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Abstract

VVon Neumann-based deep neural networks have achieved excellent performance
with the rapid development of computing power. However, moving data consumes a
significant amount of time and energy due to the serial connection of the central
processing unit (CPU) and memory. As a result, neuromorphic systems have emerged
as a promising approach to address the computational challenges of artificial neural
networks while maintaining extremely-low-power operation. In particular, synapse,
one of the crucial building blocks of neuromorphic systems, stores the weights
between neurons and transmits signals. According to Kirchhoff's current law, the
artificial synapse can operate quickly with low power consumption because vector-
matrix multiplication (VMM) is expressed as a current sum.

Therefore, various synaptic devices have been proposed, including memristor-
based two-terminal devices and flash memory-based synaptic devices. The two-
terminal devices have a simple structure and are advantageous for high-density and
large-capacity integration. However, these face challenges such as device variation,
reliability, and sneak current. On the contrary, flash memory-based synaptic devices
are a mature field with a long history of research, offering stable and multi-bit

operation. NAND-, NOR-, and AND-type arrays are typically implemented as



synapse arrays. NAND-type arrays require an additional circuit because the weight
values must be read sequentially. NOR- and AND-type arrays can perform VMM
operations by sensing current from the source line. However, these arrays suffer a
limited degree of integration.

This dissertation proposes a poly-Si overpass channel synaptic (OCS) transistor
with scaled cell size for extremely-low-power operation. The OCS transistor exhibits
two key structural advantages. Firstly, the on-current is decreased to sub-100 nA,
maintaining a high on/off ratio due to the channel wrapping around the fin-shaped
bottom gate. Secondly, the weights of the OCS transistors can be finely adjusted by
augmenting the volume of the charge storage layer. We experimentally demonstrate
the inference and weight update of the fabricated NOR-type OCS array.

It is verified that the fabricated diode-connected (D-C) OCS array is suitable for
VMM, exhibiting a weighted-sum error of less than 1% during inference. The
synaptic weights in the D-C OCS array are adjusted to sub-nA resolution using
Fowler-Nordheim (FN) tunneling with asymmetric gates. Furthermore, stable
operation is demonstrated by verifying process-voltage-temperature variations.
Finally, the classification accuracy for the Fashion MNIST dataset reaches 91.29%

after a year, with four-bit quantization of spiking neural networks (SNNs).
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Chapter 1

Introduction

1.1 Neuromorphic Systems

Computing devices based on the Von Neumann architecture have experienced a
dramatic increase in computing performance, showing notable advantages in
arithmetic operations. Furthermore, artificial neural networks (ANNSs) have made
tremendous advancements in image classification, defect detection, and autonomous
driving using vast data and advanced learning algorithms [1-3]. However, the
computational workload grows as ANNs become more complex and require massive
data. Consequently, the significant time and power consumption present the most
considerable challenges ANNs must address. The performance gap between the

central processing unit (CPU) and memory is growing, which results in the Von



Neumann bottleneck during the data transfer process, as illustrated in Figure 1.1 and
Figure 1.2 [4, 5]. Therefore, numerous studies on innovative data processing have
been actively conducted to overcome the limitations of conventional computing
architectures [6-8].

The human brain consumes approximately less than 20 W, capable of processing
various and complex data in real-time. Therefore, research on neuromorphic systems,
which emulate human neural systems in hardware, has been actively explored. The
primary goal of these neuromorphic systems is the efficient integration of critical
elements, such as neural circuits and synaptic arrays, which are massively
interconnected in parallel.

The role of a neuron is to receive and integrate signals from numerous synapses
through dendrites. Additionally, when the membrane potential exceeds a specific
threshold voltage, the signals are produced. Subsequently, the membrane potential
undergoes a refractory period before entering the resting state, preparing to receive
other signals. Neurons consume energy only when they fire, resulting in low power
consumption. Therefore, research has been conducted on integrate-and-fire neuron
circuits to emulate these characteristics.

A prominent example is a neuron circuit composed of inverters and capacitors [9-
12]. However, there exists a limitation in the integration density due to the large area

occupied by capacitors. Thus, much research has been focused on creating neuron



circuits without capacitors [13-17].

Synapses facilitate signal transmission from the pre-neuron to the post-neuron.
Simultaneously, they store the synaptic weight between neurons, with excitatory
synapses increasing and inhibitory synapses decreasing the membrane potential.
Those synaptic weights are updated to deal with the various complex situations.
Therefore, synapses perform two core functions, memory and signal transmission,

representing one of the most critical components in neuromorphic systems.
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1.2 Candidates for Synaptic Device

1.2.1 SRAM & Memristor

The human brain has approximately 100 billion neurons and 150 trillion synapses.
As a result, artificial synapses and neurons must enable low power, high density, and
stable operation. Additionally, a synaptic device requires memory operation to store
multiple weights. Many synaptic devices have been proposed since the absence of a
synaptic device that meets all these requirements.

The country and industry have extensively investigated static random access
memory (SRAM) based digital-analog mixed-type neuromorphic chips.
Representatively, state-of-the-art process technologies such as Spinnaker, TrueNorth,
and Loihi integrated hundreds of millions of synapses and hundreds of thousands of
neurons, as illustrated in Figure 1.3 [18-23]. Implementing these technologies is
crucial in enabling energy efficient and scalable designs, both of which are vital for
advancing neuromorphic systems. However, there are significant limitations in terms
of integration due to the substantial number of transistors required for SRAM-based
neuromorphic chips.

Two terminal memristor devices have attracted attention as synaptic devices due

to their simple structures and ease of integration, as shown in Figure 1.4.



