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Abstract

In this dissertation, two main contributions are given as; i) homomorphic compu-

tation in Reed-Muller (RM) codes and ii) improving Modified pqsigRM with the key

size and bit-security.

First, a method of homomorphic computation in RM codes is proposed. With

the ongoing developments in artificial intelligence (AI), big data, and cloud services,

fully homomorphic encryption (FHE) is being considered as a solution for preserv-

ing privacy and security in machine learning systems. Currently, the most of existing

FHE schemes are constructed using lattice-based cryptography. In state-of-the-art al-

gorithms, a huge amount of computational resources are required for homomorphic

multiplications and the corresponding bootstrapping that is necessary to refresh the ci-

phertext for a larger number of operations. Therefore, it is necessary to discover a new

innovative approach for FHE that can reduce computational complexity for practical

applications. Diverse research works, which are not limited to lattice-based cryptogra-

phy are also needed. The code-based cryptography can be a new solution for this.

In this dissertation, I propose a code-based homomorphic operation scheme in RM

codes. It is known that the linear codes are closed under the addition, however, achiev-

ing multiplicative homomorphic operations with linear codes has been impossible until

now. I strive to solve this problem by proposing a fully homomorphic code scheme that

can support both addition and multiplication simultaneously using the RM codes. This

can be considered as a preceding step for constructing code-based FHE schemes. I

restrict this to the computation of the first order of RM codes. As the order of RM

codes increases after multiplication, a bootstrapping technique is required to reduce

the order of intermediate RM codes to accomplish a large number of operations. I pro-

pose a bootstrapping technique to preserve the order of RM codes after the addition or

multiplication by proposing three consecutive linear transformations that create a one-
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to-one relationship between computations on messages and those on the corresponding

codewords in RM codes. Furthermore, I propose some trials of making homomorphic

encryption in code-based cryptosystems.

Second, a method of improving the key size and bit-security of Modified pqsigRM

is proposed. The importance of post-quantum cryptography (PQC), which is secure

against quantum algorithms, is growing larger and larger. pqsigRM is a code-based

PQC digital signature scheme that was presented in round 1 of the national institute

of standards and technology (NIST)’s PQC standardization process. NIST is a stan-

dardization organization in the United States. This scheme was revised as the Modified

pqsigRM by removing all known vulnerabilities going through the debates in the NIST

PQC standardization process. It has the advantages of an efficient decoding process

and small signature sizes. Small signature sizes are very useful in digital signature

schemes because signatures should be sent in every signing process. However, it has a

problem with large public key sizes.

In this dissertation, I propose a method called Improved Modified pqsigRM to re-

duce the public key size and improve the exact bit-security of Modified pqsigRM. I

change the public key into the systematic form, improve its parameters, and fine-tune

the bit-security for each parameter. Thus, I can reduce these to 0.20, 0.40, and 0.23

times public key sizes compared with the Modified pqsigRM parameters for 80, 128,

and 256 bit-security levels, respectively. Also, I obtain a larger exact bit-security for

these parameters than Modified pqsigRM. Compared with the NIST PQC finalist algo-

rithms Crystals-Dilithium, Falcon, and Sphincs+, the public key sizes are still large,

but the signature sizes are the smallest among all for every security level. For 128

bits of classical security, the signature size of the proposed signature scheme is 520

bytes, which corresponds to 0.21 times that of Crystals-Dilithium. Moreover, I cal-

culate the verification cycles compared with the NIST PQC finalist algorithms. The

number of average verification cycles is 172,669, which corresponds to 0.53 times
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that of Crystals-Dilithium, and it is the second smallest among the NIST PQC finalist

algorithms.

Furthermore, I propose an enhanced version of these, called Enhanced pqsigRM,

considering the attacks using the information set decoding and finding the minimum-

weight codewords. What is different from Modified pqsigRM is that it uses the system-

atic public key, minimizes the secret key, simplifies the usage of the hash function, and

improves the security issues. There is a trade-off that the parameters get worse. How-

ever, compared with the original Modified pqsigRM, the public key size reduces to 2.0

MB, which is 0.5 times the previous one, and the secret key size reduces to 22,512

bytes, which is 0.0015 times the previous one. Also, it still has the advantages of a

small signature size and fast verification cycles. These are very important features in

digital signature schemes. The signature size is 1,032 bytes, which corresponds to 0.42

times that of Crystals-Dilithium, and it is the second smallest among the NIST PQC

finalist algorithms. The number of average verification cycles is 242,901, which cor-

responds to about 0.74 times that of Crystals-Dilithium, and it is the second smallest

among the NIST PQC finalist algorithms.

keywords: Fully homomorphic encryption (FHE), homomorphic computation,

post-quantum cryptography (PQC), error-correcting codes (ECCs), Reed-Muller

(RM) codes, digital signature scheme, code-based cryptosystem.

student number: 2017-26340
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Chapter 1

Introduction

1.1 Background

Error-correcting codes (ECCs) are being used in diverse application areas. These have

been developed for wireless communication systems in noisy channels and digital stor-

age systems [1,2]. Also, these are widely being used in other areas such as distributed

computing systems or public-key encryption schemes. In the cryptography area, there

is cryptography using ECCs, called code-based cryptography. The security of code-

based cryptography is based on the fact that the decoding problem of a random linear

code is an NP-complete problem [3]. It cannot be solved in a polynomial time. Espe-

cially, code-based cryptography is one of the candidates for post-quantum cryptogra-

phy (PQC) that can resist attacks using operations over quantum computers.

Recently, machine learning has become popular in many areas and a few appli-

cations that employ this technology require the privacy of input data to be secured.

For the security of machine learning, differential privacy and fully homomorphic en-

cryption (FHE) are considered as candidates. In the case of differential privacy, the

information on the individuals in the dataset is not disclosed even though the entire

dataset is available. However, when it comes to FHE, both multiplication and addi-

tion can be performed for encrypted messages. Thus, confidential messages can be

1



securely manipulated on the untrusted cloud server. In FHE, the encryption schemes

can support both addition and multiplication without any limitations on the number of

operations.

Since Gentry proposed the first generation of FHE schemes in 2009 [4], there has

been extensive research on homomorphic encryption schemes based on lattice-based

hard problems [5–10]. The most promising recent research works on lattice-based ho-

momorphic encryption schemes are the homomorphic encryption for the arithmetic of

approximate numbers scheme, called the Cheon-Kim-Kim-Song (CKKS) scheme [6]

and the fast FHE over the torus (TFHE) scheme [7]. Despite substantial progress since

Gentry’s first FHE scheme, the computational complexity of FHE schemes is still too

high to be used in privacy-preserving machine learning systems. For example, it takes

almost 30 seconds for one bootstrapping operation while using the CKKS library. As

more than 105 bootstrappings are necessary to sort hundreds of data packets, several

days are needed for the homomorphic sorting operation [10]. Therefore, a new innova-

tive approach to achieve a more efficient FHE scheme is needed to be discovered. The

research works on FHE are too concentrated on lattice-based cryptography. For diver-

sity, FHE schemes that are not based on lattice theory are needed such as code-based

cryptography. To make code-based homomorphic encryption possible, a scheme that

can decode errors after homomorphic operations is needed. Also, the key sizes should

be reduced to use the homomorphic operations feasibly.

Besides, there are numerous studies on the application of ECCs in quantum com-

puting [11–14]. Researchers have also succeeded in mapping the ECCs of classical

computers into new quantum codes called ‘stabilizer codes.’ Several trials of using

algebraically defined codes, such as Hamming codes, Bose-Chaudhuri-Hocquenghem

(BCH) codes, RM codes, and Golay codes have been accomplished. Moreover, meth-

ods for using sparse-graph codes such as low-density parity-check (LDPC) codes are

also being studied. The goal of all these studies is to achieve fault-tolerant quantum

computation. In the future, I expect homomorphic computation to be an important
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component in quantum computers, and therefore my contribution to creating a homo-

morphic computation method for RM codes may turn out to be useful in RM-code-

based quantum error correction.

Along with the extremely fast-growing data and computation sizes, the size of

distributed computing systems has also grown increasingly larger with time. During

computing, a certain amount of unpredictable system noise or straggler nodes that

cause delays cannot be avoided. To reduce these problems, coded computation, which

is a method of using coding theoretic techniques in distributed computing systems, is

frequently used. In this regard, the first known study was conducted on the computing

matrix multiplication problem using erasure codes and minimum distance separable

codes [15]. Later, more studies with diverse approaches to increasing the speed of

coded computations also appeared [16–18]. System components, such as sensors, are

required to work efficiently even in noisy conditions, such as high temperatures. To

ensure this, I need a coding technique using high error tolerance codes, such as Reed-

Muller (RM) codes, because they can correct random erasures and errors with high

probability [19]. Thus, the study of homomorphic computation on codes can expand

the usage of codes also in distributed computing systems.

In this dissertation, I propose a code-based homomorphic computation scheme us-

ing RM codes that can support simultaneous addition and multiplication operations.

Addition can be performed freely in linear codes due to the nature of the linearity.

However, no such method of multiplication exists for codewords, that is, it is not pos-

sible to obtain a valid codeword just by multiplying two valid codewords. Therefore,

I propose a linear transformation that can map the multiplication result of any pair of

valid codewords to a valid codeword. As the order of the codewords monotonically

increases during the multiplication in the RM codes, there is a certain limitation on the

number of multiplications. To resolve this problem, I propose a bootstrapping method

using a linear transformation to reduce the order of the second-order RM codes to the

first-order after the codeword multiplication.

3



Nowadays, the performance of quantum computers is growing very fast. When

quantum computers become well commercialized, the cryptosystems we are using

now, such as RSA or elliptic curve cryptography, are proven to be broken. The in-

teger factorization problem and discrete logarithm problem for a large integer have

been foundations for these cryptosystems for a long time. However, using Shor’s al-

gorithm [20], these problems can be solved with quantum computers in a polynomial

time. Therefore, PQC, which is strong even against quantum computers, is getting the

spotlight. The US’s standardizing organization NIST is leading a PQC standardiza-

tion process. After revising or withdrawing lots of algorithms, the fourth round of this

process is in progress.

There are several types of post-quantum cryptosystems. First, lattice-based cryp-

tography is the most promising because it has very good performance and a small pa-

rameter size. Also, code-based cryptography is the second most popular type of PQC.

It is based on the coding theory and the security is based on the syndrome decoding

problem (SDP) which is an NP-complete problem [1, 2]. For example, the oldest and

best-known code-based cryptosystem is McEliece public key encryption scheme [3].

Code-based cryptosystems have the advantage of a strong security problem, which is

not broken for over 40 years. However, these have the disadvantage of large key sizes

compared with other cryptosystems.

There also exist several digital signature schemes with code-based cryptosystems.

Courtois-Finiasz-Sendrier (CFS) signature scheme is the oldest and most popular code-

based signature scheme that was proposed by Courtois, Finiasz, and Sendrier in 2001

[21]. Wave [22] and pqsigRM [23] are the code-based signature schemes that are de-

viated from the CFS scheme. Wave adopted generalized ternary (U,U + V )-codes to

make efficient decoding and well-proven security. On the other hand, pqsigRM uses

RM codes which are also (U,U + V )-codes. The original version of pqsigRM was

presented in the NIST PQC standardization process round 1 as a code-based signature

scheme. Later it was improved to Modified pqsigRM by Lee et al., in 2019 [24]. It
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has an efficient decoding algorithm and small signature sizes. However, there exists

a drawback of large public key sizes. In the digital signature scheme, having a small

signature size is a great advantage because a signature should be sent in every signing

process. On the other hand, a public key is sent just once. Also, there is a rank met-

ric code-based signature scheme called Durandal [25]. It has very small key sizes as

lattice-based cryptosystems. However, the security of this scheme is not fully proven

yet.

In this dissertation, I propose a method called Improved Modified pqsigRM to re-

duce the public key size of Modified pqsigRM. I use a systematic public key and reset

the parameters considering the size of the public key and the security level. I find sev-

eral improved values for these. Thus, I can reduce these to 0.20, 0.40, and 0.23 times

public key sizes compared to the Modified pqsigRM parameters for 80, 128, and 256

security levels, respectively. Also, I obtain a larger exact bit-security for these parame-

ters than Modified pqsigRM. Compared with NIST PQC finalist algorithms, the public

key size is still large, but the signature size is the smallest among all. Moreover, I calcu-

late the verification cycles compared with the NIST PQC finalist algorithms. For 128

bits of classical security, the signature size of the proposed signature scheme is 520

bytes, which corresponds to 0.21 times that of Crystals-Dilithium, and it is the second

smallest among the NIST PQC finalist algorithms. The number of average verification

cycles is 172,669, which corresponds to 0.53 times that of Crystals-Dilithium, and it

is the second smallest among the NIST PQC finalist algorithms.

