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Abstract

Deep learning has shown remarkable success in solving a wide range of AI prob-

lems. However, when deployed in real-world scenarios, AI models are often chal-

lenged by issues such as noisy labels, imbalanced data, and robustness test. These

challenges can have a significant impact on the performance and robustness of ma-

chine learning models.

This thesis proposes strategies for addressing these challenges and improving the

robustness of deep learning models. Specifically, the thesis presents novel methods for

handling noisy labels and imbalanced data. The proposed methods are evaluated on

the most popular benchmark datasets, and the results show that they can significantly

improve the performance and robustness of deep learning models.

Furthermore, the thesis introduces a new benchmark dataset, RoCOCO, to stress-

test the robustness of multi-modal models. The dataset is designed to simulate real-

world perturbations, providing a more realistic and challenging testbed for evaluating

the robustness of AI models.

Overall, the research presented in this thesis contributes to the development of

robust deep learning techniques that can better handle the challenges that arise when

deploying machine learning models in real-world scenarios.

keywords: Imbalanced data, Long-tail distribution, Image classification, Oversam-

pling, Augmentation, Noisy label, Robust AI, Multi-modal, Image-text Matching,

Stress-test benchmark
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Chapter 1

INTRODUCTION

In recent years, deep learning has made tremendous progress in various fields, in-

cluding computer vision, natural language processing, and robotics. However, despite

these advances, deep learning models are still prone to errors and failures when faced

with challenging conditions, such as imbalanced data, noisy labels, and adversarial

test datasets. These challenges are especially relevant in real-world scenarios, where

deep learning models must operate in complex and dynamic environments that can

introduce a wide range of data variations and uncertainties.

To address these challenges, researchers have been developing new techniques and

approaches to improve the robustness and reliability of deep learning models. In this

thesis, we investigate four different approaches that address different types of chal-

lenges that can arise in deep learning, with a particular focus on their applicability in

real-world scenarios.

The first approach proposes a new loss function to address the problem of imbal-

anced data in visual classification tasks, which is a common issue in many real-world

applications. The proposed method can significantly improve the performance of deep

learning models under imbalanced data distributions, which can help address biases

and inequities in real-world systems.

The second approach proposes a novel oversampling method to generate synthetic
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minority samples by leveraging context-rich majority samples. This approach can be

especially useful in real-world scenarios where collecting new data may be difficult or

expensive, as it allows deep learning models to learn from existing data more effec-

tively.

The third approach focuses on improving model robustness against noisy labels

by introducing a post-training method called Influential Rank. This method can help

mitigate the effects of noisy data in real-world scenarios, where data labeling errors

are common and can have significant impacts on the performance of deep learning

models.

Finally, the fourth approach proposes a new benchmark dataset to evaluate the

robustness of image-text matching models against various types of challenges, includ-

ing visual and textual noise, diverse visual and linguistic styles, and semantic shifts.

This benchmark dataset can provide a more realistic and comprehensive evaluation of

deep learning models’ performance in real-world scenarios, where data variations and

uncertainties are abundant.

Together, these four approaches contribute to the broader effort to build more re-

liable and robust deep learning systems that can operate effectively in the real world.

The results of our investigations demonstrate that these approaches can significantly

improve the performance of deep learning models under challenging conditions and

offer valuable insights into the development of more robust deep learning algorithms.

Consequently, by addressing the challenges that arise from datasets in real-world sce-

narios, we can develop more robust, effective, and trustworthy deep learning systems

that can benefit a wide range of applications and domains.

The remainder of this thesis is organized as follows: Chapter 2 provides back-

ground and related work on deep learning with imbalanced data, noisy labels, and

robustness benchmark. Then, Chapter 3 discusses the proposed new loss function for

imbalanced data, Chapter 4 proposes oversampling method for imbalanced data, and

Chapter 5 presents the Influential Rank method for noisy labels. Lastly, Chapter 6 in-
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troduces the new benchmark dataset for image-text matching, and Chapter 7 concludes

the thesis with a summary of the contributions, limitations, and future directions.
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Chapter 2

RELATED WORK

The following section reviews previous work related to the research presented in this

thesis. In particular, this section focuses on prior research related to the challenges that

can arise from using datasets in real-world scenarios. These challenges can include

class imbalance, noisy labels, and robustness test, and require novel methods to ensure

the robustness and generalization of machine learning models.

2.1 Challenges from Imbalanced Data.

Another challenge in developing robust machine learning models is dealing with im-

balanced datasets. Many real-world data exhibit skewed distributions [115, 72, 45, 120,

42], in which the number of samples per class differs greatly. This imbalance between

classes can be problematic, since the model trained on such imbalanced data tends to

overfit the dominant (majority) classes [78, 63, 12]. That is, while the overall perfor-

mance appears to be satisfactory, the model performs poorly on minority classes. To

overcome the class imbalance problem, extensive research has recently been conducted

to improve the generalization performance.

The research on imbalanced learning can be divided into three approaches: re-

weighting approach, data-level approach, and meta-learning approach.
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2.1.1 Re-weighting approach.

Cost-sensitive re-weighting methods assign different weights to samples to adjust their

importance. Commonly used methods include re-weighting samples inversely propor-

tional to the number of the class [74, 166] or the square root of class frequency [124].

Instead of heuristically using the number of classes, Cui et al. [35] proposed using

the effective number of samples. While these methods can successfully assign more

weights to the minority samples, they assign the same weights to all samples belonging

to the same class, regardless of each importance.

To assign different weights to each sample according to its importance on the

model, numerous methods were proposed for re-weighting samples based on their dif-

ficulties or losses [113, 40, 125]. That is, these methods down-weight well-classified

samples and assign more weights to hard examples. These re-weighting methods might

cause DNNs to be overfitted to the hard examples, since the high capacity of DNNs is

sufficient to memorize the training data in the end [7]. In class imbalanced data, the

hard examples are likely generated from the majority classes. As such, the minority

samples are assigned smaller weights. Therefore, we need a more elaborate mean of

re-weighting samples that can alleviate the overfitting to the majority samples. Mean-

while, Cao et al. [14] proposed label-distribution-aware margin loss to solve the over-

fitting to the minority classes by regularizing the margins.

2.1.2 Data-level approach.

Resampling methods aim to modify the training distributions to decrease the level of

imbalance [82]. Resampling methods include undersampling and oversampling. Un-

dersampling methods [184, 160] that discard the majority samples can lose valuable

information, and undersampling is infeasible when the imbalance between classes is

too high. The simplest form of oversampling is random oversampling (ROS) [160, 12],

which oversamples all minority classes until class balance is achieved. This method

is simple and can be easily used in any algorithm, but since the same sample is re-
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peatedly drawn, it can lead to overfitting [142]. As a more advanced method, the

synthetic minority over-sampling technique (SMOTE) [18], which oversamples mi-

nority samples by interpolating between existing minority samples and their nearest

minority neighbors, was proposed. Following the success of SMOTE, several variants

have been developed: Borderline-SMOTE [61], which oversamples the minority sam-

ples near class borders, and Safe-level-SMOTE [13], which defines safe regions not

to oversample samples from different classes. These methods have been widely used

by classical machine learning algorithms, but there are difficulties in using them for

large-scale image datasets due to the high computational complexity of calculating the

K-Nearest Neighbor for every sample. Generative adversarial minority oversampling

(GAMO) [129] solves this issue by producing new minority samples by training a con-

vex generator, inspired by the success of generative adversarial networks (GANs) [52]

in image generation. However, training the generator incurs high additional training

cost; moreover, GAMO can suffer from the infamous mode collapse of GANs [8]. To

generate diverse minority data, recent works [87, 90] have proposed adversarial aug-

mentations by adding small noise to the input images. To this end, Major-to-minor

Translation (M2m) [87] transfers knowledge from majority classes using a pre-trained

network, and Balancing Long-Tailed datasets (BLT) [90] uses a gradient-ascent image

generator based on the confusion matrix.

Another recent line of research is oversampling in the feature space rather than in

the input space: Deep Over-sampling (DOS) [6], Feature-space Augmentation (FSA)[27],

and Meta Semantic Augmentation (MetaSAug) [109]. These methods aim to augment

minority classes in the feature space by sampling from the in-class neighbors in the

linear subspace [6], using learned features from pretrained networks [27], or using

an implicit semantic data augmentation (ISDA) algorithm [167]. However, DOS [6]

requires finding the nearest neighbors in the feature space, FSA [27] requires a pre-

trained feature sub-network and a classifier for feature augmentation procedure. Lastly,

MetaSAug [109] demands additional uniform validation samples that outnumber the
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number of samples in the tail classes and hundreds and thousands of iterations for train-

ing. Consequently, these methods are less cost-efficient and technically more difficult

to perform. On the other hand, our method oversamples diverse minority samples us-

ing a simple data augmentation technique and outperforms all previous methods while

maintaining reasonable training costs.

2.1.3 Meta-learning approach.

Recently, the meta-learning-based approach [145, 118, 138] has emerged to enhance

the performance of both approaches. Shu et al. [145] proposed a meta-learning process

to learn a weighting function, while Liu et al. [118] proposed a re-sampling method by

combining the advantage of ensemble learning and meta-learning. Furthermore, Ren

et al. [138] proposed the meta-sampler and a balanced softmax that accommodates

the shift of the distributions between the training data and test data. Although these

methods can achieve satisfactory performance, these methods are somewhat difficult

to implement in practice. For example, meta-weight-net [145] requires additional un-

biased data for learning, and the meta-sampler in [138] is computationally expensive in

practice. On the other hand, our proposed loss is simple to implement because it does

not require a hyperparameter, a specially designed architecture, or additional learning

for data re-sampling. Therefore, it is easy to use in collaboration with other methods.

2.1.4 Other long-tailed methods.

Recently, significant improvement has been achieved by two-stage algorithms: De-

ferred re-weighting (DRW) [14], classifier re-training (cRT), learnable weight scaling

(LWS) [84], and the Mixup shifted label-aware smoothing model (MiSLAS) [192].

Two-stage algorithms decouple the learning process into representation learning and

classifier learning. Meanwhile, a bilateral branch network (BBN) [193] uses an addi-

tional network branch for re-balancing, and RIDE [165] uses multiple branches called

experts, each of which learns to specialize in different classes. PaCo [34] proposes

7



supervised contrastive learning with parametric class-wise centers for long-tailed clas-

sification.

2.1.5 Data Augmentation and Mixup Methods.

It is known that one of the methods to reduce overfitting of a model is to use a lot of

data, and thus various data augmentation techniques have been proposed. Basic im-

age manipulations include horizontal and vertical flipping, cropping, rotation, change

brightness, noise injection [128], and color space transformations [171]. Spatial-level

augmentation methods have performed satisfactorily in the computer vision fields.

Cutout [38] removes random regions whereas CutMix [178] fills the removed regions

with patches from another training image. In addition, mixup methods [182, 161, 153]

linearly interpolate two images in a training dataset. Since the data augmentation

method is closely related to the oversampling methods, some recent long-tailed recog-

nition methods have used the mixup method. Zhou et al. [193] use the mixup as a

baseline method, and MiSLAS [192] uses mixup in its Stage-1 training. However,

these methods apply mixup without any adjustments, and little work has been done to

explore appropriate data augmentation techniques for a long-tailed dataset. Recently,

for an imbalanced dataset, the Remix [26] assigned a label in favor of the minority

classes when mixing two samples. Unlike these methods, our method samples images

from different distributions, which takes into account the specificity of long-tailed data

distribution.

2.2 Challenges from Noisy Labels.

A significant challenge in developing robust machine learning models is dealing with

noisy labels. The current deep learning has made a huge breakthrough because of

‘data’. Thus, many researchers in both academia and industry endeavor to obtain con-

siderable data. However, real-world data inevitably contain some proportion of incor-
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rectly labeled data, owing to perceptual ambiguity, or errors from human or machine

annotations. These noisy labels negatively affect the generalization performance of a

trained model since a deep neural network (DNN) can easily overfit to even noisy la-

bels due to its high capacity [180]. Therefore, learning from noisy labels (LNL) has

received much attention in recent years [67, 174, 147, 191, 112, 24, 76, 149, 47] due

to the increasing need to handle noisy labels in practice.

Learning with noisy labels has two main research directions. One is to find and use

only clean labels for training, and the other is to directly train a robust model on noisy

labels.

2.2.1 Noise-cleaning Approach.

Most noise-cleaning approaches focus on finding small-loss examples before overfit-

ting because DNNs learn easy samples first and gradually learn difficult samples [7].

To prevent overfitting of a neural network, some methods simultaneously train two

neural networks and select small-loss examples [60, 177, 194, 148, 154], while oth-

ers train a network guided by a teacher network [81, 190]. Meanwhile, O2U-Net [75]

adjusts the learning rate to take the model from overfitting to underfitting cyclically

and records the losses of each example during the iterations. DivideMix [102] and

SELF [131] incorporate semi-supervised learning with the small-loss trick for better

sample selection. Recently, UNICON [85] proposed uniform clean sample selection

algorithm to tackle the class imbalance problem induced by prior sample selection

methods.

2.2.2 Noise-tolerant Approach.

The noise-tolerant approach aims to train a robust model on a noisy-label dataset with-

out removing the noise. Some methods design noise-robust losses [117, 123, 189, 174,

76], and others attempt to reweight losses [130, 136]. Despite their theoretical justifi-

cation, these approaches require mathematical assumptions or prior knowledge, such
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as known noise rates and class-conditional noise transition matrices, which make them

challenging in practice. To tackle the difficulty in estimating transition matrix, Cheng

et al. [24] recently proposed manifold-regularized transition matrix estimation method.

Meanwhile, there are more recent efforts to add a noise adaptation layer or relabel

data [51, 147, 21], but they do not perform well especially when numerous classes

exist or noise rates are heavy.

2.3 Challenges from Robustness Test.

In addition to class imbalance and noisy labels, datasets can also be susceptible to

perturbation. With the increasing adoption of deep learning models in various applica-

tions, ensuring their robustness has become a crucial issue. To evaluate the robustness

of the models, various attempts have been made in computer vision [66, 69, 65], and

natural language processing (NLP) [77, 3, 41] areas, respectively.

2.3.1 Unimodal Robustness Test.

After the initial finding [157] that deep learning (DL) models are vulnerable to im-

perceptible perturbations, robustness in deep learning methods has actively studied

in both computer vision and natural language processing (NLP) areas. In computer

vision, one research direction is data poisoning [10, 152, 68, 56, 22], which attacks

the robustness of models during training by adding images with small perturbations.

Meanwhile, adversarial attack studies [53, 94, 17, 31, 57] inject imperceptible noises

to test images so that a model can make wrong predictions. For image retrieval task, Li

et al. [99] showed that adding invisible noise to query image can make the model return

incorrect images. Another line of research has proposed new ImageNet benchmarks

for common robustness evaluation. For example, ImageNet-C [66] is applied with 75

common visual corruptions, and ImageNet-P [66] is implemented with common per-

turbations. Also, ImageNet-A [69] provides images belonging to ImageNet classes but
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more difficult, and ImageNet-R [65] introduces examples with various renditions. In

NLP, research on data poisoning [162] and adversarial attacks [44, 3, 80, 49, 98, 41, 11]

has also been actively studied to fool the prediction of models. Adversarial examples

are produced by character-level modifications [9], paraphrasing sentences [77], or sub-

stituting a word with a synonym [140, 107].

2.3.2 Multimodal Robustness Test.

As vision-language models have generated growing research interest, robustness work

for cross-modal domain has been actively studied [133, 105, 16]. Especially, in visual

question answering (VQA) task, diverse robustness-evaluation benchmark [186, 55,

143, 50, 144, 106] has been proposed. For example, VQA-Rephrasings [143] gener-

ated dataset by rephrasing questions to evaluate the robustness in the input question.

Adversarial VQA [106] and AdVQA [144] collected adversarial examples in human-

in-the-loop manner. However, to the best of our knowledge, this is the first work to

propose robustness-evaluation benchmark in ITM task. We hope that our work can

inspire the future research to create more diverse stress-test benchmarks in ITM area.

2.3.3 Image-Text Matching Methods.

Most image-text matching (ITM) methods [48, 46, 150, 73, 29, 168, 185] aim to learn

joint visual-semantic embedding (VSE) such that paired image and text representation

in the embedding space are close. Many VSE methods [97, 163, 39, 19] use region

features extracted from Faster R-CNN [139] with bottom-up attention [5]. VSE∞ [19]

also use grid features extracted from Faster R-CNN pre-trained on Visual Genome [91]

and ImageNet [36] in [5], and Instagram pretrained ResNext-101 [173].

In recent years, large-scale pre-training models [23, 111, 187, 79, 88, 101, 100,

122, 25, 176, 1] have shown strong achievement in both zero-shot and fine-tuned per-

formances. Most of these models adopt transformer architecture and can learn cross-

modal representations benefiting from large-scale image-text pairs. For a more thor-

11



ough study, we refer the reader to a recent survey [15]. In this thesis, we re-evaluate

the robustness of state-of-the-art ITM models.

2.3.4 Image-Text Matching Datasets.

Recently, new ITM benchmark datasets [132, 28] have been proposed by extending

MS COCO. Crisscrossed Captions (CxC) [132] add semantic similarity between all

pairs to improve limited associations in MS COCO. Thus, CxC has enabled scoring

between intra- and intermodality pairs. Meanwhile, ECCV caption [28] provides abun-

dant positive image-caption pairs to correct the false negatives in MS COCO. While

the previous works provided improved benchmark datasets, our main difference is that

we aim to test the vulnerability of the models.

2.4 Influence function.

The influence function was proposed to find the influential instance of a sample to

a model, which has been studied for decades in robust statistics [59, 30]. Recently,

attempts have been made to use influence function in deep neural networks [2, 89]. Koh

& Liang [89] used influence functions to understand the effect of a training example

on a test example.

Consider a classification problem with n training data (x1, y1), · · · , (xn, yn), where

xi is the i-th training point (e.g., an image) and yi is its label. Let f(x, θ) denote a

model parameterized by θ and L(y, f(x, θ)) be the loss for a training point (x, y).

Given the empirical risk R(θ) = 1
n

∑n
i=1 L(yi, f(xi, θ)), the optimal parameter that

minimizes the risk is θ̂ def
== argminθR(θ). The influence of a training point (x, y) can

be efficiently approximated by the parameter change if the distribution of the training

data at the point (x, y) is slightly modified. A new parameter when removing the train-

ing point (x, y) is derived as θ̂x,ω
def
== argminθR(θ)+ωL(y, f(x, θ)), where we assign

ω = − 1
n .
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Then, the influence of (x, y) on the parameters of the trained model has been pre-

sented in [89], which is denoted by

IM (x; θ̂) = −H−1

θ̂
▽θL(y, f(x, θ̂)),

where Hθ̂

def
== 1

n

∑n
i=1▽

2
θL(yi, f(xi, θ)) is the Hessian and is positive definite by

assumption. Meanwhile, [62] proposed stochastic gradient descent (SGD) influence

that can infer the influential examples for models trained with SGD. However, this

method is limited to optimization by SGD and requires to store the parameters of the

model at every step, requiring huge memory consumption for DNNs. In this thesis, we

utilize influence function to detect noisy labels and design a novel loss for imbalanced

classification.
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Chapter 3

Influence-Balanced Loss for Imbalanced Data

3.1 Overview

Despite the remarkable success of deep neural networks (DNNs) these days, many ar-

eas of computer vision suffer from highly imbalanced datasets. Many real-world data

exhibit skewed distributions [115, 72, 45, 120, 42], in which the number of samples

per class differs greatly. This imbalance between classes can be problematic, since

the model trained on such imbalanced data tends to overfit the dominant (majority)

classes [78, 63, 12]. That is, while the overall performance appears to be satisfac-

tory, the model performs poorly on minority classes. To overcome the class imbalance

problem, extensive research has recently been conducted to improve the generaliza-

tion performance by reducing the overwhelming influence of the dominant class on

the model.

The cost-sensitive re-weighting approach aims to assign class penalties to shift the

decision boundary in a way that reduces the bias induced by the data imbalance. For

this purpose, the most commonly adopted method is to re-weight samples inversely to

the number of training samples in each class to assign more weights for the minority

classes [74, 166, 35]. These methods have focused on only global-level class distri-

bution and assign the same fixed weight to all samples belonging to the same class.
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However, not all samples in a dataset play an equal role in determining the model pa-

rameters [30]. That is, some samples have greater influences on forming a decision

boundary. Hence, each sample needs to be re-weighted differently according to its

impact on the model.

Recently, numerous studies have been conducted in which each sample is consid-

ered to design sample-wise loss functions [40, 113, 125]. Specifically, these methods

down-weight well-classified samples and assign more weights to hard examples, which

yield high errors. This re-weighting might lead to the complete training when the high

capacity of DNNs is sufficient to finally memorize the whole training data [181, 7].