Representatively, memristor devices such as resistive random access memory
(RRAM), phase-change memory (PCM), and ferroelectric random access memory
(FeRAM) can perform vector matrix multiplication (VMM) in a cross point array [24-
31]. Memristors capable of gradual switching has been proposed to represent various
states, and a neuromorphic system has been verified by implementing a large synapse
array. However, these memristors still require verification of stable operating
characteristics such as retention and device variation. Additionally, due to sneak
current, a fundamental limitation of two terminal devices, errors may occur in VMM
[32-34]. Consequently, additional devices, such as extra transistors or selectors, must

address this problem.
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1.2.2 Flash memory

Since flash memory has been commercialized for decades, it is a highly mature
field. It possesses significant advantages as a synaptic device due to its cycle
endurance and retention stability compared to other memristors. Flash memory-based
synaptic devices include NAND-, NOR-, and AND-type arrays with unique structures
and operation mechanisms.

Table 1.1 shows the main characteristics of flash memory-based synaptic arrays.
The vertical integration capability of the NAND-type array offers a significant
advantage in terms of integration compared to other devices. However, sensing the
conductance of an individual cell necessitates applying a pass voltage to other
transistors within the string due to the series connection. Consequently, the
conductance of the target cell is distorted, depending on the weights assigned to other
cells in the exact string. Moreover, VMM cannot be executed directly through current
sensing owing to the series structure. Thus, an external analog-to-digital converter or
a circuit is required for performing calculations [36, 37].

Both NOR- and AND-type arrays have a structure similar to a neural network
because they can produce parallel output signals when a voltage input is applied to
the word line (WL) [38-40]. Therefore, these arrays perform VMM by sensing the

current, which is the product of the conductance and voltage input, on the source line



(SL). The two structures exhibit different SL and drain line (DL) arrangements. SL
and DL are perpendicular in the NOR-type array, whereas they are arranged parallelly
in the AND-type array, as shown in Figure 1.5.

During the weight adjustment process, the NOR-type array modulates the
conductance of individual cells through hot carrier injection (HCI). In this process,
hot carriers damage the tunneling or gate oxide, resulting in reliability problems.
Moreover, energy consumption is high since the current continuously flows, and
program efficiency decreases. Conversely, the AND-type array uses Fowler-
Nordheim (FN) tunneling for program and erase, resulting in lower energy
consumption and precise conductance control using incremental step pulse program
(ISPP) and incremental step pulse erase (ISPE) methods.

In inference, the NOR-type array is advantageous for low-power event-driven
operation since the same voltage input is applied to both the word line (WL) and DL.
Therefore, the array consistently operates in the saturation region, enabling stable
current output and complete suppression of off-current. Otherwise, the voltage must
always be applied to the DL in the AND-type array. Therefore, the leakage current
accumulates on the SL even if no signal is received from any neurons. An additional
peripheral circuit can be integrated to alleviate this issue. This configuration enables
DL to receive only voltage when a signal is applied to the WL, eliminating the leakage

current without a voltage input. Nevertheless, when the voltage input is applied to the



WL, the leakage current is still summed in the SL. This leakage current subsequently

leads to VMM errors.

Current sum for VMM calculation

Input signal
from pre-neuron BL, BL, BL,, BL, BL, BL, BL,, BL,
_/_\_WL1—+H:. E—EHEH ow == ﬁ J_,=_L
— v T W TR R
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Figure 1.5. Schematic of (a) NOR-type array, (b) AND-type array.
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Table 1.1. Comparison of critical characteristics among the several arrays.

NAND-type array

NOR-type array

AND-type array This work

VMM calculation

Current sum
(serial connection)

Current sum at source line

Weight update

Fowler-Nordheim

Hot carrier injection

Fowler-Nordheim tunneling

(method) tunneling
Weight update
(power Low High Low Low
consumption)
Inference mode Gate (clock base) Gate & drain or gate Gate Gate & drain
Leakage current Low Low High Low

11



1.3 Outline of Dissertation

This dissertation presents a flash memory-based ultra-low power overpass
channel synaptic transistor and operating scheme. We also verify its performance
through high-level simulation that accounts for the characteristics of the fabricated
synapse array.

In Chapter 2, the concept and operation mechanism of the proposed device are
described, and compatibility with neurons is verified. In addition, the current level is
optimized through TCAD simulation. The low-power program/erase scheme is
proposed, and the adjustment of individual cell conductance is demonstrated.

Chapter 3 explains the entire process flow of the scaled device and array, and the
electrical characteristics of the fabricated device are analyzed with a process-voltage-
temperature variation. Synaptic weight control of the target cell as well as vector
multiplication, is shown in this chapter. Furthermore, the diode-connected synapse
array that shares a gate and drain is proposed for high integration. This array has
advantages in minimizing the leakage current.

In the final chapter, we perform high-level simulations on the Fashion MNIST

dataset based on the retention and weight-tuning characteristics. Finally, we validate

12



the feasibility of the proposed overpass channel synaptic transistor for ultra-low

power neuromorphic systems.

13



Chapter 2

Overpass Channel Synaptic Transistor

2.1 4-terminal Flash Memory-based Synaptic Device

2.1.1 Previous 4-terminal Devices

Previously, several flash-based four-terminal transistors are proposed for synaptic
devices. The NOR-type synaptic array of the proposed device controls the
conductance of individual cells by using two asymmetric gates [41-43]. The
characteristics of these devices are summarized in Table 2.1, and they implemented
both short- and long-term memory of synaptic characteristics. Additionally, the gate
is located far from the charge storage layer (CSL), providing significantly improved

resistance to read disturb during inference. However, there are some limitations to

14



ultra-low power operation due to the adjustment of weights through hot carrier
injection or the current level at the uA or higher. Specifically, as scaling down the

cell size, degradation occurs due to various short channel effects.

Table 2.1. Characteristics of the 4-terminal synaptic device.

