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Abstract

Approximate Dynamic Programming

Approach for Airport Gate Assignment
Problem

Hakyong Kim
Department of Industrial Engineering
The Graduate School

Seoul National University

In real-world airport gate assignment problem (AGAP), the planning of flight-to-
gate assignments involves more than a thousand of flights and is subject to frequent
real-time adjustments. Thus, an efficient solution approach for AGAP is required for
airport operation in practice. Here, we propose an approximate dynamic program-
ming (ADP) approach for AGAP. In our ADP approach, value function is approxi-
mated by the interpolation of upper bound and lower bound of true value function
with consideration of lookahead horizon. Heuristic algorithms and the linear pro-
gramming relaxation values of integer programming (IP) models for AGAP are used
for the upper bound and the lower bound, respectively. We first compare the bounds
for several IP models and show that the pattern-based model provides the strongest
bound, whose size is exponential to the input size. Next, we propose an efficient
column generation method and ADP acceleration techniques to over the computa-

tional complexity arising when using the pattern-based model. The effectiveness and



practicality of our ADP approach were demonstrated by computational experiments.
Keywords: Airport Gate Assignment Problem, Column Generation, Approximate

Dynamic Programming, Acceleration Techniques, Extended Formulation
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Chapter 1

Introduction

1.1 Background

Establishing a good gate assignment plan is a crucial issue in airports as it has a sig-
nificant impact on both the convenience of passengers and the operational efficiency
of airlines/airports. Upon arrival at an airport, each aircraft requires allocation to
an available gate to undergo necessary ground services such as embarking, cleaning,
maintenance, and disembarking. However, gates are limited resources and coupled
with other related operations in airports. Thus, efficient utilization of gates is nec-
essary. Airport gate assignment problem (AGAP) is the planning of flight-to-gate
assignments based on the scheduled arrival and departure times of flights. Because
of the importance of AGAP, it has been studied for a long time in the optimiza-

tion community. In recent years, several airport operation software products have

1 00:00 01:00
2 00:20 01:30 Gate 2 Flight 3 \ Flight 4
3 00:30 01:35 ‘
4 01:00 02:05
5 01:40 02:50
6 01:50 03:00
Gate M Flight 2 | Flight 5

Figure 1.1: Illustration of AGAP



been developed to address AGAP. These products include DELMIA by Dassault
Systemes [1], as well as the airport operation system by Daifuku [2], among others.

There are two types of planning involved in AGAP [3| [4]: in-advance planning
and adaptive replanning. In-advance planning is of establishing a gate assignment
plan before operations commence based on the information of scheduled flights.
In-advance planning depends on the policy of each airport. For instance, Incheon
International Airport generates a gate assignment plan one day in advance using its
own program based on the previously announced flight schedule (i.e., one day-ahead
planning) [5]. Adaptive replanning, on the other hand, is of adjusting in-advance
planning on the day of operation. In cases where applying in-advance planning is
infeasible due to changes in scheduled flights, adjustments must be made to in-
advance planning to account for these changes in the flight schedule [6].

Since there are various criteria for good planning in AGAP, diverse objectives
and constraints have been considered [7, [§]. For passenger-oriented objectives, min-
imizing the total walking distance, discomfort, and waiting/transit time have been
considered. For airlines/airport-oriented objectives, minimizing the number of un-
gated flights, total arrival delay, and operational cost have been considered. For
constraints, two primary constraints are considered: assignment constraint and non-
preemption constraint [9]. The assignment constraint states that each flight must be
assigned to one gate while the non-preemption constraint states that only one flight
can be processed at a gate at the same time. There are additional restrictions such
as compatibility constraint according to aircraft types and airlines, as well as adja-
cency constraint, which prohibits the assignment of two heavy aircraft to adjacent

gates simultaneously.



Among the various objectives of AGAP introduced above, arrival delay is one
of the most important criteria that many stakeholders in airports pay careful at-
tention to. As the interconnection between countries around the world continues to
grow, arrival delays are very common nowadays and this phenomenon is expected
to aggravate due to the growing congestion of air traffic. However, these delays are
costly for both airlines/airports and their passengers [10, [I1]. Delays incurred by
airlines and airports result in substantial costs, primarily attributed to the crew,
fuel, aircraft maintenance, and other operations. In addition, delays also have a sig-
nificant impact on passengers, leading to reduced business productivity and missed
opportunities for leisure activities due to extended air travel or waiting times.

In this thesis, we consider AGAP whose objective is of minimizing the total
arrival delay. Based on the information on scheduled flights, the goal of the AGAP is
to make an efficient gate assignment plan for both in-advance planning and adaptive
replanning. However, AGAP is challenging both from a theoretical and a practical
point of view [7]. In addition, there are two inherent difficulties in practice. Firstly,
a practical problem size of an international airport is very large with more than a
thousand flights per day. Secondly, arrival times and processing times are frequently
changed in the real world and as a result, a predetermined gate assignment plan
goes through frequent adaptive replannings. Thus, for a solution approach to be
applicable in practice, it must be capable of solving large-scale AGAP in a reasonable
amount of time. To this end, we propose an approximate dynamic programming

(ADP) approach which can efficiently handle those two difficulties.



1.2 Literature Review

In this section, we discuss relevant research on arrival delay minimization AGAP
and ADP approach, which is our solution method, in optimization problems. We
include discussion on other problem domains, such as the parallel machine scheduling
problem and the airport landing problem, since the AGAP can be interpreted in
those areas. Findings and methodologies in other problem domains may be leveraged

to inform the development of effective solution approaches to the AGAP.

1.2.1 Airport Gate Assignment Problem

In most research on AGAP, multiple objectives have been considered to accommo-
date the diverse criteria of AGAP. However, for the scope of this literature review, we
focus on the objective of minimizing arrival delays. AGAP studies that consider the
arrival delay of an aircraft were limited compared to other objective functions. Inte-
ger programming (IP) and meta-heuristics have been the main solution approaches.
In [12], an evolutionary multi-objective optimization algorithm was proposed to min-
imize the total arrival delay and the number of un-gated flights in the sense of Pareto
optimality. In their numerical experiments, the proposed method generated efficient
solutions within hundreds of seconds for instances up to 5 gates and 100 flights,
which is a fairly small size for an international airport. On the other hand, a column
generation-based approach was proposed for an arrival delay minimization problem,
where approximation algorithms and dynamic programming (DP) algorithms were
utilized for solving subproblems [13]. The proposed solution approach could solve
large-sized instances of the real world but requires a long computation time. To the

best of our knowledge, [I3] is the only study that considers arrival delay as a single



objective. For an in-depth review of AGAP studies, refer to 7, [§].

For IP models of AGAP, various formulations have been utilized. In a network
model, a flight schedule on a single gate is represented by a path in a gate network.
The network model has the advantage in that it can incorporate the problem-specific
structure and additional constraints and thus, it has been widely used in AGAP
research such as [I4] [I5]. On the other hand, in a pattern-based model, a flight
schedule is defined by a pattern, satisfying restrictions within a gate. In general, the
linear programming (LP) relaxation of a pattern-based model provides a bound that
is at least as tight as the bound provided by the LP relaxation of a compact model.

For this reason, a pattern-based model is preferred for exact algorithms [9] [13], [16].

1.2.2 Related Problems
Parallel Machine Scheduling Problem

AGAP can be viewed as a parallel machine scheduling problem (PMSP) with re-
lease dates. Specifically, flights and gates in AGAP correspond to jobs and machines
in PMSP, respectively. The detailed relationship between AGAP and PMSP is ex-
plained in [I7]. PMSP is a classic problem in operations research and computer
science, and numerous methodologies have been developed to solve this problem.
Among the various objective functions of PMSP, tardiness is equivalent to arrival
delay in AGAP. In this literature review, we focus on tardiness minimizing PMSP
with release dates.

For an exact method, the branch-and-price algorithm was proposed based on a
set partitioning formulation [I8]. The LP relaxation of a set partitioning problem is

solved by the column generation method, where columns represent partial schedules



on single machines. Computational results showed that the LP relaxation value of the
root node was very close to the optimal integer solution value. But the computation
time of the column generation method increased exponentially with respect to the
ratio of the number of jobs and the number of machines.

For heuristic methods, diverse dispatching rules have been suggested [17, [19].
Dispatching rule is a rule for determining which job should be assigned to which ma-
chine based on certain criteria. Earliest release date (ERD), earliest due date (EDD),
shortest processing time (SPT), and longest processing time (LPT) are examples of
the commonly used dispatching rules. In PMSP with tardiness minimization, appar-
ent tardiness cost (ATC) rule, which is a composite dispatching rule, showed superior
performance over other existing dispatching rules. Furthermore, several variations
have been developed based on this ATC rule considering the specific characteristic
of each problem [19]. For instance, when jobs have release dates, apparent tardiness
cost with release date (ATCR) rule, a modification of ATC rule, was introduced in
[20].

While dispatching rules can provide solutions quickly, they are often inadequate
for complex PMSP in an application. In such cases, more sophisticated methods are
required to achieve better performance. In [21], an iterated greedy meta-heuristic is
developed for real-life production scheduling problems. In [22], on the other hand,
two-stage stochastic programming was used to handle the uncertainties in job pro-

cessing time and release time.