This implies that DNN is overfitted to hard samples, which are located at the overlap-

ping region between the majority and minority classes. In the imbalanced data, most

hard samples are majority samples that enforce the decision boundary to be complex

and shift to the minority region.

To address the aforementioned problem, in this thesis, we propose a loss-sensitive

method to down-weight samples that cause overfitting of a DNN trained with highly

imbalanced data. To this end, we derive a formula that measures how much each sam-

ple influences the complex and biased decision boundary. To derive the formula, we

utilize the influence function [30], which has been widely used in robust statistics.

Using the derived formula, we design a novel loss function, called influence-balanced

(IB) loss, that adaptively assigns different weights to samples according to their influ-

ence on a decision boundary. Specifically, we re-weight the loss proportionally to the

inverse of the influence of each sample. Our method is divided into two phases: stan-

dard training and fine-tuning for influence balancing. During the fine-tuning phase,

the proposed IB loss alleviates the influence of the samples that cause overfitting of

the decision boundary.

Through extensive experiments on multiple benchmark data sets, we demonstrate

the validity of our method, and show that the proposed method outperforms the state-

of-the-art cost-sensitive re-weighting methods. Furthermore, since our IB loss is not
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restricted to a specific task, model, or training method, it can be easily utilized in

combination with other recent data-level algorithms and hybrid methods for class-

imbalance problems.

The main contributions are as follows: (1) We discover that the existing loss-based

loss methods can lead a decision boundary of DNNs to eventually overfit to the ma-

jority classes. (2) We design a novel influence-balanced loss function to re-weight

samples more effectively in such a way that the overfitting of the decision boundary

can be alleviated. (3) We demonstrate that simply substituting our proposed loss for

the standard cross-entropy loss significantly improves the generalization performance

on highly imbalanced data.

3.2 Influence-balanced Loss

To address the imbalanced data learning problem, our idea is to re-weight samples by

their influences on a decision boundary to create a more generalized decision bound-

ary. First, we present the key idea of our proposed method in Section 3.2.1. For the

background, we briefly review the influence function in Section 3.2.2 and then derive

the IB loss in Sections 3.2.3, 3.2.4, and 3.2.5. Finally, the training scheme is presented

in Section 3.2.6.

3.2.1 Key Idea of Proposed Method

In this section, we explain how the re-weighting of samples according to their influence

can help to form a well-generalized decision boundary on class imbalance data. It

is well known that the high capacity of DNNs is sufficient to finally memorize the

entire training data [181, 7]. This implies that DNN can be overfitted to samples that

are located at the overlapping region between the majority and minority classes, as

illustrated in Figure 3.1 (a). In the imbalanced data, many majority samples invade

among sparse minority samples and become dominant in the overlapping area, thereby
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(a) Original decision boundary. (b) Proposed method.

Figure 3.1: Illustration of the key concept of our approach. The red and blue marks

belong to the minority and majority classes, respectively, in binary classification. (a)

The black border line represents an initial decision boundary formed on an imbalanced

dataset. The black × samples have greater influence on the decision boundary than do

the blue × samples, since the decision boundary would substantially change without

the black× samples. (b) Our proposed method aims to down-weight the samples (light

blue× samples) that have a large influence on the overfitted decision boundary (dotted

line) to create a smoother decision boundary (the red line).

enforcing the decision boundary to be complex and shift to the minority region.

Furthermore, the black × samples in Figure 3.1 (a) have a stronger influence on

forming the decision boundary, as they support the decision boundary, which substan-

tially changes when the samples are removed. Thus, it can be said that the dominant

samples with high influence are likely to create a complex and biased decision bound-

ary. As illustrated in Figure 3.1 (b), by down-weighting the highly influential samples,

the decision boundary can be smoothed via fine-tuning. To this end, we derive an

influence-balanced (IB) loss by employing the influence function [30], which mea-

sures the training sample’s influence on the model.
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3.2.2 Influence Function

The influence function [30] allows us to estimate the change in the model param-

eters when a sample is removed, without actually removing the data and retraining

the model. Let f(x,w) denote a model parameterized by w with n training data

(x1, y1), · · · , (xn, yn), where xi is the i-th training sample, and yi is its label. Given

the empirical risk R(w) = 1
n

∑n
i=1 L(yi, f(xi, w)), the optimal parameter after initial

training is defined by w∗ def
== argminwR(w).

During the fine-tuning phase, to address the imbalance issue, we re-weight loss

proportionally to the inverse of the influence of a sample. The influence of a point

(x, y) can be approximated by the parameter change if the distribution of the training

data at that point is slightly modified. A new parameter when removing the training

point (x, y) is derived as wx,ε
def
== argminwR(w) + εL(y, f(x,w)). Then, under the

assumption that ▽wR(w) ≈ 0 for w in the vicinity of w∗, we can utilize the influence

function in [2, 89] to re-weight the sample-wise loss during the fine-tuning phase. The

influence function is given by

I(x;w) = −H−1▽wL(y, f(x,w)), (3.1)

where H
def
== 1

n

∑n
i=1▽

2
wL(yi, f(xi, w)) is the Hessian and is positive definite based

by assumption that L is strictly convex in a local convex basin around the optimal point

w∗.

3.2.3 Influence-balanced weighting factor

From I(x;w), we derive the IB loss. Since I(x;w) is a vector that requires heavy

computation of the inverse Hessian, it is nearly impossible to directly use this. There-

fore, we solve this problem by modifying I(x;w) to a simple but effective influence-

balanced weighting factor. First, since we need the relative influence of the training

samples, not the absolute values, we can simply ignore the inverse Hessian in I(x;w).
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This is because the inverse of hessian is commonly multiplied by all the training sam-

ples. Then, we design the IB weighting factor as follows:

IB(x;w) = ||▽wL(y, f(x,w))||1 (3.2)

Equation 3.2 turns out to be the magnitude of the gradient vector. Anand et al.

[4] revealed that the net error gradient vector is dominated by the major classes in

the class imbalance problem. Hence, re-weighting samples by the magnitude of the

gradient vector can successfully down-weight samples from dominant classes. In the

Experiments section, we justify the choice of the L1 norm. In the following section,

we demonstrate how the IB weighting factor can be used with the actual loss.

3.2.4 Influence-Balanced Loss

When using the softmax cross-entropy loss, Equation (3.2) can be further simpli-

fied. The cross-entropy loss is denoted by L(y, f(x,w)) = −
∑K

k yk log fk, where

yk is a ground truth, and fk is the k-th output of the model f(x,w), with K to-

tal classes. Since we are interested in the overfitting on the decision boundary of

the model, we focus on the change in the last fully connected (FC) layer of a deep

neural network. Let h = [h1, · · · , hL]T be a hidden feature vector, an input to the

FC layer, and f(x,w) = [f1, · · · , fK ]T be the output denoted by fk := σ(wT
k h),

where σ is the softmax function. The weight matrix of the FC layer is denoted by

w = [w1, · · · , wK ]T ∈ RK×f .

Then, the gradient of the loss w.r.t. wkl is computed as

∂

∂wkl
L(y, f(x,w)) = (fk − yk)hl. (3.3)

The same results are obtained for the cross-entropy loss with a sigmoid function or a

mean squared error (MSE) loss for regression. Then, IB weighting factor in (3.2) is

given by

19



IB(x;w) =
K∑
k

L∑
l

|(fk − yk)hl|

=

K∑
k

|(fk − yk)|
L∑
l

|hl|

= ||f(x,w)− y||1 · ||h||1,

(3.4)

of which inverse can be used for the re-weighting factor to down-weight an influential

sample in fine-tuning to adjust the decision boundary that enhance the imbalanced data

learning. Finally, the influence-balanced loss is given by

LIB(y, f(x,w) =
L(y, f(x,w))

||f(x,w)− y||1 · ||h||1
. (3.5)

The proposed influence-balanced term constrains the decision boundary to not overfit

to influential majority samples (see Figure 3.1(b)).

3.2.5 Influence-Balanced Class-wise Re-weighting

Moreover, we add a class-wise re-weighting term λk to the IB-loss in (3.5) as

LIB(w) =
1

m

∑
(x,y)∈Dm

λk
L(y, f(x,w))

||f(x,w)− y||1 · ||h||1
, (3.6)

where λk = αn−1
k /

∑K
k′=1 n

−1
k′ . Here, nk is the number of samples in the k-th class

in the training dataset, and normalization is performed to make λk have a similar scale

for every class. α is introduced as a hyper-parameter for an adjustment.

The class-wise re-weighting yields the following two effects. First, λk mitigates

the bias of the decision boundary arising from the overall imbalanced distribution

through the slow-down of the majority loss minimization. Second, λk further controls

the sample-wise re-weighting depending on the class to which a highly influential sam-

ple belongs. That is, if the sample belongs to a majority class, λk further down-weights

the sample because the decision boundary is likely to be overfitted by the majority sam-

ple. Meanwhile, if the sample belongs to a minority class, λk becomes smaller than
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Algorithm 1 Influence-Balanced Training

INPUT: training dataset D = (X,Y ).

OUTPUT: influence-balanced model f(x,w).

1: Phase 1: Normal training

2: for t = 1, . . . , T1

3: sample mini-batch Dm from D.

4: L(w)← 1
m

∑
(x,y)∈Dm

L(y, f(x,w)).

5: update wt = wt−1 − η▽L(w).

6: end for

7: Phase 2: Fine-tuning for influence balancing

8: for t = T1 + 1, . . . , T

9: sample mini-batch Dm from D

10: LIB(w)← 1
m

∑
(x,y)∈Dm

λk
L(y,f(x,w))

||f(x,w)−y||1·||h||1

11: update wt = wt−1 − η▽L(w)

12: end for

that of a majority sample and does not down-weight the loss much, because the large

influence of the minority sample is natural due to the data scarcity.

3.2.6 Influence-balanced Training Scheme

The influence-balanced training process comprises two phases: normal training and

fine-tuning for balance. We refer to T1 as the transition time from normal training to

fine-tuning. During the normal training phase, the network is trained following any

training scheme for the first T1 epochs. Meanwhile, during the fine-tuning phase, the

influence-balanced loss is applied to mitigate the overfitting of the decision bound-

ary arising from the influential (noisy) majority samples. Since our IB loss during the

fine-tuning phase alleviates the overfitting, it is advantageous to set T1 as the epoch

when the model has begun to converge to the local (global) minimum. Generally, it
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is recommended to set T1 as half of the total training scheme. We present the perfor-

mance change according to the number of training epochs during normal training in

the Experiments section. As evident, our training does not require an additional train-

ing scheme or a specifically designed architecture. Thus, it can be utilized easily in

any tasks suffering from imbalanced data. The pseudo-code of the training procedure

is presented in Algorithm 1.

3.3 Experiments

3.3.1 Experimental Settings

Datasets. We verified the effectiveness of our method on three commonly used bench-

mark datasets: CIFAR-10, CIFAR-100 [92], Tiny ImageNet [95], and iNaturalist 2018

[72]. The CIFAR-10 and CIFAR-100 datasets consist of 50,000 training images and

10,000 test images with 10 and 100 classes, respectively. Meanwhile, Tiny ImageNet

contains 200 classes for training, in which each class has 500 images. Its test set con-

tains 10,000 images. Since CIFAR and Tiny ImageNet are evenly distributed, we have

made these datasets imbalanced according to [35, 12], respectively. Primarily, we in-

vestigate two common types of imbalance: (i) long-tailed imbalance [35] and (ii) step

imbalance [12]. In long-tailed imbalance, the number of training samples for each class

decreases exponentially from the largest majority class to the smallest minority class.

To construct long-tailed imbalanced datasets, the number of selected samples in the k-

th class was set to nkµ
k(µ ∈ (0, 1)), where nk is the original number of the k-th class.

Meanwhile, in step imbalance, the classes are divided into two groups: the majority

class group and minority class group. Every class within a group contains the same

number of samples, and the class in the majority class group has many more samples

than that in the minority class group. For evaluation, we used the original test set. The

imbalance ratio ρ is defined by ρ = maxk{nk}
mink{nk} . Thus, the imbalance ratio represents the

degree of imbalance in the dataset. We evaluated the performance of our method under
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various imbalance ratios from 10 to 200.

The iNaturalist 2018 dataset is a large-scale real-world dataset containing 437,513

training images and 24,426 test images with 8,142 classes. iNaturalist 2018 exhibits

long-tailed imbalance, whose imbalance ratio is 500. We used the official training and

test splits in our experiments.

Baselines. We compared our algorithm with the following cost-sensitive loss meth-

ods: (1) Our baseline model, which is trained on the standard cross-entropy loss. Com-

paring our model with this baseline enables us to clearly understand how much our

training scheme has improved the performance; (2) focal loss [113], which increases

the relative loss for hard samples and down-weights well-classified samples; (3) CB

loss [35], which re-weights the loss inversely proportional to the effective number of

samples; (4) LDAM loss [14], which regularizes the minority classes to have larger

margins.

Since our IB loss can be easily combined with other methods, we employee two

further variants. First, IB + CB uses the effective number in CB loss, instead of using

λk in IB. Second, IB + focal uses focal loss during the fine-tuning phase, instead of

using the cross-entropy loss. We demonstrate that combination with other methods can

further improve the performance.

Implementation Details. We used PyTorch [135] to implement and train all the

models in the thesis, and we used ResNet architecture [64] for all datasets. For CI-

FAR datasets, we used randomly initialized ResNet-32. The networks were trained for

200 epochs with stochastic gradient descent (SGD) (momentum = 0.9). Following the

training strategy in [35, 14], the initial learning rate was set to 0.1 and then decayed by

0.01 at 160 epochs and again at 180 epochs. Furthermore, we used a linear warm-up

of the learning rate [54] in the first five epochs. Since our method uses a two-phase

training schedule, we trained for the first 100 epochs with the standard cross-entropy

loss, then fine-tuned the networks using the IB loss for the next 100 epochs. We trained

the models for CIFAR on a single NVIDIA GTX 1080Ti with a batch size of 128. For
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Tiny ImageNet, we employed ResNet-18 and used the stochastic gradient descent with

a momentum of 0.9, and weight decay of 2e−4 for training. The networks were ini-

tially trained for 50 epochs, and then fine-tuned for the subsequent 50 epochs with IB

loss. The learning rate at the start was set to 0.1 and was dropped by a factor of 0.1

after 50 and 90 epochs. For iNaturalist 2018, we trained ResNet-50 with four GTX

1080Ti GPUs. The networks were initially trained for 50 epochs and then fine-tuned

for the subsequent 150 epochs with IB loss. The learning rate at the start was set to

0.01 and was decreased by a factor of 0.1 after 30 and 180 epochs.

As a simple but important implementation trick, we added ϵ = 0.001 to IB(x;w)

to prevent numerical instability in inversion when the influence approaches zero. We

discuss the influence of the hyperparameter (ϵ) in the following section.

3.3.2 Analysis

To validate the proposed method, we conducted extensive experiments.

Is influence meaningful for re-weighting?

First, to confirm whether influence can act as a meaningful clue of re-weighting for

class imbalance learning, we compared the influences between a balanced dataset and

an imbalanced dataset. For an imbalanced CIFAR-10, we used the long-tailed version

of CIFAR-10 with the imbalance ratio ρ = 100, in which the largest class, ‘plane’ (i.e.,

class index 0), contains 5,000 samples, while the smallest class, ‘truck’ (i.e., class in-

dex 9), contains only 50 samples. We trained ResNet-32 with a standard cross-entropy

loss for 200 epochs, as described in Implementation Details, on both the balanced

(original) and imbalanced CIFAR-10. We plotted the influences of both classes in

Figure 3.2. We scaled the influences to between 0 and 1 for each dataset. Since the

minority class contains only 50 samples, we selected the highest 50 samples for com-

parison. As illustrated in Figure 3.2, there was little difference in the distributions of

the influences between the classes in the balanced dataset. However, in the imbalanced
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Figure 3.2: Comparison of Influences between balanced and imbalanced dataset.

We plotted the influences of samples on ResNet-32 trained on the original CIFAR-10

and the imbalanced version of CIFAR-10. The solid and dashed lines represent the

influences of the imbalanced data and balanced data, respectively. While there is little

difference in the balanced dataset, it can be seen that the influence of the dominant

class is much greater than that of the minor class in the imbalance dataset.

dataset, the minority samples had significantly less influence on the model than did the

majority samples. This result corroborates that majority samples greatly contribute to

forming a decision boundary, and re-weighting their influences can improve the gen-

eralization of the model.

Magnitude of Influence.

In Section 3.2.3, we used L1 norm to compute the magnitude of the influences. We

investigated performance variations depending on three vector norms to compute the
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magnitude of the gradient vector ▽wL(y, f(x,w)): L1, L2, L∞. As indicated in Table

3.1, L1 norm, which provides a distinctive change of influence around the equilibrium

point, exhibits the best classification accuracy on CIFAR-10 with multiple imbalance

ratios.

Table 3.1: Comparison of norms. Using L1 norm yields the best performance.

CIFAR-10 CIFAR-100

Imbalance (ρ) 100 20 100 20

L1 78.41 85.80 40.85 52.85

L2 75.67 84.35 36.41 50.95

L∞ 77.23 84.30 37.48 50.99

Timing for starting fine-tuning for balancing.

Our training scheme is divided into two phases: normal training and fine-tuning for

balancing. This must determine the transition time between normal training and fine-

tuning for balancing. Hence, we investigated the results on how much the transition

time affects the performance and determined the best transition time. For this, we

experimented on the long-tailed version of CIFAR-10 with imbalance ratios of ρ = 10

and 100. In Figure 3.3, the X-axis represents the number of training epochs T1 for the

normal training phase. We varied the transition time, T1, from 0 to 120 while the total

number of training epochs was fixed at 200. The solid line represents the classification

accuracy earned by the models for each training schedule. To analyze the relationship

between the convergence of the normal training phase and the transition timing, we

plotted the standard cross-entropy loss without adopting the IB loss for the whole

training epochs (dashed lines).

From Figure 3.3, it can be observed that the proposed method demonstrates ro-
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Figure 3.3: Influence-balanced training scheme. We varied the training epochs for

the normal training, T1, to determine the best transition time from the normal training

to the influence-balance fine-tuning. We achieved the best performance when setting

the transition time to the point when the training loss converges.

bust performance regardless of the choice of transition time T1. Yet, the transition to

fine-tuning after the 100th epoch yields the best performance when the training loss

has converged. Since the influence function is derived from the loss minimization con-

text [89], it is reasonable to begin the fine-tuning phase after the learning converges.

Effects of ϵ.

As mentioned in Implementation Details, for all datasets, we added the hyperparameter

(ϵ = 0.001) to IB(x;w) to prevent numerical instability. To analyze the effects of the

hyperparameter, we conducted experiments with the following denominators for the

IB loss (3.5): (a) IB(x;w) + 1e−8, (b) IB(x;w) + 1e−3, (c) IB(x;w) + 1e−2,
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and (d) 1e−3. We iterated experiments three times with different random seeds on the

long-tailed CIFAR-10 (ρ = 100). As presented in Table 3.2, setting ϵ to 1e−3 yields

the best performance. Thus, we set ϵ as 1e−3 in all the experiments. However, when

we did not use the IB weighting factor, the accuracy greatly decreased.

Table 3.2: Effects of ϵ.

Epsiilon (a) IB+1e-8 (b) IB+1e-3 (c) IB+1e-2 (d) 1e-3

Accuracy 76.03± 0.97 78.17± 0.57 77.55± 0.55 64.91± 1.40

3.3.3 Comparison of Class-Wise Accuracy.

In this section, to validate that the performance improvement has actually resulted from

the minority classes, not from the majority classes, we report the class-wise accuracy

on both the long-tailed and the step-imbalanced CIFAR-10. We compare the proposed

method with the state-of-the-art cost-sensitive loss methods. Since previous studies do

not report the class-wise accuracy on the imbalanced CIFAR-10, we implemented the

baseline methods [113, 35, 14]. For the implementation of LDAM [14], we used their

official implementation code to reproduce the results.

The overall results are reported in Table 3.3. As presented in Table 3.3, exist-

ing methods exhibit severe performance degradation in the minority classes. That is,

the reported improvements from the existing methods were attributed to the majority

classes, not the minority classes. In contrast, the proposed IB loss exhibited a signifi-

cant improvement in all the minority classes.

It is noteworthy that the performance improvement was not significant, especially

on the step-imbalanced CIFAR-10 with the focal loss [113] method. We argue that

this demonstrates that most hard examples are majority samples in highly imbalanced

data and that those samples enforce the decision boundary to be overfitted. In con-

trast, our proposed influence-balanced re-weighing can mitigate the influences of the
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Table 3.3: Class-wise classification accuracy (%) of ResNet-32 on imbalanced CIFAR-

10 dataset. The number of test samples for each class is the same as 1000. The best

results are marked in bold.

