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Abstract

Monocular Visual-Inertial Depth Estimation and Odometry

with Scale Prediction using Self-Supervised Deep-Learning

Chungkeun Lee

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

This dissertation addresses deep-learning-based end-to-end self-supervised scale-aware

depth estimation and odometry in the visual-inertial system. For real-world applications

with a single monocular camera, scale ambiguity is an important issue. Because self-

supervised data-driven approaches that do not require additional data containing scale

information cannot avoid the scale ambiguity, state-of-the-art deep-learning-based methods

address this issue by learning the scale information from additional sensor measurements.

In that regard, inertial measurement unit (IMU) is a popular sensor for various mobile

platforms due to its lightweight and inexpensiveness. However, unlike supervised learning

which can learn the scale from the ground-truth information, learning the scale from IMU

is challenging in self-supervised setting.

In this dissertation, deep-learning-based scale-aware self-supervised monocular visual-

inertial depth estimation and odometry method is proposed. I focus on overcoming the

scale ambiguity in the self-supervised setting. For the training data, the sequence of images

and raw IMU measurements are utilized and neither ground-truth depth nor the stereo

image pairs are provided. The proposed method works in an end-to-end manner and does

not rely on the classical visual-inertial navigation to learn the scale. For that, I design the

IMU preintegration loss which integrates IMU measurements and some regulation losses to

predict the scale-aware ego-motion. Next, the network is proposed receiving IMU measure-

ments as an input estimating the bias of the IMU and the gravity in the body coordinate

v



to perform IMU preintegration from raw IMU measurements. Lastly, a data augmentation

technique is proposed, which is compatible with the visual-inertial system. The proposed

algorithm is validated in comparison with state-of-the-art algorithms in the KITTI dataset

and the indoor experiment, by demonstrating its comparable performance.

Keywords: Deep Learning, Depth Estimation, Visual-Inertial Odometry, Self-supervised

Learning.

Student Number: 2014-22512
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1
Introduction

Ego-motion estimation and 3d reconstruction with a monocular camera have broad appli-

cability because a monocular camera is inexpensive and lightweight. Especially, data-driven

monocular depth estimation has received attention because they give a dense depth map

from an image and ground-truth depth in a supervised manner by training a deep neural

network [1, 2, 3].

To avoid the cost of collecting the ground-truth depth with an additional device, self-

supervised monocular depth estimation has been proposed. State-of-the-art self-supervised

methods jointly train the depth map and ego-motion for structure from motion during the

training step, so it requires the sequences of monocular images during the training step

[4, 5, 6, 7].

Nevertheless, self-supervised methods have scale ambiguity originating from the nature

of the monocular camera because they have no criteria about the scale information unlike

supervised methods with ground-truth depth information. In general, an additional sensor

is introduced to address the scale ambiguity issue. In that regard, IMU is a popular sensor

for various mobile platforms because of its lightweight and inexpensiveness. In classical
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vision, state-of-the-art visual-inertial methods predict the ego-motion with scale prediction

using the sequences of monocular images and IMU measurements [8, 9].

Because the deep-learning-based approach has a capability of predicting a dense depth

map from a single image, some researchers have incorporated IMU into the deep-learning

like the classical visual navigation literature [10, 11, 12, 13, 14, 15]. However, learning the

scale from IMU is challenging in self-supervised setting. To overcome this issue, the training

concept to learn the scale from the classical visual-inertial navigation was introduced [16,

17, 18], but it highly relies on the performance of the classical navigation.

In this dissertation, I focus on overcoming the scale ambiguity in the self-supervised

setting. For the training data, the sequence of images and raw IMU measurements are uti-

lized and neither ground-truth depth nor the stereo image pairs are provided. The proposed

method works in an end-to-end manner, and does not rely on the classical visual-inertial

navigation to learn the scale. For that, I design the IMU preintegration loss which inte-

grates IMU measurements to predict the scale-aware ego-motion. The proposed algorithm

is validated in comparison with state-of-the-art algorithms in the KITTI dataset and the

indoor experiment, by demonstrating its comparable performance.
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1.1 Literature Survey

In this section, I introduce a literature survey about deep-learning-based monocular depth

estimation, classical visual-inertial navigation and deep-learning-based visual-inertial meth-

ods.

1.1.1 Monocular depth estimation

Monocular depth estimation aims to estimate the dense depth map from a single RGB

image. I categorize monocular depth estimation based on the training data. The supervised

method utilizes the ground-truth depth to train the network. The unsupervised method

receives all other data except the ground-truth depth. The self-supervised method utilizes

sequences of images. In this dissertation, the self-supervised method is distinguished as

a separate category from the unsupervised method even if the self-supervised method is

included in the unsupervised one. Table 1.1 summarizes the category of monocular depth

estimation based on the training data. Here, the self-supervised method with monocular

sequences only needs the monocular images for training. Thus, it has the advantage that

the device setup of the training and inference is same.

Method Input Output Train Data
Advantages/Disadvantages

Supervised single image depth map ground-truth dense depth
Supervised methods can predict the accurate depth map in comparison with others.
Supervised methods require the depth ground-truth for training the network.
Unsupervised single image depth map anything except ground-truth

(generally stereo)
Self-supervised single image depth map sequences of monocular images

consecutive images +ego-motion (or those of stereo pairs)
For monocular, the network can be trained using the data collected during the inference.
For monocular, scale ambiguity issue exists, so no scale is predicted.

Table 1.1: The category of the monocular depth estimation using training data.
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Supervised monocular depth estimation

The supervised monocular depth estimation aims to construct the network predicting the

depth map from a single RGB image and train this network from ground-truth depth

information. Commonly, supervised methods construct the convolutional neural network

emitting the dense map as an input of the single RGB image. The regression problem

is formulated to train the network. The network is trained by minimizing the difference

between the estimated depth map and the ground truth depth map.

Reference [1] is the first approach to solving the monocular depth estimation with the

regression problem, to the author’s best knowledge. They proposed the course-fine network

architecture; the course network estimates the smoothed depth map and the fine network

refines the smoothed depth map to get the final depth map. Since the global scale is variable

across the dataset, they design the scale-invariant loss function to express the difference

with no scale information as

L =
1

n

∑
i

(log di − log d̂i)
2 − 1

n2
(
∑
i

log di − log d̂i)
2 (1.1)

where di, d̂i is the ground truth depth and predicted depth.

In the supervised depth estimation research field, many researchers have proposed to

increase the depth estimation performance. Most approaches focus on the enhancement of

the network architecture, the design of additional constraints about the depth, the novel

problem formulation of the regression problem or the application in the real world.

Reference [2] adopted the novel network architecture to the depth estimation problem.

They adopted the fully convolutional neural network as in [19] with the residual neural

network as in [20]. In addition, they adopted the reversed Huber norm B as the loss
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function to get better performance than the L2 norm as

B(d, d̂) =


∣∣∣d− d̂

∣∣∣ if
∣∣∣d− d̂

∣∣∣ ≥ c

(d−d̂)+c2

2c
otherwise

(1.2)

Reference [3] adopted the ordinal regression into the deep-learning-based depth estima-

tion formulation. They performed space-increasing discretization(SID) in log-scale as an ex-

pansion of the uniform discretization to adapt to the distribution of each depth value. Then,

they design the ordinal loss function with a fully differentiable form for back-propagation.

They proposed the network with a single encoder and multiple decoders to understand the

variable scene selecting the final depth by ordinal regression.

Reference [21] proposed the separate depth estimation of the category and the objects.

They segmented the image and performed the depth estimation for each category. There-

fore, they explicitly considered the characteristic of each object.

Reference [22] proposed the decomposed formulation of the depth map based on the

relative depth and estimated each decomposed part. The full-resolution depth map Dn can

be decomposed as

logDn = logUn(D0) +
n∑

i=1

logUn−i(Fi) (1.3)

where U(•) is the upsampling operation, Fn = Dn⊘U(Dn−1) is the fine detail map defined

as the elemental-wise division (⊘) from Dn to U(Dn−1).

Unsupervised monocular depth estimation with stereo cue

Unsupervised monocular depth estimation aims to train the depth estimation network

with additional data except for ground-truth depth. In this section, I handle unsupervised

approaches which train the network from stereo images. Remark that the self-supervised

method such as [4] is differently categorized in this dissertation.
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Reference [23] proposed the reconstruction error, so-called reconstruction loss or photo-

metric consistency loss, to train the network from a stereo image pair. They predicted the

dense depth map of a left image by the convolutional neural network. During the training

step, the left image was warped into the right camera frame using the predicted depth map

and epipolar geometry, and the depth was trained to minimize the difference between the

warped image and the right image.

Reference [24] extended the [23] into three parts. Firstly, they adopted the bilinear

sampling proposed in [25] to obtain a fully differentiable warped image when calculating

gradient of the photometric consistency loss. Second, they adopted the loss function from

the image restoration proposed in [26] to enhance the depth prediction performance using

photometric consistency loss. Lastly, they simultaneously estimated both the left and right

disparity using the left image and design the consistency between the two disparities. They

showed the best performance when they were proposed.

Reference [27] formulated the unsupervised monocular depth estimation problem with

stereo cue into the stereo matching problem with two steps. Firstly, the view synthesis

network generates the synthesized right image from the left image like [28]. Then, the

stereo matching network estimates the disparity between the left image and the generated

right image like [29].

Self-supervised monocular depth estimation with image sequences

In a strict definition, the self-supervised method is categorized if additional information is

predicted to predict the depth. However, in this dissertation, I only handle the ego-motion

case.

Reference [4] firstly proposed a framework of the self-supervised monocular depth es-

timation with no additional train data. They estimated the depth from the target image

using one network and the ego-motion from the target and nearby images using another

network. During the training step, both networks are jointly trained using the photometric

consistency loss like the unsupervised method with the stereo cue. In addition, they pro-

6



posed the explainability mask predicted from another network to prevent optimizing the

difference of the irregular pixels. When generating view synthesis from the sequential im-

ages, the existence of the irregular pixel is inevitable due to the moving object or occlusion.

Therefore, they designed the photometric consistency loss masked by the explainability as

L =
∑
p

Ê(p)
∣∣∣I(p)− Î(p)

∣∣∣ (1.4)

where Ê is explainability mask, I is the target image and Î is the warped image. Here,

they also designed the regulation loss of the explainability to avoid the trivial solution of

the explainability mask.

Reference [30] proposed the training concept which contains both unsupervised and

self-unsupervised methods when sequences of stereo pairs are provided as training data.

