

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Analytical Energy Modeling

of a Vector Processing Unit

벡터 프로세싱 유닛의 해석적 전력 모델링

2023년 8월

서울대학교 대학원

전기 · 정보 공학부

김 규 리

Analytical Energy Modeling

of a Vector Processing Unit

지도 교수 이 혁 재

이 논문을 공학석사 학위논문으로 제출함

2023 년 8 월

서울대학교 대학원

전기 · 정보 공학부

김 규 리

김규리의 공학석사 학위논문을 인준함

 2023 년 8 월

위 원 장 김 태 환 (인)

부위원장 이 혁 재 (인)

위 원 심 재 웅 (인)

 １

Abstract

Processor energy models have been extensively researched for a long time.

Specifically, works on modeling deep learning processors have recently gained

significant attention. Estimating energy consumption of neural processors plays a

key role in various design decisions, across hardware architecture, software

optimization, data and operation mapping space exploration, and neural architecture

search. To achieve accurate energy prediction, it is necessary to consider the inter-

instruction effects in addition to per-instruction energy.

In order to accurately model energy consumption with minimal overhead, we

conducted an analysis of the target processor architecture’s energy behavior at

instruction level. Building upon this analysis, we developed simple analytical

approaches to account for major power consumption factors, including inter-

instruction effects. Our modeling method demonstrates an average kernel-level

energy estimation accuracy of 95.52% with fast estimation time.

Keyword: Analytical Energy Consumption Model, Vector Processing Unit (VPU),

Very Long Instruction Word (VLIW) Processor, Neural Processing Unit (NPU)

Student Number: 2021-26145

 ２

Table of Contents

Abstract 1

Table of Contents 2

List of Figures 4

List of Tables 6

Chapter 1. Introduction 7

1.1 Motivation ... 7

1.2 Thesis Organization ... 8

Chapter 2. Background 9

2.1 Energy Consumption on Proccessing Units 9

2.2 Previous Works .. 11

2.2.1 Approaches to Processor Energy Estimation 11

2.2.2 Complexity in Energy Modeling 12

Chapter 3. Target Processor Overview 13

3.1 Hardware Architecture .. 13

3.2 Target Applications .. 16

Chapter 4. Analysis on Processor Energy Consumption 19

4.1 Effect of Architectural Characteristics 19

4.1.1 Multi-Slot Structure ... 19

4.1.2 Data Path Width ... 20

4.2 Instruction-Level Energy ... 21

4.2.1 Memory Slot Instructions .. 27

4.2.2 Vector Slot Instructions .. 30

 ３

Chapter 5. Analytical Energy Modeling Methodology 32

5.1 Modeling Method Overview ... 32

5.2 Input to Graph Conversion .. 34

5.2.1 Algorithm Parsing .. 34

5.2.2 Graph Transform .. 34

5.3 Estimating Energy from Graph ... 40

5.3.1 Estimating Runtime Sequence 40

5.3.2 Kernel Energy Estimator .. 42

Chapter 6. Experimental Results 48

6.1 Experimental Environments .. 48

6.2 Kernel-Level Energy Estimation ... 49

Chapter 7. Conclusion 56

Bibliography 57

Abstract in Korean 59

 ４

List of Figures

Figure 3.1 Block diagram of a systolic array-based NPU system

 architecture ... 15

Figure 3.2 Block diagram of a vector processor core 15

Figure 4.1 Example of vmac instruction

 base energy measurement kernel 22

Figure 4.2 NOP loop energy measurement kernel 23

Figure 4.3 Pipeline diagram of a 5-stage instruction

 base energy measurement kernel 25

Figure 4.4 Example of {vmac, vnop} instruction pair

 inter-instruction energy measurement kernel 26

Figure 4.5 Measured base energy of memory slot instructions 28

Figure 4.6 Measured inter-instruction energy of

 memory slot instructions .. 28

Figure 4.7 Measured base energy of vector slot instructions 31

Figure 4.8 Measured inter-instruction energy of

 vector slot instructions ... 31

Figure 5.1 Overall flow of the proposed analytical energy modeling

 method .. 33

Figure 5.2 K4_DWCV_k3 kernel algorithm in operation DAG

 representation ... 35

Figure 5.3 K4_DWCV_k3 kernel algorithm in instruction DAG

 representation ... 36

Figure 5.4 Same data store marking in K6_UPS_k2 kernel algorithm

 innermost loop .. 37

 ５

Figure 5.5 K4_DWCV_k3 kernel algorithm in estimated CFG

 representation ... 41

Figure 5.6 Example of base energy table lookup 42

Figure 5.7 Inter-instruction energy scale factor calculation 44

Figure 5.8 Example of inter-instructino energy table lookup 45

Figure 6.1 Average estimation accuracy on 100 test cases of 8 target

 layer kernels ... 51

Figure 6.2 K0_ACTV energy measurement and estimation 52

Figure 6.3 K1_EADD energy measurement and estimation 52

Figure 6.4 K2_MAXP_k3s2 energy measurement and estimation ... 53

Figure 6.5 K3_GAP energy measurement and estimation................. 53

Figure 6.6 K4_DWCV_k3 energy measurement and estimation 54

Figure 6.7 K5_DWCV energy measurement and estimation 54

Figure 6.8 K6_UPS_K2 energy measurement and estimation 55

Figure 6.9 K7_UPS energy measurement and estimation 55

 ６

List of Tables

Table 3.1 Types of DNN layer processor kernels 17

Table 4.1 Vector processor core register files 21

 ７

Chapter 1

Introduction

1.1. Motivation

Processor energy consumption has been widely investigated in computer

architecture field for decades. Recently, with the advent of deep learning applications

and accelerators, there has been growing attention on power estimation of deep

learning application execution on neural processing units (NPU).

Estimation on NPU energy consumption helps improving design on various

levels. For instance, it can be used in architecture evaluation, data and schedule

mapping space exploration, and hardware-aware neural architecture search.

Especially in programmable processing units, energy estimation aids in software

optimization for better algorithms or compile schemes. Therefore, estimating NPU

energy consumption is important.

When operations are executed, energy consumption can be attributed to either

 ８

the operation itself, or the switching of executed operations. Recent studies on NPU

energy modeling have primarily focused on the former, neglecting the significant

energy contribution from operation switching. This limitation leads to inaccurate

estimation, particularly in scenarios with frequent operation switching. Previous

researches conducted in 1990s and 2000s consider energy consumption from the

switching of executed operations, but their modeling targets were processors at that

time, which differ substantially from modern NPU architectures.

Therefore, we propose an accurate analytical energy modeling method that

incorporates the energy consumed by operation switching. To achieve this, we

conducted a detailed analysis of the processor architecture to simplify energy

estimation. Specifically, our work targets a programmable vector processing unit

within a modern NPU architecture.

1.2. Thesis Organization

This thesis is organized as follows. Chapter 2 gives a brief background on

processor energy consumption and some previous energy estimation approaches.

