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Abstract

Triangularity effect on the ExB shearing rate in

tokamak plasmas

Qingyun Hu

Department of Energy Systems Engineering

The Graduate School

Seoul National University

It has been shown in TCV and DIII-D experiments that negative

triangularity (NT) tokamak plasmas could achieve H-mode-level confine-

ment even without the H-mode transition. It is widely accepted that ExB

flow shear suppression of turbulence and transport plays a crucial role in

confinement improvement and transport barrier formation in fusion plas-

mas. In this thesis, a study of the triangularity effects on the ExB shearing

rate is performed. I employ Miller’s magnetic equilibrium model, which

contains various shaping effects, including triangularity, elongation, and

Shafranov shift. Using Miller’s model, I derive an analytic expression of

the Hahm-Burrell ExB shearing rate, which explicitly shows the contri-

butions of shaping factors. I discuss the isolated effect of shaping factors

on the poloidal variation of the shearing rate in terms of flux-squeezing.

Two identical discharges in DIII-D are selected for analyses where the

triangularity is the only difference; one is NT and the other is positive
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triangularity (PT). Using kinetic EFIT reconstruction data of these dis-

charges, the ExB shearing rates are evaluated by carefully distinguishing

the contribution from the triangularity to those from the radial electric

field and magnetic shear. Finally, I discuss the highly anisotropic features

of the ExB shearing rate.

Keywords: triangularity, shaping effect, ExB flow shear, turbulence,

tokamak transport, tokamak confinement

Student Number: 2021-25364
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Chapter 1

Introduction

1.1 NT plasma research in tokamaks

H-mode tokamak scenarios [1] have long been considered as options for

fusion reactors. But the Edge-Localized modes (ELMs), especially type-I

ELMs in H-mode pedestals, induce significant heat flux on PFCs which is

an important issue that remains to be solved. In recent years, much atten-

tion has been paid to ELM-free plasma operations, including Quiescent

H-mode [2], I-mode [3], and ELM-suppressed or mitigated scenarios [4,5].

ELM-free scenarios have been developed relying on internal transport

barriers rather than the edge transport barrier such as FIRE mode [6]. A

change of plasma shape from PT to NT was also found to have H-mode

like confinement with an L-mode like edge witout ELMs.

Since 1997, improved confinement has been reported in TCV opera-

tions with NT [7, 8]. Higher electron energy confinement time has been
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observed in NT plasma compared with its positive counterpart. And it

has been reported in recent TCV and DIII-D experiments that NT toka-

mak plasmas could achieve H-mode-level confinement with H89 ∼ 1.2

even without the H-mode transition [9–11], accompanied by a reduction

of turbulence level. In the experiments, the L-H transition power thresh-

old has been observed to be higher than PT cases. Without transitions to

H-mode, the challenges from type-I ELMy H-mode could be avoided. The

DIII-D experiments have achieved a high normalized beta with βN ∼ 2.5,

which is a good signal for fusion gain if it could be extrapolated to a

future reactor. Furthermore, the NT plasma shows a linear relation be-

tween heating power and plasma stored energy in a limited power range,

exhibiting no confinement degradation [10]. However, the initial ASDEX-

U experiment on NT plasms showed H-mode like power degradation [12].

Instabilities in NT plasma have been investigated in many theoretical

works. In some parameter regimes, NT exhibits stabilizing effects on TEM

and ITG [13–15]. Stabilized micro-instabilities could account for enhanced

confinement. On the other hand, it has been pointed out that the MHD

stability region is narrowed by NT [16–19]. The predicted βN limit in NT

plasmas is lower than PT, unfavorable for fusion gain [20]. The onset of

peeling-ballooning modes limits the formation of pedestals. Research on

Kinetic Ballooning mode (KBM) in spherical tokamak parameter regimes

also showed a restricted second stability window by NT [21]. The onset

of MHD instabilities could degrade the confinement, thus prohibiting the

L-H transition.

Recent works have shown that residual zonal flow is significantly re-

duced by NT [14,22] and that the peak E ×B flow shear bifurcates with
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the sign change of the triangularity, maximal off from the low-field-side

(LFS) midplane in NT [23]. These have been suggested as explanations

for the higher L-H transition threshold in NT compared with PT plasmas.

