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Abstract

Object detection for autonomous driving has mainly relied on two kinds of methods.

One is a cooperative autonomous driving method in which vehicles share their informa-

tion through V2X communication and cooperate to understand road conditions. The

other is a stand-alone autonomous driving method that detects the type of object and

the distance between the vehicle and the object by processing the information obtained

from vision sensors with a deep learning model for 3D object detection.

In this regard, the above two methods have the following advantages and dis-

advantages, respectively. The cooperative autonomous driving method using V2X

communication has the advantage of detecting vehicles in areas invisible to vision

sensors. However, there is a limiting condition that all vehicles must cooperate in

information sharing through a communication infrastructure, and reliability problems

arise depending on the status information sent by each vehicle. On the other hand, in the

stand-alone object detection method via vision sensors, the detection reliability is high,

but the area obscured by obstacles cannot be detected. Therefore, research is needed to

enhance the advantages of the above two object detection methods to ensure the safety

of users driving autonomous vehicles.

In this dissertation, we propose methods to improve the object detection perfor-

mance for cooperative autonomous driving and stand-alone autonomous driving, re-

spectively: (i) improvement message reception rate (MRR) using Cellular Vehicle-

to-Vehicle (C-V2V) on-demand relaying system, and (ii) semi-supervised 3D object

detection without sharing raw-level unlabeled scene.

First, we propose a novel C-V2V on-demand relaying system that effectively con-

tributes to finding hidden V-UEs without any subsidiary feedback process and relaying

Cooperative Awareness Messages (CAMs) of hidden V-UEs. To achieve this goal,

we introduce a novel CAM configuration to contain additional information of nearby
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V-UEs without overhead by utilizing previously unused bytes in the conventional

CAM. Then, we verify that this novel relay system helps to improve MRR in C-V2V

communications.

Second, we propose UpCycling, a novel semi-supervised learning framework for 3D

object detection models that utilizes only de-identified intermediate features. Moreover,

UpCycling is a unique framework that addresses labeling costs, privacy leakage, and

the computational burden on the Autonomous Vehicle (AV) simultaneously. In addition,

while preserving privacy, UpCycling performs better or comparably to the state-of-the-

art (SOTA) methods that utilize raw-level unlabeled data in both domain adaptation and

partial-label scenarios. With the robust performance, UpCycling demonstrates the value

of unlabeled feature-based learning in the context of 3D object detection, in terms of

both privacy and accuracy.

In summary, from Chapter 2 to Chapter 3, the two pieces mentioned above of the

research work, improvement MRR using C-V2V on-demand relaying system and semi-

supervised 3D object detection without sharing raw-level unlabeled scenes, respectively.

Through this research, we take a step forward to make commercialization of autonomous

vehicles by further ensuring user safety.

keywords: 3D object detection, Autonomous driving, Semi-supervised learning,

Vehicular communication

student number: 2016-20989
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Chapter 1

Introduction

1.1 Main Contributions

1.1.1 On-Demand Relaying in Vehicular Communications

Cellular Vehicle-to-Vehicle (C-V2V) communications take autonomous driving tech-

nology to the next level by allowing a Vehicular User Equipment (V-UE) to receive

Cooperative Awareness Messages (CAMs) from other V-UEs, and enable the V-UE to

see beyond what is detectable by vision-based sensors, thereby preventing accidents

and ensuring user safety. However, there remains a fundamental limitation in the con-

ventional CAM broadcasting since a transmitter (TX) V-UE cannot confirm whether its

CAM is successfully received at other V-UEs. Without a feedback process, a significant

uncertainty arises in CAM reception, posing a critical threat to user safety. To address

this threat, we propose Beyond-Vision, an effective C-V2V on-demand relay system

that allows CAMs that are not well received at nearby V-UEs to be better received.

Through simulation that reflects realistic vehicle mobility and road environments in ur-

ban scenarios, we verify the superiority of Beyond-Vision over the conventional C-V2V,

which improves performance by up to 215% in terms of message reception ratio (MRR)

within a communication range under Non-Line-Of-Sight (NLOS) channels.

In summary, we claim the following contributions in this work.
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• We propose a novel C-V2V relay system that improves MRR with no overhead

by utilizing previously unused bytes in the conventional CAM.

• We evaluate Beyond-Vision performance via simulation which reflects realistic

vehicle mobility and road situations based on Simulation of Urban MObility

(SUMO) [6].

• We verify the superiority of Beyond-Vision with the latest C-V2V protocol de-

fined in 3GPP and other relay systems.

1.1.2 Semi-Supervised 3D Object Detection with De-identified Unlabeled

Scenes

Semi-supervised Learning (SSL) has received increasing attention in autonomous

driving to reduce the enormous burden of 3D annotation. In this paper, we propose

UpCycling, a novel SSL framework for 3D object detection with zero additional raw-

level point cloud: learning from unlabeled de-identified intermediate features (i.e.,,

“smashed” data) to preserve privacy. Since these intermediate features are naturally pro-

duced by the inference pipeline, no additional computation is required on autonomous

vehicles. However, generating effective consistency loss for unlabeled feature-level

scene turns out to be a critical challenge. The latest SSL frameworks for 3D object

detection that enforce consistency regularization between different augmentations of

an unlabeled raw-point scene become detrimental when applied to intermediate fea-

tures. To solve the problem, we introduce a novel combination of hybrid pseudo labels

and feature-level Ground Truth sampling (F-GT), which safely augments unlabeled

multi-type 3D scene features and provides high-quality supervision. We implement

UpCycling on two representative 3D object detection models: SECOND-IoU and PV-

RCNN. Experiments on widely-used datasets (Waymo, KITTI, and Lyft) verify that

UpCycling outperforms other augmentation methods applied at the feature level. In

addition, while preserving privacy, UpCycling performs better or comparably to the
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state-of-the-art methods that utilize raw-level unlabeled data in both domain adaptation

and partial-label scenarios.

In summary, we claim the following contributions in this work.

• UpCycling is the first framework that tackles labeling cost, privacy leakage, and

AV-side computation cost altogether to train a 3D object detection model, which

deeply investigates how to learn from unlabeled intermediate features.

• UpCycling provides a fresh eye on GT sampling in the context of SSL since it

safely improves data diversity of unlabeled feature-level 3D scenes and signifi-

cantly improves pseudo-label quality by providing zero-noise labels.

• UpCycling not only protects privacy but also performs better or comparably to

the state-of-the-art methods in both domain adaptation and partial-label scenarios,

on representative models and datasets for 3D object detection.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents that a fundamental problem of conventional CAM broadcasting

due to the absence of a feedback process and propose Beyond-Vision, an effective

C-V2V on-demand relay system. The design of Beyond-Vision is presented, and the

performance evaluation is explained.

Chapter 3 demonstrates that feature-based semi-supervised learning, which com-

bines hybrid pseudo labels and F-GT, significantly enhances the performance of 3D

object detection models while also preserving data privacy. The design of UpCycling is

presented, and the performance enhancement is verified via representative datasets and

models under various scenarios. Also, we show that UpCycling preserves privacy with

intuitive image-level analysis.

Finally, Chapter 4 concludes the dissertation with a summary of contributions and a

discussion of future research directions.
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Chapter 2

Beyond Vision: Hidden Car Detector with On-demand

Relaying in Vehicular Communications

2.1 Introduction

Autonomous driving technology has evolved over time from lab-based “future tech-

nology” to “real-world technology” visible on the roads. However, commercialization

of the technology requires autonomous vehicles to understand their surroundings to

prevent accidents and ensure user safety. Peripheral object recognition is well known as

one of the essential functions required for safety in autonomous driving. Until now, au-

tonomous vehicles have mainly relied on sensors such as Light Detection And Ranging

(LiDAR), radar, and cameras to detect objects on the roads [7]. However, vehicles face

a serious challenge if they solely rely on these vision-based sensors because peripheral

sensing is not possible in a Non-Line-Of-Sight (NLOS) environment and external

factors such as weather may degrade sensing accuracy.

In an effort to overcome these limitations, studies have been conducted on vehicular

communications that can be effective even in NLOS situations and are less vulnerable

to external factors. In addition, Cellular Vehicle-to-Vehicle (C-V2V) communications

have been standardized based on Long Term Evolution (LTE) [8, 9] since Release 14 of

4
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Figure 2.1: Proposed CAM configuration.

3GPP organization. Also, interest in C-V2V has grown recently as it is one of the core

services in 5G concerning the safety of autonomous vehicles.

In C-V2V communications, a Vehicular User Equipment (V-UE) periodically broad-

casts Cooperative Awareness Messages (CAMs) including its status information for

nearby V-UEs.1 Upon receiving CAMs, V-UEs can detect the existence of other V-UEs

transmitting CAMs. The reception of CAMs helps a V-UE to detect other V-UEs be-

yond the detectable range of vision-based sensors or those invisible due to NLOS

positions. In addition, the V-UE can use received CAM information for various driving

assistance applications such as collision avoidance, accident warning, and intelligent

navigation [10].

However, the conventional CAM broadcasting has a fundamental problem because

it has no feedback process to confirm whether a CAM is received or not. In other words,

there is no way for a transmitter (TX) V-UE to know whether receiver (RX) V-UEs

have received a CAM since the CAM does not contain any feedback information and

no feedback message is defined in C-V2V. In particular, in a NLOS situation where

vision-based sensors are unable to detect an object, the uncertainty of CAM reception

becomes a fatal threat to users.

In this paper, we propose an effective C-V2V on-demand relay system, termed
1The CAM contains the V-UE’s status information including CAM generation time, V-UE’s location

obtained from GPS, V-UE’s speed, and V-UE’s ID, etc.
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Beyond-Vision, that enables V-UEs to identify which nearby V-UEs fail to receive

which CAMs. To achieve this goal, we focus on the specific information that a CAM

should contain. According to the ETSI standard [11], a CAM contains the TX V-UE’s

status information which occupies approximately 64 bytes of data. However, given the

fact that the size of data used for actual CAM transmission is 194 or 300 bytes [10],

the size of basic data, including the TX V-UE’s status information, is even smaller.

As shown in Fig. 2.1, the novel CAM configuration we propose contains additional

information of nearby V-UEs detected during the CAM generation period.

Then the V-UE exploits received information of detected V-UE lists to identify

which V-UEs have received which CAMs and which V-UEs are hidden to which V-UEs.

This novel relay system effectively contributes to finding hidden V-UEs without any

subsidiary feedback process, and relaying CAMs of hidden V-UEs, which helps to

improve Message Reception Ratio (MRR) in C-V2V communications.

The merits of Beyond-Vision and the contributions of this paper are as follows:

• We propose a novel C-V2V relay system that improves MRR with no overhead by

utilizing previously unused bytes in the conventional CAM.

• We evaluate Beyond-Vision performance via simulation which reflects realistic vehi-

cle mobility and road situations based on Simulation of Urban MObility (SUMO) [6].

• We verify the superiority of Beyond-Vision with the latest C-V2V protocol defined

in 3GPP and other relay systems.

The rest of this paper is organized as follows. We first present the related work

and motivation of the work in Section 2.2. Section 2.3 introduces the basic operation

of the conventional C-V2V protocol. Then, we present our proposed relaying scheme,

Beyond-Vision, in Section 2.4, and evaluate Beyond-Vision through system-level simu-

lation under various scenarios in Section 2.5.
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2.2 Related Work

In this section, we summarize previously studied relaying schemes in V2V communica-

tions and present the motivation of our proposed scheme.

2.2.1 Relaying schemes for V2V

Previous relaying studies on V2V communications have been performed primarily

under the IEEE 802.11p-based system called Dedicated Short Range Communications

(DSRC) [12, 13].

The farthest-first dissemination is the most commonly used strategy to disseminate

safety data in V2V communications. This strategy allows the vehicle farthest from

the sender to be selected as a relay node for disseminating safety data. For example,

Street Broadcast Reduction (SBR) scheme, proposed by Martinez et al. [14], utilizes

the farthest-first dissemination scheme to reduce the warning message notification time

in urban setting scenarios with multiple intersections and obstacles. Urban Multihop

Broadcast (UMB) scheme, proposed by Korkmaz et al. [15], maximizes its one-hop

dissemination performance by selecting a vehicle in the road segment farthest from the

sender. Li et al. [16] came up with OppCast, a safety data dissemination scheme with

enhanced scalability. OppCast operates in two phases. First, farthest-first dissemination

takes place to disseminate data as far as possible. Second, make-up dissemination

completes the process while ensuring high reliability.

