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Abstract

Object detection for autonomous driving has mainly relied on two kinds of methods.
One is a cooperative autonomous driving method in which vehicles share their informa-
tion through V2X communication and cooperate to understand road conditions. The
other is a stand-alone autonomous driving method that detects the type of object and
the distance between the vehicle and the object by processing the information obtained
from vision sensors with a deep learning model for 3D object detection.

In this regard, the above two methods have the following advantages and dis-
advantages, respectively. The cooperative autonomous driving method using V2X
communication has the advantage of detecting vehicles in areas invisible to vision
sensors. However, there is a limiting condition that all vehicles must cooperate in
information sharing through a communication infrastructure, and reliability problems
arise depending on the status information sent by each vehicle. On the other hand, in the
stand-alone object detection method via vision sensors, the detection reliability is high,
but the area obscured by obstacles cannot be detected. Therefore, research is needed to
enhance the advantages of the above two object detection methods to ensure the safety
of users driving autonomous vehicles.

In this dissertation, we propose methods to improve the object detection perfor-
mance for cooperative autonomous driving and stand-alone autonomous driving, re-
spectively: (i) improvement message reception rate (MRR) using Cellular Vehicle-
to-Vehicle (C-V2V) on-demand relaying system, and (i) semi-supervised 3D object
detection without sharing raw-level unlabeled scene.

First, we propose a novel C-V2V on-demand relaying system that effectively con-
tributes to finding hidden V-UEs without any subsidiary feedback process and relaying
Cooperative Awareness Messages (CAMs) of hidden V-UEs. To achieve this goal,

we introduce a novel CAM configuration to contain additional information of nearby



V-UEs without overhead by utilizing previously unused bytes in the conventional
CAM. Then, we verify that this novel relay system helps to improve MRR in C-V2V
communications.

Second, we propose UpCycling, a novel semi-supervised learning framework for 3D
object detection models that utilizes only de-identified intermediate features. Moreover,
UpCycling is a unique framework that addresses labeling costs, privacy leakage, and
the computational burden on the Autonomous Vehicle (AV) simultaneously. In addition,
while preserving privacy, UpCycling performs better or comparably to the state-of-the-
art (SOTA) methods that utilize raw-level unlabeled data in both domain adaptation and
partial-label scenarios. With the robust performance, UpCycling demonstrates the value
of unlabeled feature-based learning in the context of 3D object detection, in terms of
both privacy and accuracy.

In summary, from Chapter 2 to Chapter 3, the two pieces mentioned above of the
research work, improvement MRR using C-V2V on-demand relaying system and semi-
supervised 3D object detection without sharing raw-level unlabeled scenes, respectively.
Through this research, we take a step forward to make commercialization of autonomous

vehicles by further ensuring user safety.

keywords: 3D object detection, Autonomous driving, Semi-supervised learning,
Vehicular communication

student number: 2016-20989
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Chapter 1

Introduction

1.1 Main Contributions

1.1.1 On-Demand Relaying in Vehicular Communications

Cellular Vehicle-to-Vehicle (C-V2V) communications take autonomous driving tech-
nology to the next level by allowing a Vehicular User Equipment (V-UE) to receive
Cooperative Awareness Messages (CAMs) from other V-UEs, and enable the V-UE to
see beyond what is detectable by vision-based sensors, thereby preventing accidents
and ensuring user safety. However, there remains a fundamental limitation in the con-
ventional CAM broadcasting since a transmitter (TX) V-UE cannot confirm whether its
CAM is successfully received at other V-UEs. Without a feedback process, a significant
uncertainty arises in CAM reception, posing a critical threat to user safety. To address
this threat, we propose Beyond-Vision, an effective C-V2V on-demand relay system
that allows CAMs that are not well received at nearby V-UEs to be better received.
Through simulation that reflects realistic vehicle mobility and road environments in ur-
ban scenarios, we verify the superiority of Beyond-Vision over the conventional C-V2V,
which improves performance by up to 215% in terms of message reception ratio (MRR)
within a communication range under Non-Line-Of-Sight (NLOS) channels.

In summary, we claim the following contributions in this work.



* We propose a novel C-V2V relay system that improves MRR with no overhead

by utilizing previously unused bytes in the conventional CAM.

* We evaluate Beyond-Vision performance via simulation which reflects realistic
vehicle mobility and road situations based on Simulation of Urban MObility

(SUMO) [6].

* We verify the superiority of Beyond-Vision with the latest C-V2V protocol de-

fined in 3GPP and other relay systems.

1.1.2 Semi-Supervised 3D Object Detection with De-identified Unlabeled

Scenes

Semi-supervised Learning (SSL) has received increasing attention in autonomous
driving to reduce the enormous burden of 3D annotation. In this paper, we propose
UpCycling, a novel SSL framework for 3D object detection with zero additional raw-
level point cloud: learning from unlabeled de-identified intermediate features (i.e.,,
“smashed” data) to preserve privacy. Since these intermediate features are naturally pro-
duced by the inference pipeline, no additional computation is required on autonomous
vehicles. However, generating effective consistency loss for unlabeled feature-level
scene turns out to be a critical challenge. The latest SSL frameworks for 3D object
detection that enforce consistency regularization between different augmentations of
an unlabeled raw-point scene become detrimental when applied to intermediate fea-
tures. To solve the problem, we introduce a novel combination of hybrid pseudo labels
and feature-level Ground Truth sampling (F-GT), which safely augments unlabeled
multi-type 3D scene features and provides high-quality supervision. We implement
UpCycling on two representative 3D object detection models: SECOND-IoU and PV-
RCNN. Experiments on widely-used datasets (Waymo, KITTI, and Lyft) verify that
UpCycling outperforms other augmentation methods applied at the feature level. In

addition, while preserving privacy, UpCycling performs better or comparably to the



state-of-the-art methods that utilize raw-level unlabeled data in both domain adaptation
and partial-label scenarios.

In summary, we claim the following contributions in this work.

* UpCycling is the first framework that tackles labeling cost, privacy leakage, and
AV-side computation cost altogether to train a 3D object detection model, which

deeply investigates how to learn from unlabeled intermediate features.

* UpCycling provides a fresh eye on GT sampling in the context of SSL since it
safely improves data diversity of unlabeled feature-level 3D scenes and signifi-

cantly improves pseudo-label quality by providing zero-noise labels.

» UpCycling not only protects privacy but also performs better or comparably to
the state-of-the-art methods in both domain adaptation and partial-label scenarios,

on representative models and datasets for 3D object detection.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents that a fundamental problem of conventional CAM broadcasting
due to the absence of a feedback process and propose Beyond-Vision, an effective
C-V2V on-demand relay system. The design of Beyond-Vision is presented, and the
performance evaluation is explained.

Chapter 3 demonstrates that feature-based semi-supervised learning, which com-
bines hybrid pseudo labels and F-GT, significantly enhances the performance of 3D
object detection models while also preserving data privacy. The design of UpCycling is
presented, and the performance enhancement is verified via representative datasets and
models under various scenarios. Also, we show that UpCycling preserves privacy with
intuitive image-level analysis.

Finally, Chapter 4 concludes the dissertation with a summary of contributions and a

discussion of future research directions.



Chapter 2

Beyond Vision: Hidden Car Detector with On-demand

Relaying in Vehicular Communications

2.1 Introduction

Autonomous driving technology has evolved over time from lab-based “future tech-
nology” to “real-world technology” visible on the roads. However, commercialization
of the technology requires autonomous vehicles to understand their surroundings to
prevent accidents and ensure user safety. Peripheral object recognition is well known as
one of the essential functions required for safety in autonomous driving. Until now, au-
tonomous vehicles have mainly relied on sensors such as Light Detection And Ranging
(LiDAR), radar, and cameras to detect objects on the roads [7]. However, vehicles face
a serious challenge if they solely rely on these vision-based sensors because peripheral
sensing is not possible in a Non-Line-Of-Sight (NLOS) environment and external
factors such as weather may degrade sensing accuracy.

In an effort to overcome these limitations, studies have been conducted on vehicular
communications that can be effective even in NLOS situations and are less vulnerable
to external factors. In addition, Cellular Vehicle-to-Vehicle (C-V2V) communications

have been standardized based on Long Term Evolution (LTE) [8, 9] since Release 14 of
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Figure 2.1: Proposed CAM configuration.

3GPP organization. Also, interest in C-V2V has grown recently as it is one of the core
services in 5G concerning the safety of autonomous vehicles.

In C-V2V communications, a Vehicular User Equipment (V-UE) periodically broad-
casts Cooperative Awareness Messages (CAMs) including its status information for
nearby V-UEs.! Upon receiving CAMs, V-UEs can detect the existence of other V-UEs
transmitting CAMs. The reception of CAMs helps a V-UE to detect other V-UEs be-
yond the detectable range of vision-based sensors or those invisible due to NLOS
positions. In addition, the V-UE can use received CAM information for various driving
assistance applications such as collision avoidance, accident warning, and intelligent
navigation [10].

However, the conventional CAM broadcasting has a fundamental problem because
it has no feedback process to confirm whether a CAM is received or not. In other words,
there is no way for a transmitter (TX) V-UE to know whether receiver (RX) V-UEs
have received a CAM since the CAM does not contain any feedback information and
no feedback message is defined in C-V2V. In particular, in a NLOS situation where
vision-based sensors are unable to detect an object, the uncertainty of CAM reception
becomes a fatal threat to users.

In this paper, we propose an effective C-V2V on-demand relay system, termed

'The CAM contains the V-UE’s status information including CAM generation time, V-UE’s location

obtained from GPS, V-UE’s speed, and V-UE’s ID, etc.



Beyond-Vision, that enables V-UEs to identify which nearby V-UEs fail to receive
which CAMs. To achieve this goal, we focus on the specific information that a CAM
should contain. According to the ETSI standard [11], a CAM contains the TX V-UE’s
status information which occupies approximately 64 bytes of data. However, given the
fact that the size of data used for actual CAM transmission is 194 or 300 bytes [10],
the size of basic data, including the TX V-UE’s status information, is even smaller.
As shown in Fig. 2.1, the novel CAM configuration we propose contains additional
information of nearby V-UEs detected during the CAM generation period.

Then the V-UE exploits received information of detected V-UE lists to identify
which V-UEs have received which CAMs and which V-UEs are hidden to which V-UEs.
This novel relay system effectively contributes to finding hidden V-UEs without any
subsidiary feedback process, and relaying CAMs of hidden V-UEs, which helps to
improve Message Reception Ratio (MRR) in C-V2V communications.

The merits of Beyond-Vision and the contributions of this paper are as follows:

* We propose a novel C-V2V relay system that improves MRR with no overhead by

utilizing previously unused bytes in the conventional CAM.

* We evaluate Beyond-Vision performance via simulation which reflects realistic vehi-

cle mobility and road situations based on Simulation of Urban MObility (SUMO) [6].

* We verify the superiority of Beyond-Vision with the latest C-V2V protocol defined

in 3GPP and other relay systems.

The rest of this paper is organized as follows. We first present the related work
and motivation of the work in Section 2.2. Section 2.3 introduces the basic operation
of the conventional C-V2V protocol. Then, we present our proposed relaying scheme,
Beyond-Vision, in Section 2.4, and evaluate Beyond-Vision through system-level simu-

lation under various scenarios in Section 2.5.



2.2 Related Work

In this section, we summarize previously studied relaying schemes in V2V communica-

tions and present the motivation of our proposed scheme.

2.2.1 Relaying schemes for V2V

Previous relaying studies on V2V communications have been performed primarily
under the IEEE 802.11p-based system called Dedicated Short Range Communications
(DSRC) [12,13].

