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Abstract

Enhancing non-linear asset volatility
forecasting models with investor sentiment

and explainable AI
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This study investigates the enhancement of non-linear asset volatility forecasting

models by incorporating exogenous variables, including investor sentiment, and using

explainable AI with SHAP analysis. Comparing non-linear neural network models to

the traditional HAR model, we demonstrate superior forecasting performance. Our

findings underscore the significance of economic variables and the role of investor

sentiment and attention in non-linear volatility prediction, as revealed by SHAP

analysis. Specifically, we discover that exogenous variables take precedence as the

primary drivers in the realized volatility forecast, surpassing the influence of return

and historical volatilities.

Keywords: Volatility Forecasting, Explainable AI, Investor Sentiment, SHAP, In-

dustrial Engineering
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Chapter 1

Introduction

This chapter provides a concise overview of the research’s context, describes the

problem, explains the research motivation and contribution with objectives, and

highlights its significance.

1.1 Understanding Asset Volatility and its Significance

for Investors

In the ever-changing landscape of financial markets, asset volatility plays a pivotal

role in shaping investment decisions and strategies. Volatility, defined as the degree

of price fluctuations or variability exhibited by an asset over a given period, captures

the inherent uncertainties and risks embedded within financial markets, reflecting

the speed and magnitude of price movements [45]. This concept is closely related

to the Efficient Market Hypothesis (EMH) [21], which posits that financial markets

incorporate all available information and promptly adjust asset prices to reflect

their intrinsic values. In line with the EMH, asset volatility represents the collective

market consensus on the uncertainties and potential risks associated with an asset.

For investors, while returns are the primary concern, volatility holds equal impor-

tance. Investors seek to optimize their returns while managing risk, recognizing that
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higher volatility can imply greater potential for both profits and losses [39]. When

formulating their investment strategies, prudent investors consider both the return

potential and the volatility characteristics of an asset. They aim to strike a balance

between maximizing returns and mitigating the risks associated with price fluctua-

tions. High volatility implies greater potential for both profits and losses, making it

a vital consideration for investors seeking to optimize returns, protect capital, and

make informed investment choices. By carefully assessing the relationship between

returns and volatility, investors can tailor their investment approaches to align with

their risk tolerance, investment goals, and time horizons.

1.2 Problem Description: Asset Volatility Forecasting

The forecasting of asset volatility has been a topic of extensive research over the

years, driven by the increasing demand for accurate and dependable models capable

of capturing and predicting the dynamics of volatility. However, the inherent nature

of volatility presents a formidable obstacle to overcome. Volatility represents a la-

tent and unobservable movement within an asset, rendering its prediction a complex

task [45]. This intangible characteristic of volatility, though elusive, holds immense

significance within financial markets, exerting a profound influence on investment

decisions, risk management strategies, and portfolio optimization techniques. Thus,

there is a pressing need to develop suitable models and methodologies that can

effectively capture and forecast asset volatility, enabling investors and market par-

ticipants to make informed decisions and navigate the complexities of the financial

landscape.

Forecasting asset volatility is a complex task due to its dynamic and multifaceted
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characteristics. Volatility manifests itself in a variety of ways, including time-varying

patterns [51], non-linear relationships [22], and sporadic spikes or clusters [50], all

of which contribute to the difficulty of achieving accurate predictions. Furthermore,

the drivers of volatility can differ across assets and market conditions, introduc-

ing additional intricacies to the forecasting process. In response to these challenges,

researchers have pursued diverse approaches aimed at overcoming them. These ap-

proaches involve exploring the incorporation of exogenous variables and the utiliza-

tion of advanced modeling techniques. By considering external factors and employing

sophisticated methodologies, researchers strive to enhance the accuracy and relia-

bility of asset volatility forecasts.

One approach involves incorporating exogenous variables into volatility forecast-

ing models. Researchers have investigated variables such as investor sentiment and

macroeconomic indicators, aiming to capture the impact of these factors on volatil-

ity dynamics. For example, the advent of social media platforms has facilitated

the widespread sharing of investors’ thoughts and opinions. Platforms like Twitter,

StockTwits, and Reddit allow investors to freely express their views on the recent

price movements of assets within their portfolios. As reported by several studies, it is

widely acknowledged that investor sentiment, as expressed through these platforms,

can significantly influence price movements [3, 8, 34, 48]. By integrating exogenous

variables, researchers seek to enhance forecasting accuracy and capture the effects

of external factors on asset volatility.

Another promising avenue of research involves the application of advanced mod-

eling techniques. Traditional econometric models, such as generalized autoregres-

sive conditional heteroskedasticity (GARCH) models [11], have been widely used
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in volatility forecasting. However, in recent years, more complex models, including

machine learning and deep learning approaches, have gained popularity. In partic-

ular, neural network architectures have shown considerable potential in capturing

volatility dynamics and have exhibited superior performance compared to traditional

methods in certain cases [47, 52, 53]. This shift towards more sophisticated modeling

techniques reflects the desire to leverage the strengths of advanced algorithms and

computational capabilities to enhance the accuracy and robustness of asset volatility

forecasts.

1.3 Research Motivation and Contribution

Despite the progress made in incorporating exogenous variables and utilizing com-

plex modeling techniques, a significant limitation of many sophisticated volatility

forecasting models is their lack of interpretability. In the field of finance, the ability

to understand and interpret model results is crucial for establishing trust and en-

suring the reliability of future applications. Even if a model demonstrates superior

forecasting performance, the absence of sufficient explanations for its predictions can

hinder investors’ understanding of volatility dynamics and raise doubts about relying

on the model’s forecasts. Thus, there exists an imperative need to develop enhanced

models that not only enhance forecasting accuracy but also offer interpretability,

effectively bridging the gap between advanced methodologies and practical usability

within the financial industry.

To address this limitation, this research aims to incorporate interpretability into

the analysis of non-linear volatility forecasting models. By employing an explainable

AI model, this study seeks to unravel the opaque nature of these complex models and
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attain a deeper understanding of the underlying drivers of volatility. Furthermore,

the research endeavors to examine whether these non-linear models appropriately

account for the influence of exogenous variables, such as investor sentiment, investor

attention, and macroeconomic indicators, on volatility dynamics. By shedding light

on the impact of these exogenous variables, the goal is to not only enhance the

forecasting accuracy of non-linear models but also facilitate a more comprehensive

comprehension of the intricate dynamics that drive volatility.

Through the integration of interpretability and the analysis of exogenous vari-

ables, this research contributes to the advancement of non-linear asset volatility

forecasting, providing valuable insights for both researchers and practitioners in the

financial domain. The contributions of this research can be summarized as follows:

• Integration of interpretability into non-linear asset volatility forecasting mod-

els, allowing for a deeper understanding of model predictions and enhancing

transparency in the decision-making process.