For a sequence of the stereo pairs, they warp the right image based on the stereo setup

to generate the photometric consistency between the left and right image. Simultaneously,

they warp the left image from the next frame based on the predicted ego-motion like [4].

Thus, they could train the network with both spatial and temporal information.

Reference [31] proposed the 3D ICP loss to constrain the structured point cloud between

two images. From the depth prediction result, each point cloud is calculated, and one point

cloud is warped using the predicted ego-motion. The iterative closest point(ICP) method

matches the warped point cloud and predicted point cloud generating the rigid body motion

T ′
t and residuals rt. Since two point clouds should be equal, 3D ICP loss is given as

L = ∥T ′
t − I∥1 + ∥rt∥1 (1.5)

where I is the identity matrix.

Reference [5] adopted the optical flow estimation network to design additional con-

straints about the optical flow in the self-supervised monocular depth estimation. In addi-

tion to other self-supervised methods, they predicted rigid flow from the estimated depth

7



and ego-motion and refined it to predict the optical flow.

Reference [7] proposed appearance loss with per pixel minimum reprojection loss and

auto masking to enhance the depth estimation performance. For the source image It, the

previous image It−1 and the next image It+1 are provided as the target images. For each

reprojection loss from the previous and next image respectively, the final reprojection loss

was proposed as the minimum value between each reprojection loss for each pixel; thus,

the proposed loss rejects high-error pixels which are likely to be occluded. In addition, the

auto-mask µ is given as

µ =

1 if pe(It, I
′
t′−>t)

0 otherwise

(1.6)

where I ′t′−>t is the warped image, pe(•, •) is the distance function between two images for

reprojection loss.

Remark that self-supervised depth estimation methods using sequences of monocular

images simultaneously learn the depth map and the ego-motion, and they suffer the scale

ambiguity issue. They could not learn the real-world scale because of the physical problem

of the monocular camera. On the other hand, the supervised methods learn the real-world

scale from the ground-truth depth information, and the unsupervised or self-supervised

methods using stereo images learn the real-world scale from the length of the stereo camera.

Other monocular depth estimation methods

Reference [32] proposed the depth estimation when the stereo image and sparse ground-

truth depth are given as the train data, which is called the semi-supervised method. They

combined the photometric consistency loss function from the stereo images, and the super-

vised loss only from sparse points.

Reference [33] additionally received the velocity cue to predict the real-world scale from

the monocular self-supervised setup. From the velocity cue, velocity supervision loss was

8



proposed as in

L = |∥t∥ − |v|∆T | (1.7)

where t is the translation part of the relative pose, v is the ground truth velocity and

∆T is the time difference between two frames. Due to the real-world scale information of

the velocity, the network learned the real-world scale. However, according to the theory of

relativity, sensing the velocity in the robot is hard.

Recurrent neural network

For the mobile robot, the monocular images are provided sequentially during the motion.

Considering the temporal information is one of the solutions to enhance the depth esti-

mation performance. In that idea, the recurrent neural network has been selected to learn

temporal information.

Reference [34] adopted the recurrent neural network containing convolutional LSTM for

the supervised monocular depth estimation. They showed this recurrent approach helps to

increase the depth estimation performance.

Reference [6] expanded the recurrent approach into the self-supervised depth estimation.

They constructed the network based on the convolutional LSTM to apply the recurrent

effect with conserving the convolutional effect. During the training step, they calculated

the photometric consistency loss along both forward and backward directions.

Generative adversarial network

A generative adversarial network is one of the famous training concepts, the generator

generates fake information which looks real and the discriminative model distinguishes the

fake information [35]. Both networks are adversarial trained for the generative model to

generate indistinguishable information.

In the monocular depth estimation, the generative model predicts the depth map from
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a single image and generates the right image based on the predicted depth map. The

discriminative model distinguishes the warped image and the right image. This framework

was proposed with a depth generation model using stereo data in [36] and both depth and

pose generation models using stereo data in [37]. For the self-supervised method, reference

[38] performed using monocular sequences and [39] performed using stereo sequences with

stack GAN proposed in [40].

Reference [41] adopted both the generative adversarial network and the recurrent neural

network. For the image sequence, the consecutive images are coded by the optical flow and

refined by the LSTM layers. The depth network predicts the depth map from the refined

code, and the generative adversarial network is designed similarly to other methods.

Reference [42] proposed the framework for unlabeled images using the generative adver-

sarial network. They designed one generative model which predicts a depth map and two

discriminative networks. One discriminative network distinguishes the ground truth depth

and the generated depth from the generative model. The other discriminative network

distinguishes the depth map of the paired data is fake or not.

Real-time approach

Some methods focus on the real-time application on the mobile platform. In general, the

onboard computer for the mobile platform has approximately ten-percent computational

power compared with the desktop computer. Thus, common methods cannot work in real-

time on the mobile platform.

Reference [43] proposed the PyD-Net which is enough lightweight for inference on the

mobile platform with only CPU equipped computer. They validated the PyD-Net with

unsupervised learning following [24]; they showed unsupervised depth estimation works

in the lightweight network with reasonable performance. Similarly, [44] proposed MiniNet

with the self-supervised approach.

Reference [45] proposed the U-net [46] style network architecture with mobileNet[47] to

achieve real-time performance during the inference step. They provided about 175Hz depth

10



with small performance degradation.

Summary

Deep-learning-based depth estimation has been researched with various types of training

data. Table 1.2 is provided as a summary of the survey. The self-supervise method with

monocular sequences has been interesting because additional training data are not necessary

and the network for odometry is also trained.
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1.1.2 Classical visual-inertial navigation

Classical visual-inertial navigation, including odometry and simultaneous localization and

mapping (SLAM), has been widely researched.

With the long history of classical visual-inertial navigation, some survey papers provide

a good review of its long history [48, 49, 50]. Thus, in this dissertation, I only mention

the common characteristics and a few state-of-the-art monocular visual-inertial navigation

methods.

Classical navigation methods can be categorized into two types based on the problem

formulation: filtering-based and optimization-based methods. Filtering-based methods de-

sign the filter which expresses the state and measurements of the robot, respectively. Then,

the designed filter is operated during inference [51, 52, 53, 54]. Optimization-based meth-

ods construct the objective function from the camera geometry and perform non-linear

optimization [8, 9, 55].

Reference [51] is one of the filtering-based visual-inertial odometry methods. They set

the filter state by concatenating the robot state, IMU bias, extrinsic calibration parameter

between the image and IMU, feature points, and the distance of each feature point as

x = (r, v, q, bf , bω, c, z, µ0, · · · , µN , ρ0, · · · , ρN) (1.8)

where (r, v, q) is the position, velocity or attitude of IMU expressed in IMU coordinate,

(bf , bω) is the biases of IMU sensor, (c, z) is the translation and rotation part of the extrinsic

parameter, and (µi, ρi) is the feature point and its distance.

Then, the state propagation model could be expressed from the robot dynamics with

the IMU measurements for (r, v, q), the random acceleration assumption for (bf , bω, c, z)

and the pinhole camera model with geometric consistency for (µi, ρi). They update the

filter using the extended Kalman filter.

Reference [9] is one of the optimization-based visual-inertial odometry methods. From

the IMU measurements, the preintegration is performed to get the ego-motion using IMU
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information. From the image, the feature points are tracked, and then bundle adjustment is

performed to obtain the ego-motion from image information. During the optimization step,

the IMU residual from the IMU preintegration and the image residual from the geometric

consistency are minimized.

For the optimization-based methods, IMU initialization is required at the beginning,

and the vehicle/robot should generate the acceleration and the tilting motion in the roll

and pitch directions for the monocular case. In automobile environments, IMU initialization

may fail, because the dominant motion of the car is yaw direction.

1.1.3 Deep-learning-based visual-inertial methods

Some researchers tried the visual-inertial approach in the deep-learning-based methods. In

this section, I introduce deep-learning-based visual-inertial methods.

Reference [10] proposed the supervised visual-inertial odometry, which is the first ap-

proach of the visual-inertial method to the best of the author’s knowledge. They designed

the visual-inertial network with a combination of the convolutional neural network for

the images and the recurrent neural network for the IMU measurements. The pose was

predicted from the fusion of each network.

Reference [11] proposed the novel network architecture for supervised visual-inertial

odometry focusing on robust prediction. They designed the feature fusion by selecting

either visual or inertial features to handle the unexpected behavior of either sensor. They

showed robust ego-motion estimation even if the sensor emits irregular data.

Reference [15] proposed the RGB-D visual-inertial odometry framework using deep-

learning-based approaches. They stacked several layers which generate the error Jacobian

of the previous level to predict the transform. This method, however, needs the depth

information.

Reference [12] proposed the self-supervised visual-inertial odometry from stereo se-

quences. The flow network estimates the optical flow from the images, and the IMU preinte-

gration network estimates the ego-motion from the IMU measurements; then, the VI fusion
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network estimates the final ego-motion from the optical flow and the ego-motion from the

IMU network. During the training step, they utilize the cue from the stereo images to learn

each network.

References [16], [17] formulated the deep-learning-based visual-inertial method into the

combination of the classical visual-inertial odometry with sparse depth estimation and

deep-learning-based depth completion. Due to the sparse depth from the classical visual-

inertial odometry which contains the real-world scale, the estimated depth and ego-motion

contain the real-world scale. Those works, nonetheless, assume the navigation system always

provides a sparse depth for depth prediction, so they cannot predict the depth from a single

image.

Reference [18] proposed the transfer learning of the depth estimation network by the

teaching of the classical visual-inertial method to learn the scale of the new environment.

The depth network S is trained similarly to the self-supervised method, but the ego-motion

is provided from the SLAM algorithm instead of training and predicting ego-motion. For

transfer learning, distillation loss is introduced as the difference between two depth maps

with unit scale to learn the relative depth from the pre-trained network T . In addition, scale

consistency loss is introduced to conserve the scale between frames. They, nevertheless,

learn the real-world scale from the output of another SLAM method. Since these methods

require classical navigation during the training step, whenever the classical method fails,

so do they.

Reference [13] proposed self-supervised visual-inertial depth estimation and odometry

with the generative adversarial network. They adopted the network architecture from [11]

for the generative model. Then, they designed a discriminative model with the convolutional

neural network to train the network. They showed good odometry performance, but they

have no real-world scale like the self-supervised monocular depth estimation.

Reference [14] proposed unsupervised visual-inertial depth estimation and odometry

with the intra-inter optimization technique. Intra-window optimization is performed as

the unsupervised monocular depth estimation. For inter-window optimization, the relative
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pose is integrated along the entire sequence and additionally optimized using geometric

and trajectory consistency. Intra-inter optimization helps to conserve the scale information

across the whole trajectory but cannot predict the metric scale.

