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Abstract

Enhancing non-linear asset volatility
forecasting models with investor sentiment
and explainable Al

Seungju Lee
Department of Industrial Engineering
The Graduate School

Seoul National University

This study investigates the enhancement of non-linear asset volatility forecasting
models by incorporating exogenous variables, including investor sentiment, and using
explainable AT with SHAP analysis. Comparing non-linear neural network models to
the traditional HAR model, we demonstrate superior forecasting performance. Our
findings underscore the significance of economic variables and the role of investor
sentiment and attention in non-linear volatility prediction, as revealed by SHAP
analysis. Specifically, we discover that exogenous variables take precedence as the
primary drivers in the realized volatility forecast, surpassing the influence of return

and historical volatilities.

Keywords: Volatility Forecasting, Explainable A, Investor Sentiment, SHAP, In-
dustrial Engineering
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Chapter 1

Introduction

This chapter provides a concise overview of the research’s context, describes the
problem, explains the research motivation and contribution with objectives, and

highlights its significance.

1.1 Understanding Asset Volatility and its Significance

for Investors

In the ever-changing landscape of financial markets, asset volatility plays a pivotal
role in shaping investment decisions and strategies. Volatility, defined as the degree
of price fluctuations or variability exhibited by an asset over a given period, captures
the inherent uncertainties and risks embedded within financial markets, reflecting
the speed and magnitude of price movements [45]. This concept is closely related
to the Efficient Market Hypothesis (EMH) [21], which posits that financial markets
incorporate all available information and promptly adjust asset prices to reflect
their intrinsic values. In line with the EMH, asset volatility represents the collective
market consensus on the uncertainties and potential risks associated with an asset.

For investors, while returns are the primary concern, volatility holds equal impor-

tance. Investors seek to optimize their returns while managing risk, recognizing that



higher volatility can imply greater potential for both profits and losses [39]. When
formulating their investment strategies, prudent investors consider both the return
potential and the volatility characteristics of an asset. They aim to strike a balance
between maximizing returns and mitigating the risks associated with price fluctua-
tions. High volatility implies greater potential for both profits and losses, making it
a vital consideration for investors seeking to optimize returns, protect capital, and
make informed investment choices. By carefully assessing the relationship between
returns and volatility, investors can tailor their investment approaches to align with

their risk tolerance, investment goals, and time horizons.

1.2 Problem Description: Asset Volatility Forecasting

The forecasting of asset volatility has been a topic of extensive research over the
years, driven by the increasing demand for accurate and dependable models capable
of capturing and predicting the dynamics of volatility. However, the inherent nature
of volatility presents a formidable obstacle to overcome. Volatility represents a la-
tent and unobservable movement within an asset, rendering its prediction a complex
task [45]. This intangible characteristic of volatility, though elusive, holds immense
significance within financial markets, exerting a profound influence on investment
decisions, risk management strategies, and portfolio optimization techniques. Thus,
there is a pressing need to develop suitable models and methodologies that can
effectively capture and forecast asset volatility, enabling investors and market par-
ticipants to make informed decisions and navigate the complexities of the financial
landscape.

Forecasting asset volatility is a complex task due to its dynamic and multifaceted



characteristics. Volatility manifests itself in a variety of ways, including time-varying
patterns [51], non-linear relationships [22], and sporadic spikes or clusters [50], all
of which contribute to the difficulty of achieving accurate predictions. Furthermore,
the drivers of volatility can differ across assets and market conditions, introduc-
ing additional intricacies to the forecasting process. In response to these challenges,
researchers have pursued diverse approaches aimed at overcoming them. These ap-
proaches involve exploring the incorporation of exogenous variables and the utiliza-
tion of advanced modeling techniques. By considering external factors and employing
sophisticated methodologies, researchers strive to enhance the accuracy and relia-
bility of asset volatility forecasts.

One approach involves incorporating exogenous variables into volatility forecast-
ing models. Researchers have investigated variables such as investor sentiment and
macroeconomic indicators, aiming to capture the impact of these factors on volatil-
ity dynamics. For example, the advent of social media platforms has facilitated
the widespread sharing of investors’ thoughts and opinions. Platforms like Twitter,
StockTwits, and Reddit allow investors to freely express their views on the recent
price movements of assets within their portfolios. As reported by several studies, it is
widely acknowledged that investor sentiment, as expressed through these platforms,
can significantly influence price movements [3, 8 34}, 48]. By integrating exogenous
variables, researchers seek to enhance forecasting accuracy and capture the effects
of external factors on asset volatility.

Another promising avenue of research involves the application of advanced mod-
eling techniques. Traditional econometric models, such as generalized autoregres-

sive conditional heteroskedasticity (GARCH) models [11], have been widely used



in volatility forecasting. However, in recent years, more complex models, including
machine learning and deep learning approaches, have gained popularity. In partic-
ular, neural network architectures have shown considerable potential in capturing
volatility dynamics and have exhibited superior performance compared to traditional
methods in certain cases [47, [52] [53]. This shift towards more sophisticated modeling
techniques reflects the desire to leverage the strengths of advanced algorithms and
computational capabilities to enhance the accuracy and robustness of asset volatility

forecasts.

1.3 Research Motivation and Contribution

Despite the progress made in incorporating exogenous variables and utilizing com-
plex modeling techniques, a significant limitation of many sophisticated volatility
forecasting models is their lack of interpretability. In the field of finance, the ability
to understand and interpret model results is crucial for establishing trust and en-
suring the reliability of future applications. Even if a model demonstrates superior
forecasting performance, the absence of sufficient explanations for its predictions can
hinder investors’ understanding of volatility dynamics and raise doubts about relying
on the model’s forecasts. Thus, there exists an imperative need to develop enhanced
models that not only enhance forecasting accuracy but also offer interpretability,
effectively bridging the gap between advanced methodologies and practical usability
within the financial industry.

To address this limitation, this research aims to incorporate interpretability into
the analysis of non-linear volatility forecasting models. By employing an explainable

Al model, this study seeks to unravel the opaque nature of these complex models and



attain a deeper understanding of the underlying drivers of volatility. Furthermore,
the research endeavors to examine whether these non-linear models appropriately
account for the influence of exogenous variables, such as investor sentiment, investor
attention, and macroeconomic indicators, on volatility dynamics. By shedding light
on the impact of these exogenous variables, the goal is to not only enhance the
forecasting accuracy of non-linear models but also facilitate a more comprehensive
comprehension of the intricate dynamics that drive volatility.