• Novel construction of a dataset specifically tailored for the research, enabling a

comprehensive comparative analysis of predictive performance among different

types of models.

• Examination of the impact and appropriate incorporation of exogenous vari-

ables, such as investor sentiment, investor attention, and macroeconomic indi-

cators, in capturing the dynamics of asset volatility.

• Employing an explainable AI framework to unveil the intricacies of complex

forecasting models, fostering a deeper understanding of the underlying drivers

of volatility.
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Overall, this research contributes to the development of more reliable, transpar-

ent, and accurate non-linear asset volatility forecasting models, fostering advance-

ments in the field and offering valuable guidance for decision-makers in the financial

domain. By bridging the gap between advanced modeling techniques and practical

usability, this research empowers stakeholders with enhanced insights into volatility

dynamics, enabling more effective risk management and informed investment strate-

gies. This contribution directly benefits retail investors by providing them with valu-

able tools to navigate the complex world of finance, make well-informed decisions,

and ultimately improve their financial outcomes.

1.4 Organization of the Thesis

The thesis is organized into five chapters. Chapter 1 serves as the introduction,

while Chapter 2 provides a comprehensive review of relevant literature on asset

volatility forecasting and explainable AI. Chapter 3 presents the methodology and

data employed in this study, followed by the discussion of empirical findings in

Chapter 4. Finally, Chapter 5 concludes the thesis and offers potential avenues for

future research.
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Chapter 2

Literature Review

This chapter provides a comprehensive review of the literature on volatility forecast-

ing models, including the definition of volatility and various modeling methods. It

explores both traditional econometric approaches and emerging techniques like ma-

chine learning and deep learning-based models. Additionally, the chapter explores

the concept of explainable AI and demonstrates how this method enhances trans-

parency and interpretability.

2.1 Definition of Volatility

The concept of volatility, characterized by the degree of price fluctuations or variabil-

ity observed in an asset, is inherently intangible. Unlike other measurable financial

metrics like returns or market capitalization, volatility represents a dynamic and

elusive characteristic of an asset. As a result, there exist multiple definitions and

interpretations of volatility, enabling researchers and practitioners to adopt the def-

inition that best suits their specific requirements. This flexibility empowers them to

delve into the essence and implications of volatility within their respective domains,

facilitating a comprehensive understanding of its significance.
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Standard Deviation of Returns A widely adopted definition of volatility is

based on the concept of standard deviation [45]. The standard deviation-based def-

inition calculates volatility as the standard deviation of asset returns over a specific

period. The formula used for this calculation is:

σ̂2 =
1

N − 1

N∑
t=1

(
Rt −R

)2
(2.1)

In the equation, σ̂2 represents the estimated volatility, N denotes the num-

ber of observations, Rt is the return at time t, and R signifies the mean return

within the given time period. Log returns, which are calculated using the formula

Rt = log
(

Pt
Pt−1

)
, where Pt denotes the price at time t, are commonly utilized in this

context. By quantifying the dispersion of returns around the mean, the standard de-

viation provides a numerical measure of the asset’s price fluctuations. This definition

allows for the application of various statistical tests when the underlying distribu-

tion of the return series follows a Gaussian distribution [24]. It is worth noting that

this definition is commonly employed by computing returns based on the closing

price of an asset, effectively capturing the dynamics reflected in the closing prices.

However, it is important to acknowledge a potential limitation of this approach, as

it primarily captures the dynamics reflected in the closing prices and may not fully

account for intraday or interday price movements.

Realized Volatility (RV) An alternative approach to measuring volatility is

realized volatility (RV), which leverages high-frequency intraday data to capture

the actual price fluctuations experienced by an asset. Unlike traditional methods,

which rely on aggregated daily or periodic data, RV takes into account the observed
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price changes within shorter time intervals [1]. By doing so, it provides a more

granular and dynamic measure of volatility. The estimation of RV typically involves

summing the squared intraday returns over a specific time period, such as minutes or

hours. This approach allows for the inclusion of intraday price dynamics, capturing

the volatility that arises within shorter time intervals. The formula for computing

realized volatility at time T is given by:

RVT =
N∑
t=1

R2
t (2.2)

where Rt represents the return at time t, and N denotes the total number of

intraday returns considered within the specific time period under analysis. The choice

of N depends on the research or analysis objectives, as well as the availability and

granularity of the intraday data.

This approach has gained significant attention in research, with studies highlight-

ing its ability to capture microstructure effects and sudden price movements that

may not be fully reflected in traditional volatility measurements [2, 6]. Furthermore,

realized volatility has implications for risk management and pricing of financial in-

struments. Its ability to capture finer-grained price movements can enhance risk

models and improve the accuracy of value-at-risk (VaR) estimates [25, 35]. Incor-

porating realized volatility in option pricing models can also lead to more precise

valuation of derivative instruments, as it accounts for the true volatility experienced

by the underlying asset [5]. By considering the actual price fluctuations, option prices

can be more accurately determined, aiding investors and traders in making informed

decisions.
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Implied Volatility (IV) Implied volatility is another important measure of volatil-

ity that is widely used in financial markets. Unlike historical or realized volatility,

which rely on past price data, implied volatility derives its value from the prices of fi-

nancial derivative instruments, particularly options. It represents the volatility level

implied by the market’s pricing of options contracts. Through reverse-engineering

option pricing models, such as the classical Black & Scholes formula [10], implied

volatility is calculated, establishing the volatility parameter that equates the ob-

served market price of an option with its theoretical value.

The key assumption behind implied volatility is that option prices in the market

are determined by the collective wisdom and expectations of market participants,

adhering to the principles of the efficient market hypothesis. As a result, implied

volatility can be considered a reliable forecast of future volatility. However, empirical

studies have critically examined the effectiveness of implied volatility, raising ques-

tions about its ability to consistently provide accurate forecasts in practice [14, 40].

Several factors contribute to these challenges, including the presence of market fric-

tions, model misspecification, and the impact of outliers. The assumptions embedded

in option pricing models, such as constant volatility and efficient markets, may not

always hold in real-world scenarios, leading to potential deviations between implied

volatility and actual future volatility.

2.2 Traditional Econometric Volatility Forecasting Mod-

els

Over the years, econometric volatility forecasting models have played a pivotal role

in the field of financial analysis. These models, rooted in statistical techniques and
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econometric methodologies, have provided valuable insights into the dynamics of

volatility by leveraging historical price data and incorporating relevant variables.

Autoregressive Conditional Heteroskedasticity (ARCH) Models The Au-

toregressive Conditional Heteroskedasticity (ARCH) models, along with their subse-

quent Generalized Autoregressive Conditional Heteroskedasticity (GARCH) exten-

sions, have emerged as prominent tools for volatility forecasting [11, 20]. ARCH mod-

els capture the persistence and clustering of volatility by incorporating past squared

returns as a determinant of conditional variance. This recognition of the relationship

between past volatility and current volatility allows for a more accurate estimation

of future volatility patterns. Building upon the ARCH framework, GARCH models

enhance volatility forecasting by introducing lagged conditional variances, effectively

capturing additional volatility dynamics and further improving forecast accuracy.

