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Abstract 

 

 

Processor energy models have been extensively researched for a long time. 

Specifically, works on modeling deep learning processors have recently gained 

significant attention. Estimating energy consumption of neural processors plays a 

key role in various design decisions, across hardware architecture, software 

optimization, data and operation mapping space exploration, and neural architecture 

search. To achieve accurate energy prediction, it is necessary to consider the inter-

instruction effects in addition to per-instruction energy. 

In order to accurately model energy consumption with minimal overhead, we 

conducted an analysis of the target processor architecture’s energy behavior at 

instruction level. Building upon this analysis, we developed simple analytical 

approaches to account for major power consumption factors, including inter-

instruction effects. Our modeling method demonstrates an average kernel-level 

energy estimation accuracy of 95.52% with fast estimation time. 

 

Keyword: Analytical Energy Consumption Model, Vector Processing Unit (VPU), 

Very Long Instruction Word (VLIW) Processor, Neural Processing Unit (NPU) 

Student Number: 2021-26145  
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Chapter 1 

Introduction 

1.1. Motivation 

 

Processor energy consumption has been widely investigated in computer 

architecture field for decades. Recently, with the advent of deep learning applications 

and accelerators, there has been growing attention on power estimation of deep 

learning application execution on neural processing units (NPU). 

Estimation on NPU energy consumption helps improving design on various 

levels. For instance, it can be used in architecture evaluation, data and schedule 

mapping space exploration, and hardware-aware neural architecture search. 

Especially in programmable processing units, energy estimation aids in software 

optimization for better algorithms or compile schemes. Therefore, estimating NPU 

energy consumption is important.  

When operations are executed, energy consumption can be attributed to either 
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the operation itself, or the switching of executed operations. Recent studies on NPU 

energy modeling have primarily focused on the former, neglecting the significant 

energy contribution from operation switching. This limitation leads to inaccurate 

estimation, particularly in scenarios with frequent operation switching. Previous 

researches conducted in 1990s and 2000s consider energy consumption from the 

switching of executed operations, but their modeling targets were processors at that 

time, which differ substantially from modern NPU architectures. 

Therefore, we propose an accurate analytical energy modeling method that 

incorporates the energy consumed by operation switching. To achieve this, we 

conducted a detailed analysis of the processor architecture to simplify energy 

estimation. Specifically, our work targets a programmable vector processing unit 

within a modern NPU architecture. 

 

 

1.2. Thesis Organization 

 

This thesis is organized as follows. Chapter 2 gives a brief background on 

processor energy consumption and some previous energy estimation approaches. 

Chapter 3 explains the modeling target vector processor’s hardware architecture and 

applications. Chapter 4 presents analysis on target processor’s energy consumption 

behavior, and based on the analysis, Chapter 5 proposes an analytical energy 

modeling method to estimate processor kernel energy consumption. Chapter 6 

presents experimental measurement and estimation results. Finally, Chapter 7 

summarizes the proposed work and concludes this thesis. 
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Chapter 2 

Background 

2.1. Energy Consumption on Processing Units 

 

Energy consumption in digital circuits is affected by several factors, such as 

leakage current, clock, control signal and data switching. To accurately model energy 

consumption, it is necessary to take these factors into account, which can introduce 

complexity into the modeling process. Besides, there are specific characteristics 

related to energy consumption in processing units that can simplify the energy 

modeling process. 

  

Effect of Data Path Width  In digital circuits, the width of data path plays a 

significant role in power consumption. A wider data path requires a larger number of 

transistors and interconnects, leading to increased capacitance and higher switching 

activity, thereby resulting in higher power consumption. Conversely, a narrower data 
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path reduces the number of transistors and interconnects, resulting in lower power 

consumption. By considering this effect at the instruction level, we can simplify the 

energy model. Instructions with larger bit operands involve a wider data path in their 

execution path, thus consuming relatively more energy. Conversely, instructions with 

smaller bit operands consume less power and have a minimal impact on overall 

energy consumption. Therefore, they can be ignored for simplicity purposes. 

 

Multi-Slot Structure  In VLIW processors, the introduction of parallel 

instruction combinations adds complexity. However, decomposing power 

consumption can significantly simplify energy modeling. 

When executing an instruction word with multiple slot instructions through 

pipeline stages, certain power consumption sources are shared among different slot 

instructions, while others are independent. The shared portion includes static power 

caused by leakage current and dynamic power dissipated in common hardware units 

such as the clock and instruction fetching and decoding control logic. The energy 

consumption from these shared components is not influenced by the instruction types, 

and therefore can be directly measured by executing a series of No Operation (NOP) 

instruction words. 

The other portion of power consumption can be considered independent among 

different slots. Since the VLIW architecture is designed for parallel execution of an 

instruction word, different slot instructions typically do not share hardware units in 

the execution stages. Therefore, it is reasonable to assume that the mutual influence 

between different slot instructions can be disregarded. This property is commonly 

referred to as the spatial additive property [10]. 
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2.2. Previous Works 

2.2.1. Approaches to Processor Energy Estimation 

 

Processor energy consumption has been extensively studied in the field of 

computer architecture, and there exists various classes of approaches on energy 

modeling [1]. A majority of works [2] [3] utilize performance counters to obtain 

computation activity factors and employ linear regression to determine power 

weights associated with each counter. These approaches have the advantage of not 

incurring additional overhead, but the main drawback is the inability to break down 

energy consumption on a per-process basis. Other models [8] [9] [11] obtain activity 

factors through simulation, providing detailed information at the hardware 

component and instruction level. However, these methods involve significant 

overhead. Some studies [10] [13] [14] focus on instruction-level energy estimation, 

by executing micro-benchmarks of instruction loops and profiling their execution. 