Another method is probability-based broadcasting. In this method, stochastic re-

laying limits the number of relaying events [17, 18], thereby preventing redundant

re-transmissions in V2V communications. Specifically, vehicles are prioritized by their

assigned relaying probabilities. Slotted p-Persistence Broadcasting proposed in [17],

assigns a relay probability to each relaying according to its distance from the original

TX; The farther the vehicle is from the original TX, the larger relaying probability it is

assigned. Considering the density level of nearby vehicles, AutoCast proposed in [18]

7



: Poor CAM transmission : Beyond‐Vision vehicle

Relaying 
transmission

RX failure

RX success

Figure 2.2: Motivation: Finding and relaying CAMs that are not well received at nearby

V-UEs.

determines the relaying probability.

There are more studies that propose different relaying schemes. For example, Packet-

value-based dissemination scheme (PVCast) [19] presents a novel way to determine

relay priority considering both spatial and temporal preferences of each received CAM.

In [20], the authors propose a cooperative transmission scheme employing a signal

superposition technique. Under this scheme V-UEs superpose other V-UEs’ signals that

they have received onto their own transmission signals. In [21], the authors propose

Reliable Broadcasting of Life Safety Messages (RBLSM) where vehicles nearer to the

sender suffer shorter wait time and packets delivered to nearby vehicles experience

smaller latency. In [22], the authors compare DSRC and C-V2V communication per-

formance in several aspects. Furthermore, in [23], the authors propose a relay system

focusing on hybrid V-UEs, i.e., V-UEs equipped with both DSRC and C-V2V modules.
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In [24], the authors propose a relaying scheme with Road Side Units (RSUs) in vehicu-

lar communications. Unlike the studies on the above relaying protocols, J. Heo et al.

explore the utility and trade-off of using buses as mobile RSUs through mathematical

analysis, simulation, and real-world experiments [25]. Also, B. Kang et al. study the

traffic steering scheme to extend the operation of D2D communications to both licensed

and unlicensed bands as well as propose a transmission power adaptation algorithm for

C-V2X Mode 4 [26, 27].

2.2.2 Motivation of Proposed Beyond-Vision

The previous studies on the relaying scheme described above are as follows. To deter-

mine CAM selection priority for relaying, these relaying methods take into account:

1) The distance between TX V-UEs and RX V-UEs, 2) the number of V-UEs that

can receive CAMs, and 3) temporal and spatial preferences of each CAM. However,

these methods are limited in improving MRR performance because they do not take

a sophisticated approach to examine how successfully nearby vehicles receive CAMs

when selecting a CAM for relaying.

Our proposed Beyond-Vision ensures effective CAM relaying by addressing the

limitation. Specifically, Beyond-Vision finds ‘hidden V-UEs’ that are not detected be-

cause CAMs transmitted by those V-UEs cannot be received within the communication

range. As shown in Fig. 2.2, Beyond-Vision enables V-UEs to selectively choose and

relay hidden V-UEs’ CAMs. Beyond-Vision enables this process simply by adding

some information to each CAM, without additional transmission for confirming the

reception of CAMs.
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Figure 2.3: C-V2V resource allocation.

2.3 Preliminaries

2.3.1 C-V2V

In this section, we describe C-V2V communications defined in the 3GPP standard

Release 14 [8, 9], for which our proposed scheme applies. In C-V2V communications,

each V-UE exchanges accurate information such as its ID, location, velocity, and

acceleration [11, 28], which contributes to improving traffic safety.

C-V2V was originated from LTE sidelink, called LTE Device-to-Device (LTE-

D2D) communications which 3GPP first introduced in Release 12 for public safety.

As LTE-D2D was designed to lower battery consumption rather than latency, it is

not suitable for C-V2V which requires low latency and high reliability [29, 30]. A

significant difference between C-V2V and LTE-D2D is in how to allocate dedicated

resources. While LTE-D2D systems rely on specific LTE uplink resources, C-V2V
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systems utilize separate resources.

C-V2V communications using a single-carrier frequency division multiple access

support one or two channels of 10 MHz in the 5.9 GHz spectrum which many countries

already dedicate to vehicular communications [31]. The minimum resource unit that

C-V2V utilizes in the 5.9 GHz spectrum is Resource Block (RB).2 It has a frequency

width of 180 kHz (12 subcarriers of 15 kHz) and consists of one subframe (= 1 ms).

In the 10 MHz channel, there are 50 RBs available on the frequency axis for C-V2V

communications. Also, C-V2V defines subchannel as a group of multiple RBs. Multiple

V-UEs can transmit simultaneously by using subchannels in the same subframe.

C-V2V selects a subchannel, which is a resource for transmission in two ways:

Sidelink Modes 3 and 4 [9]. Under sidelink Mode 3, Evolved Node B (eNodeB)

allocates resources for V-UEs in a centralized manner. Under sidelink Mode 4, in

contrast, V-UEs select resources independently. This means that a V-UE under Mode 4

allocates resources regardless of the cellular coverage of the eNodeB. In this paper,

we assume that the Beyond-Vision operating environment is controlled in a distributed

manner, i.e., sidelink Mode 4.

When selecting a resource for transmission in Mode 4, a V-UE uses the sensing-

based Semi-Persistent Scheduling (SPS) scheme, which is defined in 3GPP Release

14. As shown in Fig. 2.3, the V-UE in Mode 4 analyzes energy levels detected during

the previous 1000 ms. Based on average sensed Received Signal Strength Indicator

(RSSI) analysis, the V-UE extracts a pool of candidate resources from the current time

to 100 ms later and selects new resources. In doing so, the V-UE randomly chooses one

of the subchannels as a resource with the lowest 20% energy level to avoid possible

collisions with adjacent V-UEs that select the same subchannel [9]. With a period

of 100 ms, the V-UE repeatedly occupies the resource as many times as a randomly

selected counter between 5 and 15. When the counter expires, the V-UE selects a new
2Since C-V2V is defined based on LTE, users in LTE system utilize RBs for the minimum resource

unit as well.
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resource and counter with the same procedure.

2.3.2 Challenge of Relaying Protocols in C-V2V

The operation of relaying protocols in C-V2V should consider the following charac-

teristics of CAMs. First, conventional CAM broadcasting has no feedback process to

confirm whether a CAM is received. For this reason, relay transmission may cause

unnecessary transmissions by repeatedly relaying already received CAMs. To reduce

unnecessary transmissions, the relaying V-UE should find a proper CAM that needs

to be relayed under this constraint. Second, a V-UE generates a CAM periodically,

and updates its CAM information every 100 ms of the typical option in C-V2V [9].

If the CAM information becomes invalid 100 ms after its generation, the CAM is no

longer eligible for relaying. Thus, the V-UE should seek to relay valid CAMs before

new ones are created. Third, there is a communication range for CAM transmission,

defined differently according to the average speed of the V-UE in the road environment.

Specifically, the communication range is defined as 150 m for urban environments [32].

For effective transmission, relaying protocols should be designed to ensure a high

reception rate of CAMs within the communication range.

2.4 Beyond-Vision: Proposed C-V2V Relay System

2.4.1 Overview

We propose Beyond-Vision to overcome the defects of the CAM relaying schemes pre-

viously studied. As described, the primary goal of Beyond-Vision, which uses a newly

proposed CAM configuration, is to select CAMs that are not successfully transmitted to

V-UEs within the communication range and to relay them efficiently.3 Beyond-Vision

achieves this goal with the following two features:
3We interchangeably use the terms ‘the communication range of a CAM’ and ‘the communication

range of a V-UE’ to represent the communication range of a V-UE at the moment of the CAM generation.
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Figure 2.4: Overall Beyond-Vision operation.

• CAM selection algorithm that utilizes novel CAM configuration for relaying

• Standard-compliant relaying that minimizes redundant re-transmissions

Before explaining the details, we present the overall operation of Beyond-Vision

described in Fig. 2.4. We define a novel CAM used for the Beyond-Vision as BV-CAM

in this paper. A V-UE periodically broadcasts a BV-CAM. Upon receiving a BV-CAM,

a V-UE checks whether it is an original BV-CAM or a relayed duplicate BV-CAM.

If the BV-CAM is original, the V-UE forwards the BV-CAM information to the

V-UEs in the candidate list for relaying and keeps this information until the BV-CAM

becomes invalid. In other words, the candidate list only has information of the received

original BV-CAM within 100 ms of its creation. If there is no BV-CAM selected for

relaying, then the V-UE selects one from the candidate list for relaying according to

the selection algorithm, which will be specified in Section 2.4.2. After the selection,

the V-UE removes the BV-CAM from the candidate list, duplicates the BV-CAM, and

marks the duplicate on the BV-CAM using one flag bit. Finally, the V-UE allocates re-

sources for relaying transmission. Once a duplicate BV-CAM is transmitted, BV-CAM
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selection algorithm is invoked to select a new BV-CAM for next relaying.

If the BV-CAM is a duplicate, on the other hand, the V-UE does not need to

relay the BV-CAM. Such duplicate BV-CAMs are removed from the candidate list for

relaying and excluded in the selection for BV-CAM relaying. When a BV-CAM equal

to the received duplicate has been already scheduled for relaying, the V-UE cancels the

scheduled BV-CAM relaying to prevent redundant re-transmissions and selects a new

BV-CAM for relaying.

2.4.2 BV-CAM Selection for Relaying in Beyond-Vision

As we mentioned, the conventional CAM carries only the information of the TX V-UE

itself and CAM generation time. In this paper, we define a novel CAM configuration

for Beyond-Vision. A conventional CAM carries 194 or 300 bytes of data that contains

vehicle information, consisting of 64 bytes of basic information. In Beyond-Vision, a

V-UE utilizes the vacant space in the conventional CAM to contain Detected V-UE List

(DVL), a newly defined list of detected V-UE IDs within the TX V-UE’s communication

range.

As described in Fig. 2.5a, BV-CAM of Vx contains DVL as well as its basic

information. In the DVL, Vx includes the detected V-UE IDs: Va, Vb, Vc, except for Vd

which is detected but exists out of the communication range of Vx.4 In the process of

DVL creation, a V-UE uses only valid BV-CAMs since they present the current state of

their TX V-UEs. By doing so, the V-UE not only sends its own status information via

BV-CAM, but also notifies the successful reception of valid BV-CAMs transmitted by

V-UEs within its communication range.

Each V-UE uses received valid BV-CAMs and their DVLs as the basis of its

BV-CAM selection for relaying. The selection process consists of the following compo-
4According to the ETSI standard [11], the data size of a V-UE ID is 4 bytes. A 300-byte CAM contains

approximately 60 V-UE IDs. If a V-UE utilizes data compression techniques such as hash, its CAM can

contain more V-UE IDs.
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Figure 2.5: Proposed configuration: (a) BV-CAM configuration and (b) observation

table.
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Observation table of 𝐕𝐱
Valid BV‐CAM list Detected V‐UE list

𝐕𝒂 { 𝐕𝒆}

𝐕𝒃 {𝐕𝒂, 𝐕𝒆}

𝐕𝒄 {𝐕𝒅, 𝐕𝒇}

𝐕𝒅 { 𝐕𝒙}

Valid BV‐CAM list of 𝐕𝐱
𝐕𝒂 𝐕𝒃 𝐕𝒄 𝐕𝒅

𝐕𝒂 ‐ 1 0 0
𝐕𝒃 1 ‐ 0 0
𝐕𝒄 0 0 ‐ 1
𝐕𝒅 0 0 1 ‐

Target V‐UE list of 𝐕𝒂= { 𝐕𝒃} Detected V‐UE list of 𝐕𝒂= { 𝐕𝒆}

Figure 2.6: Beyond-Vision: BV-CAM selection for relaying.

nents.

