creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Analytical Energy Modeling
of a Vector Processing Unit

Y ZEAY TR Sy 1Y EdT

2023 8¢

Agsta et

A7) - AE FEE

Analytical Energy Modeling

of a Vector Processing Unit

.
ed

i
A g

AF Y BEHAAL YL AR
20239 8 ¢

493 s (D)
4% o] § A (D)

Abstract

Processor energy models have been extensively researched for a long time.
Specifically, works on modeling deep learning processors have recently gained
significant attention. Estimating energy consumption of neural processors plays a
key role in various design decisions, across hardware architecture, software
optimization, data and operation mapping space exploration, and neural architecture
search. To achieve accurate energy prediction, it is necessary to consider the inter-
instruction effects in addition to per-instruction energy.

In order to accurately model energy consumption with minimal overhead, we
conducted an analysis of the target processor architecture’s energy behavior at
instruction level. Building upon this analysis, we developed simple analytical
approaches to account for major power consumption factors, including inter-
instruction effects. Our modeling method demonstrates an average kernel-level

energy estimation accuracy of 95.52% with fast estimation time.

Keyword: Analytical Energy Consumption Model, Vector Processing Unit (VPU),
Very Long Instruction Word (VLIW) Processor, Neural Processing Unit (NPU)

Student Number: 2021-26145

Table of Contents

Abstract 1
Table of Contents 2
List of Figures 4
List of Tables 6
Chapter 1. Introduction 7
1.1 MOEIVALION ittt 7

1.2 Thesis Organizationccoceereerireesiesieeesiesreeseesnee e e e 8
Chapter 2. Background 9
2.1 Energy Consumption on Proccessing Unitscccceeviveeninenns 9

2.2 Previous WOTKS ...ccoiiiiiiiiiiiciee e 11
2.2.1 Approaches to Processor Energy Estimation.................. 11

2.2.2 Complexity in Energy Modelingcccoooveviiiiennns 12
Chapter 3. Target Processor Overview 13
3.1 Hardware Architecturecccoooviiiiiieiiiieiee e 13

3.2 Target APPlICAtIONSvevvivviiiiiieiiiee et 16

Chapter 4. Analysis on Processor Energy Consumption 19

4.1 Effect of Architectural Characteristicscccovvvverriveeiineennnn. 19
4.1.1 Multi-Slot Structureccoccevviieiiiiieiiie e 19
4.1.2 Data Path Width ..o, 20
4.2 Instruction-Level Energyccocovviiiiiiiiiiiiiice 21
4.2.1 Memory Slot InStructionsccccceeverivniieniniieennns 27
4.2.2 Vector Slot InsStructionsccccevvviiiiininniniininins 30

Chapter 5. Analytical Energy Modeling Methodology

5.1 Modeling Method Overview
5.2 Input to Graph Conversion
5.2.1 Algorithm Parsing
5.2.2 Graph Transform
5.3 Estimating Energy from Graph ..

5.3.1 Estimating Runtime Sequenceccccoevvvviiieniineenne

5.3.2 Kernel Energy Estimator
Chapter 6. Experimental Results

6.1 Experimental Environments

6.2 Kernel-Level Energy Estimation

Chapter 7. Conclusion
Bibliography

Abstract in Korean

32
32
34
34
34
40
40
42
48
48
49
56

57
59

List of Figures

Figure 3.1

Figure 3.2
Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4

Figure 4.5
Figure 4.6

Figure 4.7
Figure 4.8

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Block diagram of a systolic array-based NPU system
ATCHIECTUTE ... 15
Block diagram of a vector processor Core.............ceeuvee.. 15
Example of vmac instruction

base energy measurement kernel...........ccceviiiiininninne, 22
NOP loop energy measurement kernel..............occovennne. 23
Pipeline diagram of a 5-stage instruction

base energy measurement kernel...........ccccoveiiiiiiinnnene, 25
Example of {vmac, vnop} instruction pair

inter-instruction energy measurement kernel.................... 26
Measured base energy of memory slot instructions.......... 28
Measured inter-instruction energy of

memory Slot INSIUCLIONSevvvverrieiieiie e 28
Measured base energy of vector slot instructions 31
Measured inter-instruction energy of

vector SIot INSIUCLIONSevvveerieeieeieeeee e 31

Overall flow of the proposed analytical energy modeling

K4 DWCV_Kk3 kernel algorithm in operation DAG
TEPTESENTALION ... 35
K4 DWCV _k3 kernel algorithm in instruction DAG
TEPIESENLALION ...t 36
Same data store marking in K6 UPS k2 kernel algorithm

INNETMOSE LOOP ..vviivviiiiiiie e 37

Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1

Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

K4 DWCV k3 kernel algorithm in estimated CFG

TEPIESENLALION ...ttt 41
Example of base energy table lookupcccovviinnnnnns 42
Inter-instruction energy scale factor calculation 44
Example of inter-instructino energy table lookup............ 45

Average estimation accuracy on 100 test cases of 8 target

layer Kernelscooviiiiiiiiiii e 51
KO ACTYV energy measurement and estimation.............. 52
K1 _EADD energy measurement and estimation 52

K2 MAXP k3s2 energy measurement and estimation ... 53
K3 GAP energy measurement and estimation................. 53

K4 DWCV_Kk3 energy measurement and estimation 54

K5 DWCYV energy measurement and estimation 54
K6 UPS K2 energy measurement and estimation 55
K7 UPS energy measurement and estimation................. 55

List of Tables

Table 3.1
Table 4.1

Types of DNN layer processor kernelscccccovvennene

Vector processor core register files

Chapter 1

Introduction

1.1. Motivation

Processor energy consumption has been widely investigated in computer
architecture field for decades. Recently, with the advent of deep learning applications
and accelerators, there has been growing attention on power estimation of deep
learning application execution on neural processing units (NPU).

Estimation on NPU energy consumption helps improving design on various
levels. For instance, it can be used in architecture evaluation, data and schedule
mapping space exploration, and hardware-aware neural architecture search.
Especially in programmable processing units, energy estimation aids in software
optimization for better algorithms or compile schemes. Therefore, estimating NPU

energy consumption is important.

When operations are executed, energy consumption can be attributed to c_eitherl:

7 -:l.‘i —5— [

the operation itself, or the switching of executed operations. Recent studies on NPU
energy modeling have primarily focused on the former, neglecting the significant
energy contribution from operation switching. This limitation leads to inaccurate
estimation, particularly in scenarios with frequent operation switching. Previous
researches conducted in 1990s and 2000s consider energy consumption from the
switching of executed operations, but their modeling targets were processors at that
time, which differ substantially from modern NPU architectures.

Therefore, we propose an accurate analytical energy modeling method that
incorporates the energy consumed by operation switching. To achieve this, we
conducted a detailed analysis of the processor architecture to simplify energy
estimation. Specifically, our work targets a programmable vector processing unit

within a modern NPU architecture.

1.2. Thesis Organization

This thesis is organized as follows. Chapter 2 gives a brief background on
processor energy consumption and some previous energy estimation approaches.
Chapter 3 explains the modeling target vector processor’s hardware architecture and
applications. Chapter 4 presents analysis on target processor’s energy consumption
behavior, and based on the analysis, Chapter 5 proposes an analytical energy
modeling method to estimate processor kernel energy consumption. Chapter 6
presents experimental measurement and estimation results. Finally, Chapter 7

summarizes the proposed work and concludes this thesis.

