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Abstract

Vision-and-Language Navigation (VLN) is an emerging field that focuses on
developing intelligent agents capable of following natural-language instructions
to navigate based on visual observations of the environment. The main chal-
lenge in VLN is how to understand natural-language instructions in an unseen
environment. The limitation of conventional VLN algorithms is that if an ac-
tion is mistaken, the agent fails to follow the instructions or explores unnec-
essary regions, leading the agent to an irrecoverable path. This thesis presents
Meta-Explore, a hierarchical navigation method deploying an exploitation pol-
icy to correct misled recent actions. We show that an exploitation policy, which
moves the agent toward a well-chosen local goal among unvisited but observ-
able states, outperforms a method which moves the agent to a previously visited
state. We also highlight the demand for imagining regretful explorations with
semantically meaningful clues. The key to our approach is understanding the
object placements around the agent in spectral-domain. Specifically, we present
a novel visual representation, called scene object spectrum (SOS), which per-
forms category-wise 2D Fourier transform of detected objects. Combining ex-
ploitation policy and SOS features, the agent can correct its path by choosing a
promising local goal. We evaluate our method in three VLN benchmarks: R2R,
SOON, and REVERIE. Meta-Explore outperforms other baselines and shows
significant generalization performance. In addition, local goal search using the
proposed spectral-domain SOS features significantly improves the success rate
by 17.1% and SPL by 20.6% against the state-of-the-art method of the SOON

benchmark.
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Chapter 1

Introduction

1.1 Study Background

With the recent progress in artificial intelligence, the need for developing an
agent that can understand natural human language and act intelligently has
risen [1]. Such an agent can help humans with various tasks: from daily tasks
such as household chores to tasks that involve high risk, such as working in
hazardous regions. This motivates vision-and-language navigation (VLN) [2—4],
which is an emerging field of research that focuses on developing an embodied
agent that follows natural language instructions to navigate in unseen environ-
ments to arrive at the target location. Conventional VLN algorithms, however,
have a critical drawback that it is hard to handle mistaken actions effectively.
When an agent makes a wrong action and deviates from the intended path, this
may lead to failure in following the instructions and potentially getting stuck

in an irrecoverable path.
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1.2 Purpose of Research

This research aims to develop a navigation method that enables the agent to
recover mistaken actions in VLN. In Chapter 2, we propose a hierarchical nav-
igation method that solves the challenges in conventional VLN algorithms and
enhances the generalization performance so that the agent can navigate well in
unseen environments. We focus on understanding the object placements around
the agent and finding a promising exploitation policy that makes the agent cor-

rect its path based on semantically meaningful clues.



Chapter 2

Meta-Explore: Exploratory Hierarchical
Vision-and-Language Navigation

Using Scene Object Spectrum Grounding

Visual navigation in indoor environments has been studied widely and shown
that an agent can navigate in unexplored environments [5]. By recognizing the
visual context and constructing a map, an agent can explore the environment
and solve tasks such as moving towards a goal or following a desired trajectory.
With the increasing development in human language understanding, vision-
and-language navigation (VLN) [2] has enabled robots to communicate with
humans using natural languages. The high degree of freedom in natural language
instructions allows VLN to expand to various tasks, including (1) following fine-
grained step-by-step instructions [2,6-16] and (2) reaching a target location
described by goal-oriented language instructions [17-23].

A challenging issue in VLN is the case when an action is mistaken with
respect to the given language instruction [24-29]. For instance, if the agent is

asked to turn right at the end of the hallway but turns left, the agent may end
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@ global goal Instruction: "Walk forward, keeping the long table to
local goal the Ieft.‘ Exit the room via the white door tp the left of
9 start the stairs. Descend a narrow circular stairwell and
| wait, facing two windows with circular stained glass
N in their centers.”
>
SN | o5

\ 4 unvisited, observable node
@© tt" visited node

Figure 2.1: Hierarchical Exploration. At each episode, a natural-language instruc-
tion is given to the agent to navigate to a goal location. The agent explores the envi-
ronment and constructs a topological map by recording visited nodes O and next step
reachable nodes #. Each node consists of the position of the agent and visual features.
0; denotes the observation at time t. The agent chooses an unvisited local goal to solve
the regretful exploration problem.

