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Abstract

Learning Label Relationships Using Deep
Neural Networks for Hierarchical Text

Classification

Jinhyun Bang

Department of Industrial Engineering

The Graduate School

Seoul National University

Hierarchical text classification has been receiving increasing attention due to its

vast range of applications in real-world natural language processing tasks. With the

recent advances in deep learning, deep learning-based approaches achieved state-of-

the-art hierarchical text classification performance. While existing approaches focus

on exploiting the label hierarchy or modeling implicit label relationships, only a few

studies integrated these two concepts. This thesis proposes a graph attention capsule

network for hierarchical text classification (GACaps-HTC), a deep learning-based

approach designed to capture both the explicit hierarchy and latent label relation-

ships. A graph attention network is employed in the proposed approach for fusing

information on the label hierarchy into a textual representation, while a capsule

network is employed to understand the latent label relationships and infer classifica-

tion probabilities. The proposed approach is optimized using a loss term designed to
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address the innate label imbalance issue of the task and post-processed using vari-

ous methods specified for hierarchical text classification. Results of the experiments

conducted on two benchmark datasets demonstrate that the proposed approach out-

performed previous state-of-the-art approaches and ablation studies show that each

component in the GACaps-HTC played a part in enhancing the performance.

Furthermore, this thesis proposes a semantic-aware dynamic routing algorithm,

a new dynamic routing algorithm that initializes and updates a capsule network’s

coupling coefficients using semantic representations of labels. As a coupling coeffi-

cient of a pair of capsules indicates how similar their information is, the coefficient is

initialized from the similarity of semantic representations corresponding to the cap-

sules’ labels. Experiment results show that the proposed algorithm outperformed

other methods that inject semantic information of labels and GACaps-HTC with

semantic-aware dynamic routing algorithm reached faster convergence compared to

GACaps-HTC with conventional dynamic routing algorithm.

Finally, this thesis investigates another use case of GACaps-HTC by employing

the model for aspect category sentiment analysis that can be formulated as hier-

archical text classification. Experiments were conducted on four sentiment analysis

datasets, and the results show that the proposed approach performs well on not only

the semantic analysis of a document but also sentiment analysis.

Keywords: Hierarchical text classification, graph neural network, capsule network,

deep learning, natural language processing

Student Number: 2017-28575
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Chapter 1

Introduction

1.1 Background and Motivation

Natural language processing (NLP) is a subfield of computer science and linguistics

concerned with the computational process of understanding human languages[7, 8].

NLP technologies play a crucial part in various real-world industries, including

manufacturing[9, 10], finance[11, 12, 13], healthcare[14, 15], and the legal industry[16,

17], as they can analyze huge volumes of textual data. Due to the field’s practical im-

portance, NLP has been one of the most actively researched fields with the advent of

deep learning, and deep learning-based approaches have shown state-of-the-art per-

formances in a variety of NLP tasks such as sentiment analysis[18, 19, 20], machine

translation[21, 22], and text summarization[23, 24]. Text classification, the task of

automatically assigning a set of labels to a given text document, is another task

that has benefited from employing deep learning[19, 25] and is a vital task due to

its wide range of applications in a number of other NLP tasks including information

retrieval[26, 27], sentiment analysis[28, 29], and question answering[30].

This thesis focuses on hierarchical text classification (HTC), a subtask of text

classification where labels form a hierarchical structure. The HTC has been receiving

increasing attention from NLP researchers as hierarchical structures can be found
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in real-world textual data of various domains, including e-commerce products[31],

news articles[32, 33], patents[34, 35], and scientific articles[1]. Figure 1.1 shows an

example of a scientific article and corresponding labels in a label hierarchy, where

the goal of the task is to assign labels, which are depicted as filled circles, in the

hierarchy to the input document.

There are conditions in dermatology 

that cause severe cracking and flaking 

of the skin, representing a failure of 

normal desquamation.

Several hygroscopic substances that 

affect the moisturization of the stratum 

corneum have been identified for the 

treatment of scaling disorders.  …

Root

Computer

Sciences
Psychology

Skin Care
Heart

Disease

Sports

Injuries

Data

Structures

Machine

Learning
… …

Medical …

Figure 1.1: Example of input text document and label hierarchy in hierarchical text
classification. The example is sampled from the WOS-46985 dataset[1], a dataset of
scientific articles, where the document is the abstract by Perez et al.[2].

The importance of this task grows due to the accelerating accumulation of doc-

uments and the diversification of document topics (labels). Figure 1.2 depicts how

fast new academic papers are submitted in arxiv.org1, an open-access archive for

academic articles. As the number of labels increases, a (hierarchical) structure is re-

quired to understand the relationships between the labels. Furthermore, more labels

mean harder classification problems, which require a classification model based on

an understanding of the relationship between labels.

While early works on HTC[36, 37, 38, 39, 40, 41] discard information on a given

label hierarchy, Dumais and Chen[42] and Moyano et al.[43] have shown that effec-

tively exploiting the hierarchy is the key to achieving good HTC performance. To this

end, several methods have been adopted in deep learning-based HTC approaches to

1https://arxiv.org/
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Figure 1.2: Number of monthly submissions in arxiv.org from January 1992 to Au-
gust 2022.

make use of the hierarchy. The most common method used to capture the hierarchy

is employing a graph neural network (GNN)[44, 45, 46, 47, 48, 49], which is a neural

network designed to process data expressed as graphs[50]. Other approaches incor-

porate the label hierarchy by designing task-specific learning objectives[51, 52, 53] or

employing meta-learning[54] and reinforcement learning[55]. While these approaches

have achieved state-of-the-art HTC performance thanks to their capability to make

use of the hierarchy, they do not analyze relationships outside the hierarchy, thus

failing to understand the relationship between labels accurately.

On the other hand, text classification approaches that derive implicit label re-

lationships from data have also been proposed. For example, Chatterjee et al.[56]

and Chen et al.[57] employ hyperbolic neural networks, which are neural networks

that operate on a hyperbolic space, as this space is known to be effective when

expressing hierarchical structures[58, 59]. Other approaches infer the latent rela-
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tionships between labels from textual descriptions or summaries of each label[60]

or graphs constructed using label co-occurrence statistics[61]. However, these ap-

proaches lack the capability to utilize a given label hierarchy and show relatively

poor HTC accuracy. Unfortunately, integrating methods that extract implicit label

relationships and incorporate label hierarchy has been relatively less investigated

despite the shortcomings of previous approaches.

In this thesis, a hierarchical text classification approach that exploits label hi-

erarchy while capturing latent label relationships beyond the hierarchy is proposed.

A novel architecture composed of three subnetworks, each for extracting textual

representations, analyzing the label hierarchy, and learning the latent relationships

between labels, is proposed. The proposed approach is trained using task-specific loss

functions and post-processed with various methods designed to enhance hierarchi-

cal text classification performance. Through extensive experiments on widely-used

benchmark datasets, this thesis shows that the proposed approach outperformed

previous approaches. Furthermore, a novel algorithm is proposed to accelerate the

proposed approach using textual descriptions of labels. Finally, this thesis employs

the proposed approach on sentiment analysis tasks to demonstrate possible use cases

of the approach.
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1.2 Research Contribution

As described in Section 1.1, this thesis tackles hierarchical text classification by

making use of structural information extracted from label hierarchy and capturing

implicit relationships between labels. Detailed contributions of this work are pre-

sented in the following subsections.

1.2.1 Graph Attention Capsule Network

The first contribution of this work is proposing a novel neural network classifier

named graph attention capsule network. As the name suggests, the proposed classi-

fier comprises a graph neural network and a capsule network[62], each for handling

explicit label relationships provided as a label hierarchy and implicit label relation-

ships, respectively. While previous studies on capsule networks (CapsNets) focused

on capturing relationships between implicit entities (objects, attributes, or struc-

tures) and class labels, the CapsNet in the proposed classifier is designed to learn

relationships between class labels.

Furthermore, this work recognizes the innate class imbalance issue that lies in

the task and trains the proposed network to mitigate this imbalance. The number

of text documents assigned with each label of HTC datasets is illustrated in Figure

1.3 to demonstrate that such an issue exists in the task. Also, several cases where

classification results do not agree with the given label hierarchy are defined, and a

loss term and post-processing methods are proposed to avoid such contradictions.

The proposed approach was trained and evaluated using the WOS-46985 dataset[1]

and the RCV1 dataset[32], which are two of the most commonly used HTC datasets.

Experiment results showed that the graph attention capsule network outperformed

5



(a) The WOS-46985 dataset[1]

(b) The RCV1 dataset[32]

Figure 1.3: Number of examples in each label of hierarchical text classification
datasets.

the baselines and that the network can capture interpretable latent label relation-

ships. Ablation studies showed that each component proposed or employed in this

work contributed towards this enhanced performance.
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1.2.2 Semantic-Aware Dynamic Routing Algorithm

This thesis also proposes a semantic-aware dynamic routing algorithm for incorpo-

rating label semantics into the classifier discussed in Subsection 1.2.1. A dynamic

routing algorithm[63, 64] is an iterative algorithm that captures latent relationships

in a CapsNet. The proposed algorithm injects label semantic information into repre-

sentations passed onto a CapsNet, allowing the network to identify implicit relation-

ships with the help of the semantic information. Furthermore, a new initialization

method based on semantic similarities is proposed and employed in this algorithm.

GACaps-HTC with the semantic-aware dynamic routing algorithm was trained

and evaluated using the WOS-46985 dataset and the RCV1 dataset. This model

was compared with GACaps-HTC with the dynamic routing algorithm proposed by

Zhao et al.[64], which is the model described in Subsection 1.2.1, and variations of

GACaps-HTC exploiting label semantic representations. Experiment results showed

that injecting label semantic information using the proposed dynamic routing algo-

rithm outperformed other variations with label semantic representations and that

utilizing the proposed algorithm could accelerate the convergence of a classifier while

maintaining (or slightly enhancing) its performance.

1.2.3 Employing Graph Attention Capsule Network on Aspect Cat-
egory Sentiment Analysis

This thesis employs the model on aspect category sentiment analysis, a subtask of

sentiment analysis where the goal is not only to extract the sentiment polarities in

a given document but also their subjects, to investigate practical use cases for the

proposed model. Aspect category sentiment analysis is transformed into a hierar-

chical text classification task by constructing a hierarchy of aspect categories and
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attaching sentiment polarities as leaf nodes in the hierarchy.

GACaps-HTC was trained and evaluated using the SemEval2015 datasets[6]

and the SemEval2016 datasets[65]. Specifically, the Laptop2015 and Restaurant2015

datasets from SemEval2015 datasets and the Laptop2016 and Restaurant2016 datasets

from SemEval2016 datasets were used. Experiment results showed that the proposed

model could achieve competitive or better performance compared to previous work,

indicating that GACaps-HTC can achieve good HTC performance and can be em-

ployed for other practical applications involving HTC.

1.2.4 Summary of the Contributions

In short, main contributions of this work are as follows:

(a) A novel approach for hierarchical text classification using a GNN and a Cap-

sNet is proposed to exploit label hierarchy and capture label relationships.

(b) A dynamic routing algorithm that incorporates label semantic information

in a CapsNet is newly proposed to aid a CapsNet-based classifier to better

understand relationships between labels.

(c) The effectiveness of the proposed approaches was evaluated using widely-used

datasets, and the quantitative results showed that the proposed approaches

outperformed previous approaches. The qualitative results showed that the

approaches are interpretable and that they capture intuitive label relation-

ships.

(d) The effectiveness of the proposed approach was evaluated on aspect category

sentiment analysis to investigate other practical use cases of the approach.
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1.3 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, a literature review

on related topics, including HTC, GNN, CapsNet, and aspect category sentiment

analysis, is conducted. The proposed HTC approach and its experiment results are

explained in Chapter 3. In Chapter 4, a semantic-aware dynamic routing algorithm

proposed to complement GACaps-HTC is introduced along with related experiment

results. Chapter 5 explains how aspect category sentiment analysis is transformed

into a hierarchical text classification problem and demonstrates the effectiveness of

GACaps-HTC in identifying sentiments in a given document. Finally, in Chapter 6,

concluding remarks and future work are presented.

9





Chapter 2

Literature Review

2.1 Hierarchical Text Classification

Silla and Freitas[66] groups HTC approaches into flat, local, and global approaches,

as illustrated in Figure 2.1, based on how the hierarchical structure of the labels

is explored. In Figure 2.1, a dotted box represents a group of labels, illustrated as

circles, that a classifier is responsible for in each approach. Flat approaches discard

information on the hierarchy and transform the task into a simple text classification.

A set of flat approaches ignores a subset of labels to convert the task into a single-

label classification[36, 67, 68]. For example, Fürnkranz et al.[36] assigns only leaf

labels to a text document while ignoring nonleaf labels in the hierarchy. Other flat

approaches treat HTC simply like multi-label text classification[38, 56, 69]. Such

approaches provide a simple solution for HTC, but Dumais and Chen[42] reveals

that flat approaches achieve suboptimal performance as they do not utilize the in-

formation on label relationships, which is crucial for the task[43].

Local approaches place multiple classifiers, where each classifier is responsible for

a partial hierarchy. The first method to implement a local approach is to assign one

binary classifier per label. Fagni and Sebastiani[70] proposes an approach with label-

wise binary classifiers and a negative sampling method that selects each classifier’s
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Figure 2.1: Comparison between flat, local, and global HTC approaches.

training examples for faster training. Banerjee et al.[71] presents an approach that

initializes a binary classifier for each label as that of its parent label under the

assumption that dependencies between a label and its parent can be modeled using

transfer learning.

Another set of local approaches uses a classifier for each parent label, where

the classifier categorizes a text document into one of the child labels. Dumais and

Chen[42] employs a support vector machine (SVM)[72] classifier for each parent label

to classify web contents in a top-down fashion. Krendzelak and Jakab[73] proposes

an approach that places a convolutional neural network (CNN)[74] classifier for

each parent label in the hierarchy of news article labels and demonstrated that their

approach outperformed flat approaches and previous local approaches using SVMs.

Finally, a local approach can be implemented by employing a classifier for each

hierarchy level. The local approach proposed by Shimura et al.[75] defines level-

wise classifiers that share a group of parameters while other parameters are fine-

tuned for each level. The approach presented by Wehrmann et al.[76] trains local

classifiers for different hierarchy levels and a global classifier that performs multi-

label classification for all labels in the hierarchy. The results obtained from the

12



local classifiers and the global classifier are then aggregated to produce the final

prediction. Huang et al.[77] also makes use of level-wise classifiers and a global

classifier and employed the attention mechanism[5] to achieve better classification

accuracy. These local approaches have been shown to outperform flat approaches, but

they are known to be not scalable to the size of the label hierarchy[55]. Furthermore,

they are vulnerable to error propagation[78], as a classification error in one classifier

can lead to a prediction result that is entirely wrong.