[42] [41] This work
Channel Single crystalline Polycrystalline Polycrystalline
material silicon silicon silicon
Program/Erase HOF carrier FN tunneling FN tunneling
injection
On current >1pA > 1pA < 100nA

15



2.1.2 Mechanism of Overpass Channel Synaptic Transistor

As described in section 2.1.1, when the critical dimension (CD) of a flash memory
device decreases, the device characteristics deteriorate due to the short channel effects,
and the amount of charge that can be stored in the CSL drastically decreases. As
shown in Figure 2.1, the trap density of SisN4 is approximately 10%%/cm? and the

maximum trapped charge is only about 100-200 in devices with tens of nm of CD.

'.:-‘ 3.0 131'513
a% 0 L‘!mm
"T,‘? o] EID
S5 20] i
Ce o B
go .
52X 10} i
e ﬂ
'_E-u lS oo® T
E e 0'0 N N N N 2 N 2

o 0.7 09 1.1 1.3 15

Trap energy level, E1, (eV)

Figure 2.1. Trap density of SizsN4 as a function of trap energy level [44].
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Thus, there are limitations in implementing various states, and retention problems
arise due to charge loss. Increasing the gate length and CSL is necessary to solve
these problems fundamentally. In the case of NAND flash memory, these led to the
development of 3D NAND flash structures, which stack cells vertically.

Similar to the reasons mentioned above, the overpass channel synaptic (OCS)
transistor is proposed to form a vertical structure for a longer effective gate length
(EGL) and CSL, as illustrated in Figure 2.2(a). EGL and CSL can be formed larger

depending on the height of the fin and can be expressed by the following eq. (2.1).

Effective gate length = gate length + 2 X fin height (2.1)

Thus, the various side effects can be fundamentally resolved during scaling down.
Furthermore, the increased EGL along with the poly-Si channel, significantly reduces
the on-current of the device. It offers substantial benefits for ultra-low-power
operation for neuromorphic systems.

Additionally, by forming an electric field capable of FN tunneling in the tunneling
oxide with asymmetric gates, the conductance of the OCS transistor can be adjusted
by injecting electrons or holes into the CSL. As shown in Figure 2.2(b), the trapped
charge influences the threshold voltage of the top gate, similar to the body effect.

Moreover, the impact of the trapped charge on the threshold voltage of the top gate

17



can be enhanced by forming a thin active layer.

(@)
L oo layer
— : Electrons path
@: trapped charge
(b) Top gate
Cos Cya
Source

Bottom gate T

Figure 2.2. (a) Schematic of overpass channel synaptic (OCS) transistor. (b)
Capacitance network of OCS transistor. The capacitance between the floating
body and the bottom gate is composed of the serial connection of the

capacitances with the tunneling oxide (Cw), SisN4 and blocking oxide (Cho).
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2.2 TCAD Simulation Results

2.2.1 Neuron Circuit Simulation

Synapse arrays and neuron circuits are fundamental building blocks of
neuromorphic systems, interacting and exchanging signals. Therefore, when
designing a synapse array, it is essential to consider compatibility with the neuron
circuits. As shown in Figure 2.3, current flowing through excitatory and inhibitory
synaptic arrays, enters the post-neurons via the current mirror. Consequently, setting
an appropriate current level in the synaptic array is crucial, as it determines the energy
consumption and operating speed of the systems.

The current mirror at the front of the neuron circuits transmits current to the
neuron, regardless of the charge accumulated on the membrane capacitance, by fixing
the source voltage of the synaptic transistor. Thus, the current mirror in the post-
neuron section is simulated with the Silvaco SmartSpice tool. The transistor model
used in this thesis is BSIM-CMG model version 105.0 and the 45 nm FinFET
technology node. The synaptic current is optimized by analyzing the output current
(lowt) according to the input current (lir) with a channel length of 45 nm and a fin pitch
of 80nm.

If lin exceeds the maximum level that the M1 transistor can drive, not only is the
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current not accurately copied, but a substantial amount of energy is consumed, as
shown in Figure 2.4. If Ii, is too small, the RC delay dramatically increases due to
parasitic capacitance components. For instance, when li; is 224 pA, the propagation
delay (tpq) for charging the gate capacitances of the current mirror is 225 ns, as
illustrated in Figure 2.5. Consequently, when a voltage input with a pulse width of
several ps is applied, a significant signal loss of tens of percent occurs, leading to
VMM errors.

Due to sub-nA li, causing large tpq of hundreds of ns, the current transmitted to
the post-neuron becomes distorted, as shown in Figure 2.6. Therefore, by setting the

current in the synapse to tens of nA, t,a and power consumption are minimized.
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Figure 2.3. Schematic of neuron circuit and synaptic arrays performing VMM.
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2.2.2 Program/Erase Scheme (unit cell)

The hot carrier injection, commonly used in NOR-type arrays, causes damage to
the gate oxide and diminishes program/erase efficiency. In contrast, the proposed 4-
terminal OCS transistor utilized two asymmetric gates to trap charge in the CSL
through FN tunneling. As depicted in Figure 2.7, electrons from the top gate are
injected into the CSL through FN tunneling while erase injects holes. Simultaneously,
the source and drain remain floating and do not directly participate in the program
and erase operations. The program/erase conditions are summarized in Table 2.2, and
a sufficient electric field is applied to the tunneling oxide by the two gates to inject
charges.

Figure 2.8(a) illustrates the key parameters of the OCS transistor: fin height (Hin),
the tail part where the top gate covers the bottom active (T:wi), and active thickness
(tsi). Because Hsin causes an increase in the effective gate length and CSL volume, the
maximum trapped charge increases while the current is reduced, as depicted in
Figure 2.8(b). Furthermore, the thinner ts results in a larger electric field between the
two gates, which enhances the program efficiency. Consequently, increasing tsi from
7 nm to 40 nm augments the amount of trapped charge, as shown in Figure 2.9(a).
Additionally, if ts is thin enough, the trapped charge greatly influences the threshold

voltage shift of the top gate, as depicted in Figure 2.9(b).
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Figure 2.7. Schematic of program/erase operation with FN tunneling.