1.2 ExB flow shearing theory

Microscale turbulence driven by micro-instabilities induces anomalous

transport in tokamaks [24]. Enhanced transport degrades the confinement

of particles and energy, prohibiting the plasma from achieving burning

conditions. Therefore, understanding and regulating turbulence-driven

transport is one of the central topics for realizing burning plasmas. It

has been widely accepted that (mean) E × B flow shear suppression of

turbulence and transport plays a crucial role in confinement improvement

and transport barrier formation in fusion plasmas [25–30]. H-mode was

discovered in the ASDEX Tokamak in the early 1980s [1]. In H-mode, a

sheared radial electric (Er) field develops in the ETB region. The mecha-

nism of E×B shearing suppression was proposed that the sheared E×B

flow suppresses turbulence by tearing turbulence eddy [31]. When a tur-

bulence eddy is present in a background flow with shear in the trans-

verse direction to the flow direction, the eddy elements are decorrelated.

Transport reductions have been observed in plasma operations when the

E ×B shearing rate exceeds the turbulence growth rate [25]. The decor-

relation theory has been experimentally tested both qualitatively and

quantitatively, not only in H-mode but also in Very-High (VH) mode and

the formation of core transport barriers, see a comprehensive review in

Ref. [30]. In the middle-1980s, the theory was extended, incorporating

the effects of magnetic shear, and became applicable for general magnetic
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configurations [32–34]. Since the formation of core transport barriers is

found to be facilitated by a non-monotonic shear or at least a flat q

profile [30, 35–37]. It has been shown in a recent work that the strong

edge magnetic shear at the diverted KSTAR plasma facilitates E × B

shear suppression of turbulence and H-mode transition [38]. A more re-

cent simulation work suggests that the magnetic shear induces a positive

or negative effect on the flow shearing of turbulence, depending on the

competition of the Er shear and the magnetic shear dependencies of the

flow shear [39]. In general axisymmetric toroidal geometry, the shearing

rate exhibits in-out asymmetric characteristics [40], resulting in the in-out

asymmetry of radial decorrelation of turbulence. Plasma elongation, as

one of the most important shaping factors, has been found to enhance the

shearing rate [41]. Recently, the theory of E × B shear suppression has

been further extended, considering the initially tilted turbulence eddies

routinely observed in nonlinear simulations [42]. The relative sign of the

flow shear and initial tilting angle of the eddy has been found to impact

the shearing suppression efficiency. In island geometry, theories associated

with the anisotropic features of E×B flow shear have been developed for

the vortex flow in magnetic islands [43,44]. Turbulence can advect across

the island due to the deviation of the flow streamline from the magnetic

line.

The E ×B flow comes from the E ×B drift velocity, which reads:

u⃗E =
E⃗ × B⃗

B2
. (1.1)

Conventionally, the (mean) E × B flow shear refers to the equilibrium

component of E×B flow shear, while the zonal flow shear is the nonlinear

component. They both contribute to the suppression of turbulence, but
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this thesis focuses on the (mean) E×B flow shear. The equilibrium radial

electric field is measured by the radial force balance of the ions:

Er =
1

nieZi
∇Pi − uθBϕ + uϕBθ. (1.2)

Equation (1.2) indicates the dependence of the E × B flow shear on

the pressure gradient, toroidal angular momentum, and poloidal flow.

Considering that the flow shear also impacts turbulence and transport,

there are several different regimes that with various dependence on Er and

Er shear, resulting in different feedback loops of flow shear-turbulence-

transport. For example, both uθ and ∇Pi are important in the H-mode

edge, uϕ is of more importance in VH mode, and both uϕ and ∇Pi are

thought to be important in core transport barriers [25].

The general E × B shearing rate in a shaped tokamak plasma, the

so-called “Hahm-Burrell formula”, is [33]

ωs =
∆ψ0

∆ζ

∂2

∂ψ2
Φ0. (1.3)

The factor ∇ψ0/∇ζ is referred to as the form factor. The radial cor-

relation length of an ambient turbulence eddy is measured as ∆r =

∆ψ0/RBθ, and the binormal correlation length of the eddy is measured as

∆l⊥ = RBθ∆ζ/B. An isotropic eddy shape in the perpendicular plane is

assumed, that is, ∆r ∼= ∆l⊥. Then one has the expression of the shearing

rate as follows:

ωs =
(RBθ)

2

B

∂2

∂ψ2
Φ0. (1.4)

Here, the definitions of notations follow the conventional. The electric
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field potential Φ0 is assumed as a flux function. This formula works well

for general axisymmetric tokamak equilibria, incorporating the geomet-

rical effect through the dependence of Bθ, such as the Shafranov shift,

elongation, and triangularity. The main content of this thesis will discuss

this issue.

For an intuitive introduction, let’s consider a simpler case, the high

aspect-ratio version of the flow shearing rate [32,38]:

ω
(0)
E×B =

r

q

∂

∂r

(
qEr

rB

)
= r

∂

∂r

(
Er

rB

)
+
Er

rB
ŝ.

