

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Approximate Dynamic Programming Approach

for Airport Gate Assignment Problem

공항 게이트 할당 문제에 대한 근사 동적 계획법

2023 년 8 월

서울대학교 대학원

산업공학과

김 학 용

Approximate Dynamic Programming

Approach for Airport Gate Assignment

Problem

공항 게이트 할당 문제에 대한 근사 동적 계획법

지도교수 이 경 식

이 논문을 공학석사 학위논문으로 제출함

2023 년 6 월

서울대학교 대학원

산업공학과

김 학 용

김학용의 공학석사 학위논문을 인준함

2023 년 6 월

위 원 장 홍 성 필 (인)

부위원장 이 경 식 (인)

위 원 문 일 경 (인)

Abstract

Approximate Dynamic Programming
Approach for Airport Gate Assignment

Problem

Hakyong Kim

Department of Industrial Engineering

The Graduate School

Seoul National University

In real-world airport gate assignment problem (AGAP), the planning of flight-to-

gate assignments involves more than a thousand of flights and is subject to frequent

real-time adjustments. Thus, an efficient solution approach for AGAP is required for

airport operation in practice. Here, we propose an approximate dynamic program-

ming (ADP) approach for AGAP. In our ADP approach, value function is approxi-

mated by the interpolation of upper bound and lower bound of true value function

with consideration of lookahead horizon. Heuristic algorithms and the linear pro-

gramming relaxation values of integer programming (IP) models for AGAP are used

for the upper bound and the lower bound, respectively. We first compare the bounds

for several IP models and show that the pattern-based model provides the strongest

bound, whose size is exponential to the input size. Next, we propose an efficient

column generation method and ADP acceleration techniques to over the computa-

tional complexity arising when using the pattern-based model. The effectiveness and

i

practicality of our ADP approach were demonstrated by computational experiments.

Keywords: Airport Gate Assignment Problem, Column Generation, Approximate

Dynamic Programming, Acceleration Techniques, Extended Formulation

Student Number: 2021-26136

ii

Contents

Abstract i

Contents v

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 4

1.2.1 Airport Gate Assignment Problem 4

1.2.2 Related Problems . 5

1.2.3 Approximate Dynamic Programming 7

1.3 Motivation and Contributions . 9

1.4 Organization of the Thesis . 10

Chapter 2 Dynamic Programming Formulation and Approximate

Dynamic Programming Approach for AGAP 11

2.1 Problem Definition . 12

2.2 Dynamic Programming Formulation 13

iii

2.3 Approximate Dynamic Programming Approach 16

2.4 IP Models for AGAP and Comparison of Bounds 20

2.4.1 Basic Model . 20

2.4.2 Network Model . 21

2.4.3 Pattern-based Model . 22

2.4.4 Comparison of Bounds . 24

Chapter 3 Approximate Dynamic Programming Approach using

Pattern-based Model 28

3.1 Solution Approach for Action Evaluation Problem 29

3.1.1 Column Generation Method for Action Evaluation Problem . 29

3.1.2 Solution Approach for Subproblem 33

3.1.3 Multiple Column Generation Strategy 35

3.2 ADP Acceleration Techniques . 37

3.2.1 Early Fixing . 38

3.2.2 Reordering of Action Sequence 39

3.2.3 Early Cut-off . 40

3.3 Implementation Details . 42

3.3.1 Initialization . 42

3.3.2 Column Inheritance . 42

3.3.3 Updating Bounds & Termination Criterion 43

Chapter 4 Computational Experiments 45

4.1 Experiment Setting . 46

4.2 Effects of Algorithmic Parameters of ADP(P, η, τ) 48

iv

4.2.1 Sensitivity Analysis on the Value of Interpolation Ratio . . . 48

4.2.2 Effects of the ADP Acceleration Techniques 49

4.2.3 Scalability Test with respect to Parameters τ , ε 52

4.3 Performance of ADP(P, η, τ) . 55

4.3.1 Test on Artificial Data . 56

4.3.2 Test on Real-world Data . 58

Chapter 5 Conclusion 60

Bibliography 62

국문초록 69

감사의 글 70

v

List of Tables

Table 2.1 Notation for the AGAP and the DP formulation 13

Table 2.2 Notation for the pattern-based model 23

Table 4.1 Instance generation parameter 46

Table 4.2 Performance comparison among various ADP parameters for

F500G40 . 52

Table 4.3 Performance comparison of various methods on artificial data 57

Table 4.4 Performance comparison of various methods on real-world data 59

vi

List of Figures

Figure 1.1 Illustration of AGAP . 1

Figure 3.1 Required Computation of ADP(P, η, τ) at Stage t 37

Figure 4.1 Sensitivity analysis on the value of η 49

Figure 4.2 Computation time comparison among ADP acceleration schemes 51

Figure 4.3 Action and iteration comparison among ADP acceleration

schemes . 51

Figure 4.4 Performance comparison among various ADP parameters for

F100G8 . 53

Figure 4.5 Performance comparison among various ADP parameters for

F250G20 . 53

vii

Chapter 1

Introduction

1.1 Background

Establishing a good gate assignment plan is a crucial issue in airports as it has a sig-

nificant impact on both the convenience of passengers and the operational efficiency

of airlines/airports. Upon arrival at an airport, each aircraft requires allocation to

an available gate to undergo necessary ground services such as embarking, cleaning,

maintenance, and disembarking. However, gates are limited resources and coupled

with other related operations in airports. Thus, efficient utilization of gates is nec-

essary. Airport gate assignment problem (AGAP) is the planning of flight-to-gate

assignments based on the scheduled arrival and departure times of flights. Because

of the importance of AGAP, it has been studied for a long time in the optimiza-

tion community. In recent years, several airport operation software products have

Figure 1.1: Illustration of AGAP

1

been developed to address AGAP. These products include DELMIA by Dassault

Systèmes [1], as well as the airport operation system by Daifuku [2], among others.

There are two types of planning involved in AGAP [3, 4]: in-advance planning

and adaptive replanning. In-advance planning is of establishing a gate assignment

plan before operations commence based on the information of scheduled flights.

In-advance planning depends on the policy of each airport. For instance, Incheon

International Airport generates a gate assignment plan one day in advance using its

own program based on the previously announced flight schedule (i.e., one day-ahead

planning) [5]. Adaptive replanning, on the other hand, is of adjusting in-advance

planning on the day of operation. In cases where applying in-advance planning is

infeasible due to changes in scheduled flights, adjustments must be made to in-

advance planning to account for these changes in the flight schedule [6].

Since there are various criteria for good planning in AGAP, diverse objectives

and constraints have been considered [7, 8]. For passenger-oriented objectives, min-

imizing the total walking distance, discomfort, and waiting/transit time have been

considered. For airlines/airport-oriented objectives, minimizing the number of un-

gated flights, total arrival delay, and operational cost have been considered. For

constraints, two primary constraints are considered: assignment constraint and non-

preemption constraint [9]. The assignment constraint states that each flight must be

assigned to one gate while the non-preemption constraint states that only one flight

can be processed at a gate at the same time. There are additional restrictions such

as compatibility constraint according to aircraft types and airlines, as well as adja-

cency constraint, which prohibits the assignment of two heavy aircraft to adjacent

gates simultaneously.

2

Among the various objectives of AGAP introduced above, arrival delay is one

of the most important criteria that many stakeholders in airports pay careful at-

tention to. As the interconnection between countries around the world continues to

grow, arrival delays are very common nowadays and this phenomenon is expected

to aggravate due to the growing congestion of air traffic. However, these delays are

costly for both airlines/airports and their passengers [10, 11]. Delays incurred by

airlines and airports result in substantial costs, primarily attributed to the crew,

fuel, aircraft maintenance, and other operations. In addition, delays also have a sig-

nificant impact on passengers, leading to reduced business productivity and missed

opportunities for leisure activities due to extended air travel or waiting times.

In this thesis, we consider AGAP whose objective is of minimizing the total

arrival delay. Based on the information on scheduled flights, the goal of the AGAP is

to make an efficient gate assignment plan for both in-advance planning and adaptive

replanning. However, AGAP is challenging both from a theoretical and a practical

point of view [7]. In addition, there are two inherent difficulties in practice. Firstly,

a practical problem size of an international airport is very large with more than a

thousand flights per day. Secondly, arrival times and processing times are frequently

changed in the real world and as a result, a predetermined gate assignment plan

goes through frequent adaptive replannings. Thus, for a solution approach to be

applicable in practice, it must be capable of solving large-scale AGAP in a reasonable

amount of time. To this end, we propose an approximate dynamic programming

(ADP) approach which can efficiently handle those two difficulties.

3

1.2 Literature Review

In this section, we discuss relevant research on arrival delay minimization AGAP

and ADP approach, which is our solution method, in optimization problems. We

include discussion on other problem domains, such as the parallel machine scheduling

problem and the airport landing problem, since the AGAP can be interpreted in

those areas. Findings and methodologies in other problem domains may be leveraged

to inform the development of effective solution approaches to the AGAP.

1.2.1 Airport Gate Assignment Problem

In most research on AGAP, multiple objectives have been considered to accommo-

date the diverse criteria of AGAP. However, for the scope of this literature review, we

focus on the objective of minimizing arrival delays. AGAP studies that consider the

arrival delay of an aircraft were limited compared to other objective functions. Inte-

ger programming (IP) and meta-heuristics have been the main solution approaches.

In [12], an evolutionary multi-objective optimization algorithm was proposed to min-

imize the total arrival delay and the number of un-gated flights in the sense of Pareto

optimality. In their numerical experiments, the proposed method generated efficient

solutions within hundreds of seconds for instances up to 5 gates and 100 flights,

which is a fairly small size for an international airport. On the other hand, a column

generation-based approach was proposed for an arrival delay minimization problem,

where approximation algorithms and dynamic programming (DP) algorithms were

utilized for solving subproblems [13]. The proposed solution approach could solve

large-sized instances of the real world but requires a long computation time. To the

best of our knowledge, [13] is the only study that considers arrival delay as a single

4

objective. For an in-depth review of AGAP studies, refer to [7, 8].

For IP models of AGAP, various formulations have been utilized. In a network

model, a flight schedule on a single gate is represented by a path in a gate network.

The network model has the advantage in that it can incorporate the problem-specific

structure and additional constraints and thus, it has been widely used in AGAP

research such as [14, 15]. On the other hand, in a pattern-based model, a flight

schedule is defined by a pattern, satisfying restrictions within a gate. In general, the

linear programming (LP) relaxation of a pattern-based model provides a bound that

is at least as tight as the bound provided by the LP relaxation of a compact model.

For this reason, a pattern-based model is preferred for exact algorithms [9, 13, 16].

1.2.2 Related Problems

Parallel Machine Scheduling Problem

AGAP can be viewed as a parallel machine scheduling problem (PMSP) with re-

lease dates. Specifically, flights and gates in AGAP correspond to jobs and machines

in PMSP, respectively. The detailed relationship between AGAP and PMSP is ex-

plained in [17]. PMSP is a classic problem in operations research and computer

science, and numerous methodologies have been developed to solve this problem.

Among the various objective functions of PMSP, tardiness is equivalent to arrival

delay in AGAP. In this literature review, we focus on tardiness minimizing PMSP

with release dates.

For an exact method, the branch-and-price algorithm was proposed based on a

set partitioning formulation [18]. The LP relaxation of a set partitioning problem is

solved by the column generation method, where columns represent partial schedules

5

on single machines. Computational results showed that the LP relaxation value of the

root node was very close to the optimal integer solution value. But the computation

time of the column generation method increased exponentially with respect to the

ratio of the number of jobs and the number of machines.

For heuristic methods, diverse dispatching rules have been suggested [17, 19].

Dispatching rule is a rule for determining which job should be assigned to which ma-

chine based on certain criteria. Earliest release date (ERD), earliest due date (EDD),

shortest processing time (SPT), and longest processing time (LPT) are examples of

the commonly used dispatching rules. In PMSP with tardiness minimization, appar-

ent tardiness cost (ATC) rule, which is a composite dispatching rule, showed superior

performance over other existing dispatching rules. Furthermore, several variations

have been developed based on this ATC rule considering the specific characteristic

of each problem [19]. For instance, when jobs have release dates, apparent tardiness

cost with release date (ATCR) rule, a modification of ATC rule, was introduced in

[20].

While dispatching rules can provide solutions quickly, they are often inadequate

for complex PMSP in an application. In such cases, more sophisticated methods are

required to achieve better performance. In [21], an iterated greedy meta-heuristic is

developed for real-life production scheduling problems. In [22], on the other hand,

two-stage stochastic programming was used to handle the uncertainties in job pro-

cessing time and release time.

6

Aircraft Landing Problem

Aircraft landing problem (ALP), also known as airport runway scheduling problem,

is the planning of the landing schedule of arriving aircraft to minimize total delays

or other operational costs. Since runways are scarce resources that represent a bot-

tleneck in many airports, extensive research has been conducted to efficiently utilize

runways [23]. ALP can be interpreted as arrival delay minimization AGAP where

runways in ALP correspond to gates in the AGAP.

Various solution approaches, such as DP [24, 25], branch-and-bound, and meta-

heuristics [26, 27, 28, 29], were proposed for ALP. The computational complexities

of DP algorithms were suggested depending on the types of runways and aircraft

classes [25]. In [24], ALP was formulated by DP where the state is defined as the

number of assigned aircraft per class and runway occupation profile. In their DP

formulation, the state space can be substantially reduced by dominance criteria,

which leads to a dramatic reduction in computation time. DP formulation for ALP

can be applied to AGAP with modification but DP approaches were not well utilized

in the AGAP literature because of the problem-specific structure which hinders the

reduction of search space in DP.

1.2.3 Approximate Dynamic Programming

ADP is a heuristic approach used to overcome the so-called curse of dimensionality

in DP, which arises when the number of states or actions increases exponentially

with respect to the problem size. ADP addresses this limitation by approximating

the value function or policy function associated with the DP formulation. Policy is

a rule (or function) that determines a decision given the available information in

7

a state [30]. For the past decade, ADP approaches have been widely used for solv-

ing complex and large-scale optimization problems because of their broad modeling

capacity and algorithmic strategy [31]. Approximation strategies in the ADP frame-

work can be categorized into four classes: cost function approximation, policy func-

tion approximation, lookahead approximation, value function approximation [30].

But these strategies can also be used in combination. References [31] and [32] cover

general ADP approaches in detail and how they can be applied in practice. In this

literature review, lookahead approximation and value function approximation are

discussed, which are the key components in our methodology.