Table 2.2. Voltage conditions of program/erase operation with FN tunneling.

Program Erase
Top gate voltage (V) 0 Vers
Bottom gate voltage (V) Vogm 0
Source/Drain voltage (V) Floating Floating
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2.2.3 Program/Erase Scheme (NOR-type Array)

Accurate weights must be established in the target cell within the NOR-type array
for practical implementation. Therefore, optimizing the program (PGM)/erase (ERS)
scheme is essential while considering the PGM/ERS disturb on neighboring cells.
The primary 2x2 NOR-type array is depicted in Figure 2.10, with the voltage
condition of the target cell presented in Table 2.2. The conductance change in
adjacent cells can be prevented by applying 1/3 Vpgm and 1/2 Vers as the PGM/ERS
disturbance voltage.

Since the SL and DL are floating in the NOR-type array, the voltage of SL and
DL is not fixed. However, due to the inherent characteristics of the proposed OCS
transistor structure, the T can effectively block the SL/DL voltage. In other words,
as depicted in Figure 2.11, the SL and DL voltages vary depending on the top gate
voltage conditions in the capacitance network of the array. However, when 0 V is
applied to the top gate, the channel is cut off at T, and the Vpgm Of the bottom gate

reduces the conductance of the target cell.
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In the synapse array, the length of Twi plays a crucial role in inhibiting
neighboring cells by blocking the SL and DL voltage. When programming the target
cell, the SL voltage in Figure 2.10(a) is determined by the capacitance network of
the top and bottom gates, as it is shared with the SL voltage of the cell below. In the
worst case, since the capacitance value of the top gate is larger than the bottom gate
capacitance value, the SL voltage is formed at approximately 1/2 Vygm. As shown in
Figure 2.12, the top gate blocks the channel when the length (L) Of Tt is 200 nm.
Therefore, the voltage at SL has no impact on the channel.

On the other hand, when the Ly is 30 nm, the voltage of SL affects the channel
because the top gate cannot completely block the channel. In this case, the source side
of the channel is not programmed by the gates but rather by the voltage transferred
from the SL and the bottom gate voltage, resulting in lower efficiency. Figure 2.13
illustrates the trapped charge in CSL for the two situations described above. When
L:wil is long enough, the trapped charge is evenly distributed with a high concentration
of 10'%/cm?® on the source and drain side of CSL. However, when L is short, the
voltage near the source of the channel is boosted, causing the charge near the source
side to be distributed at approximately 10*"/cm?, which is significantly lower than that
near the drain.

Figure 2.14(a) shows the program efficiency according to Liwii. When L is 50

nm or longer, the channel is cut off, and the program efficiency improves rapidly. In
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addition, the program efficiency of the target cell varies depending on the inhibit
voltage. The influence of the source voltage on the channel is further reduced by
applying 1/3 Vpgm. Figure 2.14(b) demonstrates that as the L. increases, the trapped
charge increases. Therefore, there is a trade-off between program efficiency and the
degree of integration for L:wii. The Lei should be set to a minimum to design a more
compact synapse array, while for programming/erasing at a low voltage, L:i should

be set to 50 nm or longer.

30



1.0 x10 2.2 x10%2 4.6 X101 1.0 x10%
I B i
Vi (0V)

Vs = 113 Vg,

Figure 2.12. Channel electron density according to different Lei.

1.0 x10° 2.2 x106 4.6 X102 1.0 x10%°
___ DI B i
Ly =30 nm Lzt = 100 Nnm

N —N

VBG
] (Vpgm)

Figure 2.13. Trapped charges with different L during the program.

31 e R



(a)

o
w
T

o
N
T

o
=
I

Vinhibit = 1/2 Vogm ]
Vinnibit = 1/3 Vpgm

Threshold voltage shift (V)

0.0 ] \ ] \ ] \ ] \ L
0 50 100 150 200
I—tail (nm)
(b) T T T
]
2 4.0x10Y | .
©
e
(&)
S 3
] *
o 2.0x10Y | .
o 1 _
0.0 F i
0 10 20
Time (us)

Figure 2.14. (a) Threshold voltage shift as a function of L with different inhibit
voltages. (b) Trapped charge vs. time.

M L-tf] &
| = I



Chapter 3

Fabricated Device Characteristics

3.1 Process Flow of Overpass Channel Synaptic
Transistor

Figure 3.1 presents the complete process flow of the OCS transistor. Initially, a
thick buried oxide layer is formed on the bare wafer using wet oxidation, followed by
the deposition of 70 nm in-situ doped poly-Si serves as the bottom gate. A significant
advantage of the OCS transistor is to achieve a large effective gate length and CSL
area within a small footprint. Thus, a mix-and-match process is used with electron-
beam lithography (EBL) and photolithography for sub-100 nm patterns. Bottom gate
fins with widths ranging from 30 nm to 300 nm are patterned. Figure 3.2 shows

scanning electron microscope (SEM) images of bottom gate fins with 40 nm and 50
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nm widths.

Subsequently, SiO2/SisN4/SiO; are deposited using low-pressure chemical vapor
deposition (LPCVD) to serve as the CSL. During the initial stage of blocking oxide
deposition, the corner regions of the fin are oxidized, resulting in rounded edges, as
illustrated in Figure 3.3. Next, a thin amorphous silicon (a-Si) channel is deposited
to reduce the current level and amplify the impact of trapped charges in CSL on the
top gate’s threshold voltage. The poly-Si active is also formed using mix-and-match

lithography, as shown in Figure 3.4.