In contrast, global approaches make use of a single multi-label classifier that

exploits the label hierarchy. One method to achieve this is to train the classifier

using a learning objective designed to take advantage of the hierarchy. Recursive

regularization[51] encourages the parameters responsible for a label and its parent

to be similar. This method has been shown to improve the HTC performance of

SVM and logistic regression approaches. Peng et al.[52] proposes an approach that

trains a neural network classifier using recursive regularization and demonstrated

that this regularization led to enhanced performance. The loss term proposed by Yu

et al.[53] penalizes contradictions where a document is assigned with a label but not

with its parent and demonstrated the effectiveness of this loss term when training a

neural network.

A global approach can also incorporate the information on the label hierarchy by

employing a GNN, a class of deep learning models designed to analyze data described

by graphs[50]. The detailed introduction and literature review on GNN are presented

in Subsection 2.2. Zhou et al.[45] proposes an approach that analyzes the top-down

and bottom-up paths in the hierarchy separately and obtains label-specific textual

representations with a GNN. Chen et al.[46] defines a neural network that maps

13



a label representation, which a GNN extracts, and a textual representation onto a

joint representation space. The network is trained to minimize a loss term based

on distances between a document’s textual representation and the representations

of the coarse-grained, fine-grained, and irrelevant labels. The approach proposed

by Deng et al.[47] trains a classifier to maximize the mutual information between

a textual representation and a label representation obtained by a GNN so that

the textual representation contains crucial information for HTC. Wang et al.[49]

uses a GNN to generate label representations and performed contrastive learning

to encourage textual and label representations to be closer while pushing textual

representations away from each other. In addition, Xu et al.[79] designs a GNN-based

approach that processes a joint graph of words and labels to learn hierarchy-aware

word representations for HTC.

Other methods have also been proposed to leverage information on the hierarchy

in global approaches. Yu et al.[53] proposes post-processing methods that ensure a

document is classified as a child label only if it is classified as its parent. Mao et

al.[55] transforms HTC into the task of traversing through the label hierarchy and

proposed a reinforcement learning approach that learns a label assignment policy.

Meta-learning has also been employed in HTC to search for the optimal learning rate

and classification threshold for each label[80] or enhance classification performance

on few-shot labels in the hierarchy[54].
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2.2 Graph Neural Network

A GNN extracts representations on the nodes[81, 82], edges[83, 84], or entire graph[85,

86] from data represented by graphs. Early work on GNNs, such as Scarselli et

al.[50], Gallicchio and Micheli[87], and Li et al.[88], obtains a node representation

by recurrently aggregating information propagated from neighboring nodes until the

representation converges. These approaches are referred to as recurrent graph neural

networks[89]. However, the process of iterative propagation and aggregation is com-

putationally expensive[90], calling for the need to develop more efficient techniques

to analyze graphs.

To overcome this challenge, Bruna et al.[91] proposes a graph convolutional net-

work (GCN) that utilizes filters with shared weights for propagating the features

of neighboring nodes motivated by the success of CNNs in terms of performance

and efficiency. The similarity between a CNN and a GCN is briefly illustrated in

Figure 2.2, where dotted outlines denote groups of pixels or nodes that partici-

pate in obtaining representations corresponding to the pixel or the node filled with

diagonal lines. Furthermore, Zhou et al.[45] introduces a hierarchy-GCN for gener-

ating node representations given a set of nodes that form a hierarchical structure.

A hierarchy-GCN obtains a node representation by adding a top-down, bottom-up,

and loop representation, each propagated from its parent node, child nodes, and

itself, respectively, and therefore can take parent-child relationships into account

rather than simple connectivity. This network has been shown to outperform other

GNNs when adopted for HTC.

On the other hand, inspired by the attention mechanism[5], which enables a

neural network to focus on the relevant information in a representation, Veličković et
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Convolutional Neural Network Graph Convolutional Network

Figure 2.2: Illustrations of a two-dimensional convolutional neural network and a
graph convolutional network.

al.[92] introduces a graph attention network, which employs the attention mechanism

on a GNN. A GAT concatenates representations of a node and its neighbor before

transforming the concatenated representations into a scalar weight, indicating how

much information is propagated from the neighbor. It has been demonstrated that

a GAT has better expressiveness than a GCN with similar time complexity due to

its capability of assigning a different level of importance to each neighbor.
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2.3 Capsule Network

A CapsNet is a neural network composed of groups, or capsules, of neurons, each

corresponding to an object, attribute, or structure[62], initially proposed for im-

age classification. The norm of a capsule’s activation vector is interpreted as the

probability that the corresponding object or attribute exists in an image, while the

direction of the vector represents the properties of the corresponding entity. Two

types of capsules are defined in a CapsNet: primary capsules and digit capsules. A

primary capsule in a CapsNet is a group of neurons that captures a latent object and

propagates its information to digit capsules via the dynamic routing algorithm[63].

The algorithm first defines a coupling coefficient for each pair of a primary capsule

and a digit capsule. This coefficient determines how much information is propagated

from the primary capsule to the digit capsule. In each iteration, the algorithm up-

dates each coefficient using the activation vectors of the corresponding primary and

digit capsules. Then, the algorithm calculates the activation vectors of digit cap-

sules from those of primary capsules and the updated coefficients before proceeding

to the next iteration. A digit capsule corresponds to a class label, and the norm of

its activation vector, obtained by the dynamic routing algorithm, is used as the class

probability.

Several methods have been proposed to enhance the training efficiency and per-

formance of CapsNets. Xiang et al.[93] extends the idea of dropout[94], a technique

developed to prevent neural networks from overfitting, to CapsNets and proposed

capsule dropout. While dropout randomly discards some of a network’s neurons

while training, capsule dropout randomly removes a portion of primary capsules

during training. When employing common dropout in a CapsNet, random elements
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are dropped in a primary capsule, and the direction of the capsule is altered, chang-

ing the properties of the capsule’s corresponding entity, where such perturbations

can lead to wrong predictions. Zhao et al.[64] proposes an adaptive dynamic routing

algorithm that iterates until the routing results converge rather than using a fixed

number of iterations. By doing so, the adaptive algorithm guarantees instance-level

convergence for each individual example, decreasing the risk of unreliable routing[64].

Gu and Tresp[95] demonstrates that gradients that occur from iterative processes of

dynamic routing algorithms have an insignificant influence on backpropagation and

proposed detached dynamic routing for better time and memory efficiency.

On the other hand, Jeong et al.[96] proposes a capsule pruning algorithm that dis-

cards primary capsules with small activation vector norms. These primary capsules

correspond to objects or attributes that are unrelated to the given example. There-

fore, removing such capsules and retaining only the capsules with relevant informa-

tion can enhance a CapsNet’s generalizability and prevent it from overfitting[96].

Huang and Zhou[97] proposes a dual-attention mechanism CapsNet which employs

the attention mechanism to highlight crucial information in primary capsules before

propagating the information to digit capsules and demonstrated its effectiveness in

image classification.

While CapsNets were initially proposed and researched in the field of computer

vision, they have recently been actively studied for NLP and shown to successfully

capture underlying structures in a text document[98], and several approaches have

adopted them for HTC. The approach proposed by Aly et al.[99] obtains activation

vectors of primary capsules using a CNN and performed text classification using a

dynamic routing algorithm. Peng et al.[100] improves this approach by replacing the
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CNN with a recurrent CNN[101] to obtain sequence-aware textual representations.

Wang et al.[102] proposes a hierarchical bidirectional CapsNet, which propagates

information through the label hierarchy by alternating between a top-down and a

bottom-up fashion. By doing so, both the local relationships between labels and the

global hierarchy are effectively captured by the CapsNet and exploited for HTC.
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2.4 Exploiting Label Semantics for Classification

Recently, an increasing number of studies have recognized that label semantics con-

tain valuable information for text classification. The first group of such studies fo-

cuses on few-shot or zero-shot text classification as exploiting label semantics en-

ables classification via matching a label representation and a text representation in a

shared representation space. Chen et al.[103] uses a convolutional deep structured se-

mantic model[104], which maps a text representation obtained by max-pooling word

representations to a label representation space, for zero-shot speaker intent classifi-

cation. Puri and Cantanzaro[105] proposes a zero-shot classification-based question

answering approach that concatenates a given question and candidate answers (la-

bels) to a given text for a language model to extract token representations in a joint

space. Hou et al.[106] uses semantic similarity between words for few-shot condi-

tional random field[107]-based slot tagging tasks, which are similar to named entity

recognition tasks. Halder et al.[108] formulates each few-shot classification task into

a group of binary classification tasks and fed a joint sentence of a label and a text

into a binary classifier. Luo et al.[109] proposes a few-shot learning approach that

encourages representations extracted from texts appended with a label name to be

more relevant to the corresponding label semantic representation.

Other studies have shown that incorporating label semantics can enhance not

only few-shot or zero-shot performance, but also general text classification perfor-

mance. Zhang et al.[110] demonstrates that by concatenating a document and label

names and employing an attention mechanism, a classifier can extract word-word,

word-label, and label-label correlations through attention. Pappas and Henderson[111]

proposes an approach that utilizes label semantic representations as parameters
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used to obtain logits in a classifier. Xiao et al.[112] proposes a label-specific atten-

tion network model that fuses textual representations obtained by self-attention and

those obtained from text-label attention. Similarly, The approach proposed by Cai

et al.[113] obtains representations from text-label attention, where label representa-

tions are obtained by feeding label semantics into a GNN.

Research on HTC approaches that employ label semantics has also been actively

conducted. Similar to Zhang et al.[110], Zhang et al.[114] performs HTC by con-

catenating a document and label names and employing an attention mechanism.

Yu et al.[115] tackles HTC as a label sequence generation task, where a generated

(inferred) label’s name is used as an input of a decoder for generating the next label.

Chen et al.[46] and Wang et al.[49] generate label semantic representation using label

names and GNNs to match a textual representation with the closest label semantic

representation in a joint text-label representation space.
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2.5 Aspect Category Sentiment Analysis

As conventional document-level or sentence-level sentiment analysis aims to iden-

tify the sentiment polarity of the entire document or sentence, it is assumed that

a single topic appears in the document or sentence and that the entire document

or sentence has a consistent sentiment polarity. However, in practice, multiple sen-

timent polarities corresponding to different topics may appear in a document, or

even a sentence, raising the need for identifying more fine-grained sentiments. As-

pect category sentiment analysis is a subtask of sentiment analysis widely used in

real-world industries[116, 117] where the goal is to perform aspect category (subject

of sentiments) detection and sentiment classification on the category simultaneously

from a given text document.

There are several types of approaches that can tackle aspect category sentiment

analysis. The first type is a pipeline approach[116], where an aspect category detec-

tion model and a sentiment polarity classification model are consecutively utilized.

While pipeline approaches are straightforward, they suffer from low performance as

the errors from aspect category detection limit the aspect category sentiment analy-

sis performance. Furthermore, relationships between aspect category detection and

sentiment polarity classification are ignored, where these relationships can play a

crucial part in enhancing both tasks[118].

Approaches of the second type are Cartesian product approaches[119] which

perform binary classification for all combinations of aspect categories and sentiment

polarities. However, such approaches face the risk of assigning multiple sentiment po-

larities for an aspect category[120]. The third type is known as an add-one-dimension

approach, where sentiment polarities (”positive,” ”neutral,” and ”negative”) are ap-
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pended with one extra option, ”N/A,” indicating that a given text document does

not mention the corresponding aspect category[121].

The fourth type is a hierarchical classification approach, which aims to explicitly

model the hierarchical relationships between aspect category detection and senti-

ment polarity classification. Cai et al.[120] proposes a hierarchical GCN-based ap-

proach where the lower-level GCN first detects aspect categories in a given docu-

ment by capturing the relationships between categories, and the higher-level GCN

predicts the sentiment polarities for each category by analyzing the relationships

between sentiments and categories. Note that the hierarchical GCN proposed by

Huang et al.[77] and that of Cai et al.[113] share the same name, but have different

architectures.

Finally, there are sequence-to-sequence approaches that utilize a pretrained gen-

erative language model to produce sentences representing captured aspect categories

and corresponding sentiment polarities. For example, given the sentence ”I love this

restaurant,” a sequence-to-sequence approach returns ”The sentiment polarity for

the restaurant is positive.” Liu et al.[122] suggests that these approaches are capable

of exploiting how a pretrained language model understood natural language.
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Chapter 3

Graph Attention Capsule Network for
Hierarchical Text Classification

3.1 Problem Definition

The goal of text classification is to classify a text document into a set of predefined

categories known as labels. Let D and L denote the input text document and the

number of labels, respectively, and YD ⊆ {1, . . . , L} is the ground-truth set of label

indices corresponding to D. A text classification model learns a mapping from D to

YD and outputs a classification probability for each label, where the classification

probability of the l-th label is denoted as pDl ∈ [0, 1].

This work tackles hierarchical text classification, a subtask of text classification

with a label hierarchy. The label hierarchy is denoted as H and is represented as a

set of tuples, where each tuple consists of a label and its child label as follows:

H =
{(

l, l′
)
|1 ≤ l, l′ ≤ L, l-th label is the parent of l′-th label

}
. (3.1)
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3.2 Methods

Inspired by the approaches mentioned in Section 2.1 and Section 2.2 that employ

various methods to exploit the label hierarchy and learn label relationships, a novel

global approach for HTC is proposed in this section, namely, the graph attention cap-

sule network for hierarchical text classification (GACaps-HTC). The GACaps-HTC

is composed of three subnetworks: a textual representation extractor, a hierarchy

encoder, and an implicit relationship extractor. The textual representation extrac-

tor first extracts a textual representation of a document from a language model

pretrained on a massive corpus. Then, a convolutional layer[74] generates a label-

specific textual representation for each label in the hierarchy. These representations

are fed into the hierarchy encoder comprised of a GNN to incorporate the hierar-

chy information into the label-specific representations, resulting in hierarchy-aware

label-specific representations.

The hierarchy-aware label-specific representations are then passed onto the im-

plicit relationship extractor. This subnetwork captures latent relationships between

labels that are not expressed by label hierarchy and infers class probabilities. The im-

plicit relationship extractor first employs the attention mechanism to highlight the

relevant information in these representations. Then, a CapsNet uses the dynamic

routing algorithm to capture relationships between labels via iterative updates and

produce the classification probabilities for assigning a set of labels to the given doc-

ument. Note that the algorithm was initially proposed to model the relationships

between underlying structures or objects and labels rather than those between la-

bels. Briefly, the hierarchy encoder is responsible for understanding the relationships

between a label and its neighboring labels (parent and child labels) in the hierarchy,

26



whereas the implicit relationship extractor captures broader relationships. Various

methods developed to enhance CapsNets, including capsule dropout[93], adaptive

iteration[64], and capsule pruning[96], are employed in GACaps-HTC. The overall

architecture of GACaps-HTC is depicted in Figure 3.1. The details for each subnet-

work are described in the following subsections.

3.2.1 Textual Representation Extractor

The ability to extract a high-quality textual representation from a document is criti-

cal for a model to understand and classify the document. To this end, a Transformer-

based language model[3], illustrated in Figure 3.2, pretrained on a large-scale corpus,

is employed as it has shown to be effective in various downstream tasks by capturing

long-range contexts[123]. Let XD ∈ R|D|×dLM denote the output of the language

model where |D| is the number of tokens in D and dLM is the output size of the

language model per token.