Through the integration of interpretability and the analysis of exogenous vari-
ables, this research contributes to the advancement of non-linear asset volatility
forecasting, providing valuable insights for both researchers and practitioners in the

financial domain. The contributions of this research can be summarized as follows:

e Integration of interpretability into non-linear asset volatility forecasting mod-
els, allowing for a deeper understanding of model predictions and enhancing

transparency in the decision-making process.

e Novel construction of a dataset specifically tailored for the research, enabling a
comprehensive comparative analysis of predictive performance among different

types of models.

e Examination of the impact and appropriate incorporation of exogenous vari-
ables, such as investor sentiment, investor attention, and macroeconomic indi-

cators, in capturing the dynamics of asset volatility.

e Employing an explainable Al framework to unveil the intricacies of complex
forecasting models, fostering a deeper understanding of the underlying drivers

of volatility.



Overall, this research contributes to the development of more reliable, transpar-
ent, and accurate non-linear asset volatility forecasting models, fostering advance-
ments in the field and offering valuable guidance for decision-makers in the financial
domain. By bridging the gap between advanced modeling techniques and practical
usability, this research empowers stakeholders with enhanced insights into volatility
dynamics, enabling more effective risk management and informed investment strate-
gies. This contribution directly benefits retail investors by providing them with valu-
able tools to navigate the complex world of finance, make well-informed decisions,

and ultimately improve their financial outcomes.

1.4 Organization of the Thesis

The thesis is organized into five chapters. Chapter [I| serves as the introduction,
while Chapter [2| provides a comprehensive review of relevant literature on asset
volatility forecasting and explainable AI. Chapter [3| presents the methodology and
data employed in this study, followed by the discussion of empirical findings in
Chapter [4] Finally, Chapter [f] concludes the thesis and offers potential avenues for

future research.



Chapter 2

Literature Review

This chapter provides a comprehensive review of the literature on volatility forecast-
ing models, including the definition of volatility and various modeling methods. It
explores both traditional econometric approaches and emerging techniques like ma-
chine learning and deep learning-based models. Additionally, the chapter explores
the concept of explainable Al and demonstrates how this method enhances trans-

parency and interpretability.

2.1 Definition of Volatility

The concept of volatility, characterized by the degree of price fluctuations or variabil-
ity observed in an asset, is inherently intangible. Unlike other measurable financial
metrics like returns or market capitalization, volatility represents a dynamic and
elusive characteristic of an asset. As a result, there exist multiple definitions and
interpretations of volatility, enabling researchers and practitioners to adopt the def-
inition that best suits their specific requirements. This flexibility empowers them to
delve into the essence and implications of volatility within their respective domains,

facilitating a comprehensive understanding of its significance.



Standard Deviation of Returns A widely adopted definition of volatility is
based on the concept of standard deviation [45]. The standard deviation-based def-
inition calculates volatility as the standard deviation of asset returns over a specific

period. The formula used for this calculation is:

~92 1 al -\ 2
0= > (R —R) (2.1)
t=1

In the equation, 62 represents the estimated volatility, N denotes the num-
ber of observations, R; is the return at time ¢, and R signifies the mean return

within the given time period. Log returns, which are calculated using the formula

R; = log (Pfj

- ), where P; denotes the price at time ¢, are commonly utilized in this

context. By quantifying the dispersion of returns around the mean, the standard de-
viation provides a numerical measure of the asset’s price fluctuations. This definition
allows for the application of various statistical tests when the underlying distribu-
tion of the return series follows a Gaussian distribution [24]. It is worth noting that
this definition is commonly employed by computing returns based on the closing
price of an asset, effectively capturing the dynamics reflected in the closing prices.
However, it is important to acknowledge a potential limitation of this approach, as
it primarily captures the dynamics reflected in the closing prices and may not fully

account for intraday or interday price movements.

Realized Volatility (RV) An alternative approach to measuring volatility is
realized volatility (RV), which leverages high-frequency intraday data to capture
the actual price fluctuations experienced by an asset. Unlike traditional methods,

which rely on aggregated daily or periodic data, RV takes into account the observed



price changes within shorter time intervals [I]. By doing so, it provides a more
granular and dynamic measure of volatility. The estimation of RV typically involves
summing the squared intraday returns over a specific time period, such as minutes or
hours. This approach allows for the inclusion of intraday price dynamics, capturing
the volatility that arises within shorter time intervals. The formula for computing

realized volatility at time 7' is given by:

N
RVp =) R} (2.2)
t=1

where R; represents the return at time ¢, and N denotes the total number of
intraday returns considered within the specific time period under analysis. The choice
of N depends on the research or analysis objectives, as well as the availability and
granularity of the intraday data.

This approach has gained significant attention in research, with studies highlight-
ing its ability to capture microstructure effects and sudden price movements that
may not be fully reflected in traditional volatility measurements [2, [6]. Furthermore,
realized volatility has implications for risk management and pricing of financial in-
struments. Its ability to capture finer-grained price movements can enhance risk
models and improve the accuracy of value-at-risk (VaR) estimates [25, B5]. Incor-
porating realized volatility in option pricing models can also lead to more precise
valuation of derivative instruments, as it accounts for the true volatility experienced
by the underlying asset [5]. By considering the actual price fluctuations, option prices
can be more accurately determined, aiding investors and traders in making informed

decisions.



Implied Volatility (IV) Implied volatility is another important measure of volatil-
ity that is widely used in financial markets. Unlike historical or realized volatility,

which rely on past price data, implied volatility derives its value from the prices of fi-

nancial derivative instruments, particularly options. It represents the volatility level

implied by the market’s pricing of options contracts. Through reverse-engineering

option pricing models, such as the classical Black & Scholes formula [10], implied

volatility is calculated, establishing the volatility parameter that equates the ob-

served market price of an option with its theoretical value.

The key assumption behind implied volatility is that option prices in the market
are determined by the collective wisdom and expectations of market participants,
adhering to the principles of the efficient market hypothesis. As a result, implied
volatility can be considered a reliable forecast of future volatility. However, empirical
studies have critically examined the effectiveness of implied volatility, raising ques-
tions about its ability to consistently provide accurate forecasts in practice [14] 40)].
Several factors contribute to these challenges, including the presence of market fric-
tions, model misspecification, and the impact of outliers. The assumptions embedded
in option pricing models, such as constant volatility and efficient markets, may not
always hold in real-world scenarios, leading to potential deviations between implied

volatility and actual future volatility.