Development of Observation Table

A V-UE creates its own Observation Table (OT) with the received valid BV-CAMs. The

OT shows the relationship between V-UEs that are detected through valid BV-CAMs.

As shown in Fig. 2.5b, assume that there are four valid BV-CAMs received at Vx, and

each V-UE’s ID is Va, Vb, Vc, and Vd, respectively. Since each valid BV-CAM contains

location information about its TX V-UE, Vx calculates the distance between each V-UE.

If the distance between two V-UEs, say d(Va, Vb), is shorter than the communication

range (Drange), the relationship between the two is denoted as ‘1’ on the OT. If the

distance between the two is longer than Drange, on the other hand, their relation is

denoted as ‘0’.

In short, with the information of detected V-UEs, we create the OT by using

OT (Va, Vb) =


1, d(Va, Vb) ≤ Drange,

0, d(Va, Vb) > Drange.

(2.1)

16



Table 2.1: Acronyms and terms

Vx ID of V-UE

DV Lx Detected V-UE List of Vx

TV Lx Target V-UE List of Vx

HV Lx Hidden V-UE List of Vx

FCx Failure Counter of Vx

SCx Success Counter of Vx

Calculation of Estimated Message Reception Rate

Estimated Message Reception Rate (eMRR) is a metric that indicates the ratio of the

number of V-UEs that received a specific BV-CAM to the number of all V-UEs within

the BV-CAM’s communication range. V-UEs calculate eMRR for each received valid

BV-CAM, which is calculated using two components: Failure Counter (FC) and Success

Counter (SC).

Failure Counter is defined as the number of V-UEs not receiving a BV-CAM

within the communication range of the BV-CAM. A V-UE calculates the FC for each

received valid BV-CAM using its OT and the BV-CAMs’ DVLs. For example, Fig. 2.6

shows that Vx recognizes which V-UEs are within Va’s communication range from an

observer’s perspective based on its OT. We define the list of such V-UEs as Target V-UE

List (TVL) of Va, denoted by TV La. At the same time, when receiving a BV-CAM

from Va, Vx becomes aware of Va’s DVL (DV La). By comparing TV La in the OT

with DV La, Vx identifies a list of V-UE(s) that Va did not detect, which is the Hidden

V-UE List (HVL) of Va, denoted by HV La. In this case, according to Vx’s OT, TV La

contains Vb, but DV La does not contain Vb. This means that even though Va is within

Vb’s communication range, it failed to receive a valid BV-CAM of Vb. Thus, Vb’s FC,

denoted as FCb, is increased by 1. By comparing the OT and DVL of the received valid

BV-CAMs’ TX, Vx yields its FC for all TXs of the received valid BV-CAMs.

Success Counter is defined as the number of V-UEs receiving a BV-CAM within

the communication range of the BV-CAM. When a V-UE generates its own BV-CAM,
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Algorithm 1 Calculation of eMRR in Beyond-Vision

Require: Observation of BV-CAM information

Vi, Vj , Vk: Presenting V-UE’s ID

lID: The V-UE’s ID list of valid BV-CAMs

Initialize:

1: Initializing Failure Counter (FC) and Success Counter (SC) for all ID to 0

Counting FC and SC

2: for Vi in lID do

3: Create TV Li based on OT

4: Extrcat DV Li from BV-CAM of Vi

5: HV Li ← TV Li ∩DV LC
i

6: for Vj in HV Li do

7: FCj ← FCj + 1

8: end for

9: for Vk in DV Li do

10: SCk ← SCk + 1

11: end for

12: end for

Calculating eMRR

13: for Vi in lID do

14: eMRRi ← SCi

FCi+SCi

15: end for

it records the V-UEs’ IDs in its DVL that are contained in the received valid BV-CAMs

in its communication range. Therefore, we obtain the SC of a V-UE by counting the

number of valid BV-CAMs containing a DVL that records the V-UE’s ID.

According to the values of FCi and SCi, where i is the BV-CAM’s ID of Vi, we

calculate the eMRR as

eMRRi =
SCi

FCi + SCi
. (2.2)

To select a BV-CAM for relaying in Beyond-Vision, a V-UE needs to find out the eMRR
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of each received valid BV-CAM and identify which BV-CAM has a low eMRR.

Algorithm 1 shows the pseudo code to calculate eMRR from OT and DVL.

Weighted Random Selection

A V-UE selects a BV-CAM for relaying in Beyond-Vision based on the eMRR of each

received valid BV-CAM. However, to prevent the same BV-CAM from being selected

by multiple adjacent V-UEs at the same time, the V-UE does not simply select the

BV-CAM with the lowest eMRR. Instead, the V-UE selects a BV-CAM according to

the selection probability using its eMRR as a weight parameter. The probability of

selecting a BV-CAM is calculated as

Pi =
1− eMRRi∑

k∈cid (1− eMRRk)
(2.3)

where Pi is the probability of selecting Vi’s BV-CAM for Beyond-Vision relaying and

cid is the set of V-UE IDs in the candidate list for relaying.

2.4.3 Resource Selection for Beyond-Vision Relaying

When a V-UE selects a BV-CAM for Beyond-Vision relaying, it selects RBs to send

the selected BV-CAM. To comply with the standard C-V2V defined in 3GPP, RBs for

Beyond-Vision relaying are allocated according to the sense-based SPS operation. The

V-UE analyzes energy levels for the duration of 1000 ms before the BV-CAM is selected

for relaying. Through the process, the V-UE extracts candidate RBs from resources

with the lowest 20% received energy levels. However, for the relayed BV-CAM to be

valid, it must be sent before it expires with the generation of a new BV-CAM. Therefore,

the V-UE randomly chooses RBs within the BV-CAM’s generation time plus 100 ms

(tgen + 100 ms) for BV-CAM relaying within a valid period.

We design Beyond-Vision to take this aspect into account as it is necessary to inhibit

redundant re-transmission of BV-CAMs through relay operation. When transmitting in

Beyond-Vision, a V-UE duplicates the BV-CAM selected for relay and records its flag
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Figure 2.7: Relaying resource allocation in Beyond-Vision.

bit to indicate that the BV-CAM is duplicated. Through this flag bit, the other V-UEs

receiving the BV-CAM can find out whether it is the original or a duplicate. To prevent

unnecessary re-transmissions, a V-UE removes a duplicate BV-CAM from the candidate

list where the BV-CAM is chosen for relaying transmission. Furthermore, if the V-UE

has already scheduled the BV-CAM for relaying transmission before receiving its

duplicate, it cancels its transmission schedule and selects a new BV-CAM for relaying

again.

2.5 Performance Evaluation

In this section, we evaluate the performance of Beyond-Vision with the comparison

schemes, through the simulation that reflects realistic vehicle mobility and the road

environment in urban scenarios.
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Table 2.2: Simulation environments

Carrier frequency 5.9 GHz

System bandwidth 10 MHz (50 RBs)

Topology Manhattan grid [32] and Berlin

Target communication range 150 m

No. of total V-UEs 500, 200 (Manhattan, Berlin)

Vehicle mobility model SUMO [6]

Link performance model LTE error model [33]

Channel model Fast fading + shadowing + pathloss +

in-band emission [32] + out-of-band

emission [34]

Modulation QPSK

Code rate 0.529

TX power of V-UE 23 dBm

Noise figure 9 dB

Noise power −174 dBm/Hz

CAM size 300 bytes

CAM generation period 100 ms

Simulation time 50,000 subframes (50 s)

2.5.1 Simulation Environments

Table 2.2 shows the parameters for simulation environments.

Topology and vehicle mobility model As shown in Fig. 2.8, we consider Manhattan

grid and Berlin topologies for simulation in this paper. Manhattan grid topology, which

is typically used for urban scenarios [32], includes a total of nine 433 m × 250 m-sized

grids. We adopt Berlin topology to reflect the actual mobility of vehicles. SUMO

provides OpenStreetMap (OSM) [35], which applies realistic map information to our

simulator. Manhattan grid and Berlin topologies have traffic lights installed at each

intersection, and use SUMO-generated mobility models [6]. SUMO helps to create

real road environments, including vehicles’ movement considering traffic lights linked

to the actual map information provided by OSM. The number of V-UEs determined as

the medium traffic case in [32] is 500 in the Manhattan grid scenario while it is 200 in
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Figure 2.8: Simulation topology: (a) Manhattan grid and (b) Berlin.

the Berlin scenario to achieve the equal density level of V-UEs.

Channel model The simulator adopts WINNER+ B1 model as the pathloss model [36]

and the shadowing model in [32], which follows a log-normal distribution with 3 dB

and 4 dB standard deviations for LOS and NLOS, respectively. ITU-R IMT UMi model

in [37] is used for fast fading. For in-band emission, undesired emission to subchannels

under the same channel and time slot, we adopt the model in [38].

Link performance model We choose a proven error model of LTE data transmission

from [33], which is also used by an established open-source simulator in the network and

communications field, ns-3 [39]. The conversion of Signal-to-Interference-plus-Noise

Ratio (SINR) based on the channel model to Transmission BLock Error Rate (TBLER)

enables the simulator to determine whether the message reception is successful.

Configuration CAM resources in C-V2V In DSRC, Quadrature Phase-Shift Keying

(QPSK) and code rate of 0.5 are the optimal option [40] for CAM transmission. Since

we use QPSK and code rate of 0.529 (i.e., closest to the optimal rate in the LTE

environment), one RB can contain 177 bits. Therefore, to transmit a CAM size of

300 bytes, 15 RB pairs form one subchannel. Assuming that there are 50 RBs in the

10 MHz bandwidth, 3 (= ⌊50/15⌋) subchannels are available.
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2.5.2 Comparison Schemes

This paper adopts various comparison schemes to prove the excellence of Beyond-Vision.

They are 802.11p-based DSRC protocols which are modified to operate in the C-V2V

standard for fair comparison. The comparison schemes

First, Farthest-First Relaying (FAR) is the most representative relaying scheme,

studied in several papers [14–16]. It allocates wait time for relaying transmission to be

inversely proportional to the distance between the TX V-UE and the RX V-UE. As a

result, a V-UE relays the CAM received from the farthest first. To prevent unnecessary

re-transmission, the V-UE waits until the wait time ends and transmits the CAM unless

it receives a relayed CAM during this period.

Second, another scheme is Probability-based Relaying (PR). This method, proposed

in [18], considers the density of nearby V-UEs in determining the relaying probability.

The relay probability is calculated in the number of V-UEs around a TX V-UE and as

the number of the V-UEs increases, the relay probability decreases. The V-UE does not

cancel the scheduled relaying when it receives an already-relayed CAM, but it prevents

redundant transmission by stochastic relay transmission.

Finally, no relaying scheme (NR) is the baseline protocol of C-V2V in the 3GPP

standard [8, 9]. In NR, V-UEs or any other objects such as Road Side Units (RSUs) do

not relay CAMs.

2.5.3 Performance Metrics

Message reception ratio The MRR is a basic metric for performance evaluation which

indicates CAM reception ratio of V-UEs within the communication range of the TX

V-UE. In Fig. 2.9, for example, the MRR is 5/7 because five V-UEs succeeded while

two V-UEs failed in receiving the CAM. To reflect various MRR indexes, we consider

not only overall MRR performance, but also MRR performance in NLOS. Since we

evaluate performance in urban environments, we set the communication range at 150 m.
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Original CAM
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TX

Original CAM
RX failure

Original CAM
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Relaying  
Original CAM 

Figure 2.9: Message reception rate and relaying ratio.

Average value of lower MRR We obtain the MRR of each CAM and calculate the

average the lowest 10% and 20% MRRs. In this way, we can see whether the MRR of

each CAM that was not successfully transmitted via relaying protocols improves. This

paper reveals the average of lower MRR in each comparison scheme.

Relaying ratio Relaying ratio is defined as the ratio of the number of V-UEs that

relayed the original CAM to the total number of V-UEs that received it. To relay a

CAM, a V-UE first should receive the original CAM. The V-UE that succeeded in

receiving the original CAM becomes a relaying seed. In the case of Fig. 2.9, five V-UEs

become relaying seeds since they received the original CAM. On the other hand, the

number of V-UEs relaying the original CAM is 2. Thus, the relaying ratio is 2/5. In this

paper, we verify the relaying ratio relative to the MRR of original CAM transmission

under each scheme.
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Figure 2.11: MRR performance in a range close to the communication range in Berlin

topology.