Chapter 3 explains the modeling target vector processor’s hardware architecture and

applications. Chapter 4 presents analysis on target processor’s energy consumption

behavior, and based on the analysis, Chapter 5 proposes an analytical energy

modeling method to estimate processor kernel energy consumption. Chapter 6

presents experimental measurement and estimation results. Finally, Chapter 7

summarizes the proposed work and concludes this thesis.

 ９

Chapter 2

Background

2.1. Energy Consumption on Processing Units

Energy consumption in digital circuits is affected by several factors, such as

leakage current, clock, control signal and data switching. To accurately model energy

consumption, it is necessary to take these factors into account, which can introduce

complexity into the modeling process. Besides, there are specific characteristics

related to energy consumption in processing units that can simplify the energy

modeling process.

Effect of Data Path Width In digital circuits, the width of data path plays a

significant role in power consumption. A wider data path requires a larger number of

transistors and interconnects, leading to increased capacitance and higher switching

activity, thereby resulting in higher power consumption. Conversely, a narrower data

 １０

path reduces the number of transistors and interconnects, resulting in lower power

consumption. By considering this effect at the instruction level, we can simplify the

energy model. Instructions with larger bit operands involve a wider data path in their

execution path, thus consuming relatively more energy. Conversely, instructions with

smaller bit operands consume less power and have a minimal impact on overall

energy consumption. Therefore, they can be ignored for simplicity purposes.

Multi-Slot Structure In VLIW processors, the introduction of parallel

instruction combinations adds complexity. However, decomposing power

consumption can significantly simplify energy modeling.

When executing an instruction word with multiple slot instructions through

pipeline stages, certain power consumption sources are shared among different slot

instructions, while others are independent. The shared portion includes static power

caused by leakage current and dynamic power dissipated in common hardware units

such as the clock and instruction fetching and decoding control logic. The energy

consumption from these shared components is not influenced by the instruction types,

and therefore can be directly measured by executing a series of No Operation (NOP)

instruction words.

The other portion of power consumption can be considered independent among

different slots. Since the VLIW architecture is designed for parallel execution of an

instruction word, different slot instructions typically do not share hardware units in

the execution stages. Therefore, it is reasonable to assume that the mutual influence

between different slot instructions can be disregarded. This property is commonly

referred to as the spatial additive property [10].

 １１

2.2. Previous Works

2.2.1. Approaches to Processor Energy Estimation

Processor energy consumption has been extensively studied in the field of

computer architecture, and there exists various classes of approaches on energy

modeling [1]. A majority of works [2] [3] utilize performance counters to obtain

computation activity factors and employ linear regression to determine power

weights associated with each counter. These approaches have the advantage of not

incurring additional overhead, but the main drawback is the inability to break down

energy consumption on a per-process basis. Other models [8] [9] [11] obtain activity

factors through simulation, providing detailed information at the hardware

component and instruction level. However, these methods involve significant

overhead. Some studies [10] [13] [14] focus on instruction-level energy estimation,

by executing micro-benchmarks of instruction loops and profiling their execution.

In the case of NPUs, analytical energy modeling methods [5] [12] employ

operation-based approaches by summing up the product of operation count and

operation energy cost to estimate energy consumption. However, these approaches

overlook the energy consumption resulting from operation switching, leading to

inaccurate estimations, particularly for workloads with frequent operation switching.

 １２

2.2.2. Complexity in Energy Modeling

To achieve precise energy estimation, it is necessary to consider various factors

from different abstraction levels at the hardware-software stack, including hardware

micro-architecture and application algorithmic properties. Hence, the more we try to

model accurately, the higher the modeling complexity becomes.

When targeting VLIW processors, the complexity becomes even more

significant, since very long instructions can be created by combining multiple

instructions. [10] introduces spatial additive property to reduce such complexity,

which has been verified under extensive studies afterwards.

Unfortunately, accurate energy models require more than per-instruction

estimation. Inter-instruction effects [16] can have a significant impact on power

consumption, and incorporating these effects adds further complexity. In [7], the use

of NOP instructions is proposed to model transitions between any two instructions,

achieving an accuracy within 8% error while significantly reducing complexity. [6]

suggests an instruction clustering method for modeling efficiency with average error

of 1.9%. However, these works targeted general-purpose and digital signal

processors with small data paths, thereby being applicable only to processors with

similar architectures and not to vector processors designed for DNN applications.

Additionally, breaking down the target software into instructions is beneficial

for accuracy, as in [14] [15] [6]. However, analyzing at instruction-level requires

compile-able program codes, a compiler, and runtime instruction profiling, which

can make the modeling process cumbersome. Alternatively, analyzing software

using analytical methods can significantly improve efficiency.

 １３

Chapter 3

Target Processor Overview

3.1. Hardware Architecture

The target processor for energy modeling is a programmable vector processor

within a systolic array-based neural processing unit (NPU) system. Figure 3.1

provides a schematic of the top-level NPU system architecture. The system

comprises a systolic array, an on-chip scratchpad memory, vector processor cores,

and off-chip DRAM. The on-chip scratchpad memory, implemented as a multi-bank

SRAM, serves as a shared storage for tensor data that can be accessed by both the

systolic array and the vector processor. The systolic array accelerates convolution

and generalized matrix multiplication (GEMM), which are fundamental operations

in deep neural networks (DNNs). The vector processor, composed of 16 core-tiles

for parallel processing, handles a broader range of operations that the systolic array

either cannot compute efficiently or cannot perform at all. Examples of such

 １４

operations include depth-wise convolution, element-wise addition, pooling, up-

sampling, and non-linear activation functions.

A vector processor core is a programmable very long instruction word (VLIW)

processor consisting of an interface to on-chip scratchpad memory, local scratchpad

memory components for program code, non-tensor scalar data, and lookup tables

(LUTs), register files, and three issue slots. The register files are of eight distinct

kinds with varying bit widths, and are accessible from multiple slots by separate

read/write ports. More details about register files are provided in Chapter 4. The issue

slots are scalar slot, memory slot, and vector slot with dedicated arithmetic units and

orthogonal instruction set architectures (ISA) specific to each slot. During each cycle,

a single VLIW instruction is fetched from the program scratchpad memory, decoded

into instructions for each slot, and issued in an in-order manner.

The memory slot manages the memory access operations for tensor and scalar

data between the memory components and the core registers. Vector slot instructions

are designed to efficiently perform identical operations on multiple data elements,

and they are dispatched to a single instruction multiple data (SIMD) unit for

acceleration. Scalar slot instructions mainly use a scalar arithmetic logic unit (ALU)

to handle auxiliary operations such as memory address computation, stack pointer

and control flow operations.

 １５

Figure 3.1: Block diagram of a systolic array-based NPU system architecture

Figure 3.2: Block diagram of a vector processor core

 １６

3.2. Target Applications

Unlike general-purpose VLIW processors, the vector processor is specialized

for DNN operations. More specifically, under the NPU system described in Section

3.1., it handles operations that are not suitable for the systolic array, such as depth-

wise convolution, element-wise addition, max pooling, average pooling, and non-

linear activations.