2.2 Traditional Econometric Volatility Forecasting Mod-

els

Over the years, econometric volatility forecasting models have played a pivotal role

in the field of financial analysis. These models, rooted in statistical techniques and

10 :



econometric methodologies, have provided valuable insights into the dynamics of

volatility by leveraging historical price data and incorporating relevant variables.

Autoregressive Conditional Heteroskedasticity (ARCH) Models The Au-
toregressive Conditional Heteroskedasticity (ARCH) models, along with their subse-
quent Generalized Autoregressive Conditional Heteroskedasticity (GARCH) exten-
sions, have emerged as prominent tools for volatility forecasting [I1}, 20]. ARCH mod-
els capture the persistence and clustering of volatility by incorporating past squared
returns as a determinant of conditional variance. This recognition of the relationship
between past volatility and current volatility allows for a more accurate estimation
of future volatility patterns. Building upon the ARCH framework, GARCH models
enhance volatility forecasting by introducing lagged conditional variances, effectively
capturing additional volatility dynamics and further improving forecast accuracy.
The advancement continues with GARCH-M models, which integrate exogenous
variables, such as macroeconomic indicators or investor sentiment, into the volatility
modeling process [19}26]. These models acknowledge that volatility can be influenced
by various factors beyond historical price data alone. By considering both past re-
turns, lagged variances, and the influence of external factors, GARCH-M models
aim to enhance the accuracy of volatility forecasts and provide a more comprehen-
sive understanding of the drivers behind volatility fluctuations. This incorporation
of exogenous variables offers a more nuanced and holistic approach to volatility
forecasting, enabling researchers and practitioners to gain deeper insights into the

underlying factors shaping market volatility.

11 4



Heterogeneous Autoregressive (HAR) Model The Heterogeneous Autore-
gressive (HAR) model is a popular econometric volatility forecasting model that
incorporates multiple lagged realized volatilities [16]. Unlike traditional models that
rely solely on past squared returns, the HAR model incorporates information from
different time scales by considering the lagged volatilities calculated using high-
frequency intraday data. By including volatilities from various time scales, such as
daily, weekly, and monthly, the HAR model provides a more comprehensive and
accurate representation of volatility dynamics.

One specific formulation of the HAR model, similar to the approach used in a

relevant study [4], can be represented by Equation

log RV = ¢+ 8D log RV + 80 log RV + 8™ 10g RV,"™ + ¢141 (2.3)

In this formulation, log RVt(w)and log RVt(m) = % Z?i log RV;(_C?H

are the weekly
and monthly averages of daily log realized volatilities, respectively. The coefficients
B gW) and ™ capture the impact of lagged volatilities from different time
scales on the future volatility. The constant term c represents the intercept, and
€r+1 denotes the noise term.

The simplicity of the HAR model formulation, coupled with its robust perfor-
mance, highlights its practical significance in capturing and forecasting volatility
patterns in financial markets. By incorporating volatilities from multiple time scales,

the HAR model is able to capture both short-term and long-term volatility dynam-

ics, providing a more comprehensive understanding of volatility behavior.

12



Stochastic Volatility Models Stochastic volatility models are a class of econo-
metric models that capture time-varying behaviors in volatility by assuming it fol-
lows a stochastic process. Compared to traditional models with constant volatility
assumptions, stochastic volatility models offer a more flexible framework to capture
the complex dynamics of volatility in financial markets. These models can effectively
capture important characteristics such as volatility clustering, leverage effects, and
regime shifts.

One prominent example of a stochastic volatility model is the Heston model [29)].
In the Heston model, volatility follows a mean-reverting square-root diffusion pro-
cess, while the asset price follows a geometric Brownian motion. A notable feature
of the Heston model is its ability to capture the volatility smile phenomenon ob-
served in options pricing. The volatility smile represents the implied volatility as a
function of the strike price, indicating that options with different strike prices but
the same maturity can have different implied volatilities. By incorporating stochas-
tic volatility, models like the Heston model provide a more realistic representation
of option pricing. However, it’s important to note that stochastic volatility models
can be computationally intensive, may require advanced estimation techniques, and

interpreting these models can also be challenging due to their complexity.

2.3 Machine Learning and Deep Learning Approaches in
Volatility Forecasting

Al approaches, known as machine learning and deep learning techniques, have
emerged as potent instruments for predicting volatility by harnessing their capacity

to capture intricate patterns and relationships within financial data.

13 :



Machine Learning Approaches Unlike traditional econometric models that rely
on specific parametric forms and distributional assumptions, machine learning mod-
els offer greater flexibility and the capacity to model complex, non-linear dependen-
cies. Methods such as support vector machines (SVM) [23] and random forests [37]
have demonstrated their effectiveness in capturing intricate patterns and enhanc-
ing volatility forecasts in certain scenarios. These approaches have showcased their
ability to handle diverse datasets and exploit the underlying information contained
in financial time series, contributing to more accurate and data-driven volatility

predictions.

Artificial Neural Networks (ANNs) In addition to traditional machine learn-
ing methods, recent advancements in deep learning technologies have introduced neu-
ral network structures into volatility forecasting. Artificial Neural Networks (ANN)
are widely used in various studies, showcasing their effectiveness in capturing com-
plex patterns and improving volatility forecasts [I8| 41l [46]. Inspired by the human
brain, ANNs consist of interconnected nodes or neurons organized into layers. The
input layer receives the data, and the output layer generates the desired forecast.
Hidden layers, positioned between the input and output layers, process and trans-
form the information. Neurons apply mathematical operations to the weighted sum
of their inputs, which are then passed through activation functions, introducing
non-linearities into the model.

The most popular type of ANN used in volatility forecasting is the feedforward
neural network. This network structure allows information to flow in one direction,

from the input layer through the hidden layers to the output layer. By employing

14 -



fully connected feedforward networks with multiple hidden layers, the dynamics of
volatility can be captured. Figure illustrates an example of an ANN architecture
with two hidden layers, where the input consists of j historical realized volatilities.
To train an ANN for volatility forecasting, historical price data and other relevant
variables are utilized as input. The network iteratively adjusts the weights and biases
of its neurons using optimization algorithms like backpropagation. The objective
is to minimize the difference between predicted and actual volatility values. Once
trained, the ANN can be employed to make forecasts on new, unseen data. Moreover,
ANNs can be combined with other models, such as GARCH and HAR, in hybrid

approaches, taking advantage of their flexible structure and improving modeling
accuracy [7, [17].