Aircraft Landing Problem

Aircraft landing problem (ALP), also known as airport runway scheduling problem,
is the planning of the landing schedule of arriving aircraft to minimize total delays
or other operational costs. Since runways are scarce resources that represent a bot-
tleneck in many airports, extensive research has been conducted to efficiently utilize
runways [23]. ALP can be interpreted as arrival delay minimization AGAP where
runways in ALP correspond to gates in the AGAP.

Various solution approaches, such as DP [24 25], branch-and-bound, and meta-
heuristics [20, 27, 28, 29], were proposed for ALP. The computational complexities
of DP algorithms were suggested depending on the types of runways and aircraft
classes [25]. In [24], ALP was formulated by DP where the state is defined as the
number of assigned aircraft per class and runway occupation profile. In their DP
formulation, the state space can be substantially reduced by dominance criteria,
which leads to a dramatic reduction in computation time. DP formulation for ALP
can be applied to AGAP with modification but DP approaches were not well utilized
in the AGAP literature because of the problem-specific structure which hinders the

reduction of search space in DP.

1.2.3 Approximate Dynamic Programming

ADP is a heuristic approach used to overcome the so-called curse of dimensionality
in DP, which arises when the number of states or actions increases exponentially
with respect to the problem size. ADP addresses this limitation by approximating
the value function or policy function associated with the DP formulation. Policy is

a rule (or function) that determines a decision given the available information in



a state [30]. For the past decade, ADP approaches have been widely used for solv-
ing complex and large-scale optimization problems because of their broad modeling
capacity and algorithmic strategy [31]. Approximation strategies in the ADP frame-
work can be categorized into four classes: cost function approximation, policy func-
tion approximation, lookahead approximation, value function approximation [30)].
But these strategies can also be used in combination. References [31] and [32] cover
general ADP approaches in detail and how they can be applied in practice. In this
literature review, lookahead approximation and value function approximation are
discussed, which are the key components in our methodology.

Lookahead approximation makes a decision of current stage by solving a problem
over some horizon. A hybrid policy of lookahead approximation was proposed for
a stochastic aircraft maintenance check scheduling problem in [33]. Dynamic looka-
head policy, where lookahead horizons are parametrized by means of value function
approximation, was proposed for a stochastic-dynamic inventory routing problem
n [34]. A general framework for designing lookahead policies in transportation and
logistic problems was suggested in [35].

In value function approximation, there are many ways for approximating the
true value function, such as multilevel aggregation [36], basis function [37], and
other statistical methods including the use of neural networks [38]. However, it can
be approximated without any assumption on specific function structures. In [38] and
[39], the interpolation of the upper bound and the lower bound of the true value
function was used as the approximated value function for a deterministic multi-

dimensional knapsack problem and a lot-sizing and scheduling problem, respectively.



1.3 Motivation and Contributions

Despite the growing necessity of research on arrival delay minimization AGAP, there
have been limited studies focusing on this problem. Moreover, The previous solu-
tion approaches for the AGAP and its relevant problems, such as integer optimiza-
tion, DP, and meth-heuristics, suffer from scalability issues, where computation time
grows substantially with respect to problem size. As a result, current solution ap-
proaches for the AGAP are hardly applicable to real-world airports. At the same
time, ADP approaches combined with optimization methodology have developed
significantly over the past decade, showing good performances in many large-scale,
complex optimization problems. However, as far as we know, there was no research
on ADP approaches for AGAP. Therefore, we propose an optimization-based ADP
approach that can efficiently solve large-scale AGAP. The main contributions of this

thesis are as follows:

(a) We propose an ADP approach for AGAP. In the ADP approach, value function

approximation combined with lookahead approximation is used.

(b) We compare the bounds of various IP models for AGAP. Through the compar-
ison of bounds, we use a pattern-based model, which has the strongest bound,

for computing a lower bound.

(c) We develop an efficient column generation method and ADP acceleration tech-

niques to alleviate an excessive computational burden of the ADP algorithm.



1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide a DP
formulation and propose an ADP approach for the AGAP. Also, we introduce three
IP models, the basic model, network model and pattern-based model, and compare
their bounds theoretically. In Chapter 3, a column generation method and ADP
acceleration techniques are proposed for the ADP approach with the pattern-based
model. The computational results for the ADP approach and the solution methods
are discussed in Chapter 4. Chapter 5 concludes the thesis with a summary of the

study and directions for future research.
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Chapter 2

Dynamic Programming Formulation and
Approximate Dynamic Programming Approach

for AGAP

In this chapter, we explain a formal description of the AGAP and how this problem
can be formulated as DP. However, the DP approach is impractical for the large-scale
AGAP as the number of states and actions grows exponentially with respect to the
problem size. To address this issue, we propose an ADP approach where the value
function is approximated with consideration of a lookahead horizon. In the value
function approximation, we utilize a dispatching rule and the LP relaxation value of
an IP model. Three IP models for the AGAP are introduced and their bounds are

theoretically compared.
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2.1 Problem Definition

In this description, we use the word flight not only in its original meaning, but also
to refer to the aircraft which corresponds to that flight. In the AGAP, we need to
decide the assignments of N flights to M gates. Each flight ¢ € F" has an arrival time,
h;, and processing time, p;. Here, the arrival time of a flight is the scheduled time
of arrival at a gate and the processing time includes ground service time and buffer
time. When flight 4 is assigned to a compatible gate k € G, flight i needs parking
at gate k at or after its arrival time. We refer to the time when flight ¢ gets parked
at its assigned gate as the park time of flight <. When a flight is parked at a gate,
it occupies the gate for its processing time and no other flights can be processed at
the gate during that time.

If every flight parks at its assigned gate precisely at its arrival time, no arrival
delay is incurred. However, there are some situations when flights have to wait for
available gates due to the congestion of a tight flight schedule. Then the arrival de-
lay, the time interval between the arrival time and the park time, is incurred. The
objective of the AGAP is to establish a flight-to-gate assignment plan that mini-
mizes the total arrival delay. In this study, we do not consider adjacency restrictions
since large aircraft do not occupy more than one gate in US airports and adjacency
restrictions can be handled by compatibility constraints [8]. In addition, airport op-
erations related to the parking of flights are not considered. This assumption can be
justified because the flight-to-gate assignment is the most influential cause of arrival

delay [13].

12



2.2 Dynamic Programming Formulation

Table 2.1: Notation for the AGAP and the DP formulation

F Set of flights, i € F = {1,...,N}
Set G Set of gates, k € G ={1,..., M}
e
S Set of states at stage ¢
Ay Set of actions at stage ¢
. Vi (St) Value function of state S;
Function o .
C¢(St,a¢) | Transition cost of state S; and action as
ik 1 if flight ¢ is compatible with gate k, 0 otherwise
i Processing time of flight ¢
hi Arrival time of flight 4
Parameter X
St State at stage t; St = ((¢f)kea, dr)
ck Completion time of gate k up to stage t — 1
de Cumulative arrival delay up to stage t — 1
Decision at Action at stage t; flight-to-gate assignment

The AGAP can be modeled as DP by assigning flights to gates one by one in order of
arrival time sequentially. In the DP formulation, we assume that the planning horizon
is discretized into time intervals of one minute. Notation for the DP formulation
is presented in Table 2.1. The set of flights F' is indexed in ascending order of
arrival time, h;. A stage, which represents the moment when a decision is made,
is determined by the index of flights since exactly one flight is assigned to a gate
for each stage. More specifically, at stage t € {1,...,T}, we determine one of the
compatible gates that flight £ can be assigned to. Thus, the last stage T is equal to
the number of flights .

A state S; is defined by (M + 1)-dimensional vector ((cf)req, di) where cf repre-
sents the completion time of gate k up to stage t —1 and d; represents the cumulative
arrival delays up to stage ¢t — 1. Since stage 0 is not defined, we define the initial

state as S1 = ((c})req, d1) where ¢} = 0 for all k € G and d; = 0. An action a; = k

13 :



represents the assignment of flight ¢ to gate k. As there is a compatibility restriction
between flights and gates, the set of possible actions, A, = {k € G : ay = 1},
can be different for each stage. When the state 5; is transitioned to the next state
Si+1 by taking action ay, a transition cost C(Si,ar) = (¢f* — hy)™, also known as
contribution function or reward, is incurred which is the amount of arrival delay of

flight ¢. The transitioned state Sip1 = ((¢f\1)keq,di+1) is updated as follows:

. max{cf, hi} + ps if k=a
Ctr1 = ’ (2'1)
cf if k#a

dt+1 = dt + Ct(St, at). (22)

Next, we define the value function V;(S;), the value associated with the state
St, by the minimum value of arrival delays of unassigned flights. Then, the value
function can be written as

N
W(St) = min { Z C’t/(St/,at/)

atcXy
t'=t

st} (2.3)

where X; = HiY:tAt/ and a; = (ay,...,ay). From the definition of V;(S;), we can

)

derive the following recursion

N
‘/t(St) = min {C’t(St,at) + min { Z Ct/(St/,at/)

at€AL ai+1E€EX11 Wt

(2.4)

at€A:

= min {Ct(St, ag) + Vt+1(5t+1)}

fort=1,..., N —1 where S¢;1 is the transitioned state from S; by taking action a;.

