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Abstract

Sharing Logistics Resources in the
E-commerce Supply Chain under
Uncertainty

Junhyeok Lee
Department of Industrial Engineering

The Graduate School

Seoul National University

With the growth of both communications technology and contact-free delivery de-
mand, e-commerce has grown significantly during the past few years. However, fierce
competition and the inherent uncertainty in the e-commerce marketplace have made
retailers suffer from high operations costs. Because of such circumstances, the con-
cept of the sharing economy has been confirmed as an innovative business model that
can answer the need for more flexible logistics. Therefore, we aim to develop decision-
making frameworks considering logistics resources sharing under uncertainty. In
this thesis, we address three problems in the supply chain management field: (1)
the perishable inventory problem, (2) the supply chain network design, and (3) the
omnichannel retail operations. In addition, we consider the three different services
or strategies to share logistic resources in the abovementioned problems.

First, we address the perishable inventory problem considering transshipment

and online-offline channel system. We present a Markov decision process model by



accommodating key attributes of the online-offline channel system. We develop the
hybrid deep reinforcement learning algorithm based on the soft actor-critic algorithm
to overcome the curse of dimensionality in the large-scale Markov decision process.
In addition, we found that transshipment substantially reduces the outdating cost
by allowing the offline channel to make good use of the old products that will be
discarded in the online channel, which is new to the literature.

Second, we propose the supply chain network design problem considering the
on-demand warehousing system. We propose the two-stage stochastic programming
model that captures the inherent uncertainties to formulate the presented problem.
We solve the proposed model utilizing Sample average approximation combined with
the Benders decomposition algorithm. Of particular note, we develop a method to
generate effective initial cuts for improving the convergence speed of the Benders
decomposition algorithm.

Third, we address the omnichannel retail operations considering the third-party
platform channel. We propose the stochastic optimization model considering both
the retailer’s supply chain and the third-party platform’s supply chain for omnichan-
nel retail operations. To tackle the intractability of the stochastic optimization
model, we propose a decomposition approach based on the two-phase robust opti-
mization approach. The experimental results suggest that a decomposition approach

is scalable to large-scale problems while maintaining its high solution quality.

Keywords: Logistics resources sharing, E-commerce, Supply chain management,

Reinforcement learning, Stochastic programming, Robust optimization

Student Number: 2021-34229
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Chapter 1

Introduction

1.1 Motivations

With the growth of both communications technology and contact-free delivery de-
mand, e-commerce has grown significantly during the past few years [55]. Because
of the rapid development of e-commerce marketplaces, the number of e-commerce
retailers selling products online also has increased.

In the e-commerce marketplaces, retailers can be categorized into two types de-
pending on the size of the business: large retailers and small retailers. We use
the term “large retailers” to refer to retail companies operated with large capital
investments. In particular, e-commerce platform companies (e.g., Amazon, Kurly,
and Coupang) and the omnichannel company (e.g., Nike and Adidas) can be cate-
gorized as large retailers. These retailers usually have their own e-commerce sales
channels (e.g., mobile apps or official online websites) or offline sales channels (e.g.,
offline stores). In addition, they operate their own logistics system with abundant
warehouse space.

On the other hand, the term “small retailers” will be used to indicate e-commerce
retailers who run their businesses with low capital investment. Because small retail-

ers have insufficient capital to invest in building their own sales channels, they usu-



ally participate in e-commerce platforms as third-party sellers to sell their products.
They operate warehouses with small spaces and also rely on third-party logistics
companies to deliver their products to customers. We summarize the differences
between large and small retailers in Table Ell

Table 1.1: Differences between large and small retailers

Large retailer Small retailer
Size of Large capital investment Low capital investment
the business ge cap P
Sales Operate their own sales channels Participate in e-commerce platforms
channels (offline stores, apps, online website) as a third-party seller
Logisti . . . . .
ogistics Operate their own logistics system  Rely on third-party delivery service
system
Warehouse Abundant Insufficient
space
Example E-commerce platform company,

. Small businesses
Omnichannel company

However, both types of retailers have several challenges to operate and run their
e-commerce businesses. First, several large retailers in South Korea provide delivery
and logistics services for fresh foods because of the ongoing increase in demand. To
preserve the freshness of food, they offer a unique delivery service: dawn deliveries,
which are guaranteed to arrive early morning for orders placed at midnight [69].
However, these large retailers have been suffering from large net losses, and some
have stopped providing dawn delivery services [86]. A major factor contributing
to the net losses of these companies is the perishability of fresh foods. That is, it
is challenging to manage perishable inventories and the substantial outdating cost
incurred due to the waste of perishable products.

Small retailers usually operate warehouses with small spaces for dealing with



varying demands [40, 107]. In order to manage the problem of small warehouse
capacity, retailers have several older solutions at their disposal [136]. First, retailers
can build new warehouses or infrastructure to expand capacity. However, a lot
of capital investment is necessary to implement this solution. Another solution is
to lease warehouses from traditional warehouse operators or third-party logistics
providers. The contract duration for leasing space from traditional providers is
usually long and requires a long-term contract. Therefore, this way is not a suitable
strategy for e-commerce sellers who need flexible solutions [29].

Because of such circumstances, the concept of the sharing economy has been
confirmed as an innovative business model that can answer the need for more flexi-
ble logistics [28]. From the standpoint of e-commerce retailers, this thesis develops
stochastic decision-making frameworks aiming to minimize the expected cost by
sharing logistics resources. Among various logistics resources, we have focused on
three types of resources: 1) inventory, 2) warehouse space, and 3) sales channel. In
Section @, we will briefly explain the concept of logistics resource sharing and re-
lated services. In Section @, we introduce three optimization approaches utilized

to develop decision-making frameworks considering uncertainty.

1.2 Sharing logistics resources

The sharing economy refers to a system in which businesses or customers temporarily
share, rent, or borrow resources instead of buying and owning them. This system en-
ables participants to reduce risk, enhance flexibility, and minimize operations costs.
The best-known examples of sharing economy models are Airbnb, where private indi-

viduals can rent their apartments to others, and Uber, where an online peer-to-peer



ridesharing service allows people to rent a ride. In addition, logistics practitioners
have started to embrace a sharing economy with supply chain collaborations to bring
efficiency to fulfillment and delivery services.

As mentioned in Section EI, this thesis studies how logistics resources (i.e., inven-
tory, warehouse space, and sales channel) should be shared to minimize operations
costs from the perspective of retailers. First, transshipment can share inventory be-
tween locations of the same echelon to improve the service level [106]. Transshipment
can be categorized into two types depending on the timing of implementation: reac-
tive transshipment and proactive transshipment. The reactive transshipment takes
place after observing the demand but before it must be satisfied. On the other hand,
proactive transshipment occurs before the demand has been realized [46]. For ex-
ample, Kranenburg et al. [82] shows that a semi-conductor company, ASML, could
save up to 50 percent of annual inventory costs by utilizing transshipment.

Second, an on-demand warehousing platform has emerged as a new alternative
to share warehouse space because of its high flexibility and low risk. In real cases,
the platform FLEXE provides service for on-demand warehousing in the global mar-
ket [67]. This platform connects warehouse providers who have excess spaces with
e-commerce retailers who require empty space for the short term, as presented in
Figure . There are three advantages of utilizing an on-demand warehousing sys-
tem, called ODWS, as follows: (1) saving setup cost, (2) high flexibility, and (3)
high-speed delivery [84]. From the standpoint of the e-commerce retailer, the main
advantage of the ODWS is that short-term rent for warehouses is available [[135].

Third, retailers can sell their products by utilizing sales channels of e-commerce

platform companies, such as Amazon and Coupang, even when they have their own
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Figure 1.1: On-demand warehousing system.

offline and online channels []. For example, Coupang launched a service called
the C.AVENUE, and many omnichannel companies, such as Nike and Adidas, have
participated in this service to sell their products. From the perspective of retailers,
there are distinct advantages to adopting the sales channel of the third-party platform
(3PP) as one of their sales channels. First, the 3PP companies could implement
logistics of fulfillment on behalf of the retailer by using their self-supporting logistics
service system. Second, the retailer could absorb the additional demand of 3PP. A
significant number of customers use 3PP to buy products online. Therefore, in
addition to customers who want to buy a retailer’s specific product, other users of

3PP could also buy that product while looking around the platform.

1.3 Optimization approaches under uncertainty

This thesis utilizes stochastic programming, robust optimization (RO), and rein-
forcement learning (RL) to deal with problems of making decisions in the presence of
different forms of uncertainty, and we briefly introduce the principles of the adopted

approaches.



Stochastic programming evolves from deterministic linear programming with the
adoption of random variables and aims to minimize the expected cost [112]. De-
pending on the sequences of decisions and information, the research area can be
categorized into two types: 1) two-stage stochastic programming (TSSP) and 2)
multistage stochastic programming. This thesis concentrates on the first one. T'SSP
determines the first-stage decisions before the realization of uncertain parameters.
Subsequently, the second-stage decisions are determined after the realization of un-
certain parameters. However, there is a fundamental difficulty of TSSP in computing
the expected value in the objective function. To alleviate this issue, a great deal of
research has utilized scenario-based models, in which the problem can be solved as
a deterministic model. Because the computational complexity increases depending
on the size of scenarios, the approximation method (e.g., Sample average approxi-
mation (SAA) [[79]) or the decomposition method (e.g., Benders decomposition (BD)
[13]) has attracted the interest of many researchers.

Robust optimization is one of the approaches that deals with the uncertainty in
optimization problems. In contrast to stochastic programming, RO does not need
any knowledge about the probability distribution; instead, it assumes that the un-
certainty value belongs within a predetermined set, called the uncertainty set. RO
aims to find the optimal solution under the worst-case scenario, and the obtained
solution should be guaranteed to be feasible for any realizations of uncertain pa-
rameters in the uncertainty set [10]. In order to make the model tractable, the
uncertainty set is generally defined as a convex set (e.g., box [[128], ellipsoid [[12],
and polyhedron[2(]). In recent decades, adjustable robust optimization (ARO) has

been widely used to deal with multi-stage problems, which commonly assume the



multi-period setting and consider adjustable variables to implement the wait-and-
see decision. The wait-and-see decision is less conservative than the here-and-now
decision because it can postpone making decisions until some of the uncertain pa-
rameters are revealed. However, it is generally intractable to deal with wait-and-see
decisions because of the large feasible space. Thus, it is typical to restrict feasible
space by optimizing a certain type of parameterized function called the decision rule.

Reinforcement learning is one of the tools used to solve the large-scale and com-
plex Markov decision process (MDP). The MDP is a tuple (S, A, r, p,7), consisting
of five components— a set of states, S; a set of actions, A; the reward function,
r; the state transition probability function, p; and the discount factor, v € [0,1).
The MDP is specialized to solve the sequential decision-making problem, and the
sequencing of decisions and information is implemented as follows: decision— infor-
mation — decision — information ---. It can be applied to finite horizon problems
and also applied to infinite horizon problems. Dynamic programming has been uti-
lized to derive the optimal policy by solving the MDP. However, because of the
curse of dimensionality and the curse of modeling, dynamic programming is gener-
ally difficult to apply in large-scale and complex MDP [56]. In contrast to dynamic
programming, Q-learning could address complex MDP and alleviate the above two
issues by approximating the optimal action value [144]. Recently, deep reinforce-
ment learning (DRL), which uses a neural network for a function approximation in
RL, has been widely utilized for various domains [23]. The capability of DRL lies in
its ability to solve the large-scale MDP, which involves the large dimension of state

and action, near optimally.



1.4 Contributions

In this thesis, we address three different problems: (1) the perishable inventory prob-
lem, (2) the supply chain network design (SCND) problem, and (3) the omnichannel
retail operations problem. For each problem, we aim to develop decision-making
frameworks considering logistics resources sharing under uncertainty, which can min-
imize the total expected cost. The proposed problems are closed related in terms of

objective, domain, and uncertainty as follows:

e Objective: The proposed problems aim to balance the service and inventory

levels by considering their trade-offs and minimizing the supply chain cost.

e Domain: The proposed problems cope with the application of emerging ser-

vices, such as ODWS and 3PP, into the e-commerce supply chain.

o Uncertainty: The proposed problems address uncertainty in a multi-period
situation. Among various approaches dealing with uncertainty in a multi-

period planning model, we utilize the appropriate approach for each problem.

The main contributions of this thesis are summarized as follows:

1. For the perishable inventory problem considering proactive transshipment:

e We propose the MDP model to derive a transshipment policy for perishable
products in the online-offline channel system (OOCS). Furthermore, we ac-

commodate key attributes of the OOCS in the mathematical model.

e To derive a promising policy without assumptions about demand distribution,
we customize the soft actor-critic (SAC) algorithm, which is one of the state-

of-the-art DRL algorithms, for the proposed problem.



e We observe that the SAC algorithm is unstable during the training process
due to large action spaces. To mitigate the issue, we propose a novel hybrid

DRL approach by developing two acceleration methods.

e We examine the tendency for transshipment to be effective in high demand
variability. In addition, we analyze the impact of a unit transshipment cost

parameter shelf life of online and offline channels through a sensitivity analysis.

o By further analyzing the outdating cost regarding each channel, we discovered
that the old product discarded in the online channel could be reutilized in the

offline channel through transshipment

2. For the SCND problem considering ODWS:

e We propose the TSSP model for an e-commerce SCND with the ODWS under
uncertainties. To estimate the expected function in the proposed model, we

employ the SAA method.

e To alleviate the computational burden in SAA, we utilize the BD algorithm.
Furthermore, we develop the acceleration method for improving the conver-

gence of bounds by focusing on the initial iteration in the BD algorithm.

e We show the potential cost-saving effects of using the ODWS in the supply

chain through computational experiments.

3. For the omnichannel retail operations considering the 3PP sales channel:

e We develop the stochastic optimization model addressing both the retailer’ s

supply chain and the 3PP supply chain for omnichannel retail operations. Fur-



thermore, we deal with the production capacity of suppliers and transshipment

between logistics centers.

e We propose a novel decomposition approach (DECOM) based on the two-phase
robust optimization approach (TPA), which is the state-of-the-art method to
deal with adjustable binary decisions [93]. By introducing artificial variables,
we decompose the total supply chain into two streams, one for the retailer’ s

supply chain and the other for the 3PP supply chain.

e The experimental results suggest that DECOM is scalable to large-scale prob-
lems while maintaining its high solution quality. Finally, even though the
production capacity becomes insufficient, the computation time of DECOM

does not increase significantly compared to that of the TPA.

1.5 Outline of the thesis

The e-commerce supply chain consists of four components, as shown in Figure @:
suppliers, distribution centers, offline stores, and demand zones. In the e-commerce
supply chain, a retailer replenishes the inventories from multiple suppliers. The
inventories are stored at distribution centers to fulfill demand from multiple sales
channels. Usually, there are two sales channels in the e-commerce supply chain, one
for an offline channel and the other is an online channel. For an offline channel,
the inventories are allocated to offline stores from distribution centers. The offline
demand is fulfilled by the on-hand inventories held in offline stores. For an online
channel, products are delivered directly from distribution centers to customers (i.e.,

online demand). Considering the distance between locations of suppliers, distribution
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centers, offline stores, and demand zones, it is significant to make replenishment,
allocation, and fulfillment decisions to minimize the operational cost in the proposed
e-commerce supply chain.

This thesis studies three types of e-commerce supply chain problems considering
sharing logistics resources and demand uncertainty. However, because of the com-
plicated structure of the e-commerce supply chain, we determine the scope of the
study differently for each chapter. In Chapter E, we propose the perishable in-
ventory management problem considering proactive transshipment and the OOCS.
To utilize real-world data without any knowledge about demand distribution, we
develop the hybrid DRL approach based on the SAC algorithm. In this study, we
only consider the replenishment and transshipment decisions for online and offline
channels. In addition, we assume a single supplier, and the locations of four com-
ponents are not considered. Therefore, this chapter addresses a small part of the
e-commerce supply chain, and the scope of the study is depicted as the orange region
in Figure E

In Chapter E, we present the e-commerce SCND problem considering ODWS by
using the TSSP model. We propose the method that was developed by combining
SAA and BD algorithms. In particular, we develop a novel acceleration method
to improve the convergence speed of the BD algorithm. The scope of the study is
shown as the blue region in Figure @ We consider multiple suppliers, and the
supply chain for an online channel is considered. However, we do not address the
locations of online demand zones and consider the aggregated customer demand to
reflect the case of the e-commerce market in South Korea.

In Chapter @, we address the robust omnichannel retailing problem considering
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the 3PP channel. We present a multi-period stochastic optimization model to ad-
dress uncertainty. Also, we propose the DECOM approach, which could be scalable
to various problem instances. This study considers the whole supply chain proposed
in Figure E, and the scope of the study is depicted as the green region. This study
addresses replenishment, allocation, and fulfillment decisions and also reflects the
locations of four components to minimize operational costs. The proposed problem
is the most complicated compared to problems in Chapters E and E However, the
problem is the most related to real practice; thus, this study could be instructive
to practitioners who are concerned about setting up an effective e-commerce supply
chain. In Chapter a, we provide concluding remarks and possible future research

directions of this thesis.
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Figure 1.2: E-commerce supply chain and the scope of studies.
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Chapter 2

A hybrid deep reinforcement learning approach
for a proactive transshipment of fresh food in the
online-offline channel system

2.1 Introduction

In recent years, as customers have become health conscious, the quality of grocery
service and the provision of fresh foods has only grown in importance [90]. However,
companies providing delivery and logistics services for fresh foods have been suffering
from large net losses, and some have stopped providing dawn delivery services [86].
Unlike the other companies, Oasis Market is the only company that stays in the black
[75]. The majority of companies strive to increase profitability by developing their
online platforms, an outlet for selling fresh foods, as well as by improving logistics
facilities, such as the cold chain system. Conversely, Oasis Market invests in both
online platforms and offline shops simultaneously and has effectively connected the
networks. We will use the term OOCS to refer to a network of online platforms and
offline shops in this thesis. Oasis Market aims to reduce the risk of excess ordering
by mutually transshipping leftover products between channels.

Even though the OOCS has achieved success in real practice by Oasis Market,

there is room for further study on this system. As far as we know, Oasis Market only

13 :



addresses the movement of products from online to offline channels, not from offline
to online channels (i.e., unidirectional transshipment) and implements transshipment
in a simple manner in which the online channel’s unsold products on that day
are moved to the offline channel. Based on the above considerations, we further
studied the OOCS to meet the following two goals. First, in order to minimize the
operational costs in the OOCS, it is necessary to develop a method that could derive
a near-optimal in policy determining the transshipment quantities. Second, we aim
to study the mutual transshipment of products between online and offline channels.

The OOCS is related to research areas of lateral transshipment for perishable
products. It is necessary to consider the key attributes of the corresponding business
model in order to adopt lateral transshipment in OOCS. Before discussing these
attributes, we would like to briefly discuss two types of lateral transshipment (i.e.,
reactive transshipment and proactive transshipment) and clarify the meaning of the
term shelf life. The reactive transshipment takes place after observing the demand
but before it must be satisfied. On the other hand, the proactive transshipment
occurs before the demand has been realized [106, 46]. In this chapter, the standard
meaning of shelf life is used to indicate the length of periods for which fresh food
can be sold. For instance, as illustrated in Figure @, fresh food that has been aged
more than four days should be considered outdated because the shelf life of the food
is three days in the online channel because of delivery time. On the other hand,
the offline channel can offer a longer shelf life (i.e., four days) for fresh food since
delivery time does not need to be considered.

The three attributes of OOCS with lateral transshipment are as follows:

e Heterogeneous shelf life: Throughout the chapter, we use the term heteroge-
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Figure 2.1: Example of heterogeneous shelf life property in OOCS (Photo courtesy
of davidwolfe.com).

neous shelf life to refer to the property that the shelf life of fresh food is different
depending on the channel where it is stored. Even though the lifetime of fresh
food is homogeneous, the shelf life of fresh food can be heterogeneous depend-
ing on the channel [[7(]. Based on the practice of Oasis Market, the shelf life of
fresh food in the online channel is shorter than that of fresh food in the offline
channel because of the risk that the product can deteriorate during delivery
as presented in Figure @ In a practical manner, if fresh food is unsold in the
online channel until the end of its shelf life, it is usually transshipped to the

offline channel and then resold at a discount.

e Proactive transshipment: When the fresh food that customers want to pur-
chase is out of stock in one retail store, they can easily purchase the same kind
of fresh food in another store because fresh foods are sold in many stores. Con-
sequently, customers are not apt to wait until the transshipped item arrives,

making reactive transshipment inappropriate for fresh food operations.

e Non-negligible transshipment time: It is common for the online distribution
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center to be located a distance away from the retail store. Typically, an online
distribution center is located in a suburban area, whereas an offline retail
store is located downtown so that it is more convenient for customers to visit.
Moreover, it requires several hours to package and handle inventories that
will be transshipped to the other channel. Therefore, the transshipment time
should not be negligible when considering inventory movements between online

and offline channels.

Although lateral transshipment has been widely studied in the operations man-
agement field, a limited number of studies have taken into account perishable prod-
ucts. Depending on the types of lateral transshipment, several researchers focused
on reactive transshipment for perishable products [101, 37, 149], and others concen-
trated on the proactive transshipment [90, B2, 38]. Although previous studies have
addressed lateral transshipment with perishable products in various aspects, there
are two research gaps in existing studies. The first research gap is that no existing
study has simultaneously addressed the three attributes of OOCS. To the best of
our knowledge, this is the first study to attempt to analyze heterogeneous shelf lives.
A second research gap relates to assumptions about demand distribution Existing
studies primarily focus on a specific demand distribution in order to determine the
optimal policy except Dehghani et al. [38]. If the gap between real demand and
estimated distribution is large, the transshipment policy derived from relying on the
estimated demand distribution could show poor performance in real practice. The
distinctive differences between our study and Dehghani et al. [38] will be presented
in Section .

In order to fill the above two research gaps, our study deals with a lateral trans-
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shipment model of fresh foods in the OOCS by accommodating three attributes.
Without any assumptions on the demand distribution, we develop the hybrid DRL
approach to directly utilize real-world demand data for deriving a promising trans-
shipment policy. We aim to answer the following three research questions through

this study:

1. Can the developed hybrid DRL approach increase average profit compared to

existing methods in the setting of real-world demand data?

2. What positive effects does transshipment have in terms of profit depending on

the variability of demand and value of unit transshipment cost?

3. How does a transshipment policy change the outdating cost of online and

offline channels, respectively, compared to a ‘no-transshipment’ policy?

The main contributions of our research can be summarized as fourfold. First,
we propose the MDP model to derive a transshipment policy for fresh foods in the
OOCS. Furthermore, we accommodate key attributes of the OOCS in the math-
ematical model. Second, to derive a promising policy without assumptions about
demand distribution, we customize the SAC algorithm, which is one of the state-of-
the-art DRL algorithms, for the proposed problem. However, we observe that the
SAC algorithm is unstable during the training process due to large action spaces.
To mitigate the issue, we propose a novel hybrid DRL approach by developing two
acceleration methods. Third, we examine the tendency for transshipment to be
effective in high demand variability by conducting computational experiments on
various demand data sets. In addition, we analyze the impact of a unit transship-

ment cost parameter shelf life of online and offline channels through a sensitivity
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analysis. Fourth, by further analyzing the outdating cost regarding each channel,
we discovered that the old product discarded in the online channel can be reutilized

in the offline channel through transshipment.

2.2 Literature review

The literature review will focus on two streams of research in operations manage-
ment: lateral transshipment on perishable inventory management and an RL ap-

proach for inventory problems.

2.2.1 Overview of perishable inventory management and lateral

transshipment

Prior to reviewing the relevant literature, we will provide a brief overview of perish-
able inventory management and lateral transshipment. It is notoriously difficult to
determine an optimal policy for managing perishable inventory because of the short
shelf life of the products M. The shelf life of the product incurs M dimensional state
space, and the positive lead time L makes the problem even more challenging, mak-
ing the state space dimension M + L—1. Therefore, the inventory model becomes
intractable to address with the traditional dynamic programming approach.

It has been shown that several optimal inventory policies can be obtained for an
asymptotic case of shelf life based on previous studies [4, 25]. Moreover, approximate
ordering policies (e.g., the base stock policy based on stock level levels) have also
been developed due to the complexity of the optimal policy, and these approximate
policies have been generally evaluated by simulation studies [[100, 34, 62]. There have

been several methods developed for determining ordering policies that consider in-
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formation about the age of units in stock and pipeline inventory [65, 24, B9]. A
modified base-stock policy has been proposed by Haijema and Minner [64], in which
waste estimation is taken into account in the base-stock policy. Several computa-
tional experiments were conducted to compare the performance of existing ordering
policies with those that had been developed afresh. The authors conducted compu-
tational experiments to compare the performance of existing ordering policies and
newly developed ordering policies. In this study, we adopted the best-performing
ordering policies presented in Haijema and Minner [64] to evaluate the performance
of the developed hybrid DRL approach in our study.

A lateral transshipment can be defined as the movement of inventory between
several locations of the same echelon, which can result in a reduction in surplus
and shortfall at the different locations by transferring inventory between them [91,
143]. In spite of the complexity of modeling proactive transshipment over reactive
transshipment, several studies have focused on developing proactive transshipment
models and promising policies [B, 87, 26, [, 97]. The majority of studies, except
Tagaras and Vlachos [131], assumed that transshipment time was negligible in order
to make the problem tractable. In addition, Tagaras and Vlachos [131] developed
a regular ordering policy and a lateral transshipment policy, as well as conducted

extensive simulation studies to verify the advantages of transshipment.

2.2.2 Lateral transshipment for perishable products

There have been a number of studies that focus on non-perishable products that in-
volve lateral transshipment. Nevertheless, we found that there were only a few stud-

ies that investigated both perishable products and lateral transshipment at the same
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time. First, we review the literature concerning reactive transshipment of perishable
products in detail. Nakandala et al. [101] developed a periodic review perishable
inventory model that considered reactive transshipment in the fresh food supply
chain. They embodied five cost components and optimized the trade-off among
these components. For the purpose of minimizing the total cost, they developed a
simple decision rule that requires only information about the spoilage percentage
and the parameters of other cost components. However, logistic practitioners may
only use this model if they assume a compound Poisson demand distribution and
negligible transshipment times.

It is common for research on lateral transshipment of perishable products to con-
sider the periodic review model. Unlike other research, Dehghani and Abbasi [37]
addressed the continuous review perishable inventory model with transshipment.
They examined the transshipment of perishable products in a reactive manner and
determined stock levels in addition to considering transshipment strategies based
on the age threshold of the perishable products. It should be noted, however, that
the developed model is only available for Poisson demand distribution. Zhang et
al. [[149] considered blood platelets inventory which is crucial for blood products
and has a perishable nature. For the purposes of issuing and reactive transship-
ment, they assumed the first-in-first-out (FIFO) rule. A simple transshipment pol-
icy, which guarantees near-optimal results, was developed. An application of the
policy developed was successfully implemented in a real hospital system, resulting
in a substantial reduction in out-of-date platelets.

Additionally, there are very few studies that specifically deal with proactive

transshipment of perishable products, which is the most relevant area for our re-
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search. Cheong [32] presented a proactive transshipment model incorporating an
inventory management system for perishable goods for multiple retail stores. The
algorithm determines the optimal order and transshipment quantities on a single-
period planning horizon. A perishable product with only a two-period lifecycle was
assumed by the authors: old and fresh. Therefore, the proposed model cannot be
applied to real-world scenarios such as fresh food supply chains or blood supply
chains. Wei et al. [145] emphasized the recycling of perishable products. The
authors proposed an approximate dynamic programming model for transshipment
policies that included replenishment and recycling decisions. The developed model,
however, should have addressed the shelf life of the perishable product, which is the
key characteristic of perishable products. Moreover, since the authors dealt with
a very short planning horizon (four months), replenishment and transshipment lead
times were not taken into account. Li et al. [90] considered offline retailing of perish-
able goods, which included replenishment decisions and proactive transshipments.
Considering that customers usually select the freshest items first, the authors as-
sumed the last-in-first-out (LIFO) rule for issuing. Through rigorous analysis, they
showed two roles in transshipment: inventory balancing and inventory separation,
which means that new inventory is put in one outlet and the older inventory is put
in the other, and this research observed this effect for the first time.

The majority of research in lateral transshipment on perishable inventory man-
agement is focused on a specific demand distribution. On the other hand, Dehghani
et al. [B8] developed a method that does not require an assumption about demand
distribution. In addition, the authors assumed that perishable products would ar-

rive immediately, which means the transshipment time is negligible. They utilized
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a mixed-integer linear programming (MILP) model, which is equivalent to T'SSP
model, to decide on proactive transshipment in the blood supply chain. To accom-
modate a long planning horizon, they developed the rolling horizon algorithm based
on the suggested TSSP model, called RH-TSSP. However, RH-TSSP required a
considerable amount of computational effort to solve one test instance as the MILP
model must be solved for every period. For example, if the decision maker wishes to
solve a 10,000 period problem, the MILP model must be solved 10,000 times for each
instance. Similarly, the RL approach also required several hours to train the RL
agent for one instance. In our computational experiments, we found that training
both hybrid DRL and RH-TSSP for the same instance took a similar amount of
time. However, the trained neural networks of hybrid DRL are capable of reusing
other test data sets. In Section we will compare the performance of the hybrid
DRL and the RH-TSSP in detail. In summary, we show several distinctive features
of our study compared to existing studies in lateral transshipment for perishable

products in Table @
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Table 2.1: Comparison of recent studies related to lateral transshipment on perishable inventory management

Author Transshipment  Replenishment  Heterogeneous  Perishable = Without assumptions  Solution
type decision shelf life inventory on the demand methodology
Cheong [32] Proactive v v TIA®
Nakandala et al. [[L01] Reactive v DE?
Dehghani and Abbasi [37] Reactive v DE?
Meissner and Senicheva [97] Proactive v Approximate DP¢
Dehghani et al. [3§] Proactive v v v RH-TSSP?
Li et al. [00] Proactive v v DP¢
Wei et al. [145] Proactive v Approximate DP¢
Zhang et al. [[149] Reactive v DP¢
This research Proactive v v v v RLe

@ Tterative algorithm; ® Differential equation; ¢ Dynamic programming; ¢ Rolling horizon algorithm based on the stochastic programming;

¢ Reinforcement learning



2.2.3 Reinforcement learning approach for inventory management

Recently, researchers studying inventory management problems have paid consid-
erable attention to the RL approach. Many researchers tried to employ the RL
approach to solve intractable inventory problems: perishable inventory manage-
ment [[76, 36], beer game [[104], joint replenishment problem [140], multi-product
and multi-node inventory management [[129], and joint pricing and inventory prob-
lem [[152]. In addition, Boute et al. [23] suggested a number of research avenues that
may help to adopt the DRL approach to practical inventory management problems.

Instead of reviewing all existing studies on the RL approach to inventory man-
agement, we present a detailed literature review of four key papers related to our
research topic. Gijsbrechts et al. [62] applied the DRL algorithm, namely the asyn-
chronous advantage actor-critic (A3C) [99], to address three classic and intractable
inventory problems: lost sales, dual-sourcing, and multi-echelon inventory manage-
ment. The training of neural networks of DRL for each different inventory problem
requires extensive tuning of hyperparameters, which is inevitable when it comes to
designing neural networks of DRL. In order to mitigate this burden, the authors
proposed a method for automatically tuning several types of hyperparameters. Com-
pared with state-of-the-art heuristics and approximate dynamic programming, the
developed A3C algorithm was able to achieve similar performance for each problem.
This result implies that DRL could be a promising approach for inventory problems
in which effective heuristics are lacking.

Oroojlooyjadid et al. [104] proposed a Deep Q-Network (DQN) algorithm as
part of a feedback scheme for the reward function applied to the beer game, a

decentralized, multi-agent and cooperative problem. Although there are four players

24 -



in the suggested beer game, the authors assumed that only one player could use the
DQN, and the others would act irrationally. Without knowledge of the demand
probability distribution, real demand data was employed to test the performance of
the DQN algorithm. Furthermore, the transfer learning approach was developed to
boost the learning speed of DQN in different cost instances. However, the developed
DQN algorithm can only be applied in situations where there is only one player
using the DQN algorithm. To practically employ the DRL approach to reduce the
bullwhip effect, it is more reasonable that all players use DRL than in the above
situation. The multi-agent DRL could be a more suitable approach to the beer game
problem.

Kara and Dogan [76] and De Moor et al. [36] have both utilized the RL approach
to manage perishable inventory. Kara and Dogan [[76] employed Q-learning and
Sarsa algorithms to solve the problem. They defined two different states: the stock-
age-based state and the quantity-based state. Computational experiments showed
that Q-learning combined with a stock-age-based state showed the most promising
performance. However, the authors should have compared the developed algorithm
with state-of-the-art heuristics and evaluated performance systematically using an
optimal policy or lower bound; thus, it is difficult to trust the RL algorithm.

In contrast, De Moor et al. [36] evaluated the performance of the developed
DQN algorithm in comparison with the optimal policy produced by value iteration
(VD). They particularly implemented potential-based reward shaping, which can
transfer knowledge of a state-of-the-art inventory policy (teacher policy) into the
DQN algorithm, which is called shaped DQN. It was found that the shaped DQN

algorithm outperformed the DQN algorithm without reward shaping for the small
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size problem (the product has a two-period shelf life). Occasionally, the shaped DQN
showed better results than a teacher policy. However, for the practical size problem,
the shaped DQN rarely outperformed the teacher policy, which means that the DQN
algorithm with potential-based reward shaping is unlikely to surpass the performance
of the state-of-the-art inventory policy. As Kara and Dogan [[76] and De Moor et al.
[B6] employed basic reinforcement algorithms, Q-learning and DQN, respectively;
thus, there may be room for improving the performance by implementing state-of-
the-art RL algorithms, such as SAC and proximal policy optimization (PPO).

In summary, this is the first study that considers the proactive transshipment
of perishable products in the OOCS. Specifically, we consider the following three
attributes to accommodate key features of the OOCS for fresh foods as mentioned
in Section @: heterogeneous shelf life, proactive transshipment, and non-negligible
transshipment time. Moreover, we developed the DRL approach based on the SAC
algorithm in order to use data directly for decision-making without making any
assumptions about demand distribution. In addition, to mitigate the computational
burden incurred by large action spaces, we propose the hybrid DRL approach by

adopting two novel acceleration methods.

2.3 Problem description and mathematical model

2.3.1 Lateral transshipment for fresh foods in the online-offline

channel system (OOCS)

We consider a periodic review, infinite horizon, perishable inventory problem with
stochastic demand and fixed positive lead time. We assume that the unsatisfied

demand will become lost sales. There are two heterogeneous outlets, online and

26 :



offline channels, indexed by superscript ON and OF, owned by the same retailer
as in Figure @ Each channel has its own demand for customers, and the demand
is random and must be satisfied by the inventories of each channel. The online
distribution center satisfies the online demand DV, and the offline store satisfies
the offline demand DPF. There are deterministic lead times for online and offline
channels (LN > 0and LOF > 0). We focus on a single type of fresh food, and
perishability exists due to the nature of fresh food. From here forward, we will use
the term product to indicate fresh food.

Furthermore, we accommodate the following assumptions to consider the prop-

erties of online and offline channels in real business:

Shelf life of the product is different depending on the outlet. The shelf life of

the product held in the online channel is shorter than in the offline channel.

e Even though online and offline channels sell the same item, the sale price of

the offline channel is lower than that of the online channel.

¢ Demand distributions of online and offline channels are different.

e Because online distribution centers and offline stores are located in different
regions, the lead times for replenishment of the online and offline channels are

different.

Furthermore, we accommodate the following assumptions to consider the prop-

erties of fresh food and the OOCS in real business:

o Shelf life of the product is different depending on the outlet. The shelf life of

the product held in the online channel is shorter than in the offline channel.
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o Even though online and offline channels sell the same item, the sale price of

the offline channel is cheaper than that of the online channel.
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Figure 2.2: Overview of the flow of fresh foods in the OOCS.