The farthest-first dissemination is the most commonly used strategy to disseminate
safety data in V2V communications. This strategy allows the vehicle farthest from
the sender to be selected as a relay node for disseminating safety data. For example,
Street Broadcast Reduction (SBR) scheme, proposed by Martinez et al. [14], utilizes
the farthest-first dissemination scheme to reduce the warning message notification time
in urban setting scenarios with multiple intersections and obstacles. Urban Multihop
Broadcast (UMB) scheme, proposed by Korkmaz et al. [15], maximizes its one-hop
dissemination performance by selecting a vehicle in the road segment farthest from the
sender. Li ef al. [16] came up with OppCast, a safety data dissemination scheme with
enhanced scalability. OppCast operates in two phases. First, farthest-first dissemination
takes place to disseminate data as far as possible. Second, make-up dissemination
completes the process while ensuring high reliability.

Another method is probability-based broadcasting. In this method, stochastic re-
laying limits the number of relaying events [17, 18], thereby preventing redundant
re-transmissions in V2V communications. Specifically, vehicles are prioritized by their
assigned relaying probabilities. Slotted p-Persistence Broadcasting proposed in [17],
assigns a relay probability to each relaying according to its distance from the original
TX; The farther the vehicle is from the original TX, the larger relaying probability it is

assigned. Considering the density level of nearby vehicles, AutoCast proposed in [18]
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determines the relaying probability.

There are more studies that propose different relaying schemes. For example, Packet-
value-based dissemination scheme (PVCast) [19] presents a novel way to determine
relay priority considering both spatial and temporal preferences of each received CAM.
In [20], the authors propose a cooperative transmission scheme employing a signal
superposition technique. Under this scheme V-UEs superpose other V-UEs’ signals that
they have received onto their own transmission signals. In [21], the authors propose
Reliable Broadcasting of Life Safety Messages (RBLSM) where vehicles nearer to the
sender suffer shorter wait time and packets delivered to nearby vehicles experience
smaller latency. In [22], the authors compare DSRC and C-V2V communication per-
formance in several aspects. Furthermore, in [23], the authors propose a relay system

focusing on hybrid V-UEks, i.e., V-UEs equipped with both DSRC and C-V2V modules.



In [24], the authors propose a relaying scheme with Road Side Units (RSUs) in vehicu-
lar communications. Unlike the studies on the above relaying protocols, J. Heo et al.
explore the utility and trade-off of using buses as mobile RSUs through mathematical
analysis, simulation, and real-world experiments [25]. Also, B. Kang et al. study the
traffic steering scheme to extend the operation of D2D communications to both licensed
and unlicensed bands as well as propose a transmission power adaptation algorithm for

C-V2X Mode 4 [26,27].

2.2.2 Motivation of Proposed Beyond-Vision

The previous studies on the relaying scheme described above are as follows. To deter-
mine CAM selection priority for relaying, these relaying methods take into account:
1) The distance between TX V-UEs and RX V-UEs, 2) the number of V-UEs that
can receive CAMs, and 3) temporal and spatial preferences of each CAM. However,
these methods are limited in improving MRR performance because they do not take
a sophisticated approach to examine how successfully nearby vehicles receive CAMs
when selecting a CAM for relaying.

Our proposed Beyond-Vision ensures effective CAM relaying by addressing the
limitation. Specifically, Beyond-Vision finds ‘hidden V-UEs’ that are not detected be-
cause CAMs transmitted by those V-UEs cannot be received within the communication
range. As shown in Fig. 2.2, Beyond-Vision enables V-UEs to selectively choose and
relay hidden V-UEs’ CAMs. Beyond-Vision enables this process simply by adding
some information to each CAM, without additional transmission for confirming the

reception of CAMs.
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2.3 Preliminaries

231 C-V2v

In this section, we describe C-V2V communications defined in the 3GPP standard
Release 14 [8, 9], for which our proposed scheme applies. In C-V2V communications,
each V-UE exchanges accurate information such as its ID, location, velocity, and
acceleration [11,28], which contributes to improving traffic safety.

C-V2V was originated from LTE sidelink, called LTE Device-to-Device (LTE-
D2D) communications which 3GPP first introduced in Release 12 for public safety.
As LTE-D2D was designed to lower battery consumption rather than latency, it is
not suitable for C-V2V which requires low latency and high reliability [29, 30]. A
significant difference between C-V2V and LTE-D2D is in how to allocate dedicated

resources. While LTE-D2D systems rely on specific LTE uplink resources, C-V2V

10



systems utilize separate resources.

C-V2V communications using a single-carrier frequency division multiple access
support one or two channels of 10 MHz in the 5.9 GHz spectrum which many countries
already dedicate to vehicular communications [31]. The minimum resource unit that
C-V2V utilizes in the 5.9 GHz spectrum is Resource Block (RB).? It has a frequency
width of 180 kHz (12 subcarriers of 15 kHz) and consists of one subframe (= 1 ms).
In the 10 MHz channel, there are 50 RBs available on the frequency axis for C-V2V
communications. Also, C-V2V defines subchannel as a group of multiple RBs. Multiple
V-UEs can transmit simultaneously by using subchannels in the same subframe.

C-V2V selects a subchannel, which is a resource for transmission in two ways:
Sidelink Modes 3 and 4 [9]. Under sidelink Mode 3, Evolved Node B (eNodeB)
allocates resources for V-UEs in a centralized manner. Under sidelink Mode 4, in
contrast, V-UEs select resources independently. This means that a V-UE under Mode 4
allocates resources regardless of the cellular coverage of the eNodeB. In this paper,
we assume that the Beyond-Vision operating environment is controlled in a distributed
manner, i.e., sidelink Mode 4.

When selecting a resource for transmission in Mode 4, a V-UE uses the sensing-
based Semi-Persistent Scheduling (SPS) scheme, which is defined in 3GPP Release
14. As shown in Fig. 2.3, the V-UE in Mode 4 analyzes energy levels detected during
the previous 1000 ms. Based on average sensed Received Signal Strength Indicator
(RSSI) analysis, the V-UE extracts a pool of candidate resources from the current time
to 100 ms later and selects new resources. In doing so, the V-UE randomly chooses one
of the subchannels as a resource with the lowest 20% energy level to avoid possible
collisions with adjacent V-UEs that select the same subchannel [9]. With a period
of 100 ms, the V-UE repeatedly occupies the resource as many times as a randomly

selected counter between 5 and 15. When the counter expires, the V-UE selects a new

%Since C-V2V is defined based on LTE, users in LTE system utilize RBs for the minimum resource

unit as well.
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resource and counter with the same procedure.

2.3.2 Challenge of Relaying Protocols in C-V2V

The operation of relaying protocols in C-V2V should consider the following charac-
teristics of CAMs. First, conventional CAM broadcasting has no feedback process to
confirm whether a CAM is received. For this reason, relay transmission may cause
unnecessary transmissions by repeatedly relaying already received CAMs. To reduce
unnecessary transmissions, the relaying V-UE should find a proper CAM that needs
to be relayed under this constraint. Second, a V-UE generates a CAM periodically,
and updates its CAM information every 100 ms of the typical option in C-V2V [9].
If the CAM information becomes invalid 100 ms after its generation, the CAM is no
longer eligible for relaying. Thus, the V-UE should seek to relay valid CAMs before
new ones are created. Third, there is a communication range for CAM transmission,
defined differently according to the average speed of the V-UE in the road environment.
Specifically, the communication range is defined as 150 m for urban environments [32].
For effective transmission, relaying protocols should be designed to ensure a high

reception rate of CAMs within the communication range.

2.4 Beyond-Vision: Proposed C-V2V Relay System

2.4.1 Overview

We propose Beyond-Vision to overcome the defects of the CAM relaying schemes pre-
viously studied. As described, the primary goal of Beyond-Vision, which uses a newly
proposed CAM configuration, is to select CAMs that are not successfully transmitted to
V-UEs within the communication range and to relay them efficiently.> Beyond-Vision

achieves this goal with the following two features:

*We interchangeably use the terms ‘the communication range of a CAM’ and ‘the communication

range of a V-UE’ to represent the communication range of a V-UE at the moment of the CAM generation.

12



Receiving BV-CAM

Is this BV-CAM Yes
duplicated?

No
Keeping this BV-CAM
on candidate list for relaying

s any BV-CAM selected
for relaying?

Is this BV-CAM
in candidate list for
relaying?

Yes Removing the BV-CAM
from candidate list for relaying

Is this BV-CAM
the same as already scheduled
for relaying?

Yes

No
Selecting BV-CAM for relaying Canceling the scheduled
from candidate list (Section IV.B) relaying transmission

Removing the BV-CAM
from candidate list for relaying

Allocating resource for relaying Transmitting
transmission (Section IV.C) BV-CAM for relaying
|

Figure 2.4: Overall Beyond-Vision operation.

* CAM selection algorithm that utilizes novel CAM configuration for relaying
 Standard-compliant relaying that minimizes redundant re-transmissions

Before explaining the details, we present the overall operation of Beyond-Vision
described in Fig. 2.4. We define a novel CAM used for the Beyond-Vision as BV-CAM
in this paper. A V-UE periodically broadcasts a BV-CAM. Upon receiving a BV-CAM,
a V-UE checks whether it is an original BV-CAM or a relayed duplicate BV-CAM.

If the BV-CAM is original, the V-UE forwards the BV-CAM information to the
V-UEs in the candidate list for relaying and keeps this information until the BV-CAM
becomes invalid. In other words, the candidate list only has information of the received
original BV-CAM within 100 ms of its creation. If there is no BV-CAM selected for
relaying, then the V-UE selects one from the candidate list for relaying according to
the selection algorithm, which will be specified in Section 2.4.2. After the selection,
the V-UE removes the BV-CAM from the candidate list, duplicates the BV-CAM, and
marks the duplicate on the BV-CAM using one flag bit. Finally, the V-UE allocates re-

sources for relaying transmission. Once a duplicate BV-CAM is transmitted, BV-CAM
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selection algorithm is invoked to select a new BV-CAM for next relaying.

If the BV-CAM is a duplicate, on the other hand, the V-UE does not need to
relay the BV-CAM. Such duplicate BV-CAMs are removed from the candidate list for
relaying and excluded in the selection for BV-CAM relaying. When a BV-CAM equal
to the received duplicate has been already scheduled for relaying, the V-UE cancels the
scheduled BV-CAM relaying to prevent redundant re-transmissions and selects a new

BV-CAM for relaying.

2.4.2 BV-CAM Selection for Relaying in Beyond-Vision

As we mentioned, the conventional CAM carries only the information of the TX V-UE
itself and CAM generation time. In this paper, we define a novel CAM configuration
for Beyond-Vision. A conventional CAM carries 194 or 300 bytes of data that contains
vehicle information, consisting of 64 bytes of basic information. In Beyond-Vision, a
V-UE utilizes the vacant space in the conventional CAM to contain Detected V-UE List
(DVL), a newly defined list of detected V-UE IDs within the TX V-UE’s communication
range.

As described in Fig. 2.5a, BV-CAM of V, contains DVL as well as its basic
information. In the DVL, V. includes the detected V-UE IDs: V,, V;, V., except for V;
which is detected but exists out of the communication range of V,.* In the process of
DVL creation, a V-UE uses only valid BV-CAMs since they present the current state of
their TX V-UEs. By doing so, the V-UE not only sends its own status information via
BV-CAM, but also notifies the successful reception of valid BV-CAMs transmitted by
V-UEs within its communication range.