In the case of NPUs, analytical energy modeling methods [5] [12] employ 

operation-based approaches by summing up the product of operation count and 

operation energy cost to estimate energy consumption. However, these approaches 

overlook the energy consumption resulting from operation switching, leading to 

inaccurate estimations, particularly for workloads with frequent operation switching. 
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2.2.2. Complexity in Energy Modeling 

 

To achieve precise energy estimation, it is necessary to consider various factors 

from different abstraction levels at the hardware-software stack, including hardware 

micro-architecture and application algorithmic properties. Hence, the more we try to 

model accurately, the higher the modeling complexity becomes. 

When targeting VLIW processors, the complexity becomes even more 

significant, since very long instructions can be created by combining multiple 

instructions. [10] introduces spatial additive property to reduce such complexity, 

which has been verified under extensive studies afterwards. 

Unfortunately, accurate energy models require more than per-instruction 

estimation. Inter-instruction effects [16] can have a significant impact on power 

consumption, and incorporating these effects adds further complexity. In [7], the use 

of NOP instructions is proposed to model transitions between any two instructions, 

achieving an accuracy within 8% error while significantly reducing complexity. [6] 

suggests an instruction clustering method for modeling efficiency with average error 

of 1.9%. However, these works targeted general-purpose and digital signal 

processors with small data paths, thereby being applicable only to processors with 

similar architectures and not to vector processors designed for DNN applications. 

Additionally, breaking down the target software into instructions is beneficial 

for accuracy, as in [14] [15] [6]. However, analyzing at instruction-level requires 

compile-able program codes, a compiler, and runtime instruction profiling, which 

can make the modeling process cumbersome. Alternatively, analyzing software 

using analytical methods can significantly improve efficiency. 
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Chapter 3 

Target Processor Overview 

3.1. Hardware Architecture 

 

The target processor for energy modeling is a programmable vector processor 

within a systolic array-based neural processing unit (NPU) system. Figure 3.1 

provides a schematic of the top-level NPU system architecture. The system 

comprises a systolic array, an on-chip scratchpad memory, vector processor cores, 

and off-chip DRAM. The on-chip scratchpad memory, implemented as a multi-bank 

SRAM, serves as a shared storage for tensor data that can be accessed by both the 

systolic array and the vector processor. The systolic array accelerates convolution 

and generalized matrix multiplication (GEMM), which are fundamental operations 

in deep neural networks (DNNs). The vector processor, composed of 16 core-tiles 

for parallel processing, handles a broader range of operations that the systolic array 

either cannot compute efficiently or cannot perform at all. Examples of such 
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operations include depth-wise convolution, element-wise addition, pooling, up-

sampling, and non-linear activation functions. 

A vector processor core is a programmable very long instruction word (VLIW) 

processor consisting of an interface to on-chip scratchpad memory, local scratchpad 

memory components for program code, non-tensor scalar data, and lookup tables 

(LUTs), register files, and three issue slots. The register files are of eight distinct 

kinds with varying bit widths, and are accessible from multiple slots by separate 

read/write ports. More details about register files are provided in Chapter 4. The issue 

slots are scalar slot, memory slot, and vector slot with dedicated arithmetic units and 

orthogonal instruction set architectures (ISA) specific to each slot. During each cycle, 

a single VLIW instruction is fetched from the program scratchpad memory, decoded 

into instructions for each slot, and issued in an in-order manner. 

The memory slot manages the memory access operations for tensor and scalar 

data between the memory components and the core registers. Vector slot instructions 

are designed to efficiently perform identical operations on multiple data elements, 

and they are dispatched to a single instruction multiple data (SIMD) unit for 

acceleration. Scalar slot instructions mainly use a scalar arithmetic logic unit (ALU) 

to handle auxiliary operations such as memory address computation, stack pointer 

and control flow operations. 
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Figure 3.1: Block diagram of a systolic array-based NPU system architecture 

 

 

 

 

Figure 3.2: Block diagram of a vector processor core 
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3.2. Target Applications 

 

Unlike general-purpose VLIW processors, the vector processor is specialized 

for DNN operations. More specifically, under the NPU system described in Section 

3.1., it handles operations that are not suitable for the systolic array, such as depth-

wise convolution, element-wise addition, max pooling, average pooling, and non-

linear activations.  

The execution of these target applications can be easily analyzed in a loop-based 

manner. The computation of DNN layers can be structured using simple nested loops, 

where the loop bounds are determined by feature map size, filter shape, and other 

configurations like padding and stride. Consequently, the control flow of these 

applications is relatively straightforward compared to other general-purpose 

processor kernels. This simplicity simplifies the estimation of runtime execution 

without the need for actual compilation or cycle-level simulation. Taking advantage 

of this characteristic, the proposed energy modeling method decomposes and 

analyzes DNN layer computations in a fast and analytical loop-based approach to 

model energy consumption.  

To perform DNN layer computations on the vector processor, the layer 

computation algorithm is implemented as a processor kernel code. The vector 

processor ISA is exposed as a C primitive, allowing the implementation of target 

applications as processor kernels written in C code. The proposed energy modeling 

method has been validated on 8 different kernels, as presented in Table 3.1. Various 

other types of DNN operations can also be executed on the vector processor with 

appropriately written kernel codes. Algorithm 1 provides an example pseudocode for 
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the processor kernel K5_DWCV. 

The processor kernel program written in C code is compiled into VLIW 

instructions, and program binary code is generated. The compiler is provided with 

micro-architectural information, enabling it to explicitly leverage instruction-level 

parallelism (ILP) in the generated machine code. During the execution of a neural 

network on the NPU, when a layer needs to be processed by the vector processor, a 

runtime command scheduler on the NPU loads the generated program binary onto 

the instruction scratchpad of the vector processor and initiates kernel execution. 

Once the execution is completed, the vector processor core sends result signals to 

the command scheduler. 

