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Abstract

Self-attention Based Recurrent
Reinforcement Learning for Algorithmic

Trading

Dongkyu Kwak

Department of Industrial Engineering

The Graduate School

Seoul National University

The advancement of deep neural networks and the capability to effectively pro-

cess complex data has resulted in a significant increase in academic interest in the

application of algorithm trading modeled on neural network structures. The utiliza-

tion of machine learning in algorithmic trading is driven by two primary objectives.

The first objective is to identify meaningful characteristics that can shed light on

the fluctuations observed in the financial market. The second objective is to de-

tect underlying causal relationships within multivariate financial time series data.

The task of extracting valuable features from financial time series to make pre-

dictions or explain market movements is challenging due to the inherent volatility

and high levels of noise present in such data. Most algorithmic trading methodolo-

gies to date have primarily focused on the process of feature engineering, aimed at

directly extracting meaningful features or factors from financial time series data.

The majority of algorithmic trading models currently in use determine the optimal
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position through supervised learning models, such as predicting direction or price,

rather than learning from a profit-maximizing objective function. This approach not

only fails to fully incorporate the direct utility of a given position, but also leads to

double error resulting from indirect decision making. In light of these limitations,

reinforcement learning-based algorithmic trading models have emerged as a viable

alternative. These models learn the optimal behavior by maximizing the expected

reward from observations within a given market environment. This approach over-

comes the limitations of supervised learning-based algorithmic trading models by

directly incorporating the direct utility of a given position.

The present study proposes a novel convergence model that integrates recurrent

reinforcement learning (RRL) and the self-attention mechanism. The efficacy of the

proposed model is rigorously tested using various financial time series data sourced

from the stock market. The model structure is first defined through the identification

of its key components, including the environment, reward, state-space, and action

space. The proposed model is built upon RRL, a policy-based model that leverages

time dependency among generated trading signals across different time-stamps. RRL

recurrently generates trading signals based on previous signals, utilizes market ob-

servations as inputs to the policy function, and seeks to maximize expected rewards

through the optimization of the utility function with regards to returns. To enhance

the performance of the RRL, the proposed model combines auxiliary neural net-

works, including a supervised learning sub-network for prediction power, a feature

extraction sub-network for reconstructing the original input sequence, and a self-

attention mechanism for reallocating temporal weights within latent state variables.

The proposed model is described in two ways in this paper, including a finite time
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horizon case and an infinite horizon case. Furthermore, it is demonstrated that the

martingale assumption for short-term fluctuations in the infinite time horizon case

enables the model to learn from the same advantage setting as in the finite time

horizon case.

In this study, two empirical applications of the proposed model were carried out

and the results were analyzed in a systematic manner. The first application involved

the use of the finite time horizon Deep RRL algorithmic trading model to perform

intra-day trading on stocks listed on the KOSPI200 index. The experiment was con-

ducted using 40 days of minute-level price and volume (OHCLV) data for KOSPI200

listed stocks, spanning from March to June 2019. Stocks that experienced external

market interventions, such as volatility interruptions and limited price movements,

were excluded from the experiment. To enhance the diversity of the training set,

data augmentation was employed to reduce the momentum effect and correlation

effect among stocks. The second application involved the use of the infinite time

horizon Deep RRL algorithmic trading model to perform daily trading on stocks

listed on the SP 500 index. The experiment was conducted using daily OHCLV data

for SP500 listed stocks, comprising the largest market cap stocks in individual sec-

tors, ranging from January 2000 to January 2020. All data used in the experiments

were divided into a training set, validation set, and test set, and a single model was

trained for all stocks in the market using the training set.

In the empirical applications of the proposed Deep RRL model, a comprehen-

sive comparative analysis was performed to evaluate the performance of the model

against various other commonly utilized models in algorithmic trading. The models

considered for comparison include Long-short term memory (LSTM) and Random
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Forest, which are typical supervised machine learning models used for predicting di-

rection or price. Another model considered was the A3C policy-based reinforcement

learning model. Additionally, the ARIMA time series model was also included in the

comparison. To further verify the efficacy of the proposed model, an ablation study

was conducted in the infinite time horizon experiment. The study aimed to assess

the impact of each of the additional sub-networks on the model’s performance. The

results showed that the proposed models outperformed the other models in terms of

nominal return and return on risk, suggesting that the proposed model has better

performance in terms of returns. The results of the ablation study also indicated

that the additional structures of the proposed models contribute to improving the

performance of the recurrent reinforcement learning model.

Keywords: Recurrent Reinforcement Learning, Self-attention Mechanism, Sequen-

tial Auto-encoder, Gated Recurrent Unit, Algorithmic Trading, Intra-day Trading

Student Number: 2016-21095
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Chapter 1

Introduction

1.1 Research Motivation and Purpose

Recently, the deep neural network has been most actively used among all machine

learning methodologies Deep learning models use a vast set of nodes and layers,

where parameters or latent variables within the model are parallelly trainable. Before

the prosperity of deep learning in the last decade, most applications of machine

learning models highly depended on elaborate feature engineering methodologies. As

deep learning models can accommodate high model capacity, the burden on feature

engineering has been dramatically reduced. These characteristics of deep learning

allow for dealing with a large set of high-dimensional data, even unstructured ones

such as images, sounds, and natural languages.

As the automation and individualization of financial service have been gradu-

ally highlighted recently, deep learning application for the financial industry of the

fintech industry is also actively researched, such as credit ratings or fraud detection

driven by deep pattern recognition[54, 19]. Though deep learning methodologies can

be adapted to handle various types of data in hand, it is still challenging to extract

valuable features from financial time series with deep learning due to its high level of

noise. Thus most research on prediction or forecasting from financial time series still
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has highly relied on feature engineering methodologies such as filtering[17] or tech-

nical indicators, even though deep learning models are adopted. In a practical sense,

point estimation in financial forecasting is nearly infeasible, where the directional

prediction model has the accuracy hit ratio of around 55 and 60%[59].

In order to overcome this limitation, reinforcement learning for algorithmic trad-

ing has been widely studied, which deals with the market environment in a reac-

tive way rather than forecasting. Reinforcement learning aims to find the optimal

policy that maximizes the expected rewards from interaction with the agent and

environment[63]. Reinforcement learning guides itself via trial and error via inter-

acting with the environment, which differs from that supervised learning models

specify direct learning targets to hit the correct answers. For this reason, reinforce-

ment learning is advantageous in robotic mechanics or gaming bots where continuous

interactions occur between agents and the environment [50]. Recent reinforcement

learning models use deep neural networks to construct value or policy functions.

The deep neural network makes way for reinforcement learning to deal with the high

dimensional features such as visual information in an end-to-end manner. These al-

leviate the effort for elaborate manual feature extraction in classical reinforcement

learning settings. For instance, deep learning plays a critical role in reinforcement

learning after the introduction of the Deep Q-Network (DQN) [44], which utilizes

deep learning structures such as experienced replay and convolution neural network

(CNN).

Despite the growing use of Reinforcement Learning (RL) in algorithmic trading,

several challenges impede its successful implementation. The traditional RL algo-

rithms struggle to capture the non-stationary characteristics of financial time series
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such as structural change, volatility clustering, and long-term memory property[12],

that are typically observed in financial data[55, 32]. While some recurrent neural

network models, such as Gated Recurrent Units (GRUs)[11] and Long-Short Term

Memory (LSTM)[22], may partially address the challenge of long-term dependen-

cies in financial time series, there remains significant room for improvement in the

application of RL to financial data. Moreover, the instability of convergence in deep

reinforcement learning algorithms when applied to noisy environments also needs

to be addressed. Model-free RL schemes often suffer from large variance, disrupting

their convergence. For instance, actor-critic based RL algorithms tend to converge

slowly and despite several modifications, such as Trust Region Policy Optimiza-

tion (TRPO)[56], Proximal Policy Optimization (PPO)[57], and Soft Actor-Critic

(SAC)[20], no universally robust algorithm exists, as the optimal algorithm depends

on the specific use case. Therefore, there is a pressing need for research into RL

algorithms that are specifically tailored for algorithmic trading, to address these

challenges and make RL a more practical and effective tool for financial applica-

tions.

In this dissertation, a novel and innovative model referred to as the ‘Self-attention

based deep direct recurrent reinforcement learning with hybrid loss (SA-DDR-HL)’

has been proposed to address the challenges faced by conventional reinforcement

learning methods in the application of algorithmic trading. The SA-DDR-HL, which

is an advanced form of recurrent reinforcement learning, possesses two unique charac-

teristics that differentiate it from traditional recurrent reinforcement learning mod-

els. First, the SA-DDR-HL features a hybrid learning structure, where the network

loss encompasses both the forecasting model loss of supervised learning and the
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generative model loss of unsupervised learning. While most reinforcement learn-

ing models obtain their update targets through interaction with the environment,

SA-DDR-HL utilizes historical data to compute the reward target in a price-taker

setting. This results in the generation of a prediction loss from the determined target

return, allowing the latent input variable to exhibit predictive power. Furthermore,

SA-DDR-HL utilizes unsupervised loss from a gated recurrent unit auto-encoder, a

sequential generative network, to endow the latent input variable with feature extrac-

tion properties. The SA-DDR-HL combines both the proximal policy optimization

objective[57] and the utility objective to achieve maximum expected rewards with

reduced gradient variance and stable convergence. The self-attention mechanism, as

proposed in [67], is applied to the latent input sequences for reinforcement learning

in SA-DDR-HL. This mechanism takes into consideration the contextual similar-

ity between elements in input and output sequences and provides temporal feature

importance in the learning process. Unlike traditional attention mechanisms, which

learn the similarity importance between the input and target sequences, the self-

attention mechanism in SA-DDR-HL operates without a target sequence, allowing

it to generate trading signals based on both practical observations and known signal

patterns in a long-term manner.

In this dissertation, we present a novel reinforcement learning model that over-

comes the limitations of traditional Markov Decision Process-based models. Our

proposed model incorporates a unique feature that the agent generates actions based

on an awareness of the causal importance between the agent’s actions. By extend-

ing the traditional RRL framework, which only considers the signal generated at a

previous point in decision making, our proposed model takes into consideration the
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time dependency between different signal points or observations in a single itera-

tion. To evaluate the comparative advantage of the proposed model, we conducted

experiments in two scenarios. The first scenario focused on intra-day trading with a

finite time horizon, while the second scenario focused on daily trading with an infi-

nite time horizon. Before conducting the simulations, we hypothesized that the RL

objective function of the two different environment schemes could be approximated

to a single utility function. The results of our experiments showed that the pro-

posed model demonstrated a comparative advantage over other forecasting models

based on machine learning or classical time series models. Our model demonstrated

improved performance in terms of returns such as nominal return and return on

risk. The self-attention mechanism and hybrid loss structure in our proposed model,

combined with the ability to generate trading signals based on both hands-on obser-

vations and known signal patterns in a long-term manner, contribute to its improved

performance compared to other models.

1.2 Organization of the Thesis

The structure of this dissertation is organized as follows. In Chapter 2, we under-

take an extensive review of prior works in the field of algorithmic trading utilizing

the reinforcement learning framework, which has significantly informed and influ-

enced our own research. Additionally, this chapter offers an in-depth analysis of the

various machine learning methodologies that have been utilized in the development

of algorithmic trading models. In Chapter 3, we present a comprehensive exami-

nation of the theoretical components that form the basis of the proposed machine

learning methodology. This includes the discussion of relevant and related concepts
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and methodologies that enable a comparative evaluation of our proposed model. In

Chapter 4 and 5, we conduct a comprehensive set of experiments to comparatively

evaluate the performance of our proposed model with other existing models. Specif-

ically, Chapter 4 presents the results of experiments conducted in the finite horizon

case, whereas Chapter 5 focuses on the results of experiments performed in the infi-

nite horizon case. Finally, in Chapter ??, we present our conclusion, highlighting the

major findings of this research, and suggesting potential avenues for future research.
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Chapter 2

Literature Review

2.1 Sequential Model for Time Series

he Autoregressive Integrated Moving Average (ARIMA) model is a well-established

and widely utilized method in time-series analysis, serving as a cornerstone in the

field of econometrics. The model was introduced by Box and Jenkins, and since then

it has been widely adopted as a benchmark model for sequential data analysis [7].