The execution of these target applications can be easily analyzed in a loop-based

manner. The computation of DNN layers can be structured using simple nested loops,

where the loop bounds are determined by feature map size, filter shape, and other

configurations like padding and stride. Consequently, the control flow of these

applications is relatively straightforward compared to other general-purpose

processor kernels. This simplicity simplifies the estimation of runtime execution

without the need for actual compilation or cycle-level simulation. Taking advantage

of this characteristic, the proposed energy modeling method decomposes and

analyzes DNN layer computations in a fast and analytical loop-based approach to

model energy consumption.

To perform DNN layer computations on the vector processor, the layer

computation algorithm is implemented as a processor kernel code. The vector

processor ISA is exposed as a C primitive, allowing the implementation of target

applications as processor kernels written in C code. The proposed energy modeling

method has been validated on 8 different kernels, as presented in Table 3.1. Various

other types of DNN operations can also be executed on the vector processor with

appropriately written kernel codes. Algorithm 1 provides an example pseudocode for

 １７

the processor kernel K5_DWCV.

The processor kernel program written in C code is compiled into VLIW

instructions, and program binary code is generated. The compiler is provided with

micro-architectural information, enabling it to explicitly leverage instruction-level

parallelism (ILP) in the generated machine code. During the execution of a neural

network on the NPU, when a layer needs to be processed by the vector processor, a

runtime command scheduler on the NPU loads the generated program binary onto

the instruction scratchpad of the vector processor and initiates kernel execution.

Once the execution is completed, the vector processor core sends result signals to

the command scheduler.

Kernel ID Layer Type Optimized Config
K0_ACTV nonlinear activation generic
K1_EADD element-wise addition generic
K2_MAXP_k3s2 max pooling kernel = (3, 3), stride = (2, 2)
K3_GAP global average pooling generic
K4_DWCV_k3 depth-wise convolution kernel = (3, 3)
K5_DWCV depth-wise convolution generic
K6_UPS_k2 nearest neighbor up-sample kernel = (2, 2)
K7_UPS nearest neighbor up-sample generic

Table 3.1: Types of DNN layer processor kernels

 １８

Algorithm 1 K4_DWCV_k3 kernel pseudocode

1: Initialize: in/out/kernel information, address

2: for Oc: 0, 1, …, channel do

3: Load: SR_filter0, 1, 2, …, 8 filter data 0, 1, 2, …, 8

4: Broadcast: VR_filter0, 1, 2, …, 8 SR_filter0, 1, 2, …, 8

5: for Oh: 0, 1, …, out_height do

6: for Ow: 0, 1, …, out_width do

7: Initialize: ACCR

8: Load: VR_fmap0, 1, 2, …, 8 fmap data 0, 1, 2, …, 8

9: Compute mac: ACCR ACCR + VR_fmap0 * VR_filter0

10: Compute mac: ACCR ACCR + VR_fmap1 * VR_filter1

11: Compute mac: ACCR ACCR + VR_fmap2 * VR_filter2

12: Compute mac: ACCR ACCR + VR_fmap3 * VR_filter3

13: Compute mac: ACCR ACCR + VR_fmap4 * VR_filter4

14: Compute mac: ACCR ACCR + VR_fmap5 * VR_filter5

15: Compute mac: ACCR ACCR + VR_fmap6 * VR_filter6

16: Compute mac: ACCR ACCR + VR_fmap7 * VR_filter7

17: Compute mac: ACCR ACCR + VR_fmap8 * VR_filter8

18: Compute shift & Move register: VR_result ACCR >> shifter

19: Store: fmap data VR_result

20: end for

21: end for

22: end for

 １９

Chapter 4

Analysis on Processor Energy

Consumption

4.1. Effect of Architectural Characteristics

4.1.1. Multi-Slot Structure

The spatial additive property explained in Section 2.1 can be applied to the

vector, memory, and scalar slot instructions in our target vector processor. By

considering the slot-independent energy measured from a NOP sequence and the

additive property of each slot instruction, the total energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙) can

be calculated using the NOP energy (𝐸𝑁𝑂𝑃) and the energy of each slot instruction

(𝐸𝑣𝑒𝑐𝑡𝑜𝑟, 𝐸𝑚𝑒𝑚𝑜𝑟𝑦, 𝐸𝑠𝑐𝑎𝑙𝑎𝑟), as shown in Equation (4.1).

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑁𝑂𝑃 + 𝐸𝑣𝑒𝑐𝑡𝑜𝑟 + 𝐸𝑚𝑒𝑚𝑜𝑟𝑦 + 𝐸𝑠𝑐𝑎𝑙𝑎𝑟 (4.1)

 ２０

4.1.2. Data Path Width

Table 4.1 illustrates the vector processor core register files and their

corresponding data widths. The table shows that different slots utilize different sets

of register files. Scalar slot instructions utilize SCR, AR and SR, all of which are up

to 32-bit wide. Since scalar slot instructions involve small bit operands, the wires

and pipeline registers downstream of the scalar slot instruction data path also have

narrow bit widths. On the other hand, vector slot instructions have access to VR,

VCR, LUTR, ACCR, and BIASR, which have larger data widths, resulting in wider

downstream execution data paths. The memory slot ISA consists of load and store

instructions with optional address computation, with operands involving scalar data,

stack data, and vector data. Scalar data and stack data memory instructions utilize

SCR, AR, and SR, thus involving a small data path, while vector data memory

instructions access VR, resulting in a wider downstream data path.

Based on these observations, vector processor instructions can be categorized

into two groups: narrow data path (ND) instructions with a small data path involved,

accessing data up to 32-bit wide, and wide data path (WD) instructions with larger

data widths. All scalar slot instructions and scalar/stack data memory slot

instructions belong to the ND instructions, while vector slot instructions and vector

data memory instructions belong to the WD instructions. Considering the

relationship between data path width and energy consumption discussed in Section

2.1, the energy consumption of WD instructions is dominant, whereas that of ND

instructions is relatively insignificant. This was confirmed through experimental

measurements where ND instructions consumed less than 0.3 W, while WD

instructions consumed 1 W ~ 6W. Based on these findings, it can be concluded that

 ２１

ignoring ND instructions has minimal impact on energy modeling accuracy while

significantly reducing model complexity. Therefore, the proposed energy modeling

method focuses solely on the energy consumption of WD instructions for efficiency.

Register
Name Description

Bit Width
(>: greater

than)

Access from
Slot

S V M

SCR scalar condition 1 O O O
AR memory address 16 O O O
SR scalar data 32 O O O
VR vector data 512 O O

VCR vector condition 512 O

LUTR LUT loaded data 512 O

ACCR accumulation data > 512 O

BIASR bias data > 512 O
Table 4.1: Vector processor core register files

4.2. Instruction-Level Energy

In order to analytically model energy consumption of a processor kernel, we

first measured and analyzed instruction-level energy consumption. As mentioned in

Section 4.1.2 that we only consider WD instructions, we narrowed down

measurement target to vector slot instructions and vector load and store instructions.

To measure the base and inter-instruction energy of each instruction, we wrote short

processor kernels composed of measurement target instructions. Furthermore, to

differentiate the power consumption between the control path and the data path,

 ２２

measurement kernels were executed with both zero and random data. Details on

experimental environments are described in Chapter 6.