14



The optimal policy a* = (aj,...,a}) for AGAP is the flight-to-gate assignment

solution that minimizes the total arrival delay

acX

N
a* = argmin {Z Ci(St, ar)
t=1

sl} (2.5)

where X = IIY. | A; and a = (ay, ...,ay). The DP problem of equation (2.5) can be

solved by the backward recursion algorithm using the recursion (2.4).

(,“L;fI< = argmin {Ct(St, at) + Vt-l—l(St—i—l)} (26)
at€AL

However, due to the exponential number of states and actions with respect to the

problem size, it is impractical to directly solve the DP problem.
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2.3 Approximate Dynamic Programming Approach

Based on the DP formulation of the previous section, we propose an ADP approach
for the AGAP. In the ADP approach, we use a value function approximation which is
one of the most commonly used strategies in ADP framework. More specifically, we
approximate state-action value function v (S, ar) = C¢(St, at) + Vi(S+1), the value
of action a; taken at state Sy, as 0(St, ar). We refer to 04(St, ay) as approximated
value function. Using this approximation, the action taken at stage t in equation

(2.6) is replaced by

ai'PP = argmin 4(Sy, at). (2.7)

at€A:

*

Contrary to the policy a* in equation (2.5) which requires the evaluation of ex-

ponentially many future states, the policy a?P?f = (a‘f‘DP ) ee af\‘,DP ) selects action
greedily at each stage based solely on the approximated value function.

When designing the approximated value function v,(S, a;), it is important to
capture the information of future states. However, it may be inefficient to consider
all possible future states. The states for the near future are more important for
current decision-making than the states for the distant future. For this reason, we
introduce the concept of lookahead horizon, T, to control the length of the period
from the current stage when approximating v;(Sy, a;). Specifically, up to 7 upcoming
flights from the current stage t are considered for evaluating 0(Sy, a¢). The flight set
{t,...,min{t +7, N}} which is associated with the lookahead horizon period is called
lookahead flights. When 7 = 0, actions are selected based only on the flight of the

ADP

current stage, i.e. af = argmin C}(S, a;), because there is no consideration of

at€A:

16



future flights. When 7 = N, 0,(S¢, a;) considers all the unassigned flights from the
current stage as with vy(St, ay). Generally, as 7 increases, the accuracy of 04(St, at)
improves, but the computational time for evaluating v,(Sy, a;) also increases. Thus, T
should be determined considering this trade-off between accuracy and computation
time. Decision-making based on some horizon is called lookahead approximation in
the ADP framework.

The approximated value function ©;(St, a;) is defined by the interpolation of
the upper bound v{5(S;,a;) and the lower bound v/P(S;, a;) of the true value of

’Ut(St, Cbt).

@t<St7 at) =n ,UIyB<St7 Cbt) + (1 - 77) UtLB(St7 at)7 n € [07 1] (28)

The parameter 7 is the interpolation ratio of v¥'B(Sy, as) and vFB(S;, a;). If we can
have the tighter bounds for vy (S, a;), 0¢(St, ay) will be more accurate. But in general,
obtaining tighter bounds for v;(St, a;) necessitates more computation time. We use
primal heuristics to obtain v{ #(S;, a;) and the LP relaxation of IP models to obtain
vEB(Sy, ay). When evaluating vf 2 (Sy, a;) and v/P(Sy, a;), only the lookahead flights

are considered. Pseudocode for the ADP algorithm with an instance P is as follows.
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Algorithm 1 ADP(P,n,7)
1: aPP —(, t+ 1, ¢+ 0,d«0; > initialization
2: while t < N do

3: abest 0, 9Pt «— oo ; > best action, best value function
4: for a € A; do

5: vUB « heuristic(P,,t,c,a) ;

6: vEB « solveLP(P,T,t,c,a) ;

7. peand . n wUB 4 (1 _ n) vLB :

8: if geond < §best then

9: abest «— q ;

10: phest  peand :

11: end if

12: end for

13 aADP « aADP U {(t, abest)} :

14: ¢ « update CompletionTime(P,t, c,a’?) ; > Equation 2.1: completion time
15: d + update ArrivalDelay(P,t, c, d, a’?) ; > Equation 2.2: arrival delay

16: t«—t+1;
17: end while
18: return (d, a*P?) ;

?

For primal heuristics of line 5 in ADP(P, 7, 7), we use dispatching rules in PMSP.
The AGAP can be interpreted as tardiness minimization PMSP with both release
date and due date. Release date and due date in PMSP correspond to arrival time
(h;) and arrival time plus processing time (h;+p;) in the AGAP, respectively. Among
the various dispatching rules, we consider two dispatching rules, ERD and EDD since
other dispatching rules such as SPT, LPT, ATCR are not suitable for the AGAP
because of the problem-specific structure. The ERD rule first sorts the lookahead
flights by the arrival time h;’s in ascending order. Then, the lookahead flights are
assigned to compatible gates with the earliest completion time, argn;lin ¢t sequen-
tially. The EDD rule is similar to the ERD rule except that theatlf)oi{ahead flights

are sorted by the arrival time plus processing time h; + p;’s in ascending order. In

the pilot test for the ERD and EDD rules, the ERD rule showed better performance
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compared to the EDD rule. Thus, we choose the ERD rule for the primal heuristic.
For a given stage ¢, completion time of gates €, action @ in the ADP algorithm,

pseudocode for the ERD rule algorithm is as follows.

Algorithm 2 ERD(P, 1,t,¢,a)
L aPfP () c—e d«—0,t1; > initialization
2: while ¢t < min{t + 7, N} do
3: if t =t then

4: a* «—a;

5: else

6: a* < argmin ¢® ; > select the action with the earliest completion time
acA

7 endif

8: ¢ < update CompletionTime(P,t,c,a*) ; > Equation 2.1: completion time

9 d < update ArrivalDelay(P,t,c,d, a*) ; > Equation 2.2: arrival delay

10: t«—t+1;
11: end while
12: return d ;

For IP models of line 6 in ADP(P,n, 1), we consider three IP models for AGAP:
basic model, network model, and pattern-based model. When these models are used
for evaluating v (S;,a;), there are two distinctions from the IP models for the
original AGAP. Firstly, partial flight-to-gate assignments, associated with the state
S; and the action a;, are fixed. Secondly, only the lookahead flights are considered for
the arrival delay. We refer to the problems for evaluating v-?(Sy, a;) for all S; € S;,
a; € Ay, t € F as the action evaluation problems (EP). To better approximate the
value function, we need to use an IP model with a strong LP relaxation value for
EP. But there was no theoretical analysis of bounds among IP models for AGAP in
the literature. In the next section, we introduce the three IP models for the AGAP

and compare their bounds.
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2.4 1P Models for AGAP and Comparison of Bounds

2.4.1 Basic Model

The basic model (B) includes explicit flight-to-gate assignment decision variables

ik’ ik equals to 1 if flight ¢ is assigned to gate k, 0 otherwise. Decision variable t;

represents a park time of flight i to its assigned gate. The basic model has O(N M)

variables and O(N2M) constraints. The basic model is written as follows:

(B):

min Z (t; — hy)

s.t.

ieF

> win=1, Vi€eF,
keG

rir < ok, Vi€ F, VkeQG,

ti > h;, VieeF,

ti+pi—t; <UQ2—mzy —xj5), YVi<j, Vi,jeF, Vkeq,
i € {0,1}, Vi€ F, VkeG,

t; >0, VieF

where U is a sufficiently large constant.

(2.10)

(2.11)
(2.12)
(2.13)
(2.14)

(2.15)

The objective function (2.9) represents the sum of arrival delays for all flights.

Constraints (2.10) represent the assignment restriction. Constraints (2.11) represent

the compatibility restriction. Constraints (2.12) indicate that flights can park at

their assigned gates at or after their arrival time. Constraints (2.13) ensure that if

flight 7 and j are assigned to a same gate, then subsequent flight j can park only

after the processing time of preceding flight 7.
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2.4.2 Network Model

In the network model (N), there are M gate networks, where each network consists
of nodes (representing flights) and arcs (representing precedence between flights)
incorporating compatibility restrictions. Specifically, the k-th gate network consists
of node set NSy = {i € F : oy, = 1} U{0, N + 1} and arc set Ay = {(i,j) : i €
NSk, j € NS, s.t. i < j}. Node 0 and node N + 1 in NSy are dummy nodes for
starting and ending of flight schedule in gate k. A flow of arc (i,j) € A indicates
that flight j is assigned immediately after flight ¢ at gate k. The network model
has been widely used in AGAP literature as many constraints of AGAP can be

incorporated within the gate network [14, [15].