Then, a convolutional layer transforms XD into the input of the next subnetwork.

The r-th row of the convolutional layer output, denoted as Conv
(
XD

)
∈ R|D|×dConv ,

is obtained as follows:

Conv
(
XD

)
[r,:]

= ReLU
(
WConvX

D
[r−1:r+1,:] + bConv

)
. (3.2)

WConv and bConv are the weight and bias parameters in the convolutional layer,

respectively, and dConv denotes the number of output channels in the layer. The

rectified linear unit (ReLU)[124] is a piece-wise linear function commonly employed

to introduce non-linearity to a neural network.

A document-level textual representation, a vector of length dConv, is obtained

by max-pooling the convolutional layer output along the first dimension. This rep-
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Figure 3.2: Transformer architecture[3]. LayerNorm denotes layer normalization[4]
and multi-head attention denotes a process of performing the attention mechanism
proposed by Bahdanau et al.[5] several times in a parallel fashion.

resentation is split into L vectors of length dConv/L, and each vector undergoes an

affine transformation to generate a label-specific textual representation. The intu-

ition behind extracting label-specific representations is that the model requires the

ability to capture distinct pertinent characteristics that are preferred in discriminat-

ing each label[61, 125, 126, 127]. As these label-specific representations are passed to

the hierarchy encoder, dConv/L equals the hierarchy encoder’s input and output size

per label, denoted by dHE . Let zD
l ∈ RdHE denote the label-specific representation

corresponding to the l-th label, which is obtained as follows:

zD
l = WAffMaxPool

(
Conv

(
XD

)
[:,(l−1)dHE :ldHE ]

)
+ bAff . (3.3)

WAff ∈ RdHE×dHE and bAff ∈ RdHE are the weight and bias parameters for the

affine transformation, and MaxPool denotes the max-pooling operation.

3.2.2 Hierarchy Encoder

Although zD
l generated by the textual representation extractor contains information

on the content of D, it lacks information on the hierarchy. The second subnetwork

in GACaps-HTC, namely the hierarchy encoder, embeds the information on the
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hierarchy into the representations. In this work, a GAT is selected as the hierarchy

encoder due to its ability to understand how relevant each neighboring label is in

generating a hierarchy-aware label-specific representation.

Let WHE ∈ R1×2dHE denote the parameters in the hierarchy encoder. The

subnetwork first infers an attention weight wD
ll′ ∈ R for each pair of label indices

(l, l′) ∈ H. This weight indicates how important the l′-th label is for generating the

l-th label’s label-specific representation and is inferred as follows[92]:

wD
ll′ = LeakyReLU

(
WHEConcat

(
zD
l , z

D
l′
))

. (3.4)

LeakyReLU[128] is a piece-wise linear function similar to ReLU, and Concat is the

operation of concatenating multiple vectors.

These weights are normalized to represent the relative importance of each neigh-

boring label. Let Nl denote the set of indices corresponding to labels that neighbor

the l-th label, including itself, which can be inferred from H as follows:

Nl =
{
l′|
(
l, l′
)
∈ H

}
∪
{
l′′|
(
l′′, l
)
∈ H

}
∪ {l} . (3.5)

The attention weight corresponding to the pair (l, l′) is normalized as follows:

w̃D
ll′ =


exp(wD

ll′)∑
i∈Nl

exp(wD
li )

if l′ ∈ Nl

0 otherwise,

(3.6)

where w̃D
ll′ is the normalized attention weight. Normalized weights between non-

neighboring labels are set to zero as only the neighboring labels participate in gen-

erating the hierarchy-aware representation corresponding to a label.

Finally, the hierarchy encoder propagates the label-specific textual representa-
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tions (zD
l ) according to the normalized attention weights and returns hierarchy-

aware textual representations. The hierarchy-aware representation corresponding to

the l-th label is denoted as vD
l and is obtained as follows:

vD
l = ReLU

( ∑
1≤l′≤L

w̃D
ll′z

D
l′

)
. (3.7)

The process of obtaining vD
l is summarized in Figure 3.3, where the process of

attaining the hierarchy-aware textual representation corresponding to the second

label (highlighted in gray) is illustrated. Different shades of arrowed lines in the

rightmost graph denote different levels of attention weights.

Weight

Calculation

Weight

Normalization

Propagation

z2
D z2

D z2
D z2

D

Figure 3.3: Summarization of the hierarchy encoder composed of a graph attention
network.

3.2.3 Implicit Relationship Extractor

The implicit relationship extractor in GACaps-HTC predicts the classification prob-

ability of each label from the representations generated by the hierarchy encoder.

The subnetwork first highlights the crucial information in the representations via

the attention mechanism before utilizing them as the primary capsules’ activation

vectors of the subnetwork’s CapsNet. Adopting the attention mechanism in this fash-

ion has been shown to enhance the performance of a CapsNet by emphasizing vital
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information while reducing the less important information in primary capsules[97].

Let aD ∈ RL denote the vector composed of each primary capsule’s attention weight

and uD
l ∈ RdHE denote the activation vector of the l-th primary capsule in the Cap-

sNet. Using the weight and bias parameters W 1
Attn ∈ RL×LdHE , W 2

Attn ∈ RL×L,

and b1Attn, b
2
Attn ∈ RL, aD and uD

l are obtained as follows[97]:

aD =tanh
(
W 2

AttnReLU
(
W 1

AttnConcat
(
vD
1 , . . . ,v

D
L

)
+ b1Attn

)
+ b2Attn

)
, (3.8)

uD
l =

(
1 + aD

[l]

)
vD
l . (3.9)

tanh denotes the hyperbolic tangent operation.

After the activation vectors of the primary capsules are inferred, primary capsules

with small activation vector norms are pruned to enhance GACaps-HTC’s general-

izability and prevent overfitting. These primary capsules are expected to correspond

to labels irrelevant to D and contain unimportant information. Let ρ ∈ [0, 1) de-

note the hyperparameter indicating the pruning ratio. ρL primary capsules with the

smallest activation vector norms are pruned, and their activation vectors are set to

zero, while the remaining (1− ρ)L capsules participate in inferring the classification

probabilities.

The CapsNet in the implicit relationship extractor acquires the activation vec-

tors of the digit capsules, each corresponding to a label, where the norm of the

activation vector indicates the predicted classification probability of the label. The

dynamic routing algorithm, which updates how much information is passed on from

a primary capsule to a digit capsule in an iterative fashion, is employed to obtain

these activation vectors. The dynamic routing algorithm proposed by Zhao et al.[64]

is adopted in this work as it has been shown to outperform the dynamic routing
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algorithm proposed by Sabour et al.[63] on NLP tasks by iterating the algorithm

until every example converges[64].

Let oD
l ∈ RdCaps denote the activation vector of the l-th digit capsule corre-

sponding to the l-th label, where dCaps is the size of a digit capsule’s activation

vector. The detailed dynamic routing algorithm that outputs the activation vectors

of the digit capsules from those of the primary capsules is described in Algorithm 1.

cDll′ ∈ R and c̃Dll′ ∈ R defined in lines 1 and 6 are the coupling coefficient and normal-

ized coefficient indicating how much information the l-th digit capsule receives from

the l′-th primary capsule. The activation vector propagated from the l′-th primary

capsule to the l-th digit capsule is referred to as µD
ll′ and obtained in line 7, where

WCaps,l ∈ RdCaps×dHE is the matrix of parameters defined for the l-th digit capsule.

The activation vectors of the digit capsules are obtained as the weighted sum of the

propagated vectors with the normalized coupling coefficients as weights, as indicated

in line 8.

The idea behind the dynamic routing algorithm is that a primary capsule should

propagate more information to digit capsules that are similar to itself. Therefore,

the algorithm measures the distance, denoted as dist in Algorithm 1, between the

activation vectors of the digit capsules and those propagated from the primary cap-

sules in line 9. Then, as shown in line 10, cDll′ is updated to increase proportionally

to −dist
(
oD
l ,µ

D
ll′
)
.

The process of assigning higher coefficients to similar capsules can be interpreted

as maximizing the sum of cDll′
(
1− dist

(
oD
l ,µ

D
ll′
))

[64], and the algorithm iterates un-

til this summed value converges, as described in lines 13 and 14 of Algorithm 1.

Note that the activation vectors are squashed to have norms between zero and one
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Algorithm 1: Dynamic Routing Algorithm[64]

Input: activation vectors of primary capsules uD
l for 1 ≤ l ≤ L

Output: activation vectors of digit capsules oD
l for 1 ≤ l ≤ L

1 cDll′ ← 0 ∀l, l′ ;
2 prev Score← −∞ ;
3 while True do
4 for l← 1 to L do
5 for l′ ← 1 to L do

6 c̃Dll′ ←
exp(cDll′)∑

1≤i≤L exp(cD
il′)

;

7 µD
ll′ ←WCaps,lu

D
l′ ;

8 oD
l ←

∑
1≤l′≤L c̃Dll′µ

D
ll′ ;

9 dist
(
oD
l ,µ

D
ll′
)
←
∥∥∥∥ ∥µD

ll′∥
0.5+∥µD

ll′∥
2µ

D
ll′ −

∥oDl ∥
0.5+∥oDl ∥

2o
D
l

∥∥∥∥ ;

10 cDll′ ← cDll′ +
(
1− dist

(
oD
l ,µ

D
ll′
))

;

11 end

12 end

13 Score← log
(∑

1≤l,l′≤L cDll′
(
1− dist

(
oD
l ,µ

D
ll′
)))

;

14 if |Score− prev Score| ≤ ϵ then

15 oD
l ←

∥oDl ∥
0.5+∥oDl ∥

2o
D
l ∀l ;

16 return oD
l ∀l ;

17 end
18 prev Score← Score ;

19 end
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in lines 9 and 15. ϵ ∈ R+ is the hyperparameter indicating the threshold determin-

ing whether the algorithm has converged. After the dynamic routing algorithm has

ended, the classification probability of the l-th label pDl is inferred as pDl =
∥∥oD

l

∥∥.

During the training phase, capsule dropout[93] is applied to the CapsNet for en-

hanced generalizabilty. For a given hyperparameter ϕ ∈ [0, 1) indicating the dropout

rate, each primary capsule is removed with the probability of ϕ during the training

phase.

3.2.4 Optimization

10

100 60 80

20 30 40

Root

20 40

5 5

40 40

10 15 15

Figure 3.4: An example case of label imbalance naturally occurring in hierarchical
text classification.

As a coarse-grained label closer to the root of the hierarchy is more likely to be

assigned to more documents than a fine-grained label closer to a leaf, HTC has an

innate label imbalance issue[47, 129], as illustrated in Figure 3.4. Circles in Figure

3.4 represent labels, while their sizes and numbers beside them denote the number of

data examples corresponding to the labels. Training a classifier using a dataset with

such an imbalance can lead to the classifier overfitting to labels with the majority
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of training examples while performing poorly on sparse labels[130]. To overcome

the imbalance issue, which is one of the key challenges in HTC[55], GACaps-HTC

is trained using focal loss[130]. The focal loss relieves a neural network from being

overwhelmed by labels with most data examples by reducing the relative loss for

easy classification (labels with many examples) and focusing on difficult classification

(labels with few examples). The focal loss (FL) is obtained as follows:

FL
(
YD, pD1 , . . . , p

D
L

)
= −

∑
l∈YD

(
1− pDl

)γ
log
(
pDl
)
−
∑

l′ /∈YD

(
pDl′
)γ

log
(
1− pDl′

)
. (3.10)

γ ∈ R+ denotes the hyperparameter indicating the importance of misclassified ex-

amples, likely to be those of labels with few examples. This loss function replaces

the binary cross-entropy (BCE) loss, which is the most commonly employed loss for

multi-label classification. The BCE loss is calculated as follows:

BCE
(
YD, pD1 , . . . , p

D
L

)
= −

∑
l∈YD

log
(
pDl
)
−
∑

l′ /∈YD

log
(
1− pDl′

)
. (3.11)

Root
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Figure 3.5: An example case of a classification result not coinciding with label hier-
archy.

Furthermore, a contradiction penalty term motivated by Yu et al.[53] is proposed

to encourage the model’s classification results to coincide with the label hierarchy.
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By minimizing this term, a neural network is trained to assign a label to a document

only if the document is assigned the parent label as a document of a child label is

trivially also of its parent. An example case of a classification result contradicting

the label hierarchy is depicted in Figure 3.5, where filled circles denote a classifier’s

predictions and the dotted ellipse denotes the part where the result contradicts the

hierarchy as a document can be categorized as a child label only if it is classified

as the parent label. The proposed contradiction penalty term denoted as CP is

calculated as follows:

CP
(
H, pD1 , . . . , pDL

)
=
∑

1≤l≤L

max

(∣∣∣∣pDl − max
1≤l′≤L

(
pDl′ 1(l,l′)∈H

)∣∣∣∣ , δ) . (3.12)

1(l,l′)∈H is the binary indicator that returns 1 if (l, l′) is in H, and 0 otherwise.

The hyperparameter δ ∈ R+ indicates the maximum value of the allowed difference

between two classification probabilities. Training GACaps-HTC without this hyper-

parameter may lead to the model learning only to output the same class probability

for every label.

The final loss term for training GACaps-HTC is a mixture of the loss terms

mentioned above, acquired as follows:

Loss
(
YD,H, pD1 , . . . , pDL

)
=FL

(
YD, pD1 , . . . , p

D
L

)
+λ× CP

(
H, pD1 , . . . , pDL

)
. (3.13)

λ ∈ R+ is the hyperparameter indicating the weight of the contradiction penalty

term.

3.2.5 Post-Processing

While the contradiction penalty term described in Subsection 3.2.4 is used to en-

courage classification results to coincide with the given hierarchy, the trained classi-
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fier can still return results that contradict the hierarchy. Therefore, post-processing

methods that add or remove labels are presented in this subsection. Three cases

of classification results contradicting the hierarchy are defined in this work. The

first case is an isolated label contradiction which occurs when a text document is

assigned to a label but not to its parent. The classifier can choose to either do noth-

ing, remove this isolated label, or add the labels that connect the isolated label and

the root of the hierarchy. While removing the isolated label or adding the labels

between the root and the isolated label guarantees classification results to match

the hierarchy, these methods may lead to more false-negatives (lower recall) or false-

positives (lower precision), respectively. Figure 3.6 illustrates an example of isolated

label contradictions and the described post-processing methods. Filled circles in the

figure denote the assigned labels, where the gray circle denotes the label causing the

contradiction.

Root

(a) Isolate Label Contradiction

Root

(b) Removing Isolated Labels

Root

(c) Connecting Isolated Labels

Figure 3.6: Illustration of an isolated label contradiction and two possible post-
processing methods.

