

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Cutting-plane Generation Methods for

Binary Knapsack Problem with Generalized

Upper Bounds and Chance-constrained

Binary Knapsack Problem

일반화된 상한제약이 있는 이진배낭문제와 확률제약이 있는

이진배낭문제에 대한 절단평면 생성 기법

2023 년 8 월

서울대학교 대학원

산업공학과

김 준 영

Cutting-plane Generation Methods for

Binary Knapsack Problem with Generalized

Upper Bounds and Chance-constrained

Binary Knapsack Problem

일반화된 상한제약이 있는 이진배낭문제와 확률제약이

있는 이진배낭문제에 대한 절단평면 생성 기법

지도교수 이 경 식

이 논문을 공학박사 학위논문으로 제출함

2023 년 6 월

서울대학교 대학원

산업공학과

김 준 영

김준영의 공학박사 학위논문을 인준함

2023 년 6 월

위 원 장 홍 성 필 (인)

부위원장 이 경 식 (인)

위 원 홍 유 석 (인)

위 원 박 경 철 (인)

위 원 이 희 상 (인)

Abstract

Cutting-plane Generation Methods for

Binary Knapsack Problem with Generalized

Upper Bounds and Chance-constrained
Binary Knapsack Problem

Junyoung Kim

Department of Industrial Engineering

The Graduate School

Seoul National University

Optimization problems with binary decision variables, known as binary integer

programs, can represent a wide range of decision-making problems in various in-

dustries. Recent algorithmic advancements in general-purpose optimization solvers

have significantly improved the ability to solve a binary integer program, making

it a viable computational tool for addressing real-world operational issues. One of

the critical factors in this success is the use of cutting planes for the binary knap-

sack problem. These cutting planes enhance the formulations of problems, provid-

ing tighter relaxation for the feasible solution sets by refining the solution space.

Therefore, cutting planes improve the performance of relaxation-based optimization

methods such as the branch-and-bound method.

i

However, as industries progress rapidly, more challenging issues have arisen,

which can be represented by complicated binary integer programs. The current

state-of-the-art solvers may not be sufficient to handle these problems, necessitating

further improvements in their capabilities. These challenges have prompted studies

on variants of the binary knapsack problem, such as those involving additional or

nonlinear constraints, to derive more effective cutting planes and their generation

methods that can be used in solving the binary integer programs.

In this thesis, we propose efficient cutting-plane generation methods for two vari-

ants of the binary knapsack problem: the binary knapsack problem with generalized

upper bounds (GKP) and the chance-constrained binary knapsack problem (CKP).

Our objective is to enhance the capability of solving binary integer programs by

utilizing cutting planes generated from our methods.

Firstly, we investigate cutting planes for the GKP, which can be stronger than

those for the binary knapsack problem. Specifically, we consider rank-1 Chvátal-

Gomory (CG) cuts for the GKP, which are well-known cutting planes that can be

defined for general integer linear programs. The separation problem that generates

CG cuts is known to be strongly NP-hard for general integer programs. However, we

show that it can be solved in pseudo-polynomial time for the GKP. We also devise

an efficient heuristic for the separation problem based on its decomposition prop-

erty. Through extensive computational tests, we demonstrate that the rank-1 CG

cuts significantly improve the linear programming relaxation of binary integer linear

programs, compared to existing cutting planes for the GKP, within a comparable

computation time.

Then, we present a novel method to strengthen rank-1 CG cuts for binary integer

ii

linear programs, improving the formulation-enhancing effect of the CG cuts. We first

reveal the relationship between rank-1 CG cuts for binary integer linear programs

and lifted cover inequalities for binary knapsack problems. Based on this result, our

strengthening method derives a stronger cutting plane from a given rank-1 CG cut

for binary integer linear programs by utilizing a lifting function of cover inequalities

for binary knapsack problems. We extend the method to rank-1 CG cuts for binary

integer linear programs with generalized upper bounds. Through theoretical com-

parison, we show that the cutting plane derived through the proposed strengthening

method is stronger than those obtained through existing CG cut strengthening meth-

ods. Furthermore, computational test results show that the proposed methods can

provide more enhanced formulations defined with fewer cutting planes and reduce

the total computation time required to obtain the formulations.

Finally, we consider the CKP, which arises in the chance-constrained program-

ming approach for optimization problems under uncertainty. We assume that the

item weights are independently normally distributed. Then the CKP is formulated

as a binary integer nonlinear program where the cutting planes for the binary knap-

sack problem are not valid. For the CKP, we propose an efficient lifting heuristic for

its well-known cutting planes, the probabilistic cover inequalities. We first introduce

a non-convex continuous relaxation for the CKP, represented as a non-convex opti-

mization problem, and show that the relaxation provides tighter upper bounds than

the existing continuous relaxations. In general, non-convex optimization problems

are computationally hard to solve; however, we show that the non-convex relaxation

can be solved in polynomial time. Subsequently, we devise a heuristic procedure

for lifting probabilistic cover inequalities using the exact polynomial-time algorithm

iii

for the non-convex continuous relaxation for the CKP. Computational test results

demonstrate that the proposed lifting heuristic outperforms the existing methods

in terms of computational efficiency, while the effectiveness of the resulting lifted

probabilistic cover inequalities remains competitive.

Keywords: Binary integer program, Knapsack problem, Generalized upper bound,

Chance constraint, General-purpose cut, Chvátal-Gomory cut, Cover inequality, Sep-

aration algorithm, Lifting

Student Number: 2017-23584

iv

Contents

Abstract i

Contents v

List of Tables ix

List of Figures xi

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Background . 5

1.2.1 Binary integer program . 5

1.2.2 Cutting plane algorithm . 7

1.2.3 Binary knapsack problem . 11

1.2.4 General-purpose cuts . 18

1.2.5 Chance-constrained programming approach for optimization

problems under uncertainty 29

1.3 Research objectives and contributions 34

1.4 Organization of the thesis . 38

v

Chapter 2 Separation of the rank-1 Chvátal-Gomory cuts for the

knapsack problem with generalized upper bounds 41

2.1 Introduction . 42

2.2 Literature review . 44

2.3 Non-dominated CG cuts for the GKP polytope 47

2.4 Exact separation algorithm for CG cuts 51

2.5 Heuristic separation algorithm for CG cuts 59

2.5.1 Selection of sub-problems to be solved 60

2.5.2 Greedy algorithm for each sub-problem 62

2.6 Computational experiment results 68

2.6.1 Performance of exact and heuristic separation algorithms for

CG cuts . 70

2.6.2 Effectiveness of CG cuts compared with general lifted GUB

cover inequalities . 73

2.6.3 Effectiveness of CG cuts for GKPs on benchmark instances of

binary integer linear programs 78

2.7 Conclusion . 81

Chapter 3 Strengthening Chvátal-Gomory cuts for binary integer

linear programs and its extension to generalized upper

bounds 83

3.1 Introduction . 84

3.2 Related works . 87

3.3 Non-dominated CG cuts for the single-constraint relaxation of binary

integer linear programs . 89

vi

3.3.1 Non-dominated CG cuts for binary knapsack polytopes . . . 91

3.3.2 Maximal CG cuts for binary knapsack polytopes 96

3.4 Strengthening maximal CG cuts for binary knapsack polytopes . . . 100

3.4.1 Extended knapsack polytope and lifted cover inequalities . . 100

3.4.2 CG cut strengthening method using a lifting function for cover

inequalities . 108

3.4.3 Strength of the SCG cut . 112

3.5 Extension to binary integer linear programs with generalized upper

bounds . 118

3.5.1 Maximal CG cuts for GKP polytopes 120

3.5.2 Strengthening maximal CG cuts for GKP polytopes 127

3.6 Computational test results . 136

3.6.1 Effectiveness of SCG cuts derived from binary knapsack poly-

topes . 138

3.6.2 Effectiveness of SCG cuts derived from GKP polytopes . . . 144

3.7 Conclusion . 147

Chapter 4 Lifting heuristic of probabilistic cover inequalities for

the chance-constrained binary knapsack problem 149

4.1 Introduction . 150

4.2 Literature reviews . 154

4.3 Comparison of continuous relaxations for the chance-constrained bi-

nary knapsack problem . 157

4.3.1 Continuous relaxations for the chanced-constrained binary knap-

sack problem . 157

vii

4.3.2 Bound comparison for continuous relaxations 163

4.4 Polynomial-time algorithm for the non-convex relaxation 167

4.4.1 Reformulation of the non-convex relaxation 167

4.4.2 Algorithm to solve the reformulated non-convex relaxation . 171

4.5 Lifting heuristic based on the non-convex relaxation 178

4.6 Computational test results . 181

4.7 Conclusion . 185

Chapter 5 Conclusion 187

5.1 Summary and contributions . 187

5.2 Future research directions . 189

Bibliography 193

Appendix A Summary of benchmark instances 205

Appendix B Detailed experiment results in Chapter 2 209

B.1 Small-sized GKP instances . 209

B.2 Large-sized GKP instances . 212

Appendix C Detailed experiment results in Chapter 3 217

C.1 GAP instances . 217

C.2 MIPLIB instances without consideration of generalized upper bounds 224

C.3 MIPLIB instances with consideration of generalized upper bounds . 227

Appendix D Detailed experiment results in Chapter 4 231

국문초록 235

viii

List of Tables

Table 2.1 IGC (%) by each separation algorithm 71

Table 2.2 Cutting plane time (s) by each separation algorithm 71

Table 2.3 #Cut by each separation algorithm 72

Table 2.4 Separation time (s) by each separation algorithm 73

Table 2.5 Results of cutting plane algorithms for MMKP instances . . . 79

Table 2.6 Results of cutting plane algorithms for MIPLIB instances . . 80

Table A.1 Summary of MMKP instances 206

Table A.2 Summary of MIPLIB instances 206

Table A.3 Summary of GAP instances of A, B, and C classes 207

Table A.4 Summary of GAP instances of C and D classes 208

Table B.1 Integrality gap closed (%) and separation time (s) for each

separation algorithm . 210

Table B.2 Number of generated cuts and cutting plane time (s) for each

cutting plane algorithm . 211

Table B.3 Integrality gap closed (%) by cutting plane algorithms 212

Table B.4 Cutting plane time (s) . 213

Table B.5 Number of generated cuts . 214

Table B.6 Separation time (s) . 215

ix

Table C.1 Results on GAP instances of A, B, and C classes using maxi-

mal CG cuts . 218

Table C.2 Results on GAP instances of A, B, and C classes using Gomory

mixed-integer cuts . 219

Table C.3 Results on GAP instances of A, B, and C classes using SCG

cuts . 220

Table C.4 Results on GAP instances of D and E classes using maximal

CG cuts . 221

Table C.5 Results on GAP instances of D and E classes using Gomory

mixed-integer cuts . 222

Table C.6 Results on GAP instances of D and E classes using SCG cuts 223

Table C.7 Results on MIPLIB instances using maximal CG cuts and Go-

mory mixed-integer cuts . 225

Table C.8 Results on MIPLIB instances using SCG cuts 226

Table C.9 Results on MIPLIB instances using maximal CG cuts and Go-

mory mixed-integer cuts . 228

Table C.10 Results on MIPLIB instances using SCG cuts 229

Table D.1 Results on MCKP instances using PL and RO 232

Table D.2 Results on MCKP instances using the proposed lifting heuristic233

x

List of Figures

Figure 1.1 Speedup of optimization solvers by features (Bixby, Fenelon,

et al., 2004) . 2

Figure 1.2 Example of πCG(z) and π
f0
G (z) 27

Figure 2.1 IGC (%) by each separation algorithm for n = 2000, 5000 . . 74

Figure 2.2 Separation time (s) by each separation algorithm for n =

2000, 5000 . 75

Figure 2.3 #Cut by each separation algorithm for n = 2000, 5000 . . . 76

Figure 2.4 Cutting plane time by each separation algorithm for n =

2000, 5000 . 77

Figure 2.5 Change in integrality gap closed depending on the number of

added cuts . 78

Figure 3.1 Changes in IGC (%) depending on the number of added cuts 85

Figure 3.2 Example of h(z) . 113

Figure 3.3 Comparison of h(z) and ψf0G (z) 118

Figure 3.4 ∆IGC (%) and ∆Cut (%) by strengthening methods for GAP

instances . 140

Figure 3.5 STime (s) and ∆Time (%) by strengthening methods for

GAP instances . 141

xi

Figure 3.6 ∆IGC (%) by strengthening methods for MIPLIB instances 142

Figure 3.7 ∆Cut (%) by strengthening methods for MIPLIB instances . 143

Figure 3.8 ∆Time (%) by strengthening methods for MIPLIB instances 143

Figure 3.9 ∆IGC (%) by strengthening methods for MIPLIB instances 145

Figure 3.10 ∆Cut (%) by strengthening methods for MIPLIB instances . 146

Figure 3.11 ∆Time (%) by strengthening methods for MIPLIB instances 147

Figure 4.1 Integrality gaps of convex and non-convex relaxations 167

Figure 4.2 LTime (s) and #Iteration by lifting heuristics 182

Figure 4.3 IGC (%) and #Cut by lifting heuristics 184

Figure 4.4 LTime (s) and cutting plane time (s) by lifting heuristics . . 185

xii

Chapter 1

Introduction

1.1 Overview

In this thesis, we propose cutting-plane generation methods for two variants of the bi-

nary knapsack problem: the binary knapsack problem with generalized upper bounds

and the chance-constrained binary knapsack problem. Our objective is to enhance

the capability of solving binary integer programs by utilizing the cutting planes

generated from the proposed methods.

Binary integer programs represent optimization problems that involve binary

decision variables. They can model a wide variety of decision-making problems in

the real world, such as resource allocation and scheduling problems. Despite their

broad applicability, binary integer programs were not considered viable computa-

tional tools to solve operational issues in real-world industries for a long time due

to the lack of efficient solution approaches. However, in the last 20 years, significant

algorithmic advancements in general-purpose optimization solvers have enabled solv-

ing practical issues in various industries using binary integer programs. According to

the investigation by Bixby, Fenelon, et al. (2004), the most significant improvement

was achieved by using general-purpose cutting planes as shown in Figure 1.1.

In optimization theory, cutting planes, or cuts, refer to valid inequalities, which

1

0 10 20 30 40 50

General-purpose
cutting planes

Preprocessing

Branching
variable selection

Heuristics

54

11

3

1.5

Speedup factor (×)

Figure 1.1: Speedup of optimization solvers by features (Bixby, Fenelon, et al., 2004)

are linear inequalities satisfied by all feasible solutions for a given optimization prob-

lem. Strictly speaking, cutting planes are a subset of valid inequalities, which can

cut off some regions in the relaxation the problem formulation provides. However, we

use the terms cutting planes and valid inequalities interchangeably throughout this

thesis. By definition, cuts strengthen the relaxation provided by the problem formu-

lation by refining the solution space, thus improving the performance of relaxation-

based optimization methods such as the branch-and-bound algorithm (Land & Doig,

1960).

For specific binary integer programs, cuts can be derived from polyhedral studies

on the feasible regions based on prior knowledge of the problems. On the other hand,

general-purpose cuts refer to cuts used in solving general binary integer programs

that have limited prior knowledge of the feasible solution sets. Therefore, general-

purpose cuts used in practice have been typically derived from their relaxations that

2

are more amenable to analysis. One common relaxation considered in the literature

is the single constraint relaxation, where the original problem is relaxed as an opti-

mization problem with a single constraint and variable bounds (Dey & Tramontani,

2009).

For binary integer linear programs with linear constraints, the single-constraint

relaxations can be defined with each constraint of the original problem or an implied

linear inequality obtained by aggregating the constraints with non-negative multipli-

ers. Then, if necessary, variables are complemented, and the single-constraint relax-

ation can be represented as the binary knapsack problem, which selects a subset of

given items with non-negative weights and profits to maximize the total profit while

satisfying the capacity constraint of a knapsack. In this regard, valid inequalities and

their generation methods for the binary knapsack problem have been widely studied

for the last few decades and successfully implemented in modern optimization soft-

ware (Hojny et al., 2020). Most cuts used in practice for binary integer programs

can be viewed as valid inequalities for the binary knapsack problem, and they have

already become a standard feature of leading optimization software packages.

As industries progress rapidly, more challenging operational issues have arisen,

which can be represented as complicated binary integer linear or even nonlinear

programs. The current state-of-the-art solvers may not be sufficient to handle these

problems, necessitating further improvements in their capabilities. These challenges

have prompted studies on variants of the binary knapsack problem, such as those in-

volving additional or nonlinear constraints, to derive more effective general-purpose

cuts and their generation methods that can be used in solving binary integer pro-

grams.

3

In this context, the variants considered in this thesis have also been investigated.

Firstly, the binary knapsack problem with generalized upper bounds has additional

constraints where at most, one item should be selected among some of the given

items, the so-called generalized upper bounds. This problem represents a tighter re-

laxation for the binary integer linear program with generalized upper bounds rather

than the single-constraint relaxation. Therefore, studying this variant can derive

stronger cuts and their generation methods that can be used in solving binary inte-

ger linear programs with generalized upper bounds.

The chance-constrained binary knapsack problem arises as a single-constraint

relaxation in the chance-constrained programming approach for optimization prob-

lems with uncertain input data. In this problem, the items have uncertain weights

with known probability distributions, and the capacity constraint is replaced with a

chance constraint that limits the probability of selected items exceeding the capac-

ity. The chance constraint is usually represented as a nonlinear inequality depending

on the probability distributions of weights. Consequently, the valid inequalities for

binary knapsack problems are not applicable to chance-constrained programs. There-

fore, it is necessary to investigate this variant to derive valid inequalities and their

generation methods to improve the solvability of chance-constrained programs.

This thesis mainly focuses on developing efficient cut-generation methods for

these two variants of the binary knapsack problem. We demonstrate their effec-

tiveness in improving the solvability of binary integer programs through extensive

computational tests. In the remainder of this chapter, we present the background

for our study and then give the organization of this thesis.

4

1.2 Background

1.2.1 Binary integer program

Integer programs represent optimization problem with integral decision variables,

which can be defined as follows.

max cTx

s.t gk(x) ≤ 0, k ∈ R

x ∈ Zn+

where c ∈ Rn and gk : Zn → R for each k ∈ R. Here, |R| = r and N = {1, ..., n}.

Binary integer programs are special cases of integer programs where all decision

variables are binary. Throughout this thesis, the term “binary integer program”

refers to the problems formulated above, where the integrality restriction is replaced

with x ∈ {0, 1}n.

When gk(x) is a linear function for all k ∈ R, we call the binary integer program

as the binary integer linear program, which can be described as follows:

max cTx

s.t Ax ≤ b

x ∈ {0, 1}n,

where A ∈ Zr×n and b ∈ Zr. We consider the system Ax ≤ b to include variable

bound constraints, xj ≤ 1 for each j ∈ N . Although these constraints are redundant

with the binary restriction, they are necessary for the brevity of notation in our

5

thesis. Due to the redundant variable bound constraints, the above formulation is

valid even if the binary restriction is replaced with the integrality restriction, x ∈ Zn+.

On the other hand, when gk(x) is a nonlinear function for some k ∈ R, the binary

integer program is referred to as the binary integer nonlinear program.

The binary integer program is NP-hard in a strong sense (Garey & Johnson,

1979), which means it might not be possible to solve the problem efficiently. How-

ever, an optimal solution can be found by a brute-force search for feasible solutions,

although it may be impractical for large instances. In practice, the branch-and-bound

algorithm (Land & Doig, 1960) is used as a systematic way to enumerate feasible

solutions. This method iteratively breaks down the problem into sub-problems by

partitioning the solution spaces while eliminating some of the sub-problems that can-

not contain an optimal solution using lower and upper bounds for the problem. We

note that tight bounds for the problem can significantly reduce the number of sub-

problems to be solved in the branch-and-bound algorithm. Therefore, the bounds’

quality crucially affects the performance of the branch-and-bound algorithm.

6

1.2.2 Cutting plane algorithm

As mentioned previously, cuts can be defined for general optimization problems.

However, for consistency, we describe cuts in the context of the binary integer pro-

gram.

Given a binary integer program defined in Section 1.2.1, let X ⊆ {0, 1}n be the

feasible solution set, where conv(X) is the convex hull of X . Because X is a set of

a finite number of points in Rn, conv(X) is a polytope which can be described with

a finite number of linear inequalities. Let P ⊆ Rn be the continuous relaxation for

X , obtained by relaxing the integrality restriction of the decision variables in the

formulation.

In general, the branch-and-bound algorithm for solving the binary integer pro-

gram utilizes the relaxation P to obtain the upper bound for the optimal objective

value. By being close to conv(X), P provides a tighter upper bound for the binary

integer program, allowing the algorithm to terminate earlier without investigating

an excessive number of sub-problems. In the extreme case where P = conv(X),

an optimal solution for the binary integer program can be obtained by solving

max{cTx : x ∈ P}, without using the branch-and-bound algorithm. However, P

strictly includes conv(X) in most cases.

The gap between P and conv(X) can be reduced using cuts by adding them to

the formulation.

Definition 1.1. For (α, α0) ∈ Rn+1, an inequality αTx ≤ α0 is said to be a valid

inequality for X if αT x̂ ≤ α0 for all x̂ ∈ X .

Definition 1.2. For (α, α0) ∈ Rn+1, a valid inequality αTx ≤ α0 is said to be a cut

7

for X if αT x̂ > α0 for some x̂ ∈ P \ X .

Strictly speaking, cuts are a subset of valid inequalities by definition. However,

we use the terms cuts and valid inequalities interchangeably throughout this thesis.

Let αTx ≤ α0 be a cut for X . By adding this cut to the formulation for X , we

can obtain the continuous relaxation Pα = {x ∈ P : αTx ≤ α0}. Since X ⊆ Pα ⊆ P,

Pα represents an improved relaxation for X , which provides a tighter upper bound

for the optimal objective value of the binary integer program. We say that the cut

enhances the original formulation for X . Adding more cuts to the formulation can

yield an even more enhanced formulation, providing a further tighter relaxation for

conv(X).

The effectiveness of cuts can be compared in terms of how much they close the

gap between conv(X) and P. Suppose we have two cuts: αTx ≤ α0 and βTx ≤ β0,

where (α, α0) ∈ Rn+1 and (β, β0) ∈ Rn+1 are linearly independent. Let Pα and Pβ

be the improved relaxations derived from P with the cuts αTx ≤ α0 and βTx ≤ β0,

respectively.

Definition 1.3. The cut αTx ≤ α0 is said to dominate the cut βTx ≤ β0 if Pα ⊂ Pβ.

We also denote the dominance relationship in terms of the strength of cuts. If a

cut dominates another one, the cut is said to be stronger than the other. Checking

dominance between cuts may not be straightforward because it involves the compar-

ison of polyhedra. However, the following sufficient conditions for dominance allow

us to compare cuts using only their coefficients.

Definition 1.4. The cut αTx ≤ α0 dominates the cut βTx ≤ β0 if

1. There exists µ ∈ R+ such that µα ≥ β and µα0 ≤ β0.

8

2. The cut βTx ≤ β0 can be represented as a non-negative linear combination of

the cut αTx ≤ α0 and xj ≤ 1 for each j ∈ N .

A cut that is not dominated by other cuts is said to be non-dominated. By defi-

nition, it is sufficient to consider non-dominated cuts for enhancing the formulation.

Non-dominated cuts define a minimal representation of conv(X). In other words,

non-dominated cuts are facet-defining inequalities for conv(X), which are generally

challenging to characterize. However, some families of non-dominated cuts can be

derived through polyhedral studies of the given binary integer program.

Now, suppose that a family of cuts, F , is given. The upper bound provided from

the formulation enhanced by these cuts can be obtained by solving the following

optimization problem.

max cTx

s.t αTx ≤ α0, ∀(α, α0) ∈ F

x ∈ P

Even if P is a polytope, this problem may be difficult to solve due to the huge number

of cuts in F . However, this problem can be solved efficiently using the cutting plane

algorithm.

Rather than incorporating all the cuts in F at once, the cutting plane algorithm

iteratively solves a restricted version of the above problem, considering only a subset

of the cuts. We note that this restricted problem is the relaxation of the above

problem. Once an optimal solution for the restricted problem is obtained, the oracle

identifies a cut violated by the solution. If such a cut is found, it is added to redefine

9

the restricted problem. This process is iterated until the oracle no longer identifies

any violated cuts. The solution obtained through the cutting plane algorithm is

guaranteed to be optimal for the above problem because the solution is optimal for

the relaxation. The overall algorithm is described in Algorithm 1.

Algorithm 1 Cutting plane algorithm

1: repeat
2: x̂← argmax{cTx : x ∈ P} ;
3: (α, α0)←Find a cut in F such that αT x̂ > α0 through the oracle ;
4: if ∃(α, α0) then
5: P ← {x ∈ P : αTx ≤ α0} ;
6: end if
7: until ∄(α, α0)

For each iteration, the oracle can identify a violated cut by solving the following

problem.

max αT x̂− α0

s.t (α, α0) ∈ F

We refer to this problem as the separation problem. If the optimal objective value

of the separation problem is greater than 0, we can obtain a cut that separates x̂.

Otherwise, x̂ satisfies all the cuts in F , and the cutting plane algorithm terminates.

The efficiency of the cutting plane algorithm heavily depends on the solution

approach for the separation problem. Even if effective cuts are available, their impact

may be limited without efficient separation algorithms. Therefore, to enhance the

formulation using cuts, it is necessary to identify a set of effective cuts and develop

efficient separation algorithms for them.

10

1.2.3 Binary knapsack problem

The binary knapsack problem involves selecting a subset of items with non-negative

weights and profits to maximize the total profit while ensuring that the sum of the

selected items’ weights does not exceed a certain capacity. If the weights and profits

of n items are denoted by aj ∈ R+ and cj ∈ R+, respectively, and the capacity is

denoted by b ∈ R+, the problem can be expressed as max{
∑

j∈N cjxj : x ∈ XB}

where

XB =

x ∈ {0, 1}n :
∑
j∈N

ajxj ≤ b

 .

We refer to conv(XB) as the binary knapsack polytope. Without loss of generality,

we assume that aj ’s and b are integers where aj ≤ b for each j ∈ N .

The binary knapsack problem is of fundamental importance in the field of integer

programming due to its combinatorial structure with general coefficients, making it

a bridge between combinatorial optimization problems and integer programs. It also

appears as a sub-structure in binary integer linear programs, leading to extensive

research on cuts. Therefore, despite its simple structure, the literature on the binary

knapsack problem is vast and widely distributed across various research directions,

including solution approaches, computational complexity, and polyhedral studies.

This section introduces valid inequalities for the binary knapsack problem. For other

research directions, readers can refer to Martello & Toth (1990) and Kellerer et al.

(2004). Furthermore, recent studies are covered in surveys by Hojny et al. (2020)

and Cacchiani et al. (2022).

Various valid inequalities have been discovered in the literature for the binary

knapsack problem. However, in this section, we mainly focus on a major family of

11

valid inequalities called cover inequalities, which are actively used in practice to solve

binary integer programs. For information on other families, such as pack inequalities

and their generation methods, we refer the reader to Kaparis & Letchford (2010).

Cover inequalities

A subset of items CB ⊆ N is called a cover if
∑

j∈CB
aj > b. The following inequality,

∑
j∈CB

xj ≤ |CB| − 1,

is valid for XB, which we call a cover inequality. The cover inequality is the first

valid inequality for the binary knapsack polytope, which is proposed independently

by Balas (1975), Wolsey (1975), and Hammer et al. (1975). A cover CB is said to be

minimal if it does not contain a proper subset that is a cover, that is,
∑

j∈CB\{k} aj ≤

b for all k ∈ CB. Let λB =
∑

j∈CB
aj − b. Then, the minimality condition can be

rewritten as

λB ≥ aj , ∀j ∈ CB.

The corresponding cover inequality is called a minimal cover inequality. We note that

a minimal cover inequality defines a facet for the restricted binary knapsack poly-

tope, which considers only variables that are contained in the cover, conv(XB(CB)),

where

XB(CB) =

x ∈ {0, 1}|CB | :
∑
j∈CB

ajxj ≤ b

 .

The separation problem for cover inequalities is proven to be NP-hard by Klabjan

et al. (1998); however, it can be formulated as a binary integer program as follows

12

(Crowder et al., 1983):

min
∑
j∈N

(1− x̂j)yj

s.t
∑
j∈N

ajyj ≥ b+ 1

y ∈ {0, 1}n

If the optimal objective value of this problem is less than 1, the cover inequality that

cuts off x̂ can be constructed using the optimal solution y∗

Lifted cover inequalities

A cover inequality can be strengthened by improving the variable coefficients that are

not contained in the cover. The resulting inequality is called a lifted cover inequality

described as follows.

∑
j∈CB

xj +
∑

j∈N\CB

γjxj ≤ |CB| − 1 (1.1)

An inequality of the form (1.1) may not be valid for the binary knapsack polytope

depending on the lifting coefficients, γj ’s. Hence, we call an inequality of the form

(1.1) as a lifted cover inequality only when (1.1) is valid. We now introduce several

lifting techniques to determine the lifting coefficients of a lifted cover inequality from

a given cover.

Padberg (1975) proposed a sequential lifting technique where the lifting coeffi-

cients are computed one by one in a given sequence of variables of N \ CB. Recall

that, for a given cover CB, the cover inequality is valid for XB(CB) even if the cover

13

may not be minimal. Let (j1, ..., j|N\CB |) be the given variable sequence in N \ CB

and Ci = CB ∪ {j1, ..., ji} for each i = 1, ..., |N \ CB| where C0 = CB. Then, the

lifting coefficients are determined as

γ⋆ji = |CB| − 1− max
x∈XB(Ci)

 ∑
j∈Ci−1

γ⋆j xj : xji = 1

 ,

for each i = 1, ..., |N \ CB|. Padberg (1975) also showed that the resulting lifted

cover inequality, ∑
j∈CB

xj +
∑

j∈N\CB

γ⋆j xj ≤ |CB| − 1,

defines a facet for conv(XB) if CB is minimal.

We refer to the optimization problem determining each lifting coefficient as the

lifting problem. The lifting problem is a special case of the binary knapsack problem

where the profits are less than or equal to n. Based on this observation, Zemel

(1989) showed that all the lifting coefficients can be computed in O(n|CB|) using

a dynamic programming algorithm for the binary knapsack problem. We note that

the sequential lifting technique proposed by Padberg (1975) can be applied to valid

inequalities for general binary integer programs, which are defined with only some

of the variables (Zemel, 1978). Then, the lifting problem can be represented as a

special case of the considered binary integer program.

For a given minimal cover, the sequential lifting technique can generate different

facet-defining lifted cover inequalities for different variable sequences. However, gen-

erating all of them is intractable due to the enormous number of choices for variable

sequences. Therefore, a variable sequencing strategy is necessary when applying the

sequential lifting technique in practice. For an example of sequencing strategies, see

14

Gu et al. (1998).

On the other hand, simultaneous lifting techniques compute all lifting coefficients

simultaneously, which may be faster than the sequential lifting technique. These

methods utilize lifting functions to determine the lifting coefficients.

Definition 1.5. A function ψ : R→ R is a lifting function if the inequality

∑
j∈CB

xj +
∑

j∈N\CB

ψ(aj) ≤ |CB| − 1

is valid for conv(XB) for any minimal cover CB ⊆ N .

The lifted cover inequality obtained from a lifting function is not guaranteed

to define a facet for the binary knapsack polytope. However, some lifting functions

may derive a facet-defining lifted cover inequality that cannot be obtained through

the sequential lifting technique. For the sake of simplicity, let CB = {1, ..., |CB|} be

the minimal cover, and let the variables be sorted in non-increasing order of aj . In

addition, let µi =
∑i

j=1 aj for each i ∈ CB and µ0 = 0. Balas (1975) proposed a

lifting function defined as

ψ(z) = k if µk ≤ z < µk+1,

for some k = 0, ..., |CB| − 1. The author also showed that, if aj ≤ µψ(aj)+1 − λB

for all j ∈ N \ CB, the resulting lifted cover inequality is the unique facet-defining

inequality for conv(XB) of the form (1.1). We note that the lifted cover inequality

can be obtained in O(n log |CB|).

Wolsey (1977) characterized a class of functions that can be used as a lifting

15

function. Let

ψ⋆(z) = |CB| − 1−max

∑
j∈CB

xj :
∑
j∈CB

ajxj ≤ b− z

 .

Theorem 1.1 (Wolsey, 1977). If ψ(z) is superadditive and ψ(z) ≤ ψ⋆(z) for all

z ∈ [0, b], then ψ(z) is a lifting function.

Based on this theorem, several superadditive lifting functions have been proposed

(Gu et al., 2000; Marchand, Martin, et al., 2002; Letchford & Souli, 2019). We only

describe the lifting function proposed by Gu et al. (2000), which will be utilized in

this thesis.

A lifting function h proposed by Gu et al. (2000) is defined as

h(z) =

 k if µk − λB + ρk ≤ z ≤ µk+1 − λB

k − µk−λB+ρk−z
ρ1

if µk − λB < z < µk − λB + ρk

,

for some k = 0, ..., |CB| − 1 where ρk = max{0, ak+1 − (a1 − λB)} for all k =

0, ..., |CB|− 1. It can be easily shown that h(z) is greater than or equal to the lifting

function proposed by Balas (1975). Therefore, the resulting lifted cover inequality,

∑
j∈CB

xj +
∑

j∈N\CB

h(aj)xj ≤ |CB| − 1,

is stronger than the one derived by Balas (1975). Gu et al. (2000) showed that the

above inequality is the unique facet-defining inequality for conv(XB) of the form (1.1)

if, for all j ∈ N \ CB, µk − λB + ρk ≤ aj ≤ µk+1 − λB for some k = 0, . . . , |CB| − 1.

In other words, the lifted cover inequality defines a facet if the lifting coefficients are

16

integers. We note that h(aj)’s can also be obtained in O(n log |CB|).

General lifted cover inequalities

Lifted cover inequalities can be expressed in a general form as

∑
j∈C⋆

B

xj +
∑

j∈CB\C⋆
B

γjxj +
∑

j∈N\CB

γjxj ≤ |C⋆B| − 1 +
∑

j∈CB\C⋆
B

γj (1.2)

where C⋆B ⊆ CB. These inequalities are known as general lifted cover inequalities

(Van Roy & Wolsey, 1987). When C⋆B = CB, general lifted cover inequalities are

equivalent to lifted cover inequalities. The lifting coefficients that ensure the validity

of (1.2) for conv(XB) can also be computed using the sequential lifting technique.

The inequality
∑

j∈C⋆
B
xj ≤ |C⋆B| − 1 is valid for conv(XB(CB, C⋆B)) where

XB(CB, C⋆B) =

x ∈ {0, 1}|CB |⋆ :
∑
j∈C⋆

B

ajxj ≤ b−
∑

j∈CB\C⋆
B

aj

 .

If CB is a minimal cover for X , then C⋆B is also a minimal cover for XB(CB, C⋆B),

that is, the inequality
∑

j∈C⋆
B
xj ≤ |C⋆B| − 1 defines a facet of conv(XB(CB, C⋆B)).

Let (j1, ..., j|N\C⋆
B |) be the given variable sequence in N \ C⋆B. Additionally, let

Cdi = {jl ∈ CB \ C⋆B : l ≤ i} and Ci = C⋆B ∪ Cdi ∪ {jl ∈ N \ CB : l ≤ i} for

each i = 1, ..., |N \ C⋆B| where C0 = C⋆B and Cd0 = ∅. The lifting coefficients can be

sequentially determined as follows.

17

γ⋆ji =

|C⋆B| − 1 +
∑
j∈Cd

i

γ⋆j − max
x∈XB(CB ,Ci)

 ∑
j∈Ci−1

γ⋆j xj : xji = 1

 , ji ∈ N \ CB

max
x∈XB(CB ,Ci)

 ∑
j∈Ci−1

γ⋆j xj : xji = 0

−
|C⋆B| − 1 +

∑
j∈Cd

i−1

γ⋆j

 , ji ∈ CB \ C⋆B

,

for each i = 1, ..., |N \ C⋆B|. The resulting inequality defines a facet for conv(XB) if

CB is a minimal cover for XB.

Gu et al. (1998) remarked that the sequential lifting technique for general lifted

cover inequalities can be performed in O(n3|CB|) computational complexity by

adapting the algorithm proposed by Zemel (1989). We note that there is no domi-

nance relationship between general lifted cover inequalities and lifted cover inequal-

ities. However, it has been demonstrated that general lifted cover inequalities are

more effective in enhancing the relaxation of binary integer linear programs rather

than lifted cover inequalities (Gu et al., 1998; Kaparis & Letchford, 2010).

1.2.4 General-purpose cuts

For binary integer linear programs, general-purpose cuts are typically derived from

the single constraint relaxation, where the original problem is relaxed as a single-

constrained optimization problem. Such a single-constraint relaxation can be defined

with each constraint of the original problem or an implied linear inequality obtained

by aggregating the constraints with non-negative multipliers. Then, the relaxation

can be described as

max cTx

s.t uTAx ≤ uTb

18

x ∈ {0, 1}n,

where u ∈ Rr+. Let XS be the feasible solution set of the above problem. We also

refer to XS as the single-constraint relaxation for the feasible solution set of the

binary integer linear program, X .

Because conv(XS) can be represented as a binary knapsack polytope, the valid

inequalities presented in Section 1.2.3 can be used as general-purpose cuts, which

we call knapsack cuts. However, other general-purpose cuts are used together with

knapsack cuts to solve binary integer linear programs in practice. In this section, we

introduce such general-purpose cuts.

Chvátal-Gomory cuts

Let us consider the following inequality derived from the constraint that defines XS .

⌊uTA⌋x ≤ uT b

Because the coefficients of the decision variables in this inequality are less than those

in the constraint defining XS , it is clear that this inequality is valid for XS . Because

decision variables are integers, the following inequality is also valid for XS .

⌊uTA⌋x ≤ ⌊uT b⌋ (1.3)

Inequalities of the form (1.3) can be obtained with any u ∈ Rr+ through the above

procedure. Such inequalities are known as Chvátal-Gomory (CG) cuts (Chvátal,

1973; Gomory, 1958) while the above procedure is called a CG procedure.

19

Because CG procedures utilize not the binarity of the decision variables, but

integrality, CG cuts are valid for not only XS but also its relaxation XSR where the

decision variables can have general integers, which is described as follows.

XSR = {x ∈ Zn+ : uTAx ≤ uTb}

Originally, CG cuts were defined for integer linear programs (Chvátal, 1973; Gomory,

1958). However, in this thesis, we describe results on CG cuts in the perspective of

binary integer linear programs for consistency.

Let P be the linear relaxation of the binary integer linear program, described as

P = {x ∈ [0, 1]n : Ax ≤ b} .

Let P1 be the relaxation improved by all the CG cuts of the form (1.3). P1 is referred

to as the Chvátal closure for P. Because infinitely many CG cuts can be generated

through CG procedures with different multipliers, the Chvátal closure may seem like

it is not a polytope. However, Chvátal (1973) showed that it is a rational polytope

if P is a rational polytope. For general integer linear programs, Schrijver (1980)

showed that the Chvátal closure is a rational polyhedron if the linear relaxation

is a rational polyhedron. These results imply that a finite number of CG cuts is

necessary to describe P1, and hence, some of the CG cuts are dominated and do not

need to be considered in enhancing the formulation.

Let us redefine the Chvátal closure as

P1 = {x ∈ [0, 1]n : Āx ≤ b̄},

20

where the number of constraints in the system Āx ≤ b̄ is finite. Then, we can define

CG cuts derived from P1 and the Chvátal closure of P1, denoted as P2. We call P2

the second Chvátal closure for P. By definition, P2 is tighter than P1. In a similar

way, the t-th Chvátal closure, Pt, can be defined from Pt−1 with CG cuts derived

from Pt−1. The CG cuts valid for Pt but not Pt−1 are called rank-t CG cuts. Chvátal

(1973) showed that there exists t ∈ Z+ such that Pt = conv(X). The smallest such t

is called the Chvátal rank of P. This result implies that every valid inequality for X

can be categorized into CG cuts with some rank. Hence, the notion of rank provides

a way to compare the strength between families of cuts beyond comparing each cut

individually.

Although CG cuts can describe conv(X), their use in practice is restricted due

to the absence of efficient generation methods. Even for rank-1 CG cuts, their sep-

aration problem is proven to be NP-hard in a strong sense for general integer linear

programs (Eisenbrand, 1999), while the computational complexity for binary inte-

ger linear programs is unknown. Fischetti & Lodi (2007) presented a mixed-integer

program for the separation problem for rank-1 CG cuts, which can be solved using

general-purpose optimization solvers. Although the authors could demonstrate the

effectiveness of rank-1 CG cuts using the proposed model, it is still computationally

challenging to solve the separation problem.

One possible way to utilize CG cuts is generating them through restricted separa-

tion problems, such as restricting the choice of multipliers for the single-constraint

relaxation. For example, one can use CG cuts derived from the optimal simplex

tableau obtained through solving the linear programming (LP) relaxation of the bi-

nary integer linear program. The binary integer linear program can be reformulated

21

into the standard form by introducing slack variables s ∈ Zr+ as follows.

max{cTx : Ax+ s = b, x ∈ {0, 1}n, s ∈ Zr+} (1.4)

Let (x⋆, s⋆) be the optimal solution to the LP relaxation of the above problem,

obtained by the simplex method. If x⋆ is not integral, there exists a row in the

optimal simplex tableau, which corresponds to xi such that 0 < x⋆i < 1 for some

i ∈ N . Such a row can be written as

vTAx+ vT s = vTb, (1.5)

for some v ∈ Rr. We note that vTb = x⋆i . Then, the following inequality can be

obtained from the integrality of the decision variables.

⌊vTA⌋x+ ⌊v⌋T s ≤ ⌊vT b⌋ (1.6)

With (1.5), the inequality (1.6) can be rewritten as

(vTA− ⌊vTA⌋)x+ (v − ⌊v⌋)T s ≥ vT b− ⌊vT b⌋.

The above inequality is called a Gomory fractional cut. The Gomory fractional cut

separates (x⋆, s⋆) from the LP relaxation, thereby improving the relaxation. The

Gomory fractional cut may seem different from CG cuts due to the slack variables.

However, since s = b−Ax, the Gomory fractional cut can be rewritten as

⌊ûTA⌋x ≤ ⌊ûT b⌋,

22

where û = v−⌊v⌋, and hence, û ∈ Rr+. The above inequality is a CG cut of the form

(1.3) defined with û. Therefore, Gomory fractional cuts are a special case of CG

cuts. It is noteworthy that, after adding the above Gomory fractional cut to the for-

mulation of the problem (1.4), another Gomory fractional cut can be generated from

the enhanced formulation using the same procedure. This cutting plane algorithm,

known as Gomory’s cutting plane algorithm, provides the integral optimal solution

to the binary integer linear program in finite iterations (Gomory, 1958). It is worth

noting that Gomory’s cutting plane algorithm was the first general-purpose solu-

tion approach for integer linear programs, developed before the branch-and-bound

algorithm.

On the other hand, for some specific problems, the separation problem for rank-1

CG cuts can be solved efficiently. For example, blossom inequalities for the matching

polytope (Edmonds, 1965) and odd-hole inequalities for the stable set polytope

(Padberg, 1973) can be interpreted as CG cuts defined with multipliers that have 0

or 1
2 , the so-called {0,

1
2}-cuts (Caprara & Fischetti, 1996). The separation problems

for these inequalities can be solved in polynomial time.

The separation problem associated with the binary knapsack polytope and the

variants has also been studied in the literature, and our study is closely related to

them. Therefore, we will provide detailed reviews of them in the following chapter.

Gomory mixed-integer cut

Gomory (1960) derived another valid inequality from a row in the optimal simplex

tableau (1.5) using the integrality of decision variables x. Here, we regard the slack

variables s as non-negative continuous variables and Aj ∈ Zr be each column of A

23

for j ∈ N . Then, the inequality is described as

∑
j∈N

min

{
f ′j ,

f ′0(1− f ′j)
1− f ′0

}
xj +

∑
k∈R

max

{
vk,−

f ′0vk
1− f ′0

}
sk ≥ f ′0, (1.7)

where f ′0 = vTb − ⌊vTb⌋ and f ′j = vTAj − ⌊vTAj⌋ for each j ∈ N . The above

inequality is called a Gomory mixed-integer cut. As the name suggests, the cuts

were originally defined for mixed-integer programs. However, we present the results

in the context of binary integer linear programs for consistency.

The Gomory mixed-integer cut can also be derived from the single-constraint

relaxation XS . The constraint in the relaxation can be rewritten as an equality by

introducing a slack variable s0 ∈ R+ as

uTAx+ s0 = uTb.

The Gomory mixed-integer cut (1.7) derived from this equality is expressed as

∑
j∈N

min

{
fj ,

f0(1− fj)
1− f0

}
xj + s0 ≥ f0,

where f0 = uTb − ⌊uTb⌋ and fj = uTAj − ⌊uTAj⌋ for each j ∈ N . Since s0 =

uTb− uTAx, the cut can be rewritten as follows.

∑
j∈N

(
⌊uTAj⌋+max

{
0,
fj − f0
1− f0

})
xj ≤ ⌊uTb⌋ (1.8)

Burdet & Johnson (1975) showed that this inequality is valid for XS and dominates

the CG cut derived from the same single-constraint relaxation. From here, the Go-

24

mory mixed-integer cut refers to the inequality of the form (1.8), unless otherwise

stated. It is worth noting that the Gomory mixed-integer cut is also valid for XS

and its relaxation XSR, as its derivation only requires the integrality of decision

variables.

A closure associated with Gomory mixed-integer cuts can be defined similarly

to the first Chvátal closure, known as the Gomory mixed-integer closure. As the

Gomory mixed-integer cut dominates the CG cut derived from the same single-

constraint relaxation (Burdet & Johnson, 1975), the Gomory mixed-integer closure

is a tighter relaxation for X than the Chvátal closure. Moreover, the Gomory mixed-

integer closure is equivalent to the split closure and mixed-integer rounding closure

defined by split cuts (Cook et al., 1990) and mixed-integer rounding cuts (Nemhauser

& Wolsey, 1990), respectively, which are other general-purpose cuts proposed more

than 30 years after the introduction of Gomory mixed-integer cuts.

The separation problem for Gomory mixed-integer cuts is proven to be NP-hard

in a strong sense for both general integer linear programs (Caprara & Letchford,

2003) and binary integer linear programs Lee (2019). Therefore, Gomory mixed-

integer cuts are derived from the optimal simplex tableau in practice.

According to Bixby, Fenelon, et al. (2004), Gomory mixed-integer cuts were the

most effective general-purpose cuts, and now they have become a crucial component

of modern optimization software. However, the usefulness of Gomory mixed-integer

cuts was not recognized from the beginning. The cuts were considered mathemati-

cally elegant but impractical right after their invention by Gomory (1960). It took

about 30 years for them to be revived by the successful incorporation into the branch-

and-cut framework (Balas, Ceria, et al., 1996). For a detailed history of Gomory

25

mixed-integer cuts, we refer the reader to Cornuéjols et al. (2007).

Cut-generating function

The success of Gomory mixed-integer cuts in practice has prompted studies on

other families of general-purpose cuts that can be derived from the single-constraint

relaxation. Conforti, Cornuéjols, et al. (2015) introduced the term cut-generating

function, which describes the studies as a whole.

Let us consider a set X pSE(a, f,K) for some p ∈ Z+, a = (a1, ..., ap), 0 < f < 1,

and K ∈ Z where aj ∈ R for each j ∈ {1, . . . , p}, which is defined as

X pSE(a, f,K) = {(x, s0) ∈ Zp+ × R+ :

p∑
j=1

ajxj + s0 = f +K},

Definition 1.6. π : R→ R is a cut-generating function if the inequality

p∑
j=1

π(aj)xj + s0 ≥ f

is valid for X pSE(a, f,K) for all p ∈ Z+, a ∈ Rn, 0 < f < 1, and K ∈ Z.

XSR can be reformulated as X nSE(uTA, f0, ⌊uTb⌋) with a slack variable s0 ∈ R+,

where f0 = uTb− ⌊uTb⌋. Therefore, a cut-generating function π can derive a valid

inequality for XSR, which is also valid for XS .