Lookahead approximation makes a decision of current stage by solving a problem

over some horizon. A hybrid policy of lookahead approximation was proposed for

a stochastic aircraft maintenance check scheduling problem in [33]. Dynamic looka-

head policy, where lookahead horizons are parametrized by means of value function

approximation, was proposed for a stochastic-dynamic inventory routing problem

in [34]. A general framework for designing lookahead policies in transportation and

logistic problems was suggested in [35].

In value function approximation, there are many ways for approximating the

true value function, such as multilevel aggregation [36], basis function [37], and

other statistical methods including the use of neural networks [38]. However, it can

be approximated without any assumption on specific function structures. In [38] and

[39], the interpolation of the upper bound and the lower bound of the true value

function was used as the approximated value function for a deterministic multi-

dimensional knapsack problem and a lot-sizing and scheduling problem, respectively.

8

1.3 Motivation and Contributions

Despite the growing necessity of research on arrival delay minimization AGAP, there

have been limited studies focusing on this problem. Moreover, The previous solu-

tion approaches for the AGAP and its relevant problems, such as integer optimiza-

tion, DP, and meth-heuristics, suffer from scalability issues, where computation time

grows substantially with respect to problem size. As a result, current solution ap-

proaches for the AGAP are hardly applicable to real-world airports. At the same

time, ADP approaches combined with optimization methodology have developed

significantly over the past decade, showing good performances in many large-scale,

complex optimization problems. However, as far as we know, there was no research

on ADP approaches for AGAP. Therefore, we propose an optimization-based ADP

approach that can efficiently solve large-scale AGAP. The main contributions of this

thesis are as follows:

(a) We propose an ADP approach for AGAP. In the ADP approach, value function

approximation combined with lookahead approximation is used.

(b) We compare the bounds of various IP models for AGAP. Through the compar-

ison of bounds, we use a pattern-based model, which has the strongest bound,

for computing a lower bound.

(c) We develop an efficient column generation method and ADP acceleration tech-

niques to alleviate an excessive computational burden of the ADP algorithm.

9

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide a DP

formulation and propose an ADP approach for the AGAP. Also, we introduce three

IP models, the basic model, network model and pattern-based model, and compare

their bounds theoretically. In Chapter 3, a column generation method and ADP

acceleration techniques are proposed for the ADP approach with the pattern-based

model. The computational results for the ADP approach and the solution methods

are discussed in Chapter 4. Chapter 5 concludes the thesis with a summary of the

study and directions for future research.

10

Chapter 2

Dynamic Programming Formulation and
Approximate Dynamic Programming Approach
for AGAP

In this chapter, we explain a formal description of the AGAP and how this problem

can be formulated as DP. However, the DP approach is impractical for the large-scale

AGAP as the number of states and actions grows exponentially with respect to the

problem size. To address this issue, we propose an ADP approach where the value

function is approximated with consideration of a lookahead horizon. In the value

function approximation, we utilize a dispatching rule and the LP relaxation value of

an IP model. Three IP models for the AGAP are introduced and their bounds are

theoretically compared.

11

2.1 Problem Definition

In this description, we use the word flight not only in its original meaning, but also

to refer to the aircraft which corresponds to that flight. In the AGAP, we need to

decide the assignments of N flights to M gates. Each flight i ∈ F has an arrival time,

hi, and processing time, pi. Here, the arrival time of a flight is the scheduled time

of arrival at a gate and the processing time includes ground service time and buffer

time. When flight i is assigned to a compatible gate k ∈ G, flight i needs parking

at gate k at or after its arrival time. We refer to the time when flight i gets parked

at its assigned gate as the park time of flight i. When a flight is parked at a gate,

it occupies the gate for its processing time and no other flights can be processed at

the gate during that time.

If every flight parks at its assigned gate precisely at its arrival time, no arrival

delay is incurred. However, there are some situations when flights have to wait for

available gates due to the congestion of a tight flight schedule. Then the arrival de-

lay, the time interval between the arrival time and the park time, is incurred. The

objective of the AGAP is to establish a flight-to-gate assignment plan that mini-

mizes the total arrival delay. In this study, we do not consider adjacency restrictions

since large aircraft do not occupy more than one gate in US airports and adjacency

restrictions can be handled by compatibility constraints [8]. In addition, airport op-

erations related to the parking of flights are not considered. This assumption can be

justified because the flight-to-gate assignment is the most influential cause of arrival

delay [13].

12

2.2 Dynamic Programming Formulation

Table 2.1: Notation for the AGAP and the DP formulation

Set

F Set of flights, i ∈ F = {1, ..., N}
G Set of gates, k ∈ G = {1, ...,M}
St Set of states at stage t

At Set of actions at stage t

Function
Vt(St) Value function of state St

Ct(St, at) Transition cost of state St and action at

Parameter

αik 1 if flight i is compatible with gate k, 0 otherwise

pi Processing time of flight i

hi Arrival time of flight i

St State at stage t; St = ((ckt)k∈G, dt)

ckt Completion time of gate k up to stage t− 1

dt Cumulative arrival delay up to stage t− 1

Decision at Action at stage t; flight-to-gate assignment

The AGAP can be modeled as DP by assigning flights to gates one by one in order of

arrival time sequentially. In the DP formulation, we assume that the planning horizon

is discretized into time intervals of one minute. Notation for the DP formulation

is presented in Table 2.1. The set of flights F is indexed in ascending order of

arrival time, hi. A stage, which represents the moment when a decision is made,

is determined by the index of flights since exactly one flight is assigned to a gate

for each stage. More specifically, at stage t ∈ {1, ..., T}, we determine one of the

compatible gates that flight t can be assigned to. Thus, the last stage T is equal to

the number of flights N .

A state St is defined by (M + 1)-dimensional vector ((ckt)k∈G, dt) where ckt repre-

sents the completion time of gate k up to stage t−1 and dt represents the cumulative

arrival delays up to stage t − 1. Since stage 0 is not defined, we define the initial

state as S1 = ((ck1)k∈G, d1) where ck1 = 0 for all k ∈ G and d1 = 0. An action at = k

13

represents the assignment of flight t to gate k. As there is a compatibility restriction

between flights and gates, the set of possible actions, At = {k ∈ G : αtk = 1},

can be different for each stage. When the state St is transitioned to the next state

St+1 by taking action at, a transition cost Ct(St, at) = (catt − ht)+, also known as

contribution function or reward, is incurred which is the amount of arrival delay of

flight t. The transitioned state St+1 = ((ckt+1)k∈G, dt+1) is updated as follows:

ckt+1 =

max{ckt , ht}+ pt if k = at

ckt if k 6= at

, (2.1)

dt+1 = dt + Ct(St, at). (2.2)

Next, we define the value function Vt(St), the value associated with the state

St, by the minimum value of arrival delays of unassigned flights. Then, the value

function can be written as

Vt(St) = min
at∈Xt

{
N∑
t′=t

Ct′(St′ , at′)

∣∣∣∣∣St
}

(2.3)

where Xt = ΠN
t′=tAt′ and at = (at, ..., aN). From the definition of Vt(St), we can

derive the following recursion

Vt(St) = min
at∈At

{
Ct(St, at) + min

at+1∈Xt+1

{
N∑

t′=t+1

Ct′(St′ , at′)

∣∣∣∣∣St+1

}}

= min
at∈At

{
Ct(St, at) + Vt+1(St+1)

} (2.4)

for t = 1, ..., N − 1 where St+1 is the transitioned state from St by taking action at.

14

The optimal policy a∗ = (a∗1, ..., a
∗
N) for AGAP is the flight-to-gate assignment

solution that minimizes the total arrival delay

a∗ = argmin
a∈X

{
N∑
t=1

Ct(St, at)

∣∣∣∣∣S1

}
(2.5)

where X = ΠN
t=1At and a = (a1, ..., aN). The DP problem of equation (2.5) can be

solved by the backward recursion algorithm using the recursion (2.4).

a∗t = argmin
at∈At

{
Ct(St, at) + Vt+1(St+1)

}
(2.6)

However, due to the exponential number of states and actions with respect to the

problem size, it is impractical to directly solve the DP problem.

15

2.3 Approximate Dynamic Programming Approach

Based on the DP formulation of the previous section, we propose an ADP approach

for the AGAP. In the ADP approach, we use a value function approximation which is

one of the most commonly used strategies in ADP framework. More specifically, we

approximate state-action value function vt(St, at) = Ct(St, at) + Vt(St+1), the value

of action at taken at state St, as v̂t(St, at). We refer to v̂t(St, at) as approximated

value function. Using this approximation, the action taken at stage t in equation

(2.6) is replaced by

aADP
t = argmin

at∈At

v̂t(St, at). (2.7)

Contrary to the policy a∗ in equation (2.5) which requires the evaluation of ex-

ponentially many future states, the policy aADP = (aADP
1 , ..., aADP

N) selects action

greedily at each stage based solely on the approximated value function.

When designing the approximated value function v̂t(St, at), it is important to

capture the information of future states. However, it may be inefficient to consider

all possible future states. The states for the near future are more important for

current decision-making than the states for the distant future. For this reason, we

introduce the concept of lookahead horizon, τ , to control the length of the period

from the current stage when approximating vt(St, at). Specifically, up to τ upcoming

flights from the current stage t are considered for evaluating v̂t(St, at). The flight set

{t, ...,min{t+ τ,N}} which is associated with the lookahead horizon period is called

lookahead flights. When τ = 0, actions are selected based only on the flight of the

current stage, i.e. aADP
t = argmin

at∈At

Ct(St, at), because there is no consideration of

16

future flights. When τ = N , v̂t(St, at) considers all the unassigned flights from the

current stage as with vt(St, at). Generally, as τ increases, the accuracy of v̂t(St, at)

improves, but the computational time for evaluating v̂t(St, at) also increases. Thus, τ

should be determined considering this trade-off between accuracy and computation

time. Decision-making based on some horizon is called lookahead approximation in

the ADP framework.

The approximated value function v̂t(St, at) is defined by the interpolation of

the upper bound vUB
t (St, at) and the lower bound vLBt (St, at) of the true value of

vt(St, at).

v̂t(St, at) = η vUB
t (St, at) + (1− η) vLBt (St, at), η ∈ [0, 1] (2.8)

The parameter η is the interpolation ratio of vUB
t (St, at) and vLBt (St, at). If we can

have the tighter bounds for vt(St, at), v̂t(St, at) will be more accurate. But in general,

obtaining tighter bounds for vt(St, at) necessitates more computation time. We use

primal heuristics to obtain vUB
t (St, at) and the LP relaxation of IP models to obtain

vLBt (St, at). When evaluating vUB
t (St, at) and vLBt (St, at), only the lookahead flights

are considered. Pseudocode for the ADP algorithm with an instance P is as follows.

17

Algorithm 1 ADP(P, η, τ)

1: aADP ← ∅, t← 1, c← 0, d← 0 ; . initialization
2: while t ≤ N do
3: abest ← 0, v̂best ←∞ ; . best action, best value function
4: for a ∈ At do
5: vUB ← heuristic(P, τ, t, c, a) ;
6: vLB ← solveLP(P, τ, t, c, a) ;
7: v̂cand ← η vUB + (1− η) vLB ;
8: if v̂cand < v̂best then
9: abest ← a ;

10: v̂best ← v̂cand ;
11: end if
12: end for
13: aADP ← aADP ∪ {(t, abest)} ;
14: c← updateCompletionTime(P, t, c, abest) ; . Equation 2.1: completion time
15: d← updateArrivalDelay(P, t, c, d, abest) ; . Equation 2.2: arrival delay
16: t← t+ 1 ;
17: end while
18: return (d,aADP) ;

For primal heuristics of line 5 in ADP(P, η, τ), we use dispatching rules in PMSP.

The AGAP can be interpreted as tardiness minimization PMSP with both release

date and due date. Release date and due date in PMSP correspond to arrival time

(hi) and arrival time plus processing time (hi+pi) in the AGAP, respectively. Among

the various dispatching rules, we consider two dispatching rules, ERD and EDD since

other dispatching rules such as SPT, LPT, ATCR are not suitable for the AGAP

because of the problem-specific structure. The ERD rule first sorts the lookahead

flights by the arrival time hi’s in ascending order. Then, the lookahead flights are

assigned to compatible gates with the earliest completion time, argmin
at∈At

catt , sequen-

tially. The EDD rule is similar to the ERD rule except that the lookahead flights

are sorted by the arrival time plus processing time hi + pi’s in ascending order. In

the pilot test for the ERD and EDD rules, the ERD rule showed better performance

18

compared to the EDD rule. Thus, we choose the ERD rule for the primal heuristic.

For a given stage t̄, completion time of gates c̄, action ā in the ADP algorithm,

pseudocode for the ERD rule algorithm is as follows.

Algorithm 2 ERD(P, τ, t̄, c̄, ā)

1: aERD ← ∅, c← c̄, d← 0, t← t̄ ; . initialization
2: while t ≤ min{t̄+ τ, N} do
3: if t = t̄ then
4: a∗ ← ā ;
5: else
6: a∗ ← argmin

a∈At

ca ; . select the action with the earliest completion time

7: end if
8: c← updateCompletionTime(P, t, c, a∗) ; . Equation 2.1: completion time
9: d← updateArrivalDelay(P, t, c, d, a∗) ; . Equation 2.2: arrival delay

10: t← t+ 1 ;
11: end while
12: return d ;

For IP models of line 6 in ADP(P, η, τ), we consider three IP models for AGAP:

basic model, network model, and pattern-based model. When these models are used

for evaluating vLBt (St, at), there are two distinctions from the IP models for the

original AGAP. Firstly, partial flight-to-gate assignments, associated with the state

St and the action at, are fixed. Secondly, only the lookahead flights are considered for

the arrival delay. We refer to the problems for evaluating vLBt (St, at) for all St ∈ St,

at ∈ At, t ∈ F as the action evaluation problems (EP). To better approximate the

value function, we need to use an IP model with a strong LP relaxation value for

EP. But there was no theoretical analysis of bounds among IP models for AGAP in

the literature. In the next section, we introduce the three IP models for the AGAP

and compare their bounds.

19

2.4 IP Models for AGAP and Comparison of Bounds

2.4.1 Basic Model

The basic model (B) includes explicit flight-to-gate assignment decision variables

xik’s. xik equals to 1 if flight i is assigned to gate k, 0 otherwise. Decision variable ti

represents a park time of flight i to its assigned gate. The basic model has O(NM)

variables and O(N2M) constraints. The basic model is written as follows:

(B): min
∑
i∈F

(ti − hi) (2.9)

s.t.
∑
k∈G

xik = 1, ∀i ∈ F, (2.10)

xik ≤ αik, ∀i ∈ F, ∀k ∈ G, (2.11)

ti ≥ hi, ∀i ∈ F, (2.12)

ti + pi − tj ≤ U(2− xik − xjk), ∀i < j, ∀i, j ∈ F, ∀k ∈ G, (2.13)

xik ∈ {0, 1}, ∀i ∈ F, ∀k ∈ G, (2.14)

ti ≥ 0, ∀i ∈ F (2.15)

where U is a sufficiently large constant.