Chapter 2

Background

2.1. Energy Consumption on Processing Units

Energy consumption in digital circuits is affected by several factors, such as
leakage current, clock, control signal and data switching. To accurately model energy
consumption, it is necessary to take these factors into account, which can introduce
complexity into the modeling process. Besides, there are specific characteristics
related to energy consumption in processing units that can simplify the energy

modeling process.

Effect of Data Path Width In digital circuits, the width of data path plays a
significant role in power consumption. A wider data path requires a larger number of
transistors and interconnects, leading to increased capacitance and higher switching
activity, thereby resulting in higher power consumption. Conversely, a narrower data

%]

-
|

9

path reduces the number of transistors and interconnects, resulting in lower power
consumption. By considering this effect at the instruction level, we can simplify the
energy model. Instructions with larger bit operands involve a wider data path in their
execution path, thus consuming relatively more energy. Conversely, instructions with
smaller bit operands consume less power and have a minimal impact on overall

energy consumption. Therefore, they can be ignored for simplicity purposes.

Multi-Slot Structure In VLIW processors, the introduction of parallel
instruction combinations adds complexity. However, decomposing power
consumption can significantly simplify energy modeling.

When executing an instruction word with multiple slot instructions through
pipeline stages, certain power consumption sources are shared among different slot
instructions, while others are independent. The shared portion includes static power
caused by leakage current and dynamic power dissipated in common hardware units
such as the clock and instruction fetching and decoding control logic. The energy
consumption from these shared components is not influenced by the instruction types,
and therefore can be directly measured by executing a series of No Operation (NOP)
instruction words.

The other portion of power consumption can be considered independent among
different slots. Since the VLIW architecture is designed for parallel execution of an
instruction word, different slot instructions typically do not share hardware units in
the execution stages. Therefore, it is reasonable to assume that the mutual influence
between different slot instructions can be disregarded. This property is commonly

referred to as the spatial additive property [10].

-
10 A0

2.2. Previous Works

2.2.1. Approaches to Processor Energy Estimation

Processor energy consumption has been extensively studied in the field of
computer architecture, and there exists various classes of approaches on energy
modeling [1]. A majority of works [2] [3] utilize performance counters to obtain
computation activity factors and employ linear regression to determine power
weights associated with each counter. These approaches have the advantage of not
incurring additional overhead, but the main drawback is the inability to break down
energy consumption on a per-process basis. Other models [8] [9] [11] obtain activity
factors through simulation, providing detailed information at the hardware
component and instruction level. However, these methods involve significant
overhead. Some studies [10] [13] [14] focus on instruction-level energy estimation,
by executing micro-benchmarks of instruction loops and profiling their execution.

In the case of NPUs, analytical energy modeling methods [5] [12] employ
operation-based approaches by summing up the product of operation count and
operation energy cost to estimate energy consumption. However, these approaches
overlook the energy consumption resulting from operation switching, leading to

inaccurate estimations, particularly for workloads with frequent operation switching.

11 M 2l

2.2.2. Complexity in Energy Modeling

To achieve precise energy estimation, it is necessary to consider various factors
from different abstraction levels at the hardware-software stack, including hardware
micro-architecture and application algorithmic properties. Hence, the more we try to
model accurately, the higher the modeling complexity becomes.

When targeting VLIW processors, the complexity becomes even more
significant, since very long instructions can be created by combining multiple
instructions. [10] introduces spatial additive property to reduce such complexity,
which has been verified under extensive studies afterwards.

Unfortunately, accurate energy models require more than per-instruction
estimation. Inter-instruction effects [16] can have a significant impact on power
consumption, and incorporating these effects adds further complexity. In [7], the use
of NOP instructions is proposed to model transitions between any two instructions,
achieving an accuracy within 8% error while significantly reducing complexity. [6]
suggests an instruction clustering method for modeling efficiency with average error
of 1.9%. However, these works targeted general-purpose and digital signal
processors with small data paths, thereby being applicable only to processors with
similar architectures and not to vector processors designed for DNN applications.

Additionally, breaking down the target software into instructions is beneficial
for accuracy, as in [14] [15] [6]. However, analyzing at instruction-level requires
compile-able program codes, a compiler, and runtime instruction profiling, which
can make the modeling process cumbersome. Alternatively, analyzing software

using analytical methods can significantly improve efficiency.

J
12 -"\-\."i '.;'

Chapter 3

Target Processor Overview

3.1. Hardware Architecture

The target processor for energy modeling is a programmable vector processor
within a systolic array-based neural processing unit (NPU) system. Figure 3.1
provides a schematic of the top-level NPU system architecture. The system
comprises a systolic array, an on-chip scratchpad memory, vector processor cores,
and off-chip DRAM. The on-chip scratchpad memory, implemented as a multi-bank
SRAM, serves as a shared storage for tensor data that can be accessed by both the
systolic array and the vector processor. The systolic array accelerates convolution
and generalized matrix multiplication (GEMM), which are fundamental operations
in deep neural networks (DNNs). The vector processor, composed of 16 core-tiles
for parallel processing, handles a broader range of operations that the systolic array
either cannot compute efficiently or cannot perform at all. Examples of such
%]

-
|

13

operations include depth-wise convolution, element-wise addition, pooling, up-
sampling, and non-linear activation functions.

A vector processor core is a programmable very long instruction word (VLIW)
processor consisting of an interface to on-chip scratchpad memory, local scratchpad
memory components for program code, non-tensor scalar data, and lookup tables
(LUTs), register files, and three issue slots. The register files are of eight distinct
kinds with varying bit widths, and are accessible from multiple slots by separate
read/write ports. More details about register files are provided in Chapter 4. The issue
slots are scalar slot, memory slot, and vector slot with dedicated arithmetic units and
orthogonal instruction set architectures (ISA) specific to each slot. During each cycle,
a single VLIW instruction is fetched from the program scratchpad memory, decoded
into instructions for each slot, and issued in an in-order manner.

The memory slot manages the memory access operations for tensor and scalar
data between the memory components and the core registers. Vector slot instructions
are designed to efficiently perform identical operations on multiple data elements,
and they are dispatched to a single instruction multiple data (SIMD) unit for
acceleration. Scalar slot instructions mainly use a scalar arithmetic logic unit (ALU)
to handle auxiliary operations such as memory address computation, stack pointer

and control flow operations.

b i 211 |
14 M =T} @

4P| Vector Processor Core##0

4P| Vector Processor Coreft 1

Systolic Scratchpad

Array Memory

<4=Pp| \ector Processor Core #15

DRAM

Figure 3.1: Block diagram of a systolic array-based NPU system architecture

PE Scalar
= Register
g LI Files
QU
g2
v T Vector PE ALU AGU
m -
L 2 [P Register
g L Files Vector Scalar Memory
c g Issue Slot Issue Slot | | Issue Slot
v
o
o Decoder
=4
Fetcher
Program/Scalar/LUT Scratchpad Memory

Figure 3.2: Block diagram of a vector processor core

15

3.2. Target Applications

Unlike general-purpose VLIW processors, the vector processor is specialized
for DNN operations. More specifically, under the NPU system described in Section
3.1., it handles operations that are not suitable for the systolic array, such as depth-
wise convolution, element-wise addition, max pooling, average pooling, and non-
linear activations.