 

 

 

Kernel ID Layer Type Optimized Config 
K0_ACTV nonlinear activation generic 
K1_EADD element-wise addition generic 
K2_MAXP_k3s2 max pooling kernel = (3, 3), stride = (2, 2) 
K3_GAP global average pooling generic 
K4_DWCV_k3 depth-wise convolution kernel = (3, 3) 
K5_DWCV depth-wise convolution generic 
K6_UPS_k2 nearest neighbor up-sample kernel = (2, 2) 
K7_UPS nearest neighbor up-sample generic 

Table 3.1: Types of DNN layer processor kernels 
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Algorithm 1 K4_DWCV_k3 kernel pseudocode 

1:  Initialize: in/out/kernel information, address 

2:  for Oc: 0, 1, …, channel do 

3:     Load: SR_filter0, 1, 2, …, 8  filter data 0, 1, 2, …, 8 

4:     Broadcast: VR_filter0, 1, 2, …, 8  SR_filter0, 1, 2, …, 8 

5:     for Oh: 0, 1, …, out_height do 

6:        for Ow: 0, 1, …, out_width do 

7:           Initialize: ACCR 

8:           Load: VR_fmap0, 1, 2, …, 8  fmap data 0, 1, 2, …, 8 

9:           Compute mac: ACCR  ACCR + VR_fmap0 * VR_filter0 

10:           Compute mac: ACCR  ACCR + VR_fmap1 * VR_filter1 

11:           Compute mac: ACCR  ACCR + VR_fmap2 * VR_filter2 

12:           Compute mac: ACCR  ACCR + VR_fmap3 * VR_filter3 

13:           Compute mac: ACCR  ACCR + VR_fmap4 * VR_filter4 

14:           Compute mac: ACCR  ACCR + VR_fmap5 * VR_filter5 

15:           Compute mac: ACCR  ACCR + VR_fmap6 * VR_filter6 

16:           Compute mac: ACCR  ACCR + VR_fmap7 * VR_filter7 

17:           Compute mac: ACCR  ACCR + VR_fmap8 * VR_filter8 

18:           Compute shift & Move register: VR_result  ACCR >> shifter 

19:           Store: fmap data  VR_result 

20:        end for 

21:     end for 

22:  end for 
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Chapter 4 

Analysis on Processor Energy 

Consumption 

4.1. Effect of Architectural Characteristics 

4.1.1. Multi-Slot Structure 

 

The spatial additive property explained in Section 2.1 can be applied to the 

vector, memory, and scalar slot instructions in our target vector processor. By 

considering the slot-independent energy measured from a NOP sequence and the 

additive property of each slot instruction, the total energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙) can 

be calculated using the NOP energy (𝐸𝑁𝑂𝑃) and the energy of each slot instruction 

(𝐸𝑣𝑒𝑐𝑡𝑜𝑟, 𝐸𝑚𝑒𝑚𝑜𝑟𝑦, 𝐸𝑠𝑐𝑎𝑙𝑎𝑟), as shown in Equation (4.1). 

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑁𝑂𝑃 + 𝐸𝑣𝑒𝑐𝑡𝑜𝑟 + 𝐸𝑚𝑒𝑚𝑜𝑟𝑦 +  𝐸𝑠𝑐𝑎𝑙𝑎𝑟      (4.1) 
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4.1.2. Data Path Width 

 

Table 4.1 illustrates the vector processor core register files and their 

corresponding data widths. The table shows that different slots utilize different sets 

of register files. Scalar slot instructions utilize SCR, AR and SR, all of which are up 

to 32-bit wide. Since scalar slot instructions involve small bit operands, the wires 

and pipeline registers downstream of the scalar slot instruction data path also have 

narrow bit widths. On the other hand, vector slot instructions have access to VR, 

VCR, LUTR, ACCR, and BIASR, which have larger data widths, resulting in wider 

downstream execution data paths. The memory slot ISA consists of load and store 

instructions with optional address computation, with operands involving scalar data, 

stack data, and vector data. Scalar data and stack data memory instructions utilize 

SCR, AR, and SR, thus involving a small data path, while vector data memory 

instructions access VR, resulting in a wider downstream data path. 

Based on these observations, vector processor instructions can be categorized 

into two groups: narrow data path (ND) instructions with a small data path involved, 

accessing data up to 32-bit wide, and wide data path (WD) instructions with larger 

data widths. All scalar slot instructions and scalar/stack data memory slot 

instructions belong to the ND instructions, while vector slot instructions and vector 

data memory instructions belong to the WD instructions. Considering the 

relationship between data path width and energy consumption discussed in Section 

2.1, the energy consumption of WD instructions is dominant, whereas that of ND 

instructions is relatively insignificant. This was confirmed through experimental 

measurements where ND instructions consumed less than 0.3 W, while WD 

instructions consumed 1 W ~ 6W. Based on these findings, it can be concluded that 
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ignoring ND instructions has minimal impact on energy modeling accuracy while 

significantly reducing model complexity. Therefore, the proposed energy modeling 

method focuses solely on the energy consumption of WD instructions for efficiency.  

 

Register 
Name Description 

Bit Width 
(>: greater 

than) 

Access from 
Slot 

S V M 

SCR scalar condition 1 O O O 
AR memory address 16 O O O 
SR scalar data 32 O O O 
VR vector data 512  O O 

VCR vector condition 512  O  

LUTR LUT loaded data 512  O  

ACCR accumulation data > 512  O  

BIASR bias data > 512  O  
Table 4.1: Vector processor core register files 

 

 

4.2. Instruction-Level Energy 

 

In order to analytically model energy consumption of a processor kernel, we 

first measured and analyzed instruction-level energy consumption. As mentioned in 

Section 4.1.2 that we only consider WD instructions, we narrowed down 

measurement target to vector slot instructions and vector load and store instructions. 

To measure the base and inter-instruction energy of each instruction, we wrote short 

processor kernels composed of measurement target instructions. Furthermore, to 

differentiate the power consumption between the control path and the data path, 
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measurement kernels were executed with both zero and random data. Details on 

experimental environments are described in Chapter 6. 