The objective of the proposed problem is to maximize the average profit per
period of the OOCS. Each channel orders products from suppliers, and the trans-
shipment is mutually implemented between channels. The retailer makes four types
of decisions at each period ¢: (1) order quantity of online channel, ytON , (2) or-
der quantity of offline channel, yto F(3) quantity of transshipped units from online
channel to offline channel, zto N and (4) quantity of transshipped units from offline
channel to online channel, zto F_ We consider that the issuing policy is FIFO, and
the transshipment policy is first-in-first-transship (FIFT) in both outlets. In partic-
ular, the FIFT refers to the strategy of transshipping the older products ahead to
the other channel while reserving the younger products [142]. We consider the case

that the transshipment time is non-negligible. Specifically, products from the origin
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channel are transshipped before demand is realized, and transshipped products ar-

rive at the destination channel in the next period. We assume that realized demand

and all variables are integers, to accommodate the situation that most e-commerce

companies deal with packaged fresh foods, which counted as units.

To describe the evolution of the proposed system, we use the following notations:

Indices and sets

T set of periods, t € T ={1,2,--- ,T}

MON set of the age of product held in the online channel, m € MY = {1, 2, 7MON}
MOF set of the age of product held in the offline channel, m € M°F = {1,2,... , M°"}
Parameters

pON sale price for a unit of product in online channel

poF sale price for a unit of product in offline channel (p°" > p°©F)

MON shelf life of product held in online channel

MOF shelf life of product held in offline channel (M OF - MOV )

yonN. maximum order quantity at each period in online channel

yor maximum order quantity at each period in offline channel

29N maximum transshipment quantity at each period from online channel to offline channel
29F maximum transshipment quantity at each period from offline channel to online channel
LoN lead time of orders in online channel

Lor lead time of orders in offline channel

Ch inventory holding cost for a unit of product

Cp lost sales cost for a unit of product

c transshipment cost for a unit of product

Cw outdating cost for a unit of product

Co ordering cost for a unit of product

State variables
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1 LON starting inventory level of age m product at period ¢ in online channel

1 L,?ft starting inventory level of age m product at period ¢ in offline channel

oT; ON pipeline inventory that will arrive after LON — [ periods at period ¢ in online channel
OTl?tF pipeline inventory that will arrive after LT — [ periods at period ¢ in offline channel
Lng transshipment quantity of age m product at period ¢ from online channel to offline channel
LTgf; transshipment quantity of age m product at period ¢t from offline channel to online channel

Concatenated vectors of state variables

1L, Concatenated vectors of the (ILl P ILMON 1 I1L9F FE ILMOF t)
OT: Concatenated vectors of the (O h t yoee OTLON L0 oTP t AR OTLOF 1 t)
LT, Concatenated vectors of the (LTl A ,LTMOI\L1 o LTl?tF, - LTY {ON 5 t)

For each period t, the following sequence of an event is repeated:

1. At the start of period t, the starting inventory level, determined at the end
of the previous period ¢ — 1, is observed. We consider I L%\f and [ Lgf to be

the youngest product and IL9Y . . and ILY to be the oldest product that

MON it MOF )t

expires at the end of the previous period t — 1.

2. Four types of decisions, yON , yto F ON , and zto Fare implemented at the start

of period t. The limit of order quantity exists for each channel, 0 < y?V < yON

and 0 < yPF < 99F | Because of the lead time of each channel, the y@V will

be received at time ¢ + LOV, and the ytOF will be received at time ¢ + LOF.

For each channel, the limit of transshipment quantity exists and is determined

max» m=1

ON
by the current inventory level, 0 < zto N < min {zON ZM -l Lnoﬁ } and

max? m=1

0 < 2PF < min {ZOF MOT-1 Lgf;} . The transshipped product is received

at each channel at the start of period ¢ + 1.
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3. The random demand, Dto N and Dto Fis realized; as much as possible, it is
satisfied from the inventory level, I L,?Z]}T and ILYF and the rest is lost. The

m,t»

inventory level and pipeline inventory for the next period t 4+ 1 are updated.

4. At the end of period ¢, revenue and inventory holding, shortage, outdating,

ordering, and the transshipment costs are assessed.

We utilize the state variables LTnolftV and LTnO%l;7 to implement the FIFT policy

for transshipment. The LTNQLQ[ and LTgf are decided as follows:

MON _1 +
L9y =min{ (208 - 30 1n8Y | 1oy b, Vm € {1 7MON—2}, @2.1)

k=m+1

LTILOIngl,t = min {ILg{%Nfl,w ZtON > (2.2)
MON _2 +

LTgi:min ztOF— Z IL;?f ,]L,?ft , Vme{l,--- 7MON_3}’ (2.3)
k=m+1

LTILOIngzt = min {ILg{%Nfzﬂ ZtOF} . (2.4)

where 27 = max{z,0}. The index m of LTg,]tV includes from one to MON — 1,
and the index m of LTgf includes from one to MY — 2, because the shelf life of
the product in the online channel is shorter than that in the offline channel, and
the transshipment quantity will be received at the next period, ¢t 4+ 1. Specifically,
assume that the age MY — 1 product is transshipped from the offline channel to
the online channel in period ¢. This type of transshipment will become worthless
because the transshipped product’s age becomes MY when the product arrives at
the online channel, i.e., the transshipped product cannot be sold to customers.

State variables for inventory level and pipeline inventory in the online channel

are updated based on the following equations after DtON is realized:
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Online channel

orii: = y'v, (2.5)

o1y, =o1Py,, vie {2, o LON - 1}, 2.6)

ILYY 0 = OT(oN _y 4, 2.7
MON _1 7t

ILON, 0y = (([L,?L{X - LT,Q,JX) _ (D?N - ¥ (JLQ? - LT,S?)) ) +ILTSE,  (©2.9)
k=m+1

Vme{l,m,MON—Q},

+
IL9M N oy = ((IL%MM - LTJ%MM) - D?N) . 2.9)

The inventory level for the period ¢ + 1 is updated by subtracting the current
inventory level from the transshipment quantity (i.e., ILYN — LTON).
State variables for inventory level and pipeline inventory in the offline channel
are updated based on the following equations after D?F is realized. The pipeline
inventory in the offline channel updated as the same transitions in the online channel,

Equations (@) and (@), as follows:

Offline channel (pipeline inventory)

oTPf, =y?", (2.10)

OT =012, vie {2 L9 -1} @10

However, because the shelf life of the online channel is shorter than that of the
offline channel, the offline channel’s inventory level is updated differently depending
on the product’s age m. If the index m is included in the set {1, cee MON — 2},
the inventory level for the period ¢t + 1 is also updated by subtracting the current

inventory level from the transshipment quantity (i.e., I L? F_ LTtOF ) as follows:
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Offline channel (inventory level)

IL9f = OT 8r _y (2.12)

MON _2 MOF _1 T
IL9% o) = (IL?,L’; - LTgf) —(per - (ILff - LT,Sf) - > gt + LT,

k=m+1 k=MON _1

Vm€{1,~~,MON—3}, 2.13)

k=MON —1

MOF _1 7t
TLSfon_y oy = ((IL%N_% - LTA%N_Qyt) - (D,?F - 3 IL,?f) ) + LTSNy,

(2.14)

When the index m is included in the set {MON -1, ,MOF}, there is no need
to subtract current inventory from the transshipment quantity because the product
cannot be transshipped from the offline channel to the online channel. In addition,
if the index m is included in the set {M ON ... MOF }, there is no transshipment

quantity from online channel to offline channel, thus, LTT%V is not considered as

follows:
MOF_1 N\ F
ILYfon pyy = ILQfon oy — | DPT = > ILEY + LTSN 14 (2.15)
k=MON
MOF_1 N F
ILON, o = [ ILOS — | DPF = > 1LYT , Vme {MON, ... MOF -2}
k=m+1
(2.16)
+
1L o = (IL%F,M - D?F) . 2.17)

At each period ¢, revenue and costs are defined as follows based on the above

state and decision variables:

MON _o MOF—1 +
Inventory holding (HC}) := e, [( 3 (IL% — LTo% ) + > I1I9h - D?F>

m=1 m=MON _1

(2.18)
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MON _1 +
+ ( 3 (ILZI} — LT,SffX) — D?N> ]

m=1

MON _2 MOF 1 *
Shortage (SCy) == ¢, [(D?F— 3 ([Lgf;—LT,Sff) -3 JLSﬁ)

m=1 m=MON _1
(2.19)
MON _1 +
+ ooy - Y (IL?n{i - LT[,ifZ)
m=1
Outdating (WC}) := cw (IL%%N’H_I + IL%%F’tH) (2.20)
Ordering (OC}) :== ¢, (ytON + ytOF) (2.21)
Transshipment (T'Cy) := ¢ (ztON + z?F> (2.22)
MON _1
Revenue (RV;) :=p°" |min{ Y (IL%{Z e ) , DOV (2.23)
m=1

+pOF

MON 2 MOF 1
min (ILS;; — 18" ) + > I1L9%, DPT

m=1 m=MON _1

At last, the profit at period t, PFy, is defined as: PF; := RV, — HC;— SCy—WC—

OCy —TC.

2.3.2 Markov decision process for the proposed lateral transship-

ment problem

The proposed problem can be formalized as the MDP. A MDP is a tuple (S, A, r,p, ),
consisting of five components— a set of states, S; a set of actions, A; the reward
function, r; the state transition probability function, p; and the discount factor,
v € [0,1). Most existing studies of perishable inventory management defined the
state at time ¢ as inventory level and pipeline inventory, s, = (I Ly, OT}) [[76, 36, 52].
In addition to IL; and OT}, we include the transshipment information at previous

period ¢ — 1, LT;_1, in the state at time ¢, s, = (IL;, OT;, LT;—1). The state space
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S is thus (BMON + MOF 4 [ON 4 [OF _ 5) dimensional.
We consider a discrete action space, and the action at time ¢ is defined as
(y? N yto F ON OF ). Due to the maximum order and transshipment quantity
in each channel, the size of action space |A| is (y50, + 1) x (95, +1) x (298, + 1) x

Zmaz
( 7?1593 + 1) The valid actions for transshipment are different depending on the cur-
rent state s;, specifically the I'L t and IL t as indicated in Section . The
transition probability function is denoted as p(s;y1|s¢, at), which indicates the prob-
ability that the system is in state s;41 at period t 4+ 1 when the action a; is chosen
under state s; at period t. The transition probability can be computed if the de-
mand distribution is known. The reward function quantifies how well the immediate
action a; and state s; are chosen. Because the purpose of the proposed problem is
to maximize the average profit per period, the reward function can be defined as
follows: r(s¢,at) := PFy.

The objective of solving the MDP is to find a policy 7 : S — A, mapping each

state to an action, that maximizes the expected cumulative reward:

max E™
mell

> (s, at)] (2.24)
t=0

where II is the set of all policies and E™ is the expectation operator when following
policy 7. The value function V™ (s) of a policy 7 is the expected cumulative reward

starting from state s under executing 7:

VT(s):=E" [Z Y (s, an)|se = s] (2.25)

T=t

The optimal policy can be derived from the optimal value function V*(s) := max ey
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V7(s), Vs € S, which is the maximum value function overall policies. When the finite
state and actions sets are assumed, the optimal value function can be obtained by

solving the following Bellman equations recursively (i.e., VI algorithm [[14]):

V*(s) == max r(s,a) + Z p(s'|s,a)V*(s") (2.26)

ac
s'eS

However, when dealing with the large-scale and complex MDP, it becomes chal-
lenging to solve with the VI algorithm, due to two issues [56]. First, if several random
variables should be manipulated in the MDP, it is generally difficult to compute the
transition probability. Furthermore, it is impossible to find transition probability if
the probability distribution of random variables is not known. This issue is called
the curse of modeling. Furthermore, obtaining the accurate transition probability is
only possible if the true demand distribution is known. Second, it is challenging to
store and handle the value function for all states, Vs € S, when the problem involves
a large dimension. This issue is called the curse of dimensionality.

To solve the proposed problem, we first tried to solve the problem through the
VI algorithm with the assumption that the demand distribution is known. How-
ever, the dimension of state and action is enormous because our problem deals with
two outlets and the property of perishability. Even though we tested on small-size
instances, it was impossible to obtain the value function because of the memory
issue. Moreover, transition probability cannot be computed directly from real de-
mand data. In order to mitigate the above issues, we adopt the DRL approach
to solve the proposed problem. The capability of DRL lies in its ability to solve

the complex MDP, which involves the large dimension of state and action, near-
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optimally. Furthermore, the Model-free DRL approach does not need to know or
learn the transition probability. Instead, the policy is learned through interactions
between the environment and agent utilizing the demand data set directly. Among
various Model-free DRL algorithms, we employ the SAC algorithm and enhance the

performance of the algorithm.

2.4 Solution methodology: hybrid deep reinforcement learn-

ing (DRL) approach
2.4.1 Soft actor-critic algorithm

Model-free DRL algorithms are suffered from poor sample efficiency and sensitivity
to hyperparameters. Usually, on-policy algorithms, such as PPO [120] and A3C
[99], require new samples at each gradient step. On the other hand, off-policy al-
gorithms can reuse past experience, which increases sample efficiency. Even though
deep deterministic policy gradient (DDPG) [92], which is an off-policy algorithm, is
proposed to use samples efficiently, this method is too sensitive to hyperparameters
in the training process. To mitigate the above issues, Haaranoja et al. [60] intro-
duced the SAC algorithm, which is an off-policy actor-critic DRL algorithm based
on the maximum entropy framework. The exploration and robustness are improved
by using the maximum entropy framework.

In the maximum entropy MDP problem, the concept of entropy of policy is used

as follows:

H (7 (15)) 1= Eqnnys) [ log 7 (al5)] 227)
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The goal of the maximum entropy MDP problem is to find a policy that maximizes

the maximum entropy objective:

[e.o]

max » B, a)mpe [V (7(stya0)) + oM (w(-]se)))] (2.28)

II
TE =0

where p; is the distribution of trajectories induced by policy 7, and « is the temper-
ature parameter, which is utilized to control the relative importance of the reward
and entropy.

From now on, we will introduce methods to derive optimal policy in the maximum
entropy MDP in two different settings: (1) tabular setting, and (2) large spaces
setting. First, in a tabular setting, the optimal policy can be found by repeating
the implementation of soft policy evaluation and soft policy improvement (i.e., soft
policy iteration) [60]. For the soft policy evaluation, the following soft Q-function of

a policy m can be computed by repeatedly applying the modified Bellman backup

operator:
QM (51, ar) = 1 (51, a1) + VB, 1 p( Js1.00) [v,:‘oft (st+1)] (2.29)
where
Vi (s4) i= By fse) | Q7" (s, ar) — alogm (ay|s¢) (2.30)

is called the soft value function. For the soft policy improvement, the policy is
updated toward maximizing the rewards, which is the exponential of the new soft Q-

function. The set of policies II is considered to constrain policies to a parameterized
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family of distributions (e.g., Gaussian). To accommodate the above constraint, m €
II, we utilize the Kullback-Leibler (KL) divergence for information projection; thus,

the policy is updated as follows:

1 ~soft
. €xp (E Told (Stv ))
Tnew = argmin Dgr, | 7 (+]s¢)

(2.31)
well Zﬂ'old(st)

where Z.

r.4(St) is the partition function used to normalize the distribution but can

be ignored because it does not contribute to the gradient descent.

In order to practically employ the soft policy iteration in large spaces (e.g.,
continuous state), the function approximators, neural networks, are utilized for both
the soft Q-function and the policy. A neural network with parameter 6 is used for
the soft Q-function, ngf "(s¢,a;) and a neural network with parameter ¢ is used for
the policy mg(as|s¢). To mitigate the issue of positive bias, two soft Q-functions and
neural networks are utilized, ngf “(sy,ar), Vi € {1,2} [68]. Also, two target soft Q-

networks are used to compute the shared target and improve the training stability,

soft

5 (st,ar), Vj € {1,2}. Both target soft Q-networks are updated through the soft
J

update approach, which can be represented as:
0; 0 + (1 — )6 (2.32)

where ¢ € [0, 1] is the parameter for weight update.
In the large spaces setting, we call soft policy evaluation as critic and soft policy

improvement as actor. We train each soft Q-function parameter 6; to minimize the
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following critic cost function:

2
JQSOft (07,) = E(st,at)ND [(Q;jft (8t7 at) - (T(Stﬂ a’t) + E3t+1~p('|5t7at) [Vg(st‘f‘l)})) :|

(2.33)

where:

Va(si+1) = Eay oy momy (15051) Lg{lg} ngﬂ(mh aty1) — alog 7T¢(at+1|5t+1):| (2.34)

The replay buffer storing trajectories of experience is denoted as D. Through sam-

pling experiences from the replay buffer, the soft value function Vi(s,.1) 1s estimated

St+1
through the Monte-Carlo method.
The policy parameter ¢ can be learned by directly minimizing the KL divergence

in Equation () as follows by multiplying o and ignoring the partition function:

In(6) = Bu [Bunr, i) [a10g (rofarlo) — min, Q5 Gsna)| | 239

Generally, the policy mg(a¢|s;) outputs a mean pug(s;) and a standard deviation
04(s¢) thus the actions are distributed Gaussian distribution, a; ~ N (¢ (s¢), 04(st))-
However, because Equation () cannot be backpropagated in the normal scheme
to compute Jr(¢), the reparameterization trick is adopted. Given state s;, the

squashed Gaussian policy is used; thus, the action is sampled according to:

af (st,&) = tanh (ug(se) + 0p(se) © &), & ~ N (0,1) (2.36)

where £ is the noise following the standard normal distribution. By adopting the
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reparameterization trick, the policy w4 is optimized by minimizing the following

actor cost function:

Jr(¢) = ng:ﬁ [04 log <7r¢(df(st, ft)’st)) - ]él{linQ} ngft(st, af (se, &) (2.37)

Instead of deciding the fixed value for temperature parameter «, the o can be

learned by optimizing the following objective [61]:

Ja)=E gop [—a(logmy(aslsy) +H)] (2.38)

ai~7e(-|st)

where # is a constant representing the target entropy.

2.4.2 SAC for discrete action space and prioritized experience re-

play

The SAC algorithm was developed to derive a near-optimal policy in a continuous
action spaces setting [60, 61]. However, we deal with the discrete action spaces setting
because the decision variables of the proposed problem are integers. Therefore, we
revised the SAC algorithm to adjust in discrete action spaces setting based on the
approach introduced by Christodoulou [33]. In a continuous setting, m4(-|s;) is a
probability density function; however, it is now a probability mass function. To

revise the SAC algorithm, the following two changes should be considered:

e QM. Sx AR = Q%/t:S — RHI: Unlike continuous action spaces,
which have infinitely many possible actions, there are a limited number of
possible actions in discrete actions paces. Therefore, the soft Q-function can

be changed as a mapping Q**/ : & — R from a state to a vector containing
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the Q-value of each possible action.

e 1:S -+ RM — 7:8 —[0,1] : In a continuous setting, = outputs the
mean and variance of action distribution. On the other hand, the probability
for each action can be directly computed because there are finite possible
actions in a discrete setting. By applying a softmax function on the output
layer in the neural network of 74, the policy outputs a vector containing the

probability of each action.

Due to the above two changes, cost functions of critic Jgsor:(0), actor Jz(¢), and
temperature J(a) should be revised. In terms of critic cost function Jgsos:(6), the
expectation value of Vz(siy1) (Equation ()) can be computed directly because
the probability for each possible action can be obtained instead of forming a Monte-
Carlo estimate. Through this modification, the variance for the estimate of critic
cost function Jgsor:(0) can be reduced. The soft value function Vj(st11) can be

obtained by applying the following equation:

Vi(st41) = mp(se41)T <g{1%1"§} ngft(3t+1a ai+1) — alog 7T¢(at+1!5t+1)> (2.39)
] )

In a continuous spaces setting, the reparameterization trick is used to optimize actor
cost function Jr(¢), so the soft critic cost function is transformed from Equations
() to (). However, in a discrete spaces setting, the expectation can be calcu-
lated directly in Equation () regarding the policy my(-|s;). Therefore, we do not

need the reparameterization trick, and the new actor cost function is defined as:

16) = Bu | mofs)” (alog () = min Q"0))| 240

Jje{1,2y %
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Similarly, the temperature cost function J(«) is changed from Equation () to

the following equation because the probability for each action can be computed:
J(@) = Eq,op [m5(s0)T (—a (log e (ar|se) +H))] (2.41)

In summary, we utilize four neural networks for critic (i.e.,d; and 6;,7 = 1,2) and
one neural network for actor (i.e, ¢). Each neural network has an input layer, at least
one hidden layer and an output layer sequentially. Its input is the state vector, and
the output is the |.A|—dimensional action vector consisting of unnormalized scores,
which is called logits. In particular, an actor neural network converts the logits into

an action probability distribution using the following softmax function:

exp(a;)
flag) = —22% (2.49)
S A exp(ay)

As mentioned in Section , the valid actions (i.e., available transshipment
quantities) in action spaces A are different depending on the current state s;. To
prevent sampling the invalid action in A, we employ the following action masking

technique [71]:

1. The current inventory level in online and offline channels, 1 LO]¥ and [ Lmt,

are observed. We check the invalid transshipment quantity by comparing the

OF
sum of the current inventory level, Z _1 Loy m,¢ and ZM “r LYY, and
maximum transshipment quantity, 20N and 29F .

2. A large negative number replaces the logit of actions corresponding to the

invalid transshipment quantity.

43



3. The action probability can be obtained by inputting the logit of actions into
the softmax function, and the probability of invalid actions will become e,

which should be a minimal number.

Due to the property of the off-policy algorithm, the SAC can use the past ex-
periences, (S¢,at, T, S¢+1), which are stored in replay buffer D. Experiences can
be sampled uniformly from a replay buffer without considering the importance of
each experience. Even though this scheme stabilized the training process of DRL, it
could impede sampling efficiency because important and unimportant experiences
are replayed at the same frequency. Therefore, we employ the prioritized experience
replay (PER), the method that prioritizes more important experiences by measuring
the priority value of each experience using the magnitude of its temporal-difference
(TD) error [[119]. The TD error of experience d € D, |d4|, is defined using the soft

value function, Vj, and two soft Q-networks, Qfo " and Q;gf ! as follows:

2 2
0] = min { (@5(5) = (r+ V() (@5 (5) = (r +V3(s)) } (2.43)
The priority value of each experience, py, is defined according to:

Pa = |5d| + €per (2.44)

where €, is a small positive constant that prevents the case that the probability of

revisiting the experience is zero. Then, the probability of sampling experience d is
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defined as:

P
P(d) = =~ (2.45)
k=1Pk
where 7 is the prioritization factor that determines how much prioritization is used,
and Np is the size of replay buffer D.
Usually, the PER can cause inevitable bias because it changes the distribution
of expectations in an uncontrolled way. Therefore, we correct this bias by utilizing
the following importance sampling weights, wg:

(L Ly (2.46)
o= (5 i) |

where 8 € [0,1]. In addition, we normalize the above weights by 1/ maxgwq, due to
stability reasons, and apply the importance of sampling weights to update neural net-
works. Finally, the SAC algorithm with PER for discrete action setting (SACDPE)

is presented in Appendix @

2.4.3 Two acceleration methods in the hybrid DRL approach: SQLT

policy and reward shaping

Even though the SACDPE could get a promising policy, it suffers from unstable
performance because of relatively large action spaces. The output layer of critic
(0;,0;, i = 1,2) and actor neural networks (¢) composed of |A| nodes correspond to
the number of available actions. Therefore, the large action spaces lead to neural
networks with many parameters to train and many nodes in the output layer, result-

ing in considerable training time [23]. In addition, the large action space increases
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the computational burden for the exploration strategy.

To mitigate the above issues and improve the performance of SACDPE, we de-
veloped two methods to accelerate the SACDPE. First, we split decision-making for
ordering (yto N and yto Fy and transshipment (z? N and zto Fy quantity into two stages,
as shown in Figure @ In the original SACDPE, these four types of decisions are
made simultaneously, which makes the action space extraordinarily large. Instead,
we decide the transshipment quantity by relying on the DRL algorithm (SACDPE)
in the first stage, and then the order quantity is decided through a specific ordering
policy in the second stage. Note that this two-stage approach does not violate the
Sequence assumption E Even though the decision is made first on 2PV and z°F
and then y@V and y©F, four types of decision is made before the random demand
(D? N and DtOF ) is realized (i.e., the start of the period t).

Some readers may wonder why the decision on the order quantity is not made
before the decision on the transshipment quantity. This method determines the
order quantity solely without considering additional transshipment sequentially de-
termined, which may result in inefficiency caused by excessive orders. In other
words, the order quantity absorbs the amount that transshipment could supple-
ment. On the other hand, if the decision on the transshipment quantity is made
before the order quantity as the proposed manner, the transshipment information
can be reflected to decide on the order quantity by utilizing the developed new order-
ing policy, called SQLT policy. By separating the ordering decision from actions in
the SACDPE, the size of the action space is reduced from (y$2, + 1) x (y9F, +1) x

ax ax

(ZON + 1) X (ZOF + 1) to (zON + 1) X (zOF + 1). Consequently, the number of

max max max max

nodes at the output layer in the neural network is reduced; thus, the training time
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could be reduced significantly.

{SACDPE

Observe state s;, and decide order
and transshipment quantity
VPN, yPF, 20N, 20F) using SACDPE

Demand arrives

during period t
1

Demand is satisfied by inventory

! End of ! Time
Start of na o
t=1 period ¢ t period ¢ e+l
| SACDPE + SQLT|
Observe state s;, and decide the
transshipment quantity (z2V, zfF) Decide the order quantity (y?", yfF)
using SACDPE using SQLT policy
Demand is satisfied by inventory
Demand arrives
during period t
H H >
’ f End of ! Time
Start o
t-1 period ¢ t period ¢ b+l

Figure 2.3: Differences between original SACDPE and SACDPE+4SQLT.

In the first stage decision, the current state s; is observed, and the action for

transshipment a; is decided by policy 74(:|s;). In the second stage, any ordering

policy, such as the base-stock policy, can be used for the second stage decision.

However, we developed the SQLT policy by improving the SQmax policy [63] and

reflecting the information about transshipment decisions in the prior stage. The

order quantity of policy SQLT is decided as follows:

ytON:min{(SON ¢° (ON OF))"',QON ON

max? ymaac

ytOF = min{(SOF - thF (ZtONaztOF)) Qmax?ymaw}
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where SOV and SOF are parameters for the base-stock level, and QN

and Q9F

max max

parameters for a maximum order quantity in online and offline channels. Because

our problem deals with integer values for demand and variables, we find the optimal

value of these parameters through a grid search. The functions ¢@™v (z? N zto F ) and
q° ( ON ,OF ) are defined according to:
MON _1 LON_1
gON (20N 0F) Z oY + Z OTON — ;ON 4 ;0F (2.49)
MOF 1 LOF 1
qt ( ON OF Z IL };‘i‘ Z O _zt +Zt (2.50)

In addition to the above acceleration method, we implement reward shaping (RS)
to define the more appropriate reward function to maximize the average profit. The
RS is a technique to incorporate the exterior knowledge of a teacher heuristic into RL;
thus, agents are guided towards more promising policies [36, 153]. In this research,
we employ the SQmax policy as a teacher heuristic. The two same environments
are declared; one for the RL, ENVpg;, and the other for a teacher heuristic, the
SQmax policy, ENVsQmaz- At each time step of the training process, the values of
realized demand in two environments are equal However, the current state and next
state are different (i.e., (s, s¢11) is obtained from ENVgp, and (8, §441) is obtained
from ENVsgmas). Even though several methods exist in the RS research area, we
could get better solutions by just subtracting the profit of the SQmax policy from

the profit of the RL as follows:

r (s, a) = PEf — pRo9moer (2.51)
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where PFRL is obtained profit at period ¢ by the RL approach, and PFtSQmM’ is
obtained profit at period ¢ by the SQmax policy. Intuitively, the value of PFtSQma‘T
is used as the criteria for assessing the quality of decisions implemented by RL at
period ¢t. The hybrid DRL approach, SACDPE combining the SQLT policy and RS

(SACDPE+SQLT+RS), is presented in Algorithm [l
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Algorithm 1 SACDPE+SQLT+RS

Initialize QZfﬁ : S — RMI ngft : S — RHAI g : S — |0, 1]'“4'
Initialize ngft : S — RMI Q;—th SR D0

91 — 01, 02 — 92

Declare the environment for SACDPE (ENVgy)

Declare the environment for SQmax policy (ENVsgmaaz)

e+ 1

for each episode e =1,--- | FE do
t<+1

for each timestep t =1,--- ,T do
Observe s; and choose action for transshipment a; ~ my (-|s¢)

Determine yPV and y© by SQLT policy
Observe PFtRL and s;y1 from ENVRp
Observe state §;
Determine yV and yPF by SQmax policy
Observe PFtSQmM and 541 from ENVsgmax
_ PFtRL _ PFtSQmar
D « D U{(st,at, 7, S¢+1)} with maximal priority p, = max;<; p;
Sample a mini-batch B from D according to probability P(d)
pd/ Zk 1pk,Vd €D
Ab1, Aby, Ap, Aav = 0
for b € B do
wy, (Ni X
o soft soft - 2
il = min { (Q7'(5) = -+ ¥3()) (@3276) = 4 25() '}
Db |5b| + €per
AG; +— AO; + wbvgiJQsoft (ei), for i € {1, 2}
Ap +— Ao+ wa¢Jﬂ(¢)
Aa +— Aa+ VJ(a)
end
Update soft Q networks 6; < 6; — AAG;, for i € {1,2}
Update policy network ¢ <+ ¢ — AA¢
Adjust temperature o < a — AAa«
Update target soft Q networks 6; < 10; + (1 —)8;, for i € {1,2}
t—t+1
end

e+e+1
end

B
1
) /maXzEB w;

Return: 6,, 0,
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2.5 Computational experiments

Throughout this section, we conduct three types of computational experiments to
address research questions m, E, and E In Section , we evaluate the performance
of the developed hybrid DRL approach by comparing it with existing algorithms on
the real-world demand data set. In Section , we demonstrate the advantages
of transshipment in the OOCS by examining different types of demand and varying
the unit transshipment cost parameter. In Section , we examine the outdating
costs associated with online and offline channels, respectively. On the basis of the
results of the experiment, we suggest several managerial insights in Section .
All computational experiments were implemented on a PC with an AMD Ryzen 7
PRO 4750G with a Radeon Graphics 3.60GHz processor and 16GB of RAM with
Windows 10 64-bit. In addition, all experiments for the hybrid DRL approach were

coded in Python 3.8 and Pytorch 1.12.1.

2.5.1 Performance analysis of the developed hybrid DRL approach

for real-world data set

Four types of experiments were conducted in this section to validate the hybrid DRL

approach, SACDPE+SQLT+RS, with the following purposes:

—_

. Validating the effects of accelerating approaches by examining learning curves

[\

. Analyzing the robustness of hybrid DRL’s policies on various test instances

w

. Analyzing the robustness of hybrid DRL when training multiple times

4. Comparing the hybrid DRL to existing approaches in terms of optimality gap
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Except for the first experiment, we reported experimental results by adopting the
average profit per period as a performance measure.

By referring the cost parameters in De Moor et al. [36], we set the ¢, = 5,
c, = 1, ¢, = 10, and ¢, = 3 for all instances. In this section, we consider the
negligible transshipment cost, ¢; = 0. The sale price in each channel p®" and
pOF are set as 10 and 8 by accommodating a property that the sale price online
is more expensive than offline. To address the practical size problem, we set the
MON =5 MOF =7 LON =2 and LOF = 3, which determines the dimensions of
state. Moreover, we set the yON = 10, y9F =10, 29N =5, and 29, = 5, which
determines the size of action spaces. We consider 10,000 periods for the planning
horizon to reflect the infinite horizon setting.

In this section, we examine the real-world data set presented in Oroojlooyjadid et
al. [104] and Kaggle [[74] for demands in online and offline channels, and the demand
data set is used directly for training the DRL approach without any assumptions
about demand distribution. It is worth to note that we address the different problem
with the Oroojlooyjadid et al. [104]. The reasons why we utilize the same data set
used in Oroojlooyjadid et al. [[104] are presented in Appendix @ A total of six
instances are considered based on three different types of demand (i.e., Category
A, B, and C) for each channel. In each instance, there are two types of demand
data sets: training data and test data. As presented in Figure @, the training data
consists of 5,000 episodes, and the test data consists of 20 episodes, and each episode
contains the demand information within the planning horizon (i.e., 10,000 periods).

The training data is utilized for the training process of DRL, and the test data is

utilized to assess the performance of the developed algorithms.
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Figure 2.4: Data description.

It has been found that the VI algorithm has not been able to obtain optimal
policy as a result of the high complexity of the proposed problem. Therefore, to
evaluate the quality of the solution systematically, we used the average profit ob-
tained from the optimal objective value of the integer programming (IP) model under
perfect information conditions (i.e., the deterministic demand setting). Due to the
fact that the demand for the planning horizon is already known in advance, all costs,
with the exception of the ordering cost, are close to zero. Based on Dehghani et al.
[@], we developed the TP model using transshipment and replenishment as decision
variables. The average profit obtained from perfect information is regarded as the
upper bound. We used Python 3.8 and the FICO Xpress Optimizer library to solve
the IP model.

In the first experiment, we compared four DRL algorithms: SACDPE, SACDPE+RS,

SACDPE+SQLT, and SACDPE+SQLT+RS. The SACDPE did not accommo-
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date any proposed acceleration methods, and SACDPE+SQLT and SACDPE+RS
adopted SQLT policy and RS, respectively. The SACDPE+RS+SQLT accommo-
dated both acceleration methods. In order to analyze the robustness of DRL al-
gorithms, each algorithm was implemented five times, which means that five actor
neural networks 7y per instance were trained with random weight initialization. We
informally conducted hyperparameter tuning instead of conducting the advanced
search proposed by previous studies [62]. We determined the values of hyperparam-
eters referring to the setting of the related studies [119, 140, 130]. All experiments
were conducted using the same values of hyperparameters as stated in Table @ It
should be noted that the SAC algorithm, which is the base algorithm of our study,
has the advantage of mitigating the brittleness of hyperparameter tuning compared
to other RL algorithms [60, 61]. We implemented extensive experiments with vary-
ing hyperparameter values, but the performance was not affected significantly. In
particular, the SACDPE+4SQLT+RS was most robust to different hyperparameter
values compared to other algorithms.

Figure @ depicts the learning curves of different DRL algorithms in the training
process. The shaded areas around learning curves describe a 95 percent confidence
interval for five multiple runs. We trained each DRL algorithm for 5,000 episodes,
and one episode consists of 100 time periods. The SACDPE obtained the worst
average profit and had the widest confidence interval among every DRL algorithm.
The SACDPE+RS shows more stability during training than the SACDPE. Also,
the average profit of SACDPE+RS converges to a higher value than SACDPE.
The SACDPE+RS requires more than 2,000 episodes for convergence of average

profit. On the other hand, SACDPE+SQLT can learn a promising policy within
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500 episodes. The SACDPE+SQLT+RS also requires about 500 episodes for con-
vergence and obtains the best policy resulting in the highest profit among every
DRL algorithm. Because the action space size was reduced by adopting SQLT, the
SACDPE+SQLT and SACDPE+SQLT+RS could learn a promising policy within
relatively short episodes compared to SACDPE and SACDPE+RS.

In the second experiment, we evaluated the five policies derived from the hybrid
DRL algorithm. Each policy was tested for 20 different episodes in test demand
data sets. The sample mean and standard deviation of 20 runs were computed for
performance measures. As shown in Table @, the sample standard deviation of
the five different policies had a relatively low value for 20 episodes in test demand
data. These results indicate that policies derived from the hybrid DRL are robust

to various test instances.