ARIMA models the dependency between each point in a time series as a linear rela-

tionship, making it a simple yet powerful tool for capturing the underlying dynamics

of the data. One of the key advantages of ARIMA models is their ability to provide

a statistical estimate of parameters and perform hypothesis tests, thus allowing for a

comprehensive evaluation of the model’s goodness-of-fit. Additionally, the model has

been extended over time to reflect various phenomena that are commonly observed

in time-series data, such as seasonality, volatility clustering, and heteroskedasticity

[65, 14]. These advancements have allowed ARIMA to maintain its status as a ver-

satile and robust method for time-series analysis, and have ensured its continued

relevance and importance in the field.

Despite the benefits of simplicity and comprehensibility that parametric models

such as ARIMA and GARCH offer in explaining time series dynamics, they also
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suffer from several limitations. Firstly, these models are highly prone to sensitivity

with respect to the choice of model specification. The selection of lags and handling

of stationarity can greatly alter the model’s interpretation, even though modern

machine learning models also rely on the selection of hyperparameters. Secondly,

these models have a lower level of complexity and higher dependence compared to

advanced time series models based on machine learning techniques. This becomes

particularly evident in the presence of nonlinearities and high-dimensional time se-

ries. Classical time series models, such as the assumption of normality of innovations,

which can be applied to simple models, become difficult to apply to non-linear or

high-dimensional models, highlighting the limitations of parametric models.

The utilization of Recurrent Neural Networks (RNNs) [23] represents a major

advancement in the field of time series modeling by surpassing the limitations posed

by model-dependent approaches. RNNs are a type of artificial neural network that

employ recurrent connections in their structure. The utilization of multiple layers

of neurons in the artificial neural network enables the approximation of complex

N-to-N functions, which grants RNNs a remarkable versatility in handling a diverse

range of machine learning tasks. Instead of modeling the output sequence directly

through the input sequence, RNNs introduce a series of intermediate variables that

serve to estimate the complex dynamics between time series. Each hidden neuron in

the network is affected by both previous hidden neurons and input neurons, giving

rise to the designation of the structure as a ’recurrent’ network. RNNs may be

viewed as analogous to the Kalman filter [28] in the sense that both approaches

estimate the dynamics of a sequence by incorporating latent variables. However, the

key difference between the two lies in the fact that while the Kalman filter is limited
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to modeling linear dynamics, RNNs possess the added advantage of being capable of

approximating nonlinear dynamics through the utilization of a nonlinear activation

function.

The limitations of RNN as a universal baseline model in time series modeling

using artificial neural networks stem from the vanishing gradient problem [34]. This

issue results in the incorrect transfer of the gradient of the sequence’s terminal node

to preceding nodes as the sequence length increases, which hinders the modeling

of time series with long-term dependencies. The unidirectional iterative structure

of RNN from the long-term sequence is the root cause of the vanishing gradient

problem. To address this issue, it is necessary to not only propagate the nonlinear

combination of the input sequence and the hidden sequence to subsequent points but

also to introduce a structure that controls the weight for the propagation, thereby

alleviating the vanishing gradient problem.

he Long-short term memory (LSTM) model [22] represents a significant advance-

ment in mitigating the limitations of recurrent neural networks (RNNs) in modeling

time series with long-term dependencies. In contrast to traditional RNNs, LSTM

incorporates a gate structure and a cell state layer that dynamically control the con-

tribution of current inputs and previous hidden neurons in determining the output

of each neuron. This mechanism effectively reduces the vanishing gradient problem

and enables the model to effectively capture long-term dependencies in time series.

Gated Recurrent Units (GRUs) [11] represent a further refinement in the field, pro-

viding a simplified gated structure for capturing long-term dependencies compared

to LSTMs. GRUs simplify the gated structure of LSTMs, replacing multiple gates

with a single unit gate that decides whether previous information should be for-
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gotten or propagated. This design offers a structurally sound method for capturing

long-term dependencies, while also increasing the efficiency of model training in

comparison to LSTMs.

The utilization of GRU and LSTM as artificial neural network models has proven

to be highly effective in addressing various sequential problems, including time se-

ries analysis, natural language processing, and unstructured data analysis. However,

when it comes to financial time series prediction, there are several challenges that

arise. One of the most prominent challenges is the tendency of RNN-based models to

converge towards the nearest point, as demonstrated by Chen [9]. This can lead to

sub-optimal predictions in financial time series analysis, where the target sequence

is usually represented by a return series. Financial time series prediction is further

complicated by the presence of stationarity and high levels of noise in return series

generated from stock prices. Finding an appropriate representation from a com-

plex input sequence is a challenging task in such scenarios. As an alternative, some

models consider generating trading decisions through other methods, such as clas-

sification or clustering, instead of price prediction. However, such models typically

only achieve hit ratios of around 55 to 60%, as stated in the introductory chapter.

Additionally, these models often lack a direct measure of the risk associated with a

trading decision, even if the predicted probability is relatively high or low.

In conclusion, the utilization of neural network models for the generation of

trading signals offers the potential to effectively address long-term dependencies

and to process vast amounts of data, including unstructured data, in a manner that

considers high and complex dimensions. Despite these advantages, the application

of supervised sequential neural network models in this field is subject to various
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challenges, including difficulties in achieving convergence in the prediction of returns,

the appropriate selection of data, the intricate process of feature engineering, and

accurately reflecting returns in relation to risk.

2.2 Attention Models

The attention mechanism has its roots in the Sequence-to-Sequence (Seq2Seq)

model [62], which is particularly well-suited to solving the task of natural language

translation. Seq2Seq consists of two primary components, namely an encoder Re-

current Neural Network (RNN) and a decoder RNN. The encoder RNN generates

a context vector based on the input sequence, while the decoder RNN generates

the target sequence using this context vector. Although the Seq2Seq model has the

advantage of being capable of effectively handling sequences of varying lengths, it

is subject to the same vanishing gradient problem that plagues other RNN mod-

els. Furthermore, compressing the entire input sequence into a single context vector

can result in a significant loss of information, particularly for long sequences. To ad-

dress these limitations, an alternative approach was introduced by utilizing a scoring

function that considers the semantic relevance of each embedding in the input se-

quence to generate each output of the target sequence. This scoring function serves

as the foundation for the attention mechanism, which allows for a more nuanced and

information-preserving representation of the input sequence in the target output.

The origin of the attention mechanism was rooted in the need to facilitate the

generation of a context vector from the input sequence. This was accomplished
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by incorporating the context vector with the previous hidden state of the decoder

network.[4] The attention layer plays a crucial role in the Seq2Seq model, where it

integrates all the elements of the input sequence and the last hidden state of the

generated target sequence. The aim of the attention layer is to determine the most

relevant or similar values between the most recently predicted output value in the

decoder layer and the elements of the input sequence. The weight value generated

by the attention layer is utilized to calculate the weighted average of the hidden

states of all input sequences. This results in the creation of a context vector, which

serves as the genesis state for the target sequence. The seq2seq model operates

in a sequential manner, where it iteratively passes through the input sequence to

generate one context vector, which is then fed into the decoder. As the attention layer

calculates a new context vector in the process of generating each target sequence, the

information from the original sequence and elements with high semantic relevance

are given relatively more emphasis in the generated target sequence.

The original attention mechanism was developed to mitigate the loss of informa-

tion from the input sequence during the creation of a context vector in the Recurrent

Neural Network (RNN) based sequence-to-sequence (Seq2seq) structure. However,

the Transformer model proposed a novel attention mechanism that learned the hid-

den representation of the sequences of the encoders and decoders using only the

attention layer between the sequences.[67] The main innovation introduced in the

Transformer was the implementation of the self-attention structure. Unlike the pre-

vious attention mechanism, where the scoring was performed directly between the

latest element of the decoder and each neuron of the encoder, the self-attention struc-

ture enables the allocation of temporal weights not only from the encoder-decoder
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connection but also from the input sequence of the encoder or decoder itself. The

original attention mechanism was limited in its ability to learn the relevant impor-

tance of each feature, as it utilized a relatively simple network and relied on the

traditional RNN structure. As a result, it struggled to learn long-term sequences.

However, the self-attention structure transformed each input or output sequence

into independent multi-dimensional features, making it possible to stack multiple

attention layers for processing. This versatility provided an advantage in that the

self-attention mechanism was relatively less constrained by the length of the se-

quence. As a result of its versatility, the self-attention mechanism is now widely

used in natural language processing and has been applied to various problems in the

field of time series.[39]

2.3 Financial Trading Agents using Reinforcement Learn-

ing

The Recurrent Reinforcement Learning (RRL) model, as documented in the sem-

inal work by Moody et al. [47], constitutes a significant advancement in the realm

of policy-based reinforcement learning. It proposes the imposition of recurrence on

the action sequence, thereby surpassing the limitations imposed by the Markov De-

cision Process (MDP) assumption in traditional reinforcement learning. The RRL

approach incorporates the real-time recurrent learning methodology put forth by

Williams et al. [72] to alleviate the cascading property of observations, inherent in

the MDP assumption. The RRL framework proposes the utilization of the Sharpe

ratio utility function as the objective function for online reinforcement learning.

The model shows that the gradient of the parameters can be updated in an online
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manner using the recurrent gradient of the differential Sharpe ratio utility function.

Furthermore, RRL takes into consideration the sequential dependency between ac-

tion values and the market observations, thereby allowing for a more comprehensive

evaluation of the dynamics of the system. Empirical evidence, presented in the RRL

paper, supports the superiority of the performance of the trading agent in the RRL

framework compared to the Q-learning framework. This evidence further highlights

the practical applicability of RRL in the realm of algorithmic trading, incorporating

crucial variables such as transaction costs, direct returns on position, and the risk-

free rate. In conclusion, the RRL model represents a crucial contribution to the field

of reinforcement learning and algorithmic trading, offering a more comprehensive

and effective approach to decision-making.

The introduction of the Deep Q-network (DQN) algorithm by Mnih et al. [44]

marked a significant milestone in the field of artificial intelligence. DQN proposed

the extraction of latent features from images using convolutional neural networks,

thereby demonstrating the crucial role of feature extraction through artificial neu-

ral networks in the state space. While the DQN algorithm has been applied to

financial trading agents [24], analogous trials have also been conducted in the Re-

current Reinforcement Learning (RRL) framework. The Deep Direct Reinforcement

Learning (DDR) approach, as proposed by Deng et al. [12], represents a significant

advancement in policy-based frameworks. DDR introduced the concept of a sep-

arate feature extraction network and demonstrated the superiority of policy-based

frameworks over value-based ones in terms of optimization flexibility and continuous

descriptions of market conditions. The DDR framework suggested incorporating the

training of deep auto-encoder feature extraction networks and policy networks using
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task-aware Back-propagation Through Time (BPTT) from the utility-maximizing

objective function. The BPTT algorithm in DDR is used not only to train the direct

policy function from the sequence of rewards and policies, but also to backpropagate

the BPTT gradients to the feature extraction networks in a sequential manner. The

feature extraction process employs fuzzy clustering to generate denoised features

from input observations and cluster them based on trends. The deep auto-encoder

model is used as an auxiliary tool to impose reconstructive power on the latent

input features, and its robust denoised features have been exploited by DDR to

extract hidden representations [68]. In a manner similar to DQN, which effectively

combined deep feature extraction for images and value-based reinforcement learning

using Convolutional Neural Networks (CNNs), DDR also combined automated fea-

ture extraction and reinforcement learning methodologies, reducing the burden of

elaborate feature engineering. DDR represents a crucial contribution to the field of

reinforcement learning and feature extraction, offering a more effective and efficient

approach to decision-making in complex systems.