Imbalanced CIFAR-10

Class plane car bird cat deer dog frog horse ship truck

Long-Tailed (ρ = 50)

#Training samples 5000 3237 2096 1357 878 568 368 238 154 100

Baseline (CE) 97.4 98.0 84.0 80.3 78.8 68.4 76.1 64.5 57.0 52.0

Focal [113] 91.6 95.1 73.1 59.2 67.8 67.2 84.2 77.3 83.9 61.8

CB [35] 92.9 96.3 79.2 75.1 82.4 69.9 75.0 69.1 73.6 66.8

LDAM [14] 96.9 98.5 82.9 74.7 82.8 69.0 78.5 69.9 65.3 66.0

LDAM-DRW [14] 94.8 97.8 82.6 72.3 85.3 73.0 82.0 76.7 75.8 72.4

IB 92.2 96.2 81.3 66.6 85.7 76.4 81.7 75.9 79.9 81.1

IB + CB 93.8 97.2 78.1 64.8 84.8 74.2 86.4 79.7 79.5 76.9

IB + Focal 90.9 96.1 81.7 69.0 82.0 75.7 85.2 77.5 80.2 76.8

Step-Imbalance (ρ = 50)

#Training samples 5000 5000 5000 5000 5000 100 100 100 100 100

Baseline (CE) 95.9 99.2 91.5 91.9 95.5 24.8 40.2 46.7 52.7 55.1

Focal [113] 96.3 93.9 91.2 90.5 95.7 20.0 46.7 48.8 56.1 57.6

CB [35] 87.4 96.3 76.8 77.0 85.7 34.6 61.5 56.5 68.7 63.8

LDAM [14] 96.4 98.5 91.1 90.2 94.6 28.3 50.3 57.0 56.2 64.4

LDAM-DRW [14] 94.5 97.2 88.0 84.5 94.3 50.4 69.9 71.4 74.6 76.0

IB 94.0 97.7 86.7 83.2 93.8 56.9 71.0 75.1 76.5 81.7

IB + CB 91.8 95.7 86.6 79.4 93.6 62.8 77.2 72.3 74.2 87.3

IB + Focal 91.2 96.4 83.3 77.1 92.0 64.8 78.0 74.4 83.5 83.1

majority samples that cause overfitting. As a result, it can achieve robust and superior

performance for the minority classes with a very small number of samples.

Although using the influence-balanced loss alone can achieve significant enhance-

ment for the classification of the minority classes, it is beneficial to combine it with

other methods. For example, the results indicate that applying the influence-balanced
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Table 3.4: Classification accuracy (%) of ResNet-32 on imbalanced CIFAR-10 and

CIFAR-100 datasets. “†” indicates that the results are copied from the original paper,

and “‡” means that the results are from the experiments in CB [35]. The best results

are marked in bold.

Imbalanced CIFAR-10 Imbalanced CIFAR-100

Imbalance (ρ) 200 100 50 20 10 200 100 50 20 10

Long-Tailed

Baseline (CE) 66.28 70.87 78.22 82.43 86.49 33.54 38.05 43.71 51.21 56.96
‡Focal [113] 65.29 70.38 76.71 82.76 86.66 35.62 38.41 44.32 51.95 55.78
†CB [35] 68.89 74.57 79.27 84.36 87.49 36.23 39.60 45.32 52.59 57.99
†LDAM [14] - 73.35 - - 86.96 - 39.6 - - 56.91
†LDAM-DRW [14] - 77.03 - - 88.16 - 42.04 - - 57.99

IB 73.96 78.26 81.70 85.8 88.25 37.31 42.14 46.22 52.63 57.13

IB + CB 73.69 78.04 81.54 85.42 88.09 37.06 41.31 46.16 52.74 56.78

IB + Focal 75.05 79.76 81.51 85.31 88.04 38.23 42.06 47.49 53.28 58.20

Step-Imbalance

Baseline (CE) 56.97 64.81 69.35 79.71 84.16 38.29 39.27 41.65 48.55 54.13
†LDAM [14] - 66.58 - - 85.00 - 39.58 - - 56.27
†LDAM-DRW [14] - 76.92 - - 87.81 - 45.36 - - 59.46

IB 72.15 76.53 81.66 85.41 87.72 39.66 45.39 48.93 53.57 57.96

IB + CB 69.96 75.97 82.09 85.27 88.01 39.69 45.27 48.80 53.42 57.86

IB + Focal 74.12 77.97 82.38 85.68 87.90 40.39 44.96 48.92 54.53 59.54

loss with the focal loss can encourage the network to learn ‘good’ hard samples, while

down-weighting the influential ones that induce overfitting.
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3.3.4 Comparison with State-of-the-Art

Experimental results on CIFAR.

The overall classification accuracy is provided in Table 3.4. The model performance

is reported on the unbiased test set as the same as the other methods. The results

indicate that adopting the proposed influence-balanced loss significantly improves the

generalization performance and outperforms the recent cost-sensitive loss methods. On

multiple benchmark datasets, using IB loss alone could achieve the best performance.

This suggests that it is effective for the robustness of the model to balance the influence

of samples responsible for overfitting the decision boundary. When combined with

other methods [35, 113], we could further improve the accuracy on multiple datasets.

This indicates that our proposed method of down-weighting influential samples that

induce overfitting can benefit other methods as well.

Table 3.5: Class. accuracy (%) of ResNet-18 on Tiny ImageNet.

Long-Tailed Step-Imbalance

Imbalance (ρ) 100 10 100 10

Baseline (CE) 38.52 36.62 36.74 51.11

Focal [113] 38.95 54.02 38.24 41.77

CB [35] 41.37 54.82 37.35 54.3

LDAM* [14] 37.47 52.78 39.37 52.57

IB 42.65 57.22 41.13 54.83

Experimental results on Tiny ImageNet.

We evaluated our method on Tiny ImageNet in Table 3.5. While we performed the ex-

periments for the other baselines, the results of LDAM were copied from their original

thesis. As presented in Table, IB loss outperforms other baselines on Tiny ImageNet

as well.
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Table 3.6: Class. accuracy (%) of ResNet-50 on iNaturalist 2018.

iNaturalist 2018

Method top1 top5

Baseline (CE) 57.30 79.48

Focal [113] 58.03 78.65

CB [35] 61.12 81.03

LDAM [14] 64.58 83.52

IB 65.39 84.98

Experimental results on iNaturalist 2018.

We evaluated our method on the large-scale real-world image data, iNaturalist 2018.

We compared our method with the state-of-the-art loss-based methods. Table 3.6 re-

veals that simply balancing the influence of loss could achieve considerable improve-

ment.

3.4 Summary

In this chapter, we propose a novel influence-balanced loss to solve the overfitting of

the majority classes in a class imbalance problem. A model trained on imbalanced

class data is susceptible to overfitting due to the high capacity of DNN and the scarcity

of samples in certain classes. Therefore, as learning progresses, existing methods are

likely to produce undesirable results, such as assigning higher weights to samples from

majority classes. Unlike the existing methods, IB loss can robustly assign weights be-

cause it directly focuses on a sample’s influence on the model. We conducted experi-

ments to demonstrate that our method can improve generalization performance under

a class imbalance setting. In addition, our method is easy to be implemented and inte-

grated into existing methods.
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Chapter 4

Context-rich Minority Oversampling for Imbalanced Data

4.1 Overview

Real-world data are likely to be inherently imbalanced [119, 115, 43, 72], where the

number of samples per class differs greatly. If models are trained on an imbalanced

dataset, they can be easily biased toward majority classes and tend to have a poor

generalization ability on recognizing minority classes (i.e., overfitting).

A simple and straightforward method to overcome the class imbalance problem is

to repeatedly oversample the minority classes [18, 160]. However, these naive over-

sampling can intensify the overfitting problem, since the repeatedly selected samples

have less diversity but almost similar image contexts [142]. For example, consider a

minority class of ‘snow goose,’ in which the geese always stand upon grass in the

training images. If samples are drawn from these limited training samples [160] or

even if new samples are produced by interpolating within the class [18], only context-

limited images will be created as in Figure 4.1. Our goal is to solve the aforementioned

problem by introducing a simple context-rich oversampling method.

We pay attention to the characteristics of long-tailed distributions; that is, major-

ity class samples are data-rich and information-rich. Unlike the existing re-sampling

methods that ignore (i.e., undersample) majority samples, our method uses the affluent
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Figure 4.1: Concept of context-rich minority oversampling. In the real-world long-

tailed dataset iNaturalist 2018 [72], the number of samples from the head class and

the tail class is extremely different (Upper). Simple random oversampling method re-

peatedly produces context-limited images from minority classes. We propose a novel

context-rich oversampling method to generate diversified minority images. To this end,

we oversample the tail-class images with various sizes. Then, these patches are pasted

onto the head-class images to have various backgrounds. Our key idea is to bring rich

contexts from majority samples into minority samples.

information of the majority samples to generate new minority samples. Specifically,

our idea is to leverage the rich major-class images as the background for the newly

created minor-class images. Figure 4.1 illustrates the concept of our proposed context-
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rich oversampling strategy. Given an original image from a minority class, the object

is cropped in various sizes and pasted onto the various images from majority classes.

Then, we can create images with more diverse contexts (e.g., ‘snow goose’ images

with the sky, road, roof, crows, etc). Since this is an interpolation of the majority and

minority class samples, it generates diversified data around the decision boundary, and

as a result, it improves the generalization performance for minority classes.

To this end, we adopt an image-mixing data augmentation method, CutMix [178].

As our key idea is to transfer rich contexts from majority to minority samples, we apply

a simple and effective data sampling method to generate new minority-centric images

with majority’s contexts. However, naive use of CutMix may exacerbate the overfitting

problem in favor of the majority classes because it may generate more majority-centric

samples than minority samples. We solve this problem by sampling the background

images and the foreground patches from different distributions to achieve the desired

minority oversampling.

Our key contributions can be summarized as follows: (1) We propose a novel

context-rich minority oversampling method that generates various samples by lever-

aging the rich context of the majority classes as background images. (2) Our method

requires little additional computational cost and can be easily integrated into many

end-to-end deep learning algorithms for long-tailed recognition. (3) We demonstrate

that significant performance improvements and state-of-the-art performance can be

achieved by applying the proposed oversampling to existing commonly used loss func-

tions without any architectural changes or complex algorithms. (4) We empirically

prove the effectiveness of the proposed oversampling method through extensive ex-

periments and ablation studies. We believe that our study offers a useful and universal

minority oversampling method for research into long-tailed classification.
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4.2 Context-rich Minority Oversampling

4.2.1 Algorithm

We propose a new oversampling method called Context-rich Minority Oversampling

(CMO ). CMO utilizes the contexts of the majority samples to diversify the limited

context of the minority samples. As shown in the Figure 4.1, the background images

are sampled from majority classes and combined with foreground images of minority

classes. Let x ∈ RW×H×C and y denote a training image and its label, respectively.

We aim to generate a new sample (x̃, ỹ) by combining two training samples (xb, yb)

and (xf , yf ). Here, the image xb is used as a background image, and the image xf

provides the foreground patch to be pasted onto (xb, yb).

For the image combining method, we chose CutMix [178] data augmentation due

to its simplicity and effectiveness. Following CutMix [178] settings, the image and

label pairs are augmented as

x̃ = M⊙ xb + (1−M)⊙ xf

ỹ = λyb + (1− λ)yf , (4.1)

where (1 −M) ∈ {0, 1}W×H denotes a binary mask indicating where to select the

patch and paste it onto a background image. 1 means a binary mask filled with ones,

and ⊙ is element-wise multiplication. The combination ratio λ ∈ R between two

images is sampled from the beta distribution Beta(α, α). To sample the mask and its

coordinates, we apply the original CutMix [178] setting.

Since CutMix was originally designed for data augmentation on a class-balanced

dataset, Eq. 4.1 does not represent the majority or minority class of samples. To change

the method to CMO , we include sampling data distributions for foreground (xf , yf )

and background samples (xb, yb). In our design, the background samples (xb, yb)

should be biased to the majority classes. Therefore, we sample the background sam-

ples from the original data distribution P . Meanwhile, the foreground samples (xf , yf )
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are sampled from minor-class-weighted distribution Q to be biased to the minority

classes. In short, CMO consists of data sampling from two distributions, (xb, yb) ∼ P

and (xf , yf ) ∼ Q, and combining the images using Eq. 4.1. The pseudo-code of the

training procedure is presented in Algorithm 2.

Algorithm 2 Context-rich Minority Oversampling (CMO )

INPUT: Dataset DN
i=1, model parameters θ, P , Q, any loss function L(·).

1: Randomly initialize θ.

2: Sample weighted dataset D̃N
i=1 ∼ Q.

3: for epoch = 1, . . . , T

4: for batch i = 1, . . . , B

5: Draw a mini-batch (xbi , y
b
i ) from DN

i=1

6: Draw a mini-batch (xfi , y
f
i ) from D̃N

i=1

7: λ ∼ Beta(α, α)

8: x̃i = M⊙ xbi + (1−M)⊙ xfi

9: ỹi = λybi + (1− λ)yfi

10: θ ← θ − η∇L((x̃i, ỹi); θ)

11: end for

12: end for

4.2.2 Minor-class-weighted Distribution Q

To sample the foreground image from minority classes, we design the minor-class-

weighted distribution Q by utilizing the re-weighting methods. The re-weighting ap-

proach, dating back to the classical importance sampling method [83], provided a way

to assign appropriate weights to samples. Commonly used sampling strategies include

ones that assign a weight inversely proportional to the class frequency [74, 166], to the

smoothed class frequency [127, 124], or to the effective number [35].

Let nk be the number of samples in the k-th class, then for the C classes, the total

number of samples is N =
∑C

k=1 nk. Then, the generalized sampling probability for
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the k-th class can be defined by

q(r, k) =
1/nr

k∑C
k′=1

1/nr
k′

, (4.2)

where the k-th class has a sampling weight inversely proportional to nr
k. As r increases,

the weight of the minor class becomes increasingly larger than that of the major class.

By adjusting the value of r, we can examine diverse sampling strategies. Setting r = 1

uses the inverse class frequency [74, 166] while setting r = 1/2 uses the smoothed

inverse class frequency, as in [127, 124]. We can also use the effective number [35]

instead of nr
k, which is defined as

E(k) =
(1− βnk)

(1− β)
, (4.3)

where β = (N − 1)/N . Since CMO is a new approach for long-tailed classification, it

is hard to predict the performance of each sampling strategy for CMO . Therefore, we

evaluate the different sampling strategies on the long-tailed CIFAR-100 [92] and select

the best strategy q(1, k) for the minor-class-weighted distribution Q. The experimental

results are displayed in Table 4.11 of the experimental section.

4.2.3 Regularization Effect of CMO

A recent study [192] has reported that models trained on long-tailed datasets are

more over-confident than the models trained on balanced data. In addition, the study

reveals that the long-tailed classification accuracy can be improved by solving the

over-confidence issue. Moreover, CMO can be interpreted as a way to mitigate over-

confidence in long-tailed classification. Inherited from CutMix, CMO uses a soft-target

label ỹ, as in Eq. 4.1. The soft-target label penalizes over-confident outputs, similarly

to the label smoothing regularization [156]. Therefore, we argue that CMO contributes

not only to minority sample generation but also to mitigating the over-confidence,

which both enable an impressive performance improvement in diverse long-tail set-

tings. We will demonstrate the effectiveness of CMO through various experiments in

the experimental section.
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4.3 Experiments

We present experiments on and analyses of CMO in this section. We first describe our

experimental settings and implementation details in Section 3.3.1. Next, we present the

effectiveness of CMO using three long-tailed classification benchmarks: CIFAR-100-

LT, ImageNet-LT, and iNaturalist. CMO consistently boosts the performance of these

baselines with state-of-the-art accuracy (Section 4.3.2). In Section 4.3.3 we present

in-depth analyses of CMO to study its inherent characteristics.

4.3.1 Experimental Settings

Datasets. We validate CMO on the most commonly used long-tailed recognition bench-

mark datasets: CIFAR-100-LT[14], ImageNet-LT [121], and iNaturalist 2018 [72] (see

Table 4.1). CIFAR-100-LT and ImageNet-LT are artificially made imbalanced from

their balanced versions (CIFAR-100 [92] and ImageNet-2012 [141]). The iNaturalist

2018 dataset is a large-scale real-world dataset that exhibits long-tailed imbalance. We

used the official training and test splits in our experiments.

Table 4.1: Summary of datasets. The imbalance ratio ρ is defined by ρ =

maxk{nk}/mink{nk}, where nk is the number of samples in the k-th class.

Dataset # of classes # of training Imbalance ratio

CIFAR-100-LT 100 50K {10, 50, 100}

ImageNet-LT 1,000 115.8K 256

iNaturalist 2018 8,142 437.5K 500

Evaluation Metrics. Performances is mainly reported as the overall top-1 accuracy.

Following [121], we also report the accuracy of three disjoint subsets: Many-shot

classes (classes that contain more than 100 training samples), medium-shot classes

(classes that contain 20 to 100 samples), and few-shot classes (classes that contain

under 20 samples).
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Comparison methods. We compare CMO with the minority oversampling methods,

the state-of-the-art long-tail recognition methods, and their combinations.

• Minority oversampling. (1) No oversampling (vanilla); (2) Random oversam-

pling (ROS) [160], that oversamples minority samples to balance the classes in

the training data; (3) Remix [26], which oversamples minority classes by assign-

ing higher weights to the minority labels when using Mixup [182]; (4) Feature

space augmentation (FSA) [27].

• Re-weighting. (5) label-distribution-aware margin (LDAM) loss [14], which

regularizes the minority classes to increase margins to the decision boundary;

(6) influence-balanced (IB) loss [134], which re-weights samples by their in-

fluences; (7) Balanced Softmax [138], an unbiased extension of Softmax; (8)

LADE [70], which disentangles the source label distribution from the model

prediction.

• Other state-of-the-art methods. (9) Deferred re-weighting (DRW) [14] and

(10) Decouple [84] are two-stage algorithms that re-balance the classifiers dur-

ing fine-tuning; (11) BBN [193] and (12) RIDE [165] use additional network

branches to handle class imbalance; (13) Causal Norm [159], which disentan-

gles causal effects and adjusts the effects in training; (14) MiSLAS [192], a two-

stage algorithm, enhances classifier learning and calibration with label-aware

smoothing (LAS) in stage-2.

Implementation. We use PyTorch [135] for all experiments. For the CIFAR datasets,

we use ResNet-32 [64]. The networks are trained for 200 epochs following the training

strategy in [14]. For ImageNet-LT, we use ResNet-50 as the backbone network. The

network is trained for 100 epochs using an initial learning rate of 0.1. The learning rate

is decayed at the 60th and 80th epochs by 0.1. For iNaturalist 2018, we use ResNet-

{50, 101, 152} and Wide ResNet-50 [179]. We train the networks for 200 epochs using

an initial learning rate of 0.1, and decay the learning rate at epochs 75 and 160 by 0.1.
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All experiments are trained with stochastic gradient descent (SGD) with a momentum

of 0.9.

4.3.2 Long-tailed classification benchmarks

CIFAR-100-LT

We conduct experiments on CIFAR-100-LT using different imbalance ratios: 10, 50,

100. We apply CMO to various methods to verify its effectiveness on different algo-

rithms: vanilla cross-entropy loss, class-reweighting loss (LDAM [14]), a two-stage

algorithm (DRW [14]), and multi-branch architecture (RIDE [165]).

In addition, for more detailed results, we report the precision for the main base-

lines, ‘CE + CMO’, ‘CE-DRW + CMO’, and ‘BS + CMO’ in Table 4.2.

Table 4.2: Recall and Precision for CIFAR-100-LT (IB=100)

CIFAR-100 (IF=100) Recall Precision

CE + CMO 43.9 48.3

CE-DRW + CMO 47.0 46.4

BS + CMO 49.8 51.7

Comparison with state-of-the-art methods. The overall classification accuracies are

displayed in Table 4.3. It is surprising that CMO with basic cross-entropy (CE) loss

shows comparable performance to that of complex long-tail recognition methods. More-

over, applying CMO to the state-of-the-art model (i.e., RIDE) further boosts the per-

formance markedly, especially when the imbalance ratios are high as 50 and 100.

Comparison with oversampling methods. We further compare the performance im-

provement of CMO with that of other oversampling techniques when combined with

long-tailed recognition methods (see Table 4.4). The results reveal that CMO consis-

tently improves the performance of all long-tailed recognition methods. On the other

hand, simply balancing the class distribution with ROS [160] severely degrades per-
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Table 4.3: State-of-the-art comparison on CIFAR-100-LT dataset. Classification

accuracy (%) for ResNet-32 architecture on CIFAR-100-LT with different imbalance

ratios. ∗ and † are from the original paper and [70], respectively.