2.5.4 Simulation Results

Fig. 2.10 shows MRR performance in the Manhattan grid topology. The graphs in the

figure show how MRR performance varies with the distance between the TX V-UE and

the RX V-UE, denoted as R. Fig. 2.10a represents overall MRR which incorporates

all MRR values, when the TX V-UE and RX V-UE are in the LOS or NLOS position.

Figs. 2.10b and 2.10c show LOS MRR and NLOS MRR, respectively. These graphs

show that MRR performance degrades with the distance. Beyond-Vision outperforms

the other schemes in terms of MRR performance.

In Fig. 2.10b, LOS MRR shows a similar pattern to overall MRR. In particular, the

MRR performance of PR is lower than that of NR for the following reason. Although

the V-UE under PR does not cancel the scheduled relaying when receiving the same

duplicate CAM, it relays duplicate CAMs by the probabilistic manner as to prevent
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redundant transmission. Therefore, in high MRR environments, as in the case of LOS,

redundant relaying of original CAMs is more likely to occur. Such unnecessary relaying

causes resource collision, degrading MRR performance.

On the other hand, we can see in Fig. 2.10c that NR shows the worst performance

and its performance significantly deteriorates with R. In the NLOS case, the relaying

schemes improve MRR, and Beyond-Vision is the most effective of all. FAR shows

better performance than PR since it does not relay the same CAM it has received before.

Fig. 2.11 shows the MRR performance in the Berlin topology. As confirmed previ-

ously, the MRR performance decreases with the distance between the TX V-UE and

RX V-UE. Given that 3GPP sets the communication range in the urban environment

as 150 m, we verify the MRR performance in the range [140 m, 160 m). As in the

Manhattan grid topology, we can confirm that NR shows severe MRR performance

degradation in the NLOS case while the relaying schemes improve MRR performance.

Again, Beyond-Vision outperforms its competitive schemes in MRR improvement.
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Figure 2.12: Lowest MRR Average: (a) Manhattan grid and (b) Berlin topology.

Unlike the previous evaluation, Fig. 2.12 compares MRR performance regardless

of the distance between the TX V-UE and RX V-UE. It shows the average MRR of

CAMs for the lowest 5%, 10%, 20%, and 40% MRR levels regardless of the distance.

From the results, we see how much improvement Beyond-Vision makes for CAMs

28



with low MRR. Fig. 2.12 summarizes the simulation outcomes for all cases under the

two topologies, where we observe the same patterns. Note that the average MRRs in

the lowest 5%, 10%, and 20%-MRR-CAM group are lower under the schemes of PR

and FAR than under NR. Only after exceeding the lowest 20%-MRR-CAM group,

FAR shows performance similar to or greater than NR. This indicates that the other

comparison schemes do not efficiently improve MRR performance for low-MRR-CAM

groups. We confirm that Beyond-Vision is the only relaying scheme that improves MRR

performance for the low-MRR-CAM groups by selectively relaying CAMS with low

MRR.
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Figure 2.13: Relaying ratio: (a) Manhattan grid and (b) Berlin topology.
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Fig. 2.13 represents the relaying ratio relative to original CAM MRR. The original

CAM MRR indicates the MRR for original CAM transmission before any relaying

occurs. As described before, V-UEs that received original CAMs become relaying seed

V-UEs enabled to relay CAMs. Thus, the relaying ratio represents the ratio of V-UEs

that relayed CAMs to relaying seed V-UEs. In Fig. 2.13, x-axis indicates that the range

of MRR for the original CAM. In Beyond-Vision, the probability that a V-UE relays a

CAM is higher when the CAM is less likely to be received at surrounding V-UEs. In

addition, the V-UE does not relay duplicated CAMs. Therefore, even when there are

many relaying seeds due to high original CAM MRR, the relaying operation in other

relaying seeds is effectively suppressed.

On the other hand, the relaying ratio of PR is the highest in almost all sections of

x-axis. In particular, the graphs in Figs. 2.13a and 2.13b show that PR is more likely to

relay CAMs with a higher MRR of the original CAM. Redundant relaying can occur in

PR that determine relay operation in a stochastic manner. As a result, the higher the

original CAM MRR, the greater the proportion of V-UE available for relaying, resulting

in more redundant relaying.

Finally, FAR yields the lowest relaying ratio in all ranges of CAM MRR for two

reasons. First, in FAR, the V-UE does not relay duplicate CAMs if it has already

received the same CAMs before. Second, in our adoption of FAR to C-V2V, the V-UE

sometimes fails to schedule CAM relaying due to lack of available subchannels within

a determined wait time. Compared with Beyond-Vision, FAR shows less significant

inverse-proportional relation between relaying ratio and original CAM MRR, which

demonstrates that Beyond-Vision relays CAM more effectively from the perspective of

MRR improvement.
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Chapter 3

UpCycling: Semi-supervised 3D Object Detection with-

out Sharing Raw-level Unlabeled Scenes

3.1 Introduction

Although the concept of Autonomous Vehicles (AVs) has been around for years, ensur-

ing the safety of users driving AVs on real roads via 3D object detection models is still

challenging. To this end, there have been continuous efforts to collect large datasets

of 3D road scenes and annotate them carefully [1–3]. While rapid advances in sensor

technology facilitate the collection of 3D scenes at scale, the severe annotation burden

remains as a main challenge. To alleviate the problem, a couple of semi-supervised

learning (SSL) methods for 3D object detection have been proposed recently, such as a

combination of perturbation and consistency loss [41] and confidence-based filtering

using IoU prediction results [42].

However, these methods learn from unlabeled raw 3D scenes. Collecting a vast

amount of raw-level road scenes from AVs can potentially cause disclosure of sensitive

private information on the roads [43–45]. Moreover, the demand for privacy-preserving

domains is rapidly accelerating. The EU’s General Data Protection Regulation requires

firms to implement data protection measures, safeguarding consumers’ privacy. This
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(a) Raw-point data (b) Feature data produced from the 3D object

detection network

(c) Original point cloud scene (d) Restored point cloud scene using the inver-

sion attack

Figure 3.1: Visualization of point cloud scenes. UpCycling improves level of privacy

protection since an original point cloud scene cannot be restored from its intermediate

feature.
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applies even to companies collecting autonomous driving data [46]. In addition, as 2D

images can be restored from limited 3D data [47], it’s critical to fundamentally secure

raw 3D point data.

Given that the problem of potential privacy leakage from raw data collection

exists in various applications, a number of studies have tried to not deal with raw

data directly. Going beyond encrypting raw data [43], federated learning [48, 49]

makes each edge node consume its data locally to train the model and share the model

weights (or gradients) instead of raw data. Split learning [49–51] designs edge nodes

to not share raw data but its intermediate feature (i.e.,, smashed data) that comes

from passing through early-stage layers of the model. However, these approaches

require local training [52, 53], which makes resource-constrained AVs suffer more

computation overhead. Given that AVs use significant computing resources to process

inference pipelines for 3D detection during driving, such additional computation hinders

continuous model updates in natural driving conditions.

In this paper, we aim to address all the three issues: labeling cost, privacy, and

AV-side computation overhead. To ensure this end, we propose UpCycling, a novel

SSL framework that does not utilize unlabeled raw 3D scenes (Figure 3.1(a)) but

de-identified, unlabeled intermediate features (Figure 3.1(b)) to advance 3D object

detection models. Since an unlabeled intermediate feature is naturally produced during

a regular detection pipeline with the 3D scene, UpCycling requires neither additional

AV-side computation (e.g.,, local training) nor server-side annotation burden. Further,

sharing features instead of raw 3D scenes improves the level of privacy protection as

the detection pipeline includes nonlinear layers and compression [54–58]. Because

the process in the nonlinear layers [59] is irreversible, the original scene cannot be

completely restored from its intermediate feature. As depicted in Figures 3.1(c) and (d),

the inversion attack [60] attempted on the server side to restore the raw-point data does

not result in a successful restoration.1

1For further details, please refer to Section 3.5.3 and Supplementary material where more comprehen-
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To realize the advantages, UpCycling should provide an effective feature-based

SSL method for 3D object detection, which involves two challenges: (1) augmenting

unlabeled intermediate features reliably to increase data diversity [61, 62] and (2)

providing high-quality pseudo labels to supervise these augmented features. The state-

of-the-art (SOTA) semi-supervised 3D object detection frameworks [41, 42] generate

consistency loss between weak and strong augmentations of a 3D point scene. However,

the augmentation methods targeting raw-level point clouds become detrimental when

applied at a feature level. This is because an intermediate feature is a smashed form of its

original 3D scene and has multiple types depending on the 3D object detection models,

such as grid- and set-types. Therefore, naïve application of the point augmentation

methods at a feature level damages the important information in the 3D scene, which

causes the pseudo labels to suffer from significant noise.

To address the challenges, we propose high-quality hybrid pseudo labels and feature-

level ground-truth sampling (F-GT). Combining these methods not only achieves

significant data diversity but also improves quality of pseudo labels by adding zero-

noise labels. We implement UpCycling on two representative 3D detection models,

PV-RCNN [58] and SECOND-IoU [63],2 and perform various experiments on three

major datasets for AV applications, KITTI [2], Lyft [3], and Waymo [1]. The results

demonstrate the effectiveness of UpCycling in both partial-label and domain adaptation

scenarios.

The contributions of this work are summarized as follows:

• UpCycling is the first framework that tackles labeling cost, privacy leakage, and

AV-side computation cost altogether to train a 3D object detection model, which

deeply investigates how to learn from unlabeled intermediate features.

• UpCycling provides a fresh eye on GT sampling in the context of SSL since it

safely improves data diversity of unlabeled feature-level 3D scenes and significantly

sive information is provided.
2SECOND-IoU adds an IoU module to the original SECOND model [55].
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improves pseudo-label quality by providing zero-noise labels.

• UpCycling not only protects privacy but also performs better or comparably to the

SOTA methods in both domain adaptation and partial-label scenarios, on representa-

tive models and datasets for 3D object detection.

3.2 Related Work

Semi-supervised learning. SSL has been actively studied in the context of image

classification [62, 64–66]. Most of the recent SSL methods [61, 62, 64, 66] leverage

consistency regularization which trains the model to obtain consistent prediction re-

sults across label-preserving data augmentation. In the SSL frameworks, proper data

augmentation is essential, which should significantly increase diversity effect without

losing consistency with the original data [67, 68]. Accurate pseudo-labeling is another

crucial element for SSL to provide high-quality supervision for unlabeled data [65, 69].

While there have been only a couple of studies on SSL for 3D object detection [41, 42],

data augmentation and pseudo-labeling are still important. SESS [41] targets indoor

3D object detection, leveraging a teacher-student architecture that takes differently

augmented 3D scenes as inputs and utilizes three kinds of consistency losses between

outputs. 3DIoUMatch [42] improves quality of pseudo labels with confidence-based

filtering in the IoU-guided NMS stage. However, the SSL methods require direct access

to a vast amount of raw data, which causes potential privacy leakage.

Feature-level data augmentation. Data diversity can be limited when augmenting

only raw data. To further increase diversity, feature-level data augmentation has been

investigated [70–74]. In image classification tasks, adding Gaussian noise to feature-

level data gains more data diversity for training and domain generalization [70]. The

work in [71–73] resolves lack of data for specific classes by using feature augmentation.

Feature augmentation is also applied to few-shot learning in NLP tasks [75]. To our

knowledge, however, feature-level augmentation has not been studied in the context of

35



semi-supervised 3D object detection.

Private representation learning. Private representation learning [48, 49] aims to learn

from various clients without sharing their raw data, which heavily relies on local training

at resource-constrained clients. Federated learning designs clients to not share any data

but model weights or gradients with the server. Due to the local computation burden for

training the whole model, federated learning methods [76–78] face significant hurdles

in training large neural nets. Split learning [49–51] is more similar to UpCycling in

that clients share intermediate features of local data with the server. However, it still

requires local training of early layers of the model. Continuous communication burden

during training is another problem of these approaches.

