window function used to obtain the spectrogram 

may result in the existence of vertically consecutive indices that satisfy W(τ, ω) = 1. 

Figures 4-20 to 4-22 show the probabilistic boundary (upper plot) and fault-affected 

indices (lower plot) for the normal state and different fault states (F1, F2, and F3). 

F1 to F3 represent different levels of fault severity. 

The yellow-colored indices in the lower plots of these figures represent the 

corresponding time-frequency filter W(τ, ω) = 1, which indicates that the 

corresponding time-frequency indices have enough separability. As shown in these 

figures, the probabilistic boundary for W(τ, ω) is obtained differently depending on 

the selection of kp. A higher margin value of kp results in a higher boundary, as shown 

in the upper plots of each figure. 
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In the fault states (F1 to F3), the indices where W(τ, ω) = 1 are generally 

composed of 1) curved lines related to the GMF (Gear Mesh Frequency) and its 

harmonics, where the fault state increases the energy of the sidebands of the GMF, 

2) horizontal lines related to the resonance frequency, and 3) a vertical line related 

to the impact signal from the fault state. The vertical lines induced from the impact 

signal and the horizontal lines from the resonance can be visualized better when kp 

= 0.9 is used compared to kp = 0.7 or 0.8. This is because the number of indices 

where W(τ, ω) = 1 due to the energy increasing from the noise is comparatively less 

when kp = 0.9. Additionally, as shown in Figure 4-20 (a) to Figure 4-22 (a), the curve 

related to the GMF is not noticeable because the number of indices where W(τ, ω) = 

1 is too large in the surrounding area of the GMF, due to the stochastic property of 

noise. The results also suggest that the separability of the proposed feature, FASER, 

may be degraded if it has relatively high energies at the W(τ, ω) = 1 index due to 

noise. Based on these considerations, the posterior experimental result is analyzed 

with kp = 0.9.
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Figure 4-23 Proportions where each index satisfies W(τ, ω)=1 using kp = 0.9; (a) Normal, (b) F1, (c) F2, (d) F3. 
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Figure 4-23 shows the proportion of each index that satisfies W=1 for each state 

using kp = 0.9. As seen in Figure 4-23 (a), most of the time frequency indices for 

normal state conditions have a value around 1 - kp = 0.1, indicating that they are not 

fault-affected indices. However, for the frequency range above 10 kHz, which 

corresponds to the locally high harmonic component of the GMF, the proportion of 

fault-affected indices is higher than the expected probability value. This could be 

due to the error in the estimated energy distribution that occurred during the 

modeling construction process, as KDE modeling was performed in this region. This 

suggests that excluding frequency energy near the Nyquist frequency or using 

sophisticated modeling could lead to more accurate results, but such measures were 

not out of scope in this study. The index that shows the most noticeable change 

according to the fault level is around 6200 Hz. Figure 4-23 (b), (c), and (d) indicate 

that the proportion of fault-affected indices increases as the severity of the fault 

increases. This tendency can be attributed to the fact that the energy of the resonance 

frequency increases due to the fault condition. In addition, the indexes corresponding 

to the GMF are selected with a higher proportion as the fault state becomes more 

severe, indicating that a fault in the gear teeth increases the sideband frequency 

energy of the GMF. However, due to the limitation of frequency resolution, it is 

highly likely that indices corresponding to the sideband of GMF are not always 

selected as fault-affected indices. Therefore, it can be considered that indices 

corresponding to the sideband of GMF are not always selected close to 1. 
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Figure 4-24 displays the FASER trends for both the normal and faulty conditions. 

The FASER values increase as the fault level increases. It is also evident that all 

FASER values in the faulty state exceed their adaptive threshold (FAT), while 

FASER values in the normal state are smaller than their adaptive threshold. 

Moreover, most of the adaptive thresholds are formed around 3 for both normal and 

faulty conditions. This can be explained by the probabilistic spectral energy 

distribution model used in Section 4.2.1 and the results obtained in Figure 4-24 (a). 

Since most of the time-frequency indices are composed of energy modeling that 

follows the form of Gaussian noise, the distribution of the energy sum corresponding 

to the denominator of FASER follows the chi-square distribution derived from 

Gaussian noise modeling. As a result, the average value of the conditional 

probability distribution obtained from kp is about three times the average value 

obtained from Gaussian energy signal modeling. Hence, it can be concluded that the 

FAT value is formed in the form of fluctuation around 3.

Figure 4-24 FASER and FAT of the measured signal (Normal, Fault level 1, Fault 

level 2, Fault level 3) having 1 period operating cycle. 
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Figure 4-25 Effect of the length (0.04sec. – upper, 0.2sec. – lower) of signal for FASER; (a) FASER and FAT (b) difference of FASER and FAT. 
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Figure 4-26 Effect of the length (1sec. – upper, 5sec. – lower) of signal for FASER; (a) FASER and FAT (b) difference of FASER and FAT. 
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Figures 4-25 and 4-26 demonstrate the impact of signal length on the calculation 

of FASER and its adaptive threshold, FAT. The signals used to calculate FASER 

were not overlapped to avoid correlation dependency, which could lead to incorrect 

analysis. The figures illustrate that as the signal length for calculating FASER 

increases, the fluctuation of FAT decreases. This phenomenon is closely related to 

the proportion of modeling distribution types, as shown in Figure 4-18. 

When the time interval for calculating FASER is very short, such as 0.02 seconds in 

Figure 4-25, there is a higher likelihood of encountering modeling types that do not 

conform to the local Gaussian noise shape, depending on where the fault frequency 

is generated. In this case, the ratio between the conditional mean and the total mean 

of the matched energy distribution decreases more than in Gaussian noise modeling, 

resulting in more severe fluctuations. 

Moreover, shortening the time interval means that even if FASER is calculated for 

the same fault type, the corresponding operating conditions may differ, leading to 

different degrees of fault effects. This tendency is more apparent in Figure 4-28, 

where it can be observed that the FASER value becomes similar every cycle when 

the operating conditions are the same. The proposed method can accurately classify 

between faulty and normal states using only 0.2 seconds of data, as shown in the 

results. However, in order to estimate the severity of the fault state, it is necessary to 

model the changes in features separately according to the operating conditions.
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Figure 4-27 (a) Spectral kurtosis result for the normal state signal, (b) GMF and its harmonic trend with the spectrogram. 
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Lastly, the RMS (Root Mean Square) of the raw signal is used to compare the 

sensitivity of our method, considering the fact that the RMS is greatly related to the 

energy of the signal. Additionally, another energy extraction method based on 

spectral kurtosis is used for comparison of the performance of the proposed method. 

In this case study, the optimal frequency band for each sample is generally calculated 

with a center frequency of 4300~4500 Hz and a bandwidth of 6.25 Hz, as shown in 

Figure 4-27 (a). The level equals to log2 (the window size), which is related to the 

frequency bandwidth. The colorbar is based on the spectral kurtosis. Furthermore, 

considering that the harmonics of the GMF and their sidebands are generally 

analyzed for fault diagnosis of a gearbox, the GMF and sidebands of the 

corresponding time-frequency indices based on the operating speed was calculated; 

it is shown as a black curved line in Figure 4-27 (b). The feature was calculated as 

the energy sum of the indices corresponding to the GMF and their sidebands; this is 

indicated by the black curved line in the figure. The parameters for calculating GMF 

is listed in Table 4-1. 

Table 4-1 Specifications of the experimental gearbox. 

Parameter Value 

Number of sun gear teeth 31 

Number of planet gear teeth 31 

Number of ring gear teeth 95 
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Figure 4-28 Comparative study for the proposed method (the length of signal = 20 s); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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Figure 4-29 Comparative study for the proposed method (the length of signal = 1 s); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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Figure 4-30 Comparative study for the proposed method (the length of signal = 0.1 s); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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Figure 4-28 to Figure 4-30 show the results of the comparative study in a box plot. 

F1 to F3 means fault levels 1 to 3, as shown in Figure 4-10. All of the features were 

calculated based on the energy value of the operating condition’s synchronized 

signal, according to the proposed KLD method, and were normalized by the mean 

value of each of the features of the normal state. The RMS feature shows good 

performance in terms of fault diagnosis because the features of F1 to F3 are larger 

than those of the normal condition; however, this approach has a disadvantage in that 

the feature becomes smaller even when the size (level) of the fault increases. 

Furthermore, as can be seen from the y-axis value, the difference in size is very small 

compared to the proposed method; thus, even a slight change in the experimental 

environment could lead to different results. As shown in Figure 4-28 (c), in the case 

of the results using SK, the feature value decreases in the fault state. Since a fault 

state in a gearbox causes a modulation effect, SK generally aims to find the 

frequency band where this effect is maximized by calculating the kurtosis. However, 

in the case study, the increase in energy around the GMF that arises due to 

modulation is not dominant, as shown in Figure 4-28 (d) and Figure 4-23. In addition, 

the operating speed has a change of about ±15% of the mean value; thus, even if the 

frequency domain is selected, GMF components of other harmonic numbers are 

included, which adversely affects the aim of SK. Therefore, in the context of fault 

diagnosis methods, SK may not effectively find the optimum frequency band. 

Similarly, when considering the feature distribution of each state, the energy trend 

shown in Figure 4-28 (d) is difficult to use as a criterion for diagnosing fault states. 

There are times when it has a large feature, like F1 in Figure 4-28 (d), but it seems 

that the energy increase effect of the wideband noise component is affected greatly, 

as shown in Figure 4-27 (b). This problem also occurs in the proposed method; 

however, since the energies of the corresponding indices are not large compared to 

the energies of the overall W(τ, ω) = 1 indices in the proposed method, the effect is 

relatively small and this issue does not cause a major problem for the proposed 
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method. Figure 4-29 and Figure 4-30 show the comparative study when the length 

of the measured signal are 1 and 0.2 (s), which means the utilized signals only have 

the part of the periodic operating condition. For the RMS feature, as shown in each 

Figure (b), the distribution of feature is overlapped for each state. This is because the 

operating condition of data are different. Generally, the vibration signal increases as 

the operating speed increases. Therefore, the variation from the speed makes 

impossible to diagnose the state of signal using RMS feature. For the SK feature, as 

shown in each Figure (c), the performance for the fault diagnosis is better as the 

length of the signal decreases. This phenomenon can be attributed to the fact that 

shorter time length lead to a more stationary operating condition with less variation. 