Imbalance ratio 100 50 10

Cross Entropy (CE) 38.6 44.0 56.4

CE-DRW 41.1 45.6 57.9

LDAM-DRW [14] 41.7 47.9 57.3

BBN [193]† 42.6 47.1 59.2

Causal Norm [159]† 44.1 50.3 59.6

IB Loss [134]∗ 45.0 48.9 58.0

Balanced Softmax (BS) [138]† 45.1 49.9 61.6

LADE [70]† 45.4 50.5 61.7

Remix [26] 45.8 49.5 59.2

RIDE (3 experts) [165] 48.6 51.4 59.8

MiSLAS [192]∗ 47.0 52.3 63.2

CE + CMO 43.9 48.3 59.5

CE-DRW + CMO 47.0 50.9 61.7

LDAM-DRW + CMO 47.2 51.7 58.4

BS + CMO 50.2 51.4 62.3

RIDE (3 experts) + CMO 50.0 53.0 60.2

formance. We speculate that this is because the naive balancing of the sampling dis-

tribution across classes hinders the model from learning generalized features for ma-

jor classes and induces the model to memorize the minor class samples. Remix [26]

improves the performance of some methods but degrades the performance when com-

bined with RIDE [165]. This indicates that the simple labeling policy of Remix may

not be effective when the model complexity becomes large, as in RIDE.
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Table 4.4: Comparison against baselines on CIFAR-100-LT (Imbalance ratio =

100). Classification accuracy (%) of ResNet-32.

Vanilla +ROS [160] +Remix [26] +CMO

CE
38.6

(+0.0)

32.3

(-5.3)

40.0

(+1.4)

43.9

(+5.3)

CE-DRW [14]
41.1

(+0.0)

35.9

(-5.2)

45.8

(+4.7)

47.0

(+5.9)

LDAM-DRW [14]
41.7

(+0.0)

32.6

(-9.1)

45.3

(+3.6)

47.2

(+5.5)

RIDE [165]
48.6

(+0.0)

22.6

(-26.0)

44.0

(-4.6)

50.0

(+1.4)

ImageNet-LT

Comparison with state-of-the-art methods. The results of our method and other

long-tailed recognition methods are displayed in Table 4.5. Applying CMO to the basic

training with CE loss improves the performance by a significant margin, outperforming

most of the recent baselines. The greater performance improvement on ImageNet-LT

compared to CIFAR-100 indicates that our method benefits from the richer context

information available in the major classes of ImageNet-LT. In addition, a consistent

performance improvement by using CMO when combined with DRW or BS bolsters

the efficacy of CMO , which can be easily integrated into modern state-of-the-art long-

tailed recognition methods. It is noteworthy that as {CE-DRW + CMO } and {BS +

CMO } especially achieve a much higher few-shot class accuracy than did the other

methods, our method is useful for achieving consistent performance across classes.

Lastly, applying CMO to RIDE further boosts performance, outperforming the results

of RIDE with four experts.

Comparison with oversampling methods. In Table 4.6, we compare performance
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Table 4.5: State-of-the-art comparison on ImageNet-LT. Classification accuracy (%)

of ResNet-50 with state-of-the-art methods trained for 90 or 100 epochs. “∗” and “†”

denote the results are from the original papers, and [84], respectively. The best results

are marked in bold.

All Many Med Few

Cross Entropy (CE)† 41.6 64.0 33.8 5.8

Decouple-cRT [84]† 47.3 58.8 44.0 26.1

Decouple-LWS [84]† 47.7 57.1 45.2 29.3

Remix [26] 48.6 60.4 46.9 30.7

LDAM-DRW [14] 49.8 60.4 46.9 30.7

CE-DRW 50.1 61.7 47.3 28.8

Balanced Softmax (BS) [138] 51.0 60.9 48.8 32.1

Causal Norm [159]∗ 51.8 62.7 48.8 31.6

RIDE (3 experts) [165]∗ 54.9 66.2 51.7 34.9

RIDE (4 experts) [165]∗ 55.4 66.2 52.3 36.5

CE + CMO 49.1 67.0 42.3 20.5

CE-DRW + CMO 51.4 60.8 48.6 35.5

LDAM-DRW + CMO 51.1 62.0 47.4 30.8

BS + CMO 52.3 62.0 49.1 36.7

RIDE (3 experts) + CMO 56.2 66.4 53.9 35.6
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Table 4.6: Comparison against baselines on ImageNet-LT. Classification accuracy

(%) of ResNet-50.

Vanilla +Remix [26] +CMO

CE
41.6

(+0.0)

41.7

(+0.1)

49.1

(+7.5)

CE-DRW [14]
50.1

(+0.0)

48.6

(-1.5)

51.4

(+1.3)

Balanced Softmax [138]
51.0

(+0.0)

49.2

(-1.8)

52.3

(+1.3)

improvement using other oversampling techniques. While CMO consistently improves

performance for all methods, Remix [26] fails to improve the performance of the long-

tailed recognition methods and barely improves the model trained with cross-entropy

loss. This implies that the labeling strategy of Remix is not sufficient to compensate for

the adverse effect of using the same original distribution as the two sampling distribu-

tions of the mixup method, especially when the imbalance ratio rises severly to 256, as

with ImageNet-LT. In contrast, CMO generates more minority samples by using dif-

ferent distributions when selecting two images and produces much better classification

accuracy on all tasks.

Results on longer training epochs. Recently, PaCo [34] performed impressively by

using supervised contrastive learning. Since contrastive learning requires diverse aug-

mentation strategies and longer training times, PaCo trained networks for 400 epochs

using RandAugment [33]. Since CMO should also improve using longer training epochs,

we evaluate CMO using the same setting from PaCo (i.e., 400 epochs & RandAug).

Table 4.7 reveals that {BS + CMO } achieves a new state-of-the-art performance. It is

noteworthy that applying CMO significantly surpasses the two baselines, especially in

the few-shot classes. On top of its simplicity and much lower computational cost, the

results demonstrate the effectiveness of the proposed method.
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Table 4.7: Results on longer training epochs with RandAugment [33]. Classifica-

tion accuracy (%) of ResNet-50 on ImageNet-LT. “∗” denotes the results from [34].

All Many Med Few

BS∗ 55.0 66.7 52.9 33.0

PaCo [34]∗ 57.0 65.0 55.7 38.2

BS + CMO 58.0 67.0 55.0 44.2

Table 4.8: State-of-the-art comparison on iNaturalist2018. Classification accuracy

(%) of ResNet-50 on iNaturalist2018. “∗” and “†” indicate the results from the original

paper and [193], respectively. RIDE [165] was trained for 100 epochs.

All Many Med Few

Cross Entropy (CE) 61.0 73.9 63.5 55.5

IB Loss [134]∗ 65.4 - - -

FSA [27]∗ 65.9 - - -

LDAM-DRW [14]† 66.1 - - -

Decouple-cRT [84]∗ 68.2 73.2 68.8 66.1

Decouple-LWS [84]∗ 69.5 71.0 69.8 68.8

BBN [193]∗ 69.6 - - -

Balanced Softmax [138] 70.0 70.0 70.2 69.9

LADE [70]∗ 70.0 - - -

Remix [26]∗ 70.5 - - -

MiSLAS [192]∗ 71.6 73.2 72.4 70.4

RIDE (3 experts) [165]∗ 72.2 70.2 72.2 72.7

RIDE (4 experts) [165]∗ 72.6 70.9 72.4 73.1

CE + CMO 68.9 76.9 69.3 66.6

CE-DRW + CMO 70.9 68.2 70.2 72.2

LDAM-DRW + CMO 69.1 75.3 69.5 67.3

BS + CMO 70.9 68.8 70.0 72.3

CE-DRW + CMO + LAS [192] 71.8 69.6 72.1 71.9

RIDE (3 experts) + CMO 72.8 68.7 72.6 73.1
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Figure 4.2: A display of the minority images generated by CMO (minority classes:

the snow goose and the Acmon blue (butterfly)). We randomly choose generated im-

ages for each original image. Our method is able to generate context-rich minority

samples that have diverse contexts. For example, while the original ‘snow goose’ class

contains only images of a ‘snow goose’ on grass, the generated images have various

contexts such as the sky, the sea, the sand, and a flock of crows. These generated im-

ages enable the model to learn a robust representation of minority classes.

iNaturalist 2018

Comparison with state-of-the-art methods. Table 4.8 presents the classification re-

sults. On the naturally-skewed dataset, applying CMO to the simple training scheme of

CE-DRW surpasses most of the state-of-the-arts. On iNaturalist 2018, as in ImageNet-

LT, CMO dramatically improves the performance of the cross-entropy loss (CE) by

7.9%p (61.0% increased to 68.9%). This is because the sample generation by CMO

fully utilizes the abundant context of training data. Again, it achieves a remarkable per-

formance improvement in the few-shot classes. It is moreover noteworthy that when

we apply the same stage-2 strategy, LAS, from [192], it further boosts performance.

Lastly, applying CMO to RIDE achieves a new state-of-the-art performance.

Results on large models. We investigate the performance of CMO and other oversam-

pling methods using the large deep networks of Wide ResNet-50 [179], ResNet-101,

and ResNet-152 [64]. We compare CMO with the feature space augmentation method
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(FSA) [27]. While both methods improve the results from vanilla training with cross-

entropy loss, our method provides superior performance to that of FSA. This indicates

that using the context-rich information from majority classes in the input space is sim-

ple but effective in improving the overall performance.

Table 4.9: Results on large architectures. Classification accuracy (%) of large back-

bone networks on iNaturalist 2018. The results are copied from [27].

Method ResNet-50 Wide ResNet-50 ResNet-101 ResNet-152

CE 61.0 - 65.2 66.2

FSA [27] 65.9 - 68.4 69.1

CMO 70.9 71.9 72.4 72.6

Display of the generated images. We visualize the generated images for the minority

classes in Figure 4.2. From the rarest minority classes, we randomly choose generated

images for each original image. CMO produces diverse minority samples that have

various contexts. For example, while the ‘snow goose’ class contains only images of

geese on grass, the generated images have various contexts, such as the sky or sea.

Likewise, the butterflies in the third row are newly created as diverse images that have

various contexts, containing bees and flowers of various colors and shapes. We argue

that various combinations of context and minority samples encourage the model to

learn a robust representation of the minority classes.

4.3.3 Analysis

Is the distribution for augmenting images important? To justify the need for differ-

ent distributions of background and foreground images, we compare CutMix and CMO

. As can be seen from Table 4.10, CMO outperforms CutMix on long-tailed classifica-

tion by a large margin. In particular, there is a remarkable performance improvement

in the medium and few-shot classes. The performance gap is due to the absence of

a minor-class-weighted distribution in CutMix augmentation. Although CutMix can
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generate informative mixed samples, its effect is limited when used with long-tailed

distributions. Thus, we claim that the use of a minor-class-weighted distribution is a

key-point in data augmentation in the long-tailed settings; this highlights the contribu-

tion and originality of CMO .

Table 4.10: Comparison with CutMix using cross-entropy loss.

All Many Med Few

CIFAR-100-LT

CutMix 35.6 71.0 37.9 4.9

CMO 43.9 70.4 42.5 14.4

ImageNet-LT

CutMix 45.5 68.6 38.1 8.1

CMO 49.1 67.0 42.3 20.5

How to choose the appropriate probability distribution Q. We evaluate different

sampling strategies in Section 4.2.2 on CIFAR-100 with the imbalance ratio 100, The

results are reported in Table 4.11. q(1, k) displays the most balanced performance. This

result is consistent with the common practice of balancing the dataset by assigning

weights inversely proportional to the class frequency. While q(2, k), which imposes

a higher probability on the minority class than does q(1, k), performs acceptably in

the few-shot classes, the overall performance slightly deteriorates. We assume this is

because we cannot sample more diverse images when imposing too high probabilities

on the few-shot classes. Based on this result, we set Q as q(1, k) in our all experiments.

Why should we oversample only for the foreground samples? One may wonder

why oversampling only for the foreground samples is better than oversampling both

patches and background samples or oversampling only the backgrounds. To verify our

design choice, we evaluate two variants of CMO . The first variant, CMO back, samples
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Table 4.11: Impact of different Q sampling distributions. Results on CIFAR-100-LT

(imbalance ratio=100) according to different Q sampling probabilities.

All Many Med Few

q(1/2, k) 42.6 71.6 42.1 9.5

q(1, k) 43.9 70.4 42.5 14.4

q(2, k) 40.1 67.2 36.7 12.3

E(k) [35] 39.5 70.4 38.0 4.7

background images from a minor-class-weighted distribution and patches from the

original distribution, which is exactly the opposite design of CMO , i.e., (xb, yb) ∼

Q, (xf , yf ) ∼ P . The second variant, CMO minor, samples both the background and

the patches from a minor-class-weighted distribution, i.e., (xb, yb), (xf , yf ) ∼ Q. We

report the results of applying these variants of the CMO method to the model trained

with CE loss and LDAM loss [14] in Table 4.12.

Table 4.12: Ablation study. Results from variants of CMO with ResNet-32 on imbal-

anced CIFAR-100; imbalance ratio of 100.

All Many Med Few

Cross Entropy (CE) 38.6 65.3 37.6 8.7

CE + CMO minor 37.9 58.3 40.4 11.2

CE + CMO back 40.1 64.7 40.2 11.3

CE + CMO 43.9 70.4 42.5 14.4

LDAM [14] 41.7 61.4 42.2 18.0

LDAM + CMO minor 31.7 50.2 33.2 8.4

LDAM + CMO back 44.2 59.2 46.6 24.0

LDAM + CMO 47.2 61.5 48.6 28.8

CMO minor yields severe performance degradation using both methods. We sus-

pect that this is because the rich context of the majority samples cannot be utilized.
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In contrast, CMO back produces acceptable performance improvements, but far less

than did the original CMO . This is because, using the CutMix method, there is a high

probability that the object in the foreground image overlaps the background image.

Therefore, we can expect a loss of information about minority classes in the back-

ground image, resulting in a limited performance boost.

Comparison with other minority augmentations. To further verify our design choice,

we analyze the effectiveness of using different augmentation methods, including Cut-

Mix [178], Mixup [182], color jitter, and Gaussian blur. For Mixup, we use the same

sampling strategy as for CMO . For color jitter and Gaussian blur, which do not inter-

polate two images, we apply augmentation only to the minority classes and oversample

those classes. As evidenced in Table 4.13, other augmentation methods provide little

performance gain compared to the gains using CutMix. We suspect that this is because

the pixel-level transformations (i.e., Gaussian blur and color jitter) are not effective in

producing minority samples that have a rich context. Gaussian blur and color jitter do

not combine two images; thus, it is hard to add a new context to minority samples.

While Mixup combines two images, it does not distinguish the roles of the two sam-

ples, limiting the control of the source of the context and of the patch information. In

contrast, CutMix can create diverse images with larger changes at pixel-level than can

other methods.

4.4 Summary

We have proposed a novel context-rich oversampling method, CMO , to solve the

data imbalance problem. We tackle the fundamental problem of previous oversam-

pling methods that generate context-limited minority samples, which intensifies the

overfitting problem. Our key idea is to transfer the rich contexts of majority samples to

minority samples to augment minority samples. The implementation of CMO is sim-
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Table 4.13: Data augmentation methods. Comparisons between augmentation meth-

ods for generating new minority samples on CIFAR-100-LT with an imbalance ratio

of 100.

All Many Med Few

CMO w/ Gaussian Blur 31.1 54.7 28.8 6.2

CMO w/ Color Jitter 34.7 58.9 34.4 6.8

CMO w/ Mixup 38.0 54.8 40.2 15.9

CMO w/ CutMix 43.9 70.4 42.5 14.4

ple and intuitive. Extensive experiments on various benchmark datasets demonstrate

not only that our CMO significantly improves performance, but also that adding our

oversampling method to the basic losses advances the state-of-the-art.
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Chapter 5

Influential Rank: Post-training for Noisy Labels

5.1 Overview

Real-world data inevitably contain some proportion of incorrectly labeled data, owing

to perceptual ambiguity, or errors from human or machine annotations. These noisy

labels negatively affect the generalization performance of a trained model since a deep

neural network (DNN) can easily overfit to even noisy labels due to its high capac-

ity [180]. Therefore, learning from noisy labels (LNL) has received much attention in

recent years [67, 174, 147, 191, 112, 24, 76] due to the increasing need to handle noisy

labels in practice.

To handle noisy-label problem, prior literature aims to distinguish between clean

and mislabeled data, and use this information to train a robust classifier during training.

To this end, prior works mainly rely on the assumption that the clean labels are more

likely to have smaller losses before the model is overfitted [7]. However, due to the high

capacity of deep neural networks (DNNs), DNNs can fit even noisy labels [180]; thus

it is challenging to correctly detect mislabeled data during training. Hence, various

methods have been proposed to use more robust models before overfitting, such as

leveraging the model with early stopping [148, 108], or using multiple networks with

co-training for sample selection [60, 177, 102].
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Figure 5.1: Test accuracy improvement over various methods on CIFAR-10N

(Worst). As a post-training method, our proposed Influential Rank can improve var-

ious pre-trained models by large margin, compared to the post-processing baseline

method, RoG [96]. The used CIFAR-10N (Worst) is a human-annotated real-world

noisy dataset with about 40% noise rate [169].

Here, we introduce a different perspective against the mainstream research. We

propose a new post-training LNL approach, which can synergize with the model trained

using prior robust methods, further enhancing the generalization capability of the

model. Given a pre-trained model, the proposed post-training scheme refines the model

by exploiting the ‘overfitting property’ of mislabeled samples. ‘Overfitting property’ of

mislabeled samples is derived from two following intuitions. (1) Mislabeled samples

are more likely to distort the decision boundary than clean samples. Thus removing

the mislabeled samples is likely to sway the decision boundary significantly. (2) The

overfitted model predicts poorly on unseen data, and the mislabeled sample is usually

the main culprit for the model to classify new data with incorrect labels. The details

on these intuitions are discussed in Section 5.2.1.

These intuitions on overfitting motivate us to propose a novel method named In-

fluential Rank, which leverages the samples’ influence on the decision boundary and

on unseen samples to enhance robustness. To this end, we propose overfitting score on
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model (OSM) and overfitting score on data (OSD). OSM measures the influence of a

training sample on changes in model parameters, and OSD measures the inconsistency

of the sample’s influence on the classification prediction for a small number of clean

validation data. Based on OSM and OSD, Influential Rank updates the trained model

by removing high influential samples and mitigating their negative influence on the

classifier.

Since the post-training provides a new information (i.e., sample’s influence) to any

pre-trained models, Influential Rank can effectively improve robustness of existing

LNL methods. Through extensive experiments on multiple benchmark data sets, we

demonstrate the validity of our method, and show that Influential Rank can improve

the performance of the model consistently whether or not it is pre-trained with LNL

methods, as shown in Figure 5.1. Furthermore, we show that Influential Rank is useful

in two different applications other than LNL. The proposed overfitting scores can be

effective for (1) data cleansing that filters out erroneous examples in real-world video

data and (2) regularization that boosts the classification performance on clean data.

Our key contributions can be summarized as follows: (1) Post-training: Influential

Rank is a novel post-training approach for LNL, which leverages the overfitting scores

of training examples on the decision boundary. (2) Practicability: Influential Rank

is applicable to any pre-trained models and works synergistically with other existing

LNL methods. (3) Extensibility: Influential Rank can be easily extended to cleans-

ing video dataset and a regularization for reducing overfitting arising from clean but

influential samples.

5.2 Influential Rank

Our idea is to leverage the property of an overfitted model for post-processing. First,

we present the observations that motivated our method in Section 5.2.1. Then, we

propose two novel criteria in Section 5.2.2, and we describe the overall scheme of
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(a) Overfitted model (b) Influence on model

(c) Influence on data (d) Influence on data

Figure 5.2: Our intuition. The red and blue points belong to different classes in binary

classification. The×marks indicate mislabeled data. (a) Due to the mislabeled samples

(×), the model is overfitted. (b)× significantly affects the model because if the sample

is removed, the parameter of the model is substantially changed. (c and d) Assume

clean validation data (⋆) are given. The noisy-label sample (×) exerts both positive

and negative influences on correctly classifying the validation data in the same class,

even when distances are near. The noisy-label data tend to have inconsistent effects on

data within the same class.

robust post-training with overfitting scores, referred to as Influential Rank (Section

5.2.3). Finally, we empirically verify the effectiveness of the proposed criteria in post-

training from a toy example (Section 5.2.4).

56



5.2.1 Intuition

Our post-training algorithm is based on two following intuitions. Mislabeled samples

are likely to significantly distort the decision boundary, and to cause misclassification

of nearby correctly labeled samples. Figure 5.2 illustrates our intuition. The red and

blue points belong to different classes for binary classification, and the pink and light

blue background indicates the ground-truth feature embedding space. Black line de-

notes a decision boundary predicted by the model. In Figure 5.2(a) the model overfits

the mislabeld samples (× (red) mark), thus the decision boundary is distorted com-

pared to the ground-truth boundary. When the mislabeled sample (× (red) mark) is

removed, the trained model is substantially changed (Figure 5.2(b)). That is, the noisy

label can exert great influence on the decision boundary of the model.