Furthermore, I propose an enhanced version of these, called Enhanced pqsigRM,

considering the attacks using the information set decoding and finding the minimum-

weight codewords. It enhances the security issues of the previous work, but the param-

eters get worse. However, compared with the original Modified pqsigRM, the public

key size reduces to 2.0 MB, which is 0.5 times the previous one, and the secret key size

reduces to 22,512 bytes, which is 0.0015 times the previous one. Also, it has the ad-

vantages of a small signature size and fast verification cycles. These are very important
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features in digital signature schemes. The signature size is 1,032 bytes, which corre-

sponds to 0.42 times that of Crystals-Dilithium, and it is the second smallest among the

NIST PQC finalist algorithms. The number of average verification cycles is 242,901,

which corresponds to about 0.74 times that of Crystals-Dilithium, and it is the second

smallest among the NIST PQC finalist algorithms.

1.2 Overview of Dissertation

This dissertation is organized as follows.

In Chapter 2, I introduce preliminaries that are needed in this dissertation. First, I

claim the basic notations of this dissertation and describe the fundamental knowledge

of the original RM codes. I also explain the features of PQC and code-based cryp-

tography. Moreover, I present the fundamental definition of FHE. Then, I explain the

basic concepts of the digital signature scheme.

In Chapter 3, I present a method of homomorphic computation in RM codes. I de-

fine the addition and multiplication operations on the message and codeword domains,

respectively, and also propose the main scheme used in my bootstrapping technique for

RM codes. Then I introduce some examples to help understand the idea. Furthermore, I

propose some trials of making homomorphic encryption in code-based cryptosystems.

In Chapter 4, first I explain the details of Modified pqsigRM. Then, I present Im-

proved Modified pqsigRM, which improves the key size of Modified pqsigRM, by mak-

ing a public key in a systematic form and choosing new parameters for the keys. I show

how to make public keys in a systematic form. Then I present which parameter sets

to choose, the expected strength of them, and the design rationale. Then the improved

key sizes by choosing new parameters are introduced. Moreover, the bit-security is

also shown to be improved. The comparison with other PQC schemes is explained,

too. The public key and signature sizes comparing these with the proposed scheme

are introduced. Also, the verification cycles compared with other NIST PQC finalist

6



schemes are specified. Then the enhanced version of this algorithm called Enhanced

pqsigRM is introduced. I enhance some specifications of the algorithm considering the

review of the NIST PQC organizer team. The parameter set and design rationale of this

is presented. Also, the comparison with other PQC schemes is explained. The public

key, signature size, and verification cycles are compared. Moreover, memory usage is

also presented.

In Chapter 5, I summarize the main points of this dissertation and mention some

issues which can be future works.
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Chapter 2

Preliminaries

In this chapter, I introduce some preliminaries to help understand the dissertation. First,

I explain the basic notations of this dissertation. Then, I introduce the fundamental

knowledge of RM codes. I also present the features of post-quantum cryptography

and code-based cryptography. Furthermore, I show the concept of fully homomorphic

encryption. Lastly, I explain about the basic concept of the digital signature schemes

and CFS signature scheme.

2.1 Notation

I express a row vector with a small letter alphabet in boldface as ‘a’ and a matrix

with capital letter alphabet in boldface as ‘A.’ A concatenation of two vectors a and

b is notated as ‘(a|b).’ An integer is notated as an alphabet without boldface as ‘a.’ A

polynomial of x is notated as ‘a(x).’ Also, I express the algorithm name with the italic

font as ‘pqsigRM.’
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2.2 RM Codes

In this subsection, I briefly introduce the fundamental notions and properties of RM

codes. Reed [26] and Muller [27] first suggested RM codes in 1954. An RM code,

RM(r,m) is defined with integers r and m, where r is the order of the code and n = 2m

is the code length. The dimension of RM(r,m) is kr =
∑r

i=0

(
m
i

)
and the minimum

distance is dmin = 2m−r. Further, I can express RM(r,m) with the r-th order linear

combinations of Boolean functions v0 = 1,v1, · · · ,vm. Thus, the generator matrix

Gr of the r-th order RM code, RM(r,m) can be expressed as

Gr =



v0

v1
...

vm

v1v2

v1v3
...

vm−1vm
...

v1 · · ·vr

v1 · · ·vr−1vr+1

...

vm−r+1 · · ·vm



, (2.1)

where, vivj denotes the component-wise multiplication of vi and vj [1, 2, 26, 27].

I abuse notations of the real generator matrix and the matrix of Boolean functions.

The columns of the generator matrix are evaluated by each Boolean function of each

row with every m-tuple binary vector from (1, 1, · · · , 1) to (0, 0, · · · , 0) in the reverse

lexicographical order.
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The generator matrix G of the first-order RM codes is constructed from {v0,v1, · · · ,vm}

in (2.1), and the generator matrix of the second-order RM codes is created from

{v0,v1, · · · ,vm,v1v2,v1v3, · · · ,vm−1vm}. The first-order RM codes have a di-

mension of k = m+1 and can be represented with linear combinations of v0, · · · ,vm.

For example, the generator matrix of RM(4,4) can be expressed as

GRM(4,4) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

which is a 16× 16 square matrix.

The generator matrices of RM(1,4), RM(2,4), and RM(3,4) are included in GRM(4,4).

From the first row to the fifth row make GRM(1,4), which is the first-order RM code.

From the first row to the eleventh row make GRM(2,4), which is the second-order RM

code. From the first row to the fifteenth row make GRM(3,4), which is the third-order

RM code. At last, GRM(4,4) is the square code, and it is the fourth-order RM code. For
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RM codes with the same value of m, the codes with larger r contain the codes with

smaller r.

The message can be expressed with a polynomial of degree m, a(x), or with a

(m+ 1)-tuple vector a as

a(x) =
m∑
i=0

aix
i

a = (a0, a1, · · · , am).

And a codeword of the first-order RM code, RM(1,m), can be expressed with a

polynomial of degree n−1, c(x), or with an n-tuple vector c by multiplying the k×n

generator matrix G in (2.1) to message as

c(x) =

n−1∑
i=0

cix
i

c = (c0, c1, · · · , cn−1) = aG =

m∑
i=0

aivi, (2.2)

where I abuse the vector and polynomial notations.

RM codes also have a recursive structure, where the generator matrix of RM(r,m)

is given as

GRM(r,m) =

 GRM(r,m−1) GRM(r,m−1)

0 GRM(r−1,m−1)

 .

This structure makes RM codes to be (U,U + V )-codes. (U,U + V )-codes are

codes that have (U,U + V ) structure, where U and V are codes with a half-length of

the whole codes. There also exists an efficient decoding algorithm for RM codes using

the characteristic of the recursive structure [28].

RM codes are widely being used such as for public key encryption schemes [29],

homomorphic computations [30], secret sharing [31], and private information retrieval

[32].
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Figure 2.1: Google’s Sycamore (left) and IBM’s Eagle (right).

2.3 Post-Quantum Cryptography

The performance of quantum computers is growing very fast. Global IT companies

such as Google and IBM are working on it. The researchers of Google announced

that they had achieved quantum supremacy in 2019. Quantum supremacy or quantum

advantage is a research objective that a quantum computer solves a problem, while

classical computers cannot in a feasible time [33,34]. They made a quantum computer

called Sycamore, which has 53 qubits. It could solve a problem in 3 minutes, while

IBM’s supercomputer Summit is known to solve it in 10,000 years. On the other hand,

the researchers of IBM made a 127-qubit processor called Eagle in 2021 and also

made a 433-qubit processor called Osprey in 2022. They are working on the 1,121-

qubit processor called Condor for 2023. Also, they unveiled their quantum hardware

plans as in Figure 2.2 and are achieving these step by step. They said that they will

achieve a 4,000-qubit quantum computer by 2025. Likewise, Google and IBM are

having competitions on quantum computers continuously.
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Figure 2.2: IBM’s roadmap for quantum computer research.

Shor proposed a quantum computer algorithm, which can break the classical cryp-

tosystems in 1994 [20]. This can compute the factorization problem of large integers

or discrete logarithm problems very fast. Thus, the current cryptosystems such as RSA

or elliptic curve cryptography, which are based on these problems, are proven to be

broken by quantum computers. It is known that about 4000 qubits will be needed to

break RSA cryptosystems and it is not that far to happen.

Thus, post-quantum cryptography (PQC), which is secure against quantum algo-

rithms, is getting the spotlight. There exists lattice-based, code-based, multivariate,

hash-based cryptography, and so on for PQC.

2.4 Code-Based Cryptography

The US’s standardizing organization NIST has been leading a PQC standardization

process since January 2017. As in Table 2.1, they started with 64 algorithms for the

first round, and 8 algorithms are left now, after the fourth round. For the fourth round,

the numbers in the bracket implement the numbers of candidate algorithms, which

13



RSA, ECC, … Lattice-based, 
Code-based…

Post-quantum 
Cryptosystems

Original 
Cryptosystems

Quantum computers break 
the original cryptosystems.

Need total replacement!!

Figure 2.3: Need for post-quantum cryptography.

will be considered more by NIST. On the other hand, the numbers without brackets

in the fourth round are the numbers of finalist algorithms. For now, Crystals-Kyber

[35], Crystals-Dilithium [36], and Falcon [37] for lattice-based cryptosystems, Classic

McEliece [38], BIKE [39], and HQC [40] for code-based cryptosystems, Sphincs+ [41]

for hash-based cryptosystem, and SIKE [42] for isogeny-based cryptosystem, are left

as in Figure 2.5.

Table 2.1 shows that the lattice-based cryptosystem takes the largest part with 26

schemes in round 1 and 3 schemes left after round 4. The lattice-based cryptosystem is

the most promising among other cryptosystems because it has good performance and

small signature sizes. These are based on the lattice theory.

For example, there are ring learning with errors (RLWE) key exchange [43] and

Goldreich–Goldwasser–Halevi (GGH) encryption schemes [44] for traditional sys-

tems. Moreover, there are Crystals-Kyber [35], Crystals-Dilithium [36] and Falcon

[37] for NIST PQC finalists. Crystals-Dilithium and Falcon are signature schemes,

which are based on the learning with error (LWE) problem and NTRU-based schemes,
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Post Quantum 

Cryptography (PQC)

Hash-based

Code-basedLattice-based

Multivariate

Figure 2.4: Various kinds of post-quantum cryptography algorithms.

respectively. Crystals-Kyber is a key encapsulation mechanism (KEM), which has a

similar base with Crystals-Dilithium. These three schemes have the advantages of fast

computing speed and small key sizes.

Also, I can figure out that the code-based cryptosystem takes the second largest

part with 19 schemes in round 1 and 3 schemes to be considered in round 4. It has a

strong point with the traditional security problem, which has not been broken over 40

years. Also, it can be easier to make hardware implementations because it uses binary

operations, while the lattice-based cryptosystem uses modulo operations. However, it

has weak points in large key sizes.

Code-based cryptography is a cryptography with ECCs and it is based on the syn-

drome decoding problem, which is an NP-complete problem. ECCs are being used in

diverse applications such as wireless communication systems in noisy channels, digital

storage systems, distributed computing, and cryptography.

Problem 1. Syndrome decoding problem

A syndrome decoding problem is a problem that finds a vector e from a syndrome

s = eHT . H is a parity check matrix of a random code and the Hamming weight of
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Figure 2.5: NIST PQC round 4 algorithms.

e must be less than or equal to the error correcting capability t.

For example, there are McEliece public-key encryption [3] and CFS digital signa-

ture scheme [21] for traditional code-based cryptosystems. Moreover, there are Classic

McEliece [38], BIKE [39], and HQC [40] for NIST PQC round 4 candidates. For digi-

tal signature schemes, NIST is calling for additional schemes because it is concentrated

on lattice-based algorithms. NIST mentioned that the schemes should be diversified

and the digital signature schemes with short signature sizes and fast verification cycles

are needed. I am on this process with a code-based post-quantum signature scheme,

called Enhanced pqsigRM, and this will be explained in this dissertation. It has the

advantages of short signature and fast verification.