The study by Li et al.[35] proposed a unique approach of combining the Deep Q-

network with a Recurrent Neural Network (RNN) to indirectly learn the parameters

of the value function in a recurrent manner. This approach expands upon previous

studies that utilized neural networks for feature extraction. The author proposed

the utilization of a hybrid loss function, which is more comprehensive compared to

previous studies. In this study, each time point’s observation is utilized as an input

sequence to the RNN, and the hidden sequence of the RNN is not just employed

as the state variables of the value function but also is connected to an additive

subnetwork that predicts the subsequent observation and rewards. This results in
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predictive power for each hidden state of the RNN. This hybrid loss approach con-

tributes to the performance improvement of the reinforcement learning (RL) agent,

as emphasized by the authors. The integration of the Deep Q-network and RNN in

this manner presents a promising direction for further research in the field of rein-

forcement learning. It highlights the potential of combining deep neural networks

with recurrent architectures to enhance the performance of RL agents in various

domains, including financial trading.

The authors of Time-driven Feature-aware Jointly Deep Reinforcement Learn-

ing (TFJ-DRL)[33] present a novel approach to policy-based reinforcement learning

that leverages the strengths of gated neural networks and attention structures. This

approach is designed to learn the relative importance of features in the learning

process and to evaluate the similarity between features over time. The authors in-

troduced a gated neural network to assess feature importance, and an attention

module to evaluate the similarity between the current time point and previous ones.

The TFJ-DRL framework builds upon the RRL framework, generating a trade action

sequence through a recurrent policy network and using the Vanilla Policy Gradient

(VPG) optimization, as opposed to utility functions. Furthermore, the authors in-

troduce a hybrid loss function that leverages supervised learning loss. The attention

structure helps to extract salient points from noisy and unsegmented sequences, as

demonstrated in previous studies on temporal attention-gated models[51]. This novel

approach to policy-based reinforcement learning considers the temporal importance

of features throughout an episode, while considering the similarity between current

and previous features. The use of a gated neural network, attention structure, and

hybrid loss function makes TFJ-DRL a promising approach for algorithmic trading.
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In this study, we propose a novel hybrid model that leverages the strengths of

previous works while overcoming their limitations. The Recurrent Reinforcement

Learning (RRL) framework, while imposing recurrence on the action sequence to

consider the previous positions of the agent, only refers to the last previous position

with a trainable constant weight. This structural limitation makes the model less

adaptive to changes in market conditions. To address this issue, our proposed model

incorporates the self-attention mechanism [67] to allocate the sequence of hidden

features in an episode based on their temporal importance, providing greater flexi-

bility in dealing with temporal dependencies on the feature side. Furthermore, our

model jointly learns from the utility objective function commonly used in the RRL

framework and a general policy-based reinforcement learning optimization such as

Proximal Policy Optimization (PPO), balancing effective convergence of learning

with profit maximization. Our model also employs a hybrid loss function, compris-

ing a reconstruction loss and a forecasting loss, to ensure that the hidden feature

reflects the various latent characteristics of the original input sequence and to miti-

gate the gradient vanishing problem that arises from dilution of the gradient of the

last loss along the deep structure. The innovation of our research is demonstrated

in Figure 2.1. Our proposed model is expected to make a significant contribution

to the field of financial trading agents and to provide a promising solution to the

challenges faced in this domain.
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Figure 2.1: Diagram of innovations of the research
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Chapter 3

Self-attention based Deep Direct Reinforcement
Learning with Hybrid Loss

3.1 Reinforcement Learning

3.1.1 Value-Based Reinforcement Learning

The primary setting of reinforcement learning is to construct an environmental

setting, which is expressed as the following triplet: (S, A, E). S, A, are called state

space and action space respectively. The state space is the set of all observations that

can be observed by the reinforcement learning agent. On the other side, the action

space is the set of all actions that the agent can do based on the current space. E

is called the environment. The environment provides a corresponding reward to an

agent for the action of the agent. In that setting, let the set of all rewards acquirable

be defined as R

In a general model-free reinforcement learning problem, we should find a policy,

or target policy that maximizes the expected value of the sum of all future rewards

through a given state. Here, a policy function and a value function can be defined.

Policy function, or target policy function π : S 7→ A is guided to derive maximal

expected rewards. Value function V : S 7→ R is defined as expected rewards, such as
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the following:

V (s) := E[
∞∑
i=t

γi−tRi|st = s] (3.1)

where γ is a discount factor with a value between 0 and 1 and Ri is a reward at

the time point t. Also, The action-value function, which is the value of the expected

value function for a given action, can also be defined as follows:

Q(s, a) := E[

∞∑
i=t

γi−tRi|st = s, at = a] (3.2)

The value function Vπ and the action-value function Qπ have the following relation-

ship when an action follows a policy pi :

Vπ(s) = Ea∼π[Q(s, a)] =
∑
a∈A

Q(s, a)π(s) (3.3)

When an agent learns policy from environment, The policy used when creating

an action from a given state, and the target policy may be the same or different. If

the two policies are the same, it is referred to as an on-policy manner, and if they

are different, it is referred to as an off-policy manner. However, general learning

scheme such as ε-greedy, which follows a random policy with a probability ε for

exploration and takes an action that maximized the current action-value function

with a probability 1− ε, two manners are nearly indistinguishable due to the greedy

target policy is distributively analogous to ε-greedy policy.

As in the definition, the estimation of the value function basically collects all

reward sequences within an episode and uses a discounted sum of rewards for them.
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We call it a Monte-Carlo estimation, as averaged iterated rewards are used as an

estimator of the value function. However, this estimation has the disadvantage that

the estimator’s variance increases excessively as the episode lengthens. There are

two progressive learning algorithms representing on-policy manners and off-policy

manners, instead of using Monte-Carlo estimation. One is SARSA and the other

is Q-learning, respectively. In the on-policy SARSA setting, a policy π is given,

the value function is updated a so-called TD(0) error. TD(0) error estimates value

function or its parameters from the immediate reward and the next value function,

instead of using the discounted sequence of subsequent rewards. By replacing the

projected further rewards with the current value function, a slight bias exists, but

the variance of the value function estimator can be significantly reduced. That is, in

TD(0) error, the value function is updated as the following manner:

Vπ(s)← Vπ(s) + α(r + γVπ(s′)− Vπ(s)) (3.4)

where s′ is a next state or observation and α is a learning rate. In the SARSA,

similar to above, the Q value is updated along a policy π-generally ε-greedy policy-,

which yields the immediate reward and subsequent state and action. Using those,

on-policy SARSA is updated as the following:

Qπ(s, a)← Qπ(s, a) + α(r + γQπ(s′, a′)−Qπ(s, a)) (3.5)

On the other hand, off-policy Q-learning setting, the value function is updated

using a difference of previous value function and a new estimated value function

such as TD(0) error. However, which is obtained from the reward, the next state
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and action along the manner of Q-value maximization, as follows:

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (3.6)

where a′ is all possible action. In the on-policy SARSA manner, the trajectory of

agent-the previous and next pair of state and action is used to update the value

function. But in the off-policy Q-learning manner, only the current action from ε-

greedy policy is used only, and the following action used in updating parameters is

assumed to maximize the subsequent value function instead of sampling an additive

action. Although it cannot be strictly said that one of both is better than the other,

it is known that Q-learning learns more exploratively than SARSA, accepting highly

negative rewards. Also, some theorems, such as the contraction theorem, guarantee

the convergence of the Q-function.[63]

3.1.2 Policy-Based Reinforcement Learning

A framework that performs reinforcement learning only by value function estima-

tion is called a value-based method. In value-based methods, the policy is usually

assumed to depend on a particular sampling method or given such as ε-greedy. In

contrast, a framework that directly learns a policy function instead of relying the

policy on the value function for the policy is called a policy-based method. In policy-

based method, log-likelihood maximization based methods are basically used, which

weighed to the reward of each time point of an episode. As with value-based meth-

ods, the most basic way to update a policy function, called REINFORCE, is to

directly use a sequence of rewards to update the parameters of the policy function
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as follows:

θπ ← θπ + α
∑
t

[γtRt∇θπ log π(at|st, θπ)] (3.7)

where θπ is parameters of policy function π.

Since this method shared the same problems or limitations as the value func-

tion’s Monte Carlo estimation such as high variance problem, several methods were

developed that uses value function estimation instead of using an immediate reward

directly. One of the basic form of those methodologies is Actor-critic method.[29]

Actor-critic method use values from the value function as a substitute for reward

values. In the actor-critic method, the value function is called a critic, and the pol-

icy function is called an actor. When the state vector is shared, the phase of the

actor-critic method is split into two steps: one is to update the parameters of the

policy function, and the other is to update the parameters of the value function.

The first phase is to use a policy function through policy gradient, which is

almost similar to REINFORCE, and there are several variations depending on what

reward is replaced with. For example, in the Q actor-critic method, the immediate

reward in Eq. 3.7 is replaced to action-value function as follows:

θπ ← θπ + α
∑
t

[γtQπθ(s, a)∇θπ log π(at|st, θπ)] (3.8)

Note that the value function along the target policy is approximated to the function

with the policy function; that is, the actor-critic method is in an on-policy manner.

For another instance, advantageous actor-critic (A2C) method exploits the ad-

vantage instead of Q value. Advantage is defined as the difference between V(s),
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the expected sum of the discounted reward for the current state, and Q(s,a), the

value function according to the action. Considering the advantage, when updating

the policy function or estimating the policy function, not only the value function

is simply weighted, but also the behavioral benefit of the action can be considered

simultaneously. In A2C method, the update of policy function become as follows:

θπ ← θπ + α
∑
t

[γtAπθ(s, a)∇θπ log π(at|st, θπ)] (3.9)

where Aπθ(s, a) = Qπθ(s, a)−Vπθ(s) If we use an approximation A(s, a) ≈ R+γV (s′)

to the action-value function, the advantage is approximated as Aπθ(s, a) = R +

γVπθ(s
′)− Vπθ(s).

The second phase is to update value function. Though actions could be sampled

from a policy function like a value-based method or use a separate policy like ε-

greedy, in policy-based methods, the value function is used only as an assistant

element to help the policy function to be update, so there are often cases in which

the mean-squared-error loss is simply used as shown below:

θV ← θV +∇θV β[R+ γV (s′)− V (s)]2 (3.10)

where β is another learning rate and θV is parameters for value function.

Although the actor-critic method could be used to learn the optimal policy itself

less dependent on value estimation, the actor-critic is also more unstable in conver-

gence or less explorative as the trajectory in an episode relies on past actions[63].

Therefore, many optimization methods are being studied to improve the safety of

learning, and one of these optimization methods was borrowed in our study.
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3.1.3 Recurrent Reinforcement Learning

Recurrent reinforcement learning (RRL)[47] is a policy-based reinforcement learn-

ing method specialized for trading. RRL adopts policy gradient recurrently for the

policy function along with time horizon. In the RRL framework, a utility function

on rewards is exploited instead of value function estimation, such as the Sharpe

ratio. In detail, Ft, the position (or action) of time t, is a recurrent function such

as Ft = Fθ(Ft−1, It) ∈ {−1, 0, 1} the utility function ST is defined for the reward

sequence {Rt} as:

ST =
R̄t

(R̄2
t − (R̄t)2)1/2

(3.11)

where It is information (or observation, feature) of time point t, R̄t, R̄2
t are the

average of a reward and a squared reward, respectively, and T is the window size.

Here, position values of -1, 0, and 1 mean short, neutral, and long, respectively. In

the RRL model, the reward is determined as a direct function of the position at a

specific time and the position at a previous point in time, just like the recurrence of

a position:

Rt = Ft ∗ rt − δ|Ft − Ft−1| (3.12)

where δ is an unit transaction cost and rt is a return of the asset. As mentioned

above, since the reward is determined by the unknown distribution of return and the

composition of the policy function, the gradient for the policy function is obtained

directly from the predetermined utility function of the reward instead of explicitly
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setting an estimate for a separate value function.