Input Layer Hidden Layers Output Layer
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ANNS offer several advantages in volatility forecasting. They excel in capturing
complex patterns and non-linear relationships, enabling more accurate and flexible
volatility predictions. Furthermore, ANNs demonstrate proficiency in handling large
and high-dimensional datasets, making them well-suited for analyzing vast amounts
of financial information. However, it is crucial to consider certain factors when work-
ing with ANNs. Selecting and tuning model architectures, activation functions, and
optimization algorithms require careful attention. Overfitting is a potential concern
if the model is not adequately regularized, resulting in overly optimistic performance
on training data but poor generalization to new data. Additionally, the black-box
nature of ANNs can make it challenging to interpret the underlying relationships

between inputs and outputs.

Recurrent Neural Networks (RNNs) The development of Recurrent Neural
Networks (RNNs) was motivated by the need to capture temporal dependencies and
sequential information in data, which is particularly relevant in volatility forecasting.
Unlike feedforward neural networks, RNNs have the ability to retain information
from previous time steps and use it to influence the predictions at the current time
step. This characteristic allows RNNs to handle variable-length sequences and resolve
the limitation of feedforward networks in capturing long-term dependencies.

The structure of an RNN involves recurrent connections, where the output of
a neuron at a certain time step is fed back as an input to the same neuron at the
next time step. This feedback loop enables RNNs to maintain an internal memory
that captures the historical context of the sequence being processed. By leveraging

the temporal dependencies within the data, RNNs can capture the patterns and
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relationships that are crucial for accurate volatility predictions. However, traditional
RNNs suffer from the vanishing gradient problem, which hinders their ability to
capture long-term dependencies.

To overcome the vanishing gradient problem, advanced variants of RNNs, such
as Long Short-Term Memory (LSTM) [30] and Gated Recurrent Unit (GRU) [15],
have been introduced. LSTM networks incorporate memory cells and three gating
mechanisms (input gate, forget gate, and output gate) to control the flow of infor-
mation within the network. These gates allow LSTMs to selectively retain or forget
information over long sequences, enabling them to capture long-term dependencies
effectively. Similarly, GRU networks employ gating mechanisms to control the flow
of information, but with a simpler structure compared to LSTMs.

Several studies have demonstrated the effectiveness of LSTM networks in volatil-
ity forecasting. For example, it has been shown that RNNs, particularly LSTMs,
outperform traditional econometric methods in predicting the realized volatility of
the S&P 500 index [I2]. In the context of individual stocks, LSTM-based models
have been found to achieve superior performance compared to traditional machine

learning and econometric models for some stocks [33].

2.4 Explainable Al

The growing adoption of machine learning and deep learning algorithms has led to
impressive performance across various domains. However, the inherent complexity
of these models often results in a lack of transparency, making it challenging to
understand the reasoning behind their predictions or decisions. This limitation has

spurred the development of eXplainable Al (XAI), a field dedicated to creating

17



interpretable models and providing meaningful explanations for their outputs.

One approach within explainable Al is feature importance analysis, which aims
to quantify the contribution of each input feature to the model’s predictions. By
understanding the importance and impact of different features on the model’s out-
put, stakeholders can gain insights into the decision-making process of Al models
and enhance trust and interpretability. Several techniques have been developed for
feature importance analysis, including SHAP (SHapley Additive exPlanations) [30]
and LIME (Local Interpretable Model-Agnostic Explanations) [49].

In the field of finance, SHAP has gained prominence as a robust tool for inter-
preting and explaining models. It draws inspiration from cooperative game theory,
specifically leveraging the concept of Shapley values. Shapley values quantify the
marginal contribution of each feature when considering all possible feature subsets.
By computing Shapley values for each feature, SHAP provides a unified frame-
work for quantifying the impact of features on a model’s predictions. This enables
researchers and practitioners in finance to gain a deeper understanding of the un-
derlying drivers behind predictions and enhances the interpretability of complex
models. Several studies have demonstrated the effectiveness of SHAP in interpreting
time series models [28, [31].

The computation of SHAP values involves evaluating the prediction function for
different subsets of features. Mathematically, the SHAP value for a specific feature

1 can be expressed as follows:

o= 3 B EED o —us) ey
SCN\{i}
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In this equation, i represents the feature for which we are calculating the Shap-
ley value, N represents the set of all features, v represents the prediction function,
and S represents a subset of features excluding the feature i. The SHAP value ¢;(v)
represents the marginal contribution of feature 7 in the cooperative game theory
context. Calculating SHAP values for each feature allows us to ascertain the rela-
tive significance of features, unveiling their individual contributions to the model’s

predictions.
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Chapter 3

Methodology and Data

This chapter presents an overview of the modeling method and data employed in this
study. It is followed by a discussion of the experimental settings and an explanation

of how an explainable Al technique is utilized.

3.1 Models

The modeling approach adopted in this study builds upon the concept of the HAR
model with exogenous variables introduced in a previous study [4]. The HAR model

used in this paper is represented by Equation [3.1

1Og R‘/t(jrii =c+ (log RV;‘/)/B(RV) + Mt,'Y(eco) + Zée(sent) + €t+1 (3'1)

In this equation, the term log RV; refers to a 3-dimensional column-vector con-
sisting of the daily log realized volatilities, as well as the weekly and monthly
average daily log realized volatilities. The vector M; represents a g-dimensional
column-vector containing economic and financial variables, while Z; represents a p-
dimensional column-vector containing sentiment and attention variables. The coef-
ficients B(rv), V(eco)s and O(seny) capture the respective impacts of lagged volatilities,

economic variables, and sentiment variables on the future volatility. The constant

20



term c represents the intercept, and €, denotes the error term in the model.

In contrast to utilizing the HAR factors in the previous model, this study em-
ploys an Artificial Neural Network (ANN) with a similar approach. Based on a
comprehensive analysis of relevant literature, the decision to employ an ANN model
in this study was driven by its extensive adoption within the research community,
as evidenced by the greater number of studies utilizing ANN compared to Recurrent
Neural Networks (RNN) in the field [24]. The ANN model incorporates lagged real-
ized volatilities from time t to time ¢ — 7 + 1 as one input, capturing the historical
volatility dynamics using j past values. Additionally, all models in this study include
the daily log return at time ¢ as an input to measure its impact on future volatility.
Exogenous variables for time ¢ are also included as inputs to capture the influence
of external factors on volatility. By combining these inputs, the ANN model aims to
predict the realized volatility at time ¢+ 1, providing a comprehensive framework for
volatility forecasting. The models are trained using the Mean Squared Error (MSE)
loss function, a common objective function for regression tasks, and optimized using
the Adam optimizer.

