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Abstract

Learning Label Relationships Using Deep
Neural Networks for Hierarchical Text
Classification

Jinhyun Bang
Department of Industrial Engineering

The Graduate School

Seoul National University

Hierarchical text classification has been receiving increasing attention due to its
vast range of applications in real-world natural language processing tasks. With the
recent advances in deep learning, deep learning-based approaches achieved state-of-
the-art hierarchical text classification performance. While existing approaches focus
on exploiting the label hierarchy or modeling implicit label relationships, only a few
studies integrated these two concepts. This thesis proposes a graph attention capsule
network for hierarchical text classification (GACaps-HTC), a deep learning-based
approach designed to capture both the explicit hierarchy and latent label relation-
ships. A graph attention network is employed in the proposed approach for fusing
information on the label hierarchy into a textual representation, while a capsule
network is employed to understand the latent label relationships and infer classifica-

tion probabilities. The proposed approach is optimized using a loss term designed to



address the innate label imbalance issue of the task and post-processed using vari-
ous methods specified for hierarchical text classification. Results of the experiments
conducted on two benchmark datasets demonstrate that the proposed approach out-
performed previous state-of-the-art approaches and ablation studies show that each
component in the GACaps-HTC played a part in enhancing the performance.

Furthermore, this thesis proposes a semantic-aware dynamic routing algorithm,
a new dynamic routing algorithm that initializes and updates a capsule network’s
coupling coefficients using semantic representations of labels. As a coupling coeffi-
cient of a pair of capsules indicates how similar their information is, the coefficient is
initialized from the similarity of semantic representations corresponding to the cap-
sules’ labels. Experiment results show that the proposed algorithm outperformed
other methods that inject semantic information of labels and GACaps-HTC with
semantic-aware dynamic routing algorithm reached faster convergence compared to
GACaps-HTC with conventional dynamic routing algorithm.

Finally, this thesis investigates another use case of GACaps-HTC by employing
the model for aspect category sentiment analysis that can be formulated as hier-
archical text classification. Experiments were conducted on four sentiment analysis
datasets, and the results show that the proposed approach performs well on not only

the semantic analysis of a document but also sentiment analysis.

Keywords: Hierarchical text classification, graph neural network, capsule network,

deep learning, natural language processing

Student Number: 2017-28575
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Chapter 1

Introduction

1.1 Background and Motivation

Natural language processing (NLP) is a subfield of computer science and linguistics
concerned with the computational process of understanding human languages|[7, [§].
NLP technologies play a crucial part in various real-world industries, including
manufacturing[9, [10], finance[T1} [12], T3], healthcare[I4] 15], and the legal industry[10,
17], as they can analyze huge volumes of textual data. Due to the field’s practical im-
portance, NLP has been one of the most actively researched fields with the advent of
deep learning, and deep learning-based approaches have shown state-of-the-art per-
formances in a variety of NLP tasks such as sentiment analysis[I8], 19, [20], machine
translation[21], 22], and text summarization[23], 24]. Text classification, the task of
automatically assigning a set of labels to a given text document, is another task
that has benefited from employing deep learning[19, 25] and is a vital task due to
its wide range of applications in a number of other NLP tasks including information
retrieval [26, 27], sentiment analysis[28, [29], and question answering[30].

This thesis focuses on hierarchical text classification (HTC), a subtask of text
classification where labels form a hierarchical structure. The HTC has been receiving

increasing attention from NLP researchers as hierarchical structures can be found



in real-world textual data of various domains, including e-commerce products[31],
news articles[32, B3], patents[34], 35], and scientific articles[I]. Figure shows an
example of a scientific article and corresponding labels in a label hierarchy, where
the goal of the task is to assign labels, which are depicted as filled circles, in the

hierarchy to the input document.

/There are conditions in dermatology \
that cause severe cracking and flaking

of the skin, representing a failure of
normal desquamation. :>
Several hygroscopic substances that

affect the moisturization of the stratum
corneum have been identified for the

Qeatment of scaling disorders. ... J Skin Care Disease ™ Injuries ™ Structures™ Learning

Figure 1.1: Example of input text document and label hierarchy in hierarchical text
classification. The example is sampled from the WOS-46985 dataset[I], a dataset of
scientific articles, where the document is the abstract by Perez et al.[2].

The importance of this task grows due to the accelerating accumulation of doc-
uments and the diversification of document topics (labels). Figure depicts how
fast new academic papers are submitted in arxiv.orgﬂ7 an open-access archive for
academic articles. As the number of labels increases, a (hierarchical) structure is re-
quired to understand the relationships between the labels. Furthermore, more labels
mean harder classification problems, which require a classification model based on
an understanding of the relationship between labels.

While early works on HTC[36] 37, [38], 39, 40, [41] discard information on a given
label hierarchy, Dumais and Chen[42] and Moyano et al.[43] have shown that effec-
tively exploiting the hierarchy is the key to achieving good HTC performance. To this

end, several methods have been adopted in deep learning-based HTC approaches to

Thttps://arxiv.org/
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Figure 1.2: Number of monthly submissions in arxiv.org from January 1992 to Au-
gust 2022.

make use of the hierarchy. The most common method used to capture the hierarchy
is employing a graph neural network (GNN)[44] 45|, [46] [47) 48| [49], which is a neural
network designed to process data expressed as graphs[50]. Other approaches incor-
porate the label hierarchy by designing task-specific learning objectives[51] 52} 53] or
employing meta-learning[54] and reinforcement learning[55]. While these approaches
have achieved state-of-the-art HT'C performance thanks to their capability to make
use of the hierarchy, they do not analyze relationships outside the hierarchy, thus

failing to understand the relationship between labels accurately.

On the other hand, text classification approaches that derive implicit label re-
lationships from data have also been proposed. For example, Chatterjee et al.[56]
and Chen et al.[57] employ hyperbolic neural networks, which are neural networks
that operate on a hyperbolic space, as this space is known to be effective when

expressing hierarchical structures[58), [59]. Other approaches infer the latent rela-



tionships between labels from textual descriptions or summaries of each label[60]
or graphs constructed using label co-occurrence statistics[61]. However, these ap-
proaches lack the capability to utilize a given label hierarchy and show relatively
poor HTC accuracy. Unfortunately, integrating methods that extract implicit label
relationships and incorporate label hierarchy has been relatively less investigated
despite the shortcomings of previous approaches.

In this thesis, a hierarchical text classification approach that exploits label hi-
erarchy while capturing latent label relationships beyond the hierarchy is proposed.
A novel architecture composed of three subnetworks, each for extracting textual
representations, analyzing the label hierarchy, and learning the latent relationships
between labels, is proposed. The proposed approach is trained using task-specific loss
functions and post-processed with various methods designed to enhance hierarchi-
cal text classification performance. Through extensive experiments on widely-used
benchmark datasets, this thesis shows that the proposed approach outperformed
previous approaches. Furthermore, a novel algorithm is proposed to accelerate the
proposed approach using textual descriptions of labels. Finally, this thesis employs
the proposed approach on sentiment analysis tasks to demonstrate possible use cases

of the approach.



1.2 Research Contribution

As described in Section this thesis tackles hierarchical text classification by
making use of structural information extracted from label hierarchy and capturing
implicit relationships between labels. Detailed contributions of this work are pre-

sented in the following subsections.

1.2.1 Graph Attention Capsule Network

The first contribution of this work is proposing a novel neural network classifier
named graph attention capsule network. As the name suggests, the proposed classi-
fier comprises a graph neural network and a capsule network[62], each for handling
explicit label relationships provided as a label hierarchy and implicit label relation-
ships, respectively. While previous studies on capsule networks (CapsNets) focused
on capturing relationships between implicit entities (objects, attributes, or struc-
tures) and class labels, the CapsNet in the proposed classifier is designed to learn
relationships between class labels.

Furthermore, this work recognizes the innate class imbalance issue that lies in
the task and trains the proposed network to mitigate this imbalance. The number
of text documents assigned with each label of HT'C datasets is illustrated in Figure
to demonstrate that such an issue exists in the task. Also, several cases where
classification results do not agree with the given label hierarchy are defined, and a
loss term and post-processing methods are proposed to avoid such contradictions.

The proposed approach was trained and evaluated using the WOS-46985 dataset|[I]
and the RCV1 dataset[32], which are two of the most commonly used HTC datasets.

Experiment results showed that the graph attention capsule network outperformed
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Figure 1.3: Number of examples in each label of hierarchical text classification
datasets.

the baselines and that the network can capture interpretable latent label relation-
ships. Ablation studies showed that each component proposed or employed in this

work contributed towards this enhanced performance.



1.2.2 Semantic-Aware Dynamic Routing Algorithm

This thesis also proposes a semantic-aware dynamic routing algorithm for incorpo-
rating label semantics into the classifier discussed in Subsection A dynamic
routing algorithm[63], [64] is an iterative algorithm that captures latent relationships
in a CapsNet. The proposed algorithm injects label semantic information into repre-
sentations passed onto a CapsNet, allowing the network to identify implicit relation-
ships with the help of the semantic information. Furthermore, a new initialization
method based on semantic similarities is proposed and employed in this algorithm.

GACaps-HTC with the semantic-aware dynamic routing algorithm was trained
and evaluated using the WOS-46985 dataset and the RCV1 dataset. This model
was compared with GACaps-HTC with the dynamic routing algorithm proposed by
Zhao et al.[64], which is the model described in Subsection and variations of
GACaps-HTC exploiting label semantic representations. Experiment results showed
that injecting label semantic information using the proposed dynamic routing algo-
rithm outperformed other variations with label semantic representations and that
utilizing the proposed algorithm could accelerate the convergence of a classifier while

maintaining (or slightly enhancing) its performance.

1.2.3 Employing Graph Attention Capsule Network on Aspect Cat-
egory Sentiment Analysis

This thesis employs the model on aspect category sentiment analysis, a subtask of
sentiment analysis where the goal is not only to extract the sentiment polarities in
a given document but also their subjects, to investigate practical use cases for the
proposed model. Aspect category sentiment analysis is transformed into a hierar-

chical text classification task by constructing a hierarchy of aspect categories and



attaching sentiment polarities as leaf nodes in the hierarchy.

GACaps-HTC was trained and evaluated using the SemEval2015 datasets[6]
and the SemEval2016 datasets[65]. Specifically, the Laptop2015 and Restaurant2015
datasets from SemEval2015 datasets and the Laptop2016 and Restaurant2016 datasets
from SemEval2016 datasets were used. Experiment results showed that the proposed
model could achieve competitive or better performance compared to previous work,
indicating that GACaps-HTC can achieve good HTC performance and can be em-

ployed for other practical applications involving HTC.

1.2.4 Summary of the Contributions

In short, main contributions of this work are as follows:

(a) A novel approach for hierarchical text classification using a GNN and a Cap-

sNet is proposed to exploit label hierarchy and capture label relationships.

(b) A dynamic routing algorithm that incorporates label semantic information
in a CapsNet is newly proposed to aid a CapsNet-based classifier to better

understand relationships between labels.

(c¢) The effectiveness of the proposed approaches was evaluated using widely-used
datasets, and the quantitative results showed that the proposed approaches
outperformed previous approaches. The qualitative results showed that the
approaches are interpretable and that they capture intuitive label relation-

ships.

(d) The effectiveness of the proposed approach was evaluated on aspect category

sentiment analysis to investigate other practical use cases of the approach.



1.3 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2] a literature review
on related topics, including HTC, GNN, CapsNet, and aspect category sentiment
analysis, is conducted. The proposed HTC approach and its experiment results are
explained in Chapter [3] In Chapter [ a semantic-aware dynamic routing algorithm
proposed to complement GACaps-HTC is introduced along with related experiment
results. Chapter [5| explains how aspect category sentiment analysis is transformed
into a hierarchical text classification problem and demonstrates the effectiveness of
GACaps-HTC in identifying sentiments in a given document. Finally, in Chapter [6]

concluding remarks and future work are presented.
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Chapter 2

Literature Review

2.1 Hierarchical Text Classification

Silla and Freitas[66] groups HTC approaches into flat, local, and global approaches,
as illustrated in Figure based on how the hierarchical structure of the labels
is explored. In Figure 2.1, a dotted box represents a group of labels, illustrated as
circles, that a classifier is responsible for in each approach. Flat approaches discard
information on the hierarchy and transform the task into a simple text classification.
A set of flat approaches ignores a subset of labels to convert the task into a single-
label classification[36], 67, [68]. For example, Fiirnkranz et al.[36] assigns only leaf
labels to a text document while ignoring nonleaf labels in the hierarchy. Other flat
approaches treat HTC simply like multi-label text classification[38, (56 [69]. Such
approaches provide a simple solution for HTC, but Dumais and Chen[42] reveals
that flat approaches achieve suboptimal performance as they do not utilize the in-

formation on label relationships, which is crucial for the task[43].

Local approaches place multiple classifiers, where each classifier is responsible for
a partial hierarchy. The first method to implement a local approach is to assign one
binary classifier per label. Fagni and Sebastiani[70] proposes an approach with label-

wise binary classifiers and a negative sampling method that selects each classifier’s

11 -
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Figure 2.1: Comparison between flat, local, and global HT'C approaches.

training examples for faster training. Banerjee et al.[T1] presents an approach that
initializes a binary classifier for each label as that of its parent label under the
assumption that dependencies between a label and its parent can be modeled using

transfer learning.