S/D implantation

(As, 2x10%5 cm-2, 10 keV)
S/D activation

(RTA, 1000 °C, 10 sec)

: BOX oxidation

Bottom gate formation
(n+ poly-Si 70 nm)

@ O/N/O storage layer dep.
(3.1 nm/5.8nm/8.0nm)

@ Channel form. TEOS dep.
(poly-Si 21.4 nm) Contact hole etch
Top gate oxide dep. (6.5 nm) Metal dep. (Ti/TiN/AI/TiN)
Top gate form. (n+ poly-Si) Pad patterning

o
>

Figure 3.1. Entire process flow of OCS transistor with specific thickness.
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Figure 3.3. Transmission electron microscope (TEM) image of CSL layer.
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Subsequently, gate oxide is formed using two different methods. The first method
involves thermal oxidation at 1000 °C for 4 minutes, while the second method
involves LPCVD to deposit 7 nm SiO,. Typically, gate oxide is formed through
oxidation for single crystalline silicon and through CVD for poly-Si. This is because
SiO, formed by oxidation has the best film quality. However, when poly-Si is
oxidized, the SiO, near the grain boundaries has poor film quality, which can cause a
leakage current. Since the poly-Si is crystallized and gate oxide is formed
simultaneously, the SiO on poly-Si could be formed more stably.

The gate oxide thickness in this process is formed thicker than in conventional
metal-oxide-semiconductor field-effect transistors (MOSFETS). One of the most
critical aspects of fabricating the OCS transistor is that top gate etching must account
for the step height caused by the bottom gate fin. When patterning the top gate
through dry etch, it is essential to over-etch beyond the fin height, and this process
can cause two problems. First, excessive etching causes the top gate oxide to be

punctured, damaging the thin poly-Si active layer, as shown in Figure 3.5 (a).
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Figure 3.4. SEM image of poly-Si active.
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(b)

Figure 3.5. Two situations can arise during gate formation: (a) over-etch and (b)

under-etch.

Secondly, if the over etch is insufficient, as shown in Figure 3.5(b), sidewalls are

formed among the gate lines, which can cause a short circuit. As a result, signals from

the pre-neuron are transmitted to all synaptic transistors through the top gate sidewalls.

Figure 3.6 shows the TEM image of the two situations described above during

fabrication.
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The unit process is carried out with a chemical dry etcher (CDE), an isotropic
etching technique to prevent the two situations mentioned above. As illustrated in
Figure 3.7, because the etch rate is different depending on the grain of poly-Si and
the top gate length is too short, isotropic etching poses multiple risks when fabricating
scaled devices. Therefore, the gate oxide is formed with 7 nm, and the top gate with
excellent selectivity is formed using a poly-Si etcher with HBr as the etching gas.
This poly-etcher offers over 20 times the etch selectivity between poly-Si and SiO..
Furthermore, since the OCS transistor has a structure in which the top gate surrounds
the active region, precise alignment of the bottom gate fin and the top gate is essential.
Misalignment within tens of nanometers is achieved by employing two global
markers and four chip markers during e-beam patterning, as shown in Figure 3.8.

Subsequently, the source and drain are formed through arsenic ion implantation
at 10 keV with a dose of 2x10™ cm, followed by source and drain activation using
rapid thermal annealing (RTA) at 1000 °C for 10 seconds. Finally, the Ti/TiN/AI/TIN
layers are deposited using an Endura sputter, and the pads are patterned. Figure 3.9
displays the fabricated OCS transistors and arrays under an optical microscope. The
process flow for OCS transistors and arrays is identical, allowing the procedure to be

carried out within a single wafer.
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Figure 3.7. Front view of TEM image (a) before chemical dry etch (CDE) (b)

after CDE.
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Figure 3.8. SEM image after top gate patterning. The top and bottom gates are
well aligned, and the thin poly-Si active region is preserved after the formation

of the top gate.
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Figure 3.9. Bird’s eye view of fabricated (a) OCS transistor, (b) OCS transistor

array.
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3.2 Unit Cell Characteristics

3.2.1 Electrical Characteristics

In Chapter 2.2.1, the synaptic current level is optimized considering the
integrated system of synapses and neurons for ultra-low power operation. Therefore,
the OCS transistor is fabricated with the goal of an on-current of several tens of nA,
enabling low-power operation while minimizing propagation delay. Furthermore, as
depicted in Figure 3.2 and Figure 3.10, the electric field is reduced by over 20% due
to the rounding of the fin corner.

Figure 3.11 shows the fabricated OCS transistor with the bottom gate length (Lyg)
of 44.92 nm, top gate length (L) of 289.30 nm, and active thickness (ta) of 21.42
nm. The transfer curve of OCS transistors with Ly = 80 nm, W = 40, 50, and 80 hm
are shown in Figure 3.12(a). The on-current is several tens of nA, suitable for ultra-
low power operation at a Viead 0f 3V. A positive bottom gate voltage corresponds to
the erase state, where holes are trapped in the CSL, while a negative bottom gate
voltage corresponds to the programmed state, where electrons are trapped, as depicted

in Figure 3.12(b).
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Figure 3.10. The electric field of (a) sharp corner and (b) rounded corner

during the program.
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Figure 3.11. TEM image of OCS transistor. The height of the bottom gate fin

can increase the effective gate length and the volume of the CSL.
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Figure 3.13(a) shows the output curve of the OCS transistor with specific
parameters. When the drain voltage exceeds the top gate voltage (Vrs), impact
ionization occurs due to the strong electric field on the drain side. During this process,
hot electron-hole pairs are generated, and these electrons move toward the drain. At
the same time, generated holes are trapped at the grain boundary, and these holes
cause an increase in current, which is referred to as the kink effect. Thus, when the
impact ionization occurs, the current rapidly increases, and the hot carriers can
damage the gate oxide film. Therefore, a large drain voltage is not applied to this
system.