Measurement of Instruction Base Energy To measure the instruction base

energy, we wrote power measurement kernels as in Figure 4.1. These kernels

consisted of a long repeated loop filled with fully-pipelined target instructions,

vector MAC (Multiply-Accumulate) instructions in this case. During kernel

execution, we collected samples of measured instantaneous power at regular

intervals and averaged them to obtain base energy.

assembly code description

kernel prologue

register initialization

loop 4 2500

vmac accr v0 v1

vmac accr v2 v3

vmac accr v0 v1

vmac accr v2 v3

kernel epilogue

// repeat succeeding 4-instr sequence 2500 times

// accr += v0 * v1

// accr += v2 * v3

// accr += v0 * v1

// accr += v2 * v3

Figure 4.1: Example of vmac instruction base energy measurement kernel

To isolate the energy consumption of the target instruction sequence within a

single slot, it is necessary to eliminate redundant energy factors. According to the

energy decomposition described in Equation (4.1), NOP energy is considered

redundant. Additionally, the overhead associated with loop control, which involves

the utilization of the loop counter register, is also redundant. As a result, the

measured power of target instruction sequence can be calculated using Equation (4.2).

 ２３

In the equation, 𝑃𝑖𝑛𝑠𝑡𝑟_𝑙𝑜𝑜𝑝 and 𝑃𝑁𝑂𝑃_𝑙𝑜𝑜𝑝 represent the average sampled power

obtained from the instruction base energy measurement kernel in Figure 4.1, and the

NOP loop measurement kernel in Figure 4.2, respectively.

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑃𝑖𝑛𝑠𝑡𝑟_𝑙𝑜𝑜𝑝 − 𝑃𝑁𝑂𝑃_𝑙𝑜𝑜𝑝 (4.2)

assembly code description

kernel prologue

register initialization

loop 4 2500

vnop

vnop

vnop

vnop

kernel epilogue

// repeat succeeding 4-instr sequence 2500 times

// vector slot nop instruction

// vector slot nop instruction

// vector slot nop instruction

// vector slot nop instruction

Figure 4.2: NOP loop energy measurement kernel

The instruction base energy can be directly obtained from 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒. Figure 4.3

illustrates the fully-pipelined execution of a 5-stage instruction. At the instant of

power sampling, all pipeline stages are filled, and thus the measured power is the

sum of single-cycle energy across the spatial axis, as shown in Equation (4.3) line 1

and 2 and the green-highlighted stages in Figure 4.3. Besides, line 2 of Equation (4.3)

also corresponds to the blue-highlighted stages as well as green, so the summation

can be considered equivalent to sum of each stage energy of a single instruction

across the temporal axis. Therefore, the instruction base energy is equal to 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒.

In Equation (4.3), 𝐵𝑖 denotes the base energy of instruction i.

 ２４

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 1 cycle = 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒

= 𝐸𝑠𝑡𝑎𝑔𝑒0 + 𝐸𝑠𝑡𝑎𝑔𝑒1 + 𝐸𝑠𝑡𝑎𝑔𝑒2 + 𝐸𝑠𝑡𝑎𝑔𝑒3 + 𝐸 𝑠𝑡𝑎𝑔𝑒4

= 𝐵 𝑖 (4.3)

In register initialization in Figure 4.1, if all operand registers are initialized with

zero, no data switching occurs during kernel execution. Therefore, the measured

energy can be considered as the energy consumption in the control path. On the other

hand, when the registers are initialized with random data, both the control path and

data path switching occur. By subtracting the measurement with zero data

initialization from the measurement with random data initialization, we can obtain

the energy consumption of the data path. To ensure data switching on all data paths,

we took care to initialize each register with different data values and use different

registers in every cycle. If this is not guaranteed, power would get much under-

measured.

 ２５

Figure 4.3: Pipeline diagram of a 5-stage instruction

base energy measurement kernel

 ２６

Measurement of Inter-Instruction Energy To measure inter-instruction

energy, we used power measurement kernels as shown in Figure 4.4, similar to the

base energy measurement kernel but with two types of instructions switching every

cycle. As aforementioned, we only measured inter-instruction energy on pairs with

NOP for model efficiency.

assembly code description

register initialization

loop 4 2500

vmac accr v0 v1

vnop

vmac accr v2 v3

vnop

// repeat succeeding 4-instr sequence 2500 times

// accr += v0 * v1

// vector slot nop instruction

// accr += v2 * v3

// vector slot nop instruction

Figure 4.4: Example of {vmac, vnop} instruction pair

inter-instruction energy measurement kernel

Since two different instructions in the measurement kernel are time-sharing

with equal contributions, the energy consumption can be considered as the average

of each instruction’s base energy. However, as mentioned in Section 2.2.2, the energy

consumption of different instructions sequence is always larger than that of a single

instruction sequence, and the corresponding term is regarded as the overhead of

executing different instructions sequentially, namely inter-instruction energy. As a

result, with 𝐼𝑖,𝑗 denoting inter-instruction energy of instruction {i, j} pair, the

relationship between different energy factors in the inter-instruction energy

measurement kernel can be expressed as in Equation (4.4).

 ２７

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 2 cycle = 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 2 = 𝐵𝑖 + 𝐵𝑗 + 2 ∗ 𝐼𝑖,𝑗 (4.4)

From this, the inter-instruction energy of instruction pair {i, j} can be calculated

as in Equation (4.5). Here, since NOP energy is already removed from 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒,

𝐵𝑁𝑂𝑃 can be regarded as zero in each slot energy consumption.

𝐼𝑖,𝑗 = 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒 −
1

2
∗ (𝐵𝑖 + 𝐵𝑗) (4.5)

As in base energy measurement, inter-instruction energy measurement was also

done with both zero and random operand data, in order to distinguish between

control path and data path energy.

4.2.1. Memory Slot Instructions

WD instructions of memory slot ISA consist of vector load and store

instructions, with different addressing modes and optional address register update.

On these instructions, instruction base energy, inter-instruction energy with NOP-

pair, each on both control and data path are obtained from experimental measurement.

The measured values are presented in Figure 4.5 and Figure 4.6. In the figures, the

energy values on the y-axis are scaled with a mutual scaling factor for security

reasons.

 ２８

Figure 4.5: Measured base energy of

memory slot instructions

Figure 4.6: Measured inter-instruction energy of

memory slot instructions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

sc
a
le

d
 e

n
e
rg

y

control path data path

0.000

0.005

0.010

0.015

0.020

0.025

0.030

sc
a
le

d
 e

n
e
rg

y

control path data path

 ２９

In Figure 4.5 and 4.6, different load and store instructions are depicted across

the x-axis, varying in addressing modes and address register update options. It can

be observed that both the data path and control path have an impact on the base and

inter-instruction energy of memory slot instructions. However, the amount and

variance of inter-instruction energy from Figure 4.6 are much smaller compared to

those of the base energy. Basically, inter-instruction energy consumption occurs

because different instructions utilize different parts of the circuit, leading to circuit

state change [16]. Nonetheless, load and store instructions primarily involve only

address calculation and memory access, resulting in simple control signals and

pipeline data path structure. As a result, the overhead associated with switching

instructions is relatively small and consistent. Consequently, we can assume a

constant value for inter-instruction energy when executing different memory

operations in sequence, regardless of specific instruction types.