The objective function (2.9) represents the sum of arrival delays for all flights.

Constraints (2.10) represent the assignment restriction. Constraints (2.11) represent

the compatibility restriction. Constraints (2.12) indicate that flights can park at

their assigned gates at or after their arrival time. Constraints (2.13) ensure that if

flight i and j are assigned to a same gate, then subsequent flight j can park only

after the processing time of preceding flight i.

20

2.4.2 Network Model

In the network model (N), there are M gate networks, where each network consists

of nodes (representing flights) and arcs (representing precedence between flights)

incorporating compatibility restrictions. Specifically, the k-th gate network consists

of node set NSk = {i ∈ F : αik = 1} ∪ {0, N + 1} and arc set Ak = {(i, j) : i ∈

NSk, j ∈ NSk s.t. i < j}. Node 0 and node N + 1 in NSk are dummy nodes for

starting and ending of flight schedule in gate k. A flow of arc (i, j) ∈ Ak indicates

that flight j is assigned immediately after flight i at gate k. The network model

has been widely used in AGAP literature as many constraints of AGAP can be

incorporated within the gate network [14, 15].

The network model uses decision variables ykij ’s to represent flows in the gate

networks. ykij equals to 1 if flight j is assigned immediately after flight i at gate

k, 0 otherwise. Since any path from node 0 to node N + 1 corresponds to a flight

schedule at a gate, the AGAP with the network model becomes a problem of finding

the optimal paths in the gate networks. The network model has O(N2M) variables

and O(N2 +NM) constraints. The network model is written as follows:

21

(N): min
∑
i∈F

(ti − hi) (2.16)

s.t.
∑

i∈NSk\{0}

yk0i = 1, ∀k ∈ G, (2.17)

∑
(i,j)∈Ak

ykij =
∑

(j,i)∈Ak

ykji, ∀i ∈ F, ∀k ∈ G, (2.18)

∑
i∈NSk\{N+1}

yki,N+1 = 1, ∀k ∈ G, (2.19)

∑
k∈G

∑
(i,j)∈Ak

ykij = 1. ∀i ∈ F, (2.20)

ti ≥ hi, ∀i ∈ F, (2.21)

ti + pi − tj ≤ U

(
1−

∑
k∈G

ykij

)
, ∀i < j, ∀i, j ∈ F, (2.22)

ykij ∈ {0, 1}, ∀(i, j) ∈ NSk, ∀k ∈ G, (2.23)

ti ≥ 0, ∀i ∈ F. (2.24)

The objective function (2.16) represents the sum of arrival delays for all flights.

Constraints (2.17)-(2.19) represent the flow conservation in the gate networks. Con-

straints (2.20) represent the assignment restriction. Constraints (2.21)-(2.22) corre-

spond to the constraints (2.12)-(2.13) in (B).

2.4.3 Pattern-based Model

In the pattern-based model (P), a flight schedule of a gate is represented by a

pattern. Each pattern is defined by N -dimensional vector where each component

indicates whether the corresponding flight is used or not. Given a pattern, we can

easily recover the park time of flights and accordingly, the total arrival delay can be

22

calculated by the sum of the arrival delays of the patterns used.

Table 2.2: Notation for the pattern-based model

Set Pk Set of feasible patterns at gate k, p ∈ Pk

Parameter
δkip 1 if flight i is assigned on pattern p ∈ Pk of gate k, 0 otherwise

ekp Arrival delay of pattern p

Decision zkp 1 if pattern p is used at gate k, 0 otherwise

Constraints (2.11)-(2.13) in (B) can be incorporated within the pattern and thus,

the pattern-based model can be formulated as a set partitioning problem. However,

we used a set covering formulation for the pattern-based model as its LP relaxation

is more numerically stable and it is trivial to construct an optimal solution of a set

partitioning problem from a solution of a set covering problem [40]. The pattern-

based model has O(M2N) variables and O(N +M) constraints. Since there are an

exponential number of patterns with respect to N , efficient solution approaches for

solving the pattern-based model are needed [9, 13, 16]. The pattern-based model is

written as follows:

(P): min
∑
k∈G

∑
p∈Pk

ekpz
k
p (2.25)

s.t.
∑
k∈G

∑
p∈Pk

δkikz
k
p ≥ 1, ∀i ∈ F, (2.26)

∑
p∈Pk

zkp = 1, ∀k ∈ G, (2.27)

zkp ∈ {0, 1}, ∀p ∈ Pk, k ∈ G. (2.28)

The objective function (2.25) represents the sum of arrival delays of the patterns

used. Constrains (2.26) represent the assignment restriction. Constraints (2.27) en-

sure that only one pattern can be used for each gate.

23

2.4.4 Comparison of Bounds

Proposition 2.1. Let z(B) and z(N) be the optimal objective values of the LP

relaxations of (B) and (N), respectively. Then,

z(B) ≤ z(N).

Proof. Let QB and QN be the sets of feasible solutions of the LP relaxation of (B)

and (N), respectively. We will show that for any (t̂, ŷ) ∈ QN , we can construct

(t̂, x̂) ∈ QB. Let y ∈ R
(N+2)(N+1)

2 be vector of flow from node 0 to node N + 1 in

the k-th gate network of (N). Then y can be decomposed by the sum of paths from

node 0 to node N + 1, i.e. y =
∑

p∈FL fpy
p, where FL is the set of all possible flows,

fp is the amount of flow in path p and yp is the characteristic vector of path p. For

any path p ∈ FL and a pair of flights (i, j) such that i ∈ F, j ∈ F, i < j, p belongs

to one of the 4 sets:

FL1 =

{
p ∈ FL :

∑
i<q

ypiq = 0,
∑
j<q

ypjq = 0

}
,

FL2 =

{
p ∈ FL :

∑
i<q

ypiq > 0,
∑
j<q

ypjq = 0

}
,

FL3 =

{
p ∈ FL :

∑
i<q

ypiq = 0,
∑
j<q

ypjq > 0

}
,

FL4 =

{
p ∈ FL :

∑
i<q

ypiq > 0,
∑
j<q

ypjq > 0

}
,

where FL1, FL2, FL3, FL4 are mutually exclusive and collectively exhaustive for

FL. For given the LP relaxation solution (t̂, ŷ) for (N), define x̂ik =
∑

i<q y
k
iq, the

24

amount of flow passing the node i. For any k ∈ G, we have

2− x̂ik − x̂jk = 1 +

(∑
p∈FL

fp −
∑

p∈FL2∪FL4

fp −
∑

p∈FL3∪FL4

fp

)

= 1 +

(∑
p∈FL1

fp −
∑

p∈FL4

fp

)

≥ 1− ŷkik

≥ 1−
∑
k∈G

ŷkik.

Since U(2− x̂ik− x̂jk) ≥ U(1−
∑

k∈G ŷ
k
ik) ≥ t̂i+pi− t̂j , (t̂, x̂) satisfies the constraints

(2.13) of (B). Therefore (t̂, x̂) is the solution of the LP relaxation of (B) and the

LP relaxation value of (N) provides a bound that is at least as tight as the bound

provided by (B).

Proposition 2.2. Let z(N) and z(P) be the optimal objective values of the LP

relaxations of (N) and (P), respectively. Then,

z(N) ≤ z(P).

Proof. Consider the set partitioning problem (P′) which is equivalent to (P) whose

constraints (2.26) are substituted by equality constraints. Since (P) is the relaxation

for (P′), it is sufficient to show that z(N) ≤ z(P′). Let QN and QP ′ be the sets of the

feasible solutions of the LP relaxation of (N) and (P′), respectively. We will show

that for any ẑ ∈ QP ′ , we can construct (t̂, ŷ) ∈ QN .

For any p ∈ Pk, there exists a corresponding characteristic vector yk,p ∈ R
(N+2)(N+1)

2

in the kth gate network and it is defined by

yk,pij =

(∏
i<q<j

(1− δkqp)

)
δkipδ

k
jp, ∀i < j, ∀i, j ∈ {0, ..., N + 1}.

25

where δk0p = δkN+1,p = 1 for all p ∈ Pk, ∀k ∈ G. For given the LP relaxation solution

ẑ for (P′), define ŷ = (ŷ1, ..., ŷM) by ŷkij =
∑

p∈Pk
yk,pij ẑ

k
p . From the definition of

yk,p, we have
∑

j<i y
k,p
ji = 1 for i = 1, ..., N + 1 and

∑
j>i y

k,p
ij = 1 for i = 0, ..., N .

Furthermore, we have

∑
j>i

ŷkij =
∑
j>i

∑
p∈Pk

yk,pji ẑ
k
p =

∑
p∈Pk

(∑
j>i

yk,pji

)
ẑkp =

∑
p∈Pk

ẑkp = 1

and similarly, we can derive
∑

j<i ŷ
k
ji = 1. Thus ŷk satisfies the flow conservation

constraints (2.17) - (2.19).

For p ∈ Pk, the park time tk,pi of flight i in pattern p is determined by

tk,pi = max
{
hi, max

1≤j<i
{tj + pj − U(1− yk,pji)}

}
and the corresponding cost coefficient is ckp =

∑
i∈F (tk,pi − hi).

Define t̂Ni =
∑

k∈G
∑

p∈Pk
δkipẑ

k
p t

k,p
i for i ∈ F . Then we have

(i) :
∑
i∈F

(t̂Ni − hi) =
∑
k∈G

∑
p∈Pk

∑
i∈F

δkipẑ
k
p (tk,pi − hi) =

∑
k∈G

∑
p∈Pk

ckp ẑ
k
p

and

(ii) : t̂Ni =
∑
k∈G

∑
p∈Pk

δkipẑ
k
pmax

{
hi, max

1≤j<i
{tj + pj − U(1− yk,pji)}

}
= max

{
hi,
∑
k∈G

∑
p∈Pk

δkipẑ
k
p max

1≤j<i
{tj + pj − U(1− yk,pji)}

}
= max

{
hi, max

1≤j<i
{tNj + pj − U(1−

∑
k∈G

∑
p∈Pk

δkipẑ
k
py

k,p
ji)}

}
= max

{
hi, max

1≤j<i
{tNj + pj − U(1−

∑
k∈G

ŷkji)}
}
.

From (ii), (t̂N, ŷ) satisfies the constraints (2.21) - (2.22) in (N), and thus (t̂N, ŷ) ∈ QN .

26

On the other hand, the objective function value of (t̂N, ŷ) is equal to that of ẑ in

(P′) by (i). Therefore (t̂N, ŷ) is the solution of the LP relaxation of (N) and the

LP relaxation value of (P′) provides a bound that is at least as tight as the bound

provided by (N).

Since Proposition (2.1) and Proposition (2.2) are about IP models for the original

AGAP, we need the comparison of bounds among IP models for EP. For the con-

venience of notation, we denote the basic model, network model, and pattern-based

model for EP by (EP-B), (EP-N), and (EP-P), respectively.

Corollary 2.3. Let z(EP-B), z(EP-N) and z(EP-P) be the optimal objective val-

ues of the LP relaxations of (EP-B), (EP-N) and (EP-P) for EP, respectively.

Then,

z(EP-B) ≤ z(EP-N) ≤ z(EP-P).

Corollary 2.3 can be proved similar to the proofs of Proposition (2.1) and Proposition

(2.2). Based on Corollary 2.3, we choose (EP-P) for the evaluation of the lower

bound v̂LBt (St, at) since it has the strongest LP relaxation value. Thus, we solve the

LP relaxation problem of (EP-P) in ADP(P, η, τ) at line 6.

27

Chapter 3

Approximate Dynamic Programming Approach
using Pattern-based Model

When the pattern-based model is used for the action evaluation problem, an exces-

sive computation can be incurred in the ADP approach. In this chapter, we discuss

solution approaches for the action evaluation problem and implementation details

associated with the ADP algorithm. First, we explain a column generation method

for the action evaluation problem. Then we develop several techniques that can ac-

celerate the ADP algorithm. Finally, we elaborate on the implementation details of

the ADP algorithm.

28

3.1 Solution Approach for Action Evaluation Problem

Column generation is an exact method commonly used to solve large-scale LP prob-

lems, especially with a large number of variables, and has been widely applied in

various applications [41, 42]. The column generation method involves solving a re-

stricted problem, which is a problem with a subset of columns, and generating new

columns by solving subproblems. This procedure is repeated until no further prof-

itable columns can be generated. A detailed explanation of the column generation

method is introduced in [43]. In this section, we present a column generation method

for the action evaluation problem, along with a solution approach for subproblems

and a multiple column generation strategy.

3.1.1 Column Generation Method for Action Evaluation Problem

In the previous chapter, the pattern-based model (EP-P) was adopted for the action

evaluation problem in the ADP approach. Thus the LP relaxation of (EP-P) has to

be solved in line 6 of ADP(P, η, τ). We denote this problem by MPt(at) and refer to

it as master problem. MPt(at) is a LP problem for a given lookahead horizon τ , state

St, and action at. We denote the lookahead flights by F ′ = {t, ...,min{t + τ,N}}.

Although the notation in Table 2.2 was used for MPt(at), its meaning is different.

In MPt(at), Pk represents the set of feasible patterns at gate k for flights in F ′. ekp

29

represents the arrival delay of pattern p ∈ Pk. MPt(at) can be written as follows:

MPt(at) : min
∑
k∈G

∑
p∈Pk

ekpz
k
p (3.1)

s.t.
∑
p∈Pk

δkipz
k
p ≥ 1, i = t, k = at, (3.2)

∑
k∈G

∑
p∈Pk

δkipz
k
p ≥ 1, ∀i ∈ F ′ \ {t}, (3.3)

∑
p∈Pk

zkp = 1, ∀k ∈ G, (3.4)

zkp ≥ 0, ∀p ∈ Pk, k ∈ G. (3.5)

The objective function (3.1) represents the sum of arrival delays for the lookahead

flights. Constraint (3.2) ensures that flight t is assigned to a gate corresponding to

a given action at. Constraints (3.3)-(3.5) correspond to the constraints (2.26)-(2.28)

in (P). The binary variable constraints (2.28) were replaced by constraints (3.5) due

to the existence of constraints (3.4).