The advancement continues with GARCH-M models, which integrate exogenous

variables, such as macroeconomic indicators or investor sentiment, into the volatility

modeling process [19, 26]. These models acknowledge that volatility can be influenced

by various factors beyond historical price data alone. By considering both past re-

turns, lagged variances, and the influence of external factors, GARCH-M models

aim to enhance the accuracy of volatility forecasts and provide a more comprehen-

sive understanding of the drivers behind volatility fluctuations. This incorporation

of exogenous variables offers a more nuanced and holistic approach to volatility

forecasting, enabling researchers and practitioners to gain deeper insights into the

underlying factors shaping market volatility.
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Heterogeneous Autoregressive (HAR) Model The Heterogeneous Autore-

gressive (HAR) model is a popular econometric volatility forecasting model that

incorporates multiple lagged realized volatilities [16]. Unlike traditional models that

rely solely on past squared returns, the HAR model incorporates information from

different time scales by considering the lagged volatilities calculated using high-

frequency intraday data. By including volatilities from various time scales, such as

daily, weekly, and monthly, the HAR model provides a more comprehensive and

accurate representation of volatility dynamics.

One specific formulation of the HAR model, similar to the approach used in a

relevant study [4], can be represented by Equation 2.3:

logRV
(d)
t+1 = c+ β(d) logRV

(d)
t + β(w) logRV

(w)
t + β(m) logRV

(m)
t + ϵt+1 (2.3)

In this formulation, logRV
(w)
t and logRV

(m)
t = 1

22

∑22
i=1 logRV

(d)
t−i+1 are the weekly

and monthly averages of daily log realized volatilities, respectively. The coefficients

β(d), β(w), and β(m) capture the impact of lagged volatilities from different time

scales on the future volatility. The constant term c represents the intercept, and

ϵt+1 denotes the noise term.

The simplicity of the HAR model formulation, coupled with its robust perfor-

mance, highlights its practical significance in capturing and forecasting volatility

patterns in financial markets. By incorporating volatilities from multiple time scales,

the HAR model is able to capture both short-term and long-term volatility dynam-

ics, providing a more comprehensive understanding of volatility behavior.
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Stochastic Volatility Models Stochastic volatility models are a class of econo-

metric models that capture time-varying behaviors in volatility by assuming it fol-

lows a stochastic process. Compared to traditional models with constant volatility

assumptions, stochastic volatility models offer a more flexible framework to capture

the complex dynamics of volatility in financial markets. These models can effectively

capture important characteristics such as volatility clustering, leverage effects, and

regime shifts.

One prominent example of a stochastic volatility model is the Heston model [29].

In the Heston model, volatility follows a mean-reverting square-root diffusion pro-

cess, while the asset price follows a geometric Brownian motion. A notable feature

of the Heston model is its ability to capture the volatility smile phenomenon ob-

served in options pricing. The volatility smile represents the implied volatility as a

function of the strike price, indicating that options with different strike prices but

the same maturity can have different implied volatilities. By incorporating stochas-

tic volatility, models like the Heston model provide a more realistic representation

of option pricing. However, it’s important to note that stochastic volatility models

can be computationally intensive, may require advanced estimation techniques, and

interpreting these models can also be challenging due to their complexity.

2.3 Machine Learning and Deep Learning Approaches in

Volatility Forecasting

AI approaches, known as machine learning and deep learning techniques, have

emerged as potent instruments for predicting volatility by harnessing their capacity

to capture intricate patterns and relationships within financial data.
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Machine Learning Approaches Unlike traditional econometric models that rely

on specific parametric forms and distributional assumptions, machine learning mod-

els offer greater flexibility and the capacity to model complex, non-linear dependen-

cies. Methods such as support vector machines (SVM) [23] and random forests [37]

have demonstrated their effectiveness in capturing intricate patterns and enhanc-

ing volatility forecasts in certain scenarios. These approaches have showcased their

ability to handle diverse datasets and exploit the underlying information contained

in financial time series, contributing to more accurate and data-driven volatility

predictions.

Artificial Neural Networks (ANNs) In addition to traditional machine learn-

ing methods, recent advancements in deep learning technologies have introduced neu-

ral network structures into volatility forecasting. Artificial Neural Networks (ANN)

are widely used in various studies, showcasing their effectiveness in capturing com-

plex patterns and improving volatility forecasts [18, 41, 46]. Inspired by the human

brain, ANNs consist of interconnected nodes or neurons organized into layers. The

input layer receives the data, and the output layer generates the desired forecast.

Hidden layers, positioned between the input and output layers, process and trans-

form the information. Neurons apply mathematical operations to the weighted sum

of their inputs, which are then passed through activation functions, introducing

non-linearities into the model.

The most popular type of ANN used in volatility forecasting is the feedforward

neural network. This network structure allows information to flow in one direction,

from the input layer through the hidden layers to the output layer. By employing
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fully connected feedforward networks with multiple hidden layers, the dynamics of

volatility can be captured. Figure 2.1 illustrates an example of an ANN architecture

with two hidden layers, where the input consists of j historical realized volatilities.

To train an ANN for volatility forecasting, historical price data and other relevant

variables are utilized as input. The network iteratively adjusts the weights and biases

of its neurons using optimization algorithms like backpropagation. The objective

is to minimize the difference between predicted and actual volatility values. Once

trained, the ANN can be employed to make forecasts on new, unseen data. Moreover,

ANNs can be combined with other models, such as GARCH and HAR, in hybrid

approaches, taking advantage of their flexible structure and improving modeling

accuracy [7, 17].

Figure 2.1: Neural Network architecture for Realized Volatility
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ANNs offer several advantages in volatility forecasting. They excel in capturing

complex patterns and non-linear relationships, enabling more accurate and flexible

volatility predictions. Furthermore, ANNs demonstrate proficiency in handling large

and high-dimensional datasets, making them well-suited for analyzing vast amounts

of financial information. However, it is crucial to consider certain factors when work-

ing with ANNs. Selecting and tuning model architectures, activation functions, and

optimization algorithms require careful attention. Overfitting is a potential concern

if the model is not adequately regularized, resulting in overly optimistic performance

on training data but poor generalization to new data. Additionally, the black-box

nature of ANNs can make it challenging to interpret the underlying relationships

between inputs and outputs.

Recurrent Neural Networks (RNNs) The development of Recurrent Neural

Networks (RNNs) was motivated by the need to capture temporal dependencies and

sequential information in data, which is particularly relevant in volatility forecasting.

Unlike feedforward neural networks, RNNs have the ability to retain information

from previous time steps and use it to influence the predictions at the current time

step. This characteristic allows RNNs to handle variable-length sequences and resolve

the limitation of feedforward networks in capturing long-term dependencies.