Methods Output Training Limitation
VINet [10]

pose sup(pose)
Ground-truth pose is required for
training.Chen et al. [11]

VIOLearner [15] pose unsup
RGB-D image is required, so the dense
depth map is required as an input.

DeepVIO [12] depth+pose selfsup
(stereo)

Stereo data is required for training.

Wong et al. [17]
depth+pose

teaching+ Classical VIO should be operated
during training and inference.Sartipi et al. [16] semisup

SelfTune [18] depth teaching+
selfsup(mono)

Classical VIO is necessary for training.

SelfVIO [13]
depth+pose selfsup(mono)

No scale is predicted. The relative
depth and ego-motion are given.Wei et al.[14]

Proposed depth+pose selfsup(mono)

Table 1.3: The summary of the literature survey of deep-learning-based visual-inertial meth-
ods. For training column, sup is the supervised method, unsup is the unsupervised method,
selfsup(·) is the self-supervised method with · data, and teaching is the teaching of the clas-
sical visual-inertial navigation.

Table 1.3 summarizes the literature survey of deep-learning-based visual-inertial meth-

ods. No related work achieves the unsupervised learning of the depth or pose containing

real-world scale with no teaching from another method. [10, 11] require the ground-truth

pose information during the training step, [15] needs the depth information as an input

data, [12] requires the sequence of the stereo images, [17, 16, 18] require the result from

the classical visual-inertial navigation and [13, 14] contain no real-world scale information.
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1.2 Contributions

The main contribution of the proposed method is overcoming the scale ambiguity of the

self-supervised monocular depth estimation with IMU measurements with the end-to-end

concept. State-of-the-art self-supervised methods using monocular sequences suffer the scale

ambiguity issue. To solve the scale ambiguity issue, the network requires a supervisory

signal, stereo signal or the teaching of classical visual-inertial navigation method to learn

real-world scale information. The proposed method, nevertheless, needs neither supervisory

nor stereo signal and is learned end-to-end.

Moreover, the proposed method is validated in the KITTI [56] dataset in comparison

with state-of-the-art deep-learning-based methods and classical navigation methods. Ad-

ditionally, another validation is performed on the indoor dataset collected at the indoor

underground parking lots, to show that the proposed method is not overfitted in the KITTI

dataset. In comparison, the proposed algorithm is shown to have comparable performance

compared with other methods.
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1.3 Outline

In this dissertation, I handle deep-learning-based scale-aware self-supervised monocular

depth estimation and odometry with visual-inertial data. In chapter 2, I provide the pre-

liminary as three sections: motion stereo, self-supervised monocular depth estimation, and

IMU preintegration. Then, the proposed method is handled in chapter 3. Starting from the

overview, I describe the designed loss function, the designed network, and the augmentation

detail. Validation result follows in chapter 4.
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2
Preliminaries

The proposed method originated from self-supervised monocular depth estimation and was

upgraded to learn the scale by integrating IMU measurements.

In this chapter, I handle three topics as preliminaries. The first topic is motion stereo.

In this section, I describe how to extract the depth information from a monocular camera

with motion, so-called motion stereo, based on the camera geometry.

The second topic is deep-learning-based self-supervised monocular depth estimation.

In this section, I describe the common method of state-of-the-art deep-learning-based self-

supervised monocular depth estimation.

The last topic is IMU preintegration. IMU preintegration is the step of integrating

IMU measurements to estimate the ego-motion of the robot. Some classical visual-inertial

odometry and SLAM perform IMU preintegration, and I describe about those preintegra-

tion techniques.
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2.1 Motion Stereo

2.1.1 Camera Geometry

Pinhole Camera Model

For the monocular camera, the pinhole camera model as fig. 2.1 has been widely utilized.

For the point P in the real world (xp, yp, zp), the camera captures the point Q = (xq, yq) asxq

yq

 = − f

zp

xp

yp

 (2.1)

where f is the focal length of the camera.

𝑓𝑓𝑥𝑥
𝑧𝑧𝑝𝑝

𝑥𝑥𝑝𝑝

𝑥𝑥𝑞𝑞
𝑄𝑄

𝑃𝑃

Figure 2.1: Pinhole camera model

For convenience, the pixel coordinate is defined in the normalized image coordinate,

and the virtual coordinate with focal length is one, with the origin at the left-top point.

The point in the pixel coordinate U = (u, v) is defined as


u

v

1

 =
1

zp
K


xp

yp

zp

 (2.2)
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where K is the intrinsic parameter defined as

K =


fx γ cx

0 fy cy

0 0 1

 (2.3)

where fx, fy is the focal lengths, γ is skew coefficient, and cx, cy is the principal point.

The camera captures the 2-dimensional normalized point, and the depth zp cannot

be known from the single measurement of the camera. One of the solutions is the stereo

system, two monocular cameras with known distance are simultaneously equipped and

capture images.

Epipolar Geometry

For the stereo system, the epipolar geometry is constructed as in fig. 2.2. From two cameras

L and r with the rigid body motion (R, t), the epipolar line l• is given as the intersection

of the projected point of another camera denoted as e• and the projected point on the

normalized image plane of the target point P• denoted as p•. Then, the epipolar plane

containing two epipolar lines can be uniquely defined, and the target point should be on

the epipolar plane.

Here, according to the epipolar geometry, the essential matrix E = R [t]X always exists

holding,

pTLEpr = 0 (2.4)

where (R, t) is the rigid body motion between two cameras and [•]X is the matrix repre-

sentation of the cross product.

In pixel coordinate, equation (2.4) could be expressed as

UT
LFUr = 0 (2.5)
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𝐿𝐿

𝑟𝑟

𝑃𝑃

𝑅𝑅, 𝑡𝑡

𝑝𝑝𝐿𝐿 𝑝𝑝𝑟𝑟
𝑒𝑒𝐿𝐿

𝑒𝑒𝑟𝑟

𝑙𝑙𝐿𝐿
𝑙𝑙𝑟𝑟

Figure 2.2: Epipolar geometry for the stereo system

where F = K−T
L EK−1

r is the fundamental matrix with the intrinsic parameter K•, and u•

is the projected point in pixel coordinate with homogeneous form.

2.1.2 Motion Stereo

Motion stereo is the method to predict depth from a single monocular camera. When the

camera is moving, the epipolar geometry is constructed based on the motion of the camera.

This dissertation only addresses the case when the ego-motion of the camera is unknown,

so the ego-motion should be simultaneously calculated for the depth estimation.

Most of the methods first find several matched points in both images and then calculate

the depth of those points and the ego-motion. First, I extract feature points easily to be

matched between frames like [57, 58, 59], and then match the extracted features between

two images by proper visual tracker or descriptor based on the feature extraction method.

To calculate the depth and ego-motion, two relations are mostly adapted. One is the

epipolar geometry in equation (2.4), and the other is the pixel coordination based on

equation (2.1). For epipolar geometry, the fundamental matrix is given to find the ego-
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motion between two images by minimizing the (2.4) as

F = argmin
F

(
∑
i

uT
iL
Fuir) (2.6)

with the least square form as
u1Lu1r u1Lv1r u1L v1Lu1r v1Lv1r v1L u1r v1r 1

u2Lu2r u2Lv2r u2L v2Lu2r v2Lv2r v2L u2r v2r 1
...

...
...

...
...

...
...

...
...

unL
unr unL

vnr unL
vnL

unr vnL
vnr vnL

unr vnr 1




F11

F12

· · ·
F33

 = 0 (2.7)

where Fij is the (i, j) component of the fundamental matrix F . It is noted that the funda-

mental matrix is the form of the ego-motion. Therefore, the fundamental matrix could be

transformed into the relative pose.

From the relations, I could warp the pixel coordinate UL as in the r pixel coordinate as

drUr = K [R|t]K−1dLUL (2.8)

Here, Ur is the homogeneous formulation, so Ur is uniquely determined if a right term in

equation (2.8) is determined. Thus, I could establish the optimization problem concerning

the depth d and the pose (R, p) when the matched points are given.

2.1.3 Scale ambiguity in motion stereo

Motion stereo with a monocular camera suffers scale ambiguity due to the physical limita-

tion of the monocular camera. Here, the fundamental matrix is included in a null space as in

equation (2.7); thus, if F is the solution of the least square solution, λF is also the solution

for all λ. As the definition of the fundamental matrix, if t is the predicted translation of

the ego-motion, λt could also be the predicted translation.

In short, if the translation of the ego-motion t and the depth zL is predicted from the
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motion stereo, for any positive value λ, scaled translation λt and depth zL/λ could be

predicted as well. Thus, I estimate the depth ratio to the reference and cannot estimate

the ego-motion or depth as a meter scale.
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2.2 Self-supervised Monocular Depth Estimation

For self-supervised monocular depth estimation, the depth map and the ego-motion are

jointly predicted. Thus, two convolutional neural networks are constructed: one is the depth

network predicting the dense depth map from a single RGB image, and the other is the

pose network predicting the relative pose from a pair of consecutive images.

Depth CNN

Pose CNN

Source Image (𝐼𝐼𝑖𝑖) 

Target Image (𝐼𝐼𝑗𝑗)
Relative Pose (𝑇𝑇𝑖𝑖𝑖𝑖)

Warped Image (𝐼𝐼𝑗𝑗)Estimated Depth (𝑑𝑑𝑖𝑖)

Figure 2.3: The overview of the unsupervised monocular depth estimation. From the source
image Ii, a convolutional neural network, denoted as depth CNN, estimates the full depth
map d̂i of the source image. Additionally, from a pair of consecutive images Ii, Ij, another
convolutional neural network, denoted as pose CNN, estimates the relative pose between
two images Tij.

With dense depth map Dn and relative pose Tn→n+1, next pixel coordinates ûn+1 from

current pixel coordinates un can be obtained as in equation (2.8). Then, the warped image

În+1 can be obtained from the current image In by warping pixels. While warping the pixels,

the differentiable bilinear sampling mechanism [25] is utilized to generate a differentiable

signal during backpropagation.

The photometric consistency loss [26] is formulated as the distance between the target

image In+1 from the dataset and the warped image În+1 as

Lphoto =
1

N

∑
U

[
dist(In+1,În+1)

(U)
]

(2.9)

where dist(In+1,În+1)
(U) is the distance between In+1 and În+1 at pixel point U .