up in irrecoverable paths. Several existing studies solve this issue via hierarchi-
cal exploration, where the high-level planner decides when to explore and the
low-level planner chooses what actions to take. If the high-level planner chooses
to explore, the agent searches unexplored regions, and if it chooses to exploit,
the agent executes the best action based on the previous exploration. Prior
work [24-26] returns the agent to the last successful state and resumes explo-
ration. However, such methods take a heuristic approach because the agent only
backtracks to a recently visited location. The agent does not take advantage
of the constructed map and instead naively uses its recent trajectory for back-
tracking. Another recent work [29] suggests graph-based exploitation, which
uses a topological map to expand the action space in global planning. Still, this
method assumes that the agent can directly jump to a previously visited node.
Since this method can perform a jump action at every timestep, there is no
trigger that explicitly decides when to explore and when to exploit. Therefore,

we address the importance of time scheduling for exploration-exploitation and
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O visited node
O unvisited node current position
@ global goal |

@ local goal
Q start

searchable
area y

5}

(8]

" o 02

g

o

“Which visited node” “Which unvisited node”

“is the most likely to be a local goal?”

Figure 2.2: Local Goal Search for Exploitation. The local goal is likely to be
chosen as the closest node to the global goal. Existing methods only backtrack to a
visited node (left). We expand the searchable area by including unvisited but reachable
nodes (right).

efficient global planning using a topological map to avoid reexploring visited
regions.

We expand the notion of hierarchical exploration by proposing Meta-Explore,
which not only allows the high-level planner to choose when to correct misled lo-
cal movements but also finds an unvisited state inferred to be close to the global
goal. We illustrate the overview of hierarchical exploration in Figure 2.1. Instead
of backtracking, we present an exploitation method called local goal search. We
show that it is more efficient to plan a path to a local goal, which is the most
promising node from the unvisited but reachable nodes. We illustrate the dif-
ference between conventional backtracking and local goal search in Figure 2.2.
Based on our method, we show that exploration and exploitation are not inde-
pendent and can complement each other: (1) to overtake regretful explorations,
the agent can perform exploitation and (2) the agent can utilize the constructed
topological map for local goal search. We also highlight the demand for imagin-

ing regretful explorations with semantically meaningful clues. Most VLN tasks
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require a level of understanding objects nearby the agent, but previous stud-
ies simply encode observed panoramic or object images [2,4,6,19-21,24-37].
In this paper, we present a novel semantic representation of the scene called
scene object spectrum (SOS), which is a matrix containing the arrangements
and frequencies of objects from the visual observation at each location. Using
SOS features, we can sufficiently estimate the context of the environment. We
show that the proposed spectral-domain SOS features manifest better linguis-
tic interpretability than conventional spatial-domain visual features. Combin-
ing exploitation policy and SOS features, we design a navigation score that
measures the alignment between a given language instruction and a corrected
trajectory toward a local goal. The agent compares local goal candidates and
selects a near-optimal candidate with the highest navigation score from cor-
rected trajectories. This involves high-level reasoning related to the landmarks
(e.g., bedroom and kitchen) and objects (e.g., table and window) that appear
in the instructions.

The main contributions of this paper are as follows:

e We propose a hierarchical navigation method called Meta-Explore, de-
ploying an exploitation policy to correct misled recent actions. The agent
searches for an appropriate local goal instead of reversing the recent action

sequence.

e In the exploitation mode, the agent uses a novel scene representation
called scene object spectrum (SOS), which contains the spectral informa-
tion of the object placements in the scene. SOS features provide seman-
tically meaningful clues to choose a near-optimal local goal and help the

agent to solve the regretful exploration problem.

e We evaluate our method on three VLN benchmarks: R2R [2], SOON [19],
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and REVERIE [20]. The experimental results show that the proposed
method, Meta-Explore, improves the success rate and SPL in test splits
of R2R, SOON and val split of REVERIE. The proposed method shows

better generalization results compared to all baselines.

2.1 Related Work

2.1.1 Vision-and-Language Navigation

In VLN, an agent encodes the natural language instructions and follows the
instructions, which can be either (1) a fine-grained step-by-step instruction the
agent can follow [2,6,7], (2) a description of the target object and location [19,
20], or (3) additional guidance given to the agent [4,21]. These tasks require the
agent to recognize its current location using some words in the natural-language
instructions. Prior work [2,30-33] show that an agent can align visual features
to language instructions via neural networks and use the multimodal output
embeddings to generate a suitable action at each timestep. Most VLN methods
utilize cross-modal attention, either with recurrent neural networks [2,30] or
with transformer-based architectures [31-33]. For sequential action prediction,
Hong et al. [34] further use recurrent units inside transformer architectures,
while Pashevich et al. [35] and Chen et al. [36] use additional transformers to