Another set of local approaches uses a classifier for each parent label, where
the classifier categorizes a text document into one of the child labels. Dumais and
Chen[42] employs a support vector machine (SVM)[72] classifier for each parent label
to classify web contents in a top-down fashion. Krendzelak and Jakab[73] proposes
an approach that places a convolutional neural network (CNN)[74] classifier for
each parent label in the hierarchy of news article labels and demonstrated that their

approach outperformed flat approaches and previous local approaches using SVMs.

Finally, a local approach can be implemented by employing a classifier for each
hierarchy level. The local approach proposed by Shimura et al.[75] defines level-
wise classifiers that share a group of parameters while other parameters are fine-
tuned for each level. The approach presented by Wehrmann et al.[76] trains local
classifiers for different hierarchy levels and a global classifier that performs multi-

label classification for all labels in the hierarchy. The results obtained from the

12



local classifiers and the global classifier are then aggregated to produce the final
prediction. Huang et al.[T7] also makes use of level-wise classifiers and a global
classifier and employed the attention mechanism[5] to achieve better classification
accuracy. These local approaches have been shown to outperform flat approaches, but
they are known to be not scalable to the size of the label hierarchy[55]. Furthermore,
they are vulnerable to error propagation[78], as a classification error in one classifier

can lead to a prediction result that is entirely wrong.

In contrast, global approaches make use of a single multi-label classifier that
exploits the label hierarchy. One method to achieve this is to train the classifier
using a learning objective designed to take advantage of the hierarchy. Recursive
regularization[51] encourages the parameters responsible for a label and its parent
to be similar. This method has been shown to improve the HTC performance of
SVM and logistic regression approaches. Peng et al.[52] proposes an approach that
trains a neural network classifier using recursive regularization and demonstrated
that this regularization led to enhanced performance. The loss term proposed by Yu
et al.[53] penalizes contradictions where a document is assigned with a label but not
with its parent and demonstrated the effectiveness of this loss term when training a

neural network.

A global approach can also incorporate the information on the label hierarchy by
employing a GNN, a class of deep learning models designed to analyze data described
by graphs[50]. The detailed introduction and literature review on GNN are presented
in Subsection Zhou et al.[45] proposes an approach that analyzes the top-down
and bottom-up paths in the hierarchy separately and obtains label-specific textual

representations with a GNN. Chen et al.[46] defines a neural network that maps

13



a label representation, which a GNN extracts, and a textual representation onto a
joint representation space. The network is trained to minimize a loss term based
on distances between a document’s textual representation and the representations
of the coarse-grained, fine-grained, and irrelevant labels. The approach proposed
by Deng et al.[47] trains a classifier to maximize the mutual information between
a textual representation and a label representation obtained by a GNN so that
the textual representation contains crucial information for HTC. Wang et al.[49)]
uses a GNN to generate label representations and performed contrastive learning
to encourage textual and label representations to be closer while pushing textual
representations away from each other. In addition, Xu et al.[79] designs a GNN-based
approach that processes a joint graph of words and labels to learn hierarchy-aware
word representations for HTC.

Other methods have also been proposed to leverage information on the hierarchy
in global approaches. Yu et al.[53] proposes post-processing methods that ensure a
document is classified as a child label only if it is classified as its parent. Mao et
al.[55] transforms HTC into the task of traversing through the label hierarchy and
proposed a reinforcement learning approach that learns a label assignment policy.
Meta-learning has also been employed in HT'C to search for the optimal learning rate
and classification threshold for each label[80] or enhance classification performance

on few-shot labels in the hierarchy[54].
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2.2 Graph Neural Network

A GNN extracts representations on the nodes[81], [82], edges[83, [84], or entire graph[85),
86] from data represented by graphs. Early work on GNNs, such as Scarselli et
al.[50], Gallicchio and Micheli[87], and Li et al.[88], obtains a node representation
by recurrently aggregating information propagated from neighboring nodes until the
representation converges. These approaches are referred to as recurrent graph neural
networks[89]. However, the process of iterative propagation and aggregation is com-
putationally expensive[90], calling for the need to develop more efficient techniques
to analyze graphs.

To overcome this challenge, Bruna et al.[91] proposes a graph convolutional net-
work (GCN) that utilizes filters with shared weights for propagating the features
of neighboring nodes motivated by the success of CNNs in terms of performance
and efficiency. The similarity between a CNN and a GCN is briefly illustrated in
Figure where dotted outlines denote groups of pixels or nodes that partici-
pate in obtaining representations corresponding to the pixel or the node filled with
diagonal lines. Furthermore, Zhou et al.[45] introduces a hierarchy-GCN for gener-
ating node representations given a set of nodes that form a hierarchical structure.
A hierarchy-GCN obtains a node representation by adding a top-down, bottom-up,
and loop representation, each propagated from its parent node, child nodes, and
itself, respectively, and therefore can take parent-child relationships into account
rather than simple connectivity. This network has been shown to outperform other
GNNs when adopted for HTC.

On the other hand, inspired by the attention mechanism[5], which enables a

neural network to focus on the relevant information in a representation, Velickovié et
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Convolutional Neural Network Graph Convolutional Network

Figure 2.2: Illustrations of a two-dimensional convolutional neural network and a
graph convolutional network.

al.[92] introduces a graph attention network, which employs the attention mechanism
on a GNN. A GAT concatenates representations of a node and its neighbor before
transforming the concatenated representations into a scalar weight, indicating how
much information is propagated from the neighbor. It has been demonstrated that
a GAT has better expressiveness than a GCN with similar time complexity due to

its capability of assigning a different level of importance to each neighbor.
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2.3 Capsule Network

A CapsNet is a neural network composed of groups, or capsules, of neurons, each
corresponding to an object, attribute, or structure[62], initially proposed for im-
age classification. The norm of a capsule’s activation vector is interpreted as the
probability that the corresponding object or attribute exists in an image, while the
direction of the vector represents the properties of the corresponding entity. Two
types of capsules are defined in a CapsNet: primary capsules and digit capsules. A
primary capsule in a CapsNet is a group of neurons that captures a latent object and
propagates its information to digit capsules via the dynamic routing algorithm[63].
The algorithm first defines a coupling coefficient for each pair of a primary capsule
and a digit capsule. This coefficient determines how much information is propagated
from the primary capsule to the digit capsule. In each iteration, the algorithm up-
dates each coefficient using the activation vectors of the corresponding primary and
digit capsules. Then, the algorithm calculates the activation vectors of digit cap-
sules from those of primary capsules and the updated coefficients before proceeding
to the next iteration. A digit capsule corresponds to a class label, and the norm of
its activation vector, obtained by the dynamic routing algorithm, is used as the class
probability.

Several methods have been proposed to enhance the training efficiency and per-
formance of CapsNets. Xiang et al.[93] extends the idea of dropout[94], a technique
developed to prevent neural networks from overfitting, to CapsNets and proposed
capsule dropout. While dropout randomly discards some of a network’s neurons
while training, capsule dropout randomly removes a portion of primary capsules

during training. When employing common dropout in a CapsNet, random elements
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are dropped in a primary capsule, and the direction of the capsule is altered, chang-
ing the properties of the capsule’s corresponding entity, where such perturbations
can lead to wrong predictions. Zhao et al.[64] proposes an adaptive dynamic routing
algorithm that iterates until the routing results converge rather than using a fixed
number of iterations. By doing so, the adaptive algorithm guarantees instance-level
convergence for each individual example, decreasing the risk of unreliable routing[64].
Gu and Tresp[95] demonstrates that gradients that occur from iterative processes of
dynamic routing algorithms have an insignificant influence on backpropagation and

proposed detached dynamic routing for better time and memory efficiency.

On the other hand, Jeong et al.[96] proposes a capsule pruning algorithm that dis-
cards primary capsules with small activation vector norms. These primary capsules
correspond to objects or attributes that are unrelated to the given example. There-
fore, removing such capsules and retaining only the capsules with relevant informa-
tion can enhance a CapsNet’s generalizability and prevent it from overfitting[96].
Huang and Zhou[97] proposes a dual-attention mechanism CapsNet which employs
the attention mechanism to highlight crucial information in primary capsules before
propagating the information to digit capsules and demonstrated its effectiveness in

image classification.

While CapsNets were initially proposed and researched in the field of computer
vision, they have recently been actively studied for NLP and shown to successfully
capture underlying structures in a text document[98|, and several approaches have
adopted them for HTC. The approach proposed by Aly et al.[99] obtains activation
vectors of primary capsules using a CNN and performed text classification using a

dynamic routing algorithm. Peng et al.[I00] improves this approach by replacing the
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CNN with a recurrent CNN[I01] to obtain sequence-aware textual representations.
Wang et al.[102] proposes a hierarchical bidirectional CapsNet, which propagates
information through the label hierarchy by alternating between a top-down and a
bottom-up fashion. By doing so, both the local relationships between labels and the

global hierarchy are effectively captured by the CapsNet and exploited for HTC.
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2.4 Exploiting Label Semantics for Classification

Recently, an increasing number of studies have recognized that label semantics con-
tain valuable information for text classification. The first group of such studies fo-
cuses on few-shot or zero-shot text classification as exploiting label semantics en-
ables classification via matching a label representation and a text representation in a
shared representation space. Chen et al.[103] uses a convolutional deep structured se-
mantic model[104], which maps a text representation obtained by max-pooling word
representations to a label representation space, for zero-shot speaker intent classifi-
cation. Puri and Cantanzaro[105] proposes a zero-shot classification-based question
answering approach that concatenates a given question and candidate answers (la-
bels) to a given text for a language model to extract token representations in a joint
space. Hou et al.[106] uses semantic similarity between words for few-shot condi-
tional random field[I07]-based slot tagging tasks, which are similar to named entity
recognition tasks. Halder et al.[I08] formulates each few-shot classification task into
a group of binary classification tasks and fed a joint sentence of a label and a text
into a binary classifier. Luo et al.[I09] proposes a few-shot learning approach that
encourages representations extracted from texts appended with a label name to be
more relevant to the corresponding label semantic representation.

Other studies have shown that incorporating label semantics can enhance not
only few-shot or zero-shot performance, but also general text classification perfor-
mance. Zhang et al.[I10] demonstrates that by concatenating a document and label
names and employing an attention mechanism, a classifier can extract word-word,
word-label, and label-label correlations through attention. Pappas and Henderson [111]

proposes an approach that utilizes label semantic representations as parameters
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used to obtain logits in a classifier. Xiao et al.[I12] proposes a label-specific atten-
tion network model that fuses textual representations obtained by self-attention and
those obtained from text-label attention. Similarly, The approach proposed by Cai
et al.[113] obtains representations from text-label attention, where label representa-
tions are obtained by feeding label semantics into a GNN.

Research on HT'C approaches that employ label semantics has also been actively
conducted. Similar to Zhang et al.[110], Zhang et al.[114] performs HTC by con-
catenating a document and label names and employing an attention mechanism.
Yu et al.[115] tackles HTC as a label sequence generation task, where a generated
(inferred) label’s name is used as an input of a decoder for generating the next label.
Chen et al.[46] and Wang et al.[49] generate label semantic representation using label
names and GNNs to match a textual representation with the closest label semantic

representation in a joint text-label representation space.
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2.5 Aspect Category Sentiment Analysis

As conventional document-level or sentence-level sentiment analysis aims to iden-
tify the sentiment polarity of the entire document or sentence, it is assumed that
a single topic appears in the document or sentence and that the entire document
or sentence has a consistent sentiment polarity. However, in practice, multiple sen-
timent polarities corresponding to different topics may appear in a document, or
even a sentence, raising the need for identifying more fine-grained sentiments. As-
pect category sentiment analysis is a subtask of sentiment analysis widely used in
real-world industries[116] [117] where the goal is to perform aspect category (subject
of sentiments) detection and sentiment classification on the category simultaneously
from a given text document.

There are several types of approaches that can tackle aspect category sentiment
analysis. The first type is a pipeline approach[116], where an aspect category detec-
tion model and a sentiment polarity classification model are consecutively utilized.
While pipeline approaches are straightforward, they suffer from low performance as
the errors from aspect category detection limit the aspect category sentiment analy-
sis performance. Furthermore, relationships between aspect category detection and
sentiment polarity classification are ignored, where these relationships can play a
crucial part in enhancing both tasks[I18].

Approaches of the second type are Cartesian product approaches[I19] which
perform binary classification for all combinations of aspect categories and sentiment
polarities. However, such approaches face the risk of assigning multiple sentiment po-
larities for an aspect category[120]. The third type is known as an add-one-dimension

7N

approach, where sentiment polarities ("positive,” "neutral,” and "negative”) are ap-
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pended with one extra option, "N/A.” indicating that a given text document does
not mention the corresponding aspect category[121].

The fourth type is a hierarchical classification approach, which aims to explicitly
model the hierarchical relationships between aspect category detection and senti-
ment polarity classification. Cai et al.[120] proposes a hierarchical GCN-based ap-
proach where the lower-level GCN first detects aspect categories in a given docu-
ment by capturing the relationships between categories, and the higher-level GCN
predicts the sentiment polarities for each category by analyzing the relationships
between sentiments and categories. Note that the hierarchical GCN proposed by
Huang et al.[77] and that of Cai et al.[I13] share the same name, but have different
architectures.

Finally, there are sequence-to-sequence approaches that utilize a pretrained gen-
erative language model to produce sentences representing captured aspect categories
and corresponding sentiment polarities. For example, given the sentence "I love this

” a sequence-to-sequence approach returns ”The sentiment polarity for

restaurant,
the restaurant is positive.” Liu et al.[122] suggests that these approaches are capable

of exploiting how a pretrained language model understood natural language.
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Chapter 3

Graph Attention Capsule Network for
Hierarchical Text Classification

3.1 Problem Definition

The goal of text classification is to classify a text document into a set of predefined
categories known as labels. Let D and L denote the input text document and the
number of labels, respectively, and Y C {1,..., L} is the ground-truth set of label
indices corresponding to D. A text classification model learns a mapping from D to
VP and outputs a classification probability for each label, where the classification
probability of the [-th label is denoted as plD € [0,1].