The second case of contradicting results is named a dangling label contradiction,

where a text document is assigned to a label but to none of its child labels. Note that
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this case may or may not contradict a hierarchy, as some datasets do not require

mandatory leaf classifications, where classifying a document as at least one leaf

label is necessary. However, in both datasets used in this thesis, the WOS-46985

dataset and the RCV1 dataset, each document is required to be assigned a leaf

label. In this case, the classifier can choose to either do nothing or remove labels

that connect the root and the dangling label. The classifier can also choose to find a

descendent leaf label with the highest class probability and add labels that connect

the dangling label and this descendent or to find a greedy path (choosing the child

label with the highest probability) to a leaf label. Note that while some datasets

meet the mandatory-leaf assumption, where the label paths are always required to

end at leaf labels, others do not. Illustrations of dangling label contradiction and

post-processing methods are depicted in Figure 3.7. Filled circles denote the assigned

labels, where the gray circle denotes the label causing the contradiction. Numbers

on the right side of labels denote corresponding class probabilities.

Finally, the third case, or an empty result contradiction, is when a document is

classified as none of the labels. This case of contradiction can occur due to labels

being removed by the aforementioned post-processing methods or simply because

the class probability of every label is below the predefined threshold (most commonly

0.5). When an empty result contradiction happens, the classifier can choose to find

a leaf label with the highest class probability and add labels that connect the root

and this leaf label or find a greedy path from the root to a leaf label. These post-

processing methods are equivalent to the methods shown in Figure 3.7 (c) and (d),

respectively.

After GACaps-HTC is trained, validation performance derived from each combi-
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nation of post-processing methods for these cases of contradictions is obtained. The

combination with the best validation performance is then used for testing.

(c) Connecting to the Best Leaf

Root

0.1 0.3 0.4

0.2 0.1

(d) Greedy Path

Root

0.1 0.3 0.4

0.2 0.1

(a) Dangling Label Contradiction

Root

0.1 0.3 0.4

0.2 0.1

(b) Removing Dangling Labels

Root

Figure 3.7: Illustration of a dangling label contradiction and three possible post-
processing methods.
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3.3 Experiments

3.3.1 Experiment Settings

Datasets

The effectiveness of the proposed approach was validated on two benchmark HTC

datasets widely employed to evaluate HTC approaches[45, 46, 47, 48, 49, 55, 56,

71, 75, 102, 114, 115]. The first benchmark dataset was the WOS-46985 dataset[1],

which contains abstracts of 46,985 published papers available in Web Of Science1.

There are 141 domain labels, including seven top-level domain labels (biochemistry,

civil engineering, computer science, electrical engineering, mechanical engineering,

medical science, and psychology) and 134 subdomain labels. 37,588 examples in the

dataset were used for training, while 9,397 examples were used for testing.

The second dataset was the RCV1 dataset2[32], comprising 804,414 newswire

stories published by Reuters3 from August 1996 to August 1997. In this dataset,

103 topic labels are defined, composing a hierarchy of four levels, including four

top-level topic labels (corporate & industrial, economics, government & social, and

markets). The RCV1 dataset was split into a training set with 23,149 examples and

a testing set comprising 781,265 examples following the original work that published

the dataset[32].

Metrics

The performance of GACaps-HTC and other approaches was measured and com-

pared using two metrics widely employed to evaluate multi-label classification (in-

cluding HTC) results: the micro-F1 score and macro-F1 score[131]. The micro-F1

1https://www.webofscience.com/
2https://trec.nist.gov/data/reuters/reuters.html
3https://www.reuters.com/
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score is a conventional metric used to evaluate classification results by assigning

equal weight to every example. In contrast, the macro-F1 score assigns equal weight

to every label. Therefore, an approach returning biased results that prefer labels with

many examples may achieve a high micro-F1 score while recording a low macro-F1

score.

Let TPl, FPl, FNl denote the number of true-positive, false-positive, and false-

negative examples of the l-th label. Micro-precision, micro-recall, and micro-F1

scores, denoted as Micro-P , Micro-R, and Micro-F1, are calculated as follows:

Micro-P =

∑
1≤l≤L TPl∑

1≤l≤L TPl + FPl

Micro-R =

∑
1≤l≤L TPl∑

1≤l≤L TPl + FNl

Micro-F1 =
2×Micro-P ×Micro-R

Micro-P + Micro-R

(3.14)

Precision and recall scores corresponding to the l-th label are denoted as Class-Pl

and Class-Rl, respectively, and the macro-F1 score, denoted as Macro-F1, is cal-

culated as follows:

Class-Pl =
TPl

TPl + FPl

Class-Rl =
TPl

TPl + FNl

Macro-F1 =
1

L

∑
1≤l≤L

2× Class-Pl × Class-Rl

Class-Pl + Class-Rl

(3.15)

Baselines

The GACaps-HTC was compared with the following baseline approaches:

• CapsNet-based flat approach:
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– Zhao et al.[98]: an approach using a N -gram CNN and two CapsNets

• Other flat approaches

– Lai et al.[101]: approach with bidirectional recurrent neural network (RNN)[132]

and a CNN

– Chen et al.[39]: a hierarchical long short-term memory (LSTM)[133]-

based approach

– Yang et al.[40]: an approach based on a hierarchical attention network

which utilizes word-level attention and sentence-level attention

– Zhou et al.[41]: an attention-based bidirectional LSTM-based approach

– Liu et al.[69]: a CNN-based approach designed for extreme multi-label

text classification

– Chatterjee et al.[56]: a CNN-based approach that maps label embeddings

onto a hyperbolic space

• Mixed local and global approaches

– Wehrmann et al.[76]: an approach that defines a global classifier and

hierarchy level-wise local classifiers

– Huang et al.[77]: an approach using a global classifier and attention-based

level-wise local classifiers

• Other local approaches

– Shimura et al.[75]: a CNN-based approach using transfer learning[134]
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– Banerjee et al.[71]: a gated recurrent unit (GRU)[135]-based approach

using transfer learning and attention mechanism

• GNN-based global approaches

– Zhou et al.[45]: a hierarchy-GCN based approach that extracts label-

specific representations

– Deng et al.[47]: a hierarchy-GCN based approach that aims to maximize

mutual information between documents and labels

• CapsNet-based global approaches

– Aly et al.[99]: a CapsNet-based approach exploiting hierarchy for param-

eter initialization

– Peng et al.[100]: a CapsNet-based approach using a CNN, RNN, and

word-level GNN for textual representation extraction

• Other global approach

– Mao et al.[55]: a reinforcement learning-based approach that learns hier-

archy traversing policy

Implementation Details

For the RCV1 dataset, the pretrained bidirectional encoder representations from

Transformers (BERT)[136] was employed as the language model in the textual rep-

resentation extractor. The BERT is a language model trained on a massive En-

glish corpus that has demonstrated success when adopted in downstream NLP
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tasks[137, 138]. For the WOS-46985 dataset, BERT pretrained on scientific docu-

ments, namely SciBERT[139], was utilized as the language model since the domains

used for pretraining the language model and those of the dataset align.

Textual representations with dLM = 768 were obtained from the language models

mentioned above, and representations of dConv = L×100, dHE = 100, and dCaps = 32

were extracted by GACaps-HTC. The number of labels L was 141 for the WOS-46985

dataset and 103 for the RCV1 dataset. The capsule pruning ratio was set to ρ = 0.05.

For the capsule dropout rate and the hyperparameter in the contradiction penalty

term, ϕ = 0.15 and δ = 0.01 were selected, respectively, for both datasets, while for

the weight of the contradiction penalty term, λ = 0.0005 and λ = 0.001 were used for

the WOS-46985 dataset and the RCV1 dataset, respectively. Each hyperparameter

mentioned above was selected by a coarse hyperparameter search. The convergence

threshold of the dynamic routing algorithm and the hyperparameter in the focal

loss were set to ϵ = 0.05 and γ = 2, following Zhao et al.[64] and Lin et al.[130],

respectively.

The GACaps-HTC was trained using an Adam optimizer[140] with mini-batches

of size 32. An initial learning rate of 0.0001 was used for the WOS-46985 dataset

while a learning rate of 0.00005 was used to train the model using the RCV1 dataset.

The learning rate was decayed by a factor of 0.1 if suboptimal validation micro-F1

scores were obtained for five consecutive epochs. We stopped the training of GACaps-

HTC after the learning rate was decayed for the fourth time.
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Approach Micro-F1 Macro-F1

Lai et al.[101]a 0.688 0.478
Chen et al.[39]a 0.738 0.543
Yang et al.[40]a 0.750 0.557
Zhou et al.[41]a 0.744 0.551
Liu et al.[69]a 0.706 0.503
Zhao et al.[98]a 0.788 0.632
Aly et al.[99]a 0.769 0.614
Huang et al.[77]a 0.807 0.699
Peng et al.[100]a 0.846 0.723
Zhou et al.[45] 0.858 0.803
Deng et al.[47] 0.856 0.801

Ours (GACaps-HTC) 0.876 0.829

The best results are highlighted in bold.
a F1 scores reported by Wang et al.[102]

Table 3.1: Experiment results on the WOS-46985 dataset.

3.3.2 Results

Performance on the WOS-46985 Dataset

The experimental results on the WOS-46985 dataset are listed in Table 3.1. The

GACaps-HTC achieved the best micro-F1 and macro-F1 scores with a 2.1% and a

3.2% gain compared to the second-best approach, Zhou et al.[45], respectively. For

further analysis of the classification results, confusion matrices that compared the

ground-truth labels and predicted labels with the highest classification probabilities

by GACaps-HTC are depicted in Figure 3.8. Note that all cells with values higher

than 0.4 were filled with the same color to enhance the contrast in cells with low

values. Dark diagonal cells in each confusion matrix are true-positive cases where

the proposed approach correctly classified the documents. In Figure 3.8 (a), top-level

domain labels in the WOS-46985 dataset are compared. Although the proposed ap-
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proach successfully classified top-level domain labels in most cases, it categorized

a portion of documents of the second label (medical sciences) as the fifth (bio-

chemistry) or seventh label (psychology). This error is presumed to be due to the

numerous similarities between their child labels. For example, documents on im-

mune system-related illnesses, including lymphoma and acquired immune deficiency

syndrome, and mental health are labeled as medical sciences, whereas documents

on immunology and depression are categorized as biochemistry and psychology, re-

spectively.

Figure 3.8: Level-wise confusion matrix on the WOS-46985 dataset.

In Figure 3.8 (b), labels in the second hierarchy level in the WOS-46985 dataset

are compared. Cells surrounded by a blue square denote the confusion between

labels that share a parent label and, therefore, are semantically similar. These cells

are mostly light-colored as the proposed approach successfully distinguished one

label from another label with a similar meaning.
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Performance on the RCV1 Dataset

Approach Micro-F1 Macro-F1

Lai et al.[101]b 0.686 0.293
Chen et al.[39]b 0.673 0.310
Yang et al.[40]b 0.696 0.327
Zhou et al.[41]a 0.670 0.315
Liu et al.[69]b 0.695 0.301
Shimura et al.[75] 0.803 0.514
Wehrmann et al.[76]c 0.808 0.546
Zhao et al.[98]b 0.739 0.399
Aly et al.[99]a 0.710 0.339
Banerjee et al.[71] 0.805 0.585
Huang et al.[77]a 0.833 0.601
Mao et al.[55] 0.833 0.601
Peng et al.[100] 0.778 0.513
Zhou et al.[45] 0.840 0.634
Chatterjee[56] 0.793 0.473
Deng et al.[47] 0.835 0.627

Ours (GACaps-HTC) 0.868 0.698

The best results are highlighted in bold.
a F1 scores reported by Wang et al.[102]
b F1 scores reported by Peng et al.[100]
c F1 scores reported by Mao et al.[55]

Table 3.2: Experiment results on the RCV1 dataset.

The experimental results on the RCV1 dataset are listed in Table 3.2. The

GACaps-HTC achieved the best micro-F1 and macro-F1 scores with a 3.3% gain and

a 10.1% gain compared to the second-best approach, Zhou et al.[45], respectively.

This indicates that the proposed approach could improve the overall classification

performance while successfully categorizing sparse (fine-grained) labels.

Such improvements were due to the proposed approach’s ability to understand

the label hierarchy using the GAT and the latent label relationships with the Cap-
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Figure 3.9: Visualization of normalized coupling coefficients in the capsule network
on the RCV1 dataset.
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sNet. The latent relationships between the labels on the second level of the RCV1

dataset’s label hierarchy learned by the CapsNet are illustrated in Figure 3.9. Note

that only the labels on the second level of the label hierarchy are depicted, and there-

fore there were no explicit relationships provided by the label hierarchy between the

illustrated labels. As shown in Figure 3.9, the dynamic routing algorithm distin-

guished salient relationships more clearly as the number of iterations increased.

Some examples of the relationships learned by the CapsNet were as follows: The

CapsNet captured a correlation between the economic performance label and the

economic output and capacity label, which is intuitive as economic output and ca-

pacity impact economic performance directly. Furthermore, the CapsNet derived

that the commodity market label is correlated with the corporate contracts and or-

ders label, corporate management label, and the corporate production label, where

these correlations make sense as a fluctuation in the commodity market impacts cor-

porate contracts, management, and production. The network also inferred that the

economic inflation label and the corporate-related regulation label are correlated,

where the fastest way to stabilize inflation is by attracting foreign and internal in-

vestments by relaxing corporate regulations[141]. Intuitive relationships like these

indicate that GACaps-HTC successfully understood the latent relationships between

labels. Also, such interpretability of the implicit label relationships extracted by the

model can enhance a user’s confidence in the model[142].

3.3.3 Ablation Studies

This subsection demonstrates the results of ablation studies performed with the

WOS-46985 dataset.
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Ablation Studies on Capsule Pruning and Attention

The effectiveness of the capsule pruning and attention mechanism adopted in the

CapsNet is presented in Table 3.3. The capsule pruning and attention mechanism

led to increases in the micro-F1 and the macro-F1 scores. These results imply that

enhanced generalizability[96] and representation power[97] obtained by employing

the capsule pruning and attention mechanism, respectively, enabled GACaps-HTC

to achieve high F1 scores. On average, approaches with pruning achieved a 0.4% and

a 0.6% increase in the micro-F1 and the macro-F1 scores, respectively, compared to

those without pruning. Employing the attention mechanism in the CapsNet led to a

0.9% gain in the micro-F1 score and a 1.6% gain in the macro-F1 score, respectively,

on average.

Pruning Attention Micro-F1 Macro-F1

- - 0.865 0.811
✓ - 0.871 0.816
- ✓ 0.875 0.824

✓ ✓ 0.876 0.829

The best results are highlighted in bold.

Table 3.3: Ablation study results regarding capsule pruning and attention on the
WOS-46985 dataset.

Ablation Studies on Loss Terms

The F1 scores recorded by training GACaps-HTC with various loss terms are listed

in Table 3.4, where the results in the first and the third rows were achieved by

replacing the focal loss with the BCE loss. Training the network using the focal loss

increased both the micro-F1 and macro-F1 scores, indicating that letting the network
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focus on labels harder to categorize than others led to improved performance. On

the other hand, employing the contradiction penalty term increased the macro-F1

score while maintaining the same level of the micro-F1 score. This indicates that

the information on the label hierarchy provided by this additional loss term played

a critical role in categorizing fine-grained labels with few examples.