Directly solving MPt(at) is impractical because it has exponentially many vari-

ables. Therefore, we use the column generation method where we start with a small

subset of Pk and generate patterns gradually until an optimal solution is found. We

denote a subset of Pk by P̂k and the master problem where Pk is replaced with P̂k

by RMPt(at). We refer to RMPt(at) as restricted master problem. RMPt(at) can

be written as equations (3.6)-(3.10). After solving RMPt(at), it is necessary to solve

subproblems to determine whether profitable columns can be generated or not. Here,

we define a column or pattern to be profitable if its corresponding variable, zkp , has

a negative reduced cost. If profitable columns are not generated for all subproblems,

the current solution of RMPt(at) is the optimal solution of MPt(at).

30

RMPt(at) : min
∑
k∈G

∑
p∈P̂k

ekpz
k
p (3.6)

s.t.
∑
p∈P̂k

δkipz
k
p ≥ 1, i = t, k = at, (3.7)

∑
k∈G

∑
p∈P̂k

δkipz
k
p ≥ 1, ∀i ∈ F ′ \ {t}, (3.8)

∑
p∈P̂k

zkp = 1, ∀k ∈ G, (3.9)

zkp ≥ 0, ∀p ∈ P̂k, k ∈ G. (3.10)

Let πi and µk be the dual optimal solutions of the constraints (3.7)-(3.8) and (3.9).

Then, the problem of finding the most negative reduced cost is given by

min{ekp −
∑
i∈F ′

δkipπi − µk : ∀p ∈ Pk, ∀k ∈ G}. (3.11)

This problem can be decomposed per gate and the term µk can be dropped since µk is

a constant for each decomposed subproblem. We denote the decomposed subproblem

for gate k by SPk
t (at). SPk

t (at) can be written as follows:

SPk
t (at) : min

∑
i∈F ′

(ui − hi)−
∑
i∈F ′

xikπi (3.12)

s.t. ui ≥ max{ckt , hi}, ∀i ∈ F ′, (3.13)

xik ≤ αik, ∀i ∈ F ′, (3.14)

ui + pi − uj ≤ U(2− xik − xjk), ∀i < j, i, j ∈ F ′ (3.15)

xik = 1{k=at}, i = t, (3.16)

xik ∈ {0, 1}, ∀i ∈ F ′, (3.17)

ui ≥ 0, ∀i ∈ F ′. (3.18)

31

The decision variables ui’s are used for the park time variables ti’s to distin-

guish them from the index of current stage t. SPk
t (at) is a problem with respect to

gate k with the following properties. First, only the lookahead flights are considered.

Second, the park time ui’s of the lookahead flights F ′ cannot be earlier than the com-

pletion time ckt (constraint (3.13)). Third, the assignment of flight t is predetermined

by the given action at (constraint (3.16)).

The solution xk = (xik, ..., xlk) is the pattern generated by solving SPk
t (at),

where l = min{t + τ,N}. It is added to P̂k of RMPt(at) when the optimal objec-

tive value of SPk
t (at) is less than µk. The overall process of the column generation

method for MPt(at) is described in Algorithm 3. Algorithm 3 is executed in line 6

of ADP(P, η, τ).

Algorithm 3 Column generation for MPt(at)

1: generate initial columns for RMPt(at) ;
2: repeat
3: column count← 0 ;
4: solve RMPt(at) ;
5: let z∗ and (π,µ) be the optimal value and dual solution of RMPt(at) ;
6: for k ∈ G do
7: solve SPk

t (at) ;
8: let z∗k be the optimal value of SPk

t (at) ;
9: if z∗k − µk < 0 then

10: add column to RMPt(at) ;
11: column count← column count+ 1 ;
12: end if
13: end for
14: until column count = 0
15: return z∗ ;

32

3.1.2 Solution Approach for Subproblem

An efficient solution approach for subproblems is important in the column generation

method, as a large number of subproblems have to be solved. SPk
t (at) can be solved

by a general mixed integer programming (MIP) solver. But due to the existence of a

big number U in constraints (3.15), the performance of branch-and-bound algorithms

in MIP solvers is very poor. Consequently, solving SPk
t (at) by MIP solver requires a

long computation time. Thus we use a DP algorithm of [13]. In [13], a DP algorithm

was proposed for solving subproblems in a branch-and-price algorithm for the AGAP.

However, since SPk
t (at) is different from the subproblem in [13], we use the DP

algorithm by modifying the input parameters of arrival time hi and dual solution

πi. For the complete description of the solution approach for MPt(at), we introduce

the DP algorithm of [13] with modification of parameters.

Let F ′k = {1, 2, ..., n} be the re-indexed set of {i ∈ F ′ \ {t} : αik = 1 and πi > 0}.

Flight t is excluded in F ′k for its assignment decision xik is already determined by the

action at. Since flights with non-positive πi cannot improve the objective function

value of SPk
t (at), it is sufficient to consider only the set F ′k for SPk

t (at). Also, the

parameter of arrival time, hi, and dual solution, πi, are re-indexed according to F ′k.

Define gi(u) be the maximum total net benefit from optimally accepting flights in

the set {i, i+ 1, ..., n} at or after time u. A formal definition is given as follows:

gi(u) = max
xjk : j≥i

∑
j≥i

π′jxjk −
∑
j≥i

(uj − h′j)

∣∣∣∣∣ uj ≥ u, ∀j ∈ {i, i+ 1, ..., n}

 (3.19)

where h′j , π
′
j are adjusted arrival time, adjusted price defined by h′j = max{hj , ckt }+

pt1{k=at}, π
′
j = πj − (h′j − hj). We consider u ∈ {1, ..., c} where c is the planning

horizon for flight schedule in the subproblem. It suffices to choose c as h′n+ max
1≤i≤n

xik.

33

If flight j is not assigned to gate k, i.e. xjk = 0, then uj = h′j . Thus flight j does

not contribute to the value of gi(u). On the other hand, if flight j is assigned to gate

k, i.e. xjk = 1, then π′jxjk − (uj − h′j) = (πj − (h′j − hj))xjk − (uj − h′j) = πjxjk −

(uj−hj). In this case, flight j contribute πj− (uj−hj) amount to the value of gi(u).

Therefore, the optimal solution value for SPk
t (at) is equal to −g1(h′1) + (catt − ht)+

where (catt − ht)+ is the arrival delay of flight t in the original flight set, F .

From the definition of gi(u), we can derive the following recursive formula:

gi(u) =

0 if i ≥ n+ 1

gi(h
′
i) if u < h′i

gi+1(u) if u > h′i + π′i

max{(h′i + π′i − u) + gi+1(u+ pi), gi+1(u)} if h′i ≤ u ≤ h′i + π′i

(3.20)

Based on the recursive formula, g1(h′1) can be computed by the backward recursion

algorithm of Algorithm 4. Algorithm 4 is executed in line 7 of Algorithm 3.

34

Algorithm 4 DP algorithm for SPk
t (at)

1: let g and S be a n+ 1 by c array
2: for u = c to h′1 do
3: g(n+ 1, u)← 0 ;
4: S(n+ 1, u)← ∅ ;
5: end for
6: for i = n to 1 do
7: for u = c to h′1 do
8: if u < h′i then
9: g(i, u)← g(i, h′i) ;

10: S(i, u)← S(i, h′i) ;
11: else if u > h′i + π′i then
12: g(i, u)← g(i+ 1, u), S(i, u)← S(i+ 1, u) ;
13: S(i, u)← S(i+ 1, u) ;
14: if h′i + π′i − u+ g(i+ 1, u+ pi) > g(i+ 1, u) then
15: g(i, u)← h′i + π′i − u+ g(i+ 1, u+ pi) ;
16: S(i, u)← S(i+ 1, u) ;
17: else
18: g(i, u)← g(i+ 1, u) ;
19: S(i, u)← S(i+ 1, u) ;
20: end if
21: end if
22: end for
23: end for
24: return (g, S) ;

3.1.3 Multiple Column Generation Strategy

In Algorithm 3, during each iteration, at most one pattern can be generated per gate.

However, it may be inefficient in the column generation method where many patterns

are needed to solve MPt(at) to optimality. In this regard, a submodular maximization

algorithm [44] was used to generate additional patterns in [13]. But this method

can result in the inclusion of patterns with non-negative reduced costs, only to

increase the size of RMPt(at). Thus, we devise an alternative method, Algorithm 5,

to generate multiple patterns per gate efficiently.

35

Algorithm 5 Multiple column generation algorithm

1: let (g, S) be the returned arrays of Algorithm 4 ;
2: U ← ∅ ;
3: if n ≥ 2 and δ ≥ 2 then
4: for i = 2, ..., δ do
5: if −g(i, h′1) + (catt − ht)+ − µk < 0 then
6: if checkRedundancy(U, S(i, h′1)) then
7: U ← {S(i, h′1)};
8: end if
9: end if

10: end for
11: end if
12: add columns in U to RMPt(at) ;

This method is, basically, based on the returned arrays (g, S) of Algorithm 4.

For i ∈ F ′k with −g(i, h′1) + (catt − ht)
+ − µk < 0, pattern S(i, h′1) is profitable

(line 5). Adding these patterns to RMPt(at) will speed up the column generation

method. However, generating all profitable patterns can lead to an excessively large

size of RMPt(at). Hence, we exclude any patterns that are dominated by previously

generated patterns (line 6). In addition, we set the maximum number of pattern

generation by parameter δ (line 3). It suffices to consider δ ≤ M and thus, we set

δ = M . Algorithm 5 is executed in line 10 of Algorithm 3.

36

3.2 ADP Acceleration Techniques

In the proposed ADP approach, a tremendous computational burden can be incurred

for the following two reasons. Firstly, the number of action evaluations, specifically

the number of MPt(at)’s needs to be solved, is proportional to N and M . Sec-

ondly, in the column generation method of MPt(at), a number of iterations between

RMPt(at) and SPk
t (at)’s are required. Consequently, naively applying the ADP ap-

proach would take excessive computation time. To address this computational com-

plexity, we develop several techniques which can accelerate the ADP algorithm based

on the relationship between states.

Figure 3.1: Required Computation of ADP(P, η, τ) at Stage t

There are three techniques for the ADP acceleration: Early Fixing (EF), Re-

ordering of Action Sequence (RAS), and Early Cut-off (EC). RAS and EF are aimed

at reducing both the number of action evaluations and iterations. EC, on the other

hand, is aimed at reducing only the number of iterations. For the rest of this thesis,

given IP or LP model (M), the optimal objective value of either the LP relaxation

problem of (M) (in the case of an IP model) or the LP problem of (M) (in the case

of an LP model) will be denoted as z(M).

37

3.2.1 Early Fixing

In the ADP approach, evaluating all candidate actions at each stage can be com-

putationally expensive. To reduce the computation time, it is better to reduce the

number of action evaluations if possible. EF is used to select the best action of the

current stage without evaluating all candidate actions. More specifically, if the cur-

rent action at satisfies a certain criterion, then we exit the for loop of lines 4-12 in

ADP(P, η, τ).

EF uses the criterion that an action at is selected as the best action of the current

stage if it satisfies the following inequality

dt + v̂t(St, at) ≤ (1 + ε) (dt−1 + z(MPt−1(aADP
t−1))). (3.21)

Here, dt + v̂t(St, at) represents the estimation of the sum of arrival delays from flight

1 to flight min{t + τ,N}. dt−1 + z(MPt−1(aADP
t−1)) represents the estimation of the

sum of arrival delays from flight 1 to flight min{t + τ − 1, N} and thus it becomes

the lower bound for the value of dt+ v̂t(St, a
′
t) for all a′t ∈ At. When EF is used in the

ADP approach, the if statement for checking the inequality (3.21) is added between

lines 11 and 12 in ADP(P, η, τ).

The non-negative parameter ε determines the threshold for EF. A smaller ε value

allows for more possible actions to be evaluated, resulting in better solution quality

but longer computation time. This is because it expands the search space, which can

lead to better actions being discovered. Thus, there is a trade-off between solution

quality and computation time in setting ε. When ε is set to 0, EF is performed only

when the condition dt + v̂t(St, at) = dt−1 + z(MPt−1(aADP
t−1)) is satisfied. In contrast,

38

when ε is set to ∞, the first action of the for loop is selected as the best action for

the current stage, using an abuse of notation.

3.2.2 Reordering of Action Sequence

When EF is used in the ADP approach, it is advantageous to evaluate promising

actions early in the stage. Promising actions are more likely to satisfy equation

(3.21) which leads to fewer evaluations of candidate actions. For this reason, it is

preferred to prioritize more promising actions. This is where RAS comes in: it specifies

the order in which actions are evaluated at the current stage. That is, we sort the

set of actions At in line 4 of ADP(P, η, τ). There can be various criteria for sorting

actions, but we present one naive criterion and two alternative criteria.

Naive criterion (NAI) sorts at ∈ At by the index of the gates. For example, for

given At = {1, 2, 3, 5}, the action sequence becomes (at1 , at2 , at3 , at4) = (1, 2, 3, 5).

This criterion does not consider any information of the current state. The first

alternative criterion is Earliest Available Gate (EAG). This criterion sorts at ∈ At

by their completion time catt in ascending order. In other words, EAG criterion gives

priority to actions that can start the processing of a new flight earlier than others.

The second alternative criterion is Largest Assignment Solution (LAS). In this case,

at ∈ At is sorted by the solution value x̂tk =
∑

p∈Pk
δktpẑ

k
p of MPt−1(aADP

t−1) in

descending order. That is, LAS criterion gives priority to actions that have the largest

solution value x̂tk at the previous stage.

Overall, by using these sorting criteria together with EF, we can significantly

reduce the number of action evaluations required in the ADP algorithm.

39

3.2.3 Early Cut-off

In the column generation method for MPt(at), the upper and lower bound for the

optimal solution value can be updated during iterations. At intermediate iterations

of MPt(at), the upper and lower bound for z(MPt(at)) are given as

Upper bound: z(RMPt(at)) (3.22)

Lower bound: z(RMPt(at)) +
∑
k∈G

(z(SPk
t (at))− µk) (3.23)

respectively [43]. These bounds can be used to determine if the current action at

is the best action aADP
t of the current stage t before reaching the optimal solution.

Using the lower bound, we can predetermine that the current action is not the best

action. Using the upper bound, on the other hand, we can predetermine that the

current action is the best action. In either case, the need to solve MPt(at) exactly

can be avoided and the evaluation of the current action can be stopped mid-process.

This acceleration technique is referred to as EC. We call the first case of EC by cut-off

by lower bound and the second case of EC by cut-off by upper bound.