In addition, to evaluate whether a training sample causes a significantly overfit-

ted classifier, we can use a small number of clean validation data. We consider a few

validation data points1 (⋆ (blue) marks) as shown in Figure 5.2(c). Because the fitted

decision boundary is distorted toward the blue region to include the noisy label (×

(red) mark), the ⋆ (blue) enclosed by a red dotted circle is wrongly classified into

the red class. Thus, the noisy label (× (red) mark) causes a clean sample to be mis-

classified (i.e., negative influence). Meanwhile, the validation samples upper the line

(blue-dotted circle) are correctly classified that it can be said that the boundary created

by this mislabeled sample (× (red)) has a positive influence on properly classifying

other samples. Therefore, the noisy label is likely to have inconsistent influences on

the clean validation samples, although their distances are near each other. The same

claim can apply to the validation samples (⋆ (red) ) in the other (red) category in

Figure 5.2(d). We verify the inconsistent influences of noisy labels in Section 5.3.5.

From this observation, we present two novel criteria that measure the abnormal

influences of a training sample. One is to measure how much a training sample affects

the overfitting of model parameters, referred to as the overfitting score on model, and

1We use only 5 data per class.
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the other measures how inconsistently a training sample affects the classification of

clean validation data, which is referred to as the overfitting score on data.

5.2.2 Overfitting Scores

To identify overfitting on individual points for detecting noisy labels, we utilize two

influence functions in [89]. One is to measure the influence of an example (x, y) on

the model f(x, θ̂) trained on the dataset D via loss function ℓ(y, f(x, θ)), given by

IM (x; θ̂) = −H−1

θ̂
▽θℓ(y, f(x, θ))|θ=θ̂ , (5.1)

where Hθ̂

def
== 1

|D|
∑

(x,y)∈D ▽2
θℓ
(
y, f(x, θ)

)∣∣
θ=θ̂

. The other is to measure the influ-

ence of a training sample (xi, yi) on a test sample (xt, yt), given by

ID(xi, xt; θ̂) = ▽θℓ(yt, f(xt, θ̂))
⊤IM (xi; θ̂). (5.2)

Overfitting Score on Model

IM (x; θ̂) can be used to estimate the effect of a noisy label on an overfitted model

(Figure 5.2(b)). However, IM (x; θ̂) is a p-dimensional vector, where p is the number

of model parameters. Thus, to measure the strength of the influence of a training point

(xi, yi), we use ∥IM (xi; θ̂)∥ as a metric. Using this metric, we define overfitting score

on model (OSM) OM (xi; θ̂) as the model (parameter)’s potential change caused by

ignoring the example xi for training,

OM (xi; θ̂) =
∥IM (xi; θ̂)∥ − µx∈D

(
∥IM (x; θ̂)∥

)
σx∈D

(
∥IM (x; θ̂)∥

) , (5.3)

where µx∈D(·) and σx∈D(·) denote mean and standard deviation of ∥IM (x; θ̂)∥ over

x ∈ D, respectively.

OSM OM (xi; θ̂) measures a normalized global influence of a training sample xi

on the entire parameters. As in Figure 5.2(b), the noisy samples are likely to locate

near the decision boundary, therefore, they will exhibit a higher OSM than examples

with clean labels.

58



Overfitting Score on Data

In contrast to a well-generalized decision boundary, an overfitted decision boundary

by a mislabeled sample makes the mislabeled sample inconsistently affect clean val-

idation samples, even though the validation samples belong to the same class (Fig-

ure 5.2(c) and 5.2(d)). Here, an influence of a training sample on a validation sample

indicates how much a classification result of the validation sample changes after re-

moving the training sample. Therefore, we suggest overfitting score on data (OSD) as

the within-class influence consistency of a training sample xi on m clean validation

samples in Dk = {xv1, · · ·xvm} in the k-th class. Utilizing (5.2), OSD Ok
D(xi; θ̂) in the

k-th class is defined by

Ok
D(xi; θ̂) =

σk

(
ID

(
xi, x

v; θ̂
))
− µ

(
σk

(
ID

(
x, xv; θ̂

)))
σ
(
σk

(
ID

(
x, xv; θ̂

))) , (5.4)

where σk(·) is standard deviation of ID
(
x, xv; θ̂

)
over xv ∈ Dk, whereas µ(·) and

σ(·) denote mean and standard deviation of σk(·) over k.

5.2.3 Post-processing with Influential Rank

Algorithm 3 outlines the overall procedure of Influential Rank. Given a pre-trained

model, Influential Rank updates the model parameter with the training dataset exclud-

ing highly influential examples (i.e., potentially mislabeled examples) for a fixed num-

ber of post-training epochs, which is much smaller than the total training epochs of the

pre-trained model. Specifically, given a pre-trained model θ̂0, we calculate OM (xi; θ̂)

for the whole training dataset D (Line 3). Since our goal is to exclude examples that

have high scores for both OM (xi; θ̂) and Ok
D(xi; θ̂), we compute Ok

D(xi; θ̂) for the

training samples whose OM (xi; θ̂) are higher than the mean (i.e., 0) for efficient com-

putation.

To automatically quantify the number of influential samples that need to be elim-

inated, we assume a two-modality Gaussian mixture model (GMM). First, we fit the

two-modality GMM toOk
D(xi; θ̂) using the Expectation-Maximization algorithm. Next,

59



Algorithm 3 Influential Rank

INPUT: D: data, θ̂0: pre-trained model, epochs: post-training epochs, γ: consensus

number

OUTPUT: θr: model parameter after post-training

1: C ← D /* C is entire clean samples in D */

2: repeat

3: DM ← {xi|{OM (xi; θ̂r)}ni=1≥ 0} // Compute Eq. (5.3)

4: for class k = 1 to K do

5: /* Compute Eq. (5.4) and fit GMM (Glow, Ghigh) */

6: Dk
D ← {xi|{Ok

D(xi; θ̂r)}i∈DM
≥ µ(Glow)}

7: end for

8: S ← {xi|
∑K

k=1 1[xi ∈ Dk
D] ≥ γ}

9: C ← C − S /* Update the clean set */

10: Post-train θ̂r on the refined clean set C for epochs

11: until acc(θ̂r) saturates

12: return θ̂r

we select the training samples whose Ok
D(xi; θ̂) are higher than the smaller mean of

the Gaussian component (Line 6). We referred to those samples as noisy candidates.

Then, we decide the final influential samples if a noisy candidate is inconsistent for

more than γ classes in common (i.e., more than γ classes have consensus that the

noisy candidate is inconsistent), which are referred as noisy-probable samples (Line

8).

After removing all the noisy-probable samples, the model is retrained for a small

number of epochs using the new training set (Line 9, 10). If a meaningful improvement

in the classification accuracy occurs, the noisy-probable samples are eliminated from

the training set, and the algorithm is repeated. Otherwise, the noisy-probable samples

are not removed, and the algorithm stops.

When the algorithm finishes, new labels of the removed samples are predicted by
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the classifier in the last iteration. Simply, we replace the labels of the noisy data with

the newly corrected labels. Then, among the corrected training data, the new clean

dataset includes only the data whose softmax outputs are higher than S(prediction

threshold). Then, the model is newly trained on the new clean dataset and is evaluated

for the test dataset.

This iterative design allows to remove more mislabeled examples in an iterative

manner. As the model evolves, Influential Rank can incrementally find hard-to-identify

mislabeled examples that could not be detected in the previous round. Especially under

the high noise-level circumstances e.g., 70% of label noise, multi-round post-training

achieves significant performance gains.

5.2.4 Example: A Binary Classification

We present a toy example to verify and visualize our hypothesis and the efficacy of

the proposed overfitting scores. Figure 5.3 illustrates the toy example. In Figure5.3,

yellow and purple circles represent examples of two different classes, and blue and

pink shades indicate their decision surfaces. For the two-dimensional binary classifi-

cation problem, we first generate 100 data points from the uniform distribution, where

x1 ∼ Unif(−5, 5) and x2 ∼ Unif(0, 55), and their true labels y are assigned fol-

lowing the binary rule depending on their (x1, x2) values, y = 1 if x2 ≥ 3x21 and

y = 0 if otherwise.

Figure 5.3(a) shows that the decision boundary trained on clean data is well-formed

close to the ground truth. Next, for the label noise scenario, 40% of the true labels are

randomly corrupted in data, i.e., × marks in Figure 5.3(b). Then, we fit a two-layer

feedforward neural network with 50 hidden neurons. When trained with noisy labels

shown in Figure 5.3 3(b), we observe that the trained model overfits to mislabeled ex-

amples, and forms a complex decision boundary such that many mislabeled examples

locate near the overfitted decision boundary. When we post-train the model after ex-

cluding 20 examples with high overfitting scores (i.e., white examples), the overfitted
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Figure 5.3: Change in decision boundary by Influential Rank. (a) DNN trained on

clean data. (b) DNN trained on noisy data (randomly chosen 40% of labels are flipped).

(c) DNN after first iteration by Ours. (d) DNN after third iteration by Ours.

decision boundary begins to recover in Figure 5.3 3(c). Again, after excluding total

20 more high influential examples after the third iteration in Figure 5.3 3(d), the deci-

sion boundary becomes almost similar to that of the clean model. Therefore, this toy

example illustrates the validity of Influential Rank for robust post-training.

1There are ‘random1’, ‘random2’, and ‘random3’, but we use ‘random1’ since they have the same

noise rate of 18%.
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Table 5.1: Summary of datasets.

Dataset # of training noise ratio (ε) noise type

CIFAR [92] 50K 20, 50, 70 synthetic

CIFAR-N [169] 40K 9, 18, 40 real-world

WebVision 1.0 [110] 2.4M 20 real-world

Clothing1M [172] 1M 38 real-world

5.3 Experiments

5.3.1 Experimental Settings

Datasets. We conduct classification on multiple benchmark datasets, including syn-

thetic noisy labels and real-world noisy labels: CIFAR-10, CIFAR-100 [92], and their

extension with real-world human labels CIFAR-N [169]; a large-scale real-world noisy

data, WebVision 1.0 [110], Clothing1M [172] (Table 5.1).

For CIFAR-10 and CIFAR-100, noisy labels are injected using the symmetric

noise [60] of flipping true labels into other labels with equal probability ε, i.e., the

noise ratio. Regarding the real-world noisy data, CIFAR-N [169] has various versions

of human noise level. ‘aggregate’ (9%), ‘random’ (18%)1, and ‘worst’ (40%), while

CIFAR-100N has only a single version, ‘noisy’ (40%). Clothing1M includes about

38% real noisy labels, and WebVision 1.0 contains about 20% real-world noisy la-

bels [149]. Following the previous work [20], we only use the first 50 classes of the

Google image subset in WebVision. Lastly, we use a video stream data, HMDB-

51 [146], to verify that our method can be effective as a detector for data cleaning.

To illustrate the applicability of our algorithm to video streams, we experiment on

HMDB-51, a popular dataset frequently used in video action recognition [146]. Cloth-

ing1M and WebVision 1.0 are large-scale real-world datasets. Clothing1M includes

about 38% real noisy labels and WebVision 1.0 contains about 20% noisy labels. Fol-

lowing previous work [20], we compare baseline methods on the first 50 classes of
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the Google image subset. Furthermore, to illustrate the applicability of our algorithm

to video streams, we experiment on HMDB-51, a popular dataset frequently used in

video action recognition [146].

Implementation Details. Following the prior literature [116], all the compared

methods are trained using ResNet-34, Inception-ResNet V2, and ResNet-50 for CI-

FAR, WebVision datasets, and Clothing1M respectively. For all experiments, the last

fully connected (FC) layers in the networks are used as the overfitted classifiers. In

addition, to reduce the number of the classifier parameters, we add a penultimate FC

layer with 50, 100, 100 neurons, for CIFAR-100, WebVision 1.0, and HMDB-51, re-

spectively. This allows to save the computational cost of hessian computation. Lastly,

for label refinement, we set the threshold S to 0.8.

CIFAR and CIFAR-N

All networks are trained for 120 epochs for CIFAR-10(N), and 150 epochs for CIFAR-

100(N) with Stochastic Gradient Descent (SGD) (momentum=0.9). Regarding to train-

ing with CE, we set the initial learning rate as 0.1, and reduce it by a factor of 10 after

40 and 80 epochs for CIFAR-10(N). For CIFAR-100(N), the initial learning rate is

decayed at 60th and 100th epoch by 0.1. To implement LNL baselines, we set the

hyperparameters and training scheme for the baselines as reported in their original

thesiss [60, 116, 102, 112]. In all experiments, we use the standard data augmentation

of horizontal random flipping and 32 × 32 random cropping after padding 4 pixels

around images. Following the recent works, we also adopt the augmentation policy

from [32].

For the results in Table 5.2 and 5.3, the algorithm is applied for 2 rounds with 20

epochs each. For post-training iteration, we set the initial learning rate as same as the

one used in earlier pre-training, and drop it after 5 epochs. For cross-entropy (CE) loss,

the learning rate at start is set to 0.1 and is decreased by a factor of 0.1 after the 5th and

15th epoch. By increasing the learning rate high at the first epoch in each retraining
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iteration, we can encourage the network to explore a newly updated dataset and form a

new classifier. We apply RoG and Influential Rank to the models from the last epoch.

Influential Rank and RoG both use 500 validation samples. Experiments are conducted

with three different noise realizations and the averaged test accuracies are reported.

WebVision

For WebVision 1.0, we use inception-resnet v2 [155] following [20]. For fair com-

parison with other baselines, both networks are trained for 80 epochs first, and then

post-trained with Influential Rank for 20 epochs. We train the network with CE loss

for 80 epochs using the SGD optimizer (momentum=0.9) with an initial learning rate

0.01, which is divided by 10 after 50 epochs. When training with DivideMix [102],

we follow the setting in their original thesis. After 1 round of Influential Rank, 5K and

6K highly influential examples are removed in CE and DivideMix, respectively. When

post-training, both networks are trained for 20 epochs with a learning rate 0.01, and

the learning rate is dropped to 0.01 after 10 epochs.

Clothing1M

For Clothing1M, the network is initially trained for 80 epochs with learning rate 0.002

which is decreased by a factor of 0.1 after 40 epochs. We set a batch size to 64, and

train the network using SGD optimizer (momentum=0.9) with CE. When training with

DivideMix [102], we follow the setting in their original thesis. After 1 round of In-

fluential Rank, 140K and 230K highly influential examples are removed in CE and

DivideMix, respectively. For post-training with CE, the model is trained with a learn-

ing rate of 0.002 for 10 epochs and then the learning rate is dropped to 0.0002. For

post-training with DivideMix, the model is trained with a learning rate of 0.0002 for

10 epochs and then the learning rate is dropped to 0.00002.
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Calculation of Hessian

We calculate the Hessian matrix using only sampled n (≪ N ) data to reduce the com-

putation cost, which is a reasonable approximation by the law of large numbers when

the volume of training data is large. For deep neural networks (DNNs), the Hessian

matrix could not be positive definite, so we added a positive constant 0.01 to the diag-

onal following [89]. To efficiently calculate the inverse of the Hessian matrix, we also

adopt the conjugate gradient method from optimization theory. The conjugate meth-

ods do not require explicitly computing the inverse of the hessian, thus computational

complexity is only O(np), where p is the number of parameters of the last fully con-

nected layer. In most cases, we simply use open library to calculate the inverse of

the Hessian because the number of parameters is sufficiently reduced and many open

libraries, (e.g., NumPy), provide optimized solutions.

5.3.2 Robustness Comparison

Synthetic Label Noise

We conduct experiments on CIFAR dataset with different levels of symmetric noise,

ε ∈ {20%, 50%, 70%}. The overall classification (test) accuracies are provided in Ta-

ble 5.2. The results show that Influential Rank consistently improves the performance

of all LNL methods when combined. Also, it is noticeable that applying to a stan-

dard cross-entropy (CE) method shows the performance better than or comparable to

VolMinNet. These results demonstrate that our post-processing of removing influen-

tial examples is effective under varying levels of label noise. Meanwhile, RoG shows

inconsistent gains and fails to improve performance of some baselines like DivideMix

and UNICON, which is attributed to the assumption of multivariate Gaussian distribu-

tion in feature representations. While we terminate the algorithm after the 2nd round,

we show the results on more multiple rounds, and the noisy label detection results in

5.3.7.
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Table 5.2: Comparison on CIFAR with varying levels of symmetric label noises.

The averaged test accuracy (%) with LNL methods and their combination with RoG

and Influential Rank. The mean accuracy is computed over three different noise real-

izations.

Dataset Method
Symm-20 Symm-50 Symm-70

Original +ROG

[96]

+Inf. Rank Original +ROG

[96]

+Inf. Rank Original +ROG

[96]

+Inf. Rank

C
IF

A
R

-1
0

CE
80.46

(+0.0)

86.97

(+6.51)

91.08

(+10.62)

48.84

(+0.0)

62.59

(+13.76)

84.19

(+35.36)

28.42

(+0.0)

44.92

(+16.50)

70.59

(+42.17)

VolMinNet [112]
88.26

(+0.0)

88.49

(+0.23)

91.89

(+3.63)

71.13

(+0.0)

72.65

(+1.52)

83.63

(+12.50)

33.69

(+0.0)

42.08

(+8.40)

66.07

(+32.39)

Co-teaching [60]
91.85

(+0.0)

90.22

(-1.62)

93.10

(+1.25)

85.44

(+0.0)

81.96

(-3.48)

87.30

(+1.86)

52.63

(+0.0)

53.93

(+1.30)

60.95

(+8.33)

ELR [116]
91.88

(+0.0)

91.50

(-0.39)

93.04

(+1.15)

88.48

(+0.0)

87.62

(-0.86)

89.60

(+1.12)

77.26

(+0.0)

72.90

(-4.36)

80.13

(+2.86)

ELR+ [116]
93.75

(+0.0)

93.00

(-0.75)

94.73

(+0.98)

92.05

(+0.0)

91.11

(-0.94)

92.79

(+0.74)

86.94

(+0.0)

83.73

(-3.21)

88.21

(+1.27)

DivideMix [102]
95.64

(+0.0)

95.08

(-0.56)

96.13

(+0.49)

94.02

(+0.0)

93.50

(-0.53)

94.83

(+0.80)

91.27

(+0.0)

88.69

(-2.58)

92.42

(+1.14)

UNICON [85]
91.95

(+0.0)

91.27

(-0.68)

94.98

(+3.02)

93.59

(+0.0)

92.38

(-1.22)

95.05

(+0.09)

91.44

(+0.0)

89.38

(-2.06)

93.12

(+1.68)

C
IF

A
R

-1
00

CE
64.35

(+0.0)

68.21

(+3.86)

70.14

(+5.79)

39.43

(+0.0)

56.94

(+17.51)

59.31

(+19.88)

15.50

(+0.0)

39.03

(+23.53)

40.42

(+24.91)

VolMinNet [112]
65.11

(+0.0)

64.93

(-0.18)

70.05

(+4.94)

48.77

(+0.0)

53.91

(+5.14)

58.41

(+9.64)

28.64

(+0.0)

37.02

(+8.38)

40.48

(+11.84)

Co-teaching [60]
70.85

(+0.0)

66.93

(-3.93)

72.73

(+1.87)

59.14

(+0.0)

56.42

(-2.72)

61.29

(+2.16)

35.40

(+0.0)

35.97

(+0.57)

38.29

(+2.89)

ELR [116]
72.58

(+0.0)

70.14

(-2.44)

74.23

(+1.66)

64.01

(+0.0)

62.91

(-1.10)

64.43

(+0.42)

38.78

(+0.0)

42.07

(+3.29)

40.07

(+1.29)

ELR+ [116]
74.15

(+0.0)

70.29

(-3.86)

75.45

(+1.30)

65.66

(+0.0)

65.65

(-0.01)

68.74

(+3.08)

50.19

(+0.0)

54.48

(+4.29)

56.53

(+6.34)

DivideMix [102]
76.57

(+0.0)

72.29

(-4.28)

78.63

(+2.06)

72.29

(+0.0)

68.88

(-3.41)

74.39

(+2.10)

62.43

(+0.0)

58.73

(-3.69)

65.41

(+2.98)

UNICON [85]
74.82

(+0.0)

69.84

(-4.98)

79.61

(+4.79)

73.96

(+0.0)

68.64

(-5.32)

75.70

(+1.74)

68.61

(+0.0)

63.22

(-5.39)

69.51

(+0.90)

Real-world Label Noise

CIFAR-10/100N. We further conduct experiment on real-world noisy CIFAR-N in

Table 5.3. Although real-world noise is more challenging than a synthetic one, a similar

trend in synthetic noisy CIFAR has been observed in real-world noisy CIFAR; the

performance gain from Influential Rank is prone to increase with the increase in the
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Table 5.3: Comparison on CIFAR-N with varying levels of real-world label noise.

The averaged test accuracy (%) with LNL methods and their combination with RoG

and Influential Rank. The mean accuracy is computed over three different noise real-

izations.