Each V-UE uses received valid BV-CAMs and their DVLs as the basis of its

BV-CAM selection for relaying. The selection process consists of the following compo-

*According to the ETSI standard [11], the data size of a V-UE ID is 4 bytes. A 300-byte CAM contains
approximately 60 V-UE IDs. If a V-UE utilizes data compression techniques such as hash, its CAM can

contain more V-UE IDs.
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Figure 2.6: Beyond-Vision: BV-CAM selection for relaying.

nents.

Development of Observation Table

A V-UE creates its own Observation Table (OT) with the received valid BV-CAMSs. The
OT shows the relationship between V-UEs that are detected through valid BV-CAMs.
As shown in Fig. 2.5b, assume that there are four valid BV-CAMs received at V,,, and
each V-UE’s ID is V,, V}, V., and V, respectively. Since each valid BV-CAM contains
location information about its TX V-UE, V. calculates the distance between each V-UE.
If the distance between two V-UEs, say d(V, V}), is shorter than the communication
range (Drange), the relationship between the two is denoted as ‘1’ on the OT. If the
distance between the two is longer than D,,pee, On the other hand, their relation is
denoted as ‘0.

In short, with the information of detected V-UEs, we create the OT by using

17 d(Vm %) S Drangea
OT(Vo, Vi) = (2.1

Oa d(Vaa %) > Drange-
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Table 2.1: Acronyms and terms

Vz ID of V-UE

DV L, Detected V-UE List of V.
TV Ly Target V-UE List of V,
HV L, Hidden V-UE List of V,
FCy Failure Counter of V
SC, Success Counter of V.

Calculation of Estimated Message Reception Rate

Estimated Message Reception Rate (eMRR) is a metric that indicates the ratio of the
number of V-UEs that received a specific BV-CAM to the number of all V-UEs within
the BV-CAM’s communication range. V-UEs calculate eMRR for each received valid
BV-CAM, which is calculated using two components: Failure Counter (FC) and Success
Counter (SC).

Failure Counter is defined as the number of V-UEs not receiving a BV-CAM
within the communication range of the BV-CAM. A V-UE calculates the FC for each
received valid BV-CAM using its OT and the BV-CAMs’ DVLs. For example, Fig. 2.6
shows that V,; recognizes which V-UEs are within V,;’s communication range from an
observer’s perspective based on its OT. We define the list of such V-UEs as Target V-UE
List (TVL) of V,, denoted by T'V L,,. At the same time, when receiving a BV-CAM
from V,, V, becomes aware of V,’s DVL (DV L,). By comparing 7'V L, in the OT
with DV L, V,. identifies a list of V-UE(s) that V, did not detect, which is the Hidden
V-UE List (HVL) of V, denoted by HV L,. In this case, according to V,,’s OT, TV L,
contains Vj, but DV L, does not contain V3. This means that even though V,, is within
V4’s communication range, it failed to receive a valid BV-CAM of V. Thus, V},’s FC,
denoted as F'(’y, is increased by 1. By comparing the OT and DVL of the received valid
BV-CAMs’ TX, V;, yields its FC for all TXs of the received valid BV-CAMs.

Success Counter is defined as the number of V-UEs receiving a BV-CAM within

the communication range of the BV-CAM. When a V-UE generates its own BV-CAM,
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Algorithm 1 Calculation of eMRR in Beyond-Vision
Require: Observation of BV-CAM information

Vi, Vj, Vi: Presenting V-UE’s ID
lip: The V-UE’s ID list of valid BV-CAMs
Initialize:

1: Initializing Failure Counter (F'C') and Success Counter (SC') for all ID to 0
Counting FC and SC

2: for V; in l1p do

3: Create TV L; based on OT

4: Extrcat DV L; from BV-CAM of V;

5: HVL;+ TVL,NDVLY
6: for V;in HV L; do
7: FC; < FC; +1
8: end for
9: for Vi, in DV L; do
10: SCy + SC, +1
11: end for
12: end for
Calculating eMRR

13: for V; in [;p do
14: eMRR; « 655

15: end for

it records the V-UEs’ IDs in its DVL that are contained in the received valid BV-CAMs
in its communication range. Therefore, we obtain the SC of a V-UE by counting the
number of valid BV-CAMs containing a DVL that records the V-UE’s ID.

According to the values of F'C; and SC;, where i is the BV-CAM’s ID of V;, we

calculate the eMRR as

(2.2)
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of each received valid BV-CAM and identify which BV-CAM has a low eMRR.
Algorithm 1 shows the pseudo code to calculate eMRR from OT and DVL.

Weighted Random Selection

A V-UE selects a BV-CAM for relaying in Beyond-Vision based on the eMRR of each
received valid BV-CAM. However, to prevent the same BV-CAM from being selected
by multiple adjacent V-UEs at the same time, the V-UE does not simply select the
BV-CAM with the lowest eMRR. Instead, the V-UE selects a BV-CAM according to
the selection probability using its eMRR as a weight parameter. The probability of

selecting a BV-CAM is calculated as

1—eMRR;
ZkEcid (1 —eMRRy)
where P; is the probability of selecting V;’s BV-CAM for Beyond-Vision relaying and

P =

2.3)

ciq 1s the set of V-UE IDs in the candidate list for relaying.

2.4.3 Resource Selection for Beyond-Vision Relaying

When a V-UE selects a BV-CAM for Beyond-Vision relaying, it selects RBs to send
the selected BV-CAM. To comply with the standard C-V2V defined in 3GPP, RBs for
Beyond-Vision relaying are allocated according to the sense-based SPS operation. The
V-UE analyzes energy levels for the duration of 1000 ms before the BV-CAM is selected
for relaying. Through the process, the V-UE extracts candidate RBs from resources
with the lowest 20% received energy levels. However, for the relayed BV-CAM to be
valid, it must be sent before it expires with the generation of a new BV-CAM. Therefore,
the V-UE randomly chooses RBs within the BV-CAM’s generation time plus 100 ms
(tgen + 100 ms) for BV-CAM relaying within a valid period.

We design Beyond-Vision to take this aspect into account as it is necessary to inhibit
redundant re-transmission of BV-CAMs through relay operation. When transmitting in

Beyond-Vision, a V-UE duplicates the BV-CAM selected for relay and records its flag
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Figure 2.7: Relaying resource allocation in Beyond-Vision.

bit to indicate that the BV-CAM is duplicated. Through this flag bit, the other V-UEs
receiving the BV-CAM can find out whether it is the original or a duplicate. To prevent
unnecessary re-transmissions, a V-UE removes a duplicate BV-CAM from the candidate
list where the BV-CAM is chosen for relaying transmission. Furthermore, if the V-UE
has already scheduled the BV-CAM for relaying transmission before receiving its
duplicate, it cancels its transmission schedule and selects a new BV-CAM for relaying

again.

2.5 Performance Evaluation

In this section, we evaluate the performance of Beyond-Vision with the comparison
schemes, through the simulation that reflects realistic vehicle mobility and the road

environment in urban scenarios.
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Table 2.2: Simulation environments

Carrier frequency 5.9 GHz
System bandwidth 10 MHz (50 RBs)
Topology Manhattan grid [32] and Berlin

Target communication range | 150 m

No. of total V-UEs 500, 200 (Manhattan, Berlin)

Vehicle mobility model SUMO [6]

Link performance model LTE error model [33]

Channel model Fast fading + shadowing + pathloss +

in-band emission [32] + out-of-band

emission [34]

Modulation QPSK

Code rate 0.529

TX power of V-UE 23 dBm

Noise figure 9dB

Noise power —174 dBm/Hz

CAM size 300 bytes

CAM generation period 100 ms

Simulation time 50,000 subframes (50 s)

2.5.1 Simulation Environments

Table 2.2 shows the parameters for simulation environments.

Topology and vehicle mobility model As shown in Fig. 2.8, we consider Manhattan
grid and Berlin topologies for simulation in this paper. Manhattan grid topology, which
is typically used for urban scenarios [32], includes a total of nine 433 m x 250 m-sized
grids. We adopt Berlin topology to reflect the actual mobility of vehicles. SUMO
provides OpenStreetMap (OSM) [35], which applies realistic map information to our
simulator. Manhattan grid and Berlin topologies have traffic lights installed at each
intersection, and use SUMO-generated mobility models [6]. SUMO helps to create
real road environments, including vehicles’ movement considering traffic lights linked
to the actual map information provided by OSM. The number of V-UEs determined as

the medium traffic case in [32] is 500 in the Manhattan grid scenario while it is 200 in
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(b)

Figure 2.8: Simulation topology: (a) Manhattan grid and (b) Berlin.

the Berlin scenario to achieve the equal density level of V-UEs.

Channel model The simulator adopts WINNER+ B1 model as the pathloss model [36]
and the shadowing model in [32], which follows a log-normal distribution with 3 dB
and 4 dB standard deviations for LOS and NLOS, respectively. ITU-R IMT UMi model
in [37] is used for fast fading. For in-band emission, undesired emission to subchannels

under the same channel and time slot, we adopt the model in [38].

Link performance model We choose a proven error model of LTE data transmission
from [33], which is also used by an established open-source simulator in the network and
communications field, ns-3 [39]. The conversion of Signal-to-Interference-plus-Noise
Ratio (SINR) based on the channel model to Transmission BLock Error Rate (TBLER)
enables the simulator to determine whether the message reception is successful.
Configuration CAM resources in C-V2V In DSRC, Quadrature Phase-Shift Keying
(QPSK) and code rate of 0.5 are the optimal option [40] for CAM transmission. Since
we use QPSK and code rate of 0.529 (i.e., closest to the optimal rate in the LTE
environment), one RB can contain 177 bits. Therefore, to transmit a CAM size of
300 bytes, 15 RB pairs form one subchannel. Assuming that there are 50 RBs in the
10 MHz bandwidth, 3 (= |50/15]) subchannels are available.

A&t 8t
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2.5.2 Comparison Schemes

This paper adopts various comparison schemes to prove the excellence of Beyond-Vision.
They are 802.11p-based DSRC protocols which are modified to operate in the C-V2V
standard for fair comparison. The comparison schemes

First, Farthest-First Relaying (FAR) is the most representative relaying scheme,
studied in several papers [14—16]. It allocates wait time for relaying transmission to be
inversely proportional to the distance between the TX V-UE and the RX V-UE. As a
result, a V-UE relays the CAM received from the farthest first. To prevent unnecessary
re-transmission, the V-UE waits until the wait time ends and transmits the CAM unless
it receives a relayed CAM during this period.

Second, another scheme is Probability-based Relaying (PR). This method, proposed
in [18], considers the density of nearby V-UEs in determining the relaying probability.
The relay probability is calculated in the number of V-UEs around a TX V-UE and as
the number of the V-UEs increases, the relay probability decreases. The V-UE does not
cancel the scheduled relaying when it receives an already-relayed CAM, but it prevents
redundant transmission by stochastic relay transmission.

Finally, no relaying scheme (NR) is the baseline protocol of C-V2V in the 3GPP
standard [8,9]. In NR, V-UEs or any other objects such as Road Side Units (RSUs) do
not relay CAMs.

2.5.3 Performance Metrics

Message reception ratio The MRR is a basic metric for performance evaluation which
indicates CAM reception ratio of V-UEs within the communication range of the TX
V-UE. In Fig. 2.9, for example, the MRR is 5/7 because five V-UEs succeeded while
two V-UEs failed in receiving the CAM. To reflect various MRR indexes, we consider
not only overall MRR performance, but also MRR performance in NLOS. Since we

evaluate performance in urban environments, we set the communication range at 150 m.
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Figure 2.9: Message reception rate and relaying ratio.

Average value of lower MRR We obtain the MRR of each CAM and calculate the
average the lowest 10% and 20% MRRs. In this way, we can see whether the MRR of
each CAM that was not successfully transmitted via relaying protocols improves. This

paper reveals the average of lower MRR in each comparison scheme.