The first code-based cryptosystem was invented by McEliece in 1978 [3]. It is

a simple public key encryption scheme with matrix computation. The binary Goppa

codes are used for this cryptosystem and there has been no valid attack on this for over

40 years. In 1986, Niederreiter proposed a dual version of the McEliece cryptosystem,

and the parity check matrix is used instead of the generator matrix of the codes [45].

Also, there were several attempts with other codes such as generalized Reed-Solomon

16



Table 2.1: The number of algorithms for NIST PQC standardization rounds 1 and 4

Signatures KEM/Encryption Overall

1R 4R 1R 4R 1R 4R

Lattice-based 5 2 21 1 26 3

Code-based 2 - 17 (3) 19 (3)

Multi-variate 7 - 2 - 9 -

Hash/symmetric based 3 1 - - 3 1

Other 2 - 5 (1) 7 (1)

Total 19 3 45 1(+4) 64 4(+4)

(GRS) codes [46], RM codes [29, 47], quasi cyclic-low density parity check (QC-

LDPC) codes [48], and polar codes [49].

McElice public key encryption scheme is specified as Algorithm 1. For key gen-

eration, I construct Gpub by multiplying S,G, and P . G is the generator matrix of

binary Goppa codes, and S, P are random invertible matrices. Gpub becomes the

public key and S,G, P become secret keys. For encryption, I compute the ciphertext

c from the message m by making a codeword added by an error e. The Hamming

weight of e becomes t. For decryption, I compute c′ from multiplying the inverse of

P to c. Then, I decode c′ to m′ using the decoding algorithm of binary Goppa codes.

At last, I return m̂ by multiplying the inverse of S to m′. If m̂ is the same as the

original message m, the decryption is successful.

Classic McEliece [38] is one of the NIST PQC round 4 algorithms. It is an updated

version of the McEliece public-key encryption scheme for 128 and 256 bit-security

levels, which are required security levels of the NIST PQC team. It has the advantage

of the oldest proven security, but the disadvantage of large public key sizes. BIKE and

HQC are also NIST PQC key encapsulation mechanisms with QC-MDPC codes and

quasi-cyclic codes, respectively. These have smaller key sizes than Classic McEliece
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Algorithm 1 McEliece public key encryption scheme [3]
Key Generation :

G: k × n generator matrix of binary Goppa codes

t: Error-correcting capability of the binary Goppa codes

S
$←− F k×k

2 ,P
$←− Fn×n

2

Gpub ← SGP

Public key: Gpub

Secret key: S,G, P

Encryption :

Compute ciphertext from message m :

c← mGpub + e

e: Error vector with Hamming weight t

Decryption :

Compute c′ ← cP−1

Decode c′ to m′ using the decoding algorithm of Goppa codes

Return m̂← m′S−1
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but have a little problem with security.

2.5 Fully Homomorphic Encryption

Briefly speaking, homomorphic encryption is encryption that can compute something

in an untrusted cloud without leaking the important information as in Figure 2.6. It

plays a crucial part in ensuring privacy because it does not expose the original data

in computing environments such as machine learning or cloud services [4]. In other

words, an encryption scheme is said to be “homomorphic” with respect to an operation

♢ on plaintext space P if it satisfies

Decrypt(Encrypt(m1) ∗ Encrypt(m2))

= Decrypt(Encrypt(m1♢m2))

= m1♢m2

for an operation ∗ on ciphertext space C. The operation ♢ is usually an addition or

multiplication.

An encryption scheme is called “somewhat homomorphic” if it satisfies only a lim-

ited number of operations because of its inability to perform decryption after a certain

number of operations. If a scheme can perform an infinite number of homomorphic

operations for addition and multiplication, it is called “fully homomorphic” [5]. Ho-

momorphic encryption is needed in many places such as the Internet of Things (IoT),

cloud computing, internet network, and so on as in Figure 2.7. It is getting more and

more spotlights.

2.6 Digital Signature

A digital signature scheme consists of three parts. First, public keys and secret keys are

generated in the key generation process. Then, a signature is signed using the secret
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𝑚1 → 𝑐1
𝑚2 → 𝑐2

⋮
⋮

𝑚𝑡 → 𝑐𝑡

𝑓(𝑐1, … , 𝑐𝑡) → 𝑔(𝑚1, … ,𝑚𝑡)

Encryption

Untrusted

Cloud

Decryption

Figure 2.6: The process of homomorphic encryption.

IoT Cloud Computing Internet network

Figure 2.7: Need for homomorphic encryption.
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keys in the signing process. At last, the signature is verified using the public keys in

the verification process. If an eavesdropper brings a wrong signature, it must be figured

out in the verification process.

Courtois, Finiasz, and Sendrier proposed the first code-based digital signature

scheme in 2001 [21]. The scheme is called the CFS scheme and it is a modified ver-

sion of the Niederreiter cryptosystem. As in Algorithm 2, it consists of key generation,

signing, and verification processes.

In the key generation, H is taken as a parity check matrix of (n, k) Goppa codes.

The error correction capability is n−k
logn . Then random invertible matrices S and Q are

constructed. H ′, which is the multiplication of S,H, and Q becomes public key. And

S,H, and Q become secret keys. In signing, a message m is signed to a syndrome s by

hashing. Then s′ is computed from s by multiplying the inverse of S. This is repeated

until a decodable syndrome s′ is found and this is counted with a counter integer i.

Then, an error e′, which satisfies s′ = He′T is found. Using the decoding algorithm

of the Goppa codes, e′ can be found and this is an NP-complete problem when the

decoding algorithm is unknown. e is computed from e′ by multiplying the inverse of

Q and the signature becomes (m, e, i). In verification, whether the Hamming weight

of e is smaller than or equal to t and whether H ′eT = h(h(m)|i) are checked. If

these are true, the signing is successful.

To find a valid signature, I must perform t! trials on average. Thus, I should set t

with a small value and this means high-rate Goppa codes should be used. However,

the high-rate Goppa codes are known to be distinguished from random matrices [50].

Thus, CFS digital signature scheme using Goppa codes is not secure. In pqsigRM, a

modification of RM codes is used instead of Goppa codes and this does not have such

problems.

Wave [22] and pqsigRM [23] are based on the CFS scheme. Wave adopted general-

ized ternary (U,U+V )-codes to make efficient decoding and well-proven security. On

the other hand, pqsigRM uses the modification of RM codes which are also (U,U+V )-
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codes. It has an efficient decoding algorithm and small signature sizes. Having a small

signature size is a great advantage in the digital signature scheme because a signature

should be sent in every signing process. However, there exists a drawback of large pub-

lic key sizes. I improved this drawback in this dissertation. I will explain more about

this in Chapter 4.
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Algorithm 2 CFS signature scheme [21]
Key Generation:

H : The parity check matrix of (n, k) Goppa codes

The error correction capability t is n−k
logn

S and Q : An (n−k)× (n−k) scrambler matrix and n×n permutation matrix,

respectively

Public key: H ′ ← SHQ

Secret key: H,S, and Q

Signing:

m is a message to be signed

i← 1

Do

i← i+ 1

Find syndrome s← h(h(m)|i)

Compute s′ ← S−1s

Until a decodable syndrome s′ is found

Find an error vector satisfying He′T ← s′

Compute eT ← Q−1e′T , and then the signature is (m, e, i)

Verification:

Check wt(e) ≤ t and H ′eT = h(h(m)|i)

If True, then return ACCEPT; else, return REJECT
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Chapter 3

Homomorphic Computation in Reed-Muller Codes

In this chapter, I present a method of homomorphic computation in RM codes. I de-

fine the addition and multiplication operations on the message and codeword domains,

respectively. Also, I propose the main scheme used in the proposed bootstrapping tech-

nique for RM codes. Then I introduce some examples to help understand the process

of the proposed idea.

3.1 Addition and Multiplication in RM Codes

Homomorphic operations are executed both on the message and codeword domains.

While the addition is performed identically in both domains, the multiplication of the

codewords must be defined as a new codeword of a message that is defined as a poly-

nomial multiplication with modulo xk − 1.

In the proposed scheme, I only consider the first-order RM codes for homomor-

phic operations because they have the maximum Hamming distance 2m−1 and can

be efficiently used for related homomorphic computations. As described in Subsec-

tion 2.2, the RM codes can be described as polynomials. Therefore, for the homomor-

phic addition of two codewords, I perform a component-wise addition ⊕ between the

coefficients of the same order of the polynomial terms. In the case of homomorphic
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multiplication, the codewords can be multiplied by performing some multiplication⊙,

which corresponds to the codeword of multiplication of two message polynomials of

the order m, a(x) and a′(x), as a(x)a′(x) mod (xm+1 − 1), as given in Table 3.1.

In the case of the addition, it is evident that the computation on the message

and codeword domains are directly related because the RM codes are linear. How-

ever, while multiplying two corresponding codewords, c(x) and c′(x), or c and c′,

I have two fundamental problems. The first problem is that just multiplying c and

c′ component-wisely does not completely match the codeword corresponding to the

multiplied message. Therefore, I need to apply the linear transformation to correctly

match the message and codeword domains. The second problem is that the multiplied

codeword is the second-order RM code instead of the first-order. To fix the relation-

ship between the two domains and reduce the order of the codeword, I need a linear

transformation of the multiplied codewords. This linear transformation is described in

the next subsection.

Table 3.1: Addition and multiplication with messages and codewords

Computation Messages Codewords

Addition a(x) + a′(x) mod (xm+1 − 1) c⊕ c′

Multiplication a(x)a′(x) mod (xm+1 − 1) c⊙ c′

3.2 Bootstrapping Technique in RM Codes

The two problems encountered during the homomorphic multiplications of RM codes

can be resolved by using a bootstrapping technique. This bootstrapping technique is

operated on the plaintext domain. The first-order RM codes are represented with linear

combination of {v0,v1, · · · ,vm}. The multiplied codewords are a part of the second-

order RM codes, which are RM (2,m). Therefore, I need to reduce the order of the RM
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codes for further operations.

Let c and c′ be two distinct codewords of the first-order RM codes for two mes-

sages a(x) and a′(x). The multiplication of a(x) and a′(x) is expressed as

a(x)a′(x) mod (xm+1 − 1) =

m∑
l=0

(
∑

i+j=l mod (m+1)

aia
′
j)x

l. (3.1)

Thus, the corresponding codeword of a(x)a′(x) mod (xm+1 − 1) is given as

m∑
l=0

(
∑

i+j=l mod (m+1)

aia
′
j)vl. (3.2)

However, the direct multiplication of the two corresponding codewords is given as

(
m∑
i=0

aivi)(
m∑
j=0

a′jvj). (3.3)

Therefore, (3.2) and (3.3) are not the same even though they represent the same mes-

sage. Notably, (3.3) is the second-order RM code. Therefore, (3.3) should be modified

to fit (3.2). This process is called bootstrapping in this chapter.

The bootstrapping process comprises three steps as follows.

1. Step 1: Represent the coefficients aia′j+aja
′
i of vivj in (3.3) as the components

of the codewords c = (c0, c1, · · · , cn−1) and c′ = (c′0, c
′
1, · · · , c′n−1), whose

transformation is denoted by (n+m)× (k2 +m) matrix V .

2. Step 2: Derive the coefficients
∑

i+j=l mod (m+1) aia
′
j of xl in (3.1) by using

coef(vivj), whose transformation is denoted by (k2 +m)× k matrix X .

3. Step 3: Find the codeword cnew of the message a(x)a′(x) mod (xm+1 − 1) in

RM(1,m) by using the generator matrix G.

The proposed bootstrapping procedure for homomorphic multiplication in RM (1,

m) code is depicted in Figure 3.1, where notations of polynomials and vectors are
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𝑎(𝑥) 𝒄

𝑎′(𝑥) 𝒄′

𝒄𝒏𝒆𝒘 = Encoding ( 𝑎(𝑥)𝑎′ 𝑥 mod (𝑥𝑚+1 − 1) )

in RM(1,𝑚)

Bootstrapping technique

Step 1, Step 2, Step 3

RM(1,𝑚)

RM(1,𝑚)

Figure 3.1: Bootstrapping process in the first-order RM codes.

abused. The bootstrapping means resetting or re-booting the order of the RM codes,

here. I can do this as many times as necessary to finish the arbitrary homomorphic

computations. Notably, the above three steps can be combined into an (n + m) × n

linear transformation V XG. To perform Steps 1 and 2, I need the following theorem

and corollary.