The structure of an RNN involves recurrent connections, where the output of

a neuron at a certain time step is fed back as an input to the same neuron at the

next time step. This feedback loop enables RNNs to maintain an internal memory

that captures the historical context of the sequence being processed. By leveraging

the temporal dependencies within the data, RNNs can capture the patterns and
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relationships that are crucial for accurate volatility predictions. However, traditional

RNNs suffer from the vanishing gradient problem, which hinders their ability to

capture long-term dependencies.

To overcome the vanishing gradient problem, advanced variants of RNNs, such

as Long Short-Term Memory (LSTM) [30] and Gated Recurrent Unit (GRU) [15],

have been introduced. LSTM networks incorporate memory cells and three gating

mechanisms (input gate, forget gate, and output gate) to control the flow of infor-

mation within the network. These gates allow LSTMs to selectively retain or forget

information over long sequences, enabling them to capture long-term dependencies

effectively. Similarly, GRU networks employ gating mechanisms to control the flow

of information, but with a simpler structure compared to LSTMs.

Several studies have demonstrated the effectiveness of LSTM networks in volatil-

ity forecasting. For example, it has been shown that RNNs, particularly LSTMs,

outperform traditional econometric methods in predicting the realized volatility of

the S&P 500 index [12]. In the context of individual stocks, LSTM-based models

have been found to achieve superior performance compared to traditional machine

learning and econometric models for some stocks [33].

2.4 Explainable AI

The growing adoption of machine learning and deep learning algorithms has led to

impressive performance across various domains. However, the inherent complexity

of these models often results in a lack of transparency, making it challenging to

understand the reasoning behind their predictions or decisions. This limitation has

spurred the development of eXplainable AI (XAI), a field dedicated to creating
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interpretable models and providing meaningful explanations for their outputs.

One approach within explainable AI is feature importance analysis, which aims

to quantify the contribution of each input feature to the model’s predictions. By

understanding the importance and impact of different features on the model’s out-

put, stakeholders can gain insights into the decision-making process of AI models

and enhance trust and interpretability. Several techniques have been developed for

feature importance analysis, including SHAP (SHapley Additive exPlanations) [36]

and LIME (Local Interpretable Model-Agnostic Explanations) [49].

In the field of finance, SHAP has gained prominence as a robust tool for inter-

preting and explaining models. It draws inspiration from cooperative game theory,

specifically leveraging the concept of Shapley values. Shapley values quantify the

marginal contribution of each feature when considering all possible feature subsets.

By computing Shapley values for each feature, SHAP provides a unified frame-

work for quantifying the impact of features on a model’s predictions. This enables

researchers and practitioners in finance to gain a deeper understanding of the un-

derlying drivers behind predictions and enhances the interpretability of complex

models. Several studies have demonstrated the effectiveness of SHAP in interpreting

time series models [28, 31].

The computation of SHAP values involves evaluating the prediction function for

different subsets of features. Mathematically, the SHAP value for a specific feature

i can be expressed as follows:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (2.4)
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In this equation, i represents the feature for which we are calculating the Shap-

ley value, N represents the set of all features, v represents the prediction function,

and S represents a subset of features excluding the feature i. The SHAP value ϕi(v)

represents the marginal contribution of feature i in the cooperative game theory

context. Calculating SHAP values for each feature allows us to ascertain the rela-

tive significance of features, unveiling their individual contributions to the model’s

predictions.
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Chapter 3

Methodology and Data

This chapter presents an overview of the modeling method and data employed in this

study. It is followed by a discussion of the experimental settings and an explanation

of how an explainable AI technique is utilized.

3.1 Models

The modeling approach adopted in this study builds upon the concept of the HAR

model with exogenous variables introduced in a previous study [4]. The HAR model

used in this paper is represented by Equation 3.1:

logRV
(d)
t+1 = c+

(
logRVt

)′
β(RV ) +M ′

tγ(eco) + Z ′
tθ(sent) + ϵt+1 (3.1)

In this equation, the term log RVt refers to a 3-dimensional column-vector con-

sisting of the daily log realized volatilities, as well as the weekly and monthly

average daily log realized volatilities. The vector Mt represents a q-dimensional

column-vector containing economic and financial variables, while Zt represents a p-

dimensional column-vector containing sentiment and attention variables. The coef-

ficients β(RV ), γ(eco), and θ(sent) capture the respective impacts of lagged volatilities,

economic variables, and sentiment variables on the future volatility. The constant
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term c represents the intercept, and ϵt+1 denotes the error term in the model.

In contrast to utilizing the HAR factors in the previous model, this study em-

ploys an Artificial Neural Network (ANN) with a similar approach. Based on a

comprehensive analysis of relevant literature, the decision to employ an ANN model

in this study was driven by its extensive adoption within the research community,

as evidenced by the greater number of studies utilizing ANN compared to Recurrent

Neural Networks (RNN) in the field [24]. The ANN model incorporates lagged real-

ized volatilities from time t to time t − j + 1 as one input, capturing the historical

volatility dynamics using j past values. Additionally, all models in this study include

the daily log return at time t as an input to measure its impact on future volatility.

Exogenous variables for time t are also included as inputs to capture the influence

of external factors on volatility. By combining these inputs, the ANN model aims to

predict the realized volatility at time t+1, providing a comprehensive framework for

volatility forecasting. The models are trained using the Mean Squared Error (MSE)

loss function, a common objective function for regression tasks, and optimized using

the Adam optimizer.

The determination of the optimal architecture for the neural network models

follows a systematic approach. The number of nodes in each hidden layer is carefully

selected by evaluating the test loss. Different configurations with 16, 32, and 64 nodes

for each hidden layer are considered, while maintaining a consistent two hidden

layer structure. The models are trained and their performance is assessed using the

test MSE as the evaluation metric. The model with the lowest test MSE among

the considered configurations is chosen as the best model. This meticulous process

ensures that the neural network models are fine-tuned to maximize their predictive
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accuracy for volatility forecasting.