Relaying ratio Relaying ratio is defined as the ratio of the number of V-UEs that
relayed the original CAM to the total number of V-UEs that received it. To relay a
CAM, a V-UE first should receive the original CAM. The V-UE that succeeded in
receiving the original CAM becomes a relaying seed. In the case of Fig. 2.9, five V-UEs
become relaying seeds since they received the original CAM. On the other hand, the
number of V-UEs relaying the original CAM is 2. Thus, the relaying ratio is 2/5. In this
paper, we verify the relaying ratio relative to the MRR of original CAM transmission

under each scheme.
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Figure 2.11: MRR performance in a range close to the communication range in Berlin
topology.
2.5.4 Simulation Results

Fig. 2.10 shows MRR performance in the Manhattan grid topology. The graphs in the
figure show how MRR performance varies with the distance between the TX V-UE and

the RX V-UE, denoted as R. Fig. 2.10a represents overall MRR which incorporates

all MRR values, when the TX V-UE and RX V-UE are in the LOS or NLOS position.

Figs. 2.10b and 2.10c show LOS MRR and NLOS MRR, respectively. These graphs
show that MRR performance degrades with the distance. Beyond-Vision outperforms
the other schemes in terms of MRR performance.

In Fig. 2.10b, LOS MRR shows a similar pattern to overall MRR. In particular, the
MRR performance of PR is lower than that of NR for the following reason. Although
the V-UE under PR does not cancel the scheduled relaying when receiving the same

duplicate CAM, it relays duplicate CAMs by the probabilistic manner as to prevent
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redundant transmission. Therefore, in high MRR environments, as in the case of LOS,
redundant relaying of original CAMs is more likely to occur. Such unnecessary relaying
causes resource collision, degrading MRR performance.

On the other hand, we can see in Fig. 2.10c that NR shows the worst performance
and its performance significantly deteriorates with 1. In the NLOS case, the relaying
schemes improve MRR, and Beyond-Vision is the most effective of all. FAR shows
better performance than PR since it does not relay the same CAM it has received before.

Fig. 2.11 shows the MRR performance in the Berlin topology. As confirmed previ-
ously, the MRR performance decreases with the distance between the TX V-UE and
RX V-UE. Given that 3GPP sets the communication range in the urban environment
as 150 m, we verify the MRR performance in the range [140 m, 160 m). As in the
Manhattan grid topology, we can confirm that NR shows severe MRR performance
degradation in the NLOS case while the relaying schemes improve MRR performance.

Again, Beyond-Vision outperforms its competitive schemes in MRR improvement.
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Figure 2.12: Lowest MRR Average: (a) Manhattan grid and (b) Berlin topology.

Unlike the previous evaluation, Fig. 2.12 compares MRR performance regardless
of the distance between the TX V-UE and RX V-UE. It shows the average MRR of
CAMs for the lowest 5%, 10%, 20%, and 40% MRR levels regardless of the distance.
From the results, we see how much improvement Beyond-Vision makes for CAMs
A & Tl 8} 3
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with low MRR. Fig. 2.12 summarizes the simulation outcomes for all cases under the
two topologies, where we observe the same patterns. Note that the average MRRs in
the lowest 5%, 10%, and 20%-MRR-CAM group are lower under the schemes of PR
and FAR than under NR. Only after exceeding the lowest 20%-MRR-CAM group,
FAR shows performance similar to or greater than NR. This indicates that the other
comparison schemes do not efficiently improve MRR performance for low-MRR-CAM
groups. We confirm that Beyond-Vision is the only relaying scheme that improves MRR

performance for the low-MRR-CAM groups by selectively relaying CAMS with low

MRR.
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Figure 2.13: Relaying ratio: (a) Manhattan grid and (b) Berlin topology.
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Fig. 2.13 represents the relaying ratio relative to original CAM MRR. The original
CAM MRR indicates the MRR for original CAM transmission before any relaying
occurs. As described before, V-UEs that received original CAMs become relaying seed
V-UEs enabled to relay CAMs. Thus, the relaying ratio represents the ratio of V-UEs
that relayed CAMs to relaying seed V-UEs. In Fig. 2.13, z-axis indicates that the range
of MRR for the original CAM. In Beyond-Vision, the probability that a V-UE relays a
CAM is higher when the CAM is less likely to be received at surrounding V-UEs. In
addition, the V-UE does not relay duplicated CAMs. Therefore, even when there are
many relaying seeds due to high original CAM MRR, the relaying operation in other
relaying seeds is effectively suppressed.

On the other hand, the relaying ratio of PR is the highest in almost all sections of
x-axis. In particular, the graphs in Figs. 2.13a and 2.13b show that PR is more likely to
relay CAMs with a higher MRR of the original CAM. Redundant relaying can occur in
PR that determine relay operation in a stochastic manner. As a result, the higher the
original CAM MRR, the greater the proportion of V-UE available for relaying, resulting
in more redundant relaying.

Finally, FAR yields the lowest relaying ratio in all ranges of CAM MRR for two
reasons. First, in FAR, the V-UE does not relay duplicate CAMs if it has already
received the same CAMs before. Second, in our adoption of FAR to C-V2V, the V-UE
sometimes fails to schedule CAM relaying due to lack of available subchannels within
a determined wait time. Compared with Beyond-Vision, FAR shows less significant
inverse-proportional relation between relaying ratio and original CAM MRR, which
demonstrates that Beyond-Vision relays CAM more effectively from the perspective of

MRR improvement.
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Chapter 3

UpCycling: Semi-supervised 3D Object Detection with-

out Sharing Raw-level Unlabeled Scenes

3.1 Introduction

Although the concept of Autonomous Vehicles (AVs) has been around for years, ensur-
ing the safety of users driving AVs on real roads via 3D object detection models is still
challenging. To this end, there have been continuous efforts to collect large datasets
of 3D road scenes and annotate them carefully [1-3]. While rapid advances in sensor
technology facilitate the collection of 3D scenes at scale, the severe annotation burden
remains as a main challenge. To alleviate the problem, a couple of semi-supervised
learning (SSL) methods for 3D object detection have been proposed recently, such as a
combination of perturbation and consistency loss [41] and confidence-based filtering
using IoU prediction results [42].

However, these methods learn from unlabeled raw 3D scenes. Collecting a vast
amount of raw-level road scenes from AV can potentially cause disclosure of sensitive
private information on the roads [43—45]. Moreover, the demand for privacy-preserving
domains is rapidly accelerating. The EU’s General Data Protection Regulation requires

firms to implement data protection measures, safeguarding consumers’ privacy. This
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(a) Raw-point data (b) Feature data produced from the 3D object

detection network
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Figure 3.1: Visualization of point cloud scenes. UpCycling improves level of privacy

protection since an original point cloud scene cannot be restored from its intermediate

feature.
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applies even to companies collecting autonomous driving data [46]. In addition, as 2D
images can be restored from limited 3D data [47], it’s critical to fundamentally secure
raw 3D point data.

Given that the problem of potential privacy leakage from raw data collection
exists in various applications, a number of studies have tried to not deal with raw
data directly. Going beyond encrypting raw data [43], federated learning [48, 49]
makes each edge node consume its data locally to train the model and share the model
weights (or gradients) instead of raw data. Split learning [49-51] designs edge nodes
to not share raw data but its intermediate feature (i.e.,, smashed data) that comes
from passing through early-stage layers of the model. However, these approaches
require local training [52, 53], which makes resource-constrained AVs suffer more
computation overhead. Given that AVs use significant computing resources to process
inference pipelines for 3D detection during driving, such additional computation hinders
continuous model updates in natural driving conditions.

In this paper, we aim to address all the three issues: labeling cost, privacy, and
AV-side computation overhead. To ensure this end, we propose UpCycling, a novel
SSL framework that does not utilize unlabeled raw 3D scenes (Figure 3.1(a)) but
de-identified, unlabeled intermediate features (Figure 3.1(b)) to advance 3D object
detection models. Since an unlabeled intermediate feature is naturally produced during
a regular detection pipeline with the 3D scene, UpCycling requires neither additional
AV-side computation (e.g.,, local training) nor server-side annotation burden. Further,
sharing features instead of raw 3D scenes improves the level of privacy protection as
the detection pipeline includes nonlinear layers and compression [54-58]. Because
the process in the nonlinear layers [59] is irreversible, the original scene cannot be
completely restored from its intermediate feature. As depicted in Figures 3.1(c) and (d),
the inversion attack [60] attempted on the server side to restore the raw-point data does

not result in a successful restoration. !

"For further details, please refer to Section 3.5.3 and Supplementary material where more comprehen-
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To realize the advantages, UpCycling should provide an effective feature-based
SSL method for 3D object detection, which involves two challenges: (1) augmenting
unlabeled intermediate features reliably to increase data diversity [61, 62] and (2)
providing high-quality pseudo labels to supervise these augmented features. The state-
of-the-art (SOTA) semi-supervised 3D object detection frameworks [41,42] generate
consistency loss between weak and strong augmentations of a 3D point scene. However,
the augmentation methods targeting raw-level point clouds become detrimental when
applied at a feature level. This is because an intermediate feature is a smashed form of its
original 3D scene and has multiple types depending on the 3D object detection models,
such as grid- and set-types. Therefore, naive application of the point augmentation
methods at a feature level damages the important information in the 3D scene, which
causes the pseudo labels to suffer from significant noise.

To address the challenges, we propose high-quality hybrid pseudo labels and feature-
level ground-truth sampling (F-GT). Combining these methods not only achieves
significant data diversity but also improves quality of pseudo labels by adding zero-
noise labels. We implement UpCycling on two representative 3D detection models,
PV-RCNN [58] and SECOND-IoU [63],2 and perform various experiments on three
major datasets for AV applications, KITTI [2], Lyft [3], and Waymo [1]. The results
demonstrate the effectiveness of UpCycling in both partial-label and domain adaptation
scenarios.

The contributions of this work are summarized as follows:

* UpCycling is the first framework that tackles labeling cost, privacy leakage, and
AV-side computation cost altogether to train a 3D object detection model, which

deeply investigates how to learn from unlabeled intermediate features.

* UpCycling provides a fresh eye on GT sampling in the context of SSL since it

safely improves data diversity of unlabeled feature-level 3D scenes and significantly

sive information is provided.
2SECOND-IoU adds an IoU module to the original SECOND model [55].
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improves pseudo-label quality by providing zero-noise labels.

* UpCycling not only protects privacy but also performs better or comparably to the
SOTA methods in both domain adaptation and partial-label scenarios, on representa-

tive models and datasets for 3D object detection.

3.2 Related Work

Semi-supervised learning. SSL has been actively studied in the context of image
classification [62,64—66]. Most of the recent SSL methods [61, 62, 64, 66] leverage
consistency regularization which trains the model to obtain consistent prediction re-
sults across label-preserving data augmentation. In the SSL frameworks, proper data
augmentation is essential, which should significantly increase diversity effect without
losing consistency with the original data [67, 68]. Accurate pseudo-labeling is another
crucial element for SSL to provide high-quality supervision for unlabeled data [65, 69].
While there have been only a couple of studies on SSL for 3D object detection [41,42],
data augmentation and pseudo-labeling are still important. SESS [41] targets indoor
3D object detection, leveraging a teacher-student architecture that takes differently
augmented 3D scenes as inputs and utilizes three kinds of consistency losses between
outputs. 3DIoUMatch [42] improves quality of pseudo labels with confidence-based
filtering in the IoU-guided NMS stage. However, the SSL methods require direct access
to a vast amount of raw data, which causes potential privacy leakage.