embed past observations and actions.
2.1.2 Exploration-Exploitation

In an unseen environment, the agent must maximize the return without knowing
the true value functions. One of the solutions to this problem is to switch
back and forth between exploration and exploitation [38]. In the exploration
mode, the agent gathers more information about the environment. On the other

hand, the agent uses information collected during exploration and chooses the
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best action for exploitation. Ecoffet et al. [39] reduced the exploration step
by archiving the states and exploring again from the successful states. Pislar et
al. [40] addressed the various scheduling policies and demonstrated their method
on Atari games. Recent work [41,42] successfully demonstrates the effectiveness
of hierarchical exploration in image-goal navigation.

Like commonly used greedy navigation policies, VLN tasks also deal with
the problem of maximizing the chance to reach the goal without knowing the
ground truth map. Several VLN methods employ the concept of exploitation
to tackle this problem. Ke et al. [37] look forward to several possible future
trajectories and decide whether to backtrack or not and where to backtrack.
Others [24-26] estimate the progress to tell whether the agent becomes lost and
make the agent backtrack to a previously visited location to restart exploration.
However, previous studies do not take into account what should be done in the
exploitation mode. In order to handle this problem, we propose a hierarchical
navigation method which determines the scheduling between exploration and

exploitation.
2.1.3 Visual Representations

Popular visual encoding methods via ResNet [43] and ViT [44] can be trained to
learn rotation-invariant visual features. Both methods learn to extract visual
features with high information gain for global and local spatial information.
The high complexity of the features leads to low interpretability of the scene
and therefore requires the agent to use additional neural networks or complex
processing to utilize them. On the other hand, traditional visual representa-
tion methods such as Fourier transform use spectral analysis, which is highly
interpretable and computationally efficient. One drawback of the traditional

methods is that they fail to maximize the information gain. Nonetheless, an



Chapter 2. Meta-Explore

appropriate use of essential information can be helpful for high-level decision
making and enables more straightforward interpretation and prediction of the
visual features. One traditional navigation method, Sturz et al. [45] used Fourier
transform to generate rotation-invariant visual features. However, no research
has transformed the spectral information of the detected objects to represent
high-level semantics from visual observations. Focusing on the fact that 2D
Fourier transform can extract morphological properties of images [46], we can
find out the shape or structure of detected objects through 2D Fourier trans-
form. In this paper, we decompose the object mask into binary masks by object

categories and perform a 2D Fourier transform on each binary mask.

2.2 Method

2.2.1 Problem Formulation

We deal with VLN in discrete environments, where the environment is given
as an undirected graph G, = {V, E}. V denotes a set of N navigable nodes,
{ Vi}f\il, and F is the adjacency matrix describing connectivity among the nodes
in V. We denote the observation at node V; as O;. The agent uses a panoramic
RGB image observation o; and current node v, which are collected at time ¢.
The agent either moves to a neighboring node or executes a stop action. a;
denotes the action at time t. The objectives of VLN are categorized as follows:
(1) to follow language instructions [2] and (2) to find a target object described
by language instructions in a fixed time T' [19,20]. We present a general hierar-
chical exploration method that can be applied to both tasks. We also enhance
the navigation policy by extracting cross-domain visual representations from
the environments, i.e., spatial-domain and spectral-domain representations. To
balance the information loss and interpretability of the visual feature, we adopt

multi-channel fast Fourier transform (FFT) to encode semantic masks of the
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Walk forward keeping the long table to the left. Exit the room via the white door to the left of the stairs.
Descend a narrow circular stairwell and wait, facing two windows with circular stained glass in their centers."

Figure 2.3: Network Architecture. Three types of visual features: panoramic (yel-
low), object image (aquamarine), and object spectrum (red) are encoded. The color
in each parenthesis denotes the color describing the corresponding feature. The cross-
modal transformer encodes language and spatial visual features as hidden state H;. A
mode selector gives explore or exploit command to the agent by predicting the explore
probability Pegpiore- The selected navigation module outputs an action a; from the
possible n.q,q candidate nodes.