(1.5)

Here, circular-concentric flux surfaces are assumed. One can tell from

the first row of Equation (1.5) that Er, safety factor q, and curvature

all contribute to the flow shear. The second row separates the flow shear

into two parts. The first one comes from the dependence of Er shear [31].

The second term comes from the dependence of magnetic shear ŝ. The

equation indicates that the Er shear and magnetic shear could both result

in radial decorrelation of turbulence eddies. Er shear and magnetic shear

could tilt the eddies in co-direction or counter-directions, so they could

have positive or negative synergy, depending on the parameter regimes

where the plasma locates.

For effective E × B shearing of turbulence eddies, the shearing rate

must be comparable to ∆ωD, the nonlinear turbulence decorrelation rate

in the absence of E×B shear [31]. For stabilization of micro-instabilities,

the shearing rate must be comparable to γmax, the maximum linear

growth rate of the most unstable mode [45,46].
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1.3 Objective and structure of this work

Improved confinement and increased L-H transition power thresholds in

NT plasmas have been demonstrated in many tokamak devices [7, 10,

12]. Particulary, NT plasma in DIII-D shows asymmetric wave-number

spectra, indicating flow shearing of turbulence [11]. And NT plasma in

ASDEX-U exhibits a shallower Er profile, which links the E×B flow shear

to the higher L-H transition power threshold [12]. Those observations

bring a question of how the E × B flow shearing is impacted by NT.

The triangularity effect enters the flow shearing rate through either the

form factor or the radial electric field profile. In this work, I study (I)

the triangularity effect on the form factor in the L-mode tokamak plasma

regime; (II) the triangularity effect on the radial profile of flow shear in

DIII-D plasmas with matched triangularity; (III) the triangularity effect

on the isotropic feature of the flow shear DIII-D plasmas with matched

triangularity.

In Chapter 2, I employ the Miller’s equilibrium model for a descrip-

tion of the equilibrium magnetic field structure. It is based on a general

axisymmetric toroidal equilibrium. Geometrical factors are considered,

including the Shafranov shift, triangularity, and elongation. This equilib-

rium model could be further extended for higher poloidal Fourier compo-

nents, such as Squareness. One can parameterize physical quantities like

safety factor q, magnetic shear ŝ with shaping factors. Thus the shaping

factor dependence would be revealed.

In Chapter 3, I transform the Hahm-Burrell shearing rate with respect

to the Miller’s equilibrium model. To be specific, I choose to express the
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poloidal field Bθ and toroidal field Bϕ in terms of local safety factor

ν, curvature radius rs, and a scale factor |∇r|. The resulting formula

explicitly shows the shaping factor dependence of the shearing rate. And

the scale factor |∇r| is of primary interest in this thesis because it contains

the essential shaping effect and impacts the shearing rate as a whole.

Section 3.1 presents an analysis of the form factor in a simplified

way that facilitates interpretation. I narrow down the scope of analysis

to a high aspect-ratio configuration. Thus the poloidal variation of the

form factor is primarily determined by |∇r|. I present both intuitive il-

lustrations and mathematical demonstrations of the shaping effect on the

variation.

Section 3.2 presents an analysis of the normalized form factor based

on the experimental data from DIII-D. I map the MHD equilibria to

the Miller’s model so as to calculate the normalized form factor with

parameters from matched plasma with a mirrored triangularity. I discuss

the triangularity effect on the poloidal variation of the form factor and

the radial extension of the effect.

Section 3.3 presents an analysis of the radial profile of the shearing rate

based on experimental data from DIII-D. I discuss the radial features of

the shearing rate in the NT plasma, more specifically, the inward-moving

of the radial peak of the shearing rate.

Section 3.4 presents an analysis with combined calculation results in

Section 3.2 and Section 3.3. I discuss the highly anisotropic feature of the

flow shear and its impact on the anisotropic feature of the transport.
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Chapter 2

Miller’s local equilibrium model

This chapter presents the study of the triangularity dependence of the

E×B shearing rate in general tokamak geometry [33] that uses the Miller’s

local equilibrium model. It could accurately parameterize the D-shaped

flux surface of tokamak plasmas [47]. Extensions of the Miller D-shape

model can be found in Refs. [48–50]. The Miller’s model uses the standard

formula for the shape of a flux surface given by

R = R0(r) + r cos
{
θ +

[
sin−1 δ(r)

]
sin θ

}
,

Z = κ(r)r sin θ.
(2.1)

where the minor radius r and the poloidal magnetic flux ψ have a one-to-

one relation, i.e., r = r(ψ), ψ = ψ(r), and θ is the poloidal angle. Figure

2.1 shows an example of a D-shaped flux surface. The radial gradient

of major radius, ∂rR0 is referred to as the Shafranov shift gradient [47].