This work tackles hierarchical text classification, a subtask of text classification
with a label hierarchy. The label hierarchy is denoted as H and is represented as a

set of tuples, where each tuple consists of a label and its child label as follows:

H={(1,I') |1 <1,I' < L,I-th label is the parent of I'-th label} . (3.1)
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3.2 Methods

Inspired by the approaches mentioned in Section and Section that employ
various methods to exploit the label hierarchy and learn label relationships, a novel
global approach for HT'C is proposed in this section, namely, the graph attention cap-
sule network for hierarchical text classification (GACaps-HTC). The GACaps-HTC
is composed of three subnetworks: a textual representation extractor, a hierarchy
encoder, and an implicit relationship extractor. The textual representation extrac-
tor first extracts a textual representation of a document from a language model
pretrained on a massive corpus. Then, a convolutional layer[74] generates a label-
specific textual representation for each label in the hierarchy. These representations
are fed into the hierarchy encoder comprised of a GNN to incorporate the hierar-
chy information into the label-specific representations, resulting in hierarchy-aware
label-specific representations.

The hierarchy-aware label-specific representations are then passed onto the im-
plicit relationship extractor. This subnetwork captures latent relationships between
labels that are not expressed by label hierarchy and infers class probabilities. The im-
plicit relationship extractor first employs the attention mechanism to highlight the
relevant information in these representations. Then, a CapsNet uses the dynamic
routing algorithm to capture relationships between labels via iterative updates and
produce the classification probabilities for assigning a set of labels to the given doc-
ument. Note that the algorithm was initially proposed to model the relationships
between underlying structures or objects and labels rather than those between la-
bels. Briefly, the hierarchy encoder is responsible for understanding the relationships

between a label and its neighboring labels (parent and child labels) in the hierarchy,
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whereas the implicit relationship extractor captures broader relationships. Various
methods developed to enhance CapsNets, including capsule dropout[93], adaptive
iteration[64], and capsule pruning[96], are employed in GACaps-HTC. The overall
architecture of GACaps-HTC is depicted in Figure The details for each subnet-

work are described in the following subsections.

3.2.1 Textual Representation Extractor

The ability to extract a high-quality textual representation from a document is criti-
cal for a model to understand and classify the document. To this end, a Transformer-
based language model[3], illustrated in Figure pretrained on a large-scale corpus,
is employed as it has shown to be effective in various downstream tasks by capturing
long-range contexts[I23]. Let X e RIPIX4em denote the output of the language
model where |D| is the number of tokens in D and dps is the output size of the
language model per token.

Then, a convolutional layer transforms X into the input of the next subnetwork.
The r-th row of the convolutional layer output, denoted as Conv (X b ) e RIPIxdcony

is obtained as follows:
Conv (XD)[T,:} = ReLU (Wcon'”X[?—lsr—i-l,:] + bConv) . (32)

W conw and boon, are the weight and bias parameters in the convolutional layer,
respectively, and doon, denotes the number of output channels in the layer. The
rectified linear unit (ReLU)[124] is a piece-wise linear function commonly employed
to introduce non-linearity to a neural network.

A document-level textual representation, a vector of length dcony, is obtained

by max-pooling the convolutional layer output along the first dimension. This rep-
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Figure 3.2: Transformer architecture[3]. LayerNorm denotes layer normalization[4]
and multi-head attention denotes a process of performing the attention mechanism
proposed by Bahdanau et al.[5] several times in a parallel fashion.

resentation is split into L vectors of length dcony/L, and each vector undergoes an
affine transformation to generate a label-specific textual representation. The intu-
ition behind extracting label-specific representations is that the model requires the
ability to capture distinct pertinent characteristics that are preferred in discriminat-
ing each label[61], [125] [126] [127]. As these label-specific representations are passed to
the hierarchy encoder, dcony /L equals the hierarchy encoder’s input and output size
per label, denoted by dgg. Let le € R%E denote the label-specific representation

corresponding to the [-th label, which is obtained as follows:
2P = W 4;MaxPool (Conv (XD)[:,(I—l)dHE:ldHE]) +bayy. (3.3)

Wayrr € RéuExdue and bass € R? = are the weight and bias parameters for the

affine transformation, and MaxPool denotes the max-pooling operation.

3.2.2 Hierarchy Encoder

Although le generated by the textual representation extractor contains information
on the content of D, it lacks information on the hierarchy. The second subnetwork

in GACaps-HTC, namely the hierarchy encoder, embeds the information on the
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hierarchy into the representations. In this work, a GAT is selected as the hierarchy
encoder due to its ability to understand how relevant each neighboring label is in

generating a hierarchy-aware label-specific representation.

Let Wy € RY248E denote the parameters in the hierarchy encoder. The
subnetwork first infers an attention weight wlll), € R for each pair of label indices
(1,I') € H. This weight indicates how important the I’-th label is for generating the

I-th label’s label-specific representation and is inferred as follows[92]:
wh) = LeakyReLU (W g gConcat (le, zl[,))) . (3.4)
LeakyReLU[128] is a piece-wise linear function similar to ReLU, and Concat is the

operation of concatenating multiple vectors.

These weights are normalized to represent the relative importance of each neigh-
boring label. Let N, denote the set of indices corresponding to labels that neighbor

the [-th label, including itself, which can be inferred from H as follows:
N ={U) (L) e u{l"](1",1) e H} U{l}. (3.5)
The attention weight corresponding to the pair (,{") is normalized as follows:

. (Cr) Y YN
Sien; exp(w]?) (3.6)

Wk =

0 otherwise,

where d)l? is the normalized attention weight. Normalized weights between non-
neighboring labels are set to zero as only the neighboring labels participate in gen-

erating the hierarchy-aware representation corresponding to a label.

Finally, the hierarchy encoder propagates the label-specific textual representa-
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tions (zP) according to the normalized attention weights and returns hierarchy-

aware textual representations. The hierarchy-aware representation corresponding to
the [-th label is denoted as ’UlD and is obtained as follows:
vP = ReLU < > wf;#?) . (3.7)
1<U<L
The process of obtaining le is summarized in Figure where the process of
attaining the hierarchy-aware textual representation corresponding to the second
label (highlighted in gray) is illustrated. Different shades of arrowed lines in the

rightmost graph denote different levels of attention weights.

Weight Weight Propagation
Calculation Normalization

——

Figure 3.3: Summarization of the hierarchy encoder composed of a graph attention
network.

3.2.3 Implicit Relationship Extractor

The implicit relationship extractor in GACaps-HTC predicts the classification prob-
ability of each label from the representations generated by the hierarchy encoder.
The subnetwork first highlights the crucial information in the representations via
the attention mechanism before utilizing them as the primary capsules’ activation
vectors of the subnetwork’s CapsNet. Adopting the attention mechanism in this fash-

ion has been shown to enhance the performance of a CapsNet by emphasizing vital
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information while reducing the less important information in primary capsules[97].
Let a” € R¥ denote the vector composed of each primary capsule’s attention weight
and ulD € R% = denote the activation vector of the I-th primary capsule in the Cap-
sNet. Using the weight and bias parameters W, ¢ RExLdue W2, —c REXE

and bly,,,., b4, € RE, aP and uP are obtained as follows[97]:
a®” =tanh (W?%,,,ReLU (W, Concat (v1,...,vF) + bhy,) + b%un) s (38)

uP = (1 + aﬁ) oP. (3.9)
tanh denotes the hyperbolic tangent operation.

After the activation vectors of the primary capsules are inferred, primary capsules
with small activation vector norms are pruned to enhance GACaps-HTC’s general-
izability and prevent overfitting. These primary capsules are expected to correspond
to labels irrelevant to D and contain unimportant information. Let p € [0,1) de-
note the hyperparameter indicating the pruning ratio. pL primary capsules with the
smallest activation vector norms are pruned, and their activation vectors are set to
zero, while the remaining (1 — p)L capsules participate in inferring the classification

probabilities.

The CapsNet in the implicit relationship extractor acquires the activation vec-
tors of the digit capsules, each corresponding to a label, where the norm of the
activation vector indicates the predicted classification probability of the label. The
dynamic routing algorithm, which updates how much information is passed on from
a primary capsule to a digit capsule in an iterative fashion, is employed to obtain
these activation vectors. The dynamic routing algorithm proposed by Zhao et al.[64]

is adopted in this work as it has been shown to outperform the dynamic routing
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algorithm proposed by Sabour et al.[63] on NLP tasks by iterating the algorithm

until every example converges[64].

Let olD € R%cars denote the activation vector of the I-th digit capsule corre-
sponding to the [-th label, where dcgps is the size of a digit capsule’s activation
vector. The detailed dynamic routing algorithm that outputs the activation vectors
of the digit capsules from those of the primary capsules is described in Algorithm
cl?, € R and éﬁ, € R defined in lines 1 and 6 are the coupling coefficient and normal-
ized coeflicient indicating how much information the [-th digit capsule receives from
the I’-th primary capsule. The activation vector propagated from the I’-th primary
capsule to the [-th digit capsule is referred to as ,ulll), and obtained in line 7, where
W Gaps, i € Rdcaps*duE s the matrix of parameters defined for the I-th digit capsule.
The activation vectors of the digit capsules are obtained as the weighted sum of the
propagated vectors with the normalized coupling coefficients as weights, as indicated

in line 8.

The idea behind the dynamic routing algorithm is that a primary capsule should
propagate more information to digit capsules that are similar to itself. Therefore,
the algorithm measures the distance, denoted as dist in Algorithm [I] between the
activation vectors of the digit capsules and those propagated from the primary cap-
sules in line 9. Then, as shown in line 10, cl?, is updated to increase proportionally
to —dist (olD, ,ulll),).

The process of assigning higher coefficients to similar capsules can be interpreted
as maximizing the sum of cl?, (1 — dist (olD , ,ulll),)) [64], and the algorithm iterates un-
til this summed value converges, as described in lines 13 and 14 of Algorithm

Note that the activation vectors are squashed to have norms between zero and one
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Algorithm 1: Dynamic Routing Algorithm [64]

Input: activation vectors of primary capsules ulD for1<I<L
Output: activation vectors of digit capsules olD for1<I<L
1 cl?, ~0 VI, ;
2 prev_Score <— —0 ;
3 while True do

4 for |+ 1to L do
5 for I’ < 1to L do
~D eXP(Cff/)
% [ N ] A A—
¢ ar ZlSiSLeXp(CiDl’) ’
ull[%)/ < WCaps,lug ;D
o Z1gl'gL ST T
9 dist (OD MD/) « [l | 2MD/ _ [[o]] soP|| :
) o5 g PP s lop P
10 cll?, — cl?, + (1 — dist (olD,uﬁ,)) ;
11 end
12 end
13 Score < log <Zl§u,§L clll), (1 — dist (OZD, uﬁ,))) :
14 if |Score — prev_Score| < € then
D [l b vy
15 o, 05+HOIDHQOI Vi ;
16 return olD Vi ;
17 end
18 prev_Score < Score ;
19 end
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in lines 9 and 15. € € RT is the hyperparameter indicating the threshold determin-
ing whether the algorithm has converged. After the dynamic routing algorithm has
ended, the classification probability of the [-th label plD is inferred as plD = HOZD H
During the training phase, capsule dropout[93] is applied to the CapsNet for en-
hanced generalizabilty. For a given hyperparameter ¢ € [0, 1) indicating the dropout
rate, each primary capsule is removed with the probability of ¢ during the training

phase.

3.2.4 Optimization

Root
100 60 80
10 2oé 306 405 200 40 400 40
50 5 100150 15

Figure 3.4: An example case of label imbalance naturally occurring in hierarchical
text classification.

As a coarse-grained label closer to the root of the hierarchy is more likely to be
assigned to more documents than a fine-grained label closer to a leaf, HT'C has an
innate label imbalance issue[d7, [129], as illustrated in Figure Circles in Figure
.4 represent labels, while their sizes and numbers beside them denote the number of
data examples corresponding to the labels. Training a classifier using a dataset with

such an imbalance can lead to the classifier overfitting to labels with the majority
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of training examples while performing poorly on sparse labels[I30]. To overcome
the imbalance issue, which is one of the key challenges in HTC[55], GACaps-HTC
is trained using focal loss[130]. The focal loss relieves a neural network from being
overwhelmed by labels with most data examples by reducing the relative loss for
easy classification (labels with many examples) and focusing on difficult classification
(labels with few examples). The focal loss (FL) is obtained as follows:

FL(yD,p{j, . ,pf) = —Z(l —plD)Vlog (plD) — Z (pl]?)vlog (1 —pll,)) . (3.10)

leypb rgyP

v € R™ denotes the hyperparameter indicating the importance of misclassified ex-
amples, likely to be those of labels with few examples. This loss function replaces
the binary cross-entropy (BCE) loss, which is the most commonly employed loss for

multi-label classification. The BCE loss is calculated as follows:

BCE(VP,py,....p7) == log (p’) = log (1 —pf7). (3.11)
lEyD l/%yD

Heart N Sports ! Machine
Disease ~S% Injuries Structures™ Learning

.

Skin Care
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Figure 3.5: An example case of a classification result not coinciding with label hier-
archy.