Another observation is that addressing modes and address register update

option do not significantly impact the energy behavior. The address-related logic in

these instructions utilizes much smaller bits compared to the memory access

operands, which is vector data. Since these operations have negligible energy

consumption, it suffices to differentiate between load and store instructions for

energy modeling purposes. Thus, we model memory slot instructions as either load

or store instructions without considering the addressing modes and address register

update option, thereby effectively reducing the complexity associated with handling

these low-level functions, which would otherwise be challenging without the

assistance of an actual compiler.

 ３０

4.2.2. Vector Slot Instructions

Similar to memory slot instructions, base energy and inter-instruction energy

with NOP-pair of vector slot instructions were measured on both the control and data

paths, and the scaled results are presented in Figure 4.7 and Figure 4.8.

The measurements revealed substantial variations in energy consumption

among instructions. Even within the same class of instructions, such as register move

instructions (vinst_0 ~ vinst_4), notable differences were observed based on the type

and number of source and destination registers. Moreover, the inclusion of a shift

operation after vector mac operation (vinst_5, vinst_6) had a significant impact on

energy consumption. Consequently, unlike memory slot instructions, precise

instruction-level energy estimation is required for vector slot instructions,

considering all subfunction information.

In particular, the large energy consumption and variance of vector slot

instructions is mainly attributed to the data path rather than the control path. These

instructions utilize vector operand data and SIMD units to accelerate vector

arithmetic operations, which involve a large data path. Additionally, they handle the

major computations of DNN layer operations, engaging complex control signals and

a deep, intricate pipeline with many functional units. As a result, most of the

switching activity occurs in the data path, highlighting the need to analyze and model

energy consumption focusing on the data path.

 ３１

Figure 4.7: Measured base energy of

vector slot instructions

Figure 4.8: Measured inter-instruction energy of

vector slot instructions

0.000

0.005

0.010

0.015

0.020

0.025

0.030

vi
n
st

r_
0

vi
n
st

r_
1

vi
n
st

r_
2

vi
n
st

r_
3

vi
n
st

r_
4

vi
n
st

r_
5

vi
n
st

r_
6

vi
n
st

r_
7

vi
n
st

r_
8

vi
n
st

r_
9

vi
n
st

r_
1
0

vi
n
st

r_
1
1

vi
n
st

r_
1
2

vi
n
st

r_
1
3

vi
n
st

r_
1
4

vi
n
st

r_
1
5

vi
n
st

r_
1
6

sc
a
le

d
 e

n
e
rg

y

control path data path

0.000

0.005

0.010

0.015

0.020

0.025

0.030

vi
n
st

r_
0

vi
n
st

r_
1

vi
n
st

r_
2

vi
n
st

r_
3

vi
n
st

r_
4

vi
n
st

r_
5

vi
n
st

r_
6

vi
n
st

r_
7

vi
n
st

r_
8

vi
n
st

r_
9

vi
n
st

r_
1
0

vi
n
st

r_
1
1

vi
n
st

r_
1
2

vi
n
st

r_
1
3

vi
n
st

r_
1
4

vi
n
st

r_
1
5

vi
n
st

r_
1
6

sc
a
le

d
 e

n
e
rg

y

control path data path

 ３２

Chapter 5

Analytical Energy Modeling

Methodology

5.1. Modeling Method Overview

Based on the observations made on the energy consumption of the vector

processor in previous chapters, an analytical energy modeling methodology has been

developed. The overall flow of the proposed method is depicted in Figure 5.1. It

takes as input the layer configurations (e.g., layer type, data and kernel shape), as

well as the corresponding layer processor kernel algorithm description. The output

is the total energy consumption of each slot throughout the execution of single layer

kernel.

To achieve analytical modeling without the need for kernel code compilation

and simulation, the methodology consists of 4 analytical steps. Step 1, 2 will be

 ３３

covered in Section 5.2, and 2, 3 in Section 5.3 respectively. The entire framework is

implemented in Python 3.8.

Figure 5.1: Overall flow of

the proposed analytical energy modeling method

 ３４

5.2. Input to Graph Conversion

5.2.1. Algorithm Parsing

In step 1, an in-house algorithm parser is utilized to generate a directed acyclic

graph (DAG). The nodes of the graph represent general operations such as addition,

multiplication, mac, max and so on. The algorithm parser leverages intrinsic

functions provided by TVM, an open-source machine learning compiler framework

[4]. Layer kernel algorithms are written in python code to describe computations in

TVM’s Relay Intermediate Representation (IR) level, and the algorithm parser

lowers IR to TVM’s nested Tensor-level IR (TIR) by employing a set of TVM

intrinsic functions. Subsequently, the nested TIR is converted into an operation graph,

as depicted in Figure 5.2. Control operations are colored in yellow, memory slot

operations in green, and vector slot operations in blue. Moreover, iteration count

information of loop control operations is also included in the graph.

5.2.2. Graph Transform

Step 2 transforms operation DAG from step 1 output into instruction DAG as

illustrated in Figure 5.3, with all operation nodes except for control operations

converted to instruction nodes. The conversion process involves removing, replacing,

and adding certain nodes based on each slot ISA and hardware-specific features.

Once the transformation is completed in step 2, the instruction nodes in the graph

can be one-to-one mapped to energy table entries of energy estimator in step 4.

 ３５

Figure 5.2: K4_DWCV_k3 kernel algorithm

in operation DAG representation

 ３６

Figure 5.3: K4_DWCV_k3 kernel algorithm

in instruction DAG representation

 ３７

Figure 5.4: Same data store marking in

K6_UPS_k2 kernel algorithm innermost loop

 ３８

Memory Slot Operations In the operation DAG generated in step 1 (Figure

5.2), the green-colored nodes represent filter and feature map memory operations.

These operations can be directly transformed into scalar and vector load and store

instruction nodes, respectively, as they already align with the modeling level of load

and store instructions without functional codes. However, it is important to note that

scalar memory instructions consume relatively minor energy and will be ignored in

the later steps of the methodology, as mentioned in Section 4.1.2.

In addition, there is a significant attribute of store operations that needs to be

analyzed in this step. When consecutive store operations handle the same data,

switching activity is reduced, leading to a significant decrease in energy

consumption compared to cases where the data changes every cycle. This situation

commonly occurs in algorithms such as nearest neighbor up-sampling, where a pixel

is loaded once and then stored multiple times. To account for this scenario, store

operation nodes that have a mutual predecessor are marked as using the same data,

as shown in Figure 5.4. This information will be considered in the subsequent steps

when these operations are executed in consecutive cycles.

Vector Slot Operations Since the vector processor ISA is designed to support

DNN operations, many vector slot instructions align with single operation nodes.

However, some operations function in a hardware-specific manner, requiring

appropriate transformation to the instruction level.