Shaping factors δ(r) and κ(r) denote triangularity and elongation of the

flux surface, respectively. I consider an axisymmetric equilibrium mag-
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Figure 2.1 Illustration of a flux surface in the Miller’s model [51].

netic field B⃗ = ∇ϕ × ∇ψ + I(ψ)∇ϕ [52]. The poloidal magnetic field

reads

Bθ =
|∇ψ|
R

=
dψ

dr

|∇r|
R

, (2.2)

and the toroidal magnetic field reads

Bϕ =
I

R
. (2.3)

For a direct comparison to previous works [31, 32, 38], it is convenient to

work with the local safety factor ν [53], which is written as

ν(ψ, θ) =
B⃗ · ∇ϕ
B⃗ · ∇θ

=
IJr

R2∂rψ
=
rsBϕ

RBθ
. (2.4)

where Jr = (∇r×∇θ ·∇ϕ)−1 is the Jacobian for the transformation from

toroidal coordinates (R,Z, ϕ) to a flux coordinate system (r, θ, ϕ). And
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rs = dl/dθ = Jr|∇r|/R is the radius of curvature [49, 54], where dl de-

notes a differential length element along the curve in (R,Z) cross-section.

It measures the bending of magnetic surfaces, which contains the shaping

effects of triangularity δ and elongation κ. In the near-circular concentric

tokamaks, one has rs ≈ r. It recovers a widely used approximate ex-

pression of the safety factor q from equation (2.4). However, in a general

tokamak, the two radii rs and r are different due to shaping effects.

The Jacobian matrix for the transformation from toroidal coordinates

(R,Z, ϕ) to a flux coordinate system (r, θ, ϕ) reads [55]
∂r
∂R

∂r
∂Z 0

∂θ
∂R

∂θ
∂Z 0

0 0 1

 =


∂R
∂r

∂R
∂θ 0

∂Z
∂r

∂Z
∂θ 0

0 0 1


−1

(2.5)

Then the Jacobian is obtained as

Jr =(∇r ×∇θ · ∇ϕ)−1

=rκR{[∂R0

∂r
+ cos(θ + x sin θ)− sδ sin(θ + x sin θ)sin θ] cos θ

+ (1 + x cos θ) sin(θ + x sin θ) sin θ(sκ + 1)},

(2.6)

where x = sin−1 δ is an equivalent of the triangularity δ. Factors sκ =

r∂rκ/κ and sδ = r∂rδ/
√
1− δ2 denote the radial gradients of the elonga-

tion κ and the triangularity δ, repsectively.
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Chapter 3

Triangularity effects on flow
shearing rate

The general E × B shearing rate for an isotropic turbulent eddy in a

shaped tokamak plasma is [33,38]

ωs
∼=

(RBθ)
2

Bϕ

∂2

∂ψ2
Φ0, (1.4)

where the electric potential Φ0 = Φ0(ψ) is a flux function. Note that the

form factor (RBθ)
2/Bϕ has been known to give shaping effects to the

E ×B shearing rate including anisotropy on a flux surface, which results

in the in-out asymmetry of the E × B shearing [27, 33, 40]. The radial

electric field Er is given by

Er = −∂Φ0

∂ψ
RBθ. (3.1)
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Expressing the poloidal field Bθ in terms of ν and rs and using equation

(3.1), one can rewrite equation (1.4) as

ωs =
rs
ν

∂

∂r
(
νEr

rsBϕ
)|∇r|. (3.2)

Note that equation (3.2) is a direct generalization of the E ×B shearing

rate in Ref. [32] for a high aspect ratio near-circular plasma. The scale

factor |∇r| in equation (3.2) is a result of the choice of the radius r in

the Miller’s model which satisfies dψ/dr = RBθ/|∇r|. It’s inverse value

measures the distance between flux surface elements on nearby surfaces.

Note that a convenient relation dψ = RBθdr doesn’t hold here. The

equation could be separated into two parts as follows [38] using the local

magnetic shear s = (r/ν)dν/dr:

ωs =

[
rs
∂

∂r
(
Er

rsBϕ
) +

Er

rBϕ
s

]
|∇r|. (1.5)

The first term in equation (1.5) is a direct generalization of the Biglari-

Diamond-Terry (BDT) E × B shearing rate [31] obtained in cylindrical

plasma, and the second term gives the magnetic shear contribution [38].