Furthermore, a contradiction penalty term motivated by Yu et al.[53] is proposed

to encourage the model’s classification results to coincide with the label hierarchy.
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By minimizing this term, a neural network is trained to assign a label to a document
only if the document is assigned the parent label as a document of a child label is
trivially also of its parent. An example case of a classification result contradicting
the label hierarchy is depicted in Figure [3.5] where filled circles denote a classifier’s
predictions and the dotted ellipse denotes the part where the result contradicts the
hierarchy as a document can be categorized as a child label only if it is classified
as the parent label. The proposed contradiction penalty term denoted as CP is
calculated as follows:

CP(H,plD,...,pLD) = Z max(

1<I<L

,5> . (3.12)

D D
— max 71y
bp; < (Pl (& )eH)

1 yen is the binary indicator that returns 1 if (1,1') is in #H, and 0 otherwise.
The hyperparameter § € R" indicates the maximum value of the allowed difference
between two classification probabilities. Training GACaps-HTC without this hyper-
parameter may lead to the model learning only to output the same class probability
for every label.

The final loss term for training GACaps-HTC is a mixture of the loss terms

mentioned above, acquired as follows:
Loss(yD,’H,p?,...,pf):FL(yD,plD,...,pg)qt)\ X CP(H,p?,...,p?) . (3.13)

A € R* is the hyperparameter indicating the weight of the contradiction penalty

term.

3.2.5 Post-Processing

While the contradiction penalty term described in Subsection [3.2.4] is used to en-

courage classification results to coincide with the given hierarchy, the trained classi-
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fier can still return results that contradict the hierarchy. Therefore, post-processing
methods that add or remove labels are presented in this subsection. Three cases
of classification results contradicting the hierarchy are defined in this work. The
first case is an isolated label contradiction which occurs when a text document is
assigned to a label but not to its parent. The classifier can choose to either do noth-
ing, remove this isolated label, or add the labels that connect the isolated label and
the root of the hierarchy. While removing the isolated label or adding the labels
between the root and the isolated label guarantees classification results to match
the hierarchy, these methods may lead to more false-negatives (lower recall) or false-
positives (lower precision), respectively. Figure illustrates an example of isolated
label contradictions and the described post-processing methods. Filled circles in the
figure denote the assigned labels, where the gray circle denotes the label causing the

contradiction.

Root Root Root

(a) Isolate Label Contradiction  (b) Removing Isolated Labels  (c) Connecting Isolated Labels

Figure 3.6: Illustration of an isolated label contradiction and two possible post-
processing methods.

The second case of contradicting results is named a dangling label contradiction,

where a text document is assigned to a label but to none of its child labels. Note that
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this case may or may not contradict a hierarchy, as some datasets do not require
mandatory leaf classifications, where classifying a document as at least one leaf
label is necessary. However, in both datasets used in this thesis, the WOS-46985
dataset and the RCV1 dataset, each document is required to be assigned a leaf
label. In this case, the classifier can choose to either do nothing or remove labels
that connect the root and the dangling label. The classifier can also choose to find a
descendent leaf label with the highest class probability and add labels that connect
the dangling label and this descendent or to find a greedy path (choosing the child
label with the highest probability) to a leaf label. Note that while some datasets
meet the mandatory-leaf assumption, where the label paths are always required to
end at leaf labels, others do not. Illustrations of dangling label contradiction and
post-processing methods are depicted in Figure[3.7] Filled circles denote the assigned
labels, where the gray circle denotes the label causing the contradiction. Numbers

on the right side of labels denote corresponding class probabilities.

Finally, the third case, or an empty result contradiction, is when a document is
classified as none of the labels. This case of contradiction can occur due to labels
being removed by the aforementioned post-processing methods or simply because
the class probability of every label is below the predefined threshold (most commonly
0.5). When an empty result contradiction happens, the classifier can choose to find
a leaf label with the highest class probability and add labels that connect the root
and this leaf label or find a greedy path from the root to a leaf label. These post-
processing methods are equivalent to the methods shown in Figure (c) and (d),

respectively.

After GACaps-HTC is trained, validation performance derived from each combi-
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nation of post-processing methods for these cases of contradictions is obtained. The

combination with the best validation performance is then used for testing.

Root

(a) Dangling Label Contradiction (b) Removing Dangling Labels

(c) Connecting to the Best Leaf (d) Greedy Path

Figure 3.7: Illustration of a dangling label contradiction and three possible post-
processing methods.
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3.3 Experiments

3.3.1 Experiment Settings

Datasets

The effectiveness of the proposed approach was validated on two benchmark HTC
datasets widely employed to evaluate HTC approaches[45] 46| 47, [48], [49, (55 56,
71, (75, [102), 114, [115]. The first benchmark dataset was the WOS-46985 dataset[1],
which contains abstracts of 46,985 published papers available in Web Of Scienceﬂ
There are 141 domain labels, including seven top-level domain labels (biochemistry,
civil engineering, computer science, electrical engineering, mechanical engineering,
medical science, and psychology) and 134 subdomain labels. 37,588 examples in the
dataset were used for training, while 9,397 examples were used for testing.

The second dataset was the RCV1 datase‘ﬂ[%], comprising 804,414 newswire
stories published by Reuterﬁ from August 1996 to August 1997. In this dataset,
103 topic labels are defined, composing a hierarchy of four levels, including four
top-level topic labels (corporate & industrial, economics, government & social, and
markets). The RCV1 dataset was split into a training set with 23,149 examples and
a testing set comprising 781,265 examples following the original work that published

the dataset[32].

Metrics

The performance of GACaps-HTC and other approaches was measured and com-
pared using two metrics widely employed to evaluate multi-label classification (in-

cluding HTC) results: the micro-F1 score and macro-F1 score[131]. The micro-F1

"https://www.webofscience.com/
Zhttps:/ /trec.nist.gov/data/reuters/reuters.html
3https://www.reuters.com/
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score is a conventional metric used to evaluate classification results by assigning
equal weight to every example. In contrast, the macro-F1 score assigns equal weight
to every label. Therefore, an approach returning biased results that prefer labels with
many examples may achieve a high micro-F1 score while recording a low macro-F1
score.

Let TP, FP,, FN; denote the number of true-positive, false-positive, and false-
negative examples of the [-th label. Micro-precision, micro-recall, and micro-F1

scores, denoted as Micro-P, Micro-R, and Micro-F'1, are calculated as follows:

Ya<< TH
Micro-P = ==
Ya<< TR+ FP
TP
Micro-R = 2acier TH (3.14)

Ya<< TP+ FN,
2 X Micro-P x Micro-R
Micro-P + Micro-R

Micro-F1 =

Precision and recall scores corresponding to the I-th label are denoted as Class-P,
and Class-R;, respectively, and the macro-F1 score, denoted as Macro-F'1, is cal-

culated as follows:

TPh
Class-P| = —————
T TR+ FR
TP
lass-R) = —— L
Class-R; TP 1 FN, (3.15)

2 x Class-P, x Class-R;
Class-P, + Class-R;

1
Macro-F1 = I Z

1<I<L

Baselines

The GACaps-HTC was compared with the following baseline approaches:

e CapsNet-based flat approach:
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— Zhao et al.[98]: an approach using a N-gram CNN and two CapsNets

e Other flat approaches

— Lai et al.[101]: approach with bidirectional recurrent neural network (RNN)[132]

and a CNN

— Chen et al.[39]: a hierarchical long short-term memory (LSTM)[133]-

based approach

— Yang et al.[40]: an approach based on a hierarchical attention network

which utilizes word-level attention and sentence-level attention

Zhou et al.[41]: an attention-based bidirectional LSTM-based approach

— Liu et al.[69]: a CNN-based approach designed for extreme multi-label

text classification

— Chatterjee et al.[56]: a CNN-based approach that maps label embeddings

onto a hyperbolic space

e Mixed local and global approaches

— Wehrmann et al.[T6]: an approach that defines a global classifier and

hierarchy level-wise local classifiers

— Huang et al.[77]: an approach using a global classifier and attention-based

level-wise local classifiers

e Other local approaches

— Shimura et al.[75]: a CNN-based approach using transfer learning[134]
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— Banerjee et al.[71]: a gated recurrent unit (GRU)[135]-based approach

using transfer learning and attention mechanism

e GNN-based global approaches

— Zhou et al.][45]: a hierarchy-GCN based approach that extracts label-

specific representations

— Deng et al.[47]: a hierarchy-GCN based approach that aims to maximize

mutual information between documents and labels

e CapsNet-based global approaches

— Aly et al.[99]: a CapsNet-based approach exploiting hierarchy for param-

eter initialization

— Peng et al.[I00]: a CapsNet-based approach using a CNN, RNN, and

word-level GNN for textual representation extraction

e Other global approach

— Mao et al.[55]: a reinforcement learning-based approach that learns hier-

archy traversing policy

Implementation Details

For the RCV1 dataset, the pretrained bidirectional encoder representations from
Transformers (BERT)[136] was employed as the language model in the textual rep-
resentation extractor. The BERT is a language model trained on a massive En-

glish corpus that has demonstrated success when adopted in downstream NLP
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tasks[137, [138]. For the WOS-46985 dataset, BERT pretrained on scientific docu-
ments, namely SciBERT[139], was utilized as the language model since the domains

used for pretraining the language model and those of the dataset align.

Textual representations with dr; = 768 were obtained from the language models
mentioned above, and representations of dcony = Lx100, dgr = 100, and dcaps = 32
were extracted by GACaps-HTC. The number of labels I was 141 for the WOS-46985
dataset and 103 for the RCV1 dataset. The capsule pruning ratio was set to p = 0.05.
For the capsule dropout rate and the hyperparameter in the contradiction penalty
term, ¢ = 0.15 and § = 0.01 were selected, respectively, for both datasets, while for
the weight of the contradiction penalty term, A = 0.0005 and A = 0.001 were used for
the WOS-46985 dataset and the RCV1 dataset, respectively. Each hyperparameter
mentioned above was selected by a coarse hyperparameter search. The convergence
threshold of the dynamic routing algorithm and the hyperparameter in the focal
loss were set to € = 0.05 and v = 2, following Zhao et al.[64] and Lin et al.[130],

respectively.

The GACaps-HTC was trained using an Adam optimizer[I140] with mini-batches
of size 32. An initial learning rate of 0.0001 was used for the WOS-46985 dataset
while a learning rate of 0.00005 was used to train the model using the RCV1 dataset.
The learning rate was decayed by a factor of 0.1 if suboptimal validation micro-F1
scores were obtained for five consecutive epochs. We stopped the training of GACaps-

HTC after the learning rate was decayed for the fourth time.
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Approach ‘ Micro-F1  Macro-F1

Lai et al.[L01]° 0.638 0.478
Chen et al.[39]° 0.738 0.543
Yang et al.]J40]* 0.750 0.557
Zhou et al.[A1]" 0.744 0.551
Liu et al.]69]° 0.706 0.503
Zhao et al.[98]" 0.788 0.632
Aly et al.[99]* 0.769 0.614
Huang et al.[77]* 0.807 0.699
Peng et al.[I00]* 0.846 0.723
Zhou et al. [A5) 0.858 0.803
Deng et al.[47] 0.856 0.801
Ours (GACaps-HTC) | 0.876 0.829

The best results are highlighted in bold.
¢ F1 scores reported by Wang et al.[102]

Table 3.1: Experiment results on the WOS-46985 dataset.

3.3.2 Results

Performance on the W0OS-46985 Dataset

The experimental results on the WOS-46985 dataset are listed in Table The
GACaps-HTC achieved the best micro-F1 and macro-F1 scores with a 2.1% and a
3.2% gain compared to the second-best approach, Zhou et al.[45], respectively. For
further analysis of the classification results, confusion matrices that compared the
ground-truth labels and predicted labels with the highest classification probabilities
by GACaps-HTC are depicted in Figure Note that all cells with values higher
than 0.4 were filled with the same color to enhance the contrast in cells with low
values. Dark diagonal cells in each confusion matrix are true-positive cases where
the proposed approach correctly classified the documents. In Figure (a), top-level

domain labels in the WOS-46985 dataset are compared. Although the proposed ap-
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proach successfully classified top-level domain labels in most cases, it categorized
a portion of documents of the second label (medical sciences) as the fifth (bio-
chemistry) or seventh label (psychology). This error is presumed to be due to the
numerous similarities between their child labels. For example, documents on im-
mune system-related illnesses, including lymphoma and acquired immune deficiency
syndrome, and mental health are labeled as medical sciences, whereas documents
on immunology and depression are categorized as biochemistry and psychology, re-

spectively.

Predicted Label
Predicted Label
(=)

N

True Label True Label 0.0
(a) Level 1 (b) Level 2

Figure 3.8: Level-wise confusion matrix on the WOS-46985 dataset.

In Figure (b), labels in the second hierarchy level in the WOS-46985 dataset
are compared. Cells surrounded by a blue square denote the confusion between
labels that share a parent label and, therefore, are semantically similar. These cells
are mostly light-colored as the proposed approach successfully distinguished one

label from another label with a similar meaning.
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Performance on the RCV1 Dataset

Approach ‘ Micro-F1  Macro-F1
Lai et al.[TO1]° 0.686 0.293
Chen et al.[39]° 0.673 0.310
Yang et al.[40]° 0.696 0.327
Zhou et al.[41]* 0.670 0.315
Liu et al.[69]° 0.695 0.301
Shimura et al.[75] 0.803 0.514
Wehrmann et al.[76]¢ 0.808 0.546
Zhao et al.[98]° 0.739 0.399
Aly et al.[99]° 0.710 0.339
Banerjee et al.[T1] 0.805 0.585
Huang et al.[77]* 0.833 0.601
Mao et al.[55] 0.833 0.601
Peng et al.[100] 0.778 0.513
Zhou et al.[45] 0.840 0.634
Chatterjee[506] 0.793 0.473
Deng et al.[47] 0.835 0.627
Ours (GACaps-HTC) | 0.868 0.698

The best results are highlighted in bold.
@ F1 scores reported by Wang et al.[102]
® F1 scores reported by Peng et al.[I00]
¢ F1 scores reported by Mao et al.[55]

Table 3.2: Experiment results on the RCV1 dataset.