Cut-off by Lower Bound

During the iteration of the column generation method of MPt(at), if the lower bound

of v̂t(St, at) of the current action at is found to be greater than or equal to v̂t(St, a
′
t)

of a previously evaluated action a′t ∈ At, then we can predetermine that the current

action is not the best action. Formally stating this condition, it is written as

η vUB
t (St, at) + (1− η)

(
z(RMPt(at)) +

∑
k∈G

(z(SPk
t (at))− µk)

)
≥ v̂bestt (3.24)

40

where v̂bestt is the smallest value of v̂t(St, a
′
t) of a previously evaluated action a′t ∈ At,

which corresponds to v̂best in ADP(P, η, τ). The left-hand side of equation (3.24)

represents the lower bound of v̂t(St, at) since z(RMPt(at))+
∑

k∈G(z(SPk
t (at))−µk)

is the lower bound for vLBt (St, at). Satisfying equation (3.24) implies that v̂t(St, at) ≥

v̂t(St, a
′
t) for some action a′t ∈ At and thus we can predetermined that the current

action at cannot be chosen as the best action aADP
t .

Cut-off by Upper Bound

During the iteration of the column generation method of MPt(at), we can prede-

termine that the current action at is the best action if the following equation is

satisfied:

dt + η vUB
t (St, at) + (1− η) z(RMPt(at)) = dt−1 + z(MPt−1(aADP

t−1)). (3.25)

The left-hand side of equation (3.25) represents the upper bound of dt + v̂t(St, at)

since z(RMPt(at)) is the upper bound of vLBt (St, at). The right-hand side represents

the lower bound for dt + v̂t(St, a
′
t) for all a′t ∈ At, which is explained in section

3.2.1. Satisfying equation (3.25) implies that the left-hand side of equation (3.25)

of current action at attains the lowest value of the current stage and thus we can

predetermine that the current action can be chosen as the best action.

The if statements for checking the inequality (3.24) and equality (3.25) in the

column generation algorithm in line 6 of ADP(P, η, τ).

41

3.3 Implementation Details

In this section, we discuss technical issues regarding the implementation of the pro-

posed ADP approach, which have a significant impact on the computation time of

the overall algorithm. we explain initialization and column inheritance of the master

problem MPt(at). Then, we discuss how to update the upper and lower bounds of

the solution value return by ADP(P, η, τ) at each stage. These bounds can be used

for termination criterion of ADP(P, η, τ).

3.3.1 Initialization

When solving MPt(at), specifically in line 6 of ADP(P, η, τ), initial feasible columns

are needed for the restricted master problem to start the iteration of the column

generation method. For initial columns, maximal columns considering compatibil-

ity with a sufficiently large cost coefficient are used. Also, columns generated by

ERD(P, τ, t, c, a), where columns can be constructed by tracking the flight-to-gate

assignments, are additionally generated to speed up the convergence of column gen-

eration of MPt(at).

3.3.2 Column Inheritance

Starting with high-quality columns can significantly reduce the number of iterations

required to solve MPt(at). Between MPt−1(aADP
t−1) and MPt(at), the set of lookahead

flights differ at most one element. Hence, MPt−1(aADP
t−1) and MPt(at) share almost

the same structure and it is expected that the set of generated columns for the two

problems will be very similar. Therefore, we use the set of columns obtained from

solving MPt−1(aADP
t−1) as the initial columns for MPt(at) for all at ∈ At together with

42

the columns generated in subsection 3.3.1. We call this method column inheritance.

Columns, i.e. patterns, in Pk of MPt−1(aADP
t−1) are inherited to columns in Pk of

MPt(at) for all k ∈ G, respectively. When k = at, only the columns satisfying the

condition that flight t is assigned to gate at were inherited. It can be implemented by

storing the set of patterns for all gates associated with MPt(a
best) in ADP(P, η, τ).

To make column inheritance possible from stage 1, the LP relaxation of the pattern-

based model with respect to the flight set {1, ..., τ} is solved before the while loop

of line 2 in ADP(P, η, τ). At stage 1, columns obtained from solving this problem

were inherited to MP1(a1) for all a1 ∈ A1.

3.3.3 Updating Bounds & Termination Criterion

An ADP solution is a policy a = (a1, ..., aN) obtained by the proposed ADP ap-

proach. If the ADP algorithm is terminated within the time limit, then the ADP

solution is given as aADP = (aADP
1 , ..., aADP

N). Otherwise, the best incumbent solu-

tion found so far is considered as the ADP solution. ADP value is defined as the

arrival delay associated with the ADP solution. How to construct an incumbent so-

lution and update the lower bound of the partial solution value at each stage is as

follows.

At the beginning of each stage, we construct an incumbent solution and up-

date the upper bound UBADP
t and lower bound LBADP

t of ADP value. The in-

cumbent solution is given as (aADP
1 , ..., aADP

t−1 , at, ..., aN) where (aADP
1 , ..., aADP

t−1)

is a partial solution constructed so far by the ADP algorithm and (at, ..., aN) is

a partial solution for undetermined stages constructed by the ERD rule with the

unassigned flights {t, ..., N} not with lookahead flights. UBADP
t and LBADP

t are

43

different from vUB
t (St, at) and vLBt (St, at) which are for a value function vt(St, at).

UBADP
t is updated by UBADP

t = min{UBADP
t−1 , W}, where W is the arrival de-

lay of the incumbent solution (aADP
1 , ..., aADP

t−1 , at, ..., aN). LBADP
t is updated by

LBADP
t = dt−1 + vLBt−1(St−1, a

ADP
t−1). If UBADP

t and LBADP
t reach the same value,

we can terminate the ADP algorithm before the last stage.

44

Chapter 4

Computational Experiments

In this chapter, we present the results of the computational experiments and discuss

the effectiveness and efficiency of the proposed ADP approach. Experiments are

mainly divided into two parts: effects of algorithmic parameters of ADP(P, η, τ)

and performance of ADP(P, η, τ). In the first part of experiment, we investigate the

behavior of the ADP approach with respect to the various control parameters. In

the second part of experiment, we compare the performance of the ADP approach

to other methods.

45

4.1 Experiment Setting

We conducted experiments on both artificial data and real-world data. To generate

artificial data while controlling the amount of congestion of a gate, we introduced

several parameters in Table 4.1 and followed the procedure provided by [9] similarly.

Table 4.1: Instance generation parameter

N Number of flights

M Number of gates, b Np̄
THu
c

u Congestion of gate, u ∈ (0, 1]
p̄ Mean processing time
TH Planning horizon

Ta Average inter-arrival time between two consecutive flights, TH

N

Arrival time and processing time for each flight i were sampled independently

from a discrete uniform distribution hi ∼ U [(i− 1)Ta, iTa], pi ∼ U [60, 100]. For each

flight i, αik was set to 1 for randomly selected half of the gates and 0 for the other

half in the compatibility parameter vector αi = (αi1, ..., αiM). We fixed TH = 1000,

p̄ = 80. N , u are control parameters for the generation of instances. For given N

and u, Ta and M are determined by the definition in Table 4.1. Np̄
TH represents the

minimum required number of gates to process all flights within the planning horizon.

By dividing the congestion parameter u, the number of gates M = b Np̄
THu
c can be

determined. In the artificial data, 5 types of instances were considered, F100G8,

F250G20, F500G40 (u = 1), F100G10 (u = 0.75), F100G16 (u = 0.5), where the

numbers after the alphabet F and G represent N and M , respectively. For each

instance type, 10 instances were generated.

For the real-world data, we used flight data from 31 days in August 2019 from

Atlanta Hartfield-Jackson Airport, which is one of the busiest airports in the world.

46

The data was obtained from the U.S Bureau of Transportation Statistics website [45].

Each instance was generated based on the data of 1 day and thus, total 31 instances

were made for the real-world data. The number of flights per day ranges from 900 to

1300 and the number of gates at Atlanta Hartfield-Jackson Airport is 192. However,

the provided data was only for domestic flights and so, we set the number of gates

M to 152, which is the number of gates for domestic flights. Since processing times

were not explicitly provided, we estimated the values by subtracting the arrival

times from the departure times of connecting flights. However, if a processing time

was greater than 4 hours, we considered the corresponding flight as two separate

flights and sampled the processing times of those two flights in the same way as

artificial data. Also, for each flight i, αik was set to 1 for randomly selected dM10e

gates without replacements and 0 for the other gates in the compatibility parameter

vector αi = (αi1, ..., αiM).

All experiments were conducted on Intel Core i7 3.20 GHz processors and 64GB

RAM. We used commercial MIP solver Xpress 8.9 [46] to solve LP and MIP prob-

lems. All the models and algorithms were implemented in Mosel 5.2 with native

interface of C.

47

4.2 Effects of Algorithmic Parameters of ADP(P , η, τ)

In the ADP approach, various parameters such as interpolation ratio η, lookahead

horizon τ , and parameters related to the ADP acceleration, were introduced. Since

solution quality and computation time of the ADP approach are significantly affected

by these parameters, three tests were conducted to quantitatively analyze the effects

of parameters. In these tests, all performance measures are reported in average values

of 10 instances of the same type, unless explicitly mentioned otherwise.

4.2.1 Sensitivity Analysis on the Value of Interpolation Ratio

Sensitivity analysis on the value of the interpolation ratio η was conducted to find the

best value in terms of solution quality. We considered η ∈ {0, 0.25, 0.5, 0.75, 1}.

10 instances from F100G8 were used for test instances. The lookahead horizon τ

was set to N and no ADP acceleration techniques were used. The Xpress LP Solver

algorithm was set to dual simplex which is a default. For performance measures,

Gap and Time are used. Gap is a measure of solution quality which is defined by

Gap =
ADP.value− z(P)

ADP.value
(%) (4.1)

where ADP.value is the ADP value defined in subsection 3.3.1 and z(P) is the LP

relaxation value of the pattern-based model (P). Time is the computation time of

the ADP algorithm in seconds. Figure 4.1 shows how Gap and Time change with

respect to the value of η.

Among the five levels of η, η = 0 showed a significantly smaller value of Gap

compared to the other levels. In addition, Gap increased as the value of η increased.

48

Figure 4.1: Sensitivity analysis on the value of η

This is due to the poor performance of the primal heuristic, the ERD rule. The

differences in Time among the five levels of η were negligible, resulting in only a few

seconds of variation. Therefore setting the interpolation ratio to 0 emerges as the

most attractive strategy. Consequently, we fix η = 0 for the ADP approach.

4.2.2 Effects of the ADP Acceleration Techniques

In this experiment, we compared the computation time for various combinations of

ADP acceleration techniques in section 3.2 to demonstrate the effectiveness of ADP

acceleration. We denote EF(O) if EF is used in the ADP algorithm and EF(X) other-

wise. Likewise, we denote EC(O) and EC(X) for EC in the same manner. In RAS, there

are NAI, EAG and LAS. We considered (A, B, C) ∈ {EF(O), EF(X)}× {EC(O), EC(X)}×

{LAS, EAG, NAI} where A,B and C represent options for EF, EC and RAS, respectively.

Thus, there are total 12 combinations for the ADP acceleration schemes. 10 instances

from F100G8 were used for test instances. The lookahead horizon τ and early fixing

parameter ε were set to N = 100 and 0, respectively. The Xpress LP Solver algorithm

49

was set to default. We introduce two performance measures: Action and Iteration.

Action represents the number of MPt(at)’s solved for all at ∈ At, t ∈ F in the ADP

algorithm. Iteration represents the number of iterations in the column generation

method of MPt(at) for all at ∈ At, t ∈ F in the ADP algorithm. Figure 4.2 shows the

computation time for all possible ADP acceleration schemes and Figure 4.3 shows

Action and Iteration for all possible ADP acceleration schemes.

All three ADP acceleration techniques significantly reduced the computation

time of the ADP algorithm without affecting the solution quality. For RAS, LAS and

EAG took much less computation time compared to NAI. LAS showed slightly better

performance compared to EAG. In particular, when EF was used, the performance de-

viation among options of RAS became bigger. These results can be explained by two

factors, Action and Iteration. EC contributed solely to the reduction of Iteration,

while EF was effective in significantly reducing Action, which in turn led to a re-

duction in Iteration. When EF was not used, RAS only reduced Iteration, but when

EF was employed, RAS was effective in reducing both Action and Iteration. This

is because evaluations of promising actions first have a bigger potential to provide

lower values of approximated value function early in the stage which facilitates EF

and EC.

Additionally, we observed that the effectiveness of ADP acceleration techniques

tends to be more prominent, as the problem size increases although we didn’t conduct

a formal computational experiment for it. In conclusion, (EF(O),EC(O),LAS) scheme

showed the best performance and based on this result, we fix (EF(O),EC(O),LAS) for

our ADP acceleration scheme.

50

Figure 4.2: Computation time comparison among ADP acceleration schemes

Figure 4.3: Action and iteration comparison among ADP acceleration schemes

51

Table 4.2: Performance comparison among various ADP parameters for F500G40

Parameters
Time Gap Solved†

τ ε

N
0 1801.73 54.8% 0

0.01 614.44 12.4% 10
∞ 627.48 13.2% 10

Average/Total∗ 1014.55 26.8% 20

2M
0 1800.27 42.9% 0

0.01 1437.34 27.5% 9
∞ 279.49 26.9% 10

Average/Total∗ 1172.37 32.4% 19

M
0 907.66 41.0% 10

0.01 352.12 42.5% 10
∞ 73.07 40.7% 10

Average/Total∗ 444.29 41.4% 30
† Number of instances solved within time limits
∗ For T ime and Gap, average values were reported and for Solved, total value was reported.

4.2.3 Scalability Test with respect to Parameters τ , ε

We tested the ADP approach for various sizes of problems to confirm its scalability.

In the test, we controlled two parameters, τ and ε, which are concerned with the

trade-off between solution quality and computation time. We considered both 3 levels

of τ ∈ {N, 2M,M} and ε ∈ {0, 0.01,∞}. Thus, there are total 9 combinations for

the two parameters. We denote a parameter combination by (A, B) ∈ {N, 2M,M}×

{0, 0.01,∞} where A represents level of τ and B represents level of ε. For each instance

type, F100G8, F250G20, F500G40, 10 instances were used for test instances. The

Xpress LP Solver algorithm was set to Newton-Barrier since it generally performs

better than the simplex algorithm for large-scale LP problems. Figure 4.4 and Figure

4.5 show the performance of the ADP approach with various parameter combinations

for F100G8 and F250G20. For F500G40, Table 4.2 is presented.

All instances were solved within the time limit for F100G8 and F250G20. How-

52

Figure 4.4: Performance comparison among various ADP parameters for F100G8

Figure 4.5: Performance comparison among various ADP parameters for F250G20

53

ever, 21 instances out of 90 instances were not solved within the time limit for

F500G40, especially for large value of τ and small value of ε. τ , as expected,

greatly influenced both the computation time and solution quality. As τ increased,

Time generally got also increased and Gap decreased. However, (N, 0.01) took much

shorter computation time than (2M, 0.01) in F500G40. This is because of the active

column inheritance of (N, 0.01) which significantly reduced the computation time.