The determination of the optimal architecture for the neural network models
follows a systematic approach. The number of nodes in each hidden layer is carefully
selected by evaluating the test loss. Different configurations with 16, 32, and 64 nodes
for each hidden layer are considered, while maintaining a consistent two hidden
layer structure. The models are trained and their performance is assessed using the
test MSE as the evaluation metric. The model with the lowest test MSE among
the considered configurations is chosen as the best model. This meticulous process

ensures that the neural network models are fine-tuned to maximize their predictive
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accuracy for volatility forecasting.

To evaluate the significance of incorporating exogenous variables, the study con-
ducts a comparative analysis between the baseline ANN model, which solely relies
on daily log return and historical realized volatility values, and the extended models
that include additional exogenous variables. For the analysis of different exogenous

features, various model variations are explored. The model list includes:

e Models incorporating investor sentiment and attention variables along with

log return and historical realized volatility

e Models incorporating macroeconomic variables along with log return and his-

torical realized volatility

e Models incorporating both investor sentiment and attention variables, as well

as macroeconomic variables, along with log return and historical realized volatil-
ity
e Models incorporating investor sentiment and attention variables, macroeco-

nomic variables, and sentiment and attention variables related to macroeco-

nomic variables along with log return and historical realized volatility

3.2 Data

In this study, the asset universe consisted of the top five stocks, ranked by market
capitalization, within each Global Industry Classification Standard (GICS) sector as
of March 1, 2023. The specific stocks included in the analysis are presented in Table
Hourly price data was collected for these stocks from March 2021 to February

2023. Realized volatility was calculated using the hourly log returns, as it provides
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Code Sector 1st 2nd 3rd 4th 5th
10 Energy XOM CvX COP SLB EOG
15 Materials APD FCX SHW ECL CTVA
20 Industrials UPS RTX HON CAT UNP
25 Consumer Discretionary | AMZN  TSLA HD MCD  NKE
30 Consumer Staples WMT PG KO PEP COST
35 Health Care UNH JNJ LLY ABBV MRK
40 Financials BRK-B JPM BAC WFC MS
45 Information Technology | AAPL MSFT NVDA A% MA
50 Communication Services | GOOG META DIS TMUS VZ7Z
55 Utilities NEE DUK SO SRE D
60 Real Estate PLD AMT EQIX CCI PSA

Table 3.1: Sector-wise Composition of Included Assets

a measure of the volatility experienced within each trading day. Specifically, daily
realized volatility of an asset was defined as the sum of squared hourly log returns
for each trading day. By summing the squared hourly log returns, a comprehensive
representation of the overall volatility within a given day was obtained. Furthermore,
alongside the hourly data, daily closing prices were collected to explore the impact
of daily returns on asset volatility.

Investor sentiment data was collected from StockTwits{ﬂ7 a prominent social me-
dia platform utilized for gauging and analyzing investor sentiment in financial re-
search studies [27], 32, 42]. StockTwits allows users to express their opinions about
assets using Bullish or Bearish tags, accompanied by twit messages. Leveraging the
platform’s cashtag feature, which represents symbols for each asset (e.g., SAAPL),
users were able to associate their opinions with specific stocks. Sentiment data was
collected for all 55 stocks in the asset universe. Twit messages that contained the

indicated sentiment labels were systematically gathered over the same data period

Lstocktwits.com
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as the price data, ensuring a comprehensive alignment between investor sentiment
and price dynamics.

In addition to investor sentiment, the study also collected data on investor atten-
tion. Investor attention was measured using Google TrendsEL which provides insights
into the number of queries searched by users on Google over a specific period. To
analyze investor attention, the daily changes in Google Trends data were assessed
for both the company name and ticker symbols of the 55 stocks in the asset universe.
However, it is worth noting that Google Trends provides data in the form of relative
search interest and does not directly provide daily change values. To address this
limitation, a rolling window-based approach was employed. This involved searching
Google Trends for the past three months and overlapping one month with the previ-
ous search period. By comparing values from the extended and overlapping periods,
a continuous and comprehensive dataset for investor attention was generated.

In addition to collecting investor sentiment and attention data, this study also
incorporated macro variables, or economic variables, to comprehensively capture
the broader market and economic conditions, given their recognized influence on
volatility [4, 43, [44]. The selected macro variables included the VIX closing price,
obtained from WRDS - CBOE Indexes, which serves as a well-established measure
of market volatility. The Fama-French three-factor model factors, comprising mar-
ket excess return, size factor, and value factor, were sourced from the official Fama,
French WebsiteE| to account for systematic risk factors. Additionally, economic in-
dicators such as U.S. Treasury yields (5-year, 10-year, 30-year bonds, and 13-week

Treasury bill yield), Consumer Price Index (CPI) data from the Federal Reserve

2trends.google.com
3http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html
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Bank of St. Louisﬁ and short-term interest rates from the OECljﬂ were included to
provide insights into monetary policy, inflationary pressures, and overall economic
conditions.

Finally, the sentiment and attention surrounding macro variables were investi-
gated. Sentiment data was collected for widely followed market indices, including
$SPY, $QQQ, and $DJIA, providing insights into the overall sentiment towards
the broader market, using the same data collection method as described previously.
Moreover, attention data was gathered for key terms including ”stocks,” ”financial
markets,” 7stock market,” ”interest rate,” ”S&P,” ”Dow Jones,” ” Wall Street,” and
”stock price.” By analyzing the sentiment and attention surrounding these macro
variables, this study aimed to gain insights into the broader market sentiment and
attention dynamics, which may play a significant role in shaping asset volatility and

overall market trends.

3.3 Experimental Settings

To ensure a comprehensive analysis and accurate volatility forecasting, specific ex-
perimental settings were implemented. This section highlights the key elements of
the experimental setup used in this study.

Firstly, the volatility forecasting models were trained individually for each com-
pany using their respective training data. This company-specific approach allowed
the models to capture the unique characteristics and dynamics of each company’s
volatility patterns. By tailoring the models to the specific data of each company,

more accurate and reliable volatility forecasts could be obtained.

“https://fred.stlouisfed.org/series/ CPTAUCSL
Shttps://data.oecd.org/interest /short-term-interest-rates.htm
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In order to capture the weekly effect, a lag of 5 was utilized for the inclusion
of lagged realized volatilities. This means that the models incorporated the realized
volatilities from time ¢ to t—j+1, where j represents the lag value of 5. By considering
the historical volatility dynamics over the course of a week, the models were able
to identify and incorporate weekly patterns or dependencies in the volatility data.
This approach enhanced the accuracy of the forecasting models by accounting for
the temporal dynamics at a weekly level.