detected objects into category-wise spectral-domain features.
2.2.2 Meta-Explore

We design a learnable hierarchical exploration method for VLN called Meta-
Explore, which decides (1) when to explore or exploit and (2) a new imagined
local goal to seek during exploitation. The overall network architecture of the
proposed Meta-Explore is shown in Figure 2.3. Given a language instruction
L, the agent navigates in the environment until it finds the target described
in L. Meta-Explore consists of a mode selector and two navigation modules
corresponding to two modes: exploration and exploitation. At each timestep,
the mode selector chooses to explore or exploit. At ¢ = 0, the mode is initialized
to exploration. In the exploration mode, the agent outputs an action toward a
neighboring node to move the agent toward the goal. When the mode selector

recognizes that the agent is not following the instruction successfully, the mode
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is switched to exploitation. In the ezploitation mode, the agent seeks a new
local goal with the highest correspondence against the language instructions
from the previously unvisited candidate nodes using spectral-domain visual
features. The agent moves toward the local goal by planning a path. After the
agent arrives at the local goal, the mode is reset to exploration. The explore-
exploit switching decision occurs through the mode selector by estimating the
probability to explore. The agent repeats this explore-exploit behavior until it

determines that the target is found and decides to stop.
Mode Selector

At time ¢, the agent observes visual features about the current node v; and
several reachable nodes. We call the nodes reachable at the current timestep as
candidate nodes. n.4,q denotes the number of candidate nodes. We use a cross-
modal transformer with n; layers to relate visual observations to language
instructions. The cross-modal transformer takes the visual features of nodes
in the constructed topological map at time t, G;, and outputs cross-modal
embedding H; to encode visual observations with L. We concatenate location
encoding and history encoding [27] to the visual features as node features to
consider the relative pose from v; and the last visited timestep of each node,
respectively. Each word is encoded via a pretrained language encoder [47], which
is used for general vision-language tasks.

The cross-modal transformer consists of cross-attention layer
L2V_Attn(W, V) = Softmax(We}(Vel) /vVa)V ey, (2.1)
and self-attention layer

SelfAttn(X) = Softmax = ((XO,(XO;)T+40, + b.)/Vd) XO,, (2.2)

11



Chapter 2. Meta-Explore

Mode Selector A f Local Goal Search Module \
o H, EENN a G=(V,E) )
S
z H s Pexplore Y9 global
5 Ho|e i s
E H :’, glm'rlI/ \mln(d)
=0 | (

\ 4

pop.

\|V13| V12|V11| V9| 4] l Ve a;
\_ at/ \ Path Planning Module /
Exploration Module Exploitation Module

Figure 2.4: Navigation Modules. Mode selector estimates Pegpiore, i.€., the prob-
ability to explore, and chooses between exploration and exploitation modules. The
selected navigation module outputs the next action a;.

where W, V, X, and A denote word, visual, node representations and ad-
jacency matrix of Gy, respectively. The (query, key, value) weight matrices
of self-attention and cross-attention layers are denoted as (O, O, ©,) and
(@3}, @L, @l), respectively. The final cross-modal embedding at time ¢ after pass-
ing through ny, transformer layers is denoted as H;. To encourage the monotonic
increasing relationship between language and visual attentions at each timestep,
we define a correlation loss Leop, = Zthl ||[L2V_Attn — I, ||; for training the
cross-modal transformer, where n, denotes the dimension of the H; and I,
denotes an identity matrix of size n, X ng.

As illustrated in Figure 2.4, the mode selector estimates the probability to
explore Pypiore given the cross-modal hidden state H;. We denote the mode
selector as Siode and use a two-layer feed-forward neural network. Given Hi,
Smode Outputs the exploration probability as Pegpiore = 1—Smode(Ht). If Pegpiore
is greater than 0.5, the exploration policy outputs a probability distribution for

reachable nodes at the next step. At time ¢+ 1, the agent moves to the node with

12
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the highest probability. If P.;pi0re < 0.5, the agent determines that the current
trajectory is regretful, so the agent should traverse to find a local goal, which is
the most likely to be the closest node to the global goal. The exploitation policy
mainly utilizes object-level features to search for the local goal with high-level
reasoning. After the local goal is chosen, the path planning module outputs an
action following the shortest path to the local goal.

To train the mode selector, we require additional demonstration data other
than the ground truth trajectory, such that it switches between exploration
and exploitation. We generate the demonstration data from the ground truth
trajectories, with additional detours. For the detours, we stochastically select
candidate nodes other than the ground truth paths and add the trajectory that
returns to the current viewpoint. The imitation learning loss for training the
mode selector is defined as L,oqe = Zthl 1(m; = gt;), where my is the mode of
the agent, 0 for exploitation and 1 for exploration. gt, is 1 if the current node

is in the shortest ground truth trajectory and gt, = 0, otherwise.