)

;s to represent flows in the gate

The network model uses decision variables y;
networks. ylk] equals to 1 if flight j is assigned immediately after flight ¢ at gate
k, 0 otherwise. Since any path from node 0 to node N 4 1 corresponds to a flight
schedule at a gate, the AGAP with the network model becomes a problem of finding
the optimal paths in the gate networks. The network model has O(N2M) variables

and O(N? + N M) constraints. The network model is written as follows:
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(N): min > (t; — hy) (2.16)

ieF
s.t. > wi=1, VkegG, (2.17)
iENS\{0}
Yo o= Y uh VieF Vkeg, (2.18)
(i,4) €Ak (j.1)EAR
> dhwa=1 VkEG, (2.19)
IENSE\{N+1}

Z Z yszl. Vi € F, (2.20)

kEG (i,5)EAy

ti > h;, Yi€F, (221)

ti+pi—ijU<1—nyj>, Vi < j, Vi,j € F, (2.22)
keG

vl €{0,1}, V(i,5) € NSy, Yk € G, (2.23)

t; >0, VieF. (2.24)

The objective function (2.16) represents the sum of arrival delays for all flights.
Constraints (2.17)-(2.19) represent the flow conservation in the gate networks. Con-
straints (2.20) represent the assignment restriction. Constraints (2.21)-(2.22) corre-

spond to the constraints (2.12)-(2.13) in (B).

2.4.3 Pattern-based Model

In the pattern-based model (P), a flight schedule of a gate is represented by a
pattern. Each pattern is defined by IN-dimensional vector where each component
indicates whether the corresponding flight is used or not. Given a pattern, we can

easily recover the park time of flights and accordingly, the total arrival delay can be
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calculated by the sum of the arrival delays of the patterns used.

Table 2.2: Notation for the pattern-based model

Set Py, | Set of feasible patterns at gate k, p € Py
6,’-“1, 1 if flight ¢ is assigned on pattern p € Py of gate k, 0 otherwise
Parameter & .
ep | Arrival delay of pattern p
Decision z;f 1 if pattern p is used at gate k, 0 otherwise

Constraints (2.11)-(2.13) in (B) can be incorporated within the pattern and thus,
the pattern-based model can be formulated as a set partitioning problem. However,
we used a set covering formulation for the pattern-based model as its LP relaxation
is more numerically stable and it is trivial to construct an optimal solution of a set
partitioning problem from a solution of a set covering problem [40]. The pattern-
based model has O(M2") variables and O(N + M) constraints. Since there are an
exponential number of patterns with respect to IV, efficient solution approaches for
solving the pattern-based model are needed [9, [13] [16]. The pattern-based model is

written as follows:

(P):  min Z Z e’;z;; (2.25)
keG pe Py,
st Y Y dhay>1, VieF, (2.26)
keG peEPy
d k=1, Vkeg, (2.27)
PEP
2y €{0,1}, Vpe P, k€G. (2.28)

The objective function (2.25) represents the sum of arrival delays of the patterns
used. Constrains (2.26) represent the assignment restriction. Constraints (2.27) en-

sure that only one pattern can be used for each gate.
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2.4.4 Comparison of Bounds
Proposition 2.1. Let z(B) and z(N) be the optimal objective values of the LP
relaxations of (B) and (N), respectively. Then,

2(B) < z(N).

Proof. Let QP and Q" be the sets of feasible solutions of the LP relaxation of (B)
and (N), respectively. We will show that for any (£,9) € Q", we can construct
(t,2) € QB. Let y € R e vector of flow from node 0 to node N + 1 in
the k-th gate network of (N). Then y can be decomposed by the sum of paths from
node 0 to node N +1,i.e. y = ZpeFL fpyP, where F'L is the set of all possible flows,
fp is the amount of flow in path p and y? is the characteristic vector of path p. For

any path p € F'IL and a pair of flights (¢,) such that i € F, j € F, i < j, p belongs

to one of the 4 sets:

1<q 71<q

FlLy = {p EFL:Y yh >0, > of = 0}
1<q Jj<q

FLs {peFL:Zqu 0, Zy]q>0}
1<q J<q

FL,= {pe FL:) ob >0, > o >0},

1<q i<q

where F Ly, FLo, FL3, F L, are mutually exclusive and collectively exhaustive for

FL. For given the LP relaxation solution (£, ) for (N), define 2;; = dicq yfq, the
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amount of flow passing the node i. For any k € G, we have

2—£ik—£jk=1+<2fp— Z Ir— Z fp)

peFL pEF LoUF Ly pEFL3UF Ly
_1+< X h= fp)
pEF L4 pEF Ly
<k
> 1 -y
ke
>1- Z Yik-
keG

Since U(2— & —2j5) > U(1 =Y peq 9F) > ti+pi—1;, (£, 2) satisfies the constraints
(2.13) of (B). Therefore (f,4) is the solution of the LP relaxation of (B) and the
LP relaxation value of (N) provides a bound that is at least as tight as the bound

provided by (B). O

Proposition 2.2. Let z(N) and z(P) be the optimal objective values of the LP

relazations of (N) and (P), respectively. Then,
z2(N) < z(P).

Proof. Consider the set partitioning problem (P’) which is equivalent to (P) whose
constraints (2.26) are substituted by equality constraints. Since (P) is the relaxation
for (P’), it is sufficient to show that z(N) < z(P’). Let QV and QF" be the sets of the
feasible solutions of the LP relaxation of (N) and (P’), respectively. We will show

that for any Z € QF', we can construct (t,9) € QN.

(N+2)(N+1)

For any p € Py, there exists a corresponding characteristic vector y*? € R 2

in the k™ gate network and it is defined by

Yt = ( I c 5i;p)> S5 0%, Vi< j, Vi,j €{0,...,N +1}.

1<q<j
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where 5(’)“1) = 5;‘{, 41, = 1 forall p € Py, Vk € G. For given the LP relaxation solution
2 for (P'), define § = (¢',...,9™) by ij = ZpePk y”p #%. From the definition of

y*P. we have P=1fori=1,..,N+1and yij’p =1fori=0,..,N.

j<i Yji G>i

Furthermore, we have

WIS RS WA EED S

j>i j>i peP, pEP, \ j>i

jk = 1. Thus ¢* satisfies the flow conservation

and similarly, we can derive >_._; 77;

constraints (2.17) - (2.19).

For p € Py, the park time tf’p of flight 7 in pattern p is determined by
kp k,
t;r = max{hi, fg?i{i{tj +p; —U(1 - yjip)}}

and the corresponding cost coefficient is ¥ = 3", F(tlf”’p — hy).

P
Define & = Y "cq Y pep, 052 ;ftz P for i € F. Then we have
. k ok k ok
M D E —h) =3 3 > mHET-h) =3 3 o
i€EF keG pePy icF keG pe Py
and

i) : N = Z Z 6fpz£max{h2, max {tj +p; —U(1 - y;,fzgl’)}}

keG pePy,
k7
— max{hi, Z Z (5fpzp max {t] +p; —U(1 - yjip)}}
kGGpEPk

~k Kk,

= max{hm 11]2&?1{%\1 +pj Z Z 5fp Syﬂp }}
=J kEG peP;,

_ ) N . _
= max{h“ fg??i{tj +p; - U %%z }

From (ii), (N, §) satisfies the constraints (2.21) - (2.22) in (N), and thus (N, 9) € Q.
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On the other hand, the objective function value of (N,¢) is equal to that of 2 in
(P') by (i). Therefore (N,9) is the solution of the LP relaxation of (N) and the
LP relaxation value of (P’) provides a bound that is at least as tight as the bound

provided by (N). O

Since Proposition (2.1) and Proposition (2.2) are about IP models for the original
AGAP, we need the comparison of bounds among IP models for EP. For the con-
venience of notation, we denote the basic model, network model, and pattern-based

model for EP by (EP-B), (EP-N), and (EP-P), respectively.

Corollary 2.3. Let z(EP-B), z(EP-N) and z(EP-P) be the optimal objective val-
ues of the LP relazations of (EP-B), (EP-N) and (EP-P) for EP, respectively.
Then,

z2(EP-B) < 2(EP-N) < z(EP-P).

Corollary 2.3 can be proved similar to the proofs of Proposition (2.1) and Proposition
(2.2). Based on Corollary 2.3, we choose (EP-P) for the evaluation of the lower
bound o/2(Sy, as) since it has the strongest LP relaxation value. Thus, we solve the

LP relaxation problem of (EP-P) in ADP(P,n, ) at line 6.
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Chapter 3

Approximate Dynamic Programming Approach
using Pattern-based Model

When the pattern-based model is used for the action evaluation problem, an exces-
sive computation can be incurred in the ADP approach. In this chapter, we discuss
solution approaches for the action evaluation problem and implementation details
associated with the ADP algorithm. First, we explain a column generation method
for the action evaluation problem. Then we develop several techniques that can ac-
celerate the ADP algorithm. Finally, we elaborate on the implementation details of

the ADP algorithm.
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3.1 Solution Approach for Action Evaluation Problem

Column generation is an exact method commonly used to solve large-scale LP prob-
lems, especially with a large number of variables, and has been widely applied in
various applications [41], [42]. The column generation method involves solving a re-
stricted problem, which is a problem with a subset of columns, and generating new
columns by solving subproblems. This procedure is repeated until no further prof-
itable columns can be generated. A detailed explanation of the column generation
method is introduced in [43]. In this section, we present a column generation method
for the action evaluation problem, along with a solution approach for subproblems

and a multiple column generation strategy.