CIFAR-10N CIFAR-100N

Method
Aggregate (ε ≈ 9%) Random1 (ε ≈ 18%) Worst (ε ≈ 40%) Noisy (ε ≈ 40%)

+ROG

[96]

+Inf. Rank +ROG

[96]

+Inf. Rank +ROG

[96]

+Inf. Rank +ROG

[96]

+Inf. Rank

CE
89.81

(+0.0)

90.19

(+0.38)

91.85

(+2.05)

83.80

(+0.0)

85.10

(+1.30)

90.05

(+6.25)

64.86

(+0.0)

69.61

(+4.76)

83.73

(+18.87)

54.71

(+0.0)

59.64

(+4.93)

62.32

(+7.61)

VolMinNet
88.59

(+0.0)

88.93

(+0.35)

91.61

(+3.02)

85.37

(+0.0)

85.94

(+0.57)

90.42

(+5.05)

72.35

(+0.0)

73.88

(+1.53)

81.51

(+9.16)

54.32

(+0.0)

56.94

(+2.62)

59.55

(+5.23 )

Coteaching
92.79

(+0.0)

91.64

(-1.16)

93.48

(+0.69)

91.59

(+0.0)

90.41

(-1.18)

92.54

(+0.95)

84.30

(+0.0)

83.10

(-1.20)

86.24

(+1.93)

61.07

(+0.0)

58.20

(-2.87)

62.75

(+1.68)

ELR
92.09

(+0.0)

91.66

(-0.43)

93.03

(+0.94)

91.59

(+0.0)

90.97

(-0.62)

92.41

(+0.82)

86.07

(+0.0)

85.48

(-0.60)

87.42

(+1.34)

62.72

(+0.0)

62.56

(-0.16)

64.65

(+1.94)

ELR+
94.36

(+0.0)

93.35

(-1.02)

94.61

(+0.24)

93.60

(+0.0)

92.53

(-1.07)

94.26

(+0.66)

89.74

(+0.0)

88.59

(-1.15)

90.54

(+0.80)

63.20

(+0.0)

63.26

(+0.06)

64.89

(+1.69)

DivideMix
94.99

(+0.0)

94.34

(-0.66)

95.46

(+0.46)

94.90

(+0.0)

94.05

(-0.84)

95.52

(+0.63)

92.24

(+0.0)

90.14

(-2.09)

93.47

(+1.23)

69.29

(+0.0)

65.39

(-3.90)

70.86

(+1.57)

UNICON
90.82

(+0.0)

90.10

(-0.72)

93.90

(+3.08)

91.87

(+0.0)

90.71

(-1.15)

94.22

(+2.35)

92.33

(+0.0)

90.61

(-1.71)

93.96

(+1.63)

68.33

(+0.0)

63.47

(-4.87)

71.04

(+2.70)

noise ratio, while RoG rather decreases test accuracy in many cases.

Webvision. From Table 5.4, when combining Influential Rank with the state-of-the-art

robust approach, DivideMix, it achieves the best performance. The top-1 accuracy of

76.24% of DivideMix is further increased to 77.88%. In addition, it is noteworthy that

our post-processing with the basic method CE shows superior performance to other

complex LNL methods, such as Co-teaching and Iterative-CV.

Clothing1M. In Table 5.5, we compare the classification accuracy of Influential Rank

with various state-of-the-art methods. Post-processing with Influential Rank to the ba-

sic training with CE loss improves the performance with a significant gap, outper-

forming many recent baselines. Also, applying Influential Rank to DivideMix outper-

forms the state-of-the-art methods. It is noteworthy that just increasing the number of

training epochs cannot bring the meaningful improvement (i.e. DivideMix∗ (longer)).
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Table 5.4: Comparison on WebVision with real-world label noise of 20%. The top-

1 top-5 test accuracy. The results are taken from [102] and [116]. ∗ is re-trained in our

experimental setup using the official code for post-training.

Method
WebVision ILSVRC12

Top-1 Top-5 Top-1 Top-5

MentorNet [81] 63.00 81.40 57.80 79.92

Co-teaching [60] 63.58 85.20 61.48 84.70

Iterative-CV [20] 65.24 85.34 61.60 84.98

ELR [116] 76.26 91.26 68.71 87.84

ELR+ [116] 77.78 91.68 70.29 89.76

DivideMix [102] (reported) 77.32 91.64 75.20 90.84

DivideMix [102]∗ (reproduced) 76.24 91.40 73.44 91.60

UNICON [85] 77.60 93.44 75.29 93.72

CE + Influential Rank 72.64 89.20 69.40 90.60

DivideMix∗ + Influential Rank 77.88 91.56 75.28 92.52

While UNICON shows the superior performance, they train much longer hours with

350 epochs. Also, we believe that further performance improvement can be obtained

if Influential Rank is applied for multiple rounds.

5.3.3 Comparison with Small-loss Removal

In this section, we show that Influential Rank can be more effective for post-training

the pre-trained model than using ‘small loss’ tricks, which existing methods rely on.

First, we quantitatively show our overfitting scores are superior to the small-loss

trick for post-training. Specifically, the loss of each example is used instead of the

overfitting scores in Eqs. (5.3) and (5.4) for removing mislabeled examples. Hence,

we design a modified version we call ‘CE + Small-loss’, which excludes high-loss ex-

amples following our proposed post-training pipeline. Table 5.6 compares Influential
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Table 5.5: Comparison with state-of-the-art methods in test accuracy(%) on

Clothing1M Results for baselines are copied from original papers, and ∗ are repro-

duced by the official code.

Method Test Accuracy

Cross-Entropy 69.21

Joint-Optim [158] 72.16

VolMinNet [112] 72.42

Meta-Cleaner [188] 72.50

ELR [116] 72.87

ELR+ [116] 74.81

Meta-Learning [103] 73.47

P-correction [175] 73.49

DivideMix (reported) [102] 74.76

DivideMix∗ (reproduced) [102] 74.23

DivideMix∗ (longer) [102] 74.42

UNICON [85] 74.98

CE + Ours 72.80

DivideMix∗ + Ours 74.90
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Rank with the modified version of robust post-training on CIFAR-10 with synthetic

and real-world label noise. It is observed that the Influential Rank provides a much

larger improvement compared to loss-based removal.

Next, Figure 5.4 compares the distribution of the normalized loss and OSM of

training samples on the pretrained model with DivideMix. Since training losses are

distributed close to 0, it is difficult to classify clean and mislabeled samples with losses

after training is done. However, we argue that OSM can provide a new perspective to

identify ‘confusing’ examples with incorrect labels.

Table 5.6: Comparison with post-training using the small-loss trick on CIFAR-10

with synthetic and real-world noise. We report the best test accuracy (%).

Method CIFAR-10 (Symm-70) CIFAR-10N (Worst)

CE 29.91 63.94

CE + Small-loss 53.43 76.16

CE + Inf. Rank 75.98 84.27
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(b) OSM.

Figure 5.4: Loss and OSM distribution for all noisy training examples after training

CIFAR-10 with symmetric noise of 40%.
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Table 5.7: Mean test accuracy of training with longer epochs (‘+ Longer’) on

CIFAR-10 with synthetic and real-world label noise.

CIFAR-10 (Symm-70) CIFAR-10N (Worst)

Original +Longer +Inf.Rank Original +Longer +Inf.Rank

CE 28.42 29.60 70.59 64.86 66.92 83.73

VolMinNet [112] 33.69 35.09 66.07 72.35 72.81 81.51

Coteaching [60] 52.63 53.51 60.95 84.30 84.83 86.24

ELR [116] 77.26 77.83 80.13 86.07 86.18 87.42

ELR+ [116] 86.94 87.59 88.21 89.74 00.00 90.54

DivideMix [102] 91.27 92.00 92.42 92.24 92.46 93.47

UNICON [85] 91.44 92.28 93.12 92.33 93.18 93.96

5.3.4 Training with Longer Epochs

It is of interest to see whether or not the performance improvement comes from addi-

tional training epochs used for post-training, though it is reasonably shorter than the

total number of epochs used for pre-training. Table 5.7 shows the performance of the

existing state-of-the-art robust methods when training the model with longer epochs,

where the number of post-training epochs (i.e., 40) is added to the original epochs (see

the columns marked with ‘+Longer’). In general, the performance of the robust meth-

ods remains similarly even with longer training epochs. Therefore, our post-training

approach is more desirable than simply increasing the training epochs.

5.3.5 Validity of OSD.

To show the validity of OSD, we investigate the distribution of the ID(xi, xvt ; θ̂) on

real-world images. We use 1,000 ‘dog’ and ‘fish’ images from ImageNet [141], where

20% labels are randomly flipped. After training the model on this noisy dataset, we

calculate OSD using 80 clean validation samples. The OSD distribution is illustrated

in Figure 5.5 The horizontal axis is the index of the training data, and the vertical axis is
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Figure 5.5: OSD distribution of training samples on validation samples. Shaded

areas show the variance of IDs of each training sample. The difference in variance

between the clean and noisy sets is clearly distinguished.

OSD of a training sample xi on a validation sample xvt , i.e., ID(xi, xvt ; θ̂). We measure

OSD on 40 validation samples for each training sample. As illustrated in Figure 5.5,

the variation of the influence of a noisy training sample is much larger than a clean

training sample. It verifies our intuition that the mislabeled samples exert much more

inconsistent influences on validation data than the clean samples do. Therefore, the

variance of influences, σk(ID(xi, xv; θ̂)) in Eq. (5.4) can be used to find the mislabeled

samples. This distribution appears consistently in other categories.

5.3.6 Effects of hyperparameter.

To analyze the effects of the hyperparameter γ, we experiment with different values

of γ on CIFAR-10 trained with DivideMix. Choosing a high γ increases the precision

of the detected noisy label since it means that a training point exerts inconsistent in-

fluences to many classes (Figure 5.6). On the other hand, to meet the high standard

(e.g., unanimous consensus among all classes), it cannot but select less noisy samples,

which results in the ratio of the remaining noisy labels to be high. Therefore, choosing
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Figure 5.6: Effects of γ. Influential Rank is applied to the model trained on CIFAR-10

with DivideMix.

γ is a tradeoff between the more accurate detection and the faster cleansing. Therefore,

in our experiments, the gamma is set to 5 in order to fix the data faster when the noise

ratio is more than 40%, and set to 8 in the other cases.

Furthermore, setting γ = 0 is equivalent to using only OSM in the algorithm.

Hence, it is verified that OSD helps to increase the precision of noisy label detection.

Therefore, choosing γ is a tradeoff between the more accurate detection and the faster
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Figure 5.7: Effect of multi-round post-training on CIFAR-10 with synthetic la-

bel noise and real-world. (Left: Test accuracy over rounds by Influential Rank over

rounds, Right: Noise ratio of the refined data.)

cleansing.

5.3.7 Effects of Multi-round Post-training

To verify the potential benefit of using multi-round post-training, we set the number of

total rounds to 4, and post-train the network, which is pre-trained using the plain CE.

Figure 5.7 depicts the effect of the multi-round post-training on CIFAR-10 and CIFAR-

10N, where the round 0 means the model before any post-training. Overall, the noise

ratio of the refined data by Influential Rank reduces gradually as the round goes up. In
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CIFAR-10 of Figure 5.7(a), the test accuracy is largely improved to 92.83%, 86.49%,

and 78.34% from the initial accuracy of 80.71%, 50.37%, 29.91%, respectively. In

addition, the initial noise ratios of 20%, 50%, and 70% become 1.12%, 21.43%, and

48.81% at the final round of post-training. Consistently, this improvement trend is ex-

actly the same in CIFAR-10N with real-world noise in Figure 5.7(b). Particularly, the

improvement in noise ratio and test error becomes larger when data is corrupted with

heavier noise. While performance increase can be expected with multi-rounds, we dis-

cover that setting only 2-3 rounds can be sufficiently beneficial in terms of increasing

computational burdens.
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Figure 5.8: OSD distribution for all noisy training examples after training CIFAR-

10 with symmetric noise of 50%.

5.3.8 Distribution of OSD

To find noisy candidates, we fit a two-modality Gaussian mixture model (GMM) to

Ok
D(xi; θ̂) for k-th class. To justify if GMM can detect noisy candidates, we plot the

distribution of training samples’ Ok
D(xi; θ̂) (i.e., 6th class) in Figure 5.8. We calculate
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OSD from two models trained on CIFAR-10 (Symm-50) with CE and DivideMix,

respectively. As shown in Figure 5.8, OSD of clean and noisy samples is bi-modal and

separable. Thus, we fit the two-modality GMM into the OSD of all training examples

to choose noisy candidates in the proposed algorithm. This observation is consistent

even when the model is trained with the existing robust methods.

5.3.9 Noisy Label Detection with Influential Rank

We report the noise ratio change after applying Influential Rank (2 rounds) on CIFAR

and CIFAR-N in Table 5.8 and 5.9. As can be seen from the tables, the original noise

ratio has been largely alleviated after applying Influential Rank. As can be seen from

Section 5.3.7, applying Influential Rank for more rounds can further alleviate the noise

ratio in datasets.

Table 5.8: Averaged noise ratio (%) after Influential Rank (2 rounds). (CIFAR

with symmetric noise)

CIFAR-10 CIFAR-100

Symm-20 Symm-50 Symm-70 Symm-20 Symm-50 Symm-70

No Post-processing 20 50 70 20 50 70

CE 8.83 37.01 62.71 12.15 45.11 64.67

VolMinNet [112] 4.42 36.68 61.02 5.53 31.46 55.15

Co-teaching [60] 3.99 35.26 64.95 6.63 31.81 59.40

ELR [116] 5.51 39.99 63.73 6.52 30.34 60.48

DivideMix [102] 3.84 22.79 42.11 7.18 26.53 49.81

UNICON [85] 4.34 29.36 54.72 5.26 30.43 55.31

Furthermore, we present the noisy label detection precision in Table 5.10 and 5.11.

We can observe that mislabeled samples are detected with high precision on both sym-

metric and real-world noisy data.
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Table 5.9: Averaged noise ratio (%) after Influential Rank (2 rounds). (CIFAR-N)

CIFAR-10N CIFAR-100N

Aggregate Random1 Worst Noisy

No Post-processing 9 18 40 40

CE 5.30 11.07 29.79 34.20

VolMinNet [112] 2.48 4.54 38.61 31.24

Co-teaching [60] 2.32 4.33 26.55 28.56

ELR [116] 1.05 3.26 26.51 27.67

DivideMix [102] 1.11 2.98 18.32 27.28

UNICON [85] 1.55 6.52 23.63 25.23

Table 5.10: Averaged precision (%) of noise detection after Influential Rank (2

rounds).(CIFAR with symmetric noise)

CIFAR-10 CIFAR-100

Symm-20 Symm-50 Symm-70 Symm-20 Symm-50 Symm-70

CE 82.84 92.23 93.36 62.38 73.35 86.34

VolMinNet [112] 91.56 99.79 94.01 94.80 98.63 97.13

Co-teaching [60] 96.41 99.90 88.82 94.37 98.52 92.42

ELR [116] 96.37 99.55 99.58 83.14 92.48 92.76

DivideMix [102] 93.91 96.97 98.69 74.56 91.95 96.06

UNICON [85] 86.88 97.96 99.44 85.35 97.47 97.64

5.3.10 Experimental results after one-round

In this section, we present the results after one round of Influential Rank on CIFAR

in Table 5.12, and on CIFAR-N in Table 5.13. We can observe that applying only one

round of Influential Rank can considerably improve the classification accuracy. Thus,

when time budget is limited, applying Influential Rank for once can be sufficient.
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Table 5.11: Averaged precision (%) of noise detection after Influential Rank (2

rounds). (CIFAR-N)

CIFAR-10N CIFAR-100N

Aggregate Random1 Worst Noisy

CE 59.48 85.07 90.19 74.32

VolMinNet [112] 61.35 74.33 98.96 89.38

Co-teaching [60] 64.46 88.49 98.89 89.71

ELR [116] 65.31 91.48 98.92 89.29

DivideMix [102] 70.19 90.68 95.51 86.55

UNICON [85] 54.77 80.11 96.51 85.54

Table 5.12: Comparison on CIFAR with varying levels of label noises (1 round).

The averaged test accuracy (%) with LNL methods and their combination with Influ-

ential Rank. The mean accuracy is computed over three different noise realizations.

Method

CIFAR-10 CIFAR-100

Symm-20 Symm-50 Symm-70 Symm-20 Symm-50 Symm-70

Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank

CE
80.46

(+0.0)

87.46

(+7.00)

48.84

(+0.0)

78.14

(+29.31)

28.42

(+0.0)

65.33

(+36.91)

64.35

(+0.0)

67.20

(+2.85)

39.43

(+0.0)

47.36

(+7.93)

15.50

(+0.0)

25.26

(+9.76)

VolMinNet [112]
88.26

(+0.0)

90.90

(+2.64)

71.13

(+0.0)

82.05

(+10.92)

33.69

(+0.0)

63.50

(+29.82)

65.11

(+0.0)

68.48

(+3.37)

48.77

(+0.0)

56.15

(+7.38)

28.64

(+0.0)

36.86

(+8.22)

Co-teaching [60]
91.85

(+0.0)

92.77

(+0.92)

85.44

(+0.0)

87.04

(+1.61)

52.63

(+0.0)

56.92

(+4.30)

70.85

(+0.0)

71.42

(+0.56)

59.14

(+0.0)

61.01

(+1.87)

35.78

(+0.0)

37.56

(+2.16)

ELR [116]
91.88

(+0.0)

92.52

(+0.64)

88.48

(+0.0)

89.13

(+0.65)

77.26

(+0.0)

79.20

(+1.94)

72.58

(+0.0)

73.41

(+0.83)

64.01

(+0.0)

64.36

(+0.36)

38.78

(+0.0)

38.89

(+0.11)

ELR+ [116]
93.75

(+0.0)

94.07

(+0.32)

92.05

(+0.0)

92.40

(+0.35)

86.94

(+0.0)

87.56

(+0.62)

74.15

(+0.0)

74.93

(+0.78)

65.66

(+0.0)

68.52

(+2.86)

50.19

(+0.0)

52.55

(+2.36)

DivideMix [102]
95.64

(+0.0)

95.96

(+0.32)

94.02

(+0.0)

94.61

(+0.59)

91.27

(+0.0)

93.28

(+2.01)

76.57

(+0.0)

77.83

(+1.25)

72.29

(+0.0)

73.49

(+1.20)

62.43

(+0.0)

64.43

(+2.00)

UNICON [85]
91.95

(+0.0)

94.52

(+2.56)

93.59

(+0.0)

94.75

(+1.16)

91.44

(+0.0)

92.84

(+1.40)

74.82

(+0.0)

79.22

(+4.40)

73.96

(+0.0)

75.36

(+1.40)

68.61

(+0.0)

69.63

(+1.02)

5.3.11 Detector for Video Data Cleaning

In this section, we show that the proposed overfitting score can be expanded to detect-

ing mislabeled videos. Data cleaning for real-world video data is gaining significant

attention due to the growth in the popularity of video-based tasks [86, 126, 170]. How-
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Table 5.13: Comparison on CIFAR-N with varying levels of real-world noises (1

round). The averaged test accuracy (%) with robust methods and their combination

with RoG and Influential Rank. The mean accuracy is computed over three different

noise realizations.

Method

CIFAR-10N CIFAR-100N

Aggre Rand1 Worst Noisy

Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank Original +Inf. Rank

CE
89.81

(+0.0)

90.79

(+0.98)

83.80

(+0.0)

87.98

(+4.18)

64.86

(+0.0)

78.56

(+13.70)

54.71

(+0.0)

59.77

(+5.06)

VolMinNet [112]
88.59

(+0.0)

90.72

(+2.14)

85.37

(+0.0)

88.95

(+3.58)

72.35

(+0.0)

78.97

(+6.63)

54.32

(+0.0)

56.94

(+4.36)

Co-teaching [60]
92.79

(+0.0)

93.28

(+0.49)

91.59

(+0.0)

92.13

(+0.54)

84.30

(+0.0)

86.03

(+1.72)

61.07

(+0.0)

62.36

(+1.29)

ELR [116]
92.09

(+0.0)

92.78

(+0.69)

91.59

(+0.0)

92.09

(+0.50)

86.07

(+0.0)

87.21

(+1.14)

62.72

(+0.0)

64.02

(+1.31)

ELR+ [116]
94.36

(+0.0)

94.40

(+0.04)

93.60

(+0.0)

93.85

(+0.25)

89.74

(+0.0)

90.39

(+0.65)

63.20

(+0.0)

64.28

(+1.07)

DivideMix [102]
94.99

(+0.0)

95.35

(+0.35)

94.90

(+0.0)

95.37

(+0.47)

92.24

(+0.0)

93.24

(+1.00)

69.29

(+0.0)

70.67

(+1.38)

UNICON [85]
90.82

(+0.0)

93.49

(+2.67)

91.87

(+0.0)

93.96

(+2.09)

92.33

(+0.0)

93.79

(+1.46)

68.33

(+0.0)

70.68

(+2.35)

ever, detecting video clips with incorrect labels are time-consuming for human anno-

tators more than exploring images because it requires to play and watch the video clip

one by one; thus, automatic cleaning of video data can help reduce extreme labeling

costs. Therefore, we extend our work to video action recognition for data cleaning.