Note that the effect of the radius of curvature rs enters only in the first

term [31] while the scale factor |∇r| impacts both terms. The expressions

of the two factors can be obtained as follows from equation (2.1).

rs = r

√
(1 + x cos θ)2 sin2(θ + x sin θ) + κ2 cos2 θ, (3.3)
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and

|∇r| =κ−1[sin2(θ + x sin θ)(1 + x cos θ)2 + κ2 cos2 θ]1/2

× {cos(x sin θ) + ∂rR0 cos θ

+ [sκ − sδ cos θ + (1 + sκ)x cos θ] sin θ sin(θ + x sin θ)}−1.

(3.4)

Note that in this study, I keep the contributions from the gradients of

the (elongation and) triangularity and show that they are as influential

as the triangularity itself.

3.1 Shaping factor dependence of the form factor

In the picture of E × B flow shearing suppression of turbulence, the ef-

ficiency of E × B flow shearing is significantly impacted by the match

between the mode structure of turbulence and the poloidal profile of the

flow shearing rate. The form factor in the equation (1.4) determines the

poloidal variation of the flow shearing rate. Thus, in this section, I study

the effect of shaping factors on the flow shearing rate via the form factor.

In the Miller’s model, one can transform the form factor as follows:

(RBθ)
2

B
∼= R|∇r|2ψ

′2

I
. (3.5)

One can tell from Equation (3.5) that the poloidal variation of the

form factor is determined by factor R|∇r|2. For high aspect ratio con-

figurations, the variation of R(r, θ) is not considered to be significant.

In this section, I focus on the factor |∇r|, which plays a key role in the

shaping effect. Figure 3.1 shows a schematic representation of the triangu-

larity effect. Here, the distance between flux surface elements on nearby

surfaces could be measured by δr/|∇r|. At different poloidal locations,

14



triangularity induces poloidally varying distances. Factor |∇r| increases

when the distance becomes smaller and decreases when the distance be-

comes larger. As a result, it bifurcates in the low-field-side (LFS) in a

PT case but peaks at the high-field-side (HFS) midplane in a NT case.

Since the poloidal magnetic field is proportional to |∇r| in the relation

Bθ = |∇r|ψ′/R, the triangularity effect on the form factor could also be

interpreted in terms of flux-squeezing. In a region where the field line is

more densified, the magnetic field is stronger.

𝑟 = 𝑟!

Narrower at 𝜃 ≠ 0 , ∇𝑟 	bifurcates Narrower at 𝜃 = 0 , ∇𝑟 	peaks

𝛿𝑟 = 𝑟! − 𝑟"

𝑟 = 𝑟" 𝑟 = 𝑟! 𝑟 = 𝑟"

Figure 3.1 Illustration of the isolated effect of triangularity on flux-

squeezing. Here, the effect of triangularity is exaggerated.

For a mathematical demonstration of this interpretation, I show the

poloidal profile of |∇r| with the isolated effect of PT and NT in Figure

3.2 and 3.3, respectively. One can clearly tell the bifurcation of |∇r| in

the LFS of the PT case and the peak at the LFS midplane of the NT case.

Here, the effects of triangularity are exaggerated, which means the effects

of the Shafranov shift and elongation are not considered. In realistic cases,

the Shafranov shift will weaken the peaks in the HFS of the NT case and,

in the meantime, enhance the peak at the LFS midplane.
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Figure 3.2 Isolated effect of PT on flux-squeezing.
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Figure 3.3 Isolated effect of NT on flux-squeezing.

Figure 3.4 illustrates the effect of the Shafranov shift and elongation.

In L-mode plasmas, the sign of the Shafranov shift is typically negative.

The shift makes the inner surface closer to the outer surface in the R⃗

direction. In other words, it squeezes the flux at the LFS. So, it tends to

enhance the LFS peaks or bifurcations induced by triangularity. However,

elongation induces an in-out symmetrical effect on |∇r|. It could either

enhance or reduce the triangularity effects, depending on the sign of κ′.

In addition, factor |∇r| could also serve as a “Gradient geometrical

factor”, connecting the flux coordinate profiles with spatial profiles [7].
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𝑟 = 𝑟! 𝑟 = 𝑟" 𝑟 = 𝑟"
𝑟 = 𝑟!

Narrower at 𝜃 = 0 , ∇𝑟 	peaks Narrower at 𝜃 = 0 , ∇𝑟 	peaks

Figure 3.4 Illustration of the isolated effect of Shafranov shift and elon-

gation on flux-squeezing.

For example, if the temperature T is assumed to be a flux function, the

gradient of the temperature could be expressed as |∇T | = (dT/dr)|∇r|.