3.1.1 Column Generation Method for Action Evaluation Problem

In the previous chapter, the pattern-based model (EP-P) was adopted for the action
evaluation problem in the ADP approach. Thus the LP relaxation of (EP-P) has to
be solved in line 6 of ADP(P,n, 7). We denote this problem by MP,(a;) and refer to
it as master problem. MPy(a¢) is a LP problem for a given lookahead horizon 7, state
St, and action a;. We denote the lookahead flights by F' = {t,...,min{t + 7, N} }.
Although the notation in Table 2.2 was used for MP;(a;), its meaning is different.

In MPy(a;), Py represents the set of feasible patterns at gate k for flights in F”. e’;
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represents the arrival delay of pattern p € P,. MP;(a;) can be written as follows:

MP;(a;) : min Z Z el;z;f (3.1)
keG pePy
st Y kb1 i=t k=a, (3.2)
PE Py
YOS k=1, vie P\ {t}, (3.3)
kEG pePy,
d =1, VkegG, (3.4)
pE Py,
28>0, Vpe P, keG. (3.5)

The objective function (3.1) represents the sum of arrival delays for the lookahead
flights. Constraint (3.2) ensures that flight ¢ is assigned to a gate corresponding to
a given action a;. Constraints (3.3)-(3.5) correspond to the constraints (2.26)-(2.28)
in (P). The binary variable constraints (2.28) were replaced by constraints (3.5) due
to the existence of constraints (3.4).

Directly solving MPy(a;) is impractical because it has exponentially many vari-
ables. Therefore, we use the column generation method where we start with a small
subset of P, and generate patterns gradually until an optimal solution is found. We
denote a subset of Py by ﬁk and the master problem where Pj is replaced with ]3k
by RMP;(a;). We refer to RMPy(a;) as restricted master problem. RMPy(a;) can
be written as equations (3.6)-(3.10). After solving RMP;(a;), it is necessary to solve
subproblems to determine whether profitable columns can be generated or not. Here,
we define a column or pattern to be profitable if its corresponding variable, z;f, has
a negative reduced cost. If profitable columns are not generated for all subproblems,

the current solution of RMP¢(a;) is the optimal solution of MPy(a).
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RMP;(a¢) :  min Z Z e’;z’;

kEG pe B,
s.t. Z 6fpz§ >1, i=t, k=ay,

pEP;

ok >1, Vie F'\{t},
PP

keG peﬁk_

d =1, VkeG

peP

zSZO, Vpeﬁk,keG.

(3.10)

Let m; and py be the dual optimal solutions of the constraints (3.7)-(3.8) and (3.9).

Then, the problem of finding the most negative reduced cost is given by

min{elg — Z 55,71’1- — pg 2 Vp € Py, Yk € G}.
1€F’

(3.11)

This problem can be decomposed per gate and the term u can be dropped since piy, is

a constant for each decomposed subproblem. We denote the decomposed subproblem

for gate k by SP¥(a;). SPF(as) can be written as follows:

SPf(at) : min Z (Ui — hl) — Z LT,

iCF iCF
st. w; > max{c}, h;}, VieF,
Tik < g, Vi€ F,
wi +pi —uj <UQ2— a5 —ajr), Vi<j, i,j€F
Tik = Lig=q,y, 1=1,
xir € {0,1}, Vie F',

w; >0, YieF.
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The decision variables wu;’s are used for the park time variables t;’s to distin-
guish them from the index of current stage t. SPf(at) is a problem with respect to
gate k with the following properties. First, only the lookahead flights are considered.
Second, the park time u;’s of the lookahead flights F’ cannot be earlier than the com-
pletion time cf (constraint (3.13)). Third, the assignment of flight ¢ is predetermined
by the given action a; (constraint (3.16)).

The solution x; = (Zi,...,z;;) is the pattern generated by solving SP¥(a;),
where | = min{t + 7, N}. It is added to P} of RMP,(a;) when the optimal objec-
tive value of SPF(ay) is less than py. The overall process of the column generation

method for MP;(a;) is described in Algorithm 3. Algorithm 3 is executed in line 6

of ADP(P,n, ).

Algorithm 3 Column generation for MP;(a;)

1. generate initial columns for RMPy(a;) ;

2: repeat

3: column_count < 0 ;

4: solve RMPy(a¢) ;

5: let z* and (7, ) be the optimal value and dual solution of RMPy(ay) ;
6: for k € G do

7: solve SP¥(ay) ;

8: let 2} be the optimal value of SP}(ay) ;
9: if 2z, — pup < 0 then
10: add column to RMP,(a;) ;
11: column_count < column_count + 1 ;
12: end if
13: end for

14: until column_count = 0
15: return z* ;
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3.1.2 Solution Approach for Subproblem

An efficient solution approach for subproblems is important in the column generation
method, as a large number of subproblems have to be solved. SP¥(a;) can be solved
by a general mixed integer programming (MIP) solver. But due to the existence of a
big number U in constraints (3.15), the performance of branch-and-bound algorithms
in MIP solvers is very poor. Consequently, solving SPf(at) by MIP solver requires a
long computation time. Thus we use a DP algorithm of [I3]. In [I3], a DP algorithm
was proposed for solving subproblems in a branch-and-price algorithm for the AGAP.
However, since SPF(a;) is different from the subproblem in [I3], we use the DP
algorithm by modifying the input parameters of arrival time h; and dual solution
;. For the complete description of the solution approach for MP;(a;), we introduce

the DP algorithm of [13] with modification of parameters.

Let F}, = {1,2,...,n} be the re-indexed set of {i € F'\ {t} : ay = 1 and m; > 0}.
Flight ¢ is excluded in F}, for its assignment decision x;;, is already determined by the
action ay. Since flights with non-positive m; cannot improve the objective function
value of SP¥(as), it is sufficient to consider only the set F} for SP}(a;). Also, the
parameter of arrival time, h;, and dual solution, m;, are re-indexed according to Fy.
Define g;(u) be the maximum total net benefit from optimally accepting flights in

the set {i,7 4+ 1,...,n} at or after time u. A formal definition is given as follows:

gi(u) = max {Zﬂ';l‘jk - Z(u] —h) | u; > wu, Vi€ {ii+ 1,...,n}} (3.19)

Tip 1] >1
A i>i

where h;-, 7T§~ are adjusted arrival time, adjusted price defined by h; = max{h;,c}}+
Ptlik—a,}; 7r§- =T — (h; — h;). We consider u € {1,...,c} where ¢ is the planning

horizon for flight schedule in the subproblem. It suffices to choose ¢ as h/, + axX Tk
<i<n
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If flight j is not assigned to gate k, i.e. xj; = 0, then u; = h;-. Thus flight j does
not contribute to the value of g;(u). On the other hand, if flight j is assigned to gate
k,ie. xj, =1, then miaj, — (uj — h}) = (m; — (W — hy))zj — (u; — b)) = mja)8 —
(uj —hy). In this case, flight j contribute 7; — (u; — h;) amount to the value of g;(u).
Therefore, the optimal solution value for SP¥(ay) is equal to —gi (b)) + (¢ — hy) T

where (c* — hy)T is the arrival delay of flight ¢ in the original flight set, F.

From the definition of g;(u), we can derive the following recursive formula:

0 if i>n+1
gi(h}) if w<h
gi(u) = ' ' (3.20)
giv1(u) if w>hl+mn
max{(h; + m — u) + gir1(u + pi), gir1(w)} if hi Su < hi+m

Based on the recursive formula, g (h}) can be computed by the backward recursion

algorithm of Algorithm 4. Algorithm 4 is executed in line 7 of Algorithm 3.
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Algorithm 4 DP algorithm for SP¥(a;)
1: let g and S be a n+ 1 by ¢ array
2: for u = c to b} do
3: gn+1,u)«0;

4: S(n—l—l,u)%@;

5: end for

6: for : =n to 1 do

7 for u = ¢ to A} do

8: if u < h} then

9: g(i,u) A g(i, hg) )

10: S(i,u) « S(i, hl) ;

11: else if u > hl + 7} then

12: g(i,u) < g(i+ 1,u), S(i,u) < S+ 1,u) ;
13 S(i,u) + S(i+1,u) ;

14: if B+ 7l —u+g(i+1,u+p;) > g(i+1,u) then
15: g(i,u) «— W+ 7 —u+g(i + 1, u+p;) ;
16: S(t,u) = S+ 1,u) ;

17: else

18: g(i,u) <= g(i+1,u) ;

19: S(i,u) <= S +1,u) ;

20: end if

21: end if

22: end for

23: end for

24: return (g, S) ;

3.1.3 Multiple Column Generation Strategy

In Algorithm 3, during each iteration, at most one pattern can be generated per gate.
However, it may be inefficient in the column generation method where many patterns
are needed to solve MPy(a;) to optimality. In this regard, a submodular maximization
algorithm [44] was used to generate additional patterns in [13]. But this method
can result in the inclusion of patterns with non-negative reduced costs, only to
increase the size of RMPy(a;). Thus, we devise an alternative method, Algorithm 5,

to generate multiple patterns per gate efficiently.
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Algorithm 5 Multiple column generation algorithm