For the distance function of the photometric consistency loss, [26] shows that the linear
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combination of the L1 norm and structural similarity index measure(SSIM) is good to

train the network for the image restoration problem. This loss could be extended into the

photometric consistency as

SSIM(x,y)(U) =
2µx(U)µy(U) + C1

µ2
x(U) + µ2

y(U) + C1

2σxy(U) + C2

σ2
x(U) + σ2

y(U) + C2

(2.10)

dist(x,y)(U) = α |x(U)− y(U)|+ (1− α)
1− SSIM(x,y)(U)

2
(2.11)

where µ•, σ
2
•, σ•• is the average, variance, and covariance of • around U with the window

size M × M , C1, C2 is the fixed value to avoid computational instability, α is the scalar

constant for linear weighting of two distance metric. In the implementation, I adopt the

parameter from [7], C1 = 0.012, C2 = 0.032, α = 0.15,M = 3.

In addition, for regulation, edge-aware depth smoothness is minimized [24] as

Lsmooth = |∂uDn|e−|∂uIn| + |∂vDn|e−|∂vIn| (2.12)

where ∂• is the partial derivative respective to • direction.

To reject the effect of the occluded or moving pixel which breaks the photometric

consistency, per-pixel mask µ ∈ [0, 1] is multiplied by the distance between images for the

photometric consistency loss as

Lphoto =
1

|I|
∑
U∈I

[
µ(In,In+1) × dist(In+1,În+1)

(U)
]

(2.13)

In this dissertation, I adopt the auto-mask [7], binary masking method calculated from

source and target images as

µ(In,In+1)(U) =

1 if dist(In+1,În+1)
(U) > dist(In+1,In)(U)

0 otherwise
(2.14)
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2.3 IMU preintegration

IMU preintegration aims to integrate raw IMU measurements to obtain the ego-motion

between two image frames. In other words, the rotation RN , velocity vN and translation

pN at the next frame ego-motion (•N) should be formulated with the current ego-motion

(•0) and IMU measurements containing the acceleration ãi and the angular velocity ω̃i.

In this dissertation, the relative pose will be provided in the Lie algebra of the special

Euclidean group se(3). Thus, the IMU measurements are preintegrated on the manifold, so I

adopted [60, 61] for IMU preintegration. The elapsed time between two IMU measurements

is denoted as ∆ti from i-th measurement to i + 1-th measurement. Then, the ego-motion

of i-th frame on inertial coordinates is expressed as

Ri = R0

i−1∏
k=0

exp (ωk∆tk) (2.15)

vGi = vG0 +
i−1∑
k=0

(Rkak − gG)∆tk (2.16)

pGi = pG0 +
i−1∑
k=0

vk∆tk +
1

2

i−1∑
k=0

(Rkak − gG)∆t2k (2.17)

where ωk = ω̃i − bωk − ηωk is the unbiased angular velocity with bias bωk and noise ηωk ,

ak = ãi − bak − ηak is the unbiased acceleration with bias bak, and the gravity gG. exp is an

exponential map of the Lie algebra of the special orthogonal group so(3).

Commonly, several IMU measurements are measured between two images, and IMU

is not observed at the same time as the observed images. In this dissertation, the latest

measurement before the first image frame is set to (ãi, ω̃i). Also, ∆t0 is defined as the elapsed

time between the first image frame and the first IMU measurement, and ∆tN is defined as

the elapsed time between the last IMU measurement and the second image frame.
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3
Self-supervised Monocular Visual-Inertial

Depth Estimation and Odometry

3.1 Overview

The proposed method originates from self-supervised monocular depth estimation described

in section 2.2 and is upgraded to learn the scale by integrating IMU measurements described

in section 2.3.

In this section, I describe the proposed method which learns the real-world scale from

the IMU measurements as in fig. 3.1. For that, I formulate the proposed method into three

parts. The first part is the loss function to train the network, which generates the relation

about the scale from the IMU measurements during the training step. The second part

is the network architecture, which is proper to optimize the proposed loss function. The

last part is the data argumentation for the visual-inertial extension of the state-of-the-art

monocular method.
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3.2 Loss Function

In this section, I describe each loss function of the proposed method, and the final loss is

described at the end of this section. The proposed methods utilize three loss functions to op-

timize networks: photometric consistency loss function from state-of-the-art self-supervised

monocular depth estimation to learn scale-unaware depth and ego-motion, preintegration

loss function to learn the scale of ego-motion from the IMU measurements, and regulation

loss function about the gravity direction and the bias to regulate the effect of predicted

gravity direction and the bias.

3.2.1 Photometric consistency loss

The photometric consistency loss has been widely employed to optimize the depth map and

the ego-motion from consecutive images. This loss expresses the epipolar geometry structure

from motion. I adopt the photometric consistency loss (2.13) and the depth smoothness

loss (2.12) like most state-of-the-art self-supervised methods described in section 2.2.

3.2.2 Preintegration loss

The preintegration loss obtains the scale-aware ego-motion by integrating IMU measure-

ments like IMU preintegration described in section 2.3 and compares predicted ego-motion

with the obtained ego-motion. The main role of the preintegration loss is to learn the scale

from IMU measurements by integrating the IMU measurements and correcting integrated

and predicted ego-motion. Since the photometric consistency loss does not incorporate the

scale, only preintegration loss contributes to the learning of the scale.

For the predicted relative pose in the body coordinate ζN = (wN , zN) defined on se(3)

at time N , I define the relative form of the rotation ∆RN , the velocity ∆vN and the
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translation ∆pN respectively as

∆RN := RT
0RN = expwN (3.1)

∆vN := RT
0

(
vGN − vG0

)
= ∆RN vBN − vB0 (3.2)

∆pN := RT
0

(
pGN − pG0 − vG0 ∆TN

)
= pBN − vB0 ∆TN (3.3)

where •G is the parameter in the inertial coordinate, •B is the parameter in the body

coordinate, ∆TN is the elapsed time between two image frames, and pBN = JwN
zN is the

translation part of the relative pose with the left Jacobian of wN denoted as JwN
.

Using IMU preintegration as in equations (2.15)-(2.17), ∆•N can be expressed as

∆R̂N =
N−1∏
k=0

exp (ω̂k∆tk) (3.4)

∆v̂N =
N−1∑
k=0

(∆R̂kâk − gBN)∆tk (3.5)

∆p̂N =
N−1∑
k=0

∆v̂k∆tk +
1

2

N−1∑
k=0

(∆R̂kâk − gBN)∆t2k (3.6)

where ω̂ = ω−ηω is the measured angular velocity, â = a−ηa is the measured acceleration,

and gBN = RNg
G is the gravity in the body coordinate. In this dissertation, I denote ∆•N

as •N from the relative pose and ∆•̂N as that from the IMU measurements to distinguish

those.

From equations (3.1)-(3.6), three equality constraints can be generated: ∆•N = ∆•̂N
where • = R, v, p. To solve those equality constraints, however, the velocity vB0 should

be known. From the equality of the translation p, the closed-form of the velocity can be

obtained as

vB0 =
1

∆TN

(
pBN −∆p̂N

)
(3.7)
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Then, the ∆vN is reformulated as

∆vN = ∆RNv
B
N − 1

∆TN

(
pBN −∆p̂N

)
(3.8)

The calculated velocity vB0 may be noisy because equation (3.7) is the finite difference

of the predicted pose pBN . Therefore, I smooth the translation pBN by moving the average

filter along the temporal axis when calculating the velocity to suppress the noise in the

implementation.

Finally, I obtain the preintegration loss as the norm of two remaining equality con-

straints as

Lrot = λrot

∥∥∥∆RN −∆R̂N

∥∥∥ (3.9)

Lvel = λvel

∥∥∥∆vN −∆v̂N

∥∥∥ (3.10)

where λ• is the hyperparameter for weighting the loss functions and
∥∥∥•∥∥∥ is a norm function.

I adopt the logcosh as a norm function in the implementation to suppress the effect of the

outlier for fast convergence.

3.2.3 Regulation loss

In addition to the scale and ego-motion, both predicted gravity and bias affect the IMU

preintegration loss. If no regulation is performed, gravity and bias can be freely regressed,

so the scale, gravity, and bias may be wrongly estimated. Therefore, I carefully design the

regulation loss of the gravity direction and the bias of IMU.

Gravity regulation

The gravity in the inertial coordinate is assumed constant, and the gravity in the body

coordinate and the ego-motion are coupled. Hence, I design the gravity regulation loss to

express the gravity in the body coordinate using the predicted ego-motion. In the body
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coordinate, the gravity at time N (ĝBN) can be estimated from the gravity predicted by the

network at time 0 (gB0 ) and the rotational ego-motion (∆RN) as

ĝBN = ∆RNg
B
0 (3.11)

Since the magnitude of gravity is constant, I adopt the geodesic distance on the surface

of the sphere as the loss function between the gravity predicted by the network at time N

(gBN) and the estimated gravity ĝBN from (3.11):

Lgrav = λgrav arctan

∣∣gBN × ĝBN
∣∣

gBN · ĝBN
(3.12)

where the symbols · and × are the inner and outer products defined in R3.

The gravity regulation loss has a problem in that it may regulate the ego-motion

∆RN = expwN . To avoid this problem, from the equality constraint from preintegration

formulation, I exchange ∆RN into ∆R̂N as in equation (3.4). In short, gravity regulation

loss affects the gravity direction due to gB0 and the bias of the angular velocity due to ∆R̂N .

Bias regulation

It is known that the bias varies slowly, so most classical visual-inertial navigation methods

construct the bias model as a constant with Gaussian noise. Similarly, I regulate both

angular and linear bias by minimizing the bias difference among adjacent frames as

Lbdiff = λbdiffω

∥∥∥bωN − bω0

∥∥∥2

2
+ λbdiffa

∥∥∥baN − ba0

∥∥∥2

2
(3.13)

In addition to the regulation among adjacent frames, I also regulate the magnitude of

the bias term to avoid bias prediction that is too large. This regulation is expressed as

Lbmag = λbmagω

∥∥∥bωN∥∥∥2

2
+ λbmaga

∥∥∥baN∥∥∥2

2
(3.14)
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To avoid irregular prediction of the bias, λgrav should be small enough in implementation.

3.2.4 Total loss

The total loss function is the linear combination of the above losses: the photometric consis-

tency loss (2.13) with the smoothness loss (2.12), the preintegration loss of the rotational

part (3.9) and the velocity part (3.10), the gravity regulation loss (3.12), and the bias

regulation loss (3.13)-(3.14), as

L = Lphoto + Lsmooth + Lrot + Lvel +

Lgrav + Lbdiff + Lbmag

(3.15)
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3.3 Network Architecture

The proposed approach estimates the depth map, the ego-motion, the gravity direction,

and IMU bias from images and IMU measurements. I design two networks: a depth network

and an odometry network. The depth network estimates the depth map from a single RGB

image. The odometry network estimates the relative pose between two frames, gravity

direction, and IMU bias from the two consecutive images and IMU measurements between

images.