FL CP Micro-F1 Macro-F1

- - 0.873 0.819
✓ - 0.875 0.819
- ✓ 0.873 0.824

✓ ✓ 0.876 0.829

The best results are highlighted in bold.

Table 3.4: Ablation study results regarding loss terms on the WOS-46985 dataset.

Ablation Studies on Hierarchy Encoder

Table 3.5 lists the results obtained by replacing the GAT in the hierarchy encoder

of GACaps-HTC with other GNNs. Although employing any GNN led to improved

performance in the micro-F1 and macro-F1 scores compared to the approach with-

out a GNN, the proposed approach with GAT outperformed other approaches. In

addition, employing the GAT was efficient as the number of parameters in the GAT

(∼10k) was similar to that of the GCN (∼10k), whereas the hierarchy-GCN, which

achieved the second-best performance, required more parameters (∼29k).

Ablation Studies on Implicit Relationship Extractor

The effectiveness of the CapsNet in the implicit relationship extractor of GACaps-

HTC is displayed in Table 3.6. The results recorded in the first row were obtained

by replacing the CapsNet with a fully-connected layer, abbreviated as FC in Table
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Graph Neural Network Micro-F1 Macro-F1

None 0.864 0.800
GCN[81] 0.868 0.812

Hierarchy-GCN[45] 0.873 0.820

GAT[92] 0.876 0.829

The best results are highlighted in bold.

Table 3.5: Ablation study results regarding graph neural networks on the WOS-46985
dataset.

3.6, which returned the classification probability of each label using every label-

specific representation from the hierarchy encoder. The F1 scores in the second row

were achieved by a neural network that employed a convolutional layer instead of the

CapsNet. Finally, the third row records the performance obtained by utilizing a fully-

connected layer for each label that returned a probability from the corresponding

label-specific representation. The results show that the proposed approach with the

CapsNet was able to achieve the best performance due to its ability to capture latent

relationships between labels via the dynamic routing algorithm.

Table 3.6: Ablation study results regarding capsule network on the WOS-46985
dataset.

Employed Subnetwork Micro-F1 Macro-F1

FC 0.869 0.814
Convolutional 0.869 0.827
FC per label 0.871 0.819

CapsNet 0.876 0.829

The best results are highlighted in bold.

To further illustrate how the GAT and the CapsNet of the proposed approach

enhanced the classification performance, additional ablation experiments were con-
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Table 3.7: Ablation study results regarding the graph attention network and capsule
network on the RCV1 dataset.

Approach Metric Level 1 Level 2 Level 3 Level 4 Overall

GACaps-HTC
Micro-F1 0.939 0.821 0.851 0.780 0.868

Macro-F1 0.929 0.708 0.657 0.780 0.698

Without GAT

Micro-F1
0.853 0.743 0.769 0.779 0.788

(-9.240%) (-9.492%) (-9.624%) (-0.146%) (-9.192%)

Macro-F1
0.829 0.620 0.563 0.779 0.606

(-10.737%)(-12.414%)(-14.356%)(-0.146%)(-13.222%)

Without CapsNet

Micro-F1
0.923 0.811 0.841 0.779 0.858

(-1.719%) (-1.133%) (-1.197%) (-0.146%) (-1.151%)

Macro-F1
0.911 0.687 0.648 0.779 0.680

(-1.956%) (-2.954%) (-1.393%) (-0.146%) (-2.579%)

ducted on the RCV1 dataset. In these experiments, F1 scores obtained from labels

in each hierarchy level were measured to compare the roles of the GAT and the

CapsNet, where a level of a label denotes the distance from the root to the label in

the label hierarchy. Results are presented in Table 3.7. The GACaps-HTC without

a GAT (second row of the Approach column) is a local approach that did not utilize

the label hierarchy while modeling implicit label relationships using a CapsNet. The

GACaps-HTC without a CapsNet (third row of the Approach column) exploited

the label hierarchy while ignoring implicit label relationships as the CapsNet of the

proposed approach was replaced with a fully-connected layer. Gains and losses in

F1 scores compared to GACaps-HTC are presented in parentheses.

While GACaps-HTC without either the GAT or the CapsNet achieved degraded

performance, removing the GAT led to steeper decreases in F1 scores, implying that
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explicit relationships between labels presented as a label hierarchy played a more

significant role in HTC than implicit label relationships. The difference between

the roles of the hierarchy encoder and the implicit relationship extractor can be

deduced from further level-wise analysis. Table 3.7 shows that information on the

label hierarchy extracted by the GAT provided more help in classifying labels further

from the root than in classifying those closer to the root. Note that only one label

was present in the fourth level; therefore, the results on the fourth level do not

provide much insight. On the other hand, no such level-wise tendencies could be

deduced from comparing GACaps-HTC and GACaps-HTC without a CapsNet, as

the CapsNet in the proposed approach models information on implicit relationships

between labels that may be unrelated to the label hierarchy.

Ablation Studies on Capsule Dropout

Finally, the effect of capsule dropout is shown in Figure 3.10 and Table 3.8. As de-

picted in Figure 3.10, higher dropout rates led to slower learning as more primary

capsules were dropped and less information was utilized in the dynamic routing algo-

rithm. However, the enhanced robustness from the capsule dropout led to improved

performance, as shown in Table 3.8. The results also show that high dropout rates

could cause suboptimal classification performance due to the CapsNet losing too

much information.
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Table 3.8: Results obtained with different capsule dropout rates on the WOS-46985
dataset.

Dropout Rate (ϕ) Micro-F1 Macro-F1

0 0.875 0.819
0.15 0.876 0.829
0.30 0.872 0.819

The best results are highlighted in bold.
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Figure 3.10: Validation F1 score plot obtained by training GACaps-HTC with dif-
ferent capsule dropout rates on the WOS-46985 dataset.

56



Chapter 4

Incorporating Label Semantics for Hierarchical
Text Classification

4.1 Problem Definition

As introduced in Section 2.4, label semantics have been shown to contain valuable

information for classification, and several approaches attempted to incorporate this

information in HTC[46, 49, 102, 114, 115]. Motivated by these approaches, the ap-

proach described in Chapter 3, GACaps-HTC, is introduced with label semantics

in this section. Like the previous chapter, this chapter tackles hierarchical text clas-

sification. Therefore, notations of an input text document D, the number of labels

L, and a corresponding set of ground-truth labels YD follow that of Section 3.1.

Notations of classification probabilities pDl corresponding to the l-th label and the

label hierarchy H also follow the notations from Section 3.1.

Representations of label semantics are extracted from textual descriptions of

labels. A textual description of a label may be a sentence or a paragraph summarizing

the meaning of the label or even a simple phrase like the label’s name. In the following

sections, ∆l denotes the textual description of the l-th label.
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4.2 Methods

A semantic-aware dynamic routing algorithm is proposed to incorporate label se-

mantics in the CapsNet of the implicit relationship extractor. The proposed algo-

rithm incorporates semantic information on labels into the model in the following

two ways: First, each activation vector propagated from a primary capsule to a digit

capsule is added with a vector obtained from semantic representations of labels cor-

responding to the capsules. This added vector is named semantic bias as it acts as a

bias term for the propagated activation vector. Second, an initial coupling coefficient

between two labels is set to the similarity of the labels’ semantic representations.

Since coupling coefficients represent the similarity between two capsules’ activation

vectors and semantics[63, 64], such an initialization can accelerate the training.

Other various attempts had been made to introduce semantic information in

the textual representation extractor, hierarchy encoder, or attention mechanism of

the implicit relationship extractor, only to result in suboptimal performance. De-

tails on these attempts and their performance are discussed in Subsection 4.3.2 and

Subsection 4.3.3, respectively.

4.2.1 Semantic Bias

The label semantics are injected into the dynamic routing algorithm of the implicit

relationship extractor’s CapsNet to allow the subnetwork to derive latent relation-

ships between labels from not only textual representations but also their semantics.

Before introducing label semantics into the CapsNet, a semantic representation of

each label needs to be extracted. Let sl ∈ RdLM denote the task-agnostic semantic

representation of the l-th label, obtained from encoding ∆l using a pretrained lan-
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guage model that generates vector representations of size dLM . A matrix of weight

parameters W Sem ∈ RdSem×dLM is defined to generate task-specific label semantic

representations. A task-specific semantic representation of the l-th label is denoted

as s′l ∈ RdSem , and is obtained as follows:

s′l = W Semsl. (4.1)

The dynamic routing algorithm described in Algorithm 1 obtains the activation

vector propagated from the l′-th primary capsule to the l-th digit capsule, denoted

as µD
ll′ , as follows:

µD
ll′ = WCaps,lu

D
l′ , (4.2)

from the activation vector of the l′-th primary capsule uD
l′ and a parameter matrix

corresponding to the l-th digit capsule WCaps,l. Aforementioned semantic represen-

tations are introduced in the dynamic routing algorithm as additive biases in these

propagated activation vectors. The semantic bias corresponding to the l′-th primary

capsule and the l-th digit capsule is denoted as ς ll′ , and is obtained as follows:

ς ll′ = WBiass
′
l + W ′

Biass
′
l′ + ReLU(W ′′

Bias|s′l − s′l′ |). (4.3)

WBias,W
′
Bias,W

′′
Bias ∈ RdCaps×dSem are the parameter matrices used for trans-

forming the semantic representations to a semantic bias. Note that the last term,

ReLU(W ′′
Bias|s′l− s′l′ |), incorporates the semantic relationship between two labels in

the semantic bias.

To effectively moderate the impact of injecting label semantics, a gating mechanism[143]

is utilized in the proposed semantic-aware dynamic routing. This mechanism dynam-

ically controls the flow of multiple channels of information to the resulting feature
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representation. The gating mechanism is most popularly adopted in RNNs to adap-

tively model the flow of the information propagated from the past to the current

state, resulting in gated recurrent neural networks[144], including LSTMs[133] and

GRUs[135].

In this work, a gating mechanism similar to that of Li et al.[145] is employed.

This mechanism obtains the valve of each element, which is the ratio of additional

information (label semantics) propagated to the original information (textual repre-

sentation), from both sources of information. Let WGate,l ∈ RdCaps×dHE denote the

matrix of parameters used to obtain the valve vector corresponding to the l-th digit

capsule. Also, W ′
Gate,W

′′
Gate ∈ RdCaps×dSem are the matrices of parameters used

for obtaining valve vectors from label semantic representations. The valve vector

corresponding to the l′-th primary capsule and the l-th digit capsule is denoted as

σD
ll′ and is obtained as follows:

σD
ll′ = Sigmoid

(
LayerNorm

(
WGate,lu

D
l′ + W ′

Gates
′
l + W ′′

Gates
′
l′
))

. (4.4)

Layer normalization[4], abbreviated as LayerNorm, computes the normalization statis-

tics of valve vectors and performs normalization to stable classification.

Equation 4.2 in the dynamic routing algorithm is replaced with the following

equation:

µD
ll′ = WCaps,lu

D
l′ + σD

ll′ς ll′ . (4.5)

This process of obtaining a semantic bias and a valve vector is depicted in Figure

4.1.
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4.2.2 Coupling Coefficient Initialization

According to Sabour et al.[63] and Zhao et al.[64], a coupling coefficient correspond-

ing to a pair of a primary capsule and a digit capsule is a measurement of agreement

(similarity) between their activation vectors. Given two semantically similar labels,

their corresponding capsules should capture similar characteristics, resulting in sim-

ilar activation vectors with a high degree of agreement. In order to leverage this

assumption, a label semantic-based coupling coefficient initialization method is pro-

posed.

While the dynamic routing algorithm described in Algorithm 1 and that pro-

posed by Sabour et al.[63] initialize every coupling coefficient to zero, the proposed

method initializes each coefficient to the similarity of the corresponding labels. In

this work, dot products of task-agnostic label semantic representations (sl) are used

for initializing coupling coefficients. A coupling coefficient cDll′ defined for the l-th

digit capsule and the l′-th primary capsule is initialized as follows:

cDll′ = (sl + bSem,l) · (sl′ + bSem,l′)/dLM . (4.6)

bSem,l ∈ RdLm is a vector of trainable parameters assigned to the semantic repre-

sentation of the l-th label. These vectors allow initial coefficients to be trainable via

backpropagation. Ramasinghe et al.[146] demonstrates that utilizing trainable ini-

tial coupling coefficients leads to faster routing convergence and better classification

performance due to the fact that the attributes captured by primary capsules and

those corresponding to digit capsules are dependent on each other[146, 147]. bSem,l

is initialized following LeCun initialization[148], which is known to help faster con-

vergence when trained by backpropagation. Note that the dot product is divided by
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dLM to scale down the influence of label semantics and prevent the dynamic routing

algorithm from converging solely dependent on the label semantics.

4.2.3 Semantic-Aware Dynamic Routing Algorithm

Introducing semantic biases and the proposed coupling coefficient initialization method

in a dynamic routing algorithm leads to the proposed semantic-aware dynamic rout-

ing algorithm described in Algorithm 2. While the proposed algorithm is similar to

the algorithm proposed by Zhao et al.[64], note that line 1 of Algorithm 1 is replaced

with Equation 4.6 in line 1 of Algorithm 2 for semantic-based coefficient initializa-

tion. The process of obtaining semantic biases and valve vectors is presented in lines

2 to 4 in Algorithm 2. Finally, line 7 of Algorithm 1, which calculated activation vec-

tors propagated from primary capsules to digit capsules, is replaced with Equation

4.5, as shown in line 10 of Algorithm 2.
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Algorithm 2: Semantic-Aware Dynamic Routing Algorithm

Inputs: activation vectors of primary capsules uD
l for 1 ≤ l ≤ L

task-agnostic label semantic representations sl for 1 ≤ l ≤ L
Output: activation vectors of digit capsules oD

l for 1 ≤ l ≤ L
1 cDll′ ← (sl + bSem,l) · (sl′ + bSem,l′)/

√
dLM ∀l, l′ ;

2 s′l ←W Semsl ∀l ;
3 ς ll′ ←WBiass

′
l + W ′

Biass
′
l′ + ReLU(W ′′

Bias|s′l − s′l′ |) ∀l, l′ ;
4 σD

ll′ ← Sigmoid
(
LayerNorm

(
WGate,lu

D
l′ + W ′

Gates
′
l + W ′′

Gates
′
l′
))
∀l, l′ ;

5 prev Score← −∞ ;
6 while True do
7 for l← 1 to L do
8 for l′ ← 1 to L do

9 c̃Dll′ ←
exp(cDll′)∑

1≤i≤L exp(cD
il′)

;

10 µD
ll′ ←WCaps,lu

D
l′ + σD

ll′ς ll′ ;
11 oD

l ←
∑

1≤l′≤L c̃Dll′µ
D
ll′ ;

12 dist
(
oD
l ,µ

D
ll′
)
←
∥∥∥∥ ∥µD

ll′∥
0.5+∥µD

ll′∥
2µ

D
ll′ −

∥oDl ∥
0.5+∥oDl ∥

2o
D
l

∥∥∥∥ ;

13 cDll′ ← cDll′ +
(
1− dist

(
oD
l ,µ

D
ll′
))

;

14 end

15 end

16 Score← log
(∑

1≤l,l′≤L cDll′
(
1− dist

(
oD
l ,µ

D
ll′
)))

;

17 if |Score− prev Score| ≤ ϵ then

18 oD
l ←

∥oDl ∥
0.5+∥oDl ∥

2o
D
l ∀l ;

19 return oD
l ∀l ;

20 end
21 prev Score← Score ;

22 end
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4.3 Experiments

4.3.1 Experiment Settings

For a fair comparison between the performance presented in Subsection 3.3.2 and the

performance of GACaps-HTC with semantic-aware dynamic routing algorithm, the

proposed approach was trained and evaluated using the WOS-46985 dataset and the

RCV1 dataset described in Subsection 3.3.1 Also, the micro-F1 score and macro-F1

score were used as evaluation metrics for the following experiments. Implementation

details of GACaps-HTC remained the same as described in Subsection 3.3.1.