A valid inequality for X nSE(uTA, f0, ⌊uTb⌋), obtained using π, is described as

follows. ∑
j∈N

π(uTAj)xj + s0 ≥ f0

26

Since s0 = uTb− uTAx, this inequality can be rewritten as

∑
j∈N

(uTAj − π(uTAj))xj ≤ ⌊uTb⌋,

which is a valid inequality for XSR. Then, this inequality is also valid for XS , which

we call the CGF cut defined by π.

Depending on the choice of cut-generating function, CGF cuts can represent

various general-purpose cuts. For example, let us consider the function πCG and πfG

defined as

πCG(z) = z − ⌊z⌋

and

πfG(z) = min

{
πCG(z),

f(1− πCG(z))
1− f

}
,

for some 0 < f < 1. Then, the CG and Gomory mixed-integer cuts for XS are

equivalent to CGF cuts defined by πCG and πf0G , respectively.

z

1

0 1 2 31+f0 2+f0f0

πCG(z) πf0
G (z)

Figure 1.2: Example of πCG(z) and π
f0
G (z)

As shown in the relationship between CG and Gomory mixed-integer cuts, the

strength of CGF cuts depends on cut-generating functions, and some CGF cuts can

27

be dominated by the other CGF cuts. Therefore, studies on cut-generating functions

have focused on those generating non-dominated CGF cuts.

A cut-generating function π is said to be minimal if there is no cut-generating

function π′ ̸= π such that π′(z) ≤ π(z) for all z ∈ R. Hence, minimal cut-generating

functions yield non-dominated CGF cuts. The necessary and sufficient conditions

for minimality were derived from studies on the infinite relaxation, introduced by

Gomory & Johnson (1972a) and Gomory & Johnson (1972b). The derivation of

each condition is technical and theoretical. Hence we present them without further

explanations.

Theorem 1.2 (Gomory & Johnson, 1972). π is a minimal cut-generating function if

and only if π(0) = 0, π is subadditive, periodic, and satisfies the symmetry condition

defined as follows.

1. Subadditivity: π(z1) + π(z2) ≥ π(z1 + z2), ∀z1, z2 ∈ R

2. Periodicity: π(z) = π(z + k), ∀z ∈ R, ∀k ∈ Z

3. Symmetry: π(z) + π(f − z) = f, ∀0 < f < 1

By the symmetry condition, if π is a minimal cut-generating function, then

π(f) = f and π(0) = 0 for all 0 < f < 1. Furthermore, the combination of the

symmetry condition and periodicity implies that π(z) ≤ f for all z ∈ R if π is a

minimal cut-generating function.

πCG is not minimal because the function does not satisfy the symmetry condition,

while πfG is a minimal cut-generating function. This result also explains why CG

cuts are dominated by Gomory mixed-integer cuts derived from the same single-

constraint relaxation.

28

Various cut-generating functions have been proposed in the literature. However,

for the sake of brevity, we omit the introduction of other minimal cut-generating

functions as they are not directly addressed in this thesis. Instead, we recommend

readers to refer to comprehensive surveys on cut-generating functions by Basu et al.

(2016a) and Basu et al. (2016b).

1.2.5 Chance-constrained programming approach for optimization

problems under uncertainty

Real-world optimization problems often involve uncertain input data. One common

approach is to handle this uncertainty deterministically by estimating the input

data. However, even small changes to the input can significantly affect the quality of

the optimal solution, and in some cases, the solution may become infeasible. There-

fore, it is crucial to address uncertainty in optimization problems carefully. This

section briefly introduces conventional modeling frameworks for optimization prob-

lems under uncertainty and explains the chance-constrained programming approach

considered in this thesis.

The conventional modeling frameworks for dealing with uncertainty can be cate-

gorized based on the information utilized about the uncertainty. A robust optimiza-

tion approach (Ben-Tal et al., 2009; Gabrel et al., 2014; Bertsimas, Brown, et al.,

2011) requires only the uncertainty set of input data from which realizations are

drawn. This modeling framework aims to find the best solution in the worst-case

scenario when the input data changes within the given uncertainty set. Hence, the

feasibility of the solution is immune to the realization of uncertain input data. Let

ξ be the realization of uncertain inputs where ξ ∈ Ξ, and X (ξ) be the feasible

29

solution set of the considered optimization problem when ξ is realized. Then, the

optimization problem can be modeled using the robust optimization framework as

min
ξ∈Ξ

max
x∈X (ξ)

cTx,

which is a special case of bilevel optimization problems. Alternatively, the above

problem can be expressed as a single-level optimization problem as

max cTx

s.t x ∈ X (ξ), ξ ∈ Ξ,

which is called the robust counterpart. The robust counterpart may have infinitely

many constraints when |Ξ| = ∞, which makes it difficult to solve. However, some

robust counterparts can be reformulated into tractable optimization problems by

exploiting the properties of Ξ. Examples of such reformulations can be found in

Bertsimas & Sim (2004) and Ben-Tal et al. (2009).

On the other hand, the stochastic programming approach, initiated by Dantzig

(1955), utilizes the uncertainty set and the probabilistic description of input data.

This modeling framework typically aims to optimize the expected value of the objec-

tive function over the realizations of uncertain input data. Let D be the probability

distribution of ξ, and x(ξ) be the feasible solution when ξ is realized. Then, the

optimization problem can be modeled using the stochastic programming approach

as follows.

max
x(ξ)∈X (ξ)

Eξ∼D{cTx(ξ)}.

30

For numerical computations, the above problem is often approximated using the

sample approximation approach, which considers a finite number of samples for

the realization of ξ. The quality of the approximation is significantly affected by

the number of samples. However, an enormous number of samples is required for the

tight approximation as the number of uncertain inputs increases. Hence, scalable op-

timization techniques for the sample approximation approach have been extensively

studied. We refer the interested reader to several textbooks (Birge & Louveaux,

2011; Kall et al., 1994; Shapiro et al., 2021) and a survey by Powell (2019).

The chance-constrained programming approach is a type of stochastic program-

ming approach introduced in Charnes et al. (1958), Miller & Wagner (1965), and

Prékopa (1970). This approach aims to find a solution that guarantees feasibility

with a certain probability for the realization of uncertain input data. By utilizing

the chance-constrained programming approach, the optimization problem can be

formulated as follows:

max cTx

s.t P{x ∈ X (ξ)} ≥ ρ,

where P· represents the probability and ρ is a desired probability. The constraint

related to the probability is called the chance constraint. It should be noted that

the above model is equivalent to the robust counterpart when ρ = 1. Hence, the

chance-constrained programming approach can be viewed as a generalization of the

robust optimization approach.

Despite its theoretical advantages, the chance-constrained programming approach

31

presents several challenges in practical applications. Firstly, the approach requires

the joint probability distribution function of random variables across the constraints,

which can be impractical to estimate. Secondly, even if the distribution function is

well-estimated, the numerical processing of chance constraints may take more work.

For example, if the cumulative distribution function is not provided as a closed form,

the chance-constrained program may be difficult to reformulate deterministically,

leading to computational intractability. In this case, even checking the feasibility of

a given solution may not be possible, and the only viable option may be to check

it approximately using the Monte-Carlo simulation. Additionally, even with well-

estimated distribution functions, chance-constrained programs are often formulated

as non-convex optimization problems, posing significant challenges.

One possible way to address those issues is to approximate the chance-constrained

program by assuming the constraint-wise independence between random variables

(Ahmed, 2014). Let us consider an optimization problem under uncertainty, which

can be formulated as a binary integer linear program in the deterministic case. Then,

the chance-constrained program is formulated as

max
∑
j∈N

cjxj

s.t P

∑
j∈N

ãkjxj ≤ bk, k ∈ R

 ≥ ρ
x ∈ {0, 1}n,

where ãkj ’s are random variables. Then, the approximation can be formulated as

32

follows.

max
∑
j∈N

cjxj

s.t P

∑
j∈N

ãkjxj ≤ bk

 ≥ ρ, k ∈ R
x ∈ {0, 1}n,

Estimating the distribution functions associated with each constraint might be easier

than estimating those for all uncertain input data. In addition, if each chance con-

straint can be represented as a convex constraint, the above problem becomes com-

putationally tractable. Convex approximation techniques (Nemirovski & Shapiro,

2007; Ahmed, 2014) can also be used if necessary.

In the above approximation, a single-constraint relaxation defined by each chance

constraint can be represented as the feasible solution set of the chance-constrained

binary knapsack problem, which is described as

max
∑
j∈N

cjxj

s.t P

∑
j∈N

ãjxj ≤ b

 ≥ ρ
x ∈ {0, 1}n,

where ãj ’s are random variables. We note that the knapsack cuts introduced in

Section 1.2.3 are not applicable to the chance-constrained binary knapsack prob-

lem because the chance constraint is often represented as a nonlinear inequality.

33

Therefore, it is necessary to study the chance-constrained binary knapsack prob-

lem to derive cuts and their generation methods that can be used in solving the

approximations of chance-constrained programs, as we do in Chapter 3.

Another approach to utilize chance-constrained programs in practice is sampling-

based approximations (Luedtke et al., 2010; Ruszczyński, 2002; Küçükyavuz, 2012),

similar to the stochastic programming approach. While this approach falls outside

the scope of our study, readers interested in approximations of chance-constrained

programs, including the methods mentioned above, can refer to several textbooks

(Prékopa, 2013; Shapiro et al., 2021) and a survey by Nemirovski (2012).

1.3 Research objectives and contributions

The main objective of this thesis is to enhance the capability of solving binary

integer programs using efficient cut-generation methods for two variants of the binary

knapsack problem: the binary knapsack problem with generalized upper bounds

(GKP) and the chance-constrained binary knapsack problem (CKP).

Firstly, we investigate the GKP, which can derive stronger cuts for binary integer

linear programs than the binary knapsack problem. Specifically, we consider rank-1

Chvátal-Gomory (CG) cuts and their separation problem for the GKP, which have

not been studied in the literature. By exploiting the properties of non-dominated

rank-1 CG cuts for the GKP, we present exact and heuristic algorithms for the sep-

aration problem, along with computational complexity analysis. Through extensive

computational experiments, we compare the efficiency of the proposed separation

algorithms with the mixed-integer programming approach and demonstrate the ef-

fectiveness of CG cuts compared to existing cuts for the GKP.

34

Secondly, we present a novel method for strengthening rank-1 CG cuts for binary

integer linear programs to improve the formulation-enhancing effect of the CG cuts.

We first reveal the connection between rank-1 CG cuts for binary integer linear

programs and lifted cover inequalities for binary knapsack problems. Based on this

result, our method strengthens a given rank-1 CG cut using a lifting function of

cover inequalities for binary knapsack problems. We compare the strength of the

obtained cut with those obtained through existing strengthening methods from the

given CG cut. Subsequently, we extend this method to rank-1 CG cuts for binary

integer linear programs with generalized upper bounds. We evaluate the effectiveness

of the proposed strengthening methods through computational experiments.

Thirdly, we consider the CKP, which arises in the chance-constrained program-

ming approach for optimization problems under uncertainty. We assume that the

item weights are independently normally distributed. Then the CKP is formulated

as a binary integer nonlinear program where the cuts for the binary knapsack prob-

lem are not applicable. For the CKP, a family of valid inequalities has been intro-

duced by Atamtürk & Narayanan (2009), known as probabilistic cover inequalities.

We propose an efficient sequential lifting heuristic for probabilistic cover inequalities

based on a continuous relaxation for the CKP. We first introduce a non-convex con-

tinuous relaxation of the CKP, represented as a non-convex optimization problem,

and show that the relaxation provides tighter upper bounds than the other con-

tinuous relaxations presented in the literature. In general, non-convex optimization

problems are computationally hard to solve; however, we show that the non-convex

relaxation can be solved in polynomial time. Our lifting heuristic utilizes the al-

gorithm to solve the non-convex relaxations for the lifting problem of probabilistic

35

cover inequalities, represented as another CKP. We compare the performance of the

lifting heuristic with existing methods, including Atamtürk & Narayanan (2009),

through computational tests.

The contributions of the thesis are given as follows.

1. Separation of rank-1 Chvátal-Gomory cuts for the binary knapsack problem

with generalized upper bounds.

• We characterize the non-dominated rank-1 CG cuts for the GKP and,

based on their properties, show that the separation problem can be de-

composed into sub-problems.

• We propose a pseudo-polynomial time exact separation algorithm for

rank-1 CG cuts for the GKP. This result implies that the separation

problem for the GKP is not strongly NP-hard, while it is known to be

NP-hard in a strong sense for general integer linear programs. In addi-

tion, we devise an efficient heuristic separation algorithm based on the

decomposition property of the separation problem.

• The computational experiment results demonstrate that the proposed

separation algorithms can efficiently generate rank-1 CG cuts compared

to the mixed-integer programming approach proposed by Fischetti & Lodi

(2007). Furthermore, the rank-1 CG cuts generated by the proposed al-

gorithms outperform existing cuts for the GKP in terms of formulation

enhancement and computational efficiency.

2. Chvátal-Gomory cut strengthening method for binary integer linear programs

and its extension to generalized upper bounds.

36

• We propose a novel method for strengthening rank-1 CG cuts for binary

integer linear programs, which derives a stronger cut that we call the SCG

cut.

• We demonstrate that the SCG cut can have a Chvátal rank higher than

1, and it is at least as strong as the Gomory mixed-integer cut derived

from the single-constraint relaxation corresponding to the given CG cut.

Furthermore, we specify the condition where the SCG cut dominates CGF

cuts defined by any cut-generating functions.

• We extend the method to binary integer linear programs with generalized

upper bounds and generalize the strength comparison results.

• The computational experiment results indicate that the proposed strength-

ening method can yield more enhanced formulations using fewer cuts

compared to using CG cuts or Gomory mixed-integer cuts. Furthermore,

using the proposed method decreased the computation time to enhance

the formulations because the number of iterations in the cutting plane

algorithm is reduced.

3. Lifting heuristic for probabilistic cover inequalities for the chance-constrained

binary knapsack problem.

• We show that the non-convex continuous relaxation for the CKP pro-

vides a tighter upper bound than the other continuous relaxations in the

literature.

• Despite the non-convexity, we propose a polynomial-time exact algorithm

for the non-convex continuous relaxation.

37

• We devise an efficient lifting heuristic of probabilistic cover inequalities

based on the non-convex continuous relaxation for the lifting problem.

The computational experiments show that our lifting heuristic outper-

forms the existing methods in terms of computational efficiency, while

the strength of the resulting lifted probabilistic cover inequality remains

competitive compared to the existing lifting heuristics.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows.

• In Chapter 2, we focus on the separation problem of rank-1 Chvátal-Gomory

cuts for the binary knapsack problem with generalized upper bounds. We be-

gin by characterizing the non-dominated rank-1 CG cuts for the problem and

then propose a decomposition of the separation problem based on the result.

We develop an exact separation algorithm using a dynamic programming ap-

proach and discuss the algorithm’s computational complexity. Additionally,

we propose an efficient heuristic based on the decomposition property of the

separation problem. We present computational test results demonstrating the

proposed algorithms’ efficiency and the effectiveness of rank-1 CG cuts.

• In Chapter 3, we propose a strengthening method for rank-1 Chvátal-Gomory

cuts for binary integer linear programs. We compare the strength of the result-

ing cut with those obtained through existing strengthening methods from the

given Chvátal-Gomory cut. We also extend the results to binary integer linear

programs with generalized upper bounds. Finally, we present computational

38

experiment results that demonstrate the effectiveness of the proposed method.

• In Chapter 4, we discuss three formulations for the chance-constrained bi-

nary knapsack problem found in the literature and compare the continuous

relaxations obtained from the formulations. We propose a polynomial-time al-

gorithm for the non-convex continuous relaxation which yields a tighter upper

bound compared to the other continuous relaxations. We then present a lifting

heuristic using the non-convex relaxation and the proposed algorithm, along

with corresponding experimental results.

• In Chapter 5, we summarize the results of the thesis and discuss possible future

study directions.

39

Chapter 2

Separation of the rank-1 Chvátal-Gomory cuts for
the knapsack problem with generalized upper
bounds

In this chapter, we investigate rank-1 CG cuts for the binary knapsack problem with

generalized upper bounds, GKP for short, and propose efficient solution approaches

for their separation problem. Firstly, we explore the properties of non-dominated

rank-1 CG cuts for the GKP and analyze the computational complexity of the cor-

responding separation problem. We demonstrate that the separation problem can

be solved in pseudo-polynomial time, whereas it is known to be strongly NP-hard

for general integer linear programs. We also devise an efficient heuristic algorithm

for the separation problem, along with with an analysis of its computational com-

plexity. Finally, we conduct computational experiments to evaluate the performance

of the proposed algorithms. The test results indicate that the proposed separation

algorithms generate CG cuts efficiently, and the generated CG cuts outperform the

existing valid inequalities for the GKP in terms of formulation enhancement and

computational efficiency.

41

2.1 Introduction

The knapsack problem with generalized upper bounds, GKP for short, is defined

as the binary knapsack problem with additional constraints where at most, one

item should be selected among some of the given items. For a given set of items

N = {1, . . . , n} and a finite index set I = {1, . . . ,m}, a generalized upper bound

(GUB) set is defined as Ki ⊆ N with |Ki| = ni for each i ∈ I such that N = ∪i∈IKi

and Ki ∩Kj = ∅ whenever i ̸= j. In addition, positive integers b, cj and aj for all

j ∈ N , and di for all i ∈ I, are given. Then, the GKP can be formulated as a binary

integer linear program as follows.

(GKP) max
∑
i∈I

∑
j∈Ki

cjxj

s.t
∑
i∈I

∑
j∈Ki

ajxj ≤ b (2.1)

∑
j∈Ki

xj ≤ 1, ∀i ∈ I (2.2)

x ∈ {0, 1}n.

Constraints (2.2) is called GUB constraints. We denote XG as the feasible solution

set of the GKP, and the GKP polytope is defined as conv(XG). We note that if GUB

sets are singletons where Ki = {i} for all i ∈ I with m = n, the GKP polytope is

equivalent to the binary knapsack polytope, that is, the GKP is the generalization

of the binary knapsack problem.

GUB constraints arise in various applications of binary integer linear programs,

such as representing transmitter selection for each receiver in wireless network design

42

problems (D’Andreagiovanni et al., 2013), gate allocation for each flight in airport

gate assignment problems (Kim et al., 2023), and choice of the beginning period

for each job in machine scheduling problems (Sousa & Wolsey, 1992), among oth-

ers (Balintfy et al., 1978; Sankaran et al., 1999; Cavalcante et al., 2001). For such

binary integer linear programs, each constraint or an implied constraint obtained

by aggregating the constraints with non-negative multipliers defines a tighter relax-

ation, together with GUB constraints, than the single-constraint relaxation. This

relaxation can be represented as a GKP polytope by complementing the variables if

necessary (Johnson & Padberg, 1981). Therefore, cuts derived from the GKP poly-

tope can be more effective than those for the binary knapsack polytope in solving

binary integer linear programs. Several studies have been conducted on valid inequal-

ities and their generation methods for the GKP polytope (Wolsey, 1990; Nemhauser

& Vance, 1994; Sherali & Lee, 1995; Gu et al., 1998).

We consider rank-1 CG cuts (Chvátal, 1973), which we refer to as CG cuts for

brevity, for the GKP. As introduced in Section 1.2.4, CG cuts are general-purpose

cuts that can be defined for general integer linear programs. However, despite their

generality and effectiveness (Fischetti & Lodi, 2007), the use of CG cuts has been

restricted in practice due to the absence of efficient generation methods.

This study mainly focuses on the CG cut separation problem for the GKP,

which has not been studied in the literature before. We characterize non-dominated

CG cuts for the GKP and analyze the computational complexity of the separa-

tion problem. Based on the results, we present efficient separation algorithms with

corresponding computational experiment results.

The remainder of this chapter is organized as follows. We review the relevant

43

literature in Section 2.2. In Section 2.3, we discuss the relationship between the

existing valid inequalities and the CG cuts for the GKP polytope. The properties

of non-dominated CG cuts are also presented. Based on the result, we propose an

exact pseudo-polynomial time algorithm for the separation problem in Section 2.4.

An efficient heuristic algorithm is also devised in Section 2.5. The computational

efficiency of the proposed separation algorithms, as well as the effectiveness of the

generated CG cuts, are demonstrated in Section 2.6. Finally, the concluding remarks

are given in Section 2.7.

2.2 Literature review

In this section, we introduce valid inequalities and their generation methods for the

GKP polytope in the literature and present the studies on CG cuts associated with

the GKP.

For the GKP polytope, Wolsey (1990) first introduced a family of valid inequal-

ities, GUB cover inequalities, by generalizing the concept of the cover for the binary

knapsack polytope (Wolsey, 1975; Hammer et al., 1975; Balas, 1975), which is de-

scribed as follows. ∑
j∈CG

xj ≤ |CG| − 1, (2.3)

where CG ⊆ N is a GUB cover such that
∑

j∈CG
aj > b and |CG ∩Ki| ≤ 1 for all

i ∈ I. The author also investigated the extensions of GUB cover inequalities.

GUB cover inequalities can be strengthened through lifting techniques that im-

prove the coefficients of variables not present in the GUB cover, resulting in lifted

GUB cover inequalities. If the GUB cover is minimal, the lifted GUB cover inequality

44

can define a facet for the GKP polytope. Nemhauser & Vance (1994) generalized the

result in the binary knapsack polytope by Balas & Zemel (1978) by characterizing

the lifting coefficients required to define a facet for the GKP polytope.

In Sherali & Lee (1995), an efficient sequential lifting algorithm was proposed

that simultaneously improves the coefficients of the variables in a GUB set. The

authors also devised a simultaneous lifting method for GUB cover inequalities by

deriving bounds on lifting coefficients to define a facet for the GKP polytope, inde-

pendently of Nemhauser & Vance (1994).

While the above lifting techniques are known as up-lifting, lifted GUB cover

inequalities can be generalized by modifying the coefficients of the variables in the

GUB cover and the right-hand side. Such generalized inequalities, called general

lifted cover inequalities, can be generated through down-lifting techniques and rep-

resent more diverse facet-defining inequalities for the GKP polytope. Gu et al. (1998)

proposed an efficient down-lifting technique and extensively examined the practical

aspects and implementation of the resulting general lifted GUB cover inequalities

generated together with up-lifting techniques.

In contrast to the valid inequalities for the GKP polytopes mentioned above, CG

cuts (Chvátal, 1973) are valid inequalities that can be defined for general integer

linear programs. Although negative results have been reported on the separation

problem for general integer linear programs (Eisenbrand, 1999), CG cuts for some

specific problems can be generated efficiently (Edmonds, 1965; Padberg, 1973), as

discussed in Section 1.2.4. Building on the review of these studies, we now narrow

the scope to those associated with GKP.

Park & Lee (2011) characterized non-dominated CG cuts for the fixed-charge

45

binary knapsack problem. The authors proposed a pseudo-polynomial time exact

separation algorithm by decomposing the separation problem using properties of

the non-dominated CG cuts. The authors also showed that the separation problem

for the binary knapsack problem can be solved in pseudo-polynomial time. Their

results imply that the separation problem for the (fixed-charge) binary knapsack

problem is at least weakly NP-hard while the problem for general integer linear

programs is strongly NP-hard (Eisenbrand, 1999).

Based on the result by Park & Lee (2011), Lee (2012) devised an efficient heuristic

to separate CG cuts for the binary knapsack problem. The author demonstrated the

effectiveness of the CG cuts compared to the general-purpose cuts generated from

commercial optimization software through extensive computational tests.

For the GKP, Glover, Sherali, et al. (1997) analyzed the separation problem for a

family of CG cuts in which the right-hand side is fixed to some integers less than or

equal to the number of items. Subsequently, the authors devised a polynomial-time

algorithm for the separation problem. However, to the best of our knowledge, the

computational complexity of the separation problem for general CG cuts for the

GKP has not yet been settled.

46

2.3 Non-dominated CG cuts for the GKP polytope

The CG cut for the GKP defined with (u0, u) ∈ Rm+1
+ is described as follows.

∑
i∈I

∑
j∈Ki

⌊u0aj + ui⌋xj ≤
⌊
u0b+

∑
i∈I

ui

⌋
(2.4)

Here, u0 is the multiplier associated with the constraint (2.1) and ui is associated

with each of GUB constraints (2.2) for each i ∈ I. We note that the variable bound

constraints, xj ≤ 1 for each j ∈ N , can be considered negligible when defining the

CG cut because they are redundant with the GUB constraints.

We first show that the CG cuts include some of existing valid inequalities in the

literature.

Proposition 2.1. A GUB cover inequality is a CG cut for the GKP.

Proof. Let CG be the GUB cover such that
∑

j∈CG
aj > b and a(CG) =

∑
j∈CG

aj .

Because the GKP implicitly has additional constraints, xj ≤ 1 for each j ∈ N .

Hence, the CG cut can be rewritten as

∑
i∈I

∑
j∈Ki

⌊u0aj + ui + vj⌋xj ≤
⌊
u0b+

∑
i∈I

ui +
∑
j∈N

vj

⌋
,

where vj is the multiplier associated with xj ≤ 1 for each j ∈ N . Let u0 = 1/a(CG),

ui = 0 for all i ∈ I, and vj = (a(CG)− aj)/a(CG) for all j ∈ CG while vj = 0 for all

j ∈ N \ CG. Then, the CG cut is defined as

∑
j∈CG

xj ≤
⌊
|CG| − 1 +

b

a(CG)

⌋
,

47

where the right-hand is equivalent to |CG| − 1 because b/a(CG) < 1. Therefore, the

result follows.

We note that (general) lifted GUB cover inequalities may not be a rank-1 CG

cut, that is, they can be a CG cut with a higher rank. Nevertheless, the rank-1 CG

cuts may still derive useful valid inequalities for the GKP polytope.

Let PG be the linear relaxation of XG provided by the formulation defined in

Section 2.1 and P1
G be the Chvátal closure of P described with the CG cuts of the

form (2.4). Recall that the Chvátal closure of a rational polytope is also a rational

polytope (Chvátal, 1973). Therefore, P1
G is a polytope, and there exist dominated CG

cuts of the form (2.4), which are ineffective in improving the relaxation PG. In the

subsequent discussion, we characterize the properties of multipliers (u0, u) ∈ Rm+1
+

that may yield non-dominated CG cuts.

Proposition 2.2. P1
G is the set of all points in PG satisfying the CG cuts (2.4) for

all (u0, u) ∈ Rm+1
+ such that u0 < 1 and ui < 1 for all i ∈ I.

Proof. For a given CG cut βTx ≤ β0 defined with (û0, û) ∈ Rm+1
+ , let (u10, u

1) =

(û0 − ⌊û0⌋, û− ⌊û⌋) and (u20, u
2) = (⌊û0⌋, ⌊û⌋). It is clear that βTx ≤ β0 is the sum

of the two CG cuts of the form (2.4) defined with (u10, u
1) and (u20, u

2), respectively.

Let γTx ≤ γ0 be the CG cut defined with (u10, u
1). By definition, u10 < 1 and

u1i < 1 for all i ∈ I. In addition, since the cut defined with (u20, u
2) is valid for PG,

{x ∈ PG : γTx ≤ γ0} ⊆ {x ∈ PG : βTx ≤ β0}. Therefore, the result follows.

The above proposition implies that the multipliers (u0, u) with some of their

components being greater than or equal to 1 do not need to be considered in the

description of P1
G. Let U = {(u0, u) ∈ Rm+1

+ : u0 < 1, ui < 1, ∀i ∈ I}. The following

48

proposition further characterize the properties of multipliers (u0, u) ∈ U that may

yield non-dominated CG cuts.

Proposition 2.3. Suppose that βTx ≤ β0 is a CG cut defined with (û0, û) ∈ U such

that û0 > 0. If βTx ≤ β0 is non-dominated, then there exists (u⋆0, u
⋆) ∈ U , which

yields βTx ≤ β0, such that u⋆0 = t/(al − ak) for some {k, l} ⊆ Ki ∪ {0} and i ∈ I

such that al > ak, where a0 = 0 and t is a positive integer less than al − ak.

Proof. Let us consider the following optimization problem which is the dual problem

of the linear program, max{βTx : x ∈ PG}.

min u0b+
∑
i∈I

ui

s.t βj ≤ u0aj + ui, ∀j ∈ Ki, i ∈ I

u0 ≥ 0, ui ≥ 0, i ∈ I

Here, we denote (u0, u) as the decision variables of the above problem. By definition

of the given CG cut, βj = ⌊û0aj + ûi⌋ for each j ∈ Ki and i ∈ I. Hence, we can see

that (û0, û) is a feasible solution for the above problem.

On the other hand, let (u⋆0, u
⋆) be the optimal solution of the above problem.

Then, a CG cut, γTx ≤ γ0, can be defined with the optimal solution where γ0 =

⌊u⋆0b +
∑

i∈I u
⋆
i ⌋ and γj = ⌊u⋆0aj + u⋆i ⌋ for each j ∈ Ki and i ∈ I. Due to the

constraints of the above problem,

βj ≤ u⋆0aj + u⋆i , j ∈ Ki, i ∈ I,

hence, βj ≤ γj for each j ∈ Ki and i ∈ I. In addition, because (û0, û) is the feasible

49

solution of the above problem,

u⋆0b+
∑
i∈I

u⋆i ≤ û0b+
∑
i∈I

ûi,

which implies that γ0 ≤ β0. Suppose that there exists j ∈ Ki for some i ∈ I such

that βj < γj or γ0 < β0. Then, β
Tx ≤ β0 is clearly dominated by γTx ≤ γ0, which

contradicts to the assumption that βTx ≤ β0 is non-dominated. Therefore, γj = βj

for each j ∈ N and γ0 = β0. In other words, (u⋆0, u
⋆) also yields CG cut βTx ≤ β0.

(u⋆0, u
⋆) ∈ U is induced by Proposition 2.2. If (u⋆0, u

⋆) /∈ U , βTx ≤ β0 is a dominated

CG cut, which contradicts the assumption that it is non-dominated.

Now, we characterize the form of u⋆0. By Glover & Klingman (1979), it has been

shown that there exists an optimal solution (u⋆0, u
⋆) to the above program such that

u⋆0 = βj/aj for some j ∈ N or u⋆0 = (βl − βk)/(al − ak) for some {k, l} ⊆ Ki and

i ∈ I. Therefore, the result follows.

The converse of Proposition 2.3 may not be true. However, the proposition im-

plies that it is sufficient to consider a finite number of possible values for u0 to

generate non-dominated CG cuts. Now, let us consider the following CG cut defined

with (u⋆0, u) ∈ U such that u⋆0 = t/(al − ak) where {k, l} ⊆ Ki ∪ {0} and i ∈ I with

al > ak, a0 = 0, and t is a positive integer less than al − ak.

∑
i∈I

∑
j∈Ki

⌊u⋆0aj + ui⌋xj ≤
⌊
u⋆0b+

∑
i∈I

ui

⌋
(2.5)

The following proposition characterizes the property of u ∈ Rm+ in which (2.5) may

be a non-dominated CG cut.

50

Proposition 2.4. If the CG cut (2.5) is non-dominated, then there exists u⋆ ∈ Rm+ ,

which yields the same inequality, such that, for each i ∈ I, u⋆i = 0 or u⋆i = (1− fj)

for some j ∈ Ki with fj > 0, where fj = u⋆0aj − ⌊u⋆0aj⌋ for all j ∈ N .

Proof. Let βj ∈ Z+ be the coefficient of xj in the inequality (2.5) for each j ∈ N .

Then, we have βj ≤ u⋆0aj + ui and βj = ⌊u⋆0aj⌋ + ⌊fj + ui⌋ for each j ∈ N . For

simplicity, we define fn+1 = 1. For each i ∈ I, let us define KL
i = {j ∈ Ki∪{n+1} :

(1 − fj) ≤ ui} and KU
i = {j ∈ Ki : (1 − fj) > ui}. Note that KL

i is non-empty

by definition. Then, for each i ∈ I and j ∈ Ki, if j ∈ KL
i , then ⌊fj + ui⌋ = 1, and

⌊fj + ui⌋ = 0 otherwise.

Let us now consider u⋆ ∈ Rm+ such that

u⋆i = max
j∈KL

i

{1− fj}, ∀i ∈ I.

Then, for each i ∈ I, we have u⋆i ≤ ui. Moreover, by the definition of KL
i and u⋆i ,

we have (1− fj) ≤ u⋆i for all j ∈ KL
i . Therefore, we can see that

⌊fj + ui⌋ = ⌊fj + u⋆i ⌋, ∀j ∈ Ki, ∀i ∈ I.

In addition, since the cut is non-dominated, we have ⌊u⋆0b +
∑

i∈I ui⌋ = ⌊u⋆0b +∑
i∈I u

⋆
i ⌋. Therefore, the result follows.

2.4 Exact separation algorithm for CG cuts

We first analyze the separation problem associated with CG cuts and then show that

it can be solved in pseudo-polynomial time. The separation problem checks whether

51

x̂ ∈ P1
G for a given x̂ ∈ PG. If x̂ /∈ PG, it generates a CG cut that cuts off x̂. From

Proposition 2.2, the separation problem, which we call SEP, can be formulated as

an optimization problem as follows.

SEP: max
∑
i∈I

∑
j∈Ki

⌊u0aj + ui⌋x̂j −
⌊
u0b+

∑
i∈I

ui

⌋
s.t (u0, u) ∈ U.

If the optimal objective value of SEP is less than or equal to 0, it implies that x̂ ∈ P1
G.

Otherwise, an optimal solution to SEP exists, which yields a non-dominated CG cut.

Let us consider the special case of SEP where u0 is fixed to a given positive number

q0 < 1, denoted as SEP(q0). Then, SEP(q0) can be stated as

SEP(q0) : max
∑
i∈I

∑
j∈Ki

⌊q0aj + ui⌋x̂j −
⌊
q0b+

∑
i∈I

ui

⌋
s.t 0 ≤ ui < 1,∀ i ∈ I.

Now, let D :=
⋃
i∈I{|al − ak| : l, k ∈ Ki ∪ {0}, l ̸= k}. The following theorem states

that SEP can be decomposed into a finite number of sub-problems.

Theorem 2.1. Let Q0 be the set of rational numbers, t/d, for all pair of positive

integers d and t such that d ∈ D and t < d. Then, SEP can be solved by solving

SEP(q0) for all q0 ∈ Q0, whose number is O(n2ā), where ā = maxj∈N{aj}.

Proof. There exists an optimal solution (u⋆0, u
⋆) ∈ U to SEP, which yields a non-

dominated CG cut. This observation implies that, by Proposition 2.3, there exists

(u⋆0, u
⋆) such that u⋆0 = t/d, for some d ∈ D and a positive integer t < d. Such an

52

optimal solution is also optimal for SEP(q0) for some q0 ∈ Q0 by the definition of

Q0. It means that SEP can be solved by solving SEP(q0) for all q0 ∈ Q0.

The number of elements in D is O(n2) while the number of possible choices of

t for each d ∈ D is O(ā) since d ≤ ā for each d ∈ D. Therefore, the number of

elements in Q0 is O(n2ā), which follows the result.

In the proof of Theorem 2.1, the optimal solution to SEP, (u⋆0, u
⋆), yields a non-

dominated CG cut while it is obtained from SEP(q0) for some q0 ∈ Q0. Therefore,

it is sufficient to consider u ∈ [0, 1)n that can yield a non-dominated CG cut in

SEP(q0) for each q0 ∈ Q0. Proposition 2.4 allows us to narrow down the choice of u,

and the resulting reformulation of SEP(q0) is described as follows.

SEP(q0) : max
∑
i∈I

∑
j∈K+

i

⌊fj + ui⌋x̂j −
⌊
f0 +

∑
i∈I

ui

⌋
+ C

s.t ui ∈ {0} ∪ {1− fj : j ∈ K+
i },∀ i ∈ I,

where f0 = q0b − ⌊q0b⌋ and fj = q0aj − ⌊q0aj⌋ for each j ∈ N . Here, C =∑
i∈I
∑

j∈Ki
⌊q0aj⌋x̂j − ⌊q0b⌋ and K+

i = {j ∈ Ki : fj > 0 and x̂j > 0} for all

i ∈ I. Additionally, we define N+ = ∪i∈IK+
i . Since C is a constant for a given q0,

we omit it in the subsequent discussion.

Before presenting an exact algorithm for SEP, we show a negative result on the

computational complexity of SEP(q0) for a given q0 ∈ Q0.

Theorem 2.2. SEP(q0) for a given q0 ∈ Q0 is NP-hard.

Proof. Let us show that a special case of SEP(q0) where I = N and Ki = {i} for all

i ∈ I, which we call SP(q0), is NP-hard by showing that the corresponding decision

53

problem, DSP(q0), is NP-complete. DSP(q0) is stated as follows: For given integers b

and aj for all j ∈ N , x̂ ∈ PG, q0 ∈ Q0, and an integer L, the problem is to determine

whether there exists a subset J ⊆ N+ such that
∑

j∈J x̂j−⌊f0+
∑

j∈J(1−fj)⌋ ≥ L.

In this special case of SEP(q0), q0 = t/ak for some k ∈ N and a positive integer

t < ak by the definition of Q0.

It is clear that DSP(q0) is in NP. We show that every instance of the well-

known PARTITION problem, which is NP-complete (Garey & Johnson, 1979), can

be polynomially transformed into an instance of DSP(q0). An instance of PARTI-

TION consists of a finite set A = {1, . . . , n}, a positive integer B, and positive

integers ra for all a ∈ A such that
∑

a∈A ra = 2B. The question is whether or not

there exists a subset S ⊆ A such that
∑

a∈S ra = B. For a given instance of PARTI-

TION, the corresponding instance of DSP(q0) can be constructed as follows. First,

set N = A ∪ {n + 1}, an+1 = 2B + 1, aj = (2B + 1) − 2rj for all j ∈ N \ {n + 1},

q0 = 1/an+1, and L = 1. Next, set x̂1 = r1/2B, x̂j = rj/B for all j ∈ {2, . . . , n}, and

x̂n+1 = 1. Finally, set b = β(2B + 1), where β is the smallest positive integer such

that
∑

j∈N aj x̂j ≤ β(2B + 1). Note that β < n+ 1 because x̂n+1 = 1, x̂j < 1 for all

j ∈ N \{n+1}, and aj ≤ (2B+1) for all j ∈ N . In addition, from the construction,

f0 = 0, fn+1 = 0, fj = 2rj for all j ∈ N \ {n+ 1}, and N+ = N \ {n+ 1}.

Now, suppose that there exists S ⊆ A such that
∑

a∈A ra = B. Without loss

of generality, we can assume that 1 /∈ S. Then, if we set J = S, it follows that∑
j∈J∩N+ x̂j = 1 and f0 +

∑
j∈J∩N+(1 − fj) < 1. Therefore, J is a solution to

the instance of DSP(q0). Conversely, suppose that J ⊆ N+ is a solution to the

instance of DSP(q0). Since
∑

j∈N+ x̂j < 2 and ⌊f0 +
∑

h∈N+(1− fj)⌋ = 1, it is clear

that
∑

j∈J x̂j ≥ 1 and ⌊f0 +
∑

h∈J(1 − fj)⌋ = 0. Now, we show that
∑

j∈J x̂j = 1

54

and 1 /∈ J , which means
∑

j∈J 2rj = 2B. If
∑

j∈J x̂j > 1, then it can be easily

verified that
∑

j∈J 2rj ≥ 2B + 1 and ⌊f0 +
∑

h∈J(1 − fj)⌋ = 1. If
∑

j∈J x̂j = 1 but

1 ∈ J , then r1 +
∑

j∈J\{1} 2rj = 2B, which means ⌊f0 +
∑

h∈J(1− fj)⌋ = 1 because∑
j∈J 2rj = 2B+ rj ≥ 2B+1. Hence, by setting S = J ,

∑
a∈S ra = B, which means

S is a solution to the instance of PARTITION. Therefore, the result follows.

We show that SEP(q0) is weakly NP-hard in the following proposition by pre-

senting a pseudo-polynomial time algorithm for the problem. To this end, let us

reformulate SEP(q0) as a nonlinear integer program.

Recall that q0 ∈ Q0 is t/d for some d ∈ D and a positive integer t < d. Then,

f0 = 1 − p0/d for some integer 0 < p0 ≤ d and fj = 1 − pj/d for some integer

0 < pj < d for all j ∈ K+
i for all i ∈ I. Now, let us define a binary variable yj for

each j ∈ K+
i and i ∈ I such that ui = 1− fj if yj = 1. For each i ∈ I, if ui = 1− fj

for some j ∈ K+
i , then

∑
k∈K+

i

⌊fk + uk⌋x̂j =
∑

{k∈K+
i :fk≥fj}

x̂k

because ⌊fk+ui⌋ = 1 if fk ≥ fj , and 0, otherwise for each k ∈ K+
i . Then, the second

term of the objective function can be written as

⌊
f0 +

∑
i∈I

ui

⌋
=
⌊
f0 +

∑
i∈I

∑
j∈K+

i

(1− fj)yj
⌋
,

which in turn represented as ⌊(d− p0 + w)/d⌋ by introducing an integer variable w

55

such that

w =
∑
i∈I

∑
j∈K+

i

pjyj .

Hence, SEP(q0) can be reformulated as the following nonlinear integer program,

NIP(q0), where q0 = t/d for some d ∈ D and a positive integer t < d.

NIP(q0) : max
∑
i∈I

∑
j∈K+

i

sjyj − ⌊(d− p0 + w)/d⌋+ C

s.t
∑
i∈I

∑
j∈K+

i

pjyj = w (2.6)

∑
j∈K+

i

yj ≤ 1, ∀ i ∈ I (2.7)

yj ∈ {0, 1},∀ j ∈ N+

w ∈ Z+,

where sj =
∑

{k∈K+
i :fk≥fj} x̂k for all j ∈ K+

i and i ∈ I.

Proposition 2.5. For a given q0 ∈ Q0 such that q0 = t/d for some d ∈ D and a

positive integer t < d, SEP(q0) can be solved in O(nmā) where ā = maxj∈N aj.

Proof. We establish the result by showing that NIP(q0) can be solved in pseudo-

polynomial time. Let F (κ, ν) be the optimal objective value of the following integer

program for each pair of κ = 1, . . . ,m and ν = 0, 1, . . . ,mā.

maximize

κ∑
i=1

∑
j∈K+

i

sjyj

subject to
κ∑
i=1

∑
j∈K+

i

pjyj = ν

56

∑
j∈K+

i

yj ≤ 1, ∀ i = 1, . . . , κ

yj ∈ {0, 1}, ∀ j ∈ N+.

Let η be the optimal objective value of NIP(q0). Because
∑

j∈K+
i
yj ≤ 1 for all i ∈ I

and pj < d ≤ ā, it holds that
∑

i∈I
∑

j∈K+
i
pjyj ≤ mā. Therefore, it is clear that

η = max
0≤ν≤mā

{F (m, ν)− ⌊(d− p0 + ν)/d⌋+ C}.

Now, we show that F (κ, ν) for each pair of κ and ν can be computed recursively

as follows. For the recursion, define F (0, 0) = 0 and F (0, ν) = −∞ for r = 1, . . . ,mā.

Then, for each κ = 1, . . . ,m and ν = 0, 1, . . . ,mā,

F (κ, ν) = max

{
F (κ− 1, ν), max

{j∈K+
κ :pj≤ν}

{F (κ− 1, ν − pj) + sj}

}
,

which takes at most (nκ + 1) operations because |K+
κ | ≤ |Kκ| = nκ. Hence, for

a given κ, it requires O(nκmā) time to compute F (κ, ν) for all ν = 0, 1, . . . ,mā,

which implies that computing F (κ, ν) for all pairs of κ and ν can be performed in

O(
∑

i∈I nimā) = O(nmā) operations. In addition, η can be computed in O(mā).

Therefore, there exists a pseudo-polynomial time algorithm for SEP(q0) whose com-

putational complexity is O(nmā).

The detailed algorithm for the SEP(q0) where q0 = t/d for some d ∈ D and an

integer t such that t < d is described in Algorithm 3. For the sake of brevity, we

describe the construction of the SEP(q0) for each q0 ∈ Q0 separately with Algorithm

2.

57

Algorithm 2 Construction of the SEP(q0)

1: procedure Construct(t, d, x̂)
2: p0 ← d− (tb mod d), pj ← d− (taj mod d) for all j ∈ N ;
3: f0 ← 1− p0/d, fj ← 1− pj/d for all j ∈ N ;
4: K+

i ← {j ∈ Ki : fj > 0 and x̂j > 0} for all i ∈ I ;
5: sj =

∑
k∈K+

i :fk≥fj
x̂k for all j ∈ K+

i and i ∈ I ;

6: return p← (p0, . . . , pn), s← (s1, . . . , sn), K
+ = ∪i∈IK

+
i ;

7: end procedure

Algorithm 3 Exact algorithm for the SEP(q0)

1: procedure Sub(p, s,K+)
2: F (0, 0)← 0, F (0, ν)← −∞ for all ν = 1, . . . ,mā ;
3: for 1 ≤ κ ≤ m and 0 ≤ ν ≤ mā do
4: F (κ, ν)← F (κ− 1, ν), P (κ, ν)← 0 ;
5: for j ∈ K+

κ do
6: if pj ≤ ν and F (κ, ν) < F (κ− 1, ν − pj) + sj then
7: F (κ, ν)← F (κ− 1, ν − pj) + sj ;
8: P (κ, ν)← pj ;
9: end if

10: end for
11: end for
12: return F ,P ;
13: end procedure

By Proposition 2.5 together with Theorem 2.1 that says SEP can be solved by

solving SEP(q0) for all q0 ∈ Q0, there exists a pseudo-polynomial time algorithm for

SEP.

Theorem 2.3. SEP can be solved in O(n3mā2).

Proof. By Theorem 2.1, the number of possible values of q0 ∈ Q0 is O(n2ā). In

addition, SEP(q0) for a given q0 ∈ Q can be solved in O(nmā) by Proposition 2.5.

Therefore, the result follows.

The details of an exact algorithm for SEP based on Theorem 2.3 is described

in Algorithm 4 which returns the most violated CG cut and the violation η⋆ for a

58

Algorithm 4 Exact algorithm for the SEP

1: procedure Ext(x̂)
2: D ←

⋃
i∈I{|al − ak| : l, k ∈ Ki ∪ {0}, l ̸= k} ;

3: η⋆ ← −∞, u⋆0 ← 0, u⋆i ← 0 for all i ∈ I ;
4: ā← maxj∈N aj
5: for d ∈ D and 1 ≤ t < d do
6: q0 ← t/d, C ←

∑
i∈I

∑
j∈Ki
⌊q0aj⌋x̂j − ⌊q0b⌋ ;

7: p, s,K+ ←Construct(t, d, x̂) ;
8: F, P ←Sub(p, s,K+) ;
9: η ← max0≤ν≤mā{F (m, ν)− ⌊(d− p0 + ν)/d⌋+ C} ;

10: ν⋆ ← argmax0≤ν≤mā{F (m, ν)− ⌊(d− p0 + ν)/d⌋+ C} ;
11: if η⋆ < η then
12: η⋆ ← η, u⋆0 ← q0 ;
13: for i = m, . . . , 1 do
14: u⋆i ← P (i, ν⋆)/d ;
15: ν⋆ ← ν⋆ − P (i, ν⋆) ;
16: end for
17: end if
18: end for
19: return η⋆, u⋆0, and u

⋆
i for all i ∈ I ;

20: end procedure

given x̂ ∈ PG. If η⋆ > 0, then the obtained CG cut separates x̂. Otherwise, x̂ ∈ P1
G,

that is, x̂ satisfies all the CG cuts of the form (2.4).

We note that the computational complexity of the CG cut separation problem

for the GKP is not established in this study. The problem may be NP-hard or even

P. However, Theorem 2.3 implies that, at least, the problem is not strongly NP-hard,

whereas the separation problem for general integer linear programs has been proven

to be NP-hard in a strong sense (Eisenbrand, 1999).

2.5 Heuristic separation algorithm for CG cuts

Even though the separation problem can be solved in pseudo-polynomial time, it

may require a significant amount of computation, especially for large values of aj .

Therefore, we propose an efficient separation heuristic based on the decomposition

59

property of the problem.

The proposed heuristic consists of two steps. First, we restrict the range of t of

q0 = t/d, where q0 ∈ Q0, to reduce the number of sub-problems that need to be

solved in the heuristic. We only focus on the sub-problems where the most violated

CG cuts may be derived. Next, we obtain the feasible solution of each sub-problem

in a greedy manner, following several variable ordering strategies.