The execution of these target applications can be easily analyzed in a loop-based
manner. The computation of DNN layers can be structured using simple nested loops,
where the loop bounds are determined by feature map size, filter shape, and other
configurations like padding and stride. Consequently, the control flow of these
applications is relatively straightforward compared to other general-purpose
processor kernels. This simplicity simplifies the estimation of runtime execution
without the need for actual compilation or cycle-level simulation. Taking advantage
of this characteristic, the proposed energy modeling method decomposes and
analyzes DNN layer computations in a fast and analytical loop-based approach to
model energy consumption.

To perform DNN layer computations on the vector processor, the layer
computation algorithm is implemented as a processor kernel code. The vector
processor ISA is exposed as a C primitive, allowing the implementation of target
applications as processor kernels written in C code. The proposed energy modeling
method has been validated on 8 different kernels, as presented in Table 3.1. Various
other types of DNN operations can also be executed on the vector processor with

appropriately written kernel codes. Algorithm 1 provides an example pseudocode for

e
16 N =X

the processor kernel KS DWCV.

The processor kernel program written in C code is compiled into VLIW

instructions, and program binary code is generated. The compiler is provided with

micro-architectural information, enabling it to explicitly leverage instruction-level

parallelism (ILP) in the generated machine code. During the execution of a neural

network on the NPU, when a layer needs to be processed by the vector processor, a

runtime command scheduler on the NPU loads the generated program binary onto

the instruction scratchpad of the vector processor and initiates kernel execution.

Once the execution is completed, the vector processor core sends result signals to

the command scheduler.

Kernel ID Layer Type Optimized Config
KO_ACTV nonlinear activation generic
K1_EADD element-wise addition generic
K2_MAXP_k3s2 max pooling kernel = (3, 3), stride = (2, 2)
K3_GAP global average pooling generic
K4_DWCV_k3 depth-wise convolution kernel = (3, 3)
K5_DWCV depth-wise convolution generic
K6_UPS k2 nearest neighbor up-sample kernel = (2, 2)
K7_UPS nearest neighbor up-sample generic

Table 3.1: Types of DNN layer processor kernels

17

Algorithm 1 K4 DWCV_k3 kernel pseudocode

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Initialize: in/out/kernel information, address
for Oc: 0, 1, ..., channel do
Load: SR filter0, 1, 2, ..., 8 € filterdata 0, 1,2, ..., 8
Broadcast: VR filter0, 1, 2, ..., 8 € SR filter0, 1,2, ..., 8
for Oh: 0, 1, ..., out_height do
for Ow: 0, 1, ..., out_width do

Initialize: ACCR

Load: VR fmap0, 1,2, ..., 8 € fmap data0, 1,2, ..., 8
Compute mac: ACCR € ACCR + VR_fmap0 * VR _filter0
Compute mac: ACCR € ACCR + VR_fmap1 * VR filterl
Compute mac: ACCR € ACCR + VR_fmap2 * VR _filter2
Compute mac: ACCR € ACCR + VR_fmap3 * VR _filter3
Compute mac: ACCR € ACCR + VR _fmap4 * VR _filter4
Compute mac: ACCR € ACCR + VR_fmap5 * VR _filter5
Compute mac: ACCR € ACCR + VR_fmap6 * VR _filter6
Compute mac: ACCR € ACCR + VR _fmap7 * VR _filter7
Compute mac: ACCR € ACCR + VR_fmap8 * VR filter8
Compute shift & Move register: VR _result €< ACCR >> shifter
Store: fmap data < VR result

end for

end for

end for

138

Chapter 4

Analysis on Processor Energy

Consumption

4.1. Effect of Architectural Characteristics

4.1.1. Multi-Slot Structure

The spatial additive property explained in Section 2.1 can be applied to the
vector, memory, and scalar slot instructions in our target vector processor. By
considering the slot-independent energy measured from a NOP sequence and the
additive property of each slot instruction, the total energy consumption (E;ytq;) can
be calculated using the NOP energy (Eyop) and the energy of each slot instruction

(Evectors Ememorya Escalar), as shown in Equation (4.1).
Etotal = ENOP + Evector + Ememory + Escalar (4-1)

19

4.1.2. Data Path Width

Table 4.1 illustrates the vector processor core register files and their
corresponding data widths. The table shows that different slots utilize different sets
of register files. Scalar slot instructions utilize SCR, AR and SR, all of which are up
to 32-bit wide. Since scalar slot instructions involve small bit operands, the wires
and pipeline registers downstream of the scalar slot instruction data path also have
narrow bit widths. On the other hand, vector slot instructions have access to VR,
VCR, LUTR, ACCR, and BIASR, which have larger data widths, resulting in wider
downstream execution data paths. The memory slot ISA consists of load and store
instructions with optional address computation, with operands involving scalar data,
stack data, and vector data. Scalar data and stack data memory instructions utilize
SCR, AR, and SR, thus involving a small data path, while vector data memory
instructions access VR, resulting in a wider downstream data path.

Based on these observations, vector processor instructions can be categorized
into two groups: narrow data path (ND) instructions with a small data path involved,
accessing data up to 32-bit wide, and wide data path (WD) instructions with larger
data widths. All scalar slot instructions and scalar/stack data memory slot
instructions belong to the ND instructions, while vector slot instructions and vector
data memory instructions belong to the WD instructions. Considering the
relationship between data path width and energy consumption discussed in Section
2.1, the energy consumption of WD instructions is dominant, whereas that of ND
instructions is relatively insignificant. This was confirmed through experimental

measurements where ND instructions consumed less than 0.3 W, while WD

instructions consumed 1 W ~ 6W. Based on these findings, it can be concluded that .
2] 2 11 &]

20 A7 B

-

ignoring ND instructions has minimal impact on energy modeling accuracy while
significantly reducing model complexity. Therefore, the proposed energy modeling

method focuses solely on the energy consumption of WD instructions for efficiency.

- Access from
Rﬁgi;:eer Description gtgvr\ggtter; Stot
than)
S | V| M
SCR scalar condition 1 0| 0|0
AR memory address 16 O| 0| O
SR scalar data 32 Ol 0|O
VR vector data 512 oO| O
VCR vector condition 512 (0]
LUTR LUT loaded data 512 o]
ACCR accumulation data > 512 0]
BIASR bias data >512 O

Table 4.1: Vector processor core register files

4.2. Instruction-Level Energy

In order to analytically model energy consumption of a processor kernel, we
first measured and analyzed instruction-level energy consumption. As mentioned in
Section 4.1.2 that we only consider WD instructions, we narrowed down
measurement target to vector slot instructions and vector load and store instructions.
To measure the base and inter-instruction energy of each instruction, we wrote short
processor kernels composed of measurement target instructions. Furthermore, to

differentiate the power consumption between the control path and the data path,
21 =T

-
R) L-

:l._..!;.

measurement kernels were executed with both zero and random data. Details on

experimental environments are described in Chapter 6.