Table 2.2: Comparison between five policies of hybrid DRL on 20 test instances

Instance  Demand category Policy 1 Policy 2 Policy 3 Policy 4 Policy 5
Online  Offline Mean  Std Mean  Std Mean  Std Mean  Std Mean  Std
1 A B 3491 0.13 34.80 0.13 34.90 0.13 34.79 0.13 34.93 0.13
2 A (@] 3798 0.10 3807 0.11 3791 0.11 38.00 0.10 38.21 0.10
3 B A 33.76 0.14 33.88 0.14 33.70 0.13 33.74 0.14 34.08 0.13
4 B (@] 3522 0.12 3541 0.13 3526 0.12 3530 0.13 35.65 0.12
5 C A 3855 0.10 3863 0.10 38.61 0.09 3861 0.10 38.61 0.10
6 C B 36.90 0.12 37.02 0.11 36.94 0.12  36.92 0.12 36.81 0.12

In the third experiment, we analyzed the robustness of hybrid DRL when training
multiple times. We compared the performance of hybrid DRL (SACDPE+SQLT+RS)
with other DRL algorithms (i.e., SACDPE, SACDPE+RS, and SACDPE+SQLT).
We reported the sample mean and standard deviation of five policies for each DRL
algorithm. In particular, the result of hybrid DRL could be obtained by computing

the sample mean and standard deviation of results in Table @ As presented in
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Table @, the hybrid DRL had the smallest value for ‘Std’ compared to other al-
gorithms. Also, the SACDPE+SQLT had a small value of ‘Std’ compared to other
two algorithms; thus, adopting SQLT as an acceleration method could enhance the
robustness of training.

Table 2.3: Comparison between DRL algorithms when training multiple times

Instance  Demand category SACDPE SACDPE+4+RS SACDPE+SQLT SACDPE+4+SQLT+RS

Online  Offline Mean Std Mean  Std Mean  Std Mean  Std
1 A B -3.65 32.22  28.76  7.98 33.34  0.40 34.87  0.07
2 A (@] -47.86  57.90 32.88  5.69 36.27  0.25 38.03 0.11
3 B A -11.13  27.11  28.11  5.52 3251 0.13 33.83 0.16
4 B (@] 13.08 35.52  27.32  10.86 33.91 0.47 35.37  0.17
5 C A 13.31 25.13 30.78 10.75 37.41 0.32 38.60 0.03
6 C B -18.98 40.88  34.38 0.79 35.44 0.41 36.92 0.07

In the fourth experiment, we compared the hybrid DRL to existing approaches
in terms of optimality gap. We utilized two existing approaches that do not require
prior knowledge of demand distribution. We began by adopting RH-TSSP presented
by Dehghani et al. [B8]. We revised the TSSP model in Dehghani et al. [38] to be
suitable for our proposed problem, and the training data set was used for scenario
samples. Like the developed DRL algorithm, RH-TSSP considers replenishment and
transshipment decisions simultaneously. Second, we adopted three ordering policies
based on an estimate of product waste to the order quantity presented in Haijema
and Minner [64]: BSP-EW, BSPlow-EW, and SQmax-EW. Because only replenish-
ment is considered as a decision in these three ordering policies, the order quantity
in each channel is determined separately by predefined ordering policies. Among
these policies, we reported the SQmax-EW, which showed the best performance.

In Table @, we can see how existing approaches perform in comparison with

each other. Even though RH-TSSP considers transshipment as a decision, the per-
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formance of RH-TSSP was poorer than the performance of other ordering policies.
The solution quality of RH-TSSP cannot be guaranteed because RH-TSSP is also
one of the approximation methods for solving the problem with a long planning
horizon. SQmax-EW outperformed RH-TSSP in terms of optimality gap. How-
ever, we observed that the developed hybrid DRL approach, SACDPE+SQLT+RS,
outperformed SQmax-EW and RH-TSSP for every performance measure.

Table 2.4: Comparison between hybrid DRL and existing approaches

Instance  Demand category  Perfect RH-TSSPP! SQmax-EWTel SACDPE+SQLT+RS

Online  Offline Mean  Std Gap®  Mean Std Gap®  Mean Std Gapl?!
1 A B 42.05 3277 0.06 22.06 33.67 0.11 19.92 34.87 0.07 17.07
2 A C 45.21 34.13 0.10 24.51 36.37 0.11  19.55 38.03 0.11 15.87
3 B A 41.26 31.01  0.07 24.83 3297 0.12 20.10 33.83 0.16 18.00
4 B C 42.46 31.63 0.06 25.50 3441 0.11 1895 35.37 0.17 16.70
5 C A 45.69 35.17 0.10 23.03 36.89 0.12 19.25 38.60 0.03 15.51
6 C B 43.72 34.64 0.07 20.77 35.64 0.12 18.49 36.92 0.07 15.56

2l Gap: (Perfect—Mean) x 100/Perfect
Pl Refer to Dehghani et al. [38]
lel Refer to Haijema and Minner [64]

In terms of computational efficiency, SQLT reduces the computational burden of
the training process. DRL algorithms without SQLT (SACDPE and SACDPE+RS)
required about twelve hours to implement 5,000 episodes. In contrast, DRL algo-
rithms that employ SQLT as an acceleration method (SACDPE+SQLT and SACDPE
+SQLT+RS) required approximately four hours to implement the same number of
episodes. Despite the fact that DRL algorithms require several hours to train the
first time, the trained neural networks can be reused and tested on a variety of de-
mand datasets in less than a second. On the other hand, in the case of RH-TSSP,
the TSSP model is solved at every period because the algorithm is based on the

rolling horizon approach. Thus, RH-TSSP required solving the TSSP model 10,000
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times to test on one dataset, and it has low computational efficiency because it takes

three and half hours to implement one time.

2.5.2 Advantages of transshipment on profit in the OOCS

In this section, we aim to analyze the advantages of transshipment by compar-
ing it with no-transshipment policy. We adopt the SACDPE+4+SQLT+RS for a
transshipment policy and the SQmax-EW for a no-transshipment policy. We set
LON =3 [OF =3, ygfa\g = 20, and y,%gx = 20, and other parameters are equal to
the parameter setting in Section . It should be noted that LOY and LOF were
set as the same value because the differences between the lead time of online and
offline channels could affect the average profit. The effectiveness of transshipment
was evaluated by varying three key factors: (1) demand variability, (2) unit trans-
shipment cost ¢;, and (3) shelf life of product held in online and offline channels,
MON and MOF.

To begin with, we compare the transshipment and no-transshipment policies in
terms of average profit for different types of demand. In this experiment, we assume
that the transshipment cost is negligible. To demonstrate the effects of transship-
ment based on demand variability, we generated nine demand data sets as shown
in Table @ The determined parameters of the distributions are intended to cover
cases of low, medium and high demand variability for each discrete probability dis-
tribution. For each demand data set, we trained the SACDPE+SQLT+RS for 2,500
episodes three times (i.e., three actor neural networks). Based on the performance
of three neural networks, the neural network that exhibited the most promising

performance was selected for analysis.
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Table 2.5: Information about distributions utilized to generate demand data sets

Distributions

Discrete uniform Poisson Negative binomial
Notation U{ai, bi} Pois(\;) NB(ni, p:)
Parameters a; =0 Ai=5 AN=8 X=10 p; =05

bi:IO bi:16 bi:20 m:5 m:8 m:10
Mean (u) 5 8 10 5 8 10 5 8 10
Variance (6%) 10 24 36.67 5 8 10 10 16 20
cvil 0.63 0.61 0.60 0.45 0.35 0.32 0.63 0.50 0.45

[} OV coefficient of variation (o m;

Table @ shows a comparison of average profits per period with respect to a
transshipment policy compared to a no-transshipment policy. For every nine de-
mand data sets, transshipment between online and offline channels resulted in a
higher profit than no-transshipment. We use the performance measure ‘Gap(diff)’ to
evaluate the effectiveness of a transshipment policy compared to a no-transshipment
policy (i.e., the higher value of Gap(diff) represents that transshipment is more ef-
fective than no-transshipment). Under conditions of equal means, the variances of
Uniform, Negative binomial, and Poisson distributions are listed in descending or-
der. Also, the Gap(diff) of Uniform, Negative binomial, and Poisson follows the
same descending order, which indicates that transshipment is more effective when
the variance of demand is greater.

Table 2.6: Average profit of transshipment and no-transshipment policies for differ-
ent types of demand data sets

Average profit per period
U{0,10} U{0,16} U{0,20} Pois(5) Pois(8) Pois(10) NB(5,0.5) NB(8,0.5) NB(10,0.5)

No-transshipment  30.41 51.30 64.75 42.25 74.77 97.05 31.93 63.10 84.43
Transshipment 34.31 56.89 71.62 45.70 79.31 101.99 35.39 68.11 90.64
Gap(diff) @ 12.83 10.90 10.61 8.16 6.07 5.09 10.86 7.94 7.35

(8] Gap(diff): (Transshipment — No-transshipment) x 100/No-transshipment
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In addition, we examined the correlation between Gap(diff) and demand vari-
ability for each distribution. Referring to several existing studies, we utilized the
coefficient of variation (CV) to measure demand variability [131]]. For every distribu-

tion, Figure @ shows a tendency that the higher the value of CV, the more effective

the transshipment is.

Uniform Poisson Negative Binomial
11.0
8.0
125 1051
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Demand variability (CV)

Figure 2.6: Correlation between Gap(diff) and demand variability for three demand
distributions.

From the perspective of revenue and inventory holding, lost sales, outdating,
and ordering costs, Figure @ illustrates how transshipment improves profitability.
The y-axis represents the share of the total improvement according to different
components (i.e., improvement percentage). Among all the components of the cost
structure, transshipment contributes the most to reducing the outdating cost for
every demand distribution. Also, the improvement percentage of inventory holding
cost accounts for a relatively large share of total improvement. Due to the fact that
the transshipment is implemented before the demand is realized, the holding cost
can be saved instead of the transshipment cost, as shown in Equation ().

In the second experiment, a sensitivity analysis on the unit transshipment cost
parameter, ¢;, was implemented. For ease of the expositions, we only consider a

demand data set generated from U{0,20}. As with experiments for different demand
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Figure 2.7: Share of total improvement for revenue and each cost component for
different demand distributions.

data sets, we also trained the SACDPE+SQLT+RS for 2,500 episodes three times
for every value of ¢;, and we utilized the best one to assess the average profit of
the transshipment policy. Table @ shows the average profit of transshipment and
no-transshipment policies varying the value of ¢;. Transshipment can contribute
to an increase in the average profit compared to no-transshipment when the ¢; is
between zero and seven. However, there is no advantage to using transshipment for
maximizing profit if the ¢; is bigger than seven.

Table 2.7: Average profit of transshipment and no-transshipment policies varying
the unit transshipment cost parameter ¢

Average profit per period

=0 =1 =2 =3 =4 =5 =6 a="17 =28 =9
0.00)"" (0.33)®  (0.67)" (1.00)" (1.33)® (1.67)" (2.000" (2.33)" (2.67)"  (3.00)"

No-transshipment  64.75
Transshipment 71.62 68.70 67.01 66.15 65.40 65.21 65.01 64.81 64.75 64.75
Gap(diff)® 10.61 6.10 3.49 2.16 1.00 0.71 0.40 0.09 0.00 0.00

12l Gap(diff): (Transshipment — No-transshipment) x 100/No-transshipment
bl (cl/co): the ratio of the unit transshipment cost to the unit order cost parameters
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Based on the experiment results in Table @, we depict Figure @ to show
the improvement effect of transshipment on average profit varying the value of ¢.
The sum of the improvement of revenue and cost will be the same as the improve-
ment of profit. Similar to the results of Figure @, the transshipment improves the
outdating cost the most compared to revenue and other cost components. If the
transshipment cost is non-negligible (¢; > 0), transshipment could not contribute to
saving inventory holding cost significantly, unlike the results of the first experiment
considering negligible transshipment cost (¢; = 0). When the unit transshipment
and inventory holding cost parameter is equal (¢; = 1), the inventory holding cost is
reduced. However, in the case that ¢; is bigger than ¢y, the effect of transshipment

to reduce the inventory holding cost was insignificant.

Improvement

Unit transshipment cost (Cy)
Figure 2.8: Improvement effect of transshipment on average profit varying the unit

transshipment cost ¢;.

In the third experiment, a sensitivity analysis on the shelf life of online and offline
channels, MOV and MOF was implemented. The experiment setting is equivalent

to the second experiment except that the value of ¢; is zero. Table @ shows the
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Table 2.8: Average profit of transshipment and no-transshipment policies varying
the shelf life of product held in online and offline channels, MV and M°F

Short shelf life Long shelf life
MON 3 3 3 5 5 5
MOF 5 6 7 7 8 9
MOF _ pfON 2 3 4 2 3 4

No-transshipment 64.85 66.35 67.07 7851 78.81 78.89
Transshipment 71.54 73.73 74.35 85.61 86.10 85.96
Gap (diff) @ 10.32 11.13 10.86 9.03 9.24 8.96

8] Gap(diff): (Transshipment — No-transshipment) x 100/No-transshipment

average profit of transshipment and no-transshipment policies by varying the value
of MON and MOF. To analyze the effects of shelf life on the profit, we define two
settings for the shelf life: ‘Short shelf life’ (MON = 3, MOF = 56,7) and ‘Long
shelf life> (MON = 5, MOF = 7,8,9). The transshipment was more effective in the
average profit in the setting of short shelf life than the long shelf life. Also, if the
difference in the shelf life between channels was slight (i.e., M OF _ MON — 9),
the positive effect of transshipment was insignificant compared to the case where
the difference was more considerable (i.e., MO — MON = 3, 4). In contrast, in the
setting of long shelf life, the variation of Gap (diff) was insignificant even though the
value of MOF — MON was changed. These results could be expected because if the
MOF — MON was equal to two, the transshipped product had a high risk of being

outdated as indicated in Table @ because of the non-negligible transshipment time.
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2.5.3 Analysis for saving effect of outdating cost because of trans-

shipment and heterogeneous shelf life

Observing the experiment results in Section , we found that transshipment
reduces the outdating cost compared to a no-transshipment policy. To examine the
impacts of transshipment on the OOCS, we first analyzed how many products were
transshipped from one channel to the other. As a consequence, we identified the
outdating cost that can be saved for each channel by using the transshipment on
the OOCS. The same experiment setting is applied in Section for the different
types of demand and different values of ¢; that will be analyzed.

Figure @ illustrates boxplots of the transshipment quantity according to dif-
ferent types of demand. The planning horizon of 10,000 periods results in 10,000
samples per boxplot. We add a mark for the mean values on boxplots using the
white circle. For every type of demand, more products were transshipped from the
online channel to the offline channel than transshipped from the offline channel to
the online channel. As indicated in Table @, there was no significant difference
between the mean values of two types of transshipment quantities for the demand
of Poisson distribution, where transshipment is the least effective among three dis-
tribution types. In contrast, we can observe that the mean value gap was large for
uniform and negative binomial distributions, in which the transshipment is effective
due to a high degree of demand variability.

Figure presents boxplots of transshipment quantity for varying ¢; values
generated from the demand data set U{0,20}. As the value of ¢; increases, the total
transshipment quantity decreases due to a high transshipment cost. If the value of

¢ is smaller than eight, more products were transshipped from the online channel to
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Figure 2.9: Boxplots of transshipment quantity for different types of demand.

the offline channel than transshipped from the offline channel to the online channel.

When the value of ¢; is larger than eight, the transshipment did not occur in both

channels. Consequently, the average profit of transshipment and no-transshipment

policies is equal, as shown in Table @
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Figure 2.10: Boxplots of transshipment quantity for varying the value of unit trans-
shipment cost parameter c;.
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We inspect the outdating cost of each channel for transshipment and no-transshipment

policies through Tables @ and . For every experiment setting, we could observe
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that the outdating cost increased in the offline channel when utilizing transshipment
compared to no-transshipment. However, the outdating cost decreased substantially
in the online channel compared to the offline channel; thus, the transshipment can
save the outdating cost from the standpoint of the total system. It has been found

that this tendency is the result of two different factors:

e The shelf life of the online channel is shorter than that of the offline channel

(heterogeneous shelf life property).

o It is evident from Figures @ and that a greater number of products are
transshipped from an online channel to an offline channel, rather than from

an offline channel to an online channel.

We observe that products that must be discarded in the online channel were
transshipped to the offline channel. Most of them were used to satisfy demand in
the offline channel, and few products were abandoned in the offline channel. As
can be observed from Figure , in the case of this experiment setting, MV =3
and MOF =5, it is necessary to discard the product in the online channel once the
product reaches the age of three. However, this product can be used in the offline
channel because the product will be disposed of when the age is five in the offline
channel. Therefore, when utilizing transshipment in the OOCS, we found that the
offline channel, which has a longer shelf life, plays the role of making good use of
the old product that will be discarded in the online channel if not transshipped to

the offline channel.
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Table 2.9: Analysis about the outdating cost of each channel in different types of demand data sets

Channel  U{0,10} U{0,16} U{0,20} Pois(5) Pois(8) Pois(10) NB(5,0.5) NB(8,0.5) NB(10,0.5)
WCN™ ON 5.85 8.76 11.54 2.44 2.55 1.95 4.58 4.43 5.02
OF 1.09 1.71 2.34 0.24 0.03 0.01 0.85 0.59 0.34
ON+OF  6.95 10.47 13.88 2.68 2.57 1.95 5.43 5.02 5.35
wCr™ ON 3.50 5.00 7.49 0.89 0.55 0.37 1.97 1.42 1.73
OF 1.78 2.90 3.33 0.46 0.08 0.03 1.66 1.19 0.77
ON+OF 5.27 7.90 10.83 1.35 0.63 0.40 3.63 2.61 2.50
Diffle ON 2.36 3.76 4.05 1.55 2.00 1.58 2.61 3.01 3.29
OF -0.68 -1.19 -1.00 -0.22 -0.06 -0.02 -0.81 -0.60 -0.43
ON+OF  1.67 2.57 3.05 1.33 1.94 1.55 1.80 2.41 2.85
Saving(%)¥  ON+OF 24.07 24.57 21.96 49.70 75.48 T79.55 33.20 47.96 53.32

&l WCNnr : Outdating cost of no-transshipment policy (SQmaxEW)

I 1 Cr : Outdating cost of transshipment policy (SACDPE+SQLT+RS)

[l Diff: Effects of transshipment on outdating cost (WCnr — WC'r)
[di Saving(%) : (WCNT — WCr) x 100/WCn
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Table 2.10: Analysis about the outdating cost of each channel varying the unit transshipment cost parameter ¢

Channel ¢ =0 ¢g=1 ¢g=2 c¢g=3 c¢g=4 ¢g=5 ¢g=6 =7 =8 ¢g=9
WCNp™ ON 11.54
OF 2.34
ON+OF  13.88
wer® ON 7.49 7.32 7.30 8.33 8.96 9.56 9.77 9.99 11.54 1154
OF 3.33 3.24 3.11 2.90 2.85 2.69 2.61 2.54 2.34 2.34
ON+OF 10.83 1056 10.41 11.22 11.80 12.24 1239 1254 13.88 13.88
Diffte ON 4.05 4.22 4.24 3.21 2.58 1.98 1.77 155 0.00 0.00
OF -1.00 -0.90 -0.77 -0.56 -0.51 -0.35 -0.28 -0.21 0.00 0.00
ON+OF  3.05 3.32 3.47 2.65 2.07 1.63 1.49 1.34 0.00 0.00
Saving(%)¥ ON+OF 21.96 23.92 24.99 19.11 14.94 11.76 10.72 9.66 0.00 0.00

B WCNr : Outdating cost of no-transshipment policy (SQmaxEW)
® 1 Cp : Outdating cost of transshipment policy (SACDPE+SQLT+RS)
[l Diff: Effects of transshipment on outdating cost (WCn7 — WCr)
W Saving(%) : (WCn7 — WCT) x 100/WCnr



{ No-transshipment } { Transshipment

’Onlinel Age 1 ‘ Age 2 | Age 3 | ’Onlinel Age 1 ‘ Age 2 | Age3)

Discard Transship
’Offlinel Age 1 ‘ Age 2 ‘ Age 3 ‘ Age 4 | Age 5 | ’Ofﬂinel Age 1 ‘ Age 2 ‘ Age 3 ‘ Age 4 | Age 5 |

Figure 2.11: Example of saving outdating cost in the OOCS through transshipment.

2.5.4 Managerial insights

According to the results of the experiment, we suggest the following managerial
insights that are relevant to logistics practitioners who are concerned about setting

up an effective transshipment policy within the OOCS:

e As a result of the rapid development of computational technology in recent
years, multiple e-commerce companies have been able to secure lots of data
about the historical demand for fresh foods. For companies that have an abun-
dance of demand data, it is recommended that they utilize the data directly
with the developed DRL approach to obtain a practical transshipment policy
since the neural network of the DRL can be trained more accurately as more
data is gathered. On the other hand, when the company does not have enough
data to train a neural network of DRL, it is necessary to generate artificial
data utilizing estimated demand distribution in order to train the neural net-
work. Alternatively, it is also possible to obtain a transshipment policy using
traditional methods, such as VI and heuristics, although they are difficult to

apply in practice.
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e In a condition that the value of unit transshipment cost ¢; is relatively small
compared to the value of unit outdating cost ¢, a transshipment policy is ef-
fective in increasing the average profit from the perspective of the total system
by saving the outdating cost. In comparison with a no-transshipment policy,
the transshipment could not contribute to ramping up the average profit if the
value of ¢; is not much smaller than the value of ¢, (i.e., ¢;/cy ~ 1). Thus,
we recommend that logistic managers estimate the accurate value of ¢; and
¢y before deciding whether to implement the transshipment policy within the

00CS.

e Although the hybrid DRL approach developed has proved to be effective in
maximizing profit, training the DRL once takes several hours. A further reason
for not relying on DRL’s transshipment policy is that it does not follow a simple
rule and is difficult to interpret. Therefore, several logistics practitioners have
not been able to rely on DRL’s transshipment policy in their business practices.
Hence, if logistics managers do not have time to train the DRL from scratch
and require an interpretable policy, a simple decision rule for transshipment
could be considered. According to Figures @ and , in the OOCS with a
heterogeneous shelf life, we can observe that more products are transshipped
from the online channel (short shelf life) to the offline channel (long shelf life)
than from the offline channel to the online channel. As a result of this trend, if
logistics practitioners do not have enough time or desire a more interpretable
policy, developing a simple policy that only covers transshipments from online

to offline could be acceptable in business practice.
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2.6 Summary

We developed the lateral transshipment model for fresh food by accommodating the
key attributes of the OOCS: heterogeneous shelf life, proactive transshipment, and
non-negligible transshipment time. In the field of lateral transshipment research,
the majority of studies focus on a specific distribution of demand to determine the
policy of transshipment. Conversely, we seek to directly derive a transshipment
policy based on demand data by developing the DRL approach based on the SAC
algorithm, which does not need any assumptions about demand distribution.

Unfortunately, the action space of the proposed model is extraordinarily large
because four types of decisions must be made simultaneously. In our experience,
the DRL approach suffers from unstable performance during training, which is due
to the difficult task of computing large action spaces in the DRL approach, and
therefore requires considerable computation time. As a way to mitigate these issues,
we developed a hybrid DRL approach that combines two novel acceleration methods:
SQLT and RS, to create a hybrid DRL approach. First, we split the decision-
making process into two stages. Transshipment decisions are handled by the DRL
approach, while replenishment decisions are handled by the SQLT approach. Second,
to enhance the performance of DRL, we implement the RS by adopting the SQmax
policy as a teacher heuristic into DRL. By conducting computational experiments,
we observed that adopting two acceleration methods enabled the training process to
be stabilized and the average profit to be maximized.

We analyzed the impacts of transshipment in the OOCS by differing types of
demand and varying the unit transshipment cost parameter and shelf life of online

and offline channels. In line with our expectations, transshipment was more effective
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when demand variability was high. Transshipment could lead to an increase in
average profit as a result of a substantial reduction in outdating cost, as compared
to revenue and other components of the cost. Transshipment resulted in a slight
increase in the outdating cost in the offline channel, compared to the case where
there was no-transshipment. However, the outdating cost in the online channel was
reduced substantially by implementing transshipment. Also, we found that more
fresh foods are transshipped from online to offline channels than from offline to online
channels. These findings suggest that the offline channel could be utilized to resell old
products planned to be discarded in the online channel. Finally, we presented several
managerial insights instructive to logistics practitioners who require a transshipment
policy with the OOCS.

This study could serve as a starting point for future research related to the
DRL approach to lateral transshipment of perishable products in the future. Even
though this study has focused on the proactive transshipment, we expect that the
proposed DRL approach could be applied to the reactive transshipment by adding
the observed demand to the state in the MDP. Moreover, by differing the types
of demand and cost parameters, analyzing the effectiveness between proactive and
reactive transshipment strategies for each case could provide better guidance and

managerial insights for real-business operators.
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Chapter 3

E-commerce supply chain network design using
on-demand warehousing system under uncertainty

3.1 Introduction

In recent cases, because it cannot be sure how long the pandemic-driven consumer
spending will last, many small-medium sized e-commerce companies prefer to utilize
the ODWS [88]. From the standpoint of the e-commerce retailer, the main advantage
of the ODWS is that a short-term rent for warehouses is available [[135]. Throughout
this chapter, we will use the terminology commitment to indicate the short-term rent
contract for warehouses in the ODWS.

Because of the distinctive advantages of the ODWS, several recent studies have
focused on solving the supply chain problem with the ODWS to derive a cost-saving
strategy based on optimization-based methods [[138, 125, 133, 29, 137]. Even though
previous studies have dealt with the ODWS in various aspects, this study seeks to
fill two research gaps in the ODWS research area. The first research gap is that
previous studies did not address the main characteristic of the ODWS, the short-
term rent contract (i.e., commitment), except Unnu and Pazour [[137]. Although
Unnu and Pazour [[137] addressed the property of commitment, they did not deal

with the decisions for the commitment period for using the ODWS because the
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available commitment period was a given parameter. The second research gap is
scarcity studies that consider the inherent uncertainties systematically involved in
making decisions that might occur in the supply chain with the ODWS. While
several studies considered uncertainties of demand [[138, 125], as far as we know,
there was no research that dealt with the properties of commitment and inherent
uncertainties simultaneously.

To fill these research gaps, this study aims to deal with the SCND problem
considering the characteristics of the ODWS and the decisions for the commitment
period. Furthermore, because demand and supply have inherent uncertainties, our
research addresses the SCND problem with the ODWS under uncertain environ-
ments. To the best of our knowledge, this study is the first attempt to solve the
problem considering the properties of commitment and uncertainties simultaneously
in the ODWS research area. Of special note, we define the supply uncertainty form
as yield uncertainty, which means the amount actually supplied is random and dif-
ferent from the amount ordered.

This study extends the conference paper Lee et al. [85] by considering decisions
for supplier selections and inherent uncertainties of demand and supply. Motivated
by the above research gaps in existing ODWS literature, this study defines the

following four research questions to address:

1. How would it be best to consider the uncertainties for the SCND with the

ODWS and devise the solution approach for reducing computational efforts?

2. How does the ODWS affect the supply chain network and the total cost of the

resulting supply chain?
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3. What impact does the total cost and utilization of warehouses have when the

commitment and stockout costs vary?

4. What impact does the lead time have in the supply chain with the ODWS?

The main contributions of this chapter are threefold. First, we propose the
TSSP for an e-commerce SCND with the ODWS under uncertainties. To estimate
the expected function in the proposed model, we employ the SAA method. Second,
to alleviate the computational burden in SAA, we utilize the multi-cut version of
BD algorithm. Furthermore, we develop the acceleration method for improving the
convergence of bounds by focusing on the initial iteration in the BD algorithm.
Third, we show the potential cost-saving effects of using the ODWS in the supply

chain through computational experiments.

3.2 Literature review

Our study is directly related to three streams of literature in operations management.
First, we review the literature on the dynamic facility location model (DFLM), which
is the general supply chain model of our study. Second, we investigate relevant liter-
ature on scenario-based stochastic programs for the SCND within a methodological
context for our research problem. Third, we review literature that considers the
properties of ODWS in supply chain problems. In addition, we present distinctive

features of our study compared to relevant studies on the ODWS.
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3.2.1 Dynamic facility location and supply chain network design

under uncertainty

The facility location (FL) model is roughly categorized using six classifications, and
detailed taxonomy is presented in Klose and Drexl [80]. Our SCND model is de-
veloped based on the multi-stage, capacitated, multiple-sourcing, multi-item, and
dynamic FL model. Among several categories, the dynamic property is the most
essential for accommodating the features of ODWS. The DFLM considers the multi-
period problem, and the input parameters (e.g., cost, capacity, and demand) differ
depending on the time period. Due to this property, facilities can be opened or
closed in every period throughout a given planning horizon [80, 95].

Instead of reviewing all the works related to the DFLM, we present three papers
covering the capacity adjustment through the lens of opening or closing a facility,
which is related to one of the properties of the ODWS. Melo et al. [98] proposed
the DFLM that considered the gradual relocation of facilities over the planning hori-
zon. In this model, the capacity could be transferred from existing facilities to new
facilities. To accommodate fluctuations of demands, two extended mathematical
models were suggested for dealing with scenarios of capacity expansion and reduc-
tion. In addition, because the above two scenarios considered capacity transfer size
as continuous, the authors presented the modular case model that permits discrete
amounts. However, they did not consider any commitment properties for opening
or closing facilities.

Several related works considered different time resolutions for strategic and tac-
tical periods over a planning horizon [132, 8, [7, 44]. In this literature, the decision

to open or close facilities could be allowed only in strategic periods. Badri et al. [[7]
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developed a MILP model for capacity expansion in four echelons of the multiple com-
modity supply chain. The budget constraint for the expansion of the supply chain
was determined according to cumulative net profits and funds supplied by external
sources. Two types of warehouses, private and public, were considered, and public
warehouses could be used at any time if contracted to be utilized. However, they also
did not accommodate commitment constraints for using public warehouses. Fattahi
et al. [44] proposed a multi-stage, multi-item, and DFLM, which considered price
dependent demand. The authors also considered private and public warehouses,
and decisions for product shipments were made in tactical periods. While public
warehouses could be opened or closed at any time period, private warehouses could
not be closed if opened once.

The FL problem is applied to various domains. Especially, SCND has been con-
sidered as an appropriate application area for the FL problem [49, 80]. In general,
large investments are required to make strategic decisions for determining locations
and the number of facilities in SCND. However, if these strategic decisions are made
in a deterministic environment, a huge amount of costs can be incurred due to the
fluctuations of demands and supplies. Therefore, in both practice and academia,
the necessity of considering uncertainty in SCND has obtained substantial atten-
tion [b7]. To cope with uncertainty in SCND, our study proposes a mathematical
framework based on scenario-based stochastic programs. Owing to the nature of
scenario-based stochastic programs, the problem size increases depending on the
number of scenarios. The emphasis in our review of the literature is on how existing
studies address the scenario-generation issue and solution approach for the proposed

stochastic programming model.
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Through reviewing several previous studies, we could observe that the SAA and
scenario tree construction are broadly used for scenario generation. First, several
studies adopting the SAA will be introduced. Santoso et al. [118] dealt with the
large-scale problem for the global SCND. They used the SAA method and single-
cut BD algorithm. In the single-cut BD algorithm, only a single optimality cut is
applied at each iteration. Schiitz et al. [[121] considered the SCND problem for
the Norwegian meat industry. They used the SAA method and dual decomposition
algorithm to solve the problem. Fazeli et al. [45] proposed the two-stage stochastic
mixed-integer nonlinear programming (MINLP) to design an electric vehicle charging
station network. They compared the single-cut and multi-cut BD algorithms and
showed that multi-cut BD outperformed single-cut BD. Different from the single-
cut BD, several optimality cuts are generated at each iteration in the multi-cut BD.
Nur et al. [[103] addressed a biofuel SCND incorporating biomass quality properties.
They proposed a parallelized decomposition algorithm that combined the SAA and
an enhanced progressive hedging algorithm to solve real-life problem instances in a
reasonable time. Azaron et al. [B] developed a multi-objective TSSP for taking into
account the decision about production, inventory, and shipping among the entities
of the supply chain network. The e—constraint method and SAA were utilized to
solve the proposed multi-objective TSSP.

To generate efficient scenarios, several studies utilized scenario tree construction.
Khatami et al. [[77] addressed closed-loop supply chains and used the single-cut BD
algorithm for the solution approach. They generated scenarios based on the demand
distribution function using Chloesky’s factorization method. Fattahi and Govindan

[43] introduced the SCND problem for an integrated forward /reverse logistics setup
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over a planning horizon. The Latin Hypercube Sampling method generated a fan
of scenarios for demand and potential return uncertainty. Zahiri et al. [14&] pre-
sented the multi-stage stochastic programming approach with a combined scenario
tree for an integrated supply chain planning for blood products. The meta-heuristic
algorithm was used to alleviate the high complexity of the model. Azizi et al. [0]
addressed the SCND problem with multi-period reverse logistics with lot-sizing.
Scenarios were generated with the moment matching technique, and the number of
scenarios was reduced using forward selection. Ghorashi Khalilabadi et al. [b1] de-
veloped the multi-stage stochastic integer programming model for prior planning for
disruptions in the supply chain. A scenario tree was constructed, and a progressive

hedging algorithm was used to alleviate the computational burden.

3.2.2 Supply chain problems in the ODWS and distinctive features
of this study

The last few years have seen a huge growth in the problem of utilizing different
types of warehouses to mitigate capacity and demand shortage issues. In particular,
the two warehouse system that utilizes rented warehouse has become a central issue
for reducing product shortage or expiration [[134, 73, b9]. In addition, recent devel-
opments in third-party logistics and online platforms have led to many researchers
proposing novel problems (124, 110, 116]. Although on-demand warehousing is a very
popular trend in real business, it is underexplored, and only a few researchers dealt
with the problems regarding the supply chain using the ODWS.

There are two significant characteristics of the ODWS compared to other ware-

house systems: capacity granularity and commitment granularity [108]. Capacity
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granularity means the minimum capacity that can be acquired by a chosen distribu-
tion alternative (e.g., warehouses). In terms of the ODWS, the minimum capacity
requirement is very small. Commitment granularity means the minimum commit-
ment periods (in time units) a user of the system must maintain their decision.
As mentioned in Section @, the minimum commitment periods of the ODWS are
usually very short (e.g., monthly or weekly commitments) compared to leasing ware-
houses. Throughout this study, we will use the term duration constraint to refer
to the constraint that the firm must utilize the ODWS at least the minimum of
specified commitment periods. On the other hand, the firm can commit for a pe-
riod of use that is longer than the minimum commitment periods and shorter than
the maximum commitment periods allowed by the ODWS. The cost structures for
using the ODWS and other facilities are usually different, depending on the com-
mitment periods. The term period decision will be used to indicate this decision for
commitment periods.

We reviewed related studies that accommodated the properties of the ODWS.
Thanh et al. [132] proposed a MILP model based on DFLM to design a production-
distribution system in a deterministic demand setting. In their model, two types
of warehouses, public and private warehouses, were considered. Even though the
authors did not directly refer to the ODWS, the concept of public warehouses was
similar to the ODWS. Public warehouses could be opened and closed multiple times,
but their status only can be changed after at least two periods. This property was
similar to the duration constraint in commitment granularity. Van der Heide et al.
[138] analyzed the benefits of utilizing dynamic shipments in shared warehouse and

transportation networks motivated by the ODWS. They defined the model as a se-
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quential decision making problem and accommodated the demand uncertainty. They
applied a mathematical framework to compute optimal ordering and transportation
decisions using the MDP and VI method. Even though capacity and commitment
granularity were not considered, several numerical experiments provided managerial
insights into improving demand fulfillment and transport efficiency through dynamic
shipments and a high degree of consolidation.

Tian and Zhang [[133] dealt with the problem of renting warehouses and allocating
products among the warehouses in the e-commerce supply network with the ODWS.
The authors suggested the MINLP model and converted the proposed MINLP to
MILP form. However, when demand uncertainty is considered, it is impossible to
convert the MINLP to MILP, as stated in Tian and Zhang [133]. Moreover, the
commitment granularity of the ODWS was not accommodated because the problem
was defined as the single-period setting. Shi et al. [125] suggested a periodic review
warehouse model that considers the ODWS and third-party retailers. They showed
the optimality of base stock policy and monotonicity of optimal space allocation
decisions in the suggested model. To address a multiple items situation that incurs
the curse of dimensionality, the heuristic based on approximate dynamic program-
ming was developed. However, the commitment granularity was also not considered.
Ceschia et al. [29] proposed the supply matching problem from the perspective of
platform providers in the ODWS. In contrast to related studies in ODWS, the objec-
tive was to maximize the number of transactions between customers and warehouse
space suppliers. In addition, they developed a list-based heuristic to reduce the time
for solving the problem. However, because customer requests and supplier availabil-

ity were given, it is necessary to consider the dynamic situation for enhancing the
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applicability in the ODWS.