Theorem 1. In the first-order RM code, RM(1,m), I have

cn−1−
∑m

i=1 αi2i−1 = a0 +
m∑
i=1

αiai,

where the transpose of (α0, α1, · · · , αm) denotes the p-th column of G with p = n−

1−
∑m

i=1 αi2
i−1.

Proof: From (2.2), I have

cp = (a0, a1, · · · , am)(p-th column of G)

=
m∑
i=0

aigip,

where gip denotes the (i, p) element of G. Clearly, the first row of G is all-one vector,
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that is, α0 = 1, and thus every cp includes a0. Then, for the remaining rows of G, I

should add ai if the (i+ 1)-th component of p-th column of G is ‘1’.

It can be observed that the p-th column of the generator matrix of RM(1,m) ex-

cept the first row, is the one’s complement of the binary representation of p. Let

(1, α1, α2, · · · , αm)T be the p-th column of G. Then, I have p = 2m−1−
∑m

i=1 αi2
i−1.

Thus, the theorem is proved.

□

From Theorem 1, it is straightforward to obtain the following corollary.

Corollary 1. In the first-order RM code, RM(1,m), I have

c0 + c2i−1 = ai, i = 1, 2, · · · ,m.

□

Using the above theorem and corollary, the three steps of bootstrapping are ex-

plained in detail as follows.

Step 1: Coefficient mapping from c and c′ to the coef(vivj)

Here, I will represent the coefficients of vivj in (3.3) by using the components of

the codewords, c = (c0, c1, · · · , cn−1) and c′ = (c′0, c
′
1, · · · , c′n−1) as follows. Thus,

it is denoted as

coef(vivj) = fij(c0, c1, · · · , cn−1, c
′
0, c

′
1, · · · , c′n−1).

The function fij can be determined by considering the following four cases with

variations of i and j.

Case 1-1) i ̸= j and i, j ̸= 0:
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From (3.3), the coefficient of vivj becomes aia′j + aja
′
i. I can express this as

coef(vivj) = aia
′
j + aja

′
i

= (a0 + ai + aj)(a
′
0 + a′i + a′j)

+ (a0 + ai)(a
′
0 + a′i) + (a0 + aj)(a

′
0 + a′j)

+ a0a
′
0

and from Theorem 1, I have

coef(vivj) = cn−1−2i−1−2j−1c′n−1−2i−1−2j−1

+ cn−1−2i−1c′n−1−2i−1

+ cn−1−2j−1c′n−1−2j−1

+ cn−1c
′
n−1.

Case 1-2) i ̸= 0, j = 0:

From (3.3), the coefficient of viv0 = vi becomes aia′0 + a0a
′
i. I can express this

as

coef(vi) = aia
′
0 + a0a

′
i

= (a0 + ai)(a
′
0 + a′i)

+ a0a
′
0

+ aia
′
i

and from Theorem 1 and Corollary 1, I have

coef(vi) = cn−1−2i−1c′n−1−2i−1

+ cn−1c
′
n−1

+ (c0 + c2i−1)(c′0 + c′2i−1).

This case is very similar to Case 1-1), but I cannot use Theorem 1 when j = 0. Thus,

I separate this from Case 1-1) and use Corollary 1.
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Case 2-1) i = j ̸= 0:

From (3.3), I can express the coefficient as

coef(vi2) = aia
′
i

and from Corollary 1, I have

(c0 + c2i−1)(c′0 + c′2i−1).

It should be noted that the Boolean function vi
2 is equal to vi. However, I have

separated these two cases because coef(vi) corresponds to coef(xi) and coef(vi2)

corresponds to coef(x2i mod(m+1)).

Case 2-2) i = j = 0:

From (3.3), I can express the coefficient as

coef(v0) = a0a
′
0

and from Theorem 1, I have

cn−1c
′
n−1.

By merging the above four cases, I can make a binary (n+m)× (k2 +m) matrix

V , which is a linear transformation from

(c0c
′
0, c1c

′
1, · · · , cn−1c

′
n−1, (c0 + c20)(c

′
0 + c′20),

(c0 + c21)(c
′
0 + c′21), · · · , (c0 + c2m−1)(c′0 + c′2m−1))

to

(coef(v0), coef(v1), · · · coef(vm),

coef(v1v2), coef(v1v3), · · · coef(vm−1vm),

coef(v12), coef(v22), · · · , coef(vm2)).

Step 2: Message mapping
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I will derive the coefficient
∑

i+j=l mod (m+1) aia
′
j of xl in (3.1) with a function gl

as

coef(xl) =
∑

i+j=l mod(m+1)

aia
′
j

= gl(coef(vivj)). (3.4)

I can determine gl as given in the following theorem.

Theorem 2. In the first-order RM code, RM(1,m), coef(xl) in (3.1) is given as

coef(xl) =
∑

i+j=l mod(m+1)

coef(vivj).

Proof: It can be easily observed that (3.3) can be rewritten as

m∑
l=0

(
∑

i+j=l mod(m+1)

aia
′
jvivj). (3.5)

Focusing on the coefficients of vivj in (3.5), when i+ j = l mod (m+1), the sum of

coef(vivj) is the sum of aia′j . And this result equals the coefficients of xl also from

(3.4). Thus, the theorem is proved. □

Now, by using Theorem 2, I can perform a linear transformation from

(coef(v0), coef(v1), · · · , coef(vm),

coef(v1v2), coef(v1v3), · · · , coef(vm−1vm),

coef(v12), coef(v22), · · · , coef(vm2))

to

(coef(x0), coef(x1), · · · , coef(xm))

denoted by (k2 +m)× k matrix X , where k2 =
(
m
0

)
+
(
m
1

)
+
(
m
2

)
.

After merging Steps 1 and 2, I obtain

coef(xl) = gl(fij(c0, c1, · · · , cn−1, c
′
0, c

′
1, · · · , c′n−1)).
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Step 3: Re-encoding of RM(1,m)

Here, the k × n generator matrix G is multiplied to obtain a new codeword of

the first-order RM code that corresponds to the resulting codeword obtained for the

multiplication of the two messages, a(x)a′(x) mod xm+1 − 1.

Combining Steps 1–3

In the case of addition, the codeword of the message a(x) + a′(x) is c⊕ c′. How-

ever, for multiplication, it is divided into three steps called bootstrapping.

Let

z = (c0c
′
0, c1c

′
1, · · · , cn−1c

′
n−1, (c0 + c20)(c

′
0 + c′20),

(c0 + c21)(c
′
0 + c′21), · · · , (c0 + c2m−1)(c′0 + c′2m−1)).

Then, the new codeword cnew in RM(1,m), corresponding to a(x)a′(x) mod xm+1−

1, is given as

cnew = z · V ·X ·G.

Finally, I can determine the codeword cnew in RM(1,m), corresponding to the

message a(x)a′(x) mod xm+1 − 1, by using c, c′, and the (n + m) × n matrix,

T = V ·X ·G.

Note: In fact, there exist a few all-zero rows in V for some row indices. This is

because I do not use every case listed in Theorem 1 in Step 1. Only

cn−1−2i−1−2j−1c′n−1−2i−1−2j−1 , cn−1−2i−1c′n−1−2i−1 , cn−1−2j−1c′n−1−2j−1,

and cn−1c
′
n−1 are used for Cases 1-1), 1-2), 2-1), and 2-2). Thus, for the rest of ci and

c′i, I have all-zero rows in V and I add (c0 + c20)(c
′
0 + c′20), (c0 + c21)(c

′
0 + c′21), · · · ,

and (c0 + c2m−1)(c′0 + c′2m−1) to the last m elements in z.
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3.3 Example in RM(1,4)

To help understand the homomorphic computation of the first-order RM codes, RM(1,m),

I present an example of an RM(1,4) code. First, I determine the matrix as

V =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 1 0 0 0 0 0

0 1 0 0 0 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1



.

This matrix is obtained by merging Cases 1-1), 1-2), 2-1), and 2-2), whose size is

20× 15. In this example, the 0, 1, 2, 4, and eighth rows are ‘0’s.
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Then, in Step 2, I can obtain the relations between coef(xl) and coef(vivj) as

coef(x0) = coef(v02) + coef(v1v4) + coef(v2v3)

coef(x1) = coef(v0v1) + coef(v2v4) + coef(v32)

coef(x2) = coef(v0v2) + coef(v12) + coef(v3v4)

coef(x3) = coef(v0v3) + coef(v1v2) + coef(v42)

coef(x4) = coef(v0v4) + coef(v1v3) + coef(v22).

From Theorem 2, the corresponding matrix X is given as

X =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0



,

where the matrix size is 15 × 5. For Step 3, I obtain the 5 × 16 generator matrix G
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from (1) as

G =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0


.

Then, by multiplying these three matrices, I obtain a matrix T with the size of 20× 16

as

T =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0



.
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Now, I obtain a new codeword cnew of the first-order RM code by multiplying T

on the right of the vector z. Thus, cnew corresponds to the codeword of the message

multiplication polynomial a(x)a′(x) mod x5 − 1 in RM(1,4), as given in Table 3.2,

where I have presented three examples.

Table 3.2: Examples with RM(1,4) codes

Example 1) Example 2) Example 3)

a (01000) (00010) (00011)

a′ (00010) (00001) (10101)

c (1010101010101010) (1111000011110000) (0000111111110000)

c′ (1111000011110000) (1111111100000000) (1100110000110011)

apm (00001) (00100) (11101)

z
(1010000010100000

0000)

(1111000000000000

0000)

(0000110000110000

0001)

anew (00001) (00100) (11101)

cnew (1111111100000000) (1100110011001100) (1010010110100101)

For message vectors a and a′, I have c and c′. Then, I determine a vector z and

perform Steps 1 and 2, which are the matrices V and X . Thus, I obtain a new message

vector “anew” and this corresponds to the polynomial multiplication of two messages,

a(x)a′(x) mod x5−1, also denoted as “apm.” Finally, I obtain a new codeword cnew

of the first-order RM code by multiplying the generator matrix G.
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3.4 Other Trials of Making Homomorphic Encryption in Code-

Based Cryptosystems

3.4.1 Homomorphic Computation in Reed-Muller Codes with Error

Considering the homomorphic computation method in RM codes of the previous sec-

tions, if there exist errors on codewords, I can think of the following three trials to

solve this problem.

First, I can gain z′ and c′new directly from c+e and c′+e′ as Figure 3.2. If c′new can

be decoded to anew, the homomorphism is possible. However, c′new can be decoded to

a message, which is not anew.

𝑎(𝑥) 𝑐

𝑎′(𝑥) 𝑐′

𝑐𝑛𝑒𝑤′ = 𝑧′𝑉𝑋𝐺

(Step 1, Step 2, Step 3)

RM(1,𝑚)

RM(1,𝑚)

𝑎𝑛𝑒𝑤 = 𝑎𝑝𝑚

= 𝑎 𝑥 𝑎′ 𝑥 𝑚𝑜𝑑 (𝑥𝑚+1 − 1)

𝑧′

Decode

𝑐 + 𝑒

𝑐′ + 𝑒′

Figure 3.2: Trial on the bootstrapping process in the first-order RM codes with errors.

Secondly, I can consider a method of decoding the multiplication of c + e and

c′+e′ and matching this to z of Section 3.2. Then from z, I can make the same process

as Figure 3.1. The multiplication of c + e and c′ + e′ makes cc′ and ce′ + c′e + ee′.

cc′ is the original codeword multiplication and ce′ + c′e+ ee′ is the error parts. When

ce′+ c′e+ ee′ has a smaller Hamming weight than the error correcting capability, it is

decodable with RM(2,m)-decoding. The error correcting capability t is
⌊
2m−2−1

2

⌋
. It
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is possible to gain the former part of z from cc′, but it is hard to gain the latter part of

z.

At last, I can decode c+ e and c′ + e′, respectively by using RM(1,m)-decoding.