Therefore, it appears that the better frequency selection in signals with strong 

stationarity may be the reason for this, but it is generally possible to use the SK 

method even in non-stationary conditions. Lastly, for the GMF sideband feature, 

which is conventionally utilized as the CFF, the performance of fault diagnosis is 

worst compared with the other methods. The reason for this is that the frequency 

resolution is set by the STFT parameter, and since the frequency resolution is 

relatively large compared to the size of the GMF sidebands, it can be assumed that 

even if the energy of the GMF sidebands is extracted, it is heavily influenced by 

other components or noise. Based on the analysis results, the proposed method 

demonstrated superior performance, which is attributed to the fact that the features 

were selected by taking into account the signal length and STFT parameters. 
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4.4 Summary and discussion 

This chapter proposed a method for fault diagnosis of gearboxes using vibration 

signals from non-stationary operating speed conditions. The proposed method, 

called fault-affected signal energy ratio (FASER), aims to extract the fault-related 

pattern from the vibration signals and quantify the uncertainty of the signal 

representation. 

The proposed method first extracts vibration data using 2d-KLD based on the 

normalized spectrogram for a consecutively measured signal with several operation 

cycles. From this method, a consecutively measured signal can be extracted as the 

set of signals that has the target operation cycle. Then, the signals in the set are 

transformed to spectrograms and KDE is applied to model the energy distributions 

of each index of a spectrogram for quantifying the uncertainty that arises from the 

noise and time-frequency representation. These probabilistic models from KDE can 

then be used to calculate the probabilistic boundary to discriminate whether the 

calculated energies of each index of the spectrogram of the new signal are 

statistically separable. The time-frequency filter is defined to select those that are 

statistically separable, and the proposed FASER is calculated by using the time-

frequency filtered signal. An adaptive threshold (FAT) that considers the property of 

the window function is used to improve the robustness of the FASER for classifying 

the state. In the case study, which examined a wind turbine simulator, the proposed 

method was able to classify the state of the signal and showed the possibility of 

estimating the severity of the fault.  

The proposed method has several contributions, including the ability to extract 

the desired signal automatically from a consecutively measured signal without 

additional equipment, such as an encoder. Additionally, the uncertainty of the signal 

represented as a spectrogram is quantified through a KDE model, and statistically 

separable indices for calculating the fault-affected signal can be found by the model. 
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An adaptive threshold that considers the window function to transform the 

spectrogram and the conditional probability of probabilistic distribution model is 

also proposed, which helps to prevent misdiagnosis of normal signals as being from 

a fault state. Furthermore, the proposed method does not require any kind of fault-

related knowledge, such as a fault frequency calculated by a fault mechanism, 

making it more efficient in scenarios where identifying the fault frequency becomes 

infeasible due to security issues that restrict the disclosure of physical or mechanical 

properties of the system under consideration. The proposed method can be applied 

to any type of nonstationary signal, such as motor torque signals in robots or current 

signals in motors. However, there is a disadvantage of the proposed approach in that 

its probabilistic modeling must be rebuilt when the target operating condition 

changes. Future research will examine ways to overcome these problems by roughly 

extracting the operating conditions, mapping the probability model to the operating 

conditions, and updating the probability model when the operating conditions 

change. 
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Chapter 5  

 

Integration of LSR and HSR 

approach 

 

This chapter presents a methodology that combines PERL, an LSR-based 

approach described in Chapter 3, with FASER, an HSR-based approach described in 

Chapter 4, for efficient fault diagnosis. The evaluation of results using the LSR 

signals allows for the estimation of the probability of fault presence at each location. 

Consequently, it becomes possible to select a sensor that is sensitive to faults and 

data that provides the highest fault information based on the sample with the highest 

estimated probability. Since each sample represents a signal obtained by converting 

a high-sampling signal into an energy standard, it can be assumed to contain more 

fault-related information when analyzing the corresponding high-sampling signal. 

Hence, the subsequent step employs the FASER method based on the HSR signal 

corresponding to the sampled LSR signal. By focusing on data that already possesses 

relatively more failure information in the HSR-based approach, the time required to 

derive results is reduced, and the performance in terms of failure sensitivity is 

enhanced. Experimental verification of this methodology is conducted on an 

industrial robot system in this chapter. Initially, the data from the industrial robot 

system is introduced, followed by the presentation of failure location estimation 

through the LSR approach and fault diagnosis results through the HSR approach. 

Finally, the effectiveness of the proposed integrated method is demonstrated by 

deriving the results obtained through the LSR-HSR approach. 
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5.1 Experimental setup and preliminary work for PERL 

method 

This case study examines a cycloidal gearbox fault in the joint of a 6-DOF 

industrial robot used for a welding motion in industrial fields. The results of this case 

study show that the proposed integrated framework. The target component is a 

cycloidal gearbox in the 4th joint of the industrial robot. Figure 5-1 (a) shows an 

experimental validation setup comprising a 6-degree-of-freedom (6-DOF) industrial 

robot. Indeed, there have been studies focusing on current signals for diagnosing 

robot systems [87, 88], the proposed methods in this research employ vibration 

sensors. While current signals may offer their own advantages in certain contexts, 

the use of vibration sensors allows for a more direct measurement of the mechanical 

behavior and performance of the system. This choice is based on the assumption that 

the fault state will affect the energy of the measurement data in terms of vibrations. 

Therefore, in the proposed methods, the adoption of vibration sensors is driven by 

the aim to capture and analyze the energy characteristics of the measurement data in 

order to validate the suggested fault diagnosis framework for robot system. An 

Figure 5-1 Testbed setup: (a) A 6-DOF industrial robot, (b) The location of the 

accelerometer sensor attached on the 4th joint of the casing of the 

cycloidal gearbox. 
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accelerometer attached on the casing of the gearbox is utilized the experimental data 

shown in Figure 5-1 (b). A faulty cycloidal gearbox was acquired from an actual 

industrial manufacturing line; the type of a fault considered was wear on the pin-

bearing. The imposed variable-speed condition was from an arc welding motion, as 

shown in Figure 5-2. During the experiment, temperature values were controlled at 

50◦C to remove the effects from factors other than the variable speed. Actually, the 

vibration signal is obtained with high sampling of 25600 Hz, for verification of LSR 

based approach, the RMS of the signal obtained for 1 second was converted and 

applied.
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Figure 5-2 Operating speed profile of welding motion at each joint axis. 



 

 164 

In Figure 5-3 and Figure 5-4, the RMS trends of each sensor are shown without 

any signal filtering applied. The first 180 samples represent the RMS values in the 

normal state, where no fault is present. The next 180 samples represent the RMS 

values when a fault is present on the four axes. This allows for a comparison of the 

RMS values between the normal and fault states, and can help in detecting the 

presence of a fault. As shown figures, the RMS values of each sensor are highly 

variable and dependent on the operating speed. This is because the operating speed 

affects the vibration frequency and amplitude of the machine components, and these 

changes are reflected in the RMS value. Therefore, it is difficult to set a single 

threshold value for all sensors without considering the operating condition. To 

address this issue, the author apply a method to set the threshold value based on the 

statistical characteristics of each sensor's RMS values considering the operating 

condition. Therefore, the threshold values set by this method are shown for each 

sensor. Threshold values are different for each sensor and are set based on the 

statistical properties of the RMS values for that sensor. By setting individual 

threshold values for each sensor, the proposed method can better detect abnormal 

behavior of each sensor, and reduce false alarms caused by the fluctuations in RMS 

values due to changes in operating speed.  

Actually, the fault location is 4 axis, and accordingly, only sensor 4 should have 

a part where the RMS-threshold value exceeds 0. However, when the above method 

is applied, it can be seen that the RMS exceeds the threshold not only sensor #4 but 

also sensor #5. Based on the information provided, it is possible that the fault on the 

4th axis is causing vibrations that are also affecting sensor #5, even though it is not 

directly located on the faulty axis. It is not uncommon for faults or failures to affect 

multiple components or sensors in a system due to their interconnectedness and 

shared operational environment. Therefore, it is important to consider the possibility 

of such cross-component effects when analyzing the data from a system with 
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multiple components. 

Figure 5-3 Signal trends of non-deterministic signal and corresponding threshold; 

(a) Sensor #1, (b) Sensor #2, (c) Sensor #3. 
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When dealing with robots, it can be challenging to model the changes in the 

energy aspect of the vibration signal as it travels from the CFL to the sensor. 

Accurate modeling would require vibration modeling based on computer-aided 

engineering (CAE) modeling or n-DoF problem, but it is the beyond of this research. 

Since this study does not cover such modeling, a different approach was adopted 

from referencing the published literature [90]. The equation (3.13) results in the ratio 

of the energy profile transferred from the location of the fault to the two different 

sensors. Therefore, it is possible to interpret the energy when a specific signal is 

generated as the rate at which the sensor is transmitted. Assuming that a specific 

Figure 5-4 Signal trends of non-deterministic signal and corresponding threshold; 

(a) Sensor #4, (b) Sensor #5. 
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joint has a fault, we will apply the mean value of the equation (3.13) based on the 

ratio of frequency energy delivered to the sensors attached to the joints by a single 

movement at that joint. The graphical illustration for these steps are given in Figure 

5-5 for better understanding. 

To apply the proposed method for the robot system, it needs to apply the 

equation (3.13) in following way: 

2 2 2

, ,

RMS( )
ln( CFL ) ~ ln ,

RMS( )

a a

ab r a r b k

b a

s u
m a N

s u
  

  
= + +    

  

 (5.1) 

where CFL= a means the assumed(candidate) fault location is ‘a’, RMS(si|uj) is RMS 

from the signal measured at sensor i under the unit axis motion only in the axis j.  