Measurement of Instruction Base Energy To measure the instruction base
energy, we wrote power measurement kernels as in Figure 4.1. These kernels
consisted of a long repeated loop filled with fully-pipelined target instructions,
vector MAC (Multiply-Accumulate) instructions in this case. During kernel
execution, we collected samples of measured instantaneous power at regular

intervals and averaged them to obtain base energy.

assembly code description
kernel prologue
register initialization
loop 42500 Il repeat succeeding 4-instr sequence 2500 times
vmac accr v v1 /I accr +=v0 * v1
vmac accrv2v3 /I accr +=v2 * v3
vmac accrvO v1 /I accr +=v0 * v1
vmac accrv2v3 /I accr +=v2 * v3
kernel epilogue

Figure 4.1: Example of vimac instruction base energy measurement kernel

To isolate the energy consumption of the target instruction sequence within a
single slot, it is necessary to eliminate redundant energy factors. According to the
energy decomposition described in Equation (4.1), NOP energy is considered
redundant. Additionally, the overhead associated with loop control, which involves
the utilization of the loop counter register, is also redundant. As a result, the

measured power of target instruction sequence can be calculated using Equation (4.2).

22 M 2l

In the equation, Pinstr 100p and Pynop j00p Tepresent the average sampled power
obtained from the instruction base energy measurement kernel in Figure 4.1, and the

NOP loop measurement kernel in Figure 4.2, respectively.

Pmeasure = instr_loop ~— PNOP_loop (4-2)
assembly code description
kernel prologue
register initialization
loop 4 2500 Il repeat succeeding 4-instr sequence 2500 times
vnop /I vector slot nop instruction
vnop Il vector slot nop instruction
vnop Il vector slot nop instruction
vnop Il vector slot nop instruction
kernel epilogue

Figure 4.2: NOP loop energy measurement kernel

The instruction base energy can be directly obtained from Py, oq6yre- Figure 4.3
illustrates the fully-pipelined execution of a 5-stage instruction. At the instant of
power sampling, all pipeline stages are filled, and thus the measured power is the
sum of single-cycle energy across the spatial axis, as shown in Equation (4.3) line 1
and 2 and the green-highlighted stages in Figure 4.3. Besides, line 2 of Equation (4.3)
also corresponds to the blue-highlighted stages as well as green, so the summation
can be considered equivalent to sum of each stage energy of a single instruction
across the temporal axis. Therefore, the instruction base energy is equal to P eqsyre-

In Equation (4.3), B; denotes the base energy of instruction i.

23 !

Pmeasure * 1 Cyde = Emeasure
= LEstageo + Estagel + Estagez + Estage3 + Estage4

= B, (4.3)

In register initialization in Figure 4.1, if all operand registers are initialized with
zero, no data switching occurs during kernel execution. Therefore, the measured
energy can be considered as the energy consumption in the control path. On the other
hand, when the registers are initialized with random data, both the control path and
data path switching occur. By subtracting the measurement with zero data
initialization from the measurement with random data initialization, we can obtain
the energy consumption of the data path. To ensure data switching on all data paths,
we took care to initialize each register with different data values and use different
registers in every cycle. If this is not guaranteed, power would get much under-

measured.

J
2 4 -"\-\."i '.;'

stage | stage
0 1

stage
0

instr i
stage
4
\ 4 stage | stage
space 3 4

O : stages of single instruction, across temporal axis
(0 : stages of single cycle, across spatial axis

Figure 4.3: Pipeline diagram of a 5-stage instruction
base energy measurement kernel

. N &t 8t

Measurement of Inter-Instruction Energy To measure inter-instruction
energy, we used power measurement kernels as shown in Figure 4.4, similar to the
base energy measurement kernel but with two types of instructions switching every
cycle. As aforementioned, we only measured inter-instruction energy on pairs with

NOP for model efficiency.

assembly code description
register initialization
loop 4 2500 Il repeat succeeding 4-instr sequence 2500 times
vmac accrv0v1 /[accr +=v0 * v1
vnop /I vector slot nop instruction
vmac accrv2v3 /[accr +=v2 * v3
vnop /I vector slot nop instruction

Figure 4.4: Example of {vmac, vnop} instruction pair
inter-instruction energy measurement kernel

Since two different instructions in the measurement kernel are time-sharing
with equal contributions, the energy consumption can be considered as the average
of each instruction’s base energy. However, as mentioned in Section 2.2.2, the energy
consumption of different instructions sequence is always larger than that of a single
instruction sequence, and the corresponding term is regarded as the overhead of
executing different instructions sequentially, namely inter-instruction energy. As a
result, with I; ; denoting inter-instruction energy of instruction {i, j} pair, the
relationship between different energy factors in the inter-instruction energy

measurement kernel can be expressed as in Equation (4.4).

2 6 !

Preasure * 2 cycle = Epeqoure *2 = B + Bj + 2 Ii,j (4.4)

From this, the inter-instruction energy of instruction pair {i, j} can be calculated
as in Equation (4.5). Here, since NOP energy is already removed from E,,.qsures

Bnop can be regarded as zero in each slot energy consumption.
1
Ii,j = Enmeasure — E* (B; + Bj) (4.5)

As in base energy measurement, inter-instruction energy measurement was also
done with both zero and random operand data, in order to distinguish between

control path and data path energy.

4.2.1. Memory Slot Instructions

WD instructions of memory slot ISA consist of vector load and store
instructions, with different addressing modes and optional address register update.
On these instructions, instruction base energy, inter-instruction energy with NOP-
pair, each on both control and data path are obtained from experimental measurement.
The measured values are presented in Figure 4.5 and Figure 4.6. In the figures, the
energy values on the y-axis are scaled with a mutual scaling factor for security

reasons.

J
27 -"\-\."i '.;'

scaled energy

scaled energy

0.030

0.025

0.020

0.015

0.010

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Q N Vv > Q N
D7 D7 D7 D7 & &
RN - S
W control path W data path
Figure 4.5: Measured base energy of
memory slot instructions
| | | | | | |
Q N YV > Q N V
’bb/ 'bb/ ’Z)b/ 'bb/ OKQJ ’ o&@/ o@/
RS R Y- - -
W control path W data path
Figure 4.6: Measured inter-instruction energy of
memory slot instructions
-
28 o ,-"{# -.l:.T;'
F ‘_

| &}

In Figure 4.5 and 4.6, different load and store instructions are depicted across
the x-axis, varying in addressing modes and address register update options. It can
be observed that both the data path and control path have an impact on the base and
inter-instruction energy of memory slot instructions. However, the amount and
variance of inter-instruction energy from Figure 4.6 are much smaller compared to
those of the base energy. Basically, inter-instruction energy consumption occurs
because different instructions utilize different parts of the circuit, leading to circuit
state change [16]. Nonetheless, load and store instructions primarily involve only
address calculation and memory access, resulting in simple control signals and
pipeline data path structure. As a result, the overhead associated with switching
instructions is relatively small and consistent. Consequently, we can assume a
constant value for inter-instruction energy when executing different memory
operations in sequence, regardless of specific instruction types.

Another observation is that addressing modes and address register update
option do not significantly impact the energy behavior. The address-related logic in
these instructions utilizes much smaller bits compared to the memory access
operands, which is vector data. Since these operations have negligible energy
consumption, it suffices to differentiate between load and store instructions for
energy modeling purposes. Thus, we model memory slot instructions as either load
or store instructions without considering the addressing modes and address register
update option, thereby effectively reducing the complexity associated with handling
these low-level functions, which would otherwise be challenging without the

assistance of an actual compiler.

T
29 Al =

4.2.2. Vector Slot Instructions

Similar to memory slot instructions, base energy and inter-instruction energy
with NOP-pair of vector slot instructions were measured on both the control and data
paths, and the scaled results are presented in Figure 4.7 and Figure 4.8.