We discuss the selection of sub-problems in Section 2.5.1, and present the greedy

algorithm for each sub-problem in Section 2.5.2.

2.5.1 Selection of sub-problems to be solved

The computational complexity of the exact algorithm presented in Section 2.4 is

affected by the number of sub-problems, which depends on the values of aj ’s. While

the exact algorithm solves all the sub-problems, the proposed heuristic considers

only some with a high possibility of yielding the most violated CG cuts.

Let us consider a non-dominated CG cut with u0 = q0 for some q0 ∈ Q0 and

ui = 1 − f⋆i for each i ∈ I where 0 < f⋆i ≤ 1 for each i ∈ I. In addition, let

K̄i = {j ∈ Ki : fj ≥ f⋆i } where fj = q0aj −⌊q0aj⌋ for each j ∈ N . Then, the CG cut

can be expressed as follows.

∑
i∈I

∑
j∈K̄i

(q0aj + 1− fj)xj +
∑
i∈I

∑
j∈Ki\K̄i

(q0aj − fj)xj ≤
⌊
q0b+

∑
i∈I

(1− f⋆i)
⌋

For given x̂ ∈ PG, the violation η⋆ by the above cut is as follows.

η⋆ =
∑
i∈I

∑
j∈K̄i

(q0aj + 1− fj)x̂j +
∑
i∈I

∑
j∈Ki\K̄i

(q0aj − fj)x̂j −
⌊
q0b+

∑
i∈I

(1− f⋆i)
⌋

60

or, equivalently

η⋆ = −q0

b−∑
i∈I

∑
j∈Ki

aj x̂j

+
∑
i∈I

∑
j∈K̄i

(1−fj)x̂j−
∑
i∈I

(1−f⋆i)−
∑
i∈I

∑
j∈K̄i

fj x̂j+f0,

(2.8)

where f0 = q0b+
∑

i∈I(1− f⋆i)− ⌊q0b+
∑

i∈I(1− f⋆i)⌋.

We observed that b−
∑

i∈I
∑

j∈Ki
aj x̂j ≥ 0 because x̂ ∈ PG. In addition,

∑
i∈I

∑
j∈K̄i

(1− fj)x̂j −
∑
i∈I

(1− f⋆i) ≤ 0

since ∑
i∈I

∑
j∈K̄i

(1− fj)x̂j −
∑
i∈I

(1− f⋆i) ≤
∑
i∈I

(1− f⋆i)(
∑
j∈K̄i

x̂j − 1) ≤ 0.

From these observations, f0 is the only term that makes the violation (2.8) can have

a positive value. However, since f0 < 1, the rest terms in the violation (2.8) should

have small values to make the CG cut separate x̂. We note that q0 = t/d for some

d ∈ D and an integer t such that t < d. As t gets large, corresponding CG cuts

may fail to separate x̂ because it increases q0

(
b−

∑
i∈I
∑

j∈Ki
aj x̂j

)
. Moreover,

b−
∑

i∈I
∑

j∈Ki
aj x̂j also increases as CG cuts are added to the formulation of the

GKP. These observations lead to exploiting the sub-problems with small t has a high

chance of identifying the most violated CG cut.

The CG cut obtained from the sub-problem with small t has an additional benefit

in the perspective of depth. Depth of a given valid inequality βTx ≤ β separating x̂

is defined as the shortest distance from x̂ to the inequality, i.e., |βT x̂−β|/∥β∥2, and

it can be used to estimate the effectiveness of valid inequalities. Because the depth

implicitly represents the region’s volume separated by the inequality, deeper valid

61

inequalities may improve the LP relaxation more than shallow ones. In this point

of view, the CG cut obtained from the sub-problem with a small t may be more

effective than the others derived from sub-problems with larger t’s and the same d

if the violations are comparable.

For these reasons, the heuristic for the separation problem solves only sub-

problems with t ≤ T for the given parameter T , i.e., O(Tn2) sub-problems are

solved. Hence, if T is polynomially bounded, the heuristic solves the polynomial

number of sub-problems.

2.5.2 Greedy algorithm for each sub-problem

While the number of sub-problems is reduced in the heuristic, solving each sub-

problem is still time-consuming. Even though it can be solved in pseudo-polynomial

time by Proposition 2.5, each sub-problem may require a huge amount of compu-

tation for large aj ’s. Therefore, using a greedy algorithm, the proposed heuristic

efficiently obtains a solution for each sub-problem, which may not be optimal.

The sub-problem SEP(q0) is formulated as a nonlinear integer program, NIP(q0).

When the values of yj ’s are given while satisfying the constraint (2.7), the value of w

is uniquely determined by the constraint (2.6), and the corresponding objective value

can be evaluated. Our greedy algorithm generates a sequence of feasible solutions

for NIP(q0) following a given sequence of variables yj ’s and compares their objective

values. Specifically, let τ = (τ1, ..., τn+) be the sequence where n+ = |N+|, and let

G(j) denote i ∈ I such that j ∈ K+
i . For each k ∈ N+, a solution for NIP(q0),

62

(yk, wk) ∈ Rn++1, is recursively constructed as

ykj =

1, j = τk

0, j = Lk(G(τk))

yk−1
j , otherwise.

,

and

wk = wk−1 + pτk − pLk(G(τk)),

where y0 = (0, ..., 0), and Lk(i) = l for some l ∈ K+
i such that yk−1

l = 1 if∑
j∈K+

i
yk−1 = 1, otherwise 0.

The above construction ensures the feasibility of (yk, wk) for NIP(q0). Therefore,

n+ different feasible solutions for NIP(q0) can be obtained. The objective values of

NIP(q0) for each feasible solution are compared, and our greedy algorithm returns

the corresponding (yk
⋆
, wk

⋆
) that yields the maximum value. The feasible solution

of SEP(q0) is then recovered from (yk
⋆
, wk

⋆
), which yields a CG cut with the same

violation as the objective value of NIP(q0) corresponding to (yk
⋆
, wk

⋆
). The greedy

algorithm can be implemented with O(n) complexity. Details on the algorithm can

be found in Algorithm 5.

We note that each sub-problem can be solved exactly using the greedy algorithm

if a proper sequence τ is given. Of course, identifying such a sequence may be as

difficult as solving the sub-problem exactly. Therefore, we propose three variable

ordering strategies to obtain τ , based on the relationship between NIP(q0) and the

GKP.

The goal of sub-problems is to find a violated CG cut for given x̂, i.e., to find the

63

Algorithm 5 Greedy algorithm for SEP(q0)

1: procedure Greedy(τ,p, s,K+)
2: η⋆sub ← −∞, k∗ ← 0, ûi ← 0 for all i ∈ I ;
3: ηsub ← 0, ŵ ← 0, n+ ←

∑
i∈I |K

+
i |, L(i)← 0 for all i ∈ I ;

4: for k = 1, . . . , n+ do
5: ŵ ← ŵ + pτk , ηsub ← ηsub + sτk ;
6: if L(G(τk)) > 0 then
7: ŵ ← ŵ − pL(G(τk)), ηsub ← ηsub − sL(G(τk));
8: end if
9: L(G(τk))← τk;

10: if η⋆sub < ηsub + ⌊(d− p0 + ŵ)/d⌋ then
11: η⋆sub ← ηsub + ⌊(d− p0 + ŵ)/d⌋, k∗ ← k ;
12: end if
13: end for
14: L⋆(G(τk))← τk for all k = 1, . . . , k⋆ ;
15: ûi ← 1− fL⋆(i) for all i ∈ I ;
16: return η⋆sub, û = (û1, . . . , ûm) ;
17: end procedure

values of yj ’s in NIP(q0) where the corresponding objective value is greater than 0.

Hence, it seems natural to select yj ’s with large sj ’s by priority. The first ordering

strategy (S1) sorts the variables in descending order of sj . Such an order β satisfying

sτ1 ≥ sτ2 ≥ · · · ≥ sτn+ ,

which can be constructed in O(n log n) computations.

Example 2.1. Let N+ = {1, 2, 3, 4, 5}, I = {1, 2}, K+
1 = {1, 2} and K+

2 = {3, 4, 5}.

In addition, let (s1, s2, s3, s4, s5) = (0.4, 0.7, 0.4, 0.5, 0.9) and (p1, p2, p3, p4, p5) =

(4, 6, 2, 8, 10). Let us consider NIP(q0) for some q0 ∈ Q0, which is defined with these

inputs as follows.

max 0.4y1 + 0.7y2 + 0.4y3 + 0.5y4 + 0.9y5 − ⌊(d− p0 + w)/d⌋+ C

s.t 4y1 + 6y2 + 2y3 + 8y4 + 10y5 = w

64

y1 + y2 ≤ 1

y3 + y4 + y5 ≤ 1

yj ∈ {0, 1}, ∀ j ∈ N+

w ∈ Z+,

Then, S1 constructs τ = (5, 2, 4, 1, 3).

We note that the formulation of NIP(q0) is valid even if the constraint (2.6) is

replaced with an inequality,

∑
i∈I

∑
j∈K+

i

dipjyj ≤ w. (2.9)

If variable w is fixed to ŵ, and the constraints (2.7) are ignored, the rest of the

modified formulation represents a binary knapsack problem, where cj and aj of

each variable j ∈ N+ are sj and pj , respectively while b = ŵ. For the binary

knapsack problem, a 1/2-approximation solution can be obtained by examining the

variables in descending order of the marginal profit, cj/aj , which is independent of

b. Our second ordering strategy (S2) adopts the sequence and sorts the variables in

descending order of sj/pj . Then, τ can be obtained in O(n log n), satisfying

sτ1
pτ1
≥ sτ2
pτ2
≥ · · · ≥

sτn+

pτn+

.

If pj ’s are the same for all j ∈ N+, the second strategy is equivalent to the first one.

65

Example 2.1 (Continued).

s3
p3
≥ s2
p2
≥ s1
p1
≥ s5
p5
≥ s4
p4
.

Therefore, S2 constructs τ = (3, 2, 1, 5, 4).

Suppose w is fixed to ŵ in NIP(q0) defined with the constraint (2.9). In that

case, the formulation represents another GKP. Johnson & Padberg (1981) proposed

an algorithm to solve the LP relaxation of the GKP, which examines variables of

the problem that can have non-zero values sequentially. Our third ordering strategy

adopts the sequence of variables examined in the algorithm. Specifically, the variables

are sorted in descending order of sj/pj , and let k be the variable with the maximum

value. Then, the variable in G(k) with the minimum pj , which we denote as l, is

eliminated from G(k), and pj ’s and sj ’s of the rest variables in G(k) are replaced

with pj−pl and sj−sl, respectively. This procedure is iterated until all variables are

eliminated, and τ is the sequence of eliminated variables through the iteration. Under

this strategy, τ can be constructed in O(n log n) time using the method proposed by

Glover & Klingman (1979). If K+
i ’s are singletons, S3 is equivalent to S2.

Example 2.1 (Continued). S3 constructs τ as follows.

• Iteration 1: y2 has the maximum value of sj/pj = 0.7/6. Because y1 has the

minimum pj in K+
1 , y1 is eliminated from K+

1 , and τ1 = 1. Then, s2 and p2

are replaced with 0.3 and 2, respectively.

• Iteration 2: y3 has the maximum value of sj/pj = 0.4/2 and it has the min-

imum pj in K+
2 . Therefore, y3 is eliminated from K+

2 , and τ2 = 3. s4 and

66

p4 are replaced with 0.1 and 6, respectively while s5 and p5 become 0.5 and 8,

respectively.

• Iteration 3: y2 has the maximum value of sj/pj = 0.3/2 and it has the mini-

mum pj in K+
1 . Hence, y1 is eliminated from K+

1 , i.e., K+
1 = ∅, and τ3 = 2.

The iteration is continued until y4 and y5 are eliminated from K+
2 . The constructed

τ is (1, 3, 2, 4, 5).

With the result presented in Section 2.5.1, the overall heuristic is described in

Algorithm 6. Because each sub-problem in the heuristic can be solved in O(n log n)

regardless of the ordering strategy while O(Tn2) sub-problems are solved, the com-

putational complexity of Algorithm 6 is O(Tn3 log n) for a given parameter T .

Through computational tests in Section 2.6, we compare the performance of the

heuristics using different variable ordering strategies presented above.

Algorithm 6 Heuristic algorithm for the SEP

1: procedure HeuT (x̂)
2: D ←

⋃
i∈I{|al − ak| : l, k ∈ Ki ∪ {0}, l ̸= k};

3: η⋆ ← −∞, u⋆0 ← 0, u⋆i ← 0 for all i ∈ I ; u⋆i ← 0 for all i ∈ I;
4: for d ∈ D and 1 ≤ t ≤ T do
5: q0 ← t/d, C ←

∑
i∈I

∑
j∈Ki
⌊q0aj⌋x̂j − ⌊q0b⌋ ;

6: p, s,K+ ←Construct(t, d, x̂) ;
7: τ ←Apply S1, S2, or S3 ;
8: ηsub, û←Greedy(τ,p, s,K+);
9: η ← ηsub + C ;

10: if η⋆ > η then
11: η⋆ ← η and u⋆0 ← q0 ;
12: u⋆i ← ûi for all i ∈ I ;
13: end if
14: end for
15: return η⋆, u⋆0, and u

⋆
i for all i ∈ I ;

16: end procedure

67

2.6 Computational experiment results

This section provides the computational test results on the performance of the pro-

posed separation algorithms. In addition, we evaluate the effectiveness of CG cuts

through comparison with general lifted GUB cover inequalities.

Computational tests used two types of instances. First, the GKP instances were

randomly generated in the same manner with Sinha & Zoltners (1979). Each instance

has the same number of items in GUB sets, and aj ∈ [1, ā] for all j ∈ N where ā

denotes the data range. Second, we used benchmark instances for multi-dimensional

multiple-choice knapsack problems (MMKP) and general binary integer linear pro-

grams to prove the usefulness of the CG cuts in practice. The feasible solution sets

of the benchmark instances are defined with multiple GKP polytopes. The MMKP

is described as

max
∑
i∈I

∑
j∈Ki

cjxj

s.t
∑
i∈I

∑
j∈Ki

akjxj ≤ bk, ∀k ∈ R⋆

∑
j∈Ki

xj ≤ 1, ∀i ∈ I

x ∈ {0, 1}n,

where |R⋆| = r⋆. Additionally, general binary integer linear programs can be de-

scribed as follows.

max
∑
j∈N

cjxj

68

s.t akjxj ≤ bk, k ∈ R⋆

x ∈ {0, 1}n

We obtained the benchmark instances for the MMKP and general binary integer

linear programs from OR-Library (Beasley, 1990) and MIPLIB 3.0 (Bixby, Ceria,

et al., 1998), respectively. We refer to them as the MMKP instances and MIPLIB

instances, respectively.

While GUB sets are explicitly given in the MMKP instances, MIPLIB instances

do not provide GUB sets explicitly. To define GUB sets in MIPLIB instances, we

employed the GUB set identification strategy proposed by Gu et al. (1998). With the

number of identified GUB sets, the summary of both instances is given in Appendix

A.

Cuts were generated using the following cutting plane algorithms.

(Step 1) Solve the LP relaxation of the problem.

(Step 2) If the optimal solution is integral, then stop.

(Step 3) For each GKP in the problem, generate a cut using a separation algo-

rithm. If a violated cut is identified, then add it to the original problem,

then go to Step 1. Otherwise, stop.

After the cutting plane algorithm terminates, the following measures are reported.

• Integrality gap closed (IGC (%)): 100 ∗ (zLP − zCUT)/(zLP − zOPT)

• Number of generated cuts (#Cut)

• Time spent on the cutting plane algorithm (Cutting plane time (s))

69

• Time spent on generating each cut (Separation time (s))

where zOPT represent the optimal objective value of the given problem while zCUT

denotes the upper bound improved by cutting plane algorithms. We note that the

IGC represents the formulation-enhancing effect achieved by cutting plane algo-

rithms.

Cutting plane algorithms may require significant computation time to complete

the iteration. Hence, we set the time limit for the experiments. All algorithms were

implemented using C++ with the linear programming solver provided by Xpress

(Guéret et al., 2002). All tests were performed using a machine with an Intel Core

i7, 3.10GHz CPU, and 16GB RAM.

2.6.1 Performance of exact and heuristic separation algorithms for

CG cuts

We evaluated the performance of the exact and heuristic separation algorithms on

small-sized GKP instances. For each m, ni, and ā, we generated 30 instances, and

averages of performance measures were reported. The results obtained using exact

and heuristic separation algorithms are presented as “ECG” and “HCG”, respec-

tively. In the HCG, S1, S2, and S3 refer to the results using each variable ordering

strategy, respectively. The “MIP” indicates the result using another exact separa-

tion method for CG cuts proposed by Fischetti & Lodi (2007), which generates CG

cuts by solving the mixed-integer program representing SEP using the commercial

optimization solver.

We have set 600 seconds time limit for cutting plane algorithms, and the param-

eter of the HGC was set to T = min{m,ni}.

70

Table 2.1 to 2.4 show the results where “∗” indicates that the cutting plane

algorithm did not terminate in the time limit for some instances of the type. For

this experiment, we only present results of the HCG using S3 because there were no

significant differences between variable ordering strategies. The overall experiment

results can be found in Appendix B.1.

Table 2.1: IGC (%) by each separation algorithm

n m ni
ā = 100 ā = 200

MIP ECG HCG (S3) MIP ECG HCG (S3)

50
5 10 99.83 99.72 99.60 100.00 100.00 100.00
10 5 98.86 98.86 98.30 99.56 99.56 98.46

100
5 20 100.00 100.00 100.00 99.93 99.93 99.66
10 10 *98.56 98.81 98.21 98.83 98.83 98.76
20 5 *63.97 99.38 98.60 *66.20 98.43 97.98

Average 92.24 99.35 98.94 92.91 99.35 98.97

Table 2.2: Cutting plane time (s) by each separation algorithm

n m ni
ā = 100 ā = 200

MIP ECG HCG (S3) MIP ECG HCG (S3)

50
5 10 1.01 0.80 0.04 1.11 2.27 0.03
10 5 4.11 2.23 0.03 3.31 9.62 0.03

100
5 20 5.06 2.37 0.05 8.94 14.81 0.07
10 10 *32.24 5.84 0.05 12.39 22.94 0.05
20 5 *547.56 23.38 0.06 *599.26 73.38 0.05

Average 134.36 6.93 0.05 125.00 24.60 0.05

Table 2.1 and 2.2 show the integrality gap closed and cutting plane times achieved

by each separation algorithm. Because the MIP solves the separation problem ex-

actly, the gap-closing effects of the MIP and ECG will be the same if both algorithms

complete within the time limit. However, as shown in Table 2.2, the MIP is unfin-

71

ished within the time limit for some instances of n = 100. Hence, the ECG could

close more gaps than the MIP. On the other hand, the formulation-enhancing effect

of the proposed heuristic separation algorithm was comparable with exact separation

algorithms.

Table 2.3: #Cut by each separation algorithm

n m ni
ā = 100 ā = 200

MIP ECG HCG (S3) MIP ECG HCG (S3)

50
5 10 7.7 8.2 8.0 7.2 7.2 6.3
10 5 9.4 8.4 7.6 8.8 9.1 7.9

100
5 20 13.2 10.7 11.8 14.7 15.1 14.4
10 10 *26.0 11.1 10.9 10.8 10.8 10.4
20 5 *5.1 14.6 12.9 *5.3 10.4 10.0

Average 12.3 10.6 10.2 9.4 10.5 9.8

Table 2.3 provides the number of cuts generated by each separation algorithm.

As previously mentioned, the MIP and ECG utilize exact separation algorithms for

CG cuts, which result in the same gap-closing effect once they terminate within the

time limit. However, the number of generated cuts may differ in the MIP and ECG.

Because many CG cuts may have the maximum violation for a given incumbent

solution x̂, different CG cuts can be generated from the MIP and ECG. In our

experiment, the difference in the number of generated cuts was negligible, and the

HCG also generated a similar number of CG cuts. This result implied that the

difference between cutting plane times depended on the separation times shown in

Table 2.4

The excessive cutting plane time of the MIP can be explained with Table 2.4

that presents the computation time spent on generating each CG cut, i.e., separation

time. When n = 100 and m = 20, the separation time of the MIP increased rapidly

72

Table 2.4: Separation time (s) by each separation algorithm

n m ni
ā = 100 ā = 200

MIP ECG HCG (S3) MIP ECG HCG (S3)

50
5 10 0.127 0.084 0.000 0.180 0.302 0.000
10 5 0.397 0.264 0.000 0.447 1.046 0.000

100
5 20 0.273 0.169 0.000 0.410 0.717 0.000
10 10 *1.079 0.497 0.001 1.081 1.976 0.001
20 5 *122.930 1.580 0.001 *123.790 7.219 0.001

Average 28.041 0.519 0.001 25.182 2.252 0.001

compared to the other algorithms. The separation time of the ECG was influenced

by the parameter R as we analyzed in Section 2.4. For the HCG, a value of 0.000

indicates a time of less than 0.001. The proposed heuristic separation algorithm

generated CG cuts much faster than the exact algorithms, regardless of the variable

ordering strategy employed. While the computational complexity of each variable

ordering strategy is theoretically equivalent, in practice, using S3 required slightly

more computation time than the others.

In conclusion, although the proposed exact separation algorithm was efficient

compared to the MIP, it also incurred a considerable amount of time in generating

CG cuts. However, our heuristic separation algorithm improved the LP relaxation

as much as the exact separation algorithms in significantly less computation time.

2.6.2 Effectiveness of CG cuts compared with general lifted GUB

cover inequalities

We compared the effectiveness of CG cuts generated by the proposed heuristic sep-

aration algorithm with the well-known valid inequalities, general lifted GUB cover

inequalities. General lifted GUB cover inequalities were generated using the “default

73

algorithm” devised by Gu et al. (1998), and the “LGCI” represents the result.

The time limit for cutting plane algorithms was 60 seconds, while the param-

eter of the heuristic separation algorithm was kept the same as in the previous

experiment. The tests were performed on large-sized GKP instances with n ∈

{200, 500, 1000, 2000, 5000}. However, in this section, we only present the result of

n = 2000, 5000 and ā = 200. The overall results can be found in Appendix B.2.

10 20 50 100 200

0

20

40

60

80

100

m =

IG
C

(%
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(a) n = 2000

10 20 50 100 200 500

0

20

40

60

80

100

m =

IG
C

(%
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(b) n = 5000

Figure 2.1: IGC (%) by each separation algorithm for n = 2000, 5000

Figure 2.1 illustrates the integrality gap closed by generated cuts. As mentioned

in Section 2.3, general lifted GUB cover inequalities can have a Chvátal rank higher

than 1, that is, using them can be more effective to enhance the given formulations

in theory. However, using CG cuts could significantly improve the integrality gap

rather than general lifted GUB cover inequalities, regardless of the choice of the

variable ordering strategies. Specifically, the effect of the HCG depended on the

choice of the variable ordering strategy. S1 and S3 could reduce a similar amount

of the integrality gap while the effect slightly deteriorated in S2. The formulation-

enhancing effects of the LGCI and HCG decreased as m increased. However, the

74

10 20 50 100 200

0

0.1

0.2

0.3

m =

T
im

e
(s
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(a) n = 2000

10 20 50 100 200 500

0

0.2

0.4

0.6

0.8

1

m =

T
im

e
(s
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(b) n = 5000

Figure 2.2: Separation time (s) by each separation algorithm for n = 2000, 5000

difference was still considerable.

Figure 2.2 shows the separation times by the separation algorithms. Each CG

cut was generated within a comparable time with general lifted GUB cover inequal-

ities. More precisely, the default algorithm to generate general lifted GUB cover

inequalities required far more computation time compared to the heuristic separa-

tion algorithm for CG cuts when the problem has many GUB sets. In particular,

when n = 5000 and m = 500, it took more than 5 seconds to generate general lifted

GUB cover inequalities.

However, as shown in Figure 2.3, the number of generated CG cuts was signifi-

cantly larger than that of general lifted GUB cover inequalities. It is worth noting

that a general lifted GUB cover inequality is derived from a GUB cover inequality,

which is a special case of CG cuts as proven in Section 2.3. While general lifted GUB

cover inequalities may have greater effectiveness in theory, they cannot be generated

if violated GUB cover inequalities are not identified. This property explains the dis-

parity in the number of generated cuts between the two algorithms. Since CG cuts

75

10 20 50 100 200

0

20

40

60

m =

#
C
u
t

LGCI HCG (S1) HCG (S2) HCG (S3)

(a) n = 2000

10 20 50 100 200 500

0

50

100

150

200

m =

#
C
u
t

LGCI HCG (S1) HCG (S2) HCG (S3)

(b) n = 5000

Figure 2.3: #Cut by each separation algorithm for n = 2000, 5000

dominate GUB cover inequalities, the HCG can generate violated CG cuts for a

given incumbent solution, while the LGCI may fail to do so. Consequently, while

the LGCI was unable to find any further violated GUB cover inequalities during the

iterations of the cutting plane algorithm and terminated early, the HCG continued

to identify violated CG cuts and was able to strengthen the formulation further.

A large number of generated cuts implied many iterations in the cutting plane

algorithm. Therefore, even though the separation times for the HCG and the LGCI

were comparable, the HCG spent much computation time on the cutting plane

algorithm compared to the LGCI, as shown in Figure 2.4. Furthermore, the HCG

exceeded the time limit in some instances where the LGCI terminated within the

time limit. In detail, the LGCI required more computation time when the problem

had many GUB sets despite generating fewer cuts, as it spent a considerable amount

of separation time. Particularly, when n = 5000 andm = 500, the cutting plane time

of the LGCI averaged over 50 seconds. However, in most instances, the HCG required

much more cutting plane time than the LGCI due to generating many cuts. It might

76

10 20 50 100 200

0

1

2

3

m =

T
im

e
(s
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(a) n = 2000

10 20 50 100 200 500

0

10

20

m =

T
im

e
(s
)

LGCI HCG (S1) HCG (S2) HCG (S3)

(b) n = 2000

Figure 2.4: Cutting plane time by each separation algorithm for n = 2000, 5000

appear that the HCG tightened the LP relaxations using many cuts with additional

computation time. However, the following experimental results show that the CG

cuts are more effective in improving the integrality gap than general lifted GUB

inequalities, even though the same number of cuts are used.

We investigated the integrality gap closed, varying the number of added cuts

during each cutting plane algorithm. For all instances of n = 2000, 5000 and ā = 200,

Figure 2.5 represents the average integrality gap closed after adding the generated

cuts. S1, S2, and S3 denote the HCG using variable ordering strategies 1, 2, and 3,

respectively.

The results showed that each generated CG cut was more effective at improving

the integrality gap than each general lifted GUB cover inequality, regardless of the

choice of variable ordering strategies. Specifically, when n = 5000, the general lifted

GUB cover inequality generated at the beginning of the cutting plane algorithm was

initially more effective than the CG cut. However, this difference was reversed with

only a few additional CG cuts. These results imply that the gap-closing effect of

77

0 10 20 30 40 50
0

20

40

60

80

100

Number of added cuts

IG
C

(%
)

LGCI S1 S2 S3

(a) n = 2000

0 10 20 30 40 50
0

20

40

60

80

100

Number of added cuts

IG
C

(%
)

LGCI S1 S2 S3

(b) n = 5000

Figure 2.5: Change in integrality gap closed depending on the number of added cuts

the HCG remains promising even when the number of generated CG cuts is limited.

Therefore, using only CG cuts generated by the heuristic separation algorithm can

enhance the formulations more effectively and efficiently than general lifted GUB

cover inequalities by appropriately limiting the number of added cuts.

2.6.3 Effectiveness of CG cuts for GKPs on benchmark instances

of binary integer linear programs

For each benchmark instance of binary integer linear programs, we applied the cut-

ting plane algorithm using the heuristic CG separation algorithm with variable order-

ing strategy 3 (S3), which is the most effective strategy to enhance the formulation.

Then, it was compared to the cutting plane algorithm using the default algorithm

that generates general lifted GUB cover inequalities. We set the parameter for the

heuristic separation algorithm as T = min{r⋆,m}, and the time limit was 60 seconds

for the cutting plane algorithms.

The results on MMKP instances are provided in Table 2.5. In contrast to previous

78

experiments, we approximately compute the integrality gap closed as

IGC (%) =
zLP − zCUT
zLP − zB

∗ 100,

using best solutions (zB) given in Table A.1 because optimal solutions for several

instances are unknown. However, since the obtained best solutions were almost op-

timal (Gap< 0.02% in Table A.1), the approximate integrality gap may be close to

the exact one. “Time (s)” denote the cutting plane times. Since each instance has r⋆

different GKP polytopes as its substructure, the cutting plane algorithm generates

at most r⋆ cuts for each iteration.

Table 2.5: Results of cutting plane algorithms for MMKP instances

Name
LGCI HCG (S3)

IGC (%) #Cut Time (s) IGC (%) #Cut Time (s)

I01 42.77 5 0.001 52.65 12 0.001
I02 36.59 5 0.001 100.00 12 0.003
I03 0.75 5 0.002 6.02 23 0.013
I04 0.74 3 0.002 4.42 22 0.017
I05 100.00 3 0.004 100.00 3 0.005
I06 36.64 11 0.022 64.13 14 0.019
I07 0.03 3 0.181 1.02 21 0.07
I08 0.00 1 0.235 0.67 15 0.066
I09 0.00 0 0.008 0.04 17 0.09
I10 0.01 2 2.245 0.22 25 0.15
I11 0.03 4 7.388 0.13 22 0.218
I12 0.28 4 11.506 0.64 17 0.207
I13 0.11 4 16.288 0.33 19 0.235

Average 16.76 3.85 2.91 25.41 17.08 0.08

Similar to the results obtained for GKP instances, the HCG further reduced the

integrality gap compared to the LGCI for MMKP instances. Moreover, the cutting

plane times for the LGCI and HCG were comparable in instances I01 to I06, de-

79

spite generating more CG cuts than general lifted cover inequalities. However, for

instances with many GUB sets, such as I07 to I13, the LGCI required more cutting

plane time than the HCG, even though its gap-closing effect was weaker, because the

longer computation time was required to generate each general lifted GUB cover in-

equality compared to the CG cuts, as observed in the results for 0-1 GKP instances.

However, for the difficult instances I07 to I13, the cutting plane algorithm was in-

effective in reducing the integrality gap, while it showed promise for the relatively

easier instances I01 to I06.

Table 2.6: Results of cutting plane algorithms for MIPLIB instances

Name
LGCI HCG (S3)

IGC (%) #Cut Time (s) IGC (%) #Cut Time (s)

bm23 16.18 6 0.003 20.23 26 0.024
l152lav 0.00 0 0.295 1.02 4 0.914
lp4l 2.04 2 0.299 3.40 3 0.192
lseu 62.53 17 0.021 75.65 49 0.249
mitre 9.07 258 60.000 12.56 426 60.000
mod008 14.66 17 2.027 83.14 75 5.413
mod010 18.32 3 2.290 18.32 5 1.175
p0033 72.72 23 0.008 87.42 26 0.009
p0040 100.00 2 0.002 100.00 3 0.003
p0201 33.78 14 0.048 33.78 30 0.083
p0282 96.59 164 5.238 97.60 208 4.193
p0291 96.49 45 4.662 98.03 67 33.462
p0548 86.90 244 9.636 87.81 310 19.103
p2756 0.88 86 60.000 0.95 245 60.000
pipex 74.21 22 0.014 80.11 50 0.103
sentoy 13.34 26 0.031 24.79 63 1.931
sp97ar 0.00 24 60.000 3.47 122 16.779

Average 41.04 56.1 12.034 48.72 100.7 11.978

The results on MIPLIB instances are provided in Table 2.6. The HCG could

also provide more enhanced formulations compared to the LGCI. In detail, for the

instance l152lav, the HCG could enhance the formulation while the LGCI failed to

80

generate any general lifted GUB cover inequalities. In sp97ar, the LGCI could gen-

erate several cuts. However, the cuts were ineffective in enhancing the formulation,

while the CG cuts generated by the HCG could improve the integrality gap. Over-

all, the HCG generated more cuts than the LGCI. Hence, the HCG required more

cutting plane time compared to the LGCI. Nonetheless, using CG cuts could further

enhance the formulations in a reasonable time. These results show the potential of

CG cuts to improve the LP relaxation of general binary integer linear programs.

2.7 Conclusion

In this study, we present the properties of non-dominated CG cuts associated with

the knapsack problem with generalized upper bounds (GKP). We propose an ex-

act and heuristic separation algorithm for CG cuts and evaluate their performance

through computational tests on the GKP and the multi-dimensional multiple-choice

knapsack problem.

Although the CG cut separation problem for general integer linear programs is

known to be strongly NP-hard, we demonstrate that the separation problem for the

GKP can be solved in pseudo-polynomial time through the proposed exact separa-

tion algorithm. Computational results show that the proposed heuristic can improve

the comparable integrality gap with the exact separation algorithm within signif-

icantly less time. Furthermore, generated CG cuts outperform general lifted GUB

cover inequalities in strengthening the linear programming relaxations within a com-

parable time. This result implies that CG cuts associated with GKP can be used in

practice as a pre-process to enhance the formulation of various problems.

In the computational tests, our heuristic separation algorithm shows promise

81

even though we selected the parameter arbitrarily. Further research involving a more

careful parameter selection may improve the algorithm’s performance. Additionally,

investigations into the characteristics of effective CG cuts for the GKP could enhance

separation algorithms and identify a new family of strong valid inequalities for the

GKP. Finally, research on CG cuts associated with specific combinatorial problems

is lacking. This line of study may provide a useful clue to tackle such problems.

82

Chapter 3

Strengthening Chvátal-Gomory cuts for binary
integer linear programs and its extension to
generalized upper bounds

This chapter presents a novel method to strengthen CG cuts for binary integer lin-

ear programs. We first establish the relationship between CG cuts for binary integer

linear programs and lifted cover inequalities for binary knapsack problems. Based on

this result, we propose a method for strengthening a given CG cut, utilizing a lifting

function of cover inequalities for binary knapsack problems. We then show that the

strengthened cut can dominate the other cuts derived from the given CG cut through

existing strengthening methods. We also present the extension of the method to CG

cuts for binary integer linear programs with generalized upper bounds. Computa-

tional test results indicate that the strengthened cuts obtained from the proposed

methods can yield more enhanced formulations defined with fewer cuts compared to

CG cuts.

83

3.1 Introduction

In the previous chapter, we demonstrated that rank-1 CG cuts derived from the

GKP effectively enhance the formulations of binary integer linear programs. We re-

fer to rank-1 CG cuts as CG cuts for brevity. However, the resulting formulations

often require many cuts, leading to longer computational times to solve the relax-

ations. This large-sized formulation can deteriorate the performance of the branch-

and-bound algorithm, even though tighter upper bounds can be obtained from the

formulations.

Cuts that dominate the CG cuts can further enhance the formulations, while

the same level of enhancement with the CG cuts can be achieved using fewer cuts.

The impact of stronger cuts was observed in the experiment results using general

lifted GUB cover inequalities (LGCIs) in Section 2.6. Figure 3.1 illustrates changes

in the integrality gap closed by varying the number of cuts added during cutting

plane algorithms using CG cuts and LGCIs for a GKP instance with n = 5000 and

m = 20.

As discussed in Section 2.3, some LGCIs can dominate the CG cuts because

they can have a Chvátal rank higher than 1. Therefore, as shown in Figure 3.1,

fewer LGCIs may be necessary than the CG cuts until they both achieve the same

enhancement level. However, the resulting formulations obtained by using LGCIs

may not provide relaxations as tight as those obtained by the CG cuts because the

generation method cannot always yield LGCIs that dominate the CG cuts. There-

fore, to reduce the size of the enhanced formulation while preserving the tightness

of the relaxation provided by CG cuts for the GKP, only cuts that dominate the CG

cuts should be considered.

84

0 5 10 15 20
0

20

40

60

Number of added cuts

IG
C

(%
)

LGCI CG

Figure 3.1: Changes in IGC (%) depending on the number of added cuts

One possible strategy to obtain such cuts is to strengthen the generated CG

cuts using cut-strengthening methods. In general, for a given cut for a problem, a

strengthened cut can be obtained by solving the separation problem defined with

the family of cuts that dominate the given one. Cut strengthening methods refer to

heuristic solution approaches for the separation problem, emphasizing computational

efficiency.

Such strengthening methods for CG cuts have typically been studied for general

integer linear programs. Although there has been only one study that directly refers

to CG cut strengthening methods (Letchford & Lodi, 2002), numerous studies on

cut-generating functions (Conforti, Cornuéjols, et al., 2015) can be utilized as CG

cut strengthening methods. Recall that, for a single-constraint relaxation for integer

linear programs, the CG cut is derived from the constraint using the cut-generating

function πCG. If another cut-generating function that dominates πCG is applied to

the constraint, one can obtain a stronger cut, such as the Gomory mixed-integer cut

Gomory (1960). These methods can also be applied to binary integer linear programs

85

such as the GKP.

Let us consider the single-constraint relaxation XS of a binary integer linear

program, defined in Section 1.2.4 as follows.

XS = {x ∈ {0, 1} : uTAx ≤ uTb}

Then, a CG cut derived from the above relaxation is

⌊uTA⌋x ≤ ⌊uTb⌋.

The CG cut can be strengthened to a CGF cut

∑
j∈N

(uTAj − π(uTAj))xj ≤ ⌊uTb⌋,

with a cut-generating function π that dominates πCG. However, as we discussed in

Section 1.2.4, both the CG and CGF cuts are valid for the further relaxed single-

constraint relaxation XSR where the variable bounds are ignored because the binarity

of decision variables is not used to derive them. Therefore, for binary integer linear

programs, stronger cuts may be derived by incorporating the binarity of decision

variables into their derivation.

In this study, we propose a novel method to strengthen CG cuts for general binary

integer linear programs by exploiting the variable bounds. Specifically, based on

the observation that the single-constraint relaxations are represented as the binary

knapsack polytopes, our CG cut strengthening method utilizes lifting techniques

of cover inequalities. We then compare the strengths of obtained cuts with those

86

derived by cut-generating functions. The proposed method is extended to binary

integer linear programs with generalized upper bounds, which can be applied to CG

cuts for the GKP.

The remainder of this chapter is organized as follows. We review the relevant

literature in Section 3.2. In Section 3.3, we characterize non-dominated CG cuts for

binary integer linear programs. Then, we propose a CG cut strengthening method

along with a theoretical comparison of its strength with others in Section 3.4. We

extend the results to binary integer linear programs with generalized upper bounds

in Section 3.5. In Section 3.6, we present the computational test results. Concluding

remarks for this chapter are given in Section 3.7.

3.2 Related works

Several studies have incorporated variable bounds to derive strong valid inequali-

ties from single-constraint relaxations of general mixed-integer linear programs with

variable bounds.

Marchand & Wolsey (2001) induced mixed-integer rounding cuts from the single-

constraint relaxations after complementing some of the integer variables. That is,

they replaced some of the integral decision variables xj satisfying 0 ≤ xj ≤ dj for

some dj ∈ Z+ with x̄j = dj − xj by appropriately adjusting the coefficients of the

constraint. The authors showed that the obtained cuts, c-MIR inequalities, were

more effective in solving mixed-integer linear programs than mixed-integer rounding

cuts.

Atamtürk & Günlük (2010) presented a reformulation of the single-constraint

relaxations using the relationship between the coefficients of the variables and the

87

right-hand side, together with complementing some of the integer variables. From the

constraint of the relaxation, the authors derived the so-called mingling inequalities

using the mixed-integer rounding procedure, which yields a mixed-integer round-

ing cut from an inequality. The authors showed that mingling inequalities dominate

c-MIR inequalities when the complemented variables define a cover of the mixed-

integer knapsack polytope representing the single-constraint relaxation. Atamtürk

& Kianfar (2012) further generalized mingling inequalities into n-step mingling in-

equalities by applying mixed-integer rounding procedures iteratively and derived a

new family of facet-defining inequalities for mixed-integer knapsack polytopes.

Those studies focused on deriving a useful cut from the given mixed-integer

rounding cut by incorporating variable bounds. However, their methods did not

strengthen the original mixed-integer rounding cuts. Instead, they derived mixed-

integer rounding cuts from other single-constraint relaxations reformulated from the

original relaxation. While we focus on CG cuts for binary integer linear programs,

our method ensures that the obtained cuts are at least as strong as the given CG

cuts. Moreover, our method exploits the properties of non-dominated CG cuts and

uses lifting techniques for cover inequalities rather than CG procedures or mixed-

integer rounding procedures.

Alternatively, the sequential lifting technique proposed by Zemel (1978) can be

used to strengthen the given CG cut for binary integer linear programs. For example,

for the given CG cut derived from XS , which can be represented as a binary knapsack

polytope, the coefficients of CG cuts with zero value can be improved by solving the

lifting problem for XS , which is also represented as a binary knapsack problem.

However, the lifting problem may be challenging to solve because the coefficients of

88

CG cuts are not polynomial to the input size in general.

Dey & Richard (2009) proposed a heuristic for the sequential lifting technique

that solves the lifting problems based on its LP relaxation. However, their heuristic

can be too costly to use as a strengthening method for a given CG cut because a

considerable amount of computation may already be used to obtain the CG cut.

Instead, we adopt the simultaneous lifting technique for cover inequalities in our

CG cut strengthening method, where additional computational efforts are minimal.

3.3 Non-dominated CG cuts for the single-constraint re-

laxation of binary integer linear programs

In this section, we present properties of non-dominated CG cuts for binary integer

linear programs, which are the cornerstone of our CG cut strengthening method.

Let us consider a CG cut for a binary integer linear program, described as

⌊uTA⌋x ≤ ⌊uTb⌋, (3.1)

and the corresponding single-constraint relaxation XS again, which can be rewritten

as follows.

XS =

x ∈ {0, 1}n :
∑
j∈N

uTAjxj ≤ uTb

Recall that the system Ax ≤ b includes the variable bounds, xj ≤ 1 for each j ∈ N .

Without loss of generality, let uj be the multipliers corresponding to the jth variable

bound for each j ∈ N . Then, we can define another single-constraint relaxation, X ′
S ,

89

which is described as follows.

XSB =

x ∈ {0, 1} : ∑
j∈N

(uTAj − uj)xj ≤ uTb−
∑
j∈N

uj

It is clear that XSB ⊆ XS because the constraint in XS is dominated by the constraint

in XSB. It can be easily shown that the CG cut (3.1) can be derived from XSB.

Let N ′ = {j ∈ N : uTAj−uj < 0}. By complementing variables in N ′, conv(X ′
S)

can be reformulated as a binary knapsack polytope conv(XB) where

XB =

y ∈ {0, 1}n :
∑
j∈N
|uTAj − uj |yj ≤ uT

b−
∑
j∈N ′

Aj

− ∑
j∈N\N ′

uj

 ,

where yj = 1− xj if j ∈ N ′, and yj = xj , otherwise. Then, the CG cut (3.1) can be

rewritten with y as the following valid inequality for XB.

∑
j∈N\N ′

⌊uTAj⌋yj −
∑
j∈N ′

⌊uTAj⌋yj ≤ ⌊uTb⌋ −
∑
j∈N ′

⌊uTAj⌋, (3.2)

Proposition 3.1. The inequality (3.2) is a CG cut for XB.

Proof. Let us consider a CG cut for XB in the following form.

∑
j∈N

⌊
|uTAj − uj |+ θj − vj

⌋
yj ≤

⌊
uT

b−
∑
j∈N ′

Aj

− ∑
j∈N\N ′

uj +
∑
j∈N

θj

⌋

Here, θj is the multiplier for the jth variable bound, yj ≤ 1, and vj corresponds to

−yj ≤ 0 for each j ∈ N . Let θ̂j = uj for each j ∈ N \N ′ while θ̂j = uTAj − ⌊uTAj⌋

for each j ∈ N ′. Additionally, we define v̂j as uj for each j ∈ N ′ and 0, otherwise.

90

Then, the CG cut of the above form with (θ̂, v̂) can be written as

∑
j∈N\N ′

⌊uTAj⌋yj −
∑
j∈N ′

⌊uTAj⌋yj ≤
⌊
uTb−

∑
j∈N ′

⌊uTAj⌋
⌋
, (3.3)

where ⌊
uTb−

∑
j∈N ′

⌊uTAj⌋
⌋
= ⌊uTb⌋ −

∑
j∈N ′

⌊uTAj⌋.

Therefore, the CG cut (3.3) is equivalent to the inequality (3.2), and the result

follows.

Proposition 3.1 states that the CG cut for XSB can be derived from a CG cut

for XB. Furthermore, it can be easily shown that the dominance between two valid

inequalities for XSB is preserved in the corresponding valid inequalities for XB,

and the converse also holds. These results imply that a cut for XB that dominates

the CG cut (3.2) can yield a cut for XSB that dominates the given CG cut (3.1).

Therefore, we only focus on CG cuts for the binary knapsack polytope XB and their

strengthening method in the subsequent discussion.

3.3.1 Non-dominated CG cuts for binary knapsack polytopes

For the sake of simplicity, we redefine XB as

XB =

x ∈ {0, 1} : ∑
j∈N

ajxj ≤ a0

 ,

91

where aj ∈ R+ for each j ∈ N ∪ {0}. One caution for the reader is that, in contrast

to Chapter 2, aj ’s need not be integers. Then, we can define a CG cut for XB as

∑
j∈N
⌊θ̂0aj + θ̂j⌋xj ≤

⌊
θ̂0a0 +

∑
j∈N

θ̂j

⌋
, (3.4)

for some (θ̂0, θ̂) ∈ Rn+1
+ . We first characterize non-dominated CG cuts for XB.

Proposition 3.2. If the CG cut (3.4) is non-dominated, then θ̂j < 1 for each j ∈ N

and 1
2 ≤ f0 < 1 where f0 = θ̂0a0 +

∑
j∈N θ̂j − ⌊θ̂0a0 +

∑
j∈N θ̂j⌋.

Proof. Suppose that there exists k ∈ N such that θ̂k ≥ 1. We define θ⋆0 = θ̂0 and

θ⋆j = θ̂j − ⌊θ̂j⌋ for each j ∈ N . Then, the CG cut (3.4) can be represented as a

linear combination of the CG cut defined with (θ⋆0, θ
⋆) and variable bounds with

non-negative multipliers. Therefore, the CG cut (3.4) is dominated by the CG cut

defined with (θ⋆0, θ
⋆), which contradicts the assumption that (3.4) is non-dominated.

Now, suppose that f0 = 0. Then, the CG cut (3.4) is clearly dominated by

∑
j∈N

(θ̂0aj + θ̂j)xj ≤ θ̂0a0 +
∑
j∈N

θ̂j .

If 0 < f0 <
1
2 , let us define (θ⋆0, θ

⋆) = (tθ̂0, tθ̂) where

t =
⌈ 1

2f0

⌉
.

Then, a CG cut defined with (θ⋆0, θ
⋆) is

∑
j∈N
⌊t(θ̂0aj + θ̂j)⌋xj ≤

⌊
t(θ̂0a0 +

∑
j∈N

θ̂j)
⌋
. (3.5)

92

On the other hand, the CG cut (3.4) can be rewritten by scaling the coefficients as

follows. ∑
j∈N

t⌊θ̂0aj + θ̂j⌋xj ≤ t
⌊
θ̂0a0 +

∑
j∈N

θ̂j

⌋
(3.6)

By the superadditivity of the round-down function, it is clear that

t⌊θ̂0aj + θ̂j⌋ ≤ ⌊t(θ̂0aj + θ̂j)⌋, ∀j ∈ N. (3.7)

Additionally, the right-hand side of (3.5) is equivalent to

⌊
t

θ̂0a0 +∑
j∈N

θ̂j

⌋ = t
⌊
θ̂0a0 +

∑
j∈N

θ̂j

⌋
+ ⌊tf0⌋. (3.8)

Because 1
2 ≤ tf0 < f0 +

1
2 and f0 <

1
2 , ⌊tf0⌋ = 0. Therefore, the right-hand sides of

(3.5) and (3.6) are equivalent. Therefore, the CG cut (3.5) dominates the CG cut

(3.4), which contradicts the assumption that (3.4) is non-dominated. Therefore, the

result follows.

Now, let αTx ≤ α0 be the CG cut (3.4), that is, α0 = ⌊θ̂0a0 +
∑

j∈N θ̂j⌋ and

αj = ⌊θ̂0aj + θ̂j⌋ for each j ∈ N . Then, we can define a linear program

max{αTx : x ∈ PB}, (3.9)

where PB is the linear relaxation of XB, defined as follows.