1: let (g,5) be the returned arrays of Algorithm 4 ;
2 U<+ 0;

3: if n > 2 and 6 > 2 then

4: for i =2,...,6 do

5: if —g(i,h})) + (¢f* — he)™ — ug < 0 then
6: if checkRedundancy(U, S(i, h})) then
7: U+ {S(@i,h)};

8: end if

9: end if

10: end for

11: end if

12: add columns in U to RMPy(a;) ;

This method is, basically, based on the returned arrays (g,S) of Algorithm 4.
For i € F] with —g(i,h}) + (¢f* — hy)" — pp < 0, pattern S(i, h}) is profitable
(line 5). Adding these patterns to RMP;(a;) will speed up the column generation
method. However, generating all profitable patterns can lead to an excessively large
size of RMP,(a;). Hence, we exclude any patterns that are dominated by previously
generated patterns (line 6). In addition, we set the maximum number of pattern
generation by parameter ¢ (line 3). It suffices to consider § < M and thus, we set

0 = M. Algorithm 5 is executed in line 10 of Algorithm 3.
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3.2 ADP Acceleration Techniques

In the proposed ADP approach, a tremendous computational burden can be incurred
for the following two reasons. Firstly, the number of action evaluations, specifically
the number of MPy(a;)’s needs to be solved, is proportional to N and M. Sec-
ondly, in the column generation method of MP,(a;), a number of iterations between
RMP;(a;) and SP¥(a;)’s are required. Consequently, naively applying the ADP ap-
proach would take excessive computation time. To address this computational com-
plexity, we develop several techniques which can accelerate the ADP algorithm based

on the relationship between states.

Iterate

Stage t

ITterate

Figure 3.1: Required Computation of ADP(P,n, ) at Stage ¢

There are three techniques for the ADP acceleration: Early Fixing (EF), Re-
ordering of Action Sequence (RAS), and Early Cut-off (EC). RAS and EF are aimed
at reducing both the number of action evaluations and iterations. EC, on the other
hand, is aimed at reducing only the number of iterations. For the rest of this thesis,
given IP or LP model (M), the optimal objective value of either the LP relaxation
problem of (M) (in the case of an IP model) or the LP problem of (M) (in the case

of an LP model) will be denoted as z(M).
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3.2.1 Early Fixing

In the ADP approach, evaluating all candidate actions at each stage can be com-
putationally expensive. To reduce the computation time, it is better to reduce the
number of action evaluations if possible. EF is used to select the best action of the
current stage without evaluating all candidate actions. More specifically, if the cur-
rent action a; satisfies a certain criterion, then we exit the for loop of lines 4-12 in
ADP(P,n, ).

EF uses the criterion that an action a; is selected as the best action of the current

stage if it satisfies the following inequality

dy + 0:(St, ar) < (14 €) (dy—1 + 2(MPy_1 (a*BT))). (3.21)

Here, d; + 04(S;, a;) represents the estimation of the sum of arrival delays from flight
1 to flight min{t + 7, N}. dy—1 + z(MPt_l(af_l{P)) represents the estimation of the
sum of arrival delays from flight 1 to flight min{¢ + 7 — 1, N} and thus it becomes
the lower bound for the value of d; + 0¢(S;, a;) for all aj € A;. When EF is used in the
ADP approach, the if statement for checking the inequality (3.21) is added between
lines 11 and 12 in ADP(P,n, 7).

The non-negative parameter ¢ determines the threshold for EF. A smaller € value
allows for more possible actions to be evaluated, resulting in better solution quality
but longer computation time. This is because it expands the search space, which can
lead to better actions being discovered. Thus, there is a trade-off between solution
quality and computation time in setting e. When ¢ is set to 0, EF is performed only

when the condition d; + 0;(S, at) = di—1 + 2(MP;_1(a*57)) is satisfied. In contrast,
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when € is set to oo, the first action of the for loop is selected as the best action for

the current stage, using an abuse of notation.

3.2.2 Reordering of Action Sequence

When EF is used in the ADP approach, it is advantageous to evaluate promising
actions early in the stage. Promising actions are more likely to satisfy equation
(3.21) which leads to fewer evaluations of candidate actions. For this reason, it is
preferred to prioritize more promising actions. This is where RAS comes in: it specifies
the order in which actions are evaluated at the current stage. That is, we sort the
set of actions A; in line 4 of ADP(P,n, 7). There can be various criteria for sorting
actions, but we present one naive criterion and two alternative criteria.

Naive criterion (NAI) sorts a; € A; by the index of the gates. For example, for
given Ay = {1,2,3,5}, the action sequence becomes (ay,, Gy, Gts,a1,) = (1,2,3,5).
This criterion does not consider any information of the current state. The first
alternative criterion is Earliest Available Gate (EAG). This criterion sorts a; € A;
by their completion time ¢;* in ascending order. In other words, EAG criterion gives
priority to actions that can start the processing of a new flight earlier than others.
The second alternative criterion is Largest Assignment Solution (LAS). In this case,
a; € A; is sorted by the solution value Zy = Zpe P, 5,{“]32}; of MPt_l(af_DlP ) in
descending order. That is, LAS criterion gives priority to actions that have the largest
solution value %4 at the previous stage.

Overall, by using these sorting criteria together with EF, we can significantly

reduce the number of action evaluations required in the ADP algorithm.
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3.2.3 Early Cut-off

In the column generation method for MP;(a;), the upper and lower bound for the
optimal solution value can be updated during iterations. At intermediate iterations

of MPy(a;), the upper and lower bound for z(MP;(a;)) are given as

Upper bound: z(RMPq(ay)) (3.22)

Lower bound: z(RMPy(a;)) + Z(z(SPf(at)) — [ik) (3.23)
keG

respectively [43]. These bounds can be used to determine if the current action a;

is the best action a/*P”

of the current stage ¢ before reaching the optimal solution.
Using the lower bound, we can predetermine that the current action is not the best
action. Using the upper bound, on the other hand, we can predetermine that the
current action is the best action. In either case, the need to solve MP;(a;) exactly
can be avoided and the evaluation of the current action can be stopped mid-process.

This acceleration technique is referred to as EC. We call the first case of EC by cut-off

by lower bound and the second case of EC by cut-off by upper bound.

Cut-off by Lower Bound

During the iteration of the column generation method of MP;(a;), if the lower bound
of 04(S, ar) of the current action a; is found to be greater than or equal to v;(St, a})
of a previously evaluated action a; € A;, then we can predetermine that the current

action is not the best action. Formally stating this condition, it is written as

nvt (St,at) + (1 — ) < (RMPt at + Z SPk at)) ,uk)> AbeSt (324)
keG
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where 00¢5!

is the smallest value of 9,(S, a;) of a previously evaluated action aj € A;,
which corresponds to 9! in ADP(P,7,7). The left-hand side of equation (3.24)
represents the lower bound of 0;(S¢, a;) since z(RMPy(a¢)) + ZkeG(z(SPf (at)) — pu)
is the lower bound for vB(S;, a;). Satisfying equation (3.24) implies that 9;(S;, a;) >
04(St, a}) for some action a; € A; and thus we can predetermined that the current

action a; cannot be chosen as the best action af*P”.

Cut-off by Upper Bound

During the iteration of the column generation method of MP;(a;), we can prede-
termine that the current action a; is the best action if the following equation is

satisfied:

di +noYB(Sy, ar) + (1 — 1) 2(RMPy(ar)) = di—1 + 2(MP;_1(a*5F)).  (3.25)

The left-hand side of equation (3.25) represents the upper bound of d; + 04(S¢, a¢)
since z(RMP;(a;)) is the upper bound of vFZ(S;, a;). The right-hand side represents
the lower bound for d; + 0,(St,ay) for all a; € A;, which is explained in section
3.2.1. Satisfying equation (3.25) implies that the left-hand side of equation (3.25)
of current action a; attains the lowest value of the current stage and thus we can
predetermine that the current action can be chosen as the best action.

The if statements for checking the inequality (3.24) and equality (3.25) in the

column generation algorithm in line 6 of ADP(P,n, 7).
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3.3 Implementation Details

In this section, we discuss technical issues regarding the implementation of the pro-
posed ADP approach, which have a significant impact on the computation time of
the overall algorithm. we explain initialization and column inheritance of the master
problem MP;(a;). Then, we discuss how to update the upper and lower bounds of
the solution value return by ADP(P,n, 7) at each stage. These bounds can be used

for termination criterion of ADP(P,n, 7).

3.3.1 Initialization

When solving MP;(a;), specifically in line 6 of ADP(P,n, 1), initial feasible columns
are needed for the restricted master problem to start the iteration of the column
generation method. For initial columns, maximal columns considering compatibil-
ity with a sufficiently large cost coefficient are used. Also, columns generated by
ERD(P,,t,c,a), where columns can be constructed by tracking the flight-to-gate
assignments, are additionally generated to speed up the convergence of column gen-

eration of MP;(a;).