Figure 5-5 Graphical illustration for preliminary work of robot system.  
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As shown in Figure 3-2, the CFL was defined for the joint axis where the RMS 

of the attached vibration sensor exceeded the threshold. Therefore, based on the trend 

shown in Figure 5-4, the joints corresponding to sensors #4 and #5 were selected as 

CFLs. Firstly, the vibrations are measured from each target joint’s sensor and Fourier 

transform is applied. Figure 5-7 presents the results of vibration analysis for the 2nd 

CFL joint unit motion using Sensor 4 (upper) and Sensor 5 (lower) in the time 

domain (a) and frequency domain (b). Similarly, Figure 5-8 shows the vibration 

analysis results for the same unit using Sensor 4 (upper) and Sensor 5 (lower) in the 

time domain (a) and frequency domain (b). In the time domain signal, the vibration 

data was collected for a duration of 0.4 seconds under constant velocity conditions 

for each condition. The frequency domain signal was obtained by taking the average 

of Fourier transform results obtained from 20 repetitions of this joint motion unit. 

The transmission function estimated from each spectral analysis result is presented 

in Figure 5-6. To account for the frequency sliding effect during the transmission 

process, the spectral energy ratio is calculated using the moving mean with a window 

size of 10Hz applied to the FFT result. Based on equation (3.22), the results can be 

summarized as follows: If the fault is located at the 1st target joint, the energy ratio 

calculated by the root mean square (RMS) value of sensor 5 divided by that of sensor 

4 is 0.1135. On the other hand, if the fault is located at the 2nd target joint, the energy 

ratio calculated by the RMS value of sensor 4 divided by that of sensor 5 is 0.1155.

Figure 5-6 Estimated transmission function; (a) 1st target unit joint motion based, 

(b) 2nd target unit joint motion based. 
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  Figure 5-7 Vibration analysis result of Sensor 4 (upper) and Sensor 5 (lower) under 2nd CFL joint unit motion; (a) time domain, (b) Frequency 

domain. 
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Figure 5-8 Vibration analysis result of Sensor 4 (upper) and Sensor 5 (lower) under 1st CFL joint unit motion; (a) time domain, (b) Frequency 

domain. 
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5.2 Applying LSR based method (PERL) for robot system 

The probability calculation process requires a sufficient level of observed 

failure energy to exceed a certain threshold. Therefore, in Figure 5-4, the calculation 

was performed only for the area where the value of ‘signal-d(t)’ exceeded the 

threshold in both Sensor #4 and Sensor #5. Figure 5-9 presents the trend of fault 

energy ratio, the mean energy ratio estimated from the transmission function 

obtained in Figure 5-6, and the standard deviation estimated from the equation (3.11). 

The black curve line denotes the boundary of the estimated mean ± 2 × estimated 

standard deviation for both conditions where the CFL is at the 1st and 2nd target joint. 

As observed from the figure, the measured fault energy ratio does not exceed this 

boundary for both conditions, indicating that the proposed model's calculated 

probability value cannot determine the location of fault with a 95% confidence level. 

Based on the estimated mean values, it appears that the measured fault energy ratio 

is relatively closer when the CFL is the 1st target joint. Thus, by examining the main 

parameters of the probability model and the energy ratio trend before implementing 

the proposed method, it is possible to make a decision that the 1st target joint is likely 

to be the actual location of fault. 
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Figure 5-9 Fault energy ratio between sensors & estimated mean energy ratio with estimated standard deviation; upper (when the CFL is 1st 

target joint), lower (when the CFL is 2nd target joint). 
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In the previous steps, the results were generated assuming δk = 0, which means 

that the energy of the fault is distributed equally in the frequency domain. However, 

this assumption may lead to overestimation of the estimated probability for one of 

the fault probabilities. To investigate this, parametric studies were performed, as 

shown in Figure 5-10. The results showed that a high δk value leads to a reduction in 

the difference between the fault probabilities calculated in the CFL. Since δk 

represents the uncertainty of the measured energy, a higher δk value indicates lower 

reliability of the measured result due to larger uncertainty, which results in similar 

fault probabilities in each CFL. 

Similar to the Section 3.3.3, the fault probability on each CFL for time 

sequential updating can be applied using the time sequential data. Figure 5-11 shows 

the result calculated from the equation (3.16). As observed in the figure, the fault 

probability on the 1st target joint increases over time, while it means that the fault 

probability on the 2nd target joint decreases over time. This is a desirable result as the 

actual fault location is the first target joint. Additionally, the convergence of fault 

probability to 1 over time observed in the figure indicates the effectiveness of the 

time sequential updating method in accurately identifying the fault location. The 

Figure 5-10 Parametric study for the proposed method; the effect of δk for the fault 

probability on 1st target joint. 
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figure also shows the effect of δk on the fault probability. As δk increases, the fault 

probabilities calculated for each CFL on each time become slower to the desired 

result, indicating a reduction in the speed of convergence, which means the fault 

probability converges to 1, for the fault location determination. Therefore, it is 

important to keep δk as low as possible to ensure fast fault detection and location 

estimation. 

 

Figure 5-13 displays the outcome of applying FFT-based spectral analysis to 

three representative datasets obtained at different times as shown in Figure 5-12. In 

Figure 5-12, the blue color plot is related with the 4th sensor attached at the 1st target 

joint, and the orange color plot is related with the 5th sensor attached at the 2nd target 

joint. These three datasets consist of: 1) when the fault probability is higher in the 1st 

target joint, 2) when the fault probability is the same between the 1st target joint and 

the 2nd target joint, and 3) when the fault probability is higher in the 2nd target joint. 

The process of extracting the energy of the fault data in the frequency domain 

involves several steps. First, the average value of the spectrum is calculated based 

on the normal state data acquired in the same operating state as each point. Then, 

this average value is subtracted from the spectrum of each point. Finally, only the 

Figure 5-11 Parametric study for the proposed method; the effect of δk for the fault 

probability on 1st target joint using time sequential updating method. 
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values that exceed 0 are plotted to extract the energy of the fault data in the frequency 

domain. This process helps to filter out any noise or background signals and focus 

only on the relevant information related to the fault. 

Figure 5-13 (a) indicates that the energy of the fault spectrum in the 4th sensor, 

attached to the 1st target joint, is notably high across most of the frequency range. 

This suggests that the measured fault energy in the 5th sensor is transmitted through 

the link between the 1st and 2nd target joint via the original vibration generated by the 

fault state of the 1st target joint. Therefore, from the proposed method, the fault 

probability of 1st target joint is higher than that of 2nd target joint, which is clearly 

illustrated from that the first. Figure 5-13 (b) shows that the energy of the fault 

spectrum in the 5th sensor, attached to the 2nd target joint, nearly does not exist in all 

the frequency region. In order to apply the proposed method, the fault energy must 

be sufficiently observed for two or more sensors, which can be seen as a violation of 

this assumption. Therefore, the energy ratio is much higher than the expected energy 

ratios calculated from both conditions, which means the fault probabilities of each 

joint are nearly 0. In Figure 5-13, the two probabilities at the 2nd point are almost 

equal to 0.5 for both probability, indicating that they have little effect even when 

updated time-sequentially. Although this result is not ideal, as the fault probability 

of the 1st target joint is not determined to be larger than that of the 2nd target joint, it 

can still be considered a positive outcome, since it demonstrates that the result cannot 

be probabilistically determined due to the presence of uncertainty in the measured 

fault energy ratio. Figure 5-13 (c) displays that the energy of the fault spectrum in 

the 5th sensor, attached to the 2nd target joint, is notably high in the 10 – 12 kHz 

frequency range. Therefore, considering the results of the frequency analysis, it can 

be considered that the fault of the 1st target joint generated high-frequency failure-

related vibration in the 2nd target joint. Additionally, from the vibration transmission 

through the link between the 1st and 2nd target joint, the measured fault energy from 
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sensor #4 exists. Also, the data of the 2nd point corresponds to the 9 second point on 

the operating condition shown in Figure 5-2, and at this time, it can be confirmed 

that the angular speed of the 2nd target joint (6th joint) appears very larger compared 

with the other joint. Based on these facts, it can be concluded that the result obtained 

through the proposed method is not ideal, but it is reasonable to say that the source 

of the fault energy is the 2nd target joint. 

Based on these findings as shown in Figure 5-12 and Figure 5-13, it can be 

confirmed that data which exhibits a high probability of fault at a confirmed fault 

location contains more information when analyzing fault-related information in a 

high-sampling region. In other words, when the fault location is already known, the 

data that demonstrates a higher probability of fault provides richer details and 

insights for further analysis in the high-sampling analysis. 

  

Figure 5-12 The location of sample point for spectral analysis given in Figure 5-13 

with fault probability plot under δk =1. 
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  Figure 5-13 Spectral analysis on each sample data; (a) 1st sample point, (b) 2nd 

sample point, (c) 3rd sample point. 
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In order to verify the transmission effect assumed in Section 5.1, the frequency 

response function is applied to the fault signal. Specifically, for the data point with 

the highest probability shown in Figure 5-12 (Sample number = 1), the frequency 

energy distribution of the fault signal obtained from the 1st target joint is calculated. 

Then, by multiplying this distribution with the derived transmission function shown 

in Figure 5-6, the estimated frequency energy distribution of the fault signal at the 

2nd target joint is obtained. As depicted in the Figure 5-14, the estimated distribution 

and the actually measured distribution exhibit a high degree of similarity. This 

observation indicates that the assumption that fault energy is transmitted through the 

estimated frequency response function is valid. Therefore, the results of this analysis 

support the notion that the transmission effect, as characterized by the frequency 

response function, plays a significant role in the transmission of fault energy within 

the robot system. This finding further validates the assumptions made in Section 5.1 

regarding the transmission of fault energy. 

 

Figure 5-14 Validation of transmission effect assumption on the fault signal of robot 

system. 
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5.3 Applying HSR based method (FASER) for robot system 

The target component is a cycloidal gearbox in the 4th joint of the industrial 

robot as same with Section 5.2. The specifications of the cycloidal gearbox used for 

the research in this section are shown in Table 5-1. The imposed variable-speed 

condition was from an arc welding motion, as shown in Figure 5-15. The operating 

condition is almost 20 seconds in each period, and varies from -4.183 to 4.144 (rad/s). 

This operating condition is calculated from the motor speed, which is automatically 

recorded. The recovery time exists between the end point of previous operation and 

starting point of next operation. Therefore, synchronizing the signal from the known 

period of operation or recorded operating information, which is calculated from the 

motor, is impossible.  