PB =

x ∈ [0, 1] :
∑
j∈N

ajxj ≤ a0

93

An optimal solution x⋆ of the above linear program can be obtained as follows.

Let (j1, ..., jn) be the sequence of variables sorted in descending order of αj/aj .

Additionally, let l = min{k ∈ N :
∑k

i=1 : aji > a0} and CB = {j1, ..., jl}. We note

that CB is a cover for XB by definition. Then, x⋆ is defined as

x⋆j =

1 , j ∈ CB \ {l}

(b−
∑

j∈CB\{l} aj)/al , j = l

0 , j ∈ N \ CB

.

Proposition 3.3. If the CG cut αTx ≤ α0 is non-dominated, then there exists

(θ⋆0, θ
⋆) ∈ Rn+1

+ , which yields αTx ≤ α0, such that

1. θ⋆0 = αl/al

2. θ⋆j = ⌈θ⋆0aj⌉ − θ⋆0aj for each j ∈ CB and θ⋆j = 0 for each j ∈ N \ CB

3. θ⋆j ≤ f⋆0 for each j ∈ CB such that ⌈θ⋆0aj⌉ = 1

where f⋆0 = θ⋆0a0 +
∑

j∈N θ
⋆
j − ⌊θ⋆0a0 +

∑
j∈N θ

⋆
j ⌋.

Proof. Let us consider the dual problem of the linear program (3.9), which is de-

scribed as follows.

min θ0a0 +
∑
j∈N

θj

s.t αj ≤ θ0aj + θj , j ∈ N

(θ0, θ) ∈ Rn+1
+

By the definition of α, it is clear that (θ̂0, θ̂) is a feasible solution for the above

94

problem. Let (θ⋆0, θ
⋆) be an optimal solution to the above problem, defined as θ⋆0 =

αl/al and

θ⋆j =

 αj − θ⋆0aj , j ∈ CB

0 , j ∈ N \ CB
.

Let
∑

j∈N α
⋆
jxj ≤ α⋆0 be the CG cut defined with (θ⋆0, θ

⋆). Since (θ⋆0, θ
⋆) is optimal

for the above problem, it is clear that αj ≤ α⋆j for each j ∈ N and α0 ≥ α⋆0. If

there exists k ∈ N such that αk < α⋆k, or α0 > α⋆0, then
∑

j∈N α
⋆
jxj ≤ α⋆0 dominates∑

j∈N αjxj ≤ α0, which conflicts to the assumption that
∑

j∈N αjxj ≤ α0 is non-

dominated. Therefore, αj = α⋆j for each j ∈ N and α0 = α⋆0.

By the definition of (θ⋆0, θ
⋆), αj = θ⋆0aj + θ⋆j for each j ∈ CB. On the other hand,

if there exists k ∈ CB such that θ⋆k ≥ 1, the CG cut
∑

j∈N αjxj ≤ α0 is a dominated

one by Proposition 3.2. Therefore, for each j ∈ CB, θ⋆j should be less than 1, which

implies that θ⋆0aj ≤ αj < θ⋆0aj + 1. Since αj ’s are integers, αj = ⌈θ⋆0aj⌉, that is,

θ⋆j = ⌈θ⋆0aj⌉ − θ⋆0aj for each j ∈ CB.

Now, suppose that there exists k ∈ CB such that αk = 1 and θ⋆k > f⋆0 . Then,

⌊α0 + f⋆0 − θ⋆k⌋ = α0 − 1.

If θ⋆k is replaced with 0, the CG cut defined with (θ⋆0, θ
⋆) can be described as follows.

∑
j∈N\{k}

αjxj ≤ α0 − 1

The CG cut αTx ≤ α0 is dominated by the above CG cut because it is a non-

negative linear combination of the above CG cut and xk ≤ 1. This result contradicts

the assumption that αTx ≤ α0 is non-dominated. Therefore, the result follows.

95

The above propositions state that a non-dominated CG cut αTx ≤ α0 can be

rewritten as ∑
j∈CB

⌈θ⋆0aj⌉xj +
∑

j∈N\CB

⌊θ⋆0aj⌋ ≤
⌊
θ⋆0a0 +

∑
j∈CB

θ⋆j

⌋
, (3.10)

with some θ⋆0 ∈ R+ and a cover CB ⊆ N such that
∑

j∈CB
aj > a0, where θ

⋆
j =

⌈θ⋆0aj⌉ − θ⋆0aj for each j ∈ CB and θ⋆j = 0 for each j ∈ N \ CB.

3.3.2 Maximal CG cuts for binary knapsack polytopes

A CG cut of the form (3.10) may be dominated because the above propositions are

necessary conditions for non-dominated CG cuts. Nonetheless, the CG cuts of the

form (3.10) are sufficient to describe the Chvátal closure of PB. We call such CG

cuts as maximal CG cuts in perspective that no more CG cuts are necessary to

describe the Chvátal closure.

Definition 3.1. The inequality of the form (3.10) is called a maximal CG cut for

XB if

1. CB ⊆ N is a cover for XB, i.e.,
∑

j∈CB
aj > a0.

2. θ⋆0 = p/al for some p ∈ Z+ with l ∈ CB, and θ⋆j = ⌈θ⋆0aj⌉ − θ⋆0aj for each

j ∈ CB while θ⋆j = 0 for each j ∈ N \ CB.

3. 1
2 ≤ f

⋆
0 and θ⋆j ≤ f⋆0 if ⌈θ⋆0aj⌉ = 1 for each j ∈ CB.

where f⋆0 = θ⋆0a0 +
∑

j∈CB
θ⋆j − ⌊θ⋆0a0 +

∑
j∈CB

θ⋆j ⌋.

In the following discussion, we show that, from any given CG cut, a maximal CG

cut can be easily obtained, which dominates the given one. Let a CG cut αTx ≤ α0

be given. By solving the linear program (3.9), an optimal solution x⋆, CB and l can be

96

obtained in O(n log n) computation time, such that
∑

j∈CB
aj > a0 and 0 ≤ x⋆l < 1.

Then, we define (θ̄0, θ̄) as θ̄ = αl/al and

θ̄j =

 ⌈θ̄0aj⌉ − θ̄0aj , j ∈ CB

0 , j ∈ N \ CB
.

Additionally, let
∑

j∈N ᾱjxj ≤ ᾱ0 be the CG cut defined with (θ̄0, θ̄). We note that

the CG cut can be rewritten as

∑
j∈CB

(θ̄0aj + θ̄j)xj +
∑

j∈N\CB

⌊θ̄0aj⌋xj ≤
⌊
θ̄0a0 +

∑
j∈CB

θ̄j

⌋
,

by the definition of (θ̄0, θ̄). Then, as shown in the proof of Proposition 3.3,
∑

j∈N ᾱjxj ≤

ᾱ0 is at least as strong as the given CG cut. Furthermore, the CG cut satisfies the

first and second conditions in Definition 3.1.

Now, let f̄0 = θ̄0a0 +
∑

j∈CB
θ̄j − ⌊θ̄0a0 +

∑
j∈CB

θ̂j⌋. We only consider f̄0 >

0 because, if f̄0 = 0, the CG cut is redundant for PB as shown in the proof of

Proposition 3.2. Let us define (θ⋆0, θ
⋆) as θ⋆0 = θ̄0 and θ⋆j = θ̄j for each j ∈ N if

1
2 ≤ f̄0. If 0 < f̄0 <

1
2 , we define (θ⋆0, θ

⋆) as θ⋆0 = tθ̄0 and θ⋆j = tθ̄j − ⌊tθ̄j⌋ for each

j ∈ N where

t =
⌈ 1

2f̄0

⌉
.

Subsequently, let
∑

j∈N α
⋆
jxj ≤ α⋆0 be the CG cut defined with (θ⋆0, θ

⋆). Then,

α⋆j = ⌈θ⋆0aj⌉ for each j ∈ CB and α⋆j = ⌊θ⋆0aj⌋ for each j ∈ N \ CB. Addition-

ally, α⋆0 = ⌊θ⋆0a0 +
∑

j∈CB
θ⋆j ⌋. The CG cut

∑
j∈N α

⋆
jxj ≤ α⋆0 is at least as strong as∑

j∈N ᾱjxj ≤ ᾱ0 by the proof of Proposition 3.2 while it still satisfies the first and

second conditions in Definition 3.1.

97

Now, let f⋆0 = θ⋆0a0 +
∑

j∈CB
θ⋆j − ⌊θ⋆0a0 +

∑
j∈CB

θ⋆j ⌋. Suppose that there exists

k ∈ CB such that α⋆k = 1 and θ⋆k > f⋆0 .

Proposition 3.4. CB \ {k} is a cover for XB.

Proof. We show that θ⋆0(
∑

j∈CB\{k} aj−a0) > 0 to prove that CB \{k} is a cover. By

the definition of (θ⋆0, θ
⋆), θ⋆0aj = α⋆j − θ⋆j for each j ∈ CB. Let λB =

∑
j∈CB

aj − a0.

Then, λB > 0 because CB is a cover. From the definition of f⋆0 ,

θ⋆0

 ∑
j∈CB\{k}

aj − a0

 =
∑

j∈CB\{k}

(α⋆j − θ⋆j)− f⋆0 −
⌊
θ⋆0a0 +

∑
j∈CB

θ⋆j

⌋
+
∑
j∈CB

θ⋆j

=
∑

j∈CB\{k}

α⋆j + θ⋆k − f⋆0 −
⌊
θ⋆0a0 +

∑
j∈CB

θ⋆j

⌋
= θ⋆k − f⋆0 − αk − ⌊−θ⋆0λB⌋,

where the last equality holds due to a0 =
∑

j∈CB
aj − λB. Because ⌊−θ⋆0λB⌋ =

−⌈θ⋆0λB⌉ and αk = 1 by the assumption,

θ⋆k − f⋆0 − αk − ⌊−θ⋆0λB⌋ = θ⋆k − f⋆0 − 1 + ⌈θ⋆0λB⌉ > 0,

where the last inequality holds because ⌈θ⋆0λB⌉ ≥ 1 and θ⋆k − f⋆0 > 0 by the assump-

tion. Therefore, CB \ {k} is a cover.

Let us replace θ⋆k with 0. Then, the CG cut defined with the modified (θ⋆0, θ
⋆) is

described as follows.

∑
j∈CB\{k}

⌈θ⋆0aj⌉xj +
∑

j∈N\CB

⌊θ⋆0aj⌋xj ≤
⌊
θ⋆0a0 +

∑
j∈CB\{k}

θ⋆j

⌋
. (3.11)

98

The CG cut (3.11) is at least as strong as the CG cut
∑

j∈N α
⋆
jxj ≤ α⋆0 as shown in

the proof of Proposition 3.3. We replace CB and the CG cut
∑

j∈N α
⋆
jxj ≤ α⋆0 with

CB \{k} and the CG cut (3.11), respectively. By repeatedly eliminating k ∈ CB that

violates the third condition of Definition 3.1 until no such k exists, we can obtain a

maximal CG cut that is at least as strong as the given CG cut. Since one variable

is removed from CB in each iteration, the process terminates within at most O(n)

iterations.

We describe the overall algorithm to derive the maximal CG cut from the given

one in Algorithm 7.

Algorithm 7 Construct a maximal CG cut from the given one

1: procedure Maximal(θ̂0, θ̂)

2: α0 ← θ̂0a0 +
∑

j∈N θ̂j , aj ← ⌊θ̂0aj + θ̂j⌋ for each j ∈ N ;

3: CB , l←solve max{αTx : x ∈ PB} ;
4: θ⋆0 ← αl/al, θ

⋆
j ← ⌈θ⋆0aj⌉ − θ⋆0aj for each j ∈ CB ;

5: f⋆0 ← θ⋆0a0 +
∑

j∈N θ⋆j − ⌊θ⋆0a0 +
∑

j∈N θ⋆j ⌋;
6: if f⋆0 <

1
2 then

7: t← ⌈1/(2f⋆0)⌉ ;
8: θ⋆0 ← tθ⋆0 , θ

⋆
j ← tθ⋆j − ⌊tθ⋆j ⌋ ;

9: end if
10: repeat
11: f⋆0 ← θ⋆0a0 +

∑
j∈N θ⋆j − ⌊θ⋆0a0 +

∑
j∈N θ⋆j ⌋ ;

12: Find k ∈ CB such that ⌈θ⋆0ak⌉ = 1 and θ⋆k > f⋆0 ;
13: CB ← CB \ {k}, θ⋆k ← 0 ;
14: until ∄k ;
15: return (θ⋆0 , θ

⋆) ;
16: end procedure

We emphasize that a maximal CG cut can be obtained from any given CG

cut in O(n log n) and is guaranteed to be at least as strong as the given cut. The

following section presents a method further to strengthen maximal CG cuts for

binary knapsack polytopes. We first reveal a link between the maximal CG cuts and

cover inequalities for binary knapsack polytopes. The key idea of our strengthening

99

method is the use of a lifting function for cover inequalities to derive a stronger cut

from the maximal CG cuts.

3.4 Strengthening maximal CG cuts for binary knapsack

polytopes

3.4.1 Extended knapsack polytope and lifted cover inequalities

Let βTx ≤ β0 be a given maximal CG cut for XB, which is defined with (θ0, θ) for

some θ0 ∈ R+, cover CB ⊆ N and l ∈ CB, where θ0al is an integer, θj = ⌈θ0aj⌉−θ0aj

for each j ∈ CB and θj = 0 for each j ∈ N \ CB. βTx ≤ β0 can be rewritten as

∑
j∈CB

⌊θ0aj + θj⌋+
∑

j∈N\CB

⌊θ0aj⌋xj ≤
⌊
θ0a0 +

∑
j∈CB

θj

⌋
,

Additionally, let λB =
∑

j∈CB
aj−a0 and f0 = θ0a0+

∑
j∈CB

θj−⌊θ0a0+
∑

j∈CB
θj⌋.

Then, θj ≤ f0 for all j ∈ CB by definition. For the sake of simplicity, let β(CB) =∑
j∈CB

βj .

We introduce an extended formulation for XB using CB described as follows.

XE =

(w, x) ∈ {0, 1}β(CB)+n :

∑
j∈CB

∑
k∈[βj]

aj
βj
wjk +

∑
j∈N\CB

ajxj ≤ a0

xj ≤ wjk, ∀k ∈ [βj], ∀j ∈ CB

where [βj] denotes {1, ..., βj}. XE has additional decision variables, wjk’s, compared

with XB.

Proposition 3.5. Projx(XE) = XB.

Proof. Let (ŵ, x̂) be a feasible solution for XE . Since x̂j ≤ ŵjk for each k ∈ [βj] and

100

j ∈ CB,

∑
j∈CB

aj x̂j +
∑

j∈N\CB

aj x̂j ≤
∑
j∈CB

∑
k∈[βj]

aj
βj
ŵjk +

∑
j∈N\CB

aj x̂j ≤ a0.

Therefore, x̂ ∈ XB. This result implies that Projx(XE) ⊆ XB.

Conversely, let x̂ ∈ XB. For each j ∈ CB, we set ŵjk = 1 for all k ∈ [βj] if x̂j = 1

while ŵjk = 0 for all k ∈ [βj] such that x̂j = 0. Since x̂j =
∑

k∈[βj] ŵjk/βj ,

∑
j∈CB

∑
k∈[βj]

aj
βj
ŵjk +

∑
j∈N\CB

aj x̂j =
∑
j∈CB

aj x̂j +
∑

j∈N\CB

aj x̂j ≤ a0,

which implies that (ŵ, x̂) ∈ XE . Therefore, XB ⊆ Projx(XE) and the result follows.

We call XE as the extended knapsack polytope. Proposition 3.5 implies that all

valid inequalities for XB can be obtained from those for the extended knapsack

polytope. We first provide a family of valid inequalities for the extended knapsack

polytope, which includes the given maximal CG cut for XB.

The extended knapsack polytope is not a binary knapsack polytope due to the

additional constraints, xj ≤ wjk for all k ∈ [βj] and j ∈ CB. However, several valid

inequalities for the extended knapsack polytope can be obtained from its relaxation,

described as follows.

XER =

(w, x) ∈ {0, 1}β(CB)+n :
∑
j∈CB

∑
k∈[βj]

aj
βj
wjk +

∑
j∈N\CB

ajxj ≤ a0

 .

We note that XER is a binary knapsack polytope. A cover inequality can be obtained

101

from the definition of XER. Let CE be the subset of variable w’s such that

CE = {(j, k) : k ∈ [βj], j ∈ CB \ {l}} ∪ {(l, k) : k ∈ {1, ..., β̄l}},

where β̄l = βl − ⌊θ0λB⌋. Additionally, let λE =
∑

(j,k)∈CE
aj/βj − a0.

Proposition 3.6. CE is a minimal cover for XER.

Proof. From the definition of CE ,

∑
(j,k)∈CE

aj
βj

=
∑

j∈CB\{l}

aj + β̄l
al
βl
.

Because β̄l = βl − ⌊θ0λB⌋,

∑
j∈CB\{l}

aj + al
β̄l
βl

=
∑

j∈CB\{l}

aj + al

(
1− ⌊θ0λB⌋

βl

)
>

∑
j∈CB\{l}

aj + al

(
1− θ0λB

βl

)
.

Then, since θ0 = βl/al,

∑
j∈CB\{l}

aj + al

(
1− θ0λB

βl

)
=
∑
j∈CB

aj − λB = a0.

Therefore,
∑

(j,k)∈CE
aj/βj > a0, that is, CE is a cover for XER.

We show that aj/βj ≥ λE for all j ∈ CB to prove the minimality of CE . Suppose

that there exists k ∈ CB such that ak/βk < λE . By definition, λE can be rewritten

as follows.

λE = λB − (βl − β̄l)
al
βl

= λB −
βl − β̄l
θ0

102

In addition, f0 can be rewritten as follows.

f0 = ⌈θ0λB⌉ − θ0λB = (βl − β̄l + 1)− θ0λB.

These results imply that λE = (1− f0)/θ0. Because ak/βk < λE ,

θ0ak
βk

< 1− f0 ⇒ βk − θk
βk

< 1− f0,

which implies that f0 < θk/βk. By definition of the maximal CG cut, f0 ≥ θk if

βk = 1. In addition, f0 ≥ θk/βk if βk ≥ 2 because 1
2 ≤ f0. This result implies that

no such k exists. Therefore, CE is a minimal cover.

From the definition of CE , it can be easily shown that |CE | = β0 + 1. Then, a

cover inequality for XER can be defined as follows.

∑
(j,k)∈CE

wjk ≤ β0 − 1, (3.12)

The cover inequality is described with only the variables in CE . However, it can be

written in a general form using the variables not in CE , the so-called lifted cover

inequalities, as follows.

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

νkwlk +
∑

j∈N\CB

γjxj ≤ β0 (3.13)

where νk ≥ 0 for all k ∈ [βl] \ [β̄l] and γj ≥ 0 for all j ∈ N \ CB. The lifted cover

inequalities can define some facets of XER because CE is a minimal cover.

The lifted cover inequalities for XER are also valid for XE because XE ⊆ XER.

103

The following proposition states that the converse is also true, that is, if an inequality

of the form (3.13) is valid for XE , it is also valid for XER.

Proposition 3.7. The inequality (3.13) is valid for XE if and only if it is valid for

XER.

Proof. We only show the “only if” direction because the “if” direction is clearly

true. Let WE = {(w, x) ∈ XE : xj = 0, j ∈ CB}. Then,

∑
(j,k)∈CE

ŵjk +
∑

k∈[βl]\[β̄l]

νkŵlk +
∑

j∈N\CB

γj x̂j ≤ β0, (ŵ, x̂) ∈ WE (3.14)

by the assumption on the validity of the inequality (3.13) for XE . Let us consider

the following optimization problem.

max
∑

(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

νkwlk +
∑

j∈N\CB

γjxj

s.t (w, x) ∈ XER

It is clear that there exists an optimal solution (w⋆, x⋆) for this problem, such that

x⋆j = 0 for all j ∈ CB. We note that a solution for XER where xj = 0 for all j ∈ CB

is feasible for XE . Therefore, (w⋆, x⋆) ∈ WE , and

∑
(j,k)∈CE

w⋆jk +
∑

k∈[βl]\[β̄l]

νkw
⋆
lk +

∑
j∈N\CB

γjx
⋆
j ≤ β0

due to (3.14). These results imply that

∑
(j,k)∈CE

ŵjk +
∑

k∈[βl]\[β̄l]

νkŵlk +
∑

j∈N\CB

γj x̂j ≤ β0, (ŵ, x̂) ∈ XER.

104

Therefore, the inequality (3.13) is also valid for XER.

Proposition 3.7 implies that valid inequalities for XE of the form (3.13) are lifted

cover inequalities for XER. We call the inequalities of the form (3.13) as lifted cover

inequalities without distinction for XE or XER.

We can obtain a valid inequality for XB from a lifted cover inequality for XE

using the relationship between the variables w and x.

Proposition 3.8. Suppose a lifted cover inequality of the form (3.13) is given. Then,

the inequality

∑
j∈CB\{l}

βjxj +

β̄l + ∑
k∈[βl]\[β̄l]

νk

xl +
∑

j∈N\CB

γjxj ≤ β0. (3.15)

is valid for XB.

Proof. Because xj ≤ wjk for each k ∈ [βj] and j ∈ CB in XE , the lifted cover

inequality is valid although wjk’s are replaced with xj for each k ∈ [βj] and j ∈ CB.

Therefore, the result follows.

We call the inequality of the form (3.15) as the x-inequality of the lifted cover

inequality of the form (3.13) because the inequality (3.15) is defined with only x.

Now, we show that the given maximal CG cut is a x-inequality for some lifted

cover inequality. One possible way to generate a lifted cover inequality is using lifting

functions ψ for cover inequalities described in Section 1.2.3. Then, the resulting lifted

cover inequality is described as follows.

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

ψ

(
al
βl

)
wlk +

∑
j∈N\CB

ψ(aj)xj ≤ β0.

105

Here, al/βl can be rewritten as 1/θ0 by definition.

Proposition 3.9. ψCG(z) = ⌊θ0z⌋ is a lifting function.

Proof. By Theorem 1.1, we show that ψCG(z) is superadditive, and ψCG(z) ≤ ψ⋆(z)

for all z ∈ [0, a0]. Since the former is clear, we only show the latter. Let us consider

the following linear program,

max

 ∑
(j,k)∈CE

wjk : (w, x) ∈ PER

 , (3.16)

where PER is the linear relaxation of XER. This problem is the LP relaxation of

a binary knapsack problem. Therefore, an optimal solution (w⋆, x⋆) can be defined

as x⋆j = 0 for all j ∈ N , w⋆jk = 1 for all (j, k) ∈ CE \ {(l, β̄l)}, w⋆lk = 1 for all

k ∈ [βl] \ [β̄l], and w⋆
lβ̄l

= 1 − θ0λE . The corresponding optimal objective value is

|CE | − θ0λE where |CE | = β0 + 1 by definition. Let us consider the dual problem of

the inner optimization problem presented in the definition of ψ⋆, which is described

as follows.

min v0(a0 − z) +
∑

(j,k)∈CE

vjk

s.t 1 ≤ v0
aj
βj

+ vjk, (j, k) ∈ CE (3.17)

0 ≤ v0
al
βl

+ vlk, k ∈ [βl] \ [β̄l]

0 ≤ v0aj + vj , j ∈ N \ CB

(v0, v) ∈ Rβ(CB)+n+1
+

We note that when z = 0, the dual problem (3.17) is equivalent to the dual problem

106

of the problem (3.16).

By the property of the LP relaxation of a binary knapsack problem, there exists

an optimal solution for the problem (3.17) when z = 0, such that v0 = θ0. We define

such an optimal solution as (θ0, v
⋆). Then, (θ⋆0, v

⋆) is also feasible for the problem

(3.17) when z ̸= 0. Therefore,

ψ⋆(z) ≥ β0 −
⌊
θ0(a0 − z) +

∑
(j,k)∈CE

v⋆jk

⌋
≥ β0 −

⌊
θ0a0 +

∑
(j,k)∈CE

v⋆jk

⌋
+ ⌊θ0z⌋,

where the last inequality holds due to the superadditivity of the rounding down

function. Because (θ0, v
⋆) is an optimal dual solution for the problem (3.16),

⌊
θ0a0 +

∑
(j,k)∈CE

v⋆jk

⌋
= ⌊β0 + 1− θ0λE⌋ = β0.

This result implies that ψ⋆(z) ≥ ⌊θ0z⌋ for all z ∈ [0, a0]. Therefore, ⌊θ0z⌋ is a lifting

function.

By Proposition 3.9, a lifted cover inequality can be obtained through ψCG, rep-

resented as follows.

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

wlk +
∑

j∈N\CB

⌊θaj⌋xj ≤ β0

The x-inequality of the above inequality is equivalent to the given maximal CG cut

βTx ≤ β0. This observation implies that a stronger lifted cover inequality can derive

a cut for XB, which dominates the given maximal CG cut.

107

3.4.2 CG cut strengthening method using a lifting function for

cover inequalities

Our CG cut strengthening method starts by generating a stronger lifted cover in-

equality than the one obtained through ψCG. For the sake of simplicity, let us redefine

CE as C ′
E = {1, . . . , β0+1} where there exists a one-to-one correspondence between

each (j, k) ∈ CE and each i ∈ C ′
E . We also define āi = aj/βj for each i ∈ C ′

E and

the corresponding (j, k) ∈ CE .

Without loss of generality, we assume that ā1 ≥ · · · ≥ āβ0 + 1. Then, ā1 = 1/θ0.

Additionally, let µ0 = 0, µj =
∑j

i=1 āi for all j ∈ C ′
E . Let us consider the lifting

function proposed by Gu et al. (2000), which is defined as

h(z) =

k if µk − λE + ρk ≤ z ≤ µk+1 − λE

k − µk − λE + ρk − z
ρ1

if µk − λE < z < µk − λE + ρk

,

for some k = 0, . . . , β0 where ρj = max{0, āj+1 − (ā1 − λE)} for each j = 0, ..., β0.

Theorem 3.1. h(z) ≥ ψCG(z), ∀z ∈ [0, a0].

Proof. We denote the range of z such that k ≤ h(z) < k + 1 as I(k) for each

k ∈ {0, . . . , β0}, that is,

I(k) = [µk − λE + ρk, µk+1 − λE + ρk+1).

We show that ψCG(z) ≤ k for all z ∈ I(k) for all k ∈ {0, . . . , β0}.

Suppose that there exists ẑ ∈ I(k) for some k ∈ {0, . . . , β0} such that ψCG(ẑ) >

k. By the definition of ψCG, ẑ ≥ (k+1)/θ0. On the other hand, the upper bound of

108

I(k) is

µk+1 − λE + ρk+1 =

∑k+1

j=1 āj − λE , if ρk+1 = 0∑k+2
j=2 āj , otherwise.

by the definition of µj ’s and ρj ’s. Because āj ≤ 1/θ0 for all j ∈ C ′
E ,

ẑ < µk+1 − λE + ρk+1 ≤
k + 1

θ0

whether ρk+1 = 0 or not. This result contradicts the assumption that ẑ ≥ (k+1)/θ0.

Therefore, the result follows.

The lifted cover inequality obtained through the function h is

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

h

(
1

θ0

)
wlk +

∑
j∈N\CB

h(aj)xj ≤ β0,

where the x-inequality is

∑
j∈CB\{t}

βjxj +

(
β̄l + (βl − β̄l)h

(
1

θ0

))
xl +

∑
j∈N\CB

h(aj)xj ≤ β0. (3.18)

We call the inequality (3.18) as the SCG cut.

Theorem 3.2. The SCG cut is equivalent to or dominates the given maximal CG

cut.

Proof. By Theorem 3.1, it is clear that the coefficients of the SCG cut are greater

than or equal to those of the given maximal CG cut except for xl. Hence, we only

show that

β̄l + (βl − β̄l)h
(

1

θ0

)
≥ βl.

109

h(z) ≥ 1 if z ≥ µ1 − λE + ρ1 where

µ1 − λE + ρ1 =

1
θ0
− λE , if ρ1 = 0

ā2 , otherwise.

Therefore, it is clear that

1

θ0
≥ µ1 − λE + ρ1,

whether ρ1 = 0 or not and the following inequality holds.

β̄l + (βl − β̄l)h
(

1

θ0

)
≥ β̄l + (βl − β̄l) = βt

Therefore, the SCG cut is at least as strong as the given maximal CG cut.

It may seem difficult to obtain the SCG cut efficiently. Because β0 can be ar-

bitrarily large, computing µj ’s and identifying the range of z for given z ∈ [0, a0]

may require a significant amount of time to obtain the value of h(z). However, h(z)

can be computed efficiently because the variables in C ′
E have at most |CB| different

values of āj .

Without loss of generality, let CB = {1, . . . , |CB|} where

a1
β1
≥ · · · ≥

a|CB |

β|CB |
.

We note that a1/β1 = 1/θ0. Then, we define µ̄ = 0, µ̄1 = β̄l/θ0, and µ̄j = µ̄1 +∑j
i=2 aj for each j ∈ {2, ..., |CB|}. Additionally, let

ρ̄j = max

{
0,
aj+1

βj+1
−
(

1

θ0
− λE

)}
, ∀j ∈ {1, ..., |CB|}.

110

Then, for given z ∈ [0, a0], we can find q in O(log |CB|) such that

µ̄q − λE + ρ̄q ≤ z < µ̄q+1 − λE + ρ̄q+1.

Let µ̄q = µk1 and µ̄q+1 = µk2 where k1 = β̄l+
∑q

j=2 βj and k2 = β̄l+
∑q+1

j=2 βj . Then,

for each k1 + 1 ≤ k ≤ k2,

µk+1 − µk =
aq+1

βq+1
,

and

ρk = max

{
0,
aq+1

βq+1
−
(

1

θ0
− λE

)}
.

We can define q⋆ as follows.

q⋆ =
⌊z − µk1 + λ− ρk1

aq+1

βq+1

⌋

Then, the given z is in the following range.

µk1+q⋆ − λE + ρk1+q⋆ ≤ z < µk1+q⋆+1 − λE + ρk1+q⋆+1

In this range,

h(z) =

 k + q⋆ , if z ≤ µk1+q⋆+1 − λE

k + q⋆ + 1− µk1+q⋆+1−λE+ρk1+q⋆+1−z
ρ1

, otherwise.

The overall procedure to compute h(z) for given z ∈ [0, b] is described in Algorithm

8.

If µ̄j ’s and ρ̄j ’s are given, h(z) can be computed in O(log n). Hence, the SCG cut

111

Algorithm 8 Computation of h(z)

1: µ̄0 ← 0, µ̄1 ← β̄l/θ0, and µ̄j ← µ̄1 +
∑j

i=2 aj for each j = 2, ..., |CB | ;
2: ρ̄j ← max{0, aj+1/βj+1 − (1/θ0 − λE)} for each j = 1, ..., |CB | − 1 ;
3: Find q such that µ̄q − λ+ ρ̄q ≤ z < µ̄q+1 − λ+ ρ̄q+1 ;
4: k ← γ +

∑q
j=2 βj ;

5: q⋆ ← ⌊(z − µk + λ+ ρk)/(aq+1/βq+1)⌋ and ρ← max{0, aq+1/βq+1 − (1/θ0 − λE)} ;
6: if z ≤ µ̄q + (q⋆ + 1)aq+1/βq+1 − λE then
7: h(z)← k + q⋆ ;
8: else
9: h(z)← k + q⋆ + 1− (µk1+q⋆+1 − λE + ρk1+q⋆+1 − z)/ρ1 ;

10: end if
11: return h(z);

can be obtain in O(n log n) by computing h(aj) for each j ∈ N \ CB and h(1/θ0).

3.4.3 Strength of the SCG cut

In this section, we compare the strength of the SCG cut with other cuts strengthened

from the given maximal CG cut. We first show that the SCG cut can have a Chvátal

rank higher than 1.

Example 3.1. Let us consider the following binary knapsack polytope.

XB = {x ∈ {0, 1}5 : 3x1 + 5x2 + 8x3 + 7x4 + 12x5 ≤ 14}

Suppose that a CG cut defined with (u0, u1, u2, u3, u4, u5) = (18 ,
5
8 ,

3
8 , 0, 0, 0) is given,

which is described as follows.

x1 + x2 + x3 + ⌊0.875⌋x4 + ⌊1.5⌋x5 ≤ ⌊2.75⌋ ⇒ x1 + x2 + x3 + x5 ≤ 2

The above CG cut is a maximal CG cut where CB = {1, 2, 3}. Then, the function h

is defined as Figure 3.2 The corresponding SCG cut is defined as follows.

112

z

h(z)

0 6 11 14

1

2

3

Figure 3.2: Example of h(z)

SCG cut: x1 + x2 + x3 + x4 + 2x5 ≤ 2

It can be easily checked that the above inequality defines a facet for XB. Furthermore,

the SCG cut is not a rank-1 CG cut.

As mentioned in Section 3.1, the given maximal CG cut can be strengthened

using cut-generating functions. Recall that the given maximal CG cut βTx ≤ β0 is

equivalent to

∑
j∈CB

⌊θ0aj + θj⌋+
∑

j∈N\CB

⌊θ0aj⌋xj ≤
⌊
θ0a0 +

∑
j∈CB

θj

⌋
,

where θ0aj + θj is integer for each j ∈ CB. Then, the maximal CG cut is obtained

by applying πCG to

∑
j∈CB

(θ0aj + θj)xj +
∑

j∈N\CB

θ0ajxj ≤ θ0a0 +
∑
j∈CB

θj . (3.19)

Let f0 be the fractional part of the right-hand side of the inequality (3.19).

A CGF cut derived from (3.19) with a cut-generating function π can be repre-

113

sented as ∑
j∈CB

βjxj +
∑

j∈N\CB

(θ0aj − π(θ0aj))xj ≤ β0, (3.20)

We compare the strength of the SCG cut with CGF cuts that can dominate the

maximal CG cut. We first show that the SCG cut can dominate every CGF cuts

under certain condition.

Theorem 3.3. If h(aj) ∈ Z+ for all j ∈ N \ CB, then the SCG cut is at least as

strong as every CGF cut.

Proof. Let us consider the following implied inequality of XER.

∑
(j,k)∈CE

(
θ0
aj
βj

+ vjk

)
wjk +

∑
k∈[βl]\[β̄l]

θ0
at
βt
wtk +

∑
j∈N\CB

θ0ajxj ≤ θ0a0 +
∑

(j,k)∈CE

vjk,

(3.21)

where vjk = θj/βj for all (j, k) ∈ CE . We note that the right-hand sides of the above

inequality and (3.19) are equivalent. Then, a cut-generating function π for (3.19)

can be applied to (3.21). The obtained CGF cut is expressed as

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

wjk +
∑

j∈N\CB

(θ0aj − π(θ0aj))xj ≤ β0.

We can see that the CGF cut is a lifted cover inequality of the form (3.13) for XER,

and its x-inequality is equivalent to the CGF cut (3.20) for XB. Therefore, it is clear

that

θ0aj − π(θ0aj) ≤ ψ⋆(aj), ∀j ∈ N \ CB.

On the other hand, the assumption that h(aj) ∈ Z+ for all j ∈ N \ CB implies

that h(aj) = ψ⋆(aj) for all j ∈ N \ CB (Gu et al., 2000). Therefore, for any cut-

114

generating function π,

θ0aj − π(θ0aj) ≤ ψ⋆(aj) = h(aj), ∀j ∈ N \ CB,

which implies that the SCG cut is at least as strong as every CGF cut.

In general cases, there may exist a CGF cut that dominates the SCG cut. How-

ever, we show that the SCG cut is always at least as strong as the Gomory mixed-

integer cut derived from (3.19) using πf0G defined as

πf0G (z) = min

{
πCG(z),

f0(1− πCG(z))
1− f0

}
.

The Gomory mixed-integer cut can be represented as follows.

∑
j∈CB

βjxj +
∑

j∈N\CB

(
βj +max

{
0,
πCG(θ0aj)− f0

1− f0

})
xj ≤ β0, (3.22)

Theorem 3.4. The SCG cut is equivalent to or dominates the Gomory mixed-

integer cut (3.22).

Proof. As mentioned in the proof of Theorem 3.3, the cut-generating function πf0G

can yield a lifted cover inequality for XER from the inequality (3.21). The lifted

cover inequality can be represented as follows.

∑
(j,k)∈CE

wjk +
∑

k∈[βl]\[β̄l]

wjk +
∑

j∈N\CB

ψf0G (aj)xj ≤ β0,

where

ψf0G (z) = ⌊θ0z⌋+max

{
0,
πCG(θ0z)− f0

1− f0

}
.

115

We note that the x-inequality of the above is equivalent to the Gomory mixed-

integer cut (3.22). To compare the strength of the SCG cut and the Gomory mixed-

integer cut, we show that ψf0G (z) ≤ h(z) for all z ∈ [0, a0]. Let I(k) be the range of

z such that k ≤ h(z) < k + 1 for some k ∈ {0, ..., β0}, as follows.

I(k) = [µk − λE + ρk, µk+1 − λE + ρk+1)

As shown in the proof of Proposition 3.1, µk−λE + ρk ≤ k/θ0. If z < k/θ0, then

ψf0G (z) < h(z) since ψf0G (z) < k. Therefore, we only consider the case,

k

θ0
≤ z < µk+1 − λE + ρk+1,

where µk+1 − λE + ρk+1 ≤ (k + 1)/θ0.

In this range, by definition, ψf0G (z) > k when z > (k+f0)/θ0, and h(z) > k when

z > µk+1 − λE . Recall that λE = (1 − f0)/θ0 as shown in the proof of Proposition

3.6. Then,

µk+1 − λE ≤
k + 1

θ0
− 1− f0

θ0
=
k + f0
θ0

.

This result implies that h(z) = ψf0G (z) = k if z ≤ µk+1 − λE .

Let us consider the rest range

µk+1 − λE < z < µk+1 − λE + ρk+1.

Because µk+1 − λE ≤ (k + f0)/θ0 and ψf0G (z) is continuous,

lim
z→(µk+1−λE)+

h(z) ≥ k,

116

while

lim
z→(µk+1−λE)+

ψf0G (z) = k.

In addition, h(z) and ψf0G (z) are linear and increasing functions in this range, where

lim
z→(µk+1−λE+ρk+1)−

h(z) ≥ lim
z→(µk+1−λE+ρk+1)−

ψf0G (z)

because µk+1 − λE + ρk+1 ≤ (k + 1)/θ0. These results imply that h(z) ≥ ψf0G (z) for

all z in this range, and h(z) ≥ ψG(z) for all z ∈ I(k). Therefore, h(z) ≥ ψG(z) for

all z ∈ [0, a0] and the result follows.

Example 3.1 (Continued). Recall that the given CG cut is

x1 + x2 + x3 + ⌊0.875⌋x4 + ⌊1.5⌋x5 ≤ ⌊2.75⌋

Using ψf0G where f0 = 0.75, the Gomory mixed-integer cut can be derived from the

above CG cut as follows.

x1 + x2 + x3 + 0.5x4 + x5 ≤ 2

Figure 3.3 illustrates ψf0G (z) and h(z) in blue and red lines, respectively. As shown

in Theorem 3.4, h(z) dominates ψf0G (z).

117

z
0 6 11 148 16

1

2

3

h(z) ψf0
G (z)

Figure 3.3: Comparison of h(z) and ψf0G (z)

3.5 Extension to binary integer linear programs with gen-

eralized upper bounds

In this section, we extend the strengthening method to CG cuts for binary integer

linear programs with generalized upper bounds. We first show that such a CG cut

can be viewed as a CG cut for a GKP polytope. We then define maximal CG cuts

for GKP polytopes and provide a way to obtain them from any CG cuts for a GKP

polytope. Subsequently, we propose the method for strengthening maximal CG cuts

for GKP polytopes, using the method proposed in Section 3.4.

Recall a CG cut (3.1) and the corresponding single-constraint relaxation,

XS =

x ∈ {0, 1}n :
∑
j∈N

uTAjxj ≤ uTb

 .

For the binary integer linear programs with generalized upper bounds, we regard

that the system Ax ≤ b has only the generalized upper bounds without variable

bounds since the latter is redundant. Let Ki for each i ∈ I be the GUB set such

that N = ∪i∈IKi and Ki ∩Kj = ∅ for all i, j ∈ I where i ̸= j and I = {1, . . . ,m}.

Without loss of generality, let ui be the multipliers corresponding to
∑

j∈Ki
xj ≤ 1

118

for each i ∈ I. Then, we can define a tighter relaxation for the binary integer linear

program, XSG, which is described as follows.

XSG =

x ∈ {0, 1}
n :

∑
i∈I

∑
j∈Ki

(uTAj − ui)xj ≤ uTb−
∑
i∈I

ui,∑
j∈Ki

xj ≤ 1, i ∈ I

 .

We show that the CG cut (3.1) is represented as a CG cut for XSG.

conv(XSG) can be reformulated as a GKP polytope by complementing variables.

Let j(i) = argmin{uTAj − ui : j ∈ Ki} and I− = {i ∈ I : uTAj(i) − ui < 0}.

Additionally, let us introduce decision variables z ∈ {0, 1}n such that zj = 1 −∑
k∈Ki

xk if j = j(i) for all i ∈ I− and zj = xj , otherwise. Then, XSG can be

redefined with z as XG described as follows.

XG =

z ∈ {0, 1}n :

∑
i∈I

∑
j∈Ki

ajzj ≤ uT
b−

∑
i∈I−

Aj(i)

− ∑
i∈I\I−

ui,

∑
j∈Ki

zj ≤ 1, i ∈ I

.

where

aj =

uTAj − ui if j ∈ Ki for some i ∈ I \ I−

−(uTAj − ui) if j = j(i) for some i ∈ I−

uTAj − uTAj(i) if j ∈ Ki \ {j(i)} for some i ∈ I−

.

We note that aj ≥ 0 for all j ∈ N . Hence, conv(XG) is a GKP polytope introduced in

Chapter 2. The CG cut (3.1) can be redefined with z as the following valid inequality

119

for XG.

∑
i∈I\I−

∑
j∈Ki

⌊uTAj⌋zj −
∑
i∈I−
⌊uTAj(i)⌋zj +

∑
i∈I−

∑
j∈Ki\{j(i)}

(⌊uTAj⌋ − ⌊uTAj(i)⌋)zj

≤ ⌊uTb⌋ −
∑
i∈I−
⌊uTAj(i)⌋ (3.23)

Proposition 3.10. The inequality (3.23) is a CG cut for XG.

The above proposition can be shown similarly to Proposition 3.1. We omit the proof

for brevity.

Proposition 3.10 states that the CG cut for XSG can be derived from a CG cut

for XG. In addition, the dominance relationship between two valid inequalities for

XSG is preserved in the corresponding valid inequalities for XG, and the converse

also holds. Therefore, we only consider CG cuts for the GKP polytope XG and their

strengthening method.

3.5.1 Maximal CG cuts for GKP polytopes

We introduce analogs of the results in Section 3.3 for GKP polytopes. For the sake

of brevity, we redefine XG as

XG =

x ∈ {0, 1}
n :

∑
i∈I

∑
j∈Ki

ajxj ≤ a0,∑
j∈Ki

xj ≤ 1, i ∈ I

 .

120

where aj ∈ R+ for each j ∈ N ∪ {0}. Let a CG cut for XG be given, which is

described as ∑
i∈I

∑
j∈Ki

⌊θ̂0aj + θ̂i⌋xj ≤
⌊
θ̂0a0 +

∑
i∈I

θ̂i

⌋
, (3.24)

for some (θ̂0, θ̂) ∈ Rm+1
+ .

Proposition 3.11. If the CG cut (3.1) is non-dominated, then θ̂i < 1 for each i ∈ I

and 1
2 ≤ f0 < 1 where f0 = θ̂0a0 +

∑
i∈I θi − ⌊θ̂0a0 +

∑
i∈I θ̂i⌋.

Proof. Suppose that there exists k ∈ I such that θ̂k ≥ 1. We define θ⋆0 = θ̂0 and

θ⋆i = θ̂i − ⌊θ̂i⌋ for each i ∈ I. Then, the CG cut (3.24) can be represented as a non-

negative linear combination of the CG cut defined with (θ⋆0, θ
⋆) and

∑
j∈Kk

xj ≤ 1.

Therefore, the CG cut (3.24) is dominated by the CG cut defined with (θ⋆0, θ
⋆),

which contradicts the assumption that (3.24) is non-dominated. The proof for the

condition of f0 is equivalent to the proof of Proposition 3.2. Therefore, the result

follows.

Now, let αTx ≤ α0 be the CG cut (3.24), and we define the following linear

program,

max{αTx : x ∈ PG}, (3.25)

where PG is the linear relaxation of XG. Then, for the above problem, there exists

an optimal solution x⋆ that has at most two fractional variables, l1 and l2 where

{l1, l2} ∈ Kl ∪ {0} for some l ∈ I and al1 ≥ al2 with a0 = 0 (Johnson & Padberg,

1981). We note that l1 = 0 implies that the optimal solution has one fractional

variable. Let I+ = {l} ∪ {i ∈ I :
∑

j∈Ki
x⋆j > 0}. Additionally, for each i ∈ I+ \ {l},

we define c(i) ∈ Ki as the variable index such that x⋆c(i) = 1 while c(l) = l2. Such l, I
+

121

and c(i)’s can be identified in O(n log n) (Glover & Klingman, 1979). Furthermore,∑
i∈I+ ac(i) > a0 while

∑
i∈I+ ac(i) − al2 ≤ a0.

Proposition 3.12. If the CG cut αTx ≤ α0 is non-dominated, then there exists

(θ⋆0, θ
⋆) ∈ Rm+1

+ , which yields αTx ≤ α0, such that

1. θ⋆0 = (αl2 − αl1)/(al2 − al1).

2. θ⋆i = ⌈θ⋆0ac(i)⌉ − θ⋆0ac(i) for each i ∈ I+ and θ⋆i = 0 for each i ∈ I \ I+.

3. θ⋆i ≤ f⋆0 for each i ∈ I+ such that ⌈θ⋆0ac(i)⌉ = 1.

where f⋆0 = θ⋆0a0 +
∑

i∈I θ
⋆
i − ⌊θ⋆0a0 +

∑
i∈I θ

⋆
i ⌋.

Proof. Let us consider the dual problem of the linear program (3.25), which is rep-

resented as follows.

min θ0a0 +
∑
i∈I

θi

s.t αj ≤ θ0aj + θi, j ∈ Ki, ∀i ∈ I

(θ0, θ) ∈ Rm+1
+

By the definition of α, (θ̂0, θ̂) is a feasible solution for the above problem. Glover &

Klingman (1979) showed that there exists an optimal solution (θ⋆0, θ
⋆) to the above

problem defined as θ⋆0 = (αl2 − αl1)/(al2 − al1) and

θ⋆i =

 αc(i) − θ⋆0ac(i) , i ∈ I+

0 , i ∈ I \ I+
.

122

Let
∑

j∈N α
⋆
jxj ≤ α⋆0 be the CG cut defined with (θ⋆0, θ

⋆). Since (θ⋆0, θ
⋆) is optimal

for the above problem, it is clear that αj ≤ α⋆j for each j ∈ N and α0 ≥ α⋆0. If

there exists k ∈ N such that αk < α⋆k, or α0 > α⋆0, then
∑

j∈N α
⋆
jxj ≤ α⋆0 dominates∑

j∈N αjxj ≤ α0, which conflicts to the assumption that
∑

j∈N αjxj ≤ α0 is non-

dominated. Therefore, αj = α⋆j for each j ∈ N and α0 = α⋆0.

By the definition of (θ⋆0, θ
⋆), αc(i) = θ⋆0ac(i) + θ⋆i for each i ∈ I+. If there exists

k ∈ I+ such that θ⋆k ≥ 1, the CG cut
∑

j∈N αjxj ≤ α0 is a dominated one by

Proposition 3.11. Therefore, for each i ∈ I+, θ⋆i should be less than 1, which implies

that θ⋆0ac(i) ≤ αc(i) < θ⋆0ac(i) + 1. Since αc(i)’s are integers, αc(i) = ⌈θ⋆0ac(i)⌉, that is,

θ⋆i = ⌈θ⋆0ac(i)⌉ − θ⋆0ac(i) for each i ∈ I+.