Feature-level data augmentation. Data diversity can be limited when augmenting
only raw data. To further increase diversity, feature-level data augmentation has been
investigated [70-74]. In image classification tasks, adding Gaussian noise to feature-
level data gains more data diversity for training and domain generalization [70]. The
work in [71-73] resolves lack of data for specific classes by using feature augmentation.
Feature augmentation is also applied to few-shot learning in NLP tasks [75]. To our

knowledge, however, feature-level augmentation has not been studied in the context of
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semi-supervised 3D object detection.

Private representation learning. Private representation learning [48,49] aims to learn
from various clients without sharing their raw data, which heavily relies on local training
at resource-constrained clients. Federated learning designs clients to not share any data
but model weights or gradients with the server. Due to the local computation burden for
training the whole model, federated learning methods [76-78] face significant hurdles
in training large neural nets. Split learning [49-51] is more similar to UpCycling in
that clients share intermediate features of local data with the server. However, it still
requires local training of early layers of the model. Continuous communication burden
during training is another problem of these approaches.

3D object detection models. Main challenges in 3D object detection come from
the irregular and sparse positions of 3D point clouds. To address the issues, some
researches [79,80] opt for point-based methods that extract set-type features by process-
ing raw point clouds directly [81]. Other approaches [54-56, 58] suggest voxel-based
methods, which first voxelize a point cloud and extract grid-type features with 3D
convolution networks. Therefore, UpCycling should be able to handle both grid- and
set-type unlabeled features. Specifically, we adopt two representative 3D object detec-
tors: voxel-based SECOND-IoU [55,63] and PV-RCNN [58] that mixes point- and

voxel-based methods.

3.3 Method

3.3.1 Problem Definition

Given a 3D point cloud scene x, we aim to detect a set of 3D bounding boxes and
class labels for all objects in x, denoted as {y}. We perform this task under a new
challenging SSL scenario with unlabeled de-identified data: in contrast to the regular
SSL setting, unlabeled raw-level point clouds are not available. Specifically, we have

access to N training samples, including N' labeled point clouds {x!, {yﬁ}}f\/:ll and N
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unlabeled scenes in the form of intermediate feature {f*}}¥". Here f* is the output of

the backbone network for an unlabeled point cloud x*.

3.3.2 UpCycling Framework

Figure 3.2 depicts the overall UpCycling framework incorporating server- and AV-side
operations. For initialization, the server trains a 3D object detection model on its labeled
data {x!, {y!}}V'| and shares the pre-trained model with AVs. UpCycling targets the
latest 3D detection models with an IoU module that returns confidence scores for
bounding box localization. In this paper, we apply UpCycling in PV-RCNN [58] and
SECOND-IoU [63]. PV-RCNN is the representative loU-aware model for 3D object
detection and SECOND-IoU is a modified version of SECOND [55] with addition of
IoU module.

For autonomous driving, AVs continuously perform the model’s detection pipeline
for newly observed 3D scenes. At the same time, to further update the model with more
3D scenes in diverse environments, each AV sends a new 3D scene x“’s intermediate
feature f* to the server, which serves as de-identified unlabeled training data. 1t is
noteworthy that zero additional computation is needed for the de-identification since
the feature naturally comes from processing the 3D backbone network in the detection
pipeline. Each AV also sends the detection results {y"} to the server.

With the received features and detection results {f*, {F%}} X, the server generates
consistency loss in a different way of the SOTA SSL methods on 3D object detection that
utilize unlabeled raw-point scenes {x} f\fl [41,42]. Specifically, given that supervising
f* by using its detection result {§*} again is meaningless, (1) proper augmentation of
f* and (2) high-quality pseudo labels are essential.

The SOTA methods on semi-supervised 3D object detection [41,42] take a teacher-
student architecture [64] by using random sampling (RS) for weak augmentation and
both RS and Flip for strong augmentation of a point cloud. However, in our scenario

where an input is an intermediate feature, the augmentation methods significantly
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damage the original scene. Instead, we propose feature-level ground-truth sampling
(F-GT) for feature augmentation, as illustrated in Figure 3.2. Although ground-truth
(GT) sampling has been used as a point cloud augmentation method for supervised
3D object detection [54-58] and is known to provide at most fair performance im-
provement [82], we claim that its impact can be more significant when it comes to
feature-level augmentation of an unlabeled 3D scene. This is because F-GT tackles one
of the most crucial issues for successful SSL: improving the quality of pseudo labels

for unlabeled features by generating hybrid pseudo labels.

3.3.3 Hybrid Pseudo Labels

For effective SSL, we adopt F-GT to augment an unlabeled scene feature f* and include
the sampled GT labels (zero-noise labels) in the pseudo-label set for the unlabeled
feature. By doing so, UpCycling constructs high quality hybrid pseudo labels.
Confidence-based pseudo-label filtering. First, inspired by 3DIoUMatch [42], UpCycling
screens the received detection results {y*} by using each y*’s confidence scores for
both object classification and bounding box localization. Assume that 77,7 and 75 are
thresholds for box localization and object classification, respectively. UpCycling filters
out a detection result if its class confidence or localization confidence is lower than
the given threshold, leaving a set of high-quality pseudo labels, denoted as {§"}. The
confidence-based pseudo-label filtering is applied for more accurate supervision.
Pseudo-label-aware GT sampling. When GT sampling is applied for supervised
learning, it first constructs a GT database that consists of labeled 3D bounding boxes and
point clouds in the boxes, collected from the entire labeled training set {x!, {yﬁ}}f\gl
To augment a labeled 3D scene x!, GTs are sampled from the database and randomly
placed in the 3D scene. To avoid tampering with GT information, a GT sample that
overlaps with a ground-truth bounding box in the original labeled scene is removed.
In contrast, our F-GT aims to augment an unlabeled 3D scene feature f* without

accurate box labels. Instead, given that a set of high-quality pseudo labels {y"} is
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provided, F-GT samples GTs that do not overlap with the pseudo labels. Importantly,
although the pseudo labels are filtered with the two thresholds 77,7 and 75, these
thresholds are set moderately [42], enabling the pseudo labels to cover most objects in

the original scene x“; GT samples are likely to be placed on the background of x*“.

Hybrid pseudo-labels. To generate pseudo labels that supervise an augmented unla-
beled feature £3;,,, UpCycling merges the high-quality pseudo-label set for the original
feature f*, {§*}, with the label set for the GT samples, {y”}, resulting in a set of
hybrid pseudo labels {§"} U {y“T}. Given that {y©”'} are literally ground-truth labels
with zero noise, adding these labels to the pseudo labels enables powerful supervision.

Furthermore, generating the hybrid pseudo labels does not need to execute the inference

pipeline at the server, since all GT labels are already given.

3.3.4 Feature-level 3D Scene Augmentation

Regarding F-GT, since the server does not have an original unlabeled scene x“ but
only its intermediate feature f*, it is impossible to directly place GT samples on the
point cloud scene. Instead, F-GT generates a separate point cloud input that comprises
only GT samples. The GT-only point cloud passes through the model’s 3D backbone
network, resulting in a GT-only feature f&”. Note that while the 3D backbone of
SECOND-IoU generates only grid-type features, that of PV-RCNN [58] generates both
grid- and set-type features. To this end, F-GT augments f*, grid- or set-type feature, as
follow:

Grid-type feature augmentation. As shown in Figure 3.2, when f* and f&7 are
grid-type features, F-GT generates an augmented feature by overwriting f* with £¢7;
if a channel on f&7 has non-zero values, the f&7 channel replaces that in f*. Giving
higher priority for f&7 removes some information included in f*. However, given that
the GT samples take up a tiny portion of an entire scene (i.e.,, most values in £&7
are zero), only a small number of values in f* are modified. In addition, the removed

information in f* is related to the background since the sampled GTs are not overlapped
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with pseudo labels, which does not harm model training.

Set-type feature augmentation. When an unlabeled feature f* and a GT sample

fGT

feature are set types, each of them consists of n represented points, denoted

as f* = {f*}7, and fT = {fGT}7_ | respectively. In this case, as illustrated in
Figure 3.2, F-GT generates an augmented feature as a point set, denoted as {7, =

u

aug.iti—1- 10 this end, we first exclude the scene feature points f;* that are in the

. Then each feature point f;;, . ; is randomly sampled from

GT boxes, generating £*\GT

either f\G7 or £CT

In doing so, it is important that the scene feature contains much more information
than the GT feature; for reasonable augmentation, f;;,, should include scene feature
points more than GT feature points. To determine proper sampling frequency, we utilize
the information in the grid-type feature that is generated simultaneously with the set-
type feature by the 3D backbone network: how many values in the grid-type feature
for the scene and GT samples are non-zero. For example, if the number of grid with

non-zero values in the scene and GT features (grid types) is 2000 and 50, respectively,

points in the augmented feature set f;, , is sampled from f u\GT' 400 times more than

£O7,

3.3.5 Loss

The model’s detection head is trained to predict the hybrid pseudo labels for the

augmented feature f;, . Given that our target models have an IoU module as well as a

Region Proposal Network (RPN), the unlabeled loss £(fY, ) includes loss of each of

aug

the two modules as follows:

L(feg) =Lize " {F YUy + Lige ({5 U {yTD)

+ LGN {3 Uy ).

(3.1)

The exact calculation of the three terms depends on the model architecture, following

the calculation of supervised loss. Assuming that a training batch consists of a set of

41



labeled scenes {x'} and a set of augmented features for unlabeled scenes {f%,}, the

i
fau g

total loss for the batch is calculated as below, where w is the unsupervised loss weight:

Liotar = LUX'}) + wL({f,0})- 3.2)

3.4 Analysis on 3D Scene Feature Augmentation

In this section, we take a deeper look into subtle feature-level 3D scene augmentation.
Specifically, we focus on why widely-used point cloud augmentation methods damage
important information when applied at a feature level.

To this end, Figure 3.3 depicts activation heat maps of the Bird-eye View (BEV)
compression module in SECOND-IoU when Flip, Rotation, and GT sampling are
applied to an example 3D scene covering z, y, z axis range 70.4, 80, 4 meters. The
figure shows that in the cases of Flip and Rotation, raw-level augmentation (i.e.,,
flipping/rotating the whole point cloud) and feature-level augmentation (i.e.,, flip-
ping/rotating the feature vector) result in significantly different activations. In both
cases, although the two activation heat maps look similar at a glance, taking the differ-
ence between the two causes errors that are widely spread over the entire feature map.
In contrast, when using GT sampling, raw- and feature-level augmentations provide
similar activation heat maps. Although some errors exist, they are placed in restricted
areas where GT samples are inserted.

Figure 3.4 provides a visual illustration of Flip and Rotation for feature augmen-
tation. If a point cloud is voxelized with each voxel producing its feature value, flip-
ping/rotating the feature vector is similar to flipping/rotating voxels. This means that
point locations are shifted not individually but in groups, and the geometric relationship
between intra-voxel points is maintained; they are neither flipped nor rotated. In the
worst case, the group (voxel)-wise flipping causes a valid car object to break apart, mak-
ing its label detrimental to training. Breaking the geometric relationship between points

on the background can also cause severe misinterpretation. Similarly, the group-wise
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Figure 3.3: Feature-level scenes for three data augmentation methods: Flip (1st row),

Rotation (2nd row), and GT sampling (3rd row). Feature-level scenes of raw-point

level augmentation are on the left. Feature-level scenes of feature-level augmentation

are in the middle. Heatmaps of RMSE based on comparison between raw-level and

feature-level augmentation scenes are on the right.
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Figure 3.4: Conceptual images of feature-level augmentation with Flip and Rotation.
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Figure 3.5: RMSE between raw- and feature-level augmentations of the entire KITTI
training dataset. Box range covers the first quartile to the third quartile and the mark
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rotation breaks the geometric relationship mildly and its bilinear interpolation creates
the errors, which is not proper for augmentation.