Table 5-1 Specifications of the experimental cycloidal gearbox. 

Parameter Value 

Number of input gear teeth 28 

Number of spur gear teeth 23 

Number of pins 40 

 

Figure 5-15 The operating speed profile used of 4th joint under the arc welding 

motion. 
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Figure 5-16 shows the vibration signals and the corresponding STFT results 

under a normal condition and fault condition. The parameters for the spectrogram 

are selected as follows: The window function is a Hanning function with length 1024, 

the overlap ratio is 0.5 (512 samples), and the length of the FFT is 4096. For both 

conditions, amplitudes of vibration are modulated with operating speed, as shown in 

Figure 5-16 (a). More interestingly, in the time domain, the fault signal has more 

peaks and some of the signal (e.g., at 12 and 19 seconds) shows a larger amplitude 

than the normal signal. Further, even when the operating speed is zero, the fault 

signal has more energy, as compared with the normal signal. However, the total 

energy of each of the signals, the RMS, is similar, as is shown later, because the 

differences between the normal signal and the fault signal occur locally, not globally 

in the period. 

 

  

Figure 5-16 Vibration signals of one period in the time domain and in the STFT 

domain for (a) normal condition, (b) fault condition. 
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Figure 5-18 to Figure 5-23 demonstrate the process of constructing a probability 

model using KLD for signals measured under different operating conditions and the 

corresponding spectrum results. Figure 5-17 shows the speed and acceleration 

conditions at each point corresponding to Figure 5-18 to Figure 5-23. The operating 

speeds and accelerations at each point are as follows: (0, 0), (0, 0), (7.13, 0), (-3.11, 

0), (-2.00,-2.90) and (1.89, 2.30). The first two points were set to compare the effects 

of the other components. The process of finding a probability model built for signals 

with different operating environments through KLD and the results through the 

spectrum are presented in Figure 5-18 (a) to Figure 5-23 (a). The results indicate that 

the proposed KLD method finds a model with a uniquely small minimum number of 

models, which is the optimum model's number, compared to other model numbers. 

Interestingly, in several models, a local minimum that is not the optimum model 

number appears because each corresponding model does not have a significant 

difference in frequency energy distribution. This indirectly indicates that there is no 

significant difference in terms of operating conditions of the corresponding models. 

Secondly, the proposed model matching process can identify whether the signal in a 

faulty state causes a significant change in the frequency energy distribution due to 

Figure 5-17 Speed condition of sample points for Figure 5-18 to 5-23. 



 

 182 

the fault. The vibration signal obtained from the robot in this case study is different 

from the one discussed in Section 4.3 in the view of energy distribution in frequency 

domain. In the robot's vibration signal, the energy from low frequency band motion 

is much greater than the energy from the high frequency component affected by the 

fault. Therefore, even though there are slight differences in the high frequency region 

from the fault effect, they do not have a significant impact on the results. It is also 

confirmed that the optimum (selected) model numbers for same operating condition 

with different state are similar to each other. Additionally, Figure 5-18, Figure 5-19 

(upper), Figure 5-21, and Figure 5-22 (upper) demonstrate that even when the target 

component does not have its own vibration, the measured transmitted signal from 

other components can cause the signal to cluster, resulting in homogeneity in the 

labeled vibration data. This indicates that it is possible to perform probabilistic 

modeling in the posterior step.  

In short, the proposed method showed good results even under the largest 

velocity or acceleration. Therefore, it is predicted that the results will also be 

satisfactory for regions where the velocity or acceleration is within at its minimum 

to maximum value.



 

 183 

  Figure 5-18 KLD based similar operating condition model matching for the normal signal (left) and comparison of spectrum (right);  

(a) 1st point (b) 2nd point. 
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  Figure 5-19 KLD based similar operating condition model matching for the normal signal (left) and comparison of spectrum (right);  

(a) 3rd point (b) 4th point. 
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  Figure 5-20 KLD based similar operating condition model matching for the normal signal (left) and comparison of spectrum (right);  

(a) 5th point (b) 6th point. 
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  Figure 5-21 KLD based similar operating condition model matching for the fault signal (left) and comparison of spectrum (right);  

(a) 1st point (b) 2nd point. 
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  Figure 5-22 KLD based similar operating condition model matching for the fault signal (left) and comparison of spectrum (right);  

(a) 3rd point (b) 4th point. 
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Figure 5-23 KLD based similar operating condition model matching for the fault signal (left) and comparison of spectrum (right);  

(a) 5th point (b) 6th point. 
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Figure 5-24 displays the modeling type of each time-frequency index for one 

period of the vibration signal shown in Figure 5-15, obtained using the probabilistic 

energy modeling proposed in Section 4.2.1. In this case, the accelerometer sensor is 

mounted on the casing of the RV gearbox, so the time-frequency indices 

corresponding to the GMF and its harmonic of the 4th joint gearbox should include 

the deterministic signals. As shown in Figure 5-24 (b), the modeling region of 

"deterministic signal + noise" can be considered as the GMF and its harmonic. With 

the exception of the region from time = 3 to 4 (s), most of the time-frequency indices 

with non-zero speed region have been modeled as "deterministic signal + noise". 

Since the acceleration of the target component is too fast and the non-zero velocity 

region is very short for each section, the pattern of the GMF component could not 

be observed clearly with the STFT parameter, but it was mostly considered as a 

deterministic signal at the point where the velocity was not zero. Thus, it can be 

concluded that the result was produced by the GMF component. Interestingly, the 

reason why it is regarded as 'noise + deterministic' in the 3 to 4 second region, which 

is actually 0 speed condition, can be regarded as the fact that the vibration induced 

by the motion of the 6th joint is transmitted to the 4th joint’s sensor, as shown in 

Figure 5-2. Additionally, it is observed that the signal of a component around 10 kHz 

is classified as 'deterministic + noise signal'. This is due to the resonance frequency 

of the target component, which is around 10 kHz. This is supported by two 

observations: 1) 10 kHz is acquired in most areas regardless of speed, and 2) 

frequency modulation around the 10 kHz is only observed in a non-zero speed area. 

Hence, it can be concluded that the finding suggesting the component around 10 kHz 

being a deterministic signal is reasonable.  

In addition to the previously discussed deterministic and noise components, 

Figure 5-24 (c) also shows the presence of a wideband noise component around 5 

kHz. However, the size of this noise component is not constant, and its energy is 
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influenced by the signals from other components. As a result, the energy probability 

distribution modeling has been performed using KDE modeling. As for the 

remaining vertically existing indices and components below 1 kHz, as mentioned 

earlier, the speed changes too quickly, resulting in various GMF harmonic 

components overlapping in the low frequency band. Therefore, it is difficult to 

categorize them into either deterministic or noise components, and their energy 

probability distribution cannot be explained using the two types of modeling 

discussed earlier in Section 4.2.1. 



 

 191 

 

Figure 5-24 Type of the probabilistic energy modeling; (a) Noise dominant signal’s indices, (b) Noise + deterministic signal’s indices,  

(c) Neither of two types signal’s indices. 
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Next, the parametric dependency analysis for margin value kp, which is utilized 

to determine the fault-affected indices, are performed. As shown in Figure 5-25 and 

Figure 5-26 (a)-(c), the boundary for activation is obtained differently; here, a higher 

margin value kp makes a higher boundary. In each figure, the probabilistic boundaries 

and fault-affected indices for the normal state are shown for different values of the 

parameter kp (0.7, 0.8, and 0.9). 

In Figure 5-25, it is necessary to investigate whether a specific pattern is present 

under normal operating conditions. If all time-frequency indices are independent, it 

would be challenging to observe a distinct pattern in practice. However, as depicted 

in Figure 5-25 (c), an impact signal is observed in a specific time region even when 

a high kp value is set, indicating the presence of a unique pattern. These vertically-

oriented indices, resulting from the impact signals, could be attributed to motion 

braking or actual impact faults. To address this issue, additional physical 

interpretation or filtering techniques specific to the impact signal would need to be 

applied. However, these aspects were not considered within the scope of this study. 

Instead, the study later examined whether this pattern tendency could be accounted 

for through the adaptive threshold proposed in section 4.2.3. 

Figure 5-26 illustrates the appearance of fault-related patterns. By examining 

the selected ratio of fault-affected indices in each figure, it is evident that there is no 

significant variation. This suggests that fault-affected indices generally exhibit 

considerably higher energy levels compared to the energy distribution observed 

under normal operating conditions. Furthermore, a noticeable difference is observed 

in the pattern of fault-affected indices between indices where the speed condition is 

zero and indices where it is nonzero. Further details regarding this observation will 

be explained in the subsequent figure.
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Figure 5-25 Probabilistic boundary (upper) & fault affected indices (lower) for the normal; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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Figure 5-26 Probabilistic boundary (upper) & fault affected indices (lower) for the fault; (a) kp = 0.7, (b) kp = 0.8, (c) kp = 0.9. 
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Figure 5-27 shows how frequently each index is calculated as W(τ, ω)=1, using 

the signals from both the normal state and a fault state. As seen in Figure 5-27 (a), 

the proportion at which each index satisfies W(τ, ω)=1 converges to a value of 1- k 

= 0.1 when the measured data is from the normal state. On the other hand, as seen in 

Figure 5-26, the trend described in Figure 5-27 can be confirmed visually. Most of 

the proportion is calculated close to 1 at the region where the operating speed is 0; 

this seems to be because the background noise is increased by uncontrolled 

environmental factors, rather than the fault condition affecting the vibration in the 

motionless state. However, since the vibration energy in the zero-speed state is very 

small and the rate of energy increase is much smaller than the rate of energy increase 

due to the fault state, the proposed FASER approach is not significantly affected. It 

can be seen that the proportion is relatively lower around 5000Hz; this can be 

interpreted to be because the increase in energy due to the fault state was neglected 

by the external noise component. Additionally, since this frequency band occurs 

regardless of operating speed, it is likely to be Narrowband Gaussian noise. Figure 

5-27 (b) shows a region between 3 and 4 seconds where the ratio is notably high only 

for specific frequencies similar to Figure 5-26. Intriguingly, the operating speed of 