3.3.2 Column Inheritance

Starting with high-quality columns can significantly reduce the number of iterations
required to solve MP;(a;). Between MP;_1(af*2F) and MP;(as), the set of lookahead
flights differ at most one element. Hence, MP;_1(a{*5%) and MP;(a;) share almost
the same structure and it is expected that the set of generated columns for the two
problems will be very similar. Therefore, we use the set of columns obtained from
ADP)

solving MP;_1 (a; as the initial columns for MPy(a;) for all a; € A; together with
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the columns generated in subsection 3.3.1. We call this method column inheritance.
Columns, i.e. patterns, in Pj of MPt,l(af_DIP ) are inherited to columns in Py of
MPy(a;) for all k& € G, respectively. When k = a4, only the columns satisfying the
condition that flight ¢ is assigned to gate a; were inherited. It can be implemented by
storing the set of patterns for all gates associated with MP;(at***) in ADP(P, 7, 7).
To make column inheritance possible from stage 1, the LP relaxation of the pattern-
based model with respect to the flight set {1,...,7} is solved before the while loop
of line 2 in ADP(P,n, 7). At stage 1, columns obtained from solving this problem

were inherited to MP1(aq) for all a; € A;.

3.3.3 Updating Bounds & Termination Criterion

An ADP solution is a policy a = (ai,...,ay) obtained by the proposed ADP ap-
proach. If the ADP algorithm is terminated within the time limit, then the ADP
solution is given as a?PP = (afDP - aﬁDP ). Otherwise, the best incumbent solu-
tion found so far is considered as the ADP solution. ADP walue is defined as the
arrival delay associated with the ADP solution. How to construct an incumbent so-
lution and update the lower bound of the partial solution value at each stage is as
follows.

At the beginning of each stage, we construct an incumbent solution and up-
date the upper bound U B{‘DP and lower bound LB{‘D P of ADP value. The in-

ADP
Laiqt, ag,...,an) where (

cumbent solution is given as (a‘f‘DP, .. a‘f‘DP, ...,af_Dlp)
is a partial solution constructed so far by the ADP algorithm and (a,...,an) is
a partial solution for undetermined stages constructed by the ERD rule with the

unassigned flights {t,..., N} not with lookahead flights. UB{'PT and LB/PT are
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different from v{?(S;, a;) and vFB(Sy, a;) which are for a value function v;(S;, a;).
UBAPP is updated by UBAPY = min{UBARPY, W}, where W is the arrival de-
lay of the incumbent solution (a{'P*, ..., a7 ay,...,an). LB#PY is updated by
LB{PP = dy 1 4+ vFB(S;_1,aBF). If UB{PT and LB#PT reach the same value,

we can terminate the ADP algorithm before the last stage.
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Chapter 4

Computational Experiments

In this chapter, we present the results of the computational experiments and discuss
the effectiveness and efficiency of the proposed ADP approach. Experiments are
mainly divided into two parts: effects of algorithmic parameters of ADP(P,n, )
and performance of ADP(P,n, 7). In the first part of experiment, we investigate the
behavior of the ADP approach with respect to the various control parameters. In
the second part of experiment, we compare the performance of the ADP approach

to other methods.
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4.1 Experiment Setting

We conducted experiments on both artificial data and real-world data. To generate
artificial data while controlling the amount of congestion of a gate, we introduced

several parameters in Table 4.1 and followed the procedure provided by [9] similarly.

Table 4.1: Instance generation parameter

N Number of flights

M | Number of gates, LT]\LﬁHJ

u Congestion of gate, u € (0, 1]

D Mean processing time

TH | Planning horizon

Ts Average inter-arrival time between two consecutive flights, %

Arrival time and processing time for each flight ¢ were sampled independently
from a discrete uniform distribution h; ~ U[(i — 1)1y, T3], p; ~ U[60,100]. For each
flight i, oy was set to 1 for randomly selected half of the gates and 0 for the other
half in the compatibility parameter vector o;; = (o1, ..., aar). We fixed TH = 1000,
p = 80. N, u are control parameters for the generation of instances. For given N
and u, T, and M are determined by the definition in Table 4.1. % represents the
minimum required number of gates to process all flights within the planning horizon.

Np

71, | can be

By dividing the congestion parameter u, the number of gates M = |
determined. In the artificial data, 5 types of instances were considered, F'100GS,
F250G20, F500G40 (u = 1), F100G10 (u = 0.75), F'100G16 (u = 0.5), where the
numbers after the alphabet F' and G represent N and M, respectively. For each
instance type, 10 instances were generated.

For the real-world data, we used flight data from 31 days in August 2019 from

Atlanta Hartfield-Jackson Airport, which is one of the busiest airports in the world.
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The data was obtained from the U.S Bureau of Transportation Statistics website [45].
Each instance was generated based on the data of 1 day and thus, total 31 instances
were made for the real-world data. The number of flights per day ranges from 900 to
1300 and the number of gates at Atlanta Hartfield-Jackson Airport is 192. However,
the provided data was only for domestic flights and so, we set the number of gates
M to 152, which is the number of gates for domestic flights. Since processing times
were not explicitly provided, we estimated the values by subtracting the arrival
times from the departure times of connecting flights. However, if a processing time
was greater than 4 hours, we considered the corresponding flight as two separate
flights and sampled the processing times of those two flights in the same way as
artificial data. Also, for each flight i, a;; was set to 1 for randomly selected [%]
gates without replacements and 0 for the other gates in the compatibility parameter
vector a; = (a1, ..., Qipr)-

All experiments were conducted on Intel Core i7 3.20 GHz processors and 64GB
RAM. We used commercial MIP solver Xpress 8.9 [46] to solve LP and MIP prob-
lems. All the models and algorithms were implemented in Mosel 5.2 with native

interface of C.
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4.2 Effects of Algorithmic Parameters of ADP(P,n, 1)

In the ADP approach, various parameters such as interpolation ratio 7, lookahead
horizon 7, and parameters related to the ADP acceleration, were introduced. Since
solution quality and computation time of the ADP approach are significantly affected
by these parameters, three tests were conducted to quantitatively analyze the effects
of parameters. In these tests, all performance measures are reported in average values

of 10 instances of the same type, unless explicitly mentioned otherwise.

4.2.1 Sensitivity Analysis on the Value of Interpolation Ratio

Sensitivity analysis on the value of the interpolation ratio n was conducted to find the
best value in terms of solution quality. We considered n € {0, 0.25, 0.5, 0.75, 1}.
10 instances from F'100G8 were used for test instances. The lookahead horizon 7
was set to N and no ADP acceleration techniques were used. The Xpress LP Solver
algorithm was set to dual simplex which is a default. For performance measures,

Gap and Time are used. Gap is a measure of solution quality which is defined by

Cap — ADP.value — z(P)
p= ADP.value

(%) (4.1)

where ADP.value is the ADP value defined in subsection 3.3.1 and z(P) is the LP
relaxation value of the pattern-based model (P). Time is the computation time of
the ADP algorithm in seconds. Figure 4.1 shows how Gap and Time change with
respect to the value of 7.

Among the five levels of 1, n = 0 showed a significantly smaller value of Gap

compared to the other levels. In addition, Gap increased as the value of 7 increased.
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Figure 4.1: Sensitivity analysis on the value of n

This is due to the poor performance of the primal heuristic, the ERD rule. The
differences in T'vme among the five levels of 1 were negligible, resulting in only a few
seconds of variation. Therefore setting the interpolation ratio to 0 emerges as the

most attractive strategy. Consequently, we fix n = 0 for the ADP approach.

4.2.2 Effects of the ADP Acceleration Techniques

In this experiment, we compared the computation time for various combinations of
ADP acceleration techniques in section 3.2 to demonstrate the effectiveness of ADP
acceleration. We denote EF (0) if EF is used in the ADP algorithm and EF(X) other-
wise. Likewise, we denote EC(0) and EC(X) for EC in the same manner. In RAS, there
are NAI, EAG and LAS. We considered (A,B,C) € {EF(0),EF(X)} x {EC(0),EC(X)} x
{LAS,EAG,NAI} where A,B and C represent options for EF, EC and RAS, respectively.
Thus, there are total 12 combinations for the ADP acceleration schemes. 10 instances
from F'100G8 were used for test instances. The lookahead horizon 7 and early fixing

parameter € were set to NV = 100 and 0, respectively. The Xpress LP Solver algorithm

i 5 X&) 8t
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was set to default. We introduce two performance measures: Action and Iteration.
Action represents the number of MPy(a;)’s solved for all a; € A, t € F in the ADP
algorithm. Iteration represents the number of iterations in the column generation
method of MPy(a;) for all a; € Ay, t € F in the ADP algorithm. Figure 4.2 shows the
computation time for all possible ADP acceleration schemes and Figure 4.3 shows
Action and Iteration for all possible ADP acceleration schemes.

All three ADP acceleration techniques significantly reduced the computation
time of the ADP algorithm without affecting the solution quality. For RAS, LAS and
EAG took much less computation time compared to NAI. LAS showed slightly better
performance compared to EAG. In particular, when EF was used, the performance de-
viation among options of RAS became bigger. These results can be explained by two
factors, Action and Iteration. EC contributed solely to the reduction of Iteration,
while EF was effective in significantly reducing Action, which in turn led to a re-
duction in Iteration. When EF was not used, RAS only reduced Iteration, but when
EF was employed, RAS was effective in reducing both Action and Iteration. This
is because evaluations of promising actions first have a bigger potential to provide
lower values of approximated value function early in the stage which facilitates EF
and EC.