Depth network

I adopt the depth network proposed in [7]. The network has the U-Net structure [46], which

is a fully convolutional encoder-decoder structure with skip-connection. I select ResNet18

[20] as an encoder. The depth network receives a single image, and no IMU information is

received. The proposed depth network can estimate the scale by learning the scale using

the preintegration loss during the training step.
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Odometry network

I design an odometry network emitting relative pose, IMU bias, and gravity direction. Fig.

3.2 shows the outline of the proposed odometry network. The odometry network consists

of a visual encoder, inertial encoder, feature fusion and several decoders.
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Figure 3.2: The overview of the proposed odometry network. The network receives a pair
of consecutive images and IMU measurements between images. Then, the network emits
the relative pose between images, the direction of gravity in the body coordinate, and the
bias of the IMU measurements.

Visual encoder: I select ResNet18 [20] as a visual encoder, which is almost the same

as that of the depth network. As input, two consecutive images stacked along the channel

axis are provided.
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Inertial encoder: I adopt bidirectional LSTM for encoding the IMU measurements.

Because IMU measurements are stacked between two image frames, they have a temporal

meaning, so a recurrent neural network is selected. Fig. 3.3 and table 3.1 show the flowchart

and detail of the inertial encoder.
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Figure 3.3: The flowchart of the inertial encoder. The inertial encoder has 3 bidirectional
LSTM and 1 dense layer. Each bidirectional LSTM layer has two LSTM layers with reversal
directional flow.

layer chns out input
→imu - BxTxn -
bilstm1 128 BxTx128 imu
bilstm2 128 BxTx128 bilstm1
bilstm3 128 Bx128 bilstm2
dense 128 Bx128 bilstm3
norm - Bx128 dense
relu→ - Bx128 norm

Table 3.1: The detail of the inertial encoder. layer is the name of layer, chns is the number
of channels, out is the shape of output and input is the name of input layer. → (· · · ) is
the input of this network, (· · · ) → is the output of this network, B is the batch size and T
is the time step of IMU.
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Feature Fusion: The feature fusion part of the network aims to merge visual and

inertial features provided by each encoder. I focus on balancing each feature to avoid a

feature being ignored. Firstly, I add a single dense layer for each network. Then, I normalize

each feature by layer normalization [62] for each feature to have a similar magnitude. Then,

both features are concatenated to be fused as a single feature. Fig. 3.4 shows the flowchart

of the fusion, and table 3.2 shows the detail of the fusion.

Visual feature

Inertial feature

flatten

dense

dense

normalize

normalize

concat

fused feature

Figure 3.4: The flowchart of the feature fusion part. Each feature passes the dense layer
and is normalized. Then, two features are concatenated.

layer chns out input
→visual f - BxHxWx512 -
flatten - Bx512HW visual f
dense v 256 Bx256 flatten
norm v - Bx256 dense v
relu v - Bx256 norm v
→inertial f - Bx128 -
dense i 128 Bx128 inertial f
norm i - Bx128 dense i
relu i - Bx128 norm v

concat→ - Bx384 relu v
relu i

Table 3.2: The detail of the fusion part. layer is the name of layer, chns is the number of
channels, out is the shape of output and input is the name of input layer. → (· · · ) is the
input of this network, (· · · ) → is the output of this network, B is the batch size and W,H
is width and height of the visual feature.
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Decoder: Several decoders receive the same feature from the feature fusion part and

emit the final output, respectively. Each decoder contains 7 dense layers with the same

channels except the last layer to decode the fused feature. Each decoder has an additional

activation to properly constrain the output. In general, the input and output of the network

have a magnitude of around 1, so the scalar hyperparameter may be multiplied into the

output. Additionally, special activation is applied to some outputs if necessary. Table 3.3

shows the detailed architecture of the decoder.

layer chns out input act
→feature - Bx384 - -
dense1 256 Bx256 feature relu
dense2 256 Bx256 dense1 relu
dense3 128 Bx128 dense2 relu
dense4 128 Bx128 dense3 relu
dense5 64 Bx64 dense4 relu
dense6 64 Bx64 dense5 relu
dense7→ D BxD dense6 custom

Table 3.3: The detail of the decoder. layer is the name of layer, chns is the number of
channels, out is the shape of output, input is the name of input layer and act is the
activation function of the layer. → (· · · ) is the input of this network, (· · · ) → is the output
of this network, B is the batch size. The number D and the custom activation function are
different according to the type of output, i.e., D = 6 and custom is relu for bias.

For the gravity direction, I regress a 2-dof vector on the spherical coordinate because

the magnitude of the gravity is fixed. For fast convergence of gravity prediction, the gravity

direction is converted considering the nominal gravity direction in the robot platform by

initializing the network bias as zero. For instance, if the nominal gravity direction heads

the z-axis like the KITTI dataset, the activation for the gravity direction is

gB =
∥∥∥g∥∥∥


sin θ cosϕ

sin θ sinϕ

cos θ

 (3.16)

where
∥∥∥g∥∥∥ is the magnitude of gravity implemented as 9.81.
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For the relative pose, I regress 7-dof vector of logarithm forms of the translation z̃,

rotation ω and the pseudo-scale s for the ego-motion (z, ω) on the Lie algebra of the special

Euclidean group as

z = z̃ × exp s (3.17)

Here, the pseudo-scale exp s is not a real-world scale because the magnitude of the trans-

lation z̃ is not constrained.
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3.4 Data augmentation

For deep-learning applications, data augmentation has been widely performed to generate

additional data from a given dataset. In this section, I describe our data augmentation.

3.4.1 Image augmentation

I perform image augmentation at 50% probability, by changing the brightness, contrast,

saturation, and hue. If image augmentation is performed, I randomly select values from

uniform distribution: brightness ∈ [0.8, 1.2], contrast ∈ [0.8, 1.2], saturation ∈ [0.8, 1.2] and

hue ∈ [−36, 36]. Then, all the images in the sequence are converted with the same type of

augmentation.

3.4.2 Left-right flip augmentation

Flip augmentation is a common augmentation method for deep-learning-based visual appli-

cations. Because the gravity usually heads downwards in the camera view, only a left-right

direction flip is performed to conserve the nominal direction of gravity.

Unlike image augmentation, IMU measurements should also be converted for this flip

since the ego-motion in the coordinate of the flipped camera is changed. To handle this

issue, I convert IMU measurements to justify the ego-motion obtained from the integration

of IMU measurements in the flipped coordinate.

Ego-motion in the flipped coordinate

I revisit the epipolar geometry generated from the motion in equation (2.4) to get the ego-

motion in the flipped coordinate. For arbitrary 2-dimensional similarity transformation, V

in a homogeneous notation, the epipolar geometry of the warped coordinate is given as

(V p̃L)
TR [t]X V p̃R = 0 (3.18)

41



where p̃ is the point in the normalized image coordinates of the warped image. For simplicity,

let’s assume V has no translation. Then, since V V T = I detV , the epipolar geometry could

be expressed as

p̃TL
(
V −1RV

) (
V −1 [t]X V

)
p̃R = 0 (3.19)

Thus, the ego-motion in the flipped coordinate (R̃, t̃) is given as

R̃ = V −1RV (3.20)

t̃ = κV −1t (3.21)

where κ is any positive scalar value to express the scale factor.

IMU measurement in the flipped coordinate

For notation simplicity, Let’s assume the IMU measurements are aligned to the camera

coordinates using the extrinsic calibration parameter.

For rotation, from equation (3.20),

exp(w̃) = V exp(w̃)V −1 (3.22)

to satisfy equation (2.15) with arbitrary ∆tk. Then,

w̃ = unhat(V hat(w)V −1) (3.23)

where hat(•) and unhat(•) are hat operation about the cross product and inverse operation

of the hat operation.

Because V is a left-handed rotation matrix, w̃ ̸= V −1w. Instead, when V = diag(−1, 1, 1),

the expression is simplified as

w̃ = −V w (3.24)
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For translation, I merge equations 2.16 and 2.17 for simplicity as

pGi = pG0 +NvG0 +
1

2

i−1∑
k=0

Ni(Rkak − gG)∆t2k (3.25)

where N and Ni is some scalar constant. Then, from equation (3.21) with κ = 1,

ã = V a (3.26)

g̃G = V −1g (3.27)

for arbitrary ∆tk and R.

For the camera-IMU extrinsic parameter T , the IMU measurement is converted as

w̃ = −T TV Tw (3.28)

ã = T TV Ta (3.29)
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4
Experimental Validation

I first perform the validation in the KITTI dataset. Firstly, I perform two ablation studies

to show whether the proposed loss function contributes to learning the scale. Then, I show

the depth performance based on the Eigen split and the pose performance based on the

odometry split. Next, I validate the proposed method in indoor environments with the

automobile platforms at the underground parking lots.

4.1 Performance indices

In this section, I describe the performance indices for depth and odometry validation in the

XY-plane considering automobile applications. For monocular methods that cannot predict

the scale, the scale is directly taken from the ground-truth.

4.1.1 Depth Validation

For the depth validation, five performance indices have been widely reported: absolute

relative error (Abs Rel), square relative error (Sq Rel), root mean square error (RMSE),
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log scale root mean square error (RMSE log), and accuracy (δ). The ratio of pixels is

reported whose accuracy is less than 1.25, 1.252, and 1.253, respectively.

Abs Rel = E


∣∣∣d− d̂

∣∣∣
d

 (4.1)

Sq Rel = E


(
d− d̂

)2

d

 (4.2)

RMSE =

√
E

((
d− d̂

)2
)

(4.3)

RMSE log =

√
E

((
log d− log d̂

)2
)

(4.4)

accuracy(δ) = max

d

d̂ ,

d̂

d

 (4.5)

where d is ground-truth depth, d̂ is predicted depth, and E(•) is the average of •.
For the methods with no scale prediction, the scale is taken from the ground-truth depth

in the same manner as [4], which is the ratio of estimated median depth to ground-truth

median depth:

sdepth =
median(d)

median(d̂)
. (4.6)
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4.1.2 Pose Validation

In the odometry validation, average trajectory error (ATE) and relative pose error (RPE)

are some famous performance indices as

ATEi = P−1
i SP̂i (4.7)

RPEi =
(
P−1
i Pi+1

)−1
(
P̂−1
i P̂i+1

)
(4.8)

where Pi, P̂i are the ground-truth and the predicted pose in the inertial coordinate, and S

is a time-invariant rigid body transformation for the alignment. I compute RMSE of the

translation and the average of the rotation part as

∗tr = argminS

√
1

N

∑
i

∥•∥2tr (4.9)

∗rot =
1

N

∑
i

∥•∥rot (4.10)

where ∗ is ATE or RPE, ∥·∥tr is the Euclidean 2-norm of the translation part of the rigid

body matrix, and ∥·∥rot is the Euclidean 2-norm of the logarithm of the rotation matrix of

the rigid body matrix.