4th joint during this time interval is zero. As revealed in Figure 5-2, only the 6th joint 

is in operation at that time, implying that the operation of 6th joint affected the 

vibration of the 4th joint. Therefore, it is reasonable to conclude that the fault at the 

4th axis had an impact on the vibration of the 6th axis, and that this vibration 

subsequently transmitted to the 4th axis, leading to the emergence of the specific 

frequencies with high separability. Finally, it can be confirmed that in the region 

where the operating speed is not zero, the proportion is high only at the specific 

frequencies. However, the speed tends to change very quickly; thus, it is difficult to 

observe a specific pattern related with the operating speed. 
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Figure 5-28 shows the FASER trends obtained for both the normal and fault 

states. It can be seen that all FASERs in the faulty state exceed the adaptive threshold 

FAT; whereas, FASERs in the normal state are smaller than the adaptive threshold 

FAT. Unlike what was observed in Section 4.3, it can be seen that the FAT value, 

which is an adaptive threshold in the normal state, varies greatly depending on the 

data. Since the deterministic energy is small in the index where noise is dominant, 

the ratio of energy to mean energy changes greatly. Therefore, this is considered to 

be because there are a relatively large number of indexes with a corresponding 

operating speed of 0; thus, there is a high possibility of selecting a relatively large 

Figure 5-27 Proportions where each index satisfies W(τ, ω)=1 using kp = 0.9;  

(a) Normal, (b) Fault 
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number of indexes with predominant noise in the normal state. On the other hand, in 

the fault state, it can be confirmed that the change of the adaptive threshold is small 

for each data, as compared with the normal state. This result is because the indices 

whose energy increases due to the fault state are similarly selected as W(τ, ω)=1 and 

the energies of the corresponding indices are generally greater than those of the 

indices in which noise dominates. 

In industrial systems, it is often challenging to acquire and utilize high-sampling 

data for extended periods of time. Therefore, an analysis was conducted to 

investigate the trends exhibited by the proposed method based on the duration of 

data acquisition. Figure 5-29 and Figure 5-30 demonstrate the impact of signal length 

on the calculation of FASER and its adaptive threshold, FAT. The signals used to 

calculate FASER were not overlapped to avoid correlation dependency, which could 

lead to incorrect analysis. The figures illustrate that as the signal length for 

calculating FASER increases, the fluctuation of FAT decreases. This phenomenon 

is closely related to the dependency of fault information with regard to the operating 

condition. 

When the time interval for calculating FASER is very short, such as the 0.2 

Figure 5-28 FASER and FAT for normal and fault. 



 

 198 

seconds duration shown in Figure 5-29 (a) and (b), there is a higher likelihood of 

encountering modeling types that do not conform to the local Gaussian noise shape, 

depending on where the fault frequency is generated. In such cases, the ratio between 

the conditional mean and the total mean of the matched energy distribution decreases 

more significantly than in Gaussian noise modeling, resulting in more severe 

fluctuations. Furthermore, the aperiodic nature of impact signals negatively affects 

the feature to have more fluctuation. In particular, FASER with a very short length 

is inevitably more susceptible to this tendency. Therefore, although the value of 

FASER itself is very large when the length is very short, and it may perform well in 

fault diagnosis, there are numerous instances where normal data is erroneously 

identified as faulty data. This problem can be mitigated by using a time length of 

more than 4 seconds shown in Figure 5-30 (a) and (b), as the impact-like FASER 

disappears briefly, resulting in a reduced false diagnosis rate, which can be 

considered the optimal time length for fault diagnosis. 

In short, similar to the case study shown in Section 4.3, shortening the time 

interval for calculating FASER can lead to encountering different types of modeling 

and varying degrees of fault effects. This is more pronounced in Figure 5-30 (c) and 

(d), where the FASER value becomes similar every cycle when the operating 

conditions are the same. Despite these challenges, a time length of 0.2 seconds can 

yield near-perfect fault diagnosis performance when FASER is calculated together 

with FAT. However, it should be noted that the degree of fault energy influence may 

still vary depending on the operating situation, indicating that optimizing the time 

length by the proposed method will require considering various aspects, such as fault 

conditions, modeling conditions, and STFT parameters. This study shows that the 

proposed method can achieve accurate fault diagnosis by reflecting the operating 

condition, albeit with varying results depending on the signal length for calculating 

FASER.
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  Figure 5-29 Effect of the length of the signal for FASER; (a) FASER and FAT (0.2 sec.) (b) difference of FASER and FAT (0.2 sec.) (c) FASER 

and FAT (0.4 sec.) (d) difference of FASER and FAT (0.4 sec.). 
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Figure 5-30 Effect of the length of the signal for FASER; (a) FASER and FAT (2 sec.) (b) difference of FASER and FAT (2 sec.) (c) FASER and 

FAT (5 sec.) (d) difference of FASER and FAT (5 sec.) 
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Lastly, the comparative study with conventional method is performed. RMS of 

the raw signal is used to compare the sensitivity of our method, considering the fact 

that the RMS is greatly related to the energy of the signal. Additionally, another 

energy extraction method based on spectral kurtosis is used to compare the 

performance of the proposed method. In this case study, the optimal frequency band 

for each sample is generally calculated with a center frequency of 2700~2900 Hz 

and a bandwidth of 70.71 Hz, as shown in Figure 5-31 (a). The level equals to log2 

(the window size), which is related to the frequency bandwidth. The colorbar is based 

on the spectral kurtosis. Furthermore, considering that harmonics of GMF and their 

sidebands are generally analyzed for gearbox fault diagnosis, the GMF 

corresponding to the time-frequency indices based on the operating speed was 

calculated and is shown as the black curved line in Figure 5-31 (b). The GMF is 

calculated based on the operating speed shown in Figure 5-15 and the parameters of 

gear system given in Table 5-1 [8]. The feature was calculated as the energy sum of 

the indices corresponding to the GMF and their sidebands; this is indicated by the 

black curved line in the figure. 
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Figure 5-31 Preliminary work for comparative study; (a) Spectral Kurtosis (Kurtogram) result (b) GMF extraction with spectrogram 
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Figure 5-32 to Figure 5-34 show the results of the comparative study in a box 

plot. All features were calculated based on the energy value of the operating 

condition synchronized signal, according to the proposed method, and were 

normalized by the mean value of each feature of the normal state. The RMS feature 

shows good performance in terms of its fault diagnosis. However, as mentioned in 

Section 4.3, as can be seen from the y-axis value, the difference is small compared 

to the proposed method. Therefore, a slight change in the experimental environment 

could lead to different results. As shown in Figure 5-32 (c) to Figure 5-34 (c), in the 

case of the results using SK, in contrast, the mean value of the feature decreases in 

the fault state, and there is considerable overlap. Similar to the case study shown in 

Section 4.3, the increase in energy around the GMF that arises due to modulation is 

not dominant, as shown in Figure 5-32 (d) to Figure 5-34 (d). Furthermore, the 

variation in operating speed is significant, making it challenging to obtain fault-

related information within a fixed frequency range, even when the modulation effect 

from the fault is apparent. These conditions make it difficult for SK-based methods 

to select the proper frequency for fault diagnosis. This feature calculates the GMF’s 

sideband energy for harmonic components, which are conventionally utilized as the 

characteristic fault frequency, to show the normal and fault state energy trends, 

respectively. Considering the feature distribution, it can be seen that the energy of 

the indices – including harmonic components and sidebands – is not appropriate for 

diagnosing the fault condition. Finally, Conventional methods exhibit significant 

variability in their results depending on the duration of the sample data. In contrast, 

the proposed method consistently demonstrates superior diagnostic performance 

across all time durations. This highlights the exceptional robustness of the proposed 

method.
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Figure 5-32 Comparative study for the proposed method (the length of signal = 1 sec.); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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  Figure 5-33 Comparative study for the proposed method (the length of signal = 5 sec.); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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  Figure 5-34 Comparative study for the proposed method (the length of signal = 20 sec.); (a) Proposed method, (b) RMS, (c) SK, (d) 1st GMF’s 

sideband energy. 
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5.4 Applying results from the LSR approach (PERL) to the 

HSR approach (FASER) 

The LSR approach is based on a probability model that takes into account the 

uncertainty introduced during the conversion process of high-sampling signals. It 

quantifies the contribution of each sample to the fault probabilistically using 

equation (3.13), considering the energy distribution of individual LSR signals. While 

the LSR method does not perfectly align with the results of the HSR method that 

utilizes a single sensor, as it considers the energy proportion from different sensors, 

it generally provides valuable insights. In particular, the HSR method analyzes the 

sensor adjacent to the fault location, which typically exhibits higher fault energy 

compared to other sensors. Therefore, when utilizing the LSR approach and focusing 

on sampled data with high probability results, the overall impact of uncertainty 

distortion is expected to be minimized. Consequently, the sampled data obtained 

from the LSR approach can enhance the performance of the HSR approach. The LSR 

approach provides valuable information about the fault probabilities at each sample. 

By utilizing this information, the HSR approach can focus on the sensor adjacent to 

the fault location, which generally exhibits higher fault energy. This integration of 

the LSR and HSR approaches helps to improve the overall diagnostic performance 

by leveraging the probabilistic insights from the LSR approach to enhance the 

analysis conducted in the HSR approach. 

First, in order to verify the correlation between the analysis results of the LSR 

signal based approach and the HSR signal based approach, an analysis is conducted 

using the vibration data that was utilized in Sections 5.2 and 5.3. The vibration 

signals used for both approaches had a duration of 1 seconds. The operating 

condition synchronizing technique, which was employed in the HSR analysis, is also 

applied to ensure a fair comparison of the analysis results. 