The error correcting capability t is
⌊
2m−1−1

2

⌋
. Then I can apply the same bootstrapping

technique as Figure 3.1. This is the only way to make homomorphism possible with

errors.

On the other hand, for the addition process, the addition of codewords is another

codeword. However, homomorphism is only possible until the added errors are in the

error-correcting range.

In the process of data transfer, errors can occur at any time. Thus, countermeasures

to errors and knowing the possible correction range are important. For further work,

error-tolerant homomorphic computation is needed not only for the first-order RM

codes but also for higher-order RM codes.

3.4.2 Hybrid McEliece Cryptosystem Using Constant Weight Constant

Distance Codes

Generally, in McEliece public key encryption, the decoding algorithm of the codes,

scrambling matrix, and permutation matrix are set to be secret keys. The randomized

generator matrix obtained from these matrices becomes the public key and the cipher-

text is obtained from the addition of the codeword and error. Here, the codeword is a

multiplication of the message and randomized generator matrix. The error is a random

vector with Hamming weight of t.

The hybrid McEliece cryptosystem is a modification of the original McEliece cryp-

tosystem. For difference, the systematic generator matrix is used and the error is con-

structed from the message by using a function ϕn,t [54]. The algorithm of the hybrid

McEliece cryptosystem is depicted as Algorithm 3. I start with two integers m and

t to set the length and dimension of binary Goppa codes. The length is 2m and the

dimension is n−mt. In a key generation, I set the public key as a k × (n− k) binary
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matrix R. (I|R) is a generator matrix of binary Goppa codes G. ΨG, which is the

decoder of G, becomes a secret key. In encryption, I encrypt a plaintext (m1,m2) to a

ciphertext y. ϕn,t is a mapping from a length l-vector to a length n-vector, which has

a Hamming weight of t. In decryption, I decode y to a codeword x using the decoder

ΨG. Then I match this to the plaintext (m1,m2). m1 is the same as x1 and m2 is equal

to ϕ−1
n,t(y − x).

Algorithm 3 Hybrid McEliece public key encryption scheme [54]
System parameters :

Two integers m and t : Let the length n = 2m and the dimension k = n−mt

Key Generation :

Public key : A k× (n−k) binary matrix R such that (I|R) is a generator matrix

of binary Goppa codes G

Secret key : Decoder ΨG

Encryption : {0, 1}k × {0, 1}l → {0, 1}n

(m1,m2) 7→ y = (m1|m2R) + ϕn,t(m2)

where ϕn,t is a mapping from {0, 1}l to {0, 1}n with Hamming weight t.

Decryption : {0, 1}n → {0, 1}n → {0, 1}k × {0, 1}l

y 7→ ΨG(y) = x = (x1, x1R) 7→ (m1,m2) = (x1, ϕ
−1
n,t(y − x))

where x is a codeword obtained from y using ΨG.

The point is that if I use constant weight constant distance codes as ϕn,t, the

scheme becomes an additively homomorphic encryption scheme. It is because the error

made after the addition of ciphertexts is correctable.

For example, using (7,4)-Hamming codes, the additive homomorphism is possible.

The codewords with Hamming weight 4 in (7,4)-Hamming codes are given as
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c1 = 1001011

c2 = 0010111

c3 = 0101110

c4 = 1011100

c5 = 0111001

c6 = 1110010

c7 = 1100101.

Note that all of these seven codewords have Hamming weight of 4 and also every

two of these have a distance of 4. Also, they have a special characteristic that a code-

word is a cyclic shift of another codeword. These codes are called cyclic difference

sets (CDS). Four examples of CDSs are shown in Table 3.3. v implements the number

of whole possible indices, k is the number of codewords for one index, and λ means

the number of the same indices of two codewords. Let CDS be the set of indices, n be

the length, w be the weight, and d be the distance of the sets. These have relationship

of n = v, w = k, and d = 2(k − λ). I can see that these are all constant weight

constant distance codes. The first example is the (7,4)-Hamming code with weight 4

as I explained above.

Table 3.3: The examples of CDSs

(v, k, λ) CDS n w d

(7,4,2) {0,3,5,6} 7 4 4

(21,5,1) {3,6,7,12,14} 21 5 8

(31,6,1) {6,8,9,14,26,30} 31 6 10

(40,13,4) {1,2,3,5,6,9,14,15,18,20,25,27,35} 40 13 18

Similarly, balanced incomplete block designs (BIBD) can be used. (t−v, b, r, k, λ)

BIBD is composed of v elements, b blocks, number of blocks for one point r, number
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of points in a block k, and number of blocks for t (usually t = 2) points λ [55].

The notations are confused with the parameters of CDSs. Considering constant weight

constant distance codes, it satisfies n = b, w = r, and d = 2(r−λ). Three examples of

BIBDs are shown in Table 3.4. Also, Table 3.5 is the specification of the first example,

2-(6,10,5,3,2) BIBD.

Table 3.4: The examples of BIBDs

v b r k λ n w d

6 10 5 3 2 10 5 6

51 425 25 3 1 425 25 48

105 546 26 5 1 546 26 50

Table 3.5: 2-(6,10,5,3,2) BIBD

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Thus, it is possible to make constant weight constant distance codes using CDSs

and BIBDs. That means in a hybrid McEliece cryptosystem, if I use these CDSs and

BIBDs as ϕn,t, I can correct errors even after the addition. However, it is hard to match

the desired n,w, and d values exactly. Also, it is hard to achieve homomorphism for

twice or more addition. These are further works to be solved.
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3.4.3 Additive Homomorphism on Niederreiter Cryptosystem with Fixed

Errors

Niederreiter public key encryption scheme is a dual version of the McEliece public

key encryption scheme. The NIST PQC round 4 algorithm Classic McEliece is based

on this scheme. It is specified as Algorithm 4. For key generation, I construct Hpub by

multiplying S,H, and P . H is the parity check matrix of binary Goppa codes, which

is made from the generator matrix G. S and P are random invertible matrices. The

public key is Hpub and the secret keys are S,H, and P . For encryption, I compute

the ciphertext c from the message e by multiplying Hpub on the left side. For de-

cryption, I compute c′ from multiplying the inverse of S to c. Then, I decode c′ to e′

using the decoding algorithm of binary Goppa codes. At last, I return ê by multiplying

the inverse of P to e′. If ê is the same as the original message e, the decryption is

successful.

If the fixed errors are used, homomorphic addition in the Niederreiter scheme is

partially possible. First, I use a constant weight constant distance code as

G′ =



1110010

1100101

0010111

0111001

1001011

1011100

0101110


. (3.6)

G′ is obtained from the codewords with Hamming weight 4 in (7,4)-Hamming

codes. Then, using scrambling matrices Sij , I obtain a matrix D as
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Algorithm 4 Niederreiter public key encryption scheme [45]
Key Generation :

G: k × n generator matrix of binary Goppa codes

t: Error-correcting capability of the binary Goppa codes

H: (n− k)× n parity check matrix from G

S
$←− F

(n−k)×(n−k)
2 ,P

$←− Fn×n
2

Hpub ← SHP

Public key: Hpub

Secret key: S,H, P

Encryption :

Compute ciphertext from message e :

c← Hpube

Decryption :

Compute c′ ← S−1c

Decode c′ to e′ using the decoding algorithm of the Goppa codes

Return ê← P−1e′
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D =


S11G

′ · · ·S1aG
′

. . .

Sa1G
′ · · ·SaaG

′

 , (3.7)

where i and j are integers from 1 to a. At last, I obtain a matrix E as

E =
(
D|L

)
P ′, (3.8)

by concatenating a matrix L and multiplying a permutation matrix P ′. Every row

in L has Hamming weight of b.

If the errors are fixed with the rows of E, the addition is possible at least once. The

Hamming weights of errors before addition are constant as 4a + b and these become

4a+2b after adding once. Thus, the decryption is possible until the Hamming weights

of errors are smaller than the error correcting capability t.

There are five parameters for Classic McEliece. By using the proposed method, I

can set the parameters as in Table 3.6 for one-time addition. I set the values of a, b, w,

and s to make n, k, w′, and s′ after one-time addition. n, k, w′, and s′ are the original

parameters of Classic McEliece. n is the length of the codes and k is the dimension.

w′ is the maximum Hamming weight of each row after addition, ŵ is the maximum

Hamming weight without using E, and w is the maximum Hamming weight before

addition. s′ is the security level after addition and s is the security level before addition.

s is obtained from the value of cw, which is an approximate value of the security level

in Classic McEliece [38]. c is approximate value of − log2 (1− k/n). The values of s

are set among 128, 192, and 256-bit security and these have smaller values than cw’s.

As a result, the addition is impossible for (1), however, it is possible for (2)–(5) by

reducing the security levels as in Table 3.6.
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Table 3.6: Parameter change of Classic McEliece after one-time addition

n k w′ s′ a b ŵ w cw s

(1) 3488 2720 64 128 9 14 32 50 109.16 x

(2) 4608 3360 96 192 13 22 48 74 139.45 128

(3) 6688 5024 128 256 18 28 64 100 200.69 192

(4) 6960 5413 119 256 15 29 59 89 193.10 192

(5) 8192 6528 128 256 18 28 64 100 229.96 192
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Chapter 4

Improving Key Size and Bit-Security of Modified pqsi-

gRM

In this chapter, first I explain the details of Modified pqsigRM. Then, I present Improved

Modified pqsigRM, which improves the key size of Modified pqsigRM, by making a

public key into a systematic form and choosing new parameters for the keys. I show

how to make the public key in a systematic form. I also present the new parameter

sets, the expected strength of them, and the design rationale. Then, the improved key

sizes after choosing new parameters are introduced. Moreover, the bit-security is also

shown to be improved. The comparison with other PQC schemes is explained, too. The

public key and signature sizes comparing these with the proposed scheme are intro-

duced. Also, the verification cycles compared with other NIST PQC finalist schemes

are specified. Then the enhanced version of this algorithm called Enhanced pqsigRM,

is introduced. I enhance some specifications of the algorithm considering the review

of the NIST PQC organizer team. I use the systematic public key, minimize the secret

key, simplify the hash function, and solve the security issues.
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4.1 Modified pqsigRM

pqsigRM is an RM code-based digital signature scheme, which was presented in the

first round of the NIST PQC conference. There are several versions of pqsigRM. The

original pqsigRM used column puncturing and insertion techniques for key generation

[23]. However, there is an attack finding the puncturing locations with the hull. The

most recent version is Modified pqsigRM [24], which uses partial permutation, row

appending, and replacement. There has been no valid attack on it yet.

The process of constructing the generator matrix of modified RM codes is com-

prised of four steps as follows [24].

Step 1: Making partially permuted RM codes

It is possible to express RM codes by applying the recursive structure. In Modi-

fied pqsigRM, I first partially permute the recursive generator matrix as in Figure 4.1.

Then, I make the same permutation σ1’s on GRM(r,m−2)’s and the other permutation

σ2 on GRM(r−2,m−2), respectively. σ1 and σ2 are independent permutations, which

randomly permute p columns out of n/4 columns. This structure allows us to protect

the codes from attack using hull.

Step 2: Replacing GRM(r,r)’s with random codes

When I make the recursive structure of RM codes repeatedly, I obtain GRM(r,m)’s

on the first 2r rows. I replace these with 2m−r number of the same (2r, krep)-codes

as in Figure 4.2. Additionally, the dual code of these (2r, krep) random codes should

include at least one non-zero codeword with an odd Hamming weight. This step makes

the code to be robust from the attack using its dual code.

Step 3: Appending independent random codewords

In this step, I append kapp number of independent random codewords which have

at least one non-zero codeword with an odd Hamming weight as in Figure 4.2. By

doing this, I can make the codes not to be distinguished.
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𝐺𝑅𝑀(𝑟,𝑚−2) 𝐺𝑅𝑀(𝑟,𝑚−2)

0 𝐺𝑅𝑀(𝑟−1,𝑚−2)

𝐺𝑅𝑀(𝑟,𝑚−2) 𝐺𝑅𝑀(𝑟,𝑚−2)

0 𝐺𝑅𝑀(𝑟−1,𝑚−2)

0
𝐺𝑅𝑀(𝑟−1,𝑚−2) 𝐺𝑅𝑀(𝑟−1,𝑚−2)

0 𝐺𝑅𝑀(𝑟−2,𝑚−2)

𝜎1

𝜎2

𝜎1𝜎1𝜎1

Figure 4.1: The structure of partially permuted RM codes.