Additionally, we observed that the effectiveness of ADP acceleration techniques
tends to be more prominent, as the problem size increases although we didn’t conduct
a formal computational experiment for it. In conclusion, (EF(0),EC(0),LAS) scheme
showed the best performance and based on this result, we fix (EF(0),EC(0),LAS) for

our ADP acceleration scheme.
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Table 4.2: Performance comparison among various ADP parameters for F'500G40

TParamet:rs Time Gap  Solved!
0 1801.73  54.8% 0
N 0.01 614.44 12.4% 10
o0 627.48 13.2% 10
Average/Total* 1014.55 26.8% 20
0 1800.27  42.9% 0
2M 0.01 1437.34  27.5% 9
00 279.49  26.9% 10
Average/Total* 1172.37 32.4% 19
0 907.66  41.0% 10
M 0.01 352.12 42.5% 10
00 73.07  40.7% 10

Average/Total* 44429  41.4% 30

t Number of instances solved within time limits
* For Time and Gap, average values were reported and for Solved, total value was reported.

4.2.3 Scalability Test with respect to Parameters 7, ¢

We tested the ADP approach for various sizes of problems to confirm its scalability.
In the test, we controlled two parameters, 7 and e, which are concerned with the
trade-off between solution quality and computation time. We considered both 3 levels
of 7 € {N,2M, M} and e € {0,0.01,00}. Thus, there are total 9 combinations for
the two parameters. We denote a parameter combination by (4,B) € {N,2M, M} x
{0,0.01, 0o} where A represents level of 7 and B represents level of e. For each instance
type, F100G8, F250G20, F500G40, 10 instances were used for test instances. The
Xpress LP Solver algorithm was set to Newton-Barrier since it generally performs
better than the simplex algorithm for large-scale LP problems. Figure 4.4 and Figure
4.5 show the performance of the ADP approach with various parameter combinations
for F100G8 and F250G20. For F500G40, Table 4.2 is presented.

All instances were solved within the time limit for F'100G8 and F250G20. How-
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ever, 21 instances out of 90 instances were not solved within the time limit for
F500G40, especially for large value of 7 and small value of e. 7, as expected,
greatly influenced both the computation time and solution quality. As 7 increased,
Time generally got also increased and Gap decreased. However, (N, 0.01) took much
shorter computation time than (2M,0.01) in F'500G40. This is because of the active
column inheritance of (INV,0.01) which significantly reduced the computation time.
The effect of € on the solution quality was subtle, due to the LAS, while the varia-
tion of computation time among e was big. Except for (INV,0), (2M,0) combination
in F'500G40, Gap differences among the levels of € within the lookahead horizon
7 were less than around 2% for all instance types. This implies that it does not
significantly deteriorate the solution quality only to explore the first few actions in
an action sequence sorted by LAS in the ADP approach. Therefore, by adjusting the
value of 7 and e appropriately, we can apply the ADP approach to the large-scale

AGAP efficiently.
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4.3 Performance of ADP(P,n, 1)

To demonstrate the efficiency of the proposed ADP approach, we tested the ADP
approach on both artificial data and real-world data along with other methods. We

implemented the following 6 methods:
e ADP: ADP algorithm with (EF(0),EC(0),LAS) scheme, n =0

e B&P: Branch-and-Price algorithm of [I3]. Multiple column generation strat-
egy was used only for the root node. Initial columns were generated in the same
way as the ADP approach. If (best integer solution value) — (best bound) < 1,

then the algorithm is terminated since feasible solution values are integral.
e Solver (B): Xpress MIP solver with basic model (B)
e Solver (N): Xpress MIP solver with network model (N)
e ERD: Earliest release time dispatching rule

e EDD: Earliest due date dispatching rule; EDD is same as the ERD except

that the flights are ordered by the due date, h; + p;.

ADP, ERD, EDD are heuristic methods while B&P, Solver (B), Solver (N)
are exact methods.

In experiments for the performance of the ADP approach, we introduce the
following performance measures. UB represents the value of a solution given by a
certain algorithm at termination. LB represents the best dual bound of a certain
algorithm at termination if provided. Node represents the number of B&P nodes
searched within the time limit. All performance measures were reported on individual

instances.
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4.3.1 Test on Artificial Data

Congestion is the scale of difficulty for instances because instances with a higher
value of congestion are more prone to confront delay propagation. To test the per-
formance of various methods on instances with diverse congestion, we used 3 instance
types F100G16 (u = 0.5), F100G10 (u = 0.75), F100G8 (u = 1). For each instance
type, F'100G16, F100G10, F100G8, 10 instances were used for test instances. In
ADP, the lookahead horizon 7 and EF parameter € were set to N and 0, repectively.
The Xpress LP solver algorithm was set to default. Table 4.3 shows the performance
of various methods on artificial data.

For F100G16, all methods found an optimal solution for all 10 instances. Except
for Solver (N), all methods terminated in less than a second. For F100G10, only
ADP and B&P found optimal solutions for all 10 instances. But the computation
time differed by around 100 times. Solver (B) and Solver (N) found optimal
solutions for 7 instances and 4 instances, respectively. For two dispatching rules,
none of the methods found any optimal solution. For F100G8, ADP outperformed
all other methods significantly in terms of solution quality. All exact methods showed
poor performance for high congestion instances. In F100G8, UB of exact methods
were similar to that of ERD and EDD. However, the computation time of exact
methods reached the time limit while ERD and EDD found solutions in less than a
second. For two dispatching rules, no one method dominated the other method. But
ERD showed better UB than EDD for most instances. One interesting observation
is that the Node of B&P was all 2 in F'100G8. This is because solving subproblems

took most of the computation time.
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4.3.2 Test on Real-world Data

Real-world instances have relatively low congestion but sparse compatibility be-
tween flights and gates. In real-world data, 152 gates and more than 1000 flights
are considered. The purpose of this experiment is to demonstrate that the proposed
ADP approach can efficiently solve the AGAP in real-world airports by testing on
large-scale, real-world instances along with other existing methods. In ADP, the
lookahead horizon 7 and EF parameter ¢ were set to M and oo, respectively. The
Xpress LP solver algorithm was set to Newton-Barrier. Table 4.4 shows the perfor-
mance of various methods on real-world data. In Instance column, the number next
to f, g, day represents the number of flights, gates, day of month, respectively.
Among the 31 instances, 29 instances have 0 optimal delays, which can be as-
certained from the UB of ADP and LB of B&P. For 29 instances with 0 optimal
delays, ADP found optimal solutions for all instances while B&P and Solver (B)
found 5 and 22 optimal solutions, respectively. For the other 2 instances, the ab-
solute gap of (UB of ADP) — (LB of B&P) were 2 and 8. In terms of solution
quality, ADP showed the best performance of all methods for all 31 instances. In
addition, the average computation time of ADP was less than 5 minutes, which is
a significantly smaller value compared to other exact methods. Solver (IN) reaches
the time limit for all instances and U B varies from a hundred thousand to a million.
The poor performance of Solver (IN) is due to the large number of variables of
network model (N). One noticeable result is that the average UB of EDD was over
40 times greater than the average UB of ERD, where two methods had a similar
scale of values in test on artificial data. The performance gap of ERD and EDD

between the two datasets comes from the sparsity of compatibility in instances.
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Chapter 5

Conclusion

In this thesis, we proposed a scalable optimization-based ADP approach for AGAP
to efficiently handle the large-scale nature of real-world airports. In the ADP ap-
proach, the value function approximation with consideration of a lookahead horizon
was utilized. By comparing the LP relaxation value of various IP models for AGAP,
the pattern-based model, which gives the strongest bound, was used for approxi-
mating the value function. However, the pattern-based model necessitates excessive
computation burden arising from a large number of column generation iterations and
action evaluations. To overcome this computational issue, we developed an efficient
column generation method and ADP acceleration techniques.

Through computational experiments, we demonstrated the scalability of the
ADP approach and its applicability to real-world airports in practice. One strength
of the proposed ADP approach is that we can control the trade-off between solu-
tion quality and computation time by adjusting algorithmic parameters depending
on specific situations. For example, when establishing in-advance planning, we can
put more weight on solution quality by considering a longer lookahead horizon and
smaller value of EF threshold. In contrast, when establishing adaptive replanning,

we can put more weight on computation time by considering a shorter lookahead
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horizon and larger value of EF threshold.

For future research directions, reflecting realistic restrictions can be considered.
The AGAP in this study only considered adjacency and compatibility constraints.
However, in real-world airports, allocating flights to gates is coupled with other
material and human resources so AGAP needs to be considered in a more broad
aspect. In addition, uncertainty in arrival time and processing can also be considered.
Due to the complex airport operation system and growing arrival delays, changes in
flight schedules are common. Reinforcement learning and stochastic programming
can be used for AGAP under uncertainty. Finally, a generalization of the proposed
ADP approach to PMSP can be made as AGAP and PMSP share a similar problem

structure.
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