 

Measurement of Instruction Base Energy  To measure the instruction base 

energy, we wrote power measurement kernels as in Figure 4.1. These kernels 

consisted of a long repeated loop filled with fully-pipelined target instructions, 

vector MAC (Multiply-Accumulate) instructions in this case. During kernel 

execution, we collected samples of measured instantaneous power at regular 

intervals and averaged them to obtain base energy. 

 

assembly code description 

kernel prologue 

register initialization 

loop   4 2500 

vmac  accr v0 v1 

vmac  accr v2 v3 

vmac  accr v0 v1 

vmac  accr v2 v3 

kernel epilogue 

 

 

// repeat succeeding 4-instr sequence 2500 times 

// accr += v0 * v1 

// accr += v2 * v3 

// accr += v0 * v1 

// accr += v2 * v3 

 

Figure 4.1: Example of vmac instruction base energy measurement kernel 

 

To isolate the energy consumption of the target instruction sequence within a 

single slot, it is necessary to eliminate redundant energy factors. According to the 

energy decomposition described in Equation (4.1), NOP energy is considered 

redundant. Additionally, the overhead associated with loop control, which involves 

the utilization of the loop counter register, is also redundant. As a result, the 

measured power of target instruction sequence can be calculated using Equation (4.2). 
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In the equation, 𝑃𝑖𝑛𝑠𝑡𝑟_𝑙𝑜𝑜𝑝  and 𝑃𝑁𝑂𝑃_𝑙𝑜𝑜𝑝  represent the average sampled power 

obtained from the instruction base energy measurement kernel in Figure 4.1, and the 

NOP loop measurement kernel in Figure 4.2, respectively. 

 

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  𝑃𝑖𝑛𝑠𝑡𝑟_𝑙𝑜𝑜𝑝 − 𝑃𝑁𝑂𝑃_𝑙𝑜𝑜𝑝  (4.2) 

 

assembly code description 

kernel prologue 

register initialization 

loop   4 2500 

vnop 

vnop 

vnop 

vnop 

kernel epilogue 

 

 

// repeat succeeding 4-instr sequence 2500 times 

// vector slot nop instruction 

// vector slot nop instruction 

// vector slot nop instruction 

// vector slot nop instruction 

 

Figure 4.2: NOP loop energy measurement kernel 

 

The instruction base energy can be directly obtained from 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒. Figure 4.3 

illustrates the fully-pipelined execution of a 5-stage instruction. At the instant of 

power sampling, all pipeline stages are filled, and thus the measured power is the 

sum of single-cycle energy across the spatial axis, as shown in Equation (4.3) line 1 

and 2 and the green-highlighted stages in Figure 4.3. Besides, line 2 of Equation (4.3) 

also corresponds to the blue-highlighted stages as well as green, so the summation 

can be considered equivalent to sum of each stage energy of a single instruction 

across the temporal axis. Therefore, the instruction base energy is equal to 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒. 

In Equation (4.3), 𝐵𝑖 denotes the base energy of instruction i. 
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𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 1 cycle =  𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

=  𝐸𝑠𝑡𝑎𝑔𝑒0  +  𝐸𝑠𝑡𝑎𝑔𝑒1  +  𝐸𝑠𝑡𝑎𝑔𝑒2  +  𝐸𝑠𝑡𝑎𝑔𝑒3  +  𝐸 𝑠𝑡𝑎𝑔𝑒4 

=  𝐵 𝑖     (4.3) 

 

In register initialization in Figure 4.1, if all operand registers are initialized with 

zero, no data switching occurs during kernel execution. Therefore, the measured 

energy can be considered as the energy consumption in the control path. On the other 

hand, when the registers are initialized with random data, both the control path and 

data path switching occur. By subtracting the measurement with zero data 

initialization from the measurement with random data initialization, we can obtain 

the energy consumption of the data path. To ensure data switching on all data paths, 

we took care to initialize each register with different data values and use different 

registers in every cycle. If this is not guaranteed, power would get much under-

measured. 
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Figure 4.3: Pipeline diagram of a 5-stage instruction 

base energy measurement kernel 
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Measurement of Inter-Instruction Energy  To measure inter-instruction 

energy, we used power measurement kernels as shown in Figure 4.4, similar to the 

base energy measurement kernel but with two types of instructions switching every 

cycle. As aforementioned, we only measured inter-instruction energy on pairs with 

NOP for model efficiency. 

 

assembly code description 

register initialization 

loop    4 2500 

vmac  accr v0 v1 

vnop 

vmac  accr v2 v3 

vnop 

 

// repeat succeeding 4-instr sequence 2500 times 

// accr += v0 * v1 

// vector slot nop instruction 

// accr += v2 * v3 

// vector slot nop instruction 

Figure 4.4: Example of {vmac, vnop} instruction pair 

inter-instruction energy measurement kernel 

 

Since two different instructions in the measurement kernel are time-sharing 

with equal contributions, the energy consumption can be considered as the average 

of each instruction’s base energy. However, as mentioned in Section 2.2.2, the energy 

consumption of different instructions sequence is always larger than that of a single 

instruction sequence, and the corresponding term is regarded as the overhead of 

executing different instructions sequentially, namely inter-instruction energy. As a 

result, with 𝐼𝑖,𝑗  denoting inter-instruction energy of instruction {i, j} pair, the 

relationship between different energy factors in the inter-instruction energy 

measurement kernel can be expressed as in Equation (4.4). 
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𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 2 cycle =  𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∗ 2 =  𝐵𝑖 + 𝐵𝑗 + 2 ∗ 𝐼𝑖,𝑗  (4.4) 

 

From this, the inter-instruction energy of instruction pair {i, j} can be calculated 

as in Equation (4.5). Here, since NOP energy is already removed from 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 

𝐵𝑁𝑂𝑃 can be regarded as zero in each slot energy consumption. 