The figure shows the difference between the fault probability value of the 
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location obtained from the LSR signal and the FASER and FAT values obtained 

from the HSR signal in the form of a scatter plot. In the case of data exhibiting a 

large FASER-FAT value, as indicated by the red box in the figure, it is evident that 

the dominant signal type is an impulse signal as shown in figure. In the fault state of 

the robot system, impulse signals tend to have concentrated energy in the high-

frequency region, resulting in a lower amount of energy being transmitted to other 

sensors. Consequently, the performance of the LSR analysis is not optimal in 

capturing such signals. Therefore, it can be thought as the limitation of the 

integration of PERL and FASER method. On the other hand, the data enclosed in the 

yellow box represents cases with a low probability value obtained from the LSR 

analysis. These instances can be considered as scenarios where the failure 

information itself is present, albeit in a localized frequency region. While the 

proposed FASER method enables fault diagnosis by applying filtering within a 

narrow frequency range, it becomes challenging to conduct additional frequency-

Figure 5-35 Scatter plot for visualizing the results from PERL and FASER method. 
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based analysis due to the limited amount of fault information available in these cases. 

Therefore, the in the view of robustness and further analysis, the data filtered by 

results from LSR approach is effective. Finally, detail analysis was performed on the 

desirable data represented by the green box. According to the proposed framework, 

it is desirable to perform the HSR approach to obtain better results when data is 

sampled based on the probability values from LSR approach. Therefore, when a 

specific value is obtained from the LSR, the analysis for the distribution FASER-

FAT and corresponding fault frequency analysis are performed. 

Figure 5-36 Fault and Normal state signal for representative data of Figure 5-34; 

(a) Impulse dominant (time domain), (b) Impulse dominant (frequency 

domain), (c) Weak fault energy (time domain), (d) Weak fault energy 

(frequency domain). 
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For the analysis of the desirable region shown in Figure 5-35, the focus was on 

the region where the fault probability obtained from the PERL method was greater 

than 0.5 and the FASER-FAT value was less than 10. In this analysis, the sampling 

data was based on the values obtained from the PERL method. A conditional 

distribution was created with the value obtained from PERL as the condition. Figure 

5-37 illustrates the marginalized probability density function of the FASER-FAT 

value with respect to the fault probability value obtained from the PERL method. 

This analysis provides insights into the relationship between the fault probability and 

the FASER-FAT value, allowing for further understanding of the fault characteristics 

and their influence on the diagnostic results. First, it can be observed that the trend 

of conditional expectations. Generally, the trend is upward, indicating that as the 

fault probability increases, the corresponding FASER-FAT value tends to increase 

as well. However, until the fault probability reaches 0.8, there is no significant 

difference in the FASER-FAT values. Beyond the 0.8 threshold, there is a noticeable 

increase in the FASER-FAT values. Furthermore, the variance tendency of FASER-

FAT can be observed through the confidence interval. Similar to the trend in the 

average values, it is evident that the fault probability decreases rapidly in the region 

exceeding 0.8. This implies that as the fault probability increases beyond this point, 

the variability in the FASER-FAT values also decreases. These observations provide 

insights into the relationship between the fault probability and the FASER-FAT 

values, indicating how the FASER-FAT value changes with different levels of fault 

probability and the associated variability. In summary, the analysis showed that as 

the fault probability exceeded a certain threshold value, the expectation of the 

FASER – FAT obtained through FASER method increased while the variance 

decreased. This suggests that the robustness of the diagnosis improved. To further 

validate this observation, representative data is analyzed following a similar 

approach as shown in Figure 5-35.
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Figure 5-37 Marginalized probability density function of FASER−FAT value w.r.t. the fault probability value from PERL method. 
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Based on the coordinates in Figure 5-37, analysis is performed in the time 

domain and frequency domain for the data corresponding to (0.5, 1) and (0.95, 3). 

The results for the data corresponding to the point (0.5, 1) are presented in Figure (a) 

and (b). Upon analyzing the temporal behavior of the data in both normal and fault 

conditions, a resemblance in the overall energy trends can be observed, except for a 

distinct deviation occurring after 0.7 seconds. Up until the mentioned point, the 

energy patterns in the normal and fault conditions exhibit similarities, suggesting a 

lack of substantial differentiation between the two states within that time interval. 

Furthermore, it is worth noting that the energy characteristics of the analyzed data 

are heavily influenced by the signal preceding 0.7 seconds. Therefore, it is 

reasonable that the probability of determining as fault state is low. Similarly, when 

applying the FASER method (as depicted in Figure (b)), no substantial differences 

are observed in the frequency domain. Therefore, it is reasonable to observe a low 

FASER-FAT value. By combining these two results, it can be concluded that the 

likelihood of obtaining a low FASER − FAT value is high when utilizing data with 

low probability values obtained through the PERL method in the FASER method. 

The results for the data corresponding to the point (0.95, 3) are shown in Figure (c) 

and (d). Upon examining the time domain data, an increase in energy can be observed 

when the signal is measured from the fault state. In contrast to the previous case, it 

is evident that overall fluctuations are relatively small due to the limited impact of 

motion. Consequently, the variation of energy caused by motion is minimal. When 

applying the PERL method, this factor can have a positive effect by reducing 

uncertainty arising from operating conditions. This tendency becomes more apparent 

in Figure (d) where frequency analysis is performed. In the fault state, there is a clear 

increase in energy across all frequency bands. This indicates a higher likelihood of 

aligning with the assumed model, which suggests that the transmission effect can be 

derived from the frequency response function in the frequency domain when 

applying the PERL method to the robot system. Consequently, there is an increased 
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probability of obtaining high probability values through the PERL method. 

Moreover, when applying the FASER method in the presence of such frequency 

trends, the range of frequencies that can be identified as fault frequencies widens. As 

a result, it is expected that the FASER-FAT value is more likely to increase. By 

comparing the results of the time and frequency domain analysis for the two sets of 

data and the outcomes of the FASER and PERL methods, the following summary 

can be made. 

In summary, the analysis of the data corresponding to different points (0.5, 1) 

and (0.95, 3) revealed interesting findings. For the first data point, which is filtered 

by the low fault probability value from PERL method, the energy trends in the time 

domain were similar between normal and fault conditions. This led to a low FASER-

FAT value, indicating a lower robustness of fault detection. On the other hand, for 

the second data point, which is filtered by the high fault probability value from PERL 

method. In this case, the energy increased significantly in the fault state, and there 

was relatively less fluctuation due to motion. This resulted in a higher FASER-FAT 

value and a greater likelihood of fault identification. Furthermore, frequency analysis 

showed that energy levels across all frequency bands increased in the fault state, 

reinforcing the effectiveness of the FASER method in capturing fault-related 

information. Overall, the combination of the PERL and FASER methods proved 

valuable in analyzing both time and frequency domain data, enhancing the 

understanding and detection of faults in the system.



 

 214 

Finally, the results obtained according to the proposed methodology integrating 

PERL and FASER are compared with those obtained when FASER alone is 

performed. The comparison between applying only FASER and simultaneously 

applying FASER and FAT over time reveals interesting trends in the final features. 

The figure shows that when FASER and FAT are used together, the results exhibit 

lower variation with a smaller amount of data. Furthermore, there is a distinct 

periodic pattern observed in the results. This observation can be understood by 

considering the findings described in Figures 5-37 (c) and (d) above. Specifically, 

the data selected by PERL represents favorable operating conditions within one 

Figure 5-38 Fault and Normal state signal for representative data of Figure 5-36; 

(a) Data corresponding to (0.5, 1) (time domain), (b) Data 

corresponding to (0.5, 1) (frequency domain), (c) Data corresponding to 

(0.95, 3) (time domain), (d) Data corresponding to (0.95, 3) (frequency 

domain). 
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operating cycle, which can be repeatedly extracted in each cycle when applying the 

FASER method. Therefore, the combination of FASER and FAT not only reduces 

variation but also captures the optimal extraction of the operating conditions, leading 

to more reliable and consistent results. To further analyze the robustness in the view 

of accurate diagnosis in the normal state, the normal state’s FASER-FAT values 

under the same operating conditions are extracted and compared by boxplot shown 

in the figure. When applying FASER alone without PERL, it becomes evident that 

outliers occur more frequently in the normal state, resulting in a larger overall 

variance. This indicates a higher probability of misdiagnosis as the normal state. On 

the other hand, when the combined method is utilized, the occurrence of outliers in 

normal state becomes rare, and the variance decreases significantly. This suggests 

that the combined approach yields a more robust result. Furthermore, when 

examining the feature of the fault state, it can be observed that the combined method 

yields a higher mean value with a smaller variance. These characteristics contribute 

to the enhanced reliability and accuracy of the diagnostic outcome. 

 

Figure 5-39 Trend comparison of FASER only and proposed integrated method. 
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5.5 Summary and discussion 

In this chapter, it was focused on integration of the proposed PERL method 

based on LSR signals and the FASER method based on HSR signals. To validate the 

effectiveness of the integrated approach, a 6-DoF robot system with multiple sensors 

was utilized. Initially, it was reconfirmed the performance of each method 

individually by applying them separately and analyzing the results. Subsequently, it 

was compared and analyzed the results obtained from the PERL method and the 

FASER method to explore the correlation between them. 

In most cases, except for instances where only the impact signal was detected 

as the fault symptom for a very short duration, it was observed that the FASER 

method produced favorable results when the result values obtained from the PERL 

method were high. This can be attributed to the fact that when data is extracted based 

on high probability values obtained from the PERL method, the extracted data is less 

influenced by operating conditions and contains sufficient fault energy. 

In conclusion, the proposed integration method demonstrate that by selectively 

extracting data for FASER application using the PERL method, the overall 

computational cost can be reduced while ensuring result robustness. This integration 

Figure 5-40 Boxplot of FASER-FAT values for FASER only and proposed 

integrated method; (a) FASER only, (b) Proposed integrated method. 
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approach provides a more efficient and reliable fault diagnosis solution for industrial 

systems. 
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Chapter 6  

 

Conclusion 

 

6.1 Contributions and Significance 

This doctoral dissertations proposes an uncertainty-aware framework for fault 

diagnosis in industrial systems using low and high sampling rate signals. The 

proposed fault diagnosis method includes two novel techniques: (1) a low-sampling-

rate signal based probabilistic energy ratio based localization (PERL) method that 

enables the estimation of fault position; (2) a high-sampling-rate signal based fault 

affected signal energy ratio (FASER) method that enables the robust fault diagnosis 

and extracts fault-related frequency information. The proposed research offers the 

following potential contributions and significance in the field of system-level fault 

diagnosis. 