The bottom gate affects only a part of the channel, preventing the current flow as
shown in Figure 3.13(b). Therefore, the signal from the pre-neuron must be
transferred to the top gate during the inference operation, while the bottom gate is
involved in the PGM/ERS operation. Figure 3.14 illustrates the extremely-low-
power operation of the fabricated OCS transistor and the comparison data for the

power consumption of various synaptic devices [45-52].
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Figure 3.13. (a) Output curve of OCS transistor according to different top gate
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3.2.2 Weight Modulation

The PGM/ERS scheme of the OCS transistor is conducted as described in Table
2.2. Figure 3.15 shows the transfer curve of the smallest OCS transistor after
applying the PGM/ERS pulses. Since the source and drain are floating, the top gate
and bottom gate voltages boost the channel voltage. Threshold voltage changes from
3.320 V to 3.431 V while applying PGM pulses and from 3.432 V to 3.312 V while
applying ERS pulses. Consequently, the boosted channel voltage and bottom gate
voltage create the FN tunneling condition in the tunneling oxide, allowing the

conductance of the target cell to be changed.
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3.3 Synapse Array Characteristics

3.3.1 Inference

In the synapse array, the current sum is the product of the VMM operation, which
is crucial in neuromorphic systems. To verify the VMM operation, two cases are
assumed: the turn-on of all transistors and a single transistor. The current sum
difference is measured, and the current sum error (CSE) is calculated below Eq. (3.1):

CSE = (Z1i — lan_setect)/ laii_select X 100 (%) (3.1)
where liand lai_select indicate the turn-on current of one and all transistors, respectively.
Figure 3.16 shows the individual I; and lai sl for each of the four SLs in the
fabricated 4x4 OCS array. The closer the CSE is to 0, the VMM is ideally performed.
By comparing the CSE at various read voltages (Vread), the Viead Can be optimized. The
synapse array is measured using the Keysight B1500A instrument and the medium
power source/monitor unit (MPSMU).

As the Vi increases, a reduction in the device’s channel resistance is noted,
which amplifies the error originating from the line resistance, as shown in Figure
3.17. For Ve values exceeding 3.5 V, the CSE is greater than 2%. As a result, the

Viead IS adjusted to 3 V, where the average CSE is 0.79%, and it can minimize the
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degradation of VMM operation in the neural network. Finally, Figure 3.18 shows the

accurate VMM operation with no difference between XI;and lai_select.
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3.4 Diode-Connected Synapse Array

3.4.1 Fabrication Flow

The 4-terminal NOR-type asymmetric dual gate synaptic array has more
terminals than a conventional NOR-type array, which provides an advantage in
controlling conductance. However, it also has the disadvantage of a larger cell size.
In the 4-terminal NOR-type array, the top gate line (TGL) and DL are parallel,
resulting in a vertical dimension of 6 minimum feature sizes (F) and a horizontal
dimension of 5 F as shown in Figure 3.19(a). Therefore, it is limited to fabricate a
high-density synapse array because the cell size is three times as large as that of a
conventional NOR-type array.

For this reason, we propose a diode-connected synapse array that shares two
parallel TL and DL, as shown in Figure 3.19(b). This allows for a much more
compact integration with horizontal and vertical feature sizes of 4 F and 3 F,
respectively. In other words, it is possible to scale down the cell size to 12 F? by
forming a single contact hole for the four terminals of the top gate and drain contact

of two adjacent cells, as illustrated in Figure 3.19(c).
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Figure 3.19. Top view of (a) conventional 4-terminal NOR-type synapse array
and (b) diode-connected(D-C) synapse array. (c) Front view of D-C synapse

array.
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The SEM images of the two types of fabricated synapse arrays show that the cell
size is scaled down to less than half by integrating TGL and DL, as shown in Figure

3. 20.
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3.4.2 Inference

Voo is always applied to the DL in the AND-type array for the event-driven
operation. Therefore, even in the standby state when no signal is input from the pre-
neuron, leakage current constantly flows to the SL, causing errors in the VMM
operation. However, TGL and DL are set to 0 V in the standby state in the proposed
D-C array, enabling double suppression of leakage current. Figure 3. 21 shows that
when Vpp is constantly applied to the drain, the off-current flows at hundreds of pA
due to gate-induced drain leakage (GIDL). In contrast, the D-C array has an extremely
low current level at the sub-pA level. Therefore, there is no impact from leakage
current, considering the measurement equipment’s error. In other words, the D-C
array is suitable for low-power and accurate VMM operation, with the on-current
remaining the same while reducing the off-current by more than three orders of

magnitude.
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3.4.3 Weight Modulation

As described in section 3.4.2, the D-C array has several advantages during
inference, such as reduced cell size and leakage current. Figure 3. 22 shows the
PGMI/ERS voltage scheme in the simple 2x2 array. The difference from the scheme
described in the previous section 2.2.3, is that the DL and TGL are integrated, and
the same voltage is applied. Since the L separates the SL/DL voltage from the
channel voltage, the overall PGM/ERS mechanism does not change significantly.
Moreover, PGM/ERS disturb can be prevented by applying PGM/ERS inhibit voltage
to the TGL, DL, and BGL.

Figure 3. 23(a) shows the scheme for controlling the conductance of the target
cell in the fabricated OCS array, where t;s and tpw represent the rising, falling time,
and pulse width, respectively. 40 ISPP and ISPE pulses are applied at intervals of 0.1
V from 5V to 9 V in the PGM cycle and intervals of 0.2 V from 14 V to 22 V in the
ERS cycle. Three PGM/ERS cycles are performed, allowing the conductance of the
target cell to be adjusted at sub-nA intervals. Total 240 pulses are applied to verify
the PGM/ERS operation.