Now, suppose that there exists k ∈ I+ such that αc(k) = 1 and θ⋆k > f⋆0 . Then,

⌊α0 + f⋆0 − θ⋆k⌋ = α0 − 1.

If θ⋆k is replaced with 0, the CG cut defined with (θ⋆0, θ
⋆) can be described as follows.

∑
i∈I\{k}

∑
j∈Ki

αjxj +
∑
j∈Kk

⌊θ⋆0aj⌋xj ≤ α0 − 1 (3.26)

The CG cut (3.26) induces another inequality through summation with
∑

j∈Kk
xj ≤

1, which is described as

∑
i∈I\{k}

∑
j∈Ki

αj +
∑
j∈Kk

(⌊θ⋆0aj⌋+ 1)xj ≤ α0. (3.27)

Then, αTx ≤ α0 is dominated by the inequality (3.27) because ⌊θ⋆0aj⌋ ≤ αj ≤

⌊θ⋆0aj⌋+1 for each j ∈ Kk, while the CG cut (3.26) dominates the inequality (3.27).

123

This result contradicts the assumption that αTx ≤ α0 is non-dominated. Therefore,

the result follows.

From Proposition 3.11 and 3.12, non-dominated CG cuts for the GKP polytope,

αTx ≤ α0, can be rewritten as

∑
i∈I+

∑
j∈Ki

⌊θ⋆0aj + θ⋆i ⌋xj +
∑

i∈I\I+

∑
j∈Ki

⌊θ⋆0aj⌋ ≤
⌊
θ⋆0a0 +

∑
i∈I+

θ⋆i

⌋
, (3.28)

with some θ⋆0 ∈ R+, I
+ ⊆ I, and c(i) ∈ Ki for each Ki such that

∑
i∈I+ ac(i) > a0,

where θ⋆i = ⌈θ⋆0ac(i)⌉ − θ⋆0ac(i) for each i ∈ I+, and θ⋆i = 0 for each i ∈ I \ I+.

Now, let us define maximal CG cuts for the GKP polytope.

Definition 3.2. The inequality of the form (3.28) is called a maximal CG cut for

XG if

1. I+ ⊆ I and c(i) ∈ Ki for each i ∈ I+ such that
∑

i∈I+ ac(i) > a0.

2. θ⋆0 = p/(al2 − al1) for some p ∈ Z+ and {l1, l2} ⊆ Kl ∪ {0} where l ∈ I+ and

c(l) = l2. In addition, θ⋆i = ⌈θ⋆0ac(i)⌉ − θ⋆0ac(i) for each i ∈ I+ while θ⋆j = 0 for

each i ∈ I \ I+.

3. 1
2 ≤ f

⋆
0 and θ⋆i ≤ f⋆0 if ⌈θ⋆0ac(i)⌉ = 1 for each i ∈ I+.

where f⋆0 = θ⋆0a0 +
∑

i∈I+ θ
⋆
i − ⌊θ⋆0a0 +

∑
i∈I+ θ

⋆
i ⌋.

We note that the maximal CG cuts are sufficient to describe the Chvátal closure of

PG.

A maximal CG cut can be obtained efficiently for a given CG cut for the GKP

polytope, which is at least as strong as the given one. Let αTx ≤ α0 be the given CG

124

cut. By solving the linear program (3.25), the optimal solution x⋆ can be obtained

in O(n log n) with I+ ⊆ I, l ∈ I+, c(i) ∈ Ki for each i ∈ I+, and {l1, l2} ⊆ Kl ∪ {0}

where
∑

i∈I+ ac(i) > a0. Then, we define (θ̄0, θ̄) as θ̄ = (αl2 − αl1)/(al2 − al1) and

θ̄i =

 ⌈θ̄0ac(i)⌉ − θ̄0ac(i) , i ∈ I+

0 , i ∈ I \ I+
,

where α0 = a0 = 0. Additionally, a CG cut
∑

j∈N ᾱjxj ≤ ᾱ0 can be defined with

(θ̄0, θ̄), which is at least as strong as the given CG cut by the proof of Proposition

3.12. Furthermore, the CG cut satisfies the first and second conditions in Definition

3.2.

Let f̄0 = θ̄0a0 +
∑

i∈I+ θ̄i − ⌊θ̄0a0 +
∑

i∈I+ θ̄i⌋. If 0 < f̄0 ≤ 1
2 , we define (θ⋆0, θ

⋆)

as θ⋆0 = tθ̄0 and θ⋆j = tθ̄j − ⌊tθ̄j⌋ for each j ∈ N where

t =
⌈ 1

2f̄0

⌉
.

Subsequently, let
∑

j∈N α
⋆
jxj ≤ α⋆0 be the CG cut defined with (θ⋆0, θ

⋆). Then, the

CG cut is at least as strong as
∑

j∈N ᾱjxj ≤ ᾱ0 by the proof of Proposition 3.11,

while it still satisfies the first and second conditions in Definition 3.2.

Now, suppose that there exists k ∈ I+ such that α⋆c(k) = 1 and θ⋆k > f⋆0 where

f⋆0 = θ⋆0a0 +
∑

i∈I+ θ
⋆
i − ⌊θ⋆0a0 +

∑
i∈I+ θ

⋆
i ⌋.

Proposition 3.13. k ̸= l and
∑

i∈I+\{k} ac(i) > a0.

Proof. If k = l, then α⋆c(l) = α⋆l2 = 1. Hence, θ⋆l = 1− θ⋆0al2 . Let λG =
∑

i∈I+ ac(i) −

a0 > 0. By the construction of I+ and l, λG ≤ al2 . On the other hand, f⋆0 can be

125

represented with λG. By definition,

f⋆0 = θ⋆0a0 +
∑
i∈I+

θ⋆i −
⌊
θ⋆0a0 +

∑
i∈I+

θ⋆i

⌋
=
∑
i∈I+

θ⋆0ac(i) − θ⋆0λG +
∑
i∈I+

θ⋆i −
⌊ ∑
i∈I+

θ⋆0ac(i) − θ⋆0λG +
∑
i∈I+

θ⋆i

⌋
= −θ⋆0λG − ⌊−θ⋆0λG⌋

= ⌈θ⋆0λG⌉ − θ⋆0λG

Because 0 < λG ≤ al2 and 0 < ⌈θ⋆0λG⌉ ≤ ⌈θ⋆0al2⌉ = 1, f⋆0 = 1 − θ⋆0λG while

θ⋆l = 1− θ⋆0al2 . This result implies that θ⋆l ≤ f⋆0 , hence, k ̸= l.

Now, we show that θ⋆0(
∑

i∈I+\{k} ac(i) − a0) > 0 if k ̸= l. Using the definition of

λG,

θ⋆0

 ∑
i∈I+\{k}

ac(i) − a0

 = θ⋆0(λG − ac(k)) = ⌈θ⋆0λG⌉ − f⋆0 − (α⋆c(k) − θ
⋆
k)

Because ⌈θ⋆0λG⌉ ≥ 1 while α⋆c(k) = 1 and θ⋆k − f⋆0 > 0 by the assumption,

θ⋆0

 ∑
i∈I+\{k}

ac(i) − a0

 = ⌈θ⋆0λG⌉ − 1 + θ⋆k − f⋆0 > 0.

Therefore, the result follows.

Let us replace θ⋆k with 0. Then the CG cut
∑

j∈N α
⋆
jxj ≤ α⋆0 is dominated by the

CG cut defined with the modified (θ⋆0, θ
⋆) as shown in the proof of Proposition 3.12.

We replace I+ and
∑

j∈N α
⋆
jxj ≤ α⋆0 with I+ \ {k} and the CG cut defined with

the modified (θ⋆0, θ
⋆), respectively. By repeatedly eliminating k ∈ I+ that violates

126

the third condition of Definition 3.2 until no such k exists, we can obtain a maximal

CG cut that is at least as strong as the given CG cut. Since one element is removed

from I+ in each iteration, the process terminates within at most O(m) iterations.

We describe the overall algorithm to derive the maximal CG cut for the GKP

polytope from the given one in Algorithm 9.

Algorithm 9 Construct a maximal CG cut for GKP polytope from the given one

1: procedure MaximalG(θ̂0, θ̂)

2: α0 ← θ̂0a0 +
∑

i∈I θ̂i, aj ← ⌊θ̂0aj + θ̂i⌋ for each j ∈ Ki and i ∈ I ;
3: {c(i)}i∈I+ , {l1, l2} ∈ Kl ←solve max{αTx : x ∈ PG} ;
4: θ⋆0 ← (αl2 − αl1)/(al2 − al1), θ⋆i ← ⌈θ⋆0ac(i)⌉ − θ⋆0ac(i) for each i ∈ I+ ;
5: f⋆0 ← θ⋆0a0 +

∑
i∈I+ θ⋆i − ⌊θ⋆0a0 +

∑
i∈I+ θ⋆i ⌋;

6: if f⋆0 <
1
2 then

7: t← ⌈1/(2f⋆0)⌉ ;
8: θ⋆0 ← tθ⋆0 , θ

⋆
i ← tθ⋆i − ⌊tθ⋆i ⌋ for each i ∈ I+ ;

9: end if
10: repeat
11: f⋆0 ← θ⋆0a0 +

∑
i∈I+ θ⋆i − ⌊θ⋆0a0 +

∑
i∈I+ θ⋆i ⌋ ;

12: Find k ∈ I+ such that ⌈θ⋆0ac(k)⌉ = 1 and θ⋆k > f⋆0 ;
13: I+ ← I+ \ {k}, θ⋆k ← 0 ;
14: until ∄k ;
15: return (θ⋆0 , θ

⋆) ;
16: end procedure

The maximal CG cut for the GKP polytope can also be obtained in O(n log n).

In the following section, we present a method further to strengthen maximal CG

cuts for the GKP polytope.

3.5.2 Strengthening maximal CG cuts for GKP polytopes

We first introduce the surrogate knapsack polytope, which bridges GKP polytopes

and binary knapsack polytopes. A given maximal CG cut for a GKP polytope can

be interpreted as a CG cut for the surrogate knapsack polytope. Then, we apply the

CG cut strengthening method for binary knapsack polytopes to the interpreted CG

127

cut.

Let βTx ≤ β0 be a given maximal CG cut for XG, which is defined with (θ0, θ)

for some θ0 ∈ R+, I
+ ⊆ I, c(i) ∈ Ki for each i ∈ I+, l ∈ I, and {l1, l2} ⊆ Kl ∪ {0},

where θ0(al2 − al1) is an integer, θi = ⌈θ0ac(i)⌉ − θ0ac(i) for each i ∈ I+, θi = 0 for

each i ∈ I \ I+, and
∑

i∈I+ ac(i) > a0 while
∑

i∈I+ ac(i) − al1 ≤ a0. Additionally, let

λG =
∑

i∈I+ ac(i) − a0 and f0 = θ0a0 +
∑

i∈I+ θi − ⌊θ0a0 +
∑

i∈I+ θi⌋. Then, θi ≤ f0

for each i ∈ I+ such that βc(i) = 1 due to Proposition 3.12. The maximal CG cut

can be rewritten as

∑
i∈I+

∑
j∈Ki

⌊θ0aj + θi⌋xj +
∑

i∈I\I+

∑
j∈Ki

⌊θ0aj⌋xj ≤
⌊
θ0a0 +

∑
i∈I+

θi

⌋
(3.29)

Let Li = {j ∈ Ki \{c(i)} : aj ≤ ac(i)} and Ui = Ki \ (Li∪{c(i)}) for each i ∈ I+.

The surrogate knapsack polytope, XK , is defined as

XK =

y ∈ {0, 1}n :
∑
j∈N

ājyj ≤ ā0

 ,

where

āj =

ac(i) − aj , if j ∈ Li for some i ∈ I+

aj − ac(i) , if j ∈ Ui for some i ∈ I+

aj , otherwise.

,

and ā0 = a0 +
∑

i∈I+
∑

j∈Li
āj . We note that the surrogate knapsack polytope is a

binary knapsack polytope.

128

Proposition 3.14. Suppose that the following inequality is valid for XK .

∑
j∈N

γjyj ≤ γ0 (3.30)

Then, the inequality

∑
i∈I+

∑
j∈Li

(γc(i) − γj)xj +
∑
i∈I+

γc(i)xc(i) +
∑
i∈I+

∑
j∈Ui

(γc(i) + γj)xj

+
∑

i∈I\I+

∑
j∈Ki

γjxj ≤ γ0 −
∑
i∈I+

∑
j∈Li

γj (3.31)

is valid for XG.

Proof. Using the definition of XK , a feasible solution x̂ for XG can be transformed

into ȳ(x̂) ∈ XK , where

ȳj(x̂) =

1− x̂j , if j ∈ Li for some i ∈ I+∑
l∈Ki

x̂l , if j = c(i) for some i ∈ I+

x̂j , otherwise.

,

Let Y(XG) = {ȳ(x) : x ∈ XG}. Because Y(XG) ⊆ XK ,

∑
j∈N

γj ȳj(x̂) ≤ γ0, ∀x̂ ∈ XG.

By replacing ȳ(x̂) with x̂, we can see that the inequality (3.31) is valid for all x̂ ∈ XG.

Therefore, the result follows.

We call the inequality (3.31) as the G-inequality for the valid inequality for XK .

It can be easily shown that the dominance between valid inequalities for XK is

129

preserved in their G-inequalities.

The given maximal CG cut for XG can be interpreted as the G-inequality of a

CG cut for XK . Let CG = {j ∈ Li ∪ {c(i)} : i ∈ I+}.

Proposition 3.15. The G-inequality of the following CG cut for XK is equivalent

to the given maximal CG cut (3.29) for XG.

∑
j∈CG

⌊θ0āj + vj⌋yj +
∑
N\CG

⌊θ0āj⌋yj ≤
⌊
θ0ā0 +

∑
j∈CG

vj

⌋
, (3.32)

where

vj =

⌈θ0āj⌉ − θ0āj , j ∈ Li for some i ∈ I+

θi , j = c(i) for some i ∈ I+

0 , otherwise.

.

Proof. It is clear that the coefficients of xc(i)’s in the G-inequality are equivalent to

(3.29). In addition, the coefficients of xj ’s such that j ∈ Ki for each i ∈ I \ I+ are

equivalent to (3.29) because āj = aj . For each j ∈ Li and i ∈ I+, the coefficient of

xj in the G-inequality is

⌊θ0āc(i) + θi⌋ − ⌈θ0āj⌉.

Because θ0āc(i) + θi ∈ Z+ by the definition of θi, āc(i) = ac(i), and āj = ac(i) − aj ,

the coefficient can be rewritten as

θ0ac(i) + θi + ⌊θ0(aj − ac(i))⌋ = ⌊θ0aj + θi⌋,

which is equivalent to the coefficient in (3.29).

In a similar way, for each j ∈ Ui and i ∈ I+, the coefficient of xj in the G-

130

inequality is

⌊θ0āc(i) + θi⌋+ ⌊θ0āj⌋,

and it can be rewritten as

θ0ac(i) + θi + ⌊θ0(aj − ac(i))⌋ = ⌊θ0aj + θi⌋,

which is equivalent to the coefficient in (3.29).

Finally, we show that

⌊
θ0ā0 +

∑
j∈CG

vj

⌋
−
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉ =
⌊
θ0ā0 +

∑
i∈I+

θi

⌋
.

The right-hand side of the CG cut (3.32) can be rewritten as follows.

⌊
θ0ā0 +

∑
j∈CG

vj

⌋
=
⌊
θ0

a0 + ∑
i∈I+

∑
j∈Li

āj

+
∑
i∈I+

∑
j∈Li

(⌈θ0āj⌉ − θ0āj) +
∑
i∈I+

θi

⌋
=
⌊
θ0a0 +

∑
i∈I+

θi

⌋
+
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉

Then, ⌊
θ0ā0 +

∑
j∈CG

vj

⌋
−
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉ =
⌊
θ0ā0 +

∑
i∈I+

θi

⌋
.

Therefore, the result follows.

Proposition 3.15 implies that the given maximal CG cut for XG can be obtained

from the CG cut (3.32). Furthermore, a cut that dominates the CG cut (3.32) can

yield a G-inequality stronger than the given maximal CG cut for the GKP polytope.

Such a stronger cut can be obtained by applying the CG cut strengthening method,

131

presented in Section 3.4, to (3.32) if it is a maximal CG cut for XK . However, the CG

cut (3.32) may not be maximal. Recall that f0 = θ0a0+
∑

i∈I+ θi−⌊θ0a0+
∑

i∈I+ θi⌋.

We additionally define fj = θ0aj + θi − ⌊θ0aj + θj⌋ for each j ∈ Ki and i ∈ I.

Proposition 3.16. The CG cut (3.32) is a maximal CG cut for XK if fj ≤ f0 for

all j ∈ Li and i ∈ I+.

Proof. By the definition of vj ’s, the CG cut (3.32) can be rewritten as follows.

∑
j∈CG

⌈θ0āj⌉yj +
∑
j∈CG

⌊θ0āj⌋yj ≤
⌊
θ0ā0 +

∑
j∈CG

vj

⌋

We first show that CG is a cover for XK . By the definition of CG,

∑
j∈CG

āj =
∑
i∈I+

∑
j∈Li

āj +
∑
i∈I+

ac(i) >
∑
i∈I+

∑
j∈Li

āj + a0 = ā0.

Therefore, CG is a cover for XK . In addition, since al2 − al1 = āl1 and l1 ∈ CG, we

can rewrite θ0 as (βl2 − βl1)/āl1 . Hence, the second condition in Definition 3.1 is

satisfied.

Let f̄0 = θ0ā0 +
∑

j∈CG
vj − ⌊θ0ā0 +

∑
j∈CG

vj⌋. Now, we show that vj ’s and f̄0

satisfy the third condition in Definition 3.1. As shown in the proof of Proposition

3.15, f̄0 = f0, that is,
1
2 ≤ f̄0. Furthermore, for each j ∈ Li and i ∈ I+,

vj = ⌈θ0ac(i) − θ0aj⌉ − θ0ac(i) + θ0aj

= θ0aj + ⌈θ0ac(i)⌉ − θ0ac(i) − ⌊θ0aj + ⌈θ0ac(i)⌉ − θ0ac(i)⌋

= θ0aj + θi − ⌊θ0aj + θi⌋ = f⋆j .

132

Therefore, the assumption that fj ≤ f0 for each j ∈ Li and i ∈ I+ implies vj ≤ f̄0

for each j ∈ Li and i ∈ I+. Recall that (θ0, θ) satisfies θi ≤ f0 for each i ∈ I+ such

that ⌈θ0ac(i)⌉ = 1 because it yields the maximal CG cut βTx ≤ β0 for XG. Then,

vc(i) = θi ≤ f0 = f̄0 for each i ∈ I+ such that ⌈θ0āc(i)⌉ = 1 where āc(i) = ac(i).

Therefore, the result follows.

Even if the CG cut (3.32) is not a maximal CG cut for XK , we can obtain the

one through the CG cut (3.32) using Algorithm 7. As shown in the proof of Propo-

sition 3.16, the first and second conditions in Definition 3.2 are satisfied without

the assumption that fj ≤ f0 for all j ∈ Li and i ∈ I+. This result implies that a

maximal CG cut can be constructed from the CG cut (3.32) by eliminating some

variables in CG, which violate the third condition in Definition 3.2. Let C⋆G be the

modified cover. The obtained maximal CG cut for XK can be written as

∑
j∈C⋆

G

⌈θ0āj⌉yj +
∑
j∈C⋆

G

⌊θ0āj⌋yj ≤
⌊
θ0ā0 +

∑
j∈C⋆

G

vj

⌋
, (3.33)

Then, we can obtain a SCG cut for XK by applying the CG cut strengthening

method proposed in Section 3.4 to the above maximal CG cut.

Theorem 3.5. The G-inequality of the obtained SCG cut for XK derived from (3.33)

is equivalent to or dominates the given maximal CG cut βTx ≤ β0 for XG.

Proof. The SCG cut is at least as strong as the CG cut (3.33) by Proposition 3.2

while the CG cut (3.33) is equivalent to or dominates the CG cut (3.32) whose

G-inequality is the given maximal CG cut for XG. Because the dominance between

valid inequalities for XK is preserved in their G-inequalities, the G-inequality of

133

the obtained SCG cut is at least as strong as the given maximal CG cut for XG.

Therefore, the result follows.

Additionally, we compare the G-inequality of the obtained cut with the Gomory

mixed-integer cut for XG derived from the following inequality.

∑
i∈I+

∑
j∈Ki

(θ0aj + θi)xj +
∑

i∈I\I+

∑
j∈Ki

θ0ajxj ≤ θ0a0 +
∑
i∈I⋆

θi

Then, the Gomory mixed-integer cut is represented as follows.

∑
i∈I+

∑
j∈Ki

ψf0G

(
aj +

θi
θ0

)
xj +

∑
i∈I\I+

∑
j∈Ki

ψf0G (aj)xj ≤
⌊
θ0a0 +

∑
i∈I+

θi

⌋
. (3.34)

Theorem 3.6. The G-inequality of the obtained SCG cut for XK derived from (3.33)

is equivalent to or dominates the Gomory mixed-integer cut (3.34) if fj ≤ f0 for all

j ∈ Li and i ∈ I+.

Proof. The assumption implies that the CG cut (3.32) is a maximal CG cut for XK

by Proposition 3.16. In addition, the fractional part of the right-hand side of the CG

cut (3.32) is equivalent to f0.

This observation allows us to define a Gomory mixed-integer cut for XK from

the following inequality.

∑
j∈CG

(θ0āj + vj)yj +
∑

j∈N\CG

θj ājyj ≤ θ0ā0 +
∑
j∈CG

vj

134

The corresponding Gomory mixed-integer cut for XK is expressed as

∑
j∈CG

⌈θ0āj⌉yj +
∑

j∈N\CG

ψf0G (āj)yj ≤
⌊
θ0ā0 +

∑
j∈CG

vj

⌋
. (3.35)

Then, the G-inequality of the cut (3.35) is represented as follows.

∑
i∈I+

∑
j∈Li

(⌈θ0āc(i)⌉− ⌈θ0āj⌉)xj +
∑
i∈I+
⌈θ0āc(i)⌉xc(i)+

∑
i∈I+

∑
j∈Ui

(⌈θ0āc(i)⌉+ψf0G (āj))xj

+
∑

i∈I\I+

∑
j∈Ki

ψf0G (āj)xj ≤
⌊
θ0ā0 +

∑
j∈CG

vj

⌋
−
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉ (3.36)

We first show that the inequality (3.36) is equivalent to (3.34) under the assump-

tion that fj ≤ f0 for all j ∈ Li and i ∈ I+. It is clear that the coefficients of variables

in Ki’s such that i ∈ I \I+ in both the inequalities are equivalent to ψf0G (aj) because

āj = aj . For each i ∈ I+, the coefficient of xc(i) in the inequality (3.34) is equivalent

to that in (3.36) because

ψf0G

(
ac(i) +

θi
θ0

)
= ⌊θ0ac(i) + θi⌋ = ⌈θ0ac(i)⌉ = ⌈θ0āc(i)⌉.

For each j ∈ Li and i ∈ I+, the coefficient of xj in the inequality (3.34) can be

rewritten as

ψf0G

(
aj +

θi
θ0

)
= ⌊θ0aj + θi⌋,

due to the assumption that fj ≤ f0. Then, ⌊θ0aj+ θi⌋ is equivalent to the coefficient

of xj in the inequality (3.36) because

⌊θ0aj + θi⌋ = ⌊θ0aj + ⌈θ0ac(i)⌉ − θ0ac(i)⌋ = ⌈θ0ac(i)⌉ − ⌈θ0(ac(i) − aj)⌉

135

= ⌈θ0āc(i)⌉ − ⌈θ0āj⌉

For each variable in Ui for each i ∈ I+, the coefficient in the inequality (3.36) can

be rewritten as

θ0ac(i) + θi + ψf0G (āj) = ψf0G

(
ac(i) + āj +

θi
θ0

)
= ψf0G

(
aj +

θi
θ0

)
,

because θ0ac(i)+θi is an integer. Therefore, the coefficients of xj in both inequalities

are equivalent. Finally, the right-hand side of the inequality (3.36) is

⌊
θ0ā0 +

∑
j∈CG

vj

⌋
−
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉

=
⌊
θ0

a0 −∑
i∈I+

∑
j∈Li

āj

+
∑
i∈I+

θi +
∑
i∈I+

∑
j∈Li

(⌈θ0āj⌉ − θ0āj)
⌋
−
∑
i∈I+

∑
j∈Li

⌈θ0āj⌉

=
⌊
θ0a0 +

∑
i∈I+

θi

⌋

Therefore, the inequality (3.36) is equivalent to (3.34).

By Theorem 3.4, the obtained SCG cut is at least as strong as the inequality

(3.35). Because the G-inequality of (3.35) is equivalent to the Gomory mixed-integer

cut (3.34), the G-inequality of the obtained SCG cut is at least as strong as the

Gomory mixed-integer cut (3.34).

3.6 Computational test results

This section presents the computational test results for evaluating the performance

of the proposed CG cut strengthening methods. Our methods generate a SCG cut

136

from a maximal CG cut for binary knapsack or GKP polytopes, where the maximal

CG cut is derived from a given CG cut. As discussed in Section 3.3 and 3.5, the

maximal CG cut can already be stronger than the given CG cut. Hence, the effect

of SCG cuts may seem to originate from the effect of maximal CG cuts. Therefore,

we also evaluated the performance of the obtained maximal CG cuts to measure

the effectiveness of our strengthening methods precisely. Furthermore, the maximal

CG cuts can be strengthened to Gomory mixed-integer cuts using the corresponding

cut-generating function. We also report the results of Gomory mixed-integer cuts to

compare with our strengthening methods.

We used two types of benchmark instances: generalized assignment problem in-

stances from OR-Library (Beasley, 1990) and MIPLIB instances used in Chapter 2.

The generalized assignment problem (GAP) is represented as

(GAP) max
∑
i∈M

∑
j∈N

cijxij

s.t
∑
j∈N

aijxij ≤ bi, ∀i ∈M

∑
i∈M

xij ≤ 1, ∀j ∈ N

xij ∈ {0, 1}, ∀i ∈M, ∀j ∈ N,

where aij > 0 and cij > 0. The feasible solution set of the GAP is defined with

|M | different binary knapsack polytopes. For the description of MIPLIB instances,

see Section 2.6 in Chapter 2. The GAP and MIPLIB instances are summarized in

Appendix A.

For each instance, we utilized the cutting plane algorithm with CG cuts. In

137

each iteration, CG cuts were generated from binary knapsack or GKP polytopes

defined with each constraint. To define GKP polytopes, we employed the GUB set

identification strategy proposed by Gu et al. (1998).

We set 300 seconds time limit for the cutting plane algorithm. All algorithms were

implemented using C++ with the linear programming solver provided by Xpress

(Guéret et al., 2002). All tests were performed using a machine with an Intel Core

i7, 3.10GHz CPU, and 16GB RAM.

3.6.1 Effectiveness of SCG cuts derived from binary knapsack poly-

topes

We evaluated the effectiveness of our strengthening method for maximal CG cuts for

binary knapsack polytopes. As mentioned earlier, we defined the binary knapsack

polytopes using the constraints in the test instances. A binary knapsack polytope

is a special case of a GKP polytope where GUB sets are singletons. Hence, in each

iteration of the cutting plane algorithm, we generated CG cuts from the binary

knapsack polytopes using the heuristic separation algorithm proposed in Chapter 2.

We derived the maximal CG cuts from the generated CG cuts and then strengthened

the maximal CG cuts to the SCG cuts or Gomory mixed-integer cuts. Because SCG

or Gomory mixed-integer cuts can have fractional coefficients, we multiplied 1,000

by each coefficient and rounded down the coefficients to make the cuts numerically

stable.

We denote the results by the cutting plane algorithm using the maximal CG

cuts as “MCG” while those by using the SCG cuts and Gomory mixed-integer cuts

obtained from the maximal CG cuts are denoted as “SCG” and “GMI”, respectively.

138

For each instance, we measured the changes in the integrality gap closed to

evaluate the formulation-enhancing effect of strengthened cuts as follows.

∆IGC (%) = IGC− IGCCG

where IGC is the integrality gap improved by the generated cuts using strengthening

methods, while #IGCCG is the integrality gap improved by CG cuts. The changes

in the number of generated cuts and the cutting plane times are measured as the

ratio compared to CG cuts, which are denoted as “∆#Cut (%)” and “∆Time (%)”,

respectively. These measures are computed as

∆Cut (%) =
#Cut−#CutCG

#CutCG
, ∆Time (%) =

Time− TimeCG
TimeCG

,

where #Cut and Time means the number of generated cuts and the cutting plane

time in seconds using strengthening methods, respectively, while #CutCG and TimeCG

are those by CG cuts. We also reported the total time spent on strengthening gen-

erated CG cuts (Strengthening time), which we refer to as “STime (s)”.

We first present the computational test results for the GAP instances. We set the

CG cut separation heuristic parameter as T = min{n, |M |} and adopted variable

ordering strategy S3. The GAP instances consist of five classes (A, B, C, D, E),

and we report the average results for each class. The detailed results are given in

Appendix C.1.

Figure 3.4a and 3.4b illustrate the changes in the integrality gap closed and the

number of generated cuts, respectively. Although the strengthened cuts are theo-

retically stronger than the CG cuts, the formulation-enhancing effect utilizing them

139

A B C D E

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Class of GAP instances

∆
IG

C
(%

)

MCG GMI SCG

(a) Changes in the integrality gap closed

A B C D E

−12

−10

−8

−6

−4

−2

0

2

Class of GAP instances

∆
C
u
t
(%

)

MCG GMI SCG

(b) Changes in the number of generated cuts

Figure 3.4: ∆IGC (%) and ∆Cut (%) by strengthening methods for GAP instances

decreased in several instances, specifically in class B. This result can be explained

by the fact that we used the heuristic separation algorithm to generate CG cuts.

Even though a CG cut exists that cuts off an incumbent solution obtained after

adding a strengthened cut, the heuristic algorithm may fail to identify such a CG

cut. Therefore, enhanced formulations obtained using the strengthened cuts may

provide weaker relaxations than those by CG cuts.

Although the weakened relaxations were obtained in some instances, the differ-

ence was negligible, as shown in Figure 3.4a. Nonetheless, in most instances, the

strengthened cuts could yield tighter relaxations compared to the CG cuts. In par-

ticular, the SCG cuts could significantly improve the relaxations than the maximal

CG cuts. Furthermore, the SCG cuts enhanced the formulations more effectively

than the Gomory mixed-integer cuts. These results correspond to our strength com-

parison result in Section 3.4 and imply that our strengthening method can generate

cuts that dominate maximal CG and Gomory mixed-integer cuts.

As shown in Figure 3.4b, using strengthened cuts could significantly reduce the

140

size of the enhanced formulations in most instances, compared to the CG cuts.

Specifically, the SCG cuts could yield the enhanced formulations defined with far

fewer cuts than the maximal CG cuts or the Gomory mixed-integer cuts on average.

A B C D E

0

0.04

0.08

0.12

0.16

Class of GAP instances

S
T
im

e
(s
)

MCG GMI SCG

(a) Strengthening time

A B C D E

−16

−12

−8

−4

0

4

8

12

16

Class of GAP instances

∆
T
im

e
(%

)

MCG GMI SCG

(b) Changes in cutting plane time

Figure 3.5: STime (s) and ∆Time (%) by strengthening methods for GAP instances

Figure 3.5a and 3.5b show the strengthening time and the changes in the cutting

plane times, respectively. The maximal CG cuts could be obtained from the gener-

ated CG cuts in an insignificant amount of computation time, as shown in Figure

3.5a. On the other hand, our strengthening method spends more computation time

compared to generating the Gomory mixed-integer cuts because our strengthening

method requires O(n log n) computations. In contrast, O(n) computations are nec-

essary to obtain the Gomory mixed-integer cuts. However, the strengthening time

for SCG was less than 0.2 seconds, while the cutting plane algorithms’ time limit

was 300 seconds. Therefore, the strengthening time was negligible.

Although our strengthening method spent much additional computation time,

the cutting plane algorithm using the SCG cuts terminated earlier than when using

the CG cuts in most instances. The decrease in the number of generated cuts implies

141

a reduction in the number of iterations of the cutting plane algorithm, which reduces

the cutting plane time.

Figures 3.6, 3.7, and 3.8 illustrate the results for the MIPLIB instances. We

reported the instances where at least one cut was obtained through the strengthening

methods, which is different from the generated CG cuts. The detailed results are

given in Appendix C.2. For the heuristic CG cut separation algorithm, we set the

parameter T = min{n, r⋆} and adopted the variable ordering strategy S3.

lse
u

m
od
00
8

p0
03
3

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

0

0.2

0.4

0.6

0.8

1

MIPLIB instances

∆
IG

C
(%

)

MCG GMI SCG

Figure 3.6: ∆IGC (%) by strengthening methods for MIPLIB instances

The effect of our strengthening method for MIPLIB instances was similar to that

in GAP instances. The strengthened cuts provided slightly more enhanced formu-

lations than CG cuts, while the SCG cuts yielded tighter relaxations compared to

other strengthened cuts. Furthermore, the strengthened cuts provided formulations

with fewer cuts compared to CG cuts in most instances. In particular, using the SCG

142

lse
u

m
od
00
8

p0
03
3

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

MIPLIB instances

∆
C
u
t
(%

)
MCG GMI SCG

Figure 3.7: ∆Cut (%) by strengthening methods for MIPLIB instances

lse
u

m
od
00
8

p0
03
3

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

−24

−20

−16

−12

−8

−4

0

4

8

MIPLIB instances

∆
T
im

e
(%

)

MCG GMI SCG

Figure 3.8: ∆Time (%) by strengthening methods for MIPLIB instances

143

cuts was more effective in reducing the formulation size compared to using the other

strengthened cuts. The strengthening times were negligible. As a result, the cutting

plane time was decreased in most instances when using the SCG cuts compared to

the CG cuts.

In conclusion, our strengthening method provided more enhanced formulations

with fewer cuts compared to results using CG cuts. The generated SCG cuts out-

performed the maximal CG cuts and Gomory mixed-integer cuts in formulation en-

hancement and formulation-size reduction. Therefore, the proposed method shows

promise for deriving effective cuts. Although the method required additional com-

putation time to generate SCG cuts, it ultimately reduced the cutting plane time

due to the decreased number of iterations and generated cuts.

3.6.2 Effectiveness of SCG cuts derived from GKP polytopes

In this section, we evaluated the effectiveness of our strengthening method for max-

imal CG cuts for GKP polytopes. The GKP polytopes were defined using the con-

straints of test instances and identified GUB sets by Gu et al. (1998). In each iter-

ation of the cutting plane algorithm, CG cuts were generated from the GKP poly-

topes using the heuristic separation algorithm proposed in Chapter 2. We derived the

maximal CG cuts from the generated CG cuts and then applied our strengthening

method to the cuts.

The GKP polytopes defined from GAP instances are equivalent to binary knap-

sack polytopes. Therefore, we only present the results for MIPLIB instances where at

least one strengthened cut is obtained, which differs from the generated CG cuts. We

set the parameter for the heuristic CG cut separation algorithm as T = min{m, r⋆},

144

where m is the number of identified GUB sets, and adopted the variable ordering

strategy S3.

Figure 3.9, 3.9, and 3.11 illustrate the results for MIPLIB instances. The detailed

results are given in Appendix C.3.

lse
u

m
itr
e

m
od
00
8

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

sp
97
ar

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

MIPLIB instances

∆
IG

C
(%

)

MCG GMI SCG

Figure 3.9: ∆IGC (%) by strengthening methods for MIPLIB instances

Figure 3.9 shows that the strengthened cuts yielded more enhanced formula-

tions than CG cuts in most instances. However, the formulation-enhancing effect

deteriorated compared to those obtained by strengthened cuts derived from binary

knapsack polytopes. Additionally, we could not observe a clear dominance relation

between the performance of Gomory mixed-integer and SCG cuts. This result can

be explained by the fact that the SCG cuts derived from GKP polytopes cannot

always dominate the Gomory mixed-integer cuts in theory, as discussed in Section

3.5.

145

lse
u

m
itr
e

m
od
00
8

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

sp
97
ar

−40

−35

−30

−25

−20

−15

−10

−5

0

MIPLIB instances

∆
C
u
t
(%

)
MCG GMI SCG

Figure 3.10: ∆Cut (%) by strengthening methods for MIPLIB instances

The size of the enhanced formulations was still significantly reduced when using

the strengthened cuts, as shown in Figure 3.10. The reduction effects of the Gomory

mixed-integer cuts and the SCG cuts were comparable in most instances.

Figure 3.11 shows that the cutting plane time using the strengthened cuts also

decreased in most instances. In particular, in most instances, the cutting plane al-

gorithm using the Gomory mixed-integer cuts terminated earlier than the other

strengthened cuts.

In conclusion, our strengthening method for maximal CG cuts for GKP polytopes

could provide slightly more enhanced formulations defined with fewer cuts compared

to results by the CG cuts. Furthermore, the cutting plane time could be saved due

to the decreased number of iterations and generated cuts. However, the performance

was similar to using the Gomory mixed-integer cuts.

146

lse
u

m
itr
e

m
od
00
8

p0
28
2

p0
29
1

p0
54
8

p2
75
6

pi
pe
x

se
nt
oy

sp
97
ar

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

MIPLIB instances

∆
T
im

e
(%

)
MCG GMI SCG

Figure 3.11: ∆Time (%) by strengthening methods for MIPLIB instances

3.7 Conclusion

In this study, we presented a novel method to strengthen CG cuts for binary integer

linear programs. We first defined maximal CG cuts for binary knapsack polytopes

and proposed a method to derive the maximal CG cuts from the given CG cuts for

binary integer linear programs. We then introduced extended knapsack polytopes

where the maximal CG cuts can be interpreted as their lifted cover inequalities. Our

CG cut strengthening method utilized the lifting function that yields stronger lifted

cover inequalities for the extended knapsack polytopes. Through theoretical analysis,

we showed that obtained cuts are at least as strong as the Gomory mixed-integer

cuts derived from the maximal CG cuts. In addition, we extended the method to

CG cuts for binary integer linear programs with generalized upper bounds.

147

The computational test results demonstrated that the proposed strengthening

methods yield cuts that can effectively enhance the formulations of binary integer

linear programs. However, the performance of the cuts strengthened from maximal

CG cuts for GKP polytopes was indifferent to the Gomory mixed-integer cuts.

Our extension to maximal CG cuts for GKP polytopes is based on the observa-

tion that maximal CG cuts for GKP polytopes can be interpreted as CG cuts for

another binary knapsack polytope. Therefore, our strengthening method does not

explicitly incorporate the generalized upper bounds. Another strengthening method

can be devised by explicitly incorporating the generalized upper bounds. These

methods could lead to even more enhanced formulations for binary integer linear

programs with generalized upper bounds and potentially outperform the Gomory

mixed-integer cuts.

Additionally, we evaluated the performance of the proposed strengthening meth-

ods for CG cuts derived from each constraint of the test instances. However, it is

worth noting that our strengthening methods can be applied to CG cuts derived from

any single-constraint relaxations, such as each row of the optimal simplex tableau.

Therefore, evaluating the performance using such single-constraint relaxations is also

necessary.

148

Chapter 4

Lifting heuristic of probabilistic cover inequalities
for the chance-constrained binary knapsack
problem

This chapter proposes an efficient lifting heuristic for probabilistic cover inequalities

for the chance-constrained binary knapsack problem (CKP). We first introduce a

non-convex relaxation for the CKP, formulated as a non-convex optimization prob-

lem, and show that the relaxation provides a tighter upper bound for the CKP com-

pared to other continuous relaxations in the literature. Non-convex optimization

problems are difficult to solve in general. However, we show that the non-convex

relaxation for the CKP can be solved in polynomial time. We then propose a lifting

heuristic for probabilistic cover inequalities using the polynomial-time algorithm for

the non-convex relaxation. Computational test results demonstrate that the pro-

posed lifting heuristic outperforms existing methods in terms of computational effi-

ciency, while the effectiveness of the resulting lifted probabilistic cover inequalities

remains competitive.

149

4.1 Introduction

We consider the chance-constrained binary knapsack problem (CKP) described as

follows.

max
∑
j∈N

cjxj

s.t P

∑
j∈N

ãjxj ≤ b

 ≥ ϵ (4.1)

x ∈ {0, 1}n

Here, ãj ’s are random variables representing the weights of the items in N . Due

to the chance constraint (4.1), the feasible solution set of the CKP depends on the

distribution of ãj ’s. In this study, we assume that the item weights are mutually

independent and normally distributed, i.e., ãj ∼ N(aj , σ
2
j) where aj ≥ 0 and σj ≥ 0

for each j ∈ N . Then, the CKP can be formulated as a deterministic integer convex

program (ICP) as follows.

ICP: max
∑
j∈N

cjxj

s.t
∑
j∈N

ajxj +Φ−1(ϵ)

√∑
j∈N

σ2jx
2
j ≤ b

x ∈ {0, 1}n

Φ−1(·) denotes the inverse of the cumulative density function for the standard normal

distribution. Throughout this study, we refer to the CKP as the above problem.

Without loss of generality, we assume that aj + σj > 0, aj + Φ−1(ϵ)σ ≤ b, and

150

∑
j∈N aj +Φ−1(ϵ)

√∑
j∈N σ

2
j > b.

The CKP is a generalization of the binary knapsack problem, where the latter is

a special case with σj = 0 for each j ∈ N . Therefore, the CKP is also NP-hard. The

optimal solution for a CKP with a few items can be obtained using the branch-and-

bound algorithm provided by commercial optimization software because the problem

is an integer convex program. However, solving large-sized CKPs remains difficult.

Scalable exact solution approaches, such as the dynamic programming algorithm for

the binary knapsack problem, have not been studied yet. Instead, several studies

have proposed scalable approximation algorithms (Goyal & Ravi, 2010; Han et al.,

2016) and heuristics (Joung & Lee, 2020) for the CKP.

The CKP may seem artificial and disconnected from practical applications due to

the assumption of the probability distribution of random variables. However, normal

distributions have been considered in some applications of chance-constrained pro-

grams, for example, multi-robot teaming with uncertain reachable distances of robots

(Yang & Chakraborty, 2018), vaccine allocation with uncertain vaccine efficiency

(Tanner & Ntaimo, 2010), and network design with uncertain capacities (Atamtürk

& Bhardwaj, 2018). For those problems, the CKP can represent single-constraint

relaxations for the approximations that introduce the constraint-wise independence

assumption between random input data, as discussed in Section 1.2.5. Additionally,

the CKP is related to the robust knapsack problem under the ellipsoidal uncertainty

set. Such an uncertainty set can be generally expressed as

Ξ =

ξ ∈ Rn+ :
∑
j∈N

(
ξj − aj
σj

)2

≤ (Φ−1(ϵ))2

 ,

151

for some σj ∈ R+ and aj ∈ R+ for each j ∈ N with some Φ−1(ϵ) > 0. Then, the

robust knapsack problem can be formulated as

max
∑
j∈N

cjxj

s.t
∑
j∈N

ξjxj ≤ b, ∀ξ ∈ Ξ

x ∈ {0, 1}n

where the robust counterpart is

max
∑
j∈N

cjxj

s.t
∑
j∈N

ajxj +Φ−1(ϵ)

√∑
j∈N

σ2jx
2
j ≤ b

x ∈ {0, 1}n.

Therefore, the CKP is equivalent to the robust knapsack problem under the ellip-

soidal uncertainty set.

Valid inequalities for the CKP can be used to solve these problems. Generalizing

the concept of the cover (Balas, 1975; Wolsey, 1975; Hammer et al., 1975) for the

binary knapsack problem, Atamtürk & Narayanan (2009) introduced probabilistic

cover inequalities for the CKP described as

∑
j∈CP

xj ≤ |CP | − 1,

where CP ⊆ N is a probabilistic cover such that
∑

j∈CP
aj+Φ−1(ϵ)

√∑
j∈CP

σ2j > b.

152

The probabilistic cover inequalities can be strengthened using the sequential lifting

technique proposed by Padberg (1975). The resulting lifted probabilistic cover in-

equalities can be written as follows.

∑
j∈CP

xj +
∑

j∈N\CP

γjxj ≤ |CP | − 1

In the sequential lifting technique, each of the lifting coefficients γj ’s is determined

by solving the lifting problem, which aims to identify the maximum value of γj for

each j ∈ N while ensuring the validity of the resulting lifted probabilistic cover

inequality for the CKP. The lifting problems can be formulated as another CKP

where cj ’s are bounded by n (Joung & Park, 2017).

In the cutting plane algorithm using lifted probabilistic cover inequalities, a

number of the lifting problems should be solved repeatedly. However, to the best of

our knowledge, efficient exact solution approaches for the lifting problem have not

been studied yet. Although some studies have proposed lifting heuristics that utilize

the upper bounds of the lifting problems (Atamtürk & Narayanan, 2009; Joung &

Park, 2017), these methods may be time-consuming for the large-sized CKPs due to

their high computational complexity.

In this study, we propose a more efficient lifting heuristic for probabilistic cover

inequalities by utilizing a continuous relaxation for the CKP. We first introduce a

non-convex continuous relaxation of the CKP and show that the relaxation pro-

vides tighter upper bounds compared to the other continuous relaxations found in

the literature. The relaxation is formulated as a non-convex optimization problem

for which efficient solution approaches do not exist. However, we show that the

153

non-convex continuous relaxation for the CKP can be solved in polynomial time.

Subsequently, we devise a heuristic procedure to lift probabilistic cover inequalities

using the exact polynomial-time algorithm for the non-convex continuous relaxation.

Finally, we present computational test results to evaluate the performance of our

lifting heuristic.

The remainder of this chapter is organized as follows. We review the relevant

literature in Section 4.2. In Section 4.3, we introduce continuous relaxations for the

CKP and compare their strength. In Section 4.4, we propose an exact polynomial

time algorithm for a non-convex continuous relaxation of the CKP. The lifting heuris-

tic using the algorithm is devised in Section 4.5. The computational efficiency of the

proposed lifting heuristic, as well as the effectiveness of the resulting lifted prob-

abilistic cover inequalities, is demonstrated in Section 4.6. Finally, the concluding

remarks are given in Section 4.7.

4.2 Literature reviews

Continuous relaxations for the CKP can be obtained from various formulations for

the CKP proposed in the literature. Firstly, a continuous relaxation can be defined

from ICP by relaxing the integrality restriction. Goyal & Ravi (2010) showed that

this relaxation can have a large integrality gap, particularly for large n.

Atamtürk & Narayanan (2008) introduced an integer linear program for the CKP

using a submodular polytope (Conforti, Gérard, et al., 2014). The LP relaxation

of this formulation leads to another continuous relaxation for the CKP, described

with exponentially many constraints. Nevertheless, Atamtürk & Narayanan (2008)

showed that the relaxation can be solved efficiently using a cutting plane algorithm.

154

Another possible formulation for the CKP can be derived by exploiting the bi-

narity of the decision variables. The ICP can be reformulated by replacing x2j with

xj for each j ∈ N because x2j = xj when xj is binary. Goyal & Ravi (2010) used this

formulation to develop a polynomial time approximation scheme for the CKP. This

formulation can provide a continuous relaxation by relaxing the integrality restric-

tion. Because the feasible solution set of the relaxation is non-convex, we call the

relaxation the non-convex relaxation for the CKP.

These continuous relaxations for the CKP can be utilized to lift probabilistic

cover inequalities. As mentioned in Section 4.1, the lifting problem for probabilistic

cover inequalities can be formulated as another CKP. Instead of solving the lifting

problem exactly, one can determine each lifting coefficient using the upper bound of

the lifting problem, which can be obtained from one of the three continuous relax-

ations of the lifting problem. The resulting lifted probabilistic cover inequalities vary

depending on which continuous relaxation is utilized because the relaxations may

provide different upper bounds. However, to the best of our knowledge, comparative

studies between the continuous relaxations for the CKP have not yet been conducted.

Additionally, the relaxations have not been employed for the lifting heuristic, except

for Atamtürk & Narayanan (2009).

Atamtürk & Narayanan (2009) proposed a lifting heuristic that utilizes the non-

convex relaxation for the lifting problem. By exchanging the roles of the objec-

tive and constraint, the authors introduced an algorithm with a time complexity of

O(|CP |n3 log n) to solve the relaxation for the lifting problem using the parametric

optimization approach. While their lifting heuristic can be executed in polynomial

time, obtaining lifted probabilistic cover inequalities for large-sized CKPs may re-

155

quire considerable computation time due to the high computational complexity in-

volved. In this study, we propose a more efficient algorithm to solve the non-convex

relaxation for the lifting problem. Our algorithm can also efficiently solve the non-

convex relaxation for the CKP, not just for the lifting problem.