Since it is difficult to calculate the difference in utility function between adjacent

time points in an on-line manner, the differential Sharpe ratio Dt, which corresponds

to a first-order approximation of the difference in Sharpe ratio between adjacent time

points, was proposed as an alternative to the gradient dUt
dRt

as following:

Dt =
Bt−1∆At − 1

2At−1∆Bt

(Bt−1 −A2
t−1)3/2

(3.13)

where At and Bt are estimates of the first and the second order moment with expo-

nential moving average:

At = At−1 + η(Rt −At−1)

Bt = Bt−1 + η(R2
t −Bt−1)

where η is a decay rate. From the above differential Sharpe ratio, the entire policy

gradient in the on-line manner from the utility function is approximately determined

as follows:

dUt
dθ

= Dt

{dRt
dFt

dFt
dθ

+
dRt
dFt−1

dFt−1

dθ

}
(3.14)

Note that as the policy gradient Ft
θ is exploited in a recurrent manner such as a

recurrent neural network, the policy function could be approximated to recurrent

neural network form.
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3.2 Model formulation

3.2.1 Setting of The Agent and The Environment

In the suggested trading agent model in this thesis, we exploit RRL framework for

the trading agent. For the model formulation, we set the state space of observation,

S := Rd×w, action space, A := {−1, 1}, and time horizon, T := {1, 2, · · · , τ}. The

state space is a normalized time series consisting of open, high, close, low prices and

trading volume within window size w. The state of action space is either -1 or 1,

corresponding to short and long positions, respectively. We denote st ∈ S as the

sequence observed in the time period from t− w + 1 to t. The sequence st consists

of price return rates
pt−j
pct−w

− 1 (j = 0, 1, · · · , w − 1) where p· is a price (open, high,

close or low) and pc· is a close price. The normalization of volume is the standardized

logarithm of volume within a time window. The length of time horizon τ is decided

from the batch size. We define the normalized close price at t + j against the close

price at t− w, the pt(j) =
pct+j
pct−w

(j = −(w − 1), · · · ,−1, 0, 1).

The temporal feature encoding function is φE : S 7→ H which maps the state

space to the temporal feature space. The hidden representation is φA : RH 7→ RH ′

which maps temporal feature space to hidden representation space. Recurrent policy

function, πt ∈ [0, 1], for observation st ∈ S at time t using the input for reinforcement

learning zt = (φA ◦ φE)(st) = φA
(

(φE)(st)
)

are defined as follows.

πt := π(zt, π(zt−1)) = σ(wf · zt + wππ(zt−1) + wb) (3.15)

where · is the inner product, wf is weight coefficient vector, and wπ and wb

are weight coefficients. Note that σ is a sigmoid function. Actual action value, ρ :
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[0, 1] 7→ A, is generated from the policy function πt defined as follows.

ρt := ρ(πt) =


1 when πt ≥ 1/2

−1 when πt < 1/2

(3.16)

The reward at time t, Rt, is defined as Rt := ρt(p
t
(1) − p

t
(0))− c|ρt − ρt−1| where c is

a transaction cost.

3.2.2 Policy Optimization

The objective of reinforcement learning network consists of two parts: one is utility

maximization objective and the other is surrogate objective. Utility maximization

objective LRLU is the period yield per volatility from the reward series as follows.

LRLU (θ) :=

∑τ
t=1Rt√∑τ
t=1R

2
t

(3.17)

As the daily rate of return, rt, could be calculated from each daily profit that

is scaled from the previous close price, the utility maximization objective equation

(3.17) can approximate
∑
t rt√∑
t r

2
t

, which is derived from original Sharpe ratio during

the batch period. This part of policy optimization is used to learn a policy that

maximizes return over risk in the environment. Thus in this optimization, all the

rewards are used in one single loss function value.

On the other hand, the surrogate objective is the objective function to derive a

policy gradient from the policy function directly, which is oriented from the proximal

policy optimization [57]. The surrogate objective function is used to policy function

to be converged stably and is a summed loss of each time point of loss function value
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Figure 3.1: Recurrent reinforcement learning
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from the immediate reward. A surrogate objective LRLS is updated from reward by

regularizing a new policy value with the previous one as follows.

LRLS (θ|θ̂) :=
1

τ

τ∑
t=1

min

[
π(zt, π(zt−1))

πθ̂(zt, πθ̂(zt−1))
Rt, clip

( π(zt, π(zt−1))

πθ̂(zt, πθ̂(zt−1))
, 1− ε, 1 + ε

)
Rt

]
(3.18)

where θ̂ is the estimators of the recently updated parameters and clip(x, a, b) :=

x1(a ≤ x ≤ b) + a1(x < a) + b1(x > b) assuming a < b. Note that 1(·) is a binary

indicator function.

Based on the assumption that action-value function Q(zt, ρt) ∝ Rt and the value

function, V (zt) ≈ 0, we only use the immediate reward, Rt, to update parameters

without estimating the value function separately for advantage function. Note that

Q(zt, ρt) and V (zt) are future rewards expectations.

The policy gradient update method can prevent the parameter estimation vari-

ance from diverging more effectively than vanilla policy gradient meThe surrogatete-

sutton1999policy, schulman2017proximal. The overall policy gradient update is per-

formed jointly by minimizing LRL(θ|θ̂) := −λLRLULRLU (θ) − λLRLSLRLSthe(θ|θ̂)

where λLRLU and λLRLS are coefficients of positive value. The temporal feature em-

bedding is constructed using gated recurrent unit(GRU) [11], which is suitable for

reflecting long-term dependency.

3.2.3 Gated-Recurrent Unit

Gated Recurrent Unit(GRU) [11] is a form of recurrent neural network (RNN)

designed to reflect the long-term dependence of a time series. It is characterized
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by adding a gate structure to the recurrent neural network. Gate unit in recurrent

neural network structure was proposed in long short term memory (LSTM) [22]

first, and GRU simplified gated structure to enable faster learning [74]. The gate

structure dynamically adjusts the weight of information between previous hidden

neurons and the new input neuron to account for the new hidden output. We set

xt(j) ∈ Rd (j = 1, 2, · · · w) as the daily feature elements in st and denote ht(j) ∈ RH

as the hidden neuron of GRU corresponding to xt(j). Reset gate rt(j), update gate

ut(j) and candidate neuron h̃t(j) is defined as follows.

rt(j) := σ(ht(j)Wr + xt(j)Ur + br) (3.19)

ut(j) := σ(ht(j)Wu + xt(j)Uu + bu) (3.20)

h̃t(j) := tanh ((rt(j) � h
t
(j))Wh + xt(j)Uh + bh) (3.21)

where σ(·) is an element-wise sigmoid function and � is the Hadamard product.

Note that Wr, Wu, Wh, Ur, Uu, and Uh are weighted matrices and br, bu, and bh are

bias constant matrices. Final hidden unit is recurrently determined as follows.

ht(j) := ut(j) � h̃
t
(j) + (1− ut(j))� h

t
(j−1) (3.22)

We use the final output hidden neuron of GRU, ht(w), as a temporal embedding of

state st. Thus, φE(st) = ht(w) holds for the encoding map. From this point on, we

set ht = ht(w) for the simplicity of notation. Initial hidden neuron is separately set as

ht(1) := φE0(xt(1)) through a fully connected neural network (FCNN) φE0 : RD 7→ RH

which can be trained via backpropagation from temporal embedding.
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3.2.4 Hybird Loss from Prediction Network

While learning temporal embedding in section 3.2.3, both the supervised learning

to predict the next normalized close price and the unsupervised learning to recon-

struct the input state are performed using the same embedding φE(st) = ht ∈ RH

in addition to reinforcement learning. This allows temporal embedding to have the

reconstruction capability and the predictive power.

Supervised learning is constructed to predict the next close price pct+1 from tem-

poral embedding φE(st) with the mean squared error loss as follows.

LHF (θ) :=
1

τ

τ∑
t=1

[pt(1) − (φF ◦ φE)(st)]
2 (3.23)

Note that forecasting map φF : RH 7→ R consists of fully connected network. and

the normalized (t+ 1)th close price pt(1) is used as target value.

Unsupervised learning reflects the temporal feature of subsequence using sequen-

tial autoencoder [61]. Decoder network for reconstruction is the GRU network shown

in section ??. The input of decoder network is [ht, · · · , ht] ∈ RH×w where temporal

embedding element, ht = φE(st), is a column vector of length H. The target of

decoder network is reversed subsequence of st,
←−s t := [xt(w), · · · , x

t
(1)] ∈ Rd×w. The

time series decoding map φD : RH 7→ Rd×w has the objective of mean squared loss

minimization for reconstruction as follows.

LHR(θ) :=
1

τ ×
√
D × w

τ∑
t=1

‖←−s t − (φD ◦ φE)(st)‖2F (3.24)

where ‖·‖F is Frobenius norm defined as ‖A‖F :=
√∑

i,j A
2
ij for arbitraryA ∈ Rm×n,
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and
√
D × w is regularizing term for stabilizing the variance of estimator. The hybrid

loss, linearly combined minizing loss LH(θ) := λHFLHF (θ) + λHRLHR(θ), is used

for updating the weights of temporal encoding network, allowing temporal input

features of reinforcement learning to have predictive and reconstructive power. Note

that λHF and λHR are the coefficients of positive value.

3.2.5 Self-attention Mechanism

We apply self-attention mechanism to reallocate temporal weight in the sequence

of temporal embedding. The overall self-attention structure is shown in figure 3.3.

When basic dot-product attention is used, similarity measure such as cosine simi-

larity among hidden representations is used to learn the temporal importance [4].

However, the model learns temporal dependency among features using a neural

network based on the self-attention mechanism[67]. The self-attention mechanism,

which is originated from machine translation motivation, exploits query, key, and

value to reallocate sequence’s temporal importance. As we use encoder structure

only here, those three sequences are derived from the identical embedded sequence.

The self-attention mechanism consists of the following elements or structure: posi-

tional encoding, scaled-dot product, multi-head attention, and residual connection.

Embedding sequence, an episode for the recurrent reinforcement learning, is defined

as follows:

Ht := [ht−τ+1, · · · , ht]T , Ht ∈ Rτ×H (3.25)

where hj ∈ RH j = t−τ +1, . . . , t is a column vector. Note that [ ]T is the transpose

of the matrix. Here, we use positional encoding E defined as follows to encode the
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Figure 3.2: GRU autoencoder with hybrid loss for learning temporal encoding of
subsequence
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hidden sequence Ht temporally:

E := [et,i]
T where et,i =


sin(t× 10000

−2i
H ) when i is even

cos(t× 10000
−2i
H ) when i is odd

(3.26)

(i = 1, · · · , H, t = 1, · · · , τ)

Note that E ∈ Rτ×H . Using the positional encoding, we get augmented input H̄t as

follows:

H̄t := [Ht, E], H̄t ∈ Rτ×2H (3.27)

In the self-attention mechanism, we use multi-head attention layers that are concate-

nated. Let ` be the number of heads and D be the query, key, and value dimension

of each attention layer. Note that ` is set to be H/D in the model setting. In other

words, H is ` multiple of D. The three weight factors: query Qj , key Kj , and value

V j of each attention layer j are determined from the augmented embedding sequence

H̄t as follows:

Qj := σ(H̄tW
j
Q + bjQ) (3.28)

Kj := σ(H̄tW
j
K + bjK) (3.29)

V j := σ(H̄tW
j
V + bjV ) (3.30)
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where σ : Rτ×2H 7→ Rτ×D is an element-wise sigmoid function. From the weight

factors, each attention H̃j
t ∈ Rτ×D is determined using scaled-dot product as follows:

H̃j
t := softmax

[ 1√
D

(Qj(Kj)T +M)
]
V j (3.31)

where M := [mi,j ] ∈ Rτ×τ , mi,j :=


0 (i ≥ j)

−∞ (i < j)

We obtain the multi-head attention, H̃t := [H̃t
1
, . . . , H̃t

`
] ∈ Rτ×H , By passing H̃t

through layer normalization, norm(H̃t) is computed. Then the residual connection

with Ht, Ht + norm(H̃t), is put through fully connected neural network (FCNN),

resulting in the temporally reallocated embedding sequence H ′t which is an episode

sequence used for recurrent reinforcement learning.