Partially 
permuted 
RM code

⋯

A random codeword of dual code

Independent random codewords 𝑘𝑎𝑝𝑝

𝑘𝑟𝑒𝑝

: Generator matrix of random (2𝑟 , 𝑘𝑟𝑒𝑝) code 

which replaces 𝐺𝑅𝑀(𝑟,𝑟) of partially permuted RM code 

⋯

⋯

⋯ ⋯

⋯

Figure 4.2: The structure of modified RM codes.
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Step 4: Appending a dual code codeword

The last step is to append a codeword from the dual code of the whole code as in

Figure 4.2. This step prevents the leakage of the information of the hull.

With these four steps, I can construct the modified RM codes, which are strong

against all possible attacks or information leakage.

Then the modified RM codes are used in the process of the signature scheme of

Modified pqsigRM as in Algorithm 5. Modified pqsigRM follows the structure of CFS

digital signature scheme. In Key Generation, a parity check matrix of modified RM

codes H , random non-singular matrix S, and permutation non-singular matrix Q are

set. The public key becomes H ′, which is a multiplication of S, H , and Q. The secret

key includes matrices S,H, and Q. Then, in Signing process, syndrome with a hash

function h, message m, and counter i are set. Then s′, e′, and e are computed in

order. The decoding algorithm of modified RM codes is used while computing e′. The

signature becomes (m, e,i). In Verification, the signature is verified if the Hamming

weight of e is smaller than or equal to the error correcting capability w and if H ′eT

is equal to h(h(m|H ′)|i).

Moreover, Modified pqsigRM resists all known attacks against cryptosystems based

on the RM codes such as Minder-Shokrollahi attack [51], Chizhov-Borodin attack

[52], and square code attack [53]. Also, it resists the attacks on the hull, which were

proposed against the original version of pqsigRM. Furthermore, they have proven the

existential unforgeability under a chosen message attack (EUF-CMA) security with

decoding-one-out-of-many (DOOM) problem [24].

4.2 Improved Modified pqsigRM : Improving Key Size and

Bit-Security of Modified pqsigRM

Modified pqsigRM is a promising code-based PQC digital signature scheme. However,

it has a problem with large public key sizes. To improve this issue, I propose a scheme
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Algorithm 5 Signature scheme of Modified pqsigRM [24]
Key Generation :

G: k × n generator matrix of modified RM codes

H: (n− k)× n parity check matrix of modified RM codes

S
$←− F

(n−k)×(n−k)
2 ,Q

$←− Fn×n
2

H ′ ← SHQ

Public key: H ′

Secret key: S,H,Q

Signing :

m: Message, i←↩ {0, 1}λ0 : Counter

s← h(h(m|H ′)|i): Syndrome

s′T ← S−1sT

e′ ← Decode(s′;H)

eT ← Q−1e′T

Signature: (m, e, i)

Verification :

If wt(e) ≤ w and H ′eT = h(h(m|H ′)|i),
return ACCEPT

Else, return REJECT

*h: hash function with {0, 1}∗ → {0, 1}n−k

*DECODE: Decoding algorithm of modified RM codes

*wt(a): Hamming weight of a vector a

*w: error correcting capability of modified RM codes
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called Improved Modified pqsigRM. I reduce public key sizes to more than half of

Modified pqsigRM. Also, I improved the exact bit-security compared with the original

Modified pqsigRM.

4.2.1 Public Key in Systematic Form

Improved Modified pqsigRM follows the same algorithm as Modified pqsigRM as in

Algorithm 5. The main difference is the usage of the systematic public key. According

to the Algorithm 5, Modified pqsigRM uses a full (n− k)×n matrix H ′ = SHQ as

a public key. However, for Improved Modified pqsigRM, I make this to be a systematic

form as Hsys = (I | T ). Then I just use T as a new public key, which has a size of

(n− k)× k. This process reduces the public key size considerably.

4.2.2 Expected Strength for Each Parameter Set

1) Parameter Set Imp-pqsigRM-711

Security level satisfies 280. It uses (7,11)-modified RM codes with w = 55, p ≥

140, krep = 126, and kapp = 2.

2) Parameter Set Imp-pqsigRM-412

Security level satisfies 2128, which is the NIST PQC security category 1. It uses (4,12)-

modified RM codes with w = 1, 280, p ≥ 80, krep = 14, and kapp = 2.

3) Parameter Set Imp-pqsigRM-413

Security level satisfies 2256, which is the NIST PQC security category 5. It uses (4,13)-

modified RM codes with w = 2, 900, p ≥ 80, krep = 14, and kapp = 2.
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4.2.3 Design Rationale

1) Choosing the Parameter Sets

To choose proper parameter sets, I follow the method of Modified pqsigRM. First,

I choose r and m for the parameters. n and k are determined by these as 2m and∑r
i=0

(
m
i

)
, respectively. From n and k, I can numerically obtain the possible range of

Hamming weight of error, which is w. I can compute the security level by the work

factor of decoding one out of many (DOOM) problem. I control it by changing n and

w. If n is large, the security level increases, however, the key sizes get larger, too.

If w is small, the security level also increases, but the number of decoding iterations

must be larger, too. I can also control the decoding iterations by reducing the partial

permutation number p. However, if p is too small, it becomes similar to the original

RM codes. I found the lower bound of p, which does not reduce the randomness of the

hull.

If the modified RM codes’ hull has the same part as the original RM codes, there

exists a security problem. Then, the minimum Hamming weight codeword of the orig-

inal RM codes can be included in the hull and this allows the Minder-Shokrollahi

attack [51]. To avoid this, the modified RM codes’ hull should not be the subset of the

original RM codes. It means that hull(Cpub) ∖ RM(r,m) should be almost the same

as the hull. Cpub means the set of the modified RM codes and ∖ means the relative

complement [24].

The average dimensions of hull(Cpub) and hull(Cpub)∖RM(r,m) for full permuta-

tion (p = n/4) are given as Table 4.1. Choosing p without security loss, the dimension

of hull(Cpub) ∖ RM(r,m) should have a similar value as that of full permutation. To

find the smallest p, which has a small Hamming weight of errors and does not affect

the dimension of hull(Cpub)∖RM(r,m), I proceeded some numerical experiments. As

a result for example, the dimension of hull(Cpub)∖ RM(4,12) for 128-bit security pa-

rameters is shown in Figure 4.3. The dimension of hull(Cpub)∖RM(r,m) saturates on
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certain value of p. In the same way, p is determined larger than or equal to 140, 80,

and 80 for 80, 128, and 256 security levels, respectively.

Moreover, H can be represented with σ1
p, σ

2
p, krep = 2r − 2 (the maximum value),

and kapp = 2(the minimum value). Therefore, I obtain the values of n, k, w, p, krep,

and kapp of Improved Modified pqsigRM for each security level as Table 4.2.

Table 4.1: The dimensions of hull(Cpub) and hull(Cpub)∖ RM(r,m) for p = n/4

(r,m) (7,11) (4,12) (4,13)

n 2,048 4,096 8,192

k 1,817 795 1,094

dim(hull(Cpub)) 214 684 961

dim(hull(Cpub)∖ RM(r,m)) 140 80 80

2) Computing the Sizes of the Public Keys, Secret Keys, and Signatures

As mentioned in the previous subsection, the public keys are obtained from a system-

atic form of parity check matrix and it requires (n−k)k bits. These are 0.05, 0.31, and

0.93 MB for Imp-pqsigRM-711, Imp-pqsigRM-412, and Imp-pqsigRM-413,

respectively.

For the secret keys, if I only take the necessary information, it includes a matrix Q,

partial permutations σ1
p, σ

2
p , krep × 2r repeated replacing codes, kapp × n appending

codes, and 1 × n padding codeword of dual code. Q is an n × n permutation matrix,

which can be expressed with just a number. I use nm bits for Q because I need log2 n

bits to express a number and the number is from 0 to n. In the same way, σ1
p and

σ2
p need n(m − 2)/2 bits. The replacing codes, appending codes, and padding codes

need (2r − 2) × 2r, kapp × n, and 1 × n bits, respectively. Thus, the sizes of the

secret keys are 3nm/2+kappn+(2r−2)2r bits. These are 6,752, 10,268, and 22,044

bytes for Imp-pqsigRM-711, Imp-pqsigRM-412, and Imp-pqsigRM-413,
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Figure 4.3: The dimension of hull(Cpub)∖ RM(4,12) for variation of p.

Table 4.2: Parameter sets of Improved Modified pqsigRM for each security level

λ (security) 80 128 256

(r,m) (7,11) (4,12) (4,13)

n 2,048 4,096 8,192

k 1,817 795 1,094

w 55 1,280 2,900

p ≥ 140 ≥80 ≥80

krep 126 14 14

kapp 2 2 2
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respectively.

On the other hand, I need (n+64) bits for the signature lengths. n is for the length

of e, and 64 is for the size of a 64-bit integer i. The signature lengths are 264, 520, and

1,032 bytes for Imp-pqsigRM-711, Imp-pqsigRM-412, and Imp-pqsigRM-413,

respectively.

4.2.4 Improving Key Size by Choosing New Parameters

Using the systematic public key, I need a new setting for parameters as in Table 4.4.

Assuming n is equal, I should set k near 0 or n to make the systematic public key size

small because it is (n−k)×k. For RM codes, I can control k by changing r according

to the following Lemma.

Lemma 1. In RM codes for every r, r′ and m, it satisfies

RM(r′,m) ⊆ RM(r,m)

where r′ ≤ r [2].

Comparing Table 4.4 with Table 4.3, which is for the parameters of Modified pqsi-

gRM, I can see the reduced parameter sizes for the same code length and similar se-

curity level. Here, w is the maximum possible Hamming weight of error, and security

level means the bit-security of the signature scheme. (7,11)-Improved Modified pqsi-

gRM has similar security level with (5,11)-Modified pqsigRM and this has 0.20 times

of public key size. Additionally, (4,12) and (4,13)-Improved Modified pqsigRMs have

larger bit-securities and smaller key sizes by 0.40 and 0.23 times, compared with (6,12)

and (6,13)-Modified pqsigRMs, respectively.

4.2.5 Improving the Bit-Security

Moreover, to improve the bit-security of the signature scheme, I can use (5,13)-Improved

Modified pqsigRM instead of (4,13)-Improved Modified pqsigRM. It remains a little bit

more of a security margin but has a trade-off with the public key size.
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Table 4.3: Parameters of Modified pqsigRM

Modified pqsigRM

(r,m) (5,11) (6,12) (6,13)

n 2,048 4,096 8,192

k 1,025 2,511 4,097

w 325 495 1,370

Security level 80 128 256

Bit-security 83 130 259

Public key size (MB) 0.25 0.77 4.00

Table 4.4: Parameters of Improved Modified pqsigRM

Improved Modified pqsigRM

(r,m) (7,11) (4,12) (4,13) (5,13)

n 2,048 4,096 8,192 8,192

k 1,817 795 1,094 2,381

w 55 1,280 2,900 2,144

Security level 80 128 256 256

Bit-security 81 148 274 287

Public key size (MB) 0.05 0.31 0.93 1.65
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For Modified pqsigRM [24] or Improved Modified pqsigRM, I obtain the exact bit-

security by computing the work factor of solving the DOOM problem [56], which is

given as

WFM
q = min

p,l

(
Cq(p, l)

PqM (p, l)

)
. (4.1)

Cq(p, l) = max

(√
q

(
k + l

p

)
,
q
(
k+l
p

)
2l

)
is the complexity of solving the DOOM problem using Dumer’s algorithm, with the

condition of q ≤
(
k+l
p

)
, and

PqM (p, l) = 1−

(
1−

(
n−k−l
w−p

)(
k+l
p

)(
n
w

) )qM

is the success probability of it. q is the number of instances that the adversary has and

M is
(
n
w

)
/2n−k.

4.3 Comparison of Improved Modified pqsigRM with Other

PQC Schemes

4.3.1 Public Key and Signature Sizes of Improved Modified pqsigRM Com-

pared with Other PQC Schemes

As in Table 4.5, Improved Modified pqsigRM has a smaller public key and signature

than Wave [22]. Durandal has the smallest parameters among these. However, the se-

curity of this scheme is not fully proven yet [25]. It also has a similar public key size

with Classic McEliece [38], which is one of the finalists of the NIST PQC key encap-

sulation mechanism (KEM). As the public key size of Classic McEliece is acceptable

for NIST, Improved Modified pqsigRM seems to be acceptable also.