Another approach for determining lifting coefficients is based on the equivalence

between the CKP and the robust knapsack problem under an ellipsoidal uncertainty

set. Han et al. (2016) proposed a pseudo-polynomial time approximation algorithm

for the robust knapsack problem by introducing the inner approximation of the el-

lipsoidal uncertainty set, represented as a polyhedron. Based on the observation that

the robust knapsack problem under the approximated uncertainty set can provide

the upper bound of the CKP, Joung & Park (2017) proposed a lifting heuristic for

probabilistic cover inequalities, which utilizes the algorithm proposed by Han et al.

(2016). Through extensive computational tests, the authors demonstrated that the

proposed lifting heuristic could generate competitive lifted probabilistic cover in-

equalities in less computation time compared to Atamtürk & Narayanan (2009).

However, their lifting heuristic has a pseudo-polynomial time complexity. In con-

trast, we propose a polynomial-time lifting heuristic.

156

4.3 Comparison of continuous relaxations for the chance-

constrained binary knapsack problem

4.3.1 Continuous relaxations for the chanced-constrained binary

knapsack problem

This section introduces continuous relaxations for the CKP, which are briefly re-

viewed in Section 4.2. We then compare the upper bounds provided by the relax-

ations.

The first relaxation can be derived from the ICP defined in Section 4.1 by relaxing

the integrality restriction, which is described as max{
∑

j∈N cjxj : x ∈ PC}, where

PC =

x ∈ [0, 1]n :
∑
j∈N

ajxj +Φ−1(ϵ)

√∑
j∈N

σ2jx
2
j ≤ b

 .

We denote the above relaxation as the convex relaxation for the CKP because the

feasible solution set PC is a convex set. The upper bound provided from the convex

relaxation, zC = max{
∑

j∈N cjxj : x ∈ PC} can be obtained efficiently because the

relaxation is a convex optimization problem.

The CKP can also be formulated as a problem that finds S ⊆ N such that

max c(S)

s.t F (S) ≤ b

S ⊆ N,

where c(s) =
∑

j∈S cj and F (S) =
∑

j∈S aj +Φ−1(ϵ)
√∑

j∈S σ
2
j . F (S) is a submod-

ular set function, and the above problem can be reformulated as an integer linear

157

program as follows (Atamtürk & Narayanan, 2008).

max
∑
j∈N

cjxj

s.t
∑
j∈N

ω̂jxj ≤ b, ∀ω̂ ∈ ext(Ω)

x ∈ {0, 1}n

where ext(Ω) is the set of extreme points of Ω described as

Ω =

ω ∈ Rn :
∑
j∈S

ωj ≤ F (S), ∀S ⊆ N

 .

Another continuous relaxation for the CKP can be obtained from the above formu-

lation by relaxing the integrality restriction, which is described as max{
∑

j∈N cjxj :

x ∈ PP }, where

PP = {x ∈ [0, 1]n : ω̂jxj ≤ b, ∀ω̂ ∈ ext(Ω)}

Because |ext(Ω)| is finite, PP is a polyhedron. Hence, we call this relaxation the

polyhedral relaxation for the CKP. Even though the polyhedral relaxation has expo-

nentially many constraints, it can be solved in polynomial time because the separa-

tion problem for a given x̂ ∈ [0, 1]n, max{ωT x̂ : ω ∈ Ω}, can be solved in O(n log n)

(Edmond, 1970). Hence, the upper bound provided from the polyhedral relaxation,

zP = max{
∑

j∈N cjxj : x ∈ PP }, can be obtained efficiently using the cutting plane

algorithm.

On the other hand, the ICP can be rewritten by replacing x2j with xj for each

158

j ∈ N as follows.

max
∑
j∈N

cjxj

s.t
∑
j∈N

ajxj +Φ−1(ϵ)

√∑
j∈N

σ2jxj ≤ b

x ∈ {0, 1}n

The binarity of the decision variables ensures the validity of the above formulation.

This formulation yields a continuous relaxation described as max{
∑

j∈N cjxj : x ∈

PNC} where

PNC =

x ∈ [0, 1] :
∑
j∈N

ajxj +Φ−1(ϵ)

√∑
j∈N

σ2jxj ≤ b

 .

For the sake of brevity, let g(x) =
∑

j∈N ajxj +Φ−1(ϵ)
√∑

j∈N σ
2
jxj .

Proposition 4.1. g(x) is concave on Rn+.

Proof. The function
√
z is concave where z ∈ R+. Hence, for all θ ∈ [0, 1] and

z1, z2 ∈ R+, the following inequality holds.

θ
√
z1 + (1− θ)

√
z2 ≤

√
θz1 + (1− θ)z2

From this result, for all u, v ∈ Rn+ and θ ∈ [0, 1], it can be shown that

θg(u) + (1− θ)g(v) = θ
∑
j∈N

ajuj + (1− θ)

159

=
∑
j∈N

ajvj +Φ−1(ϵ)

θ√∑
j∈N

σ2juj + (1− θ)
√∑
j∈N

σ2j vj

≤
∑
j∈N

aj(θuj + (1− θ)vj) + Φ−1(ϵ)

√∑
j∈N

σ2j (θuj + (1− θ)vj)

= g(θu+ (1− θ)v).

Therefore, g(x) is a concave function.

By Proposition 4.1, PNC is a non-convex set. Hence, we refer to the relaxation

as the non-convex relaxation while zNC denotes the upper bound provided by the

relaxation. We first characterize the form of the optimal solution of the non-convex

relaxation.

Proposition 4.2. There exists an optimal solution for the non-convex relaxation in

which, at most, one variable has a fractional value.

Proof. Let x̂ ∈ PNC be the optimal solution of the non-convex relaxation, and

suppose that x̂ has more than two fractional variables. Then, we show that another

optimal solution can be constructed, where one of the fractional variables becomes

0 or 1.

Let k and l be the indices of the variables with fractional values in x̂. Since x̂ is

optimal, g(x̂) = b. If g(x̂) < b, x̂k or x̂l can be increased, which implies that x̂ is not

an optimal solution. Let us consider the following optimization problem.

max
∑

j∈N\{k,l}

cj x̂j + ckxk + clxl

160

s.t
∑

j∈N\{k,l}

aj x̂j + akxk + alxl +Φ−1(ϵ)

√ ∑
j∈N\{k,l}

σ2j x̂j + σ2kxk + σ2l xl = b

(4.2)

0 ≤ xk, xl ≤ 1

Let (x⋆k, x
⋆
l) be the optimal solution to the above problem. Using (x⋆k, x

⋆
l), we can

construct another solution x⋆ for the non-convex relaxation, where x⋆j = x̂j for

j ∈ N \ {k, l}. Then, x⋆ is also an optimal solution for the relaxation, that is,∑
j∈N cj x̂j =

∑
j∈N cjx

⋆
j .

On the other hand, the above problem can be reformulated as an optimization

problem with a single variable. Due to the constraint (4.2), xl can be expressed as

a function for xk, l(xk) such that

∑
j∈N\{k,l}

aj x̂j+akxk+all(xk)+Φ−1(ϵ)

√ ∑
j∈N\{k,l}

σ2j x̂j + σ2kxk + σ2l l(xk) = b. (4.3)

Then, (x⋆k, x
⋆
l) can be obtained by solving

max
0≤xk≤1

{ckxk + cll(xk) : 0 ≤ l(xk) ≤ 1}. (4.4)

We show that the objective function of the problem (4.4) is convex. For simplicity,

let

s(xk) =

√ ∑
j∈N\{k,l}

σ2j x̂j + σ2kxk + σ2l l(xk)

where the first and second derivatives are

161

s′(xk) =
σ2k + σ2l l

′(xk)

2s(xk)
,

and

s′′(xk) =
σ2l l

′′(xk)s(xk)− (σ2k + σ2l l
′(xk))s

′(xk)

2s(xk)2
,

respectively. From the second derivative of the equality (4.3), we can see that

all
′′(xk) + Φ−1(ϵ)s′′(xk) = 0,

and the following equality holds.

(
al +Φ−1(ϵ)

σ2l
2s(xk)

)
l′′(xk) = Φ−1(ϵ)

(σ2k + σ2l l
′(xk))

2

2s(xk)3

which implies that l′′(xk) ≥ 0, that is, l(xk) is convex.

This result implies that there exists an optimal solution for the problem (4.4),

lying on the boundary of xk, that is, x⋆k ∈ {0, 1} or l(x⋆k) ∈ {0, 1}. In other words,

x⋆k ∈ {0, 1} or x⋆l ∈ {0, 1}. Then, the corresponding x⋆ is another optimal solution for

the relaxation, which has fewer fractional variables. By applying this construction

repeatedly until, at most one variable has a fractional value, we can obtain an optimal

solution for the relaxation, which satisfies the condition in the statement.

The following section shows that the non-convex relaxation provides a tighter

bound for the CKP, compared to the other continuous relaxations, based on Propo-

sition 4.2.

162

4.3.2 Bound comparison for continuous relaxations

Proposition 4.3. zNC ≤ zC

Proof. We show that PNC ⊆ PC . For given x̂ ∈ PNC , it is clear that

∑
j∈N

aj x̂j +Φ−1(ϵ)

√∑
j∈N

σ2j x̂
2
j ≤

∑
j∈N

aj x̂j +Φ−1(ϵ)

√∑
j∈N

σ2j x̂j ≤ b,

because x̂ ∈ [0, 1]n. Therefore, the result follows.

Proposition 4.4. zNC ≤ zP

Proof. We show that the optimal solution of the non-convex relaxation is feasible

for PP . Let x⋆ be the optimal solution of the non-convex relaxation. By Proposition

4.2, x⋆ can be described as, for some Q ⊆ N and f ∈ N \ Q, x⋆j = 1 for j ∈ Q,

0 ≤ xf < 1, and xj = 0, j ∈ N \Q ∪ {f}. For brevity, let Q = {1, ..., f − 1}.

Let us consider the separation problem associated with PP described as

η⋆ = max

∑
j∈N

ωjx
⋆
j :
∑
j∈S

ωj ≤ F (S), S ⊆ N

 .

If x⋆ /∈ PP , then η⋆ > b while η⋆ ≤ b if x⋆ ∈ PP . The optimal solution of the

separation problem is ω⋆j = F (Sj) − F (Sj−1) for each j ∈ N where Sj = {1, ..., j}

and S0 = ∅. Then,

η⋆ =
∑
j∈N

ω⋆jx
⋆
j = F (Sf−1) + (F (Sf)− F (Sf−1))x

⋆
f .

Let x(S) be the vector that represents a set S ⊆ N such that xj(S) = 1 if j ∈ S,

otherwise, 0. Then, it is clear that F (S) = g(x(S)) for all S ⊆ N , and η⋆ can be

163

rewritten as follows.

η⋆ = (1− x⋆f)g(x(Sf−1)) + x⋆fg(x(Sf)).

We note that x⋆ = (1− x⋆f)x(Sf−1) + x⋆fx(Sf). Therefore,

b ≥ g(x⋆) = g((1− x⋆f)x(Sf−1) + x⋆fx(Sf)) ≥ η⋆

where the last inequality holds due to the concavity of g. This result implies that

x⋆ ∈ PP . Therefore, the result follows.

Proposition 4.3 and 4.4 imply that the non-convex relaxation provides the tighter

upper bound for the CKP compared to other continuous relaxations. Additionally,

we show that the integrality gap of the non-convex relaxation, (zNC − zOPT)/zOPT ,

is bounded where zOPT is the optimal objective value of the CKP.

Proposition 4.5. zNC−zOPT
zOPT

≤ 1

Proof. Let x⋆ be the optimal solution for the CKP’s non-convex relaxation, which

satisfies Proposition 4.2. Let f ∈ N be the fractional variable in x⋆ such that 0 ≤

x⋆f < 1.

From x⋆, we can define xL and xU as xLj = ⌊x⋆j⌋ for each j ∈ N and xUf = 1

while xUj = 0 for each j ∈ N \ {f}. Then, it is clear that xL and xU are feasible

solutions for the CKP. Then, the following inequalities hold.

zNC =
∑

j∈N\{f}

cjx
⋆
j + cfx

⋆
f ≤

∑
j∈N\{f}

cjx
L
j + cfx

U
f ≤ 2zOPT

164

The above inequalities imply that

zNC − zOPT
zOPT

≤ zOPT
zOPT

= 1.

Therefore, the result follows.

Proposition 4.5 implies that the quality of the upper bound provided by the

non-convex relaxation is guaranteed, whereas the convex relaxation for the CKP can

have a large integrality gap which increases as n increases (Goyal & Ravi, 2010).

The following example shows the difference definitely.

Example 4.1 (Goyal & Ravi, 2010). Let us consider the CKP where cj = σj = 1,

and aj = 1/
√
n for each j ∈ N . Additionally, let b = 3 and Φ−1(ϵ) = 1.6. Then, the

optimal solution should select three items for a sufficiently large n. If four items are

selected, then it is not feasible for the CKP because

4√
n
+Φ−1(ϵ)

√
4 > 3.

Therefore, zOPT = 3. On the other hand, let x̂j = 1/
√
n for each j ∈ N . Then, x̂ is

feasible for the convex relaxation because

∑
j∈N

1√
n
· 1√

n
+Φ−1(ϵ)

√√√√∑
j∈N

(
1√
n

)2

= 1 + Φ−1(ϵ) ≤ 3.

The corresponding objective value for the convex relaxation is
√
n. Because x̂ may

not be an optimal solution,
√
n ≤ zC . Therefore, the integrality gap of the convex

relaxation is greater than (
√
n− 3)/3, which increases as n increases. On the other

165

hand, let us define x⋆ as x⋆1 = x⋆2 = x⋆3 = 1 and

x⋆4 = 3(
√
n− 1) +

(Φ−1(ϵ))2n

2
−
√

(Φ−1(ϵ))4n2

4
+ 3(Φ−1(ϵ))2n

√
n,

while xj = 0, otherwise. By Proposition 4.2, it can be easily shown that x⋆ is the

optimal solution for the non-convex relaxation. Then,

zNC = 3
√
n+

(Φ−1(ϵ))2n

2
−
√

(Φ−1(ϵ))4n2

4
+ 3(Φ−1(ϵ))2n

√
n

=
9n

√
n+ (Φ−1(ϵ))2n

2 +

√
(Φ−1(ϵ))4n2

4 + 3(Φ−1(ϵ))2n
√
n

Because

lim
n→∞

zNC =
9

(Φ−1(ϵ))2
,

the integrality gap of the non-convex relaxation converges if n → ∞ whereas the

integrality gap of the convex relaxation diverges because limn→∞ zC =∞. The inte-

grality gap of the non-convex relaxation and the lower bound of the integrality gap

of the convex relaxation depending on n are illustrated in Figure 4.1.

Although the non-convex relaxation can provide a tight upper bound for the

CKP, it is not straightforward to obtain the bound because the non-convex relaxation

is a non-convex optimization problem. However, in the following section, we propose

an efficient algorithm to solve the non-convex relaxation using the property of the

optimal solution.

166

n

In
te
g
er
a
li
ty

g
a
p

Convex relaxation Non-convex relaxation

Figure 4.1: Integrality gaps of convex and non-convex relaxations

4.4 Polynomial-time algorithm for the non-convex relax-

ation

4.4.1 Reformulation of the non-convex relaxation

Let x⋆ be an optimal solution to the non-convex relaxation and δ∗ =
∑

j∈N σ
2
jx

⋆
j . Let

us consider the following problem, which is the LP relaxation of a binary knapsack

problem, when δ⋆ > 0,

SK: max
∑
j∈N

cjxj

s.t
∑
j∈N

ājxj ≤ b̄

x ∈ [0, 1]n,

167

where āj = aj +
Φ−1(ϵ)

2
√
δ⋆
σ2j for each j ∈ N and b̄ = b− Φ−1(ϵ)

2

√
δ⋆. When δ⋆ = 0, the

SK is defined as follows.

SK: max
∑
j∈N

cjxj

s.t
∑
j∈N

ajxj ≤ b

xj = 0, j ∈ N \N ′

x ∈ [0, 1]n,

where N ′ = {j ∈ N : σj = 0} and n′ = |N ′|.

Proposition 4.6. An optimal solution for the SK is optimal for the non-convex

relaxation.

Proof. It is clear that x⋆ is a feasible solution for the SK. Hence, zSK ≥ zNC where

zSK is the optimal objective value of the SK. Let PSK denote the feasible solution

set of the SK. We show that PSK ⊆ PNC , which implies that zSK = zNC .

Let x̂ ∈ PSK and δ̂ =
∑

j∈N σ
2
j x̂j . If δ

⋆ = 0, then
∑

j∈N aj x̂j ≤ b by the definition

of the SK. Because g(x̂) =
∑

j∈N aj x̂j , g(x̂) ≤ b, which implies that x̂ ∈ PNC . Now,

suppose that δ⋆ > 0. By the definition of the SK, x̂ satisfies the following inequality.

∑
j∈N

aj x̂j +
Φ−1(ϵ)

2

(
δ̂√
δ⋆

+
√
δ⋆

)
≤ b.

In addition, the following inequality holds by the arithmetic–geometric mean in-

equality.

2
√
δ̂ ≤ δ̂√

δ⋆
+
√
δ⋆

168

These results imply that

g(x̂) =
∑
j∈N

aj x̂j +Φ−1(ϵ)
√
δ̂ ≤

∑
j∈N

aj x̂j +
Φ−1(ϵ)

2

(
δ̂√
δ⋆

+
√
δ⋆

)
≤ b.

Therefore, x̂ ∈ PNC and PSK ⊆ PNC . Because zSK ≥ zNC , these results imply

that zNC = zSK . Hence, an optimal solution for the SK is not only feasible but also

optimal for the non-convex relaxation.

Recall that the SK is the LP relaxation of a binary knapsack problem. When

δ⋆ > 0, an optimal solution for the SK can be obtained in a greedy manner with

respect to the values of pj(δ
⋆)’s where

pj(δ
⋆) =

cj

aj +
Φ−1(ϵ)

2
√
δ⋆
σ2j
, j ∈ N.

Let τ(δ∗) = (τ1, ..., τn) be the sequence of variables sorted in descending order of

pj(δ
⋆)’s. Then, the optimal solution, x(δ⋆), for the SK is defined as, for t = min{k ∈

N :
∑k

j=1 āτj > b̄},

xτj (δ
⋆) =

1 , j < t

(b̄−
∑t−1

k=1 āτk)/āτt , j = t

0 , j > t

.

By Proposition 4.6, x(δ⋆) is an optimal solution for the non-convex relaxation when

δ⋆ > 0. In addition, g(x(δ⋆)) = b. Similarly, we can define an optimal solution for

the SK when δ⋆ = 0, x(0). Let τ(0) = (τ1, ..., τn′) be the sequence of variables in

N ′ sorted in descending order of cj/aj . Then, x(0) can be constructed in the same

169

manner with x(δ⋆) where xj(0) = 0 for each j ∈ N \N ′. By Proposition 4.6, x(0) is

also an optimal solution for the non-convex relaxation when δ⋆ = 0.

We can generalize the sequence τ(δ⋆) to some δ > 0. Let τ(δ) = (τ1, . . . , τn) be

the sequence of variables sorted in descending order of pj(δ) where

pj(δ) =
cj

aj +
Φ−1(ϵ)

2
√
δ
σ2j
.

Ties in the values of pj(δ)’s are broken in descending order of σj . In addition, let

x(δ) be a feasible solution of the non-convex relaxation, which is defined as, for

t = min{k ∈ N :
∑k

j=1 aj + Φ−1(ϵ)
√∑k

j=1 σ
2
j > b}, xτj (δ) = 1 for each j < t and

x(δ)τj = 0 for each j > t while xτt(δ) is the solution of the following quadratic

equation.

Φ−1(ϵ)2

 t∑
j=1

σ2τj + σ2τtxτt(δ)

 =

b− t−1∑
j=1

aτj − aτtxτt(δ)

2

Then, by definition, x(δ) has at most one fractional variable and g(x(δ)) = b.

The non-convex relaxation can be reformulated using the notion of x(δ) as an

optimization problem with a single variable as follows.

NCR: max
∑
j∈N

cjxj(δ)

s.t δ ∈ R+,

where the optimal solution is δ⋆. Now, we propose an efficient algorithm to solve the

above optimization problem.

170

4.4.2 Algorithm to solve the reformulated non-convex relaxation

By definition, τ(δ) changes as δ increases. However, it does not change continuously.

For example, let N = {1, 2}, Φ−1(ϵ) = 2, (c1, a1, σ
2
1) = (1, 2, 3), and (c2, a2, σ

2
2) =

(2, 3, 1). Then, τ(δ) is determined by

p1(δ) =
1

2 + 3√
δ

and p2(δ) =
2

3 + 1√
δ

.

We note that p1(δ) = p2(δ) when δ = 25, and p1(δ) < p2(δ) when δ < 25 while

p1(δ) ≤ p2(δ), otherwise. Hence, τ(δ) = (2, 1) if δ < 25, τ(δ) = (1, 2) if δ ≥ 25.

Based on this observation, we first show that there exists a finite number of

different τ(δ)’s for all δ ∈ R+.

Proposition 4.7. There exist at most
(
n(n−1)

2 + 2
)
different τ(δ)’s for all δ ∈ R+.

Proof. As shown in the above example, τ(δ) changes only before and after δ such

that pk(δ) = pl(δ) for some {k, l} ∈ N . Hence, there exist at most n(n−1)
2 such δ’s

with their corresponding τ(δ)’s. Let δmin be the minimum value among such δ’s.

Then, we can obtain another variable sequence τ(δmin − ε) where 0 < ε < δmin. We

note that τ(δ) = τ(δmin − ε) for all δ < δmin. In addition, we have τ(0). Therefore,(
n(n−1)

2 + 2
)
different τ(δ)’s can exist.

For some k ∈ N and l ∈ N such that k ̸= l, let δkl be the solution of pk(δ) = pl(δ)

if such δ exists.From the proof of Proposition 4.7, different τ(δ)’s can be derived from

δ ∈ ∆ where

∆ = {0, δmin − ε} ∪ {δkl : {k, l} ⊆ N, k < l},

and δmin = min{δkl : {k, l} ⊆ N, k < l}. Because only different τ(δ)’s can yield

171

different x(δ)’s by definition, it is sufficient to consider x(δ)’s such that δ ∈ ∆ to

solve the NCR. This observation leads to a polynomial-time algorithm to solve the

NCR, described as follows.

Algorithm 10 Enumeration method for the NCR

1: ∆← {0} ;
2: δmin ←∞ and z⋆ ← 0;
3: for k, l ∈ N do
4: δkl ←solve pk(δ) = pl(δ) ;
5: ∆← ∆ ∪ {δkl} ;
6: δmin ← δkl if δkl < δmin ;
7: end for
8: for δ ∈ ∆ do
9: Construct τ(δ) and x(δ) ;

10: z⋆ ←
∑

j∈N cjxj(δ) if z
⋆ <

∑
j∈N cjxj(δ) ;

11: end for
12: return z⋆ ;

Theorem 4.1. The NCR can be solved in O(n3 log n).

Proof. In Algorithm 10, it requires O(n2) computations to construct ∆ while x(δ)

for each δ ∈ ∆ can be obtained in O(n log n). Therefore, the result follows.

Although the NCR can be solved in polynomial time, constructing ∆ requires

O(n2) computation time, which can be time-consuming for large n. Therefore, we

propose an adaptive method to solve the NCR without enumerating elements of ∆.

For a given q ∈ R+, let δ̄ = min{δ ∈ ∆ : δ > q, x(δ) ̸= x(q)}. We first

characterize the candidates for δ̄. For the sake of brevity, let τ(q) = (1, . . . , n).

Then, for some f ∈ N , x(q) can be described as xj(q) = 1 for each j ∈ Q where

Q = {1, . . . , f − 1}, 0 ≤ xf (q) < 1, and xj(q) = 0 for each j ∈ N \Q.

Proposition 4.8. δ̄ ∈ {δfk : k ∈ N \ {f}}.

172

Proof. Suppose that δ̄ = δij such that {i, j} ∈ Q. Then, τ(δ̄) yields a sequence of

variables where only the orders of some variables in Q change from τ(q). Therefore,

x(δ̄) = x(q), which conflicts the definition of δ̄.

Now, suppose that δ̄ = δij such that {i, j} ∈ N \(Q∪{f}). τ(δ̄) yields a sequence

of variables where only the orders of some variables in N \ (Q ∪ {f}) changes from

τ(q), and x(δ̄) = x(q) which conflicts the definition of δ̄.

Finally, suppose that δ̄ = δij such that i ∈ Q and j ∈ N \ (Q ∪ {f}), i.e.,

i < f < j. By definition, pi(δ̄) = pj(δ̄). We show that

min{δfi, δfj} ≤ δ̄.

If pf (δ̄) = pi(δ̄), it is clear that δfi = δ̄, hence, δ̄ can be obtained from δfi. On

the other hand, if pf (δ̄) > pi(δ̄), then q < δfi ≤ δ̄, because pi(q) ≥ pf (q) and

pi(δ̄) < pf (δ̄) while pi(δ) and pf (δ) are continuous non-decreasing functions. Finally,

if pf (δ̄) < pi(δ̄), then pf (δ̄) < pj(δ̄) while pf (q) ≥ pj(q). Therefore, q < δfj ≤ δ̄

because pj(δ) is also a continuous non-decreasing function. These results imply that

δ̄ can be obtained from δfk’s where k ∈ N \ {f}.

Proposition 4.8 provides a cornerstone for our adaptive method to solve the

NCR. For any given q ∈ R+, we can find δ > q in O(n) such that δ ∈ ∆ and x(δ)

may differ from x(q) by searching for

min
k∈N\f

{δfk : δfk > q}

where f is the fractional variable in x(q). Similarly, for the obtained δ, we can

173

find another δ′ ∈ ∆ that leads to a different feasible solution for the non-convex

relaxation by applying the above procedure with δ replacing q. This way, we can

identify the elements of ∆ greater than q that produce different feasible solutions

for the NCR without explicitly enumerating ∆.

Our adaptive method explores the solutions x(δ) obtained by repeatedly applying

the above procedure, starting from a suitable initial value q ∈ R+. If q = 0, the

adaptive method can yield the optimal solution for the NCR. However, the method

may require many iterations until the optimal solution is found. In the subsequent

discussion, we propose the upper and lower bounds for the optimal solution δ⋆ for

the NCR, which can be used to reduce the number of iterations of the adaptive

method.

Recall that δ⋆ =
∑

j∈N σ
2
jx

⋆
j where x

⋆ is the optimal solution for the non-convex

relaxation. Then, the upper bounds for δ⋆ can be obtained by solving the following

optimization problem.

δ⋆max = max
x∈[0,1]n

∑
j∈N

σ2jxj : g(x) = b

 , (4.5)

Similarly, the lower bounds for δ⋆ can be obtained by solving

δ⋆min = min
x∈[0,1]n

∑
j∈N

σ2jxj : g(x) = b

 . (4.6)

For the sake of brevity, let N = {1, . . . , n} satisfy

σ21
a1
≥ σ22
a2
≥ · · · ≥ σ2n

an
.

174

Additionally, we define t1 = min{k ∈ N :
∑k

j=1 aj + Φ−1(ϵ)
√∑k

j=1 σ
2
j > b} and

t2 = max{k ∈ N :
∑n

j=k aj + Φ−1(ϵ)
√∑n

j=k σ
2
j > b}. Subsequently, we define xmax

as xmax
j = 1 for each j < t1 and xmax

j = 0 for each j > t1 while xmax
t1 makes

g(xmax) = b. Similarly, xmin is defined as xmin
j = 0 for each j < t2 and xmax

j = 1 for

each j > t2 while xmax
t2 makes g(xmin) = b. By definition, xmax and xmin are feasible

for the problems (4.5) and (4.6), respectively.

Proposition 4.9. xmax and xmin are optimal solutions for the problems (4.5) and

(4.6), respectively.

Proof. We first show that xmax is the optimal solution for (4.5). Suppose that xmax

is not the optimal solution, and there exists x′ ̸= xmax such that g(x′) = b and

σ(x′) > σ(xmax) where

σ(x) =
∑
j∈N

σ2jxj .

Let us consider the following problem.

max
∑
j∈N

σ2jxj

s.t
∑
j∈N

ajxj ≤ b− Φ−1(ϵ)
√
σ(xmax)

x ∈ [0, 1]n,

which is the LP relaxation of a binary knapsack problem. xmax and x′ are feasible for

the above problem. Because σ(xmax) < σ(x′), σ(xmax) is not the optimal solution

for the above problem. However, the optimal solution to the above problem should

be xmax by its definition and the property of the LP relaxation of a binary knapsack

175

problem. Therefore, such x′ cannot exist, and xmax is the optimal solution for the

problem 4.5.

Now, we show that xmin is the optimal solution for (4.6). Suppose that there

exists x′ such that g(x′) = b and σ(x′) < σ(xmin). Then, xmin and x′ are feasible for

the following problem.

min
∑
j∈N

σ2jxj

s.t
∑
j∈N

ajxj ≥ b− Φ−1(ϵ)
√
σ(xmin)

x ∈ [0, 1]n,

In addition, σ(xmin) > σ(x′). However, for the same reason with xmax, xmin is the

optimal solution to the above problem. Therefore, the result follows.

Proposition 4.9 implies that δ⋆max and δ⋆min can be obtained in O(n log n). On the

other hand, δ⋆min can be used as an initial value q for the adaptive method while

δ⋆max can be used for the termination condition. The overall adaptive method for the

NCR using the bounds for δ⋆ is described in Algorithm 11.

We note that each iteration in the loop of Algorithm 11 requires O(n log n)

computation. Such iteration is repeated at most O(n2) times, hence, the algorithm

also has O(n3 log n) computational complexity.

While the upper bound of the CKP can be obtained through the non-convex

relaxation using Algorithm 11, we can also obtain the lower bound for the CKP

by constructing a feasible solution for the CKP from the optimal solution for the

relaxation.

176

Algorithm 11 Adaptive method for the NCR

1: z⋆ ←
∑

j∈N cjxj(0) ;

2: δ⋆max ← maxx∈[0,1]n{
∑

j∈N σ2
jxj : g(x) = b} ;

3: δ⋆min ← minx∈[0,1]n{
∑

j∈N σ2
jxj : g(x) = b} ;

4: δ ← δ⋆min ;
5: while ∃δ and δ ≤ δ⋆max do
6: Construct τ(δ), x(δ), and f ←fractional variable index of x(δ) ;
7: if

∑
j∈N cjxj(δ) > z⋆ then

8: z⋆ ←
∑

j∈N cjxj(δ) ;
9: end if

10: δ ← min{δfk > δ : k ∈ N \ {f}} ;
11: end while
12: return z⋆ ;

From the proof of Proposition 4.5, let us recall xL and xU defined from the

optimal solution x⋆ for the non-convex relaxation.

Proposition 4.10. 1
2zOPT ≤ max{cTxL, cTxU}.

Proof. Since zOPT ≤
∑

j∈N cjx
⋆
j , the following inequalities hold.

zOPT ≤ cTxL + cTxU ≤ 2max{cTxL, cTxU}

Therefore, the result follows.

Based on Proposition 4.10, we devise a polynomial time 1/2-approximation al-

gorithm for the CKP using Algorithm 11, as described in Algorithm 12.

Algorithm 12 Polynomial time 1/2-approximation algorithm for CKP

1: x⋆ ← argmax{cTx : x ∈ PNC} using Algorithm 11 ;
2: f ←fractional variable index of x⋆ ;
3: xLj ← ⌊x⋆j⌋ for all j ∈ N ;

4: xUf ← 1 and xUj ← 0 for all j ∈ N \ {f} ;
5: xA ← argmax{cTxL, cTxU} ;
6: return xA ;

177

Therefore, we can obtain both tight upper and lower bounds for the CKP in

polynomial time from the non-convex relaxation using Algorithm 11 and 12, respec-

tively.

The following section proposes an efficient lifting heuristic for probabilistic cover

inequalities based on the non-convex relaxation and the proposed adaptive method.

4.5 Lifting heuristic based on the non-convex relaxation

Let a probabilistic cover inequality be given as

∑
j∈CP

xj ≤ |CP | − 1,

where CP is a probabilistic cover. As mentioned in Section 4.1, this inequality can

be strengthened to a lifted probabilistic cover inequality which is described as

∑
j∈CP

xj +
∑

j∈N\CP

γjxj ≤ |CP | − 1.

The lifting coefficients γj ’s can be obtained using the sequential lifting technique.

Let a sequence of variables in N \ CP be given as (j1, ..., jn−|CP |). The sequential

lifting technique computes each lifting coefficient in order of the given sequence of

variables by solving lifting problems. For each k = 1, ..., n−|CP |, the lifting problem

to obtain γjk can be formulated as another CKP described as follows (Joung & Park,

2017).

βjk = max
∑
i∈CP

xi +
∑

i∈Ck−1
P \CP

γixi + nxjk

178

s.t
∑
i∈Cj

P

aixi +Φ−1(ϵ)
√∑
i∈Ck

P

σ2i x
2
i ≤ b (4.7)

xi ∈ {0, 1}, i ∈ CkP ,

where CkP = CP ∪ {j1, . . . , jk} and C0
P = CP . Using the optimal objective value βjk ,

the lifting coefficient γjk is determined as

γjk = |CP | − 1 + n− βjk .

Rather than solving the lifting problem exactly, our lifting heuristic determines

the lifting coefficients using the upper bounds of the lifting problems. Specifically,

because the lifting problem (4.7) is another CKP, we use the upper bound of βjk

that can be obtained from the non-convex relaxation of the lifting problem.

For each k = 1, . . . , n − |CP |, the non-convex relaxation of the lifting problem

can be formulated as follows.

β̂jk = max
∑
i∈CP

xi +
∑

i∈Ck−1
P \CP

βixi + nxjk

s.t
∑
i∈Ck

P

aixi +Φ−1(ϵ)
√∑
i∈Ck

P

σ2i xi ≤ b (4.8)

xi ∈ [0, 1], i ∈ CkP .

Then, our lifting heuristic determines the lifting coefficient as γjk = |CP | − 1 + n−

⌊β̂jk⌋. The overall procedure is described in Algorithm 13.

In our lifting heuristic, the relaxation (4.8) can be solved in O(n3 log n) using

Algorithm 11. Atamtürk & Narayanan (2009) also proposed a lifting heuristic that

179

Algorithm 13 Lifting heuristic for probabilistic cover inequalities

1: procedure Lift(CP)
2: (j1, . . . , jn−|CP |)← N \ CP ; ▷ Variable sequencing
3: for k = 1, . . . , n− |CP | do
4: β̂jk ←Solve the relaxation (4.8) using Algorithm 11 ;

5: γjk ← |CP | − 1 + n− ⌊β̂jk⌋ ;
6: end for
7: return γ = (γj1 , . . . , γjn−|CP |) ;
8: end procedure

solves this relaxation repeatedly. However, their parametric optimization-based algo-

rithm for the relaxation (4.8) has O(|CP |n3 log n) computational complexity, which

is worse than our adaptive method.

Through computational experiments, we demonstrate that our lifting heuristic

significantly reduces the computation time spent on the lifting procedure compared

to the existing lifting heuristics, including Atamtürk & Narayanan (2009), while the

effectiveness of the resulting lifted probabilistic cover inequality remains competitive.

180

4.6 Computational test results

In this section, we present computational test results on the performance of the pro-

posed lifting heuristic. We compared the performance with two other lifting heuris-

tics proposed by Atamtürk & Narayanan (2009) and Joung & Park (2017), which

are denoted as “PL” (Parametric LP) and “RO” (Robust optimization technique)

based on the method they used, respectively.

We applied the methods to multi-dimensional chance-constrained binary knap-

sack problems (MCKP), which are described as

MCKP: max
∑
j∈N

cjxj

s.t
∑
j∈N

akjxj +Φ−1(ϵ)

√∑
j∈N

σ2kjx
2
j ≤ bk, k ∈ R

⋆

x ∈ {0, 1}n.

where |R⋆| = r⋆. We note that the feasible solution set of the MCKP is defined with

r⋆ different CKPs. For each n, r⋆, and Φ−1(ϵ), we generated 10 instances in the same

manner with Atamtürk & Narayanan (2009). Then, we reported the average results.

By relaxing the integrality restriction in the MCKP, a continuous relaxation can

be obtained, represented as a convex optimization problem. We applied the cutting

plane algorithm using probabilistic cover inequalities to the relaxation. In each iter-

ation of the algorithm, at most r⋆ different probabilistic covers were obtained, then

we applied the lifting methods to the probabilistic cover inequalities.

For the separation of probabilistic cover inequalities, we used the heuristic mod-

ifying the method proposed by Gu et al. (1998). Specifically, for a given incumbent

181

solution x̂ in the cutting plane algorithm, we obtained the probabilistic covers in

a greedy manner with respect to the values of 1 − x̂j . We also used the variable

ordering strategy proposed by Gu et al. (1998) to determine the lifting sequence.

We set 300 seconds time limit for the cutting plane algorithm. All algorithms were

implemented using C++ with the linear programming solver provided by Xpress

(Guéret et al., 2002). All tests were performed using a machine with an Intel Core

i7, 3.10GHz CPU, and 16GB RAM.

In the proposed lifting heuristic, the non-convex relaxation of the lifting problem

can be solved using both the adaptive method (Algorithm 11) and the enumeration

method (Algorithm 10). We first evaluated the efficiency of our lifting heuristic using

the adaptive method compared to the enumeration method. For each n and r⋆, we

tested instances with Φ−1(ϵ) ∈ {1, 3, 5}, and the average results are reported.

25 50 25 50

0

0.2

0.4

0.6

n = 150 n = 300

r⋆ =

L
T
im

e
(s
)

Enumeration Adaptive

(a) Liting time (s)

25 50 25 50

0

20

40

n = 150 n = 300

r⋆ =

#
It
er
a
ti
o
n

Enumeration Adaptive

(b) Number of the iterations

Figure 4.2: LTime (s) and #Iteration by lifting heuristics

Figure 4.2a shows the total computation time spent on the lifting procedure

182

(Lifting time, LTime) during the cutting plane algorithm. Both the enumeration

method and the adaptive method exactly solve the non-convex relaxation for the

lifting problem, resulting in the generation of the same lifted probabilistic cover

inequalities in the lifting heuristics. However, using the adaptive method could sig-

nificantly reduce the lifting time compared to using the enumeration method. The

difference can be explained by Figure 4.2b, which represents the average number of

iterations required to compute each lifting coefficient in each method, indicating the

number of elements in ∆ investigated in each method. Due to the upper and lower

bounds for the optimal δ⋆ proposed in Section 4.4, the adaptive method investigated

far fewer elements in ∆ compared to the enumeration method. Therefore, using the

adaptive method could generate lifted probabilistic cover inequalities in significantly

less time than the enumeration method, even though both methods have the same

computational complexity in theory.

Next, we compared the performance of the proposed lifting heuristic with the

others. Figure 4.3a and 4.3b show the integrality gap closed (%) by generated lifted

probabilistic cover inequalities, and the number of generated cuts (#Cut), respec-

tively. Here, “Proposed” refers to our lifting heuristic using the adaptive method,

described in Algorithm 13. For comparison, we also reported the performance of

probabilistic cover inequalities, denoted as “PCI”. For each n and r⋆, we tested in-

stances with Φ−1(ϵ) ∈ {1, 3, 5}, and the average results are represented. The detailed

result is presented in Appendix D.

As shown in Figure 4.3a, lifted inequalities can significantly enhance the formula-

tions compared to probabilistic cover inequalities, regardless of the lifting heuristics

employed. It is worth noting that the proposed lifting heuristic and PL yield the same

183

25 50 25 50

0

5

10

15

n = 150 n = 300

r⋆ =

IG
C

(%
)

PCI PL RO Proposed

(a) Integrality gap closed (%)

25 50 25 50

15

20

25

30

n = 150 n = 300

r⋆ =

#
C
u
t

PCI PL RO Proposed

(b) Number of generated cuts

Figure 4.3: IGC (%) and #Cut by lifting heuristics

lifted inequalities since they determine lifting coefficients by solving the same relax-

ation of lifting problems. While both the proposed lifting heuristic and PL improve

the integrality gap more than RO, the difference between them was insignificant.

The number of generated lifted probabilistic cover inequalities was also similar.

Figure 4.4a and 4.4b show the lifting and cutting plane time in seconds. As

shown in Figure 4.4a, both PL and RO required considerable amounts of time to

obtain lifted probabilistic cover inequalities. However, the proposed lifting heuristic

was performed extremely quickly, taking less than 0.05 seconds even for n = 300.

Therefore, the cutting plane algorithm using the proposed heuristic spent compara-

ble computation time compared to using only probabilistic cover inequalities while

significantly enhancing the formulations. In conclusion, the proposed lifting heuristic

efficiently strengthens probabilistic cover inequalities, and the resulting lifted prob-

abilistic cover inequalities remain competitive compared to those obtained using

184

25 50 25 50

0

10

20

30

n = 150 n = 300

r⋆ =

L
T
im

e
(s
)

PL RO Proposed

(a) Lifting time

25 50 25 50

0

10

20

30

40

n = 150 n = 300

r⋆ =

T
im

e
(s
)

PCI PL RO Proposed

(b) Cutting plane time

Figure 4.4: LTime (s) and cutting plane time (s) by lifting heuristics

existing lifting methods.

4.7 Conclusion

In this study, we proposed an efficient lifting heuristic for probabilistic cover inequal-

ities for the chance-constrained binary knapsack problem (CKP). We introduced a

non-convex relaxation for the CKP and showed that the relaxation provides a tighter

upper bound for the CKP compared to other continuous relaxations. Furthermore,

the quality of the obtained upper bound is guaranteed at most twice the optimal

objective value of the CKP. Even though the non-convex relaxation is a non-convex

optimization problem, we devised a polynomial time algorithm for the relaxation

based on its reformulation. We then proposed a lifting heuristic for probabilistic

cover inequalities, which sequentially determines the lifting coefficients by solving

the non-convex relaxations of the lifting problems using the proposed algorithm.

185

Computational test results indicated that our lifting heuristic outperforms the ex-

isting lifting methods in terms of computational efficiency. At the same time, the

generated inequalities’ effectiveness remains comparable to the existing lifting meth-

ods.

Even though our lifting heuristic has less computational complexity than the one

proposed by Atamtürk & Narayanan (2009) in theory, its performance exceeded our

expectations. It is necessary to conduct a more elaborate analysis of the computa-

tional complexity of the proposed heuristic with tight examples.

Additionally, computational complexities for the problems associated with the

lifting procedure are still open questions. Because the lifting problem is a special

case of the CKP, it may be solved efficiently as the lifting problem of the binary

knapsack problem, even though the CKP is NP-hard. Also, the separation problem

for probabilistic cover inequalities has not been seriously studied yet. Hence, this

line of research may help tackle chance-constrained programs using cutting plane

algorithms.

186

Chapter 5

Conclusion

5.1 Summary and contributions

In this thesis, we proposed cut generation methods for the two variants of the binary

knapsack problem, which can be used in solving general binary integer programs:

the binary knapsack problem with generalized upper bounds (GKP) and the chance-

constrained binary knapsack problem (CKP).

In Chapter 2, we investigated valid inequalities for the GKP, which can be more

effective in solving binary integer linear programs with generalized upper bounds

compared to those for the binary knapsack problem. Specifically, we focused on

rank-1 CG cuts, CG cuts for shorts, and the separation problem for the GKP, which

have not been studied in the literature. We first characterized non-dominated CG

cuts for the GKP and analyzed the computational complexity of the separation

problem. Based on the results, we presented exact and heuristic algorithms for the

separation problem. Although the CG cut separation problem for general integer lin-

ear programs is known to be strongly NP-hard, we demonstrated that the separation

problem for the GKP can be solved in pseudo-polynomial time through the proposed

exact separation algorithm. The performance of the proposed separation algorithms

and the effectiveness of the generated CG cuts were evaluated through extensive com-

187

putational tests using instances for the GKP and general binary integer programs.

The test results showed that the proposed separation algorithms outperformed the

existing mixed-integer programming approach for the separation problem. Using the

proposed heuristic separation algorithm could improve the comparable integrality

gap with using the exact separation algorithm within significantly less time. Further-

more, CG cuts generated by the heuristic separation algorithm could provide more

enhanced formulations than general lifted GUB cover inequalities within comparable

computation times.

In Chapter 3, we presented a novel CG cut strengthening method for binary

integer linear programs, which can yield more enhanced formulations using fewer

cuts. We first defined maximal CG cuts for binary knapsack polytopes and pro-

posed a method to derive one that dominates given CG cuts for binary integer linear

programs. Subsequently, we introduced an extended knapsack polytope where the

maximal CG cut can be interpreted as its lifted cover inequality. We then proposed

a strengthening method for the maximal CG cut using the lifting function for cover

inequalities. Through theoretical comparison, we showed that the obtained cut is at

least as strong as the Gomory mixed-integer cut derived from the maximal CG cut.

We also extended the method to CG cuts for binary integer linear programs with

generalized upper bounds. Computational test results demonstrated that our CG

cut strengthening method could provide more enhanced formulations using fewer

cuts than using CG cuts. Furthermore, the proposed method could reduce the total

computation time for the cutting plane algorithm by decreasing the number of it-

erations, even though additional computation time was required to strengthen CG

cuts. However, for binary integer linear programs with generalized upper bounds,

188

the performance of the proposed method was indistinguishable from using Gomory

mixed-integer cuts.

In Chapter 4, we proposed an efficient lifting heuristic for probabilistic cover

inequalities for the CKP, which can be used to solve chance-constrained programs

representing optimization problems under uncertainty. We introduced a non-convex

relaxation for the CKP and showed that the relaxation provides a tighter upper

bound for the CKP compared to existing continuous relaxations. Subsequently, we

devised a polynomial time algorithm for the relaxation. We then proposed a lifting

heuristic for probabilistic cover inequalities using the non-convex relaxation for the

CKP and the proposed algorithm. Computational test results indicated that our lift-

ing heuristic could generate lifted probabilistic cover inequalities in significantly less

time than existing lifting methods, while the strength of the generated inequalities

remains comparable.

5.2 Future research directions

The results of this thesis offer several future research directions. The heuristic CG

cut separation algorithm proposed in Chapter 2 showed promising performance even

though we selected the parameter arbitrarily. However, a more careful choice of

the parameter by exploring more properties of effective CG cuts may improve the

algorithm’s performance. Furthermore, rank-1 CG cuts for the GKP can represent

useful valid inequalities such as GUB cover inequalities, as shown in Chapter 2.

Investigation into the properties of effective CG cuts for the GKP may lead to a

new family of strong valid inequalities for the GKP. Our analysis results on the non-

dominated CG cuts for the GKP generalized the results for the binary knapsack

189

problem by Park & Lee (2011). Similarly, one can further generalize our results to

more complicated variants of the binary knapsack problem or other sub-structures

of general binary integer linear programs.

We showed that the CG cut separation problem for the GKP can be solved

in pseudo-polynomial time. This result implies that the separation problem is not

strongly NP-hard. However, we failed to reveal the computational complexity of the

separation problem, whether it is NP-hard or not. Studies on the computational

complexity of the separation problem for the GKP can provide some important

insights concerned with CG cuts. For example, studies on the NP-hardness of the

CG cut separation problem for the GKP can provide an answer for the NP-hardness

of the CG cut separation problem for general binary integer linear programs.

We showed that the strengthening method for maximal CG cuts for binary knap-

sack polytopes proposed in Chapter 3 yields a new family of valid inequalities for

binary knapsack polytopes, namely SCG cuts. We extended the results to the case

with generalized upper bounds; however, the effectiveness of the obtained SCG cuts

was insignificant in that case. One possible explanation is that the generalized upper

bounds are not incorporated explicitly in our method. Herefore, we suggest devising

another strengthening method that incorporates the generalized upper bounds ex-

plicitly to yield more effective cuts in that case. Furthermore, the proposed strength-

ening methods can be applied to any CG cuts for binary integer linear programs with

or without generalized upper bounds. However, we only presented computational re-

sults utilizing the CG cuts derived from each constraint of the test instances. One

can evaluate the proposed methods’ performances for CG cuts derived from other

single-constraint relaxations, such as Gomory fractional cuts derived from the opti-

190

mal simplex tableau.