When training the proposed approach using the WOS-46985 dataset, task-agnostic

label semantic representations (sl) were extracted using SciBERT. As label names

were fed as phrases, the approach was trained and evaluated using semantic repre-

sentations obtained from other language models that had been shown to be effec-

tive in generating phrase-level or document-level representations, but the approach

trained with representations from SciBERT achieved the best performance. These

language models included PhraseBERT[149], which is BERT specialized in gener-

ating phrase-level embeddings, SPECTER[150] (short for scientific paper embed-

dings using citation-informed Transformers) and ASPIRE[151] (short for aspectual

scientific paper relations), which generate document-level embeddings on scientific

documents.

As for the RCV1 dataset, label semantic representations were extracted us-

ing a pretrained BERT. This language model was compared with other language

models, including PhraseBERT, text-to-text transfer Transformer (T5)[152], and

MPNet[153] (short for masked and permuted pretraining network), which have
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shown state-of-the-art performance when employed for various downstream NLP

tasks. Task-specific label semantic representations of dSem = 200 and dSem = 250

were used for the WOS-46985 dataset and the RCV1 dataset, respectively.

4.3.2 Compared Approaches

In this subsection, several approaches that incorporate label semantics into various

subnetworks of GACaps-HTC are described. Note that semantic representations (s′l)

are obtained in the same way as described in Subsection 4.2.1. An overview of the

approaches compared with the proposed approach with a semantic-aware dynamic

routing algorithm is illustrated in Figure 4.2, where abbreviations in the figure are

described in this subsection. Note that the following approaches use the dynamic

routing algorithm proposed by Zhao et al.[64] described in Algorithm 1.

Introducing Label Semantics in Textual Representation Extractor

The first approach, abbreviated as in-TRE, modifies the textual representation ex-

tractor of GACaps-HTC and incorporates semantic information into the hierarchy-

aware textual representations (zD
l ). By doing so, semantic information on labels is

expected to help the model understand the label hierarchy in the hierarchy encoder.

Furthermore, as the semantic information is embedded in the hierarchy encoder’s

input, it is propagated by the GAT and is also embedded in the output of the hi-

erarchy encoder. Therefore, the semantic information may also be able to aid the

model in capturing latent relationships between labels.

In this approach, the semantic representations are used as an additive bias in

the textual representation extractor. Equation 3.3 is modified as follows:

zD
l = WAffMaxPool

((
Conv

(
XD

)
[:,(l−1)dHE :ldHE ]

)
+ s′l

)
. (4.7)

66



L
an

g
u
ag

e

M
o

d
el

D
o
cu

m
en

t

C
o
n
v

M
ax

P
o
o
l

&
 S

p
li

t

L
ab

el
-S

p
ec

if
ic

T
ex

tu
al

R
ep

re
se

n
ta

ti
o
n
s

H
ie

ra
rc

h
y
 E

n
co

d
er

A
tt

en
ti

o
n

&
 P

ru
n

in
g ...

P
ri

m
ar

y

C
ap

su
le

s

D
y
n
am

ic

R
o

u
ti

n
g

N
o
rm

C
al

cu
la

ti
o

n

...

D
ig

it

C
ap

su
le

s

C
la

ss
if

ic
at

io
n

P
ro

b
ab

il
it

ie
s

...

H
ie

ra
rc

h
y
-A

w
ar

e

L
ab

el
-S

p
ec

if
ic

T
ex

tu
al

R
ep

re
se

n
ta

ti
o
n
s

T
ex

tu
al

 R
ep

re
se

n
ta

ti
o

n
 E

x
tr

ac
to

r
Im

p
li

ci
t 

R
el

at
io

n
sh

ip
 E

x
tr

ac
to

r

G
ra

p
h
 A

tt
en

ti
o
n
 N

et
w

o
rk

In
-T

R
E

P
re

-H
E

In
-H

E
P

o
st

-H
E

In
-A

tt
n

S
em

an
ti

c-
A

w
ar

e

D
y
n
am

ic
 R

o
u

ti
n
g

F
ig

u
re

4
.2

:
O

ve
rv

ie
w

of
th

e
co

m
p

ar
ed

ap
p

ro
a
ch

es
th

at
in

co
rp

or
at

e
la

b
el

se
m

an
ti

cs
in

to
a

gr
ap

h
at

te
n
ti

on
ca

p
su

le
n

et
w

o
rk

fo
r

h
ie

ra
rc

h
ic

a
l

te
x
t

cl
a
ss

ifi
ca

ti
on

.

67



In this approach, dSem = dHE to match the sizes of added vectors.

Introducing Label Semantics before Hierarchy Encoder

The second approach, abbreviated as pre-HE, is similar to the in-TRE approach

as they both merge semantic information with textual representations before the

representations are passed to the hierarchy encoder. The difference between the

first and the second approach is that while the first approach utilized semantic

representations as additive biases, the second approach concatenates the semantic

representations with the textual representations. Therefore, compared to the in-TRE

approach, the pre-HE approach utilizes merged representations of a document and

label semantics that are disentangled. In this approach, Equation 3.3 is replaced

with the following equation:

zD
l = WAffConcat

(
MaxPool

(
Conv

(
XD

)
[:,(l−1)dHE :ldHE ]

)
, s′l

)
. (4.8)

In this approach, the size of the weight parameters’ matrix, WAff , is changed from

dHE × dHE to dHE × (dHE + dSem).

Introducing Label Semantics in Hierarchy Encoder

This approach, abbreviated as in-HE, injects label semantic information directly into

the hierarchy encoder’s weight calculation process described in Equation 3.4. There-

fore, the hierarchy encoder can infer the importance of different neighboring labels

when generating a hierarchy-aware label representation based on their semantic re-

lationships (similarities). However, as the propagated representations themselves do

not contain information on label semantics, this information is not provided to the

implicit relationship extractor to help understand how labels are implicitly corre-
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lated.

Equation 3.4 is replaced with the following equation:

wD
ll′ = LeakyReLU

(
WHEConcat

(
zD
l , z

D
l′ , s

′
l, s

′
l′
))

. (4.9)

The weight parameter matrix WHE ∈ R1×2(dHE+dSem) is used in this approach.

Note that only the weight calculation of the hierarchy encoder is changed while the

same weight normalization and propagation processes are used as shown in Equation

3.6 and Equation 3.7, respectively.

Introducing Label Semantics after Hierarchy Encoder

The fourth approach is abbreviated as post-HE, and it feeds semantic representa-

tions after hierarchy-aware label-specific representations are generated. Therefore

the attention mechanism and the CapsNet in the implicit relationship extractor can

take label semantics into account for inferring the relevance of different elements

in the representations and capturing latent relationships. Similar to the first ap-

proach (in-TRE), semantic representations play the role of additive bias terms in

this approach.

Equation 3.7 is modified as follows in the post-HE approach:

vD
l = ReLU

( ∑
1≤l′≤L

w̃D
ll′z

D
l′ + s′l

)
. (4.10)

dSem is equal to dHE to match the sizes of added vectors.

Introducing Label Semantics in Attention Mechanism

For this approach, which is abbreviated as in-Attn, attention weights of primary

capsules in the implicit relationship extractor are obtained not only from textual
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representations but also from label semantic representations. Therefore, the label

relationship extractor can infer the importance of each primary capsule using the

correlations between the textual and label semantic representations. However, sim-

ilar to the third approach, the in-HE approach, the output representations of the

attention mechanism do not contain information on label semantics. Therefore, the

CapsNet of the implicit relationship extractor cannot make use of the semantic in-

formation to infer latent relationships via a dynamic routing algorithm.

Equation 3.8 is replaced with the following equation:

aD =tanh
(
W 2

AttnReLU
(
W 1

AttnConcat
(
vD
1 , . . . ,v

D
L , s

′
1, . . . , s

′
L

)
+ b1Attn

)
+ b2Attn

)
.

(4.11)

While the shapes of W 2
Attn, b1Attn, and b2Attn remain the same as Equation 3.8,

W 2
Attn ∈ RL×L(dHE+dSem) is used in this approach.

4.3.3 Results

Performance on the WOS-46985 Dataset

Approach Micro-F1 Macro-F1

GACaps-HTC 0.876 0.829

GACaps-HTC + in-TRE semantics 0.874 0.823
GACaps-HTC + pre-HE semantics 0.869 0.807
GACaps-HTC + in-HE semantics 0.873 0.816
GACaps-HTC + post-HE semantics 0.876 0.821
GACaps-HTC + in-Attn semantics 0.864 0.806

GACaps-HTC + semantic-aware dynamic routing 0.878 0.831

The best results are highlighted in bold.

Table 4.1: Experiment results on the WOS-46985 dataset.

The experimental results on the WOS-46985 dataset are listed in Table 4.1.
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The results demonstrate that the performance of GACaps-HTC was enhanced by

augmenting the semantic information of labels. Also, they show that the proposed

method, semantic-aware dynamic routing, was the most effective method to inject

the semantic information into the classifier.

Note that the in-TRE approach fed textual representations embedded with la-

bel semantic information into the hierarchy encoder, and therefore the semantic

information took part in inferring attention weights in the hierarchy encoder. Thus,

Table 4.1 shows that the approaches that made use of the semantic information

when inferring the relative importance of neighboring labels (in-TRE, pre-HE, and

in-HE) achieved lower F1 scores than GACaps-HTC without semantics. The same

can be said for the approaches that used semantic information when obtaining atten-

tion weights in the implicit relationship extractor. These observations are believed

to be due to the classifier overfitting to display static attention (where the model

learns to highlight features independent to the input text[154]) conditioned on label

occurrence statistics and semantics only.

While the performance enhanced by employing semantic-aware dynamic routing

may seem subtle, the proposed dynamic routing algorithm accelerated the classifier’s

training, as shown in Figure 4.3. Both the validation loss plot (Figure 4.3 (a)) and

the validation F1 score plot (Figure 4.3 (b) show that employing semantic-aware

dynamic routing led to faster convergence. Training time until convergence was

reduced by approximately 30% when trained under the same environment (single

GTX 1080 Ti).
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(b) F1 score curve

Figure 4.3: Validation loss and F1 score plots obtained by training GACaps-HTC
on the WOS-46985 dataset with and without augmenting label semantics.

72



Approach Micro-F1 Macro-F1

GACaps-HTC 0.868 0.698

GACaps-HTC + in-TRE semantics 0.870 0.695
GACaps-HTC + pre-HE semantics 0.871 0.694
GACaps-HTC + in-HE semantics 0.863 0.693
GACaps-HTC + post-HE semantics 0.867 0.694
GACaps-HTC + in-Attn semantics 0.864 0.694

GACaps-HTC + semantic-aware dynamic routing 0.872 0.694

The best results are highlighted in bold.

Table 4.2: Experiment results on the RCV1 dataset.

Performance on the RCV1 Dataset

The experimental results on the RCV1 dataset are shown in Table 4.2. Employ-

ing semantic-aware dynamic routing led to a slightly improved micro-F1 score and

decreased macro-F1 score. Also, while injecting the semantic information of labels

in the textual representation extractor, hierarchy encoder, or the attention mech-

anism led to degraded performance for the experiments performed on the WOS-

46985 dataset, in-TRE and pre-HE approaches were able to achieve a similar level

of performance compared to the approach with the semantic-aware dynamic routing

algorithm.

The effectiveness of the proposed dynamic routing algorithm in enabling the

model to achieve faster convergence is depicted in Figure 4.4. The validation loss

plot in Figure 4.4 (a) and the micro-F1 plot in Figure 4.4 (b) show that employing

semantic-aware dynamic routing led to faster convergence. Furthermore, the classi-

fier with the semantic-aware dynamic routing algorithm took approximately 63%,

52%, and 70% less time to converge compared to GACaps-HTC without label se-

mantics, in-TRE approach, and the pre-HE approaches, which are the approaches
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Figure 4.4: Validation loss and F1 score plots obtained by training GACaps-HTC
on the RCV1 dataset with and without augmenting label semantics.
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Figure 4.5: Visualization of normalized coupling coefficients in the capsule network
on the RCV1 dataset when trained using semantic-aware dynamic routing algorithm.
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that achieved a similar level of performance, respectively.

Latent relationships between the RCV1 dataset’s labels captured by the Cap-

sNet are illustrated in Figure 4.5 as heatmaps. Like Figure 3.9, only the labels

on the second level of the hierarchy are depicted. Similar to GACaps-HTC using

the dynamic routing algorithm by Zhao et al.[64], the dynamic routing algorithm

identified important relationships as the number of iterations grew. Several new in-

tuitive relationships could be derived when adopting the semantic-aware dynamic

routing algorithm. For example, the corporate strategy/plans label, corporate per-

formance label, and corporate management label had strong connections with the

monetary/economic label. Also, the monetary/economic label, science/technology

label, and corporate-related markets/marketing label had high correlations with the

corporate performance label.

4.3.4 Ablation Studies

The following ablation studies were performed on the WOS-46985 dataset.

Ablation Studies on Semantic Bias and Gating Mechanism

The effectiveness of semantic bias and the gating mechanism used to inject seman-

tic information into the primary capsules of the implicit relationship extractor’s

CapsNet is presented in Table 4.3. Simply adding semantic bias with textual repre-

sentation led to decreased performance due to label semantics overwhelming textual

information, leading to the model overfitting to classify a document using semantics

rather than from the document’s contents. This overfitting issue was elevated via the

gating mechanism as the model can learn the relative importance of the semantic
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information compared to the textual information.

Semantic Bias Gating Mechanism Micro-F1 Macro-F1

- - 0.875 0.826
✓ - 0.873 0.823

✓ ✓ 0.878 0.831

The best results are highlighted in bold.

Table 4.3: Ablation study results regarding semantic bias and gating mechanism on
the WOS-46985 dataset.

Figure 4.6 depicts the validation loss and F1 score plots illustrated to deter-

mine whether the semantic bias or the gating mechanism accelerated the classifier’s

convergence. Red, blue and green lines, each denoted as “Without semantic bias,”

“Without gating mechanism,” and “With gating mechanism,” corresponds to the

first, second, and third row in Table 4.3, respectively. Figure 4.6 shows that while

employing the semantic bias helped the model to converge faster, the gating mech-

anism did not affect how fast GACaps-HTC converged.