For the methods with no scale prediction, a single scale value is taken from the ground-

truth ego-motion across the whole trajectory by the least square solution minimizing the

translation part of RPE as

spose =

∑
i Pi · P̂i∑
i Pi · Pi

(4.11)

where · is a standard inner product in R3.

Since the experimental validation is performed on the automobile applications, the

odometry performance is validated in the xy-place for the qualitative analysis.
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4.2 Experimental Validation in the KITTI dataset

4.2.1 KITTI Dataset

I validate the proposed algorithm in the KITTI dataset [56]. The KITTI dataset is a widely

used dataset that contains stereo images, IMU/GPS navigation, and LIDAR information.

The KITTI dataset collects the dataset by the car in the town. Thus, the dominant motion

of the vehicle is forward-directional linear motion and yaw-directional rotational motion.

In this dissertation, raw data from the KITTI dataset is collected like most deep-

learning-based monocular depth estimation methods. KITTI provides raw data in two

types: unsynced+unrectified and synced+rectified. In general, the synced+rectified dataset

is selected since it provides a pair of rectified stereo images, the ego-motion, and the Velo-

dyne points at a single time point with 10Hz frequency.

However, the synced+rectified dataset provides 10Hz IMU measurements, which is the

same frequency as the images. Since high-frequency IMU data is required to integrate

IMU measurements for ego-motion estimation, IMU data in synced+rectified is unable

to utilize for visual-inertial odometry. Therefore, I collect the IMU data from the un-

synced+unrectified dataset provided by 100Hz frequency. Since those IMU measurements

are raw data, it is possible to collect less or more than 10 measurements between two im-

ages. In that case, I insert dummy IMU measurements with zero elapsed time or merge

several IMU measurements to make exactly 10 measurements between images.

To validate the learning-based algorithm, I should split the dataset into the train split

and test split. For the depth estimation, I follow the Eigen split [1], one of the most

famous splits for monocular depth estimation. For the pose estimation, I collect the KITTI

odometry dataset [63]. I divide the 00-08 sequences as a train set and the 09-10 sequences

as a test set. I drop the 03 sequence since no raw data is provided, so no high-frequency

IMU measurements are provided.

47



4.2.2 Implementation Detail

In this section, I describe the detailed hyperparameter about the networks, the loss func-

tions, and the optimization setup in the implementation for experimental validation using

the KITTI dataset.

Network detail

As mentioned in section 3.3, each output of the decoder is multiplied by the following

heuristic value.

• Angular part of the ego-motion: 1e-2

• Translation part of the ego-motion: 1e-2

• Pseudo-scale of the ego-motion: 1e0

• Gravity direction as angles: 3e-1

• IMU bias (angular part): 1e-2

• IMU bias (acceleration part): 1e-1

The proposed odometry network has three separate decoders emitting the angular part

of the ego-motion, the translation part of the ego-motion, and the pseudo-scale of the ego-

motion. Due to this separated decoder strategy, tuning the heuristic values is almost not

necessary.
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Loss detail

To train the network, I use the ADAM [64] optimizer. The learning rate is 4e-5 at the

beginning of the training and decreased by the inverse time policy with 0.98 ratios. Addi-

tionally, each loss function has the weighting parameter determined by the heuristic way

as

• Photometric consistency loss: 1

• Depth smoothness loss: 1e-2

• Preintegration loss (angular part): 4e3

• Preintegration loss (velocity part): 4e1

• Gravity regulation loss: 4e0

• Bias difference regulation loss (angular part): 1e2

• Bias difference regulation loss (acceleration part): 1e2

• Bias magnitude regulation loss (angular part): 1e-2

• Bias magnitude regulation loss (acceleration part): 1e-2

Dataset detail

I collect all train data and randomly select approximately 1,100 sequences for each epoch.

Each sequence consists of 8 consecutive images and 10 IMU measurements observed be-

tween two consecutive images. I iterate 200 epochs to train the networks, which takes

approximately 40 hours in titan Xp GPU environments.
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4.2.3 Ablation study

In the ablation study, I check the effectiveness of the proposed loss function. The first

ablation study is intended to check whether the preintegration loss contributes to estimating

a real-world scale. The second ablation study focuses on the bias regulation loss function

described.

Ablation Study: Preintegration loss

In this ablation, I employ the proposed network architecture which receives both image

and IMU as input but turn off the preintegration loss function.

Table 4.1 shows the depth performance result. For no preintegration case, the relative

depth seems good if the scale is taken from the ground-truth, but the raw depth is quite

bad. On the other hand, the proposed method shows reasonable performance even in the

raw depth case.

Methods Scalea Abs Rel RMSE δ < 1.25 δ < 1.252

No preint
RAW 2.5265 35.208 0.0129 0.0349

from GT 0.1560 6.9432 0.7758 0.9157

proposed
RAW 0.1408 5.4352 0.8038 0.9421

from GT 0.1252 5.1737 0.8579 0.9530

aScale column represents whether the method obtains the real-world scale from the
ground-truth or not: ‘RAW’ means the real-world scale is estimated and ’from GT’ means
the scale is taken from the ground-truth depth as in (4.6) for each frame.

Table 4.1: The depth performance for the ablation study about preintegration loss function.

Fig. 4.1 is the scale prediction result of this ablation study, which shows that only the

proposed method converges to the real-world scale value. I can conclude that without the

preintegration loss, the relative depth can be trained due to the photometric consistency

loss like self-supervised monocular methods, but the real-world scale is not learned.
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Figure 4.1: The histogram of the predicted scale from the predicted depth among frames
calculated by equation (4.6) for the ablation study about the preintegration loss function.
If the method estimates the real-world scale, the value should be one. (·) next to denotes
the training data: (M) is monocular sequence, (S) is stereo sequence and (MI) is monocular
sequence with IMU measurement.

Ablation Study: Bias regulation loss

In this ablation, I utilize the proposed network architecture which receives both image and

IMU as inputs, but I turn off both bias regulation loss functions.

Fig. 4.2 shows the top-down view of the predicted trajectory depending on whether the

bias regulation loss is on. Without the bias regulation loss, the scale prediction is wrong.

As shown in figs. 4.3-4.4, the magnitude of the bias is too large, and the bias tends to follow

the motion of the vehicle.
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Figure 4.2: Top-down view of the predicted trajectory of KITTI odometry split from the
trained network for the ablation study concerning the bias regulation loss function.
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Figure 4.3: The bias prediction result at the KITTI odometry 09 for the ablation study
about the regulation loss function.
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Figure 4.4: The bias prediction result at the KITTI odometry 10 for the ablation study
about the regulation loss function.
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4.2.4 Depth performance validation

I validate the performance of depth prediction in the KITTI Eigen split. KITTI Eigen split

has 697 images as the test image.

Quantitative Analysis

For quantitative analysis, I calculate the performance indices based on the ground-truth

depth from Velodyne points for each test image. Since the Velodyne points provide sparse

depth, I compare the pixels whose depth is available.

Table 4.3 shows the depth prediction performance of the proposed algorithm and state-

of-the-art algorithm. The proposed method is less accurate than the state-of-the-art meth-

ods. However, it should be noted that the proposed method runs on monocular sequences

with IMU measurements, which can be more easily collected than the stereo methods.

Furthermore, the proposed method can predict the scale, which cannot be done by self-

supervised monocular methods.

Fig. 4.5 shows the scale prediction result from the predicted depth with the statistic

information in table 4.2. In this figure, the scale can be predicted by the proposed method

and monodepth(S) that is the self-supervised stereo method. On the other hand, the self-

supervised monocular methods, i.e., monodepth2(M) and sfmlearner(M), cannot estimate

the scale.

Methods E(s) σ(s) E(log(s)) σ(log(s))
sfmlearner(M) 0.1178 0.0303 -2.1656 0.2219

monodepth2(M) 0.0320 0.0029 -3.4462 0.0891
monodepth2(S) 0.9642 0.0629 -0.0385 0.0656
proposed(MI) 0.9569 0.0960 -0.0490 0.1001

Table 4.2: The scale prediction result among frames calculated by equation (4.6). For scale
s, E(•) is the average and σ(•) is the standard derivation.
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Figure 4.5: The histogram of the scale from the predicted depth among frames calculated
by (4.6). If the method estimates the real-world scale, so the value should be one. (·) next
to denotes the training data: (M) is monocular sequence, (S) is stereo sequence and (MI)
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Qualitative analysis

In qualitative analysis, I compare the proposed method with other methods: monodepth2(M)

from [7] with the self-supervised approach using monocular sequences, monodepth2(S) from

[7] using stereo sequences and sfmlearner(M) from [4]. Since monodepth2(M) and sfm-

learner(M) have no scale information, their scale is taken from the ground truth as in

equation (4.6). For the ground-truth depth data, I perform bilinear interpolation for better

visualization. For that reason, some depths in ground-truth seem to be irregular.

Fig. 4.6 shows the depth map predicted from a single image. In this figure, the results

of the proposed method, monodepth2(M), and monodepth(S) correctly capture cars, trees,

buildings, etc. In addition, they are qualitatively similar to the ground-truth color. Here,

it should be noted that monodepth2(M) and sfmlearner(M) yield no scale information, so

the scale used in those methods is taken from the grond-truth depth. On the other hand,

no ground-truth information is given to the proposed method and monodepth2(S).

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(a) Open road with bicycle
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(b) Open road

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(c) Tree-lined street
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(d) Traffic sign in right region

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(e) Road with parking cars
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(f) Road between buildings

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(g) Tree in right region
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(h) Bridge

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(i) Intersection
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(j) Town

image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(k) Tree-lined street
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image ground-truth

sfmlearner(M)[4] proposed(MI)

monodepth2(S)[7] monodepth2(M)[7]

(l) Uptown

Figure 4.6: The depth prediction result on the Eigen split for qualitative comparison. The
depth of ground-truth is generated from the LiDAR data with bilinear interpolation, and
other methods are collected from the results provided by the authors of [4, 7]. (·) next to
denotes the training data: (M) is monocular sequence, (S) is stereo sequence, and (MI) is
monocular sequence with IMU measurement. For the methods with (M), because no scale
is estimated, the scale is taken from the ground-truth depth as in (4.6).
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4.2.5 Pose performance validation

I test the pose prediction in the KITTI odometry split. The odometry 00-08 are collected

as the train data, and 09-10 are collected as the test data. In this dissertation, odometry

03 is dropped since high-frequency IMU data is not provided.