Exploration Module

In the exploration mode, the agent follows the following sequential opera-
tions: topological map construction, self-monitoring, and an exploration pol-
icy. To improve the exploration, we adopt self-monitoring [24] to predict the
current progress of exploration to enhance the exploration policy itself. Prior
work [24,25] has shown that auxiliary loss using self-monitoring can regularize

the exploration policy.
Topological Map Construction. The agent constructs graph G, by classi-

fying nodes into two types: (1) visited nodes and (2) unvisited but observable

nodes. At current time ¢, the agent at node v; € {V;}, observes N(v;) neigh-

13
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bor nodes as next step candidates at time ¢ 4+ 1. The visited nodes consist of
visual features of their own and the neighboring nodes from panoramic RGB
observations. The unvisited nodes can be observed only if they are connected to
at least one visited node. The topological map records the positions and visual
features of observed nodes at each timestep. By knowing the positions of nodes
in Gy, the agent can plan the shortest path trajectory between two nodes.

Self-Monitoring. We use a progress monitor to estimate the current naviga-
tion progress at each episode. Self-monitoring via estimating current progress
helps the agent choose the next action that can increase the progress. The
estimated progress p; = Fprogress(H) is the output of a feed-forward neural
network, given H; as input. We measure the ground truth progress p; as the

ratio between the current distance to the goal and the shortest path length of

dgeo(vtavgoal)

the episode subtracted from 1, described as 1 — Toea (00 Ocet)
eo yUgoa

, where dgeo(a,b) is
the geodesic distance between a and b. vg, v¢, and vgy, denote initial, current,
and goal positions, respectively. We add progress loss Ly,ogress = ZtT:l(ﬁt —pr)?
to train the progress monitor while training the exploration policy.

Exploration Policy. The exploration policy F,piore estimates the probability
of moving to the candidate nodes at the next step. The agent chooses the action
a; at time ¢ based on the estimated probability distribution among candidate
nodes, described as a; = arg maxv;, (Fezpiore([Htli)). Feaplore 15 implemented via
a two-layer feed-forward network with the cross-modal hidden state H; given as
input. The output of F,p0re becomes a probability distribution over possible
actions. To only consider unvisited nodes, we mask out the output for visited
nodes. For training, we sample the next action from the probability distribution

instead of choosing a node with the highest probability. We describe the training
details in Section 2.2.3.
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Figure 2.5: Scene Object Spectrum (SOS). The agent calculates scene object
spectrum (SOS) features for efficient exploitation. SOS features incorporate semantic
information observed in a single panoramic image by performing category-wise 2D
FFT.
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Exploitation Module

In the exploitation mode, the agent requires high-level reasoning with identifi-
able environmental clues to imagine regretful exploration cases. To find clues in
an object-level manner, we present a novel visual representation by capturing
object information in the spectral-domain. The novel representation is more
easily predictable than spatial features such as RGB image embeddings. The
agent can take advantage of the predictability by expanding the searchable area
to find a local goal. We choose the local goal as the closest node to the global
goal in the feature space.

Spectral-Domain Visual Representations. Common navigation policies
can lead the agent toward the node with the highest similarity to the target.
However, even with a good learned policy, the agent can act in a novice manner
in unseen environments. In this paper, we seek extra information from the envi-
ronment for generalizable high-level reasoning to resolve the issue. As illustrated
in Figure 2.5, scene object spectrum (SOS) incorporates semantic information

observed in a single panoramic image by generating a semantic mask for each
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object category and applying Fourier transform to each semantic mask. The
semantic mask for object class k at time ¢ is calculated as a binary mask [m}];;
that detects the object at pixel (i, j). Suppose there are a total of K object
categories. When multiple objects are detected for one object category, the bi-
nary mask appears as a union of the bounding boxes of the detected objects.
We define FFT as a channel-wise 2D fast Fourier transform that receives K
binary semantic masks and outputs K spectral-domain features, where K is the
number of object classes. Then, SOS feature Sy = [s!, ..., s5]7 can be defined as
sF = log |FFT(m})|. For simplicity, we perform mean pooling on the vertical
spectral axis and normalize the output. The final SOS feature has shape (K, n),
where 7 is the maximum horizontal frequency.