 

𝐼𝑖,𝑗 =  𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒  −  
1

2
∗ (𝐵𝑖 + 𝐵𝑗)   (4.5) 

 

As in base energy measurement, inter-instruction energy measurement was also 

done with both zero and random operand data, in order to distinguish between 

control path and data path energy. 

 

 

4.2.1. Memory Slot Instructions 

 

WD instructions of memory slot ISA consist of vector load and store 

instructions, with different addressing modes and optional address register update. 

On these instructions, instruction base energy, inter-instruction energy with NOP-

pair, each on both control and data path are obtained from experimental measurement. 

The measured values are presented in Figure 4.5 and Figure 4.6. In the figures, the 

energy values on the y-axis are scaled with a mutual scaling factor for security 

reasons. 
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Figure 4.5: Measured base energy of 

memory slot instructions 

 

 
Figure 4.6: Measured inter-instruction energy of 

memory slot instructions 
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In Figure 4.5 and 4.6, different load and store instructions are depicted across 

the x-axis, varying in addressing modes and address register update options. It can 

be observed that both the data path and control path have an impact on the base and 

inter-instruction energy of memory slot instructions. However, the amount and 

variance of inter-instruction energy from Figure 4.6 are much smaller compared to 

those of the base energy. Basically, inter-instruction energy consumption occurs 

because different instructions utilize different parts of the circuit, leading to circuit 

state change [16]. Nonetheless, load and store instructions primarily involve only 

address calculation and memory access, resulting in simple control signals and 

pipeline data path structure. As a result, the overhead associated with switching 

instructions is relatively small and consistent. Consequently, we can assume a 

constant value for inter-instruction energy when executing different memory 

operations in sequence, regardless of specific instruction types. 

Another observation is that addressing modes and address register update 

option do not significantly impact the energy behavior. The address-related logic in 

these instructions utilizes much smaller bits compared to the memory access 

operands, which is vector data. Since these operations have negligible energy 

consumption, it suffices to differentiate between load and store instructions for 

energy modeling purposes. Thus, we model memory slot instructions as either load 

or store instructions without considering the addressing modes and address register 

update option, thereby effectively reducing the complexity associated with handling 

these low-level functions, which would otherwise be challenging without the 

assistance of an actual compiler. 

 

  



 

 ３０ 

4.2.2. Vector Slot Instructions 

 

Similar to memory slot instructions, base energy and inter-instruction energy 

with NOP-pair of vector slot instructions were measured on both the control and data 

paths, and the scaled results are presented in Figure 4.7 and Figure 4.8. 

The measurements revealed substantial variations in energy consumption 

among instructions. Even within the same class of instructions, such as register move 

instructions (vinst_0 ~ vinst_4), notable differences were observed based on the type 

and number of source and destination registers. Moreover, the inclusion of a shift 

operation after vector mac operation (vinst_5, vinst_6) had a significant impact on 

energy consumption. Consequently, unlike memory slot instructions, precise 

instruction-level energy estimation is required for vector slot instructions, 

considering all subfunction information. 

In particular, the large energy consumption and variance of vector slot 

instructions is mainly attributed to the data path rather than the control path. These 

instructions utilize vector operand data and SIMD units to accelerate vector 

arithmetic operations, which involve a large data path. Additionally, they handle the 

major computations of DNN layer operations, engaging complex control signals and 

a deep, intricate pipeline with many functional units. As a result, most of the 

switching activity occurs in the data path, highlighting the need to analyze and model 

energy consumption focusing on the data path.  
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Figure 4.7: Measured base energy of 

vector slot instructions 

 

 
Figure 4.8: Measured inter-instruction energy of 

vector slot instructions  
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Chapter 5 

Analytical Energy Modeling 

Methodology 

5.1. Modeling Method Overview  

 

Based on the observations made on the energy consumption of the vector 

processor in previous chapters, an analytical energy modeling methodology has been 

developed. The overall flow of the proposed method is depicted in Figure 5.1. It 

takes as input the layer configurations (e.g., layer type, data and kernel shape), as 

well as the corresponding layer processor kernel algorithm description. The output 

is the total energy consumption of each slot throughout the execution of single layer 

kernel. 

To achieve analytical modeling without the need for kernel code compilation 

and simulation, the methodology consists of 4 analytical steps. Step 1, 2 will be 
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covered in Section 5.2, and 2, 3 in Section 5.3 respectively. The entire framework is 

implemented in Python 3.8. 

 

 

Figure 5.1: Overall flow of 

the proposed analytical energy modeling method  
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5.2. Input to Graph Conversion 

5.2.1. Algorithm Parsing 

 

In step 1, an in-house algorithm parser is utilized to generate a directed acyclic 

graph (DAG). The nodes of the graph represent general operations such as addition, 

multiplication, mac, max and so on. The algorithm parser leverages intrinsic 

functions provided by TVM, an open-source machine learning compiler framework 

[4]. Layer kernel algorithms are written in python code to describe computations in 

TVM’s Relay Intermediate Representation (IR) level, and the algorithm parser 

lowers IR to TVM’s nested Tensor-level IR (TIR) by employing a set of TVM 

intrinsic functions. Subsequently, the nested TIR is converted into an operation graph, 

as depicted in Figure 5.2. Control operations are colored in yellow, memory slot 

operations in green, and vector slot operations in blue. Moreover, iteration count 

information of loop control operations is also included in the graph. 

 

 

5.2.2. Graph Transform 

 

Step 2 transforms operation DAG from step 1 output into instruction DAG as 

illustrated in Figure 5.3, with all operation nodes except for control operations 

converted to instruction nodes. The conversion process involves removing, replacing, 

and adding certain nodes based on each slot ISA and hardware-specific features. 