3.3 Self-attention based deep direct reinforcement Learn-

ing with hybrid loss

3.3.1 Model Architecture

Self-attention based deep direct reinforcement Learning with hybrid loss (SA-

DDR-HL) is an unified model for generating trade signals, which jointly combines

RRL objective, hybrid loss of forecasting and reconstruction loss, and multi-head

self-attention mechanism for sequence of temporal embedding. SA-DDR-HL consists

of main network for generating temporal embedding and subnetworks branched from

the main GRU decoder which is a fully connected neural network for prediction and

deep recurrent reinforcement learning network. The main network using GRU, as

38



Figure 3.3: Self-attention structure for the sequence of temporal embedding
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described in section 3.2.3, generates tth temporal embedding, ht using raw histor-

ical data from (t − w)th to tth time points, xt(j) ∈ Rd (j = 1, 2, · · · w), to reflect

long term dependency. Subnetworks for sequential reconstruction and forecasting in

section ?? take the above temporal embedding as input variable. Sequential recon-

struction of subnetworks backprogates the gradient of mean squared error (MSE)

loss for reconstruction where the input sequence for temporal embedding is used as

target sequence. Adjusted MSE loss is applied to adjust the variance increment from

dimension. Forecasting subnetwork has the normalized close price of (t+ 1)th close

price against (t−w)th close price, pt(1) as output target and backpropagates the gra-

dient of MSE loss for prediction. Reinforcement learning subnetwork has the batch

sequence of temporal embedding as input, and the batch sequence passes through

multi-head self-attention layer as shown in section 3.2.5. Self-attention layer allows

for the generated trade signal to be learned from discriminated time points with more

significant information among all past time points. Reinforcement learning subnet-

work backpropagates the composite objective consisting of PPO surrogate objective

and Sharpe ratio utility to multi-head self-attention layers. All these subnetworks

jointly backpropagates each gradient to GRU encoder, the main network, according

to previously determined weights.

3.3.2 Algorithm and Computational Complexity

Due to some practical reasons, it is challenging to estimate the accurate com-

putational cost especially in deep learning [27]. From the big-O notation, which

is based on sequential fixed-float computation, however, the computational com-

plexity of sub-structures in our model could be analyzed partially by referring to
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Vaswani [67]. Self-attention layer in section 3.2.5 is O(w2D) and RNN-structure

layer have O(w2K) and O(wH2) complexity respectively. Note that w is the win-

dow size for generating temporal embedding. The complexity of RRL in section 3.2.1

is O(τH2). The RNN for GRU encoder and decoder in section ?? has the compu-

tational complexity of O(wH2). FCN for forecasting map in section ?? is O(HHF )

complexity, where HF is a dimension of intermediate layer. The complexity of each

head of self-attention layer in section 3.2.5 is O(τ2D). We use RNN-structure as a

GRU encoder, decoder, and recurrent reinforcement learning, which yields O(wH2),

O(wH2), and O(τH2) computational complexity. Also, each head of self-attention

layer has O(τ2D) complexity. Note that GRU feature extraction and reconstruction,

FCN forecasting, and self-attention need to be duplicated layer structures due to its

length of episode τ and the number of heads `. The detailed training algorithm is

described is in Algorithm 1.

3.3.3 Implicit Learning Scheme Along the Cases of Time Horizon

In this section, the proposed RRL model is reinterpreted in detail according to the

classical value estimation point of view. As mentioned in 3.2.2, our model approxi-

mates action-value function Q(zt, ρt) to the immediate reward Rt and value function

V (zt) to the zero. In the finite horizon case, we assume that the size of the time

horizon is to be fixed to the size of an episode. For example, in the case of intraday

trading, in which opening and closing times occur at fixed times, all episodes may

have a fixed length. In that case, the discount factor γ is nearly 1 as the episode’s

length is precisely known to the agent. This may lead to the advantage A(st, at) is

equivalent to the difference between the action-value function and value function,
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Algorithm 1 SA-DDR-HL training algorithm

Input : Times series batch set B
Hyperparameters : learning rate ε, weights for joint objective λR, λF , λLRLU , λLRLS ,

max epoch E
(Default values are set to 0.0001, 0.1, 1, 1, 10 & 200 respectively)

Initialize parameters of temporal feature encoding map φE , time series decoding map
φD, forecasting map φF , hidden representation map φA, recurrent policy function π
(θenc, θdec, θforec, θh, θπU & θπS , respectively)

1: while current epoch ≤ E do
2: for Episode s = {s1, · · · , sτ} in batch set B do
3: Map episode s through map φE and get temporal embedding series H := φE(s) =
{h1, · · · , hτ}

4: Map temporal embedding series H through time series decoding map φD, get
reconstructed series

s′ := φD(H) = {s′1, · · · , s′τ}, and calculate the gradient of reconstruction loss,
∆LHR(θenc, θdec)

5: Map temporal embedding series H through forecasting map φF , get the series of
estimator for next close price

p̂C := φF (H) = {p̂1(1), · · · , p̂
τ
(1)}, and calculate the gradient of forecasting loss,

∆LHF (θenc, θforec)
6: Map temporal embedding series H through hidden representation map φA and

get attention based hidden
representation series of temporal embedding H ′ := φA(H)

7: Map hidden representation series H ′ through recurrent policy function π and get
policy value series πs

8: Get action series ρs from πs, get reward series R, and calculate the joint policy
gradient of reinforcement learning

objective, ∆LRL(θenc, θh, θπU , θπS |θ̂πS ) := −λLRLU ∆LRLU (θenc, θh, θπU ) −
λLRLS∆LRLS (θenc, θh, θπS |θ̂πS ) from R

9: Update parameters of time series decoding map φD through θdec ← θdec −
ελR∆θdecLHR(θenc, θdec)

10: Update parameters of time series forecasting map φF through θforec ← θdec −
ελF∆θforecLHF (θenc, θforec)

11: Update parameters of reinforcement learning sub-network composed of φA, π
through

(θh, θπU , θπS )← (θh, θπU , θπS )− ε∆(θh, θπU , θπS )
LRL(θπU , θπS |θ̂πS )

12: Update parameters of temporal feature encoding map φE through
θenc ← θenc − ε[λR∆θencLHR(θenc, θdec) + λF∆θencLHF (θenc, θforec) +

∆θencLRL(θenc, θh, θπU , θπS |θ̂πS )]
13: current epoch ← current epoch +1
14: end for
15: end while
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Q(st, at)−V (st). Without a discount, the action-value function Q(st, at) is equal to

simply the sum between the immediate reward and the following value function as

R(st, at) + Eπ[
∑τ

j=t+1Rj |st+1] = R(st, at) + V (st+1). Therefore the target advan-

tage is derived as R(st, at) + V (st+1) − V (st) = R(st, at) − Eπ[R(st, at)]. Here, an

expectation of immediate reward could be approximated to 0, where the distribu-

tion of policy function is centered on neutral action. It leads the target advantage

A(st, at) to be approximated to the immediate reward R(st, at). Finally, in the finite

horizon cases, the immediate reward can be used as the target advantage value by

approximating the expectation of the immediate reward to 0.

On the other hand, In the infinite horizon case, a discount factor γ less than 1 is

required to guarantee convergence of value function estimates. That leads the action-

value function Q(st, at) to be R(st, at) + Eπ[
∑τ

j=t+1 γ
j−(t+1)Rj |st+1] = R(st, at) +

γV (st+1). Here, we impose the efficient market hypothesis that all arbitrage chances

are instantly shut down as soon as they arise. In this market, there is no chance

of additional guaranteed profit over the market. In particular, when the interval is

short, such as daily trading, the value function can be approximated to 0 at all

points in time on average. In this approximation, the target advantage becomes the

immediate reward again as V (st, at) ≈ 0 for all time point t.

As a result, the exact implicit value function estimation is possible for both cases

of the finite horizon and infinite horizon for trading decisions in sufficiently short

time intervals of agents who are not interested in long-term decisions. That is, under

the above assumptions, the same reinforcement learning objective can be used for

different trading scenarios.
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3.4 Summary

In this section, we reviewed or suggested the following three. First, we reviewed

reinforcement learning, which is a key framework for the proposed algorithmic trad-

ing. Value-based or policy-based reinforcement learning, a conventional reinforce-

ment learning framework, was presented first, and recurrent reinforcement learn-

ing, a policy-based reinforcement learning optimized for trading, was reviewed. In

this subsection, we introduced the recurrent reinforcement learning exploited in our

model, including the value function and policy function, which are the two key el-

ements of reinforcement learning that are the basis for reinforcement learning, and

how the agent derives the optimal policy from the environment through them.

Second, we proposed a self-attention based deep direct reinforcement learning

model, an algorithmic trading model based on recurrent reinforcement learning. The

three main frameworks constituting each model, gated recurrent units, self-attention

mechanism, and recurrent reinforcement learning model, were presented, and how

these elements were exploited in our model was introduced and formulated. To im-

pose predictive power and reconstruction power on embedded features in the feature

extraction process, we proposed to use the hybrid loss of the fully-connected net-

work structure’s forecasting loss and the seq2seq structure’s sequential auto-encoder

loss. In addition, a self-attention mechanism was introduced prior to the input layer

of recurrent reinforcement learning to rearrange the temporal importance between

different time points for the episode of embedded observation. In the following exper-

imental section, we quantitatively evaluate the impact of these additional structures

on trading performance.

Finally, We present how each of the learning elements proposed above conver-
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gently generates trading signals in our model and can be learned in reverse. The

proposed model was presented in algorithm form, presented in a form that can im-

plement the proposed model step by step, and the computational complexity, which

is the cost of implementation, was analyzed. Also, the proposed recurrent reinforce-

ment learning part was analyzed in terms of the conventional reinforcement learning

scheme, and how it can be interpreted has been suggested.
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Chapter 4

Empirical Trading Applications on the Real-world
Markets

4.1 Intra-day Trading Application on KOSPI200 Market

4.1.1 Environmental Setting

In the present study, a comprehensive intra-day trading experiment was designed

and executed on the KOSPI200 market to evaluate the efficacy of the proposed

hybrid model (SA-DDR-HL). The experiment considered the individual stocks listed

on the KOSPI200 as samples within a single market, with all trading decisions

being made in minutes. It must be noted that the experiment was designed under

the premise that the opening and closing times were fixed, thus ensuring that the

length of each episode was finite. This experimental design represents a practical

application of the SA-DDR-HL model to a finite time horizon scenario. The results of

this experiment provide valuable insights into the basic performance of the proposed

model and its efficacy in real-world intra-day trading scenarios.

The KOSPI 200 market opens at 9:00 am and closes at 3:30 pm, and trading

is conducted at the synchronized bidding for 10 minutes before the market closes.

Thus the length of an episode can be considered to be 379, excluding the 10-minute

market closing. We consider the initial 20 minutes as the burn-in period in which
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Figure 4.1: Schematic diagram for the batch sequence - Intra-day trading case

the observation embedding is formed and the agent actually use data from a total

of 360 time points. Since the length τ of an episode is fixed to be 360, intra-day

trading applications do not use a rolling window. Learning for the model proceeds

for all time points, but in the case of prediction, signals are generated sequentially

by partially using the obtained parameters of the self-attention layer from the start

point to the corresponding point in time.

To simplify the model, we impose several circumstances or assumptions as fol-

lowings. First, the price when creating the action is always viable to bid or ask.

In other words, it is assumed that there is no slippage caused by the trading at

the corresponding price is not made. At this time, all trading volumes are fixed at

1. Also, commission rates are charged only when a position changes and are not

related to stock prices themselves. And the position is determined among long or

short positions without a neutral position.
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4.1.2 Data Description

The dataset used in this experiment is as follows. First, as of March 2020, minute-

by-minute data of stocks incorporated into the KOSPI 200 is used. The data used

here uses the 5-step asking price and volume and bidding price and volume based

on the execution price and execution price at that time. Therefore, the original data

has a total of 41 dimensions. the period of data is from March 25, 2020 to June 4,

2020. A list of items used in this experiment is included in appendix.

As mentioned in 4.1.1, it is assumed that a single model corresponding to all

stocks in the KOSPI 200 is created. Items where trading is suspended due to excessive

rise or fall, such as a circuit breaker or items where the upper or lower limit is reached,

are excluded from learning and prediction. As a result, a total of 7694 samples are

available for training and prediction. Of these, 20% of the data is used for testing,

and 80% of the data is used for training and validation. Significant correlations

between data on the same day may exist, but first of all, in this experiment, random

sampling was used for all data to enhance learning.