3D object detection models. Main challenges in 3D object detection come from

the irregular and sparse positions of 3D point clouds. To address the issues, some

researches [79,80] opt for point-based methods that extract set-type features by process-

ing raw point clouds directly [81]. Other approaches [54–56, 58] suggest voxel-based

methods, which first voxelize a point cloud and extract grid-type features with 3D

convolution networks. Therefore, UpCycling should be able to handle both grid- and

set-type unlabeled features. Specifically, we adopt two representative 3D object detec-

tors: voxel-based SECOND-IoU [55, 63] and PV-RCNN [58] that mixes point- and

voxel-based methods.

3.3 Method

3.3.1 Problem Definition

Given a 3D point cloud scene x, we aim to detect a set of 3D bounding boxes and

class labels for all objects in x, denoted as {y}. We perform this task under a new

challenging SSL scenario with unlabeled de-identified data: in contrast to the regular

SSL setting, unlabeled raw-level point clouds are not available. Specifically, we have

access to N training samples, including N l labeled point clouds {xl
i, {yl

i}}N
l

i=1 and Nu
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unlabeled scenes in the form of intermediate feature {fui }N
u

i=1. Here fu is the output of

the backbone network for an unlabeled point cloud xu.

3.3.2 UpCycling Framework

Figure 3.2 depicts the overall UpCycling framework incorporating server- and AV-side

operations. For initialization, the server trains a 3D object detection model on its labeled

data {xl
i, {yl

i}}N
l

i=1 and shares the pre-trained model with AVs. UpCycling targets the

latest 3D detection models with an IoU module that returns confidence scores for

bounding box localization. In this paper, we apply UpCycling in PV-RCNN [58] and

SECOND-IoU [63]. PV-RCNN is the representative IoU-aware model for 3D object

detection and SECOND-IoU is a modified version of SECOND [55] with addition of

IoU module.

For autonomous driving, AVs continuously perform the model’s detection pipeline

for newly observed 3D scenes. At the same time, to further update the model with more

3D scenes in diverse environments, each AV sends a new 3D scene xu’s intermediate

feature fu to the server, which serves as de-identified unlabeled training data. It is

noteworthy that zero additional computation is needed for the de-identification since

the feature naturally comes from processing the 3D backbone network in the detection

pipeline. Each AV also sends the detection results {ỹu} to the server.

With the received features and detection results {fui , {ỹu
i }}N

u

i=1, the server generates

consistency loss in a different way of the SOTA SSL methods on 3D object detection that

utilize unlabeled raw-point scenes {xu
i }N

u

i=1 [41,42]. Specifically, given that supervising

fu by using its detection result {ỹu} again is meaningless, (1) proper augmentation of

fu and (2) high-quality pseudo labels are essential.

The SOTA methods on semi-supervised 3D object detection [41, 42] take a teacher-

student architecture [64] by using random sampling (RS) for weak augmentation and

both RS and Flip for strong augmentation of a point cloud. However, in our scenario

where an input is an intermediate feature, the augmentation methods significantly
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damage the original scene. Instead, we propose feature-level ground-truth sampling

(F-GT) for feature augmentation, as illustrated in Figure 3.2. Although ground-truth

(GT) sampling has been used as a point cloud augmentation method for supervised

3D object detection [54–58] and is known to provide at most fair performance im-

provement [82], we claim that its impact can be more significant when it comes to

feature-level augmentation of an unlabeled 3D scene. This is because F-GT tackles one

of the most crucial issues for successful SSL: improving the quality of pseudo labels

for unlabeled features by generating hybrid pseudo labels.

3.3.3 Hybrid Pseudo Labels

For effective SSL, we adopt F-GT to augment an unlabeled scene feature fu and include

the sampled GT labels (zero-noise labels) in the pseudo-label set for the unlabeled

feature. By doing so, UpCycling constructs high quality hybrid pseudo labels.

Confidence-based pseudo-label filtering. First, inspired by 3DIoUMatch [42], UpCycling

screens the received detection results {ỹu} by using each ỹu’s confidence scores for

both object classification and bounding box localization. Assume that τIoU and τcls are

thresholds for box localization and object classification, respectively. UpCycling filters

out a detection result if its class confidence or localization confidence is lower than

the given threshold, leaving a set of high-quality pseudo labels, denoted as {ŷu}. The

confidence-based pseudo-label filtering is applied for more accurate supervision.

Pseudo-label-aware GT sampling. When GT sampling is applied for supervised

learning, it first constructs a GT database that consists of labeled 3D bounding boxes and

point clouds in the boxes, collected from the entire labeled training set {xl
i, {yl

i}}N
l

i=1.

To augment a labeled 3D scene xl, GTs are sampled from the database and randomly

placed in the 3D scene. To avoid tampering with GT information, a GT sample that

overlaps with a ground-truth bounding box in the original labeled scene is removed.

In contrast, our F-GT aims to augment an unlabeled 3D scene feature fu without

accurate box labels. Instead, given that a set of high-quality pseudo labels {ŷu} is
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provided, F-GT samples GTs that do not overlap with the pseudo labels. Importantly,

although the pseudo labels are filtered with the two thresholds τIoU and τcls, these

thresholds are set moderately [42], enabling the pseudo labels to cover most objects in

the original scene xu; GT samples are likely to be placed on the background of xu.

Hybrid pseudo-labels. To generate pseudo labels that supervise an augmented unla-

beled feature fuaug, UpCycling merges the high-quality pseudo-label set for the original

feature fu, {ŷu}, with the label set for the GT samples, {yGT }, resulting in a set of

hybrid pseudo labels {ŷu}∪{yGT }. Given that {yGT } are literally ground-truth labels

with zero noise, adding these labels to the pseudo labels enables powerful supervision.

Furthermore, generating the hybrid pseudo labels does not need to execute the inference

pipeline at the server, since all GT labels are already given.

3.3.4 Feature-level 3D Scene Augmentation

Regarding F-GT, since the server does not have an original unlabeled scene xu but

only its intermediate feature fu, it is impossible to directly place GT samples on the

point cloud scene. Instead, F-GT generates a separate point cloud input that comprises

only GT samples. The GT-only point cloud passes through the model’s 3D backbone

network, resulting in a GT-only feature fGT . Note that while the 3D backbone of

SECOND-IoU generates only grid-type features, that of PV-RCNN [58] generates both

grid- and set-type features. To this end, F-GT augments fu, grid- or set-type feature, as

follow:

Grid-type feature augmentation. As shown in Figure 3.2, when fu and fGT are

grid-type features, F-GT generates an augmented feature by overwriting fu with fGT ;

if a channel on fGT has non-zero values, the fGT channel replaces that in fu. Giving

higher priority for fGT removes some information included in fu. However, given that

the GT samples take up a tiny portion of an entire scene (i.e.,, most values in fGT

are zero), only a small number of values in fu are modified. In addition, the removed

information in fu is related to the background since the sampled GTs are not overlapped
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with pseudo labels, which does not harm model training.

Set-type feature augmentation. When an unlabeled feature fu and a GT sample

feature fGT are set types, each of them consists of n represented points, denoted

as fu = {fu
i }ni=1 and fGT = {fGT

i }ni=1, respectively. In this case, as illustrated in

Figure 3.2, F-GT generates an augmented feature as a point set, denoted as fuaug =

{fu
aug,i}ni=1. To this end, we first exclude the scene feature points fu

i that are in the

GT boxes, generating fu\GT . Then each feature point fu
aug,i is randomly sampled from

either fu\GT or fGT .

In doing so, it is important that the scene feature contains much more information

than the GT feature; for reasonable augmentation, fuaug should include scene feature

points more than GT feature points. To determine proper sampling frequency, we utilize

the information in the grid-type feature that is generated simultaneously with the set-

type feature by the 3D backbone network: how many values in the grid-type feature

for the scene and GT samples are non-zero. For example, if the number of grid with

non-zero values in the scene and GT features (grid types) is 2000 and 50, respectively,

points in the augmented feature set fuaug is sampled from fu\GT 400 times more than

fGT .

3.3.5 Loss

The model’s detection head is trained to predict the hybrid pseudo labels for the

augmented feature fuaug. Given that our target models have an IoU module as well as a

Region Proposal Network (RPN), the unlabeled loss L(fuaug) includes loss of each of

the two modules as follows:

L(fuaug) =LRPN
loc ({ŷu} ∪ {yGT }) + LIoUloc ({ŷu} ∪ {yGT })

+ LRPN
cls ({ŷu} ∪ {yGT }).

(3.1)

The exact calculation of the three terms depends on the model architecture, following

the calculation of supervised loss. Assuming that a training batch consists of a set of
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labeled scenes {xl} and a set of augmented features for unlabeled scenes {fuaug}, the

total loss for the batch is calculated as below, where w is the unsupervised loss weight:

Ltotal = L({xl}) + wL({fuaug}). (3.2)

3.4 Analysis on 3D Scene Feature Augmentation

In this section, we take a deeper look into subtle feature-level 3D scene augmentation.

Specifically, we focus on why widely-used point cloud augmentation methods damage

important information when applied at a feature level.

To this end, Figure 3.3 depicts activation heat maps of the Bird-eye View (BEV)

compression module in SECOND-IoU when Flip, Rotation, and GT sampling are

applied to an example 3D scene covering x, y, z axis range 70.4, 80, 4 meters. The

figure shows that in the cases of Flip and Rotation, raw-level augmentation (i.e.,,

flipping/rotating the whole point cloud) and feature-level augmentation (i.e.,, flip-

ping/rotating the feature vector) result in significantly different activations. In both

cases, although the two activation heat maps look similar at a glance, taking the differ-

ence between the two causes errors that are widely spread over the entire feature map.

In contrast, when using GT sampling, raw- and feature-level augmentations provide

similar activation heat maps. Although some errors exist, they are placed in restricted

areas where GT samples are inserted.

Figure 3.4 provides a visual illustration of Flip and Rotation for feature augmen-

tation. If a point cloud is voxelized with each voxel producing its feature value, flip-

ping/rotating the feature vector is similar to flipping/rotating voxels. This means that

point locations are shifted not individually but in groups, and the geometric relationship

between intra-voxel points is maintained; they are neither flipped nor rotated. In the

worst case, the group (voxel)-wise flipping causes a valid car object to break apart, mak-

ing its label detrimental to training. Breaking the geometric relationship between points

on the background can also cause severe misinterpretation. Similarly, the group-wise
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Figure 3.3: Feature-level scenes for three data augmentation methods: Flip (1st row),

Rotation (2nd row), and GT sampling (3rd row). Feature-level scenes of raw-point

level augmentation are on the left. Feature-level scenes of feature-level augmentation

are in the middle. Heatmaps of RMSE based on comparison between raw-level and

feature-level augmentation scenes are on the right.
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Figure 3.4: Conceptual images of feature-level augmentation with Flip and Rotation.
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0.958 4.2162.530

GT sampling Rotation Flip

Figure 3.5: RMSE between raw- and feature-level augmentations of the entire KITTI

training dataset. Box range covers the first quartile to the third quartile and the mark

‘×’ indicates the mean value.
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rotation breaks the geometric relationship mildly and its bilinear interpolation creates

the errors, which is not proper for augmentation.

Figure 3.5 confirms our description by showing the average of root mean square

error (RMSE) between raw- and feature-level augmentations in the KITTI dataset. This

plot illustrates that feature-level Flip and Rotation severely damage the original scene,

in contrast to GT sampling, which only produces minor errors.

3.5 Experiments

3.5.1 Experimental Setup

Scenarios. To demonstrate the effectiveness of UpCycling in various practical situations,

we conduct experiments in both domain adaptation and partial-label scenarios. The

domain adaptation task is to adapt the model, which is trained on abundant labeled data

in the source domain, to an unseen target domain that provides only unlabeled data. In

the partial-label scenario, the model is trained and tested in the same domain but most

of the training data is unlabeled.

Datasets. We choose three datasets widely used for detection applications of AVs: Waymo [1],

Lyft [3], and KITTI [2]. Among the three, the Waymo dataset is the most diverse and

the largest in volume. The 3D scenes in the Waymo dataset are captured in Phoenix,

Mountain View, and San Francisco, the US, under multiple weather and time settings.