Unnu and Pazour [[137] proposed the MILP based on the DFLM that determines
location-allocation decisions of three distribution warehouses types—self-distribution,
third-party logistics company(3PL)/lease, and the ODWS. In the proposed MILP,
the duration constraint in commitment granularity was considered, and the stochas-
tic parameter was replaced with the expected value of demand. By using the ob-
tained solution of this model, the authors evaluated distribution network design
with and without the ODWS by adding the randomness of demand in the simula-
tion. Although they tried to accommodate the demand uncertainty, it is difficult to
confirm that the stochastic nature is properly considered. If a shortage of demand
can occur, the quality of the solution from the MILP model replacing the stochastic
parameter with the expected value could be poorer than the solution obtained by
the stochastic approach (e.g., SAA+BD). We will show this stochastic solution gap
in Section .

We show several distinctive features of our study in Table @ As far as we know,
this is the first study to consider the period decision for commitment in the ODWS.
In addition, we consider a realistic situation in which the longer the commitment
period, the greater the discount is that’s applied. The novelties of our study can be

summed up from three perspectives, as follows:

e Modeling: We develop a mathematical model based on the multi-stage, capaci-
tated, multiple-sourcing, multi-item, and dynamic FL model. In the presented
model, we accommodate the period decision in commitment granularity for
the first time. In addition, we consider the aggregated customer demand to

reflect the case of the e-commerce market supply chain in South Korea.
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Uncertainty: We propose the TSSP model that makes the decision considering
the uncertainty of demand. Also, because supplier selections are included
as decisions in our model, supply uncertainty (i.e., yield uncertainty) is also
considered. We utilize the SAA method to estimate the expected function

accurately with the reasonable size of scenarios.

Computational time: Through our use of a commercial solver, the scenario-
based model can be solved with a large number of scenarios. However, because
the problem size increases depending on the number of scenarios, the solver
cannot solve the practical large-scale problem in reasonable times. To alleviate
the computational burden, we propose a methodology combined with SAA and

a multi-cut version of BD.
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Table 3.1: Comparison of recent studies related to dynamic facility location and on-demand warehousing

Author On-demafld Multiitem  Multi-period Capacit}{ Commitr.nent Uncertainty Solution
warehousing granularity  granularity (factors) methodology
duration period
constraint  decision
Melo et al. [O€] v v v Solver (Cplex)
Thanh et al. [132] v v v v Solver (Xpress)
Badri et al. [[7] v v v LR
Fattahi et al. [44] v v v Solver (Cplex)
Van der Heide et al. [13§] v v v (demand) MDPb7 VIie
Shi et al. [[L25] v v v (demand) ADPY
Tian and Zhang [133] v v v Solver (Cplex)
Ceschia et al. [29] v v Heuristics
Unnu and Pazour [[137] v v v v Solver (Cplex), SIM¢
This research v v v v v v v (demand, supply) TSSP, SAA + BD

@ Lagrangian relaxation; 5 Markov decision process; ¢ Value iteration; ¢ Approximate dynamic programming; ¢ Simulation



3.3 Problem description and mathematical model

This section presents a problem and mathematical formulation for the supply chain
considering the ODWS. The detailed problem description for the SCND utilizing an
ODWS is presented in Section . Section presents the TSSP to represent
the problem under uncertainty. In Section , we represent a compact formulation

and explain the well-defined property briefly.

3.3.1 The supply chain with the ODWS

We describe the supply chain network for e-commerce retailers using the ODWS.
We use the case of the e-commerce market in South Korea for the supply chain
network description. From here forward, we will use the term retailer to indicate
the e-commerce retailer and the term provider to indicate the warehouse operator
who has excess capacity. We deal with the multi-items and multi-period problem,
and the decision-maker corresponds to a retailer. An overview of the supply chain
with an ODWS is shown in Figure @

We define the two types of decisions determined based on the before and after
the realization of uncertainties. Before the realization of uncertainties, the decisions
for choice of suppliers and warehouses are made because they are in the strategic
levels of decision [[127]. First, we will illustrate the decisions for the selection of
suppliers, y;. Among many suppliers, j € J, the retailer tries to cooperate with
suppliers who provide a better quality of items or who provide a number of items
with low variability. Also, the locations of the suppliers are significant in order to
minimize the transportation costs from suppliers to warehouses, cg, c?, and c?. The

different value of investment cost, F}, is charged to engage cooperation according to
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Figure 3.1: Overview of the supply chain with an ODWS.
suppliers.

We assume that the retailer can utilize three types of warehouses: (1) the re-
tailer’s own warehouse (retailer warehouse), (2) the warehouse of providers connected
by the ODWS platform (provider warehouse), and (3) the warehouse that charges
higher unit holding and transportation costs than other types of warehouses (emer-
gency warehouse). We assume that there is one retailer warehouse, one emergency
warehouse, and several provider warehouses, k € K. Note that the problem can eas-
ily be extended to multiple retailer and emergency warehouses by increasing the set
size for warehouses. We propose the mathematical model and solution methodology
considering multiple retailer and emergency warehouses, but every computational
experiment is conducted in the setting of one retailer and one emergency warehouse.

The transportation capacity from suppliers to warehouses, as well as the storage
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capacity, is assigned for every warehouse, C”, C*, and C¢. Every warehouse has the

same role with distribution centers as follows:

1. Shipments from the suppliers will be assembled, and vehicle loads will be de-

aggregated.

2. If the capacity of the warehouses is not full, every item can be held in ware-

houses for the short or long term.

3. Items will be assorted according to customers’ demands and will be processed

or packaged for bringing to customers.

In the case of the provider warehouse, the above roles can only be applied when

the retailer has committed to using the provider warehouse for a designated period.

k

v 1 for

We introduce the detailed procedure for the commitment decisions, g%, and r
the provider warehouse using the simple example that is depicted in Figure . For
a brief explanation, we consider two types of commitments (2-period and 3-period)
over a six-period planning time horizon with a provider warehouse, k. In period
one, the retailer made the 3-period commitment; thus, the provider warehouse, k,
can be used from period one to period three. However, because the commitment for
using the warehouse in period four has not been made, the retailer cannot utilize
the provider warehouse, k, at this period. On the other hand, the warehouse is
available for use from period five to period six because the retailer made the 2-
period commitment in period five.

We take into account the realistic situation in which the retailer takes a greater

discount when a longer commitment period is made. Therefore, the cost function

for committing warehouses for the m-period is defined as ma~y™, where v is the
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discount factor, and « is the commitment cost to utilize a provider warehouse for
a period. In Figure , we describe the effects of commitment periods on the
cost. When retailers plan to utilize the provider warehouse from periods one to
three, there are three ways to make the commitment in these periods. First, the
retailer can use the warehouse from period one to three by making the 3-period
commitment in period one (Case 1). Furthermore, the retailer can use 2-period
and 1-period commitments (Cases 2 and 3) or make the 1-period commitment for
each period to utilize the warehouse for three periods (Case 4). Because of the cost
function for committing warehouses may™, Case 1 is the cheapest way to utilize
the warehouse (i.e., commitment cost: $257.2). However, committing for a long
period to use warehouses could incur unnecessary costs due to the long-term use of

warehouses, although there is small customer demand.
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After the realization of uncertainties, operational decisions are made. We de-
scribe the decision procedure following the flow of items from suppliers to customers

according to the process from left to right in Figure @ In the beginning, the trans-

rw .k

W ew
i T and z5%, are

portation decisions from suppliers to the arriving warehouses, x e it
made for the ordered items. The lead time between suppliers and warehouses exists,
L. After items have arrived at the designated warehouses, items are processed for

: 3 iqd rw , kw ew :
sending to customers. Inventory holding decisions, vj;’, v;7”, and v§y’, and delivery

decisions, ul”, uft“’, and u$”, will be made at warehouses. Depending on the type

of warehouses, different inventory holding costs, h;, hk

+,» and hY, will be incurred.

In particular, because most retailers commonly use the services of a logistics com-
pany for last-mile deliveries in the case of the South Korean e-commerce market, we
consider the aggregated customer demand for the proposed model and assume that
items will be delivered from warehouses to customers by the 3PL company. Fur-
thermore, the delivery cost per parcel of items, b;, is identical without taking into
account the weights of items and locations of destinations. There exists lead time
between warehouses and aggregated customer demands, Lgy. Finally, in order to ad-
dress the stock-out issue, we assume that unsatisfied demand will become lost sales,
zg. This assumption is reasonable because customers are more likely to switch to
another website to search for substitute items rather than wait for insufficient items
to be stocked. Additionally, the corresponding penalty cost, 3;, for lost sales will be
incurred.

We consider two additional assumptions. First, we exclude perishable items in
the proposed problem. In order to deal with perishable products, it is necessary to

install the cold storage system that is available to maintain the specific tempera-

91



ture and humidity conditions that do not alter the products’ original characteristics.
However, it is difficult to use this system in the ODWS because various users store
heterogeneous products in the same space. Second, lateral transshipment between
warehouses is not considered. The lateral transshipment could increase the com-
plexity of the problem because the number of decision variables related to lateral
transshipment could increase exponentially depending on the number of warehouses.
Furthermore, because of the property that ensures that the provider warehouse can
be opened or closed at each period, the connections for lateral transshipment can

be negated.

3.3.2 The two-stage stochastic programming model

This section presents the SCND model, which is developed based on the multi-
stage, capacitated, multiple-sourcing, multi-item, and dynamic FL model. In order
to model the problem under uncertainties, we extend the deterministic model as
the TSSP.  As mentioned in Section , the operational decisions have been
considered after the prior decisions. By considering these characteristics of decision-
making, we employ the TSSP to represent the situation of the SCND with an ODWS.
We assume that demands, D, and supplies, S, are random parameters with full
knowledge of probability distributions, defined as stochastic parameters. Therefore,
we use ( = (D,S), which stands for the stochastic parameters vector with finite
and discrete support, which can be represented as a finite number of realizations
(scenarios). Let €2 be a set of scenarios, and each scenario is denoted as w. Then, (¥,
Yw € (), is a particular realization of stochastic parameters. The sample space of

stochastic parameters is represented as set {C L. ¢ \QI} with the following proba-
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bilities, p1,- -+, pq|-

In the proposed TSSP, decisions for supplier selection and commitments for
the provider warehouses are made in the first-stage problem. The first-stage deci-
sions are the here-and-now decisions that are determined before the realization of
stochastic parameters. Subsequently, in the second-stage, operational decisions such
as transportation, inventory holding, and lost sales are made after realizations of

stochastic parameters. The following notations are utilized in the proposed mathe-

matical formulation.

Indices and sets

T set of periods, t € T ={1,2,--- ,T}

T set of items, 1 € Z ={1,2,--- , I}

J set of suppliers, j € J ={1,2,---,J}

K set of provider warehouses, k € K = {1,2,--- | K}

R set of retailer warehouses, r € R = {1,2,--- , R}

E set of emergency warehouses, e € £ = {1,2,--- ,E}

M set of available commitment periods, m € M = {1,2,--- , M}

Q set of scenarios, w € )

Parameters

Dy, aggregated demand of item ¢ at period ¢ under scenario w
it supply of item ¢ from supplier j at period ¢t under scenario w

c" capacity of the retailer warehouse r

c* capacity of the provider warehouse k

ce capacity of the emergency warehouse e

Ls lead time between suppliers and warehouses

Lg lead time between warehouses and customers

F; investment cost to select supplier j
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hi inventory holding cost of the retailer warehouse r for a unit of item ¢ per period

hE inventory holding cost of provider warehouse k for a unit of item ¢ per period

h§ inventory holding cost of the emergency warehouse e for a unit of item ¢ per period
«@ commitment cost to utilize provider warehouse for a period

Bi lost sales cost for a unit of item 4

b; cost of delivery for a unit of item ¢ from warehouses to customers

cj transportation cost for a unit of item from supplier j to the retailer warehouse r

c? transportation cost for a unit of item from supplier j to provider warehouse k

c5 transportation cost for a unit of item from supplier j to the emergency warehouse e
y discount factor of commitment cost

Pu probability that scenario w occurred

Decision variables

gk, 1 if an m period commitment is made at period ¢ for provider warehouse k, 0 otherwise

k. 1 if provider warehouse k can be utilized because of the m period commitment at period t,
0 otherwise
Yj 1 if supplier j is selected, 0 otherwise
TW

vt number of item 7 held in inventory at the retailer warehouse r

from period ¢ to t + 1 under scenario w

vk number of item 4 held in inventory at provider warehouse k
from period t to t + 1 under scenario w
v number of item 4 held in inventory at the emergency warehouse e
from period ¢ to ¢t + 1 under scenario w
i number of item 4 transported from supplier j to the retailer warehouse r
at period ¢t under scenario w
mfﬁ number of item 7 transported from supplier j to provider warehouse k
at period t under scenario w
x5 number of item 7 transported from supplier j to the emergency warehouse e

at period t under scenario w

M : H k._ 1” 'cf:]l_



uiy number of item 7 delivered to satisfy aggregated demand from the retailer

warehouse r at period ¢ under scenario w

ul number of item 7 delivered to satisfy aggregated demand from provider
warehouse k at period ¢ under scenario w

ugy’ number of item 7 delivered to satisfy aggregated demand from the emergency
warehouse e at period t under scenario w

Zit lost sales of item ¢ at period t under scenario w

By considering the above problem descriptions and notations, the extensive form

of the TSSP is formulated as follows:

First-stage problem

min > Fjy; 4+ Y > > may g + Ec [Qy, 7, ¢*)] 3.1)

JjET keK meMteT

min{t+m—1,|T|}

s.t. S g <1, VkeK,meMteT, (3.2)
T=t
t
> gk =rk., Ve K,meM,teT, (3.3)
T=max{t—m+1,1}
S e <1, VkeK,teT, (3.4)
meM
> g <1, VkeK,teT, (3.5)
meM
Tty Gt € {0, 1}, VkeK,meM,teT, (3.6)
y; € {0,1}, vje J. (3.7

where Q(y, r, () is the value function for the optimal objective value of the second-
stage problem with a given scenario w. By applying the scenario-based approach,
the expected second-stage cost can be denoted with »° . poQ(y,7,¢*). The objec-

tive function of the first-stage problem (@) minimizes the total cost incurred in the
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supply chain. Constraint (@) ensures that other commitments for provider ware-
houses cannot be made until the ongoing commitment expires. Constraints (@)
and (@) ensure that every provider warehouse can be utilized only in the case when
commitments are made for the designated period. Constraint (@) guarantees that
just one type of commitment can be made among available commitment periods
for each provider warehouse at each period. Constraints (@) and (@) enforce that
first-stage decision variables are binary variables. Given the values of y; and rk
and a scenario w, the second-stage problem that determines the recourse function

Q(y,r,¢¥) is as follows:

Second-stage problem

Qy,r,¢") =
win YY (z W+ K+ W b (z Y Y )
€L teT \reR ec& ke rTER ec& keK
(3.8)
a3 (3 gutis D+ 3ottt
JjE€ET \reR ec& ke
s.t. Z xit + Z ak ¢ foﬁ < S%4y5, VieZ,jeJ,teT, (3.9)
reER ke ec&
ui Ui =0l + Y aliL,, VieI,reR,teT, (3.10
jeTJ
wi ol = v+ Yy wliL,, VieTkeKteT, (3.11)
Jj€ET
ug + v =i+ Y @, VieZe€&teT, (3.12)
Ji€eT

rWw kw
ngn Uiz, + Zke)c Uit—Ly

ew w w
+ D e Wit L, + 25t > Di,

VieZ,teT, (3.13)

vy <C7, VreR,teT, (3.14)

i€L
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Ve < CF, Vee & teT, (3.15)

i€T

v <CP Y s VEeK,teT, (3.16)
i€L meM
SN <, VreRLET, (3.17)
€L jeT
o> e < e, VecEteT, (3.18)
€L jeT
S af <t > VkeK,teT, (3.19
i€L jET meM
A AN 1) VicT,jeTd,reRkeK,ecEteT, (3.20
uz"rfyuftw7uffavztw,v7iwyview 207 VZEI,TER,kEK,EES,tGT, (321)
z3 > 0, VieZteT. (3.22)

In the second-stage problem, every constraint is defined within the entire time
horizon, ¢t € 7. For a realization of w, the objective function of the second-stage
problem (@) minimizes the costs for the inventory holding, delivery, stockout, and
transportation within the entire time horizon. Constraint (@) requires that the
total number of items transported from the supplier, j, to every warehouse should
be less than the given supplies. Constraints (), (), and () are the bal-
ance equations representing the flow of items from retailer, provider, and emergency
warehouses to customers, respectively. The inventories stored in warehouses dur-
ing the previous period, t — 1, are transferred to the current period, t. Moreover,
these constraints ensure the lead time between suppliers and warehouses, Ls. Con-
straint () ensures that the demand is satisfied by delivered items from each
warehouse and that the lead time between warehouses and customers, Ly, exists.

Furthermore, this constraint enforces that unsatisfied demand is lost. Constraints

(), (), and () express the storage capacity for the retailer, emergency, and
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provider warehouses, respectively. Constraints (B.l?i), (B.lSI), and (B.ld) represent the

transportation capacity between suppliers and the retailer, emergency, and provider
warehouses, respectively. Finally, Constraints (), (), and () ensure that
decision variables for the second-stage problems are non-negative real variables.
Because of the decision variables for lost sales, zi, the second-stage problem
remains feasible under any first-stage feasible solution, y;, gfjlt, and rﬁlt,Vj, m, and
t. In this case, we say that the stochastic programming (@)—() has the property
called relatively complete recourse [22]. This is a key property for implementing the

SAA and BD algorithms, and we will explain this in detail in Section @

We now define six cost components as follows:

Delivery cost := Z Z Z Puwbi <Z ugy + Z usy + Z uf{”) (3.23)

1€ETtET weN reR ecl ke

Commitment cost := Z Z Zma’ymgfnt (3.24)
kEK meMteT

Stockout cost := Z Z Z PwBizit (3.25)

€L teET weR

Supplier investment cost := Z Fyy; (3.26)
JjeT
Transportation cost := Z Z Z Z P (Z ciai + Z cxig + Z c?mfﬁ) (3.27)
i€T JET tET weQ rer ecE keX

Inventory holding cost := Z Z Z Des (Z hiviy + Z hivy’ + Z hfvff) (3.28)

€L tET we rer ecé kel

3.3.3 Compact formulation

For ease of the expositions, we represent the extensive form, (@)—(), by the

compact form using the concatenated vectors of decision variables, which are defined
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as follows:

Concatenated vectors of decision variables

)

Vo

gx €3

g

Xw

£€x €3

g0

Zy

Concatenated vector of the g, Vk € K,;m € M, andt € T
Concatenated vector of the r* . Vk € K;m € M, andt € T
Concatenated vector of the r ,VieJdJ

Concatenated vector of the (u“" ukw P‘”) VieZ,reR,keK,e€f&,

it o Uit » U

and t € T under scenario w
Concatenated vector of the (v, v5*,v5”), Vi € I,r € R,k € K,e € €,
and t € T under scenario w

Concatenated vector of the v, Vi € Z,r € R, and t € T under scenario w

zt’

Concatenated vector of the v¥, Vi € Z,k € K, and t € T under scenario w

Concatenated vector of the v$”, Vi € Z,e € £, and ¢t € T under scenario w

zt7

Concatenated vector of the (275, =i, z5%), Vi€ I,j € J,r € R,k € K,

e € £, and t € T under scenario w

Concatenated vector of the x4, Vie Z,j € J,r € R, and t € T under scenario w

z]t’

Concatenated vector of the 2% Vi € Z,7 € J,k € K, and ¢t € T under scenario w

z]t’

Concatenated vector of the z§%, Vi € Z,5 € J,e € £, and t € T under scenario w

z]t’

Concatenated vector of the z{, Vi € Z, and ¢ € T under scenario w

With the above vectors of decision variables, the extensive form can be simplified

as follows:

Compact formulation

min Ty 4+ eTg + E¢ [Q(y, 1, ()] (3.29)
s.t. Ag <1, (3.30)
Bg =r, (3.31)
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y € {0,131,

gr € {0,1}KIMITI

where Q(y,r, (%) =
min hTv, +bTu, + 87z, + ¢c'x,
s.t. Px, < Sy,

Uu, + Vv, — Tx, =0,

Vi, Uy, Zw, X 2> 0.

(3.32)
(3.33)

(3.34)

(3.35)
(3.36)
(3.37)
(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)
(3.44)

(3.45)

In the case in which the objective function of the stochastic programming model

is well-defined, the model possesses the optimal solution [22]. As mentioned earlier,

because of the relatively complete recourse property, the feasibility of the proposed
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model ()—() will always be guaranteed for all y € V,g € G,r € V and
w € Q, where Y, G, and R are feasible sets of the corresponding decision variables.
The objective function is to minimize the sum of the cost for the first-stage prob-
lem, fTy + eTg, and the expected cost for the second-stage problem, E¢ [Q(y,r,(%)]
. Therefore, the lost sales cost term, 37z, guarantees that Q(y,r,(*) < oo for all
y,r, and w. Moreover, because we assume that all cost parameters are non-negative,
it is obvious that Q(y,r,(%) > —oo for all y,r, and w. Thus, Q(y,r, (%) is finite for
all y,r and every realization of w, and it can be assumed that the expected value,
E¢ [Q(y,r,¢¥)], is well defined. Finally, the objective function of the first-stage vari-
ables is well-defined in the proposed model ()—(), and the optimal solutions

exist because the set ), G, and V is nonempty and finite.

3.4 Solution methodology: Sample average approxima-
tion combined with the Benders decomposition algo-

rithm

In this section, we develop the solution methodology, specifically the SAA and BD
algorithms, for solving the proposed TSSP. There are several advantages of using
the SAA and BD algorithms compared to other methods [[141, 115]. First, the SAA
approach is quite general, so that can be combined with various algorithms that
are specialized in solving the deterministic optimization problem. Also, the SAA
approach has valuable convergence properties. The BD algorithm can efficiently
solve complicated problems due to several variables, which makes the problem easier
to handle when temporarily fixed. The BD algorithms converge to the optimal of

the MILP rather than to a relaxation of the problem. Section presents the
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concept and procedure of the SAA. Section examines the BD algorithm, and

Section illustrates the acceleration method for the BD algorithm.

3.4.1 Sample average approximation

The fundamental difficulty of solving the true problem ()—() is computing
the expected value function, E¢ [Q(y,r,¢%)]. Let ¢!, .V be an independently
and identically distributed (i.i.d) random sample of NN realizations (scenarios) of the
stochastic parameter vector (. By solving the following SAA problem with a larger
N, the objective function of the SAA problem converges to the true objective func-

tion with a probability of one [[79].

yeY,geG,reV

N
1
min {fry—l—eTg—l— N;Q(y,r, C")} (3.46)

Let 1])]\/' denote the optimal value of the SAA problem (), and @N is random
because the value will be different depending on the corresponding random sample.

However, the computational complexity for solving the SAA problem () often
increases exponentially with the size of N. In order to overcome these challenges, we
utilize the SAA algorithm, which estimates the objective value of the true problem
and requires less computational effort than solving the SAA problem with a large-
sized N.

In the SAA algorithm, we employ the number M of replications, generating and
solving the SAA problem with the same size N. It is more efficient to utilize several
SAA problems with a smaller-sized N than it is to solve one SAA problem with a

large-sized N. Based on the number M of SAA replications, the solution quality
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of each replication is measured with an optimality gap. In this chapter, the SAA
gap stands for an optimality gap used for stopping criteria in the SAA algorithm.
When the SAA gap can not satisfy the predefined threshold eg44, we increase the
sample size N for every SAA replication to obtain solutions with better quality. The

procedure for the SAA algorithm is described as follows:

SAA algorithm

1. Generate i.i.d. samples with size N scenarios for each replication of m (i.e.,
(C%l, e 7C777L1) , Vm € {1,--- , M}), and solve the corresponding SAA problem.
Let 1/3]’(} and y’, g%, and 7} be the optimal objective value and the optimal

solution of the mth SAA replication, respectively.

2. Compute the following equation to obtain the statistical lower bound for *,

where ¥* is the optimal objective value for the true problem.
_ 1 M
PN = 57 le% (3.47)
m=

It is well known that the expected value of the @N is less than or equal to
the ¢* [102, #1]. Because ¢y is the unbiased estimator for the E[¢y], it is
clear that vy provides the statistical lower bound for ¥*, E[¢asn] < 9*. Let

o2 N be an estimate of the variance of ¥37 5. It can be obtained by computing

Y

the following equation, which is derived from the Central Limit Theorem.

2 1 M ~“m _ 2
Oomn = W_l) Z (U}N - 7/1MN> (3.48)

m=1

3. Select a feasible first-stage solution, y € V,g € G, and r € V. This feasible
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first-stage solution was determined from the obtained solution by solving the
SAA problem for each replication, y73, gy, and ;. With a newly-generated
sample of N’ scenarios, (Cl, e ,CN/), the optimal value of the true problem

is estimated from the following equation.
1 &
fr(3.85) =y +e'g+ > QEF.T.C") (3.49)
n=1

Note that the size of N’ is much larger than the sample size of N used to
obtain the estimate for the lower bound (N < N’). Among obtained solutions
Y73, &%, and £7%,Vm, a solution that has the smallest value, fnv, is commonly
chosen for y,g, and T to estimate the upper bound. Let f(y,g,t) be the
optimal objective value of the true problem with the solution y, g, and r. The
inequality ¢* < f(y,8,%) holds because y,g, and t are the feasible solutions
of the true problem. Then, because fy/(¥,&,+) is the unbiased estimator of

f(¥,8,%), fnr(¥,8,1) provides an upper bound for ¥*. Similar to the way of

2

deriving o .

o the estimate of the variance of fy/(¥,g,T) can be obtained by

the following equation.

N/
SN 1 ~ ~ . A m 5 oo
U?V’(y’g’r) = N’(N’—l) Z(ny+eTg+Q(y,r,§ )_fN’(Y7g7r))2 (3.50)
n=1

. Obtain the SAA gap of the feasible solution ¥y, g, and its variance by calcu-

lating the following equations:

Gapyunn'(¥,8,1) == fn/ (3,8, F) — Yun (3.51)
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The relative SAA gap is computed by the following equation:

(fn (3. g 1)~ YumN)
YN

Gaphy s == x 100(%) (3.52)

The estimate of the variance of Gapy;yn’ can be calculated as follows:

OCapyywnr = Oar (3,8, F) + 05 (3.53)

3.4.2 Benders decomposition algorithm

By applying the SAA algorithm, we can obtain a stochastic solution. However,
for the large problem, a lot of computational effort is required to solve the SAA
problem () even with the moderate size of N scenarios. Therefore, we alleviate
the computational burden by utilizing a special property of the TSSP. It is well
known that the TSSP has the block structure of the extensive form. When taking
the dual of the extensive form, a dual block-angular structure appears, and the BD
algorithm is a suitable approach to exploit this structure [13, 22]. As mentioned in
Section , because the SAA problem () is itself the TSSP, we use the BD

algorithm to solve the SAA problem.

Without loss of generality, we explain the BD algorithm with the model () — (),

which will be referred to as the original problem. We present the multi-cut version
of the BD algorithm, which generates several optimality cuts in one iteration. The
1/N and {Cl, s oN } replace p, and €2, respectively, when applying the BD al-
gorithm for the SAA problem. In order to devise the BD algorithm, the proposed

stochastic mathematical model is decomposed into one master problem (MP) and
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several subproblems (SUB(w), Vw € Q). MP and the corresponding SUB(w), Vw € €,

in the (itr+1)th iteration are presented as follows:

MP
min Ty +elg+ Z PO (3.54)
we
s.t. Ag <1, (3.55)
Bg —r, (3.56)
Wr <1, (3.57)
0., > @)y + (ci'")Tr + ditr, Vitr € J,w € Q, (3.58)
y € {0,171, (3.59)
g,r € {0, 1}HEIMITT (3.60)

where J := {1,--- ,itr} and 6,, Yw € , are free variables. Constraint () is
called as optimality cuts at iteration itr, and coefficients (ai")", (ci")", and di¥" will
be explained in the latter part of this section. After solving the MP with current
optimality cuts, obtained optimal solutions are denoted as ¥,g,T, and 0, Vw € Q.
Because MP is the relaxed problem to the model ()—(), the optimal objective
value of MP provides the lower bound, Zj, for the original problem.

Based on the obtained solution from MP, we solve the SUB(w) for each w € 2.

SUB(w) is presented as follows:

SUB(w)

min hTv, +bTu, + 87z, + c"x, (3.61)
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s.t. Px, < Sy, (7w), (3.62)

Uu, + Vv, — Tx, =0, (o), (3.63)
Ku, +Jz, > D,, (Vw), (3.64)
My’ < C, (Aw), (3.65)
Gv,, < C°, (1), (3.66)
Hv" < CFr, (Pw), (3.67)
Ex’ < C', (8,,), (3.68)
Rx¢ < C°, (tw), (3.69)
Lx" < C*r, (Kw), (3.70)

vwauw7ZW7xw Z 0

where the Greek bold-faced terms in parenthesis denote the corresponding vectors
of the optimal dual solution with appropriate dimensions. Let Q(y,r,(“) denote
the optimal objective value of SUB(w) with first-stage variables y, and r under the
scenario w. The optimal objective value and solutions can be derived easily because
every SUB(w) is a simple linear programming model. Furthermore, the optimal
primal solution SUB(w) for each w € € is feasible for the original problem. Hence,

the following equation provides the upper bound, Z,;, for the original problem:

Zup =1y +eTg+ > puQ(y,F,¢%) (3.71)
weN

If for every scenario w € Q, Q(¥,T,w) is less than or equal to ,, from MP, then the

current solution is optimal to the original problem (i.e.,Z,; = Zj). Otherwise, if the

107



SUB(w) corresponding to some w has Q(¥,T,w) greater than 6, the corresponding
optimality cuts are added to the MP. An optimality cut for scenario w is generated

as follows:

0w > (a3r+1)Ty + (cngrl)Tr + dz’fr+1 (372)

Coeflicients of the optimality cut are calculated as below:

(@t = TS, (3.73)
(Cgr-i-l)T = (pu + nw)TCk (3.74)
di = v, Dy + Ay + 68,)TCT + (7 + 1,,)TC? (3.75)

This procedure is implemented iteratively until the condition (Z,,—Zp)/ Zip < €pp is
satisfied, where epp is the pre-determined control parameter. It is worth mentioning
that because the proposed stochastic model has a relatively complete recourse, we
do not consider the feasibility cut, which is necessary for the case in which some

SUB(w) are infeasible according to the optimal solution of MP.

3.4.3 Acceleration method

At the beginning of the typical BD algorithm (TBD), MP is initially solved with an
empty set of optimality cuts. Then, based on the optimal dual solution of SUB(w),
optimality cuts at the first iteration are added to the MP. We refer to these opti-
mality cuts as initial optimality cuts, which are generated in the first iteration.
However, it is obvious that the MP with an empty set of optimality cuts could

provide a poor feasible solution (e.g., ¥, g, and T are zero and 6, are negative in value).
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In this case, initial optimality cuts cannot contribute to creating a better lower
bound because poor solutions tend to generate ineffective cuts [[78]. Consequently,
the TBD algorithm could incur a lot of iterations until the termination condition
and naturally increase the total computation time. Therefore, we devise a simple
method for accelerating the convergence of bounds in the BD algorithm and for
reducing the number of required iterations by generating effective initial optimality
cuts at the first step.

Prior to presenting the acceleration method, let us first introduce the expected
value problem (EVP). This simple model is obtained by replacing all stochastic
parameters with their expected values, and the optimal solution to the EVP is
called the expected value solution (EVS) [22]. The EVS can sometimes be a high-
quality solution to the true problem. By utilizing this property, we utilize the EVS
to generate better initial cuts than the typical one at the initialization step of the

BD algorithm. The detailed procedure for the acceleration method is as follows:
Acceleration method

1. Obtain the expected value solution y, g, T, by solving the EVP with a commer-
cial solver until the computation time falls within 30 seconds or until the gap

between the best solution and the best bound falls within 5%.

2. Solve SUB(w) for each w based on the obtained expected value solution in
Step 1. Then, obtain the optimal objective value Q(y, g, w) and optimal dual

solution 7r,,, tw, Vw, Aw, Tw, Pws Ow, Lw, and K, for all w.

3. Generate initial optimality cuts with the obtained objective value and opti-

mal dual solution in Step 2. After generating the initial optimality cuts, the
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subsequent procedure is the same as the BD algorithm.

In Step 1, we set the stopping criteria as 30 seconds and the gap within 5% be-
cause it costs a computational burden to solve the EVP to get the optimal solution
costs in a large-sized problem. Moreover, by implementing a lot of computational
experiments, we observed that there was no obvious performance difference between
the optimal solution and the sub-optimal solution of the EVP for improving the
final computation time of the BD algorithm. Finally, the BD algorithm with the

acceleration method (ABD) is presented in Algorithm E
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Algorithm 2 Benders decomposition algorithm (Acceleration method)
Initialization:

Zub < 00, Zlb — —OO,itT’ +~—1
solve FVP and get y,g,T
for w € 2 do

solve SUB(w) based on y, g, and T

itr ) T (Citr
5

o T d,, with optimal dual solutions

get (a
add initial optimality cuts to MP

end

while Zub — Zlb > €epp X Zlb do

solve MP and get ¥, g,T, 0., Vw €

Zlb <— max {ZHH ny + eTg + ZWGQ pwéw}

for w € 2 do

solve SUB(w) and get dual solution

itr ) T (citr
)

u T d,, with optimal dual solutions

get (a
store the optimal objective value Q(y, T, (%)

if 0, < Q(y,1,¢¥) then
| add an optimality cut to M P

end

end

if Zyy >y +eTg+ > cqpuQ(¥,T, () then
Zup < Ty +€Tg + 3 ,cqPuQ(Y, T, (¥)
V' y,gt—grier
), < U, V), — V,, X — X, Vw € Q

end

itr < itr + 1
end

* * *

Return: Z,,, Zp,, y*, g%, r*,uf,x°, v} Vw € Q;

s Y Ay Ywo

3.5 Computational experiments

In this section, we conducted three types of computational experiments to answer

the research questions in Section Ell Research question m is answered by the results

of experiments in Sections and . Four types of computational experiments
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were implemented in Section . The first experiment result answers the Research
question E, and the second and third experiments answer the Research question E
Research question H is answered by the results of the fourth experiment. We suggest
several managerial insights in Section based on the computational results. All
the experiments were conducted on a PC with an AMD Ryzen 2700X 8-Core CP, 3.60
GHz processor, and 16GB of RAM with a Windows 10 64-bit system. Test instances
were generated using Python 3.8, and every solution approach was developed with

FICO Xpress 8.5 and Xpress-Optimizer version 33.01.02.

3.5.1 Description of the test instances

To validate the performance of the proposed algorithms, we need benchmark in-
stances. However, as far as we know, there are no existing benchmark instances
corresponding to our problem. Therefore, we rely on real-world information for de-
termining the values of the parameters. At first, inventory holding costs, h! and
hf, were generated on the basis of the article by Hass [67]. The cost of delivery, b;,
was determined based on the cost of the parcel delivery service in South Korea. To
cover various cases, other deterministic parameters were randomly generated with
the range of uniform distributions detailed in Table @

In order to estimate the distributions of stochastic parameters, we used the e-
commerce public dataset [[74], which consists of demand data for 614 time periods,
from September 4, 2016 to September 3, 2018. Then, we fitted the normal distri-
bution to this dataset to estimate the distributions of demands, D;,. We set the
negative-value of realized demands or supplies to zero and adopted the same distri-

bution of D for S}%,. Consequently, every random sample of N scenarios is realized
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based on the estimated distribution of stochastic parameters shown in Table @
The locations of suppliers and warehouses are uniformly distributed over the

pre-specified width and height of the XY plane. Moreover, the unit transportation

k

costs, c’, c”

%, ci, and ¢f, are assumed to be proportional to the Euclidean distance in

the XY plane. Because of the assumption that it is expensive to use the emergency
warehouse, the values of ¢§ and hf are significantly larger than the cost of the retailer
or provider warehouses.