Figure 3.5 confirms our description by showing the average of root mean square
error (RMSE) between raw- and feature-level augmentations in the KITTI dataset. This
plot illustrates that feature-level Flip and Rotation severely damage the original scene,

in contrast to GT sampling, which only produces minor errors.

3.5 Experiments

3.5.1 Experimental Setup

Scenarios. To demonstrate the effectiveness of UpCycling in various practical situations,
we conduct experiments in both domain adaptation and partial-label scenarios. The
domain adaptation task is to adapt the model, which is trained on abundant labeled data
in the source domain, to an unseen target domain that provides only unlabeled data. In
the partial-label scenario, the model is trained and tested in the same domain but most
of the training data is unlabeled.

Datasets. We choose three datasets widely used for detection applications of AVs: Waymo [1],
Lyft [3], and KITTI [2]. Among the three, the Waymo dataset is the most diverse and
the largest in volume. The 3D scenes in the Waymo dataset are captured in Phoenix,
Mountain View, and San Francisco, the US, under multiple weather and time settings.
The Lyft dataset is collected around Palo Alto, the US, in clear weather in the daytime.
The KITTI dataset is collected in Karlsruhe, Germany, in clear weather during the
daytime. Due to regional characteristics, car sizes in KITTT are different from those in
Waymo and Lyft [4]. We focus on car objects in this section and more details are in the
supplementary material.

Implementation details. When training a model with UpCycling, we set the two
filtering thresholds 77,7 and 7.5 to 0.5 and 0.4, respectively, and the weight for the

loss L({fayug}) is set as w = 1. We set the ratio of labeled data to unlabeled data
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Table 3.1: Effects of feature augmentation methods in a partial-label scenario where the

3D object detection model is SECOND-IoU and 10% training data is labeled in KITTI.

VL ~ APJD

& % o, 5 0

. ~ S T
Policy # N 2R K K Easy Mod Hard
Baseline 70.58 56.00 47.94
1 v -16.31 —20.09 -19.79
2 v +0.03 +0.13 —1.23
3 v +2.47 —0.96 40.63
4x v v —-11.69 -—13.75 —13.32
5 v +4.80 +5.42  +7.96
UpCycling v +7.81 +7.87 +8.14

in a mini-batch to 1:2 and 1:1 for domain adaptation and partial-label experiments,
respectively. Importantly, F-GT samples GT boxes only from the labeled dataset: the
source domain data in the domain adaptation scenario and a small portion of labeled
data in the partial-label scenario. Lastly, UpCycling freezes the 3D backbone network
after training it on the labeled data to prevent the divergence between an intermediate
feature from the server’s 3D backbone network and that collected from AVs. Therefore,
UpCycling updates only the detection head using unlabeled feature-level data. More

details are in the supplementary material.

3.5.2 Effect of Feature Augmentation Schemes

First, we investigate feature augmentation deeply by evaluating the superiority of
F-GT, which is utilized for UpCycling, to other augmentation schemes in a partial-label
scenario. To this end, we train SECOND-IoU on the KITTI dataset when only 10%
of its training data is labeled. Importantly, given that the KITTI dataset is originally
shuffled regardless of place and time sequence, we rearrange it in chronological order

for each place to prevent the data leakage between the labeled and unlabeled sets [83].

Comparison schemes. In this scenario, Baseline trains the model using only the limited
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amount of labeled data. Flip and RS are used in the SOTA SSL methods on 3D object
detection to augment raw-level 3D scenes [41,42]. For feature-level Flip, we place
feature information to its symmetric position on the feature map. For feature-level
RS, we nullify randomly selected 5% of feature data. Combination of feature-level
Flip and RS is actually a feature-level variant of the SOTA 3DIoUMatch [42], named
F-3DIoUMatch.? Noise is an existing feature augmentation method that adds Gaussian
noise, which is used for domain generalization of image classification [70]. Lastly,
Rotation rotates the feature with a degree randomly selected from [-45°, 45°] and

performs bilinear interpolation.

Result analysis. Table 3.1 shows each augmentation scheme’s performance margin
compared to Baseline in the partial-label scenario. Flip significantly underperforms
Baseline despite the use of much more (unlabeled) training data, verifying that feature-
level Flip damages important information in 3D scenes. Both Noise and RS have
marginal impact on performance, showing that these perturbation strategies do not
result in meaningful data diversity. Combining Flip and RS (i.e.,, F-3DIoUMatch) still
performs worse than Baseline due to the negative effect of Flip, which confirms that
naive application of SOTA SSL methods at a feature level does not work. Although
Rotation improves performance, our F-GT provides the lowest augmentation errors

(Figure 3.5) and thus the best performance in all cases.

3.5.3 Privacy Protection of Feature Sharing

As neural network activations could be inverted to reconstruct input data [8§4—86], there
could be concerns on potential privacy leaks when sharing features. We investigate
whether an inversion attack can recover the grid-type feature data generated from both
the SECOND-IoU and PV-RCNN backbone networks to the original point cloud. To
this end, we implement the inversion attack model using the decoder method [60] that

is widely used to evaluate whether a model consisting of convolutional layers can be

3Policy 4* indicates F-3DIoUMatch.
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(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from a middle (3rd) layer  (d) Restoration from the last (5th) layer, same
as UpCycling
Figure 3.6: Results of inversion attack for the 3D backbone model (5 convolutional
layers) of SECOND-IoU and PV-RCNN. The example 3D point cloud scene is in
KITTI.

inverted [87,88].* More details are in the supplementary material.

Result analysis. We conduct an inversion attack on the 3D backbone network in
SECOND-IoU and PV-RCNN.> Figures 3.6(b)-(d) present the restoration results for
intermediate features at three different convolutional layers of the backbone network:
Ist, 3rd, and 5th (last) layers, respectively. While the restored point cloud from the first

layer is relatively similar to the original scene (Figure 3.6(b)), it becomes significantly

“To the best of our knowledge, there has been no research that particularly focuses on inversion attacks

for 3D point clouds.
3The 3D point cloud scene in Figure 3.6(a) is from KITTI dataset, and the point cloud range covers the

X, y, and z-axis ranges 17.6, 20, and 4 meters.
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different when applied to deeper layers’ features (Figures 3.6(c) and (d)). As the number
of nonlinear layers increases, it becomes more difficult to accurately restore the original
data. Furthermore, restoring a point cloud from its intermediate feature is particularly
challenging since each raw point needs to be positioned precisely in voxelized spaces.
UpCycling utilizes unlabeled features at the last (deepest) layer, making it impossible
to accurately recover the original scene from an intermediate feature. Supplementary

material contains more inversion examples.

3.5.4 Domain Adaptation Experiments

Although UpCycling offers privacy protection by using only intermediate features, it is
crucial to evaluate whether it provides competitive detection accuracy compared to the
SOTA methods that use raw-level point clouds (Sections 3.5.4 and 3.5.5). In domain
adaptation experiments, we use the Waymo dataset as the source domain and the Lyft
and KITTI datasets as the target domains. The model is first pre-trained on the source
domain’s labeled data (called the baseline model), adapted using unlabeled training

data in a target domain, and then tested on the target domain’s test data.

Comparison schemes. We compare UpCycling with various methods. Baseline eval-
uates the baseline model directly and Oracle adapts the model with fully supervised
learning in the target domain, which provide the lower- and upper-bound performance,
respectively. ST3D [5] and SN (Statistical Normalization) [4] are the SOTA domain
adaptation methods on 3D object detection that utilize unlabeled raw 3D scenes. ST3D
generates pseudo labels from unlabeled data in the target domain to adapt the baseline
model. SN assumes that statistical object sizes in the target domain are given and
trains the baseline model in the source domain using the target domain object size
information. We also evaluate variants of ST3D and our UpCycling by combining SN

together, denoted as (w/ SN).

Result analysis. Table 3.2 shows the results of UpCycling and the various comparison

methods on SECOND-IoU and PV-RCNN. Surprisingly, the results show that although
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Table 3.2: Domain adaptation results with two target datasets: KITTI and Lyft. Difficulty
of the KITTI test dataset is set as Moderate. Baseline is a pre-trained model with Waymo

whereas Oracle is trained with fully labeled target dataset.

SECOND-IoU PV-RCNN
Dataset Method
APpgv / AP3p | APprv / APsp
Baseline 30.20/21.32 33.00/24.49
SN 28.38/19.25 33.44/25.64
ST3D 60.53/29.90 62.28 /1 42.63
Lyft UpCycling | 68.83/45.66 | 63.38/46.83
ST3D (w/ SN) 52.86/21.25 60.15/44.02
UpCycling (w/ SN) | 65.10/49.24 | 63.58/49.35
Oracle 76.70/ 61.70 78.68 / 64.54
Baseline 54.14/10.16 62.24/9.24
SN 60.80/37.30 60.08 / 38.86
ST3D 70.90 / 40.16 66.19 /23.26
KITTI UpCycling | 58.26/11.71 62.09/11.35
ST3D (w/ SN) 80.97/57.68 54.30/48.79
UpCycling (w/ SN) | 84.12 / 67.65 85.90/61.12
Oracle 90.36 / 82.02 90.84 / 84.56
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Table 3.3: Partial-label scenario results with three portions of labeled data in the KITTI

dataset: 2%, 10%, 25%.

2% 10% 25%
AP3p

Easy Mod Hard | Easy Mod Hard | Easy Mod Hard

Baseline 56.69 | 44.11 | 37.19 | 70.58 | 56.00 | 47.94 | 84.47 | 71.06 | 62.87
3DIoUMatch | 63.57 | 49.58 | 43.00 | 71.76 | 57.01 | 50.08 | 81.71 | 68.51 | 60.92
SECOND-IoU | improved (%) | 12.13 | 12.39 | 15.62 | 1.67 | 1.80 447 | -3.26 | -3.59 | -3.11

UpCycling 70.19 | 59.97 | 44.83 | 76.09 | 60.41 | 51.84 | 85.22 | 72.87 | 63.93
improved (%) | 23.81 | 35.96 | 20.54 | 7.81 | 7.87 8.14 | 0.89 | 2.55 1.69

Baseline 68.10 | 53.27 | 46.20 | 81.23 | 68.67 | 60.32 | 87.63 | 76.03 | 68.62

3DIoUMatch | 81.04 | 65.77 | 58.83 | 85.26 | 70.64 | 63.32 | 85.08 | 72.37 | 65.02
PV-RCNN improved (%) | 19.00 | 23.47 | 27.34 | 4.97 | 2.87 498 | -291 | -481 | -5.25

UpCycling 76.46 | 61.44 | 52.94 | 83.64 | 69.60 | 63.53 | 88.05 | 76.61 | 70.80

improved (%) | 12.28 | 15.34 | 1459 | 297 | 1.35 532 | 048 | 0.76 3.18

UpCycling (or w/ SN) does not utilize raw-point scenes for privacy protection, it pro-
vides the best accuracy in most cases. Specifically, UpCycling (or w/ SN) significantly
outperforms the two SOTA methods (ST3D and SN) in the Lyft case. When compared
to the better option between ST3D (or w/ SN) and SN in each case, UpCycling im-
proves accuracy by 1.3~19.71 APpgy and 5.33~19.34 AP3p. The results demonstrate
the effectiveness of hybrid pseudo labels and feature-level augmentation schemes in
UpCycling and also suggest the potential of using unlabeled features to advance 3D
object detection models.