The measurements revealed substantial variations in energy consumption
among instructions. Even within the same class of instructions, such as register move
instructions (vinst_0 ~ vinst_4), notable differences were observed based on the type
and number of source and destination registers. Moreover, the inclusion of a shift
operation after vector mac operation (vinst 5, vinst 6) had a significant impact on
energy consumption. Consequently, unlike memory slot instructions, precise
instruction-level energy estimation is required for vector slot instructions,
considering all subfunction information.

In particular, the large energy consumption and variance of vector slot
instructions is mainly attributed to the data path rather than the control path. These
instructions utilize vector operand data and SIMD units to accelerate vector
arithmetic operations, which involve a large data path. Additionally, they handle the
major computations of DNN layer operations, engaging complex control signals and
a deep, intricate pipeline with many functional units. As a result, most of the
switching activity occurs in the data path, highlighting the need to analyze and model

energy consumption focusing on the data path.

3§ 53 17
30 -'x"i':"1.'

0.030

0.025

9L JISUIA
G| JISUIA
L JISUIA
€1 JISUIA
21 IsuIA
L L JISUIA
0L JISuIA
6 JISUIA
8 JISUIA
/ JISUIA
9 JISUIA
G JISUIA
¥ JASuUIA
s $ J1SUIA
s /1SUIA
s | /ISUIA
mmmm (O JISUIA

0.020
0.015
0.010
0.005
0.000

AbBisua pajeds

W data path

W control path

Figure 4.7: Measured base energy of

vector slot instructions

0.030

0.025

.

|

|

|

|

|

|

|

[

L
|
|
I

|

I
I

|

o n o un O
S 5 & 38 3
o o o o o

AbBisus pajeds

9] JISUIA
G| JISUIA
71 JISUIA
€1 JISUIA
21 1ISuIA
L L JISUIA
0L JisulA
6 JISUIA
8 JISUIA
/ NSUIA
9 JISUIA
G JISUIA
7 JISUIA
€ IISUIA
Z JASUIA
| JISuUIA
0 JISUIA

W data path

W control path

Figure 4.8: Measured inter-instruction energy of

vector slot instructions

!

3 t_‘_” ?:':'1- It

:A{-.L‘;

31

Chapter 5

Analytical Energy Modeling
Methodology

5.1. Modeling Method Overview

Based on the observations made on the energy consumption of the vector
processor in previous chapters, an analytical energy modeling methodology has been
developed. The overall flow of the proposed method is depicted in Figure 5.1. It
takes as input the layer configurations (e.g., layer type, data and kernel shape), as
well as the corresponding layer processor kernel algorithm description. The output
is the total energy consumption of each slot throughout the execution of single layer
kernel.

To achieve analytical modeling without the need for kernel code compilation
and simulation, the methodology consists of 4 analytical steps. Step 1, 2 will be

32 7

covered in Section 5.2, and 2, 3 in Section 5.3 respectively. The entire framework is

implemented in Python 3.8.

Analytical Modeler

layer kernel algorithm
in TVM RelayIR

layer [Algorithm
config IE@ @ . Parser) (5Q
v o

o

~
»

Graph
@ . Transform) O
4 \ 6
®[Runtime "O‘

Analyzer
=
X 50)
@ Energy energy
Estimator || table
OUTPUT

v

EVECtGI‘ + Ememory + ESC&]&T

Figure 5.1: Overall flow of
the proposed analytical energy modeling method

3§ 53 17
33 -'x"i':"1.;

5.2. Input to Graph Conversion

5.2.1. Algorithm Parsing

In step 1, an in-house algorithm parser is utilized to generate a directed acyclic
graph (DAG). The nodes of the graph represent general operations such as addition,
multiplication, mac, max and so on. The algorithm parser leverages intrinsic
functions provided by TVM, an open-source machine learning compiler framework
[4]. Layer kernel algorithms are written in python code to describe computations in
TVM’s Relay Intermediate Representation (IR) level, and the algorithm parser
lowers IR to TVM’s nested Tensor-level IR (TIR) by employing a set of TVM
intrinsic functions. Subsequently, the nested TIR is converted into an operation graph,
as depicted in Figure 5.2. Control operations are colored in yellow, memory slot
operations in green, and vector slot operations in blue. Moreover, iteration count

information of loop control operations is also included in the graph.

5.2.2. Graph Transform

Step 2 transforms operation DAG from step 1 output into instruction DAG as
illustrated in Figure 5.3, with all operation nodes except for control operations
converted to instruction nodes. The conversion process involves removing, replacing,
and adding certain nodes based on each slot ISA and hardware-specific features.
Once the transformation is completed in step 2, the instruction nodes in the graph

can be one-to-one mapped to energy table entries of energy estimator in step 4.

34 A =2 rH

loop_start)iter: 5
load_filter load_filter

loop_start)iter: 5°9

loop_start) iter: 579763

load fmap load_fmap load fmap

Cmec (e
€D

Figure 5.2: K4 DWCV_K3 kernel algorithm
in operation DAG representation

35 2 M E g

loop_start)iter: 5

i

loop_start) iter: 59
loop start) iter: 5°9"63

Figure 5.3: K4 DWCYV_Kk3 kernel algorithm
in instruction DAG representation

2 L e

loop_start

loop_end

TRANSFORM

loop_start

- — - = = —————

- -

gt e —— -

Figure 5.4: Same data store marking in
Ké6_UPS_k2 Kkernel algorithm innermost loop

57 2 M E g

Memory Slot Operations In the operation DAG generated in step 1 (Figure
5.2), the green-colored nodes represent filter and feature map memory operations.
These operations can be directly transformed into scalar and vector load and store
instruction nodes, respectively, as they already align with the modeling level of load
and store instructions without functional codes. However, it is important to note that
scalar memory instructions consume relatively minor energy and will be ignored in
the later steps of the methodology, as mentioned in Section 4.1.2.

In addition, there is a significant attribute of store operations that needs to be
analyzed in this step. When consecutive store operations handle the same data,
switching activity is reduced, leading to a significant decrease in energy
consumption compared to cases where the data changes every cycle. This situation
commonly occurs in algorithms such as nearest neighbor up-sampling, where a pixel
is loaded once and then stored multiple times. To account for this scenario, store
operation nodes that have a mutual predecessor are marked as using the same data,
as shown in Figure 5.4. This information will be considered in the subsequent steps

when these operations are executed in consecutive cycles.

Vector Slot Operations Since the vector processor ISA is designed to support
DNN operations, many vector slot instructions align with single operation nodes.
However, some operations function in a hardware-specific manner, requiring
appropriate transformation to the instruction level.

First, the vector processor operates with INT8 data type. Consequently, tensor
element values after computation undergo right-shifting for quantization before
storage in memory. Thus, if the input graph does not explicitly include a shift

operation, some kind of shift operation should be inserted during the transformation
11 © 1)
38 A =— T

process. This does not apply to max pooling and nearest neighbor up-sampling layers,
where tensor element values do not go through any computation operations, but only
gets replaced.

Moreover, the vector processor employs an accumulation register (ACCR) with
a larger bit capacity for accumulation operations, and only a single ACCR is
available in the core. As a result, when a group of operation nodes involve value
accumulation, an ACCR initialization instruction is inserted prior to the head node
of the group. For instance, in Figure 5.3, an init_acc node is added as a predecessor
to a sequence of consecutive vmac instructions.