 

Contribution 1: Solution for the practical issues of handling exorbitant 

amount of data in industrial system 

This doctoral dissertation proposes an uncertainty-aware fault diagnosis framework 

for industrial systems using both high and low sampling rate signal approaches under 

non-stationary operating conditions. In general, high-sampling signals are often not 

fully utilized in industrial settings due to limitations in processing power needed to 

handle large amounts of data. On the other hand, when only low-sampling signals 

are used, fault diagnosis tends to be limited to severe faults due to their lower 

sensitivity. The proposed framework combines the advantages of each approach to 
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achieve efficient fault diagnosis. Faults are diagnosed using indirect low-sampling 

rate signals from wide-ranging sensors, such as acoustic emission sensors, and the 

fault location is estimated using the proposed PERL method. Then, the 

corresponding location's high-sampling rate signals are analyzed using the proposed 

FASER method to identify the fault type based on fault affected frequency 

information and verify if it's a misdiagnosis due to noise. By combining these two 

methods, the framework can efficiently estimate the fault location, select the optimal 

sensor for further analysis using low-sampling rate signals, and improve the 

robustness of results using high-sampling rate signals. 

 

Contribution 2: Novel low sampling rate signal based fault localization 

considering the transmission effect of signals under 

severe fault symptom 

The proposed probabilistic model can estimate the location of a fault using only the 

energy-related descriptor of the signal. By accurately reflecting the measurement 

uncertainty caused by the operating conditions or the disturbance noise of the AE 

sensor itself, it is possible to estimate a probable leak without much error, even in 

real-world operating conditions. The results derived by the proposed method can be 

calculated effectively even if only two or three sensors respond to a boiler tube leak. 

This has a great effect when the size of system is huge and does not meet the 

conditions for reacting to four or more sensors, as required by conventional methods. 

Thus, this can solve the difficulty in finding a convergence point that must arise for 

success of conventional methods; this issue can arise in real-world situations due to 

an insufficient number of fault-responsive sensors. From the point of view of 

establishing a maintenance strategy in the case of a large-scale system, efficient 

operation is possible by considering the probability distribution about the fault. 
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Contribution 3: High sampling rate signal based robust fault diagnosis 

considering the stochastic nature of signals represented 

as STFT 

This doctoral dissertation proposes the method having the ability to match the 

desired operating signal automatically from a consecutively measured signal without 

additional equipment, such as an encoder. Additionally, the uncertainty of the signal 

represented as a spectrogram is quantified through a suggested frequency energy 

model, and statistically separable indices for calculating the fault-affected signal can 

be found. An adaptive threshold that considers the window function to transform the 

spectrogram and the conditional probability of probabilistic distribution model is 

also proposed, which helps to prevent misdiagnosis of normal signals as being from 

a fault state. Furthermore, the proposed method does not require any kind of fault-

related knowledge, such as a fault frequency calculated by a fault mechanism, 

making it more efficient in scenarios where identifying the fault frequency becomes 

infeasible due to security issues that restrict the disclosure of physical or mechanical 

properties of the system under consideration. 

 

 

6.2 Suggestions for the Future Research 

This doctoral dissertation proposes technical and mathematical advancements for 

efficient system-level fault diagnosis using LSR and HSR signals. Although the 

proposed methods demonstrate improved fault diagnosis performance, further 

research is needed to apply these methods in real-world applications and calibrate 

the results considering the underlying assumptions. Specific suggestions for the 

future research are listed below. 
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Suggestion 1: Development of denoising technique combining operation 

related signal and probabilistic model 

The research in doctoral dissertation shows the heteroskedasticity in the noise of 

signal in the time frequency domain, and probabilistic model is presented to quantify 

these uncertainty. Additionally, some of time-frequency index having the 

deterministic signal, which is generally related with the operating condition. 

Therefore, in this study, probabilistic modeling was conducted based on data with 

similar operating conditions, but it will be possible to apply denoising technology by 

extracting operating conditions and using ensemble techniques. 

 

Suggestion 2: Extensive application to the situation under changing 

temperature conditions 

As shown in Section 2.2, the energy of signal generally depends on the 

temperature. In this doctoral dissertation, the study was conducted by minimizing 

the effect of temperature-induced energy variability. Specifically, the proposed 

FASER method in Chapter 3, experimental condition for the temperature is 

controlled as the saturated situation. However, in an actual operating environment, 

there is a possibility that the temperature may change due to external factors such as 

the season or the condition of the internal lubricant of the component. Therefore, in 

the future research, the probabilistic modeling considering the difference of 

temperature could be considered. 

 

Suggestion 3: Parametric probabilistic energy modeling substituting the 

KDE modeling 
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The proposed probability modeling in this doctoral dissertation was based on the 

assumption of a signal by a single component having a Gaussian noise form within 

one frequency. However, in reality, the time-frequency index is generally composed 

of mono-component signals and uncertainties that may not follow a Gaussian 

distribution, which limits the applicability of the proposed model. Therefore, KDE 

modeling was used to model these time-frequency indices. However, the KDE model 

is highly data-dependent and may overfit, making it difficult to interpret the physical 

meaning of the model. Furthermore, the data used to construct the KDE model needs 

to be saved for the application of the proposed method. To address these issues, 

future research could explore energy distribution models for overlapping two-

component signals or investigate non-Gaussian noise to improve the proposed 

method. Alternatively, the signal decomposition method with only using the 

measured vibration signal such as empirical mode decomposition (EMD) can be 

applied to solve these kinds of issues. 
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Appendix 

 

 

Derivation of correlation coefficient 

from the spectral leakage under  

the condition where each of two 

frequency energy is considered  

as fault-affected frequency 

 

In the process of signal conversion through TFA, the TFA parameter plays a critical 

role in determining the resulting expression, even when the same TFA method is 

used. While there are various TFA methods available, this study focuses on the 

problem of STFT-based spectrograms. Specifically, this doctoral research analyzes 

parameters related to the window function. Equation (4.1) provides the basic 

equation for transforming the signal to TFA from STFT. While recent studies have 

explored the energy correlation between indices expressed in TFA, they are limited 

to the zero-mean condition and do not consider the energy corresponding to fault-

affected frequencies, which is a focus of this study. For the correlation from the 

overlapped window function in time domain, the suggested equation in the published 

literature could be worked. Therefore, only the correlation from the spectral leakage 

effect from the window function is derived. 
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Firstly, as shown in Figure 4-8, considering the original signal, which is not the 

measured signal but the real signal, only exists in the frequency ω and ω + Δω. 

Simply, the Fourier transform of the original signal is expressed as: 

 1 1 2 2( ) , ( ( ))X j d X j d    = + + = +   (A.1) 

where X(jω) is the Fourier transform of the signal at the frequency ω, d1 and d2 are 

the deterministic parts of the signal at the frequency ω and ω+ Δω, d1 and d2 are the 

complex bivariate gaussian distribution satisfying: 

 
2 2 2 2

1 1 2 2
1 1 2 2Var(Re[ ]) ,Var(Im[ ]) ,Var(Re[ ]) ,Var(Im[ ])

2 2 2 2

   
   = = = =

 (A.2) 

where Var(·) means the variance operator. In actual measurements, the energy of the 

signal must exist in different frequency domains. However, when both frequencies 

are considered as fault-affected frequencies, their energy levels are relatively higher 

compared to other frequencies. This is because the fault-affected frequencies 

themselves indicate that the measured energy at the corresponding frequencies is 

probabilistically high. In addition, the effect due to spectral leakage is very small in 

the frequency area outside the range of the main lobe of the frequency response 

function of the window function. Therefore, the calculation was performed assuming 

that the spectral leakage effect due to energy of other frequencies is negligible. From 

these assumptions, the Fourier transform of the measured signal at the frequency ω 

can be expressed as: 

1 w 2 1 w 2 1 1 w 2( ) ( ) ( ) ( )Y j d f d f r f    = + + + = + +   (A.3) 

where Y(jω) is the Fourier transform of the signal at the frequency ω, r1 is the 

deterministic part of the measured signal at the frequency ω, and fw(·) is the spectral 

leakage effect from the window function w. From the equation (A.3), the mean and 

the variance of the measured energy at frequency ω can be calculated as: 
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2 *

1 1 1 2 1 2

2 * * *

1 2 1 2 1 1 2 1 1 2

E ( ) E * E ( ( ))( ( ))

Var ( ) Var ( ( ))( ( )) ( ( )) ( ( ))

Y j r r f f
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   = + + +  

   = + + + + + +  
  (A.4) 

where * is the complex conjugate. For the intuitive expression, we can let that ε1 + 

f(ε2) = aω +jbω and r1 = cω +jdω. Then, equation (A.4) can be expressed as: 

2 2 2 2 2

2 2 2 2 2

E ( ) E

Var ( ) Var[ ] Var[ ] 4 Var[ ] 4 Var[ ]

Y j a b c d

Y j a b c a d b

   

     





   = + + +  

  = + + +
 

(A.5) 

Additionally, ε1 + f(ε2) can be expressed as the frequency response function of the 

window function Fw, then ε1 + f(ε2) = ε1 + kε2. For simple notation, we let Fw(Δω) as 

k. Then, equation (A.5) can be expressed as: 

2 22 2 2 2

1 2

2 2 22 2 2 2 2 2 2

1 2 1 2

E ( ) ( ) ( )

Var ( ) ( ) 2( )( )

Y j k c d E

Y j k c d k V

  

  

  

    

  = + + + =
 

  = + + + + =
 

(A.6) 

Recalling that the mean and variance of the measured energy can be estimated from 

the constructing the probability equation described in the Section 4.2.1, then the 

unknown term can be estimated from the mean and variance. 