Taking a deeper look, SN significantly improves UpCycling performance in the
KITTI dataset. Since object sizes in KITTI are different from those in Lyft and Waymo,

adjusting object sizes with SN for UpCycling is effective.

3.5.5 Partial-label Experiments

In partial-label experiments, we use the same setting as in Section 3.5.2 but train both

SECOND-IoU and PV-RCNN.

Comparison schemes. In this scenario, Baseline trains the model using only the limited
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amount of labeled data. 3DIoUMatch [42] is the SOTA SSL method using unlabeled
raw-point scenes. For consistency regularization, 3DIoUMatch uses Flip and RS to

augment raw data and filters pseudo labels in the IoU-guided NMS.°

Result analysis. Table 3.3 shows that UpCycling outperforms 3DIoUMatch in most
cases by effectively utilizing unlabeled feature-level data. In the case of 25%, 3DIloUMatch
even underperforms Baseline but UpCycling maintains performance improvement on
both SECOND-IoU and PV-RCNN. The results are interesting because the scenario
is unfavorable for UpCycling in that (1) UpCycling trains the 3D backbone only using
the small portion of labeled data and (2) the effect of F-GT could be marginal since
the number of GT samples are proportional to that of labeled data. UpCycling success-
fully overcomes the disadvantages, verifying that it achieves significant performance
improvement even when using a relatively immature backbone network and F-GT
effectively augments a large number of unlabeled data when only a small number of

GTs are available.

3.5.6 Ablation Studies

Since UpCycling freezes the backbone during the SSL process for effective feature shar-
ing, we evaluate the effect of the backbone freezing. To this end, we devise a comparison
scheme UpC-R, the application of UpCycling at the raw-level input. UpC-R augments
a raw-level 3D scene using GT samples and trains the whole network including the
backbone using unlabeled data and hybrid pseudo labels. Note that this approach not
only sacrifices privacy but also takes much longer to train compared to UpCycling.

Result analysis. Figure 3.7 compares UpC-R and UpCycling in the partial-label sce-
nario in Section 3.5.5. While sacrificing privacy, UpC-R outperforms UpCycling by

training the backbone further. Interestingly, UpC-R performs even better than the SOTA

8Since the authors in [42] did not use the rearranged KITTI dataset in their experiments, we measure
the performance of 3DIoUMatch again in the rearranged KITTI dataset. In addition, we newly implement

3DIoUMatch on SECOND-IoU for more extensive comparison.

52



28.71 - UpC-R
I UpCycling

w
o
T

=N
o o
SECOND-IOU

o

2% 10% 25%

Improvement (%)
N
o

-
o
PVRCNN

o

2% 10% 25%
Label Portion

Figure 3.7: UpC-R vs. UpCycling: Partial-label results in the KITTI dataset. The average

performance improvement in all KITTT test cases (easy, moderate, and hard).

3DIoUMatch (Table 3.3), demonstrating that GT sampling is more effective augmen-
tation than the combination of Flip and RS even at the raw-input level. On the other
hand, the performance gap between UpC-R and UpCycling decreases as the number of
labeled data increases, meaning that once the backbone is well-trained, the combination
of hybrid pseudo-labels and GT-based augmentation can be applied flexibly to any layer
without performance degradation. We see this as the unique advantage of GT sampling

that other point cloud augmentation methods cannot provide.

3.6 Implementation Details

3.6.1 Experiment settings

Training. For the pre-training stage, we train on 4 RTX 3090 GPUs with a batch size of

16 and 8 for SECOND-IoU and PV-RCNN, respectively. Then, following the original

model training settings, we use epochs 80, and 30 for KITTI dataset and Waymo dataset,

respectively. Especially, pre-training on small amounts of KITTI labeled data 2%, we
S EEiRT!

1
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lengthen the epoch to 120 for the model to converge. For the semi-supervised learning
stage, we train with a batch size of 32 (16 labeled + 16 unlabeled, 4 GPUs) and 16
(8 labeled + 8 unlabeled, 4 GPUs) for SECOND-IoU and PV-RCNN, respectively.
We set the ratio of unlabeled data to twice that of labeled data in domain adaptation
experiments. The learning rate is initialized as the value of the original model usage

and updated by cosine annealing strategy.

Table 3.4: Waymo [1], KITTI [2], and Lyft [3] dataset overview. T and * indicate

obtaining information from [4] and [5], respectively.

Waymo KITTI Lyft
LiDAR Type 64-beam 64-beam 64-beam
Beam Angles } [-18.0°,2.0°] [-23.6°, 3.2°] [-29.0°,5.0°]
Points per Scene * 160,139 118,624 69,175
Training Frames 158,081 3,712 18,900
Validation Frames 39,987 3,769 3,780
Night / Rainy Yes / Yes No/No No /No
Location USA Germany USA

Dataset and Source Code License. We implement our UpCycling based on Open-
PCDet [63] (v0.5.1) which is licensed under the Apache License 2.0. According to
https://paperswithcode.com/datasets, the license of Waymo dataset [1]
and KITTT dataset [2] is the custom (non-commercial) and the CC BY-NC-SA 3.0,
respectively, and the license of Lyft dataset [3] is unknown. The details of each datasets

are in Table 3.4.

3.6.2 Architecture details — 3D backbone network

In this paper, the 3D backbone network of SECOND [55] (see Table 3.5) is used for
generating the grid-type feature data in PV-RCNN and SECOND-IoU experiments.
Voxel Feature Extractor (VFE) converts the point cloud data into voxel format covering

the entire point cloud range. After that, the output of VFE goes through the SparseConv
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Table 3.5: 3D backbone network architecture generating grid-type feature data.

Layers BACKBONE Network Output size
VFE Mean VFE 4x41x1600x 1408
conv_input 4x3%x3x%3, 16, padding 1,1,1 16x41x1600x 1408
conv_1 16x3x3x3, 16 16x41x1600x 1408

16x3x3x3, 32, stride 2,2,2, padding 1,1,1
conv_2 32x3%x3x3,32 32x21x800x704
32x3%x3x3,32

32x3%x3x3, 64, stride 2,2,2, padding 1,1,1

SparseConv Layers
conv_3 64x3x3x%3, 64 64x11x400x352

64x3x3x3, 64

64x3x3x3, 64, stride 2,2,2, padding 0,1,1
conv_4 64x3x3x3, 64 64x5x200x176
64x3x3x%x3, 64
conv_out 64x3x1x1, 128, stride 2,1,1 128x2x200%x176

layers [89] where each Conv layer contains both batch normalization and ReLLU, which
is a non-linear function. Lastly, the output of SparseConv layers becomes the grid-type
feature data which UpCycling utilizes. On the other hand, the 3D backbone network
of PV-RCNN additionally generates the set-type features from Voxel Set Abstraction
(VSA) (see Table 3.6). In this process, PV-RCNN samples a fixed number of keypoints
from raw points following the Farthest-first rule. After that, set abstraction modules
create voxel-wise features from each layer in VFE corresponding to keypoint positions.
Finally, to generate the final form of set-type features, VSA Point Feature Fusion
module concatenates the features from the set abstraction modules to the accurate

keypoint positions.

3.6.3 Implementation Details for SECOND-IoU based 3DIoUMatch

We basically follow and reuse the official codes from the SOTA schemes for comparison

except for 3DIoUMatch [42]. 3DIoUMatch method uses IoU-guided NMS modules
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Table 3.6: 3D backbone network architecture generating set-type feature data.

Layers BACKBONE Network Output size
Key Point Sampling Farthest Point Sampling 4x%2048
radius 0.4 radius 0.8
SA_raw 4x1x1, 16 4x1x1,16 32x2048
16x1x1, 16 16x1x1, 16
radius 0.4 radius 0.8
SA_pvl 19x1x1, 16 19%x1x1, 16 32x2048
16x1x1, 16 16x1x1, 16
VoxelSetAbstraction radius 0.8 radius 1.2
(VSA) Layers SA_pv2 35x1x1,32 35x1x1,32 64x2048
32x1x1,32 32x1x1,32
radius 1.2 radius 2.4
SA_pv3 67x1x1, 64 67x1x1, 64 1282048
64x1x1, 64 64x1x1, 64
radius 2.4 radius 4.8
SA_pv4 67x1x1, 64 67x1x1, 64 128x2048
64x1x1, 64 64x1x1, 64
SA_BEV Bilinear Interpolation 256 %2048
Concat [ frow, fpot, ppo2 | ppos| ppvd ¢ BEVT 1 640x2048
VSA Point Feature Fusion
Linear Layer 640, 128 1282048

for filters pseudo labels. However, the authors did not implement 3DIoUMatch in
SECOND-IoU, we have implemented 3DIoUMatch on SECOND-IoU to analyze its
effectiveness compared with UpCycling.

According to 3DIoUMatch, among the pseudo labels filtered according to the
module in IoU, only terms that help improve box regression are selectively included in
the loss. In the first attempt, the experiment t case in Table 3.7 is conducted, including
both the box regression and cls loss value from the RPN module among the pseudo
labels extracted from SECOND-IoU. The performance, however, is severely degraded
compared with the baseline model’s performance. Thus, as following implementation
of the 3DIoUMatch concept, we select only the loss useful for box regression among

RPN module loss terms. It could be confirmed through the results of 3DIoUMatch
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Table 3.7: Partial-label scenario results with 2% of labeled data in the KITTI dataset.
3DIoUMatch f indicates the first attempt experiment of not applying selective supervi-

sion of box regression loss term.

2%

AP3p
Easy Mod Hard

Baseline 56.69 | 44.11 | 37.19
3DIoUMatch f | 29.12 | 23.03 | 20.33
SECOND-IoU | improved (%) | -48.64 | -47.78 | -45.32
3DIoUMatch | 63.57 | 49.58 | 43.00
improved (%) | 12.13 | 12.39 | 15.62

from Table 3.7 that the baseline model performance is well improved by the correct
loss selection. Through this, we could judge that the implementation of SECOND-IoU
based 3DIoUMatch is reasonable. For training, we follow the original 3DIoUMatch

training settings, and more details on configurations are in the CODE supplementary.

3.6.4 Implementation of Inversion Attack

The research on inversion attacks that aim to restore original data from feature data has
mainly focused on 2D images. Several studies, such as those referenced in [60, 87, 88],
have proposed different inversion attack models based on convolutional neural networks
(CNNs) and have shown improvements in performance by using prediction results and
explanations. Additionally, an inversion attack model that utilizes a GAN generator
and 1x1 convolution has been proposed in [90]. However, to the best of our knowledge,
research on inversion attacks for 3D point clouds remains limited.

For this purpose, we employ the inversion attack model utilizing the decoder
method [60], which is commonly used to assess the invertibility of a model composed
of convolutional layers [87, 88].

We have developed the inversion attack models that reconstruct the raw point clouds

from the intermediate features at the 1st, 3rd, and 5th convolution layers in 3D backbone
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Table 3.8: 3D reconstructor network architecture from xconv_1.

Layers RECONSTRUCTOR Network Output size
INPUT xconv_1 16x41x400%352
conv_l1 16x3x3x3, 16, padding 1,1,1 16x41x400x352
Conv3d Layers conv_2 16x3x3x%3, 16, padding 1,1,1 16x41x400x352
conv_3 16x3x3x%3, 16, padding 1,1,1 16x41x400x352
ConvTranspose3d Layers | upconv_1 16x3x3x3, 4, padding 1,1,1 4x41x400x352

Table 3.9: 3D reconstructor network architecture from xconv_3.