To evaluate the significance of incorporating exogenous variables, the study con-

ducts a comparative analysis between the baseline ANN model, which solely relies

on daily log return and historical realized volatility values, and the extended models

that include additional exogenous variables. For the analysis of different exogenous

features, various model variations are explored. The model list includes:

• Models incorporating investor sentiment and attention variables along with

log return and historical realized volatility

• Models incorporating macroeconomic variables along with log return and his-

torical realized volatility

• Models incorporating both investor sentiment and attention variables, as well

as macroeconomic variables, along with log return and historical realized volatil-

ity

• Models incorporating investor sentiment and attention variables, macroeco-

nomic variables, and sentiment and attention variables related to macroeco-

nomic variables along with log return and historical realized volatility

3.2 Data

In this study, the asset universe consisted of the top five stocks, ranked by market

capitalization, within each Global Industry Classification Standard (GICS) sector as

of March 1, 2023. The specific stocks included in the analysis are presented in Table

3.1. Hourly price data was collected for these stocks from March 2021 to February

2023. Realized volatility was calculated using the hourly log returns, as it provides
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Code Sector 1st 2nd 3rd 4th 5th

10 Energy XOM CVX COP SLB EOG

15 Materials APD FCX SHW ECL CTVA

20 Industrials UPS RTX HON CAT UNP

25 Consumer Discretionary AMZN TSLA HD MCD NKE

30 Consumer Staples WMT PG KO PEP COST

35 Health Care UNH JNJ LLY ABBV MRK

40 Financials BRK-B JPM BAC WFC MS

45 Information Technology AAPL MSFT NVDA V MA

50 Communication Services GOOG META DIS TMUS VZ

55 Utilities NEE DUK SO SRE D

60 Real Estate PLD AMT EQIX CCI PSA

Table 3.1: Sector-wise Composition of Included Assets

a measure of the volatility experienced within each trading day. Specifically, daily

realized volatility of an asset was defined as the sum of squared hourly log returns

for each trading day. By summing the squared hourly log returns, a comprehensive

representation of the overall volatility within a given day was obtained. Furthermore,

alongside the hourly data, daily closing prices were collected to explore the impact

of daily returns on asset volatility.

Investor sentiment data was collected from StockTwits1, a prominent social me-

dia platform utilized for gauging and analyzing investor sentiment in financial re-

search studies [27, 32, 42]. StockTwits allows users to express their opinions about

assets using Bullish or Bearish tags, accompanied by twit messages. Leveraging the

platform’s cashtag feature, which represents symbols for each asset (e.g., $AAPL),

users were able to associate their opinions with specific stocks. Sentiment data was

collected for all 55 stocks in the asset universe. Twit messages that contained the

indicated sentiment labels were systematically gathered over the same data period

1stocktwits.com
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as the price data, ensuring a comprehensive alignment between investor sentiment

and price dynamics.

In addition to investor sentiment, the study also collected data on investor atten-

tion. Investor attention was measured using Google Trends2, which provides insights

into the number of queries searched by users on Google over a specific period. To

analyze investor attention, the daily changes in Google Trends data were assessed

for both the company name and ticker symbols of the 55 stocks in the asset universe.

However, it is worth noting that Google Trends provides data in the form of relative

search interest and does not directly provide daily change values. To address this

limitation, a rolling window-based approach was employed. This involved searching

Google Trends for the past three months and overlapping one month with the previ-

ous search period. By comparing values from the extended and overlapping periods,

a continuous and comprehensive dataset for investor attention was generated.

In addition to collecting investor sentiment and attention data, this study also

incorporated macro variables, or economic variables, to comprehensively capture

the broader market and economic conditions, given their recognized influence on

volatility [4, 43, 44]. The selected macro variables included the VIX closing price,

obtained from WRDS - CBOE Indexes, which serves as a well-established measure

of market volatility. The Fama-French three-factor model factors, comprising mar-

ket excess return, size factor, and value factor, were sourced from the official Fama

French website3 to account for systematic risk factors. Additionally, economic in-

dicators such as U.S. Treasury yields (5-year, 10-year, 30-year bonds, and 13-week

Treasury bill yield), Consumer Price Index (CPI) data from the Federal Reserve

2trends.google.com
3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Bank of St. Louis4, and short-term interest rates from the OECD5 were included to

provide insights into monetary policy, inflationary pressures, and overall economic

conditions.

Finally, the sentiment and attention surrounding macro variables were investi-

gated. Sentiment data was collected for widely followed market indices, including

$SPY, $QQQ, and $DJIA, providing insights into the overall sentiment towards

the broader market, using the same data collection method as described previously.

Moreover, attention data was gathered for key terms including ”stocks,” ”financial

markets,” ”stock market,” ”interest rate,” ”S&P,” ”Dow Jones,” ”Wall Street,” and

”stock price.” By analyzing the sentiment and attention surrounding these macro

variables, this study aimed to gain insights into the broader market sentiment and

attention dynamics, which may play a significant role in shaping asset volatility and

overall market trends.

3.3 Experimental Settings

To ensure a comprehensive analysis and accurate volatility forecasting, specific ex-

perimental settings were implemented. This section highlights the key elements of

the experimental setup used in this study.

Firstly, the volatility forecasting models were trained individually for each com-

pany using their respective training data. This company-specific approach allowed

the models to capture the unique characteristics and dynamics of each company’s

volatility patterns. By tailoring the models to the specific data of each company,

more accurate and reliable volatility forecasts could be obtained.

4https://fred.stlouisfed.org/series/CPIAUCSL
5https://data.oecd.org/interest/short-term-interest-rates.htm
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In order to capture the weekly effect, a lag of 5 was utilized for the inclusion

of lagged realized volatilities. This means that the models incorporated the realized

volatilities from time t to t−j+1, where j represents the lag value of 5. By considering

the historical volatility dynamics over the course of a week, the models were able

to identify and incorporate weekly patterns or dependencies in the volatility data.

This approach enhanced the accuracy of the forecasting models by accounting for

the temporal dynamics at a weekly level.

Incorporating sentiment as a feature involved calculating a sentiment ratio (sen-

timent score). The sentiment ratio was derived by dividing the number of bullish

tweets by the sum of the number of bullish and bearish tweets. This aggregation

provided an overall sentiment measure that reflected the sentiment among investors.

By including this sentiment feature in the volatility forecasting models, the influence

of investor sentiment on volatility dynamics could be captured and analyzed.

To ensure consistency in the data analysis, all data points were transformed into

a daily basis. This was particularly important for variables that were originally re-

ported at a different frequency. For example, economic indicators such as Consumer

Price Index (CPI) and interest rates are typically released on a monthly basis. To

incorporate these variables into the daily-based volatility forecasting models, inter-

polation techniques were employed to fill in the missing values and ensure that the

data remained consistent at a daily frequency. This data transformation allowed for

a more coherent analysis of the volatility dynamics and improved the accuracy of

the models.

By implementing these experimental settings, the aim was to enhance the reli-

ability and effectiveness of the volatility forecasting models. The company-specific

26



training, utilization of sentiment scores, and handling of missing data enabled a

more comprehensive and accurate analysis of volatility dynamics. These settings

contributed to a deeper understanding of the underlying factors driving volatility,

leading to more informed decision-making processes.

3.4 Interpreting Volatility Forecasting Models with SHAP

In order to gain insights into the predictions made by the volatility forecasting mod-

els developed in accordance with the methodology outlined in Sections 3.2 and 3.3,

an explainable AI approach, specifically SHAP, is employed for interpretability in

this study. SHAP values are calculated for each model variation to provide insights

into their predictions. Given that the volatility forecasting models are based on neu-

ral network architectures, DeepSHAP is employed to estimate the SHAP values.