Incorporating sentiment as a feature involved calculating a sentiment ratio (sen-
timent score). The sentiment ratio was derived by dividing the number of bullish
tweets by the sum of the number of bullish and bearish tweets. This aggregation
provided an overall sentiment measure that reflected the sentiment among investors.
By including this sentiment feature in the volatility forecasting models, the influence
of investor sentiment on volatility dynamics could be captured and analyzed.

To ensure consistency in the data analysis, all data points were transformed into
a daily basis. This was particularly important for variables that were originally re-
ported at a different frequency. For example, economic indicators such as Consumer
Price Index (CPI) and interest rates are typically released on a monthly basis. To
incorporate these variables into the daily-based volatility forecasting models, inter-
polation techniques were employed to fill in the missing values and ensure that the
data remained consistent at a daily frequency. This data transformation allowed for
a more coherent analysis of the volatility dynamics and improved the accuracy of
the models.

By implementing these experimental settings, the aim was to enhance the reli-

ability and effectiveness of the volatility forecasting models. The company-specific
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training, utilization of sentiment scores, and handling of missing data enabled a
more comprehensive and accurate analysis of volatility dynamics. These settings
contributed to a deeper understanding of the underlying factors driving volatility,

leading to more informed decision-making processes.

3.4 Interpreting Volatility Forecasting Models with SHAP

In order to gain insights into the predictions made by the volatility forecasting mod-
els developed in accordance with the methodology outlined in Sections and
an explainable Al approach, specifically SHAP, is employed for interpretability in
this study. SHAP values are calculated for each model variation to provide insights
into their predictions. Given that the volatility forecasting models are based on neu-
ral network architectures, DeepSHAP is employed to estimate the SHAP values.
DeepSHAP combines the concepts of DeepLIFT and SHAP values, offering a com-
prehensive framework for attributing the model’s predictions to the input features
[36]. This enables a fine-grained analysis of the relative contributions of each feature
to the volatility predictions. For a more comprehensive understanding of DeepSHAP,
refer to the original paper [36].

To present the SHAP values in a concise manner, the absolute SHAP values for
each feature are aggregated. Following the approach of [9], the sum of the absolute
SHAP values provides a measure of the overall impact of each feature on the volatility
predictions. This aggregation facilitates the identification of key drivers of volatility
and enhances our understanding of their contributions. By focusing on the significant
drivers of volatility, this approach assists in decision-making processes and provides

deeper insights into the underlying dynamics.
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Chapter 4

Empirical Findings

This chapter presents the empirical findings of the volatility forecasting models dis-
cussed in previous chapters, focusing on their forecasting performance and the im-
portance of features at the variable category level. The analysis provides insights
into the effectiveness and reliability of the models by examining their forecasting

performance and feature importance.

4.1 Forecasting Results: Model Performance Comparison

This section presents the forecasting results of the volatility models, focusing on the
MSE loss metric. The performance of each model type is evaluated by comparing
the MSE loss for each company’s data. The objective is to determine the impact
of including exogenous variables on the forecasting performance and establish the
superiority of the ANN model over the HAR model. The HAR models implemented
in this study follow the methodology outlined in [4]. For convenience, shorter model

names are proposed to refer to the various models used in the analysis:

(a) HAR: Baseline HAR model (implemented using GLS to address multicollinear-
ity)

(b) ANN: Baseline ANN model
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HAR-S: HAR model with investor sentiment and attention variables
ANN-S: ANN model with investor sentiment and attention variables
HAR-E: HAR model with macroeconomic variables
ANN-E: ANN model with macroeconomic variables

HAR-SE: HAR model with investor sentiment, attention variables, and macroe-

conomic variables

ANN-SE: ANN model with investor sentiment, attention variables, and macroe-

conomic variables

HAR-T: HAR model with investor sentiment, attention variables, macroeco-
nomic variables, and sentiment and attention variables related to macroeco-

nomic variables

ANN-T: ANN model with investor sentiment, attention variables, macroeco-
nomic variables, and sentiment and attention variables related to macroeco-

nomic variables

These shorter model names aid in the discussion and analysis of the results,

facilitating the comparison and interpretation of the forecasting performance across

the different models.

To gain a comprehensive understanding of the model performance on the test

set, Tables [£.1] and [£.2] present the MSE values for each volatility forecasting model

across different companies. Table focuses on the HAR models, while Table

focuses on the ANN models.
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The MSE values serve as indicators of forecasting accuracy, with lower values
representing better performance and higher values indicating greater deviations from
observed volatility. Among the 55 companies analyzed, the baseline ANN model,
incorporating a lag of 5 for historical realized volatility, exhibited lower MSE values
compared to the HAR model in 45 companies. It is noteworthy that while the HAR
model captures volatility dynamics even with monthly history, the ANN model with
a shorter lag period of 5 demonstrated superior forecasting performance.

Moreover, when comparing models with identical data but different architectural
approaches, such as ANN-S versus HAR-S, the ANN models consistently displayed
competitive performance relative to the HAR models. This observation held true
across various model configurations mentioned earlier. For instance, when compar-
ing ANN-SE and HAR-SE, the ANN-SE model exhibited lower MSE values in all
companies except for 3. Overall, the MSE values generally indicated the ANN mod-
els’ enhanced ability to capture volatility dynamics compared to the HAR models.

Next, we conduct a comparison within the ANN-based models to assess their
overall performance and determine if there are significant differences. This analysis
involves a ranking evaluation followed by the application of the Mann Whitney U
Test [38], a non-parametric statistical test used to compare two independent groups
and identify significant differences between them. The ranking evaluation assigns
ranks to each model based on their MSE loss for each company dataset, with lower
ranks indicating better performance. To examine the relative performance of the
ANN-based models and identify any significant differences in their forecasting ac-
curacy, we employ the Mann Whitney U Test comparing the ranks assigned to the

models in the first column with the ranks assigned to the models in the first row of
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ANN ANN-S ANN-E ANN-SE  ANN-T
ANN 1650.0  1916.0"*  2240.5*** 2387.0***
ANN-S 1770.0 2070.0***  2212.0***
ANN-E 1774.5 1915.0%*
ANN-SE 1653.5
ANN-T

Table 4.3: ANN-Based Models: Mann Whitney U Test Results

Table [4.3] The alternative hypothesis for the test states that the model in the first
column has a greater MSE rank than the model in the first row.