Recall the criterion of ITG instability is a critical value of −R∇Ti/Ti [56].

Factor |∇r| impacts the criterion locally, resulting in impacted local tur-

bulence transport. In shaped toroidal geometry, one can expect that the

flow shear and turbulence transport share the same poloidal characteris-

tics to some extent. The up-down symmetry of the modes and the flow

shear would be directly related to the symmetry of the factor. Besides,

from Fourier’s law Q⃗ = −k∇T , the local characteristics of diffusivity is

also related to ∇r.
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Figure 3.5 Isolated effect of Shafranov shift on flux-squeezing.
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Figure 3.6 Isolated effect of Shafranov shift on flux-squeezing.
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3.2 Normalized form factor of PT and NT plas-

mas

I have addressed the isolated shaping factor dependence of the form factor

in Section 3.1 focusing on |∇r|. Yet, one should note that the parameter

dependence of the form factor is complicated in reality. Not to say that

the shaping factors have their correlations. Thus, that simple picture may

become invalid in some cases. In this section, I study the triangularity

effect by looking into experimental equilibria.

I take global MHD equilibria in matched triangularity experiments

(DIII-D shots: #170672 and #170680 at t = 1.380s). Their boundary

triangularities are mirrored, but Ip and BT on the axis are the same.

From the ψ(R,Z) data of those equilibria, I extract the shapes of flux

surfaces. Then I mapped the shapes into the Miller’s model and obtained

the profiles of shaping factors as functions of radial coordinate ψN . At

each radial location, the poloidal variation of the form factor is different

because of the difference in shaping factors. Figure 3.7 and (3.8) show

normalized form factor for those equilibria in the (ψN , θ) space. Here,

the form factor is normalized in such a way that for each radial location,

the poloidal profiles are normalized by their corresponding peak values.

One can tell from Figure 3.7 that the form factor or flow shearing rate

bifurcates in LFS in PT plasma. In contrast, as shown in Figure 3.8, the

flow shearing rate peaks at the LFS midplane.

Moreover, by comparing the profiles at the inner-most radial location,

one can tell that the shaping effect on the form factor extends deeply into

the core. It could contribute to the impact of triangularity on global con-

19



finement. Turbulence tends to localize at LFS mid-plane at the edge.

However, in the core, turbulence usually shows a broader poloidal distri-

bution. If that still holds true in NT, a decrease in the shearing efficiency

could be expected in the core. Another possibility is that the turbulence

drive responds strongly to the flux squeezing, as mentioned in Section

3.1. Then, the turbulence mode structure would also peak at the LFS

midplane, consistent with the peaks of flow shear. The shearing efficiency

would be maintained. To characterize the core distribution of turbulence,

gyrokinetic simulations are needed.

𝜃
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𝑅
∇𝑟
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𝑀
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! ) DIII-D #170680

Figure 3.7 Normalized form factor in the (ψN , θ) space for the PT case.

Parameters are from the MHD equilibrium of DIII-D shot:#170680 at t

= 1.380s.
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Figure 3.8 Normalized form factor in the (ψN , θ) space for the NT case.

Parameters are from the MHD equilibrium of DIII-D shot:#170672 at t

= 1.380s.
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3.3 Radial profiles of the ExB shearing rate in PT

and NT plasmas

I have discussed the effect of triangularity on the poloidal variation of

the E × B shearing rate in Section 3.1 and Section 3.2. However, to

pursue the interpretation of the triangularity effect on the E×B shearing

rate, the radial variation of the shearing rate is also important. Besides,

the amplitude of the shearing rate and its radial profile is also crucial

in interpreting the role of the flow shear in the confinement and L-H

transition. In this section, I will discuss the radial profiles of the E × B

shearing rate.

As one can tell in Equation (1.4), the amplitude of the shearing rate is

modulized by factor ∂2Φ0/∂ψ
2. Considering the profile of Er in the DIII-D

plasma, I calculated the E×B shearing rate at the LFS midplane, i.e., θ =

0. Figure 3.9 shows the profiles of the shearing rate. Note that the radial

coordinate is the square root of the normalized toroidal flux. The PT

plasma exhibits strong flow shear at the edge. In contrast, the NT plasma

exhibits a peak of flow shear in the core region. The enhancement of flow

shear in NT plasma spans a large radial range. Without loss of shearing

efficiency, it would result in more significant turbulence suppression in

the core. Interestingly, the NT case shows a peak near ρ = 0.9, more

inward than where the pedestal top often locates in DIII-D H-modes.