DeepSHAP combines the concepts of DeepLIFT and SHAP values, offering a com-

prehensive framework for attributing the model’s predictions to the input features

[36]. This enables a fine-grained analysis of the relative contributions of each feature

to the volatility predictions. For a more comprehensive understanding of DeepSHAP,

refer to the original paper [36].

To present the SHAP values in a concise manner, the absolute SHAP values for

each feature are aggregated. Following the approach of [9], the sum of the absolute

SHAP values provides a measure of the overall impact of each feature on the volatility

predictions. This aggregation facilitates the identification of key drivers of volatility

and enhances our understanding of their contributions. By focusing on the significant

drivers of volatility, this approach assists in decision-making processes and provides

deeper insights into the underlying dynamics.
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Chapter 4

Empirical Findings

This chapter presents the empirical findings of the volatility forecasting models dis-

cussed in previous chapters, focusing on their forecasting performance and the im-

portance of features at the variable category level. The analysis provides insights

into the effectiveness and reliability of the models by examining their forecasting

performance and feature importance.

4.1 Forecasting Results: Model Performance Comparison

This section presents the forecasting results of the volatility models, focusing on the

MSE loss metric. The performance of each model type is evaluated by comparing

the MSE loss for each company’s data. The objective is to determine the impact

of including exogenous variables on the forecasting performance and establish the

superiority of the ANN model over the HAR model. The HAR models implemented

in this study follow the methodology outlined in [4]. For convenience, shorter model

names are proposed to refer to the various models used in the analysis:

(a) HAR: Baseline HARmodel (implemented using GLS to address multicollinear-

ity)

(b) ANN: Baseline ANN model
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(c) HAR-S: HAR model with investor sentiment and attention variables

(d) ANN-S: ANN model with investor sentiment and attention variables

(e) HAR-E: HAR model with macroeconomic variables

(f) ANN-E: ANN model with macroeconomic variables

(g) HAR-SE: HARmodel with investor sentiment, attention variables, and macroe-

conomic variables

(h) ANN-SE: ANNmodel with investor sentiment, attention variables, and macroe-

conomic variables

(i) HAR-T: HAR model with investor sentiment, attention variables, macroeco-

nomic variables, and sentiment and attention variables related to macroeco-

nomic variables

(j) ANN-T: ANN model with investor sentiment, attention variables, macroeco-

nomic variables, and sentiment and attention variables related to macroeco-

nomic variables

These shorter model names aid in the discussion and analysis of the results,

facilitating the comparison and interpretation of the forecasting performance across

the different models.

To gain a comprehensive understanding of the model performance on the test

set, Tables 4.1 and 4.2 present the MSE values for each volatility forecasting model

across different companies. Table 4.1 focuses on the HAR models, while Table 4.2

focuses on the ANN models.
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The MSE values serve as indicators of forecasting accuracy, with lower values

representing better performance and higher values indicating greater deviations from

observed volatility. Among the 55 companies analyzed, the baseline ANN model,

incorporating a lag of 5 for historical realized volatility, exhibited lower MSE values

compared to the HAR model in 45 companies. It is noteworthy that while the HAR

model captures volatility dynamics even with monthly history, the ANN model with

a shorter lag period of 5 demonstrated superior forecasting performance.

Moreover, when comparing models with identical data but different architectural

approaches, such as ANN-S versus HAR-S, the ANN models consistently displayed

competitive performance relative to the HAR models. This observation held true

across various model configurations mentioned earlier. For instance, when compar-

ing ANN-SE and HAR-SE, the ANN-SE model exhibited lower MSE values in all

companies except for 3. Overall, the MSE values generally indicated the ANN mod-

els’ enhanced ability to capture volatility dynamics compared to the HAR models.

Next, we conduct a comparison within the ANN-based models to assess their

overall performance and determine if there are significant differences. This analysis

involves a ranking evaluation followed by the application of the Mann Whitney U

Test [38], a non-parametric statistical test used to compare two independent groups

and identify significant differences between them. The ranking evaluation assigns

ranks to each model based on their MSE loss for each company dataset, with lower

ranks indicating better performance. To examine the relative performance of the

ANN-based models and identify any significant differences in their forecasting ac-

curacy, we employ the Mann Whitney U Test comparing the ranks assigned to the

models in the first column with the ranks assigned to the models in the first row of
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ANN ANN-S ANN-E ANN-SE ANN-T

ANN 1650.0 1916.0∗∗ 2240.5∗∗∗ 2387.0∗∗∗

ANN-S 1770.0 2070.0∗∗∗ 2212.0∗∗∗

ANN-E 1774.5 1915.0∗∗∗

ANN-SE 1653.5
ANN-T

Table 4.3: ANN-Based Models: Mann Whitney U Test Results

Table 4.3. The alternative hypothesis for the test states that the model in the first

column has a greater MSE rank than the model in the first row.

The results of the Mann Whitney U Test, including the p-values, are summarized

in Table 4.3. Asterisks in the table indicate the significance level of the p-values,

where ∗∗∗ indicates a p-value lower than 0.001, ∗∗ indicates a p-value lower than

0.01, and ∗ indicates a p-value lower than 0.05. Therefore, the cell values in Table

4.3 with significant p-values indicate that the model corresponding to the row index

has a greater MSE rank compared to the model corresponding to the column index.

These significant differences highlight variations in the forecasting accuracy among

the ANN-based models and provide insights into their relative performance.

The results show that the ANN model consistently demonstrates worse perfor-

mance compared to the ANN-E, ANN-SE, and ANN-T models, with the exception

of the ANN-S model. These findings suggest that incorporating additional variables

in the ANN architecture contributes to improved forecasting accuracy. However,

when comparing the ANN-S model to the other models, the difference is not sig-

nificant, implying that including sentiment and attention variables alone may not

significantly enhance the model’s performance. These findings suggest the impor-

tance of carefully selecting and incorporating these exogenous variables to capture

the intricate dynamics of asset volatility.
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Furthermore, the ANN-S model demonstrates poorer performance compared to

both the ANN-SE and ANN-T models. This implies that incorporating investor

sentiment and attention variables alone leads to inferior forecasting accuracy com-

pared to including sentiment and attention variables associated with macroeconomic

factors. The result also suggests that the inclusion of macroeconomic variables in

conjunction with sentiment and attention variables leads to improved forecasting ac-

curacy. These results highlight the importance of considering the impact of macroe-

conomic factors in volatility forecasting.

Interestingly, the ANN-E model also performs worse than the ANN-T model.

This suggests that while the inclusion of macroeconomic variables contributes to

improved forecasting accuracy, the specific inclusion of sentiment and attention vari-

ables related to macroeconomic factors with the sentiment and attention variables

of the stock itself enhances the performance further. These results indicate that the

joint consideration of macroeconomic indicators and sentiment/attention variables

related to macroeconomic factors yields better forecasting accuracy.