First, the vector processor operates with INT8 data type. Consequently, tensor

element values after computation undergo right-shifting for quantization before

storage in memory. Thus, if the input graph does not explicitly include a shift

operation, some kind of shift operation should be inserted during the transformation

 ３９

process. This does not apply to max pooling and nearest neighbor up-sampling layers,

where tensor element values do not go through any computation operations, but only

gets replaced.

Moreover, the vector processor employs an accumulation register (ACCR) with

a larger bit capacity for accumulation operations, and only a single ACCR is

available in the core. As a result, when a group of operation nodes involve value

accumulation, an ACCR initialization instruction is inserted prior to the head node

of the group. For instance, in Figure 5.3, an init_acc node is added as a predecessor

to a sequence of consecutive vmac instructions.

Another consequence of using the ACCR is the insertion of register move

instructions between different register types, based on the predecessor operation’s

destination register and successor operation’s source register. Additionally, for

efficiency purposes, quantization shift operations are combined with these register

moves or other instructions whenever feasible. In Figure 5.2, the predecessor

operation of the rshift operation has a destination register of ACCR, while the

successor operation of the rshift operation has a source register of VR. This

necessitates the insertion of an ACCR to VR register move, referred to as the acc2v

instruction. Furthermore, the rshift operation is combined with the acc2v instruction,

resulting in the final transformed node, acc2v_sht, as depicted in Figure 5.2.

 ４０

5.3. Estimating Energy from Graph

5.3.1. Estimating Runtime Sequence

After step 2, we have all the information on which instructions are executed and

how many times in the instruction DAG. However, to account for inter-instruction

effects in energy estimation, information on the execution sequence of instructions

is also required. To achieve this, we utilize an in-house runtime analyzer.

The runtime analyzer takes the instruction DAG from step 2 as input and

considers the dependency information represented by graph edges. It utilizes pre-

defined hardware execution latency information for each instruction to estimate the

runtime execution sequence of nodes. As a result, step 3 produces the estimated

control flow graph of the kernel, including the iteration information of each basic

block and the internal execution sequence of instructions.

Figure 5.5 illustrates the result of step 3 for the K4_DWCV_k3 kernel, based

on the input instruction DAG shown in Figure 5.3. The first, second and third

columns in Figure 5.5 represents the scalar slot, memory slot, and vector slot

respectively, while a hyphen denotes a NOP. As observed, the scalar slot sequence is

empty, and scalar load and store instructions have been removed since they will be

disregarded in the subsequent energy estimation step.

 ４１

Figure 5.5: K4_DWCV_k3 kernel algorithm in

estimated CFG representation

 ４２

5.3.2. Kernel Energy Estimator

In this step, the energy estimator finally calculates the estimated energy of

kernel execution by utilizing the estimated control flow graph (CFG) generated in

the previous step and referencing a pre-built energy table. We have created two types

of energy tables, which were obtained from experimental measurements as described

in Section 4.2.

Estimating Base Energy The first energy table is the base energy table for

memory and vector slots. Each entry in the table is one-to-one mapped to a specific

slot instruction and contains the base energy value. As shown in Figure 5.6, the base

energy of each instruction from the estimated CFG can be directly retrieved by

looking up the base energy table.

Figure 5.6 Example of base energy table lookup

 ４３

Estimating Inter-Instruction Energy The other energy table is the inter-

instruction energy table for NOP-pairs. In the case of the memory slot, a single

constant value is sufficient to model inter-instruction energy as explained in Section

4.2.1. However, for the vector slot, we need to consider inter-instruction energy for

each pair of instructions. To improve modeling efficiency, we propose a novel

method where we only measure the inter-instruction energy for pairs with NOP and

perform analytical conversion to estimate the inter-instruction energy for all pairs.

In Section 4.2.2, it was discovered that the inter-instruction energy consumption

of vector slot instructions primarily originates from the data path of the vector

processor, due to its application-specific ISA and SIMD architecture. When the type

of executed instruction changes, different parts of the circuit are utilized, and during

this process, various factors cause inter-instruction energy consumption. Among the

factors, a primary consideration in the target vector processor microarchitecture is

the multiplexing of input wires within the modules.

Input wire multiplexing in the vector processor is implemented as a means of

operand isolation, a commonly employed power-saving technique. It serves to

prevent redundant switching activity in idle combinational logics. As a consequence

of this multiplexing, operand wires that were utilized in the previous instruction but

are not required in the current instruction undergo a transition from their previous

values to zero. That is to say, switching activity occurs due to the utilization of

different parts of the circuit (e.g., pipeline registers, functional units and internal

wires) by consecutive instructions, causing inter-instruction energy consumption,

with the energy dissipation varying across different instruction pairs. To precisely

evaluate this effect, we need to consider all sequential instruction pairs at the wire

and bit-level through RTL synthesis and simulation, which demands significant

 ４４

engineering time and effort.

Instead, we propose a method to simply calculate the estimated inter-instruction

energy for each instruction pair based on pipeline stage usage, as depicted in Figure

5.7. To obtain the inter-instruction energy of instruction A and B sequence, denoted

as 𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵, 𝐴, 𝐵, …) , we first determine the number of stage transitions from

enabled to disabled stages, referred to as E2D_stages, in both A→B→A→… and

nop→B→nop→B→… sequences. We then calculate the scale factor based on the

ratio of E2D_stages, as shown in Figure 5.7. Finally, the estimated inter-instruction

energy of instruction A and B sequence is obtained by scaling the inter-instruction

energy with NOP using the scale factor, as in Equation (5.1). Here, the inter-

instruction energy with NOP is directly retrieved by looking up the inter-instruction

energy table, as depicted in Figure 5.8.

Figure 5.7 Inter-instruction energy scale factor calculation

𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵, 𝐴, 𝐵, …)

= 𝑖𝑛𝑡𝑒𝑟(𝑛𝑜𝑝, 𝐵, 𝑛𝑜𝑝, 𝐵, …) ∗ 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟(𝐴, 𝐵) (5.1)

 ４５

Figure 5.8 Example of inter-instruction energy table lookup

By employing this method, it is no longer needed to collect measurements for

all instruction pairs. Instead, only pairs consisting of an instruction and a NOP are

considered, while still accounting for the circuit state changes in all instruction pairs.

The inter-instruction energy values for all {vector slot instruction, NOP} pairs are

contained in each entry of the inter-instruction energy table, with a table size of O(𝑛)

instead of O(𝑛2).

Estimating Kernel-Level Energy Consumption The energy estimator

calculates the estimated energy of the kernel by combining the instruction base

energy and inter-instruction energy over the estimated CFG. The algorithm for

calculating the kernel-level estimated energy is described in Algorithm 2.

In phase 1 of the algorithm, the estimated energy of each node and edge in the

CFG is calculated. Each CFG node corresponds to a basic block, which is a sequence

of instructions. The node energy is calculated as the sum of the base energy of all

instructions in the basic block, as well as the inter-instruction energy of all sequential

 ４６

instruction pairs within the basic block. A CFG edge represents the control flow path

from the last instruction of the source node to the first instruction of the destination

node. Thus, the edge energy is calculated as the inter-instruction energy between

these two instructions.

In phase 2, the estimation of the entire kernel execution energy is calculated.