The results of the Mann Whitney U Test, including the p-values, are summarized
in Table Asterisks in the table indicate the significance level of the p-values,

*** indicates a p-value lower than 0.001, ** indicates a p-value lower than

where
0.01, and * indicates a p-value lower than 0.05. Therefore, the cell values in Table
with significant p-values indicate that the model corresponding to the row index
has a greater MSE rank compared to the model corresponding to the column index.
These significant differences highlight variations in the forecasting accuracy among
the ANN-based models and provide insights into their relative performance.

The results show that the ANN model consistently demonstrates worse perfor-
mance compared to the ANN-E, ANN-SE, and ANN-T models, with the exception
of the ANN-S model. These findings suggest that incorporating additional variables
in the ANN architecture contributes to improved forecasting accuracy. However,
when comparing the ANN-S model to the other models, the difference is not sig-
nificant, implying that including sentiment and attention variables alone may not
significantly enhance the model’s performance. These findings suggest the impor-

tance of carefully selecting and incorporating these exogenous variables to capture

the intricate dynamics of asset volatility.
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Furthermore, the ANN-S model demonstrates poorer performance compared to
both the ANN-SE and ANN-T models. This implies that incorporating investor
sentiment and attention variables alone leads to inferior forecasting accuracy com-
pared to including sentiment and attention variables associated with macroeconomic
factors. The result also suggests that the inclusion of macroeconomic variables in
conjunction with sentiment and attention variables leads to improved forecasting ac-
curacy. These results highlight the importance of considering the impact of macroe-
conomic factors in volatility forecasting.

Interestingly, the ANN-E model also performs worse than the ANN-T model.
This suggests that while the inclusion of macroeconomic variables contributes to
improved forecasting accuracy, the specific inclusion of sentiment and attention vari-
ables related to macroeconomic factors with the sentiment and attention variables
of the stock itself enhances the performance further. These results indicate that the
joint consideration of macroeconomic indicators and sentiment/attention variables
related to macroeconomic factors yields better forecasting accuracy.

To summarize, the diverse performance of ANN-based models emphasizes the
crucial role of variable selection in volatility forecasting. The results reveal that in-
corporating economic variables enhances model performance, while relying solely
on sentiment variables does not yield statistical superiority. However, the combina-
tion of economic and sentiment variables leads to improved forecasting accuracy,
highlighting their complementary nature in capturing volatility dynamics. These
findings underscore the significance of thoughtful variable selection in enhancing the

performance and reliability of volatility models.
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4.2 Feature Importance Analysis

This section aims to explore the results of the feature importance analysis using
SHAP, with a specific focus on the utilization of DeepSHAP across different ANN-
based models. While SHAP provides a valuable means of quantifying the individual
impact of each feature, there are inherent challenges associated with variables that
may exhibit high levels of correlation. The presence of correlations among features
can complicate the assignment of precise importance values to individual features,
as their effects become entangled or shared. As a result, interpreting the individual
effects accurately can be difficult. It is essential to approach the interpretation of
DeepSHAP results with caution, recognizing that the explanations it provides are
approximations rather than absolute ground truth.

To ensure a robust and trustworthy interpretation, this analysis adopts a strate-
gic approach that prioritizes the identification of patterns and trends at the variable-
category level, rather than focusing solely on detailed explanations at the individual
feature level. This choice is motivated by the recognition that analyzing individual
features in isolation may lead to potentially misleading or exaggerated conclusions.
By grouping features into variable categories, such as investor sentiment and at-
tention variables, macroeconomic variables, or sentiment and attention variables
related to macroeconomic factors, the analysis can uncover broader themes and pat-
terns within each category. This comprehensive understanding of feature importance
helps mitigate the potential distortions introduced by highly correlated features.

Table[d.4] presents the results of the feature importance analysis using DeepSHAP
for each company dataset and model type. The table showcases the top-ranked fea-

tures that have been identified as the most important variables contributing to the
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predictions made by each model EIIt is important to note that the analysis focuses
on the top features rather than providing an exhaustive list of all feature contribu-
tions. This deliberate choice is driven by the inherent challenge of assigning precise
importance values to each feature, especially in the presence of strong correlations
among them. By prioritizing the top features, the analysis aims to provide a more
manageable approach to understanding the key drivers of the models. While other
factors may also contribute to the predictions, the emphasis on the top features al-
lows for a more meaningful and interpretable analysis, capturing the most influential
variables without getting overwhelmed by the complexity of correlated effects. By
analyzing the top features at a variable-category level, the analysis strikes a balance
between granularity and comprehensibility, offering valuable insights into the main
drivers while managing the complexity of individual feature-level interpretations.
While the primary focus of the analysis is on interpreting feature importance
at the variable category level, it is noteworthy that one feature consistently demon-
strates significant importance across multiple companies and models: the VIX (CBOE
Volatility Index). Commonly known as the ”fear gauge,” the VIX serves as a widely
recognized measure of market volatility and investor sentiment. Despite the anal-
ysis’s emphasis on variable category analysis, the consistent and significant impor-
tance of the VIX stands out, warranting special attention. Its recurring high rankings
in the feature importance analysis underscore its robust impact on volatility fore-
casting, suggesting a strong likelihood that individual stock’s volatility is influenced
by market volatility. This finding aligns with previous studies that have emphasized

the relevance of the VIX as a predictive factor [4] 13].

!The table presents the variables in an abbreviated form for brevity
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Figure 4.1: Most Important Feature Categories for Different Model Types

Figure [£.7] displays four pie charts, each representing the most important feature

categories for a specific model type analyzed in this study. The four model types

examined are ANN-S, ANN-E, ANN-SE, and ANN-T, which incorporate various

exogenous variables. The baseline ANN model, without any exogenous variables,

is excluded from the pie charts. These pie charts were generated by counting the

occurrences where each category type was identified as the most important feature
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in the volatility forecasting models.

The analysis of the ANN-S model reveals an intriguing pattern, as shown in Fig-
ure The pie chart demonstrates that sentiment and investor attention-related
variables are selected as the most important features in approximately 67% of the
cases, while the remaining cases prioritize return-volatility values. This observation
suggests the possibility of market sentiment and investor attention playing a role
in volatility forecasting within the ANN-S model. By according significant impor-
tance to these variables, the model hints at the potential benefits of incorporating
psychological factors and market perception in improving the accuracy of volatility
predictions. This finding raises the need for further investigation into the influence
of sentiment and attention on volatility dynamics. If confirmed, it may underscore
the importance of capturing the market’s emotional response and investor behavior
driven by attention to achieve more precise volatility forecasts.