Based on the model given, the size of a problem is determined by |Z|, |7, |T],
IC|, and |M]. We produced test instances ranging from small to large sizes. In
particular, we classified the mathematical model using the test instances 13~15
for input as the large-sized problem. Every test instance is generated randomly
according to the uniform distribution in Table EI The detailed characteristics of
test instances are indicated in Table @ The columns labeled ‘XY’ represents the
width and height of the XY plane. The number of variables (Vars) and constraints
(Cons) are calculated for a scenario size N = 40.

We conducted every computational experiment considering one retailer ware-
house, one emergency warehouse, and multiple provider warehouses according to
assumptions in Section . Through implementing a lot of experiments, we ob-
served that the emergency warehouse was rarely used because of the high operational
cost compared to the stockout cost. Hence, in Sections and , we accom-
modated the problem in which the emergency warehouse has unlimited capacity for
storage and transportation. However, in Section , we considered the limited
capacity of the emergency warehouse in order to analyze the effects of lead time and

the lost sales cost parameter. The two types of lead time, Ls; and Ly, were set to
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zero in Sections M and , but we evaluated the impacts of these two types of

lead time by varying values in Section .

Table 3.2: Test instances specifications (N = 40)

No. XY Total Vars  Binary Vars Cont Vars Cons Zl 1TJ T Ik M|
1 100x100 29,103 153 28,950 14,000 2 3 10 5 3
2 32,899 131 32,768 15,104 2 3 8 8 2
3 73,844 324 73,520 26,000 3 4 10 8 4
4 88,204 304 87,900 30,000 3 4 10 10 3
5 88,803 483 88,320 34,800 3 3 12 10 4
6 300300 146,859 471 146,388 51,168 4 3 12 13 3
7 149,404 544 148,860 48,480 3 4 12 15 3
8 289,355 680 288,675 76,200 4 5 15 15 3
9 434,705 1,355 433,350 109,080 5 5 18 15 5
10 467,405 1,205 466,200 112,200 5 5 15 20 4
11 500x500 532,806 906 531,900 114,600 5 6 15 20 3
12 561,605 1,805 559,800 135,360 5 5 18 20 5
13 1,046,606 2,506 1,044,100 210,800 6 6 20 25 5
14 1,049,606 4,006 1,045,600 213,800 6 6 20 25 8
15 1,808,006 4,506 1,803,500 345,500 7 6 25 30 6

3.5.2 Performance analysis of the proposed algorithms

As mentioned in Section , the SAA problem with the moderate size N could

suffer from the computational burden. In this section, we conducted computational

experiments to compare the three solution approaches: TBD, ABD, and Solver

(solving the given problem with an Xpress-Optimizer). Test instances with different

sizes of N were employed to evaluate the performance of the proposed algorithms.

For each size of N and solution approach, ten experiments were conducted with

different samples of N scenarios. An average of ten experiments has been reported

in Table @ with comparison results among Solver, TBD, and ABD. The columns

labeled ‘CPUs’ and ‘Itr’ represent the computation times in seconds and the number
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of iterations required to make the optimality gap of BD algorithms (TBD and ABD)

less than the pre-determined threshold, egp. The ‘Gap’ is defined as follows:

( Best solution (OBJ by each approach)
Gap =

1) x1 .
Best bound (max {Zy, by ABD, Zj, by TBD}) > X 100(%)  (3.76)

If the maximum time limit (i.e., 3,600 seconds) was reached, algorithms were termi-
nated, and they output the Gap, CPUs, and Itr obtained so far. We set the egp for
10~ for both TBD and ABD.

The computational results of all test instances in Table @ were averaged in
terms of ‘Gap’, ‘CPUg’, ‘Itr’, and the number of times each algorithm reached the
time limit are depicted in Figure @ Figure @ indicates that the ABD outper-
formed the TBD and Solver in terms of every evaluation measure. Furthermore,
Figure @ shows that more computation time was required to solve the problem
as the size of NV increased. However, the computation time of the BD algorithms
increased more slowly when compared to the Solver. On the other hand, a small
number of iterations was required as the size of N increased for both BD algorithms.
The results appeared because as the IV increased, it required more time to implement
one iteration compared to the smaller size of V.

In order to analyze the effects of the initial optimality cuts of ABD, we compared
the convergence of bounds for the TBD and ABD. We used test instances 12~15
with N = 40 and set the egp to 0.03 for visualizing the apparent convergence.
Figure @ represents a comparison between TBD and ABD concerning the Z,;, and
the Zj,. As the number of iterations increased, the upper bound decreased, and the

lower bound increased for both algorithms until the value of (Z,, — Zi,)/Z;p within
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Figure 3.3: Comparisons between algorithms in terms of four performance measures.

epp. At the first iteration, the gap between the upper and lower bound of ABD was

clearly smaller than the gap of TBD, which meant that ABD created effective initial

optimality cuts. Finally, ABD converged faster than TBD with a small number of

iterations. Even though the results in Figure @ correspond to test instances 12~15

with N = 40, similar behavior could be observed for other instances with different

sizes of N.
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Figure 3.4: Comparison between TBD and ABD in terms of upper and lower bound.

3.5.3 Performance analysis of the stochastic solution

In this section, the quality of the stochastic solution is evaluated through several

performance metrics. As mentioned in Section , the stochastic solution is de-

rived from that which has the lowest upper bound, fy/(¥,8,t), value among the

number of M SAA replications. We utilize the value of stochastic solution (VSS)

,which is well-known performance metrics in stochastic programming research area

[@]. VSS can be calculated as:

VSS =EEV — RP

117

(3.77)



where the EEV is the expected result of the EVP optimal solution and RP is the
optimal objective value of the recourse problem.

For every test instance, we carried out the SAA algorithm in Section with
N' = 3,000, M = 20,and eg44 = 1. Therefore, the SAA algorithm terminates when-
ever the relative SAA gap, Gapﬁf[lN N7+ is within 1%. To compute the statistical lower
bound, we progressively increased the number of scenarios in samples from 20 to 200
until the predetermined threshold eg44 was satisfied, N € {20, 40, 60, 80, 100,200} .
Every SAA problem was computed by ABD with egp = 1073,

Table @ presents the experiment results from the SAA algorithm. The upper
bound values equal to RP, EEV, and WS were derived from the same sample with
N’ scenarios. By checking the results of the EEV, we could know that the EVS
incurred a much higher total cost than the stochastic solution. The values of the
VSS showed the performance of stochastic solutions compared with the EVS, which
indicated the importance of capturing the stochastic nature of demands and supply
for designing the supply chain. For every test instance, a size of N less than 100
was necessary to obtain the stochastic solution with the SAA gap less than 1%. In
particular, we could get the high quality stochastic solution only with N = 20 for
test instances 8~15.

In Table @, we present the SAA gap estimates from the stochastic solution
derived from the SAA algorithm and the EVS. As anticipated, the SAA gap esti-
mates of the stochastic solution were less than 1%. On the other hand, the SAA
gap of the EVS was much greater compared to the stochastic solution. In addition,
the stochastic solution showed better performance than the EVS in terms of the

standard deviation of the SAA gap, 0gqp. For test instances 2~8 and 11, the SAA
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Table 3.3: Experiment results and statistics of the SAA algorithm

No. N LB oLB UB ouvs EEV ogev WS VSS

1 80 13,384.3 110.7 13,449.1 69.3 16,720.6 127.1 12,044.5 3,271.5
2 40 10,923.4 89.3 11,023.1  53.4 20,079.1 143.5 10,099.1  9,056.0
3 40 11,1474 743 11,238.7 42.2 23,088.7 138.0 10,459.0 11,850.0
4 80 16,346.0 77.7 16,433.5 67.0 29,244.1 159.6 15,316.3 12,810.6
5 40 10,643.5 82.0 10,685.9 40.0 23,951.2 1484 10,109.7 13,265.3
6 80 13,820.6 57.0 13,835.7 40.5 26,936.8 1324 13,108.1 13,101.1
7 60 13,472.3 74.8 13,520.1 41.7 24,377.1 129.1 12,622.3 10,857.0
8 20 16,515.2 97.6 16,663.7 36.4 36,2524 172.7 15,602.0 19,588.7
9 20 13,189.4 50.2 13,200.8 27.8 14,202.4 47.9 12,703.1 1,001.6
10 20 14,883.5 106.8 15,0179 324 16,158.7 60.8 14,396.0 1,140.8
11 20 15,672.7 91.5 15,771.3 31.0 26,593.1 97.1 15,284.8 10,821.8
12 20 20,379.2 73.5 20,384.4 359 21,901.6 59.7 19,913.7 1,517.2
13 20  19,762.1 70.7 19,765.8 28.5 19,888.2 33.9 19,401.7 1224
14 20 16,568.0 96.5 16,641.7 30.6 16,740.0 34.0 16,329.5 98.3

15 20 20,224.4 67.8 20,228.8 23.8 20,585.9 27.7 20,110.6  357.1

gap of the EVS was greater than 50%, which meant the provided EVS could not
accommodate uncertainty for decision-making. In comparing the cost components
derived from the EVS in Table @, we found that the stockout costs absorbed a
larger share of the total cost when the SAA gap estimate of the EVS was relatively
high. Of special note, the stockout costs accounted for more than 50% of the total

cost for test instances 2~8 and 11.

3.5.4 Effects of the ODWS on the supply chain

In this section, we conducted four types of experiments to explore the effects of the
ODWS on the supply chain by solving the test instance 10 with N = 40. In the first
experiment, we investigated the impact that available provider warehouses had on
the resulting supply chain. We analyzed the total cost and utilization of provider
warehouses by varying the number of available provider warehouses K4, which

indicates the size of set IC. We use the term ‘utilization’ to refer to the utilization
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Table 3.4: SAA gap estimates from stochastic and EVS

No. Stochastic solution EVS
Gapunn GGPR?INN/ OGapy vy GAOPMNN GCLPR?ZNN/ OGapy NN/

1 64.8 0.48 130.60 3336.3 24.93 168.51

2 99.7 0.91 104.08 9155.7 83.82 169.06

3 91.3 0.82 85.46 11941.3 107.12 156.71

4 87.5 0.54 102.61 12898.1 78.91 177.50

5 42.4 0.40 91.22 13307.7 125.03 169.52

6 15.1 0.11 69.88 13116.2 94.90 144.10

7 47.7 0.35 85.69 10904.8 80.94 149.20

8 148.5 0.90 104.14 19737.2 119.51 198.34

9 114 0.09 57.40 1013.0 7.68 69.41

10 134.4 0.90 111.56 1275.2 8.57 122.87

11 98.7 0.63 96.56 10920.4 69.68 133.41

12 5.2 0.03 81.81 1522.4 7.47 94.69

13 3.7 0.02 6.29 126.1 0.64 78.45

14 73.7 0.44 101.24 172.0 1.04 102.33

15 4.4 0.02 71.83 361.5 1.79 73.22

Table 3.5: Cost components derived from EVP solution

No. Delivery Commitment Stockout inSvl;Is)fI}rilth Transportation I?}Z?S:g;y

Cost (8) % Cost 8) % Cost 8) % Cost (3) % Cost (3) % Cost 8) %
1 4,869.9 29.13  1,875.9 11.22  8,076.3 48.30 1,526.2 9.13  309.6 1.85 62.7 0.37
2 4,079.1 20.32 1,453.2 7.24 13,672.8 67.60 525.2 2.62 397.0 1.98 51.8 0.26
3 5,219.6 22.61 1,488.6 6.45 15,210.7 65.88 606.1 2.62 484.8 2.10 79.0 0.34
4 4,654.6 15.92  3,096.1 10.59  20,458.9 69.96 572.7 1.96 385.5 1.32 76.3 0.26
5 5,337.5 22.28 788.3 3.29 16,838.7 70.30 517.2 2.16 351.0 1.47 118.4 0.49
6 5,759.9 21.38  2,491.6 9.25 16,568.2 61.51 532.5 1.98 1,467.6 5.45 116.8 0.43
7 4,168.7 17.10 2,961.2 12.15 15,285.8 62.71 694.6 2.85 1,152.5 4.73 114.3 0.47
8 6,901.8 19.04 2,126.1 5.86 24,009.7 66.23  889.1 2.45  2,154.6 5.94 171.1 0.47
9 7,726.1 54.40 945.8 6.66 2,514.1 17.70  1,197.9 8.43 1,679.8 11.83 138.8 0.98
10 7,592.7 46.99 2,129.4 13.18  3,603.6 22.30 1,134.8 7.02 1,587.0 9.82 111.2 0.69
11 7,094.0 26.68 3,042.4 11.44 14,002.4 52.65 990.8 3.73  1,283.6 4.83 179.9 0.68
12 9,560.4 43.65  2,278.0 10.40 4,337.7 19.81 1,556.2 7.11 4,044.9 18.47 124.5 0.57
13 11,459.6 57.62 2,378.7 11.96 1,976.1 9.94 1,469.9 7.39  2,504.7 12,59 99.2 0.50
14 9,907.7 59.19 838.8 5.01 3,101.3 18.53 1,159.8 6.93 1,612.7 9.63 119.8 0.72
15 12,1789 59.16  2,565.0 12.46 1,761.2 8.56 1,342.8 6.52  2,597.5 12.62 140.4 0.68

of provider warehouses within the entire time horizon, and it is defined as:

(3.78)

Utilization := Z Z ernt

ke meMteT
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Table @ represents the utilization of provider warehouses and the total cost
varying K,az. As the K4, increased until eight, the utilization of provider ware-
houses also increased. However, the utilization decreased from 30 to 29 when the
Kpar was bigger than eight. On the other hand, the total cost decreased when
the K4 was increased. In the case where only one provider warehouse was avail-
able, it incurred the highest total cost because satisfying demands with only one
provider warehouse capacity was challenging. Note that in the case in which K4,
was bigger than nine, the utilization and total cost did not change. It meant that
utilizing provider warehouses from 10 to 20 could not contribute to better solutions
for reducing the total cost.

Table 3.6: Impact of different number of available provider warehouses on utilization
and total cost

Kpaz K Utilization = Warehouses Total cost ($)
1 {1} 15 1 32,406.9
2 {1,2} 25 1,2 16,360.0
3 {1,2,3} 30 1,2,3 15,532.5
4 {1,2,---,4% 30 1,2,3,4 15,259.9
5 {1,2,---,5} 30 1,2,3,4 15,259.9
6 {1,2,---,6} 30 1,2,3,4 15,259.9
7 {1,2,---,7} 30 1,2,3,4,7 15,098.2
8 {1,2,---,8} 30 1,2,3,4,7 15,098.2
9 {1,2,---,9} 29 1,2,3,4,7,9 14,986.9
15 {1,2,---,15} 29 1,2,3,4,7,9 14,986.9
20 {1,2,---,20} 29 1,2,3,4,7,9  14,986.9

In the second experiment, a sensitivity analysis on the commitment cost of pa-
rameter « was conducted to explore the effects on solutions. Figure @ represents
the changes of utilization and total cost brought about by varying the value of a. As
the « increased, utilization decreased and total cost increased. Because of the expen-

sive cost of commitment, utilizing provider warehouses for the SCND was avoided.
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When the a was larger than 7,500, the total cost did not vary, and the utilization

became zero, which meant provider warehouses were not used.
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Figure 3.5: Changes of total cost and utilization varying the commitment cost pa-
rameter o.

Figure @ shows the share of the total cost according to different cost com-
ponents. Increasing the a resulted in decreasing the percentage of transportation,
delivery, and supplier investment costs. Because inventory holding cost parameters,
hi,h}, and h{, were much smaller than other cost parameters, the percentage of in-
ventory holding cost was negligible. The percentage of commitment cost increased
and then decreased at the point when the a was larger than 5,000. On the contrary,
the percentage of the stockout cost decreased and then increased at the same point
for the commitment cost. Like the utilization and total cost in Figure @, the per-
centage of each cost component did not change when the o was larger than 7,500.
Furthermore, the stockout cost accounted for a disproportionately large share of the
total cost. Based on this result, we could observe that allowing for the condition
of stockout for most of the demands is a better cost-saving strategy compared to

using provider warehouses when the « is significantly higher than the stockout cost
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Figure 3.6: Share of total cost for each cost component varying the commitment
cost parameter a.

In the third experiment, a sensitivity analysis on the lost sales cost parameter,
Bi, was conducted to observe the relationship between utilization of the emergency
warehouse and stockout. In the third and fourth experiments, we assumed that
the emergency warehouse is capacitated (C¢ = 70). The average number of items
delivered from the emergency warehouse to customers within the entire time horizon
is used to refer to the utilization of the emergency warehouse (UEW), and it is defined

as:
UEW := %ZZZ > gy (3.79)
it 1€T e€& teT wen

Figure @ represents the changes in UEW, total cost, and stockout cost brought
about by varying the value of 5;. Until the value of 8; was 150, UEW was zero, which

meant the emergency warehouse was not used. Instead, every unsatisfied demand
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was addressed through the lost sales. At the point §; was 160, UEW increased
dramatically from zero to about 32, which means the emergency warehouse was
used to satisfy demand. However, UEW slightly increased when (3; was bigger than
160.

The total cost and stockout cost increased rapidly until the value of 8; was 150.
When the 5; was bigger than 160, the total cost increased slightly. On the other
hand, the stockout cost decreased steeply at the point 3; was 160. After that, when
the ; was bigger than 160 and smaller than 600, the stockout cost increased slightly.
The stockout cost became zero when the [3; was bigger than 650, which means that
every demand was satisfied. In addition, when the §; was bigger than 650, the UEW,

total cost, and stockout cost did not vary.
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Figure 3.7: Changes of cost and UEW varying the lost sales cost parameter ;.

Figure @ depicts the share of the total cost according to different cost com-
ponents for the lost sales cost parameter, ;. The percentage of inventory holding
cost was negligible in the same manner as is shown in Figure @ Depending on the

value of 3;, the percentage of stockout cost and the percentage of transportation
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cost tended to move into the opposite directions. In detail, as the (; increased to
150, the percentage of stockout cost increased, and the percentage of delivery and
transportation cost decreased. At the point when the 5; was 160, the percentage of
stockout cost decreased rapidly, and the percentage of transportation cost increased
significantly. This result means that the emergency warehouse was used to satisfy
demand as much as possible to avoid stockouts because of the high cost of lost sales.
When the g; was 160 to 600, the percentage of stockout cost increased slightly, but
the stockout cost did not account for any share of the total cost when the §; was
larger than 650. In addition, when the §; was larger than 650, the percentage of

supplier cost increased, which meant that every demand was satisfied by adopting

additional suppliers.
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Figure 3.8: Share of total cost for each cost component varying the stockout cost
parameter [3;.

In the fourth experiment, we evaluated the effects of lead times when utilizing

the ODWS in the supply chain by varying the values of lead times between suppliers
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and warehouses, Lg, and between warehouses and customers, Ly. In cases in which
the lead time exists in the supply chain, a lot of stockout costs can be incurred at
the beginning of the planning horizon if the retailer does not hold initial inventory.
Therefore, in this experiment, we assumed that the initial inventory is equal to the
expected value of demand. Based on the detailed results in Table @, we presented
in Figure @ the impacts of each type of lead time on total cost, stockout cost,
delivery cost, and commitment cost.

In Figure @, we varied the value of one type of lead time, and the other one was
fixed to zero to compare the impacts of each type of lead time. For both types of lead
time, total cost and stockout cost increased as the value of lead time increased. On
the other hand, because the total amount of stockout increased, the percentage of
delivery cost decreased. Commitment cost also decreased as the lead time increased,
which meant that the utilization of the provider warehouse decreased as well. Finally,
by observing that the total cost increased more rapidly when increasing the value
of Ly than when increasing the value of Ly, we could know that the length of lead
time between warehouses and customers severely affected the cost incurred in the

supply chain.

3.5.5 Managerial insights

The proposed model and stochastic solution approach could contribute to e-commerce
retailers who plan to build the supply chain network flexibly during the COVID-19
pandemic. After analyzing the computational results, we can offer several manage-
rial insights that could be instructive to e-commerce retailers who suffer from the

limited space of warehouses. The proposed managerial insights are as follows:
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Figure 3.9: Comparisons between two types of lead time in terms of cost.

1. Utilizing the ODWS can save on the total cost of the supply chain because

it has a similar effect as expanding capacity flexibly. Even though most of

the demands can be satisfied with enough provider warehouses, we could ob-

serve that using a moderate number of provider warehouses is a good strat-

egy for minimizing total cost. Hence, considering the locations of suppliers

and provider warehouses and the appropriate number of provider warehouses

would be helpful to retailers when constructing an efficient supply chain with

the ODWS.
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2. Our proposed model is very sensitive to uncertainty because frequent stockouts
could occur when insufficient provider warehouses are committed to being
used. Even though simple solution approaches could solve the problem (e.g.,
EVP), most obtained solutions are imprecise for acceptable decision-making.
By analyzing the value of the VSS, we could observe that it is important to deal
with uncertainty accurately regarding the SCND problem with the ODWS.
Therefore, we suggest that retailers who need to address frequent stockouts
because of limited capacity should develop an efficient way for accommodating

the uncertainty of demand and supply.

3. In the actual case, the value of « is determined by the warehouse operators or
the ODWS platform company. However, the value of 8; can be estimated by
the e-commerce retailers. As shown in Figures @, @, and @, the estimated
value of 3; has much influence on the quality of solutions. In terms of obtained
solutions, if the f; is estimated to be larger than the true value, it results in
excess utilization of provider and emergency warehouses. Otherwise, when [;
is estimated to be smaller, it could incur a lot of stockouts because of insuf-
ficient utilization of provider warehouses and the expensive cost of utilizing
the emergency warehouse. Hence, we recommend that retailers conduct an
accurate estimation for the value of §; beforehand and then implement our

proposed approach.

4. Through several computational experiments, we observed that the lead time
increased the total amounts of stockout, which incurred additional costs. The

lead time between warehouses and customers was more significant than be-
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tween suppliers and warehouses in terms of costs incurred in the supply chain.
Therefore, when e-commerce retailers design the supply chain with the ODWS,
we recommend choosing a 3PL company operating with short lead times even
though the delivery cost is slightly higher. This strategy would be helpful to

retailers in minimizing the total cost incurred in the supply chain.

3.6 Summary

With e-commerce set to expand rapidly in the coming decades, the ODWS has
emerged as a new alternative for satisfying growing demand. By utilizing the ODWS
in the supply chain, e-commerce retailers can flexibly respond to demand changes
because this service makes short-term rent of warehouses available. However, a
high degree of uncertainty regarding demand and supply exists in the e-commerce
marketplace, which influences decision-making for the SCND. To the best of our
knowledge, there is no existing research dealing with the problem of the SCND with
the ODWS under uncertainty. Therefore, we propose the two-stochastic program-
ming model, which reflects the supply chain network of the e-commerce marketplace
in South Korea.

Because of the high computational complexity of the proposed model, a solution
approach combining the SAA and BD algorithms was presented to solve the proposed
model. Of special note, a method to accelerate the convergence of bounds in the BD
algorithm, referred to as ABD, was developed. The ABD outperforms the typical
version of the BD algorithm and Xpress-Optimizer with regard to the optimality
gap and computation times. In addition, the quality of stochastic solutions derived

from the SAA algorithm is better than the solutions from the EVP.
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Through conducting computational experiments, we could observe that utilizing
the ODWS for the SCND saves on the total cost compared to using a small number of
warehouses with limited capacity. Furthermore, through our sensitivity analysis, we
could see the relationship between parameters of commitment cost and stockout cost
for a decision about using the provider and emergency warehouses. We observed the
impacts of two types of lead time on the cost incurred in the supply chain considering
the ODWS. At last, we present several managerial insights that are helpful for e-

commerce retailers who aim to design their supply chain networks with the ODWS.
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Chapter 4

A decomposition approach for robust omnichannel
retail operations considering the third-party
platform channel

4.1 Introduction

In recent years, several retail companies have sold their products on 3PPs, such as
Amazon and Coupang, despite having their own offline and online channels [[151].
In real business, Coupang launched a service called the C.AVENUE, and many
omnichannel companies, such as Nike and Adidas, have participated in this service
and sold their products using 3PP. From the perspective of retailers, there are
distinct advantages to adopting the 3PP channel as one of their sales channels.
First, the 3PP companies could implement logistics of fulfillment on behalf of the
retailer by using their self-supporting logistics service system (SLSS). For example,
Amazon has provided a fulfillment service called Fulfillment by Amazon (FBA), and
it allows retailers to use Amazon to store, pick, pack, and ship customer orders
[B3]. Second, the retailer could absorb the additional demand of 3PP. A significant
number of customers use 3PP to buy products online. Specifically, as of 2022, more
than 197 million monthly active users use the Amazon app, and more than 27 million

monthly active users use the Coupang app [35]. Therefore, in addition to customers
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who want to buy a specific product from a retailer, other users of 3PP could also
buy that product while looking around the platform.

Motivated by observing the advantages retailers obtain by using 3PP, we study
omnichannel retail operations that have adopted the 3PP channel as one of the
sales channels. Moreover, we address decision and optimization problems consid-
ering demand uncertainty, which jointly determine the replenishment, allocation,
transshipment, and fulfillment of products over a multi-period planning horizon.
We assume that the retailer’s objective is to minimize the expected total cost over
the planning horizon. Of special note, we consider in this study the following two
features, which are generally considered in real business: (1) the binary decision for
replenishment to accommodate fixed order costs and (2) the constraint restricting
replenishment quantity depending on the production capacity of each supplier (i.e.,
the production capacity constraint).

However, there are four issues that make the problem of omnichannel retailer
operations challenging. First, the retailer has to make binary replenishment deci-
sions adaptively after demand unfolds over periods (i.e., the adjustable binary de-
cision), which increases the complexity of the problem [66]. Second, according to
the common assumption in retail environments, the replenishment, allocation, and
transshipment of products are decided before the demand is realized (anticipative
manner), and the fulfillment is decided after demand is realized (reactive manner)
[[72]. Thus, the solution approach providing a good quality solution with integrat-
ing anticipative and reactive decisions is necessary. Third, the existence of the 3PP
channel makes the problem larger than it would be without this channel. In addition

to the retailer’s supply chain for online and offline channels, the supply chain for
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the 3PP channel (i.e., the 3PP supply chain) should also be considered if the 3PP
channel is adopted. Fourth, the insufficient production capacity of suppliers makes
the problem quickly become intractable. To the best of our knowledge, no existing
study addresses the above four issues simultaneously, even though Lim et al. [93]
and Jiu [72] dealt with the first and second issues.

In order to fill these research gaps, our study deals with a multi-period stochas-
tic optimization model that takes into account the logistics operations of an om-
nichannel retailer’s supply chain and the supply chain of the 3PP simultaneously.
Additionally, we propose a novel decomposition method, which is called DECOM, to
enhance computational efficiency. We present the main contributions of our study

from the following two perspectives:

e Modeling: As far as we know, this is the first study to develop the stochastic
optimization model addressing both the retailer’s supply chain and the sup-
ply chain of the 3PP for omnichannel retail operations. Furthermore, we deal
with the production capacity of suppliers and transshipment between logistics
centers, which are two elements that have not been addressed in related exist-
ing studies. Finally, our model can jointly determine every decision, and the
anticipative and reactive manners are implemented seamlessly as the demand

unfolds over periods.

o Solution approach: We propose a DECOM based on the TPA based on RO
approach, which is the state-of-the-art method to deal with adjustable binary
decisions [93]. We first utilize the original TPA to solve our problem, but it
requires a significant computational burden to solve the realistic problem in-

stances. In addition, the TPA could not solve our problem within acceptable
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times when the production capacity of suppliers is insufficient. To alleviate
these issues, we decompose the total supply chain into two streams, one for the
retailer’s supply chain and the other for the 3PP supply chain, by introducing
artificial variables. Through extensive computational experiments, we evaluate
the performance of DECOM by comparing it with several approaches from ex-
isting literature. The experimental results suggest that DECOM could provide
high-quality solutions similar to solutions derived from the TPA. Furthermore,
in terms of computational efficiency, DECOM outperforms the TPA by solv-
ing large-scale problems within a reasonable time. Finally, even though the
production capacity becomes insufficient, the computation time of DECOM

does not increase significantly compared to that of the TPA.

4.2 Literature review

The literature review will focus on three streams of research in operations manage-

ment: omnichannel retail operations, the 3PP channel, and RO.

4.2.1 Omnichannel retail operations

The last few years have seen a huge growth in the number of papers published on
the topic of omnichannel leverage in retail operations [27]. Many researchers have
empirically studied this topic to find the effects of adopting the omnichannel in
retail operations [47, 48, 9, 81f]. Instead of reviewing all existing studies related to
the omnichannel topic, we present a detailed review of recent literature regarding
the optimization problem in the omnichannel from the retailer’s perspective.

Govindarajan et al. [68] considered the inventory and fulfillment decisions in the
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omnichannel network with multiple stores and fulfillment centers for the omnichannel
retailer. They developed scalable heuristic solutions for joint decisions, including the
pooling of online demands across locations using a hindsight-optimal bound. Park
et al. [[105] studied the problem to create an efficient showcase inventory, allowing
different desired products to be experienced by as many customers as possible. They
presented a MILP model to maximize the expected customer showcasing utility and
analyzed the effects of the proposed model through the case study of dealerships in
the US. Pichka et al. [[109] dealt with the problem of jointly deciding fulfillment and
pricing decisions for omnichannel retailers. They first presented customer demands
using the multinomial logit choice model. Using the developed demand model,
they proposed two MINLP models to optimize decisions for fulfillment, pricing,
and inventory. These two MINLP models were transformed into MILP models to
be solved efficiently. Abouelrous et al. [2] addressed the multi-location inventory
problem, aiming to determine the initial inventory at each location within a given
planning horizon. They also simultaneously considered the stochastic online and
in-store demands, which were general assumptions in omnichannel retail operations.
In order to enhance computational efficiency, they approximated the problem by
developing a two-stage stochastic optimization with a scenario reduction technique.

We present two relevant studies that utilize the RO for omnichannel retailing.
First, Qiu et al. [[114] addressed the problem for pricing and ordering optimization
considering full-refund and no-refund policies. They also defined the demand as
a linear function of the price and refund to accommodate the general case that
demands depend on the prices and available return policies. Using historical data,

they presented a nonlinear robust omnichannel pricing and ordering optimization
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model to cope with demand uncertainty. The robust counterpart of the proposed
model was transformed into the tractable MILP model by using the duality theory.
However, the presented approach is challenging to apply in the multi-period problem,
and the computational efficiency was not analyzed.

On the other hand, Jiu [72], which is the most relevant study to our research,
addressed the multi-period problem for robust omnichannel retailing. The study
used the TPA, developed by Lim et al. [93], to solve the problem. The TPA could
provide high-quality solutions compared to existing approaches. In addition, through
computational experiments on large-scale problems, the study indicated that the
TPA was scalable to the problem. Our study has several differences compared with
the study by Jiu [[72]. One of these differences is that both transshipment decisions
and production capacity are considered in our model. However, the most apparent
contribution of our study is that we adopt the 3PP channel in our model. In other
words, when optimizing the proposed problem, the retailer’s supply chain and the
supply chain of the 3PP should be considered simultaneously. In the following
section, we present several studies that analyze the effects of adopting the 3PP

channel for retailing.

4.2.2 Third-party platform channel

By investigating the existing studies considering 3PP in retail, we observe that 3PP
companies can be classified into two types depending on the existence of SLSS in
those companies. For 3PP companies without the SLSS, the retailer or manufacturer
who participates in 3PP can only sell their products using the platform, but the

logistics of products must be implemented by themselves. On the other hand, for
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3PP companies with the SLSS, the retailer can sell their products on 3PPs. Adding
to that, the 3PP company implements every logistics and fulfillment procedure on
behalf of the retailer. Our study considers the latter type for a 3PP company by
reflecting real cases of Coupang and Amazon.

First, we present several previous studies considering the 3PP company without
the SLSS. Ryan et al. [[117] addressed a research question of whether the retailer
that has its own sales channel should expand the sales channel by using 3PP. They
considered the participation fee for the 3PP channel and a revenue-sharing require-
ment. Using game theory, they derived the optimal decision and system equilibrium
for both the retailer and the 3PP company. Xiao and Xu [[146] studied commission
contract design between a 3PP company and sellers who have superior demand infor-
mation to achieve two goals: (1) to incentivize the seller to install optimal capacity
and (2) to extract full surplus. To achieve these two goals, they applied the lost-sale
penalty contract, which charges a penalty cost to sellers if a stockout occurs. Zhen et
al. [[150] considered a model with a financial capital constraint from the perspective
of the manufacturer. The manufacturer was assumed to sell its products through a
retailer and the 3PP channel. Also, the setup dictated that the manufacturer could
borrow financing from the 3PP, the retailer, or the bank. The authors derived the
best financing option for the manufacturer considering the channel competition, the
revenue sharing rate, and the unit production cost.

From this point onward in this section, we will introduce literature that considers
the 3PP company operating with SLSS. Qin et al. [113] addressed the SLSS of 3PP,
which is provided to retailers that participate in the 3PP channel. They analyzed

the strategic and economic impacts of logistic service sharing and examined the
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equilibrium mode between 3PP and the retailer considering the logistics service
level and the market potential. Zhen and Xu [151] dealt with a research question
of whether the retailer who has online and offline channels should adopt 3PP for
the sales channel. In order to answer the research question, they developed a game-
theoretical model. Furthermore, they explored the impact of the direction of the
spillover effect between sales channels by varying the degree of channel competition
and assuming the agency fee for using 3PP. Lai et al. [83] investigated the effects
of FBA, which is a fulfillment service offered by Amazon, on both Amazon itself
and on retailers that use this service. They developed a strategic competition model
and found that FBA could alleviate price competition between Amazon and the
retailer. In addition, FBA could improve the service level of retailers, and Amazon
also benefits because the sales of Amazon’s products increased because of the FBA.

The abovementioned literature only investigated whether the retailer who owns
its offline and online channels should expand sales channels by utilizing the 3PP
channel. Also, the effects of utilizing 3PP on both the retailer and the 3PP company
were examined. However, in a setting where the retailer has determined to utilize
the 3PP channel in advance, there is a lack of research investigating the optimal
way to operate both the retailer’s supply chain and the supply chain of the 3PP.
To fill these gaps, our study addresses the problem that the retailer has determined
to utilize the 3PP channel in advance. Furthermore, we aim to provide efficient
logistics operations by minimizing the total expected cost from the perspective of
the retailer. We adopt RO as our solution approach, and several key papers in the

RO research area will be presented in the following section.
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4.2.3 Robust optimization

RO is one of the approaches that deals with uncertainty in optimization problems.
In contrast to other approaches (e.g., stochastic programming and dynamic pro-
gramming), RO does not need any knowledge about the probability distribution.
But instead, it assumes that the uncertainty value belongs within a predetermined
set, called the uncertainty set. RO aims to find the optimal solution under the
worst-case scenario, and the obtained solution should be guaranteed to be feasible
for any realizations of uncertain parameters in the uncertainty set [10].

In order to make the RO model tractable, the uncertainty set is generally de-
fined as a convex set [114]. Soyster et al. [[128] first addressed a box shape of the
uncertainty set for the RO formulation. Even though the solution was feasible for
all perturbations in an interval, a conservative solution was obtained. To reduce the
level of conservatism of the robust solutions, Ben-Tal and Nemirovski [12] developed
the RO model for the ellipsoidal uncertainty set. Berstimas and Sim [20] developed a
family of polyhedral uncertainty sets in which cardinally constraints were considered
using a budget of uncertainty.