To summarize, the diverse performance of ANN-based models emphasizes the

crucial role of variable selection in volatility forecasting. The results reveal that in-

corporating economic variables enhances model performance, while relying solely

on sentiment variables does not yield statistical superiority. However, the combina-

tion of economic and sentiment variables leads to improved forecasting accuracy,

highlighting their complementary nature in capturing volatility dynamics. These

findings underscore the significance of thoughtful variable selection in enhancing the

performance and reliability of volatility models.
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4.2 Feature Importance Analysis

This section aims to explore the results of the feature importance analysis using

SHAP, with a specific focus on the utilization of DeepSHAP across different ANN-

based models. While SHAP provides a valuable means of quantifying the individual

impact of each feature, there are inherent challenges associated with variables that

may exhibit high levels of correlation. The presence of correlations among features

can complicate the assignment of precise importance values to individual features,

as their effects become entangled or shared. As a result, interpreting the individual

effects accurately can be difficult. It is essential to approach the interpretation of

DeepSHAP results with caution, recognizing that the explanations it provides are

approximations rather than absolute ground truth.

To ensure a robust and trustworthy interpretation, this analysis adopts a strate-

gic approach that prioritizes the identification of patterns and trends at the variable-

category level, rather than focusing solely on detailed explanations at the individual

feature level. This choice is motivated by the recognition that analyzing individual

features in isolation may lead to potentially misleading or exaggerated conclusions.

By grouping features into variable categories, such as investor sentiment and at-

tention variables, macroeconomic variables, or sentiment and attention variables

related to macroeconomic factors, the analysis can uncover broader themes and pat-

terns within each category. This comprehensive understanding of feature importance

helps mitigate the potential distortions introduced by highly correlated features.

Table 4.4 presents the results of the feature importance analysis using DeepSHAP

for each company dataset and model type. The table showcases the top-ranked fea-

tures that have been identified as the most important variables contributing to the
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predictions made by each model 1It is important to note that the analysis focuses

on the top features rather than providing an exhaustive list of all feature contribu-

tions. This deliberate choice is driven by the inherent challenge of assigning precise

importance values to each feature, especially in the presence of strong correlations

among them. By prioritizing the top features, the analysis aims to provide a more

manageable approach to understanding the key drivers of the models. While other

factors may also contribute to the predictions, the emphasis on the top features al-

lows for a more meaningful and interpretable analysis, capturing the most influential

variables without getting overwhelmed by the complexity of correlated effects. By

analyzing the top features at a variable-category level, the analysis strikes a balance

between granularity and comprehensibility, offering valuable insights into the main

drivers while managing the complexity of individual feature-level interpretations.

While the primary focus of the analysis is on interpreting feature importance

at the variable category level, it is noteworthy that one feature consistently demon-

strates significant importance across multiple companies and models: the VIX (CBOE

Volatility Index). Commonly known as the ”fear gauge,” the VIX serves as a widely

recognized measure of market volatility and investor sentiment. Despite the anal-

ysis’s emphasis on variable category analysis, the consistent and significant impor-

tance of the VIX stands out, warranting special attention. Its recurring high rankings

in the feature importance analysis underscore its robust impact on volatility fore-

casting, suggesting a strong likelihood that individual stock’s volatility is influenced

by market volatility. This finding aligns with previous studies that have emphasized

the relevance of the VIX as a predictive factor [4, 13].

1The table presents the variables in an abbreviated form for brevity
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(a) Model type: ANN-S (b) Model type: ANN-E

(c) Model type: ANN-SE (d) Model type: ANN-T

Figure 4.1: Most Important Feature Categories for Different Model Types

Figure 4.1 displays four pie charts, each representing the most important feature

categories for a specific model type analyzed in this study. The four model types

examined are ANN-S, ANN-E, ANN-SE, and ANN-T, which incorporate various

exogenous variables. The baseline ANN model, without any exogenous variables,

is excluded from the pie charts. These pie charts were generated by counting the

occurrences where each category type was identified as the most important feature
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in the volatility forecasting models.

The analysis of the ANN-S model reveals an intriguing pattern, as shown in Fig-

ure 4.1a. The pie chart demonstrates that sentiment and investor attention-related

variables are selected as the most important features in approximately 67% of the

cases, while the remaining cases prioritize return-volatility values. This observation

suggests the possibility of market sentiment and investor attention playing a role

in volatility forecasting within the ANN-S model. By according significant impor-

tance to these variables, the model hints at the potential benefits of incorporating

psychological factors and market perception in improving the accuracy of volatility

predictions. This finding raises the need for further investigation into the influence

of sentiment and attention on volatility dynamics. If confirmed, it may underscore

the importance of capturing the market’s emotional response and investor behavior

driven by attention to achieve more precise volatility forecasts.

Shifting our attention to the ANN-E model, Figure 4.1b provides compelling

evidence of the dominance of economic variables as the most important features.

The pie chart clearly illustrates that economic indicators are consistently selected

as the primary drivers of volatility forecasting, with a remarkable majority of ap-

proximately 95% of the cases. This substantial preference for economic variables

over return-volatility values suggests a robust influence of economic conditions and

macroeconomic factors in shaping the volatility dynamics of each asset within the

ANN-E model. The findings imply that market conditions, as captured by economic

variables, may have a more significant impact on volatility than the individual move-

ment of each asset. This highlights the importance of considering broader market

factors when forecasting and managing volatility in financial markets.
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Moving to the ANN-SE model depicted in Figure 4.1c, the results reveal a dis-

tinct selection pattern. Only exogenous variables are chosen as the most important

features, with sentiment and economic categories being considered. This is an inter-

esting finding since it demonstrates that exogenous variables are actually the key

drivers, while the endogenous factors, represented by return and volatility, are not

given prominence. Interestingly, among these categories, economic variables have a

higher frequency of selection compared to sentiment-related variables. This implies

that the model relies more heavily on economic factors, such as economic indicators

and market fundamentals, when forecasting volatility. The relatively limited empha-

sis on sentiment-related variables in this model configuration implies that market

sentiment and psychological factors may be considered less influential in shaping

volatility dynamics. Instead, the model emphasizes the importance of economic con-

ditions and external factors in driving volatility patterns.

Lastly, the ANN-T model depicted in Figure 4.1d, the analysis of feature impor-

tance reveals a distinctive pattern. Economic variables maintain their dominance

as the most frequently selected features, affirming their crucial role in capturing

volatility patterns within this model. Furthermore, sentiment-related variables, en-

compassing both individual stock sentiment and macroeconomic sentiment, are also

given considerable importance. This highlights the value of incorporating sentiment

indicators in enhancing volatility forecasts. The significant presence of economic vari-

ables combined with the inclusion of sentiment variables underscores the compre-

hensive approach of the ANN-T model in considering both economic and sentiment

factors for accurate volatility predictions.