Like depth performance, I perform two validations. One is the quantitative analysis

based on the performance indices to show the overall performance of pose estimation. The

other is the qualitative analysis by comparing the estimated top-down trajectory result.

Quantitative analysis

In table 4.4, the proposed method shows comparable performance to other state-of-the-

art methods, considering that self-supervised monocular methods and classical monocular

visual navigation methods cannot predict the scale, so the scale from the ground-truth pose

was used.

For the scale analysis using the predicted pose, I define frame-wise scale using the

relative pose as

si :=
∥zi∥
∥ẑi∥

(4.12)

where si is the scale at i-th frame, ζi = (wi, zi) is the relative pose represented as se(3)

with rotation wi and translation zi.

Figs. 4.7-4.8 and tables 4.5 show the scale prediction result from the predicted pose.

For odometry 09, both visual-inertial methods show accurate scale prediction results. In

contrast, the scale prediction at odometry 10 is not good. The proposed method seems

to be good concerning the histogram in Fig. 4.8, but the average of the scale is bad. It is

because the proposed method degrades the ego-motion prediction at 110 seconds, as in Fig.

4.14.
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Methods Scalea Datab ATE(m) ATE(◦) RPE(m) RPE(◦)
dmonodepth2[7] N/A Selfsup(M) 147.750 21.2581 0.0821 0.0500
dsfmlearner[4] N/A Selfsup(M) 136.811 24.5313 0.1496 0.0678
dmonodepth2[7] Predicted Selfsup(S) 133.274 19.0951 0.0701 0.0528
dFeatDepth[67] Predicted Selfsup(S) 72.149 10.6586 0.0655 0.0421
eORB-SLAM3[8] N/A Mc 22.463 0.2975 0.2781 0.0202
eVINS-MONO[9] Predicted MI 30.142 0.9943 0.1251 0.0267
proposed Predicted Selfsup(MI) 26.241 2.1733 0.1705 0.0380

(a) Odometry 09

Methods Scalea Datab ATE(m) ATE(◦) RPE(m) RPE(◦)
dmonodepth2[7] N/A Selfsup(M) 132.529 26.5673 0.0897 0.0527
dsfmlearner[4] N/A Selfsup(M) 174.491 35.8786 0.1834 0.1038
dmonodepth2[7] Predicted Selfsup(S) 149.966 30.4696 0.0747 0.0608
dFeatDepth[67] Predicted Selfsup(S) 131.944 25.3016 0.0788 0.0586
eORB-SLAM3[8] N/A Mc 20.040 2.7212 0.0462 0.0607
eVINS-MONO[9] Predicted MI 108.240 3.4176 0.1864 0.0704
proposed Predicted Selfsup(MI) 63.664 6.9489 0.2493 0.0427

(b) Odometry 10

aScale column represents whether the method predicts the real-world scale or not:
‘Predicted’ means that the real-world scale is estimated and ‘N/A’ means that the scale
cannot be predicted, so the scale is taken from the ground-truth pose as in (4.11) across
the trajectory.
bData column represents the training method and utilized data: ‘Selfsup(M)’ is the
self-supervised learning method with monocular sequences, ‘Selfsup(MI)’ is the
self-supervised learning method with monocular sequences and the IMU measurements,
‘M’ is classical monocular navigation, and ’MI’ is classical monocular-inertial navigation.
cDue to the IMU initialization issue, monocular visual-inertial odometry failed. So
instead, the monocular visual odometry is performed.
dThe performance is obtained based on the weight provided by the authors of [4, 24, 67].
eThe performance is obtained based on the code provided by the authors of [8, 9].

Table 4.4: Pose estimation performance in KITTI odometry dataset.
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Methods E(s) σ(s) E(log(s)) σ(log(s))
sfmlearner(M) 0.1586 0.0222 -1.8519 0.1477

monodepth2(M) 0.0343 0.0023 -3.3751 0.0698
ORBSLAM3(M) 0.0482 0.0120 -3.0730 0.3298
VNISMONO(MI) 1.0631 0.2229 0.0530 0.1127

proposed(MI) 1.0119 0.1957 -0.0044 0.1750
(a) odometry 09

Methods E(s) σ(s) E(log(s)) σ(log(s))
sfmlearner(M) 0.2658 0.3491 -1.5290 0.4811

monodepth2(M) 0.0437 0.0273 -3.1957 0.2895
ORBSLAM3(M) 0.0686 0.0045 -2.6812 0.0643
VNISMONO(MI) 1.1592 0.1782 0.1352 0.1617

proposed(MI) 2.0088 4.3792 0.2942 0.6159
(b) odometry 10

Table 4.5: The scale prediction result from the predicted pose among frames calculated by
equation (4.12). For the scale s, E(•) is the average and σ(•) is the standard derivation.
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Qualitative analysis

For qualitative analysis, I provide two types of information. The first one is the top-down

trajectory of the whole trajectory. Since the KITTI dataset contains the movement of

the car, major motion is generated on the XY-plane. The second one is the relative pose

estimation result represented as se(3) group.

Fig. 4.9 shows the top-down view of the predicted result. Since some classical methods

provide no odometry information at the first step, I discard first few frames for fair com-

parison. The proposed method shows reasonable performance when compared with other

methods, especially deep-learning-based methods.
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Figs. 4.11 - 4.14 show the relative pose estimation of odometry 09 and 10. All meth-

ods follow the tendency of the ground-truth trajectory. In odometry 09, ORBSLAM3(M)

follows the trajectory but vibrates the relative ego-motion estimation along the x-axis.

In the odometry split 10, learning-based methods except the proposed method tend to

underestimate the yaw directional rotation at 90 seconds.

When I focus on the beginning of the trajectory, VINSMONO [9] shows poor perfor-

mance before 5 seconds, as in fig. 4.10, perhaps due to the IMU initialization issue. For a

car-driving case like the KITTI dataset, it is difficult to initialize IMU with a monocular

camera because the motion of the vehicle is homogeneous. For this reason, the error of

VINSMONO is large in the beginning, and ORB3-SLAM [8] with the monocular-inertial

mode fails in this example.
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Figure 4.9: The top-down view of the estimated trajectory of the KITTI odometry dataset.
(·) next to the method denotes the training data for the deep-learning-based method or
the operating data for the classical navigation: (M) is monocular sequence, and (MI) is
monocular sequence with IMU measurements. For the methods with (M), because no scale
is estimated, the scale is taken from the ground-truth as in (4.11). Each trajectory is aligned
by fixing the initial point at origin.
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Velocity prediction

The proposed method predicts the velocity using the finite differential as in equation (3.7).

In this section, I calculate the velocity using the equation (3.7) using the trained pose

network assuming trained. To check the effect of the smoothness, I calculate the velocity

both at the single point and moving average concept like training step. In fig. 4.15, the

forward and sideway directional velocity seems to be good. The prediction performance is

degraded at 0-5 seconds and 120-160 seconds of the odometry 09 and 110-125 seconds of

the odometry 10. In that time, the ego-motion prediction performance is also degraded, as

in fig. 4.12 and 4.14. In addition, the raw velocity prediction result, the blue line in fig.

4.15 is a little noisy, although the ego-motion is converged.

Gravity prediction

The proposed method predicts the gravity in the body coordinate. In this section, I compare

the ground-truth gravity calculated from the ground-truth ego-motion of the vehicle. Fig

4.16 shows the gravity prediction result.

Computational time

I calculate the computational time in the proposed method. I use the 512 × 160 image as

an input. The computational power is i7-5790K@3.50GHz and GTX2080ti. The proposed

method is implemented as the tensorflow library. To check the bottleneck of the parallel

computation, the batch size is set as 1 and 32.

# of params
GPU+CPU CPU only

batch/1 batch/32 batch/1 batch/32
depth 14,338,836 9.70 ms 1.77 ms 39.75 ms 37.07 ms

odometry 24,050,511 13.86 ms 3.03 ms 30.35 ms 19.31 ms
pose 23,371,463 12.79 ms 3.14 ms 30.08 ms 19.35 ms

Table 4.6: The runtime of the proposed method during inference. Pose network is the
odometry network that removes the decoder of gravity and bias.
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Figure 4.15: The velocity prediction result using the proposed method in the IMU body
coordinates. (x: forward direction, y: left direction, z: upward direction)
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Figure 4.16: The gravity prediction result using the proposed method. The error is the
angle of predicted gravity and ground-truth gravity. (x: forward direction, y: left direction,
z: upward direction)
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4.3 Experimental Validation in the Indoor Dataset

4.3.1 Dataset collection

In addition to the KITTI dataset, I validate the proposed algorithm in the indoor environ-

ment. For that, the device was built as in fig. 4.17 and equipped on the car. The car was

driving in the underground parking lots to collect the dataset. The detailed specifications

of the device are in table 4.7.

(a) The device for data collection (b) The example of the collected
image

Figure 4.17: The device to collect the data and example of collected data of the indoor
dataset.

Model name Freq. etc
Camera mvBlueCOUGAR 10Hz Stereo system
IMU Microstrain 3DM-G3X-25 250Hz

LiDAR Velodyne VLP32C UltraPuck 10Hz

Table 4.7: The list of specifications of the device to collect the data.

Like the KITTI dataset, I utilize a single monocular camera and IMU sensor during

both the training and inference step for the proposed method. The stereo and LiDAR

are utilized to generate an accurate depth and pose information to validate the proposed

method.

I would like to express my appreciation to my colleague Changhyeon Kim to provide

great dataset without any hesitation before the dataset is published.
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4.3.2 Dataset detail

Since no ground-truth data exists, I generate the reference information using the stereo/LiDAR

sensors. For the reference trajectory, the stereo visual-inertial SLAM algorithm is utilized.

In detail, I tried stereo-inertial ORBSLAM3, stereo ORBSLAM3, and stereo-inertial VINS-

MONO using various parameters. Then, I select the best trajectory as a reference trajec-

tory. In addition, the obtained trajectories are plotted on the floor plan of the building for

qualitative evaluation.

The car attached to the device was driven in the underground parking area of Seoul

National University, building 39. For training purposes, four driving data at the under-

ground parking area were additionally collected in building 39. Each driving data contains

1000-1600 images in approximately 2 minutes. Fig. 4.18 shows the trajectory of the test

driving dataset.