The experimental results on the RCV1 dataset are listed in Table The
GACaps-HTC achieved the best micro-F1 and macro-F1 scores with a 3.3% gain and
a 10.1% gain compared to the second-best approach, Zhou et al.[45], respectively.
This indicates that the proposed approach could improve the overall classification
performance while successfully categorizing sparse (fine-grained) labels.

Such improvements were due to the proposed approach’s ability to understand

the label hierarchy using the GAT and the latent label relationships with the Cap-
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Digit Capsule
Digit Capsule

Primary Capsule
(@) Initial State

Digit Capsule
Digit Capsule

Primary Capsule
(c) Tenth Iteration

Primary Capsule
(b) Fifth Iteration

Primary Capsule
(d) Twentieth Iteration

0.100

0.075

0.050

0.025

0.000

Figure 3.9: Visualization of normalized coupling coefficients in the capsule network

on the RCV1 dataset.
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sNet. The latent relationships between the labels on the second level of the RCV1
dataset’s label hierarchy learned by the CapsNet are illustrated in Figure Note
that only the labels on the second level of the label hierarchy are depicted, and there-
fore there were no explicit relationships provided by the label hierarchy between the
illustrated labels. As shown in Figure the dynamic routing algorithm distin-
guished salient relationships more clearly as the number of iterations increased.
Some examples of the relationships learned by the CapsNet were as follows: The
CapsNet captured a correlation between the economic performance label and the
economic output and capacity label, which is intuitive as economic output and ca-
pacity impact economic performance directly. Furthermore, the CapsNet derived
that the commodity market label is correlated with the corporate contracts and or-
ders label, corporate management label, and the corporate production label, where
these correlations make sense as a fluctuation in the commodity market impacts cor-
porate contracts, management, and production. The network also inferred that the
economic inflation label and the corporate-related regulation label are correlated,
where the fastest way to stabilize inflation is by attracting foreign and internal in-
vestments by relaxing corporate regulations[141]. Intuitive relationships like these
indicate that GACaps-HTC successfully understood the latent relationships between
labels. Also, such interpretability of the implicit label relationships extracted by the

model can enhance a user’s confidence in the model[142].

3.3.3 Ablation Studies

This subsection demonstrates the results of ablation studies performed with the

WOS-46985 dataset.
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Ablation Studies on Capsule Pruning and Attention

The effectiveness of the capsule pruning and attention mechanism adopted in the
CapsNet is presented in Table The capsule pruning and attention mechanism
led to increases in the micro-F1 and the macro-F1 scores. These results imply that
enhanced generalizability[96] and representation power[d7] obtained by employing
the capsule pruning and attention mechanism, respectively, enabled GACaps-HTC
to achieve high F1 scores. On average, approaches with pruning achieved a 0.4% and
a 0.6% increase in the micro-F1 and the macro-F1 scores, respectively, compared to
those without pruning. Employing the attention mechanism in the CapsNet led to a
0.9% gain in the micro-F1 score and a 1.6% gain in the macro-F1 score, respectively,

on average.

Pruning Attention | Micro-F1 Macro-F1

- - 0.865 0.811
v - 0.871 0.816
- v 0.875 0.824
v v 0.876 0.829

The best results are highlighted in bold.

Table 3.3: Ablation study results regarding capsule pruning and attention on the
WOS-46985 dataset.

Ablation Studies on Loss Terms

The F1 scores recorded by training GACaps-HTC with various loss terms are listed
in Table [3.4] where the results in the first and the third rows were achieved by
replacing the focal loss with the BCE loss. Training the network using the focal loss

increased both the micro-F1 and macro-F1 scores, indicating that letting the network
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focus on labels harder to categorize than others led to improved performance. On
the other hand, employing the contradiction penalty term increased the macro-F1
score while maintaining the same level of the micro-F1 score. This indicates that
the information on the label hierarchy provided by this additional loss term played

a critical role in categorizing fine-grained labels with few examples.

FLL CP | Micro-F1 Macro-F1

- - 0.873 0.819
v - 0.875 0.819
- v 0.873 0.824
v v 0.876 0.829

The best results are highlighted in bold.

Table 3.4: Ablation study results regarding loss terms on the WOS-46985 dataset.

Ablation Studies on Hierarchy Encoder

Table lists the results obtained by replacing the GAT in the hierarchy encoder
of GACaps-HTC with other GNNs. Although employing any GNN led to improved
performance in the micro-F1 and macro-F1 scores compared to the approach with-
out a GNN, the proposed approach with GAT outperformed other approaches. In
addition, employing the GAT was efficient as the number of parameters in the GAT
(~10k) was similar to that of the GCN (~10k), whereas the hierarchy-GCN, which

achieved the second-best performance, required more parameters (~29k).

Ablation Studies on Implicit Relationship Extractor

The effectiveness of the CapsNet in the implicit relationship extractor of GACaps-
HTC is displayed in Table [3.6] The results recorded in the first row were obtained

by replacing the CapsNet with a fully-connected layer, abbreviated as FC in Table
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Graph Neural Network ‘ Micro-F1  Macro-F1

None 0.864 0.800
GCNI8I] 0.868 0.812
Hierarchy-GCNJ45] 0.873 0.820
GAT[02] 0.876  0.829

The best results are highlighted in bold.

Table 3.5: Ablation study results regarding graph neural networks on the WOS-46985
dataset.

which returned the classification probability of each label using every label-
specific representation from the hierarchy encoder. The F1 scores in the second row
were achieved by a neural network that employed a convolutional layer instead of the
CapsNet. Finally, the third row records the performance obtained by utilizing a fully-
connected layer for each label that returned a probability from the corresponding
label-specific representation. The results show that the proposed approach with the
CapsNet was able to achieve the best performance due to its ability to capture latent

relationships between labels via the dynamic routing algorithm.

Table 3.6: Ablation study results regarding capsule network on the WOS-46985
dataset.

Employed Subnetwork | Micro-F1 Macro-F1

FC 0.869 0.814
Convolutional 0.869 0.827
FC per label 0.871 0.819

CapsNet 0.876 0.829

The best results are highlighted in bold.

To further illustrate how the GAT and the CapsNet of the proposed approach

enhanced the classification performance, additional ablation experiments were con-
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Table 3.7: Ablation study results regarding the graph attention network and capsule
network on the RCV1 dataset.

Approach Metric | Level 1 Level 2  Level 3 Level 4  Overall

Micro-F1| 0.939 0.821 0.851  0.780  0.868
Macro-F1|  0.929 0.708 0.657  0.780  0.698
0.853 0.743 0.769  0.779  0.788
(-9.240%) (-9.492%) (-9.624%) (-0.146%) (-9.192%)
0.829 0.620 0563  0.779  0.606
(-10.737%) (-12.414%) (-14.356%) (-0.146%) (-13.222%)
0.923 0.811 0.841  0.779  0.858
(-1.719%) (-1.133%) (-1.197%) (-0.146%) (-1.151%)
0.911 0.687 0.648  0.779  0.680
(-1.956%) (-2.954%) (-1.393%) (-0.146%) (-2.579%)

GACaps-HTC

Micro-F1
Without GAT

Macro-F1

Micro-F1

Without CapsNet
Macro-F1

ducted on the RCV1 dataset. In these experiments, F1 scores obtained from labels
in each hierarchy level were measured to compare the roles of the GAT and the
CapsNet, where a level of a label denotes the distance from the root to the label in
the label hierarchy. Results are presented in Table The GACaps-HTC without
a GAT (second row of the Approach column) is a local approach that did not utilize
the label hierarchy while modeling implicit label relationships using a CapsNet. The
GACaps-HTC without a CapsNet (third row of the Approach column) exploited
the label hierarchy while ignoring implicit label relationships as the CapsNet of the
proposed approach was replaced with a fully-connected layer. Gains and losses in
F1 scores compared to GACaps-HTC are presented in parentheses.

While GACaps-HTC without either the GAT or the CapsNet achieved degraded

performance, removing the GAT led to steeper decreases in F1 scores, implying that
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explicit relationships between labels presented as a label hierarchy played a more
significant role in HTC than implicit label relationships. The difference between
the roles of the hierarchy encoder and the implicit relationship extractor can be
deduced from further level-wise analysis. Table shows that information on the
label hierarchy extracted by the GAT provided more help in classifying labels further
from the root than in classifying those closer to the root. Note that only one label
was present in the fourth level; therefore, the results on the fourth level do not
provide much insight. On the other hand, no such level-wise tendencies could be
deduced from comparing GACaps-HTC and GACaps-HTC without a CapsNet, as
the CapsNet in the proposed approach models information on implicit relationships

between labels that may be unrelated to the label hierarchy.

Ablation Studies on Capsule Dropout

Finally, the effect of capsule dropout is shown in Figure and Table As de-
picted in Figure higher dropout rates led to slower learning as more primary
capsules were dropped and less information was utilized in the dynamic routing algo-
rithm. However, the enhanced robustness from the capsule dropout led to improved
performance, as shown in Table The results also show that high dropout rates
could cause suboptimal classification performance due to the CapsNet losing too

much information.
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Table 3.8: Results obtained with different capsule dropout rates on the WOS-46985
dataset.

Dropout Rate (¢) ‘ Micro-F1  Macro-F1

0 0.875 0.819
0.15 0.876 0.829
0.30 0.872 0.819

The best results are highlighted in bold.
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Figure 3.10: Validation F1 score plot obtained by training GACaps-HTC with dif-
ferent capsule dropout rates on the WOS-46985 dataset.
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Chapter 4

Incorporating Label Semantics for Hierarchical
Text Classification

4.1 Problem Definition

As introduced in Section label semantics have been shown to contain valuable
information for classification, and several approaches attempted to incorporate this
information in HTC[46] [49] 102 [114] 115]. Motivated by these approaches, the ap-
proach described in Chapter [3], GACaps-HTC, is introduced with label semantics
in this section. Like the previous chapter, this chapter tackles hierarchical text clas-
sification. Therefore, notations of an input text document D, the number of labels
L, and a corresponding set of ground-truth labels Y follow that of Section
Notations of classification probabilities plD corresponding to the [-th label and the
label hierarchy H also follow the notations from Section

Representations of label semantics are extracted from textual descriptions of
labels. A textual description of a label may be a sentence or a paragraph summarizing
the meaning of the label or even a simple phrase like the label’s name. In the following

sections, A; denotes the textual description of the [-th label.
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4.2 Methods

A semantic-aware dynamic routing algorithm is proposed to incorporate label se-
mantics in the CapsNet of the implicit relationship extractor. The proposed algo-
rithm incorporates semantic information on labels into the model in the following
two ways: First, each activation vector propagated from a primary capsule to a digit
capsule is added with a vector obtained from semantic representations of labels cor-
responding to the capsules. This added vector is named semantic bias as it acts as a
bias term for the propagated activation vector. Second, an initial coupling coefficient
between two labels is set to the similarity of the labels’ semantic representations.
Since coupling coefficients represent the similarity between two capsules’ activation
vectors and semantics[63], 64], such an initialization can accelerate the training.
Other various attempts had been made to introduce semantic information in
the textual representation extractor, hierarchy encoder, or attention mechanism of
the implicit relationship extractor, only to result in suboptimal performance. De-
tails on these attempts and their performance are discussed in Subsection [4.3.2] and

Subsection [£.3.3] respectively.

4.2.1 Semantic Bias

The label semantics are injected into the dynamic routing algorithm of the implicit
relationship extractor’s CapsNet to allow the subnetwork to derive latent relation-
ships between labels from not only textual representations but also their semantics.
Before introducing label semantics into the CapsNet, a semantic representation of
each label needs to be extracted. Let s; € RY“M denote the task-agnostic semantic

representation of the [-th label, obtained from encoding A; using a pretrained lan-

o8



guage model that generates vector representations of size dyjs. A matrix of weight
parameters Wge, € R¥em>dim is defined to generate task-specific label semantic
representations. A task-specific semantic representation of the I-th label is denoted

as s) € R%em and is obtained as follows:

8] = Wgemsi. (4.1)

The dynamic routing algorithm described in Algorithm [1| obtains the activation
vector propagated from the I’-th primary capsule to the [-th digit capsule, denoted
as ul?,, as follows:

lv"l?’ = WCaps,lulI')a (4.2)

from the activation vector of the I’-th primary capsule u? and a parameter matrix
corresponding to the I-th digit capsule W ¢y, ;. Aforementioned semantic represen-
tations are introduced in the dynamic routing algorithm as additive biases in these
propagated activation vectors. The semantic bias corresponding to the I’-th primary

capsule and the [-th digit capsule is denoted as ¢j;/, and is obtained as follows:
S = WBiaSS; + W/Biassg’ + ReLU( /éias|52 - S;’D' (4.3)

W Biass Whines Whiae € R9CapsXdsem are the parameter matrices used for trans-
forming the semantic representations to a semantic bias. Note that the last term,
ReLU(W3;,,|s; — s}/]), incorporates the semantic relationship between two labels in
the semantic bias.