Since the period used for the data was in a rapidly rising market, several data

augmentation methodologies were used to compensate for this. First, the data in the

reverse order, in which the time order and positions of bid and ask were reversed

from the training data, were used for learning as synthetic data. In addition, from the

original time series and the reversed time series, four-fold virtual data was created

with noise added following a normal distribution with a little variance. Through this,

we were able to increase the sample size of the training set to 10 times the original

sample size. In addition, we tried to create a model that can respond to both rising

and falling markets by removing the trend bias in learning.
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In this experiment, instead of using comparisons with several models, two agents

were created that followed SA-DDR-HL. The first is a normal SA-DDR-HL agent,

and the second is an agent applying a dueling network that learns by separating the

behavioral network and the target network. Unlike the finite horizon case, since data

on tens of thousands of different samples can be used in an episode here, the other

model is trained to adjust the variance of model learning, and the effect is compared

to the agent without a dueling network.

The batch episode is composed of 360 minutes without a moving window, and

the window size for generating the feature is 20. The price is normalized using the

opening price and the volume is normalized using the volume excluding the shares

of the top 3 major shareholders from the total volume and scaled from a convex

function. The schematic diagram for this setting is shown in 4.1.
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4.1.3 Experimental Result

The experimental results are largely divided into three categories. The first is

a comparison between the general SA-DDR-HL model and B&H. The second is a

comparison between the dueling agent model and B&H. Finally, we examine whether

there is a significant difference in return between the two agents.

Figure 4.2 is a scatter plot comparing the return from the buy and hold strategy

and the return from the SA-DDR-HL strategy. Since it is a comparison of the same

item, it is possible to compare at a glance how much performance gain exists through

the corresponding plot. When training the model, a transaction cost of 0.03%p was

considered, so the same number of times was applied when calculating the return

from the model. The points above the equal performance line of Figure 4.2 are the

number of cases with model gain. As a result of the experiment, it was found that

this ratio was 77.76%, indicating that there was a significant model gain. The average

of this performance gap was 1.46%p. Let the performance gain between -2% and 2%

be ’moderate’, and the other performance gains are ’best’ and ’worst’, respectively.

The number of items in the best group accounted for 36.93% of the total, while

the number of items in the worst group only accounted for 3.06% of the total. The

distribution of the performance gap can be seen in the figure 4.3.

Figure 4.4 is a scatter plot comparing the return from the buy and hold strategy

and the return from the dueling SA-DDR-HL strategy. Conditions such as trans-

action costs are the same as the previous single SA-DDR-HL. The points above

the equal performance line of Figure 4.4 are the number of cases with model gain.

As a result of the experiment, it was found that this ratio was 81.34%, indicating

that there was a significant model gain either. Note that there is an additional gain
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of 3.58%p compared to the previous figure of 77.76% for the single SA-DDR-HL

model. The average of this performance gap was 1.66%p and the gap is also pretty

higher than the single model case, which is about 0.2%p. The number of items in

the best group accounted for 41.29% of the total, while the number of items in the

worst group only accounted for 2.80% of the total. Since there is a performance

gap compared to the single model, it can be confirmed that the ratio of the best

group increases and the ratio of the worst group decreases. The distribution of the

performance gap can be seen in the figure 4.4.

Figure 4.6 is a scatter plot comparing the performance difference between the

single SA-DDR-HL model and the dueling SA-DDR-HL model. It was observed that

the dueling model had a performance gain compared to the single model for about

54.61% of the total test set samples. The z-score for the average return difference

between groups, which is the difference in average performance, was 6.8739, and the

paired z-score for the performance gap of each sample was 4.7558. In both cases,

since the p-value is less than 0.01, it can be determined that a statistically significant

performance gap exists under 99%p confidence. The distribution of the performance

gap can be seen in the figure 4.7.
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Figure 4.2: Scatter plot of log return: B&H vs SA-DDR-HL
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Figure 4.3: Histogram of return difference: SA-DDR-HL - B&H
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Figure 4.4: Scatter plot of log return: B&H vs dueling SA-DDR-HL
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Figure 4.5: Histogram of return difference: dueling SA-DDR-HL - B&H
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Figure 4.6: Scatter plot of log return: SA-DDR-HL vs dueling SA-DDR-HL
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Figure 4.7: Histogram of return difference: SA-DDR-HL vs dueling SA-DDR-HL
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4.1.4 Summary

In this section, we conducted an experiment to evaluate the model performance

of SA-DDR-HL in the finite time horizon case. First, SA-DDR-HL showed statis-

tically significant additional returns compared to general buy & hold strategies.

Although there are aspects where some constraints or assumptions are not realistic,

we showed that the proposed model can be an indicator in an actual trading envi-

ronment. Second, it was shown that the network dueling technique, which separates

the behavioral agent and the target agent for learning, can improve performance. It

was shown that the SA-DDR-HL model using the dueling network had statistically

better performance than the model without it.
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4.2 Daily Trading Application on S&P 500 Market

4.2.1 Environmental Setting

In this section, a daily trading application on S&P500 market experiment was

conducted to compare the performance of the model for the infinite time horizon

case. Unlike the previous finite time horizon case, the infinite time horizon case

requires continuous trading decisions. Therefore, the episode’s length is limited to

a specific interval, configured in a rolling window method, and the decision-making

at the last point is set as the target policy. At this point, there is a difference from

the intra-day trading model, or finite time horizon case, which uses decision-making

itself as a target policy at every time point within an episode.

As with the finite time horizon case, the experiment is given the following cir-

cumstances or assumptions. First, all trades are made right before the market closes,

so the reward is determined by the difference between the day’s closing price and

the next day’s closing price. In addition, all trading volumes are fixed at 1, and

commission rates are charged only for position changes, regardless of stock prices. It

is assumed that there is no trade slippage and the trade is made at the closing price.

Also, the position is determined among long or short positions without a neutral

position.
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4.2.2 Data Description

The effectiveness of our model can be verified for both individual stocks and major

indices in macro range. The dataset used in this section is described as follows. For

each of 11 sectors in S&P500, the stock having the largest market capital share as of

2019 is selected respectively. Major stock indices in the US stock market, S&P500,

Dow Jones and NASDAQ are also used. These indices reflect the overall trend of

each stock price as they consist of stock returns in proportion to the market share

of stock. For both the selected stocks and the stock indices, the period of close price

time series is from January 1, 2000 to January 8, 2020.

In this time series, the part prior to February 6, 2016 is used for training and

validation sets, the remaining part is for test set. The time series category consists of

five dimensions: open price, close price, low price, high price, and trading volume for

individual stocks or transaction amount for indices. The technical trading indicators

such as moving average, divergence, and strength, are not used for the model input

as they may make feature selection process biased. The time series items for our

model are shown in table 4.1, and the brief descriptive statistics of the items are

shown in table 4.2.

The batch episode is composed of temporal embedding of 20 days. Each temporal

embedding consists of raw historical data of financial time series of 20 days. The

window size for generating temporal embedding, w, and the length of episode, τ , are

set to be 20 respectively. The schematic diagram for this setting is shown in figure

4.10.
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Table 4.1: List of items used to study

Symbol Name Sector

AAPL Apple Information Technology
AMZN Amazon.com Consumer Discretionary
DIS The Walt Disney Company Consumer Services
JPM JPMorgan Chase Financials
JNJ Johnson & Johnson Health Care
PG Procter & Gamble Consumer Staples
XOM ExxonMobil Energy
HON Honeywell Industrials
LIN Linde Materials
AMT American Tower Real Estate
NEE NextEra Energy Utilities
ˆGSPC S&P500 Indices
ˆIXIC NASDAQ Composite Indices
ˆDJI Dow Jones Industrial Average Indices

4.2.3 Benchmark

Benchmark Algorithms

The performance comparison of SA-DDR-HL with other conventional algorithmic

trading benchmark models are provided. We use the following models.

1. LSTM Classifier : Long-short term memory (LSTM) [22] is an RNN-type ar-

tificial neural network which is commonly used for sequential features. LSTM

introduces recurrent hidden states with cell state and forget gate for capturing

long-term dependency, and uses the normalized high dimensional time series of

τ days period as an input feature. The final hidden neuron of LSTM network is

the hidden representation of the input feature to predict the next close price.

The prediction is done with FCN.

2. Actor-critic RL : Actor-critic is a standard framework in reinforcement learn-

ing. Actor-critic evaluates two types of network alternately: one is value func-

tion (critic) and the other is policy function (actor). The value function esti-
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Figure 4.8: Schematic diagram for the batch sequence - Daily trading case

mates the expected sum of rewards and policy function. The policy function

estimates the distribution of action value. For trading based on reinforcement

learning, policy based models are generally superior to value based models

such as Q-learning [37]. We use A3C (asynchronous advantage actor-critic)

model with denoising auto encoder for feature extraction as a baseline actor

critic model.

3. ARIMA : Autoregressive integrated moving average (ARIMA) model is a tra-

ditional nonstationary time series model. In this study, we apply the basic

setting of ARIMA, ARIMA(1, 1, 1), to the close price sequence.

4. Random Forest Classifier : Random forest (RF) [21] is a basic classification

model. RF is formed from bagging numerous decision tree weak classifiers. RF

Model uses the normalized high dimensional time series of τ period and passes

through fine tuning of hyper parameters, for example depth and the number

of classifiers.
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Evaluation Measure

In this section, the model performance is evaluated using total profit, annualized

return, Sharpe ratio, Sortino ratio, and Maximum drawdown (MDD) as follows.

1. Total profit (TP) is the asset value of Pτ −P0. Note that Pτ is the asset value

τ days after from the initial day, and P0 is the initial day value.

2. Annualized percentage return (APR) is defined as
((

Pτ
P0

) 250
τ − 1

)
× 100%

3. Sharpe ratio is the annualized excess return over annualized volatility, which

is defined as
√

250
r̄t−rf√∑τ

t=1 r
2
t /τ−(r̄t)2

. Note that rt = ln(Pt/Pt−1) is the daily

return and r̄t =
∑τ

t=1 rt/τ is its τ period average. In our model, we set the

risk free rate, rf , to be 0.

4. Sortino ratio, analogous to Sharpe ratio, uses downward volatility rt− :=

rt1{rt < 0} instead of volatility, which is defined as
√

250 r̄t√∑τ
t=1 r

2
t−/τ−(r̄t−)2

.

5. Maximum drawdown (MDD) is the largest negative return from the local high-

est price, max
t

(
max
u≤v≤t

Pu−Pv
Pv

)
. MDD can distinguish the strategy well adapted

to the trend. A strategy with the less MDD is the more robust against noises.
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Figure 4.9: Generated trade signals from SA-DDR-HL, upon uptrend (AMZN), flat
(JNJ) and downtrend (XOM) respectively

4.2.4 Experimental Result

Ablation Study

SA-DDR-HL model is a derivative model of deep recurrent reinforcement learn-

ing with hybrid loss and multi-head self-attention structure. We check whether our

additional structures over plain deep recurrent reinforcement learning model im-

prove the trading performance using the performance measures described above.

The schematic diagram of the ablation study is suggested in 4.10.

According to table 4.3, all models show positive APR except for self-attention

based DDR (SA-DDR) for XOM data, which has the longterm downtrend. In general,

self-attention based models perform better than other models. Especially, SA-DDR-

HL and SA-DDR show the better performance except for 3 cases, implying that self-

attention mechanism improves DDR based algorithmic trading. When stock prices

and stock indices increase steadily like AAPL, the trading performance of SA-DDR-

HL is indistinct from other baseline models. Meanwhile, when a stock price fluctuates

a lot, regardless of whether its trend pattern is up, flat, or down such as AMZN,

JNJ, and XOM in figure 4.9, respectively, SA-DDR-HL outperforms other baseline

models in trading as SA-DDR-HL properly sells stocks when their price plunge is
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Figure 4.10: Diagram of each model in the ablation study
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expected. In our model experiments, short selling has the same transaction cost rate

as other general trading so that the model can have profit when market has down

trend.