Once the transformation is completed in step 2, the instruction nodes in the graph 

can be one-to-one mapped to energy table entries of energy estimator in step 4.  
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Figure 5.2: K4_DWCV_k3 kernel algorithm  

in operation DAG representation 
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Figure 5.3: K4_DWCV_k3 kernel algorithm 

in instruction DAG representation 
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Figure 5.4: Same data store marking in 

K6_UPS_k2 kernel algorithm innermost loop 
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Memory Slot Operations  In the operation DAG generated in step 1 (Figure 

5.2), the green-colored nodes represent filter and feature map memory operations. 

These operations can be directly transformed into scalar and vector load and store 

instruction nodes, respectively, as they already align with the modeling level of load 

and store instructions without functional codes. However, it is important to note that 

scalar memory instructions consume relatively minor energy and will be ignored in 

the later steps of the methodology, as mentioned in Section 4.1.2. 

In addition, there is a significant attribute of store operations that needs to be 

analyzed in this step. When consecutive store operations handle the same data, 

switching activity is reduced, leading to a significant decrease in energy 

consumption compared to cases where the data changes every cycle. This situation 

commonly occurs in algorithms such as nearest neighbor up-sampling, where a pixel 

is loaded once and then stored multiple times. To account for this scenario, store 

operation nodes that have a mutual predecessor are marked as using the same data, 

as shown in Figure 5.4. This information will be considered in the subsequent steps 

when these operations are executed in consecutive cycles. 

 

Vector Slot Operations  Since the vector processor ISA is designed to support 

DNN operations, many vector slot instructions align with single operation nodes. 

However, some operations function in a hardware-specific manner, requiring 

appropriate transformation to the instruction level. 

First, the vector processor operates with INT8 data type. Consequently, tensor 

element values after computation undergo right-shifting for quantization before 

storage in memory. Thus, if the input graph does not explicitly include a shift 

operation, some kind of shift operation should be inserted during the transformation 
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process. This does not apply to max pooling and nearest neighbor up-sampling layers, 

where tensor element values do not go through any computation operations, but only 

gets replaced. 

Moreover, the vector processor employs an accumulation register (ACCR) with 

a larger bit capacity for accumulation operations, and only a single ACCR is 

available in the core. As a result, when a group of operation nodes involve value 

accumulation, an ACCR initialization instruction is inserted prior to the head node 

of the group. For instance, in Figure 5.3, an init_acc node is added as a predecessor 

to a sequence of consecutive vmac instructions. 

Another consequence of using the ACCR is the insertion of register move 

instructions between different register types, based on the predecessor operation’s 

destination register and successor operation’s source register. Additionally, for 

efficiency purposes, quantization shift operations are combined with these register 

moves or other instructions whenever feasible. In Figure 5.2, the predecessor 

operation of the rshift operation has a destination register of ACCR, while the 

successor operation of the rshift operation has a source register of VR. This 

necessitates the insertion of an ACCR to VR register move, referred to as the acc2v 

instruction. Furthermore, the rshift operation is combined with the acc2v instruction, 

resulting in the final transformed node, acc2v_sht, as depicted in Figure 5.2.  
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5.3. Estimating Energy from Graph 

5.3.1. Estimating Runtime Sequence 

 

After step 2, we have all the information on which instructions are executed and 

how many times in the instruction DAG. However, to account for inter-instruction 

effects in energy estimation, information on the execution sequence of instructions 

is also required. To achieve this, we utilize an in-house runtime analyzer. 

The runtime analyzer takes the instruction DAG from step 2 as input and 

considers the dependency information represented by graph edges. It utilizes pre-

defined hardware execution latency information for each instruction to estimate the 

runtime execution sequence of nodes. As a result, step 3 produces the estimated 

control flow graph of the kernel, including the iteration information of each basic 

block and the internal execution sequence of instructions. 

Figure 5.5 illustrates the result of step 3 for the K4_DWCV_k3 kernel, based 

on the input instruction DAG shown in Figure 5.3. The first, second and third 

columns in Figure 5.5 represents the scalar slot, memory slot, and vector slot 

respectively, while a hyphen denotes a NOP. As observed, the scalar slot sequence is 

empty, and scalar load and store instructions have been removed since they will be 

disregarded in the subsequent energy estimation step. 
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Figure 5.5: K4_DWCV_k3 kernel algorithm in 

estimated CFG representation 
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5.3.2. Kernel Energy Estimator 

 

In this step, the energy estimator finally calculates the estimated energy of 

kernel execution by utilizing the estimated control flow graph (CFG) generated in 

the previous step and referencing a pre-built energy table. We have created two types 

of energy tables, which were obtained from experimental measurements as described 

in Section 4.2. 

 

Estimating Base Energy  The first energy table is the base energy table for 

memory and vector slots. Each entry in the table is one-to-one mapped to a specific 

slot instruction and contains the base energy value. As shown in Figure 5.6, the base 

energy of each instruction from the estimated CFG can be directly retrieved by 

looking up the base energy table. 

 

 

Figure 5.6 Example of base energy table lookup 
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Estimating Inter-Instruction Energy  The other energy table is the inter-

instruction energy table for NOP-pairs. In the case of the memory slot, a single 

constant value is sufficient to model inter-instruction energy as explained in Section 

4.2.1. However, for the vector slot, we need to consider inter-instruction energy for 

each pair of instructions. To improve modeling efficiency, we propose a novel 

method where we only measure the inter-instruction energy for pairs with NOP and 

perform analytical conversion to estimate the inter-instruction energy for all pairs. 

In Section 4.2.2, it was discovered that the inter-instruction energy consumption 

of vector slot instructions primarily originates from the data path of the vector 

processor, due to its application-specific ISA and SIMD architecture. When the type 

of executed instruction changes, different parts of the circuit are utilized, and during 

this process, various factors cause inter-instruction energy consumption. Among the 

factors, a primary consideration in the target vector processor microarchitecture is 

the multiplexing of input wires within the modules. 