A few seconds of a video consists of a sequence of frames, ranging from tens

to hundreds of consecutive images. Therefore, in general, when predicting the action

class, frames are sampled and predicted for each frame. Then, the prediction scores

of sampled frames are averaged and the action with the highest prediction score is

determined as the final action class.

Consider a video action recognition task with n training videos (v1, y1), · · · , (vn, yn),

where vi is the ith video and yi is its label. Let mi be the number of sampled frames

in the ith video, and xij be the jth frame in the ith video. Then, the empirical risk

for the video dataset is given by R(θ) = 1
n

∑n
i=1(

1
mi

∑mi
j=1 ℓ(yi, f(xij , θ))), where
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ℓ(xij , θ) is the loss for a frame xij . Now, when we denote the loss of a video vi

as ℓ(yi, f(vi, θ)) = 1
mi

∑mi
j=1 ℓ(yi, f(xij , θ)), the empirical risk can be rewritten as

R(θ) = 1
n

∑n
i=1 ℓ(yi, f(vi, θ)). Given the empirical risk R(θ) = 1

n

∑n
i=1 ℓ(yi, f(vi, θ)),

the fully optimized (overfitted) model parameters θ̂ minimizes the given empirical risk

R(θ) as θ̂
def
== argminθR(θ). Then, a new parameter when removing the video v is

derived as θ̂v,ω
def
== argminθR(θ)+ωℓ(y, f(v, θ)). Then, we can use equation (5.1) by

definition. Therefore, a video in the video action recognition task can be easily mapped

to an image in the image classification problem, and we can simply use the equations

derived in this thesis for the video dataset.

In this thesis, we used Temporal Segment Networks (TSN) [164], which is one of

the representative video action recognition models, on HMDB-51 data [93] for action

recognition. We train the networks based on public code by Xiong 2, without changing

the given hyperparameter settings, except the addition of a hidden layer. We train the

network for 300 epochs. We set the initial learning rate to 0.001 and drop it by a factor

of 0.1 after 30 and 200 epochs. To deal with both spatial information and long-range

temporal structure, TSN adopts two-stream networks that each network processes an

RGB image and the stacked optical flows [71], respectively. Therefore, we compute

O(vi; θ̂) for both networks and analyze the commonly influential video clips from

both networks. Since each video clip has multiple scenes, the overfitting score of the

clip is computed by averaging the score for randomly sampled scenes in the clip. Then,

we filter out mislabeled video clips based on the proposed OSD. We present examples

of the detected noisy-label videos in Figure 5.10. Figure 5.10 shows some examples of

detected mislabeled video clips by Influential Rank. While HMDB-51 has been known

to be clean, surprisingly, we observe that some videos are incorrectly labeled and do

not contain any scene corresponding to the label.

2https://github.com/yjxiong/tsn-pytorch
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5.3.12 Regularizer for Performance Boosting

As another use case, CMO can be considered as a regularizer to avoid overfitting,

when there is no apparent label noise in training data. Recently, many regularization

techniques have been proposed to reduce the generalization gap of DNNs [151, 183].

Our method post-processes the overfitted decision boundary by squeezing out the neg-

ative impact of highly influential examples. Thus, it has the potential to be used as

regularization to smooth decision boundaries.

As a case study, we conduct an experiment on clean CIFAR-10 using the same

experimental configuration. Table 5.14 and Figure 5.9 shows that Influential Rank can

also improve the model trained on clean dataset. We conjecture that this is because In-

fluential Rank removes spurious or isolated data points leading the decision boundary

astray, and get a well-generalized decision boundary.

(a) (b) W. Influential Rank.

Figure 5.9: t-SNE visualization for the learned representation of the trained mod-

els.
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Table 5.14: Result of Influential Rank on clean CIFAR-10.

# of training Accuracy

Original 50,000 94.2

+Inf. Rank 48,989 96.6

5.4 Summary

We have proposed a post-training method named Influential Rank, which sways the

overfitted decision boundary to be correct, in the presence of noisy labels. Unlike

the existing methods, Influential Rank starts from an overfitted model and makes the

model more robust against noisy labels progressively. We have conducted extensive ex-

periments on real-world and synthetic noisy benchmark datasets. The results demon-

strate that Influential Rank consistently provides performance gain when combined

with multiple state-of-the-art robust learning methods. In addition, we have shown

that Influential Rank performs as a detector for video data cleaning or a regularizer to

smooth the decision boundary.
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(a) Mislabeled as ‘Run’. (b) labeled as ‘Jump’.

(c) labeled as ‘Dive’. (d) labeled as ‘Hit’.

(e) labeled as ‘Dive’. (Jump?) (f) labeled as ‘Punch’. (Kick?)

(g) labeled as ‘Punch’. (Hit? Sword?) (h) labeled as ‘Kick’. (Run?)

(i) labeled as ‘Kick’. (Sword?) (j) labeled as ‘Kick’. (Ride bike?)

(k) labeled as ‘Kick’. (Turn?) (l) labeled as ‘Sword’. (Shoot bow?)

Figure 5.10: Training examples with the highest O(·) (HMDB-51). Some videos

are incorrectly labeled and do not contain any scene corresponding to the label. The

other videos are partly noisy and include scenes corresponding to other labels that

seem more suitable. The other possible labels are shown in parentheses. (Best viewed

magnified on screen.)
84



Chapter 6

RoCOCO: Robustness Benchmark of MS-COCO to Stress-

test Image-Text Matching Models

6.1 Overview

Understanding the visual world with language is a crucial aspect of artificial intelli-

gence, which has inspired the research of image-text matching. Recent advancements

in visual semantic embedding methods [104, 29, 19] and large-scale vision-language

pretraining models [137, 187, 100] have significantly improved image-text matching

accuracy (i.e., recall@1) on the popular MS-COCO [114] benchmark dataset. How-

ever, it is important to question the reliability of these results and their performance in

real-world scenarios. Assessing the robustness of trained models in practical applica-

tions is crucial, considering their significant impact on various individuals.

Users today actively generate content through platforms like blogs, Instagram, and

YouTube, creating vast amounts of data in platform databases, where people can freely

search for that content. However, this also opens the door for malicious users to ma-

nipulate search results, leading them away from users’ intended content. For example,

as depicted in Figure 6.1 (a), it is possible to upload images with inserting malicious

images, such as pornography or hateful content, into legitimate images. Similarly, by
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modifying the semantic details of texts, poisoned text can be prioritized in search re-

sults instead of the original text (Figure 6.1 (b)). In scenarios like defense industry

applications, the use of such models can pose a significant risk, as innocent civilians

may be mistakenly identified as threats.

Based on this motivation, we propose a Robustness benchmark of MS-COCO

(RoCOCO) that can stress-test the model by attacking the gallery set. To generate

fooling data, we employ two principles. Firstly, we make perceptible changes by al-

tering the meaning of the text and mixing the images that humans can easily detect.

We expect robust models to resist such explicit modifications, as they should pos-

sess a comprehensive understanding of the overall semantic meaning and visual ele-

ments. Secondly, to create challenging text and images, we introduce minimal changes

in the embedding outputs. This idea is inspired by the common practice in which

models measure similarity between the embedding outputs of image and text en-

coders [137, 19, 100]. By applying the principles, we construct four text datasets and

two image datasets, on which we reevaluate various state-of-the-art methods. Surpris-

ingly, despite the simplicity of the attack, many state-of-the-art models show consider-

able performance degradation on the proposed benchmarks (e.g., 81.9% → 64.5% in

BLIP [100], 66.1%→ 37.5% in VSE∞ [19] for Image-to-Text retrieval). These find-

ings highlight the tendency of current image-text retrieval models to overlook subtle

details and show more attention to specific words or image parts.

Our key contributions can be summarized as follows:

• We provide various robustness-evaluation benchmarks and discover the significant

performance drops across all models regardless of the extent of large-scale pre-

training.

• We study vulnerabilities of image-text retrieval models and observe that these mod-

els often tend to focus on specific words or image components rather than compre-

hending the overall context.

• To address the vulnerability, we propose Semantic Contrastive Loss that can learn
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Figure 6.1: Attack Scenario. By inserting malicious images and text into the searching

pool (gallery), an attacker can induce the model to extract undesired images and text

contrary to the user’s intentions.

semantic details.

6.2 Robustness-Evaluation Benchmark

6.3 Robustness-Evaluation Benchmark

6.3.1 Observations motivating the proposed approach

Our goal is to quantitatively evaluate how well ITM models understand both text and

image. Specifically, we measure the robustness of a ITM model through our proposed

benchmark, which assesses how robustly the model retrieves the ground-truth im-

age/caption instead of our newly generated adversarial image/caption.

Based on the examples observed from the BLIP [100] model, we have developed

adversarial images and captions that are capable of assessing the model’s vulnerability.

Figure 6.2 illustrates our observation. Firstly, we generate an adversarial image with

noticeable changes by simply inserting an unrelated image into an original image (Fig-

ure 6.2 (a)). Surprisingly, even though the adversarial image is easily discernible by

humans, we observe that the ITM model often favors a mixture of unintended images

87



Figure 6.2: Illustration of an adversarial image and caption tested with the state-

of-the-art BLIP [100]. When we add a new image created by inserting an unrelated

image to the original one, this new image is ranked as top 1 (Text-to-image). Likewise,

when we add a new caption with only one word changed from “umbrella” to “gun”,

this new caption is retrieved as top 1 (Image-to-text).

rather than the desired (ground-truth) ones. As it is easy for anyone to download im-

ages from the internet and re-upload images after manipulation, this can be a common

and feasible attack scenario.

Likewise, we create an adversarial caption by replacing one word in the caption to

alter the meaning of the sentence. For example, replacing ”umbrella” with ”gun” as in

Figure 6.2 (b). Again, we discover that the model often tends to prioritize retrieving the

adversarial captions over the ground-truth captions. Therefore, to assess the model’s

ability for understanding the overall details between the image and text, we introduce

adversarial captions to make the image-to-text task more challenging.

6.3.2 Adversarial Image Generation

To generate adversarial images containing undesired content, we employ two tech-

niques for image insertion. One is the Mixup-style approach [182], where two images

are blended together in different proportion (Mix). The other method inserts a patch

of an undesired (fake) image onto the original image, as in Cutmix [178] (Patch). The

undesired (fake) image is randomly selected from the COCO test set. When inserting

a fake image xf into an original image xo, we use two mixing ratios λ and M for Mix
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Figure 6.3: Example of adversarial images with different λ.

and Patch, respectively, as follows:

Mix : x̃ = λxo + (1− λ)xf ,

Patch : x̃ = M⊙ xo + (1−M)⊙ xf ,

where M ∈ {0, 1}W×H denotes a binary mask indicating a randomly chosen location

of the fake patch, where W is the width and H is the height of the image. In Patch,

λ is calculated by λ =
∑

i,j Mi,j

W×H . That means that the portion of 1 in M is adjusted

according to λ value. Figure 6.3 shows the examples of created adversarial images.

Creating these adversarial images and adding them to the gallery set provides an easy

yet effective method to measure the robustness of the model.

6.3.3 Adversarial Caption Generation

Source Word Selection via Embedding-Influence

We create adversarial captions by substituting one word in the original caption with an

unrelated word. To introduce discernable changes in the meaning of the caption, we

focus nouns for replacement. For effective attacks, we choose words that have mini-

mal impact on the embedding outputs. This idea is inspired by the common practice
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in which models measure similarity between the embedding outputs of image and text

encoders trained on image-text pairs [137, 19, 100]. We hypothesize that even with

considerable changes in the semantic meaning, the model would be confused with the

original caption if the embedding outputs change little. We will empirically demon-

strate this claim in our experiments.

To estimate the influence of a word, we propose embedding-influence (EI) score.

EI sore measures the change in embedding when the word is removed from the caption.

Given a text encoder fT , and a caption C = {cm | m = 1, · · · ,M}, where M is the

number of words in C, the embedding-influence (EI) score of a word, cs, is defined by

EI(cs) = 1− < fT (C), fT (C \ cs) >
∥ fT (C) ∥∥ fT (C \ cs) ∥

, (6.1)

where <,> denotes the dot(inner) product operation. A low EI score means that the

word has little influence on the embedding output of the caption. Given its limited

influence on the embeddings compared to other words, substituting this word with a

different word is expected to have low impact on the overall embeddings.

Using four representative models (i.e., VSRN [104], CLIP [137], VSE∞ [19],

BLIP [100]), we measure the EI score of each word to assess its influence. We select

the word with the least influence across the models. If the word is chosen by the major-

ity of models, it is replaced by a target word (see Section 6.3.3). If there are multiple

options, we randomly choose one. Interestingly, the words with the lowest embedding

influence exhibit little variation across the models. We will provide further details in

Section 6.4.3.

Target Word Selection for Diverse Adversarial Caption Dataset

To generate confusing captions covering various scenarios, we need to determine a

target word replacing the source word chosen in Section 6.3.3. To this end, we employ

four different policies. First, we use concept groups from GRIT benchmark [58], which

categorizes nouns from popular datasets including COCO into 24 concept groups such
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Figure 6.4: Example of generated captions. (Left) Original COCO image and cap-

tions. (Right) Our generated captions, Rand-voca, Same-concept, Diff-concept, and

Danger from top to bottom. The model is to retrieve the most appropriate caption from

a pool of both original and newly generated captions. Our assumption is that the robust

model should be able to retrieve the original captions well without being confused by

new captions with different meanings.

as food, people, and places. We add 7 concept groups for words not covered by GRIT.

We include more details in Appendix. We then create Same-concept and Diff-concept

captions by replacing words based on concept groups For example, Same-concept

replaces “umbrella” with a word in the same concept (i.e., tools), which can be “rope”

or “boxes”. Diff-concept replaces “umbrella” with a word selected randomly from

different concepts, such as “pizza” from “food” concept, or “monkey” from “animal”

concept.

Next, we employ the BERT [37] vocabulary (Rand-voca) to stress-test with a wide

range of words. We randomly select words consisting of only English letters, excluding

those in other languages or special characters. Additionally, we create a special case

(Danger) by using words related to public security. This allows us to evaluate the

models’ ability to comprehend critical situations that could potentially pose a threat to

human safety. For instance, we replace “umbrella” with “gun” or “weapon”. Examples
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of the generated captions can be seen in Figure 6.4.

6.4 Experiments and Results

6.4.1 Experimental setting

In this section, we evaluate the existing image-text matching (ITM) models on our new

dataset, RoCOCO. For Image-to-Text retrieval, we expand MS-COCO test data by

adding 25,000 newly generated adversarial captions using our approach to the existing

25,000 original captions, creating a gallery of 50,000 captions. We then retrieve text

from this expanded gallery. Conversely, for Text-to-Image retrieval, we include 5,000

newly generated adversarial images to the 5,000 original images, resulting in an image

gallery of 10,000 images.

Evaluation Metrics Recall@k, especially Recall@1 (R@1), is the most popular

metric for evaluating the existing ITM methods. In this paper, we propose two metrics,

Drop Rate and Incorrect Recall@1 (IR@1) in addition to R@1. Drop rate measures the

relative decrease in R@1 compared to the evaluation on the original COCO 5K testset.

We calculate drop rate as (R@1− RNew@1)/R@1. Incorrect Recall@1 calculates the

percentage of newly added adversarial captions/images that are retrieved as top 1. This

can quantitatively estimate the vulnerability of a model.

Models for Evaluation We compare 14 state-of-the-art Vision-Language (VL)

models, whose trained weights are available to the public. They can be categorized into

two groups; large-scale vision-language(VL) pre-training and visual semantic embed-

ding groups. Large-scale VL pre-training group includes CLIP with ViT-B/32, ViT-

B/16 and ViT/L14 backbones [137], fine-tuned ALBEF [101], and zero-shot and fine-

tuned BLIP with ViT-B and ViT-L backbones [100]. While ‘zero-shot’ and ‘fine-tuned’

models are both pre-trained on large-scale datasets, ‘zero-shot’ refers to not being fine-

tuned with COCO train set. Visual semantic embedding group includes models using

region features based on bottom-up attention [5] and SCAN [97]: VSRN [104], SAF,
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Table 6.1: Image-to-Text retrieval results. Models are re-evaluated on four new

benchmark datasets: Rand-voca, Same-concept, Diff-concept, and Danger. Recall@1

(R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. We can see consistent

degradation across all vision-language models regardless of using pre-training datasets

and different methods. The biggest performance drops are marked in bold.

COCO 5K Rand-voca Same-concept Diff-concept Danger

R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models

CLIP ViT-B/32 (zero-shot) [137] 50.10 36.44 27.27 34.63 35.77 28.60 36.64 37.48 25.18 32.27 42.18 15.81 19.69

CLIP ViT-B/16 (zero-shot) [137] 52.44 38.18 27.19 34.87 38.36 26.85 34.40 40.23 23.28 30.57 44.67 14.81 18.19

CLIP ViT-L/14 (zero-shot) [137] 56.04 39.90 28.81 33.95 40.90 27.02 34.86 42.66 23.88 24.07 46.48 17.06 30.16

ALBEF [101] 77.58 60.13 22.49 26.07 60.55 21.95 25.09 61.84 20.29 23.75 63.37 18.32 20.43

BLIP ViT-B (zero-shot) [100] 70.54 35.28 49.98 54.58 47.77 32.28 37.45 45.58 35.39 40.89 42.39 39.90 43.99

BLIP ViT-B [100] 81.90 64.50 21.25 23.72 68.74 16.07 18.74 69.20 15.51 17.36 67.81 17.21 18.92

BLIP ViT-L (zero-shot) [100] 73.66 45.96 37.60 40.49 55.38 24.82 28.27 55.69 24.39 27.56 55.93 24.07 26.54

BLIP ViT-L [100] 82.36 66.84 18.85 21.18 71.16 13.60 16.02 72.70 11.72 13.86 72.37 12.13 13.73

Visual Semantic Embedding models

VSRN [104] 52.66 42.22 19.82 22.14 44.56 15.38 18.06 46.12 12.41 14.47 46.78 11.17 12.77

SAF [39] 55.46 39.30 29.14 31.54 42.04 24.20 28.35 45.00 18.85 22.24 42.77 22.88 26.35

SGR [39] 57.22 41.69 27.14 30.43 43.61 23.79 28.02 46.56 18.63 22.07 44.90 21.53 24.72

VSE∞ (BUTD region) [19] 58.02 31.71 45.34 47.99 39.79 31.42 35.12 36.91 36.38 39.86 37.66 35.09 37.38

VSE∞ (BUTD grid) [19] 59.40 32.24 45.72 48.75 41.12 30.77 33.58 38.71 34.84 38.40 39.71 33.15 35.32

VSE∞ (WSL grid) [19] 66.06 37.54 43.17 46.07 48.76 26.19 29.59 44.86 32.09 35.06 45.39 31.29 33.07

SGR [39], and VSE∞ [19].

6.4.2 Re-evaluation on RoCOCO

Image-to-Text Retrieval

Table 6.1 reports the image-to-text retrieval results on our new datasets. First, we can

observe the highest performance degradation on Rand-voca. This can be attributed to

the fact that Rand-voca contains numerous unexpected words that are not commonly

appear together in captions. In contrast, Same-concept and Diff-concept datasets con-

sist of words belonging to the same COCO dataset. This observation suggests that

models are vulnerable to sentences comprising unfamiliar word combinations that

rarely appear in the trained captions.

Furthermore, we can observe consistent degradation across all vision-language

models, regardless of methods or the scale of pre-training datasets (e.g., 400M im-
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Figure 6.5: Examples of incorrectly retrieved texts with BLIP from Same-concept

(Image-to-Text). suggest that the model is overlooking the semantic details of the

sentence.

Figure 6.6: Examples of incorrectly retrieved images with BLIP when λ = 0.8

(Text-to-Image). The first two examples are from the Patch, while the last one is from

the Mix. In the Patch examples, some salient parts are obscured, while in the Mix

example, unrelated image of a ‘plane’ is visible.

age pairs in CLIP [137], 129M in BLIP [100], 14M in ALBEF [101]). We assume that

commonly used image-text matching loss might be vulnerable to a single-word change

in the caption because the loss is used to minimize the distance between image-text

pairs for learning multimodal representations. In addition, Figure 6.5 presents quali-

tative examples evaluated with BLIP (ViT-B) from Same-concept dataset. Our results

highlight the importance of developing a robust training strategy for ITM model that

can better capture word-level semantic meaning and align it with images.
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Table 6.2: Text-to-Image retrieval. Models are evaluated with our new benchmark:

Mix and Patch with different λ. Recall@1 (R@1)(↑), drop rate(↓), False Recall@1

(FR@1)(↓) are shown. The results are averaged over image generations with three

different random seeds. We can see consistent degradation across all vision-language

models.