A closure using SCG cuts can be defined similarly to the Chvátal closure. Al-

though we showed that the SCG cuts are at least as strong as the Gomory mixed-

integer cuts derived from maximal CG cuts, it does not necessarily mean that their

closure is tighter than the Gomory mixed-integer closure. Therefore, it may be help-

ful to analyze the strength of the closure to understand the effectiveness of SCG

cuts. Additionally, investigating the separation problem for SCG cuts can be an-

other research direction to enhance the capability of solving general binary integer

linear programs.

Regarding the lifting of probabilistic cover inequalities, developing an efficient

exact algorithm for the lifting problem may be possible. Moreover, it is necessary to

develop exact solution approaches for the CKP that can provide optimal solutions

for problems with many items in a reasonable time. In this study, we only consid-

ered down-liftings for probabilistic cover inequalities, but introducing up-liftings can

lead to more effective cuts that can be used to solve chance-constrained programs.

Additionally, we proposed an approximation algorithm for the CKP in this study.

Exploring its applications or comparing it with other approximation algorithms are

also interesting research directions.

The valid inequalities for the CKP studied in this thesis can be applied to

chance-constrained programs under specific distributions of random variables. Valid

inequalities for more general chance-constrained programs can also be studied. For

example, Küçükyavuz (2012) investigated sub-structures for scenario-based chance-

constrained programs and derived a useful family of cuts. This line of research may

improve the solvability of optimization problems under uncertainty.

191

Throughout this thesis, we proposed cut generation methods that can be ap-

plied to single-constraint relaxations for general binary integer programs. However,

we did not discuss how to obtain single-constraint relaxations. We only focused on

those derived from each constraint of the problem. One possible research direction

is to propose an adaptive method for constructing the single-constraint relaxation

by aggregating the constraints through the cutting plane algorithm. For instance,

dual optimal solutions obtained in each iteration of the cutting plane algorithm can

be used for binary integer linear programs. Then, more effective cuts may be de-

rived from the relaxation using our cut generation methods, which may significantly

improve the performance of general-purpose optimization solvers. Furthermore, it is

necessary to evaluate how much the proposed cut generation methods improve the

solvability of binary integer linear programs by implementing them in the branch-

and-cut framework.

The studies on the binary knapsack problem have been extended to cases with

general integral or continuous decision variables, and the generalized results have

been a cornerstone in enhancing the capability of solving integer or mixed-integer

programs. We hope the results presented in this thesis can also be extended to more

general knapsack problems.

192

Bibliography

Ahmed, Shabbir (2014). “Convex relaxations of chance constrained optimization

problems”. Optimization Letters 8, pp. 1–12.

Atamtürk, Alper & Avinash Bhardwaj (2018). “Network design with probabilistic

capacities”. Networks 71.1, pp. 16–30.

Atamtürk, Alper & Oktay Günlük (2010). “Mingling: mixed-integer rounding with

bounds”. Mathematical Programming 123, pp. 315–338.

Atamtürk, Alper & Kiavash Kianfar (2012). “n-step mingling inequalities: new facets

for the mixed-integer knapsack set”. Mathematical programming 132, pp. 79–98.

Atamtürk, Alper & Vishnu Narayanan (2008). “Polymatroids and mean-risk mini-

mization in discrete optimization”. Operations Research Letters 36.5, pp. 618–

622.

— (2009). “The submodular knapsack polytope”. Discrete Optimization 6.4, pp. 333–

344.

Balas, Egon (1975). “Facets of the knapsack polytope”. Mathematical programming

8.1, pp. 146–164.

Balas, Egon, Sebastian Ceria, Gérard Cornuéjols & N Natraj (1996). “Gomory cuts

revisited”. Operations Research Letters 19.1, pp. 1–9.

Balas, Egon & Eitan Zemel (1978). “Facets of the knapsack polytope from minimal

covers”. SIAM Journal on Applied Mathematics 34.1, pp. 119–148.

193

Balintfy, Joseph L., G. Terry Ross, Prabhakant Sinha & Andris A. Zoltners (1978).

“A mathematical programming system for preference and compatibility maxi-

mized menu planning and scheduling”. Mathematical Programming 15.1, pp. 63–

76.

Basu, Amitabh, Robert Hildebrand & Matthias Köppe (2016a). “Light on the infi-

nite group relaxation I: foundations and taxonomy”. 4OR 14, pp. 1–40.

— (2016b). “Light on the infinite group relaxation II: sufficient conditions for ex-

tremality, sequences, and algorithms”. 4OR 14, pp. 107–131.

Beasley, John E. (1990). “OR-Library: distributing test problems by electronic mail”.

Journal of the operational research society 41.11, pp. 1069–1072.

Ben-Tal, Aharon, Laurent El Ghaoui & Arkadi Nemirovski (2009). Robust optimiza-

tion. Vol. 28. Princeton university press.

Bertsimas, Dimitris, David B. Brown & Constantine Caramanis (2011). “Theory

and Applications of Robust Optimization”. SIAM Review 53.3, pp. 464–501.

Bertsimas, Dimitris & Melvyn Sim (2004). “The price of robustness”. Operations

research 52.1, pp. 35–53.

Birge, John R & Francois Louveaux (2011). Introduction to stochastic programming.

Springer Science & Business Media.

Bixby, Robert E, Sebastian Ceria, Cassandra M McZeal & Martin WP Savelsbergh

(1998). An updated mixed integer programming library: MIPLIB 3.0. Tech. rep.

Bixby, Robert E., Mary Fenelon, Zonghao Gu, Ed Rothberg & Roland Wunderling

(2004). “Mixed-integer programming: A progress report”. The sharpest cut: the

impact of Manfred Padberg and his work. SIAM, pp. 309–325.

194

Burdet, Claude-Alain & Ellis L Johnson (1975). “A subadditive approach to solve

linear integer programs”. Annals of Discrete Mathematics 1, pp. 117–144.

Cacchiani, Valentina, Manuel Iori, Alberto Locatelli & Silvano Martello (2022).

“Knapsack problems-An overview of recent advances. Part II: Multiple, mul-

tidimensional, and quadratic knapsack problems”. Computers & Operations Re-

search, p. 105693.

Caprara, Alberto & Matteo Fischetti (1996). “{0, 1/2}-Chvátal-Gomory cuts”.

Mathematical Programming 74, pp. 221–235.

Caprara, Alberto & Adam N Letchford (2003). “On the separation of split cuts and

related inequalities”. Mathematical Programming 94, pp. 279–294.

Cavalcante, Cristina C. B., C. Carvalho De Souza, MartinW. P. Savelsbergh, Yaoguang

Wang & Laurence A. Wolsey (2001). “Scheduling projects with labor con-

straints”. Discrete Applied Mathematics 112.1-3, pp. 27–52.

Charnes, Abraham, William W Cooper & Gifford H Symonds (1958). “Cost horizons

and certainty equivalents: an approach to stochastic programming of heating oil”.

Management science 4.3, pp. 235–263.

Chvátal, Vasek (1973). “Edmonds polytopes and a hierarchy of combinatorial prob-

lems”. Discrete mathematics 4.4, pp. 305–337.

Conforti, Michele, Gérard Cornuéjols, Aris Daniilidis, Claude Lemaréchal & Jérôme

Malick (2015). “Cut-generating functions and S-free sets”. Mathematics of Op-

erations Research 40.2, pp. 276–391.

Conforti, Michele, Cornuéjols Gérard & Giacomo Zambelli (2014). Integer Program-

ming. Springer International Publishing.

195

Cook, William, Ravindran Kannan & Alexander Schrijver (1990). “Chvátal closures

for mixed integer programming problems”. Mathematical Programming 47.1-3,

pp. 155–174.

Cornuéjols, Gérard et al. (2007). “Revival of the Gomory cuts in the 1990’s.” Annals

of Operations Research 149.1, pp. 63–66.

Crowder, Harlan, Ellis L Johnson & Manfred Padberg (1983). “Solving large-scale

zero-one linear programming problems”. Operations Research 31.5, pp. 803–834.

D’Andreagiovanni, Fabio, Carlo Mannino & Antonio Sassano (2013). “GUB cov-

ers and power-indexed formulations for wireless network design”. Management

Science 59.1, pp. 142–156.

Dantzig, George B (1955). “Linear programming under uncertainty”. Management

science 1.3-4, pp. 197–206.

Dey, Santanu S & Jean-Philippe Richard (2009). “Linear-programming-based lifting

and its application to primal cutting-plane algorithms”. INFORMS Journal on

Computing 21.1, pp. 137–150.

Dey, Santanu S & Andrea Tramontani (2009). “Recent developments in multi-row

cuts”. Optima 80, pp. 2–8.

Edmond, Jack (1970). “Submodular functions, matroids, and certain polyhedra”.

Combinatorial Structures and Their Applications. Gordon and Breach, Louvain,

pp. 69–87.

Edmonds, Jack (1965). “Maximum matching and a polyhedron with 0, 1-vertices”.

Journal of research of the National Bureau of Standards B 69.125-130, pp. 55–56.

Eisenbrand, Friedrich (1999). “Note-on the membership problem for the elementary

closure of a polyhedron”. Combinatorica 19.2, pp. 297–300.

196

Fischetti, Matteo & Andrea Lodi (2007). “Optimizing over the first Chvátal closure”.

Mathematical Programming 110.1, pp. 3–20.

Gabrel, Virginie, Cécile Murat & Aurélie Thiele (2014). “Recent advances in robust

optimization: An overview”. European journal of operational research 235.3,

pp. 471–483.

Garey, Michael R. & David S. Johnson (1979). Computers and intractability. Vol. 174.

freeman San Francisco.

Glover, Fred & Darwin Klingman (1979). “A O(nlogn) algorithm for LP Knapsacks

with GUB constraints”. Mathematical Programming 17.1, pp. 345–361.

Glover, Fred, Hanif D. Sherali & Youngho Lee (1997). “Generating Cuts from

Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming”.

Computational Optimization and Applications 8.2, pp. 151–172.

Gomory, Ralph (1958). “Outline of an algorithm for integer solutions to linear

programs”. Bulletin of the American Mathematical Society 64.5, pp. 275–278.

— (1960). “An Algorithm for the mixed Integer Problem”. Technical Report RM-

2597, The Rand Corporation.

Gomory, Ralph E & Ellis L Johnson (1972a). “Some continuous functions related

to corner polyhedra”. Mathematical Programming 3, pp. 23–85.

— (1972b). “Some continuous functions related to corner polyhedra, II”. Mathe-

matical Programming 3, pp. 359–389.

Goyal, Vineet & R. Ravi (2010). “A PTAS for the chance-constrained knapsack

problem with random item sizes”. Operations Research Letters 38.3, pp. 161–

164.

197

Gu, Zonghao, George L Nemhauser & Martin WP Savelsbergh (1998). “Lifted cover

inequalities for 0-1 integer programs: Computation”. INFORMS Journal on

Computing 10.4, pp. 427–437.

— (2000). “Sequence independent lifting in mixed integer programming”. Journal

of Combinatorial Optimization 4, pp. 109–129.

Guéret, Christelle, Christian Prins & Marc Sevaux (2002). Applications of optimiza-

tion with Xpress-MP. Dash Optimization Limited.

Hammer, Peter L, Ellis L Johnson & Uri N Peled (1975). “Facet of regular 0–1

polytopes”. Mathematical Programming 8.1, pp. 179–206.

Han, Jinil, Kyungsik Lee, Chungmok Lee, Ki-Seok Choi & Sungsoo Park (2016).

“Robust optimization approach for a chance-constrained binary knapsack prob-

lem”. Mathematical Programming 157.1, pp. 277–296.

Hojny, Christopher, Tristan Gally, Oliver Habeck, Hendrik Lüthen, Frederic Matter,

Marc E Pfetsch & Andreas Schmitt (2020). “Knapsack polytopes: a survey”.

Annals of Operations Research 292, pp. 469–517.

Johnson, Ellis L & Manfred W Padberg (1981). “A note of the knapsack problem

with special ordered sets”. Operations Research Letters 1.1, pp. 18–22.

Joung, Seulgi & Kyungsik Lee (2020). “Robust optimization-based heuristic algo-

rithm for the chance-constrained knapsack problem using submodularity”. Op-

timization Letters 14.1, pp. 101–113.

Joung, Seulgi & Sungsoo Park (2017). “Lifting of probabilistic cover inequalities”.

Operations Research Letters 45.5, pp. 513–518.

Kall, Peter, Stein W Wallace & Peter Kall (1994). Stochastic programming. Vol. 6.

Springer.

198

Kaparis, Konstantinos & Adam N Letchford (2010). “Separation algorithms for 0-1

knapsack polytopes”. Mathematical programming 124, pp. 69–91.

Kellerer, H., U. Pferschy & D. Pisinger (2004). Knapsack Problems. Springer, Berlin,

Germany.

Kim, Junyoung, Byungju Goo, Youngjoo Roh, Chungmok Lee & Kyungsik Lee

(2023). “A branch-and-price approach for airport gate assignment problem with

chance constraints”. Transportation Research Part B: Methodological 168, pp. 1–

26.

Klabjan, Diego, George L Nemhauser & Craig Tovey (1998). “The complexity of

cover inequality separation”. Operations Research Letters 23.1-2, pp. 35–40.

Küçükyavuz, Simge (2012). “On mixing sets arising in chance-constrained program-

ming”. Mathematical programming 132.1-2, pp. 31–56.

Land, A. H. & A. G. Doig (1960). “An Automatic Method of Solving Discrete

Programming Problems”. Econometrica 28.3, pp. 497–520.

Lee, Dabeen (2019). “On the NP-hardness of deciding emptiness of the split closure

of a rational polytope in the 0, 1 hypercube”. Discrete Optimization 32, pp. 11–

18.

Lee, Kyungsik (2012). “Separation Heuristic for the Rank-1 Chvatal-Gomory In-

equalities for the Binary Knapsack Problem”. Journal of Korean Institute of

Industrial Engineers 38.2, pp. 74–79.

Letchford, Adam N & Andrea Lodi (2002). “Strengthening Chvátal–Gomory cuts

and Gomory fractional cuts”. Operations Research Letters 30.2, pp. 74–82.

199

Letchford, Adam N & Georgia Souli (2019). “On lifted cover inequalities: A new

lifting procedure with unusual properties”. Operations Research Letters 47.2,

pp. 83–87.

Luedtke, James, Shabbir Ahmed & George L Nemhauser (2010). “An integer pro-

gramming approach for linear programs with probabilistic constraints”. Mathe-

matical programming 122.2, pp. 247–272.

Marchand, Hugues, Alexander Martin, Robert Weismantel & LaurenceWolsey (2002).

“Cutting planes in integer and mixed integer programming”. Discrete Applied

Mathematics 123.1-3, pp. 397–446.

Marchand, Hugues & Laurence A Wolsey (2001). “Aggregation and mixed integer

rounding to solve MIPs”. Operations research 49.3, pp. 363–371.

Martello, Silvano & Paolo Toth (1990). Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc.

Miller, Bruce L & Harvey M Wagner (1965). “Chance constrained programming

with joint constraints”. Operations Research 13.6, pp. 930–945.

Nemhauser, George L & Laurence A Wolsey (1990). “A recursive procedure to

generate all cuts for 0–1 mixed integer programs”. Mathematical Programming

46.1-3, pp. 379–390.

Nemhauser, George L. & Pamela H. Vance (1994). “Lifted cover facets of the 0–1

knapsack polytope with GUB constraints”. Operations Research Letters 16.5,

pp. 255–263.

Nemirovski, Arkadi (2012). “On safe tractable approximations of chance constraints”.

European Journal of Operational Research 219.3, pp. 707–718.

200

Nemirovski, Arkadi & Alexander Shapiro (2007). “Convex approximations of chance

constrained programs”. SIAM Journal on Optimization 17.4, pp. 969–996.

Padberg, Manfred W (1973). “On the facial structure of set packing polyhedra”.

Mathematical programming 5.1, pp. 199–215.

— (1975). “A note on zero-one programming”. Operations Research 23.4, pp. 833–

837.

Park, Kyungchul & Kyungsik Lee (2011). “On the Separation of the Rank-1 Chvatal-

Gomory Inequalities for the Fixed-Charge 0-1 Knapsack Problem”. Journal of

the Korean Operations Research and Management Science Society 36.2, pp. 43–

50.

Powell, Warren B (2019). “A unified framework for stochastic optimization”. Euro-

pean Journal of Operational Research 275.3, pp. 795–821.

Prékopa, András (1970). “On probabilistic constrained programming”. Proceedings

of the Princeton symposium on mathematical programming. Vol. 113. Princeton,

NJ, p. 138.

— (2013). Stochastic programming. Vol. 324. Springer Science & Business Media.

Ruszczyński, Andrzej (2002). “Probabilistic programming with discrete distributions

and precedence constrained knapsack polyhedra”. Mathematical Programming

93, pp. 195–215.

Sankaran, Jayaram K., Dennis L. Bricker & Shuw-Hwey Juang (1999). “A strong

fractional cutting-plane algorithm for resource-constrained project scheduling”.

International Journal of Industrial Engineering 6, pp. 99–111.

Schrijver, A (1980). “On cutting planes”. Annals of Discrete Mathematics 9,

pp. 291–296.

201

Shapiro, Alexander, Darinka Dentcheva & Andrzej Ruszczynski (2021). Lectures on

stochastic programming: modeling and theory. SIAM.

Sherali, Hanif D. & Youngho Lee (1995). “Sequential and simultaneous liftings of

minimal cover inequalities for generalized upper bound constrained knapsack

polytopes”. SIAM Journal on Discrete Mathematics 8.1, pp. 133–153.

Sinha, Prabhakant & Andris A. Zoltners (1979). “The multiple-choice knapsack

problem”. Operations Research 27.3, pp. 503–515.

Sousa, Jorge P & Laurence A Wolsey (1992). “A time indexed formulation of non-

preemptive single machine scheduling problems”. Mathematical programming 54,

pp. 353–367.

Tanner, Matthew W. & Lewis Ntaimo (2010). “IIS branch-and-cut for joint chance-

constrained stochastic programs and application to optimal vaccine allocation”.

European Journal of Operational Research 207.1, pp. 290–296.

Van Roy, Tony J & Laurence A Wolsey (1987). “Solving mixed integer programming

problems using automatic reformulation”. Operations Research 35.1, pp. 45–57.

Wolsey, Laurence A (1977). “Valid inequalities and superadditivity for 0–1 integer

programs”. Mathematics of Operations Research 2.1, pp. 66–77.

— (1975). “Faces for a linear inequality in 0–1 variables”. Mathematical Program-

ming 8.1, pp. 165–178.

— (1990). “Valid inequalities for 0–1 knapsacks and mips with generalised upper

bound constraints”. Discrete Applied Mathematics 29.2-3, pp. 251–261.

Yang, Fan & Nilanjan Chakraborty (2018). “Algorithm for optimal chance con-

strained knapsack problem with applications to multi-robot teaming”. 2018

202

IEEE International Conference on Robotics and Automation (ICRA). IEEE,

pp. 1043–1049.

Zemel, Eitan (1978). “Lifting the facets of zero–one polytopes”. Mathematical

Programming 15, pp. 268–277.

— (1989). “Easily computable facets of the knapsack polytope”. Mathematics of

Operations Research 14.4, pp. 760–764.

203

Appendix A

Summary of benchmark instances

In this appendix, we give the summary of benchmark instances used in experiments.

We refer to the column headed ‘zLP ’ and ‘zOPT ’ as the optimal objective values

of the LP relaxation and the optimal objective value to the problem. If zOPT is

unknown for some instances, we report ‘zB’ and ‘zU ’ which means the best solution

and best upper bound, respectively, instead of zOPT . ‘zB’ and ‘zU ’ are obtained after

solving each instance with the MIP solver provided by Xpress for 1,800 seconds. The

optimality gap (Gap) is computed as follows:

Gap(%) =
zU − zB
zU

∗ 100

205

Table A.1: Summary of MMKP instances

Name m ni r⋆ zLP zB zU Gap (%)

I01 5 5 5 182.7 173.0 173.0 0.00
I02 10 5 5 365.6 364.0 364.0 0.00
I03 15 10 10 1626.6 1602.0 1602.0 0.00
I04 20 10 10 3631.4 3597.0 3597.0 0.00
I05 25 10 10 3905.9 3905.7 3905.7 0.00
I06 30 10 10 4812.8 4799.3 4799.3 0.00
I07 100 10 10 24608.0 24595.0 24598.9 0.02
I08 150 10 10 36904.4 36889.0 36899.4 0.03
I09 200 10 10 49193.9 49175.0 49190.8 0.03
I10 250 10 10 61486.3 61474.0 61483.9 0.02
I11 300 10 10 73797.7 73779.0 73795.6 0.02
I12 350 10 10 86100.5 86091.0 86098.0 0.01
I13 400 10 10 98448.6 98431.0 98446.7 0.02

Table A.2: Summary of MIPLIB instances

Name n m r⋆ zLP zOPT

bm23 27 27 20 20.57 34.00
l152lav 1989 1321 97 4656.36 4722.00
lp4l 1086 812 85 2942.50 2967.00
lseu 89 39 28 834.68 1120.00
manna81 3321 3321 6480 -13297.00 -13164.00
misc03 160 133 96 1910.00 3360.00
misc07 260 221 212 1415.00 2810.00
mitre 10724 383 2054 114782.47 115155.00
mod008 319 319 6 290.93 307.00
mod010 2655 1229 146 6532.08 6548.00
p0033 33 23 16 2520.57 3089.00
p0040 40 10 23 61796.55 62027.00
p0201 201 41 133 6875.00 7615.00
p0282 282 275 241 176867.50 258411.00
p0291 291 285 252 1705.13 5223.75
p0548 548 520 176 539.16 8691.00
p2756 2756 2007 755 2698.95 3124.00
pipex 48 16 25 773.75 788.26
protfold 1835 169 2112 -41.96 -25.00
sentoy 60 60 30 -7839.28 -7772.00
sp97ar 14101 1212 1761 652560384.00 660705645.50
stein27 27 27 118 13.00 18.00
stein45 45 45 331 22.00 30.00

206

Table A.3: Summary of GAP instances of A, B, and C classes

Name Class n r⋆ zLP zB zU Gap (%)

a05100 A 5 100 3402.273 3402 3402 0.00
a05200 A 5 200 6965.261 6965 6965 0.00
a10100 A 10 100 3741.443 3740 3740 0.00
a20200 A 20 200 7862.673 7861 7861 0.00
b05100 B 5 100 3276.211 3265 3265 0.00
b05200 B 5 200 6652.588 6648 6648 0.00
b10100 B 10 100 3699.328 3693 3693 0.00
b10200 B 10 200 7384.949 7373 7373 0.00
b20100 B 20 100 3944.819 3934 3934 0.00
b20200 B 20 200 7868.862 7861 7861 0.00
c05100 C 5 100 3177.175 3170 3170 0.00
c05200 C 5 200 6749.235 6744 6744 0.00
c10100 C 10 100 3712.99 3698 3698 0.00
c10200 C 10 200 7404.592 7394 7394 0.00
c10400 C 10 400 14808.9 14803 14804 0.01
c15900 C 15 900 34563.43 34558 34561 0.01
c20100 C 20 100 3881.013 3857 3857 0.00
c201600 C 20 1600 62801.44 62793 62799 0.01
c20200 C 20 200 7823.095 7809 7809 0.00
c20400 C 20 400 15625.85 15618 15619 0.01
c30900 C 30 900 35925.32 35912 35919.12 0.02
c401600 C 40 1600 64460.68 64448 64457.15 0.01
c40400 C 40 400 16168.02 16155 16156 0.01
c60900 C 60 900 36584.96 36549 36576.1 0.07
c801600 C 80 1600 65317 65193 65317 0.19

207

Table A.4: Summary of GAP instances of C and D classes

Name Class n r⋆ zLP zB zU Gap (%)

d05100 D 5 100 5654.587 5647 5647 0.00
d05200 D 5 200 11063.8 11058 11058 0.00
d10100 D 10 100 5676.544 5650 5659.587 0.17
d10200 D 10 200 11781.64 11760 11775.56 0.13
d10400 D 10 400 23444.01 23428 23441.91 0.06
d15900 D 15 900 53499.53 53468 53498.39 0.06
d20100 D 20 100 5857.47 5777 5830.282 0.91
d201600 D 20 1600 95778.65 95655 95777.71 0.13
d20200 D 20 200 11982.31 11918 11973.92 0.47
d20400 D 20 400 23847.56 23767 23841.96 0.31
d30900 D 30 900 54071.25 53839 54068.96 0.43
d401600 D 40 1600 96495 96218 96495 0.29
d40400 D 40 400 24052.39 23797 24051 1.06
d60900 D 60 900 54349 53970 54349 0.70
d801600 D 80 1600 96566 96106 96566 0.48
e05100 E 5 100 87458.58 87419 87427 0.01
e05200 E 5 200 175078 175056 175073 0.01
e10100 E 10 100 88456.95 88423 88430 0.01
e10200 E 10 200 176906.1 176880 176896 0.01
e10400 E 10 400 354660.8 354626 354655 0.01
e15900 E 15 900 798483.4 798435 798480 0.01
e20100 E 20 100 91740.42 91658 91666 0.01
e201600 E 20 1600 1420960 1420909 1420956 0.00
e20200 E 20 200 177844.1 177821 177822 0.00
e20400 E 20 400 355538.2 355508 355524 0.00
e30900 E 30 900 800486.7 800444 800473 0.00
e401600 E 40 1600 1423317 1423280 1423307 0.00
e40400 E 40 400 355876.6 355808 355842 0.01
e60900 E 60 900 800796.7 800728 800753 0.00
e801600 E 80 1600 1424819 1424752 1424781 0.00

208

Appendix B

Detailed experiment results in Chapter 2

B.1 Small-sized GKP instances

We report the detailed experiment results in Section 2.6.1.

209

T
ab

le
B
.1
:
In
te
g
ra
li
ty

ga
p
cl
o
se
d
(%

)
an

d
se
p
ar
at
io
n
ti
m
e
(s
)
fo
r
ea
ch

se
p
ar
at
io
n
al
go

ri
th
m

n
m

n
i

ā
=

10
0

ā
=

2
0
0

M
IP

E
C
G

H
C
G

M
IP

E
C
G

H
C
G

S
1

S
2

S
3

S
1

S
2

S
3

50
5

10
99
.8
3

99
.7
2

99
.2
7

9
9
.1
4

9
9
.6
0

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

10
5

98
.8
6

98
.8
6

96
.8
6

9
6
.7
7

9
8
.3
0

9
9
.5
6

9
9
.5
6

9
8
.1
4

9
6
.1
9

9
8
.4
6

10
0

5
20

10
0
.0
0

1
00
.0
0

99
.5
8

9
9
.4
1

1
0
0
.0
0

9
9
.9
3

9
9
.9
3

9
9
.5
2

9
7
.4
4

9
9
.6
6

10
10

*9
8.
56

9
8.
81

9
7.
48

9
6
.4
1

9
8
.2
1

9
8
.8
3

9
8
.8
3

9
8
.4
7

9
6
.9
4

9
8
.7
6

20
5

*6
3
.9
7

99
.3
8

96
.8
5

9
2
.8
4

9
8
.6
0

*
6
6
.2
0

9
8
.4
3

9
6
.1
3

9
3
.2
1

9
7
.9
8

A
ve
ra
ge

IG
C

%
92
.2
4

9
9.
35

9
8.
01

9
6
.9
1

9
8
.9
4

9
2
.9
1

9
9
.3
5

9
8
.4
5

9
6
.7
6

9
8
.9
7

n
m

n
i

ā
=

10
0

ā
=

2
0
0

M
IP

E
C
G

H
C
G

M
IP

E
C
G

H
C
G

S
1

S
2

S
3

S
1

S
2

S
3

50
5

10
0.
12
7

0.
08
4

0.
00
0

0
.0
0
0

0
.0
0
0

0
.1
8
0

0
.3
0
2

0
.0
0
0

0
.0
0
0

0
.0
0
0

10
5

0
.3
97

0
.2
64

0
.0
00

0
.0
0
0

0
.0
0
0

0
.4
4
7

1
.0
4
6

0
.0
0
0

0
.0
0
0

0
.0
0
0

10
0

5
20

0.
27
3

0.
16
9

0.
00
0

0
.0
0
0

0
.0
0
0

0
.4
1
0

0
.7
1
7

0
.0
0
0

0
.0
0
0

0
.0
0
0

10
10

*1
.0
79

0
.4
97

0
.0
00

0
.0
0
0

0
.0
0
1

1
.0
8
1

1
.9
7
6

0
.0
0
0

0
.0
0
0

0
.0
0
1

20
5

*1
2
2.
9

1.
58
0

0.
00
0

0
.0
0
1

0
.0
0
1

*
1
2
3
.8

7
.2
1
9

0
.0
0
0

0
.0
0
1

0
.0
0
1

A
ve
ra
ge

ti
m
e
(s
)

28
.0
41

0
.5
19

0
.0
00

0
.0
0
0

0
.0
0
1

2
5
.1
8
2

2
.2
5
2

0
.0
0
0

0
.0
0
0

0
.0
0
1

210

T
ab

le
B
.2
:
N
u
m
b
er

of
g
en

er
a
te
d
cu

ts
an

d
cu

tt
in
g
p
la
n
e
ti
m
e
(s
)
fo
r
ea
ch

cu
tt
in
g
p
la
n
e
al
go

ri
th
m

n
m

n
i

ā
=

10
0

ā
=

2
0
0

M
IP

E
C
G

H
C
G

M
IP

E
C
G

H
C
G

S
1

S
2

S
3

S
1

S
2

S
3

50
5

10
7.
7

8
.2

8
.2

8
.0

8
.0

7
.2

7
.2

6
.5

6
.6

6
.3

10
5

9
.4

8.
4

7.
6

7
.1

7
.6

8
.8

9
.1

8
.2

7
.6

7
.9

10
0

5
20

1
3.
2

1
0.
7

1
2.
5

1
1
.6

1
1
.8

1
4
.7

1
5
.1

1
4
.8

1
4
.4

1
4
.4

10
10

*2
6.
0

1
1.
1

1
0.
4

1
0
.7

1
0
.9

1
0
.8

1
0
.8

1
0
.5

9
.7

1
0
.4

20
5

*5
.1

14
.6

12
.4

1
2
.5

1
2
.9

*
5
.3

1
0
.4

1
0
.2

9
.8

1
0
.0

A
ve
ra
ge

#
C
u
t

12
.3

10
.6

10
.2

1
0
.0

1
0
.2

9
.4

1
0
.5

1
0
.0

9
.6

9
.8

n
m

n
i

ā
=

10
0

ā
=

2
0
0

M
IP

E
C
G

H
C
G

M
IP

E
C
G

H
C
G

S
1

S
2

S
3

S
1

S
2

S
3

50
5

10
1
.0
1

0
.8
0

0
.0
4

0
.0
3

0
.0
4

1
.1
1

2
.2
7

0
.0
3

0
.0
3

0
.0
3

10
5

4.
11

2.
23

0.
03

0
.0
2

0
.0
3

3
.3
1

9
.6
2

0
.0
3

0
.0
2

0
.0
3

10
0

5
20

5
.0
6

2
.3
7

0
.0
5

0
.0
4

0
.0
5

8
.9
4

1
4
.8
1

0
.0
6

0
.0
7

0
.0
7

10
10

*3
2.
24

5.
84

0.
05

0
.0
5

0
.0
5

1
2
.3
9

2
2
.9
4

0
.0
5

0
.0
4

0
.0
5

20
5

*5
4
7.
56

23
.3
8

0
.0
6

0
.0
4

0
.0
6

*
5
9
9
.2
6

7
3
.3
8

0
.0
4

0
.0
4

0
.0
5

A
ve
ra
ge

ti
m
e(
s)

13
4.
36

6.
93

0.
04

0
.0
4

0
.0
5

1
2
5
.0
0

2
4
.6
0

0
.0
4

0
.0
4

0
.0
5

211

B.2 Large-sized GKP instances

We report the detailed experiment results in Section 2.6.2.

Table B.3: Integrality gap closed (%) by cutting plane algorithms

n m ni

ā = 100 ā = 200

LGCI
HCG

LGCI
HCG

S1 S2 S3 S1 S2 S3

200
10 20 49.02 95.31 90.68 97.83 39.37 96.48 91.49 98.11
20 10 37.55 95.05 88.96 96.57 36.94 92.55 87.52 95.86

500
10 50 35.06 89.82 76.93 91.73 37.01 92.38 83.02 95.90
20 25 31.04 86.09 68.86 90.89 31.46 93.38 83.73 95.77
50 10 34.49 92.07 84.68 95.37 25.17 93.28 85.04 94.92

1000

10 100 55.17 88.54 80.60 91.42 38.84 89.00 74.87 91.60
20 50 34.88 91.85 77.29 93.04 39.07 87.38 74.62 91.38
50 20 31.23 90.66 79.54 94.19 33.54 93.39 83.49 94.88

100 10 30.42 88.94 78.96 92.34 21.83 85.12 72.86 88.59

2000

10 200 33.61 77.08 56.93 78.60 35.13 81.71 70.33 86.35
20 100 23.35 66.04 39.93 68.89 37.70 82.70 63.72 88.63
50 40 14.43 91.94 82.14 92.63 18.57 82.94 63.12 87.62

100 20 20.68 84.12 70.63 86.42 23.58 74.83 57.86 79.53
200 10 13.08 66.93 54.59 70.12 11.07 49.62 41.21 51.60

5000

10 500 33.42 *56.89 43.90 *58.91 35.19 78.55 *47.21 81.20
20 250 25.25 *53.68 41.65 *53.42 43.26 *72.57 53.44 *75.56
50 100 10.07 *70.48 *70.83 *73.78 15.00 *69.29 53.57 *72.46

100 50 10.14 *92.74 *86.00 *93.20 9.79 *62.87 *51.13 *63.55
200 25 6.29 *78.71 *63.10 *78.71 *8.69 *37.89 32.20 *38.66
500 10 *6.07 *22.27 20.24 *22.15 *7.50 *27.99 21.37 *29.06

Average 26.76 78.96 67.82 81.01 27.44 77.20 64.59 80.06

212

Table B.4: Cutting plane time (s)

n m ni

ā = 100 ā = 200

LGCI
HCG

LGCI
HCG

S1 S2 S3 S1 S2 S3

200
10 20 0.0001 0.0005 0.0005 0.0008 0.0001 0.0004 0.0005 0.0008
20 10 0.0004 0.0008 0.0009 0.0016 0.0004 0.0009 0.0010 0.0018

500
10 50 0.0002 0.0009 0.0008 0.0013 0.0002 0.0010 0.0009 0.0014
20 25 0.0007 0.0023 0.0025 0.0040 0.0007 0.0028 0.0030 0.0048
50 10 0.0049 0.0030 0.0039 0.0066 0.0048 0.0036 0.0046 0.0078

1000

10 100 0.0004 0.0012 0.0012 0.0016 0.0004 0.0019 0.0015 0.0024
20 50 0.0013 0.0033 0.0034 0.0048 0.0013 0.0043 0.0043 0.0065
50 20 0.0079 0.0077 0.0094 0.0143 0.0078 0.0097 0.0116 0.0178

100 10 0.0380 0.0086 0.0118 0.0200 0.0384 0.0115 0.0158 0.0263

2000

10 200 0.0008 0.0027 0.0023 0.0031 0.0008 0.0033 0.0029 0.0039
20 100 0.0024 0.0059 0.0055 0.0076 0.0024 0.0070 0.0067 0.0090
50 40 0.0144 0.0212 0.0234 0.0324 0.0145 0.0295 0.0320 0.0459

100 20 0.0606 0.0234 0.0286 0.0448 0.0629 0.0328 0.0413 0.0632
200 10 0.3037 0.0225 0.0325 0.0529 0.3052 0.0346 0.0502 0.0814

5000

10 500 0.0018 0.0066 0.0055 0.0073 0.0018 0.0077 0.0061 0.0094
20 250 0.0055 0.0133 0.0123 0.0152 0.0056 0.0144 0.0136 0.0168
50 100 0.0337 0.0481 0.0501 0.0619 0.0332 0.0651 0.0679 0.0842

100 50 0.1418 0.0869 0.0985 0.1321 0.1414 0.1282 0.1435 0.1922
200 25 0.6071 0.0811 0.1028 0.1499 0.6056 0.1329 0.1696 0.2464
500 10 5.3871 0.0638 0.0969 0.1526 5.3986 0.1216 0.1880 0.2952

Average 0.3306 0.0202 0.0246 0.0357 0.3313 0.0306 0.0382 0.0559

213

Table B.5: Number of generated cuts

n m ni

ā = 100 ā = 200

LGCI
HCG

LGCI
HCG

S1 S2 S3 S1 S2 S3

200
10 20 9.1 20.5 17.1 21.7 10.9 15.7 15.1 17.4
20 10 9.9 17.2 13.7 17.4 8.0 17.0 14.1 19.9

500
10 50 13.5 32.7 24.5 36.4 10.6 29.5 20.2 34.6
20 25 14.2 31.4 22.5 35.8 11.9 27.2 19.7 31.2
50 10 10.4 17.7 15.8 19.6 9.9 17.7 14.4 18.6

1000

10 100 12.2 35.2 27.6 39.4 18.2 44.0 27.5 48.8
20 50 18.4 42.1 25.0 44.1 12.5 36.2 23.0 45.8
50 20 17.2 24.6 17.9 32.3 10.4 20.5 15.7 21.7

100 10 10.2 19.7 13.0 20.1 11.1 21.2 16.3 23.4

2000

10 200 20.3 73.8 45.3 70.7 16.4 58.5 40.0 62.3
20 100 21.6 105.1 45.6 131.9 20.1 56.0 37.4 66.4
50 40 15.8 76.1 38.5 76.8 18.9 60.3 27.4 62.3

100 20 15.0 73.7 38.5 90.6 15.1 31.1 20.0 32.1
200 10 16.4 46.7 26.3 62.1 10.5 25.2 17.1 29.5

5000

10 500 27.5 *163.5 75.6 *185.1 32.8 123.3 *52.1 143.7
20 250 22.3 *193.8 99.0 *212.3 15.6 *117.2 64.7 *144.7
50 100 28.3 *215.8 *118.7 *197.7 25.9 *176.1 92.0 *188.7

100 50 26.9 *116.0 *79.1 *97.3 29.0 *104.5 *65.4 *100.1
200 25 20.2 *157.2 *94.6 *155.1 *20.2 *65.8 37.5 *68.9
500 10 *8.9 *68.1 36.8 *80.6 *9.6 *41.7 22.5 *47.1

Average 16.9 76.5 43.8 81.4 15.9 54.4 32.1 60.4

214

Table B.6: Separation time (s)

n m ni

ā = 100 ā = 200

LGCI
HCG

LGCI
HCG

S1 S2 S3 S1 S2 S3

200
10 20 0.001 0.012 0.010 0.022 0.001 0.008 0.009 0.016
20 10 0.004 0.015 0.013 0.031 0.003 0.016 0.015 0.039

500
10 50 0.003 0.034 0.022 0.056 0.003 0.035 0.021 0.063
20 25 0.010 0.077 0.055 0.162 0.008 0.087 0.062 0.185
50 10 0.051 0.053 0.061 0.129 0.048 0.065 0.065 0.149

1000

10 100 0.005 0.049 0.036 0.077 0.008 0.102 0.045 0.158
20 50 0.023 0.156 0.088 0.240 0.016 0.165 0.102 0.348
50 20 0.135 0.188 0.163 0.455 0.081 0.204 0.182 0.397

100 10 0.386 0.169 0.152 0.396 0.431 0.241 0.253 0.607

2000

10 200 0.016 0.224 0.107 0.258 0.013 0.228 0.118 0.285
20 100 0.051 0.624 0.249 1.101 0.047 0.444 0.245 0.673
50 40 0.226 1.678 0.890 2.543 0.271 1.859 0.872 2.976

100 20 0.903 1.704 1.072 3.985 0.949 0.997 0.799 1.968
200 10 4.988 1.037 0.840 3.224 3.209 0.869 0.851 2.385

5000

10 500 0.049 *1.176 0.425 *1.479 0.058 1.062 *0.322 1.616
20 250 0.122 *2.594 1.184 *3.259 0.087 *1.780 0.885 *2.726
50 100 0.962 *10.449 *5.920 *12.467 0.860 *11.572 6.219 *16.108

100 50 3.806 *9.721 *7.454 *12.345 4.077 *13.290 9.157 *19.008
200 25 12.275 *12.805 *9.666 *23.319 *12.282 *8.694 *6.270 *16.884
500 10 *47.725 *4.196 3.434 *11.913 *51.834 *4.902 4.110 *13.452

Average 3.587 2.348 1.592 3.873 3.714 2.331 1.530 4.002

215

Appendix C

Detailed experiment results in Chapter 3

C.1 GAP instances

We report the detailed experiment results using GAP instances in Section 3.6.