This peak of the E × B shearing rate can not only suppress turbulence

locally but also inhibit turbulence from spreading inward and inhibits

turbulence transport from spreading outward [57–60]. As a result, the

core fluctuation would be reduced, and flue deposition gets facilitated.
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Better core condition compared to PT L-mode plasma could be expected.

On the other hand, turbulence coming from strong resistive turbulence

and scrape-off layer turbulence dominates the edge. The formation of

edge transport barriers is relatively more difficult with weaker flow shear,

which could result in a higher L-H transition power threshold. In addition,

it has been reported in a recent BOUT++ simulation work that the peak

of E × B flow shear moves inward in NT H-mode plasmas, compared

to PT H-mode plasmas [61]. That indicates the inward moving of the

flow shear is generic for NT plasmas regardless of L or H modes and

may intrinsically come from the feature of the magnetic field structure.

Specifically, stronger flux squeezing at the LFS midplane results in a more

significantly peaked poloidal field.
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Figure 3.9 Radial profiles of the E × B shearing rate at LFS midplane.

Here, the radial coordinate ρ is the square root of normalized toroidal

flux. Parameters are from the same DIII-D equilibrium in Figure 3.7 and

3.8. The corresponding radial electric field data are considered here.
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Recall the dependence of the flow shear on the Er shear and magnetic

shear mentioned in Chapter 1.2. Here I discuss the dependencies in the

NT plasma. Equation (1.5) explicitly shows the dependence of the flow

shear on the local magnetic shear s = (r/ν)dν/dr. Figure 3.10 shows the

radial profiles of the Hahm-Burrell shearing rate ωs, the BDT shearing

rate ωBDT , and the magnetic shear contribution term, all at θ = 0. Figure

3.10 (a) and (b) are for the PT and NT plasma cases, respectively.
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Figure 3.10 Contribution of magnetic shear to ωs in (a) PT and (b) NT

plasma. Parameters are from the same DIII-D data as in Figure 3.9.

The two terms in Equation (1.5) are written as

ωBDT = rs
∂

∂r
(
Er

rsBϕ
)|∇r|, (3.6)

and

ωs − ωBDT =
Er

rBϕ
s|∇r|. (3.7)

The relative sign of them is mainly determined by the gradient of

the radial electric field ∂rEr, the radial electric field Er, and the local

magnetic shear s. A positive synergistic effect would be expected when
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∂rEr and Ers have the same sign. Two examples of it would be: (i) ∂rEr ·

Er < 0 and s > 0, which is possible for H-mode pedestals [38]; (ii)

∂rEr · Er < 0 and s < 0, which is possible for reversed shear.

However, the DIII-D equilibrium data of both the PT and NT plasmas

shows that negative Er approaches 0 from ρ = 0.6 to ρ = 1. And the

plasmas have monotonically increasing q profiles. That means, at the edge,

∂rEr · Er < 0 and s > 0, which explains the negative contributions from

the magnetic shear. Note that NT plasmas in ASDEX-U exhibit zero-

crossing of the Er profile near the edge. Thus, a positive contribution

from magnetic shear is expected at the edge [12]. The dashed lines in

Figure 3.10 (a) and (b) indicate a stronger magnetic shear dependence of

the flow shear in NT plasma. The enhancement comes from a larger |Er|

and a stronger flux squeezing which enters via |∇r|.
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Figure 3.11 Radial profile of (a) Er and (b) ∂rEr at the LFS midplane in

the PT and the NT plasma. Parameters are from the same DIII-D data

as in Figure 3.9.

In fact, the radial electric field Er also depends on the magnetic field
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Figure 3.12 Radial profile of |∇r| at the LFS midplane in the PT and the

NT plasma. Parameters are from the same DIII-D data as in Figure 3.9.

structure. Equation (1.2), the radial force balance equation of ions could

be transformed as:

Er =
∇r
nieZi

∂

∂r
Pi − uθBϕ + uϕBθ. (1.2)

The effect of flux squeezing enters the first term via ∇Pi = ∇r ∂
∂rPi. The

enhanced flux squeezing in the NT plasma could make the dependence

of Er on the ion pressure gradient ∇Pi more pronounced. Thus, the ion

pressure gradient limited by peeling-ballooning modes [16–18] would limit

Er at the edge. But in the core region, ρ < 0.9, the larger |∇r| would

enhance Er and Er shear. Figure 3.11 shows that at ρ = 0.9, factor |∇r|

in NT increases by a factor of roughly 1.5 compared to PT. The increase

results in the enhanced ωBDT through both ∂rEr and |∇r| itself.