The performance measures in consideration of risk, Sharpe ratio (ShR), Sortino

ratio (SoR), and Maximum drawdown (MDD) for SA-DDR-HL and other baseline

models are provided in in table 4.4. SA-DDR-HL shows the better trading perfor-

mance than other models as in table 4.3 except for SA-DDR in SoR for AAPL.

In general, self-attention based DDR models perform better even considering the

volatility of stock price return. SA-DDR-HL which adopts the hybrid loss structure

to self-attention based DDR, shows far better result. For MDD, a downward sta-

bility index to which a risk aversion utility is applied, self-attention based models

perform better excluding DDR for ˆDJI. SA-DDR-HL shows the best MDD result

over half of dataset. For performance measures, APR, ShR, SoR, and MDD, the

models with self-attention structure is superior to the model without the structure.

In the ablation study, since SA-DDR with a self-attention layer added to DDR struc-

ture and DDR-HL with hybrid loss added to DDR structure are on average higher

than DDR, it can be shown that additionally considered structure designs enhance

the model effectiveness. Also, observing that the combined structure mostly marked

the highest trading performance, it is reasonable to deduce that the reallocation of

temporal importance and the auxiliary sub-networks to the feature extraction are

exclusively trainable. To sum up, we can conclude that a hybrid learning structure

for feature embedding could strengthen the performance of the self-attention based

DDR model as the structure helps the embedded input sequence for DDR to have

the feature extraction and prediction power.
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Figure 4.11: TP APR comparison in the ablation study
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Figure 4.12: ShR SoR comparison in the ablation study
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Figure 4.13: MDD comparison in the ablation study
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Comparative Study

The performance comparison of SA-DDR-HL with other conventional algorithmic

trading benchmark models are provided. Benchmark algorithms are suggested in

4.2.3. Table 4.5 shows that the performance of SA-DDR-HL is almost the best,

followed by LSTM classifier model and A3C actor-critic RL model. Classical time

series model and tree model without feature engineering is inferior to neural network

based models. It is difficult to distinguish the better performed model between LSTM

classifier and A3C model. Meanwhile, SA-DDR-HL shows the better performance

than LSTM classifier and A3C model due to its hybrid structure based on sequential

recurrent neural network and reinforcement learning network.

The performance comparison result considering risk is provided in table 4.6. The

models that perform better in APR still outperform in ShR or SoR. For ˆIXIC,

SA-DDR-HL is slightly better than other models in ShR. However, LSTM Classifier

performs better in APR exceptionally. Although SA-DDR-HL is not the best for

ShR, SoR, and MDD in DIS, the performance values such as ShR and SoR in ˆGSPC,

SoR and MDD in ˆIXIC, and MDD in ˆDJI, are close to the corresponding top

results. For MDD in ˆIXIC and ˆDJI, A3C performs the best. Overall, the trading

performance of SA-DDR-HL is better than other benchmark models based on general

machine learning or time series. Also the results indicate that temporal feature

extraction using both recurrent neural network and reinforcement learning improves

the trading performance of the algorithmic trading using deep learning.
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Figure 4.14: TP APR comparison in the comparative study
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Figure 4.15: ShR SoR comparison in the comparative study
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Figure 4.16: MDD comparison in the comparative study
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Sensitivity Analysis on the Cost Factor

In order to find out the difference in performance according to the main factors

of the model, in this section, we will scrutinize the changes in trading frequency

and return according to the cost factor that determines the reward. In this section,

we use SA-DDR-HL models for items with three different trends, AMZN, JNJ, and

XOM, as illustrated in Figure 4.9. The cost factor was changed by 0.01%p centered

on the default value of 0.03%, and 5 values from 0.01% to 0.05% were used.

The table 4.7 provided herein presents trading frequency observed during the

designated test period, alongside the nominal return, TP, and APR. One crucial

facet under consideration is the effect of high transaction costs on trading activity. As

anticipated, elevated transaction costs are found to discourage frequent transactions,

and, thus, an expectation was posited to observe a reduction in the transaction

frequency. However, upon meticulous examination of the table, it is evident that

the actual model performance does not manifest a discernible trend in response to

varying transaction frequencies. The table 4.7 reveals that the number of transactions

remains relatively constant, contrary to initial expectations.

The examination of the nominal return, in light of transaction costs, also reveals

an intriguing absence of a specific trend. That is, the performance of transactions

does not exhibit substantial disparities either such as frequencies. When the gen-

erated trading signals demonstrate similarity or exhibit a subset relationship, their

propensity towards nominal return is noticeably influenced by the cost factor. This

observation suggests that the very essence of the generated trading signal undergoes

significant modifications due to the interplay with the cost factor. The conclusion

drawn is that the cost factor within the reward setting engenders considerable vari-
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Table 4.7: Sensitibity analysis on cost factor c

c 0.0001 0.0002 0.0003 0.0004 0.0005

Trading Freq. AMZN 27 29 26 30 27
JNJ 32 42 26 24 38
XOM 33 31 37 39 31

TP AMZN 3677.16 3523.51 3057.54 2652.51 2879.82
JNJ 167.02 175.06 193.87 190.5 161.91
XOM 126.18 119.3 120.92 121.2 110.73

APR AMZN 55.90% 54.31% 47.56% 42.98% 47.14%
JNJ 21.20% 23.19% 28.05% 26.83% 21.05%
XOM 29.73% 28.10% 28.49% 28.56% 26.07%

ShR AMZN 2.8 2.57 2.25 2.18 1.99
JNJ 1.83 2.09 2.51 2.44 1.81
XOM 3.05 2.66 2.23 2.59 2.12

SoR AMZN 4.11 3.87 3.37 3.4 3.1
JNJ 3.23 3.64 4.62 4.51 2.99
XOM 3.71 3.18 3.57 3.3 2.57

MDD AMZN -12.74 -11.81 -12.45 -18.21 -23.1
JNJ -9.24 -6.47 -6.85 -5.55 -12.82
XOM -6.49 -6.81 -5.02 -9.88 -7.92

ation in the trading signals, each striving to achieve optimal utility. Consequently,

it becomes evident that there exists a seldom correlation among the distinct trad-

ing signals, thereby highlighting the complexity and multifaceted nature of their

responses to the cost factor.
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4.2.5 Summary and Discussion

In this section, we conducted two experiments to evaluate the model perfor-

mance of SA-DDR-HL in the infinite time horizon case. First, as an ablation study,

in this experiment, we observed the difference in model performance between when

each model component was excluded and when it was not. n this experiment, the

proposed model SA-DDR-HL showed the best performance, and the self-attention-

based DDR model with hybrid loss removed: SA-DDR, showed the second-best per-

formance. This experiment showed that introducing the self-attention mechanism

to the RRL structure significantly contributes to the improvement of the trader

agent’s model performance. Second, as a comparative study, in this experiment, we

compared the performance of the proposed model with a commonly used predic-

tion algorithm or actor-critic reinforcement learning, and observed whether there

was a significant performance difference. In this experiment, the proposed model ei-

ther showed relatively the best performance, and the LSTM-based prediction model

showed the second-best performance. A3C, an actor-critic based reinforcement learn-

ing model, did not show clearly good performance. Unlike the LSTM classifier, which

structurally reflects and predicts the time dependency, the time dependency inside

the feature could not be reflected in the feature engineering stage in the A3C agent.

This seems to cause the size of the feature dimension to be too large compared to

the sample size.

In this experiment, an experiment was performed to compare the performance

of the proposed SA-DDR-HL model through evaluation with various models, but

unlike the ablation study, a more advanced trading agent or forecasting model may

exist as a comparison group in the comparative study. Although it is not possible to
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evaluate all possible control groups, this experiment is meaningful in that it suggests

a trader agent with superior performance compared to algorithms commonly used

in daily trading.
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Chapter 5

Conclusion

5.1 Contributions and Limitations

Financial time series is one of the highly noisy data. Thus among many applica-

tion fields of data science, the problem of predicting the financial market is one of

the most challenging problems. In financial time series, it is difficult to distinguish

between signal and noise, and it is difficult to find suitable features because they

have long-term dependencies. In the conventional general sense, algorithmic trading

is just automated trading execution from given rules, and it was essential to develop

such rules from traders’ insight. However, many challenges have been to automating

such a trading scheme or rule itself. The most widely used models are regression or

classification models in the automated trading decision process. Still, financial time

series predictions based on classification models do not reflect the risk or volatility of

the time series, are not accurate enough, and are trend dependent, making it difficult

to create meaningful models. In addition, in the decision making, it was challenging

to concrete the environment closer to that of actual traders, such as fees, positions,

and assets, other than direct forecasting.

This dissertation proposed a trader agent that introduced reinforcement learn-

ing to overcome the limitations of such prediction models. Generally, reinforcement
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learning based on the Markov Decision Process is unsuitable for financial time se-

ries problems with long-term dependencies. Still, several attempts have been made

to solve this by considering the agent’s state or structural recurrence. In order to

overcome this difficulty, we proposed a model based on recurrent reinforcement learn-

ing that introduces recurrence into action. From the basic recurrent reinforcement

learning model, additional submodel elements were introduced by exploiting the

high model complexity characteristics of deep learning. These additional elements

have been mainly used in existing financial time series prediction or reinforcement

learning models. In this model, we tried to overcome the inherent disadvantages of

the model by effectively combining additional elements. For example, a self-attention

mechanism is employed to allocate relative importance between transaction signals

to an agent, and generative and predictive models were partially utilized in the fea-

ture extraction process so that the agent’s embedded observation compactly fully

contains information about the sequence.

In addition, two experiments were conducted to confirm that the proposed ele-

ments actually operate effectively. First is the finite horizon case, where there is a

certain degree of performance gain on average compared to the basic buy hold for

the intra-day trading scenario, and the results were explained by directly analyzing

the time series according to the relative results of the model. Second, in the infinite

horizon case, an ablation study for a daily trading scenario and a comparative anal-

ysis for other models were conducted. Through two experiments, we argued that our

model has a practical impact. In particular, it was shown that the augmented ele-

ments compared to the basic model, actually contributed to improving the model’s

performance. Not only was the proposed model experimentally verified, but an algo-
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rithm was also developed for the practical implementation of the model. The model

was also interpreted and presented from a general reinforcement learning point of

view.

On the other hand, this dissertation’s model and experimental environment also

have the following limitations. First, there are several limitations to model sim-

plification. First of all, the no slippage cost assumption, in which trade is always

possible at the observed price, is somewhat unrealistic, and this part needs to be

further considered, especially in the case of intra-day trading. Second, the fact that

decision-making is too simple compared to trading in the real world can also be

considered a disadvantage. When holding a product, the decision-making for that

product is not limited to simply long or short, but factors such as quantity or neutral

position should be considered. In particular, considering the portfolio’s composition,

it is inevitable that decision-making regarding trading will be somewhat regulated

by currently available assets. However, the proposed model did not reflect such a

variety of positions for simplification of the model.

Also, there are some limitations in terms of the actual usability of the model

in computation. For example, since the feature extraction and reinforcement learn-

ing parts depend on the recurrence structure, the overall computational complexity

during learning is significant, as presented in this paper. For this reason, it can be

pointed out that the computational cost can be high compared to relatively simple

models, which could be a trade-off.
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5.2 Future Works

One of the possible studies for future work is to reconstruct the trader’s envi-

ronment more realistically. Many of the limitations of the proposed model in the

previous chapter can be solved to some extent by properly modifying the environ-

ment. For example, the no slippage assumption can be solved by giving a negative

reward when an order is not placed at the observed price. Also, the environment

can be modified for asset allocation or portfolio selection problems. The agent’s as-

sets or cash can be included in the observation vector, and it can be formulated

as a problem of distributing portfolio weight by considering multiple items for ob-

servation simultaneously. In the proposed model, the agent’s state does not reflect

the distribution according to the action, but better performance can be expected if

appropriate interaction with the environment is added as above.