To verify the inhibition of neighboring cells when applying PGM/ERS pulses, the

percentage of cell inhibition (PCI) is defined as follows:

Percentage of cell inhibition = | Lsurrounding o 19 | (3.1)
target
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The lower the PCI value in each PGM/ERS cycle, the more precise conductance
of the target cell is controlled without changing the conductance of neighboring cells.
The PCI in the first PGM cycle is 14.285%, but it stabilizes at 4.424% and 3.633 %
in the second and third cycles, respectively. Figure 3.25(a) shows the voltage
conditions during the program, with the PGM inhibit voltage applied to the top gate
and drain of the PGM disturb cell. According to Gauss’s law, the electric field is
concentrated at the circular region indicated by the dashed line, as illustrated in
Figure 3.25(b). Charges are trapped at this location through tunneling, as shown in
Figure 3.25(c). In subsequent cycles, some of these charges act as fixed charges,
leading to improved PCI.

Figure 3. 26 shows the distribution of pristine current values measured from 144
cells with nine different dies. While 96.52% of cell current is distributed within the
range of 20 nA to 50 nA, the charge in the CSL has little effect on the top gate.
Therefore, as analyzed in Figure 2.9(b), a reduction in body thickness to 10 nm
increases the weight modulation range by 5.63 times, and all cells can be adjusted to

specific weights.
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3.4.4 PVT Variations

It is essential to verify process-voltage-temperature (PVT) variations to ensure
the stable operation of the synapse array. The proposed OCS transistor can reduce the
impact of process variation compared to other scaled devices because of the increased
effective gate length and volume of the CSL. Furthermore, even if the cell current
differs due to the process variation, it can be adjusted by the fine-tuning of weights,
as demonstrated in Figure 3. 24.

Subsequently, to analyze the influence exerted on the OCS transistor by input
voltage variations, the voltage accuracy of the Keysight B1500A and the high voltage
semiconductor pulse generator unit (HV-SPGU) are considered. The amplitude
accuracy of HV-SPGU is £(0.5% + 50 mV). Thus, given that Ve is 3 V, it can vary
up to 65 mV. Therefore, the current variation due to the voltage for various synaptic
weights is measured as depicted in Figure 3. 27. It changes linearly from 2.9V to 3.1
V with an average AlI/AV=1.152x107 A/V. The effect of a 65 mV variation on
current is illustrated in Figure 3. 28 with different current levels. Then, high-level
simulations are conducted in Chapter 4.2 with these results.

Finally, the influence of temperature variations on synaptic current is measured
in Figure 3. 29. The temperature is varied from 27 °C to 95 °C with 12 different

weights. The current of the poly-Si channel device increases linearly as the
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temperature increases as electrons in the grain boundary are emitted [53]. Therefore,
if a device that discharges the membrane capacitance is configured as a synaptic
device, the effect of the temperature variation can be minimized, as shown in Figure
3. 30 [54]. As the current of the synapse array increases at high temperatures, the
current of the synaptic discharge also increases. Therefore, this parallel increase

facilitates the maintenance of the firing rate as depicted in Figure 3. 31.
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Chapter 4
Hardware Demonstration of Artificial
Synaptic Array

This chapter discuss the potential VMM errors that can arise in synapse arrays.
The main factors that can lead to VMM errors include leakage current, multi-bit error,
conductance loss due to retention and etc. These problems can be addressed at both

the synaptic array and system levels.
4.1 Revised Bias Scheme

In the fabricated synapse array, ion-implanted poly-Si is used as the SL instead
of a metal line, which results in a high line resistance. Moreover, the body thickness
is thin to increase the PGM/ERS efficiency, increasing the line resistance. Therefore,

this situation can lead to errors in VMM operation. As shown in Figure 4.1, the
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resistance network of the synapse array can be represented by the line resistance (RL)
and the channel resistance (Rx) of the individual OCS transistor. Kirchoff’s Current
Law derives the equations for individually turning on device and turning on two

devices and the equations are as follows [55]:

1

lo = e = 244 1A (4.1)
lp = Rb;RL =358 nA (4.2)

le = RC+12RL =325nA (4.3)

lo= 7= 327 1A (4.4)

loss = G //1(Rb+3RL) =637 nA (4.5)

When Ve is 3 V or lower, the channel resistance is too large to extract the
resistance using the above equations. Therefore, Viea is set to 4 V to reduce the
channel resistance further. Rp is 38.654 k(, and the respective resistance values are
R.=4.306 MQ, Ry=2.678 MQ, R:=2.998 MQ and Rq=3.084 MQ, which are roughly
100 times R.. Therefore, the influence of R. is reduced by setting Vieas t0 3 V,
allowing for a reduction in the VMM error.

Another cause of VMM error is the leakage current in the synaptic array, which

is always summed at the post-neuron even when there is no input signal. Therefore,
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the device-level solution to this problem is to use a synaptic device with a large on/off
ratio or D-C array, as described in Chapter 3.4 to minimize the leakage current.

The learning algorithm and related computations are often carried out on a
separate, more powerful computer or processing unit in off-chip learning. The
neuromorphic system receives the parameters, such as synaptic weights, from the
external device and transfers them to the synaptic devices. Thus, when transferring
the synaptic weights, both the on- and off-current of each synaptic device are
determined. The current sum is calculated as the sum of the product of the voltage

input and synaptic weight plus a bias, as shown in the following equation (4.6):

2l = ZViWi +b (46)
Xl = ZViWi + L+ (b'L) (47)
2l = EVL'WL' +L+Db (48)

As shown in

Figure 4.2, when Vpp is always applied to the drain, a constant leakage current
(L) flows to SL, and it can be expressed by equation (4.7). Therefore, errors due to
leakage current are eliminated by transferring the revised bias (b"), obtained by
subtracting the leakage current sum value from the bias, rather than transferring the

bias value calculated by the external processing unit. However, even if the value of
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the leakage current increases, the effect of the leakage current can be removed by

adjusting the value of b". Nevertheless, there is no benefit in power consumption.