The flow shear layer with a peaked flow shearing rate could be re-

garded as a transport barrier. As the plasma triangularity becomes more

negative, the flux-squeezing effect could get further enhanced. The radial
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peak of the flow shear would move farther inward. Hence, the transport

barrier (or flow shear layer) moves farther inward, allowing edge and

scrape-off layer turbulence to spread in until touching the barrier. In the

meantime, the edge ion pressure would be further limited by peeling-

ballooning modes, inhibiting the formation of edge transport barriers.

On the other hand, with auxiliary heating power increased, the internal

transport barrier would move outward [12]. With sufficient heating power,

the edge transport barriers would come into being. Here, the outward

moving induced by enhanced heating could originate from the competi-

tion between the three terms in Equation (1.2). A careful look into the

evolution of kinetic profiles is needed.
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3.4 Anisotropic features of the ExB shearing rate

in PT and NT plasmas

Provided that tokamak transport has been known to exhibit anisotropic

features, the study is motivated to discuss the isotropic features of the

flow shear.

Figure 3.13 and 3.14 shows the E × B shearing rate in (r, θ) space.

As I have shown in Figure 3.7 and 3.9, the flow shearing rate in the PT

plasma bifurcates and has large amplitudes at the edge. This indicates

that a bifurcation of flow shear does not have to be accompanied by a

reduction of its amplitude. In the case of bifurcated strong flow shear,

the tolerance of the ballooning angle shift could be improved than the

peaked flow shear. As a result, shearing suppression of turbulence would

be enhanced, and pedestal formation could be facilitated. For the NT

plasma, as I have shown in Figure 3.8 and 3.9, the flow shearing rate

peaks at the LFS midplane and exhibits larger amplitude in the core.
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DIII-D #170680

Figure 3.13 E × B shearing rate in the (ρ, θ) space for the PT case.

Parameters are from the same DIII-D data as in Figure 3.9.

DIII-D #170672

Figure 3.14 E × B shearing rate in the (ρ, θ) space for the NT case.

Parameters are from the same DIII-D data as in Figure 3.9.
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Chapter 4

Conclusions

In this thesis, I derived an analytical expression of the Hahm-Burrell ExB

flow shearing rate using the Miller’s model. Based on this expression, I

studied the triangularity effect on the form factor, radial profile, and

anisotropic features of the ExB shearing rate. Adopting the data from

DIII-D experiments with mirrored triangularity, I found that the flow

shear bifurcates in LFS in PT plasma but peaks at the LFS midplane

in NT plasma. Also, the radial profile of the flow shear in those plasmas

exhibited different characteristics. The midplane profile of flow shear in

NT plasma peaks in the inner region of the plasma. The flow shear layer

in the core could suppress the turbulence locally and inhibit the inward

spreading of the turbulence in the outward region. My analysis of this

inward-moving of the flow shear layer links the inward-moving with the

magnetic squeezing. That is, enhanced flux squeezing induces stronger Er

shear, and they synergize to increase the flow shear in the core. More-
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over, the magnetic shear contribution is more significant in NT plasma.

Comparing the anisotropic features of the shearing rate in PT and NT

plasma, the bifurcated strong flow shear (at the edge) in PT could facili-

tate the L-H transition. The peaked strong flow shear (in the core) could

have higher shearing efficiency that leads to reduced fluctuation.
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Abstract

It has been shown in TCV and DIII-D experiments that negative trian-

gularity (NT) tokamak plasmas could achieve H-mode-level confinement

even without the H-mode transition. It is widely accepted that ExB flow

shear suppression of turbulence and transport plays a crucial role in con-

finement improvement and transport barrier formation in fusion plasmas.

In this thesis, a study of the triangularity effects on the ExB shearing

rate is performed. I employ Miller’s magnetic equilibrium model, which

contains various shaping effects, including triangularity, elongation, and

Shafranov shift. Using Miller’s model, I derive an analytic expression of

the Hahm-Burrell ExB shearing rate, which explicitly shows the contri-

butions of shaping factors. I discuss the isolated effect of shaping factors

on the poloidal variation of the shearing rate in terms of flux-squeezing.

Two identical discharges in DIII-D are selected for analyses where the

triangularity is the only difference; one is NT and the other is positive

triangularity (PT). Using kinetic EFIT reconstruction data of these dis-

charges, the ExB shearing rates are evaluated by carefully distinguishing

the contribution from the triangularity to those from the radial electric

field and magnetic shear. Finally, I discuss the highly anisotropic features

of the ExB shearing rate.

Keywords: triangularity, shaping effect, ExB flow shear, turbulence,

tokamak transport, tokamak confinement
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