The effect of ε on the solution quality was subtle, due to the LAS, while the varia-

tion of computation time among ε was big. Except for (N, 0), (2M, 0) combination

in F500G40, Gap differences among the levels of ε within the lookahead horizon

τ were less than around 2% for all instance types. This implies that it does not

significantly deteriorate the solution quality only to explore the first few actions in

an action sequence sorted by LAS in the ADP approach. Therefore, by adjusting the

value of τ and ε appropriately, we can apply the ADP approach to the large-scale

AGAP efficiently.

54

4.3 Performance of ADP(P , η, τ)

To demonstrate the efficiency of the proposed ADP approach, we tested the ADP

approach on both artificial data and real-world data along with other methods. We

implemented the following 6 methods:

• ADP: ADP algorithm with (EF(O),EC(O),LAS) scheme, η = 0

• B&P: Branch-and-Price algorithm of [13]. Multiple column generation strat-

egy was used only for the root node. Initial columns were generated in the same

way as the ADP approach. If (best integer solution value)−(best bound) < 1,

then the algorithm is terminated since feasible solution values are integral.

• Solver (B): Xpress MIP solver with basic model (B)

• Solver (N): Xpress MIP solver with network model (N)

• ERD: Earliest release time dispatching rule

• EDD: Earliest due date dispatching rule; EDD is same as the ERD except

that the flights are ordered by the due date, hi + pi.

ADP, ERD, EDD are heuristic methods while B&P, Solver (B), Solver (N)

are exact methods.

In experiments for the performance of the ADP approach, we introduce the

following performance measures. UB represents the value of a solution given by a

certain algorithm at termination. LB represents the best dual bound of a certain

algorithm at termination if provided. Node represents the number of B&P nodes

searched within the time limit. All performance measures were reported on individual

instances.

55

4.3.1 Test on Artificial Data

Congestion is the scale of difficulty for instances because instances with a higher

value of congestion are more prone to confront delay propagation. To test the per-

formance of various methods on instances with diverse congestion, we used 3 instance

types F100G16 (u = 0.5), F100G10 (u = 0.75), F100G8 (u = 1). For each instance

type, F100G16, F100G10, F100G8, 10 instances were used for test instances. In

ADP, the lookahead horizon τ and EF parameter ε were set to N and 0, repectively.

The Xpress LP solver algorithm was set to default. Table 4.3 shows the performance

of various methods on artificial data.

For F100G16, all methods found an optimal solution for all 10 instances. Except

for Solver (N), all methods terminated in less than a second. For F100G10, only

ADP and B&P found optimal solutions for all 10 instances. But the computation

time differed by around 100 times. Solver (B) and Solver (N) found optimal

solutions for 7 instances and 4 instances, respectively. For two dispatching rules,

none of the methods found any optimal solution. For F100G8, ADP outperformed

all other methods significantly in terms of solution quality. All exact methods showed

poor performance for high congestion instances. In F100G8, UB of exact methods

were similar to that of ERD and EDD. However, the computation time of exact

methods reached the time limit while ERD and EDD found solutions in less than a

second. For two dispatching rules, no one method dominated the other method. But

ERD showed better UB than EDD for most instances. One interesting observation

is that the Node of B&P was all 2 in F100G8. This is because solving subproblems

took most of the computation time.

56

T
a
b

le
4
.3

:
P

er
fo

rm
a
n

ce
co

m
p

ar
is

on
of

va
ri

ou
s

m
et

h
o
d

s
on

ar
ti

fi
ci

al
d

at
a

In
st
a
n
c
e

A
D
P

B
&
P

S
o
lv
e
r
(B

)
S
o
lv
e
r
(N

)
E
R
D
†

E
D
D
†

u
ti
l.

in
st
.#

T
im

e
U
B

T
im

e
U
B

L
B

N
o
d
e

T
im

e
U
B

L
B

T
im

e
U
B

L
B

U
B

U
B

0
.5

1
0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.7

4
0

0
.0

0
1
1
.2

2
0

0
.0

0
0

0
2

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.6

4
0

0
.0

0
2
3
.3

2
0

0
.0

0
0

0
3

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.6

6
0

0
.0

0
2
7
.5

2
0

0
.0

0
0

0
4

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.5

8
0

0
.0

0
1
8
.0

1
0

0
.0

0
0

0
5

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.5

9
0

0
.0

0
1
9
.6

6
0

0
.0

0
0

0
6

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.6

7
0

0
.0

0
1
0
.0

0
0

0
.0

0
0

0
7

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.5

9
0

0
.0

0
2
9
.7

0
0

0
.0

0
0

0
8

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.7

8
0

0
.0

0
9
.6

4
0

0
.0

0
0

0
9

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.8

9
0

0
.0

0
2
1
.5

4
0

0
.0

0
0

0
1
0

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.5

8
0

0
.0

0
2
5
.3

8
0

0
.0

0
0

0
A

v
er

a
g
e

0
.0

0
0
.0

0
0
.0

0
0

0
.0

0
1
.0

0
0
.6

7
0
.0

0
0
.0

0
1
9
.6

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

0
.7

5

1
3
.0

7
1

1
7
5
.2

8
1

1
.0

0
3
9

1
,0

0
0
.3

1
1

1
.0

0
1
,7

2
6
.6

2
1

1
.0

0
2
0
8

2
8
8

2
2
.6

2
0

1
3
4
.5

4
0

0
.0

0
4
1

1
9
7
.0

2
0

0
.0

0
1
,1

6
9
.2

9
0

0
.0

0
1
4
3

3
1
4

3
2
.9

6
0

2
0
8
.3

4
0

0
.0

0
3
0

1
3
0
.1

3
0

0
.0

0
1
,7

6
3
.5

7
0

0
.0

0
1
5
4

1
7
5

4
3
.1

6
0

3
3
0
.3

6
0

0
.0

0
5
2

9
6
7
.4

3
0

0
.0

0
1
,8

0
0
.1

8
∗

7
0

0
.0

0
1
6
1

2
5
1

5
2
.7

7
0

8
0
.4

4
0

0
.0

0
2
7

1
,0

0
8
.9

4
0

0
.0

0
1
,8

0
0
.1

3
∗

3
7
3

0
.0

0
1
5
3

2
2
6

6
4
.4

5
4

1
2
1
1
.0

1
4

3
.4

0
8
1

1
,8

0
0
.1

1
∗

1
1
5

0
.0

0
1
,8

0
0
.1

0
∗

3
8
6

0
.0

0
2
6
7

3
2
2

7
2
.6

8
0

2
3
0
.8

8
0

0
.0

0
6
8

1
0
6
.9

7
0

0
.0

0
1
,8

0
0
.0

5
∗

4
7

0
.0

0
1
2
1

2
6
1

8
4
.1

6
3

1
1
5
.4

9
3

3
.0

0
1
2

1
,8

0
0
.0

6
∗

1
3
7

0
.0

0
1
,8

0
0
.0

9
∗

8
1
9

0
.0

0
3
4
0

2
9
7

9
2
.0

8
0

1
6
3
.6

3
0

0
.0

0
6
1

4
3
.6

4
0

0
.0

0
4
3
8
.6

9
0

0
.0

0
1
1
6

1
7
1

1
0

3
.5

1
1
7

3
3
5
.1

3
1
7

1
7
.0

0
2
4

1
,8

0
0
.0

6
∗

8
6

0
.0

0
1
,8

0
0
.0

7
∗

3
1
2

0
.0

0
2
5
5

2
0
8

A
v
er

a
g
e

3
.1

5
2
.5

0
2
9
8
.5

1
2
.5

0
2
.4

4
4
3
.5

0
8
8
5
.4

7
3
3
.9

0
0
.1

0
1
,5

8
9
.8

8
2
0
0
.8

0
0
.1

0
1
9
1
.8

0
2
5
1
.3

0

1

1
1
7
.8

3
1
,0

1
5

1
,8

1
5
.8

2
∗

2
,1

1
6

8
9
1
.0

5
2

1
,8

0
0
.1

8
∗

2
,1

4
7

0
.0

0
1
,8

0
0
.1

4
∗

2
,0

7
5

1
0
2
.0

9
2
,1

1
6

2
,2

0
5

2
1
5
.8

9
9
7
4

1
,8

1
7
.6

1
∗

2
,0

6
7

8
6
3
.7

3
2

1
,8

0
0
.1

0
∗

2
,2

0
3

0
.0

0
1
,8

0
0
.1

1
∗

2
,9

4
4

0
.0

0
2
,0

6
7

2
,0

8
2

3
1
8
.3

8
8
0
3

1
,8

1
1
.3

1
∗

1
,5

6
3

6
6
4
.5

7
2

1
,8

0
0
.0

8
∗

2
,0

5
5

0
.0

0
1
,8

0
0
.2

6
∗

1
,4

9
7

9
4
.5

3
1
,5

6
3

1
,6

2
1

4
1
9
.2

1
8
1
6

1
,8

0
7
.6

4
∗

1
,6

2
9

6
8
0
.0

2
2

1
,8

0
0
.1

3
∗

2
,0

3
0

0
.0

0
1
,8

0
0
.0

9
∗

1
,6

3
3

1
0
0
.9

3
1
,6

2
9

2
,1

9
4

5
1
2
.8

6
1
,5

3
2

1
,8

2
1
.3

0
∗

2
,9

9
0

1
,4

5
8
.1

7
2

1
,8

0
0
.0

7
∗

2
,9

0
5

0
.0

0
1
,8

0
0
.0

7
∗

2
,4

5
7

1
2
2
.1

8
2
,9

9
0

2
,6

8
3

6
1
4
.0

1
5
5
5

1
,8

1
1
.2

6
∗

1
,0

8
5

5
3
4
.3

5
2

1
,8

0
0
.0

7
∗

1
,7

8
6

0
.0

0
1
,8

0
0
.0

7
∗

1
,1

6
9

1
0
5
.6

4
1
,0

8
5

1
,4

0
6

7
1
8
.6

1
1
,0

4
4

1
,8

1
5
.3

5
∗

2
,0

7
4

9
4
0
.2

1
2

1
,8

0
0
.1

8
∗

2
,2

9
1

0
.0

0
1
,8

0
0
.0

6
∗

2
,0

1
2

1
1
2
.3

8
2
,0

7
4

2
,3

2
4

8
1
0
.2

9
1
,1

9
1

1
,8

1
5
.4

8
∗

2
,5

1
8

1
,1

2
3
.3

0
2

1
,8

0
0
.2

0
∗

2
,6

5
8

0
.0

0
1
,8

0
0
.7

7
∗

2
,0

0
7

1
3
4
.1

0
2
,5

1
8

3
,1

1
7

9
1
5
.4

6
1
,4

9
9

1
,8

1
9
.4

6
∗

2
,4

6
2

1
,3

0
8
.1

2
2

1
,8

0
0
.0

6
∗

2
,6

6
5

0
.0

0
1
,8

0
0
.2

1
∗

2
,6

0
7

1
2
6
.6

8
2
,4

6
2

2
,8

6
9

1
0

1
8
.5

1
9
2
1

1
,8

1
9
.0

2
∗

1
,6

1
0

8
0
8
.7

5
2

1
,8

0
0
.0

6
∗

2
,2

2
3

0
.0

0
1
,8

0
0
.5

8
∗

1
,9

6
0

9
1
.2

4
1
,6

1
0

2
,0

4
8

A
v
er

a
g
e

1
6
.1

0
1
,0

3
5
.0

0
1
,8

1
5
.4

2
2
,0

1
1
.4

0
9
2
7
.2

3
2
.0

0
1
,8

0
0
.1

1
2
,2

9
6
.3

0
0
.0

0
1
,8

0
0
.2

3
2
,0

3
6
.1

0
9
8
.9

8
2
,0

1
1
.4

0
2
,2

5
4
.9

0
†

M
et

h
o
d
s

w
h
o
se

so
lu

ti
o
n
s

w
er

e
fo

u
n
d

w
it

h
in

0
.0

1
se

co
n
d

∗
In

st
a
n
ce

s
w

h
er

e
th

e
a
lg

o
ri

th
m

re
a
ch

ed
th

e
ti

m
e

li
m

it

57

4.3.2 Test on Real-world Data

Real-world instances have relatively low congestion but sparse compatibility be-

tween flights and gates. In real-world data, 152 gates and more than 1000 flights

are considered. The purpose of this experiment is to demonstrate that the proposed

ADP approach can efficiently solve the AGAP in real-world airports by testing on

large-scale, real-world instances along with other existing methods. In ADP, the

lookahead horizon τ and EF parameter ε were set to M and ∞, respectively. The

Xpress LP solver algorithm was set to Newton-Barrier. Table 4.4 shows the perfor-

mance of various methods on real-world data. In Instance column, the number next

to f, g, day represents the number of flights, gates, day of month, respectively.

Among the 31 instances, 29 instances have 0 optimal delays, which can be as-

certained from the UB of ADP and LB of B&P. For 29 instances with 0 optimal

delays, ADP found optimal solutions for all instances while B&P and Solver (B)

found 5 and 22 optimal solutions, respectively. For the other 2 instances, the ab-

solute gap of (UB of ADP) − (LB of B&P) were 2 and 8. In terms of solution

quality, ADP showed the best performance of all methods for all 31 instances. In

addition, the average computation time of ADP was less than 5 minutes, which is

a significantly smaller value compared to other exact methods. Solver (N) reaches

the time limit for all instances and UB varies from a hundred thousand to a million.

The poor performance of Solver (N) is due to the large number of variables of

network model (N). One noticeable result is that the average UB of EDD was over

40 times greater than the average UB of ERD, where two methods had a similar

scale of values in test on artificial data. The performance gap of ERD and EDD

between the two datasets comes from the sparsity of compatibility in instances.

58

T
ab

le
4.