Ablation Studies on Coupling Coefficient Initialization

The F1 scores recorded by training GACaps-HTC using different coupling coefficient

initialization methods are shown in Table 4.4. The first column represents whether

an initial coupling coefficient between two labels was initialized from their semantic

similarity or from zero. The second column denotes whether the initial coupling

coefficients were trainable or not. Using semantic-based initialization had shown to

lead to improved F1 scores while making the coefficients trainable was effective only

when the coefficients were initialized from semantic similarities.

Figure 4.7 illustrates the validation loss and F1 score plots for analyzing whether

77



Semantic-Based Initialization Trainable Coefficients Micro-F1 Macro-F1

- - 0.874 0.824
✓ - 0.875 0.827
- ✓ 0.873 0.822

✓ ✓ 0.878 0.831

The best results are highlighted in bold.

Table 4.4: Ablation study results regarding coupling coefficient initialization and
training on the WOS-46985 dataset.

the coupling coefficient initialization strategies affected how fast GACaps-HTC con-

verges. Semantic-based coupling coefficient initialization and coupling coefficient op-

timization had both shown to lead to similar curves and, therefore, a similar level

of convergence speed.
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(b) F1 Score

Figure 4.6: Validation loss and F1 score plots obtained by training GACaps-HTC
on the WOS-46985 dataset for ablation studies regarding semantic bias and gating
mechanism.
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Figure 4.7: Validation loss and F1 score plots obtained by training GACaps-HTC
on the WOS-46985 dataset for ablation studies regarding coupling coefficient initial-
ization and training.
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Chapter 5

Aspect Category Sentiment Analysis Using Graph
Attention Capsule Network

5.1 Problem Definition

The goal of aspect category sentiment analysis is to identify a set of predefined

entities that appear in a given text document and classify a sentiment polarity

(positive, neutral, and negative) for each entity. Let D denote the text document

as defined in Sections 3.1 and 4.1, and E denote the predefined set of entities, also

known as aspect categories. The ground-truth set of aspect category-sentiment pairs

is denoted as SD and represented as follows:

SD ⊂ {(e, χ) |e ∈ E and χ ∈ {positive,neutral, negative}} . (5.1)

An aspect category sentiment analysis model learns a mapping from D to SD and

outputs a classification probability for each pair of an aspect category and a senti-

ment polarity.
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5.2 Methods

In this chapter, GACaps-HTC is applied and evaluated on aspect category sen-

timent analysis to investigate other practical use cases of the proposed method.

This section describes how an aspect category sentiment analysis problem can be

transformed into an HTC problem to employ GACaps-HTC. While previous as-

pect category sentiment analysis methods, including Cartesian product methods

and add-one-dimension methods, ignore the hierarchical property of the task, this

thesis takes a hierarchical classification approach similar to Cai et al.[120]. How-

ever, while Cai et al.[120] makes use of a hierarchy with only two levels (each level

consisting of aspect category labels and sentiment polarity labels), this thesis ac-

knowledges the fact that aspect categories can form a hierarchical structure of their

own. For example, in the SemEval2015 and SemEval2016 datasets, each aspect cat-

egory label consists of an entity type label and an entity attribute label. As an

entity attribute label corresponding to a text document depends on the entity type,

there is a two-level hierarchical structure of labels. The following example from the

Laptop2015 dataset of the SemEval2015 datasets stated on the official website of

the SemEval2015 datasets[155] clearly demonstrates this hierarchical property: “It

is extremely portable and easily connects to WIFI at the library and elsewhere.”

While the entire sentence is about a laptop (entity type label), it mentions both

its portability and connectivity (entity attribute labels). Therefore, resulting aspect

category labels are tuples of entity type labels and entity attribute labels as follows:

(laptop, portability) and (laptop, connectivity).

Based on the aforementioned observation, a hierarchical structure of at least two

levels is constructed from each aspect category sentiment analysis dataset. Topics, or
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(a) Hierarchy with two levels (aspect category level and sentiment level)

Root

Battery#Quality

Laptop#Price#Pos Battery#Quality#Pos

…

Laptop#Price

Laptop#Price#Neu Laptop#Price#Neg Battery#Quality#Neu Battery#Quality#Neg

BatteryLaptop Display Memory

Laptop#Performance Battery#Portability…

…

(b) Hierarchy with three levels (entity type level, aspect category level, and sentiment level)

Figure 5.1: Hierarchical structure of labels derived from the Laptop2015 dataset[6].

aspect categories, of a given text document are inferred from an HTC model’s classi-

fication results corresponding to intermediate nodes in the hierarchy. The sentiment

polarity corresponding to the inferred aspect category is deduced from the HTC

model’s classification results on the leaf nodes connected to the intermediate nodes.

Figure 5.1 illustrates example hierarchical structures of labels formulated from the

Laptop2015 dataset, where Pos, Neu, and Neg are abbreviations for positive, neu-

tral, and negative sentiments, repectively. Figure 5.1 (a) is the hierarchy with two

levels comprising of aspect category labels and sentiment labels, respectively, simi-

lar to Cai et al.[120]. Figure 5.1 (b) is the hierarchy where a hierarchical structure

can be deduced from aspect categories only, leading to the resulting label hierarchy

having more than two levels. While the hierarchy illustrated in Figure 5.1 (b) has
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more labels to classify using a HTC model compared to that in Figure 5.1 (a), it

can explicitly express relationships between aspect categories.

The label set of an HTC problem corresponding to an aspect category sentiment

analysis problem comprises entity type labels, aspect category labels represented

as pairs of an entity type label and an entity attribute label (which correspond

to aspect categories), and sentiment polarities corresponding to aspect categories.

Therefore, adding the number of entity type labels, the number of aspect category

labels (|E|), and the number of sentiment polarity labels (3|E|) results in the number

of labels (L). The label hierarchy H is derived as the union of two hierarchies: the

hierarchy of entity type labels and aspect category labels and the hierarchy of aspect

category labels and sentiment polarity labels. As defined in Sections 3.1 and 4.1, the

hierarchy is represented as a set comprising tuples of parent and child labels. Inferred

set of leaf labels obtained from an HTC model’s output classification probabilities

is the inferred set of aspect category-sentiment pairs and is compared with SD for

evaluating the sentiment analysis performance.
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5.3 Experiments

5.3.1 Experiment Settings

Datasets

The effectiveness of GACaps-HTC in aspect category sentiment analysis was evalu-

ated on two datasets included in the SemEval2015 datasets and two datasets included

in the SemEval2016 datasets. Note that versions and (training and testing) splits of

the following datasets followed those of Cai et al.[120], published in their official im-

plementation repository1. The first benchmark dataset was the Laptop2015 dataset

from the SemEval2015 datasets, consisting of 2,041 reviews on laptops. There were

22 entity type labels, including display, motherboard, memory, and battery, and nine

possible entity attribute labels for each entity type label, including general, price,

and quality. 80 distinct aspect categories (combinations of entity type labels and

entity attribute labels) existed in the dataset, resulting in 102 intermediate nodes in

the label hierarchy and 240 leaf nodes indicating sentiment polarities corresponding

to the aspect categories. 1,397 examples in the dataset were used for training while

644 examples were used for testing.

The second dataset, also a part of the SemEval2015 datasets, was the Restau-

rant2015 dataset comprising 1,674 restaurant review documents. There were six

entity type labels (ambiance, drinks, food, location, restaurant, and service) and

five possible entity attribute labels (general, price, quality, style, and miscellaneous)

for each entity type label, resulting in 13 aspect categories, 19 labels corresponding

to intermediate nodes of the label hierarchy, and 39 leaf nodes corresponding to sen-

timent polarities. The Restaurant2015 dataset was split into a training set of 1,102

1https://github.com/NUSTM/ACSA-HGCN
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examples and a testing set of 572 examples.

The third dataset was the Laptop2016 dataset, included in the SemEval2016

datasets, which has the same set of entity type labels, entity attribute labels, and

sentiment polarity labels as the Laptop2015 dataset. 2,609 reviews on laptops were

in the dataset, where 2,037 examples were used for training and 572 examples were

used for testing. Finally, the last dataset was the Restaurant2016 dataset in the

SemEval2016 datasets that shares the same entity type labels, entity attribute la-

bels, and sentiment polarity labels as the Restaurant2015 dataset. It was comprised

of 2,260 examples, which were split into 1,680 training examples and 580 testing

examples.

Metrics

The performance on aspect category sentiment analysis was measured and com-

pared using micro-F1 scores (described in Subsection 3.3.1) following Cai et al.[120].

Note that while F1 scores obtained to evaluate HTC performance in Chapter 3 and

Chapter 4 involved every label in the hierarchy, aspect category sentiment analysis

performance was compared using F1 scores from only the leaf labels as they cor-

respond to tuples of aspect categories and sentiment polarities. However, micro-F1

scores obtained from every label in the hierarchy were used for model selection, as

doing so led to better test performance. Micro-precision and micro-recall used to

calculate F1 scores are presented in the following subsection for more insights into

the experiment results.
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Baselines

The GACaps-HTC was compared with the following baseline aspect category senti-

ment analysis approaches. The first approach was a pipeline approach that utilizes

two BERT models for aspect category detection and sentiment polarity classifica-

tion. While this approach separates the task into two easier tasks, it fails to exploit

the relationships between two partial tasks. Furthermore, it could not capture con-

flicting sentiments towards different aspect categories that lie in a single document.

The second approach was a Cartesian product approach that performs a binary

classification for each tuple of an aspect category (represented as a tuple of an en-

tity type and an entity attribute) and a sentiment polarity. This approach also used

BERT as a document encoder and obtained classification probabilities from docu-

ment representations from BERT. The third approach was an add-one-dimension

approach using BERT as a document encoder that jointly infers whether an aspect

category appears in a document and its corresponding sentiment polarity.

The fourth and the last baseline approaches were hierarchical classification ap-

proaches. The fourth approach was a hierarchical Transformer approach which used

the attention mechanism in a Transformer to model the relationships between as-

pect categories and the relationships between an aspect category and a sentiment

polarity. Finally, the last baseline approach was a hierarchical GCN[120] approach

that made use of two GCNs, each to capture the correlations between a pair of as-

pect categories and to model the relationships between a pair of an aspect category

and its corresponding sentiment polarities. Figure 5.2 depicts the architectures of

the baseline approaches, where highlighted labels denote inferred labels. Note that

plain classifiers in Figure 5.2 are single-label classifiers that return the label with
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the highest classification probability, and binary classifiers are multi-label classifiers

that return a set of labels with classification probabilities higher than a predefined

threshold.
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Figure 5.2: Illustrations of baseline approaches for aspect category sentiment analy-
sis.
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Implementation Details

For all four datasets, BERT was employed as the language model in the textual

representation extractor. While dropout with a drop probability of 0.5 was applied

to textual representations in experiments described in Chapter 3 and Chapter 4, the

drop probability was set to 0.05 (the Laptop2015, Restaurant2015, and Laptop2016

datasets) or 0.1 (the Restaurant2016 dataset) for aspect category sentiment analysis

as documents were relatively shorter and salient words indicating aspect categories

or sentiment polarities seldom appear repeatedly.

Textual representations with dLM = 768 were obtained from BERT, and rep-

resentations of dConv = L × 100, dHE = 100, and dCaps = 32 were extracted by

GACaps-HTC as described in Subsection 3.3.1. The number of labels L was 342

for the Laptop2015 and Laptop2016 datasets and 58 for the Restaurant2015 and

Restaurant2016 datasets. The capsule pruning ratio ρ, capsule dropout rate ϕ, con-

tradiction penalty hyperparameter δ, dynamic routing convergence threshold ϵ, and

focal loss hyperparameter γ were set to the same values as described in Subsection

3.3.1. The weight of the contradiction penalty term was set to λ = 0.001.

The GACaps-HTC was trained using mini-batches of size 16. For the first two

epochs, a learning rate of 0.0001 was used, BERT was frozen (not updated by gradi-

ent descent), and after those two epochs, an initial learning rate of 0.00005 was used

to train the entire model, including the BERT. An Adam optimizer was used for the

Laptop2015, Restaurant2015, and Laptop2016 datasets, while an Adam optimizer

with decoupled weight decay regularization[156], otherwise known as an AdamW

optimizer, was used for the Restaurant2016 dataset. As described in Subsection

3.3.1, the learning rate was decayed by a factor of 0.1 when five consecutive epochs
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recorded suboptimal validation micro-F1 scores obtained for the entire label hierar-

chy until the number of consecutive epochs with suboptimal scores reached 20, and

training was stopped.

5.3.2 Results

Approach Laptop2015 Restaurant2015 Laptop2016 Restaurant2016

Pipeline 0.430 0.494 0.394 0.562
Cartesian product 0.328 0.584 0.395 0.689
Add-one-dimension 0.489 0.617 0.472 0.698
Hierarchical Transformer 0.578 0.647 0.527 0.735
Hierarchical GCN 0.621 0.642 0.542 0.746

GACaps-HTC (2 levels) 0.574 0.629 0.549 0.723
GACaps-HTC (3 levels) 0.611 0.657 0.548 0.727

The best results are highlighted in bold.

Table 5.1: Overview of the experiment results on aspect category sentiment analysis.

In this subsection, experiment results regarding the pipeline, Cartesian product,

add-one-dimension, hierarchical Transformer, and hierarchical GCN approaches are

results reported by Cai et al.[120]. The overview of the aspect category sentiment

analysis experiment results is shown in Table 5.1. Each version of GACaps-HTC

was trained and tested three times on each dataset, and the average F1 scores

are presented. Utilizing the aspect category hierarchy (annotated as 3 levels in the

sixth row) had shown to lead to enhanced performance, except for the case of the

Laptop2016 dataset that showed an insignificant difference, as, while it increased

the number of labels, it enabled the hierarchy encoder to capture the relationships

between aspect categories. For further analysis, micro-precision, micro-recall, and

micro-F1 scores obtained from a single run are presented below.
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Performance on the Laptop2015 Dataset

Approach Micro-Precision Micro-Recall Micro-F1

Pipeline 0.369 0.516 0.430
Cartesian product 0.731 0.212 0.328
Add-one-dimension 0.642 0.396 0.489
Hierarchical Transformer 0.656 0.520 0.578
Hierarchical GCN 0.719 0.547 0.621

GACaps-HTC 0.693 0.571 0.626

The best results are highlighted in bold.

Table 5.2: Experiment results on the Laptop2015 dataset.

Experiment results obtained from the Laptop2015 dataset are shown in Table

5.2. The GACaps-HTC had could outperform baseline approaches in micro-F1 scores

in this single run while the average micro-F1 score of GACaps-HTC in Table 5.1 was

lower than that of hierarchical GCN. The results indicate that while the proposed

approach yielded volatile performance, the proposed approach can be adopted for

aspect category sentiment analysis with a simple coarse hyperparameter search.

While the proposed approach recorded the highest micro-recall compared to other

baselines, it ranked third in micro-precision. Such results indicate that GACaps-

HTC was able to discover sentiments that other baseline approaches could not find,

thanks to its explicit parent-child relationship modeling and implicit relationship

extraction.