By integrating the findings from the feature importance analysis with the results
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from the forecasting results analysis, a deeper understanding of the driving factors

behind volatility in non-linear models is obtained. The incorporation of exogenous

variables goes beyond improving the performance of the models. It reveals that these

variables play a fundamental role as the primary drivers of volatility dynamics.

In the previous section, it was discovered that the ANN-S model did not statis-

tically outperform the baseline ANN model, while the ANN-E model demonstrated

superior performance. This finding aligns with the overarching observation that eco-

nomic variables dominate as drivers of volatility dynamics. The stronger forecasting

performance of the ANN-E model, along with the emphasis on economic variables

in the feature importance analysis, provides valuable insight into the critical role of

economic conditions in accurately predicting asset volatility.

Furthermore, the integration of sentiment and attention variables alongside eco-

nomic factors in the ANN-SE model resulted in more robust forecasting outcomes.

This suggests that the inclusion of multiple exogenous variables, encompassing both

economic and psychological factors, enhances the predictive capabilities of the mod-

els. Not only does this integration amplify performance, but it also establishes these

exogenous variables as key drivers of the forecast, surpassing the significance of

return and volatility values. A similar pattern is observed in the ANN-T model,

where the comprehensive use of variables further improves predictive performance,

with economic variables and sentiment-attention variables playing a central role in

driving volatility dynamics. This insight highlights the importance of considering

a comprehensive set of exogenous variables when developing volatility forecasting

models, as they play a critical role in capturing and explaining volatility patterns in

financial markets.
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Chapter 5

Conclusion

This chapter concludes the paper and highlights potential avenues for future research

and areas that can be explored to further enhance the understanding and application

of the study’s findings.

5.1 Conclusion

This study aimed to investigate the enhancement of non-linear asset volatility fore-

casting models by integrating exogenous variables and utilizing explainable AI tech-

nique, SHAP. The empirical analysis encompassed two main aspects: forecasting

results and feature importance analysis. In the forecasting results analysis, we com-

pared the performance of non-linear neural network models with the widely used

HAR (Heterogeneous Autoregressive) model. The results demonstrated the superior

predictive capabilities of the non-linear neural network model, as evidenced by its

lower Mean Squared Error (MSE) loss metric.

The forecasting results of this study highlight the effectiveness of incorporat-

ing different variables in volatility forecasting models. Specifically, the inclusion of

economic variables significantly improved model performance, emphasizing the im-

portance of considering macroeconomic conditions when predicting asset volatility.

In contrast, models relying solely on sentiment variables did not exhibit statisti-
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cally superior performance. However, a noteworthy finding emerged when economic

and sentiment variables were combined, resulting in enhanced forecasting accuracy.

The integration of sentiment variables at the macro level also played a meaning-

ful role in augmenting model performance, highlighting the significance of capturing

market sentiment and psychological factors. By comprehensively including both eco-

nomic and sentiment variables, a more robust approach to volatility modeling was

achieved, leading to heightened accuracy and predictive power. These findings col-

lectively emphasize the value of variable selection and the incorporation of diverse

factors in non-linear asset volatility forecasting models.

The feature importance analysis revealed distinct patterns in the key drivers

of asset volatility forecasting across different model types and variable categories.

In the ANN-S model, market sentiment and investor attention emerged as influen-

tial factors, underscoring the importance of incorporating psychological factors. The

dominance of economic variables in the ANN-E model highlighted the significance

of macroeconomic conditions. The ANN-SE model demonstrated the substantial im-

pact of exogenous variables, with a relatively lesser emphasis on sentiment-related

variables and a stronger focus on economic factors. Similarly, the ANN-T model

showcased the comprehensive role of exogenous variables, with economic variables

and sentiment indicators as the main drivers, surpassing the influence of return-

volatility values. These findings underscore the significance of incorporating exoge-

nous variables in volatility forecasting models, as they not only amplify the forecast-

ing performance but also serve as the primary drivers of volatility dynamics.
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5.2 Future Work

In addition to the findings and contributions of this study, there are several avenues

for future research in the field of asset volatility forecasting. Firstly, exploring a

broader range of exogenous variables could provide a deeper understanding of their

impact on volatility dynamics. This could involve incorporating additional economic,

financial, and sentiment indicators to assess their predictive power. Furthermore,

applying feature selection techniques can help identify the most influential variables

and reduce dimensionality in the models. Additionally, investigating different types

of neural networks, such as RNNs or Transformers, can offer insights into their

effectiveness in capturing temporal dependencies and long-term patterns in volatility.

Lastly, exploring alternative explainability techniques and testing the robustness of

the models across different market conditions would further enhance their reliability

and applicability.
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국문초록

본 논문에서는 투자자 심리로 대표되는 외생변수의 활용과 SHAP 분석을 활용한 설명

가능인공지능기법적용을통해비선형자산변동성예측모형을개선하는방법을제시

한다. 자산 변동성 예측 분야에 있어 비선형 모형의 개발은 주로 정확도 향상에 초점을

맞춰 왔지만, 모델 내 각 변수의 중요도와 영향에 대한 이해가 제한되어 있어 잠재적

인 신뢰성 저하로 이어졌다. 이러한 한계를 극복하기 위해 본 연구에서는 모델의 예측

능력을 개선하는 것뿐만이 아니라 외생변수의 중요성에 대한 분석을 통해 신뢰할 수

있는 예측 모형을 제시한다. 이를 위해, 우선적으로 자산 변동성 예측에 널리 사용되는

이질적자기회귀 (HAR)모형에비해신경망구조를활용한비선형예측모형이우수한

성능을 가지는 것을 확인한다. 또한 이 과정에서 다양한 외생변수를 포함하였을 때, 외

생변수의 실제 영향력을 분석하여 비선형 모델 내에서 외생변수의 중요성과 영향력에

대한 분석을 제공한다. 분석 결과, 경제 상황과 관련된 변수가 지배적인 역할을 하며

변동성역학에상당한영향을미치는것을확인하였다.또한투자자의심리와관심역시

비선형 변동성 예측에 유의하게 기여하는 것을 확인하였다. 본 연구는 예측 정확도의

향상과 더불어 변수의 중요성에 대한 이해 심화를 통해 보다 더 신뢰할 수 있는 예측

모형을 제시하였다는 점에서 기존의 자산 변동성 예측 모델을 개선한다. 외생변수의

활용과 설명 가능 인공지능 기법의 활용을 통해 본 연구는 리스크 관리 및 투자 전략에

대한 귀중한 인사이트를 제공할 수 있는 신뢰할 수 있고 효과적인 비선형 변동성 예측

모형 개발 방향성을 제시한다.

주요어: 변동성 예측, 설명 가능 AI, 투자자 심리, SHAP, 산업공학

학번: 2021-22088
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