4:
P

er
fo

rm
an

ce
co

m
p

ar
is

on
of

va
ri

ou
s

m
et

h
o
d

s
on

re
al

-w
or

ld
d

at
a

In
st
a
n
c
e

A
D
P

B
&
P

S
o
lv
e
r
(B

)
S
o
lv
e
r
(N

)
E
R
D
†

E
D
D
†

T
im

e
U
B

T
im

e
U
B

L
B

N
o
d
e

T
im

e
U
B

L
B

T
im

e
U
B

L
B

U
B

U
B

f1
4
3
9
g
1
5
2
d

a
y
1

3
1
9
.8

2
0

1
,8

0
0
.8

4
3
8

0
5
9

6
7
4
.6

8
0

0
1
,8

2
6
.2

9
9
3
5
,1

6
7

0
3
8

5
,0

1
1

f1
4
2
6
g
1
5
2
d

a
y
2

1
4
8
.5

2
0

1
,8

0
3
.8

2
1
1

0
1
0
2

6
1
9
.6

7
0

0
1
,8

2
6
.0

3
9
2
5
,5

7
2

0
1
1

3
,4

4
7

f1
1
5
9
g
1
5
2
d

a
y
3

1
4
5
.4

1
0

6
8
6
.1

1
0

0
1
1
3

3
7
7
.0

7
0

0
1
,8

1
5
.0

3
1
4
5
,0

1
3

0
3
2

2
,6

3
2

f1
3
7
7
g
1
5
2
d

a
y
4

1
2
3
.2

4
0

1
,0

3
3
.6

5
0

0
9
4

6
3
2
.5

6
0

0
1
,8

2
4
.2

4
7
0
7
,0

3
4

0
5
5

3
,2

2
0

f1
4
2
5
g
1
5
2
d

a
y
5

3
5
1
.7

7
0

1
,8

1
0
.7

6
1
0
5

0
1
1
7

7
0
1
.0

8
0

0
1
,8

2
3
.6

3
6
2
0
,9

8
3

0
1
0
5

3
,8

0
4

f1
4
2
3
g
1
5
2
d

a
y
6

2
1
5
.7

9
0

1
,8

0
3
.3

1
1
3
1

0
1
2
6

1
,9

2
2
.6

2
5
9

0
1
,8

2
4
.1

9
8
0
3
,6

7
1

0
1
3
1

4
,5

4
3

f1
4
5
0
g
1
5
2
d

a
y
7

1
,7

7
2
.3

8
0

1
,8

0
0
.9

1
1
0
1

0
7
4

8
2
9
.7

0
0

0
1
,8

2
6
.9

3
7
5
3
,9

3
4

0
1
0
1

5
,1

9
5

f1
4
5
1
g
1
5
2
d

a
y
8

3
6
3
.8

7
0

1
,8

2
4
.6

1
2
1
4

0
7
0

1
,9

2
5
.9

0
2
2
0

0
1
,8

2
5
.0

0
7
9
3
,7

4
5

0
2
1
4

4
,6

8
9

f1
4
3
5
g
1
5
2
d

a
y
9

2
1
2
.2

1
0

1
,8

0
2
.2

3
5
0

0
7
1

7
3
3
.1

7
0

0
1
,8

2
4
.1

6
7
4
2
,7

5
8

0
5
0

3
,2

4
2

f1
1
5
7
g
1
5
2
d

a
y
1
0

1
6
0
.7

9
0

1
,4

9
9
.6

1
0

0
2
3
2

4
2
1
.0

8
0

0
1
,8

1
5
.0

0
3
5
7
,9

6
4

0
6
1

3
,1

1
6

f1
3
6
7
g
1
5
2
d

a
y
1
1

8
9
.3

8
0

1
,8

0
1
.9

0
1
7

0
8
6

5
4
4
.8

5
0

0
1
,8

2
4
.1

0
5
8
9
,4

3
4

0
1
7

2
,6

0
6

f1
4
1
1
g
1
5
2
d

a
y
1
2

1
6
2
.8

5
0

1
,8

0
7
.1

6
6
0

0
1
2
5

6
4
7
.8

4
0

0
1
,8

2
6
.0

0
8
0
2
,3

5
8

0
6
0

2
,6

7
1

f1
3
8
0
g
1
5
2
d

a
y
1
3

2
2
8
.7

0
0

1
,8

0
2
.9

8
8
7

0
1
4
3

6
2
0
.2

7
0

0
1
,8

2
3
.5

4
6
9
9
,6

7
7

0
8
7

3
,8

3
2

f1
4
0
0
g
1
5
2
d

a
y
1
4

2
8
0
.5

6
0

1
,6

9
1
.0

3
0

0
7
9

1
,9

0
4
.9

3
1
8

0
1
,8

2
3
.5

3
8
2
5
,4

4
8

0
1
1
9

4
,6

3
4

f1
3
9
6
g
1
5
2
d

a
y
1
5

1
6
7
.5

4
0

1
,8

0
7
.0

9
4
8

0
8
1

6
3
9
.2

9
0

0
1
,8

2
3
.6

7
7
0
3
,7

7
3

0
4
8

2
,7

5
9

f1
4
0
5
g
1
5
2
d

a
y
1
6

2
6
1
.7

1
0

1
,8

0
2
.7

2
1
1
9

0
1
4
9

6
7
6
.3

1
0

0
1
,8

2
3
.6

7
6
5
3
,2

8
9

0
1
1
9

2
,5

9
2

f1
1
0
8
g
1
5
2
d

a
y
1
7

1
5
0
.7

5
3

1
,8

0
0
.0

1
9
9

0
1
6
1

1
,8

7
2
.3

2
3
1

0
1
,8

1
3
.5

9
5
7
2
,1

0
5

0
9
9

3
,4

4
9

f1
3
5
4
g
1
5
2
d

a
y
1
8

2
0
5
.2

4
0

1
,8

0
4
.2

8
3
9

0
7
5

5
7
0
.6

1
0

0
1
,8

2
0
.4

5
7
8
7
,6

7
4

0
3
9

4
,1

4
0

f1
4
0
2
g
1
5
2
d

a
y
1
9

2
8
3
.5

4
0

1
,8

1
0
.2

3
1
4
5

0
7
4

1
,9

1
2
.2

1
1
2
1

0
1
,8

2
3
.7

2
6
6
9
,1

6
6

0
1
4
5

3
,7

2
7

f1
3
8
4
g
1
5
2
d

a
y
2
0

2
5
4
.0

5
0

1
,8

0
2
.5

9
9
8

0
1
0
5

6
5
4
.1

3
0

0
1
,8

2
4
.7

4
6
7
9
,7

4
7

0
9
8

5
,0

5
8

f1
3
6
8
g
1
5
2
d

a
y
2
1

2
7
0
.0

5
0

1
,8

1
0
.9

6
5
7

0
7
4

6
2
6
.7

2
0

0
1
,8

2
3
.5

3
7
0
6
,0

9
9

0
5
7

4
,9

3
6

f1
3
8
2
g
1
5
2
d

a
y
2
2

1
9
8
.3

4
0

1
,8

1
0
.4

6
8
3

0
1
0
5

6
0
1
.2

7
0

0
1
,8

2
3
.3

1
6
1
7
,8

1
7

0
8
3

4
,0

5
1

f1
3
7
6
g
1
5
2
d

a
y
2
3

1
9
2
.3

5
0

1
,8

0
1
.0

6
8
8

0
1
2
9

6
4
2
.4

8
0

0
1
,8

2
2
.0

7
8
2
1
,5

3
6

0
8
8

3
,4

6
7

f1
0
9
2
g
1
5
2
d

a
y
2
4

2
0
2
.4

5
7
8

1
,8

0
9
.4

0
2
8
4

7
6

1
2
4

1
,8

6
7
.4

3
1
3
9

0
1
,8

1
3
.0

0
5
6
4
,8

7
9

0
2
8
4

4
,4

4
0

f1
3
2
5
g
1
5
2
d

a
y
2
5

1
8
7
.8

1
0

1
,8

0
0
.0

0
4
7

0
9
5

5
5
2
.1

0
0

0
1
,8

2
3
.4

1
6
6
5
,9

3
6

0
4
7

3
,5

5
8

f1
3
6
7
g
1
5
2
d

a
y
2
6

2
3
3
.6

9
0

1
,8

0
1
.6

6
7
3

0
1
7
6

5
8
0
.3

3
0

0
1
,8

2
2
.4

4
7
0
9
,2

3
2

0
7
3

2
,4

6
9

f1
3
6
0
g
1
5
2
d

a
y
2
7

2
6
2
.9

0
0

1
,2

3
2
.4

3
0

0
5
6

1
,9

0
0
.7

4
6
5

0
1
,8

2
4
.0

1
7
2
9
,1

5
3

0
1
1
6

4
,7

9
3

f1
3
6
1
g
1
5
2
d

a
y
2
8

2
3
2
.1

6
0

1
,8

1
3
.8

2
4
9

0
7
1

5
9
3
.8

9
0

0
1
,8

2
4
.3

8
7
7
8
,4

0
6

0
4
9

3
,2

0
0

f1
3
7
1
g
1
5
2
d

a
y
2
9

2
1
7
.2

6
0

1
,8

0
9
.0

0
4
5

0
1
1
9

5
7
0
.5

8
0

0
1
,8

2
5
.6

8
6
9
7
,3

9
8

0
4
5

2
,4

3
8

f1
3
9
8
g
1
5
2
d

a
y
3
0

2
7
8
.1

7
0

1
,8

2
2
.5

0
1
7
3

0
8
2

1
,9

1
1
.9

7
1
5
4

0
1
,8

2
4
.7

5
8
4
6
,4

2
8

0
1
7
3

3
,3

0
6

f9
4
6
g
1
5
2
d

a
y
3
1

1
2
5
.6

0
3
0

1
,8

0
0
.2

7
1
4
7

2
2

3
1
4

1
,8

5
6
.6

0
6
5

0
1
,8

0
9
.3

9
6
6
3
,7

2
7

0
1
4
7

4
,7

5
4

A
v
er

a
g
e

2
6
7
.7

1
3
.5

8
1
,7

1
3
.1

4
7
7
.6

8
3
.1

6
1
1
2
.2

9
9
8
6
.5

9
2
8
.1

3
0
.0

0
1
,8

2
2
.3

7
6
9
5
,7

7
8
.1

6
0
.0

0
9
0
.0

3
3
,7

3
4
.8

1
†

M
et

h
o
d
s

w
h
o
se

so
lu

ti
o
n
s

w
er

e
fo

u
n
d

w
it

h
in

1
se

co
n
d

∗
In

st
a
n
ce

s
w

h
er

e
th

e
a
lg

o
ri

th
m

re
a
ch

ed
th

e
ti

m
e

li
m

it

59

Chapter 5

Conclusion

In this thesis, we proposed a scalable optimization-based ADP approach for AGAP

to efficiently handle the large-scale nature of real-world airports. In the ADP ap-

proach, the value function approximation with consideration of a lookahead horizon

was utilized. By comparing the LP relaxation value of various IP models for AGAP,

the pattern-based model, which gives the strongest bound, was used for approxi-

mating the value function. However, the pattern-based model necessitates excessive

computation burden arising from a large number of column generation iterations and

action evaluations. To overcome this computational issue, we developed an efficient

column generation method and ADP acceleration techniques.

Through computational experiments, we demonstrated the scalability of the

ADP approach and its applicability to real-world airports in practice. One strength

of the proposed ADP approach is that we can control the trade-off between solu-

tion quality and computation time by adjusting algorithmic parameters depending

on specific situations. For example, when establishing in-advance planning, we can

put more weight on solution quality by considering a longer lookahead horizon and

smaller value of EF threshold. In contrast, when establishing adaptive replanning,

we can put more weight on computation time by considering a shorter lookahead

60

horizon and larger value of EF threshold.

For future research directions, reflecting realistic restrictions can be considered.

The AGAP in this study only considered adjacency and compatibility constraints.

However, in real-world airports, allocating flights to gates is coupled with other

material and human resources so AGAP needs to be considered in a more broad

aspect. In addition, uncertainty in arrival time and processing can also be considered.

Due to the complex airport operation system and growing arrival delays, changes in

flight schedules are common. Reinforcement learning and stochastic programming

can be used for AGAP under uncertainty. Finally, a generalization of the proposed

ADP approach to PMSP can be made as AGAP and PMSP share a similar problem

structure.

61

Bibliography

[1] DELMIA, “Airport operations.” https://www.3ds.com/products-services/

delmia/solutions/aerospace-defense/airport-operations/, 2023. Ac-

cessed: 2023-05-15.

[2] DAIFUKU, “Airport operation system (aos).” https://daifukuatec.com/

airport-technologies/airport-operation-systems, 2023. Accessed: 2023-

05-15.

[3] S. Yan and C.-H. Tang, “A heuristic approach for airport gate assignments for

stochastic flight delays,” European Journal of Operational Research, vol. 180,

pp. 547–567, 2007.

[4] D. Zhang, H. H. Lau, and C. Yu, “A two stage heuristic algorithm for the inte-

grated aircraft and crew schedule recovery problems,” Computers & Industrial

Engineering, vol. 87, no. 1, pp. 436–453, 2015.

[5] L. C. Kim Y., Kim J., A Study on the Development and Application of Gate

Assignment Algorithm. Korea Transport Institute, 2001.

[6] D. Zhang and D. Klabjan, “Optimization for gate re-assignment,” Transporta-

tion Research Part B: Methodological, vol. 95, pp. 260–284, 2017.

62

https://www.3ds.com/products-services/delmia/solutions/aerospace-defense/airport-operations/
https://www.3ds.com/products-services/delmia/solutions/aerospace-defense/airport-operations/
https://daifukuatec.com/airport-technologies/airport-operation-systems
https://daifukuatec.com/airport-technologies/airport-operation-systems

[7] U. Dorndorf, A. Drexl, Y. Nikulin, and E. Pesch, “Flight gate scheduling: State-

of-the-art and recent developments,” Omega, vol. 35, no. 3, pp. 326–334, 2007.

[8] G. S. Daş, F. Gzara, and T. Stützle, “A review on airport gate assignment

problems: Single versus multi objective approaches,” Omega, vol. 92, p. 102146,

2020.

[9] J. Kim, B. Goo, Y. Roh, C. Lee, and K. Lee, “A branch-and-price approach

for airport gate assignment problem with chance constraints,” Transportation

Research Part B: Methodological, vol. 168, pp. 1–26, 2023.

[10] E. B. Peterson, K. Neels, N. Barczi, and T. Graham, “The economic cost of air-

line flight delay,” Journal of Transport Economics and Policy (JTEP), vol. 47,

no. 1, pp. 107–121, 2013.

[11] J. Calzada and X. Fageda, “Airport dominance, route network design and flight

delays,” Transportation Research Part E: Logistics and Transportation Review,

vol. 170, p. 103000, 2023.

[12] I. Kaliszewski, J. Miroforidis, and J. Stańczak, “The airport gate assignment

problem–multi-objective optimization versus evolutionary multi-objective opti-

mization,” Computer Science, vol. 18, pp. 41–52, 2017.

[13] Y. Li, J.-P. Clarke, and S. S. Dey, “Using submodularity within column gener-

ation to solve the flight-to-gate assignment problem,” Transportation Research

Part C: Emerging Technologies, vol. 129, p. 103217, 2021.