Two types of decisions can be utilized for the multi-period decisions problem: (1)
here-and-now and (2) wait-and-see. For the here-and-now scheme, every decision is
determined before the planning horizon starts (i.e., before every uncertain parameter
is revealed). In contrast, for the wait-and-see scheme, we can postpone making
decisions until some of the uncertain parameters are revealed. Therefore, the wait-
and-see decision is less conservative than the here-and-now decision because it can be
adjusted flexibly according to the realized portion of uncertain parameters at each

stage [147]. However, it is complex to deal with the wait-and-see decision because
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of the large feasible space of adjustable variables.

The ARO is developed to deal with multi-stage problems, which commonly as-
sume the multi-period setting and consider adjustable variables to implement the
wait-and-see decision. Because of tractability reasons, it is typical to restrict feasi-
ble space by optimizing a certain type of parameterized function. This function is
usually called the decision rule. Several researches have used nonlinear functions for
the decision rule [19, 50]. However, a broad body of literature has adopted the linear
function for the decision rule, which is called the linear decision rule (LDR). Ben-
Tal et al. [L1] first presented the LDR, for a production inventory problem. Because
the LDR could lead problems to be reformulated to be tractable, it has attracted
considerable interest in many domains, and in particular, it has been widely utilized
in inventory management [21], 122, 126]. The simplest version of the decision rule is
the static rule, in which decisions are fixed regardless of the realization of uncertain
parameters. For some cases, the static rule has proved to be optimal [122, [L8, 96].

The solution approaches of the abovementioned studies have focused on ad-
justable continuous variables; thus, they cannot apply to adjustable binary vari-
ables. Only a few studies developed solution approaches to deal with adjustable
binary variables: the K-adaptability approach [66], the finite adaptability approach
(FA) [16, 111]], and the binary decision rule (BDR) [17]. In particular, Lim et al.
[04] developed the target-oriented robust optimization (TRO) method to address
the adjustable binary and continuous variables at the same time. The TRO aims to
maximize the chance of fulfilling a prespecified target [30]. Lim et al. [94] proved that
TRO could provide a static rule that was optimal for a multi-product, multi-period

inventory problem. By utilizing the strength of TRO, Lim et al. [93] developed the
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TPA. In the TPA, they decoupled adjustable binary variables and adjustable con-
tinuous variables for making decisions. TPA decided the adjustable binary variables
by a static rule of TRO and resorted to the LDR for determining the adjustable
continuous variables. The experimental results showed that the TPA outperformed
existing approaches, BDR and FA, for both solution quality and computational
efficiency.

Even though the TPA has shown outstanding performance compared to exist-
ing approaches, it could not be scalable to our problem. The TPA has required a
significant computational burden for large-scale instances because our problem con-
siders the retailer’s supply chain (online and offline channels) and the supply chain of
the 3PP (3PP channel) simultaneously. Therefore, our study develops the DECOM

approach, which could be scalable to large-scale problems.

4.3 Problem description and mathematical model
4.3.1 Problem description

We consider a model in which a retailer sells products, ¢ € Z, to customers through
several sales channels. By following the assumption of Jiu [72], we also assume that
a retailer replenishes the inventory of each individual product from a single supplier
(i.e., each product ¢ can only be provided from the corresponding supplier 7). Also,
each supplier ¢ has a limited production capacity, s®*. Furthermore, we assume that
each product ¢ can only be provided from the corresponding supplier . There are
three types of sales channels (1) a retailer’s offline channel, (2) a retailer’s online
channel, and (3) the 3PP channel. The supply chain network consists of multiple

capacitated logistics centers, j € J, and offline stores, k € K¢, several logistics
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centers, j € Jp, operated by the retailer, which is called DC, and the others,
j € Jr, operated by the 3PP, which is called FC. In the case of the retailer’s offline
channel, we assume that the offline store k is located at each offline demand zone k.
Therefore, each demand zone is fulfilled by the corresponding offline store. For the
retailer’s online channel, there are multiple online demand zones for DCs. On the
other hand, for the 3PP channel, we consider the aggregate demand for FCs because
the 3PP company can deliver products from FCs to customers using its SLSS. It
should be noted that our model can be easily extended to the general case, the
multiple online demand zones for FCs, by defining the set of online demand zones
for FCs. We assume that each demand type should be fulfilled by the corresponding
channel, and we do not anticipate any customer switching between channels if there
is a stockout.

We consider a multi-period problem with a finite planning horizon divided into
period t € T. For each period t, the replenishment, transshipment, allocation, and

fulfillment decisions are made, and the following sequence of an event is repeated:

1. At the start of period ¢, the quantity of product i replenished at ¢t — L; period
arrives at the logistics center j. The retailer decides the replenishment quantity
for each logistics center j from each supplier i (i.e., replenishment decision, 5;-'5

and q;-t).

2. The retailer then decides the transshipment quantity between DCs and how

many products to allocate from DCs to offline stores (i.e., transshipment and

it

L and v ).

allocation decisions, u eik
9,

3. At the end of period ¢, each type of demand is realized. The retailer determines
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how many products to fulfill for each type of demand, and from which DCs,
FCs, and offline stores to fulfill it (i.e., fulfillment decision, vfofk, Uffk and r%). If
customers face a stockout, the demand gets lost, which is a general assumption

in retail environments [54].

Figure @ describes the retailer’s supply chain and four types of decisions.
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Figure 4.1: Supply chain network of the proposed problem.

We utilize the following notations to formulate the mathematical model:

Indices and sets:

T set of time periods, t € T = {1,2,...,T}

T+ teTt={1,2,...,T+1}

T set of products (=suppliers), i € Z = {1,2,...,I}

Ko set of offline demand zones (=offline stores), k € Ko = {1,2,..., Ko}

Kp set of online demand zones for DCs, k € Kp ={Ko +1,...,Ko + Kp}
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K- set of online and offline demand zones for DCs, k € K~ ={1,..., K}
(K =Ko+ Kp)

K set of demand zones for DCs and FCs, k e K ={1,..., K + 1}

JIp set of capacitated DCs, j € Jp ={1,2,...,Jp}

JIr set of capacitated FCs, j € Jr ={Jp+1,...,Jp + Jr}

J jeJg=A{1,....Jy (J=Jp+ Jr)

Parameters:

S]i-t fixed cost to order product ¢ for the logistics center j from supplier ¢ at period ¢

h;t’j unit inventory holding cost for the logistics center j per product i at period ¢

hiy'ik unit inventory holding cost for the offline store k per product i at period ¢

ct distance between the supplier i and the logistics center j

cljjl distance between the DC j and the other DC j’

cik distance between the DC j and offline store k

cgk distance between the DC j and the online demand zone k

it transportation cost per 1km for the replenishment of product i at period ¢

)\ft transportation cost per 1km for the transshipment of product i at period ¢

it transportation cost per 1km for allocation from DCs to offline stores for product 4
at period t

)\ff transportation cost per 1km for fulfillment from DCs to online demand zones of DCs
for product i at period ¢

pit lost sales cost for demand type k per product i at period ¢

pit fulfillment cost for the offline demand zone k per product ¢ at period ¢

n}t fulfillment cost for the aggregate demand for FC j per product i at period ¢

st production capacity of supplier ¢ at period ¢

Lé replenishment lead time of product ¢ from supplier i to the logistics center j

Z; storage capacity of the logistics center j
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Yk

it
dk

storage capacity of the offline store k

realized value of demand type k for product i at period ¢

Decision variables:

it
51‘

z}f

1 if product 7 is replenished at period ¢ from supplier ¢ to the logistics center j,
0 otherwise

replenishment quantity of the product 4 at period ¢ from supplier ¢

to the logistics center j

on-hand level of product ¢ from the logistics center j at period ¢

on-hand level of product ¢ from the offline store k at period ¢

transshipment quantity of the product ¢ from the DC j to the other DC j’
allocation quantity of the product ¢ at period ¢ from the DC j to offline store k
at period t

fulfillment quantity of the product i to satisfy the offline demand zone k at period ¢
fulfillment quantity of the product ¢ from FC j to satisfy aggregate demand

for the 3PP channel at period ¢

fulfillment quantity of the product ¢ from the DC j to the online demand zone k
at period t

lost sales of product ¢ for the demand type k at period t

The total cost incurred in the supply chain consists of ten cost components: (1)

the fixed cost to place an order, Sit§it (2) the per-unit ordering cost, )\ffcf)j q}t, 3)

J 730

the inventory holding cost for DCs and FCs, hi xi’tH, (4) the inventory holding

.5 ]

it+1

cost for offline stores, h;‘f RV (5) the stockout cost, p}fz,it, (6) the transshipment

cost between DCs, )\ftcljj/uft (7) the allocation cost from DCs to offline stores,

it Jk, it
Acetull iy,

33"

(8) the fulfillment cost for online demand zones for DCs, )\;tc;kr;.tk, 9)
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the fulfillment cost for offline demand zones, p?vz o> and (10) the fulfillment cost for
the aggregate demand for the 3PP channel, ni-tvff’j. It should be noted that some
expenses (e.g., a fixed participation fee) could be incurred when the retailer uses
the 3PP channel [117]. Even though our study simply defines the same fixed cost
parameter, S;-t, for DCs (j € Jp) and for FCs (j € JFr), these expenses could be
accommodated easily by revising the value of S’;-t, depending on whether logistics
center j is included in Jp or Jr.

We first present a deterministic model in which all demand information within

the entire planning horizon is known at the start of period ¢ = 1. The deterministic

model (Ppgr) is formulated as follows:

(PpET)
min YO (30 S 30 g YT h a3 R Y e
€T teT \JeT JjeET jeT keKo keK
SDIED DREEHIEED DD DR VAT DD DR (4.1)
JE€EID 3'EID JjE€EID keKo Jj€EID keEKDp
-3 dr Y i
keKo JETF
st gt <o, VieZ,jeJ,teT (4.2)
dgl<st,  VieLteT (4.3)
jeT
> (= + ML) <z v teT 44
j T4 < Zj, J € Jr,tE (4.4)
€T
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Z xé't + q;’tiL; + Z ul,J J Z U ka? Z

icT J'€Ip\{j} keKo 7'€Ip\{j}
Vie Jdp,teT
. i t—L° ; . .
it g > >y, VieLjedpteT
i'€Ip\{s}

Z +Zu6jk Sgk; VkEK:O,tET

i€ Jj€ID

erk"_ 2 = dy,

JjE€EID

VieZteT,keKp

vzl =dif,  VieIteT,kekKo

Sl 4zt =di,,  VieLteT
JjE€EITF

i+l at it—Lj Z it Z it
Ty =yt + g g jj0
i'€Ip\{s} i'eIp\{s}

- Z “,gk Z 7“]1@7 Viel,jeJp,teT

keKo keKp

) ) it—L% i . ;
it :xz‘t_’_ql_ J _UZtW VieZ,jeJp,teT
j 7 i v
zt+1 + Z ue]kr Pfk? Vi€I7kEI€O7tET
JEID

¢t > 0,61 € {0,1}, VieZ,jeJ,teT
VieZ,jeJ,teT™

yit >0, VieI,keKo,teT"

u'yy 20, Vjj e€dpielteT

ult o >0, VieIp,keKo, i€, teT
v >0, VieT,keKo,teT

vl >0, VieZL,jeJp,teT

rif. >0, VieIl,jeJdp,keKp,teT

Zit >0, VieLkeK,teT
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The objective function (@) minimizes the total cost incurred within the supply
chain. In the objective function, the first and second terms are the ordering cost,
the third and fourth terms are the inventory holding cost, and the fifth term is the
lost sales cost. The sixth term is the transshipment cost between DCs, and the
seventh term is the allocation cost from DCs to offline stores. The eighth, ninth,
and tenth terms are the fulfillment cost to the demand zones. Constraint (@) rep-
resents that if products are ordered, a fixed ordering cost is incurred. Constraint
(@) enforces that the total number of products replenished from supplier ¢ cannot
exceed the given production capacity s*. Constraint (@) enforces that the inven-
tory of the FC j cannot exceed its capacity, Z;, after products arrive. Constraint
(@) also represents the storage capacity constraint for the DC j considering the
replenishment, transshipment, and allocation quantities. Constraint (@) represents
that the number of products transshipped from the DC j to other DCs should be
less than the inventory of the DC j. Constraint (@) restricts that the inventory of
the offline store k cannot exceed its capacity, ¥, after products arrive. Constraints
(@), (@), and () ensure that the demand is satisfied by inventories held in DCs,
offline stores, and FCs, respectively. Moreover, these constraints ensure that all un-
satisfied demand becomes lost. Constraints (), (), and () are the balance
equations for inventories of DCs, FCs, and offline stores, respectively. Finally, Con-
straints ()—() ensure that decision variables are non-negative real variables,

except for 5;75, which are binary variables.
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4.3.2 Stochastic optimization model

In this section, we present the stochastic optimization model to accommodate the
demand uncertainty. We use ci}f to denote random demand k for product i at period
tforallieZ, ket € T. The mean values of demand J}f are denoted as di!, and
the realization of the demand is denoted as d}:. For ease of the exposition, we utilize
dt = (N}:,W eL.kek,te{l,... ,t}) to denote a collection of all demands from
period 1 to period ¢, and d denotes d”. The realization of the demand d and d are

denoted as d’ and d, respectively.

In the proposed stochastic optimization model, we consider the adjustable de-
cision variables to accommodate two different types of decisions (i.e., anticipative
and reactive manners). The adjustable decision variables can postpone the decision
until some portion of the demand is realized (i.e., wait-and-see decisions), which is
different from the process that every decision should be made at the start of period
1 (i.e., here-and-now decisions). We define the following adjustable decision variables

based on the information of the decision variables in the deterministic model:

Adjustable decision variables:

5§t((~it_1) 1 if product ¢ is replenished from supplier i to the logistics center j
at the start of period ¢ after d—1is realized, 0 otherwise

qét(at_l) quantity of the product ¢ replenished from supplier 7 to the logistics center j
at the start of the period ¢ after d'~?! is realized

:c;-t(fltfl) on-hand level of product i in the logistics center j at the start of period t
after '~ is realized

yit(di—t) on-hand level of product ¢ in the offline store k at the start of period ¢
after d'~1 is realized

ult, .,(&H) quantity of the product ¢ transshipped from the DC j to the other DC j’

1,33

at the start of the period ¢ after d*~! is realized
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uzjk(at“) quantity of the product i allocated from the DC j to the offline store k
at the start of period t after d*~?! is realized

vf;’ k((it) quantity of the product 7 fulfilled to satisfy the offline demand zone k
at the end of period ¢ after d* is realized

Uﬁf j(&t) quantity of the product ¢ from the FC j fulfilled to satisfy the aggregate
demand for FCsat the end of period t after d' is realized

r;‘ﬁc(&t) quantity of the product i from the DC j fulfilled to satisfy the online
demand zone for DCs k at the end of period ¢ after d! is realized

zZit(dY) lost sales of product i for the demand type k at the end of period t after d*

is realized

It should be noted that among the above adjustable decision variables, only the
6;75(&'5_1) are the adjustable binary variables, and the others are the adjustable con-
tinuous variables. In addition, because (5“(&“1) i.f(&f—l) a;i»t((it_l) ul] (@), and

Uy ; k(dt 1) are decided at the start of period ¢, these decisions are determined based
on the anticipative manner. On the other hand, because v’ (dt) (dt), %(dt)
and z (dt) are decided at the end of period ¢, these decisions are determined based on
the reactive manner. For ease of exposition, let 5(d) = (5}t(dt*1), VieZ jeJ, te 'T)
denote a collection of the adjustable binary variables. We use notations 7r(d) and

,u(a) to denote a collection of the adjustable continuous variables determined based

on the anticipative and reactive manners, respectively:

w(d) = (q;lt(at—l),x;‘.t(at—l),yg(at—l) iy (A7), ul (@), VieT,je T, j € T, keKo,t e T)

p(@) = (vf/e(d), vy (@), 74(@), 24 (@), Vi€ Tje T ke K teT)

If the demand is given as d, the total cost incurred in the supply chain is defined

150



as follows:

W (6(d), w(d), u(d)) =

ZZ Zsztazt dt 1 _|_ Z)\ztclj it dt 1 + th] ;H‘l dt Z hy ky]lct+1

€L teT \jET JjeET jeT keKo
t it ot 97 t— 1 t gk t—1
DN S HCORSD DD DIPHCARTMIC ED R DD WP AT i
keK Jj€ID J'€EID Jj€ID k€eKo
k it zt it zt
DI IRV ACO RPN 2
Jj€ID kEKD keKo JjE€EIF

We propose the following stochastic optimization model (Pgroc) by accommodating

the demand uncertainty:

(PsToc)
min By [\1: (5(&),77(&), u(&))] (4.23)
st ¢lf(dh) < q;‘.a;‘.t(atfl), VieT,jeJ,teT (4.24)
3 gt VieI,teT (4.25)
€T
> (xj't(a”) TP (51”3'1)> <i;, VjeJmteT (4.26)
€T

it/ yt— i,t—L?’“iili
5 (s s T - X

ieT §'eIp\{j} keko

- > uldTY | <z, VieJdpteT (4.27)
J'€Ip\{i}

@) +g @Y > Y W @Y, VieLjedpteT
J'€Ip\{j}

(4.28)

Slw@ )+ Y wl@ ) | ;e VkeKoteT (4.29)
1€L j€ID
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Soorih@)+zid) =dy, VieILkeKpteT (4.30)

JE€EID

vih(d) +zid) =df, VieLkeKoteT (4.31)
> vt + 2 () =di,,  VieLteT (4.32)
Jj€ETF

P EY) = 2@ +

i €Tp\{5} i€Ip\{j}
= wlp@th) = Y ri(d),  VieLjeJdpteT (4.33)
keKo keEKDp
2 @) = @) g T @E T S @), VieTjedrteT
(4.34)
v TN =y (dTY + Dl (d) =l (d),  VieLkeKoteT
Jj€ID
(4.35)
gfd1 >0,gfd " eR", VieIZjeJteT (4.36)
2f(d1) > 0,2(d" 1) e R, VieZLjeJ, teTt (4.37)
yit(d=h) > 0,y(d" ) e R, VieZT,keKo,teTt (4.38)
up (A1) > 0,0, (A e R Vi,i € Ip,i € T,t €T (4.39)
wl (@) > 0,ul (@) e R VjeIp,k€Ko,i €I, teT (4.40)
i@ > 0,0, (dh) e R, VieZ,keKo,teT (4.41)
idh) > 0,00 (dh) e R, VieZI,jeJp,teT (4.42)
rit@d) >0,r @) eRrR!, VieIjeJpkeKpteT (4.43)
ZiH(dY) > 0, 2t () € R, ViceL ke, teT (4.44)
sl eBl,  VieILjeJteT (4.45)

where R7 and B” functions are mapping from R/*7*(K+1) to R and {0,1}, re-

spectively. The objective of the Pgroc is to minimize the total expected cost, and
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every constraint must be satisfied for all demand realizations. The Pgpoc is the
multistage stochastic optimization problem that is generally computationally in-
tractable to solve [123]. Traditionally, dynamic programming or multistage stochas-
tic programming methods are used to solve the stochastic optimization problem by
characterizing demand uncertainty with a known probability distribution. However,
assumptions about demand distribution could be unrealistic if a decision maker has
insufficient demand data. If the gap between true demand and assumed distribu-
tions is large, solutions derived from these methods could show poor performance
in practice. Furthermore, the computational complexity to solve Pgroc is increased
significantly due to the existence of the adjustable binary variables & (El) Through
numerical experiments, Lim et al. [93] and Jiu [[72] showed that existing approaches,
specifically the BDR [[15] and the FA [[17], require significant computational burdens
to solve the problem with the adjustable binary variables.

Lim et al. [93] proposed a TPA that does not require any assumptions about
demand distribution and could reduce computational burdens. Because of these
distinct advantages of the TPA, Jiu [[72] also extended the applicability of the TPA
to robust omnichannel retail operations. While the TPA performs well in certain
problems, it shows poor performance in our problem because of large-scale issues
incurred by the supply chain of the 3PP. In addition, Constraint () that re-
stricts the replenishment quantity with suppliers’ production capacity increases the
computational complexity. These issues motivate us to develop a suitable approach
to our problem (i.e., DECOM). Before explaining the proposed approach, we briefly

introduce how we customize the TPA for our problem in the following section.
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4.4 A two-phase approach (TPA) based on robust opti-

mization

A TPA solves the proposed problem by decoupling binary decision variables and
the continuous decision variables. In Phase 1, the binary decisions are determined
with the static rule (i.e., 5(&t_1) = §) by utilizing a TRO [94]. In Phase 2, we
adaptively decide the continuous variables by utilizing the LDR with an objective
of minimizing the worst-case expected total cost [[11]. In order to adopt a TPA, it
is assumed that the demand J}f is J}f mean random variables and fall in a support
set [dit,cﬁf] Vi € T,k € K,t € T. Considering this assumption, the uncertainty
set for each J}f is defined as Dj := {di! | dif <dit < dit} where g: = ci}f — di and

Ct=dit —dt, VieT,keK,teT.

4.4.1 Phase 1 of TPA

In Phase 1, we determine the binary decisions by utilizing the TRO that maximizes
the sizes of the uncertainty sets and makes a total cost lower than a predetermined
cost target. Lim and Wang [94] proved that a static rule is optimal for TRO formu-
lation and showed that the computational burden could be reduced significantly. In
order to reformulate Pgpoc into the TRO model, we define the adjustable uncertainty
set for each c;l’,’f as Di(v) == {d}: | d}f - fyg: < dit < a?}ct + ’y&,it} where gj = d}f —dit
and (it = di — ci}f For notational convenience, let D'(y) = (Di7(v), Vk € K,i €
Z,7 € {1,...,t}) and D(y) = DT (y). In addition, we define a cost target ¥ to re-
strict total cost to be no more than a predetermined value ¥ under any demand

realizations. We present the TRO model, PR, as follows:

(PtrO)
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~* = max vy
st W (6(d),w(d),p(d) <y, YdeD()
Constraints (I—24) — (B23), vd' € D'(v)

0<~vy<1

The objective of the model is to absorb as much uncertainty as by maximizing the
sizes of the adjustable uncertainty set. We control the sizes of adjustable uncertainty
set by adopting the new decision variable v (0 < v < 1). Simultaneously, the total
cost must be lower than a cost target ¢ as indicated in the first constraint. The other
constraints are the same as Pgroc. However, the equality constraints ()—()
could cause an infeasibility issue if the static rule is adopted. Fortunately, we can
overcome this issue by allowing Constraints ()—() to be relaxed from equality

to inequality as follows [93]:

(PtrRO-R)

5 = max 5 (4.46)
st. W (8(d),n(d),;u(d) <, VdeD() (4.47)
SOy +zid) >dyf,  VieIteT,keKp, Vd' e€D'(y) (4.48)

Jj€ID
V(@) + 2 d) > dYf,  VieI,teT,keKo, Vd'eD'(y) (4.49)
>t (d) + 2k (dY) > diky,,  VieIteT, VA eDi(y)  (4.50)

JEITF
Constraints (E=24) — (229), (2233) — (E23) vd' € D'(y) (4.51)
0<y<1 (4.52)

It should be noted that Constraints ()—() lead to v* <~
We define uncertainty variables fif and gif falling in Fjt(v) := {f,? |0 < fit< vgf}
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and Git(y) == {gi' | 0 < gi* <~(j'}, respectively. By adopting uncertainty vari-
ables, we can tighten constraints in Prro_gr, and each demand can be represented
as dit = d;; — f,? + g,ict, Vi e I,k € K,t € T. For convenience, we define boldface

notation to denote collections of fif, git, Fi*(v), and G{(v) as

f=(fT(,VieT,keK,7e{l,....,t}), g = (g (), Vie ke K,7€{1,...,t}),

F'(y)= (F7(v), VieLke K,re{l,...,t}), G'(v) = (G (v), Vi€ T,k e K, 7 € {1,...,t}).

By replacing d}f with c?}f + g,it in Constraints ()—(), Prro_r can be approx-

imated as follows:

(PrrO-A)

1"

Y = max v

st. W(6(d),7(d), u(d)) <o, VI €F(v),8" € G'(y)

SOk + M (d) > dif +gif,  VieIteT,keKp, Y eF(y),g €Gi(y)
JEID

vl () + 2 @) > dif +gif,  VieTteT,keKo, Y eF'(y),g €G'(y)

Z U%t,j(dt) + Z%Jrl(dt) > Czilt(+1 +9%+17 VieLteT, f'ec Ft(7)7gt € Gt('Y)
JjEITFR

Constraints (224) — (£229), (£33) — (B23), f* € Fi(y),g' € G'(v)

0<~y<1

Because constraints in Ppro_a are tighter than those of Problem Prro_g, it is

obvious that v < 4.
We consider a static rule; thus, decisions are fixed regardless of the revealed
uncertainties. Therefore, every adjustable variable is replaced with the decision

variables of the deterministic problem (e.g., 5§t(dt*1) — (5? and d(d) — d). We
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define the total cost for the static rule as follows:

(5,7, ) =
S5 (0 s+ o NSl R S hal Y e
ieT teT \jeJ jeg jeg keKo kek

DD IFTELTIED VD WP TN DD SRRSO R o TR DE )

jeID j'€ID jeIp keKo jeIp k€EKp keKo JjeEIF

The static rule can be derived by solving the following Prro_s:

(Prro-5)
~® =max v (4.53)
st. O (8,7, pm) < (4.54)

otz >di 49, VieLteT,keKp, VFeF(y),g €G'(y) (4.55)
Jj€ID

v+t > dY + g, VieLteT,keKo, Y eF(q),g €Gi(y) (4.56)

Z v;t,j + Z%-H > CZ}?-&-l +9§§+1, VieI,teT, Yfe Ft(’V)zgt € Gt(’Y) (4.57)

j€eJr
Constraints (£2) — (E=7), (210) — (2=22) (4.58)
0<y<1 (4.59)

We could know that +* < fy” because decisions with the static rule are more
restrictive than adjustable decisions. Before presenting an approach to derive an
optimal static rule for Prro_g, we use the notation @ to denote a collection of
uncertainty variables fif and g’ (i.e., 8 = (f g, Vi € T,k € K,t € T)). Given v,

let ©(~) denote the support set of 8. For ease of exposition, we represent Prro_g
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as the following simple form:

s

s.t. C(0)k < e(8), V6 € ©(y)

Kk eIl V0 € O(y)

where C(0) and e(0) represent all coefficients, and « and II represent decision vari-
ables for the static rule and the feasible set, respectively. We present the definition

of the worst-case scenario of uncertainty as follows:

Definition 4.1 (Worst-case scenario of uncertainty). Given the coefficients C(0)
and e(8) in Prro_s, an element 6(y) € O(y) is called the worst-case scenario of
uncertainty if for each k € II that satisfies C(0(7))k < e(8(y)), it also satisfies
C(0)k <e(0), YO € O(y).

v

We reformulate Prro_g with the worst-case scenario of uncertainty 6(y) by
replacing the right-hand side inequality Constraints ()—() from cZ}f + g}f to
d}f +7§,it. Finally, the problem with the worst-case scenario of uncertainty is defined

as the following deterministic problem:

(PstaTic)
AT =max ~
st. wf (0, ) <

Zr?%—kzgzgg—k’y@?, VieZ,teT, keKp
JEID

v+ 2 dif 4G, VieTte T ke Ko

Zv;fj—l—zﬁﬂzdiféﬂ—i—*yfﬁﬂ, VieZ teT
JEITF

158



Constraints (E2) — (£24), (2111) — (E=22)

0<~vy<1

Let § denote the optimal solution of § obtained by solving the PgraTic. Because
the constraints of PgraTic are more restrictive than those of Prro_g, we have
At < 4% <", Interestingly, Lim et al. [93] shows that 4T > ~* > +" in Theorem 1.
Therefore, we have v = 'y”; thus, the optimal solution of the deterministic Problem

PsraTIC is also optimal for Prro_a.-
By controlling the cost target v, a decision maker could choose the degree of
conservativeness for the obtained solution. To determine the proper value for ¢, we

utilize the following affine function of ¢, which is called the target coefficient:

P(¢) := (1 = @)v(1) + ¢v(0)

where (1) and v(0) is the optimal objective of the following deterministic problem:

(PTPA—V(’Y))
v(y) =min @ (8,7, )

s.t. Z rit 2t > dit A G VieZ,teT,keKp

J
Jj€ID

v+t > dl 4G, VieIteT,keko

Z Uff’j"‘z%Jrl Zdilt(Jrl +7§%+17 ViGI,tGT
JjE€ETF

Constraints (£22) — (£22), (111) — (E222)

If the ¢ is close to zero, the conservativeness of solutions is increased; otherwise, it

is decreased. Until now, we briefly introduced the principle of the TRO approach in
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this section. For further information, we recommend readers refer to Lim and Wang

[94] and Lim et al. [93].

4.4.2 Phase 2 of TPA

In Phase 2, we determine the adjustable continuous variables with fixed binary deci-
sions & obtained in Phase 1. As mentioned in Section , without any knowledge
on the true demand distribution, only the mean of ciif (i.e., (:ZA?) and the support set
[gl}'f, J}f] are given. In order to deal with distributional ambiguity, we adopt the solu-
tion approach proposed by Giloba and Schmeidler [53]. We first consider F as a fam-
ily of distributions of d, and the mean support set D = <D“,Vk ek,iel,te T).
Let P denote any distribution of d included in F, P € F; thus, we have Ep [(Ni] eD.
We solve the following problem with the objective of minimizing the worst-case

expected total cost over a family of distributions F:

(Paro)
min max Ep {‘Il (ﬂ(d),u(d))]
st. ¢ <gof, ieZljeg,teT, vdleD!

Constraints (B=24) — (224), vd' € D

with the fixed binary decisions 5;7 in the first constraint. Because it is generally
intractable to solve Paro, we rely on optimizing parameterized functions, where
the feasible space is restricted to linear functions (i.e., the LDR [147]). For each

adjustable continuous variable, we define the following LDR:

t—1
@) =g+ > > gTdy,,  VieIjed teT
ceK =1

t—1
2 (@7 =204 YN Ay, VieLjeg e Tt
cek =1
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g (A1) = ”%ZZ hOT T VieI keKo,teTT

cek =1

ug' (df = u?f“, + Z Zu;‘f]jf dr, YicT,j€Ip,j €Ip,t €T
ce =1

ull (471 = thOkJFZZ ulTdy,  Vi€I,jeJp keKoteT

ce =1

dt _U'Lt0+zzvzt0‘rd7n’ VZGZ,kGKO,tGT

cel =1

U:m = “OJFZZU?JMCZ” VieLjeJrteT
ce =1

T]k _ zt0+zz zto’rdz-r VieI,jGJD,/ﬂEKD,tGT
ce =1

() = “HZZ 2TdY, Vi€ keK,teT
ceK =1

Note that each product is independent of other products by following the assumption
of Lim et al. [93]. If the coefficient of the LDR is given, each type of decision is
determined as demand unveiled.

We present Prpr in Appendix @ We could obtain the coefficient of the LDR
by solving P1pr considering coeflicients as decision variables. We develop the Prpr
based on the Theorem 2 in Lim et al. [93]. Pypgr can be transformed to the linear
deterministic model by duality theory [1(]. Consequently, the coefficient can be
obtained by solving the linear deterministic model with a commercial solver. We

present the linear deterministic model transformed from the Prpgr in Appendix @

4.5 A decomposition approach (DECOM)

Given cost target ¢, three MILP models (Prpa_,(0); Prpa—wu(1); PsTaTIC) and one
linear programming (LP) model (P1,pr) must be solved for applying the TPA. How-

ever, the existence of the supply chain of 3PP and the production capacity constraint
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increases the complexity of the problem because two supply chains, one for the re-
tailer and the other for the 3PP, should be considered simultaneously. Therefore,
it requires a significant computational burden to solve the three MILP models. To
alleviate this issue, we develop a DECOM approach which can be regarded as an
extended version of the TPA. The key idea of DECOM is to adopt the artificial vari-
able w. Let w = (w“,Vi el te 'T) denote a collection of the artificial variable.
The production capacity constraint (@) in Ppgr is reformulated as the following

constraints by introducing decision variables w:

Z qﬁ»t < s, 1€, teT (4.60)
JE€EID

Y@l <st(1-w"), ieIteT (4.61)
JETF
w' >0, ieI,teT (4.62)

There are two advantages to using variables w. First, given w, the feasible region
for variables q}t,Vi € 7,5 € J,t € T can be reduced. Figure @ presents the
feasible region reduced by Constraints ()—() for three cases: w® = 0.25,0.50,
and 0.75. Second, Pppa_,(0) and PgraTic can be solved separately for a retailer’s
supply chain and the supply chain of 3PP. Consequently, these two advantages
could significantly reduce the computational burden, and experimental results will

be presented in Section @

4.5.1 Phase 1 of DECOM

Phase 1 of DECOM aims to determine the binary decision 8, which is similar to
Phase 1 of the TPA. Of special note, we also determine the artificial variable w

in Phase 1. We use the dp,mp, and pup to denote a collection of variables for
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Case 1: wit = 0.25 Case 2: w't = 0.50 Case 3: wit = 0.75

Z th Z q;'_r

JEIF JEIF

>l

st jegp s

Z qt . Z qt
it

Jj€Ip s jedp st

t

Original constraint Reformulation
Figure 4.2: Effects of introducing artificial variables w®. The shaded area is the

feasible region for q}t.

the retailer’s supply chain and the §p, wp, and pp for the supply chain of 3PP as

follows:

6p=(00'\VieZ,jeIp,teT), bp= (6} VieI jeJpteT),
D = (qj ) ;tvyk7u;fjj’auzjkv Viel,je jD,jl € Jp,k € ICOat € T)a
mp= (¢, 2, Viel,jeIpteT),

pp = (V)i s, VieL,je Ip, ke KTt €T), wpp= (v, 2y, VieL,jeTp,teT).

Given 0p,d0p, p,F, wp, and pr, the total cost for retailer’s supply chain is

defined as

‘I,TD (6Da7TD7l'l’D) =

ZZ Z S;tézt Z )\lt zy zt Z hwj ;t+1+ Z h;ﬁ zt+1+ Z pZ}tz;;:t

i€ te€T \jE€EID J€ID Jj€ID keKo kekK—
t t gk t gk t t
LY S Y S A X A 3 ).
Jj€Ip j'€ID je€ID k€eKo j€ID k€EKD keKo
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and the total cost for the 3PP supply chain is defined as

Wl Op e, pr) = > [ D0 S+ Y Nleglt + Y Rttt izt + Y il

€L teT \JjEITF JjE€ETF JEITF JEIF

In Phase 1, we first solve the following MILP problem to determine w:

(PpEcoM—uv(1))
v(1) = min ‘I’TD (6p,7™p,up) + ‘I’Iv (0F,7r, 1F)

s.t. Z q”<s” it 1e€T,teT

JE€EID

qutgsit(l—wit), i€, teT

JjEIF

Yo+ =di+ (!, VieLteTkekKp
J€ID

vit 4 > di 4 0, VieIteT,keKo

Sovili 2 > dk 4G, VieTteT
JjEITFR

w' >0, ieI,teT

Constraints (2), (£2) — (227), (210) — (E=22)

Let w denote the optimal solution of w. We use Ppgcom-—,(1) to determine w
because of the following two reasons. First, we utilize Pprcom—,(1) to obtain the
robust solution of w. Because Ppgconm—, (1) considers the worst-case scenario of un-
certainty with v = 1, it is obvious that the robust solution of w could be obtained.
Second, because the optimal value v(1) of Ppgcom—y(1) is used to get the cost target
for applying the TRO approach, it is not mandatory to implement another unnec-

essary scheme to determine w, which could save computational time. Note that the
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w is not used for actual decisions (i.e., replenishment, transshipment, allocation,
and fulfillment). The w is only used to decompose the proposed problem and reduce
computational times.