 
22 2 2

1 2( )k E E V     + = − − =   (A.7) 

Similarly, the mean and the variance of the measured energy at frequency ω can be 

calculated as: 

22 2 2

2 1( )k E V E         + + + ++ = − − = (A.8) 

From combining the equation (4.7) and (4.8), the unknown σ1 and σ2 can be estimated 

as: 

 

2 2

2 2

1 24 4
,

1 1

k k

k k

        
 + +− −

= =
− −

  (A.9) 
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Before the calculating the covariance, it needs to organize the absolute square of 

Y(jω) and Y(j(ω+ Δω)) from the defined variables. From equation (A.3), the energy 

of the measured signal at the frequency ω can be expressed as: 

 
2 * * * *

1 1 1 2 1 2 1 1 2 1 1 2( ) ( ( ))( ( )) ( ( )) ( ( ))Y j rr f f r f r f        = + + + + + + +

 (A.10) 

Similarly, the measured signal at the frequency ω + Δω can be expressed as: 

2

* * * * * * * *

2 2 2 1 2 1 2 2 1 2 2 1

( ( ))

( ( ))( ( )) ( ( )) ( ( )))

Y j

r r f f r f r f

 

       

+  =

+ + + + + + +

 (A.11) 

where Y(j(ω+ Δω)) is the Fourier transform of the signal at the frequency ω + Δω, 

and r2 is the deterministic part of the measured signal at the frequency ω + Δω. 

The deterministic term can be neglected to calculate the covariance. Additionally, 

following equation are satisfied from the property of gaussian noise’s independency. 

 

* * * * *

1 2 2 1 1 2 1 1 2

* * * * * *

1 1 1 2 2 2 2 1 2

* * * * * *

2 1 2 1 2 2 2 1 1

E( ) E( ) E( )

E( ) E( ) E( )

E( ) E( ) E( ) 0

        

        

        

= = =

= = =

= = =

  (A.12) 

Therefore, the covariance of the energies are expressed from the linearity : 

( )

( )

2 2

* * * *

1 2 1 2 2 1 2 1

* * * * * *

1 1 2 1 1 2 2 2 1 2 2 1
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Cov ( ( )) ( ( )), ( ( )) ( ( ))

Y j Y j
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+

= + + + +

+ + + + + + +

 (A.13) 

To calculate the first covariance term, the definition of covariance can be applied. 

Then, the first term of equation (A.13) can be expressed as: 
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Then, the first term of equation (A.14) is calculated: 
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 (A.15) 

Following equations are satisfied from the property of gaussian noise’s 

independency. 
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The second term of equation (A.14) can be calculated as: 
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Therefore, the first term of equation (A.13) can be calculated by the equation (A.15) 

to (A.18). Next, the second term of the equation (A.13) can be calculated as: 
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From the equation (A.13) and (A.19), the covariance can be finally calculated as: 
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From the equation (A.9), the unknown terms, which are the original signal of 

uncertainty, denoted as σ1 and σ2, can be evaluated. Therefore, the covariance can be 

calculated by the equation (A.20).  
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국문 초록 

 

 

 

저샘플링 및 고샘플링 신호를 이용한 

불확실성 기반 고장 진단 프레임워크 
 

 

 

산업 시스템은 4차 산업혁명과 더불어 급속도로 발전하고 있으며, 

이에 따라 시스템의 규모는 증가하고 이를 제어 및 관리하기 위한 

자동화 시스템의 도입도 전반적으로 증가하는 추세이다. 이러한 대규모 

복합 시스템의 예기치 못한 고장은 막대한 사회적, 경제적, 인적 손실을 

야기할 가능성이 있다. 이러한 상황을 예방하고 진단하기 위해서, 

시스템을 이루고 있는 여러 요소들에 대한 고장 진단 연구가 주목을 

받고 있으며, 관련된 연구가 전세계적으로 계속해서 수행되고 있다. 

이러한 고장 진단 기법들은 목표 시스템에서 발생할 수 있는 고장을 

분석하여 건전성 지표를 통해 수치화 하고, 건전성 상태를 관리하는 

것을 목표로 하고 있다. 

최근 산업계에서는 온도, 압력, 운전, 진동, 음향 신호 등 다양한 

신호를 통해 산업 시스템을 제어함과 동시에 상태 진단에 활용하기 위한 

신호 시스템을 구축하고 있다. 특히 이 중에서, 진동과 음향 신호는 

시스템의 건전성을 평가할 수 있는 좋은 민감성을 가지고 있다고 

평가되고 있다. 이러한 진동/음향 신호는 일반적으로 20kHz 이상의 

높은 샘플링 주파수를 가지는 데이터 수집 센서 및 시스템을 기반으로 

취득된다. 이렇게 고주파수 신호가 측정되면, 이를 바탕으로 스펙트럼 

분석을 수행하여 정상 상태에서 측정될 것으로 기대되는 결과와의 

차이를 바탕으로 건전성을 평가하는 방법이 주로 사용된다. 특히, 

점진적인 고장의 초기단계의 진단이나 미세한 크랙등의 적은 에너지 

변화를 띄는 고장의 경우 고샘플링 신호 기반 스펙트럼 분석을 통한 
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진단 방법론의 성능이 탁월하다. 이러한 접근법은 많은 연구에서 검증이 

되었으며, 실제 산업 현장에서도 적용 가능성을 검증한 사례도 

존재한다. 하지만, 현대 산업 시스템과 같이 매우 큰 규모를 가지는 

시스템의 경우 이러한 고샘플링 신호를 온전히 활용하여 진단을 

수행하기에는 어려운 점이 많다. 각 센서에 활용되는 데이터 수집 

시스템에는 프리-앰플리파이어, 선형 주파수 필터링 등 간단한 계산을 

기반으로 하는 전처리를 수행할 수 있는 계산 능력은 갖추고 있으나, 

고샘플링 신호를 세분화하여 분석하는 기법을 적용하기 위한 계산 

능력을 갖추고 있지는 않으며, 추가적인 설비를 필요로 한다. 따라서, 

고샘플링 신호를 계산 수행을 하는데 부담이 되지 않는 저샘플링 신호 

(제곱평균제곱근, 밴드패스 에너지) 등으로 변환하여 데이터를 수집하고 

건전성 평가에 활용하고 있다. 이러한 이유 때문에, 실제 산업 

시스템에서는 특정 주파수에서 반응하는 고장보다는 모든 주파수 

대역에서 에너지가 증가하는 경향성을 보이는 급진적인 고장이나 규모가 

큰 파괴 등의 고장 진단만을 수행할 수 있는 저샘플링 신호 기반 진단 

방법을 제한적으로 적용하고 있다. 하지만 이러한 저샘플링 신호 기반 

진단 기법 또한, 적용할 수 있는 범위가 큰 고장에 국한되기 때문에 

다량의 센서가 반응한다는 문제점이 있다. 이는 고장 감지 후 정비 

측면에서 큰 비효율을 야기할 수 있다. 마지막으로, 산업 현장에서 

취득되는 신호는 상대적으로 실험실 단위에서 취득되는 신호보다 

노이즈나 외부 신호에 의한 불확실성이 크다는 문제점이 존재한다. 

따라서, 적용될 방법론에 불확실성을 감안하여 결과를 도출할 수 있는 

과정이 포함되어야 실제 적용 시 발생할 수 있는 오차의 정도를 

추산하거나 미연에 방지할 수 있다. 

이러한 산업 시스템의 현황을 고려하여, 저샘플링 신호와 고샘플링 

신호를 효율적으로 활용하는 고장 진단 연구가 수행될 수 있다. 현재 

존재하는 기법들을 활용하여 산업 시스템의 고장 진단 기법을 개발하는 

데 해결해야 할 문제점은 다음과 같이 세 가지로 정리할 수 있다. 첫째, 

저샘플링 신호 기반 진단 시 다량의 센서가 반응하기 때문에, 효율적인 
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정비를 위해 고장 위치에 대한 추정 결과가 필요하다. 둘째, 고샘플링 

신호 기반 진단 시 많은 계산량이 요구되기 때문에, 일부 데이터를 

활용하더라도 강건한 고장 진단을 할 수 있는 기법이 요구된다. 셋째, 

산업 현장에서 취득 될 신호의 불확실성을 감안하는 방법론이 

저샘플링과 고샘플링 신호 기법 모두에 적용되어야 한다. 

따라서 본 학위 논문에서는 이러한 문제점을 감안하여 산업 

시스템의 저샘플링과 고샘플링 신호를 활용한 불확실성 기반 진단 

프레임워크를 제안한다. 첫 번째 연구에서는 저샘플링 신호를 활용한 

고장 위치의 추정 방법론을 제안한다. 제안하는 방법은 정상 상태에서 

취득되는 신호와 고장 상태에서 취득 될 신호의 에너지 차이를 

감안하여, 고장 신호가 저샘플링 신호로 변환됐을 때 센서에서 측정되는 

신호의 에너지 확률 모형을 제안한다. 이후, 특정 위치에서 고장 신호가 

발생했을 때, 다량의 센서에서 측정되는 에너지를 확률적으로 정량화 할 

수 있다. 최종적으로 역-베이지안 기법을 활용하여, 측정된 센서 간의 

에너지 비율을 토대로 여러 특정 위치에서의 확률 값을 도출함으로써, 

고장 위치를 확률적으로 추정할 수 있다. 두 번째 연구에서는 고샘플링 

신호를 활용한 강건한 고장 진단 방법론을 제안한다. 우선적으로 정상 

상태에서 취득되는 신호를 바탕으로 운행 조건을 반영할 수 있도록, 

쿨백-라이블러 발산 기반 신호 유사성 평가 기법을 제안한다. 이를 

바탕으로 유사한 신호를 그룹핑하여 운행 조건에 따라 달라지는 신호의 

시간-주파수 표현의 확률적 모델링을 수행한다. 이를 통해서 새롭게 

측정된 신호가 운행 조건을 알 수 없는 짧은 신호라고 하더라도, 유사한 

운행 조건 그룹과 비교할 수 있게 된다. 이후, 정상 상태에서 취득 될 

확률 모델과 새로운 측정 신호를 비교하여 고장 상태를 판별할 수 있는 

새로운 특성값과, 고장 상태별로 달라질 수 있는 시간-주파수 정보 및 

상응하는 특성값의 범위를 반영하는 적응형 임계값을 제안하여 강건한 

고장 진단을 수행한다. 마지막으로 저샘플링 신호를 통해 나온 결과값을 

기준으로 데이터 샘플링을 적용하여, 고샘플링 평가 기법을 
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적용함으로써 계산시간의 단축과 최종 결과의 확률적 강건성을 

확보한다. 
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