To effectively moderate the impact of injecting label semantics, a gating mechanism [143]

is utilized in the proposed semantic-aware dynamic routing. This mechanism dynam-

ically controls the flow of multiple channels of information to the resulting feature
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representation. The gating mechanism is most popularly adopted in RNNs to adap-
tively model the flow of the information propagated from the past to the current
state, resulting in gated recurrent neural networks[144], including LSTMs[133] and

GRUSs[I35].

In this work, a gating mechanism similar to that of Li et al.[I45] is employed.
This mechanism obtains the valve of each element, which is the ratio of additional
information (label semantics) propagated to the original information (textual repre-
sentation), from both sources of information. Let W gqate; € RAcapsXduE denote the
matrix of parameters used to obtain the valve vector corresponding to the I-th digit
capsule. Also, Wi, Wiye € RiCaps*dsem are the matrices of parameters used
for obtaining valve vectors from label semantic representations. The valve vector

corresponding to the I’-th primary capsule and the I-th digit capsule is denoted as

O'l?/ and is obtained as follows:
o) = Sigmoid (LayerNorm (W gare 1t + W igaes) + Waesy)) - (4.4)

Layer normalization[4], abbreviated as LayerNorm, computes the normalization statis-

tics of valve vectors and performs normalization to stable classification.

Equation [4.2] in the dynamic routing algorithm is replaced with the following
equation:

D D D
My = Wcaps’l'u/l/ + oS- (45)

This process of obtaining a semantic bias and a valve vector is depicted in Figure

1
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4.2.2 Coupling Coefficient Initialization

According to Sabour et al.[63] and Zhao et al.[64], a coupling coefficient correspond-
ing to a pair of a primary capsule and a digit capsule is a measurement of agreement
(similarity) between their activation vectors. Given two semantically similar labels,
their corresponding capsules should capture similar characteristics, resulting in sim-
ilar activation vectors with a high degree of agreement. In order to leverage this
assumption, a label semantic-based coupling coefficient initialization method is pro-
posed.

While the dynamic routing algorithm described in Algorithm [1] and that pro-
posed by Sabour et al.[63] initialize every coupling coefficient to zero, the proposed
method initializes each coefficient to the similarity of the corresponding labels. In
this work, dot products of task-agnostic label semantic representations (s;) are used
for initializing coupling coefficients. A coupling coefficient cﬁ, defined for the I-th

digit capsule and the I’-th primary capsule is initialized as follows:
Clll)/ = (Sl + bSem,l) : (Sl’ + bSem,l’)/dLM‘ (46)

bsem, € R%m is a vector of trainable parameters assigned to the semantic repre-
sentation of the [-th label. These vectors allow initial coefficients to be trainable via
backpropagation. Ramasinghe et al.[146] demonstrates that utilizing trainable ini-
tial coupling coefficients leads to faster routing convergence and better classification
performance due to the fact that the attributes captured by primary capsules and
those corresponding to digit capsules are dependent on each other[146], 147]. bgey,
is initialized following LeCun initialization[I48], which is known to help faster con-

vergence when trained by backpropagation. Note that the dot product is divided by
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dr s to scale down the influence of label semantics and prevent the dynamic routing

algorithm from converging solely dependent on the label semantics.

4.2.3 Semantic-Aware Dynamic Routing Algorithm

Introducing semantic biases and the proposed coupling coefficient initialization method
in a dynamic routing algorithm leads to the proposed semantic-aware dynamic rout-
ing algorithm described in Algorithm [2] While the proposed algorithm is similar to
the algorithm proposed by Zhao et al.[64], note that line 1 of Algorithm is replaced
with Equation [4.6]in line 1 of Algorithm [2| for semantic-based coefficient initializa-
tion. The process of obtaining semantic biases and valve vectors is presented in lines
2 to 4 in Algorithm [2] Finally, line 7 of Algorithm [I} which calculated activation vec-
tors propagated from primary capsules to digit capsules, is replaced with Equation

[4.5] as shown in line 10 of Algorithm
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Algorithm 2: Semantic-Aware Dynamic Routing Algorithm

Inputs: activation vectors of primary capsules ulD for1<I<L
task-agnostic label semantic representations s; for 1 <[ < L
Output: activation vectors of digit capsules olD for1<I<L

1 ¢l < (814 bsemy) - (s1 + bsemu)/Vdrar VLT

2 8 < Wgems; Vi;

3 G < W Biass] + Wihiss) + ReLUW g |s) — sp|) VLT
4 ol « Sigmoid (LayerNorm (W gare u? + Winges) + Weaesy)) VLU
5 prev_Score < —o0 ;

6 while True do

7 for [+ 1to L do

8 for I’ < 1to L do

~D exp(cﬁ,)

° w Sicicrexp(ely)

10 /"’lll)/ <~ WCaps,lul[/) + O'l%‘;ll’ 5

11 o + di<r<r B

12 dist (0P, ) + [l b - o] LoP| ;

0.5+ | || 0.5+]|of |

13 cﬁ, +— cl?, + (1 — dist (olD,p,l?,)) ;

14 end
15 end
16 Score «+ log <Zl§l’l,§L b (1 — dist (olD, pﬁ,))) ;
17 if |Score — prev_Score| < € then

D [Pl b .

18 o] Wol Vi ;

19 return o VI ;
20 end
21 prev_Score < Score ;
22 end
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Figure 4.1: Hlustration of the process of incorporating semantic information into propagated activation vector of
dynamic routing algorithm. LayerNorm and FC stand for layer normalization and a fully-connected layer, respectively.
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4.3 Experiments

4.3.1 Experiment Settings

For a fair comparison between the performance presented in Subsection [3.3.2]and the
performance of GACaps-HTC with semantic-aware dynamic routing algorithm, the
proposed approach was trained and evaluated using the WOS-46985 dataset and the
RCV1 dataset described in Subsection Also, the micro-F1 score and macro-F1
score were used as evaluation metrics for the following experiments. Implementation
details of GACaps-HTC remained the same as described in Subsection [3.3.1

When training the proposed approach using the WOS-46985 dataset, task-agnostic
label semantic representations (s;) were extracted using SciBERT. As label names
were fed as phrases, the approach was trained and evaluated using semantic repre-
sentations obtained from other language models that had been shown to be effec-
tive in generating phrase-level or document-level representations, but the approach
trained with representations from SciBERT achieved the best performance. These
language models included PhraseBERT[149], which is BERT specialized in gener-
ating phrase-level embeddings, SPECTER][I50] (short for scientific paper embed-
dings using citation-informed Transformers) and ASPIRE[I51] (short for aspectual
scientific paper relations), which generate document-level embeddings on scientific
documents.

As for the RCV1 dataset, label semantic representations were extracted us-
ing a pretrained BERT. This language model was compared with other language
models, including PhraseBERT, text-to-text transfer Transformer (T5)[I52], and

MPNet[I53] (short for masked and permuted pretraining network), which have
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shown state-of-the-art performance when employed for various downstream NLP
tasks. Task-specific label semantic representations of dge,, = 200 and dgen,, = 250

were used for the W0OS-46985 dataset and the RCV1 dataset, respectively.

4.3.2 Compared Approaches

In this subsection, several approaches that incorporate label semantics into various
subnetworks of GACaps-HTC are described. Note that semantic representations (s))
are obtained in the same way as described in Subsection An overview of the
approaches compared with the proposed approach with a semantic-aware dynamic
routing algorithm is illustrated in Figure where abbreviations in the figure are
described in this subsection. Note that the following approaches use the dynamic

routing algorithm proposed by Zhao et al.[64] described in Algorithm

Introducing Label Semantics in Textual Representation Extractor

The first approach, abbreviated as in-TRE, modifies the textual representation ex-
tractor of GACaps-HTC and incorporates semantic information into the hierarchy-
aware textual representations (le ). By doing so, semantic information on labels is
expected to help the model understand the label hierarchy in the hierarchy encoder.
Furthermore, as the semantic information is embedded in the hierarchy encoder’s
input, it is propagated by the GAT and is also embedded in the output of the hi-
erarchy encoder. Therefore, the semantic information may also be able to aid the
model in capturing latent relationships between labels.

In this approach, the semantic representations are used as an additive bias in

the textual representation extractor. Equation [3.3| is modified as follows:

2P = W 4;MaxPool ((Conv (XP) ety g dHE]) + s;) . (4.7)
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In this approach, dgen = dgr to match the sizes of added vectors.
Introducing Label Semantics before Hierarchy Encoder

The second approach, abbreviated as pre-HE, is similar to the in-TRE approach
as they both merge semantic information with textual representations before the
representations are passed to the hierarchy encoder. The difference between the
first and the second approach is that while the first approach utilized semantic
representations as additive biases, the second approach concatenates the semantic
representations with the textual representations. Therefore, compared to the in-TRE
approach, the pre-HE approach utilizes merged representations of a document and
label semantics that are disentangled. In this approach, Equation is replaced

with the following equation:

2P = W 4Concat (MaxPool (Conv (XD) (4.8)

[:,(l*l)dHEildHE}) ’So '

In this approach, the size of the weight parameters’ matrix, W 5y, is changed from

dge X dup to dgp X (duE + dsem)-
Introducing Label Semantics in Hierarchy Encoder

This approach, abbreviated as in-HE, injects label semantic information directly into
the hierarchy encoder’s weight calculation process described in Equation [3.4] There-
fore, the hierarchy encoder can infer the importance of different neighboring labels
when generating a hierarchy-aware label representation based on their semantic re-
lationships (similarities). However, as the propagated representations themselves do
not contain information on label semantics, this information is not provided to the

implicit relationship extractor to help understand how labels are implicitly corre-
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lated.

Equation [3.4] is replaced with the following equation:
D _ D _D .
wjp = LeakyReLU (W ygConcat (27, 217, s}, 8/) ) - (4.9)

The weight parameter matrix Wy € R1*2(duptdsem) i ysed in this approach.
Note that only the weight calculation of the hierarchy encoder is changed while the
same weight normalization and propagation processes are used as shown in Equation

and Equation respectively.
Introducing Label Semantics after Hierarchy Encoder

The fourth approach is abbreviated as post-HE, and it feeds semantic representa-
tions after hierarchy-aware label-specific representations are generated. Therefore
the attention mechanism and the CapsNet in the implicit relationship extractor can
take label semantics into account for inferring the relevance of different elements
in the representations and capturing latent relationships. Similar to the first ap-
proach (in-TRE), semantic representations play the role of additive bias terms in
this approach.

Equation [3.7] is modified as follows in the post-HE approach:

1<I'<L

vP = ReLU ( > abzb 4+ .s;> . (4.10)
dsem is equal to dg g to match the sizes of added vectors.

Introducing Label Semantics in Attention Mechanism

For this approach, which is abbreviated as in-Attn, attention weights of primary

capsules in the implicit relationship extractor are obtained not only from textual
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representations but also from label semantic representations. Therefore, the label
relationship extractor can infer the importance of each primary capsule using the
correlations between the textual and label semantic representations. However, sim-
ilar to the third approach, the in-HE approach, the output representations of the
attention mechanism do not contain information on label semantics. Therefore, the
CapsNet of the implicit relationship extractor cannot make use of the semantic in-
formation to infer latent relationships via a dynamic routing algorithm.

Equation is replaced with the following equation:

aP =tanh (W%tmReLU (W}L‘thoncat (v{j, o ’UE, sy, S’L) + b}%m) + bitm) )
(4.11)
While the shapes of W?,,,, byu,, and b4, remain the same as Equation

W?2,,, € RixLdnetdsem) ig used in this approach.

4.3.3 Results

Performance on the W0OS-46985 Dataset

Approach Micro-F1  Macro-F1
GACaps-HTC 0.876 0.829
GACaps-HTC + in-TRE semantics 0.874 0.823
GACaps-HTC + pre-HE semantics 0.869 0.807
GACaps-HTC + in-HE semantics 0.873 0.816
GACaps-HTC + post-HE semantics 0.876 0.821
GACaps-HTC + in-Attn semantics 0.864 0.806
GACaps-HTC + semantic-aware dynamic routing 0.878 0.831

The best results are highlighted in bold.

Table 4.1: Experiment results on the WOS-46985 dataset.

The experimental results on the WOS-46985 dataset are listed in Table
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The results demonstrate that the performance of GACaps-HTC was enhanced by
augmenting the semantic information of labels. Also, they show that the proposed
method, semantic-aware dynamic routing, was the most effective method to inject

the semantic information into the classifier.

Note that the in-TRE approach fed textual representations embedded with la-
bel semantic information into the hierarchy encoder, and therefore the semantic
information took part in inferring attention weights in the hierarchy encoder. Thus,
Table shows that the approaches that made use of the semantic information
when inferring the relative importance of neighboring labels (in-TRE, pre-HE, and
in-HE) achieved lower F1 scores than GACaps-HTC without semantics. The same
can be said for the approaches that used semantic information when obtaining atten-
tion weights in the implicit relationship extractor. These observations are believed
to be due to the classifier overfitting to display static attention (where the model
learns to highlight features independent to the input text[I54]) conditioned on label

occurrence statistics and semantics only.