On the other hand, let’s take a look at Table 4.6, comparing with the NIST PQC

finalist schemes, which are Crystals-Dilithium [36], Falcon [37], and Sphincs+ [41].
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Despite reducing the public key sizes of Modified pqsigRM, Improved Modified pqsi-

gRM still has very large public key sizes compared with the NIST PQC finalists. How-

ever, I can see that it has the smallest signature size. Small signature size has a big

advantage because I send a public key once in the signature scheme, but I should send

the signature for every signing process.

Table 4.5: Comparison of Improved Modified pqsigRM with other code-based PQC

schemes

Security level

Improved

Modified

pqsigRM

Wave Durandal

Classic

McEliece

(KEM)

128
Public key (MB)

Signature (byte)

0.31

520

3.10

1,647

0.015

4,060
0.26

256
Public key (MB)

Signature (byte)

0.93

1,032

12.43

3,293
X 1.04

4.3.2 Verification Cycles of Improved Modified pqsigRM Compared with

Other NIST PQC Finalist Schemes.

1) Description of Platform

The following measurements are collected using a desktop computer with an i7-8700

CPU @ 3.20GHz. Turbo Boost is disabled. This machine has 32GB of RAM. Bench-

marks have run on one core of the CPU. Since the signing algorithm is a probabilistic

algorithm, the number of iterations at signing varies. The following result is the aver-

age of 100 experiments.

NIST said that the “NIST PQC Reference Platform” is “an Intel x64 running Win-
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Table 4.6: Comparison of Improved Modified pqsigRM with other NIST PQC finalist

schemes

Security level

Improved

Modified

pqsigRM

Crystals-

Dilithium
Falcon Sphincs+

128
Public key (byte)

Signature (byte)

310,000

520

1,312

2,420

897

666

32

7,856

256
Public key (byte)

Signature (byte)

930,000

1,032

2,592

4,595

1,793

1,280

64

29,792

dows or Linux and supporting the GCC compiler”. The proposed system is an x64

running Linux and supporting the GCC compiler. Beware, however, that different Intel

CPUs can output different results.

2) Number of Cycles

The following data are CPU cycles for Imp-pqsigRM-711, Imp-pqsigRM-412,

and Imp-pqsigRM-413 at i7-8700 CPU @ 3.20GHz. The measurements compared

with the finalists are given in Table 4.7. The data of the finalists are from the submit-

ted document to NIST and these can be a little bit different because the implementa-

tion conditions are different [36, 37, 41]. However, it is almost the same as Crystals-

Dilithium.

The verification cycles of Improved Modified pqsigRM is 172,669 cycles for aver-

age and 152,972 cycles for median with 128 bit-security. For average verification cy-

cles, these are 0.53 times those of Crystals-Dilithium. It is the second smallest among

the other NIST PQC finalist algorithms. However, these are very large for 256 bit-

security. These are about ten times those of Crystals-Dilithium.
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Table 4.7: Verification CPU cycles of Improved Modified pqsigRM compared with the

NIST PQC finalist schemes

Security
Improved Modified

pqsigRM

Verification cycles

Avg Median
Crystals-

Dilithium
Falcon Sphincs+

80 Imp-pqsigRM-711| 69,080 66,986 - - -

128 Imp-pqsigRM-412| 172,669 152,972 327,362 82,340 308,774

256 Imp-pqsigRM-413| 7,363,625 6,983,222 871,609 168,498 696,980

4.4 Enhanced pqsigRM

Considering the attacks using the information set decoding and finding the minimum-

weight codewords, I propose an enhanced version of these, called Enhanced pqsigRM.

It enhances the security issues of the previous work, but the parameters get worse.

Also, I use the systematic public key, minimize the secret key, and simplify the hash

function to enhance Modified pqsigRM.

4.4.1 Enhanced pqsigRM Signature Scheme

The signature scheme of Enhanced pqsigRM is given as Algorithm 6. First, I main-

tained the systematic public key as in Improved Modified pqsigRM. It has a public

key of (n − k) × k matrix T from Hsys = (I | T ), which is instead of the whole

(n − k) × n matrix H ′ = SHQ. Second, it minimize the secret key as Q, σ1
p, σ

2
p ,

krep × 2r (repeated) replacing codes, kapp × n appending codes, and 1 × n padding

codeword of dual code. Third, in signing, it uses the hash function once instead of

twice to make syndrome s. Fourth, I consider one more security issue, which is the

complexity of finding minimum-weight codewords. However, enhancing the security

issue made the parameter sets worse.
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Algorithm 6 Signature scheme of Enhanced pqsigRM
Key Generation :

G: k × n generator matrix of modified RM codes

H: (n− k)× n parity check matrix of modified RM codes

Q
$←− Fn×n

2

Hsys = (I|T)← SsysHQ

Public key: T

Secret key: Q, σ1
p, σ

2
p , krep× 2r (repeated) replacing codes, kapp×n appending

codes, and 1× n padding codeword of dual code

Signing :

m: Message, i←↩ {0, 1}λ0 : Counter

s← h(m|i): Syndrome

s′T ← Ssys
−1sT

e′ ← Decode(s′;H)

eT ← Q−1e′T

Signature: (m, e, i)

Verification :

If wt(e) ≤ w and Hsyse
T = h(m|i),

return ACCEPT

Else, return REJECT

*h: hash function SHAKE-128

*DECODE: Decoding algorithm of modified RM codes

*wt(a): Hamming weight of a vector a

*w: error correcting capability of modified RM codes
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4.4.2 Parameter Set

1) Parameter Set Enh-pqsigRM-613

Security level satisfies 2128, which is the NIST PQC security category 1. It uses (6,13)-

modified RM codes with w = 1, 370, p ≥ 572, krep = 62, and kapp = 2.

4.4.3 Design Rationale

1) Choosing the Parameter Sets

I should select proper values of n, k, w, p, krep, and kapp for Enhanced pqsigRM. I

choose these parameter sets of Enh-pqsigRM-613 in the same way as choosing

those of Improved Modified pqsigRM as in Section 4.2.3.

I can obtain the average dimension of hull(Cpub) and hull(Cpub) ∖ RM(r,m) as

Table 4.8. Also, I can see that the average of the dimension of hull(Cpub) ∖ RM(r,m)

tends to increase as p increases, and it is saturated when p is above a certain value, as

in Figure 4.4. Specifically, the dimension of hull(Cpub) ∖ RM(r,m) is saturated when

p is approximately equal to 572. Hence, p should be set larger than or equal to 572.

Moreover, H can be represented by σ1
p, σ

2
p, krep = 2r − 2 (the maximum value),

and kapp = 2(the minimum value). Therefore, I obtain the values of n, k, w, p, krep,

and kapp of Enhanced pqsigRM for 128-bit security level as Table 4.9.

Table 4.8: The dimensions of hull(Cpub) and hull(Cpub)∖ RM(r,m) for p = n/4

(r,m) (6,13)

n 8,192

k 4,097

dim(hull(Cpub)) 2,974

dim(hull(Cpub)∖ RM(r,m)) 572

62



500 520 540 560 580 600
p

420

440

460

480

500

520

540

560
Av

er
ag

e 
of

 d
im

(h
ul

l \
 R

M
)

Figure 4.4: The dimension of hull(Cpub)∖ RM(6,13) for variation of p.

Table 4.9: Parameter set of Enhanced pqsigRM

λ (security) 128

(r,m) (6,13)

n 8,192

k 4,097

w 1,370

p ≥572

krep 62

kapp 2
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2) Complexity of Finding Minimum-Weight Codewords

In Enhanced pqsigRM, I consider one more security issue, which is the complexity of

finding minimum-weight codewords. Using information set decoding, the probability

of successful decoding of the weight-w-error vector is as

Prob(Dec) =

(
n−k
w

)(
n
w

) =
(n− k)(n− k − 1) · · · (n− k − w + 1)

n(n− 1) · · · (n− w + 1)
≈ (

n− k

n
)
w

.

(4.2)

This probability works the same as finding the minimum-weight codewords prob-

lem when syndrome equals 0. Thus, I can get the same equation with (4.2). In other

words, the complexity of finding minimum-weight codewords is the inverse of (4.2)

substituting w to dmin as

Complexity = (
n

n− k
)
dmin

. (4.3)

I compute this with Enh-pqsigRM-613 and the result of the complexity is 2128.

On the other hand, for the DOOM problem, Enh-pqsigRM-613 has the work factor

of 2259, which is computed from the equation (4.1). That means, considering the com-

plexity of finding minimum-weight codewords, the security level goes down to 128-bit

security.

3) Computing the Sizes of the Public Keys, Secret Keys, and Signatures

Regarding the key sizes, first, the public key is a matrix T from a parity check matrix

given in the systematic form and it requires (n− k)k bits. The public key size is 2.00

MB for Enh-pqsigRM-613. It is 0.5 times the original Modified pqsigRM with

(6,13)-modified RM codes.

The secret key includes a matrix Q, partial permutations σ1
p, σ

2
p , krep×2r repeated

replacing codes, kapp×n appending codes, and a 1×n padding codeword of dual code.
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Q is an n×n permutation matrix, which can be expressed with just a number. I use nm

bits for Q because I need log2 n bits to express a number and the number is from 0 to

n. In the same way, σ1
p and σ2

p need n(m− 2)/2 bits. The replacing codes, appending

codes, and padding codes need (2r − 2) × 2r, kapp × n, and 1 × n bits, respectively.

Thus, the size of the secret key is 3nm/2 + kappn+ (2r − 2)2r. It is 22,512 bytes for

Enh-pqsigRM-613. It is 14,678,016 bytes for the original Modified pqsigRM with

(6,13)-modified RM codes. Thus, it has the effect of reducing the secret key size to

0.0015 times.

On the other hand, I need (n+64) bits for the signature lengths. n is for the length

of e, and 64 is for the size of a 64-bit integer i. The signature length is 1,032 bytes for

Enh-pqsigRM-613.

4.5 Comparison of Enhanced pqsigRM with Other PQC Schemes

4.5.1 Public Key and Signature Size of Enhanced pqsigRM Compared

with Other PQC Schemes

The public key and signature sizes of Enhanced pqsigRM, which satisfies the 128-

bit security, are given in Table 4.10. Compared with the NIST PQC finalist schemes

[36,37,41], Enhanced pqsigRM still has very large public key size and has the smallest

signature size except for Falcon.

Also, I compare these with the other code-based signature schemes [22, 25, 38]

in Table 4.11. Enhanced pqsigRM has the smallest signature size among these. Also,

it has a smaller public key size than Wave. Durandal has an extremely small public

key, however, its security relies on the security rank metric decoding problem. Classic

McEliece is a key encapsulation mechanism (KEM), however, I bring this to compare

with the proposed scheme. If Classic McEliece can be acceptable as a NIST PQC

candidate, the proposed scheme is also acceptable regarding the public key size.

65



Table 4.10: Public key and signature sizes of Enhanced pqsigRM compared with the

finalist signature schemes of NIST PQC

Security

Enhanced

pqsigRM

Crystals-

Dilithium
Falcon Sphincs+

Public

key(MB)

Signature

(byte)

Public

key(byte)

Signature

(byte)

Public

key(byte)

Signature

(byte)

Public

key(byte)

Signature

(byte)

128 2.00 1,032 1,312 2,420 897 666 32 7,856

Table 4.11: Public key and signature sizes of Enhanced pqsigRM compared with other

code-based signature schemes

Security

Enhanced

pqsigRM
Wave Durandal

Classic McEliece

(KEM)

Public

key(MB)

Signature

(byte)

Public

key(MB)

Signature

(byte)

Public

key(MB)

Signature

(byte)

Public key

(MB)

128 2.00 1,032 3.10 1,647 0.015 4,060 0.26

4.5.2 Verification Cycles of Enhanced pqsigRM Compared with Other

NIST PQC Finalist Schemes.

1) Description of Platform

The following measurements are collected using a desktop computer with an i7-12700

CPU @ 2.10GHz. Turbo Boost is disabled. This machine has 16GB of RAM. Bench-

marks have run on one core of the CPU.
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2) Number of Cycles

The measurements of CPU cycles compared with the finalists are given in Table 4.12.