The Lyft dataset is collected around Palo Alto, the US, in clear weather in the daytime.

The KITTI dataset is collected in Karlsruhe, Germany, in clear weather during the

daytime. Due to regional characteristics, car sizes in KITTI are different from those in

Waymo and Lyft [4]. We focus on car objects in this section and more details are in the

supplementary material.

Implementation details. When training a model with UpCycling, we set the two

filtering thresholds τIoU and τcls to 0.5 and 0.4, respectively, and the weight for the

loss L({fu
aug}) is set as w = 1. We set the ratio of labeled data to unlabeled data
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Table 3.1: Effects of feature augmentation methods in a partial-label scenario where the

3D object detection model is SECOND-IoU and 10% training data is labeled in KITTI.

Policy # F
lip

N
oi

se

R
S

R
ot

.

F
-G

T AP3D

Easy Mod Hard

Baseline 70.58 56.00 47.94

1 ✓ −16.31 −20.09 −19.79

2 ✓ +0.03 +0.13 −1.23

3 ✓ +2.47 −0.96 +0.63

4∗ ✓ ✓ −11.69 −13.75 −13.32

5 ✓ +4.80 +5.42 +7.96

UpCycling ✓ +7.81 +7.87 +8.14

in a mini-batch to 1:2 and 1:1 for domain adaptation and partial-label experiments,

respectively. Importantly, F-GT samples GT boxes only from the labeled dataset: the

source domain data in the domain adaptation scenario and a small portion of labeled

data in the partial-label scenario. Lastly, UpCycling freezes the 3D backbone network

after training it on the labeled data to prevent the divergence between an intermediate

feature from the server’s 3D backbone network and that collected from AVs. Therefore,

UpCycling updates only the detection head using unlabeled feature-level data. More

details are in the supplementary material.

3.5.2 Effect of Feature Augmentation Schemes

First, we investigate feature augmentation deeply by evaluating the superiority of

F-GT, which is utilized for UpCycling, to other augmentation schemes in a partial-label

scenario. To this end, we train SECOND-IoU on the KITTI dataset when only 10%

of its training data is labeled. Importantly, given that the KITTI dataset is originally

shuffled regardless of place and time sequence, we rearrange it in chronological order

for each place to prevent the data leakage between the labeled and unlabeled sets [83].

Comparison schemes. In this scenario, Baseline trains the model using only the limited
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amount of labeled data. Flip and RS are used in the SOTA SSL methods on 3D object

detection to augment raw-level 3D scenes [41, 42]. For feature-level Flip, we place

feature information to its symmetric position on the feature map. For feature-level

RS, we nullify randomly selected 5% of feature data. Combination of feature-level

Flip and RS is actually a feature-level variant of the SOTA 3DIoUMatch [42], named

F-3DIoUMatch.3 Noise is an existing feature augmentation method that adds Gaussian

noise, which is used for domain generalization of image classification [70]. Lastly,

Rotation rotates the feature with a degree randomly selected from [-45◦, 45◦] and

performs bilinear interpolation.

Result analysis. Table 3.1 shows each augmentation scheme’s performance margin

compared to Baseline in the partial-label scenario. Flip significantly underperforms

Baseline despite the use of much more (unlabeled) training data, verifying that feature-

level Flip damages important information in 3D scenes. Both Noise and RS have

marginal impact on performance, showing that these perturbation strategies do not

result in meaningful data diversity. Combining Flip and RS (i.e.,, F-3DIoUMatch) still

performs worse than Baseline due to the negative effect of Flip, which confirms that

naïve application of SOTA SSL methods at a feature level does not work. Although

Rotation improves performance, our F-GT provides the lowest augmentation errors

(Figure 3.5) and thus the best performance in all cases.

3.5.3 Privacy Protection of Feature Sharing

As neural network activations could be inverted to reconstruct input data [84–86], there

could be concerns on potential privacy leaks when sharing features. We investigate

whether an inversion attack can recover the grid-type feature data generated from both

the SECOND-IoU and PV-RCNN backbone networks to the original point cloud. To

this end, we implement the inversion attack model using the decoder method [60] that

is widely used to evaluate whether a model consisting of convolutional layers can be
3Policy 4∗ indicates F-3DIoUMatch.
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(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from a middle (3rd) layer (d) Restoration from the last (5th) layer, same

as UpCycling

Figure 3.6: Results of inversion attack for the 3D backbone model (5 convolutional

layers) of SECOND-IoU and PV-RCNN. The example 3D point cloud scene is in

KITTI.

inverted [87, 88].4 More details are in the supplementary material.

Result analysis. We conduct an inversion attack on the 3D backbone network in

SECOND-IoU and PV-RCNN.5 Figures 3.6(b)-(d) present the restoration results for

intermediate features at three different convolutional layers of the backbone network:

1st, 3rd, and 5th (last) layers, respectively. While the restored point cloud from the first

layer is relatively similar to the original scene (Figure 3.6(b)), it becomes significantly
4To the best of our knowledge, there has been no research that particularly focuses on inversion attacks

for 3D point clouds.
5The 3D point cloud scene in Figure 3.6(a) is from KITTI dataset, and the point cloud range covers the

x, y, and z-axis ranges 17.6, 20, and 4 meters.
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different when applied to deeper layers’ features (Figures 3.6(c) and (d)). As the number

of nonlinear layers increases, it becomes more difficult to accurately restore the original

data. Furthermore, restoring a point cloud from its intermediate feature is particularly

challenging since each raw point needs to be positioned precisely in voxelized spaces.

UpCycling utilizes unlabeled features at the last (deepest) layer, making it impossible

to accurately recover the original scene from an intermediate feature. Supplementary

material contains more inversion examples.

3.5.4 Domain Adaptation Experiments

Although UpCycling offers privacy protection by using only intermediate features, it is

crucial to evaluate whether it provides competitive detection accuracy compared to the

SOTA methods that use raw-level point clouds (Sections 3.5.4 and 3.5.5). In domain

adaptation experiments, we use the Waymo dataset as the source domain and the Lyft

and KITTI datasets as the target domains. The model is first pre-trained on the source

domain’s labeled data (called the baseline model), adapted using unlabeled training

data in a target domain, and then tested on the target domain’s test data.

Comparison schemes. We compare UpCycling with various methods. Baseline eval-

uates the baseline model directly and Oracle adapts the model with fully supervised

learning in the target domain, which provide the lower- and upper-bound performance,

respectively. ST3D [5] and SN (Statistical Normalization) [4] are the SOTA domain

adaptation methods on 3D object detection that utilize unlabeled raw 3D scenes. ST3D

generates pseudo labels from unlabeled data in the target domain to adapt the baseline

model. SN assumes that statistical object sizes in the target domain are given and

trains the baseline model in the source domain using the target domain object size

information. We also evaluate variants of ST3D and our UpCycling by combining SN

together, denoted as (w/ SN).

Result analysis. Table 3.2 shows the results of UpCycling and the various comparison

methods on SECOND-IoU and PV-RCNN. Surprisingly, the results show that although
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Table 3.2: Domain adaptation results with two target datasets: KITTI and Lyft. Difficulty

of the KITTI test dataset is set as Moderate. Baseline is a pre-trained model with Waymo

whereas Oracle is trained with fully labeled target dataset.

Dataset Method
SECOND-IoU PV-RCNN

APBEV / AP3D APBEV / AP3D

Lyft

Baseline 30.20 / 21.32 33.00 / 24.49

SN 28.38 / 19.25 33.44 / 25.64

ST3D 60.53 / 29.90 62.28 / 42.63

UpCycling 68.83 / 45.66 63.38 / 46.83

ST3D (w/ SN) 52.86 / 21.25 60.15 / 44.02

UpCycling (w/ SN) 65.10 / 49.24 63.58 / 49.35

Oracle 76.70 / 61.70 78.68 / 64.54

KITTI

Baseline 54.14 / 10.16 62.24 / 9.24

SN 60.80 / 37.30 60.08 / 38.86

ST3D 70.90 / 40.16 66.19 / 23.26

UpCycling 58.26 / 11.71 62.09 / 11.35

ST3D (w/ SN) 80.97 / 57.68 54.30 / 48.79

UpCycling (w/ SN) 84.12 / 67.65 85.90 / 61.12

Oracle 90.36 / 82.02 90.84 / 84.56
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Table 3.3: Partial-label scenario results with three portions of labeled data in the KITTI

dataset: 2%, 10%, 25%.

AP3D

2% 10% 25%

Easy Mod Hard Easy Mod Hard Easy Mod Hard

SECOND-IoU

Baseline 56.69 44.11 37.19 70.58 56.00 47.94 84.47 71.06 62.87

3DIoUMatch 63.57 49.58 43.00 71.76 57.01 50.08 81.71 68.51 60.92

improved (%) 12.13 12.39 15.62 1.67 1.80 4.47 -3.26 -3.59 -3.11

UpCycling 70.19 59.97 44.83 76.09 60.41 51.84 85.22 72.87 63.93

improved (%) 23.81 35.96 20.54 7.81 7.87 8.14 0.89 2.55 1.69

PV-RCNN

Baseline 68.10 53.27 46.20 81.23 68.67 60.32 87.63 76.03 68.62

3DIoUMatch 81.04 65.77 58.83 85.26 70.64 63.32 85.08 72.37 65.02

improved (%) 19.00 23.47 27.34 4.97 2.87 4.98 -2.91 -4.81 -5.25

UpCycling 76.46 61.44 52.94 83.64 69.60 63.53 88.05 76.61 70.80

improved (%) 12.28 15.34 14.59 2.97 1.35 5.32 0.48 0.76 3.18

UpCycling (or w/ SN) does not utilize raw-point scenes for privacy protection, it pro-

vides the best accuracy in most cases. Specifically, UpCycling (or w/ SN) significantly

outperforms the two SOTA methods (ST3D and SN) in the Lyft case. When compared

to the better option between ST3D (or w/ SN) and SN in each case, UpCycling im-

proves accuracy by 1.3∼19.71 APBEV and 5.33∼19.34 AP3D. The results demonstrate

the effectiveness of hybrid pseudo labels and feature-level augmentation schemes in

UpCycling and also suggest the potential of using unlabeled features to advance 3D

object detection models.

Taking a deeper look, SN significantly improves UpCycling performance in the

KITTI dataset. Since object sizes in KITTI are different from those in Lyft and Waymo,

adjusting object sizes with SN for UpCycling is effective.

3.5.5 Partial-label Experiments

In partial-label experiments, we use the same setting as in Section 3.5.2 but train both

SECOND-IoU and PV-RCNN.

Comparison schemes. In this scenario, Baseline trains the model using only the limited
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amount of labeled data. 3DIoUMatch [42] is the SOTA SSL method using unlabeled

raw-point scenes. For consistency regularization, 3DIoUMatch uses Flip and RS to

augment raw data and filters pseudo labels in the IoU-guided NMS.6

Result analysis. Table 3.3 shows that UpCycling outperforms 3DIoUMatch in most

cases by effectively utilizing unlabeled feature-level data. In the case of 25%, 3DIoUMatch

even underperforms Baseline but UpCycling maintains performance improvement on

both SECOND-IoU and PV-RCNN. The results are interesting because the scenario

is unfavorable for UpCycling in that (1) UpCycling trains the 3D backbone only using

the small portion of labeled data and (2) the effect of F-GT could be marginal since

the number of GT samples are proportional to that of labeled data. UpCycling success-

fully overcomes the disadvantages, verifying that it achieves significant performance

improvement even when using a relatively immature backbone network and F-GT

effectively augments a large number of unlabeled data when only a small number of

GTs are available.

3.5.6 Ablation Studies

Since UpCycling freezes the backbone during the SSL process for effective feature shar-

ing, we evaluate the effect of the backbone freezing. To this end, we devise a comparison

scheme UpC-R, the application of UpCycling at the raw-level input. UpC-R augments

a raw-level 3D scene using GT samples and trains the whole network including the

backbone using unlabeled data and hybrid pseudo labels. Note that this approach not

only sacrifices privacy but also takes much longer to train compared to UpCycling.