Also, as an RRL-based model, there is room for improving the structure more

efficiently. As described above, the proposed model has a disadvantage: the learning

time is long because it is learned from multiple recurrence layers during learning.

Therefore, a model that can replace or simplify the GRU structure used for feature

extraction can be considered.
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국문초록

심층신경망(Deep neural network)의 발달로 인해 복잡한 데이터를 다룰 수 있게 됨

에 따라, 심층신경망 구조를 활용한 알고리듬 트레이딩은 단순히 기계학습의 응용분야

중 하나에 그칠 뿐 아니라 학문적 차원에서 발달하고 있다. 머신러닝을 이용한 알고

리듬 트레이딩의 핵심은 다음과 같이 두 가지이다. 첫째로는 금융시계열로부터 시장

가격의 변동을 설명할 수 있는 특성을 추출하는 것이고, 둘 째로는 다차원의 금융시계

열로부터 특성들 간의 시간적 인과성을 찾아내는 것에 있다. 금융시계열은 노이즈가

강한 특성이 있기 때문에, 금융시계열 자체로부터 직접 예측에 필요한 유의미한 특성

을 뽑아내는 것이 어렵다. 이 때문에 그동안의 알고리듬 트레이딩은 주로 사전적 지식

(domain knowledge)을 이용하여, 금융시계열로부터 특성 변수를 직접 추출 또는 가공

하는 방법론(feature engineering)이 주요하게 연구되었다. 또한 알고리듬 트레이딩의

이윤 극대화를 직접적으로 학습의 목적함수에 이용하는 대신, 방향 분류 모델 또는

가격에 대한 회귀 모델 등과 같은 지도학습 모델을 통해 간접적으로 최적의 포지션을

예측하는 경우가 많았다. 그러나 지도학습을 이용한 방법은 포지션에 의한 효용을 학

습에 충분히 반영하지 못하고, 예측 결과로부터 간접적인 의사결정을 수행하기 때문에

이윤극대화라는 목적에 대해 이중 오차가 발생한다. 이와 같은 문제를 극복하기 위해,

주어진환경에서의관측으로부터기대보상을최대화하는행동을학습하는강화학습기

반의 알고리듬 트레이딩 모델이 지도학습 기반의 모델의 단점을 극복하는 좋은 대안이

되고 있다.

본 논문에서는 순환강화학습과 셀프 어텐션 구조를 결합한 융합 모델을 제안하고,

주식 시장에서의 거래 신호를 발생하는 실증적으로 제안된 모델의 유용함을 검증한다.

먼저 제안된 모델의 네트워크 구조 및 학습에 필요한 환경, 보상, 상태집합, 그리고
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에이전트의 행동집합을 정의한다. 제안된 모델은 서로 다른 시점에서 생성된 거래 신

호들 간의 시간적 의존성(temporal dependency)를 반영한 정책 그라디언트 모델인

심층 순환강화학습 구조를 기반으로 한다. 심층 순환강화학습은 에피소드(episode)내

의각시점에서의관측치를정책함수의입력으로갖고이전의거래신호에대해순환적

(recurrent)으로 결정되는 거래 신호를 생성하고, 생성된 거래 신호로부터 얻는 보상인

수익률들에대한효용함수를극대화하도록정책함수의파라미터를학습하는정책기반

(policy-based) 강화학습 모형이다. 여기에 지도학습에 해당하는 예측모델 및 비지도학

습에해당하는생성모델오차를전파하는하이브리드인공신경망과은닉표현시퀀스의

시간적 중요도를 학습하는 셀프 어텐션 계층을 접목하였다. 또한 제안된 모델의 강화

학습 과정을 상세하게 기술하기 위해, 시계(Time horizon)의 범위가 한정이 되어있는

경우와한정이없는경우두상태모두에대해서모델을정의한다.이때,시계의범위가

한정이 되어있지 않은 경우라도 단기 변동에 대해 위험중립적 선호, 즉 매수와 매도에

대한 정책의 사전적인(prior) 위험 중립 확률이 1대 1에 가깝다고 근사하는 경우에는

시계의 범위가 한정되어있는 모델과 동일한 이익(Advantage)로부터 학습이 가능함을

보인다.

다음으로,모델성능을검증하는두가지응용실험을수행하고그결과를분석한다.

첫 번째로 유한 시간 순환강화학습 알고리듬 트레이딩 모델의 응용으로, 코스피200 상

장종목에대한데이트레이딩(Intraday trading)에적용한실험을수행한다.유한시간

순환강화학습알고리듬트레이딩모델의응용실험에사용된데이터는 2019년 3월부터

6월까지의 총 40일 간의 KOSPI200 등재 종목의 분 단위의 시가, 종가, 고가, 저가,

거래량이며, 이 중 거래정지, VI, 제한가 등 외부적인 시장 거래 개입이 발생한 종목을

제외한 종목들에 대해 실험을 수행하였다. 실험은 전체 종목 데이터를 훈련 데이터와

검증 데이터, 그리고 시험 데이터로 나누어 시장 전체 종목에 대한 데이 트레이딩을

수행하는 단일 모델을 생성하였으며, 추세 효과 또는 종목 간 동조 효과를 줄이기 위해
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데이터 증강(Data augmentation)을 사용하여 훈련 데이터를 다양화하였다. 두 번째로

무한 시간 순환강화학습 알고리듬 트레이딩 모델의 응용으로, S&P 500 상장 종목에

대한 일일 거래에 적용한 실험을 수행한다. 무한 시간 순환강화학습 알고리듬 트레이

딩 모델의 응용 실험에 사용된 데이터는 2000년 1월부터 2019년 11월까지의 총 5000

일 간의 개별 S&P500 등재 종목으로, 이를 훈련 데이터와 검증 데이터, 그리고 시험

데이터로 나누어 개별 종목 별로 모델을 생성하였다. 해당 기간에 존속했던 기업 중 11

개의 섹터 별로 말일 기준 시가총액이 가장 큰 기업들에 대해 개별적으로 모델을 학습

및 시험을 수행하였다.

두실험에서공통적으로머신러닝기반의지도학습모델인 LSTM, Random Forest

와 강화학습 모델인 A3C 모델, 그리고 시계열 모델인 ARIMA와의 모델 성능을 비교

한다.또한 무한 시간 순환강화학습 알고리듬 트레이딩 모델 실험에서는 제안된 모델의

구조적효과를검증하기위해,모델의구성요소가되는하부학습구조를모델에서제거

하여제안된융합강화학습모델의각요소가성능향상에영향을끼치는지를검증한다.

결과적으로,우리의 모델이일반적인 머신러닝 모델 또는 기본적인 강화학습 모델에 비

해 명목 수익률, 리스크 대비 수익률 등의 수익률 평가 지표 측면에서 더욱 높은 성능을

가짐을 제시한다. 또한 모델 하부 학습 구조들에 의한 모델효과 검증 결과를 통해, 강화

학습 입력 시퀀스에 도입한 셀프 어텐션 인코더 구조와, 피 지도학습-비지도학습 융합

학습모델이제안된모델의성능향상에유기적으로도움을주는요소가됨을제시한다.

주요어: 순환강화학습, 셀프 어텐션 메카니즘, 순차적 오토인코더, Gated Recurrent

Unit, 알고리듬 트레이딩, 데이 트레이딩

학번: 2016-21095
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억이 떠오릅니다. 당시 주변에 이 얘기를 할 때면, 대학원 괴담(?)만 알고있던 주변

사람들이 하나같이 세상에 그런 교수님이 어딨냐며 놀라워했던 기억이 떠오릅니다. 논

문지도 때는 거의 매일같이, 저자인 저보다도 디테일하게 신경써주시면서, 주도적으로

논문을작성해본경험이일천한 저에게 귀중한 도움들을 주셨던 기억 또한 떠오릅니다.

어렸을 때 아버지가 돌아가셔서 아버지의 사랑이란 것이 어떤것인지 느끼지 못하고 살

아왔는데, 아마도 교수님께서 저에게 보내주신 헌신이 이와 가장 비슷하지 않을까하는

생각이 듭니다. 또 그만큼 스스로의 부족함에 굉장히 마음속으로 죄송스러웠던 적도

있었습니다. 이 자리를 빌어서 무한한 감사의 말씀을 전합니다. 또한, 2012년부터 지

금까지 산업공학과에 다니면서 많은 가르침을 주신 서울대학교 산업공학과 교수님들,

과사무실 선생님들께도 감사드리며, 특별히 부족한 저의 논문에 아낌없는 조언을 주셨

던 심사위원장 이덕주 교수님 및 이재욱 교수님, 박우진 교수님께 따로 감사의 말씀을

전해드리고 싶습니다.

다음으로는 긴 시간동안 저의 연구실 생활을 같이 했던 선배님들께 감사의 말씀을

드립니다. 먼저 제가 학자로써 존경하고 경외감을 느끼는, 지금까지 우리 연구실에 많

은 도움을 주고계신 송재욱 교수님께 저 또한 굉장히 많은 도움을 받은것 같습니다. 이
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자리를 빌어 무한한 감사의 말씀 전합니다. 지금까지도 많은 연락을 하고있는 박지환

선배님, 김선도 선배님, 구승모 선배님, 그리고 이창주 선배님까지 89 선배님들께도 사

람 만들어주셔서(?) 감사한다는 말씀 전해드립니다. 곧 2세가 생기는 김선도, 구승모

선배님 2세 건강하게 나와서 세상에서 행복한 가장이 되시길 기원하며, 박지환 선배님

도 조만간 좋은 소식 기대하고 있겠습니다. 사업을 위해 열심히 발로 뛰고계신 이창주

선배님,지금도 잘 되고 있지만 앞으로 더욱 번창하시길 선배님의 충성스러운 심복으로

써 진심으로 기원합니다. 조풍진, 이민혁 91 선배님이자 교수님, 제가 연구실에서 한 때

매일같이 봐왔고 논문으로 고민하는 모습까지 옆에서 지켜봤었는데, 가까운 선배님들

중에 교수님이 생겼다는 점이 새삼 신기하였습니다. 두 분 다 존경받는 교수님이 될 수

있을 것이라 믿어 의심치 않습니다. 저와 대학원 동기이지만 저보다 2년 먼저 졸업하신

최성윤 형님, 입학은 동시에 했지만 아무것도 모르는 제가 형님의 뒤를 따라서 후배처

럼 이것저것 여러가지 많이 여쭈어보기도 하고 굉장한 의지가 되었습니다. 이 자리를

빌어서 감사의 말씀 드립니다. 혹시 추가로 논문 쓰실 계획이 있으시다면, 서로 또 도울

수 있는 기회가 된다면 좋겠습니다.

그리고 지금 저와 같이 연구실 생활을 하고있는 금융리스크공학연구실 멤버들에게

도 격려과 감사의 인사를 전하고 싶습니다. 논문과 사투중인 박사 후보 정윤이, 현주,

그리고 기영이까지, 매일같이 노력하고있는 만큼 좋은 결실 얻을 수 있을것이라고 생각

합니다. 다들 제가 아는 모든 사람들 중에서도 손에 꼽는 똑똑하고 유능한 인재들이라

제가특별히걱정이안될정도로잘해내고있고,잘마칠수있을거라고생각합니다.저

와 졸업동기(?)인 지훈이와 제승이 곧 졸업 축하하고, 앞으로 원하는 대로 일 잘 풀리길

바랍니다. 연구실 두 번 입학한 종우와, 영봉이, 가장 최근에 들어온 한서와 재원이까지

저처럼 오래 헤매지 않고 순탄하게 졸업까지 이르기를 진심으로 기원합니다. 저보다

먼저 졸업한 자랑스러운 석사 후배 도현이, 준열이, 우혁이, 루이도 현재 하고있는 학업

또는 일 모두 순탄하게 잘 풀리길 바랍니다.

그리고, 저와 제가 걸어가고 있는 길을 믿어주고 12년의 기나긴 학교생활을 옆에서
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묵묵히 지원해준 우리 가족들, 감사하고 사랑합니다.
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