Input wire multiplexing in the vector processor is implemented as a means of 

operand isolation, a commonly employed power-saving technique. It serves to 

prevent redundant switching activity in idle combinational logics. As a consequence 

of this multiplexing, operand wires that were utilized in the previous instruction but 

are not required in the current instruction undergo a transition from their previous 

values to zero. That is to say, switching activity occurs due to the utilization of 

different parts of the circuit (e.g., pipeline registers, functional units and internal 

wires) by consecutive instructions, causing inter-instruction energy consumption, 

with the energy dissipation varying across different instruction pairs. To precisely 

evaluate this effect, we need to consider all sequential instruction pairs at the wire 

and bit-level through RTL synthesis and simulation, which demands significant 
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engineering time and effort. 

Instead, we propose a method to simply calculate the estimated inter-instruction 

energy for each instruction pair based on pipeline stage usage, as depicted in Figure 

5.7. To obtain the inter-instruction energy of instruction A and B sequence, denoted 

as 𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵, 𝐴, 𝐵, … ) , we first determine the number of stage transitions from 

enabled to disabled stages, referred to as E2D_stages, in both A→B→A→… and 

nop→B→nop→B→… sequences. We then calculate the scale factor based on the 

ratio of E2D_stages, as shown in Figure 5.7. Finally, the estimated inter-instruction 

energy of instruction A and B sequence is obtained by scaling the inter-instruction 

energy with NOP using the scale factor, as in Equation (5.1). Here, the inter-

instruction energy with NOP is directly retrieved by looking up the inter-instruction 

energy table, as depicted in Figure 5.8. 

 

 

Figure 5.7 Inter-instruction energy scale factor calculation 

 

 

𝑖𝑛𝑡𝑒𝑟(𝐴, 𝐵, 𝐴, 𝐵, … ) 

= 𝑖𝑛𝑡𝑒𝑟(𝑛𝑜𝑝, 𝐵, 𝑛𝑜𝑝, 𝐵, … ) ∗ 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟(𝐴, 𝐵)    (5.1) 
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Figure 5.8 Example of inter-instruction energy table lookup 

 

By employing this method, it is no longer needed to collect measurements for 

all instruction pairs. Instead, only pairs consisting of an instruction and a NOP are 

considered, while still accounting for the circuit state changes in all instruction pairs. 

The inter-instruction energy values for all {vector slot instruction, NOP} pairs are 

contained in each entry of the inter-instruction energy table, with a table size of O(𝑛) 

instead of O(𝑛2). 

 

Estimating Kernel-Level Energy Consumption  The energy estimator 

calculates the estimated energy of the kernel by combining the instruction base 

energy and inter-instruction energy over the estimated CFG. The algorithm for 

calculating the kernel-level estimated energy is described in Algorithm 2. 

In phase 1 of the algorithm, the estimated energy of each node and edge in the 

CFG is calculated. Each CFG node corresponds to a basic block, which is a sequence 

of instructions. The node energy is calculated as the sum of the base energy of all 

instructions in the basic block, as well as the inter-instruction energy of all sequential 
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instruction pairs within the basic block. A CFG edge represents the control flow path 

from the last instruction of the source node to the first instruction of the destination 

node. Thus, the edge energy is calculated as the inter-instruction energy between 

these two instructions. 

In phase 2, the estimation of the entire kernel execution energy is calculated. 

While parsing the entire CFG, the energy of each node and edge is accumulated. The 

energy of a single node is multiplied by its basic block iteration count. The energy 

of a single edge is multiplied by the number of times the edge is taken, which is 

directly calculated from the iteration count of the connected nodes. Unlike in general 

processor kernels where control flow is complex, DNN layer kernels are structured 

in simple nested loops, with each basic block having no more than 2 incoming and 

outgoing edges, making it possible to determine how many times an edge is taken 

based on the basic block iteration count. 

Repeating the above process for memory and vector slot, the kernel-level 

estimation of each slot’s energy is obtained. Finally, from the estimation values of 

memory, vector slots and ignored scalar slot (assumed to have zero energy), the slot 

additive property gives the overall kernel-level vector processor energy estimation. 

The entire estimation process, which involves 4 analytical steps of algorithm 

parsing, graph transformation, runtime analysis, and energy calculation, does not 

require any compile-able kernel C code, compiled assembly code, actual hardware 

execution, or low-level simulation. This approach enables fast evaluation of the 

energy consumption without the need for extensive hardware resources or time-

consuming simulations. Instead, the estimation process relies on high-level analysis 

and modeling techniques to estimate the energy consumption of the kernel. 
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Algorithm 2 Estimated energy calculation algorithm pseudocode 

 1:  // phase 1-1: CFG node calculation 

 2:  for node: basic blocks of estimated CFG do 

 3:     for instr: instructions in node do 

 4:        node_energy[node] += base(instr) 

 5:     end for 

 6:     for {instr_1, instr_2}: sequential instruction pairs in node do 

 7:        node_energy[node] += inter({instr_1, instr_2}) 

 8:     end for 

 9:  end for 

10:  // phase 1-2: CFG edge energy calculation 

11:  for edge: edges of estimated CFG do 

12:     edge_energy[edge] += inter({edge_src_instr, edge_dst_instr}) 

13:  end for 

14:  // phase 2: total kernel energy calculation 

15:  for node: basic blocks of estimated CFG do 

16:     graph_energy += node_energy[node] * node_iteration[node] 

17:  end for 

18:  for edge: edges of estimated CFG do 

19:     graph_energy += edge_energy[edge] * edge_taken_times[edge] 

 20:  end for 
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Chapter 6 

Experimental Results 

6.1. Experimental Environments 

 

To obtain the ground truth energy consumption, we conducted power 

measurements by capturing instantaneous voltage and current values from the on-

chip system power management bus. Due to the limited speed of the I2C interface, 

we were only able to obtain instantaneous power readings every 20 ~ 30 milliseconds. 