Another consequence of using the ACCR is the insertion of register move
instructions between different register types, based on the predecessor operation’s
destination register and successor operation’s source register. Additionally, for
efficiency purposes, quantization shift operations are combined with these register
moves or other instructions whenever feasible. In Figure 5.2, the predecessor
operation of the rshift operation has a destination register of ACCR, while the
successor operation of the rshift operation has a source register of VR. This
necessitates the insertion of an ACCR to VR register move, referred to as the acc2v
instruction. Furthermore, the rshift operation is combined with the acc2v instruction,

resulting in the final transformed node, acc2v_sht, as depicted in Figure 5.2.

] -.-
39 A =

5.3. Estimating Energy from Graph

5.3.1. Estimating Runtime Sequence

After step 2, we have all the information on which instructions are executed and
how many times in the instruction DAG. However, to account for inter-instruction
effects in energy estimation, information on the execution sequence of instructions
is also required. To achieve this, we utilize an in-house runtime analyzer.

The runtime analyzer takes the instruction DAG from step 2 as input and
considers the dependency information represented by graph edges. It utilizes pre-
defined hardware execution latency information for each instruction to estimate the
runtime execution sequence of nodes. As a result, step 3 produces the estimated
control flow graph of the kernel, including the iteration information of each basic
block and the internal execution sequence of instructions.

Figure 5.5 illustrates the result of step 3 for the K4 DWCV_k3 kernel, based
on the input instruction DAG shown in Figure 5.3. The first, second and third
columns in Figure 5.5 represents the scalar slot, memory slot, and vector slot
respectively, while a hyphen denotes a NOP. As observed, the scalar slot sequence is
empty, and scalar load and store instructions have been removed since they will be

disregarded in the subsequent energy estimation step.

10 ALl

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

s2v_broadcast

¥

- - N |_‘____1
¥

- - - M—

- vioad -

- vload -

- vioad -

- vioad -

- vload -

- vioad -

- vload -

- vioad init_acc

- vioad VMac

- - VMac

- - VIMac

- - VIMac

- - VIMac

- - VIMac

- - VMac

- - VIMac

- - VIMac

- - acc2v_sht

- vstore -

- - - —_—
¥

- : .
¥
| - - - —

v

Figure 5.5: K4 DWCV_K3 kernel algorithm in

estimated CFG representation

41

,.,H

e

':."\-\.

2T

i &+

5.3.2. Kernel Energy Estimator

In this step, the energy estimator finally calculates the estimated energy of

kernel execution by utilizing the estimated control flow graph (CFG) generated in
the previous step and referencing a pre-built energy table. We have created two types

of energy tables, which were obtained from experimental measurements as described

in Section 4.2.

Estimating Base Energy The first energy table is the base energy table for
memory and vector slots. Each entry in the table is one-to-one mapped to a specific
slot instruction and contains the base energy value. As shown in Figure 5.6, the base

energy of each instruction from the estimated CFG can be directly retrieved by

looking up the base energy table.

vector slot
instruction ID

base energy

instr A 0.006340

instr B 0.007866

base(instr D) = ? instr C 0.027397
lookup instr D 0.017789

Figure 5.6 Example of base energy table lookup

4 2

Estimating Inter-Instruction Energy The other energy table is the inter-
instruction energy table for NOP-pairs. In the case of the memory slot, a single
constant value is sufficient to model inter-instruction energy as explained in Section
4.2.1. However, for the vector slot, we need to consider inter-instruction energy for
each pair of instructions. To improve modeling efficiency, we propose a novel
method where we only measure the inter-instruction energy for pairs with NOP and
perform analytical conversion to estimate the inter-instruction energy for all pairs.

In Section 4.2.2, it was discovered that the inter-instruction energy consumption
of vector slot instructions primarily originates from the data path of the vector
processor, due to its application-specific ISA and SIMD architecture. When the type
of executed instruction changes, different parts of the circuit are utilized, and during
this process, various factors cause inter-instruction energy consumption. Among the
factors, a primary consideration in the target vector processor microarchitecture is
the multiplexing of input wires within the modules.

Input wire multiplexing in the vector processor is implemented as a means of
operand isolation, a commonly employed power-saving technique. It serves to
prevent redundant switching activity in idle combinational logics. As a consequence
of this multiplexing, operand wires that were utilized in the previous instruction but
are not required in the current instruction undergo a transition from their previous
values to zero. That is to say, switching activity occurs due to the utilization of
different parts of the circuit (e.g., pipeline registers, functional units and internal
wires) by consecutive instructions, causing inter-instruction energy consumption,
with the energy dissipation varying across different instruction pairs. To precisely
evaluate this effect, we need to consider all sequential instruction pairs at the wire

and bit-level through RTL synthesis and simulation, which demands significant
11 © 1)
4 3 A =T

engineering time and effort.

Instead, we propose a method to simply calculate the estimated inter-instruction
energy for each instruction pair based on pipeline stage usage, as depicted in Figure
5.7. To obtain the inter-instruction energy of instruction A and B sequence, denoted
as inter(A,B,A,B, ...), we first determine the number of stage transitions from
enabled to disabled stages, referred to as E2D _stages, in both 4 2B2>42... and
nop 2B 2nop 2B ... sequences. We then calculate the scale factor based on the
ratio of E2D_stages, as shown in Figure 5.7. Finally, the estimated inter-instruction
energy of instruction A and B sequence is obtained by scaling the inter-instruction
energy with NOP using the scale factor, as in Equation (5.1). Here, the inter-
instruction energy with NOP is directly retrieved by looking up the inter-instruction

energy table, as depicted in Figure 5.8.

ID [EXO|EX1|EX2 | EX3 | EX4 | EX5 ID | EXO | EX1 | EX2 [EX3 | EX4 | EX5

instrAllolo| o| o]l o] x| x NOP X | x| x X

instrB[{x | x| x| xJ)l olfo]| o instrB | x | x | x| x

instrAlo|lo|lo]lo|o|lx | x NOP X | x| x X

instrB| x | x| x| x| o] o | o] instrB| x| x| x| x| o I o] | o]
E2D stages(A,B,A,B,..) =6 E2D _stages(nop, B,nop,B,..) =3

E2D_stages(A,B,AB,...)
E2D_stages(nop,B,nop,B,...)

~ scale_factor(A,B) =

Figure 5.7 Inter-instruction energy scale factor calculation

inter(4,B,A,B, ...)

. -
1l =k —7
H CF y1r
1| T 8 LS

= inter(nop, B,nop, B, ...) * Scale_factor(A,B)] ArE(5al)
44 A =T

vector slot

instruction pair ID inter energy
inter(NOP, instr B) = ? {NOP, instrA} 0.002943
lookup {NOP, instr B } 0.010896
{ NOP, instr C } 0.008820
{NOP, instr D } 0.010073

Figure 5.8 Example of inter-instruction energy table lookup

By employing this method, it is no longer needed to collect measurements for
all instruction pairs. Instead, only pairs consisting of an instruction and a NOP are
considered, while still accounting for the circuit state changes in all instruction pairs.
The inter-instruction energy values for all {vector slot instruction, NOP} pairs are
contained in each entry of the inter-instruction energy table, with a table size of 0(n)

instead of 0(n?).

Estimating Kernel-Level Energy Consumption The energy estimator
calculates the estimated energy of the kernel by combining the instruction base
energy and inter-instruction energy over the estimated CFG. The algorithm for
calculating the kernel-level estimated energy is described in Algorithm 2.