217

T
ab

le
C
.1
:
R
es
u
lt
s
on

G
A
P

in
st
an

ce
s
of

A
,
B
,
an

d
C

cl
as
se
s
u
si
n
g
m
ax

im
al

C
G

cu
ts

N
am

e
H
C
G

M
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

a0
51
00

1
00
.0
0

1
0.
00
6

0
.0
0

0
.0
0

-1
.8
2

0
.0
0
0

a0
52
00

1
00
.0
0

3
0.
02
0

0
.0
0

0
.0
0

4
.6
2

0
.0
0
0

a1
01
00

1
00
.0
0

18
0.
04
9

0
.0
0

0
.0
0

1
.2
3

0
.0
0
0

a2
02
00

1
00
.0
0

27
0.
38
0

0
.0
0

-1
8
.5
2

2
.4
2

0
.0
0
0

A
ve
ra
ge

0
.0
0

-4
.6
3

1
.6
1

0
.0
0
0

b
05
10
0

5
3.
81

5
8

0.
07
7

-1
.0
9

-1
2
.0
7

2
0
.0
8

0
.0
0
0

b
05
20
0

3
3.
78

6
5

0.
23
7

-1
.4
9

0
.0
0

-0
.4
2

0
.0
0
0

b
10
10
0

10
0.
00

5
2

0.
06
9

0
.0
0

-2
1
.1
5

4
2
.0
3

0
.0
0
0

b
10
20
0

7
9.
07

14
9

1.
24
3

0
.5
7

3
.3
6

-1
2
.4
3

0
.0
0
0

b
20
10
0

10
0.
00

8
7

0.
36
0

0
.0
0

-1
.1
5

-9
.3
0

0
.0
0
0

b
20
20
0

9
1.
62

14
6

1.
22
6

-0
.0
6

-6
.8
5

1
1
.3
4

0
.0
0
0

A
ve
ra
ge

-0
.3
4

-6
.3
1

8
.5
5

0
.0
0
0

c0
51
00

6
4.
61

6
1

0.
11
8

0
.4
0

1
3
.1
1

-1
5
.0
1

0
.0
0
0

c0
52
00

5
8.
10

6
1

0.
23
2

0
.0
0

-3
.2
8

1
5
.0
6

0
.0
0
0

c1
01
00

8
4.
81

8
9

0.
13
6

0
.0
0

-2
.2
5

-1
0
.3
0

0
.0
0
0

c1
02
00

7
5.
55

13
6

1.
10
7

0
.1
6

0
.0
0

-5
.1
8

0
.0
0
0

c1
04
00

6
8.
71

11
2

1.
93
4

0
.0
8

8
.0
4

5
.0
0

0
.0
0
0

c1
59
00

3
9.
96

20
1

7.
29
0

0
.2
3

5
.4
7

-1
1
.7
6

0
.0
0
0

c2
01
00

9
3.
23

16
3

0.
87
1

0
.0
0

-7
.3
6

-2
4
.4
6

0
.0
0
0

c2
01
60
0

2
9.
67

33
2

2
4.
92
5

0
.1
9

2
.7
1

-7
.6
5

0
.0
0
0

c2
02
00

8
9.
79

24
8

1.
59
8

-0
.1
0

-1
0
.4
8

3
5
.6
4

0
.0
0
0

c2
04
00

7
0.
19

27
4

4.
40
0

-0
.3
8

-2
.1
9

2
9
.2
9

0
.0
0
0

c3
09
00

4
5.
92

42
7

1
8.
82
5

0
.0
8

4
.6
8

-2
2
.1
9

0
.0
0
0

c4
01
60
0

3
0.
14

65
3

6
4.
70
7

0
.1
6

-1
.8
4

-1
2
.8
0

0
.0
0
0

c4
04
00

8
4.
09

39
0

7.
70
6

0
.6
2

-3
.5
9

-1
1
.5
9

0
.0
0
0

c6
09
00

2
5.
46

84
7

4
2.
79
8

-0
.1
3

-1
.7
7

1
4
.9
2

0
.0
0
0

c8
01
60
0

0.
38

1
30
7

23
4.
88
2

0
.0
0

4
.6
7

-3
0
.2
0

0
.0
0
1

A
ve
ra
ge

0
.0
9

0
.4
0

-3
.4
2

0
.0
0
0

218

T
ab

le
C
.2
:
R
es
u
lt
s
on

G
A
P

in
st
an

ce
s
of

A
,
B
,
an

d
C

cl
as
se
s
u
si
n
g
G
om

or
y
m
ix
ed

-i
n
te
ge
r
cu

ts

N
am

e
H
C
G

G
M
I

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

a0
51
00

1
00
.0
0

1
0.
00
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0
0

a0
52
00

1
00
.0
0

3
0.
02
0

0
.0
0

0
.0
0

2
.0
5

0
.0
0
0

a1
01
00

1
00
.0
0

18
0.
04
9

0
.0
0

-1
6
.6
7

-1
8
.4
8

0
.0
0
0

a2
02
00

1
00
.0
0

27
0.
38
0

0
.0
0

-7
.4
1

1
.5
0

0
.0
0
0

A
ve
ra
ge

0
.0
0

-6
.0
2

-3
.7
3

0
.0
0
0

b
05
10
0

5
3.
81

5
8

0.
07
7

0
.0
6

-8
.6
2

2
6
.6
8

0
.0
0
0

b
05
20
0

3
3.
78

6
5

0.
23
7

-0
.0
2

0
.0
0

-6
.5
7

0
.0
0
0

b
10
10
0

10
0.
00

5
2

0.
06
9

-3
.1
6

-7
.6
9

2
5
.3
6

0
.0
0
0

b
10
20
0

7
9.
07

14
9

1.
24
3

-0
.1
9

4
.0
3

-6
.8
4

0
.0
0
1

b
20
10
0

10
0.
00

8
7

0.
36
0

0
.0
0

-1
.1
5

-1
3
.6
0

0
.0
0
0

b
20
20
0

9
1.
62

14
6

1.
22
6

0
.4
6

-6
.1
6

1
.0
2

0
.0
0
1

A
ve
ra
ge

-0
.4
8

-3
.2
7

4
.3
4

0
.0
0
0

c0
51
00

6
4.
61

6
1

0.
11
8

0
.0
0

-8
.2
0

-2
0
.4
4

0
.0
0
0

c0
52
00

5
8.
10

6
1

0.
23
2

-0
.0
4

-3
.2
8

8
.1
5

0
.0
0
0

c1
01
00

8
4.
81

8
9

0.
13
6

0
.0
9

1
.1
2

-8
.7
6

0
.0
0
0

c1
02
00

7
5.
55

13
6

1.
10
7

-0
.4
7

-2
.2
1

2
.0
5

0
.0
0
1

c1
04
00

6
8.
71

11
2

1.
93
4

0
.1
1

1
4
.2
9

1
7
.6
4

0
.0
0
1

c1
59
00

3
9.
96

20
1

7.
29
0

0
.1
8

9
.4
5

7
.0
9

0
.0
0
4

c2
01
00

9
3.
23

16
3

0.
87
1

-0
.4
1

-1
4
.1
1

-3
2
.7
1

0
.0
0
0

c2
01
60
0

2
9.
67

33
2

2
4.
92
5

-0
.1
3

5
.1
2

2
.1
8

0
.0
1
2

c2
02
00

8
9.
79

24
8

1.
59
8

0
.4
3

-8
.8
7

3
3
.4
8

0
.0
0
1

c2
04
00

7
0.
19

27
4

4.
40
0

-0
.3
3

-4
.3
8

-4
.6
4

0
.0
0
2

c3
09
00

4
5.
92

42
7

1
8.
82
5

-0
.1
3

6
.0
9

-1
.6
9

0
.0
0
9

c4
01
60
0

3
0.
14

65
3

6
4.
70
7

-0
.1
2

-5
.0
5

-1
2
.6
1

0
.0
2
1

c4
04
00

8
4.
09

39
0

7.
70
6

0
.4
2

-4
.1
0

-1
7
.7
6

0
.0
0
3

c6
09
00

2
5.
46

84
7

4
2.
79
8

0
.0
6

-1
.1
8

1
7
.9
0

0
.0
1
6

c8
01
60
0

0.
38

1
30
7

23
4.
88
2

-0
.0
1

1
.6
1

-3
.2
3

0
.0
4
5

A
ve
ra
ge

-0
.0
2

-0
.9
1

-0
.8
9

0
.0
0
8

219

T
a
b
le

C
.3
:
R
es
u
lt
s
o
n
G
A
P

in
st
an

ce
s
of

A
,
B
,
an

d
C

cl
as
se
s
u
si
n
g
S
C
G

cu
ts

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

a0
51
00

1
00
.0
0

1
0.
00
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0
0

a0
52
00

1
00
.0
0

3
0.
02
0

0
.0
0

0
.0
0

0
.0
0

4
.1
0
3

a1
01
00

1
00
.0
0

18
0.
04
9

0
.0
0

-3
3
.3
3

0
.0
0

-3
8
.8
0
9

a2
02
00

1
00
.0
0

27
0.
38
0

0
.0
0

-7
.4
1

0
.0
0

2
.5
2
6

A
ve
ra
ge

0
.0
0

-1
0
.1
9

0
.0
0

-8
.0
4
5

b
05
10
0

5
3.
81

5
8

0.
07
7

-0
.1
2

-5
.1
7

0
.0
0

1
2
.3
0
6

b
05
20
0

3
3.
78

6
5

0.
23
7

0
.5
5

4
.6
2

0
.0
0

1
1
.6
6
8

b
10
10
0

10
0.
00

5
2

0.
06
9

-3
.6
5

-3
0
.7
7

0
.0
0

1
.7
3
9

b
10
20
0

7
9.
07

14
9

1.
24
3

-0
.1
8

-2
.0
1

0
.0
1

-1
7
.3
0
1

b
20
10
0

10
0.
00

8
7

0.
36
0

0
.0
0

-1
4
.9
4

0
.0
0

-2
1
.1
4
3

b
20
20
0

9
1.
62

14
6

1.
22
6

0
.6
0

-8
.9
0

0
.0
1

-5
.2
7
7

A
ve
ra
ge

-0
.4
7

-9
.5
3

0
.0
0

-3
.0
0
1

c0
51
00

6
4.
61

6
1

0.
11
8

0
.0
0

-1
9
.6
7

0
.0
0

-3
4
.3
5
1

c0
52
00

5
8.
10

6
1

0.
23
2

-0
.0
4

-3
.2
8

0
.0
0

8
.5
8
5

c1
01
00

8
4.
81

8
9

0.
13
6

0
.1
1

-2
.2
5

0
.0
0

4
.4
1
5

c1
02
00

7
5.
55

13
6

1.
10
7

0
.1
7

0
.7
4

0
.0
1

4
.8
5
0

c1
04
00

6
8.
71

11
2

1.
93
4

0
.8
6

1
9
.6
4

0
.0
2

1
7
.7
4
3

c1
59
00

3
9.
96

20
1

7.
29
0

0
.6
1

5
.9
7

0
.0
6

2
1
.4
8
6

c2
01
00

9
3.
23

16
3

0.
87
1

-0
.4
1

-2
6
.3
8

0
.0
0

-4
5
.3
6
6

c2
01
60
0

2
9.
67

33
2

2
4.
92
5

0
.1
2

-6
.0
2

0
.1
6

-1
5
.6
6
5

c2
02
00

8
9.
79

24
8

1.
59
8

0
.0
6

-1
6
.1
3

0
.0
1

9
.6
7
3

c2
04
00

7
0.
19

27
4

4.
40
0

-0
.0
3

-4
.3
8

0
.0
3

2
2
.0
1
3

c3
09
00

4
5.
92

42
7

1
8.
82
5

0
.1
8

6
.0
9

0
.1
2

1
.2
1
2

c4
01
60
0

3
0.
14

65
3

6
4.
70
7

0
.0
1

-0
.9
2

0
.3
1

-1
.1
2
0

c4
04
00

8
4.
09

39
0

7.
70
6

0
.8
2

-8
.4
6

0
.0
4

-6
.8
2
3

c6
09
00

2
5.
46

84
7

4
2.
79
8

-0
.0
2

-6
.2
6

0
.2
1

2
1
.5
5
1

c8
01
60
0

0.
38

1
30
7

23
4.
88
2

0
.0
0

0
.8
4

0
.6
2

-2
.7
0
1

A
ve
ra
ge

0
.1
6

-4
.0
3

0
.1
1

0
.3
6
7

220

T
ab

le
C
.4
:
R
es
u
lt
s
on

G
A
P

in
st
an

ce
s
of

D
an

d
E

cl
as
se
s
u
si
n
g
m
ax

im
al

C
G

cu
ts

N
am

e
H
C
G

M
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

d
05
10
0

44
.1
5

84
0
.1
75

-0
.8
9

-1
.1
9

-0
.1
1

0
.0
0
0

d
05
20
0

36
.4
2

99
0
.3
97

-0
.2
4

-1
0
.1
0

2
0
.8
2

0
.0
0
0

d
10
10
0

48
.3
0

1
89

0
.3
90

0
.0
2

-3
.1
7

1
8
.7
0

0
.0
0
0

d
10
20
0

21
.2
1

2
07

1
.7
24

0
.4
7

-9
.6
6

2
5
.6
3

0
.0
0
0

d
10
40
0

11
.3
7

1
75

3
.3
76

0
.0
4

-4
.5
7

5
.8
1

0
.0
0
0

d
15
90
0

4
.5
2

3
11

13
.3
83

0
.0
1

-8
.0
4

-5
.0
8

0
.0
0
0

d
20
10
0

32
.8
0

4
24

3
.9
45

-0
.1
6

-0
.7
1

-1
7
.5
7

0
.0
0
0

d
20
16
00

0
.9
2

4
72

48
.0
18

0
.0
0

-0
.2
1

-7
.7
8

0
.0
0
0

d
20
20
0

15
.1
9

4
21

6
.2
83

0
.0
4

0
.9
5

3
.7
2

0
.0
0
0

d
20
40
0

7
.7
0

4
40

11
.1
74

-0
.0
1

-1
.8
2

1
3
.5
6

0
.0
0
0

d
30
90
0

1
.2
8

7
38

47
.8
15

-0
.0
1

-0
.9
5

9
.4
0

0
.0
0
0

d
40
16
00

0
.0
0

45
75

3
00
.0
00

0
.0
0

-0
.7
9

-0
.1
4

0
.0
0
3

d
40
40
0

0
.5
0

36
29

3
00
.0
00

0
.0
1

0
.5
2

0
.3
5

0
.0
0
2

d
60
90
0

0
.0
0

82
52

3
00
.0
00

0
.0
0

1
.3
8

-0
.6
3

0
.0
0
4

d
80
16
00

0
.0
0

58
80

3
00
.0
00

0
.0
0

-1
.2
6

0
.7
3

0
.0
0
3

A
ve
ra
ge

-0
.0
5

-2
.6
4

4
.4
9

0
.0
0
1

e0
51
00

6
4.
75

7
9

0.
15
3

0
.0
0

0
.0
0

-2
.4
1

0
.0
0
0

e0
52
00

1
7.
78

4
6

0.
16
4

0
.0
0

4
.3
5

-9
.2
0

0
.0
0
0

e1
01
00

6
2.
52

12
4

0.
22
7

0
.0
7

-8
.8
7

1
0
.2
9

0
.0
0
0

e1
02
00

2
9.
15

12
2

1.
04
7

0
.0
0

0
.0
0

0
.3
2

0
.0
0
0

e1
04
00

1
3.
90

12
5

1.
93
5

-0
.0
5

-1
2
.0
0

5
4
.9
9

0
.0
0
0

e1
59
00

6.
42

19
9

1
1.
40
4

0
.0
0

-1
.0
1

-1
.5
1

0
.0
0
0

e2
01
00

8
3.
36

29
3

2.
91
4

0
.5
0

0
.0
0

-5
.6
6

0
.0
0
0

e2
01
60
0

6.
05

30
8

3
9.
60
6

0
.0
4

8
.7
7

-3
0
.6
8

0
.0
0
0

e2
02
00

8
3.
57

25
5

2.
92
6

0
.6
1

-1
3
.3
3

2
8
.7
8

0
.0
0
0

e2
04
00

4
2.
63

28
1

7.
97
1

-0
.1
2

1
.4
2

1
4
.8
5

0
.0
0
0

e3
09
00

2
9.
95

52
9

4
0.
55
4

-0
.2
3

-2
.0
8

-6
.8
6

0
.0
0
0

e4
01
60
0

22
.2
2

7
67

1
12
.2
06

-0
.2
5

-5
.2
2

1
8
.9
7

0
.0
0
0

e4
04
00

4
5.
27

56
8

30
0.
00
0

0
.2
3

4
4
.7
2

-9
0
.5
9

0
.0
0
0

e6
09
00

5
3.
42

1
23
3

17
6.
78
4

0
.0
9

-1
.5
4

-4
.5
9

0
.0
0
1

e8
01
60
0

47
.2
6

16
03

3
00
.0
00

0
.8
8

-2
.0
0

0
.1
7

0
.0
0
1

A
ve
ra
ge

0
.1
2

0
.8
8

-1
.5
4

0
.0
0
0

221

T
a
b
le

C
.5
:
R
es
u
lt
s
o
n
G
A
P

in
st
a
n
ce
s
of

D
an

d
E

cl
as
se
s
u
si
n
g
G
om

or
y
m
ix
ed

-i
n
te
ge
r
cu

ts

N
am

e
H
C
G

G
M
I

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

d
05
10
0

44
.1
5

84
0
.1
75

-0
.1
6

5
.9
5

-6
.7
5

0
.0
0
0

d
05
20
0

36
.4
2

99
0
.3
97

-0
.0
8

-1
3
.1
3

-0
.2
8

0
.0
0
0

d
10
10
0

48
.3
0

1
89

0
.3
90

0
.4
6

3
.7
0

5
7
.3
9

0
.0
0
1

d
10
20
0

21
.2
1

2
07

1
.7
24

0
.6
8

-6
.2
8

3
8
.1
5

0
.0
0
1

d
10
40
0

11
.3
7

1
75

3
.3
76

0
.0
9

6
.2
9

1
2
.4
7

0
.0
0
2

d
15
90
0

4
.5
2

3
11

13
.3
83

0
.0
0

-0
.9
6

-0
.9
4

0
.0
0
6

d
20
10
0

32
.8
0

4
24

3
.9
45

0
.1
9

-5
.4
2

-9
.1
8

0
.0
0
1

d
20
16
00

0
.9
2

4
72

48
.0
18

0
.0
0

-2
.3
3

-0
.5
8

0
.0
1
5

d
20
20
0

15
.1
9

4
21

6
.2
83

0
.0
8

-2
.3
8

6
.8
7

0
.0
0
2

d
20
40
0

7
.7
0

4
40

11
.1
74

-0
.0
1

3
.6
4

2
1
.6
8

0
.0
0
4

d
30
90
0

1
.2
8

7
38

47
.8
15

-0
.0
1

1
.2
2

4
.2
6

0
.0
1
4

d
40
16
00

0
.0
0

45
75

3
00
.0
00

0
.0
0

-0
.0
2

0
.3
5

0
.1
4
5

d
40
40
0

0
.5
0

36
29

3
00
.0
00

-0
.0
1

-1
0
.9
4

-0
.4
9

0
.0
2
8

d
60
90
0

0
.0
0

82
52

3
00
.0
00

0
.0
0

1
.4
2

0
.1
0

0
.1
5
3

d
80
16
00

0
.0
0

58
80

3
00
.0
00

0
.0
0

1
.4
8

0
.4
6

0
.1
9
0

A
ve
ra
ge

0
.0
8

-1
.1
8

8
.2
3

0
.0
3
7

e0
51
00

6
4.
75

7
9

0.
15
3

0
.0
5

-6
.3
3

-2
5
.3
1

0
.0
0
0

e0
52
00

1
7.
78

4
6

0.
16
4

0
.1
0

4
.3
5

1
.2
8

0
.0
0
0

e1
01
00

6
2.
52

12
4

0.
22
7

-0
.5
5

-2
0
.9
7

-2
1
.7
8

0
.0
0
0

e1
02
00

2
9.
15

12
2

1.
04
7

0
.2
0

4
.1
0

3
8
.0
1

0
.0
0
1

e1
04
00

1
3.
90

12
5

1.
93
5

-0
.0
6

-6
.4
0

8
.0
1

0
.0
0
1

e1
59
00

6.
42

19
9

1
1.
40
4

0
.0
5

-9
.5
5

-2
.2
1

0
.0
0
4

e2
01
00

8
3.
36

29
3

2.
91
4

0
.7
2

-2
0
.4
8

-3
1
.7
3

0
.0
0
1

e2
01
60
0

6.
05

30
8

3
9.
60
6

0
.0
1

-6
.1
7

-4
3
.8
7

0
.0
1
0

e2
02
00

8
3.
57

25
5

2.
92
6

0
.2
9

-1
1
.7
6

1
5
.5
3

0
.0
0
1

e2
04
00

4
2.
63

28
1

7.
97
1

0
.3
3

-7
.8
3

-8
.4
5

0
.0
0
2

e3
09
00

2
9.
95

52
9

4
0.
55
4

-0
.1
9

-9
.8
3

-1
9
.2
1

0
.0
1
0

e4
01
60
0

22
.2
2

7
67

1
12
.2
06

0
.0
3

-6
.3
9

7
.0
1

0
.0
2
4

e4
04
00

4
5.
27

56
8

30
0.
00
0

0
.5
1

-9
.3
3

-9
3
.2
1

0
.0
0
5

e6
09
00

5
3.
42

1
23
3

17
6.
78
4

2
.2
9

-1
5
.8
2

-3
0
.6
7

0
.0
2
1

e8
01
60
0

47
.2
6

16
03

3
00
.0
00

3
.6
9

-1
0
.8
5

2
.2
9

0
.0
5
2

A
ve
ra
ge

0
.5
0

-8
.8
8

-1
3
.6
2

0
.0
0
9

222

T
ab

le
C
.6
:
R
es
u
lt
s
on

G
A
P

in
st
an

ce
s
of

D
an

d
E

cl
as
se
s
u
si
n
g
S
C
G

cu
ts

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

d
05
10
0

44
.1
5

84
0
.1
75

0
.1
4

-1
1
.9
0

0
.0
0

-2
5
.2
4
3

d
05
20
0

36
.4
2

99
0
.3
97

-0
.0
2

-1
5
.1
5

0
.0
1

-3
.9
5
8

d
10
10
0

48
.3
0

1
89

0
.3
90

-0
.0
2

4
.7
6

0
.0
1

2
9
.6
6
9

d
10
20
0

21
.2
1

2
07

1
.7
24

0
.6
8

-1
2
.5
6

0
.0
1

6
.8
9
3

d
10
40
0

11
.3
7

1
75

3
.3
76

0
.1
4

2
.2
9

0
.0
2

5
.2
6
0

d
15
90
0

4
.5
2

3
11

13
.3
83

0
.0
0

-0
.6
4

0
.0
9

4
.4
7
8

d
20
10
0

32
.8
0

4
24

3
.9
45

0
.5
9

-1
0
.1
4

0
.0
1

-2
3
.7
3
3

d
20
16
00

0
.9
2

4
72

48
.0
18

0
.0
0

-0
.4
2

0
.2
3

-3
.3
2
5

d
20
20
0

15
.1
9

4
21

6
.2
83

0
.3
0

3
.0
9

0
.0
3

-4
.4
3
6

d
20
40
0

7
.7
0

4
40

11
.1
74

0
.0
4

-5
.4
5

0
.0
5

-2
.4
3
3

d
30
90
0

1
.2
8

7
38

47
.8
15

-0
.0
1

-6
.6
4

0
.1
9

3
.1
0
8

d
40
16
00

0
.0
0

45
75

3
00
.0
00

0
.0
0

-0
.7
0

2
.1
8

-0
.0
4
2

d
40
40
0

0
.5
0

36
29

3
00
.0
00

0
.0
1

-7
.2
5

0
.4
1

0
.9
3
8

d
60
90
0

0
.0
0

82
52

3
00
.0
00

0
.0
0

-0
.2
1

2
.1
8

0
.3
2
7

d
80
16
00

0
.0
0

58
80

3
00
.0
00

0
.0
0

-1
.0
0

2
.7
5

-0
.0
4
1

A
ve
ra
ge

0
.1
2

-4
.1
3

0
.5
5

-0
.8
3
6

e0
51
00

6
4.
75

7
9

0.
15
3

1
.8
0

-1
1
.3
9

0
.0
0

-1
7
.4
1
7

e0
52
00

1
7.
78

4
6

0.
16
4

-0
.0
2

2
.1
7

0
.0
0

-1
.8
8
8

e1
01
00

6
2.
52

12
4

0.
22
7

1
.1
3

-9
.6
8

0
.0
0

-3
.4
7
6

e1
02
00

2
9.
15

12
2

1.
04
7

-0
.0
1

-1
.6
4

0
.0
1

5
0
.2
0
0

e1
04
00

1
3.
90

12
5

1.
93
5

-0
.0
3

-1
6
.8
0

0
.0
2

3
3
.9
7
2

e1
59
00

6.
42

19
9

1
1.
40
4

0
.0
2

-1
1
.0
6

0
.0
5

-2
1
.1
0
5

e2
01
00

8
3.
36

29
3

2.
91
4

1
.3
6

-2
5
.2
6

0
.0
1

-2
7
.3
5
9

e2
01
60
0

6.
05

30
8

3
9.
60
6

0
.0
1

8
.7
7

0
.1
7

-1
2
.7
9
8

e2
02
00

8
3.
57

25
5

2.
92
6

0
.4
7

-1
2
.5
5

0
.0
1

1
0
.6
2
7

e2
04
00

4
2.
63

28
1

7.
97
1

0
.2
2

-1
3
.5
2

0
.0
3

-3
.7
9
6

e3
09
00

2
9.
95

52
9

4
0.
55
4

0
.1
0

-1
2
.1
0

0
.1
4

-1
2
.8
0
0

e4
01
60
0

22
.2
2

7
67

1
12
.2
06

0
.2
2

-9
.6
5

0
.3
4

-1
4
.8
8
6

e4
04
00

4
5.
27

56
8

30
0.
00
0

0
.7
1

-1
4
.6
1

0
.1
0

-9
4
.4
4
0

e6
09
00

5
3.
42

1
23
3

17
6.
78
4

2
.4
8

-1
8
.3
3

0
.2
6

-4
1
.6
9
7

e8
01
60
0

47
.2
6

16
03

3
00
.0
00

3
.7
3

-8
.7
3

0
.6
9

-1
.2
4
5

A
ve
ra
ge

0
.8
1

-1
0
.2
9

0
.1
2

-1
0
.5
4
0

223

C.2 MIPLIB instances without consideration of general-
ized upper bounds

We report the detailed experiment results using MIPLIB instances without consid-

eration of generalized upper bounds in Section 3.6.

224

T
ab

le
C
.7
:
R
es
u
lt
s
on

M
IP

L
IB

in
st
an

ce
s
u
si
n
g
m
ax

im
al

C
G

cu
ts

an
d
G
om

or
y
m
ix
ed

-i
n
te
ge
r
cu

ts

N
am

e
H
C
G

M
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

71
.3
3

46
0
.1
12

0
.0
0

0
.0
0

1
.8
7

0
.0
0
1

m
o
d
00
8

83
.3
5

7
8

3.
11
6

0
.1
7

-1
4
.1
0

-2
0
.8
7

0
.0
0
9

p
00
33

87
.4
2

4
6

0.
01
4

0
.0
0

0
.0
0

5
.8
4

0
.0
0
0

p
02
82

8
.3
6

2
13

2
.5
54

-0
.0
4

-8
.4
5

3
.2
7

0
.0
1
3

p
02
91

7
.1
5

6
9

1
7.
73
0

0
.0
0

4
.3
5

5
.3
1

0
.0
0
5

p
05
48

60
.9
5

34
3

1
3.
30
2

0
.9
8

-1
1
.3
7

-8
.1
2

0
.0
3
6

p
27
56

84
.6
3

80
0

2
58
.4
29

0
.6
2

-3
.0
0

3
.4
3

0
.4
6
2

p
ip
ex

79
.7
0

44
0
.0
27

0
.0
0

-4
.5
5

-8
.1
2

0
.0
0
1

se
n
to
y

24
.7
9

6
8

0.
87
9

0
.0
0

-2
.9
4

-2
.7
0

0
.0
0
1

A
ve
ra
ge

56
.4
1

1
89
.6
7

32
.9
07

0
.1
9

-4
.4
5

-2
.2
3

0
.0
6

N
am

e
H
C
G

G
M
I

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

71
.3
3

46
0
.1
12

0
.0
0

0
.0
0

2
.5
8

0
.0
0
0

m
o
d
00
8

83
.3
5

7
8

3.
11
6

0
.1
9

-3
.8
5

-5
.5
0

0
.0
0
1

p
00
33

87
.4
2

4
6

0.
01
4

0
.0
0

0
.0
0

8
.0
3

0
.0
0
0

p
02
82

8
.3
6

2
13

2
.5
54

0
.0
7

-1
0
.3
3

7
.5
4

0
.0
0
1

p
02
91

7
.1
5

6
9

1
7.
73
0

0
.0
0

1
.4
5

-1
.3
9

0
.0
0
1

p
05
48

60
.9
5

34
3

1
3.
30
2

1
.0
1

-1
0
.5
0

-1
1
.6
7

0
.0
0
4

p
27
56

84
.6
3

80
0

2
58
.4
29

0
.6
8

-3
.7
5

-8
.2
0

0
.0
4
9

p
ip
ex

79
.7
0

44
0
.0
27

0
.0
0

-6
.8
2

-5
.1
7

0
.0
0
0

se
n
to
y

24
.7
9

6
8

0.
87
9

0
.0
0

-8
.8
2

-2
.5
1

0
.0
0
0

A
ve
ra
ge

56
.4
1

1
89
.6
7

32
.9
07

0
.2
2

-4
.7
3

-1
.8
1

0
.0
1

225

T
a
b
le

C
.8
:
R
es
u
lt
s
o
n
M
IP

L
IB

in
st
an

ce
s
u
si
n
g
S
C
G

cu
ts

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

71
.3
3

46
0
.1
12

0
.0
0

-2
.1
7

1
.5
2

0
.0
0
1

m
o
d
00
8

83
.3
5

7
8

3.
11
6

0
.1
7

-1
5
.3
8

-2
5
.7
7

0
.0
0
8

p
00
33

87
.4
2

4
6

0.
01
4

0
.0
0

-4
.3
5

1
.4
6

0
.0
0
1

p
02
82

8
.3
6

2
13

2
.5
54

0
.0
7

-1
0
.3
3

8
.0
8

0
.0
1
3

p
02
91

7
.1
5

6
9

1
7.
73
0

0
.0
0

1
.4
5

-1
.3
3

0
.0
0
5

p
05
48

60
.9
5

34
3

1
3.
30
2

1
.0
3

-1
2
.5
4

-1
0
.8
6

0
.0
3
6

p
27
56

84
.6
3

80
0

2
58
.4
29

0
.6
8

-3
.7
5

-7
.7
6

0
.4
4
6

p
ip
ex

79
.7
0

44
0
.0
27

0
.0
6

-1
5
.9
1

-6
.2
7

0
.0
0
1

se
n
to
y

24
.7
9

6
8

0.
87
9

0
.0
0

-8
.8
2

-2
.6
8

0
.0
0
1

A
ve
ra
ge

56
.4
1

1
89
.6
7

32
.9
07

0
.2
2

-7
.9
8

-4
.8
5

0
.0
6

226

C.3 MIPLIB instances with consideration of generalized
upper bounds

We report the detailed experiment results using MIPLIB instances with considera-

tion of generalized upper bounds in Section 3.6.

227

T
ab

le
C
.9
:
R
es
u
lt
s
on

M
IP

L
IB

in
st
an

ce
s
u
si
n
g
m
ax

im
al

C
G

cu
ts

an
d
G
om

or
y
m
ix
ed

-i
n
te
ge
r
cu

ts

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

75
.6
5

49
0
.2
5

0
.0
0

0
.0
0

2
.0
3

0
.0
0

m
it
re

10
0.
00

7
57

30
0.
00

-0
.5
0

0
.6
6

0
.0
1

0
.1
3

m
o
d
00
8

83
.1
4

7
5

5.
38

-0
.2
9

-3
7
.3
3

-3
5
.6
2

0
.0
0

p
02
82

97
.6
0

2
08

4
.2
8

0
.3
1

-1
.9
2

2
2
.6
7

0
.0
0

p
02
91

98
.0
3

67
3
3.
63

0
.0
0

-1
.4
9

7
.4
3

0
.0
0

p
05
48

87
.8
1

3
10

1
9.
44

0
.0
7

-5
.4
8

-0
.5
2

0
.0
0

p
27
56

97
.7
8

6
45

30
0.
00

-0
.2
3

-3
.1
0

0
.0
0

0
.0
4

p
ip
ex

80
.1
1

50
0
.1
0

-2
.2
2

-8
.0
0

-2
0
.2
9

0
.0
0

se
n
to
y

24
.7
9

63
1
.9
7

0
.0
0

-4
.7
6

0
.6
6

0
.0
0

sp
97
ar

3.
47

1
22

1
6.
43

0
.0
0

0
.0
0

1
.5
0

0
.0
4

A
ve
ra
ge

74
.8
4

23
4.
6

6
8.
15

-0
.2
8

-6
.1
4

-2
.2
1

0
.0
2

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

75
.6
5

49
0.
25

0
.1
7

1
0
.2
0

2
.3
0

0
.0
0

m
it
re

10
0
.0
0

7
57

30
0.
00

0
.0
0

-1
4
.4
0

-4
.9
6

0
.6
4

m
o
d
00
8

8
3.
14

7
5

5
.3
8

-0
.2
9

-3
7
.3
3

-3
7
.7
5

0
.0
1

p
02
82

9
7.
60

2
08

4.
28

0
.3
9

-9
.6
2

1
1
.3
4

0
.0
3

p
02
91

9
8.
03

67
3
3.
63

0
.0
0

-1
.4
9

7
.5
4

0
.0
1

p
05
48

8
7.
81

3
10

1
9.
44

0
.0
2

-6
.4
5

-3
.2
0

0
.0
9

p
27
56

9
7.
78

6
45

30
0.
00

0
.6
1

-5
.4
3

0
.0
1

0
.7
6

p
ip
ex

80
.1
1

50
0.
10

0
.0
3

-2
4
.0
0

-3
9
.3
3

0
.0
0

se
n
to
y

24
.7
9

63
1.
97

0
.0
0

-4
.7
6

-1
3
.8
3

0
.0
0

sp
97
ar

3
.4
7

1
22

1
6.
43

0
.0
0

-0
.8
2

-1
5
.7
2

0
.2
3

A
ve
ra
ge

7
4.
84

2
34
.6

6
8.
15

0
.0
9

-9
.4
1

-9
.3
6

0
.1
8

228

T
a
b
le

C
.1
0
:
R
es
u
lt
s
on

M
IP

L
IB

in
st
an

ce
s
u
si
n
g
S
C
G

cu
ts

N
am

e
H
C
G

S
C
G

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

∆
IG

C
(%

)
∆
C
u
t
(%

)
∆
T
im

e
(%

)
S
T
im

e
(s
)

ls
eu

75
.6
5

49
0.
25

0
.1
7

0
.0
0

2
.7
0

0
.0
0

m
it
re

10
0
.0
0

7
57

3
00
.0
0

0
.0
0

-6
.2
1

-0
.0
1

0
.7
9

m
o
d
00
8

83
.1
4

7
5

5
.3
8

0
.5
5

-3
7
.3
3

-1
4
.6
1

0
.0
2

p
02
82

97
.6
0

20
8

4
.2
8

0
.3
9

-7
.6
9

8
.8
9

0
.0
5

p
02
91

98
.0
3

6
7

33
.6
3

0
.0
0

-1
.4
9

7
.4
9

0
.0
2

p
05
48

87
.8
1

31
0

19
.4
4

0
.0
2

-6
.4
5

-0
.0
9

0
.1
6

p
27
56

97
.7
8

64
5

3
00
.0
0

0
.5
3

-4
.3
4

0
.0
0

1
.2
9

p
ip
ex

80
.1
1

50
0.
10

-0
.2
7

-2
6
.0
0

-1
9
.7
1

0
.0
0

se
n
to
y

24
.7
9

6
3

1
.9
7

0
.0
0

-4
.7
6

-8
.4
4

0
.0
0

sp
97
ar

3
.4
7

1
22

1
6.
43

0
.0
0

-3
.2
8

-8
.9
8

0
.3
2

A
ve
ra
ge

74
.8
4

2
34
.6

68
.1
5

0
.1
4

-9
.7
6

-3
.2
8

0
.2
7

229

Appendix D

Detailed experiment results in Chapter 4

We report the detailed experiment results using MCKP instances in Section 4.6.

231

T
ab

le
D
.1
:
R
es
u
lt
s
o
n
M
C
K
P

in
st
an

ce
s
u
si
n
g
P
L
an

d
R
O

n
r⋆

Φ
−
1
(ϵ
)

P
ro
b
a
b
il
is
ti
c
co
v
er

P
L

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

L
T
im

e
(s
)

15
0

25
1

10
.2
8

20
.8

0
.1
9
3

2
2
.8
2

3
2
.4

3
.7
6
8

3
.5
3
5

3
8
.0
9

1
3.
3

0
.1
7
3

1
6
.3
0

2
9
.2

3
.2
5
3

3
.0
0
5

5
3
.5
6

9.
8

0
.1
7
5

1
1
.6
0

2
6
.6

3
.5
1
7

3
.2
1
3

50
1

4
.9
9

1
8.
4

0
.2
7
0

9
.5
0

3
6
.3

6
.4
5
0

6
.0
5
1

3
3
.4
4

1
2.
9

0
.2
7
5

9
.4
6

2
9
.1

5
.5
5
9

5
.1
2
3

5
1
.0
5

5.
4

0
.2
4
9

5
.2
1

2
4
.4

5
.3
6
7

4
.9
3
4

30
0

25
1

8
.8
7

2
4.
2

0
.4
2
6

1
4
.7
5

3
5
.5

2
5
.0
1
0

2
4
.5
6
1

3
1
.8
5

1
1.
0

0
.3
4
6

7
.0
6

2
4
.4

2
3
.8
0
4

2
3
.2
8
8

5
0
.9
3

6.
0

0
.3
0
9

5
.8
8

2
4
.7

2
1
.6
3
2

2
1
.0
7
6

50
1

2
.8
1

2
1.
0

0
.7
5
4

5
.9
6

3
7
.3

4
6
.9
1
6

4
5
.9
7
0

3
0
.8
3

8.
0

0
.6
8
3

2
.5
6

2
1
.4

3
2
.4
6
0

3
1
.6
5
5

5
0
.7
9

6.
7

0
.6
5
8

2
.2
0

1
9
.2

3
1
.1
0
5

3
0
.2
0
7

A
ve
ra
ge

3
.9
6

1
3.
1

0
.3
7
6

9
.4
4

2
8
.3
8

1
7
.4
0

1
6
.8
8
5

n
r⋆

Φ
−
1
(ϵ
)

P
ro
b
a
b
il
is
ti
c
co
v
er

R
O

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

L
T
im

e
(s
)

15
0

25
1

10
.2
8

20
.8

0
.1
9
3

2
2
.4
0

3
3
.3

1
.4
5
3

1
.1
9
8

3
8
.0
9

1
3.
3

0
.1
7
3

1
4
.9
9

2
6
.2

1
.1
4
0

0
.9
1
2

5
3
.5
6

9.
8

0
.1
7
5

1
0
.8
9

2
4
.6

1
.3
2
5

1
.0
2
2

50
1

4
.9
9

1
8.
4

0
.2
7
0

9
.0
1

3
6
.1

4
.2
0
3

3
.8
2
4

3
3
.4
4

1
2.
9

0
.2
7
5

8
.8
5

2
7
.1

3
.7
0
1

3
.2
8
3

5
1
.0
5

5.
4

0
.2
4
9

4
.6
6

2
1
.5

3
.6
9
8

3
.2
4
5

30
0

25
1

8
.8
7

2
4.
2

0
.4
2
6

1
4
.3
3

3
4
.2

9
.8
6
0

9
.3
8
6

3
1
.8
5

1
1.
0

0
.3
4
6

6
.0
9

2
2
.2

9
.3
7
8

8
.9
1
3

5
0
.9
3

6.
0

0
.3
0
9

5
.2
6

2
2
.2

9
.3
6
8

8
.8
4
1

50
1

2
.8
1

2
1.
0

0
.7
5
4

5
.9
9

3
6
.9

2
9
.1
4
0

2
8
.1
7
3

3
0
.8
3

8.
0

0
.6
8
3

2
.3
9

2
0
.1

2
0
.3
4
5

1
9
.4
5
8

5
0
.7
9

6.
7

0
.6
5
8

2
.1
6

1
7
.4

1
7
.0
8
7

1
6
.2
3
8

A
ve
ra
ge

3
.9
6

1
3.
1

0
.3
7
6

8
.9
2

2
6
.8
2

9
.2
2

8
.7
0
8

232

T
ab

le
D
.2
:
R
es
u
lt
s
o
n
M
C
K
P

in
st
an

ce
s
u
si
n
g
th
e
p
ro
p
os
ed

li
ft
in
g
h
eu

ri
st
ic

n
r⋆

Φ
−
1
(ϵ
)

P
ro
b
a
b
il
is
ti
c
co
v
er

P
ro
p
o
se
d

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

IG
C

(%
)

#
C
u
t

T
im

e
(s
)

L
T
im

e
(s
)

15
0

25
1

10
.2
8

20
.8

0
.1
9
3

2
2
.8
2

3
2
.4

0
.2
3
7

0
.0
0
7

3
8
.0
9

1
3.
3

0
.1
7
3

1
6
.2
7

2
9
.2

0
.2
5
6

0
.0
0
7

5
3
.5
6

9.
8

0
.1
7
5

1
1
.4
1

2
6
.3

0
.3
0
7

0
.0
0
8

50
1

4
.9
9

1
8.
4

0
.2
7
0

9
.5
0

3
6
.3

0
.4
0
9

0
.0
1
3

3
3
.4
4

1
2.
9

0
.2
7
5

9
.4
8

2
8
.9

0
.4
3
1

0
.0
1
3

5
1
.0
5

5.
4

0
.2
4
9

5
.1
9

2
4
.2

0
.4
3
5

0
.0
1
4

30
0

25
1

8
.8
7

2
4.
2

0
.4
2
6

1
4
.9
0

3
5
.6

0
.4
4
6

0
.0
1
4

3
1
.8
5

1
1.
0

0
.3
4
6

7
.0
7

2
4
.4

0
.5
2
0

0
.0
1
5

5
0
.9
3

6.
0

0
.3
0
9

5
.8
8

2
4
.6

0
.5
5
9

0
.0
1
4

50
1

2
.8
1

2
1.
0

0
.7
5
4

5
.9
6

3
7
.3

0
.9
5
5

0
.0
2
8

3
0
.8
3

8.
0

0
.6
8
3

2
.5
6

2
1
.4

0
.8
2
1

0
.0
2
3

5
0
.7
9

6.
7

0
.6
5
8

2
.1
9

1
9
.1

0
.9
2
7

0
.0
2
4

A
ve
ra
ge

3
.9
6

1
3.
1

0
.3
7
6

9
.4
4

2
8
.3
1

0
.5
3

0
.0
1
5

233

국문초록

다양한 산업에서 발생하는 의사결정문제는 이진정수최적화 문제로 모형화할 수 있으

며, 지난 수십년간에 걸친 그 해법의 발전은 현실의 최적화 이슈들을 해결하는데 크게

공헌해왔다. 이진정수최적화 문제의 해법을 개선시킨 주요 요인 중 하나는 이진배낭문

제에 대한 절단평면(cutting plane)들의 활용이다. 이러한 절단평면들은 주어진 문제의

완화된 해집합을 더욱 정교하게 정제하여, 완화(relaxation) 기반 최적화 알고리듬의

성능을 향상시킨다. 그러나, 급격한 산업의 발전은 더욱 복잡한 이진정수최적화 문제로

모형화되는 도전적인 운영 이슈들을 발생시키고 있으며, 그 문제들에 대응하기 위한

개선된 해법들이 요구되고 있다. 이에 대한 한 가지 해결책으로써 이진정수최적화 문

제에 대한 더욱 효과적인 절단평면과 그 생성 기법들을 도출하기 위해 이진배낭문제의

변형에 대한 연구들이 활발히 진행되고 있다.

본 논문에서는 그러한 이진배낭문제의 두 가지 변형, 일반화된 상한제약이 있는

이진배낭문제(binary knapsack problem with generalized upper bounds, GKP)와 확

률제약이 있는 이진배낭문제(chance-constrained binary knapsack problem, CKP)에

대한 효율적인 절단평면 생성 기법을 개발하여 이진정수최적화 문제에 대한 해결 능

력을 제고한다. 먼저, 이진배낭문제보다 더욱 강력한 절단평면을 도출할 수 있는 GKP

에대해서,일반적인선형정수최적화문제에서정의될수있는크바탈-고모리(Chvátal-

Gomory, CG) 절단평면들을 다룬다. 일반적인 선형정수최적화 문제에 대한 CG 절단

평면들을 생성하는 분리(separation) 문제는 강성 NP-hard임이 증명되었으나, GKP

에 대한 분리 문제는 유사다항시간(pseudo-polynomial time) 내에 해결될 수 있음을

밝힌다. 또한, GKP에 대한 분리 문제의 분해 성질에 기반하여, 효율적으로 CG 절단

평면들을 생성하는 휴리스틱 분리 알고리듬도 함께 제안한다. 계산실험결과를 통해,

235

제안된 분리 알고리듬으로 생성된 CG 절단평면들은 기존에 알려진 GKP의 절단평면

들에비해서비슷한시간내에선형이진정수최적화문제의선형완화를현저히개선함을

확인한다.

다음으로, 선형이진정수최적화 문제의 CG 절단평면들을 강화하는 새로운 기법을

제시하여 CG 절단평면들의 모형 강화 효과를 개선한다. 우선 주어진 선형이진정수최

적화문제의 CG 절단평면과 이진배낭문제에 대한 커버 부등식(cover inequality) 사이

의 관계성을 밝힌다. 이 관계성에 입각하여, 커버 부등식에 대한 리프팅 함수(lifting

function)를 활용해, 주어진 선형이진정수최적화문제의 CG 절단평면보다 강한 절단

평면을 생성해내는 강화 기법을 제안한다. 제안된 강화 기법은 일반화된 상한제약이

있는 선형이진정수최적화 문제의 CG 절단평면에 대해서 확장된다. 이론적 비교를 통

해, 제안된 강화 기법은 기존에 제시된 기법들보다 더욱 강한 절단평면을 생성함을

보인다. 더불어, 계산실험을 통해서, 제안된 강화 기법은 더 적은 절단평면으로 정의된

더욱 강화된 모형을 도출할 수 있으며, 그 모형을 얻을 때까지 소요되는 계산 시간도

감소시킨다는 것을 보인다.

마지막으로, 불확실성이 존재하는 최적화 문제에 대한 확률제약모형(chance-const

rained program)에서 나타나는 CKP를 다룬다. 본 논문에서는 아이템들의 무게가 서

로 독립인 정규분포를 따른다고 가정하는데, 이러한 CKP는 비선형 이진정수최적화

문제로 모형화된다. 본 논문에서는 이 CKP에 대해 잘 알려진 절단평면인 확률적 커버

부등식(probabilistic cover inequality)의 효율적인 리프팅 휴리스틱을 제시한다. 먼저

CKP에대한비볼록연속완화(non-convex continuous relaxation)를제시하고,기존에

제시된 다른 연속 완화들보다 더 강한 상한을 제공함을 밝힌다. CKP에 대한 비볼록

연속 완화는 일반적으로 풀기 힘든 비볼록 최적화 문제로 표현되지만, 그 완화에 대한

다항시간알고리듬을제시한다.제안하는리프팅휴리스틱은 CKP에대한비볼록연속

완화와 그 다항 시간 알고리듬을 활용한다. 계산실험결과는 제안된 리프팅 휴리스틱이

236

기존에 제시된 방법들보다 압도적으로 빠른 시간내에 리프팅을 수행을 하는 반면, 그

결과로 생성된 리프팅된 확률적 커버 부등식의 효과성이 여전이 유지됨을 보여준다.

주요어: 이진정수최적화, 배낭문제, 일반화된 상한제약, 확률제약, 범용 절단평면, 크바

탈-고모리 절단평면, 커버 부등식, 분리 알고리듬, 리프팅

학번: 2017-23584

237

	Chapter 1 Introduction
	1.1 Overview
	1.2 Background
	1.2.1 Binary integer program
	1.2.2 Cutting plane algorithm
	1.2.3 Binary knapsack problem
	1.2.4 General-purpose cuts
	1.2.5 Chance-constrained programming approach for optimization problems under uncertainty

	1.3 Research objectives and contributions
	1.4 Organization of the thesis

	Chapter 2 Separation of the rank-1 Chvátal-Gomory cuts for the knapsack problem with generalized upper bounds
	2.1 Introduction
	2.2 Literature review
	2.3 Non-dominated CG cuts for the GKP polytope
	2.4 Exact separation algorithm for CG cuts
	2.5 Heuristic separation algorithm for CG cuts
	2.5.1 Selection of sub-problems to be solved
	2.5.2 Greedy algorithm for each sub-problem

	2.6 Computational experiment results
	2.6.1 Performance of exact and heuristic separation algorithms for CG cuts
	2.6.2 Effectiveness of CG cuts compared with general lifted GUB cover inequalities
	2.6.3 Effectiveness of CG cuts for GKPs on benchmark instances of binary integer linear programs

	2.7 Conclusion

	Chapter 3 Strengthening Chvátal-Gomory cuts for binary integer linear programs and its extension to generalized upper bounds
	3.1 Introduction
	3.2 Related works
	3.3 Non-dominated CG cuts for the single-constraint relaxation of binary integer linear program
	3.3.1 Non-dominated CG cuts for binary knapsack polytopes
	3.3.2 Maximal CG cuts for binary knapsack polytopes

	3.4 Strengthening maximal CG cuts for binary knapsack polytopes
	3.4.1 Extended knapsack polytope and lifted cover inequalities
	3.4.2 CG cut strengthening method using a lifting function for cover inequalities
	3.4.3 Strength of the SCG cut

	3.5 Extension to binary integer linear programs with generalized upper bounds
	3.5.1 Maximal CG cuts for GKP polytopes
	3.5.2 Strengthening maximal CG cuts for GKP polytopes

	3.6 Computational test results
	3.6.1 Effectiveness of SCG cuts derived from binary knapsack polytopes
	3.6.2 Effectiveness of SCG cuts derived from GKP polytopes

	3.7 Conclusion

	Chapter 4 Lifting heuristic of probabilistic cover inequalities for the chance-constrained binary knapsack problem
	4.1 Introduction
	4.2 Literature reviews
	4.3 Comparison of continuous relaxations for the chance-constrained binary knapsack problem
	4.3.1 Continuous relaxations for the chanced-constrained binary knapsack problem
	4.3.2 Bound comparison for continuous relaxations

	4.4 Polynomial-time algorithm for the non-convex relaxation
	4.4.1 Reformulation of the non-convex relaxation
	4.4.2 Algorithm to solve the reformulated non-convex relaxation

	4.5 Lifting heuristic based on the non-convex relaxation
	4.6 Computational test results
	4.7 Conclusion

	Chapter 5 Conclusion
	5.1 Summary and contributions
	5.2 Future research directions

	Bibliography
	Appendix A Summary of benchmark instances
	Appendix B Detailed experiment results in Chapter 2
	B1 Small-sized GKP instances
	B2 Large-sized GKP instances

	Appendix C Detailed experiment results in Chapter 3
	C1 GAP instances
	C2 MIPLIB instances without consideration of generalized upper bounds
	C3 MIPLIB instances with consideration of generalized upper bounds

	Appendix D Detailed experiment results in Chapter 4
	국문초록

<startpage>18
Chapter 1 Introduction 1
 1.1 Overview 1
 1.2 Background 5
 1.2.1 Binary integer program 5
 1.2.2 Cutting plane algorithm 7
 1.2.3 Binary knapsack problem 11
 1.2.4 General-purpose cuts 18
 1.2.5 Chance-constrained programming approach for optimization problems under uncertainty 29
 1.3 Research objectives and contributions 34
 1.4 Organization of the thesis 38
Chapter 2 Separation of the rank-1 Chvátal-Gomory cuts for the knapsack problem with generalized upper bounds 41
 2.1 Introduction 42
 2.2 Literature review 44
 2.3 Non-dominated CG cuts for the GKP polytope 47
 2.4 Exact separation algorithm for CG cuts 51
 2.5 Heuristic separation algorithm for CG cuts 59
 2.5.1 Selection of sub-problems to be solved 60
 2.5.2 Greedy algorithm for each sub-problem 62
 2.6 Computational experiment results 68
 2.6.1 Performance of exact and heuristic separation algorithms for CG cuts 70
 2.6.2 Effectiveness of CG cuts compared with general lifted GUB cover inequalities 73
 2.6.3 Effectiveness of CG cuts for GKPs on benchmark instances of binary integer linear programs 78
 2.7 Conclusion 81
Chapter 3 Strengthening Chvátal-Gomory cuts for binary integer linear programs and its extension to generalized upper bounds 83
 3.1 Introduction 84
 3.2 Related works 87
 3.3 Non-dominated CG cuts for the single-constraint relaxation of binary integer linear program 89
 3.3.1 Non-dominated CG cuts for binary knapsack polytopes 91
 3.3.2 Maximal CG cuts for binary knapsack polytopes 96
 3.4 Strengthening maximal CG cuts for binary knapsack polytopes 100
 3.4.1 Extended knapsack polytope and lifted cover inequalities 100
 3.4.2 CG cut strengthening method using a lifting function for cover inequalities 108
 3.4.3 Strength of the SCG cut 112
 3.5 Extension to binary integer linear programs with generalized upper bounds 118
 3.5.1 Maximal CG cuts for GKP polytopes 120
 3.5.2 Strengthening maximal CG cuts for GKP polytopes 127
 3.6 Computational test results 136
 3.6.1 Effectiveness of SCG cuts derived from binary knapsack polytopes 138
 3.6.2 Effectiveness of SCG cuts derived from GKP polytopes 144
 3.7 Conclusion 147
Chapter 4 Lifting heuristic of probabilistic cover inequalities for the chance-constrained binary knapsack problem 149
 4.1 Introduction 150
 4.2 Literature reviews 154
 4.3 Comparison of continuous relaxations for the chance-constrained binary knapsack problem 157
 4.3.1 Continuous relaxations for the chanced-constrained binary knapsack problem 157
 4.3.2 Bound comparison for continuous relaxations 163
 4.4 Polynomial-time algorithm for the non-convex relaxation 167
 4.4.1 Reformulation of the non-convex relaxation 167
 4.4.2 Algorithm to solve the reformulated non-convex relaxation 171
 4.5 Lifting heuristic based on the non-convex relaxation 178
 4.6 Computational test results 181
 4.7 Conclusion 185
Chapter 5 Conclusion 187
 5.1 Summary and contributions 187
 5.2 Future research directions 189
Bibliography 193
Appendix A Summary of benchmark instances 205
Appendix B Detailed experiment results in Chapter 2 209
 B1 Small-sized GKP instances 209
 B2 Large-sized GKP instances 212
Appendix C Detailed experiment results in Chapter 3 217
 C1 GAP instances 217
 C2 MIPLIB instances without consideration of generalized upper bounds 224
 C3 MIPLIB instances with consideration of generalized upper bounds 227
Appendix D Detailed experiment results in Chapter 4 231
국문초록 235
</body>