63

[14] B. Maharjan and T. I. Matis, “Multi-commodity flow network model of the

flight gate assignment problem,” Computers & Industrial Engineering, vol. 63,

no. 4, pp. 1135–1144, 2012.

[15] C.-H. Tang and W.-C. Wang, “Airport gate assignments for airline-specific

gates,” Journal of Air Transport Management, vol. 30, pp. 10–16, 2013.

[16] J. Bi, F. Wang, C. Ding, D. Xie, and X. Zhao, “The airport gate assignment

problem: A branch-and-price approach for improving utilization of jetways,”

Computers & Industrial Engineering, vol. 164, p. 107878, 2022.

[17] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, vol. 6. Springer,

2016.

[18] Z.-L. Chen and W. B. Powell, “A column generation based decomposition algo-

rithm for a parallel machine just-in-time scheduling problem,” European Journal

of Operational Research, vol. 116, no. 1, pp. 220–232, 1999.

[19] A. P. Vepsalainen and T. E. Morton, “Priority rules for job shops with weighted

tardiness costs,” Management science, vol. 33, no. 8, pp. 1035–1047, 1987.

[20] L. Yang-Kuei and L. Chi-Wei, “Dispatching rules for unrelated parallel ma-

chine scheduling with release dates,” The International Journal of Advanced

Manufacturing Technology, vol. 67, pp. 269–279, 2013.

[21] C.-H. Lee, “A dispatching rule and a random iterated greedy metaheuristic for

identical parallel machine scheduling to minimize total tardiness,” International

Journal of Production Research, vol. 56, no. 6, pp. 2292–2308, 2018.

64

[22] X. Liu, F. Chu, F. Zheng, C. Chu, and M. Liu, “Parallel machine scheduling

with stochastic release times and processing times,” International Journal of

Production Research, vol. 59, no. 20, pp. 6327–6346, 2021.

[23] J. A. Bennell, M. Mesgarpour, and C. N. Potts, “Airport runway scheduling,”

Annals of Operations Research, vol. 204, pp. 249–270, 2013.

[24] A. Lieder, D. Briskorn, and R. Stolletz, “A dynamic programming approach

for the aircraft landing problem with aircraft classes,” European Journal of

Operational Research, vol. 243, no. 1, pp. 61–69, 2015.

[25] D. Briskorn and R. Stolletz, “Aircraft landing problems with aircraft classes,”

Journal of Scheduling, vol. 17, pp. 31–45, 2014.

[26] A. Salehipour, M. Modarres, and L. M. Naeni, “An efficient hybrid meta-

heuristic for aircraft landing problem,” Computers & Operations Research,

vol. 40, no. 1, pp. 207–213, 2013.

[27] N. R. Sabar and G. Kendall, “An iterated local search with multiple perturba-

tion operators and time varying perturbation strength for the aircraft landing

problem,” Omega, vol. 56, pp. 88–98, 2015.

[28] H. Pinol and J. E. Beasley, “Scatter search and bionomic algorithms for the

aircraft landing problem,” European Journal of Operational Research, vol. 171,

no. 2, pp. 439–462, 2006.

[29] A. Faye, “Solving the aircraft landing problem with time discretization ap-

proach,” European Journal of Operational Research, vol. 242, no. 3, pp. 1028–

1038, 2015.

65

[30] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-

mensionality. John Wiley & Sons, 2011.

[31] W. B. Powell, “What you should know about approximate dynamic program-

ming,” Naval Research Logistics (NRL), vol. 56, no. 3, pp. 239–249, 2009.

[32] W. B. Powell, “A unified framework for stochastic optimization,” European

Journal of Operational Research, vol. 275, no. 3, pp. 795–821, 2019.

[33] Q. Deng and B. F. Santos, “Lookahead approximate dynamic programming

for stochastic aircraft maintenance check scheduling optimization,” European

Journal of Operational Research, vol. 299, no. 3, pp. 814–833, 2022.

[34] J. Brinkmann, M. W. Ulmer, and D. C. Mattfeld, “Dynamic lookahead policies

for stochastic-dynamic inventory routing in bike sharing systems,” Computers

& Operations Research, vol. 106, pp. 260–279, 2019.

[35] W. B. Powell, “Designing lookahead policies for sequential decision problems in

transportation and logistics,” IEEE Open Journal of Intelligent Transportation

Systems, vol. 3, pp. 313–327, 2022.

[36] J. Fang, L. Zhao, J. C. Fransoo, and T. Van Woensel, “Sourcing strategies in

supply risk management: An approximate dynamic programming approach,”

Computers & Operations Research, vol. 40, no. 5, pp. 1371–1382, 2013.

[37] M. Heydar, E. Mardaneh, and R. Loxton, “Approximate dynamic programming

for an energy-efficient parallel machine scheduling problem,” European Journal

of Operational Research, vol. 302, no. 1, pp. 363–380, 2022.

66

[38] D. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scien-

tific, 1996.

[39] Y. Lee and K. Lee, “New integer optimization models and an approximate

dynamic programming algorithm for the lot-sizing and scheduling problem

with sequence-dependent setups,” European Journal of Operational Research,

vol. 302, no. 1, pp. 230–243, 2022.

[40] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H.

Vance, “Branch-and-price: Column generation for solving huge integer pro-

grams,” Operations research, vol. 46, no. 3, pp. 316–329, 1998.

[41] G. Sierksma and G. A. Tijssen, “Routing helicopters for crew exchanges on

off-shore locations,” Annals of Operations Research, vol. 76, no. 0, pp. 261–286,

1998.

[42] S. Beraudy, N. Absi, and S. Dauzère-Pérès, “Timed route approaches for large

multi-product multi-step capacitated production planning problems,” European

Journal of Operational Research, vol. 300, no. 2, pp. 602–614, 2022.

[43] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization, vol. 6.

Athena scientific Belmont, MA, 1997.

[44] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz, “A tight linear

time (1/2)-approximation for unconstrained submodular maximization,” SIAM

Journal on Computing, vol. 44, no. 5, pp. 1384–1402, 2015.

67

[45] BTS, “Airline on-time performance data.” https://transtats.bts.gov/

Tables.asp?QO_VQ=EFD&QO_anzr=Nv4yv0r%FDb0-gvzr%FDcr4s14zn0pr%

FDQn6n&QO_fu146_anzr=b0-gvzr, 2023. Accessed: 2023-02-21.

[46] Xpress, “Xpress 8.9.” http://www.fico.com/en, 2016.

[47] X.-B. Hu and E. Di Paolo, “An efficient genetic algorithm with uniform

crossover for the multi-objective airport gate assignment problem,” in 2007

IEEE Congress on Evolutionary Computation, pp. 55–62, IEEE, 2007.

[48] M. Jayamohan and C. Rajendran, “New dispatching rules for shop scheduling:

a step forward,” International Journal of Production Research, vol. 38, no. 3,

pp. 563–586, 2000.

[49] D. Bertsimas and R. Demir, “An approximate dynamic programming approach

to multidimensional knapsack problems,” Management Science, vol. 48, no. 4,

pp. 550–565, 2002.

[50] IATA, “Air travel growth continues in february.” https://www.iata.org/en/

pressroom/2023-releases/2023-04-04-02/, 2023. Accessed: 2023-04-10.

68

https://transtats.bts.gov/Tables.asp?QO_VQ=EFD&QO_anzr=Nv4yv0r%FDb0-gvzr%FDcr4s14zn0pr%FDQn6n&QO_fu146_anzr=b0-gvzr
https://transtats.bts.gov/Tables.asp?QO_VQ=EFD&QO_anzr=Nv4yv0r%FDb0-gvzr%FDcr4s14zn0pr%FDQn6n&QO_fu146_anzr=b0-gvzr
https://transtats.bts.gov/Tables.asp?QO_VQ=EFD&QO_anzr=Nv4yv0r%FDb0-gvzr%FDcr4s14zn0pr%FDQn6n&QO_fu146_anzr=b0-gvzr
http://www.fico.com/en
https://www.iata.org/en/pressroom/2023-releases/2023-04-04-02/
https://www.iata.org/en/pressroom/2023-releases/2023-04-04-02/

국문초록

본 연구에서는 공항 운영상의 제약을 고려하여 항공기를 게이트에 적절히 배분하는

공항 게이트 할당 문제를 다룬다. 현실에서는 많은 수의 항공기와 게이트를 고려해야

하고, 동시에 상황 변화에 따른 계획의 재수립이 빈번하여, 이에 유연하고 신속하게

대처할 수 있는 효율적인 방법이 필요하다. 이를 위해 본 연구에서는 전방 탐색 길이를

고려한근사동적계획해법을제안한다.근사동적계획법에서가치함수를추정하기위해

패턴기반모형의선형계획완화문제의하한을활용한다.패턴기반모형은강한하한을제

공하나지수적으로많은개수의변수를가지고있어이모형을활용할시매우큰계산적

부담이 발생한다. 이 문제점을 극복하기 위해 효율적인 열생성 방법 및 근사동적계획

가속화 기법을 제안한다. 다양한 실험을 통해 열생성 방법 및 근사동적계획 가속화 기

법의 효과성을 확인하였다.그리고 실제 데이터에 기반한 실험을 통하여 제안한해법이

기존 방법 대비 합리적인 시간 내에 좋은 성능의 해를 제공하는 것을 확인하였다.

주요어: 공항 게이트 할당 문제, 열생성기법, 근사동적계획법, 가속화 기법, 확장수리모

형

학번: 2021-26136

69

감사의 글

연구실에서 생활하는 동안 교수님의 지도 및 연구실 선후배님들의 도움으로 개인적으

로 많은 성장을 할 수 있었습니다. 그 결과 무사히 석사 논문을 작성하고 학위 과정을

마무리할 수 있었습니다.

먼저바쁘신와중에도시간을내어심사를맡아주신심사위원장홍성필교수님과심

사위원 문일경 교수님께 감사의 말씀을 전합니다. 그리고 저의 지도교수님이신 이경식

교수님께 깊은 존경과 감사의 말씀을 드립니다. 한없이 부족한 저에게 지난 석사 과정

동안학문적인가르침과더불어진중한삶에대한방향성에대해많은시간을할애하여

조언을 해주셨습니다. 학교에서 공부 및 연구에 전념할 수 있었던 것을 사회에 환원할

수 있는 사람이 될 수 있도록 노력하겠습니다.

연구실 선후배님들께도 감사의 말씀을 전합니다. 연구실 식구의 일을 자기 일처럼

생각하며 서로를 돕고 이끌었던동료들 덕분에 즐겁게 생활할 수 있었습니다.연구실에

서 맺은인연이 앞으로도 이어졌으면 좋겠습니다.마지막으로 제 곁에서 늘 응원해주신

저의 가족에게 감사합니다. 아버지, 어머니, 누나 모두 건강하고 활기차게 지내시길

바랍니다.

70

	1 Introduction
	1.1 Background,
	1.2 Literature Review,
	1.2.1 Airport Gate Assignment Problem,
	1.2.2 Related Problems,
	1.2.3 Approximate Dynamic Programming,
	1.3 Motivation and Contributions,
	1.4 Organization of the Thesis,
	2 Dynamic Programming Formulation and Approximate Dynamic Programming Approach for AGAP
	2.1 Problem Definition,
	2.2 Dynamic Programming
	2.3 Approximate Dynamic Programming
	2.4 IP Models for AGAP and Comparison of Bounds,
	2.4.1 Basic Model,
	2.4.2 Network Model,
	2.4.3 Pattern-based Model,
	2.4.4 Comparison of Bounds,
	3 Approximate Dynamic Programming Approach using Pattern-based Model
	3.1 Solution Approach for Action Evaluation Problem,
	3.1.1 Column Generation Method for Action Evaluation Problem,
	3.1.2 Solution Approach for Subproblem,
	3.1.3 Multiple Column Generation Strategy,
	3.2 ADP Acceleration Techniques,
	3.2.1 Early Fixing,
	3.2.2 Reordering of Action Sequence,
	3.2.3 Early Cut-off,
	3.3 Implementation Details,
	3.3.1 Initialization,
	3.3.2 Column Inheritance,
	3.3.3 Updating Bounds & Termination Criterion,
	4 Computational Experiments
	4.1 Experiment Setting,
	4.2 Effects of Algorithmic Parameters of ADP(P, η, τ),
	4.2.1 Sensitivity Analysis on the Value of Interpolation Ratio,
	4.2.2 Effects of the ADP Acceleration Techniques,
	4.2.3 Scalability Test with respect to Parameters τ ,
	4.3 Performance of ADP(P, η, τ),
	4.3.1 Test on Artificial Data,
	4.3.2 Test on Real-world Data,
	5 Conclusion

		<startpage>11

		1 Introduction 1

		1.1 Background		 1

		1.2 Literature Review		 4

		1.2.1 Airport Gate Assignment Problem		 4

		1.2.2 Related Problems		 5

		1.2.3 Approximate Dynamic Programming		 7

		1.3 Motivation and Contributions		 9

		1.4 Organization of the Thesis		 10

		2 Dynamic Programming Formulation and Approximate Dynamic Programming Approach for AGAP 11

		2.1 Problem Definition		 12

		2.2 Dynamic Programming Formulation		13

		2.3 Approximate Dynamic Programming Approach		16

		2.4 IP Models for AGAP and Comparison of Bounds		 20

		2.4.1 Basic Model		 20

		2.4.2 Network Model		 21

		2.4.3 Pattern-based Model		 22

		2.4.4 Comparison of Bounds		 24

		3 Approximate Dynamic Programming Approach using Pattern-based Model 28

		3.1 Solution Approach for Action Evaluation Problem		 29

		3.1.1 Column Generation Method for Action Evaluation Problem		 29

		3.1.2 Solution Approach for Subproblem		 33

		3.1.3 Multiple Column Generation Strategy		 35

		3.2 ADP Acceleration Techniques		 37

		3.2.1 Early Fixing		 38

		3.2.2 Reordering of Action Sequence		 39

		3.2.3 Early Cut-off		 40

		3.3 Implementation Details		 42

		3.3.1 Initialization		 42

		3.3.2 Column Inheritance		 42

		3.3.3 Updating Bounds & Termination Criterion		 43

		4 Computational Experiments 45

		4.1 Experiment Setting		 46

		4.2 Effects of Algorithmic Parameters of ADP(P		 η		 τ)		 48

		4.2.1 Sensitivity Analysis on the Value of Interpolation Ratio		 48

		4.2.2 Effects of the ADP Acceleration Techniques		 49

		4.2.3 Scalability Test with respect to Parameters τ 		 52

		4.3 Performance of ADP(P		 η		 τ)		 55

		4.3.1 Test on Artificial Data		 56

		4.3.2 Test on Real-world Data		 58

		5 Conclusion 60

		</body>