While the performance enhanced by employing semantic-aware dynamic routing
may seem subtle, the proposed dynamic routing algorithm accelerated the classifier’s
training, as shown in Figure Both the validation loss plot (Figure (a)) and
the validation F1 score plot (Figure (b) show that employing semantic-aware
dynamic routing led to faster convergence. Training time until convergence was
reduced by approximately 30% when trained under the same environment (single

GTX 1080 Ti).
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Figure 4.3: Validation loss and F1 score plots obtained by training GACaps-HTC
on the WOS-46985 dataset with and without augmenting label semantics.
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Approach Micro-F1  Macro-F1

GACaps-HTC 0.868 0.698
GACaps-HTC + in-TRE semantics 0.870 0.695
GACaps-HTC + pre-HE semantics 0.871 0.694
GACaps-HTC + in-HE semantics 0.863 0.693
GACaps-HTC + post-HE semantics 0.867 0.694
GACaps-HTC + in-Attn semantics 0.864 0.694
GACaps-HTC + semantic-aware dynamic routing | 0.872 0.694

The best results are highlighted in bold.
Table 4.2: Experiment results on the RCV1 dataset.

Performance on the RCV1 Dataset

The experimental results on the RCV1 dataset are shown in Table Employ-
ing semantic-aware dynamic routing led to a slightly improved micro-F1 score and
decreased macro-F1 score. Also, while injecting the semantic information of labels
in the textual representation extractor, hierarchy encoder, or the attention mech-
anism led to degraded performance for the experiments performed on the WOS-
46985 dataset, in-TRE and pre-HE approaches were able to achieve a similar level
of performance compared to the approach with the semantic-aware dynamic routing
algorithm.

The effectiveness of the proposed dynamic routing algorithm in enabling the
model to achieve faster convergence is depicted in Figure The validation loss
plot in Figure (a) and the micro-F1 plot in Figure (b) show that employing
semantic-aware dynamic routing led to faster convergence. Furthermore, the classi-
fier with the semantic-aware dynamic routing algorithm took approximately 63%,
52%, and 70% less time to converge compared to GACaps-HTC without label se-

mantics, in-TRE approach, and the pre-HE approaches, which are the approaches
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Figure 4.5: Visualization of normalized coupling coefficients in the capsule network
on the RCV1 dataset when trained using semantic-aware dynamic routing algorithm.
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that achieved a similar level of performance, respectively.

Latent relationships between the RCV1 dataset’s labels captured by the Cap-
sNet are illustrated in Figure [£.5] as heatmaps. Like Figure [3.9] only the labels
on the second level of the hierarchy are depicted. Similar to GACaps-HTC using
the dynamic routing algorithm by Zhao et al.[64], the dynamic routing algorithm
identified important relationships as the number of iterations grew. Several new in-
tuitive relationships could be derived when adopting the semantic-aware dynamic
routing algorithm. For example, the corporate strategy/plans label, corporate per-
formance label, and corporate management label had strong connections with the
monetary /economic label. Also, the monetary/economic label, science/technology
label, and corporate-related markets/marketing label had high correlations with the

corporate performance label.
4.3.4 Ablation Studies

The following ablation studies were performed on the WOS-46985 dataset.

Ablation Studies on Semantic Bias and Gating Mechanism

The effectiveness of semantic bias and the gating mechanism used to inject seman-
tic information into the primary capsules of the implicit relationship extractor’s
CapsNet is presented in Table Simply adding semantic bias with textual repre-
sentation led to decreased performance due to label semantics overwhelming textual
information, leading to the model overfitting to classify a document using semantics
rather than from the document’s contents. This overfitting issue was elevated via the

gating mechanism as the model can learn the relative importance of the semantic

76 1



information compared to the textual information.

Semantic Bias Gating Mechanism | Micro-F1 Macro-F1

- - 0.875 0.826
v - 0.873 0.823
v v 0.878 0.831

The best results are highlighted in bold.

Table 4.3: Ablation study results regarding semantic bias and gating mechanism on
the WOS-46985 dataset.

Figure depicts the validation loss and F'1 score plots illustrated to deter-
mine whether the semantic bias or the gating mechanism accelerated the classifier’s
convergence. Red, blue and green lines, each denoted as “Without semantic bias,”
“Without gating mechanism,” and “With gating mechanism,” corresponds to the
first, second, and third row in Table [4.3] respectively. Figure [4.6] shows that while
employing the semantic bias helped the model to converge faster, the gating mech-

anism did not affect how fast GACaps-HTC converged.

Ablation Studies on Coupling Coefficient Initialization

The F1 scores recorded by training GACaps-HTC using different coupling coefficient
initialization methods are shown in Table The first column represents whether
an initial coupling coefficient between two labels was initialized from their semantic
similarity or from zero. The second column denotes whether the initial coupling
coefficients were trainable or not. Using semantic-based initialization had shown to
lead to improved F1 scores while making the coefficients trainable was effective only
when the coefficients were initialized from semantic similarities.

Figure illustrates the validation loss and F1 score plots for analyzing whether
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Semantic-Based Initialization Trainable Coefficients | Micro-F1 Macro-F1

- - 0.874 0.824
v - 0.875 0.827
- v 0.873 0.822
v v 0.878 0.831

The best results are highlighted in bold.

Table 4.4: Ablation study results regarding coupling coefficient initialization and
training on the WOS-46985 dataset.

the coupling coefficient initialization strategies affected how fast GACaps-HTC con-
verges. Semantic-based coupling coeflicient initialization and coupling coefficient op-
timization had both shown to lead to similar curves and, therefore, a similar level

of convergence speed.
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Chapter 5

Aspect Category Sentiment Analysis Using Graph
Attention Capsule Network

5.1 Problem Definition

The goal of aspect category sentiment analysis is to identify a set of predefined
entities that appear in a given text document and classify a sentiment polarity
(positive, neutral, and negative) for each entity. Let D denote the text document
as defined in Sections and and &£ denote the predefined set of entities, also
known as aspect categories. The ground-truth set of aspect category-sentiment pairs

is denoted as SP and represented as follows:
SP c {(e,x) |e € € and x € {positive, neutral, negative}} . (5.1)

An aspect category sentiment analysis model learns a mapping from D to S” and
outputs a classification probability for each pair of an aspect category and a senti-

ment polarity.
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5.2 Methods

In this chapter, GACaps-HTC is applied and evaluated on aspect category sen-
timent analysis to investigate other practical use cases of the proposed method.
This section describes how an aspect category sentiment analysis problem can be
transformed into an HTC problem to employ GACaps-HTC. While previous as-
pect category sentiment analysis methods, including Cartesian product methods
and add-one-dimension methods, ignore the hierarchical property of the task, this
thesis takes a hierarchical classification approach similar to Cai et al.[120]. How-
ever, while Cai et al.[120] makes use of a hierarchy with only two levels (each level
consisting of aspect category labels and sentiment polarity labels), this thesis ac-
knowledges the fact that aspect categories can form a hierarchical structure of their
own. For example, in the SemEval2015 and SemFEval2016 datasets, each aspect cat-
egory label consists of an entity type label and an entity attribute label. As an
entity attribute label corresponding to a text document depends on the entity type,
there is a two-level hierarchical structure of labels. The following example from the
Laptop2015 dataset of the SemEval2015 datasets stated on the official website of
the SemEval2015 datasets[155] clearly demonstrates this hierarchical property: “It
is extremely portable and easily connects to WIFI at the library and elsewhere.”
While the entire sentence is about a laptop (entity type label), it mentions both
its portability and connectivity (entity attribute labels). Therefore, resulting aspect
category labels are tuples of entity type labels and entity attribute labels as follows:
(laptop, portability) and (laptop, connectivity).

Based on the aforementioned observation, a hierarchical structure of at least two

levels is constructed from each aspect category sentiment analysis dataset. Topics, or

82 !



Laptop#Price Laptop#Performance --- Battery#Portability Battery#Quality

Laptop#Price#Pos Laptop#Price#Neu Laptop#Price##Neg Battery#Quality#Pos Battery#Quality#Neu Battery#Quality#Neg

(a) Hierarchy with two levels (aspect category level and sentiment level)

Battery

Laptop#Price Laptop#Performance --- Battery#Portability Battery#Quality

Laptop#Price#Pos Laptop#Price#Neu Laptop#Price#Neg Battery#Quality#Pos Battery#Quality#Neu Battery#Quality#Neg

(b) Hierarchy with three levels (entity type level, aspect category level, and sentiment level)

Figure 5.1: Hierarchical structure of labels derived from the Laptop2015 dataset[6].

aspect categories, of a given text document are inferred from an HTC model’s classi-
fication results corresponding to intermediate nodes in the hierarchy. The sentiment
polarity corresponding to the inferred aspect category is deduced from the HTC
model’s classification results on the leaf nodes connected to the intermediate nodes.
Figure [5.1] illustrates example hierarchical structures of labels formulated from the
Laptop2015 dataset, where Pos, Neu, and Neg are abbreviations for positive, neu-
tral, and negative sentiments, repectively. Figure (a) is the hierarchy with two
levels comprising of aspect category labels and sentiment labels, respectively, simi-
lar to Cai et al.[120]. Figure (b) is the hierarchy where a hierarchical structure
can be deduced from aspect categories only, leading to the resulting label hierarchy

having more than two levels. While the hierarchy illustrated in Figure (b) has
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more labels to classify using a HTC model compared to that in Figure (a), it
can explicitly express relationships between aspect categories.

The label set of an HT'C problem corresponding to an aspect category sentiment
analysis problem comprises entity type labels, aspect category labels represented
as pairs of an entity type label and an entity attribute label (which correspond
to aspect categories), and sentiment polarities corresponding to aspect categories.
Therefore, adding the number of entity type labels, the number of aspect category
labels (|€]), and the number of sentiment polarity labels (3|£]) results in the number
of labels (L). The label hierarchy # is derived as the union of two hierarchies: the
hierarchy of entity type labels and aspect category labels and the hierarchy of aspect
category labels and sentiment polarity labels. As defined in Sections [3.1] and [4.1] the
hierarchy is represented as a set comprising tuples of parent and child labels. Inferred
set of leaf labels obtained from an HTC model’s output classification probabilities
is the inferred set of aspect category-sentiment pairs and is compared with SP for

evaluating the sentiment analysis performance.
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5.3 Experiments

5.3.1 Experiment Settings

Datasets

The effectiveness of GACaps-HTC in aspect category sentiment analysis was evalu-
ated on two datasets included in the SemEval2015 datasets and two datasets included
in the SemEval2016 datasets. Note that versions and (training and testing) splits of
the following datasets followed those of Cai et al.[I20], published in their official im-
plementation repository[ﬂ The first benchmark dataset was the Laptop2015 dataset
from the SemEval2015 datasets, consisting of 2,041 reviews on laptops. There were
22 entity type labels, including display, motherboard, memory, and battery, and nine
possible entity attribute labels for each entity type label, including general, price,
and quality. 80 distinct aspect categories (combinations of entity type labels and
entity attribute labels) existed in the dataset, resulting in 102 intermediate nodes in
the label hierarchy and 240 leaf nodes indicating sentiment polarities corresponding
to the aspect categories. 1,397 examples in the dataset were used for training while
644 examples were used for testing.

The second dataset, also a part of the SemEval2015 datasets, was the Restau-
rant2015 dataset comprising 1,674 restaurant review documents. There were six
entity type labels (ambiance, drinks, food, location, restaurant, and service) and
five possible entity attribute labels (general, price, quality, style, and miscellaneous)
for each entity type label, resulting in 13 aspect categories, 19 labels corresponding
to intermediate nodes of the label hierarchy, and 39 leaf nodes corresponding to sen-

timent polarities. The Restaurant2015 dataset was split into a training set of 1,102

Thttps://github.com/NUSTM/ACSA-HGCN
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examples and a testing set of 572 examples.

The third dataset was the Laptop2016 dataset, included in the SemEval2016
datasets, which has the same set of entity type labels, entity attribute labels, and
sentiment polarity labels as the Laptop2015 dataset. 2,609 reviews on laptops were
in the dataset, where 2,037 examples were used for training and 572 examples were
used for testing. Finally, the last dataset was the Restaurant2016 dataset in the
SemEval2016 datasets that shares the same entity type labels, entity attribute la-
bels, and sentiment polarity labels as the Restaurant2015 dataset. It was comprised
of 2,260 examples, which were split into 1,680 training examples and 580 testing

examples.

Metrics

The performance on aspect category sentiment analysis was measured and com-
pared using micro-F1 scores (described in Subsection [3.3.1]) following Cai et al.[120].
Note that while F1 scores obtained to evaluate HTC performance in Chapter [3] and
Chapter [ involved every label in the hierarchy, aspect category sentiment analysis
performance was compared using F1 scores from only the leaf labels as they cor-
respond to tuples of aspect categories and sentiment polarities. However, micro-F1
scores obtained from every label in the hierarchy were used for model selection, as
doing so led to better test performance. Micro-precision and micro-recall used to
calculate F1 scores are presented in the following subsection for more insights into

the experiment results.
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Baselines

The GACaps-HTC was compared with the following baseline aspect category senti-
ment analysis approaches. The first approach was a pipeline approach that utilizes
two BERT models for aspect category detection and sentiment polarity classifica-
tion. While this approach separates the task into two easier tasks, it fails to exploit
the relationships between two partial tasks. Furthermore, it could not capture con-
flicting sentiments towards different aspect categories that lie in a single document.

The second approach was a Cartesian product approach that performs a binary
classification for each tuple of an aspect category (represented as a tuple of an en-
tity type and an entity attribute) and a sentiment polarity. This approach also used
BERT as a document encoder and obtained classification probabilities from docu-
ment representations from BERT. The third approach was an add-one-dimension
approach using BERT as a document encoder that jointly infers whether an aspect
category appears in a document and its corresponding sentiment polarity.