In phase 1 of the algorithm, the estimated energy of each node and edge in the
CFG is calculated. Each CFG node corresponds to a basic block, which is a sequence
of instructions. The node energy is calculated as the sum of the base energy of all

instructions in the basic block, as well as the inter-instruction energy of all sequential

§ = i ¥
45 AMZEZTHDS

-
™ a1
] |

instruction pairs within the basic block. A CFG edge represents the control flow path
from the last instruction of the source node to the first instruction of the destination
node. Thus, the edge energy is calculated as the inter-instruction energy between
these two instructions.

In phase 2, the estimation of the entire kernel execution energy is calculated.
While parsing the entire CFG, the energy of each node and edge is accumulated. The
energy of a single node is multiplied by its basic block iteration count. The energy
of a single edge is multiplied by the number of times the edge is taken, which is
directly calculated from the iteration count of the connected nodes. Unlike in general
processor kernels where control flow is complex, DNN layer kernels are structured
in simple nested loops, with each basic block having no more than 2 incoming and
outgoing edges, making it possible to determine how many times an edge is taken
based on the basic block iteration count.

Repeating the above process for memory and vector slot, the kernel-level
estimation of each slot’s energy is obtained. Finally, from the estimation values of
memory, vector slots and ignored scalar slot (assumed to have zero energy), the slot
additive property gives the overall kernel-level vector processor energy estimation.

The entire estimation process, which involves 4 analytical steps of algorithm
parsing, graph transformation, runtime analysis, and energy calculation, does not
require any compile-able kernel C code, compiled assembly code, actual hardware
execution, or low-level simulation. This approach enables fast evaluation of the
energy consumption without the need for extensive hardware resources or time-
consuming simulations. Instead, the estimation process relies on high-level analysis

and modeling techniques to estimate the energy consumption of the kernel.

-
4 6 A0

Algorithm 2 Estimated energy calculation algorithm pseudocode

—_

et) e) et)
I AN il el

N
@

LRSI

_.
> 0

// phase 1-1: CFG node calculation
for node: basic blocks of estimated CFG do

for instr: instructions in node do

node_energy[node] += base(instr)
end for
for {instr 1, instr 2}: sequential instruction pairs in node do
node_energy[node] += inter({instr 1, instr_2})

end for
end for
// phase 1-2: CFG edge energy calculation
for edge: edges of estimated CFG do

edge energy[edge] += inter({edge src_ instr, edge dst instr})
end for
// phase 2: total kernel energy calculation
for node: basic blocks of estimated CFG do

graph_energy += node_energy[node] * node _iteration[node]
end for
for edge: edges of estimated CFG do

graph_energy += edge energy[edge] * edge taken times[edge]
end for

47

Chapter 6

Experimental Results

6.1. Experimental Environments

To obtain the ground truth energy consumption, we conducted power
measurements by capturing instantaneous voltage and current values from the on-
chip system power management bus. Due to the limited speed of the I2C interface,
we were only able to obtain instantaneous power readings every 20 ~ 30 milliseconds.
To ensure reliability, we executed a single kernel repeatedly until 500 power
measurement samples are collected. The average value of these samples was then
multiplied by the cycle count obtained from the on-chip performance counter to
calculate the energy consumption of the kernel execution.

Running the entire modeling process in Python 3.8 once to obtain the estimated
energy value for a single layer execution takes approximately 300 milliseconds on
an Intel Xeon Gold 6242R processor.

48

6.2. Kernel-Level Energy Estimation

In our evaluation, we applied our energy modeling method to eight target
kernels listed in Table 3.1. We tested the method on 100 different layer
configurations with random data and filter shapes for each kernel.

Figure 6.1 illustrates the average estimation accuracy of our proposed model,
which is depicted in green bars, and two baseline models for comparison. The first
baseline model, represented by the orange color, considers only the instruction base
energy (base-only model). The other baseline model, depicted in yellow,
incorporates both the base energy and inter-instruction energy by simply using the
NOP-pair energy as the inter-instruction energy for all instruction pairs (base + NOP
model).

The evaluation results demonstrate that ignoring inter-instruction energy leads
to a considerable degradation of modeling accuracy. The worst-case accuracy is
observed in the K5 DWCYV kernel, where the accuracy drops to 50.39% when inter-
instruction energy is neglected. In all the comparisons, the models that consider inter-
instruction effects, namely the base + NOP model and the proposed model,
outperform the base-only model. This indicates that incorporating inter-instruction
energy improves the accuracy of the energy estimation.

The proposed model outperformed the base + NOP model in most cases. On
average, the proposed model achieved estimation accuracies ranging from 93% to
99%. This indicates that the proposed scaling method significantly improves the
accuracy of the energy estimation. In particular, for kernels with frequent instruction

switching in vector slot, such as KI EADD and K5 DWCYV, the proposed model

49 A 22 TH

exhibited a substantial improvement in estimation accuracy compared to the base +
NOP model. This suggests that the proposed method effectively captures the inter-
instruction energy consumption patterns, leading to more accurate energy
estimations.

The proposed model showed relatively poor performance in nearest neighbor
up-sampling kernels, K6 UPS k2 and K7 UPS. These kernels follow a simple
algorithm of duplicating data pixels, primarily involving vector load and store
operations without any vector slot instructions. Moreover, memory operations are
executed sparsely due to long memory access latency, resulting low processor
utilization and low power consumption. Consequently, the ignored scalar operations,
such as address calculation and control flow management, become more prominent,
leading to a degradation in estimation accuracy for these specific kernels. To address
this weakness, a minor compensating term for up-sampling pixel address calculation
energy is added at the dominant innermost loop.

Comparisons between measured and estimated energy consumption for all test
cases are presented in Figure 6.2 to Figure 6.9, with energy values scaled as in
Section 4.2. These figures clearly show that the estimated energy consumption
accurately reflects the variation in energy consumption across different layer

configurations.

1 ¢
50 A =

average accuracy

100% — 98.63% 96.13% 97.42% 96.17% 98.29%
93.03% g1 919, 92.78%

90%
80%
70%
60%
50%
40% |
30%
KO K1 K2 K3 K4 K5 K6 K7

layer kernel ID

M base Mbase + inter NOP M base + inter_scaled_NOP (proposed)

Figure 6.1: Average estimation accuracy
on 100 test cases of 8 target layer kernels

o R o BT
RGoo SEOUL NATIOMAL LINIVERSTY

scaled energy
w
o
o

400

350

300

250

200

scaled energy

150

100

50

Ll

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

test case ID

—@— measurement —@—estimation

Figure 6.2: KO_ACTYV energy measurement and estimation

LAY

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

test case ID

—@— measurement —@®—estimation

Figure 6.3: K1_EADD energy measurement and estimation

52 s A2

scaled energy
w
o
o

i

test case ID

—8— measurement —®—estimation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 6.4: K2 MAXP_k3s2 energy measurement and estimation

3500

3000

2500

scaled energy
— N
Ul o
o o
o o

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

test case ID

—8— measurement —®—estimation

Figure 6.5: K3_GAP energy measurement and estimation

v A

2500

2000

i

0

scaled energy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

test case ID

—8— measurement —®—estimation

Figure 6.6: K4 DWCV_K3 energy measurement and estimation

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

scaled energy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

test case ID

—8— measurement —®—estimation

Figure 6.7: KS_DWCY energy measurement and estimation

120

scaled energy
(o)) (0] 5
o o o

N
o

no
o

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

test case ID

—@— measurement —@—estimation

Figure 6.8: K6_UPS_k2 energy measurement and estimation

200

180
160
140
120
100

80

60

40 $

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

scaled energy

test case ID

—@— measurement —@®—estimation

Figure 6.9: K7 _UPS energy measurement and estimation

55 s A2

Chapter 7

Conclusion

This work proposes an analytical energy modeling method for estimating the
energy consumption of a vector processor kernel execution. The method efficiently
calculates the estimated energy by analyzing and focusing on energy-significant
factors. It models energy consumption using novel analytical methods of lowering
major operations down to the instruction level through graph transform and
calculating inter-instruction energy consumption on the data path based on pipeline
stage usage. Experimental results on 8 different DNN layer kernels, with 100 tests
cases for each, demonstrate that the proposed method achieves an average estimation
accuracy of 95.52%. Furthermore, the estimation process is fast, taking only 300

milliseconds on Intel Xeon Gold 6242R processor.