Let &1} ,ﬁ'b, [,_LlD, o} ,7‘1'};, and, ﬁ}; are optimal solutions of Problem Pppcom—y(1)-
We define vp(1) = (5D, 7h, fp) and vp(l) = (JF,ﬂ'F, fif), and the sum of
vp(1) and vp(1) is equal to v(1). Then, we solve the following problem to get value

v(0) with fixed value w:

(PDECOM—V(O))
v(0) =min ®h (8p, 7p, wp) + €l (8p, wp, ur)

s.t. Z q” < sttt 1€Z,teT

j€ID

dogt<st(1-w"), ieILteT
JEITF

erkJer VZGI,tGT,k‘G/CD
Jj€ID

U PR > dit, VieZ,teT,kekKo

Zan+ZK+1_dfrt<+1, VieZteT
JETF

Constraints (£2), (£4) — (274), (2171) — (E=22)

The first and second constraints use the fixed value w, which is obtained by solving
the Ppgcom—y(1)- Let 5D, 7rD, uD, 8%, fr%, and, ﬂOF are optimal solutions of Problem
Ppecom-v(0)- We have vp(0) = \Il}r:) (50 ,’r_rOD,ﬂOD) and vp(0) = \Il]L (5F’7TF7/“"F)
and the sum of vp(0) and vp(0) is equal to v(0).

In contrast to the procedure of the TPA, DECOM adopts two cost targets,
¥p and ¥p, one for the retailer and the other for the 3PP. The ¥p and ¢p are
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determined with the following two affine functions of ¢, respectively:

¥p(d) := (1 = ¢)vp(1) + ¢vp(0)
¥r(9) = (1= @)vr(l) + vr(0).

Given w, the stochastic optimization model Pgroc can be decomposed into
two models, one for the retailer’s supply chain and the other for the supply chain
of the 3PP. For each model, we could derive two MILP models, PstaTic—p and
PsraTic—r, by applying the TRO approach presented in Section . PstaTic—p
and PgraTic—F are formulated for the retailer’s and the 3PP supply chains, re-
spectively. In the case of the TPA, the 4!, which is for maximizing the adjustable
uncertainty set, is the same for the retailer’s and the 3PP supply chains. On the
other hand, in DECOM, we define ’yTD for the objective value of PgraTic—D, and ’y}
for the objective value of PstaTic—F. PsTaTic—D and PsraTic—F are presented as

follows:

(PsTaTic—D)
T
Yp =max vy
st. (8,7, 1) <¢p

Z qé-t < sttt 1€, teT

Jj€ID
Zrﬁ+z?2¢2§f+’y@?, VieZ,teT,keKp
J€EID

v;fk+z,it > dit + VieZ,teT,kekKo
g > 0,88 €{0,1}, VieZL,jeTdp,teT

.’I;i't > 0

>0, VieTl,jedp,teT™
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Zit >0, VieLkeK ,teT
Constraints (B4) — (£22), (211), (13), (28) — (29), (2=20)
0<~vy<1
(PstaTic-F)
7p =max 7
s.t. \Il} (6, ) < Y
qf <qot, VieLjeJdrteT

Y gt <s'l-w"), ieIteT
Jj€ID

Z Uy 2 2 i1 +7CH41 VieZteT
JETF

d'>0,6"€f{0,1}, VieLjeJpteT
zlt >0, VieTl,jeTp,teTT

21 >0, VieILteT

Constraints (£4), (202), (2=20)

0<y<1

Let p and 67 be optimal solutions for 8 p and 85 obtained by solving the Problems
Pstatic—p and PgraTic_F, respectively. Consequently, the dp and dp will be used

for binary replenishment decisions in Phase 2 of DECOM.

4.5.2 Phase 2 of DECOM

The goal of Phase 2 of DECOM is to determine the adjustable continuous variables,
which is similar to the goal of Phase 2 of the TPA. However, a key difference
between these two approaches is that Phase 2 of DECOM utilizes the solution for

the artificial variable w obtained in Phase 1. In addition, by using the fixed w, we
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can decompose the Paro into the following two problems Paro_p and Paro_r

(Paro-D)

mingyngj)__{ Ep {‘I’D (WD(a)aND(&))}

st ¢f(dh) < @it ic€T,jedp,teT, vdi~! e D!

dogl@h) < st ieIiteT,

vai~!t e ptt
JEID

'Lt(dt 1)>0 qlt(dt 1)€Rt 1 VZEI,]GJD)tET

2 (d) > 0,20(d ) eRTY, Vi€ jedpteT T
Zit(d') > 0, 21 (d?) € R, VieL,keK ,teT

Constraints (2=21) — (2=31), (2533), (£235), (I38) — (220), (B23) vd' € D
(Paro-F)

minl;)ng}( Ep {\I’F (TfF(a)vlLF(a))}

st gt (dTh) < oy, i€, jeTmteT, vdi~!t e D!

Z dt 1 < Szt(l _wit)

, ieI,teT, vdi~! e pit
JjeETF

GA 0@ ERT vieTjednteT

gf(d1) > 0,20 (d" ) eRTY, VieZjeTpteTT
At (d) >0,28, (@) eR,  VieZteT
Constraints (E=28), (E232), (2234, (B22) vd' € D

where given d

Up (mp(d), up(d)) =

it 1 t— 1 ,t+1 /gt zt+1 it it/ at
SO DORTENITEORE SETITTUCOR SUTTLUTIRED Rt S 1t0
i€LteT \jEID Jj€ID keko keK—
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+ Z Z )\ztc]j zt (dt 1 Z Z )\ztcék dt 1 Z Z )\th]k: )

Jj€ID J'€EID J€ID k€EKo Jj€IDp kEKD

-3 )

keKo

Y (rr(d), pr(d)) =

ZZ Z )\zt ’L] zt dt 1 Z hzj ;t+1 dt)+p§2+1z%+l Z nzt zt
i€ELteT \JjEIF JjE€ITF JETF

In order to restrict feasible space to linear functions, we also utilize the LDR
for each adjustable continuous variable. The LDR for a retailer’s supply chain is

defined as

t—1

q;'_t (dt—l) —_ q;t,() + Z Zq;t,fm’d?’” Vi EI,,] c jD,t c 7’
cck— =1

Zf (@) =20+ Y Zx””d” VieI,jedp,teT"
cek— 17=1

y;,'ct(dtl _y;ﬂto_’_zzyztaﬂ'drr‘ VZEI,kGK07tET+

cek— =1

uilip (@) =t + Y Zuf Tdy,  VieIjeJp,j €Jp,teT
cek— 7=1

utg (A7) =ulh + > Zu“” dy, VieI,jeIpkeKoteT

e,jk e, gk
cek— 7=1
ok (@) = v+ > Z vTdY,  VieZIkeKoteT
cek— =1

i (@) =0+ > Zr”‘”d” VieZl,jeJdp,keKp,teT
cek— 17=1

(dt _ zt0+ Z Z zto‘rd” VieZ ke K ,teT

cek— =1

, and for the 3PP supply chain is defined as

q;l_t (dtfl): 1t0+z th+1'rdK+1H VZGI,]GJF,teT

T=1
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zff (A7) =20+ ngt KHVTag,, VeI jedrteT”

T=1
] t
vl (dY) = “0+Zv“K+“d” VieI,jeJrteT
t t,0 t, K41, .
ZK+1 (d —Z}(+1+Z ;(+1+ TdK_‘_h V’LEIﬂfGT

Based on the above LDR, we present Prpr_p for the retailer’s supply chain and

Prpr_r for the 3PP supply chain to obtain the coefficient of LDR. Prpr_p and

Prpr_F are defined as follows:
(Pupr-b)

t
] o ) a1 1o
mmzz Z )xffcff zt0+ Z an onZT + Z h?,j x;,t+ 04 Z sz,t-k o git
€L teT \Jj€ID cek— 7=1 J€ID cek— 7=1

t
+ Z h;ﬁk yli,t+l,0+ Z Zy;;t«l»l,afczg' + Z p;ct 1t0+ Z Z it, O'leT

keko cek— 7=1 kex— cek— 7=1
it jj’ it,0 it,oT JiT it _jk it,0 it,oT JiT
+Z Z Avel Uy g0+ Z Zulu dy | + Z Z Acce | Ue i+ uejkd
j€Ip j'€JD cek— T=1 Jj€Ip k€K cek— =1
it jk it,0 t, it it,0 t,
+ z : z : )\; CZ] T’L + E : z :TZ o-rdz-r + 2 : pz ’U’L + 2 : § :’UZ O'TdZT
J€EIp keEKp cek— 7=1 keko cex— 7=1

t—1
stooq0+ Y > gt Tdy <oy, Vi€, jedp teT,d T eD!

cek— 1=1
t t it _it . t—1 t—1
§ g+ E § q;Tdy | < sMw”, VieZ,teT,d €D
JEID cek— 1=1
it,0 i,t—L%,0 it,0 it,0 it,0
Z z;+g; + Z U jrj = Z Ue ik — Z Uy 5
i€T J'€Ip\{i} kEKo J€Ip\{i}
t—1
it,oT it,oT it,oT it,oT T
+ Z Z T+ Z Uijrj Z Ue ik~ Z Uiy | do
ocek— \7=1 J'€Ip\{i} keKo J€Ip\{i}
t—Li-1

tL,UTZ‘T _ . _ _
+ Z DR g < zj, Vjie Ip,teT,d ' eD!
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t—1

it,0 i7t7L§‘0 it,0 it,oT it,oT T
Tt PRI R DN D £ > wy | ds

J
J'€Ip\{i} cek— \7=1 J'€Ip\{i}

t—Li—1 )

i,t—L5,0T . . — —

+ > ¢ 77d7 |20, VieILjeJpteT,dteD!
=1

Z ylit,O + Z uif;Ok + Z Z zt oT + Z ’LL?;ZT d?’ S ﬂm vk c ’Co,t c 7—7dt71 c thl
i€ J€ID cek— =1 J€ID
Zr;io—i—z,?o 0, VieZ,teT,keKp,
J€ID

1 if)yr=t,o=k
Zr”ﬁJrz,?M: , VieZ,te T,keKp,oe K, 7€ {l,...,t}

eJ
7€Ip 0 otherwise)

vl +20° =0, VieILteT,keKo,

1 i)r=t,o=k

T+ 2T = , VieIteT,keKo,oeKk ,7e{l,...,t}

0 otherwise)

it—L%,0

it+1,0 _ _it,0 t—L7,
it,0 it,0 it,0 it,0 . .
Z Upgrg — Z Uy 0 — § : Ue ik — E Tik s VieI,jeJp,teT
i'eIp\{5} i'eIp\{5} keko keKp
T4 T ey WY, W =1t L1
J 45 i'eTp\ i} Y575 i'eIp\{i} “1,55’ =4... j
it,oT lt oT
- Zkelco U — Dkexp T
i,t+1,07 . ‘
x. ’ = Z_t,O'T it,oT _ it,oT . g Ti _
J Z; +Zj/€JD\{J}ulJJ ZJ EJD\{J}ulu i) T =t LJ""7t 1

_ E uit,o'T Z zt oT
keKo e, gk ke)CD

if)r=t

’LtO'T
ZkelCD
NieZ,jedp,teT,0e K ,7e{l,...,t}

g =g > i =i, VieLkeKoteT

Jj€ID

i : ;ﬂ _1]| ,-lr T



it,oT
i,t+1,01 __ Y + ZjGJD
Yk =
it,oT
“Uok

'Lto‘r it,oT . _
et —Upk if)r=1,...,t—1

if)r=t

WNVieZ,ke Ko, teT,oe K ,teT,7re{l,...,t}

t—1
q;t,O + Z Zq;t,crﬂ'd:i;r 2 07

cek— 7=1

t—1
o _
204 T STy >0,

cek— =1

'Lt0+ Z Zyztardz7'>0

cek— 7=1

it,0 it,oT jiT
>
Uy jir T Z Zuljj ds 0,

cek— 7=1

Y S

cek— =1

zt0+ Z sztardz-r>0

cek— =1

zt0+ Z Z 7,t07d17>0

cek— 7=1

t
it,0 it, ]
A0 ST S eTdr >,

cek— 7=1

J

VieI,jeJdp,teT,deD™!

VieZ,jeJp,te T ,deD™!

VieI,keKo,teT ,dteD!

VieZ,j,j €Ip,teT,deD™!

VieZ,jeIp,teT,keKo,d eD™!

VieZI,keKo,teT,d eD’

VieZI, jeIp,keKp,teT,d D

VieZ,teT,ke K ,d" €D’

qv{t,qu;t,UT ER, VieI,j6JD,tET,UEK_J'E{L“-J_H

zih0 T e R, VieZjedp,teT oeK ,7e{l,...,t—1}

J J

yl Oy T eR,  VieLk€Ko,teT oekK ,7re{l,...,t -1}

O uT R, VeI, jeTp,j €IpteT, 0 €K, me{l,...,t—1}

U JJ”ul JJ

Upk’ Pk

WO YT e R, VieIkeKo,teT, 0 e K ,re{l,... t}

it,0 Ti.t,av' €R, V’I:EI7].ejD,keKD,t€T7U€K:77T€{1""’t}

Tik > Tjk

20 T eR, Mi€eT,keK ,teT,0ecK ,7€{l,...,t}

» %k

(Pupr-F)

172
~ X =



mlnzz Z A’Lf/ z]( +Zqzt K+17’d7,7'+1> + Z h ( zt+10+z 'Lt+1 K+1, Td“—+1

i€ teT \JEITF JETFR T=1

FISV

t—1
stooq0+ Y gt T, <@y, VieI,jeJrteT,deD!

T=1
Z (qut ,0 + Zqzt ,K+1, ‘rdm' ) S Sit(l _ ID“), VZ c I,t c T, dt—l c Dt—l
JE€ETF

t—L%

: t-Lk 0 t—Li K41, -~
Z l’;t’o +qz szt K41, Td”+1 + Z i, TdKJrl S Z;,
1€T

Vjie Jp,teT,d"eD?

S+l =0, VieILteT,

JE€ETR

1 7=t
S LT i ,  VieZ,teT,Te{l,... t}
JETF

0 otherwise)

i t4+1,0 it,0 it—L%,0 it,0 . .
:c;+ =z 4q T =y, VieZ,je Ir,teT

it, K4+1,7 iat*L;"VK‘i’l’T it, K+1,7 . _ i
z; " tg; —v,y T, T =1,...,t-L5 -1
G+ K417 it, K+1,7 it, K+1,7 . i
2 =3\ — v, , if)r=t-L;...,.t—1
it, K+1,7 . .
v, , i)t =t

NMieZ,jeTr,teT,Te{l,... t}

“°+Zq” K¥lrgic >0, VieI,jeJsteT,d eD™!
o0y AT, >0, VieZjeJpteT,d T €D

T=1

”°+Zv”K+”d” >0, VieZjeJrteT,d €D

777]

2 +Z 4o Tdg ., >0, VieZ,teT,d €D’

T=1
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g0 g YT e R, VieT,jeTrte Tore{l, ..t -1}
a0 KT eR, VieIjegrte T Te{l,... t—1}
it,0 it K+1,7 . .

n.3 0 Un,j €R, Viel,jeJr, teT,me{l,... t}

it,0  _it,K+1,7

2R PR e R,

VieZ,teT,te{l,...,t}

By following the same logic outlined in Section and in Appendix @, Prpr-D
and Prpr_r also can be reformulated to the linear deterministic model using the
duality theory. In summary, we must solve four MILP models (i.e., Ppgcom—v(1);
PpEcoM-v(0), PsTaTiC-D, and PstaTic—r) and two LP models (i.e., PLpr-p and

Prpr_r) to implement the DECOM approach. Figure @ presents frameworks of
the TPA and DECOM.

TPA

Phase 1 Phase 2

Step 1: Solve Prpy_y, (1) @nd obtain v(1). Step 5: Given the binary decisions 8, solve P;pg
and obtain the coefficients of the LDR.

Step 6: Determine the decisions for continuous
decisions as the uncertain demands unfold
according to obtained decision rule.

Step 2: Solve Prpy_y gy and obtain v(0). Ky
Step 3: Calculate cost target i by determining ‘
parameter ¢.

Step 4: Solve Psrar;c and obtain the binary
solutions 6.

{ DECOM

Phase 1

Step 1: Solve Ppgcom—v(1y @nd obtain v(1) and
obtain the decisions w.

Step 2: Given w, solve Ppgcom—v(oy and obtain
v(0).

Step 3: Calculate cost target 1 by determining
parameter ¢.

Step 4: Given w, solve Psrarc—p and Psparic—r
and obtain the binary decisions 6.

8, w

—)

Phase 2

Step 5: Given & and W, solve Pypg_p and Ppg_p
obtain the coefficients of the LDR.

Step 6: Determine the decisions for continuous
decisions as the uncertain demands unfold
according to obtained decision rule.

Figure 4.3: Frameworks of TPA and DECOM.
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4.6 Computational experiments

In this section, we implement three types of computational experiments. In Section
, we evaluate the performance of DECOM with respect to various demand distri-
butions. We compare our developed approach with the two benchmark algorithms:
TPA and an alternative two-phase approach (DTPA). The DTPA determines the
adjustable binary variables & (&) with the static rule by solving the EVP, i.e., the
deterministic model Ppgr with mean demands [93]. On the other hand, the ad-
justable continuous variables are determined by applying Phase 2 of the TPA. In
Section , we examine the advantages of DECOM in terms of computational
efficiency for large-scale instances. In Section , we compare the performance of
DECOM and TPA by varying the production capacity. In addition, a cost analysis
is also performed with different values of the target coefficient ¢. In Section ,
we present several managerial insights on the basis of the experimental results.

All the experiments were conducted on a PC with an AMD Ryzen 2700X 7-Core
CP, 3.60GHz processor, and 16GB of RAM with a Windows 10 64-bit system. In
addition, every test instance is generated using Python 3.8 with the libraries SciPy
and Numpy. The DTPA, TPA, and DECOM were developed with FICO Xpress 8.6,
and we solved every model by utilizing the Xpress-Optimizer version 33.01.02 with
its default parameter settings. In addition, we set the integrality gap tolerance in
Xpress to one percent by following the setting of Lim et al. [93].

We benchmark Jiu [[72], the most relevant models to our study, to determine con-
stant parameters in the mathematical model. We generated parameters randomly
according to the uniform distributions in Table @ The replenishment lead time Lé-

was generated by the discrete uniform distribution. The continuous uniform distri-
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bution was used to determine the rest of the parameters. The locations of logistics
centers and offline stores were uniformly distributed over the pre-specified size of
the XY plane. We determined c , c{j /, cgk, and Cgk based on the Fuclidean distance
between each location.

We assumed that the sum of every demand for item 4 at period ¢ falls in [80, 120]
(e, Ypexc dif € [80,120], Vi € Z,t € T). To determine each demand k € K, we
define the share of each distribution channel for Zkelc d}f as: (1) oy for the retailer’s
offline channel, (2) as for the retailer’s online channel, and (3) a3 for the 3PP channel.
We set a; = 0.2,a9 = 0.3, and ag = 0.5. Each channel’s demand is generated
by the assumed demand distributions, which fall in the corresponding support set
represented in Table @ The mean demand cZ}f is determined according to the
assumed demand distribution. Even though we assume the demand distribution to
generate random demand, every algorithm is implemented without any knowledge
about the demand distribution.

Table 4.1: Ranges of the parameters.

st n hi NN N i il L

U (50,80) U (0.2,0.5) U(0.3,0.6) U (0.05,0.1) (0.02,0.08) U (0.08,0.13) 2 (60,80) U (2,3) U {0,1}

Table 4.2: Support set of each channel for item ¢ and period ¢

Retailer’s offline channel Retailer’s online channel 3PP’s online channel
(dif, Vk € Ko) (dit, Vk € Kp) (d}ﬁzﬂ)

g it o751 7it o it [P 7it it 7it
"5 X Pker di» Ko < Pkex dk} [TD X Prex it &5 X Drex dk] [0‘3 XD ke dits @3 X D pex dif

In order to analyze the effects of the production capacity constraint, we define
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the following affine function of ¢ to determine the s%:

SHE) = Ex Y dif+(1-¢&) x2) dil.

kel kel

where 0 < £ < 1. According to the above affine function, the production capacity
becomes insufficient as the £ is close to one. Otherwise, there is sufficient production

capacity when the & is close to zero.

4.6.1 Experiment 1: Performance analysis in small problems under

symmetric and asymmetric demand distributions

Experiment 1 is conducted for the following two purposes. First, we validate the
obtained decision rule through Monte Carlo (MC) simulation. Every MC simulation
is implemented with 500 samples. Second, we evaluate our approach for symmetric
and asymmetric demand distributions. We utilize the beta distribution by referring
to Jiu [72]. In this section, we set I =3, Kp =3, Kp =3, Jp =2, Jr = 2, and
conduct experiments on a 50 x 50 XY plane. Also, we set £ = 0 to assume sufficient
production capacity. We have tested on this setup three different planning horizons:
T = 4, 7, and 10. Furthermore, we define the set of candidate parameters ® to
find the best cost target. We use the notation ¢* to denote the target coefficient,
which shows the best performance. We consider six candidate values for ¢ as ¢ =
{0.0,0.2,0.4,0.6,0.8,1.0}. Note that we use notation ‘a ~ b’ to indicate that multiple
values of ¢* € ® between a and b show the same best performances (i.e., a < ¢* < b).

First, we have conducted experiments on three types of symmetric distribution,
Beta(0.3,0.3), Beta(1,1), and Beta(4,4), and experimental results are reported

in Table @ We provide shapes of symmetric and asymmetric distributions in
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Appendix @ In Table @, “LDR” means the objective value of Prpgr with the
fixed order cost S}téj-t for the TPA, and the sum of objective values of Pypr_p and
Prpr_r with the fixed order cost for DECOM. The “SIM” indicates the expected
total cost implemented by MC simulation utilizing the obtained decision rule, and
the “Std” is the standard deviation of the total cost for 500 samples. The “CPU(s)”
means the computation times in seconds. We adopt the expected value of perfect
information (EVPI) to evaluate the solution quality of each algorithm. To derive
the EVPI, we solve the deterministic model Ppgr under the perfect information
setting (i.e., the deterministic demand setting). We use the “Gap(%)” to measure
the solution quality, which is calculated by (SIM — EVPI) x 100/EVPI.

Every experimental result of the TPA and DECOM was reported by adopting the
best target coefficient ¢*. The values of LDR and SIM were indifferent, which meant
that the obtained decision rule achieved our goal (i.e., minimizing the expected total
cost). In terms of solution quality, the Gap of the TPA and DECOM was smaller than
10 percent, except for a result for Beta(0.3,0.3) with 7' = 4. However, the Gap of
the DTPA was bigger than 20 percent, except for a result for Beta(1,1) with 7= 7.
As shown in Figure @, the total cost of the TPA and DECOM was similar and
significantly lower than the total cost of the DTPA. Also, the standard deviation
of the TPA and DECOM was relatively small compared to that of the DTPA.
For symmetric distributions, there is a tendency for the best solutions of the TPA
and DECOM to be derived when the value of ¢* is small. This tendency meant
that conservative binary decisions were necessary when the demand distribution
was symmetric. Concerning CPU(s), it takes the least time to implement the DTPA

because the TPA and DECOM were implemented for |®| times to find the best
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target coefficient ¢*.

Table 4.3: Experimental results on symmetric demand distributions.

Beta(0.3,0.3) Beta(1,1) Beta(4,4)
T=4 T=7 T=10 T=4 T=7 T=10 T=4 T=7 T=10

DTPA LDR(x10%) 73.01  149.65 174.94 64.98 121.33 203.46 69.66 119.22 168.13
SIM(x10%)  72.86 149.66 174.57  65.01 121.49 203.56 69.60 119.27 168.12

Gap(%) 24.84  48.93 24.46 22.20 19.55 44.59 26.04  30.97 24.16
Std(x10%) 3.94 8.45 7.79 4.05 4.39 6.17 1.99 2.61 2.92
CPU(s) 1.95 4.98 10.89 1.94 6.97 15.50 1.84 7.10 13.00

TPA LDR(x10%) 64.64 108.84 150.50  58.44 108.91 151.80 60.63  99.19 145.57
SIM(x10%)  64.67 108.86 150.48  58.44 108.97 151.81  60.63  99.19 145.58
Gap(%) 10.80  8.33 7.28 9.85 7.24 7.83 9.79 8.92 7.51
Std(x10%) 0.86 1.22 1.32 0.60 0.92 1.04 0.29 0.48 0.57
CPU(s) 10.87  27.75 75.17 8.73 47.84 112.10  8.60 35.03 104.51
o 0.0 0.0 0.0 0.2~0.8 0.0 0.2 0.0 0.4 0.2

DECOM LDR(x10%) 64.78 108.26 150.70  58.44 108.83 151.74  59.90  99.30 146.42
SIM(x10%)  64.83 108.27 150.66  58.44 108.89 151.75  59.90  99.31 146.43

Gap(%) 11.08 7.74 7.41 9.85 7.16 7.78 8.47 9.05 8.14
Std(x10%) 0.83 1.22 1.30 0.60 0.92 1.06 0.34 0.49 0.56
CPU(s) 6.42 19.12 41.33 6.25 26.91 61.87 7.29 16.09 46.91
o 0.0 0.0 0.2 0.0~0.8 0.0 0.0 0.0 0.0 0.2~0.6
EVPI (x10%) 58.36 100.49 140.27  53.20 101.62 140.79  55.22  91.07 135.41

Second, we have conducted experiments on four types of asymmetric distribu-
tion, Beta(2,5), Beta(5,2), Beta(1,6), and Beta(6,1), and the experimental results
were reported in Table @ in the Appendix @ As in the case of symmetric distri-
butions, the values of LDR and SIM were indifferent when the demand distributions
were asymmetric. However, when the beta distributions were skewed to the right
(Beta(a,b), a < b), the Gap was bigger than 10 percent. The binary decisions
with the static rule § could be too conservative for the beta distribution with a < b
because the realized demand was usually smaller than the mean value. Also, be-
cause the realized demand was relatively small, the ¢* value was high compared
to the symmetric distributions. On the other hand, when the beta distributions

were skewed to the left (Beta(a,b), b < a), the GAP was smaller than 10 percent
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Figure 4.4: Box plots for the total cost for 500 samples for every algorithm.

except for a result implemented by DECOM for Beta(5,2) with T' = 10. Because
the realized demand was usually bigger than the mean value, there was no doubt
that robust solutions were necessary; thus, the ¢* value was small.

Figure @ is presented to compare the performance of the TPA and DECOM in
terms of solution quality (Gap) and computational efficiency (CPU(s)). Among 21
results of experiments (9 for the symmetric distribution and 12 for the asymmetric

distribution), the number of wins of DECOM and TPA was the same regarding the
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Gap. However, for CPU(s), DECOM outperformed TPA except for one result.
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Figure 4.5: Comparison of performance between TPA and DECOM in terms of Gap
and CPU(s).

4.6.2 Experiment 2: Computational efficiency of DECOM in large-

scale problems

In this section, we have conducted several experiments to examine the computational
efficiency of DECOM in large-scale problems. For every experiment, we fix the value
of T, Kp, and Kp as 10, 5, and 5, respectively. In addition, we vary with the value
of I,Jp, and Jpr to change the problem scales, in which the (I, Jp, Jp) vary from
(3,3,3) to (10,10, 10). We set the size of the XY plane as 100 x 100, and we assume
that the demand distribution follows Beta(1,1). Based on the experimental result
for Beta(1,1) in Table @, we set ¢ = 0.0 for DECOM and TPA. Furthermore, we
set £ = 0 following the setting of Experiment 1. When solving the MILP models,
we terminate the commercial solver if the time limit, i.e., 3600 seconds, is reached
and output the feasible solution obtained so far.

We present experimental results for large-scale problems in Table Q, which
presents Gap, Std, CPU(s), and EVPI. We keep in mind that Ppgr is a MILP

model; thus, significant computational power is necessary to solve it 500 times to
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obtain the EVPI in large-scale problems. Therefore, we utilize the “alternative”
EVPL

In the alternative EVPI, we first obtain the optimal binary solution & by using
Phase 1 of DECOM. Then, we fix the binary variable with the value  to make Ppgr
as an LP model. Therefore, Ppgr can be solved 500 times with perfect information
within a reasonable time. To avoid confusion, the obtained value from the alternative
EVPI is also indicated by the term “EVPI” in Table @ The DTPA has the largest
value for Gap and Std compared to other approaches, which meant the solution
quality of the DTPA was poor.

In particular, we present the following five types of CPU(s): “P,1)”, “P,(0)”,
“PsraTic”, “Phase 17, and “Phase 2”. “P,(1)” means the computation time to solve
the Prpa_,1) for the TPA, and Pprcom—y(1) for the DECOM. “P,)” means
the computation time to solve the Prppa_, ) for the TPA, and Pprcom—u(o) for
the DECOM. “PgraTic” means the sum of computation time to solve both the
PsraTic—p and the Pspatic—pF for the DECOM. “Phase 1”7 is computed by summing
values in Py, P,(0), and PgraTic for the TPA and DECOM. On the other hand,
for the DTPA, “Phase 1”7 is the computation time to solve the Ppgr with the mean
demand. “Phase 2” is the computation time to solve both the Prpr_p and the
Prpr_r for DECOM, and the Pypg for the TPA and DTPA. Finally, “Total” can
be computed by summing values in “Phase 1”7 and “Phase 2”, which is the total
computation time to implement each approach.

Figure @ represents the Total, Phase 1, and Phase 2 CPU(s) for three ap-
proaches. In terms of Total CPU(s), it required the shortest time to implement

the DECOM compared to the TPA and DTPA except for the case of (I, Jp, Jr) =
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(8,8,8). On the contrary, it took the highest computation time to implement the
TPA, except for (I, Jp,Jr) = (3,3,3). The DTPA could finish Phase 1 within a
relatively short computation time compared to the TPA and DECOM. The DTPA
and TPA required similar computation times to conduct Phase 2. However, DE-
COM required less of a computational burden compared to the DTPA and TPA to
conduct Phase 2.

Figure @ depicts the CPU(s) of P,(1),P,(0), and PsraTic. Because these three
procedures did not require implementing the DTPA, only DECOM and TPA are
represented in Figure @ For P, 1), the performance of the TPA and DECOM was
indifferent. However, for P, ), DECOM requires a much shorter time to solve the
problem than TPA. Specifically, we could observe that the TPA could not solve the
problem until the time limit when (I, Jp, Jr) = (10,10, 10). In contrast, DECOM
required only about 12 seconds to solve the problem in the same experimental setting.
The DECOM could finish the procedure for P, ) within a short time because the
feasible region was substantially reduced by fixing the value for w. Furthermore,
DECOM also had high computational efficiency for Pgraric. When I, Jp, Jgp > 6,
the TPA could not solve Problem PgraTric until the time limit. However, DECOM
could solve both Problems PgraTic—p and PgraTic—f within the time limit except
for (I, Jp, Jr) = (10,10, 10). For (I, Jp, Jr) = (10,10, 10), DECOM could not solve
Problem PgraTic—p within the time limit; but, Problem PgraTic—fF could be solved
in less than a second.

It can be clearly seen from the above experiments that DECOM could solve the
large-scale problem within a reasonable time and derive promising solutions. Even

though the TPA could also derive high-quality solutions, it required a significant
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computational burden to solve the large-scale problem.

Table 4.4: Experimental results on large size problems.

(I,Jp,Jr)
(3,3,3) (4,4,4) (5,5,5) (6,6,6) (7,7,7) (8,88 (9,9,9) (10,10,10)
DTPA Gap(%) 11.64 22.94 27.31 17.98 36.70 19.47 39.70 29.53
Std(x10?) 2.04 5.25 8.60 3.18 13.11 5.47 12.26 5.60
CPU(s) Phase 1 0.91 0.93 3.36 36.40 390.09  121.99  173.57  3600*
Phase 2 84.05 143.85  279.07  473.40  1210.38 1667.72 3515.68 7501.68
Total 84.96 144.78 28243  509.79  1600.47 1789.71 3689.24 11101.68
TPA Gap(%) 6.47 5.12 5.95 6.04 13.94 6.78 6.65 7.37
Std(x10?) 1.31 1.33 1.72 1.42 8.50 1.49 1.47 1.68
CPU(s) P,y 0.89 1.14 1.52 19.70 166.59  347.44  562.47  3600*
P, 1.26 0.90 2.68 68.92 3541.60 239.68  300.31  3600*
Psraric  2.00 8.75 19.16 3600* 3600* 3600 3600 3600*
Phase 1 4.14 10.79 23.36 3688.63 7308.19 4187.12 4462.77  10800.00
Phase 2 80.40 135.10  318.40  447.90  1035.43 1544.60 3772.61 6629.06
Total 84.54 145.89  341.76  4136.52 8343.63 5731.72 8235.38 17429.06
DECOM  Gap(%) 6.59 5.03 4.75 6.20 12.50 5.96 7.51 6.45
Std(x10?) 1.29 1.34 1.72 1.39 7.32 1.45 3.42 1.66
CPU(s) P, 1.01 1.17 1.53 20.01 140.46  133.47  573.35  3600"
P, 0.42 0.26 0.79 2.26 5.35 2.85 8.50 12.71
PstaTic  1.25 1.48 2.45 52.31 122,13 77511  43.43 3600" + 0.44'*
Phase 1 2.67 2.92 4.77 74.58 267.94 91143 62528  7212.71
Phase 2 51.42 86.26 183.98  265.70  659.95  901.27  3671.85 2862.29
Total 54.09 89.18 188.75  340.28  927.88  1812.71 4297.13 10075.00
EVPI (x10?) 180.43  208.28  293.84  284.69  403.73  338.81 37890  472.49

* Time limit was reached.

[ Poraric—p could not be solved within the time limit; however, it required 0.44 seconds to solve the Psraric—r.
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Figure 4.6: Computation times of Total, Phasel, and Phase 2 for three approaches.
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Figure 4.7: Computation times of P,(1), P,(0), and PgraTic for DECOM and TPA.

4.6.3 Experiment 3: Performance analysis by varying the produc-

tion capacity

In this section, we have conducted two types of experiments to analyze the effects
of production capacity on the problem complexity and the total cost. In the first
experiment, we analyzed the complexity by varying the production capacity with
different values of ¢ € {0.0,0.1,...,0.9,1.0}. Weset T' = 7,Kp = 5,Kp = 5,
and locations were distributed randomly on a 50 x 50 XY plane. Also, demand
distribution follows Beta(1,1) as in the setting of Experiment 2. We have conducted
experiments on two different sizes of problems: (I, Jp, JJr) = (4,4,4) and (5,5,5).

Table @ in Appendix @ shows the experimental results with different produc-
tion capacities. We excluded the DTPA in this experiment because of poor solution
quality when the production capacity was insufficient. For the £ = 0.9 and 1.0, the
Gaps of DECOM and TPA were bigger than 10 percent because stockout frequently
occurred owing to insufficient production capacity. We reported CPU(s) for Phase
1, Phase 2, and Total in Table @, and Total CPU(s) for TPA and DECOM was
represented in Figure @

For both TPA and DECOM, the computation time to implement Phase 2 was
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indifferent, although the value of £ was changed. In other words, production capacity
had insignificant effects on the complexity of Phase 2. On the other hand, the
production capacity significantly affected the TPA’s computational efficiency for
implementing Phase 1; thus, the Total CPU(s) of the TPA was also affected by
the value of £&. However, in the experiment setting of (I,Jp,JJr) = (4,4,4), we
required less than a minute to implement DECOM, except for in the case of £ = 0.9.
Furthermore, in the experiment setting of (I, Jp, Jr) = (5,5,5), it takes less than
80 seconds to implement DECOM, except for in the cases of & = 0.9 and 1.0.
Consequently, despite the production capacity changes, we observe that DECOM

showed steady performance in terms of computational efficiency as represented in

Figure @
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Figure 4.8: Total computation times of DECOM and TPA with different values of
€.

In the second experiment, we implemented cost analysis by varying the produc-
tion capacities. Figure @ presents bar plots for six cost components: (1) the total
cost for the whole supply chain (T'C), (2) the total cost for the retailer’s supply chain
(TJD), (3) the total cost for the 3PP supply chain (TJF), (4) the stockout cost for

the whole supply chain (PC), (5) the stockout cost for the retailer’s supply chain
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Figure 4.9: Cost analysis by varying the production capacity.