COCO 5K Mix (λ = 0.9) Mix (λ = 0.8) Patch (λ = 0.9) Patch (λ = 0.8)

R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models

CLIP ViT-B/32 (zero-shot) [137] 30.14 20.29 32.68 33.55 22.79 24.39 26.03 22.49 25.38 28.63 24.15 19.87 23.69

CLIP ViT-B/16 (zero-shot) [137] 33.03 20.05 39.30 39.00 23.57 28.64 29.88 22.58 31.64 35.18 24.70 25.22 29.41

CLIP ViT-L/14 (zero-shot) [137] 36.14 25.49 29.47 28.99 27.75 23.22 24.29 27.56 23.74 27.64 29.09 19.51 23.97

ALBEF [101] 60.67 44.13 27.27 26.60 48.02 20.85 21.11 48.86 19.47 19.58 51.80 14.62 15.30

BLIP ViT-B (zero-shot) [100] 56.36 39.03 30.75 31.54 43.94 22.04 22.28 41.96 25.55 27.56 45.05 20.07 22.79

BLIP ViT-B [100] 64.31 40.71 36.70 39.93 46.97 26.96 30.84 48.40 24.74 42.57 52.61 18.19 21.45

BLIP ViT-L (zero-shot) [100] 58.18 44.29 23.87 25.13 47.61 18.17 19.96 46.79 19.58 21.07 49.50 14.93 16.50

BLIP ViT-L [100] 65.06 41.87 35.64 42.45 48.92 24.81 33.91 48.55 25.38 29.17 49.50 23.92 22.10

Visual Semantic Embedding models

VSRN [104] 40.34 27.04 32.97 39.05 31.36 22.26 28.87 30.08 25.43 31.11 32.50 19.43 24.80

SAF [39] 40.11 30.90 22.96 27.84 33.37 16.80 22.87 32.50 18.97 23.78 34.03 15.16 19.69

SGR [39] 40.45 30.71 24.08 28.08 33.41 17.40 22.57 32.40 19.90 23.95 34.08 15.75 19.90

VSE∞ (BUTD region) [19] 42.46 31.57 25.65 30.74 35.61 16.13 20.45 34.17 19.52 23.51 36.48 14.08 17.28

VSE∞ (BUTD grid) [19] 44.07 30.22 31.43 36.68 35.26 19.99 25.00 35.70 18.99 23.52 38.75 12.07 15.82

VSE∞ (WSL grid) [19] 51.55 34.31 33.44 38.60 40.40 21.63 26.26 43.67 15.29 18.39 46.87 9.08 11.31

Text-to-Image Retrieval

We evaluate VL methods on new image set with λ = 0.9, 0.8 in Table 6.2. The images

are generated using three random seeds, and the averaged results are reported. It can be

also observed that all VL methods consistently exhibit degradation in performance. In

addition, in Figure 6.6, we present examples of incorrect image retrievals using BLIP

(ViT-B) when λ is set to 0.8. While humans would not prefer the mixed images to the

original images, we observe that the models easily confuse the two images. We argue

that this evaluation is simple yet effective for assessing the robustness of the models.

More results with different λ values can be found in the Appendix.

6.4.3 Analysis and Discussions

The influence of each spatial parts on the embedding varies within a single im-

age. To examine why the model can be deceived by unrelated images, we analyze the
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Figure 6.7: The influence of spatial part of the image on the embedding. Even when

specific parts are mixed, the model can confuse two images since other more influential

parts remain.

impact of each spatial location in the image on the embedding output. We divide the

image into 16 parts and mask each part to zeros, to observe the changes in the embed-

ding. The heatmap in Figure 6.7 shows the cosine similarity between the embedding of

the original image and the image embedding when each corresponding part is masked.

In the cases where adversarial images are retrieved as top 1, we can observe that influ-

ential parts like ”boy” or ”toilet” still remain despite obscuring some important parts

like “kyte” or “a man’s face”. This finding indicates that certain parts of the image

have a stronger impact on the retrieval outcomes than the other parts.

Each word within a caption has a different impact on the embedding. In Sec-

tion 6.3.3, we introduce the Embedding-Influence (EI) score. Figure 6.8 demonstrates

the varying influences of words within each caption, with the red color indicating

higher influence. The noun with the highest EI score is underlined in red, while the

noun with the lowest score is underlined in gray. Notably, nouns like “umbrella” and

“man” have significant meaning but relatively low influence on the embedding outputs.

Thus, substituting these words can result in a significant change in semantic meaning

without substantially affecting the original embedding.

Manipulating words with low EI scores proves to be an effective approach

for adversarial attacks. To demonstrate this, we evaluate model performance by re-

moving words in captions using different methods. The “Random” method randomly

removes a noun, while the “Large EI” removes the noun with the highest EI score,
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Figure 6.8: Influence of a word in a caption. The darker the red color of a word, the

greater its influence. For each caption, the noun with the highest EI score is underlined

in red, and the noun with the lowest EI score is underlined in gray. We can observe that

some semantically important nouns such as ‘man’ and ‘bathroom’ have low EI scores,

which can make a model not robust.

and vice versa for the “Low EI”. We create new captions by simply deleting the

source word without replacement to mitigate the impact of the changed word. Ta-

ble 6.3 shows that deleting words with low EI scores is the most effective approach for

fooling the models, while deleting words with high EI scores results in minimal perfor-

mance degradation. This finding supports our hypothesis that leveraging the influence

of words on embedding features can effectively confuse the models. Thus, manipulat-

ing words with low EI scores can be a valuable method for assessing the robustness of

newly trained models.

Words with the lowest EI scores exhibit little variation across different VL

models. Figure ?? displays the level of agreement among models in selecting the word

with the lowest EI scores. The x-axis represents the maximum number of agreements

among the four models in selecting the word with the lowest EI score, while the y-axis

represents the number of captions. Interestingly, in over 70% of cases, two or more

models select the same word, despite being trained using different architectures and

datasets (e.g., more pre-training data). This highlights a common vulnerability in the
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Table 6.3: Effects of using EI scores. Deleting a source word with the lowest EI score

shows the largest performance drop.

COCO Random Deletion High EI Deletion Low EI Deletion

R@1(↑) R@1(↑) drop rate(↓) FR@1(↓) R@1(↑) drop rate(↓) FR@1(↓) R@1(↑) drop rate(↓) FR@1(↓)

CLIP ViT-B/32 (zero-shot) [137] 50.10 38.58 22.99 29.66 42.76 14.65 21.84 36.04 28.06 32.30

CLIP ViT-L/14 (zero-shot) [137] 56.04 42.54 24.09 30.4 48.58 13.31 20.42 39.22 30.01 33.74

BLIP ViT-B (zero-shot) [100] 70.54 45.58 35.38 40.54 57.14 19.00 25.80 36.34 48.48 52.48

BLIP ViT-B [100] 81.90 65.54 22.46 19.98 72.74 11.18 14.06 59.28 27.62 30.10

VSRN [104] 52.66 44.7 15.12 18.02 43.46 17.47 22.56 38.56 26.78 29.36

VSE∞ (BUTD region) [19] 58.02 34.2 41.05 45.58 40.58 30.06 38.06 30.02 48.26 50.72

VSE∞ (BUTD grid) [19] 59.40 34.3 42.26 46.46 39.92 32.79 39.78 30.46 48.72 51.54

VSE∞ (WSL grid) [19] 66.06 40.8 38.24 41.68 47.32 28.37 33.76 36.56 44.66 47.14

current image-text matching approach, suggesting that attacks can have a universal

impact.

VL models can be fooled by highly nonsensical sentences with multiple word

replacements. To further investigate the vulnerability of VL models, we conduct ex-

periments where 2 to 5 words are randomly replaced in the captions using words from

the Bert vocabulary. Interestingly, the results in Table 6.4 show meaningful perfor-

mance degradation across the entire model, even when the original semantic meaning

is significantly disrupted. Large-scale pretraining methods exhibited better robustness

than VSE models when multiple words are changed simultaneously.

Additionally, Figure 6.10 presents top 1 retrieval examples of captions with four

word replacements by BLIP (ViT-B). We can observe that the broken captions contain

at least one correct keyword, such as “motorcyclist” in the first image. These findings

suggest that the model may focus more on specific words rather than considering the

entire sentence.

6.4.4 Semantic Contrastive Loss for Adversarial Captions

Throughout our study, we have observed that VL models tend to overlook semantic

details. To address this issue, we propose the Semantic Contrastive (SC) Loss, which

encourages the model to distinguish between images and text when introducing various

changes to the text.
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Table 6.4: Image-to-Text retrieval on dataset with multiple words substitutions.

We generate captions by randomly replacing more words and add to COCO test set.

The results are averaged over generations with three different random seeds. Recall@1

(R@1)(↑), drop rate(↓), False Recall@1 (FR@1)(↓) are shown. Models can confuse

sentences even when the semantic meaning is more largely damaged.

COCO 2 words substitution 3 words substitution 4 words substitution 5 words substitution

R@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1 R@1 drop rate FR@1

Large-scale VL pre-training models

CLIP ViT-B/32 (zero-shot) [137] 50.10 42.89 14.39 19.71 46.07 8.04 12.67 47.45 5.29 8.15 48.37 3.45 5.46

CLIP ViT-B/16 (zero-shot) [137] 52.44 45.35 13.52 19.07 48.43 7.65 11.89 49.97 4.71 8.01 50.61 3.49 5.95

CLIP ViT-L/14 (zero-shot) [137] 56.04 47.35 15.51 22.18 50.22 10.39 15.78 51.99 7.23 11.56 53.07 5.30 8.27

ALBEF [101] 77.58 72.43 6.64 2.40 73.03 5.86 0.88 73.23 5.61 0.43 73.26 5.57 0.32

BLIP ViT-B (zero-shot) [100] 70.54 53.04 24.81 30.75 62.99 10.70 14.72 67.95 3.67 5.44 69.73 1.15 1.86

BLIP ViT-B [100] 81.90 73.62 10.11 12.76 77.45 5.43 7.10 79.54 2.88 4.05 80.48 1.73 2.51

BLIP ViT-L (zero-shot) [100] 73.66 60.35 18.07 21.66 67.99 7.70 10.16 71.63 2.76 3.93 72.87 1.07 1.61

BLIP ViT-L [100] 82.36 73.93 10.24 12.65 77.93 5.38 7.45 79.81 3.10 4.23 80.98 1.68 2.54

Visual Semantic Embedding models

VSRN [104] 52.66 45.07 14.41 17.79 47.89 9.06 11.33 49.89 5.26 7.08 50.99 3.17 4.29

SAF [39] 55.46 44.06 20.56 20.29 47.22 14.86 26.71 50.02 9.81 15.12 51.71 6.76 10.85

SGR [39] 57.22 43.57 23.86 28.53 46.98 17.90 22.79 49.81 12.95 17.49 51.91 9.28 13.09

VSE∞ (BUTD region) [19] 58.02 33.94 41.50 46.81 37.15 35.98 42.66 40.39 30.39 37.79 43.17 25.60 33.01

VSE∞ (BUTD grid) [19] 59.40 34.79 41.44 45.95 38.03 35.98 41.75 41.17 30.68 37.14 44.97 24.30 30.57

VSE∞ (WSL grid) [19] 66.06 39.95 39.52 43.79 44.04 33.33 38.44 48.29 26.90 32.85 51.73 21.69 27.51

Given a text encoder fT , an image encoder fI , an image x, and an adversarial

caption cp, SC loss is defined by:

LSC =
< fT (cp), fI(x) >

∥ fT (cp) ∥∥ fI(x) ∥
. (6.2)

In each batch, we generate an adversarial caption cp by randomly selecting words

within the caption to be replaced with a probability of p (set to 0.3). These selected

words are then substituted with random words from the BERT vocabulary with a prob-

ability of q (set to 0.6), or masked with a probability of 1− q.

Figure 6.9 illustrates the results of applying the SC loss during the training of

the BUTD region in the VSE∞ model. Apart from the addition of the SC loss, we

adhere to the official code for training details. The figure demonstrates the improved

robustness across the proposed benchmark datasets. By training the model to align

closely with the original caption while distancing itself from the adversarial captions,

the model can effectively capture word-level details.
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(a) Recall@1(↑) (b) Incorrect Recall@1(↓)

Figure 6.9: Improvement using Semantic Contrastive Loss.

Substituting more words

To further analyze the vulnerability of the VL models, we conduct experiments by re-

placing multiple words. We wonder if the model would confuse even when the original

semantic meaning is more broken. Thus, we randomly select between 2 and 5 words

and substitute them with words in Bert vocabulary. Since many captions are not long,

words are not limited to nouns and are randomly selected.

We show the results in Table 6.4. Although it is presumed to be an easy task,

meaningful performance degradation occurs in the entire model when multiple words

are changed. When more than two words are substituted, large-scale VL pre-training

models show more robust performance compared to VSE models. Especially, VSE∞

shows the vulnerability even for captions with 5 words changed. We think that VSE∞’s

simple pooling operator can be overfitted to COCO dataset.

Meanwhile, Figure 6.10 displays the examples of newly created captions which

BLIP (ViT-B) has retrieved as top 1. The figure shows the results when 2 to 5 words

are replaced. We observe that Top 1 retrieved caption includes at least one correct key

word, such as “motorcyclist” in the first image. While the created captions are not

natural, they include some keywords. These results lead us to suspect that the model

seems to be paying more attention to certain words than whole sentences.
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(a) Two words substitution

(b) Three words substitution

(c) Four words substitution

(d) Five words substitution

Figure 6.10: Example of substituting multiple random words.
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6.5 Summary

In this thesis, we propose a robust-evaluation benchmark that can measure the robust-

ness of image-text matching (ITM) models. To the best of our knowledge, it is the first

benchmark to test robustness in image-text matching task. Unlike existing studies for

the robustness test in computer vision and natural language processing (NLP) area,

which generate semantic-preserving texts and images with imperceptible changes, we

propose a strategy in the opposite direction to the existing adversarial attack strat-

egy. Our main idea is to create fooling captions and images by minimal changes in

embedding feature. From evaluation on various state-of-the-art vision language (VL)

models, we discover that both models with and without large-scale pre-training data

show significant performance degradation and retrieve the incorrect caption/image at

a high rate. Our empirical results raise up necessity of new robust ITM models and our

benchmark dataset could promote further robustness studies in ITM task.

Limitations. In the process of randomly replacing words, some unnatural sen-

tences such as “A war on bicycle riding next to a train (man → war)” are created.

However, these sentences do not violate our intention to test how well the ITM model

understands both visual and semantic meaning. Creating benchmarks is a very chal-

lenging but important study that can boost improvements of the existing algorithms.

We hope that our study can inspire researchers in ITM task and more robustness bench-

marks can be created.
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Chapter 7

CONCLUSION

In this thesis, we presented advances in robust deep learning against practical chal-

lenges in the wild. We discussed the challenges that arise in real-world scenarios,

such as noisy labels, imbalanced datasets, and robustness test. To address these chal-

lenges, we proposed various solutions, including the Influential Rank post-training,

the Influence-Balanced loss function, and the context-rich oversampling method. We

also introduced RoCOCO, a robust benchmark dataset that can be used to evaluate the

robustness of image-text matching models.

First, our proposed a post-training method named Influential Rank sways the over-

fitted decision boundary to be correct in the presence of noisy labels. Unlike the ex-

isting methods, Influential Rank starts from an overfitted model and makes the model

more robust against noisy labels progressively. We have conducted extensive experi-

ments on real-world and synthetic noisy benchmark datasets. The results demonstrate

that Influential Rank consistently provides performance gain when combined with

multiple state-of-the-art robust learning methods. In addition, we have shown that In-

fluential Rank performs as a detector for video data cleaning or a regularizer to smooth

the decision boundary. A limitation of our method is that it requires a small number

of clean validation samples to calculate the OSD. It can be difficult to collect image

data in some domains despite the limited number of 5 images per class in our exper-
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iments. Future work could be developing the metric that does not require additional

clean validation samples.

Second, as a cost-sensitive re-weighting method, we proposed a novel influence-

balanced loss to solve the overfitting of the majority classes in a class imbalance prob-

lem. A model trained on imbalanced class data is susceptible to overfitting due to

the high capacity of DNN and the scarcity of samples in certain classes. Therefore, as

learning progresses, existing methods are likely to produce undesirable results, such as

assigning higher weights to samples from majority classes. Unlike the existing meth-

ods, IB loss can robustly assign weights because it directly focuses on a sample’s

influence on the model. We conducted experiments to demonstrate that our method

can improve generalization performance under a class imbalance setting. In addition,

our method is easy to be implemented and integrated into existing methods. In the fu-

ture, we plan to extend our method by incorporating data-level methods or other recent

meta-learning methods.

Next, we proposed a novel context-rich oversampling method, as a data-level ap-

proach. We tackled the fundamental problem of previous oversampling methods that

generate context-limited minority samples, which intensifies the overfitting problem.

Our key idea is to transfer the rich contexts of majority samples to minority sam-

ples to augment minority samples. The implementation of CMO is simple and in-

tuitive. Extensive experiments on various benchmark datasets demonstrated not only

that our CMO significantly improves performance, but also that adding our oversam-

pling method to the basic losses advances the state-of-the-art. However, in some cases,

the performance improvement for the minority classes occured with the degraded per-

formance of the majority classes. Future work should be designed to improve the per-

formance of all classes without sacrificing the performance of the many-shot classes.

Finally, with the need of ensuring the robustness of deep learning models to adopt

them in real-world applications, we proposed a new benchmark dataset to stress-test

the robustness of image-text matching models. Unlike existing studies for the robust-
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ness test in computer vision and natural language processing (NLP) area, which gen-

erate semantic-preserving texts and images with imperceptible changes, we proposed

a strategy in the opposite direction to the existing adversarial attack strategy. Our main

idea is to create fooling captions and images by minimal changes in embedding feature.

From evaluation on various state-of-the-art vision language (VL) models, we discov-

ered that both models with and without large-scale pre-training data showed significant

performance degradation and retrieved the incorrect caption/image at a high rate. Our

empirical results raise up necessity of new robust ITM models and our benchmark

dataset could promote further robustness studies in ITM task. Since it is the first at-

tempt to create robustness benchmark for image-text matching models, there exists a

limitation. In the process of randomly replacing words, some unnatural sentences such

as “A war on bicycle riding next to a train (man→ war)” are created. However, these

sentences do not violate our intention to test how well the ITM model understands

both visual and semantic meaning. In the future, we plan to create more challenging

benchmark with more natural sentences and images.

In conclusion, this thesis contributes to the field of deep learning by proposing

novel methods to address practical challenges in the wild. The proposed methods are

useful in real-world scenarios where robustness is crucial, such as in medical imaging,

autonomous driving, and security systems. The development of RoCOCO provides

a benchmark dataset to evaluate the robustness of image-text matching models. The

results presented in this thesis highlight the importance of addressing practical chal-

lenges to achieve robust and reliable deep learning models for real-world applications.

Overall, the contributions presented in this thesis provide a solid foundation for future

research in the field of robust deep learning and pave the way for the development of

more robust and reliable AI systems in real-world scenarios.
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초록

딥러닝은 다양한 인공지능 문제를 해결하는 데에서 놀라운 성공을 거두었다.

그러나 실제 환경에서 적용할 때, 데이터 불균형, 잘못된 (노이지) 라벨 및 신뢰도

테스트와같은문제로인해기계학습모델의일반화성능과강건성이종종도전받

는다.

본 논문에서는 이러한 문제를 해결하기 위한 전략과 딥러닝 모델의 강건성 향

상을제안한다.구체적으로,본논문에서는데이터불균형및노이지라벨을다루기

위한새로운방법을제시한다.제안된방법은가장인기있는벤치마크데이터셋에

서평가되었으며,결과는딥러닝모델의일반화성능과강건성을크게향상시킬수

있음을보여준다.

또한,본논문에서는멀티모달모델의강건성을스트레스테스트하기위한새로

운벤치마크데이터셋인 RoCOCO를소개한다.이데이터셋은실제세계의변화를

시뮬레이션하여, 인공지능 모델의 강건성을 평가하는 보다 현실적이고 도전적인

테스트베드를제공한다.

결론적으로, 이 논문에서 제시된 연구는 기계학습 모델을 실제 환경에서 적용

할때발생하는도전을더잘다룰수있는강건한딥러닝기술의발전에기여한다.

하지만,향후연구에서는제안된방법들의한계점을극복하고더많은현실적인시

나리오에서의강건성평가를위해노력해야할것이다.

주요어:데이터불균형,긴꼬리분포,이미지분류,오버샘플링,데이터증강,노이지

라벨,강건한인공지능,멀티모달,이미지-텍스트매칭,벤치마크데이터

학번: 2019-35916
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