Layers RECONSTRUCTOR Network Output size
INPUT xconv_3 64x11x100%88
conv_1 64x3x3x3, 64, padding 1,1,1 64x11x100x88
Conv3d Layers conv_2 64x3x3x3, 64, padding 1,1,1 64x11x100x88
conv_3 64x3x3x3, 64, padding 1,1,1 64x11x100x88
upconv_1 | 64x3x3x3, 32, stride 2,2,2, padding 1,1,1/0,1,1 | 32x21x200x176
ConvTranspose3d Layers | upconv_2 || 32x3x3x3, 16, stride 2,2,2, padding 1,1,1/0,1,1 | 16x41x400x352
upconv_3 16x3x3x3, 4, padding 1,1,1 4x41x400x352

Table 3.10: 3D reconstructor network architecture from xconv_out.

Layers RECONSTRUCTOR Network Output size

INPUT xconv_out 128 x2x50x 44

conv_l 128x3x3x3, 128, padding 1,1,1 128 x2x50x44

Conv3d Layers conv_2 128x3x3x3, 128, padding 1,1,1 128 x2x50x44
conv_3 128x3x3x3, 128, padding 1,1,1 128 x2x50x44

upconv_1 128 x5x3x3, 64, stride 2,1,1, padding 1,1,1 64 x5x50x44

upconv_2 || 64x5x3x3, 64, stride 2,2,2, padding 1,1,1/0,1,1 | 64x11x100x88
ConvTranspose3d Layers | upconv_3 | 64x3x3x3, 32, stride 2,2,2, padding 1,1,1/0,1,1 | 32x21x200x 176
upconv_4 || 32x3x3x3, 16, stride 2,2,2, padding 1,1,1/0,1,1 | 16x41x400x352

upconv_5 16x3x3x%3, 4, padding 1,1,1 4x41x400x352
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network in Table 3.5, following the decoder method [60]. The inversion attack model
structures for reconstructing features from the 1st, 3rd, and 5th layers are consistent
with the structures presented in Tables 3.8, 3.9, and 3.10, respectively. The initial part
of each inversion attack model consistently consists of three convolution layers. After
that, the number of transposed convolution layers in the model corresponds to the count
of layers that generate the input feature data.

To reconstruct the point clouds from input features for each dataset (KITTI, Waymo,
and Lyft), we have developed independent inversion attack models for every dataset and
followed the training settings in the decoder method [60]. More details on configurations

are in the CODE supplementary.

3.7 Supplementary Evaluation

In this section, we provide additional supplementary experiment results that reinforce

the arguments of this paper.

3.7.1 Feature-level Augmentation

Comparing point set features as with voxel-based features is not precise since raw-point
augmentation impacts point sampling; feature augmentation is performed based on
point samples different from those when raw-point augmentation is applied. Doing our
best, however, we conducted additional experiments by comparing the closest point
features in pairs. The RMSE results are 1.605@FLIP, 1.297@ROT, and 0.906 @GT,

confirming a similar trend as voxel-based.

3.7.2 Privacy Protection
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Figure 3.8: RMSE between raw- and set-type feature-level augmentations of the entire
KITTI training dataset. Box range covers the first quartile to the third quartile and the

mark ‘x’ indicates the mean value.
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(a) Original raw-point scene (b) Restoration from the Ist layer

(c) Restoration from the 3rd layer (d) Restoration from the Sth layer, same as

UpCycling

Figure 3.9: Results of inversion attack for the 3D backbone model of SECOND-IoU
and PV-RCNN. The example 3D point cloud scene is in KITTI.
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(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from the 3rd layer (d) Restoration from the 5th layer, same as

UpCycling

Figure 3.10: Results of inversion attack for the 3D backbone model of SECOND-IoU

and PV-RCNN. The example 3D point cloud scene is in Waymo.
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(a) Original raw-point scene (b) Restoration from the st layer

i

(c) Restoration from the 3rd layer (d) Restoration from the 5th layer, same as

UpCycling

Figure 3.11: Results of inversion attack for the 3D backbone model of SECOND-IoU
and PV-RCNN. The example 3D point cloud scene is in Lyft.
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Feature data produced from the 3D object detection network.

Figures 3.12-3.13 shows the grid-type feature’s activation heatmaps and set-types
feature’s positions corresponding to GTs at the raw-point data. In UpCycling, the
state of the feature-level data after passing the 3D Backbone networks is very coarse.
UpCycling uses these de-identified feature-level data for SSL of 3D object detection. In
order to extract identifying information from this de-identified data, inversion attacks
must be employed. We will discuss the attempts to reconstruct data via inversion attacks
in the following section. Additionally, since a regular detection pipeline with the 3D
scene naturally produces an unlabeled intermediate feature, UpCycling eliminates the

need for extra AV-side computation (e.g., local training) or server-side annotation effort.

Restored point cloud scene using the inversion attack.

We perform an inversion attack on the 3D backbone network in SECOND-IoU and
PV-RCNN. The 3D point cloud scenes in Figures 3.9-3.11(a) originate from the KITTI,
Waymo, and Lyft datasets, respectively. Figures 3.9-3.11(b)-(d) present the restoration
results for intermediate features at three different convolutional layers of the backbone
network: 1st, 3rd, and 5th (last) layers, respectively. Although the point cloud restored
from the first layer is relatively similar to the original scene, it becomes considerably
different when applied to features from deeper layers in all cases. We confirm that
intermediate feature data generated from the deepest layer utilized by UpCycling in
all datasets, including KITTI, Waymo, and Lyft, makes it impossible to accurately

reconstruct the original scene.

3.7.3 Effect of Feature Augmentation Schemes in Domain Adaptation

In Section 5.2, we investigate feature augmentation by evaluating the superiority of
F-GT, which is utilized for UpCycling, to other augmentation schemes (e.g., Flip, Noise,

RS, and Rotation) in a partial-label scenario. Further, we investigate the superiority of
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Table 3.11: Effects of feature augmentation schemes in the domain adaptation scenario

with the same settings as Sections 5.2 and 5.4

SECOND-IoU (Closed Gap[%])
Dataset Method
APggv APsp
Baseline 54.14 (0.00) 10.16 (0.00)
Flip(w/ SN) 76.68 (62.23)  48.73 (53.67)
Noise(w/ SN) 81.46 (75.43)  51.21(57.12)
KITTI RS(w/ SN) 78.59 (67.50)  46.52 (50.61)
Rotation(w/ SN) | 77.98 (65.83)  44.25 (47.44)
UpCycling (w/ SN) | 84.12 (82.77)  67.65 (80.00)
Oracle 90.36 (100.0)  82.02 (100.0)

UpCycling to other feature augmentation schemes in the domain adaptation scenario
with the same settings as Sections 5.2 and 5.4.

In this experiment, Baseline evaluates the baseline model pre-trained with Waymo
dataset directly in target domain (KITTI) and Oracle adapts the model with fully
supervised learning in the target domain, which provide the lower- and upper-bound
performance, respectively. For feature-level augmentations, we adopts Flip, Noise, RS,
and Rotation described in Section 5.2. We utilize SECOND-IoU and adopt SN option
for adaptation to KITTI domain since object sizes in KITTI are different from those in
Waymo.

Table 3.11 performs the same comparison in the domain adaptation scenario de-
scribed in Section 5.4, showing each scheme’s APggyv, AP3sp performances and its
relative position between Baseline (0) and Oracle (100). The results show that our

UpCycling provides the best performance in all cases.

3.7.4 Other Class Detection Results

We report per-class average precision on other classes of the KITTI dataset in Table 3.12.

We use the same settings as in Sections 5.5. The experiment using a 10% partial-label
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Table 3.12: The AP results for Car and Pedestrian classes in a partial-label scenario,

utilizing 10% labeled data from the KITTI dataset.

Car (@0.7 IoU) Pedestrian (@0.5 IoU)

Easy Mod Hard Easy Mod Hard

Baseline 75.77 | 58.75 | 52.27 | 15.40 | 13.10 | 12.27
SECOND-IoU UpCycling 76.01 | 61.09 | 54.34 | 18.08 | 15.13 | 14.49
Improved (%) | 0.32 | 3.98 | 3.96 | 17.40 | 15.50 | 18.10

Baseline 80.98 | 66.80 | 59.60 | 14.81 | 13.39 | 12.42
PV-RCNN UpCycling 83.82 | 69.52 | 62.47 | 16.10 | 15.18 | 15.00
Improved (%) | 3.51 | 4.07 | 482 | 871 | 13.37 | 20.77

Car (@0.7 IoU) Pedestrian (@0.5 IoU)

APggv(10%)
Easy Mod Hard | Easy Mod Hard

Baseline 82.59 | 73.63 | 65.80 | 22.02 | 18.30 | 17.48
SECOND-IoU UpCycling 86.81 | 75.87 | 67.28 | 23.59 | 19.67 | 18.95
Improved (%) | 5.11 | 3.04 | 225 | 7.13 | 749 | 841

Baseline | 89.22 | 80.95 | 73.30 | 16.87 | 15.26 | 15.01
PV-RCNN UpCycling | 91.33 | 83.25 | 75.85 | 20.03 | 18.27 | 18.10
Improved (%) | 2.36 | 2.84 | 3.48 | 18.73 | 19.72 | 20.59

scenario on KITTI training data is essential to understand UpCycling’s effectiveness
to the Pedestrian class as well as the Car class. As shown in Table 3.12, UpCycling
achieves to improve the detection accuracy in other classes significantly, regardless of

the class, model, and task difficulty.
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Figure 3.12: Figures for the Car class in KITTI dataset. GT point clouds and corre-

sponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Figure 3.13: Figures for the Pedestrian class in KITTI dataset. GT point clouds and

corresponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Figure 3.14: Figures for the Cyclist class in KITTI dataset. GT point clouds and

corresponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Chapter 4

Conclusion

4.1 Research Contributions

In this dissertation, we dealt with autonomous vehicles’ object detection performance
enhancement techniques using communication systems.

In Chapter 2, we have presented Beyond-Vision, a standard-compliant relay system
in C-V2V, that aims to guarantee stable MRR in vehicular communications. To ensure
effective relaying performance, each V-UE should be able to distinguish CAMs that are
not likely to be received at nearby V-UEs. Beyond-Vision enables V-UEs to examine
eMRR of received CAMs with no overhead by utilizing previously unused bytes in
the conventional CAM. By doing so, Beyond-Vision relays CAMs more efficiently
than the other comparison schemes. Based on our realistic simulation results, we have
verified the performance of Beyond-Vision in various environments, demonstrating
that Beyond-Vision significantly improves MRR performance compared with the other
comparison schemes and that its relaying transmission is very effective.

In Chapter 3, we have presented UpCycling, a novel semi-supervised learning
framework for 3D object detection models that does not utilize unlabeled raw-level
3D scenes but only de-identified intermediate features. To the best of our knowledge,

UpCycling is the first framework that tackles labeling cost, privacy leakage, and AV-
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side computation burden altogether. Our deep investigation of feature-based learning
reveals that combining hybrid pseudo label, F-GT, and F-RoT significantly improves
pseudo-label quality and data diversity. Results from various experiments demonstrate
that UpCycling achieves SOTA accuracy with large margins in both partial-label and
domain adaptation scenarios, regardless of the model, dataset, and task (difficulty setting
or average precision of BEV/3D view). With the superior performance, UpCycling
discloses the value of unlabeled feature-based learning in the context of 3D object

detection, in terms of both privacy and accuracy.

4.2 Future Research Directions

Based on the results of this dissertation, there are new future research directions which
require further investigation. We highlight some of them as follows.

First, we plan to investigate the relaying message traffic in various V-UE density
environments, and to propose a novel adaptive relaying-mode for high density environ-
ments. Second, regarding the machine learning system design for a real application, we
plan to propose a novel system for UpCycling considering the communication costs,

and the enhancement of privacy leakage.
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