While parsing the entire CFG, the energy of each node and edge is accumulated. The

energy of a single node is multiplied by its basic block iteration count. The energy

of a single edge is multiplied by the number of times the edge is taken, which is

directly calculated from the iteration count of the connected nodes. Unlike in general

processor kernels where control flow is complex, DNN layer kernels are structured

in simple nested loops, with each basic block having no more than 2 incoming and

outgoing edges, making it possible to determine how many times an edge is taken

based on the basic block iteration count.

Repeating the above process for memory and vector slot, the kernel-level

estimation of each slot’s energy is obtained. Finally, from the estimation values of

memory, vector slots and ignored scalar slot (assumed to have zero energy), the slot

additive property gives the overall kernel-level vector processor energy estimation.

The entire estimation process, which involves 4 analytical steps of algorithm

parsing, graph transformation, runtime analysis, and energy calculation, does not

require any compile-able kernel C code, compiled assembly code, actual hardware

execution, or low-level simulation. This approach enables fast evaluation of the

energy consumption without the need for extensive hardware resources or time-

consuming simulations. Instead, the estimation process relies on high-level analysis

and modeling techniques to estimate the energy consumption of the kernel.

 ４７

Algorithm 2 Estimated energy calculation algorithm pseudocode

 1: // phase 1-1: CFG node calculation

 2: for node: basic blocks of estimated CFG do

 3: for instr: instructions in node do

 4: node_energy[node] += base(instr)

 5: end for

 6: for {instr_1, instr_2}: sequential instruction pairs in node do

 7: node_energy[node] += inter({instr_1, instr_2})

 8: end for

 9: end for

10: // phase 1-2: CFG edge energy calculation

11: for edge: edges of estimated CFG do

12: edge_energy[edge] += inter({edge_src_instr, edge_dst_instr})

13: end for

14: // phase 2: total kernel energy calculation

15: for node: basic blocks of estimated CFG do

16: graph_energy += node_energy[node] * node_iteration[node]

17: end for

18: for edge: edges of estimated CFG do

19: graph_energy += edge_energy[edge] * edge_taken_times[edge]

 20: end for

 ４８

Chapter 6

Experimental Results

6.1. Experimental Environments

To obtain the ground truth energy consumption, we conducted power

measurements by capturing instantaneous voltage and current values from the on-

chip system power management bus. Due to the limited speed of the I2C interface,

we were only able to obtain instantaneous power readings every 20 ~ 30 milliseconds.

To ensure reliability, we executed a single kernel repeatedly until 500 power

measurement samples are collected. The average value of these samples was then

multiplied by the cycle count obtained from the on-chip performance counter to

calculate the energy consumption of the kernel execution.

Running the entire modeling process in Python 3.8 once to obtain the estimated

energy value for a single layer execution takes approximately 300 milliseconds on

an Intel Xeon Gold 6242R processor.

 ４９

6.2. Kernel-Level Energy Estimation

In our evaluation, we applied our energy modeling method to eight target

kernels listed in Table 3.1. We tested the method on 100 different layer

configurations with random data and filter shapes for each kernel.

Figure 6.1 illustrates the average estimation accuracy of our proposed model,

which is depicted in green bars, and two baseline models for comparison. The first

baseline model, represented by the orange color, considers only the instruction base

energy (base-only model). The other baseline model, depicted in yellow,

incorporates both the base energy and inter-instruction energy by simply using the

NOP-pair energy as the inter-instruction energy for all instruction pairs (base + NOP

model).

The evaluation results demonstrate that ignoring inter-instruction energy leads

to a considerable degradation of modeling accuracy. The worst-case accuracy is

observed in the K5_DWCV kernel, where the accuracy drops to 50.39% when inter-

instruction energy is neglected. In all the comparisons, the models that consider inter-

instruction effects, namely the base + NOP model and the proposed model,

outperform the base-only model. This indicates that incorporating inter-instruction

energy improves the accuracy of the energy estimation.

The proposed model outperformed the base + NOP model in most cases. On

average, the proposed model achieved estimation accuracies ranging from 93% to

99%. This indicates that the proposed scaling method significantly improves the

accuracy of the energy estimation. In particular, for kernels with frequent instruction

switching in vector slot, such as K1_EADD and K5_DWCV, the proposed model

 ５０

exhibited a substantial improvement in estimation accuracy compared to the base +

NOP model. This suggests that the proposed method effectively captures the inter-

instruction energy consumption patterns, leading to more accurate energy

estimations.

The proposed model showed relatively poor performance in nearest neighbor

up-sampling kernels, K6_UPS_k2 and K7_UPS. These kernels follow a simple

algorithm of duplicating data pixels, primarily involving vector load and store

operations without any vector slot instructions. Moreover, memory operations are

executed sparsely due to long memory access latency, resulting low processor

utilization and low power consumption. Consequently, the ignored scalar operations,

such as address calculation and control flow management, become more prominent,

leading to a degradation in estimation accuracy for these specific kernels. To address

this weakness, a minor compensating term for up-sampling pixel address calculation

energy is added at the dominant innermost loop.

Comparisons between measured and estimated energy consumption for all test

cases are presented in Figure 6.2 to Figure 6.9, with energy values scaled as in

Section 4.2. These figures clearly show that the estimated energy consumption

accurately reflects the variation in energy consumption across different layer

configurations.

 ５１

Figure 6.1: Average estimation accuracy

on 100 test cases of 8 target layer kernels

98.63% 96.13% 97.42% 96.17% 98.29%
93.03% 91.91% 92.78%

30%

40%

50%

60%

70%

80%

90%

100%

K0 K1 K2 K3 K4 K5 K6 K7

a
v
e
ra

g
e
 a

cc
u
ra

cy

layer kernel ID

base base + inter_NOP base + inter_scaled_NOP (proposed)

 ５２

Figure 6.2: K0_ACTV energy measurement and estimation

Figure 6.3: K1_EADD energy measurement and estimation

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

 measurement estimation

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

 ５３

Figure 6.4: K2_MAXP_k3s2 energy measurement and estimation

Figure 6.5: K3_GAP energy measurement and estimation

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

 ５４

Figure 6.6: K4_DWCV_k3 energy measurement and estimation

Figure 6.7: K5_DWCV energy measurement and estimation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

 ５５

Figure 6.8: K6_UPS_k2 energy measurement and estimation

Figure 6.9: K7_UPS energy measurement and estimation

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

sc
a
le

d
 e

n
e
rg

y

test case ID

measurement estimation

 ５６

Chapter 7

Conclusion

This work proposes an analytical energy modeling method for estimating the

energy consumption of a vector processor kernel execution. The method efficiently

calculates the estimated energy by analyzing and focusing on energy-significant

factors. It models energy consumption using novel analytical methods of lowering

major operations down to the instruction level through graph transform and

calculating inter-instruction energy consumption on the data path based on pipeline

stage usage. Experimental results on 8 different DNN layer kernels, with 100 tests

cases for each, demonstrate that the proposed method achieves an average estimation

accuracy of 95.52%. Furthermore, the estimation process is fast, taking only 300

milliseconds on Intel Xeon Gold 6242R processor.