56 A2t

Bibliography

[1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

E. Garcia-Martin, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of
energy consumption in machine learning,” Journal of Parallel and Distributed

Computing, vol. 134, pp. 75-88, Dec. 2019.

M. C. Walker et al., “Accurate and stable run-time power modeling for mobile
and mmbedded CPUs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

R. Bertran et al., "Decomposable and responsive power models for multicore
processors using performance counters,” in Proceedings of the 24th ACM

International Conference on Supercomputing, Jun. 2010, pp. 147-158.

T. Chen et al. (2018), “TVM: An automated end-to-end optimizing compiler for
deep learning,” arXiv:1802.04799, [Online]. Available: https://arxiv.org/abs/
1802.04799

A. Parashar et al., “Timeloop: A systematic approach to DNN accelerator
evaluation,” in [EEE International Symposium on Performance Analysis of

Systems and Software, Mar. 2019, pp. 304-315.

A. Bona et al., “Energy estimation and optimization of embedded VLIW
processors based on instruction clustering,” in Proceedings of the 39th annual

Design Automation Conference, Jan. 2002, pp. 886-891.

B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter-
instruction energy effects in a digital signal processor,” in Proceedings of the

Power-Driven Microarchitecture Workshop, Jun. 1998.

D. J. Brook, V. Tiwari, and M. Martonosi, "Wattch: A framework for
architectural-level power analysis and optimizations," in International

Symposium on Computer Architecture, May 2000, pp. 83-94.

57 A0 . !..;

[9] S. Li et al., "McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures," in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec.
2009, pp. 469-480.

[10] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, "An instruction-level energy
model for embedded VLIW architectures," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 21, no. 9, pp. 998-1010,
Sep 2002.

[11] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "The design and use
of simplepower: a cycle-accurate energy estimation tool," in Proceedings of the

37th Annual Design Automation Conference, Jun. 2000, pp. 340-345.

[12] H. Kwon et al., "MAESTRO: A data-centric approach to understand reuse,
performance, and hardware cost of DNN mappings." IEEE Micro, vol. 40, no.
3, pp- 20-29, May 2020.

[13] Y. S. Shao, and D. J. Brooks. "Energy characterization and instruction-level
energy model of Intel's Xeon Phi processor," in International Symposium on

Low Power Electronics and Design, Sep. 2013, pp. 389-394.

[14] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee, "Instruction level power
analysis and optimization of software." Journal of VLSI signal processing

systems for signal, image and video technology, vol. 13, no. 2-3, pp. 223-238,
Aug. 1996.

[15] A. Bona et al., "Reducing the complexity of instruction-level power models for
VLIW processors," Design Automation for Embedded Systems, vol. 10, no. 1,
pp- 49—-67, Mar. 2005.

[16] M. T. C. Lee, V. Tiwari, S. Malik, and M. Fujita, "Power analysis and
minimization techniques for embedded DSP software." IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 5, no. 1, pp. 123—135, Mar.
1997.

3§ 53 17
58 -'x"i':"1.;

A o Sk

S

¥ 4]

-
[¢]

RS o 775

ZAAM eUA

Ay

ZAA Zdo]

Ava

5], "4

A=A
=

i

Held ZEAA S oA A

AT

Edle] 243}, dolH

v

o7 E A, &

A ojel wpel AAelA

A(NAS)el A

|=3
=

Tz

Ao owarr oyx] vl

mj

of

q
i

b
o
N
)
;OU
P

ol
00

—_
"o

& e~

A

F ovA A5 dgre}

Ul
=

H 2ds uhHe Eit 9552%9] A

(?_]_,

I

A

ZAIA,

| (VPU), VLIW

3}

HW:2021-26145

folg
=1,

59

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Motivation
	1.2 Thesis Organization

	Chapter 2. Background
	2.1 Energy Consumption on Proccessing Units
	2.2 Previous Works
	2.2.1 Approaches to Processor Energy Estimation
	2.2.2 Complexity in Energy Modeling

	Chapter 3. Target Processor Overview
	3.1 Hardware Architecture
	3.2 Target Applications

	Chapter 4. Analysis on Processor Energy Consumption
	4.1 Effect of Architectural Characteristics
	4.1.1 Multi-Slot Structure
	4.1.2 Data Path Width

	4.2 Instruction-Level Energy
	4.2.1 Memory Slot Instructions
	4.2.2 Vector Slot Instructions

	Chapter 5. Analytical Energy Modeling Methodology
	5.1 Modeling Method Overview
	5.2 Input to Graph Conversion
	5.2.1 Algorithm Parsing
	5.2.2 Graph Transform

	5.3 Estimating Energy from Graph
	5.3.1 Estimating Runtime Sequence
	5.3.2 Kernel Energy Estimator

	Chapter 6. Experimental Results
	6.1 Experimental Environments
	6.2 Kernel-Level Energy Estimation

	Chapter 7. Conclusion
	Bibliography
	Abstract in Korean

<startpage>4
Abstract 1
Table of Contents 2
List of Figures 4
List of Tables 6
Chapter 1. Introduction 7
 1.1 Motivation 7
 1.2 Thesis Organization 8
Chapter 2. Background 9
 2.1 Energy Consumption on Proccessing Units 9
 2.2 Previous Works 11
 2.2.1 Approaches to Processor Energy Estimation 11
 2.2.2 Complexity in Energy Modeling 12
Chapter 3. Target Processor Overview 13
 3.1 Hardware Architecture 13
 3.2 Target Applications 16
Chapter 4. Analysis on Processor Energy Consumption 19
 4.1 Effect of Architectural Characteristics 19
 4.1.1 Multi-Slot Structure 19
 4.1.2 Data Path Width 20
 4.2 Instruction-Level Energy 21
 4.2.1 Memory Slot Instructions 27
 4.2.2 Vector Slot Instructions 30
Chapter 5. Analytical Energy Modeling Methodology 32
 5.1 Modeling Method Overview 32
 5.2 Input to Graph Conversion 34
 5.2.1 Algorithm Parsing 34
 5.2.2 Graph Transform 34
 5.3 Estimating Energy from Graph 40
 5.3.1 Estimating Runtime Sequence 40
 5.3.2 Kernel Energy Estimator 42
Chapter 6. Experimental Results 48
 6.1 Experimental Environments 48
 6.2 Kernel-Level Energy Estimation 49
Chapter 7. Conclusion 56
Bibliography 57
Abstract in Korean 59
</body>