To ensure reliability, we executed a single kernel repeatedly until 500 power 

measurement samples are collected. The average value of these samples was then 

multiplied by the cycle count obtained from the on-chip performance counter to 

calculate the energy consumption of the kernel execution. 

Running the entire modeling process in Python 3.8 once to obtain the estimated 

energy value for a single layer execution takes approximately 300 milliseconds on 

an Intel Xeon Gold 6242R processor. 
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6.2. Kernel-Level Energy Estimation  

 

In our evaluation, we applied our energy modeling method to eight target 

kernels listed in Table 3.1. We tested the method on 100 different layer 

configurations with random data and filter shapes for each kernel. 

Figure 6.1 illustrates the average estimation accuracy of our proposed model, 

which is depicted in green bars, and two baseline models for comparison. The first 

baseline model, represented by the orange color, considers only the instruction base 

energy (base-only model). The other baseline model, depicted in yellow, 

incorporates both the base energy and inter-instruction energy by simply using the 

NOP-pair energy as the inter-instruction energy for all instruction pairs (base + NOP 

model).  

The evaluation results demonstrate that ignoring inter-instruction energy leads 

to a considerable degradation of modeling accuracy. The worst-case accuracy is 

observed in the K5_DWCV kernel, where the accuracy drops to 50.39% when inter-

instruction energy is neglected. In all the comparisons, the models that consider inter-

instruction effects, namely the base + NOP model and the proposed model, 

outperform the base-only model. This indicates that incorporating inter-instruction 

energy improves the accuracy of the energy estimation. 

The proposed model outperformed the base + NOP model in most cases. On 

average, the proposed model achieved estimation accuracies ranging from 93% to 

99%. This indicates that the proposed scaling method significantly improves the 

accuracy of the energy estimation. In particular, for kernels with frequent instruction 

switching in vector slot, such as K1_EADD and K5_DWCV, the proposed model 
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exhibited a substantial improvement in estimation accuracy compared to the base + 

NOP model. This suggests that the proposed method effectively captures the inter-

instruction energy consumption patterns, leading to more accurate energy 

estimations. 

The proposed model showed relatively poor performance in nearest neighbor 

up-sampling kernels, K6_UPS_k2 and K7_UPS. These kernels follow a simple 

algorithm of duplicating data pixels, primarily involving vector load and store 

operations without any vector slot instructions. Moreover, memory operations are 

executed sparsely due to long memory access latency, resulting low processor 

utilization and low power consumption. Consequently, the ignored scalar operations, 

such as address calculation and control flow management, become more prominent, 

leading to a degradation in estimation accuracy for these specific kernels. To address 

this weakness, a minor compensating term for up-sampling pixel address calculation 

energy is added at the dominant innermost loop. 

Comparisons between measured and estimated energy consumption for all test 

cases are presented in Figure 6.2 to Figure 6.9, with energy values scaled as in 

Section 4.2. These figures clearly show that the estimated energy consumption 

accurately reflects the variation in energy consumption across different layer 

configurations. 
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Figure 6.1: Average estimation accuracy 

on 100 test cases of 8 target layer kernels 
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Figure 6.2: K0_ACTV energy measurement and estimation 

 

 

 
Figure 6.3: K1_EADD energy measurement and estimation 
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Figure 6.4: K2_MAXP_k3s2 energy measurement and estimation 

 

 

 
Figure 6.5: K3_GAP energy measurement and estimation 
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Figure 6.6: K4_DWCV_k3 energy measurement and estimation 

 

 

 
Figure 6.7: K5_DWCV energy measurement and estimation 
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Figure 6.8: K6_UPS_k2 energy measurement and estimation 

 

 

 
Figure 6.9: K7_UPS energy measurement and estimation 
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Chapter 7 

Conclusion 

This work proposes an analytical energy modeling method for estimating the 

energy consumption of a vector processor kernel execution. The method efficiently 

calculates the estimated energy by analyzing and focusing on energy-significant 

factors. It models energy consumption using novel analytical methods of lowering 

major operations down to the instruction level through graph transform and 

calculating inter-instruction energy consumption on the data path based on pipeline 

stage usage. Experimental results on 8 different DNN layer kernels, with 100 tests 

cases for each, demonstrate that the proposed method achieves an average estimation 

accuracy of 95.52%. Furthermore, the estimation process is fast, taking only 300 

milliseconds on Intel Xeon Gold 6242R processor. 
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국문 초록 

 

 

프로세서 에너지 모델은 오랜 기간동안 광범위하게 연구되어 왔다. 

특히, 딥러닝 프로세서 모델링에 관한 연구는 최근에 큰 관심을 받고 

있다. 딥러닝 프로세서의 에너지 소비량을 예측하는 것은 하드웨어 

아키텍처, 소프트웨어 최적화, 데이터 및 연산 매핑 공간 탐색 및 신경망 

구조 탐색(NAS)에 걸친 여러 레벨의 설계에서 중요한 역할을 한다. 

정확한 에너지 예측을 위해서는 명령어 별 에너지에 더해서 명령어 간 

영향까지 고려하는 것이 필요하다. 

적은 오버헤드로 에너지 소비를 정확하게 모델링하기 위해, 우리는 

대상 프로세서 아키텍처의 명령어 수준 에너지 동작 특성을 분석하였다. 

이 분석을 바탕으로, 명령어 간 영향을 포함한 주요 전력 소비 요소를 

고려해 에너지 소모를 예측하는 간단한 해석적 접근 방식을 고안하였다. 

제안된 모델링 방법은 평균 95.52%의 커널 수준 에너지 예측 정확도와 

빠른 예측 시간을 보여준다.  

 

주요어: 해석적 전력 소모 모델, 벡터 처리 장치 (VPU), VLIW 프로세서, 

신경망 처리 장치 (NPU)  

학번: 2021-26145  
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