Figure 4.1. Equivalent circuit of 4x4 synapse array with layout.
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4.2 High-Level Simulation with Retention
Characteristics and Voltage Variations

Finely adjusting the weights of the synaptic device is demonstrated in Figure 3.
24, and these weights should be well preserved over time. Hot temperature retention
characteristics are measured in OCS transistors to evaluate the synaptic weight
performance. Trapped charges can leak over time, causing data loss and significantly
degrading the performance of neuromorphic systems. By measuring the hot
temperature retention characteristics, it is possible to extrapolate the retention
behavior at average operating temperatures.

The Arrhenius equation determines the acceleration in charge de-trapping in the

flash memory [56]. The acceleration factor (AF) is calculated below:

Ea
Rate of reaction = Ae ™ rT (4.9

Ea Ea
AF=Rate of change at T2/ Rate of change at T1 = (Ae r7z)/ (Ae  &r2)

(4.10)

-Ero-11
=g RIZTH (4.11)
= ¢~ K(1/T2-1/T1) (412)

According to the Arrhenius equation, the obtained AF for the OCS transistor is

647.5 from 30 °C to 85 °C. Figure 4.3 displays the measurement results of hot
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temperature retention characteristics, and the weight values after several years are
inferred by applying the calculated AF. Based on this data, the accuracy of

convolutional neural networks (CNNS) is analyzed by high-level simulation.

10 years @ room temp.
1 year @ room temp. —

g 30 -F -L ~~~~~~~~~

S5l T L

= REERAL: I RER: i R L E M R
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[
Time (s)
Figure 4.3. Retention characteristics of the OCS transistor in the 85 °C. The

acceleration factor is computed to estimate the current after several years.
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Figure 4.4 shows the structure of CNNs with the fashion MNIST dataset. A
stochastic gradient descent algorithm is used to train the networks, and
hyperparameters are summarized in Table 4.1 [57]. Since the spiking neuron and
rectified linear unit (ReLU) are mathematically the same systems, the simulation is
conducted by converting ANNSs to spiking neural networks (SNNs). The SNNs with
four-bit weights achieved 91.29% accuracy in a year, as shown in Figure 4.5.

In Chapter 3.4.4, the current variation according to the voltage variation is
extracted and reflected in the same neural networks as depicted in Figure 4.4. The
input voltage is set to follow the standard normal distribution for the two cases of
u=3, 0=0.065, and 0.032, as shown in Figure 4.6. When o is 0.065 and 0.032, P(u-
0 < X< p-o0) is 68.3% and 95.4%, reflecting the accuracy of HV-SPGU. The
median classification accuracy is achieved greater than 92% with 50 samples in both
cases, as shown in Figure 4.7.

In conclusion, the classification accuracy performance degradation according to
the retention characteristics and input voltage variations of the OCS transistor is not

significant, making it a suitable synaptic device for neuromorphic systems.
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Figure 4.4. Diagrammatic representation of the simulated convolutional neural

networks (CNNs) with fashion MNIST dataset.

Table 4.1. Hyperparameters of CNNs.

Value
Batch size 1000
Learning rate 0.2 (StepLR)
Momentum 0.9
Dropout 0.3(C. layer) 0.5(F.C. layer)
ANN accuracy with test set 92.64%
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Chapter 5

Conclusion

In this dissertation, we propose and fabricate an overpass channel synaptic (OCS)
transistor suitable for ultra-low power neuromorphic systems. The proposed OCS
array is a flash-based NOR-type array structure, and we verify the key synaptic
functions of vector matrix multiplication (VMM) and weight modulation. Moreover,
by integrating the top gate line (TGL) and drain line (DL), we achieve cell size
reduction and stable operation. The OCS array exhibits excellent performance in
neuromorphic systems through high-level simulations that reflect its retention
characteristics.

First, the short channel effect and decrease in the charge storage layer caused by
scaling down the device hinder the stable operation. To fundamentally address this

problem, the OCS transistor, in which the channel crosses the bottom gate fin, is
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proposed to increase the effective gate length and charge storage layer as the fin
height increases. Additionally, we optimize the on-current level for minimizing
power consumption and fast operation speed through SPICE simulation to verify
neuron compatibility.

Second, we use a mix-and-match process involving electron-beam lithography
and photolithography for aggressively scaled devices. The OCS transistor is
optimized for ultra-low power operation with a current level of several tens of nA,
and we propose and verify the scheme for controlling conductance using two
asymmetric gates. Power consumption is minimized by using Fowler-Nordheim
tunneling. Moreover, the current sum error is 0.79% during the inference, enabling
accurate VMM calculations. Furthermore, process-voltage-temperature variations are
verified for the stable operation.

The diode-connected (D-C) synapse array, which integrates TGL and DL, reduces
cell size and ensures stable current flow by continually operating in the saturation
region. Consequently, the leakage current is minimized when the OCS transistor is
off, and the program (PGM)/erase (ERS) scheme using the tail part of the top gate is
proposed. The change in conductance of the target cell in the OCS array is measured
with neighboring cells, and a cell inhibition value within 5% from the second
PGM/ERS cycle is validated.

Finally, the retention characteristics are analyzed to verify the inference accuracy
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of the fashion MNIST dataset in convolutional neural networks (CNNs). After a year,
the spiking neural networks with four-bit weights exhibit a classification accuracy of
91.29%. It shows outstanding performance and significant advantages as an ultra-low

power synaptic device.
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