For depth data, LiDAR data is utilized to generate the reference depth for validation.

Since the collected LiDAR and image are not captured at the same time, I compensate

for the time difference between the LiDAR and the image using the reference trajectory

obtained above. However, due to the error of the trajectory prediction, some drift of depth

prediction exists. In addition, the depth of the moving object may be inaccurate. Thus, in

this experiment, I only perform a qualitative study about depth prediction.
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Figure 4.18: The reference trajectory of test driving in the underground parking area of
Seoul National University, building 39. The vehicle starts at (0, 0, 0), circles two times
around at B2 (red), goes to B3 (green), circles two times around at B3 (yellow), and goes
back to B2 (purple). In the floor plane, the black rectangle box is a pillar, a blue dotted
line is a parking area, and the solid black line is a wall.
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4.3.3 Pose performance validation

For validation, the trajectory generated by stereo-inertial ORBSLAM3 is provided for refer-

ence trajectory. For the comparison with the classical navigation methods, ORBSLAM3[8]

and VINSMONO[9] are performed with monocular-visual mode. I turn on/off loop-closing

module of both methods since this dataset repeatedly moves across some regions. For com-

parison with the learning-based method, I train monodpeth2[7], both monocular denoted

as monodepth2(M) and stereo denoted as monodepth2(S), using the code provided by the

author of [7] in Github with the default parameter. During training, same data are used

as the proposed method, but IMU measurements are dropped for both monodepth2(M)

and monodepth2(S), and stereo sequences are given instead of monocular sequences for

monodepth2(S).

Fig. 4.19 shows the overall trajectory. It seems that classical methods have better pre-

diction result compared with the learning-based method. All monocular-inertial methods,

including the proposed method, can predict the scale of the trajectory.

For deep analysis, I split the trajectory into two parts. The first trajectory starts from

B2, rotates B2 two times, and then goes into B3, as in fig. 4.20. The last trajectory starts

from B3, rotates B3 two times, and then goes into B2, as in fig. 4.21.

For the first trajectory as in fig. 4.20, the proposed method shows drifts at the end of the

trajectory, in which the car moves from B2 to B3. In the other regions, the proposed method

shows a competitive result compared with classical monocular visual-inertial methods.

For the second trajectory as in fig. 4.21, the proposed method has continual drifts along

the z-axis. However, it shows comparable results compared with classical monocular visual-

inertial methods considering the top-down view. It is because the proposed method drifts

along the pitch angle with comparable prediction along other axes.

In comparison with monodepth2(M) and monodepth2(S), the proposed method shows

more accurate trajectory prediction, especially yaw-direction prediction. In addition, the

scale of the proposed method is accurate compared with the monodepth2(S).
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ORB-SLAM3 (SI)

ORB-SLAM3 (MI)

ORB-SLAM3 (MI)[LC]

proposed (MI)

monodepth2 (M)

monodepth2 (S)

VINS-MONO (MI)

VINS-MONO (MI)[LC]

Figure 4.19: The predicted trajectories in the indoor dataset (whole). (·) next to the method
denotes the training data for the deep-learning-based method or the operating data for the
classical navigation: (SI) is stereo sequence with IMU measurements, (S) is stereo sequence,
(MI) is monocular sequence with IMU measurements, and (M) is monocular sequence.
The method with [LC] has loop closing ability. For monodepth2(M), because no scale is
estimated, the scale is taken from ORB-SLAM3(SI) as in (4.11). Each trajectory is aligned
by fixing the initial point at origin.
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Figure 4.20: The predicted trajectories in the indoor dataset (first part: B2, B2→B3). (·)
next to the method denotes the training data for the deep-learning-based method or the
operating data for the classical navigation: (SI) is stereo sequence with IMU measurements,
(S) is stereo sequence, (MI) is monocular sequence with IMU measurements, and (M) is
monocular sequence. The method with [LC] has loop closing ability. For monodepth2(M),
because no scale is estimated, the scale is taken from ORB-SLAM3(SI) as in (4.11). Each
trajectory is aligned by fixing the initial point at origin.
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ORB-SLAM3 (SI)

ORB-SLAM3 (MI)

ORB-SLAM3 (MI)[LC]

proposed (MI)

monodepth2 (M)

monodepth2 (S)

VINS-MONO (MI)

VINS-MONO (MI)[LC]

Figure 4.21: The predicted trajectories in the indoor dataset (second part: B3, B3→B2).
(·) next to the method denotes the training data for the deep-learning-based method or the
operating data for the classical navigation: (SI) is stereo sequence with IMU measurements,
(S) is stereo sequence, (MI) is monocular sequence with IMU measurements, and (M) is
monocular sequence. The method with [LC] has loop closing ability. For monodepth2(M),
because no scale is estimated, the scale is taken from ORB-SLAM3(SI) as in (4.11). Each
trajectory is aligned by fixing the initial point at the prediction point of ORB-SLAM3(SI).
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Gravity prediction

The proposed method predicts the gravity in the body coordinate. In this section, I compare

the reference gravity calculated from the reference ego-motion obtained by stereo-inertial

SLAM. Fig 4.22 shows the gravity prediction result. The proposed method seems to follow

the tendency of the reference gravity, but the error grows at 175-200 seconds. At that time,

the vehicle moves from B3 to B2, the purple line in fig. 4.18.
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Figure 4.22: The gravity prediction result in the indoor dataset.
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4.3.4 Depth performance validation

For validation, I process the LiDAR information to obtain the sparse depth. For better

visualization, I perform bilinear interpolation using the sparse depth, so some points seem

to be irregular. For comparison, I learn monodpeth2[7]. I trained the network of monodepth2

using the author’s provided code with the default parameter and the same dataset for both

monocular and stereo methods.

Fig. 4.23 shows the depth prediction result of the proposed method and monodepth2

provided by the authors of [7]. Since monodepth2 with monocular training denoted as mon-

odepth2(M) cannot predict the metric scale, I take the metric scale from the LiDAR mea-

surement as in (4.6). The proposed method can predict geometric information such as pillars

(a)/(b)/(c)/(h)(i), cars (h), entrances/exits (e)/(k), and walls (d)/(f) like monodepth2. The

proposed method predicts the scale from monocular images and IMU measurements, but

monodepth2 needs stereo images during the training step, otherwise it cannot predict the

scale information.

image ground-truth

0

10

20

30

40

47

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(a) passage in B2

89



image ground-truth

0

5

10

15

20

25

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(b) passage in B2

image ground-truth

0

2

4

6

8

10

12
13

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(c) turnning motion in B2

90



image ground-truth

0

2

4

6

8
9

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(d) edge of the wall

image ground-truth

0

5

10

15

20

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(e) entrance into B3

91



image ground-truth

0

2

4

6

8
9

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(f) spatial motion

image ground-truth

0

5

10

15

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(g) downward slope

92



image ground-truth

0

5

10

15

20

25

30

35

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(h) passage in B3

image ground-truth

0

5

10

15

20

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(i) passage in B3

93



image ground-truth

0

5

10

15

20

24

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(j) car in the pillar

image ground-truth

0

5

10

15

(m)

monodepth2(M)[7] monodepth2(S)[7] proposed

(k) exit of B2
Figure 4.23: The depth prediction result on the indoor dataset. The depth of ground-truth is
generated from the LiDAR data with bilinear interpolation, and monodepth2 is trained by
me using the author’s provided code. (·) denotes the training data: M is monocular image, S
is stereo image, and MI is monocular image with IMU measurement. Since monodepth2(M)
estimates no scale information, the scale of it is taken from the LiDAR as in equation (4.6).
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5
Conclusion

In this dissertation, I propose self-supervised monocular depth estimation and odometry

which addresses the scale ambiguity issue with raw IMU measurements. I design the loss

function and network architecture to learn the scale information from IMU measurements. I

show that the proposed method provides the estimated scale with comparable performance

in the KITTI dataset and the additional experiment using an actual vehicle.

The proposed method, like self-supervised monocular methods, can train the network

using the same type of data used for the inference, i.e., the proposed method can train

from the data collected during the inference. This suggests the possibility to extend the

proposed method to the online learning framework, in which the robot/vehicle learns the

surrounding environments by itself during the inference step without additional device

setup. These characteristics can help improve the estimation performance especially when

the robot confronts new environments.
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국 문 초 록

본 논문은 영상 및 관성 정보를 활용하여 딥러닝 기반의 스케일 예측 깊이 및 항법 추정을

자가지도식으로학습하는 기법을 다룬다. 단안카메라를활용한 실제활용에 있어서,스케일

모호성은 중요한 문제이다. 추가적인 데이터를 활용하지 않는 자가지도식 학습 기법은 자가

지도식 학습 기법은 스케일 모호성을 피할 수 없기 때문에, 최신 딥러닝 기반 기법은 이를

추가 센서 정보로 부터 스케일 정보를 학습하는 방식으로 해결해 왔다. 이러한 측면에서, 관

성항법센서는 가볍고 저렴하다는 측면에서 다양한 이동형 플랫폼에서 많이 사용되어 오고

있다. 그러나, 자가지도식 학습 세팅에서 IMU로 부터 스케일을 학습하는 것은, 참값 정보로

부터 스케일을 학습하는 지도식 학습과는 다르게 도전적인 문제이다.

본논문에서는딥러닝기반으로스케일정보를추정할수있는자가지도식단안영상관성

깊이 추정 및 항법 시스템을 제안한다. 특히, 자가지도식 세팅에서 단안 영상의 스케일 모

호성을 해결하는 방법에 집중하여, 참값 깊이나 스테레오 이미지가 학습 데이터로 주어지지

않고 단순히 단안 영상 및 관성센서만 주어진 상황에서 스케일을 포함한 깊이 및 위치 추정

기법을 수행하였다. 제안한 기법은 학습 과정에서 end-to-end로 동작하며, 기존의 영상관성

항법 시스템의 도움을 받지 않아도 된다. 이를 위하여, 관성센서 값을 적분하는 손실 함수를

설계하고,관성센서를입력으로받아관성센서의바이어스및중력의방향을추정하는네트

워크를설계한다.또한,관성센서정보가있는상황에서도활용할수있는데이터보강기법을

제안하였고, 유명한 데이터셋인 KITTI 데이터셋에서 최신 학습기반 및 기존 관성영상항법

알고리즘과의 비교 및 추가 실험을 통해 비교할만한 성능을 보임을 검증하였다.

주요어: 기계학습, 깊이 추정, 영상관성항법, 자가지도식 학습

학 번: 2014-22512
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