Shifting our attention to the ANN-E model, Figure [£.1b] provides compelling
evidence of the dominance of economic variables as the most important features.
The pie chart clearly illustrates that economic indicators are consistently selected
as the primary drivers of volatility forecasting, with a remarkable majority of ap-
proximately 95% of the cases. This substantial preference for economic variables
over return-volatility values suggests a robust influence of economic conditions and
macroeconomic factors in shaping the volatility dynamics of each asset within the
ANN-E model. The findings imply that market conditions, as captured by economic
variables, may have a more significant impact on volatility than the individual move-
ment of each asset. This highlights the importance of considering broader market

factors when forecasting and managing volatility in financial markets.
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Moving to the ANN-SE model depicted in Figure the results reveal a dis-
tinct selection pattern. Only exogenous variables are chosen as the most important
features, with sentiment and economic categories being considered. This is an inter-
esting finding since it demonstrates that exogenous variables are actually the key
drivers, while the endogenous factors, represented by return and volatility, are not
given prominence. Interestingly, among these categories, economic variables have a
higher frequency of selection compared to sentiment-related variables. This implies
that the model relies more heavily on economic factors, such as economic indicators
and market fundamentals, when forecasting volatility. The relatively limited empha-
sis on sentiment-related variables in this model configuration implies that market
sentiment and psychological factors may be considered less influential in shaping
volatility dynamics. Instead, the model emphasizes the importance of economic con-
ditions and external factors in driving volatility patterns.

Lastly, the ANN-T model depicted in Figure [£.1d] the analysis of feature impor-
tance reveals a distinctive pattern. Economic variables maintain their dominance
as the most frequently selected features, affirming their crucial role in capturing
volatility patterns within this model. Furthermore, sentiment-related variables, en-
compassing both individual stock sentiment and macroeconomic sentiment, are also
given considerable importance. This highlights the value of incorporating sentiment
indicators in enhancing volatility forecasts. The significant presence of economic vari-
ables combined with the inclusion of sentiment variables underscores the compre-
hensive approach of the ANN-T model in considering both economic and sentiment
factors for accurate volatility predictions.

By integrating the findings from the feature importance analysis with the results
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from the forecasting results analysis, a deeper understanding of the driving factors
behind volatility in non-linear models is obtained. The incorporation of exogenous
variables goes beyond improving the performance of the models. It reveals that these
variables play a fundamental role as the primary drivers of volatility dynamics.

In the previous section, it was discovered that the ANN-S model did not statis-
tically outperform the baseline ANN model, while the ANN-E model demonstrated
superior performance. This finding aligns with the overarching observation that eco-
nomic variables dominate as drivers of volatility dynamics. The stronger forecasting
performance of the ANN-E model, along with the emphasis on economic variables
in the feature importance analysis, provides valuable insight into the critical role of
economic conditions in accurately predicting asset volatility.

Furthermore, the integration of sentiment and attention variables alongside eco-
nomic factors in the ANN-SE model resulted in more robust forecasting outcomes.
This suggests that the inclusion of multiple exogenous variables, encompassing both
economic and psychological factors, enhances the predictive capabilities of the mod-
els. Not only does this integration amplify performance, but it also establishes these
exogenous variables as key drivers of the forecast, surpassing the significance of
return and volatility values. A similar pattern is observed in the ANN-T model,
where the comprehensive use of variables further improves predictive performance,
with economic variables and sentiment-attention variables playing a central role in
driving volatility dynamics. This insight highlights the importance of considering
a comprehensive set of exogenous variables when developing volatility forecasting
models, as they play a critical role in capturing and explaining volatility patterns in

financial markets.
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Chapter 5

Conclusion

This chapter concludes the paper and highlights potential avenues for future research
and areas that can be explored to further enhance the understanding and application

of the study’s findings.

5.1 Conclusion

This study aimed to investigate the enhancement of non-linear asset volatility fore-
casting models by integrating exogenous variables and utilizing explainable AT tech-
nique, SHAP. The empirical analysis encompassed two main aspects: forecasting
results and feature importance analysis. In the forecasting results analysis, we com-
pared the performance of non-linear neural network models with the widely used
HAR (Heterogeneous Autoregressive) model. The results demonstrated the superior
predictive capabilities of the non-linear neural network model, as evidenced by its
lower Mean Squared Error (MSE) loss metric.

The forecasting results of this study highlight the effectiveness of incorporat-
ing different variables in volatility forecasting models. Specifically, the inclusion of
economic variables significantly improved model performance, emphasizing the im-
portance of considering macroeconomic conditions when predicting asset volatility.

In contrast, models relying solely on sentiment variables did not exhibit statisti-
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cally superior performance. However, a noteworthy finding emerged when economic
and sentiment variables were combined, resulting in enhanced forecasting accuracy.
The integration of sentiment variables at the macro level also played a meaning-
ful role in augmenting model performance, highlighting the significance of capturing
market sentiment and psychological factors. By comprehensively including both eco-
nomic and sentiment variables, a more robust approach to volatility modeling was
achieved, leading to heightened accuracy and predictive power. These findings col-
lectively emphasize the value of variable selection and the incorporation of diverse
factors in non-linear asset volatility forecasting models.

The feature importance analysis revealed distinct patterns in the key drivers
of asset volatility forecasting across different model types and variable categories.
In the ANN-S model, market sentiment and investor attention emerged as influen-
tial factors, underscoring the importance of incorporating psychological factors. The
dominance of economic variables in the ANN-E model highlighted the significance
of macroeconomic conditions. The ANN-SE model demonstrated the substantial im-
pact of exogenous variables, with a relatively lesser emphasis on sentiment-related
variables and a stronger focus on economic factors. Similarly, the ANN-T model
showcased the comprehensive role of exogenous variables, with economic variables
and sentiment indicators as the main drivers, surpassing the influence of return-
volatility values. These findings underscore the significance of incorporating exoge-
nous variables in volatility forecasting models, as they not only amplify the forecast-

ing performance but also serve as the primary drivers of volatility dynamics.
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5.2 Future Work

In addition to the findings and contributions of this study, there are several avenues
for future research in the field of asset volatility forecasting. Firstly, exploring a
broader range of exogenous variables could provide a deeper understanding of their
impact on volatility dynamics. This could involve incorporating additional economic,
financial, and sentiment indicators to assess their predictive power. Furthermore,
applying feature selection techniques can help identify the most influential variables
and reduce dimensionality in the models. Additionally, investigating different types
of neural networks, such as RNNs or Transformers, can offer insights into their
effectiveness in capturing temporal dependencies and long-term patterns in volatility.
Lastly, exploring alternative explainability techniques and testing the robustness of
the models across different market conditions would further enhance their reliability

and applicability.
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