 ５７

Bibliography

[1] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of

energy consumption in machine learning,” Journal of Parallel and Distributed

Computing, vol. 134, pp. 75–88, Dec. 2019.

[2] M. C. Walker et al., “Accurate and stable run-time power modeling for mobile

and mmbedded CPUs,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 36, no. 1, pp. 106–119, Jan. 2017.

[3] R. Bertran et al., "Decomposable and responsive power models for multicore

processors using performance counters,” in Proceedings of the 24th ACM

International Conference on Supercomputing, Jun. 2010, pp. 147-158.

[4] T. Chen et al. (2018), “TVM: An automated end-to-end optimizing compiler for

deep learning,” arXiv:1802.04799, [Online]. Available: https://arxiv.org/abs/

1802.04799

[5] A. Parashar et al., “Timeloop: A systematic approach to DNN accelerator

evaluation,” in IEEE International Symposium on Performance Analysis of

Systems and Software, Mar. 2019, pp. 304-315.

[6] A. Bona et al., “Energy estimation and optimization of embedded VLIW

processors based on instruction clustering,” in Proceedings of the 39th annual

Design Automation Conference, Jan. 2002, pp. 886-891.

[7] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter-

instruction energy effects in a digital signal processor,” in Proceedings of the

Power-Driven Microarchitecture Workshop, Jun. 1998.

[8] D. J. Brook, V. Tiwari, and M. Martonosi, "Wattch: A framework for

architectural-level power analysis and optimizations," in International

Symposium on Computer Architecture, May 2000, pp. 83-94.

 ５８

[9] S. Li et al., "McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures," in Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec.

2009, pp. 469-480.

[10] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, "An instruction-level energy

model for embedded VLIW architectures," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 21, no. 9, pp. 998-1010,

Sep 2002.

[11] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "The design and use

of simplepower: a cycle-accurate energy estimation tool," in Proceedings of the

37th Annual Design Automation Conference, Jun. 2000, pp. 340-345.

[12] H. Kwon et al., "MAESTRO: A data-centric approach to understand reuse,

performance, and hardware cost of DNN mappings." IEEE Micro, vol. 40, no.

3, pp. 20–29, May 2020.

[13] Y. S. Shao, and D. J. Brooks. "Energy characterization and instruction-level

energy model of Intel's Xeon Phi processor," in International Symposium on

Low Power Electronics and Design, Sep. 2013, pp. 389-394.

[14] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee, "Instruction level power

analysis and optimization of software." Journal of VLSI signal processing

systems for signal, image and video technology, vol. 13, no. 2–3, pp. 223–238,

Aug. 1996.

[15] A. Bona et al., "Reducing the complexity of instruction-level power models for

VLIW processors," Design Automation for Embedded Systems, vol. 10, no. 1,

pp. 49–67, Mar. 2005.

[16] M. T. C. Lee, V. Tiwari, S. Malik, and M. Fujita, "Power analysis and

minimization techniques for embedded DSP software." IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 5, no. 1, pp. 123–135, Mar.

1997.

 ５９

국문 초록

프로세서 에너지 모델은 오랜 기간동안 광범위하게 연구되어 왔다.

특히, 딥러닝 프로세서 모델링에 관한 연구는 최근에 큰 관심을 받고

있다. 딥러닝 프로세서의 에너지 소비량을 예측하는 것은 하드웨어

아키텍처, 소프트웨어 최적화, 데이터 및 연산 매핑 공간 탐색 및 신경망

구조 탐색(NAS)에 걸친 여러 레벨의 설계에서 중요한 역할을 한다.

정확한 에너지 예측을 위해서는 명령어 별 에너지에 더해서 명령어 간

영향까지 고려하는 것이 필요하다.

적은 오버헤드로 에너지 소비를 정확하게 모델링하기 위해, 우리는

대상 프로세서 아키텍처의 명령어 수준 에너지 동작 특성을 분석하였다.

이 분석을 바탕으로, 명령어 간 영향을 포함한 주요 전력 소비 요소를

고려해 에너지 소모를 예측하는 간단한 해석적 접근 방식을 고안하였다.

제안된 모델링 방법은 평균 95.52%의 커널 수준 에너지 예측 정확도와

빠른 예측 시간을 보여준다.

주요어: 해석적 전력 소모 모델, 벡터 처리 장치 (VPU), VLIW 프로세서,

신경망 처리 장치 (NPU)

학번: 2021-26145

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Motivation
	1.2 Thesis Organization

	Chapter 2. Background
	2.1 Energy Consumption on Proccessing Units
	2.2 Previous Works
	2.2.1 Approaches to Processor Energy Estimation
	2.2.2 Complexity in Energy Modeling

	Chapter 3. Target Processor Overview
	3.1 Hardware Architecture
	3.2 Target Applications

	Chapter 4. Analysis on Processor Energy Consumption
	4.1 Effect of Architectural Characteristics
	4.1.1 Multi-Slot Structure
	4.1.2 Data Path Width

	4.2 Instruction-Level Energy
	4.2.1 Memory Slot Instructions
	4.2.2 Vector Slot Instructions

	Chapter 5. Analytical Energy Modeling Methodology
	5.1 Modeling Method Overview
	5.2 Input to Graph Conversion
	5.2.1 Algorithm Parsing
	5.2.2 Graph Transform

	5.3 Estimating Energy from Graph
	5.3.1 Estimating Runtime Sequence
	5.3.2 Kernel Energy Estimator

	Chapter 6. Experimental Results
	6.1 Experimental Environments
	6.2 Kernel-Level Energy Estimation

	Chapter 7. Conclusion
	Bibliography
	Abstract in Korean

<startpage>4
Abstract 1
Table of Contents 2
List of Figures 4
List of Tables 6
Chapter 1. Introduction 7
 1.1 Motivation 7
 1.2 Thesis Organization 8
Chapter 2. Background 9
 2.1 Energy Consumption on Proccessing Units 9
 2.2 Previous Works 11
 2.2.1 Approaches to Processor Energy Estimation 11
 2.2.2 Complexity in Energy Modeling 12
Chapter 3. Target Processor Overview 13
 3.1 Hardware Architecture 13
 3.2 Target Applications 16
Chapter 4. Analysis on Processor Energy Consumption 19
 4.1 Effect of Architectural Characteristics 19
 4.1.1 Multi-Slot Structure 19
 4.1.2 Data Path Width 20
 4.2 Instruction-Level Energy 21
 4.2.1 Memory Slot Instructions 27
 4.2.2 Vector Slot Instructions 30
Chapter 5. Analytical Energy Modeling Methodology 32
 5.1 Modeling Method Overview 32
 5.2 Input to Graph Conversion 34
 5.2.1 Algorithm Parsing 34
 5.2.2 Graph Transform 34
 5.3 Estimating Energy from Graph 40
 5.3.1 Estimating Runtime Sequence 40
 5.3.2 Kernel Energy Estimator 42
Chapter 6. Experimental Results 48
 6.1 Experimental Environments 48
 6.2 Kernel-Level Energy Estimation 49
Chapter 7. Conclusion 56
Bibliography 57
Abstract in Korean 59
</body>