Performance on the Restaurant2015 Dataset

Experiment results from the Restaurant2015 dataset are listed in Table 5.3. The

proposed approach had shown to outperform baseline approaches in micro-F1 scores,

which showed that GACaps-HTC was able to perform well for both semantic analysis
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Approach Micro-Precision Micro-Recall Micro-F1

Pipeline 0.381 0.700 0.494
Cartesian product 0.720 0.492 0.584
Add-one-dimension 0.688 0.559 0.617
Hierarchical Transformer 0.702 0.600 0.647
Hierarchical GCN 0.719 0.580 0.642

GACaps-HTC 0.677 0.639 0.657

The best results are highlighted in bold.

Table 5.3: Experiment results on the Restaurant2015 dataset.

(HTC and aspect category detection) and sentiment analysis (sentiment polarity

classification) on documents.

Performance on the Laptop2016 Dataset

Approach Micro-Precision Micro-Recall Micro-F1

Pipeline 0.319 0.516 0.394
Cartesian product 0.650 0.274 0.395
Add-one-dimension 0.588 0.395 0.472
Hierarchical Transformer 0.581 0.483 0.527
Hierarchical GCN 0.614 0.484 0.542

GACaps-HTC 0.545 0.547 0.546

The best results are highlighted in bold.

Table 5.4: Experiment results on the Laptop2016 dataset.

Table 5.4 shows the experiment results acquired from training and evaluating

sentiment analysis approaches using the Laptop2016 dataset. While the hyperpa-

rameters for the Restaurant2015 dataset and the Laptop2016 dataset were set to

the same values as those obtained from a coarse hyperparameter search using the

Laptop2015 dataset, GACaps-HTC still outperformed baseline approaches in micro-
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F1 scores. This lack of need for a fine-grained (or even any) hyperparameter search

shows the practical usability of the proposed approach, as training and evaluating a

model repeatedly for a fine-grained hyperparameter search can be costly.

While the proposed approach also recorded the highest micro-recall compared

to other baselines similar to the results described in Table 5.2, it ranked fifth in

micro-precision. It can be deduced that GACaps-HTC’s explicit and implicit label

relationship modeling contributed towards discovering sentiments that are relatively

harder to find rather than removing sentiments that were incorrectly inferred.

Performance on the Restaurant2016 Dataset

Approach Micro-Precision Micro-Recall Micro-F1

Pipeline 0.436 0.791 0.562
Cartesian product 0.750 0.638 0.689
Add-one-dimension 0.718 0.680 0.698
Hierarchical Transformer 0.737 0.732 0.735
Hierarchical GCN 0.764 0.728 0.746

GACaps-HTC 0.738 0.735 0.736

The best results are highlighted in bold.

Table 5.5: Experiment results on the Restaurant2016 dataset.

Experiment results on the Restaurant2016 dataset are shown in Table 5.5. Re-

sults obtained from the pipeline approach and the Cartesian product approach shown

in Tables 5.2, 5.3, 5.4, and 5.5 clearly indicate the tradeoff between precision and

recall as the pipeline approach recorded high micro-recall while achieving low micro-

precision and the Cartesian product approach obtained high micro-precision with

low micro-recall. However, the proposed approach always recorded relatively high

(or even the highest) precision and recall, indicating that GACaps-HTC’s high recall
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or precision is not an outcome of a tradeoff but a sign of a well-performing sentiment

analysis model.

While GACaps-HTC outperformed the baselines on other sentiment analysis

datasets, it recorded the second-best F1 score on the Restaurant2016 dataset. This

performance was obtained from a separate hyperparameter search, unlike the results

shown in Tables 5.2, 5.3, and 5.4, as using the same set of hyperparameters led to

a lower F1 score (0.702). Such results show that there is room for improvement in

GACaps-HTC when it comes to aspect category sentiment analysis.
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Chapter 6

Conclusions

6.1 Summary and Contributions

This thesis proposes a deep learning-based HTC approach by acknowledging the

importance of not only explicit parent-child relationships between labels but also

implicit label relationships that may appear for any pair of labels. The proposed ap-

proach, GACaps-HTC, comprises three parts: a textual representation extractor, a

hierarchy encoder, and an implicit relationship extractor. The textual representation

extractor uses a pretrained language model to generate a rich textual representa-

tion for a given text document. The hierarchy encoder models label relationships

expressed by the label hierarchy using a GAT, and the implicit relationship ex-

tractor uses a CapsNet to model the label relationships that are not fully captured

by the hierarchy. The model was trained and evaluated using widely used bench-

mark HTC datasets. After training GACaps-HTC, various post-processing methods

were applied and compared to select the best method for each dataset. The results

demonstrated that the proposed approach outperformed the compared baselines.

This thesis also proposes a dynamic routing algorithm that injects the informa-

tion on what each label means and how semantically close each pair of labels are

into a CapsNet. The proposed semantic-aware dynamic routing algorithm initial-
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izes the coupling coefficient corresponding to a pair of labels from the similarity of

the labels’ semantic representations. Furthermore, the algorithm defines an additive

bias term from labels’ semantic representations and uses a semantic-based gating

mechanism that can control how much a label’s semantic information affects the

dynamic routing algorithm. GACaps-HTC using semantic-aware dynamic routing

algorithm was compared with GACaps-HTC using conventional dynamic routing

algorithm and other variants of GACaps-HTC that inject the semantic information

into various parts of the model. The results showed that GACaps-HTC with the

proposed algorithm outperformed the variants of GACaps-HTC and that adopting

the algorithm led to much faster convergence.

Finally, this thesis investigates whether GACaps-HTC can be adopted for other

use cases. Aspect category sentiment analysis problems are transformed into HTC

problems, and GACaps-HTC is employed for these problems. Experiments were

conducted on widely used benchmark sentiment analysis datasets, and the results

demonstrate that GACaps-HTC showed competitive performance compared to the

baseline approaches proposed specifically for aspect category sentiment analysis or

outperformed them.
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6.2 Limitations and Future Research

Modifying the proposed approach to extract representations of hyperbolic space is

the future work of this thesis. Neural networks that use hyperbolic representations,

or hyperbolic neural networks[58, 157], have been shown to be effective in gener-

ating representations that fully capture hierarchical structures. There are several

ways GACaps-HTC can exploit a hyperbolic space, such as employing a hyperbolic

language model[158], a hyperbolic GNN[159, 160], or a hyperbolic CapsNet[161].

Employing a hyperbolic space in the aforementioned fashion may lead to enhanced

hierarchy-related expressive power and better HTC performance.

While this study investigates the effectiveness of the proposed approach using

various post-processing methods, it does not cover how to preprocess input text

documents. However, multiple fragments in a document may not be required to

infer the labels corresponding to the document, and removing such fragments can

lead to faster training and inference. Furthermore, a document may have slang terms

and typos that can harm the classification results[162, 163]. Therefore, employing

and comparing various text preprocessing methods and developing preprocessing

methods specified for HTC is the future work of this thesis.

Finally, while this thesis aims to boost the HTC performance using a newly pro-

posed approach and a new dynamic routing algorithm, it does not employ one of the

most widely adopted methods to enhance classification performance, data augmen-

tation. There are various task-agnostic textual data augmentation methods, includ-

ing synonym replacement[164], data noising[165], and easy data augmentation[166].

Furthermore, there are auto-augmentation methods[167] that search for task-specific

and model-specific optimal augmentation policies. As such augmentation methods
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have shown to generally enhance a model’s text classification performance, they can

enable GACaps-HTC to achieve higher HTC performance and better noise robust-

ness by providing the model with diverse input data. Demonstrating the enhanced

performance obtained using these augmentation methods and acquiring the optimal

augmentation policy via auto-augmentation will be the future development of this

work.
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국문초록

계층적 문서 분류는 다양한 분야의 실제 산업의 자연어 처리 관련 과업에 적용될 수

있어 큰 관심을 받고 있는 과업이다. 딥러닝의 발전과 함께 자연어 처리 분야에서도

딥러닝 기반 기법들이 좋은 성능을 기록하고 있으며, 계층적 문서 분류 역시 딥러닝

기반 기법이 기존 기법 대비 최고 성능을 거두고 있다. 그러나 기존 연구는 라벨의 계

층 구조에 대한 분석을 효과적으로 수행하거나 계층 구조로는 표현되지 않는 라벨 간

관계의 도출에 집중할 뿐 이 두 접근을 결합한 연구는 많지 않다. 이에 본 논문은 계층

구조를 효과적으로 표현할 뿐만 아니라 내재된 라벨 간 관계 역시 학습하여 분류에

반영하는 딥러닝 기반 기법인 그래프 어텐션 캡슐망(graph attention capsule network

for hierarchical text classification, GACaps-HTC)를 제안한다. 그래프 신경망의 일종

인 그래프 어텐션 신경망은 문서에서 추출한 표현에 라벨의 계층 구조에 대한 정보를

주입하기 위해 사용되며, 캡슐망은 임의의 두 라벨 사이의 관계를 학습함과 동시에 각

라벨에 대한 분류 확률을 추론하기 위해 활용된다. 본 논문이 제안하는 기법은 계층적

문서 분류 과업이 가지는 라벨 불균형 문제를 해소하기 위한 손실함수로 학습되며 과

업에 특화된 다양한 후처리 방법을 도입한다. 계층적 문서 분류 성능을 평가하기 위해

많이 사용되는 두 개의 데이터 셋으로 수행한 실험의 결과, 제안 기법은 기존 기법 대

비 성능을 향상시킴을 확인할 수 있었으며, 제안 기법의 각 요소는 해당 성능 향상에

기여함을 확인하였다.

또한, 본 논문은 라벨의 명칭 혹은 문서형 설명을 통해 캡슐망의 연결 계수 초기화

및갱신을수행하는의미기반동적라우팅알고리즘(semantic-aware dynamic routing

algorithm)을 제안한다. 캡슐망 내 두 캡슐 사이의 연결 계수는 두 캡슐 내의 정보 간

유사성을 표현하기에 라벨의 명칭 혹은 문서형 설명에서 추출한 표현 사이의 유사성으
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로 이를 초기화한다. 실험 결과 해당 알고리즘으로 라벨 정보를 주입하는 방법은 다른

방식으로 GACaps-HTC에 라벨 정보를 주입하는 방법에 비해 좋은 성능을 거두었으

며, 제안 알고리즘을 활용할 경우 기존 동적 라우팅 알고리즘에 비해 빠르게 학습이

수렴함을 확인하였다.

마지막으로 본 논문은 제안 기법의 확장 가능성을 평가하고자 속성 카테고리 감성

분석을 계층적 문서 분류로 치환하여 제안 기법을 적용한다. 감성 분석 데이터 셋으

로 수행한 실험의 결과, 문서 내 의미적 정보에 대한 분석은 물론 감성적 정보에 대한

분석을 위해 제안 기법을 적용할 수 있음을 확인하였다.

주요어: 계층적 문서 분류, 그래프 신경망, 캡슐망, 딥러닝, 자연어 처리

학번: 2017-28575
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학부 때부터 저에게 좋은 선배였던 두분에게 감사를 전하며, 앞으로 형들이 걷는 길

이 눈부시길 응원하고 있겠습니다. 그리고 철이 없던 모습도 이해해주시며 선배임에도

친구처럼 저와 지내주신 종혁이형과 석현이형, 형들 덕분에 대학원 생활이 너무나도

즐거웠습니다. 현재 박사 과정의 마무리를 위해 노력 중이신 모두들, 석현이형과 저의

첫 프로젝트 팀장이셨던 문정이형, 함께 너무나 생소했던 주제에 대해 연구했었던 도

균이형, 그리고 후배임에도 너무나 배울 모습이 많았던 완이 모두 좋은 결과가 있을

것이라고 믿고 응원합니다. 저의 마지막 프로젝트에서 미숙했던 저를 따라 다양한 일

들을 하느라 고생했던 유민이, 석기, 그리고 유리님 덕분에 프로젝트 잘 마무리할 수

있었고, 즐겁게 진행할 수 있었으며, 그 결과로 학위 논문까지 작성할 수 있었습니다.

그리고 마지막 프로젝트에서, 그리고 그 외에도 저와 친하다는 이유만으로 제가 누군

가에게 부탁하기 어려운 부탁들을 모두 들어줘야했던 동현이형에게도 감사의 마음을

전합니다.저보다 먼저졸업하셔서 각자의 분야에서 멋진 모습을 보여주고계신 희웅이

형,보형이형,성은,설아,재희,뒷자리였던해성이와옆자리였던창진이까지,훌륭했던

여러분과 함께 얘기를 나누며 교류할 수 있던 시간은 저에게는 소중한 경험이었습니

다. 마지막으로 연구실에서 지금 이 시간에도 노력 중일 민재, 지문님, 은채, 재룡이,
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희웅이와 이경이에게는 함께 보낸 시간이 저에게는 즐거웠음을 꼭 말씀드리고 싶었고,

저와 보낸 시간이 여러분께도 그렇게 기억되었으면 좋겠습니다. 학부부터 대학원 과정

을 하는 기간동안 힘이 되어준 나의 친구들, 민재, 세호형, 세영이, 범호형, 범국이형,

상엽이형에게도 감사의 마음을 전합니다

사랑하는 저의 가족들이 계속 지지해주고 응원해준 덕분에 이렇게 잘 마무리할 수

있었습니다. 선배 연구자로서 길잡이가 되어주신 저의 어머니, 어머니의 말씀은 언제나

큰가르침이되었습니다.언제나저에게웃는모습을보여주시던저의아버지,아버지의

말씀에있던따스함덕분에저도함께웃을수있었습니다.그리고저를자랑스러워하던

저의 형, 형은 언제나 나에게 닮고 싶은 사람이었음을 이 기회에 전합니다. 학사모를

쓴 모습을 보며 자랑스러워하실 저의 할머니들, 그리고 하늘에서 언제나 저를 응원하고

계실 저의 할아버지들에게도 너무나도 감사드립니다. 모두가 주신 사랑 덕분에 지금의

제가 있을 수 있었고, 모두의 응원 덕분에 이렇게 결실을 맺을 수 있었습니다. 제가

받은 사랑 다시 가족 모두에게 드리며 앞으로 더욱 멋진 아들, 동생, 그리고 손주가 되

겠습니다. 마지막으로 함께 미래를 그려나가기로 약속한 지현이와 따스하게 가족으로

맞아주시고 저를 응원해주셨던 어머님, 아버님께도 감사드립니다. 스스로를 의심하며

불안해하던 저에게 확신을 주며 응원해주는 지현이가 있었기에 계속 나아갈 수 있었고,

이토록 빛나는 사람에게 어울리는 사람이 되고자 하는 마음 덕분에 더 나은 사람이 될

수 있었습니다. 앞으로 어떤 일이 있어도 함께 행복할 수 있게 노력하고, 함께 있는 매

순간을 소중히 여기겠습니다. 저의 가족 모두에게 진심으로 감사하고, 사랑합니다.

감사할 분들이 너무나 많기에 지면으로는 다 표현하지 못했지만 저에게 힘이 되어

주었던 모든 분들에게 감사의 마음을 전합니다.
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