(PJD), and (6) the stockout cost for the supply chain of the 3PP (PJF). We con-
ducted experiments for two decision rules; one was obtained from the DECOM with
¢ = 0.0, and the other was obtained from the DECOM with ¢ = 0.8. Because the
DECOM with ¢ = 0.0 could derive the conservative decision rule to the uncertainty,
the stockout only occurred when the £ = 1.0, which was the case in which suppliers
had the smallest production capacities. However, because the DECOM with ¢ = 0.8
output the aggressive decision rule to the uncertainty, the stockout occurred when
& > 0.4. Of special note, when sufficient production capacity existed (£ = 0.0 and

0.2), two decision rules incurred the same total cost.
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4.6.4 Managerial insights

On the basis of the experimental results, we present the following managerial in-
sights which could be instructive to practitioners who are concerned about setting
up an effective supply chain in an omnichannel environment considering demand

uncertainty:

e Even though our problem consists of only two types of supply chains, signif-
icant computational power is needed to optimize the flow of products when
considering both supply chains simultaneously. In real business, the supply
chain becomes more complicated and faces high demand uncertainty. There-
fore, more computing power is no doubt required to optimize that compli-
cated supply chain. Because of this, we recommend that practitioners seek
the method that most efficiently decomposes and optimizes each supply chain,
which is the DECOM approach. An efficient decomposition method could lead
to promising policies within much shorter computation times compared to the

method that simultaneously considers every supply chain component.

e Because of logistics disruption and production delays during COVID-19, the
production capacity in the supply chain could be unstable. Hence, it is im-
portant to seek a promising strategy to operate the supply chain depending
on the status of supplies. The DECOM can derive the decision rule which is
conservative to the demand uncertainty if the value of ¢ is zero. On the con-
trary, the decision rule that is aggressive to the demand uncertainty could be
obtained if the ¢ is close to one. Therefore, if practitioners are willing to uti-

lize our approach, they should derive the policy appropriate to the production
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capacity in their supply chain by setting the best value ¢.

e Our approach can be applied in practice without accurate demand distribution
and only requires three pieces of information about demand: lower bound
and upper bound of demand support set and mean value. However, because
retail companies have been able to obtain lots of historical demand data with
the rapid development of computational technology, these immense demand
data should be utilized for improved decisions. Even if the accurate demand
distribution is not estimated using historical data, it is necessary to determine
the appropriate value ¢ after identifying how the distribution is roughly shaped
(e.g., examine the skewness or variance of demand distributions). For example,
as presented in Section , if the demand distribution is skewed to the right,
it is necessary to derive a conservative solution by setting a small value for ¢.
Otherwise, if the distribution is skewed to the left, the ¢ should be set with a

large value to obtain an aggressive solution to demand uncertainty.

4.7 Summary

We studied the optimization problem considering demand uncertainty in a setting
where the omnichannel retailer determined to utilize the 3PP channel in advance. In
the proposed problem, the retailer’s online and offline channels were operated by the
retailer’s supply chain, and the 3PP channel was operated by the supply chain of the
3PP. Moreover, we considered joint replenishment, allocation, transshipment, and
fulfillment decisions over a multi-period planning horizon. To minimize the expected
total cost, we presented the stochastic optimization model from the perspective of

a retailer.
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However, there were four challenges in our problem. First, the adjustable binary
decisions for replenishment should be considered, which incurs a fixed order cost.
Second, we should integrate anticipative and reactive decisions when solving the
problem. Third, the existence of the 3PP channel increased the problem size because
the retailer’s supply chain and the supply chain of the 3PP should be considered
simultaneously. Fourth, the production capacity constraint made the problem more
intractable.

Even though the TPA developed by Lim et al. [93] could mitigate the first and
second challenges, TPA often required a high computational burden to solve the
proposed problem because of the third and fourth challenges. In particular, perfor-
mance of the TPA was aggravated when the production capacity was insufficient.
As a way to overcome these challenges, we proposed a DECOM approach by uti-
lizing artificial variables, and it can solve the problem separately according to the
retailer’s supply chain and the 3PP supply chain.

Through conducting computational experiments, we observed that DECOM and
TPA provided solutions with similar quality in various demand distributions. How-
ever, DECOM outperformed TPA in terms of computational efficiency. In partic-
ular, DECOM was scalable to large-scale problems while maintaining its high solu-
tion quality. In addition, despite insufficient production capacity, DECOM showed
steady performance compared to the sufficient case, while the TPA suffered from
high computational complexity. Based on the experimental results, we presented
several managerial insights that could be instructive to the omnichannel retailer
who needs to operate both a retailer’s supply chain and a 3PP supply chain effec-

tively.

190



Chapter 5

Conclusions

5.1 Summary and contributions

Because of the high flexibility and low risk of sharing economy, logistics practition-
ers have started to embrace a sharing economy with logistics to bring efficiency to
fulfillment services. This thesis aimed to alleviate several challenges of e-commerce
retailers by sharing logistics resources, and we proposed three operation problems.
However, the adoption of sharing logistics resources increased the uncertainty and
complexity of the proposed problems. Therefore, it was required to develop ad-
vanced solution methodologies which could consider uncertainty systematically and
be scalable to realistic problem instances.

In Chapter E, we proposed the lateral transshipment model for fresh food by
accommodating the key attributes of the OOCS: heterogeneous shelf life, proactive
transshipment, and non-negligible transshipment time. We developed the hybrid
DRL approach by combining the SAC algorithm with SQLT policy and RS. The
proposed approach had the following three advantages. First, the proposed approach
greatly alleviated the curse of dimensionality, which is incurred due to the perishable
nature of fresh produce. Second, because the hybrid DRL could derive policy by

directly utilizing data, it does not need any knowledge or assumption about demand

191 :



distribution. Third, the hybrid DRL was stable during the training process com-
pared to the original SAC algorithm because it could mitigate issues incurred due to
large action spaces. Experimental results showed that the hybrid DRL could outper-
form existing approaches developed by Haijema and Minner [64] and Dehghani et al.
[B8]. In addition, we found that transshipment substantially reduces the outdating
cost by allowing the offline channel to make good use of the old products that will
be discarded in the online channel, which is new to the literature.

In Chapter E, we proposed the SCND problem considering ODWS under demand
and yield uncertainty. We considered the commitment variables and uncertainty in
ODWS, which is new to the literature. The proposed problem was formulated by the
TSSP model, and we solved it by utilizing the method combined with SAA and BD
algorithms. Of special note, we developed the ABD, which could generate effective
initial cuts for improving the convergence speed of the BD algorithm. The ABD
could outperform the typical version of the BD algorithm and Xpress-Optimizer
with regard to optimality gap and computation times. Under various experiment
settings, we could observe cost-saving effects when ODWS was used for designing
supply chain networks. Through a sensitivity analysis, the parameter values for
commitment and stockout affected decisions for whether to utilize ODWS or not.

In Chapter @, we proposed an omnichannel retail operations problem considering
production capacity constraint and the 3PP channel. We adopted the adjustable bi-
nary and continuous variables as wait-and-see decisions, and the state-of-art-method
TPA [93] was utilized to solve the problem. However, the existence of the 3PP
channel and production capacity constraints rapidly increased the computational

complexity; thus, TPA suffered from the high computational burden. Therefore,
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we proposed a novel approach, DECOM, and it had two distinctive advantages: (1)
reduce the feasible region and (2) decompose the original problem into two small
problems, one for the retailer’s supply chain and the other for the supply chain of
the 3PP. Through computational experiments, DECOM could be scalable to large-
scale problems while maintaining high solution quality. In contrast, TPA could not

solve the same problems within acceptable computation times.

5.2 Future research

Based on the several limitations of this thesis, we suggested some lines of future
research for each chapter. Chapter E has two limitations. The first limitation of
Chapter E is that we only considered two outlets. On the other hand, leading com-
panies with the OOCS commonly operate multiple online distribution centers and
offline retail stores. The second limitation is that DRL requires massive computa-
tional efforts to train neural networks for one instance. In order to systematically
analyze the impacts of the proposed model, the trained neural networks of DRL need
to be evaluated in different instances by varying values of parameters. However, it
requires several weeks or months to train neural networks from scratch for every dif-
ferent combination of parameters. The third limitation is that we only considered
the transshipment to deal with outdated products. In real business, transshipment
could incur high operational costs for allocating and packaging products. Based
on the above three limitations, several future studies could be suggested. Reflecting
the distances of multiple outlet locations in cost parameters and developing the ap-
propriate DRL approach could be important lines of future research. Also, instead

of training neural networks for DRL from scratch for each instance, future studies
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should target developing methods that reutilize neural networks completed training
for another instance. In addition, adopting the promotion to sell outdated products
at lower sale prices could be interesting topics for future studies. However, if pro-
motion is considered one of our model’s decisions, the action space should be larger
than our proposed model. In order to consider promotion, future studies should
target overcoming challenges incurred from the large action space by developing an
appropriate MDP model or utilizing other solution approaches, such as stochastic
programming and robust optimization.

For further research of Chapter E, we intend to extend our study by using multi-
stage stochastic programming, which has an advantage for dealing with uncertainty
under a multi-period setting. The nature of TSSP enables the stochastic parameters
to become known in a single moment. However, regarding the problem with a
planning horizon with multiple periods, the uncertainty can be dealt with more
accurately when the stochastic parameters have been realized progressively in each
period. Therefore, through utilizing the above scheme, some decisions will be made
before the realization of uncertainty, and other decisions will be made after the
realization in each period [H7].

In Chapter @, the first limitation of our study is that we failed to acquire real-
world data and have just utilized the benchmark data provided by Jiu [72] to validate
the proposed approach. The second limitation is that we determine the value of cost
target 1, which affects the performance of DECOM, by simply utilizing the affine
function of target coefficient ¢. Based on the above two limitations, validating
the DECOM by defining the demand uncertainty set with real-world data could

be an important line of future research, which could contribute more insight to real
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problems. In addition, instead of finding the best value of 1) by conducting extensive
experiments, future studies should target developing methods that could provide the
best 1) appropriate to the given problem. Furthermore, future studies could provide

the compact search space to tune v for reducing the workload.

195
2 A2



Appendices

196

___;rx_-! _CI_':I - -I_-]i -

5l =7



Appendix A

Supplementary materials for Chapter 2

A.1 Information about hyperparameters of the hybrid DRL
approach

Table A.1: Hyperparameters used for the hybrid DRL approach

Hyperparameter name

Hyperparameter used

Size of the replay buffer Np 200,000
Size of the minibatch |B] 128
Soft update factor ¥ 0.002
Prioritization factor n 0.6
Compensation factor g 0.4
Discount factor ~ 0.99
Learning rate A 0.0001
Hidden layer of neural networks [64,64]
Optimizer Adam
Activation function hidden layers Relu
Activation function output layers Softmax
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A.2 Pseudocode for SACDPE

Algorithm 3 SACDPE

Initialize Q;’jft : S — RMI Q;gft 'S = RM 7,08 |0, 1]'“4'
Initialize Q5" : & — RMI, Q37 : § 5 R, D« 9

01 < 91, 92 < 92

Declare the environment for SACDPE (ENVgL)

e+ 1

for each episode e =1,--- , FE do
t<1

for each timestep t =1,--- ,T do
Observe s; and choose action a; ~ 74 (-|s¢)

Observe r; = PFtRL and sy from ENVRp

D « D U{(st,at, 7, S¢+1)} with maximal priority p; = max;<; p;
Sample a mini-batch B from D according to probability P(d)
P/ 32 pjlvd € D

Aﬁl, Aeg, A¢, Aa=0

for b € B do

wp = (NLD X ﬁ)ﬁ/maxieg w;

10y] = min { (@5271(s) = 4+ V() (@52 (5) — r + w%(s')))Q}
Db < [0p] + €per

AG; +— AO; + wbv@iJQsoft (Hi), for i € {1, 2}

A¢ < A¢p +wpVyJr ()

Ao +— Aa+ V,J(a)

end

Update soft Q networks 6; < 6; — AAG;, for i € {1,2}

Update policy network ¢ < ¢ — AA¢

Adjust temperature o +— o — AAa«

Update target soft Q networks 6; < 8; + (1 —v)f;, for i € {1,2}

t+—t+1
end

e<—e+1
end

Return: 0;, 63, my
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A.3 The reasons for using the existing data

Because RL is a learning-based algorithm, the training data significantly affects the
policy derived by training RL. In addition, because we deal with the novel problem
and the application research for RL, it is very important to utilize the appropriate
data to the proposed problem. It is ideal to utilize the real data of Oasis Market,
but we could not secure that data. To overcome these challenges, we investigated
literature related to the RL for inventory problems. However, most existing studies
could not obtain the appropriate data for their problems or secure immense real
data for training the proposed RL algorithms. They usually organize the training

data with the following two schemes:

1. Fit a probability distribution to small-size real data and generate demand data

for training [52, [104].

2. Assume a probability distribution and generate demand data under various

population parameters [36, 139].

In our problem, we consider the inventory model with a single item and two
different channels (i.e., OOCS with single item). In real practice, it is obvious that
the demand distributions of online and offline channels are different. As illustrated
in Figure @, the OOCS with a single item can be interpreted as the single channel
model with two types of items. In this model, the type of item can be transformed to
the other type by implementing transshipment. Therefore, the demand distribution
of each channel in OOCS can be interpreted as the demand distribution of each type
of item in a single channel.

Oroojlooyjadid et al. [[104] presented demand data sets for three different items.
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Also, the demand distributions of the three items were different. Therefore, we
adopted the data provided by Oroojlooyjadid et al. [@] in Section . At last,
to validate the performance of the hybrid DRL, we have generated six test instances

by adopting the different demand data sets for each channel in OOCS.

Single item Single channel

a N

Online channel

GO
_ /

[Online-offline channel system with single item] [Single channel with two types of items]

Figure A.1: OOCS with a single item and single channel with two types of item.
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A.4 Improvement effects of transshipment varying the

unit transshipment cost parameter

Table A.2: Improvement effects of utilizing transshipment varying the unit trans-
shipment cost parameter ¢

¢ Measure RV HC SC WC TC ocC PF
No-transshipment - Average 162.53 16.62 9.40 13.88  0.00 58.49 64.14
Transshipment 0  Average 163.62 15.04 8.69 10.83  0.00 58.00 71.06
Improvement®  1.09 1.58 0.71  3.05 0.00 0.49 6.91
1 Average 163.25 15.80 887 10.56 2.10 57.81 68.11
Improvement  0.72 0.81 0.53 3.32  -210 0.68 3.97
2 Average 162.23 1644 9.38 1041 2.22  57.46 66.33
Improvement(®  -0.29 0.18 0.02 3.47 -222 1.03 2.18
3 Average 162.63 1649 922 1122 246 57.80 65.43
Improvement®  0.10 0.13  0.18 265 -2.46 0.69 1.29
4 Average 162.12 16.70 9.51 11.80 1.51 57.81 64.79
Improvement®  -0.41 -0.08 -0.11 2.07 -1.51 0.69 0.64
5  Average 162.30 16.69 9.43 1224 143  57.98 64.53
Improvement®  -0.22 -0.07  -0.03 1.63 -1.43  0.51 0.39
6  Average 162.39 16.69 9.39 1239 1.51  58.05 64.37
Improvement®  -0.13 -0.07  0.01  1.49 -1.51  0.44 0.23
7 Average 162.46 16.68 9.36  12.54 1.53  58.11 64.23
Improvement/®  -0.07 -0.07 0.04 1.34 -1.53 0.38  0.09
8  Average 162.53 16.62 9.40 13.88 0.00 58.49 64.14
Improvement®  0.00 0.00 000 000 0.00 0.00 0.00
9  Average 162.53 16.62 9.40 13.88 0.00 58.49 64.14

Improvement®  0.00 0.00 0.00  0.00 0.00  0.00 0.00

[a] Tmprovement:  (Transshipment—No-transshipment) for revenue and profit, and
(No-transshipment—Transshipment) for cost components
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A.5 Improvement effects of transshipment varying the

shelf life of online and offline channels

Table A.3: Improvement effects of utilizing transshipment varying the shelf life of
product held in online and offline channels, MY and M©°F

Short shelf life Long shelf life
MON 3 3 3 5 5 5
MOF 5 6 7 7 8 9
MOF _ pfON 2 3 4 2 3 4
Average value per period
RV No-transshipment ~ 161.40 162.31 162.84 168.34 167.79  167.79
Transshipment 162.15 162.78 163.41 169.77 169.76  169.54
Improvement/?! 0.75 0.47 0.57 1.42 1.97 1.76
HC No-transshipment  15.99  17.24  17.96  23.43  23.08  23.10
Transshipment 14.04 16.03 16.69 20.30 20.19 20.12
Improvement /! 1.95 1.21 1.26 3.12 2.90 2.98
SC No-transshipment  10.03 9.46 9.12 6.37 6.65 6.65
Transshipment 9.48 9.08 8.69 5.63 5.69 5.68
Improvement/?] 0.55 0.37 0.43 0.74 0.96 0.97
WC No-transshipment  13.23 11.91 11.36 3.02 2.53 2.48
Transshipment 10.13 7.46 7.50 1.43 1.12 1.04
Improvement!?! 3.10 4.45 3.86 1.60 1.41 1.44
oC No-transshipment  57.92 57.87 57.90 57.05 56.73 56.71
Transshipment 57.32  56.76  57.00 57.01  56.89  56.86
Improvement!@! 0.60 1.11 0.90 0.03 -0.16 -0.15
PF No-transshipment  64.24 65.84 66.51 78.48 78.79 78.85
Transshipment 71.19 73.46 73.53 85.39 85.88 85.84
Improvement/?! 6.95 7.61 7.02 6.92 7.08 7.00

2] Tmprovement:  (Transshipment—No-transshipment) for revenue and profit, and
(No-transshipment—Transshipment) for cost components
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Appendix B

Supplementary materials for Chapter 3

B.1 Parameter information

Table B.1: Ranges of the deterministic parameters

Fj a B; ~ ck & o

U (500,1000) 24 (100,200) 1 (30,70) 2/ (0.80,0.99) U (50,100)

Table B.2: Probability distributions for stochastic parameters

w w
Dy Sijt

N (17‘%067 (9‘1i1‘8)2) N (17‘91.‘067 (9|1i1‘8)2)

B.2 Comparison of performance for solving SAA prob-
lems and computational results about the two types

of lead time
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Table B.3: Comparison of performance between Xpress Solver, TBD, and ABD for
solving SAA problems

No. Method N
20 40 60 80
Gap CPUs Itr Gap CPUs Ttr Gap CPUs Itr Gap CPUs Ttr

1 Solver 0.00 11.86 - 0.00 18.39 - 0.00  30.47 - 0.00  44.40 -
TBD 0.00  4.39 13.7 0.00 3.87 12.1  0.00 5.35 12.1 0.00 6.90 11.9
ABD 0.00  4.46 11 0.00 3.46 9.4 0.00 4.68 9.7 0.00 6.29 9.6
2 Solver 0.00 8.88 - 0.00 16.04 - 0.00  22.96 - 0.00 33.82 -
TBD 0.00  4.30 13.4 0.00 3.72 13.3 0.00 4.59 12.5 0.00 7.45 13.5
ABD 0.00  3.96 112 0.00 3.56 11.6 0.00 3.74 9.3 0.00 7.01 11.4
3 Solver 0.00 37.08 - 0.00 77.97 - 0.00 112.47 - 0.00 191.44 -
TBD 0.00 28.05 20.0 0.00 39.45 18.1  0.00 34.47 15.7 0.00 64.91 17.4
ABD 0.00 24.64 174 0.00 30.81 14.7 0.00 31.46 13.6 0.00 56.24 14.3
4 Solver 0.00 30.21 - 0.00  54.99 - 0.00 110.47 - 0.00 138.46 -
TBD 0.00 16.57 19.3 0.00 21.74 16.4 0.00 3291 17.5 0.00  44.50 17.7
ABD 0.00 14.80 16.2 0.00 18.04 13.4 0.00 33.00 16.2 0.00 38.51 15.0
5 Solver 0.00 61.87 0.00 91.22 0.00  180.89 0.00 301.62

TBD 0.00 30.64 18.3 0.00 32.89 159 0.00 62.89 17.8 0.00 71.48 16.5
ABD 0.00 27.51 15.1  0.00 31.38 13.8 0.00 54.98 14.1  0.00 56.07 12.7

6 Solver 0.00  38.60 - 0.00  94.68 - 0.00  153.23 - 0.00  232.66 -
TBD 0.00  18.68 16.0 0.00 31.89 15.5 0.00 47.82 159 0.00 63.51 16.1
ABD 0.00 16.16 12.9  0.00 24.08 11.3  0.00 38.06 12.2 0.00 48.28 12.2

7 Solver 0.00  66.07 - 0.00 137.47 - 0.00  242.08 - 0.00  342.36 -
TBD 0.00  79.86 27.3 0.00 62.83 22.4 0.00 102.06 23.4 0.00 162.87 24.7

ABD 0.00 77.83 25.5 0.00 69.86 20.9 0.00 102.76 21.2  0.00 167.03 22.5

8  Solver 000 578.07 - 0.00 1496.01 - 020 323162 - 038  3599.15 -
TBD 000 57696 39.6 000 74629 421 000 83818 325 000 1531.10 365
ABD 000 61306 386 000 755.93 387 0.00 839.66 299 000 1372.98 33.9

9  Solver 000 83711 - 0.00 199572 - 0.11 334058 - 145 3600% -
TBD 000 730.23 372 000 93583 315 000 126052 30.8 000 144509 29.6
ABD 000 870.76 345 000 86295 279 000 1057.39 26.7 000 1187.31 25.4

10 Solver 000 43808 - 002 1628.80 - 0.02 245307 - 025 341930 -
TBD 000 323.73 339 000 59813 317 000 105544 315 000 1318.84 32.6
ABD 000 32492 333 000 55946 294 000 84294 285 000 1193.71 29.3

11 Solver 000 48898 - 0.00 981.57 - 0.00 204629 - 0.02 344195 -
TBD 000 15146 310 000 21241 256 000 306.67 253 000 439.46 262
ABD 000 147.37 277 0.00 19826 223 000 30381 226 0.00 45559  24.4

12 Solver 000 73277 - 0.00 1806.96 - 0.03  3600% - 026 3600% -
TBD 000 73332 396 000 65179 30.6 0.00 1043.33 29.8 0.00 1290.18 29.1
ABD 000 57605 345 000 61111 268 000 82519 255 000 1120.70 249

13 Solver 005 193819 - 034  3600% - 407 3600% - 420  3600% -
TBD 000 242231 658 0.05 357891 53.6 043 3600% 438 172  3600%  37.2
ABD 000 1747.20 527 0.04 331395 515 034 3600% 424 144  3600% 336

14 Solver 000 90516 - 0.00 268287 - 032  3600% - 134 3600% -
TBD 000 617.21 281 000 137598 256 0.00 1806.77 240 0.00 2594.65 24.6
ABD 000 49204 218 000 123417 212 000 1511.06 19.1 0.00 2071.29 19.3

15  Solver 001 2697.94 - 207 3600% - 262 3600% - 2.87  3600% -
TBD 001 3053.00 53.3 020 3600+ 39.0 150 3600%  27.9 2.85 3600%  22.8

ABD 0.00 2104.27 46.7 0.08  3600* 42.1  0.35  3600* 31.9 0.53  3600* 28.4

* Time limit was reached
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Table B.4: Impacts of lead time on cost incurred in supply chain with the ODWS

Ls Ly Cg‘;t?é) Delivery Commitment Stockout insvtzls)‘f)rlri; " Transportation I?}Z?;litg;y

Cost () % Cost (8) % Cost (8) % Cost (8) % Cost (8) % Cost (8) %
0 0 12,830.6 7,849.4 61.18 2,278.4 17.76  93.0 0.72 1,134.8 8.84 1,368.0 10.66 107.1 0.83
0 1 14,246.8 7,326.8 51.43 2,235.7 15.69 2,191.4 15.38 1,134.8 797 12714 8.92 86.8 0.61
0 2 15,220.2  6,799.9 44.68 1,986.2 13.05 3,958.3 26.01 1,134.8 7.46  1,266.2 8.32 74.9 0.49
0 3 16,548.1  6,270.3 37.89 1,704.8 10.30 6,072.4 36.70 1,134.8 6.86 1,285.0 7.77 80.8 0.49
0 4 17,992.7 5,725.5 31.82 1,593.4 8.86 8,321.8 46.25 1,134.8 6.31 1,157.7 6.43 59.5 0.33
1 0 13,935.3  8,140.5 58.42 2,278.4 16.35 820.1 5.89 1,134.8 8.14 11,4829 10.64 78.7 0.56
1 1 15,287.0 7,618.1 49.83 2,166.9 14.17  2,894.1 18.93 1,134.8 7.42  1,409.0 9.22 64.0 0.42
1 2 16,284.1 7,075.4 43.45 1,900.2 11.67 4,720.8 28.99 1,134.8 6.97 1,400.1 8.60 52.8 0.32
1 3 17,6279 6,527.6 37.03 1,656.4 9.40 6,898.1 39.13 1,134.8 6.44 1,350.3 7.66 60.7 0.34
1 4 19,163.1  6,000.0 31.31 1,450.2 7.57 9,233.1 48.18 1,134.8 5.92 1,302.4 6.80 42.7 0.22
2 0 14,475.1  8,159.9 56.37 2,198.1 15.19 1,433.5 9.90 1,134.8 7.84 1,484.6 10.26 64.2 0.44
2 1 16,009.7 7,611.5 47.54  1,900.2 11.87 3,819.7 23.86 1,134.8 7.09 1,482.2 9.26 61.3 0.38
2 2 16,989.9 7,081.0 41.68 1,693.9 9.97 5,589.3 32.90 1,134.8 6.68 1,436.6 8.46 54.3 0.32
2 3 18,262.0 6,542.5 35.83 1,545.0 8.46 7,690.3 42.11  1,134.8 6.21 1,304.0 7.14 45.3 0.25
2 4 19,733.2 6,021.5 30.51 1,353.1 6.86 9,844.6 49.89 1,134.8 5.75 1,324.7 6.71 54.3 0.28
3 0 15,412.1  8,127.7 52.74  2,049.2 13.30 2,677.9 17.38  1,134.8 7.36  1,353.7 8.78 68.9 0.45
3 1 16,782.2  7,599.4 45.28 1,774.2 10.57 4,837.7 28.83  1,134.8 6.76  1,374.1 8.19 62.0 0.37
3 2 17,884.8 7,055.7 39.45 1,550.7 8.67 6,782.4 37.92 1,134.8 6.35 1,306.5 7.31 54.7 0.31
3 3 18,924.5 6,547.9 34.60 1,359.1 7.18 8,500.7 44.92  1,134.8 6.00 1,324.1 7.00 58.1 0.31
3 4 20,331.2  6,030.3 29.66  1,290.3 6.35 10,614.5 52.21 1,134.8 5.58 1,215.6 5.98 45.8 0.23
4 0 16,271.7 8,112.0 49.85 1,837.2 11.29  3,799.9 23.35  1,134.8 6.97 1,320.2 8.11 67.6 0.42
4 1 17,830.6  7,574.2 42.48 1,725.8 9.68 6,091.1 34.16 1,134.8 6.36 1,243.5 6.97 61.3 0.34
4 2 18,646.1 7,056.9 37.85 1,482.0 7.95 7,721.5 41.41 1,134.8 6.09 1,195.9 6.41 55.1 0.30
4 3 19,696.8 6,542.8 33.22  1,349.6 6.85 9,451.2 47.98 1,134.8 5.76  1,163.1 5.90 55.4 0.28
4 4 20,991.6  6,022.4 28.69 1,221.0 5.82 11,488.2 54.73 1,134.8 5.41 1,076.3 5.13 49.0 0.23
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Appendix C

Supplementary materials for Chapter 4

C.1 Pipgr for Phase 2 of TPA

We propose the following robust optimization Problem Py pr based on the Theorem

2 in [93]:
(PLpr)
t—1 t
mlnz Z (Z )\itcij <q;t,0 + Z Zq;t,UTdAi-T> + Z h;tyj ([B;,tﬂ-l,O + Z Z.’K;’t+l’UTCZi-T>
€T teT \jeT ek =1 jET ceK r=1
t
+ Z h;t,k; (yi,t+l,0 + Z Zy}iﬂ,t+1,ardz;') + Zp;,ct < it,0 + Z Zzzt O'le7'>
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C.2 Linear deterministic model of Pypr

The constraints of Pypr hold d* € D!. Therefore, P;,pr cannot be solved directly
using the commercial solver. By using the inner optimization and strong duality
theory, we will transform Pyppr to a linear deterministic model, which is tractable.
In order to ease understanding for readers, we present how we transform the first

constraint of Pr,pr to the tractable form in detail.

First, we present the first contraint of Pypr as

t—
¢+ > qtTdr <gst,  VieT,jeJteT,d7'eD (€D
ce =1

Constraint (@) can be equivalently to

dl‘r‘
ce =1

% 4+ max (Z > g ‘”d”) <qél, VieIjeJ,teT,vd"leD (C2)

Remember that Py pr is a minimization problem. Therefore, Prpr with Constraint
(@) is the min-max problem. We convert it to the min-min problem by taking the

dual of the inner optimization problem as follows:

max ZZthWd” VieZ,jeJ,teT

e’ cek =1
st. dT <dir VoeK,7e{l,...,t—1}

—dy <—dy  VoeK,7e{l,...t—1}

min Y Z (atendir - B ) VieTjeJteT

0T ﬁ‘LUT
agtPagt  gek =1

st i =B =47 VoeK,re{l,... t—1}
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By strong duality, the above two problems have the same optimal objective value.

Finally, Constraint (@) is transformed as the following two constraints:

M*ZZ( aondy — BiTdT) <@, VieTjegteT

ce =1

Oéffft* 2‘?]Tt:q;t"’7 VieZ,jed,teT,oe K, re{l,...,t—1}.

All inequality constraints of Pypr will be transformed in the same manner of the
above procedure. We use notations « and S to denote dual variables of inequality

constraints of Pypr. Finally, the linear deterministic model is presented as follows:
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Linear deterministic model
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C.3 Experimental results on asymmetric demand distributions and different pro-

duction capacities

Table C.1: Experimental results on asymmetric demand distributions.

Beta(2,5) Beta(5,2) Beta(1,6) Beta(6,1)
T=4 T=7 T=10 T= T=17 T=10 T=4 T=7 T=10 T= T="7 T=10
DTPA LDR(x10?) 70.48 122.28 185.67 58.29 124.53 155.14  62.94 100.75 146.78 63.18 110.66 158.88
SIM(x10%) 70.59 122.55 185.47 58.31 124.66 155.23  62.78 100.20 146.64 63.19 110.62 158.89
Gap(%) 61.93 47.54 38.45 18.21 34.24 14.18 38.49  43.53 30.28 22.17 5.77 1.20
Std(x10?) 3.66 3.60 5.32 1.26 1.99 1.83 2.20 4.41 5.06 0.87 0.69 0.43
CPU(s) 2.00 5.49 21.06 2.06 8.27 17.55 2.00 5.39 13.05 1.95 4.90 19.25
TPA LDR(x10%) 51.20 98.66 163.37  52.33 97.55 141.33  54.87  87.99 144.14  53.26 107.22 158.83
SIM(x10%) 51.20 98.69 163.41  52.36 97.56 141.32  54.84 87.97  144.02 53.27 107.21 158.83
Gap(%) 1745 18.82 21.98 6.14 5.05 3.95 20.98  26.01 27.95 3.01 2.52 1.17
Std(x102) 0.26 0.41 3.44 0.30 0.43 0.48 0.45 0.39 4.51 0.17 0.34 0.43
CPU(s) 8.05 28.33 12854 9.93 83.20 681.72 793  30.56 7480  8.95 30.70 127.49
N 0.8 0.4 0.6 0.0~0.4 0.0~0.4 0.0 0.8 0.4 0.8 0.0~0.2 0.0~0.6 0.0~1.0
DECOM LDR(x10%) 51.00 93.47 14851 52.33 97.48 158.36  54.95 86.20  130.72  53.26 107.31 158.83
SIM(x10%) 51.01 93.49 14849 52.36 97.49 158.59  54.91 86.14  130.73  53.27 107.30  158.84
Gap(%) 17.00  12.56 10.84 6.14 4.98 16.65 21.15 2340 16.14 3.01 2.60 1.17
Std(x10?) 0.27 0.40 0.61 0.30 0.46 2.75 0.45 2.55 0.80 0.17 0.35 0.43
CPU(s) 7.41 21.34  66.52 6.50 19.86 46.14 7.12 17.35  64.40 7.18 30.94 70.16
o~ 0.6 0.8 0.6 0.0~0.6 0.2 0.0 0.8 0.8 0.8 0.0~0.8 0.0~0.6 0.0~1.0
EVPI (x102) 43.59  83.06 133.97  49.33 92.87 135.96  45.33  69.81 112.56  51.72 104.58 157.00
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Table C.2: Experimental results on different production capacities.

(17 ']D7 JF) = (47474)
£€=00 £=01 £=02 £=03 £=04 £€=05 (=06 £=07 =08 £=09 £=1.0
TPA Gap(%) 7.90 8.48 8.58 8.44 8.29 8.39 8.60 8.13 7.66 11.97 20.16
Std(x102) 0.80 0.76 0.75 0.76 0.78 0.83 0.82 0.87 0.91 1.10 1.85
CPU(s) Phasel 216.45 39.44 1528.14 19.99 9.13 150.13 114.43  346.35 450.53 3852.61 163.15
Phase2 30.88 30.02 30.92 30.28 32.25 33.32 31.30 30.46 29.62 32.08 33.41
Total 247.33  69.46 1559.07  50.27 41.38 183.45 145.73  376.81 480.15  3884.68 196.56
DECOM  Gap(%) 8.18 7.97 8.28 8.31 .77 8.02 7.75 7.89 7.45 10.65 19.92
Std(x102) 0.79 0.78 0.76 0.76 0.78 0.82 0.89 0.89 0.91 0.99 1.74
CPU(s) Phasel 3.52 7.13 3.43 2.92 2.17 4.23 3.47 9.56 4.61 278.74 20.57
Phase2 21.39 19.71 19.80 19.09 19.61 20.15 18.18 19.77 18.75 19.43 20.73
Total 24.90 26.83 23.23 22.01 21.78 24.38 21.65 29.33 23.37 298.17 41.31
EVPI (x 102) 113.63 113.74 113.79 113.85 114.08 114.25 114.41 115.08 115.89 116.46 117.56
(I7 JD7 JF) = (5’57 5)
£=00 £=01 €=02 £=03 £=04 £=05 £=06 £=07 £=08 £=09 £=10
TPA Gap(%) 9.06 9.21 9.55 9.27 8.32 8.23 8.06 7.39 6.93 10.66 20.95
Std(X102) 0.91 0.94 0.96 0.94 1.02 1.07 1.04 1.10 1.11 1.46 2.47
CPU(s) Phasel 3604.53 3616.16 3606.61 1049.77 79.11 3620.62 118.20  2849.45 2769.65 7209.42 7200.74
Phase2 76.75 65.27 75.73 69.06 67.04 63.71 70.76 67.27 66.01 65.87 74.38
Total 3681.28 3681.43 3682.34 1118.83 146.15 3684.33 188.96 2916.72 2835.66 7275.29 7275.12
DECOM Gap(%) 8.68 9.22 9.13 8.33 8.70 7.83 7.75 7.28 6.88 9.54 20.41
Std(x102) 0.90 0.94 0.91 1.04 0.95 1.08 1.08 1.09 1.09 1.24 2.62
CPU(s) Phasel 6.88 18.50 6.69 6.57 6.39 8.41 10.23 6.32 4.29 3601.00 3601.40
Phase2 51.05 52.37 45.72 49.22 46.94 44.97 46.26 48.68 48.49 43.25 53.58
Total 57.93 70.86 52.41 55.78 53.33 53.38 56.49 54.99 52.77 3644.25 3654.97
EVPI (x10?) 134.21 134.34 134.45 134.78 135.26  135.83 136.16  136.88 137.85 138.32 139.27
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C.4 Shapes of symmetric and asymmetric demand distri-
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Figure C.1: Shapes of symmetric demand distributions utilized in Experiment 1
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Figure C.2: Shapes of asymmetric demand distributions utilized in Experiment 1
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