The fourth and the last baseline approaches were hierarchical classification ap-
proaches. The fourth approach was a hierarchical Transformer approach which used
the attention mechanism in a Transformer to model the relationships between as-
pect categories and the relationships between an aspect category and a sentiment
polarity. Finally, the last baseline approach was a hierarchical GCN[120] approach
that made use of two GCNs, each to capture the correlations between a pair of as-
pect categories and to model the relationships between a pair of an aspect category
and its corresponding sentiment polarities. Figure depicts the architectures of
the baseline approaches, where highlighted labels denote inferred labels. Note that

plain classifiers in Figure [5.2] are single-label classifiers that return the label with
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the highest classification probability, and binary classifiers are multi-label classifiers

that return a set of labels with classification probabilities higher than a predefined

threshold.

Bidirectional (Laptop, General) 0.6
Encoder Binary (Laptop, Price) 0.2
Representations Classifier
from Transformers (Battery, Quality) 0.8
B'g'r:zg:g?a' Positive 0.2
. —| Classifier [— | Neutral 03
Representations R
Negative 0.5
from Transformers
(a) Pipeline Approach
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Bidirectional Positive 0.1
Encoder Binary (Laptop, Price) ~ Neutral 0.3
Representations Classifier Negative 0.1
from Transformers
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(Battery, Quality) ~ Neutral 0.6
Negative 0.2
(b) Cartesian Product Approach
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Neutral 0.2
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N/A 0.2
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(c) Add-One-Dimension Approach

Bidirectional
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Representations
from Transformers
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|
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(Laptop, General) 0.6
(Laptop, Price) 0.2
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— —> | Neutral 0.2
» Negative 0.6
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(d) Hierarchical Transformer Approach and Hierarchical GCN Approach

Figure 5.2: Illustrations of baseline approaches for aspect category sentiment analy-

sis.
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Implementation Details

For all four datasets, BERT was employed as the language model in the textual
representation extractor. While dropout with a drop probability of 0.5 was applied
to textual representations in experiments described in Chapter [3]and Chapter [4] the
drop probability was set to 0.05 (the Laptop2015, Restaurant2015, and Laptop2016
datasets) or 0.1 (the Restaurant2016 dataset) for aspect category sentiment analysis
as documents were relatively shorter and salient words indicating aspect categories
or sentiment polarities seldom appear repeatedly.

Textual representations with dpj; = 768 were obtained from BERT, and rep-
resentations of doony = L x 100, dgrp = 100, and dcgps = 32 were extracted by
GACaps-HTC as described in Subsection [3.3.1 The number of labels L was 342
for the Laptop2015 and Laptop2016 datasets and 58 for the Restaurant2015 and
Restaurant2016 datasets. The capsule pruning ratio p, capsule dropout rate ¢, con-
tradiction penalty hyperparameter d, dynamic routing convergence threshold e, and
focal loss hyperparameter v were set to the same values as described in Subsection
3.3.1} The weight of the contradiction penalty term was set to A = 0.001.

The GACaps-HTC was trained using mini-batches of size 16. For the first two
epochs, a learning rate of 0.0001 was used, BERT was frozen (not updated by gradi-
ent descent), and after those two epochs, an initial learning rate of 0.00005 was used
to train the entire model, including the BERT. An Adam optimizer was used for the
Laptop2015, Restaurant2015, and Laptop2016 datasets, while an Adam optimizer
with decoupled weight decay regularization[I56], otherwise known as an AdamW
optimizer, was used for the Restaurant2016 dataset. As described in Subsection

the learning rate was decayed by a factor of 0.1 when five consecutive epochs
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recorded suboptimal validation micro-F1 scores obtained for the entire label hierar-
chy until the number of consecutive epochs with suboptimal scores reached 20, and

training was stopped.

5.3.2 Results

Approach Laptop2015 Restaurant2015 Laptop2016 Restaurant2016
Pipeline 0.430 0.494 0.394 0.562
Cartesian product 0.328 0.584 0.395 0.689
Add-one-dimension 0.489 0.617 0.472 0.698
Hierarchical Transformer 0.578 0.647 0.527 0.735
Hierarchical GCN 0.621 0.642 0.542 0.746
GACaps-HTC (2 levels) 0.574 0.629 0.549 0.723
GACaps-HTC (3 levels) 0.611 0.657 0.548 0.727

The best results are highlighted in bold.

Table 5.1: Overview of the experiment results on aspect category sentiment analysis.

In this subsection, experiment results regarding the pipeline, Cartesian product,
add-one-dimension, hierarchical Transformer, and hierarchical GCN approaches are
results reported by Cai et al.[120]. The overview of the aspect category sentiment
analysis experiment results is shown in Table Each version of GACaps-HTC
was trained and tested three times on each dataset, and the average F1 scores
are presented. Utilizing the aspect category hierarchy (annotated as 3 levels in the
sixth row) had shown to lead to enhanced performance, except for the case of the
Laptop2016 dataset that showed an insignificant difference, as, while it increased
the number of labels, it enabled the hierarchy encoder to capture the relationships
between aspect categories. For further analysis, micro-precision, micro-recall, and

micro-F1 scores obtained from a single run are presented below.
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Performance on the Laptop2015 Dataset

Approach Micro-Precision Micro-Recall Micro-F1
Pipeline 0.369 0.516 0.430
Cartesian product 0.731 0.212 0.328
Add-one-dimension 0.642 0.396 0.489
Hierarchical Transformer 0.656 0.520 0.578
Hierarchical GCN 0.719 0.547 0.621
GACaps-HTC 0.693 0.571 0.626

The best results are highlighted in bold.

Table 5.2: Experiment results on the Laptop2015 dataset.

Experiment results obtained from the Laptop2015 dataset are shown in Table
The GACaps-HTC had could outperform baseline approaches in micro-F1 scores
in this single run while the average micro-F1 score of GACaps-HTC in Table[5.1 was
lower than that of hierarchical GCN. The results indicate that while the proposed
approach yielded volatile performance, the proposed approach can be adopted for
aspect category sentiment analysis with a simple coarse hyperparameter search.
While the proposed approach recorded the highest micro-recall compared to other
baselines, it ranked third in micro-precision. Such results indicate that GACaps-
HTC was able to discover sentiments that other baseline approaches could not find,
thanks to its explicit parent-child relationship modeling and implicit relationship

extraction.

Performance on the Restaurant2015 Dataset

Experiment results from the Restaurant2015 dataset are listed in Table [5.3] The
proposed approach had shown to outperform baseline approaches in micro-F1 scores,

which showed that GACaps-HTC was able to perform well for both semantic analysis
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Approach Micro-Precision Micro-Recall Micro-F1

Pipeline 0.381 0.700 0.494
Cartesian product 0.720 0.492 0.584
Add-one-dimension 0.688 0.559 0.617
Hierarchical Transformer 0.702 0.600 0.647
Hierarchical GCN 0.719 0.580 0.642
GACaps-HTC 0.677 0.639 0.657

The best results are highlighted in bold.

Table 5.3: Experiment results on the Restaurant2015 dataset.

(HTC and aspect category detection) and sentiment analysis (sentiment polarity

classification) on documents.

Performance on the Laptop2016 Dataset

Approach Micro-Precision Micro-Recall Micro-F1
Pipeline 0.319 0.516 0.394
Cartesian product 0.650 0.274 0.395
Add-one-dimension 0.588 0.395 0.472
Hierarchical Transformer 0.581 0.483 0.527
Hierarchical GCN 0.614 0.484 0.542
GACaps-HTC 0.545 0.547 0.546

The best results are highlighted in bold.

Table 5.4: Experiment results on the Laptop2016 dataset.

Table [5.4] shows the experiment results acquired from training and evaluating
sentiment analysis approaches using the Laptop2016 dataset. While the hyperpa-
rameters for the Restaurant2015 dataset and the Laptop2016 dataset were set to
the same values as those obtained from a coarse hyperparameter search using the

Laptop2015 dataset, GACaps-HTC still outperformed baseline approaches in micro-
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F1 scores. This lack of need for a fine-grained (or even any) hyperparameter search
shows the practical usability of the proposed approach, as training and evaluating a
model repeatedly for a fine-grained hyperparameter search can be costly.

While the proposed approach also recorded the highest micro-recall compared
to other baselines similar to the results described in Table it ranked fifth in
micro-precision. It can be deduced that GACaps-HTC’s explicit and implicit label
relationship modeling contributed towards discovering sentiments that are relatively

harder to find rather than removing sentiments that were incorrectly inferred.

Performance on the Restaurant2016 Dataset

Approach Micro-Precision Micro-Recall Micro-F1
Pipeline 0.436 0.791 0.562
Cartesian product 0.750 0.638 0.689
Add-one-dimension 0.718 0.680 0.698
Hierarchical Transformer 0.737 0.732 0.735
Hierarchical GCN 0.764 0.728 0.746
GACaps-HTC 0.738 0.735 0.736

The best results are highlighted in bold.

Table 5.5: Experiment results on the Restaurant2016 dataset.

Experiment results on the Restaurant2016 dataset are shown in Table 5.5 Re-
sults obtained from the pipeline approach and the Cartesian product approach shown
in Tables and clearly indicate the tradeoff between precision and
recall as the pipeline approach recorded high micro-recall while achieving low micro-
precision and the Cartesian product approach obtained high micro-precision with
low micro-recall. However, the proposed approach always recorded relatively high

(or even the highest) precision and recall, indicating that GACaps-HTC’s high recall
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or precision is not an outcome of a tradeoff but a sign of a well-performing sentiment
analysis model.

While GACaps-HTC outperformed the baselines on other sentiment analysis
datasets, it recorded the second-best F1 score on the Restaurant2016 dataset. This
performance was obtained from a separate hyperparameter search, unlike the results
shown in Tables and as using the same set of hyperparameters led to
a lower F1 score (0.702). Such results show that there is room for improvement in

GACaps-HTC when it comes to aspect category sentiment analysis.
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Chapter 6

Conclusions

6.1 Summary and Contributions

This thesis proposes a deep learning-based HTC approach by acknowledging the
importance of not only explicit parent-child relationships between labels but also
implicit label relationships that may appear for any pair of labels. The proposed ap-
proach, GACaps-HTC, comprises three parts: a textual representation extractor, a
hierarchy encoder, and an implicit relationship extractor. The textual representation
extractor uses a pretrained language model to generate a rich textual representa-
tion for a given text document. The hierarchy encoder models label relationships
expressed by the label hierarchy using a GAT, and the implicit relationship ex-
tractor uses a CapsNet to model the label relationships that are not fully captured
by the hierarchy. The model was trained and evaluated using widely used bench-
mark HTC datasets. After training GACaps-HTC, various post-processing methods
were applied and compared to select the best method for each dataset. The results

demonstrated that the proposed approach outperformed the compared baselines.

This thesis also proposes a dynamic routing algorithm that injects the informa-
tion on what each label means and how semantically close each pair of labels are

into a CapsNet. The proposed semantic-aware dynamic routing algorithm initial-
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izes the coupling coefficient corresponding to a pair of labels from the similarity of
the labels’ semantic representations. Furthermore, the algorithm defines an additive
bias term from labels’ semantic representations and uses a semantic-based gating
mechanism that can control how much a label’s semantic information affects the
dynamic routing algorithm. GACaps-HTC using semantic-aware dynamic routing
algorithm was compared with GACaps-HTC using conventional dynamic routing
algorithm and other variants of GACaps-HTC that inject the semantic information
into various parts of the model. The results showed that GACaps-HTC with the
proposed algorithm outperformed the variants of GACaps-HTC and that adopting
the algorithm led to much faster convergence.

Finally, this thesis investigates whether GACaps-HTC can be adopted for other
use cases. Aspect category sentiment analysis problems are transformed into HTC
problems, and GACaps-HTC is employed for these problems. Experiments were
conducted on widely used benchmark sentiment analysis datasets, and the results
demonstrate that GACaps-HTC showed competitive performance compared to the
baseline approaches proposed specifically for aspect category sentiment analysis or

outperformed them.
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6.2 Limitations and Future Research

Modifying the proposed approach to extract representations of hyperbolic space is
the future work of this thesis. Neural networks that use hyperbolic representations,
or hyperbolic neural networks[58, I57], have been shown to be effective in gener-
ating representations that fully capture hierarchical structures. There are several
ways GACaps-HTC can exploit a hyperbolic space, such as employing a hyperbolic
language model[I58], a hyperbolic GNN[I59, 160], or a hyperbolic CapsNet[161].
Employing a hyperbolic space in the aforementioned fashion may lead to enhanced
hierarchy-related expressive power and better HT'C performance.

While this study investigates the effectiveness of the proposed approach using
various post-processing methods, it does not cover how to preprocess input text
documents. However, multiple fragments in a document may not be required to
infer the labels corresponding to the document, and removing such fragments can
lead to faster training and inference. Furthermore, a document may have slang terms
and typos that can harm the classification results[162), [163]. Therefore, employing
and comparing various text preprocessing methods and developing preprocessing
methods specified for HT'C is the future work of this thesis.

Finally, while this thesis aims to boost the HTC performance using a newly pro-
posed approach and a new dynamic routing algorithm, it does not employ one of the
most widely adopted methods to enhance classification performance, data augmen-
tation. There are various task-agnostic textual data augmentation methods, includ-
ing synonym replacement[164], data noising[165], and easy data augmentation[166].
Furthermore, there are auto-augmentation methods[I67] that search for task-specific

and model-specific optimal augmentation policies. As such augmentation methods
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have shown to generally enhance a model’s text classification performance, they can
enable GACaps-HTC to achieve higher HT'C performance and better noise robust-
ness by providing the model with diverse input data. Demonstrating the enhanced
performance obtained using these augmentation methods and acquiring the optimal
augmentation policy via auto-augmentation will be the future development of this

work.
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