Result analysis. Figure 3.7 compares UpC-R and UpCycling in the partial-label sce-

nario in Section 3.5.5. While sacrificing privacy, UpC-R outperforms UpCycling by

training the backbone further. Interestingly, UpC-R performs even better than the SOTA
6Since the authors in [42] did not use the rearranged KITTI dataset in their experiments, we measure

the performance of 3DIoUMatch again in the rearranged KITTI dataset. In addition, we newly implement

3DIoUMatch on SECOND-IoU for more extensive comparison.
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Figure 3.7: UpC-R vs. UpCycling: Partial-label results in the KITTI dataset. The average

performance improvement in all KITTI test cases (easy, moderate, and hard).

3DIoUMatch (Table 3.3), demonstrating that GT sampling is more effective augmen-

tation than the combination of Flip and RS even at the raw-input level. On the other

hand, the performance gap between UpC-R and UpCycling decreases as the number of

labeled data increases, meaning that once the backbone is well-trained, the combination

of hybrid pseudo-labels and GT-based augmentation can be applied flexibly to any layer

without performance degradation. We see this as the unique advantage of GT sampling

that other point cloud augmentation methods cannot provide.

3.6 Implementation Details

3.6.1 Experiment settings

Training. For the pre-training stage, we train on 4 RTX 3090 GPUs with a batch size of

16 and 8 for SECOND-IoU and PV-RCNN, respectively. Then, following the original

model training settings, we use epochs 80, and 30 for KITTI dataset and Waymo dataset,

respectively. Especially, pre-training on small amounts of KITTI labeled data 2%, we
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lengthen the epoch to 120 for the model to converge. For the semi-supervised learning

stage, we train with a batch size of 32 (16 labeled + 16 unlabeled, 4 GPUs) and 16

(8 labeled + 8 unlabeled, 4 GPUs) for SECOND-IoU and PV-RCNN, respectively.

We set the ratio of unlabeled data to twice that of labeled data in domain adaptation

experiments. The learning rate is initialized as the value of the original model usage

and updated by cosine annealing strategy.

Table 3.4: Waymo [1], KITTI [2], and Lyft [3] dataset overview. † and ∗ indicate

obtaining information from [4] and [5], respectively.

Waymo KITTI Lyft

LiDAR Type 64-beam 64-beam 64-beam

Beam Angles † [-18.0◦, 2.0◦] [-23.6◦, 3.2◦] [-29.0◦, 5.0◦]

Points per Scene ∗ 160,139 118,624 69,175

Training Frames 158,081 3,712 18,900

Validation Frames 39,987 3,769 3,780

Night / Rainy Yes / Yes No / No No / No

Location USA Germany USA

Dataset and Source Code License. We implement our UpCycling based on Open-

PCDet [63] (v0.5.1) which is licensed under the Apache License 2.0. According to

https://paperswithcode.com/datasets, the license of Waymo dataset [1]

and KITTI dataset [2] is the custom (non-commercial) and the CC BY-NC-SA 3.0,

respectively, and the license of Lyft dataset [3] is unknown. The details of each datasets

are in Table 3.4.

3.6.2 Architecture details – 3D backbone network

In this paper, the 3D backbone network of SECOND [55] (see Table 3.5) is used for

generating the grid-type feature data in PV-RCNN and SECOND-IoU experiments.

Voxel Feature Extractor (VFE) converts the point cloud data into voxel format covering

the entire point cloud range. After that, the output of VFE goes through the SparseConv
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Table 3.5: 3D backbone network architecture generating grid-type feature data.

Layers BACKBONE Network Output size

VFE Mean VFE 4×41×1600×1408

SparseConv Layers

conv_input 4×3×3×3, 16, padding 1,1,1 16×41×1600×1408

conv_1 16×3×3×3, 16 16×41×1600×1408

conv_2

16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×3×3×3, 32

32×3×3×3, 32

32×21×800×704

conv_3

32×3×3×3, 64, stride 2,2,2, padding 1,1,1

64×3×3×3, 64

64×3×3×3, 64

64×11×400×352

conv_4

64×3×3×3, 64, stride 2,2,2, padding 0,1,1

64×3×3×3, 64

64×3×3×3, 64

64×5×200×176

conv_out 64×3×1×1, 128, stride 2,1,1 128×2×200×176

layers [89] where each Conv layer contains both batch normalization and ReLU, which

is a non-linear function. Lastly, the output of SparseConv layers becomes the grid-type

feature data which UpCycling utilizes. On the other hand, the 3D backbone network

of PV-RCNN additionally generates the set-type features from Voxel Set Abstraction

(VSA) (see Table 3.6). In this process, PV-RCNN samples a fixed number of keypoints

from raw points following the Farthest-first rule. After that, set abstraction modules

create voxel-wise features from each layer in VFE corresponding to keypoint positions.

Finally, to generate the final form of set-type features, VSA Point Feature Fusion

module concatenates the features from the set abstraction modules to the accurate

keypoint positions.

3.6.3 Implementation Details for SECOND-IoU based 3DIoUMatch

We basically follow and reuse the official codes from the SOTA schemes for comparison

except for 3DIoUMatch [42]. 3DIoUMatch method uses IoU-guided NMS modules
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Table 3.6: 3D backbone network architecture generating set-type feature data.

Layers BACKBONE Network Output size

Key Point Sampling Farthest Point Sampling 4×2048

VoxelSetAbstraction

(VSA) Layers

SA_raw

radius 0.4

4×1×1, 16

16×1×1, 16

radius 0.8

4×1×1, 16

16×1×1, 16

32×2048

SA_pv1

radius 0.4

19×1×1, 16

16×1×1, 16

radius 0.8

19×1×1, 16

16×1×1, 16

32×2048

SA_pv2

radius 0.8

35×1×1, 32

32×1×1, 32

radius 1.2

35×1×1, 32

32×1×1, 32

64×2048

SA_pv3

radius 1.2

67×1×1, 64

64×1×1, 64

radius 2.4

67×1×1, 64

64×1×1, 64

128×2048

SA_pv4

radius 2.4

67×1×1, 64

64×1×1, 64

radius 4.8

67×1×1, 64

64×1×1, 64

128×2048

SA_BEV Bilinear Interpolation 256×2048

VSA Point Feature Fusion
Concat [ f raw, fpv1, fpv2, fpv3, fpv4, fBEV ] 640×2048

Linear Layer 640, 128 128×2048

for filters pseudo labels. However, the authors did not implement 3DIoUMatch in

SECOND-IoU, we have implemented 3DIoUMatch on SECOND-IoU to analyze its

effectiveness compared with UpCycling.

According to 3DIoUMatch, among the pseudo labels filtered according to the

module in IoU, only terms that help improve box regression are selectively included in

the loss. In the first attempt, the experiment † case in Table 3.7 is conducted, including

both the box regression and cls loss value from the RPN module among the pseudo

labels extracted from SECOND-IoU. The performance, however, is severely degraded

compared with the baseline model’s performance. Thus, as following implementation

of the 3DIoUMatch concept, we select only the loss useful for box regression among

RPN module loss terms. It could be confirmed through the results of 3DIoUMatch
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Table 3.7: Partial-label scenario results with 2% of labeled data in the KITTI dataset.

3DIoUMatch † indicates the first attempt experiment of not applying selective supervi-

sion of box regression loss term.

AP3D

2%

Easy Mod Hard

SECOND-IoU

Baseline 56.69 44.11 37.19

3DIoUMatch † 29.12 23.03 20.33

improved (%) -48.64 -47.78 -45.32

3DIoUMatch 63.57 49.58 43.00

improved (%) 12.13 12.39 15.62

from Table 3.7 that the baseline model performance is well improved by the correct

loss selection. Through this, we could judge that the implementation of SECOND-IoU

based 3DIoUMatch is reasonable. For training, we follow the original 3DIoUMatch

training settings, and more details on configurations are in the CODE supplementary.

3.6.4 Implementation of Inversion Attack

The research on inversion attacks that aim to restore original data from feature data has

mainly focused on 2D images. Several studies, such as those referenced in [60, 87, 88],

have proposed different inversion attack models based on convolutional neural networks

(CNNs) and have shown improvements in performance by using prediction results and

explanations. Additionally, an inversion attack model that utilizes a GAN generator

and 1x1 convolution has been proposed in [90]. However, to the best of our knowledge,

research on inversion attacks for 3D point clouds remains limited.

For this purpose, we employ the inversion attack model utilizing the decoder

method [60], which is commonly used to assess the invertibility of a model composed

of convolutional layers [87, 88].

We have developed the inversion attack models that reconstruct the raw point clouds

from the intermediate features at the 1st, 3rd, and 5th convolution layers in 3D backbone
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Table 3.8: 3D reconstructor network architecture from xconv_1.

Layers RECONSTRUCTOR Network Output size

INPUT xconv_1 16×41×400×352

Conv3d Layers

conv_1 16×3×3×3, 16, padding 1,1,1 16×41×400×352

conv_2 16×3×3×3, 16, padding 1,1,1 16×41×400×352

conv_3 16×3×3×3, 16, padding 1,1,1 16×41×400×352

ConvTranspose3d Layers upconv_1 16×3×3×3, 4, padding 1,1,1 4×41×400×352

Table 3.9: 3D reconstructor network architecture from xconv_3.

Layers RECONSTRUCTOR Network Output size

INPUT xconv_3 64×11×100×88

Conv3d Layers

conv_1 64×3×3×3, 64, padding 1,1,1 64×11×100×88

conv_2 64×3×3×3, 64, padding 1,1,1 64×11×100×88

conv_3 64×3×3×3, 64, padding 1,1,1 64×11×100×88

ConvTranspose3d Layers

upconv_1 64×3×3×3, 32, stride 2,2,2, padding 1,1,1/0,1,1 32×21×200×176

upconv_2 32×3×3×3, 16, stride 2,2,2, padding 1,1,1/0,1,1 16×41×400×352

upconv_3 16×3×3×3, 4, padding 1,1,1 4×41×400×352

Table 3.10: 3D reconstructor network architecture from xconv_out.

Layers RECONSTRUCTOR Network Output size

INPUT xconv_out 128×2×50×44

Conv3d Layers

conv_1 128×3×3×3, 128, padding 1,1,1 128×2×50×44

conv_2 128×3×3×3, 128, padding 1,1,1 128×2×50×44

conv_3 128×3×3×3, 128, padding 1,1,1 128×2×50×44

ConvTranspose3d Layers

upconv_1 128×5×3×3, 64, stride 2,1,1, padding 1,1,1 64×5×50×44

upconv_2 64×5×3×3, 64, stride 2,2,2, padding 1,1,1/0,1,1 64×11×100×88

upconv_3 64×3×3×3, 32, stride 2,2,2, padding 1,1,1/0,1,1 32×21×200×176

upconv_4 32×3×3×3, 16, stride 2,2,2, padding 1,1,1/0,1,1 16×41×400×352

upconv_5 16×3×3×3, 4, padding 1,1,1 4×41×400×352
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network in Table 3.5, following the decoder method [60]. The inversion attack model

structures for reconstructing features from the 1st, 3rd, and 5th layers are consistent

with the structures presented in Tables 3.8, 3.9, and 3.10, respectively. The initial part

of each inversion attack model consistently consists of three convolution layers. After

that, the number of transposed convolution layers in the model corresponds to the count

of layers that generate the input feature data.

To reconstruct the point clouds from input features for each dataset (KITTI, Waymo,

and Lyft), we have developed independent inversion attack models for every dataset and

followed the training settings in the decoder method [60]. More details on configurations

are in the CODE supplementary.

3.7 Supplementary Evaluation

In this section, we provide additional supplementary experiment results that reinforce

the arguments of this paper.

3.7.1 Feature-level Augmentation

Comparing point set features as with voxel-based features is not precise since raw-point

augmentation impacts point sampling; feature augmentation is performed based on

point samples different from those when raw-point augmentation is applied. Doing our

best, however, we conducted additional experiments by comparing the closest point

features in pairs. The RMSE results are 1.605@FLIP, 1.297@ROT, and 0.906@GT,

confirming a similar trend as voxel-based.