The data of the finalists are from the submitted documents to NIST and these can

be a little bit different because the implementation conditions are different [36, 37,

41]. However, it is almost the same with Crystals-Dilithium. Compared with Crystals-

Dilithium, I have about 0.74 times of average verification cycles for 128 bit-security.

It is the second smallest among the NIST PQC finalist algorithms.

Table 4.12: Verification CPU cycles of Enhanced pqsigRM compared with the NIST

PQC finalists

Security
Verification cycles

Enhanced

pqsigRM

Crystals-

Dilithium
Falcon Sphincs+

128 242,901 327,362 82,340 308,774

The verification CPU cycles of Enh-pqsigRM-613 are 242,901 (average) and

235,656 (median). The average value is the smallest among other NIST PQC finalists

except for Falcon.

Furthermore, for key generation, these are 2,034,133,439 (average) and 2,038,358,872

(median). For signing, these are 2,232,288 (average) and 1,366,500 (median).

4.5.3 Memory Usage

Enh-pqsigRM-613 takes 53,334,140 bytes of memory usage. Also, there is no

memory leakage.
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Chapter 5

Conclusion

In this dissertation, research works on homomorphic computation in RM codes and

improving Modified pqsigRM were presented.

In Chapter 3, I suggested a transformation method, called bootstrapping, which

facilitates the homomorphic multiplication of the first-order RM codes while preserv-

ing the order of the RM codes after the computation (addition and multiplication). For

addition, it was evident to match the polynomial addition of messages and vector ad-

dition of codewords because RM codes are linear. However, for multiplication, some

works were needed. I found a relation between the proposed codeword multiplication

c ⊙ c′ and the multiplication of messages. I employed three steps to perform this and

called this ‘bootstrapping.’ In Step 1, I expressed the coefficients of vivj with the

components of the codewords c0, c1, · · · , cn−1, c
′
0, c

′
1, · · · , and c′n−1. In Step 2, I rep-

resented the coefficients of xl with the coefficients of vivj . Thus, by merging these

two steps, I constructed a relation between the codeword components and coefficients

of xl, which are the components of message polynomial multiplication. I encoded

this process by multiplying the generator matrix in Step 3 to obtain the correspond-

ing first-order RM codes’ codeword. Thus, this bootstrapping method reset the order

of the first-order RM codes and made multiplication possible for infinite times. This

research can be a preceding work of constructing a code-based homomorphic encryp-
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tion scheme. Furthermore, I proposed some trials of making homomorphic encryption

in code-based cryptosystems. I presented a method of homomorphic computation in

Reed-Muller codes with errors, a hybrid McEliece cryptosystem using constant weight

constant distance codes, and additive homomorphism on the Niederreiter cryptosystem

with fixed errors.

In Chapter 4, I improved Modified pqsigRM with key size and bit-security. The

Modified pqsigRM is one of the promising algorithms in code-based PQC digital sig-

nature schemes. It was a modified version of pqsigRM, which was presented in the

first round of the NIST PQC standardization process. It had a big advantage of small

signature sizes compared with the other NIST PQC finalist schemes, and this was an

important feature because signatures should be sent in every signing process. However,

it had the disadvantage of large public key sizes. In this dissertation, I improved the

parameters of Modified pqsigRM by making them into a systematic form of the public

key and resetting the parameters. I called this proposed scheme as Improved Modified

pqsigRM. In conclusion, I reduced the public key sizes to smaller than half of the orig-

inal Modified pqsigRM. Also, I could improve the exact bit-security, too. However,

the public key sizes of Improved Modified pqsigRM were still large compared with

the other digital signature finalist schemes of the NIST PQC standardization process.

Thus, I could reduce these to 0.20, 0.40, and 0.23 times of public key sizes compared

to the Modified pqsigRM parameters for 80, 128, and 256 security levels, respectively.

Also, I obtained a larger exact bit-security for these parameters than Modified pqsi-

gRM. Compared with NIST PQC finalist algorithms, public key sizes were still large,

but signature sizes were the smallest among all. Moreover, I calculated the verifica-

tion cycles compared with the NIST PQC finalist algorithms. For 128 bits of classical

security, the signature size of the proposed signature scheme was 520 bytes, which

corresponds to 0.21 times that of Crystals-Dilithium, and it was the second smallest

among the NIST PQC finalist algorithms. The number of average verification cycles

was 172,669, which corresponds to 0.53 times that of Crystals-Dilithium, and it was
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the second smallest among the NIST PQC finalist algorithms.

Furthermore, I proposed an enhanced version of these, called Enhanced pqsigRM,

considering the attacks using the information set decoding and finding the minimum-

weight codewords. Thus, I enhanced the security issues of the previous work, but the

parameters got worse. I maintained the systematic public key as in Improved Modified

pqsigRM. Also, I minimized the secret key size by taking the essential parts. Moreover,

I simplified the hashing process by using the hash function just once instead of twice.

Compared with the original Modified pqsigRM, the public key size was reduced to 2.0

MB, which is 0.5 times the previous one, and the secret key size was reduced to 22,512

bytes, which is 0.0015 times the previous one.

Note that Enhanced pqsigRM had an advantage of a short signature size. It is a very

important feature in digital signature schemes because the signature should be sent for

every signing process, while the public key is made once. Also, note that it had the

advantage of fast verification cycles. It is also a significant issue because on the aspect

of a consumer, verifying the signature fast is important. NIST also mentioned that these

two features will be considered in the additional digital signature scheme submission.

The signature size was 1,032 bytes, which corresponds to 0.42 times that of Crystals-

Dilithium, and it was the second smallest among the NIST PQC finalist algorithms.

The number of average verification cycles was 242,901, which corresponds to about

0.74 times that of Crystals-Dilithium, and it was the second smallest among the NIST

PQC finalist algorithms. Moreover, Enhanced pqsigRM was based on the traditional

security problem called syndrome decoding problem, which has not been broken for

more than 40 years. Also, this could be easier to make hardware implementations

because it was based on binary operations, while the lattice-based cryptosystems used

modulo operations. At last, this can be a good PQC digital signature alternate scheme

to diversify the categories.

For future works, I can consider the homomorphic computation of higher-order

RM codes. Moreover, I can implement the computation in the presence of noise,
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which can be useful in homomorphic cryptography. In the long run, this work can

be a preceding work for constructing a homomorphic encryption scheme with code-

based cryptosystems. To make this possible, schemes, which can decode errors after

homomorphic operations are needed. Also, the key sizes should be reduced to use the

homomorphic scheme feasibly.

Despite enhancing the parameters of Modified pqsigRM, Enhanced pqsigRM still

had a large public key size compared with the other digital signature finalist schemes

of the NIST PQC standardization process. Thus, diverse research works are needed to

improve Enhanced pqsigRM more.
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초록

이학위논문에서는다음두가지의연구가이루어졌다: i) Reed-Muller(RM)부

호의동형계산및 ii) Modified pqsigRM의키크기및비트보안성개선.

먼저, RM부호의동형연산방법을제안한다.인공지능(AI),빅데이터및클라

우드서비스의지속적인개발과함께완전동형암호(FHE)는기계학습시스템에서

개인정보보호및보안을유지하기위한해결책으로고려되고있다.현재대부분의

기존 FHE체계는격자기반암호화를사용한다.최신알고리즘에서는동형곱셈과

더 많은 연산을 위해 암호문을 새로 고치는 데 필요한 해당 부트스트래핑에 엄청

난 양의 계산 리소스가 필요하다. 따라서 실제 적용을 위해 계산 복잡도를 줄일 수

있는 FHE에대한새로운혁신적인접근방식을찾는것이필요하다.격자기반암호

에 국한되지 않는 다양한 연구 또한 필요하다. 부호 기반 암호는 이에 대한 새로운

해결책이될수있다.

본논문에서는 RM부호를통해부호기반동형연산기법을제안한다.선형부

호는덧셈에대해닫힌것으로알려져있지만선형부호에서곱셈동형연산을달성

하는 것은 지금까지 불가능했다. 나는 RM 부호를 사용하여 덧셈과 곱셈을 동시에

지원할 수 있는 완전 동형 부호 체계를 제안하여 이 문제를 해결하려고 노력한다.

이는부호기반 FHE방식을구축하기위한선행단계라고할수있다.나는이것을

1차 RM부호의연산으로제한한다.곱셈후 RM부호의차수가증가하게되는데이

과정의 RM 부호의 차수를 줄여 많은 수의 연산을 수행하는 부트스트래핑 기법이

필요하다.나는메시지에대한연산과 RM부호의해당부호어에대한연산사이에

일대일 관계를 생성하는 3개의 연속적인 선형 변환을 제안하여 덧셈 또는 곱셈 후

RM부호의차수를보존하는부트스트래핑기술을제안한다.추가적으로,부호기반
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암호에서의동형암호를위한몇가지시도들도제안한다.

두 번째로는, Modified pqsigRM 방식의 키 크기 및 비트 보안 개선 방안을 제안

한다. 양자 알고리즘에도 안전한 포스트 양자 암호 (PQC)의 중요성이 점점 커지고

있다. pqsigRM은국립표준기술연구소 (NIST)의 PQC표준화과정의 1라운드에서

제시된부호기반 PQC디지털서명체계이다. NIST는미국의표준화기구이다.이

체계는 NIST PQC표준화프로세스에서논의를거쳐알려진모든취약점을제거하

여Modified pqsigRM으로개정되었다.그장점으로는효율적인복호화과정과작은

서명크기가있다.모든서명과정에서서명을보내야하기때문에작은서명크기는

전자서명체계에서매우유용하다.그러나공개키크기가크다는문제가있다.

본논문에서는 Modified pqsigRM의공개키크기를줄이고구체적인비트보안

을 향상시키는 방법을 제안한다. 공개 키를 체계적인 형태로 변경하고 매개변수를

개선하며 각 매개변수에 대한 비트 보안을 미세 조정한다. 따라서 80, 128 및 256

비트의 보안 수준에 대해서 Modified pqsigRM 매개변수에 비해 각각 0.20, 0.40 및

0.23배 작은 공개 키 크기로 줄일 수 있다. 또한 이러한 매개변수에 대해 Modified

pqsigRM보다 더 큰 값의 구체적인 비트 보안을 얻는다. NIST PQC 최종 알고리즘

들 Crystals-Dilithium, Falcon,그리고 Sphincs+와비교할때공개키크기는여전히

크지만 서명 크기는 모든 보안 레벨에 대해 가장 작다. 128 비트의 기존 보안에 대

해제안하는서명방식의서명크기는 520바이트로 Crystals-Dilithium의 0.21배에

해당한다. 또한 NIST PQC 최종 후보 알고리즘과 비교하여 검증 싸이클 수를 계산

한다.검증싸이클수의평균값은 172,669로 Crystals-Dilithium의그것의 0.53배에

해당하며이것은네개의 NIST PQC최종알고리즘들중에두번째로작다.

추가적으로,정보집합복호화및부호어의최소무게를계산하는공격을고려하

여 Enhanced pqsigRM이라고하는향상된버전을제안한다. Modified pqsigRM과의

차이점은 체계적인 공개 키를 사용하고 비밀 키를 최소화하며 해시 기능을 단순화

하고보안문제를개선하는것이다.매개변수값이안좋아진다는트레이드오프가

있다.하지만, Modified pqsigRM에비해공개키크기는 0.5배인 2.0 MB로줄어들고,

비밀키크기는 0.0015배인 22,512바이트로줄어든다.또한,서명크기가작고검증

주기가빠르다는장점이여전히존재한다.이들은디지털서명체계에서매우중요

80



한 기능이다. 서명 크기는 1,032 바이트로 Crystals-Dilithium의 0.42 배에 해당하며

이것은 네 개의 NIST PQC 최종 알고리즘들 중에 두 번째로 작다. 평균 검증 싸이

클수는 242,901로 Crystals-Dilithium의약 0.74배에해당하며이것은네개의 NIST

PQC최종알고리즘들중에두번째로작다.

주요어:오류정정부호(ECCs),완전동형암호(FHE),동형연산,포스트양자암호

(PQC), Reed-Muller(RM)부호,디지털서명시스템,부호기반암호시스템.

학번: 2017-26340
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