3.7.2 Privacy Protection
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0.0 0.5 1.0 1.5 2.0 2.5
Error (RMSE)

0.906 1.297 1.605

GT sampling Rotation Flip

Figure 3.8: RMSE between raw- and set-type feature-level augmentations of the entire

KITTI training dataset. Box range covers the first quartile to the third quartile and the

mark ‘×’ indicates the mean value.

(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from the 3rd layer (d) Restoration from the 5th layer, same as

UpCycling

Figure 3.9: Results of inversion attack for the 3D backbone model of SECOND-IoU

and PV-RCNN. The example 3D point cloud scene is in KITTI.
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(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from the 3rd layer (d) Restoration from the 5th layer, same as

UpCycling

Figure 3.10: Results of inversion attack for the 3D backbone model of SECOND-IoU

and PV-RCNN. The example 3D point cloud scene is in Waymo.
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(a) Original raw-point scene (b) Restoration from the 1st layer

(c) Restoration from the 3rd layer (d) Restoration from the 5th layer, same as

UpCycling

Figure 3.11: Results of inversion attack for the 3D backbone model of SECOND-IoU

and PV-RCNN. The example 3D point cloud scene is in Lyft.
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Feature data produced from the 3D object detection network.

Figures 3.12-3.13 shows the grid-type feature’s activation heatmaps and set-types

feature’s positions corresponding to GTs at the raw-point data. In UpCycling, the

state of the feature-level data after passing the 3D Backbone networks is very coarse.

UpCycling uses these de-identified feature-level data for SSL of 3D object detection. In

order to extract identifying information from this de-identified data, inversion attacks

must be employed. We will discuss the attempts to reconstruct data via inversion attacks

in the following section. Additionally, since a regular detection pipeline with the 3D

scene naturally produces an unlabeled intermediate feature, UpCycling eliminates the

need for extra AV-side computation (e.g., local training) or server-side annotation effort.

Restored point cloud scene using the inversion attack.

We perform an inversion attack on the 3D backbone network in SECOND-IoU and

PV-RCNN. The 3D point cloud scenes in Figures 3.9-3.11(a) originate from the KITTI,

Waymo, and Lyft datasets, respectively. Figures 3.9-3.11(b)-(d) present the restoration

results for intermediate features at three different convolutional layers of the backbone

network: 1st, 3rd, and 5th (last) layers, respectively. Although the point cloud restored

from the first layer is relatively similar to the original scene, it becomes considerably

different when applied to features from deeper layers in all cases. We confirm that

intermediate feature data generated from the deepest layer utilized by UpCycling in

all datasets, including KITTI, Waymo, and Lyft, makes it impossible to accurately

reconstruct the original scene.

3.7.3 Effect of Feature Augmentation Schemes in Domain Adaptation

In Section 5.2, we investigate feature augmentation by evaluating the superiority of

F-GT, which is utilized for UpCycling, to other augmentation schemes (e.g., Flip, Noise,

RS, and Rotation) in a partial-label scenario. Further, we investigate the superiority of
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Table 3.11: Effects of feature augmentation schemes in the domain adaptation scenario

with the same settings as Sections 5.2 and 5.4

Dataset Method
SECOND-IoU (Closed Gap[%])

APBEV AP3D

KITTI

Baseline 54.14 (0.00) 10.16 (0.00)

Flip(w/ SN) 76.68 (62.23) 48.73 (53.67)

Noise(w/ SN) 81.46 (75.43) 51.21 (57.12)

RS(w/ SN) 78.59 (67.50) 46.52 (50.61)

Rotation(w/ SN) 77.98 (65.83) 44.25 (47.44)

UpCycling (w/ SN) 84.12 (82.77) 67.65 (80.00)

Oracle 90.36 (100.0) 82.02 (100.0)

UpCycling to other feature augmentation schemes in the domain adaptation scenario

with the same settings as Sections 5.2 and 5.4.

In this experiment, Baseline evaluates the baseline model pre-trained with Waymo

dataset directly in target domain (KITTI) and Oracle adapts the model with fully

supervised learning in the target domain, which provide the lower- and upper-bound

performance, respectively. For feature-level augmentations, we adopts Flip, Noise, RS,

and Rotation described in Section 5.2. We utilize SECOND-IoU and adopt SN option

for adaptation to KITTI domain since object sizes in KITTI are different from those in

Waymo.

Table 3.11 performs the same comparison in the domain adaptation scenario de-

scribed in Section 5.4, showing each scheme’s APBEV, AP3D performances and its

relative position between Baseline (0) and Oracle (100). The results show that our

UpCycling provides the best performance in all cases.

3.7.4 Other Class Detection Results

We report per-class average precision on other classes of the KITTI dataset in Table 3.12.

We use the same settings as in Sections 5.5. The experiment using a 10% partial-label
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Table 3.12: The AP results for Car and Pedestrian classes in a partial-label scenario,

utilizing 10% labeled data from the KITTI dataset.

AP3D(10%)
Car (@0.7 IoU) Pedestrian (@0.5 IoU)

Easy Mod Hard Easy Mod Hard

SECOND-IoU

Baseline 75.77 58.75 52.27 15.40 13.10 12.27

UpCycling 76.01 61.09 54.34 18.08 15.13 14.49

Improved (%) 0.32 3.98 3.96 17.40 15.50 18.10

PV-RCNN

Baseline 80.98 66.80 59.60 14.81 13.39 12.42

UpCycling 83.82 69.52 62.47 16.10 15.18 15.00

Improved (%) 3.51 4.07 4.82 8.71 13.37 20.77

APBEV(10%)
Car (@0.7 IoU) Pedestrian (@0.5 IoU)

Easy Mod Hard Easy Mod Hard

SECOND-IoU

Baseline 82.59 73.63 65.80 22.02 18.30 17.48

UpCycling 86.81 75.87 67.28 23.59 19.67 18.95

Improved (%) 5.11 3.04 2.25 7.13 7.49 8.41

PV-RCNN

Baseline 89.22 80.95 73.30 16.87 15.26 15.01

UpCycling 91.33 83.25 75.85 20.03 18.27 18.10

Improved (%) 2.36 2.84 3.48 18.73 19.72 20.59

scenario on KITTI training data is essential to understand UpCycling’s effectiveness

to the Pedestrian class as well as the Car class. As shown in Table 3.12, UpCycling

achieves to improve the detection accuracy in other classes significantly, regardless of

the class, model, and task difficulty.
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Figure 3.12: Figures for the Car class in KITTI dataset. GT point clouds and corre-

sponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Figure 3.13: Figures for the Pedestrian class in KITTI dataset. GT point clouds and

corresponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Figure 3.14: Figures for the Cyclist class in KITTI dataset. GT point clouds and

corresponding grid-type feature’s activation heatmaps and set-type feature’s positions.
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Chapter 4

Conclusion

4.1 Research Contributions

In this dissertation, we dealt with autonomous vehicles’ object detection performance

enhancement techniques using communication systems.

In Chapter 2, we have presented Beyond-Vision, a standard-compliant relay system

in C-V2V, that aims to guarantee stable MRR in vehicular communications. To ensure

effective relaying performance, each V-UE should be able to distinguish CAMs that are

not likely to be received at nearby V-UEs. Beyond-Vision enables V-UEs to examine

eMRR of received CAMs with no overhead by utilizing previously unused bytes in

the conventional CAM. By doing so, Beyond-Vision relays CAMs more efficiently

than the other comparison schemes. Based on our realistic simulation results, we have

verified the performance of Beyond-Vision in various environments, demonstrating

that Beyond-Vision significantly improves MRR performance compared with the other

comparison schemes and that its relaying transmission is very effective.

In Chapter 3, we have presented UpCycling, a novel semi-supervised learning

framework for 3D object detection models that does not utilize unlabeled raw-level

3D scenes but only de-identified intermediate features. To the best of our knowledge,

UpCycling is the first framework that tackles labeling cost, privacy leakage, and AV-
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side computation burden altogether. Our deep investigation of feature-based learning

reveals that combining hybrid pseudo label, F-GT, and F-RoT significantly improves

pseudo-label quality and data diversity. Results from various experiments demonstrate

that UpCycling achieves SOTA accuracy with large margins in both partial-label and

domain adaptation scenarios, regardless of the model, dataset, and task (difficulty setting

or average precision of BEV/3D view). With the superior performance, UpCycling

discloses the value of unlabeled feature-based learning in the context of 3D object

detection, in terms of both privacy and accuracy.

4.2 Future Research Directions

Based on the results of this dissertation, there are new future research directions which

require further investigation. We highlight some of them as follows.

First, we plan to investigate the relaying message traffic in various V-UE density

environments, and to propose a novel adaptive relaying-mode for high density environ-

ments. Second, regarding the machine learning system design for a real application, we

plan to propose a novel system for UpCycling considering the communication costs,

and the enhancement of privacy leakage.
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초 록

자율주행기술은 물체 감지 기법에 따라 크게 두 가지 방식이 존재한다. 하나는

차량이 V2X통신을통해차량정보를공유하여주변차량의위치와도로상황을이

해하는협력하는협력적자율주행방식이고,다른하나는비전센서에서얻은정보를

딥러닝 모델로 처리해 물체의 종류와 차량과 물체 사이의 거리를 알아내는 독립적

자율주행방식이다.

위의 두 가지 방법은 각각 다음과 같은 장단점이 있다. V2X 통신을 활용한 협

력적 자율주행 방식은 비전 센서로 보이지 않는 영역에서 차량을 감지할 수 있는

장점이있다.그러나모든차량이통신인프라를통한정보공유에협력해야한다는

제한 조건이 있으며, 각 차량이 보내는 상태 정보에 따라 신뢰성 문제가 발생한다.

반면, 비전 센서를 통한 독립적 자율주행 방식은 감지 신뢰도는 높지만 장애물에

가려진영역은감지할수없다.따라서자율주행차량의사용자안전을보장하기위

해서는이두가지물체감지방식의장점을강화하기위한연구가필요하다.

본 논문에서는 협력적 자율주행과 독립적 자율주행을 위한 물체 감지 성능을

향상시키기위한방법을각각제안한다.

첫째, 우리는 보조적인 피드백 과정이 없는 C-V2V 주문형 중계 시스템을 제안

한다. 이 목표를 달성하기 위해 기존 CAM (Cooperative Awareness Message)에서

이전에사용되지않은저장공간을활용하여통신범위내에서감지한주변차량ID

(Adjacent Vehicle IDs)를포함하는새로운 CAM구성을도입한다.이기법을통해서

차량간메시지는 NLOS (Non-Line-of-Sight)환경이나, resource collision, channel

변동 등의 문제로 수신률이 저하가 초래되는 환경에서 중계 지원차량을 효과적으

로선정하여차량간통신이이루어지게한다.우리는제안기법이기존의통신표준
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성능과다른비교중계기법들에비해향상된메시지전송성공비율을보이는것을

확인하였다.

둘째, 비식별화된 중간 데이터(feature data)를 활용하여 3D 물체 감지 모델 성

능을 향상시키는 새로운 방식을 제안한다. 이 방식은 자율주행 차량이 운행 중에

물체를 감지하는 과정에서 발생하는 feature data를 활용함으로써, 자율주행 차량

측에추가적인계산부담없이라벨링비용과개인정보유출문제를동시에해결할

수있다.더욱이,개인정보를보호하면서도,이방식은도메인적응및부분레이블

시나리오에서 원시 수준의 레이블되지 않은 데이터를 활용하는 최신 방법들에 비

해더욱우수하거나동등한성능을보인다.이러한탁월한성능을바탕으로,우리가

제안하는 이 방식은 3D 객체 감지의 맥락에서 개인정보 보호와 정확도를 동시에

고려하는레이블되지않은중간데이터기반학습의가치를입증한다.

본 학위논문에서는 통신시스템과 비전 기술을 모두 사용하여 자율주행의 물체

감지성능을향상시키는다양한기법들을제안한다.우리는앞서간단히소개한연

구들을통해자율주행사용자의안전을더욱확보하여자율주행차상용화에한걸음

더다가서고자한다.

주요어:자율주행,차량간통신,준지도학습, 3D객체감지,물체감지

학번: 2016-20989
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