Local Goal Search Using Semantic Clues. We argue that returning to
a previously visited node does not guarantee the agent escapes from the local
optima. Instead of backtracking to a previously visited node, the agent searches
for a local goal to move towards. If the agent plans a path and moves towards
the local goal, the agent does not need to repeat unnecessary actions in visited
regions after the exploitation ends. Additionally, searching for a local goal takes
full advantage of the topological map by utilizing the connections among the
observed nodes. To expand the searchable area further, we let the agent choose
the local goal from previously unvisited and unchosen candidate nodes.

To choose a local goal, we first score the corrected trajectories to measure
the alignment with the language instruction L. We use SOS features as seman-
tic environmental clues to estimate the navigation score S, of the corrected
trajectory, which is the shortest path trajectory from the initial node to the
local goal in the constructed topological map. To simplify, we convert the lan-
guage instruction into a list of objects W = [w?, ..., w$%] consisting of B[< K]
object categories (e.g., desk, cabinet, and microwave). We approximate the cor-

3 oy i
A1 == TH
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responding reference SOS features as [5(wf),...,5(w03)] where the i'" row of

d(wy) is defined as follows:

()]s = 1k = DAG(wf) sine(Z 7). (2.3)

A(0(wy)) denotes the average width of detected bounding boxes of object wy
in the environment. A detailed approximation process is explained in the sup-
plementary material. To simulate a corrected trajectory 7' = (vf,...,v},), we
calculate the SOS features [_’{, vy _’2,] corresponding to the nodes in 7'. We
measure the similarity between two object spectrum features via the cosine
similarity of the flattened vectors. Finally, the navigation score Spq, of 77 is

computed as:

B L S(wo) §] S(,0 (0 ar o
121 ;(B(wio)‘ @)((5(11)2) - 5(w )) (S -5 ))
Smw(T/) = — = 5 y — ) (24)
\/ B 2 00wp) = 0(@))? 1 (5; - 57

where §(w°) and S denote the average values of SOS features §(w?) and SZ,
respectively. This equation can also be interpreted as a pseudo correlation-
coefficient function between object list W° and trajectory 7”. The exploitation
policy selects the node with the highest navigation score as the local goal from

the previously unvisited candidates.

17



Chapter 2. Meta-Explore

similarity matrix

painting

bed

V=1
sculpture é

Figure 2.6: Toy Example. Monotonic alignment between language instruction
and visual observation is desirable. Yellow dots o in the nodes describe the
ground truth trajectory. Based on the node at ¢ = 3, the similarity matrix can
show either monotonic or non-monotonic alignment between object tokens and
SOS features. The green circles ## describe the possible candidates A, B for next
action.

Ve—3 = B, Sngy = 0.201

Figure 2.6 illustrates a simple scenario of entering a room. Suppose W€ is
given as [sculpture, door, bed| and the agent has to compare two trajectories
Ti = (v1,v2,A) and T; = (v1,v2, B). Each similarity matrix in Figure 2.6 has
the (¢,7) element as the similarity between the SOS feature of V; and 5(w;’),
which is calculated as 0 (w;) g{ Notably, the similarity matrix shows monotonic
alignment and the navigation score is higher when the next action is chosen

correctly.
2.2.3 Training Detalils

We use [27] for pretraining the visual encoder with panoramic RGB obser-
vations. We use the DAgger algorithm [48] to pretrain the navigation policy
and the mode selector. To prevent overfitting, we iteratively perform teacher
forcing and student forcing to choose the action from the exploration policy.

Imitation learning loss is calculated as Ly, = Zthl —log p(aj|a;) and object
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grounding loss is calculated as Log = — log p(obj*|obj,..4), where obj* denotes
the ground truth and obj,,.q denotes the predicted object location. The total
loss function is defined as Liotai = Limode + Lprogress + Leorr + L1z + Log. We
further finetune the agent via A2C [49]. The exploration policy selects the ac-
tion a; with probability p?. Reinforcement learning loss is defined as Lr; =
— > cailog(pf)Ar — A", af log(pf). To train the mode selector, progress mon-
itor, and exploration policy in an end-to-end manner, we use the total loss
function as Lyfine = Liode + Lprogress + Lrr- The exploitation policy searches
the path toward the local goal from the constructed navigation graph. Thus,

the exploitation policy is not learned.

2.3 Navigation Experiments

2.3.1 Experiment Settings

We evaluate our method on three VLN benchmarks, Room-to-Room(R2R) [2],
SOON [19], and REVERIE [20].

R2R. evaluates the visually-grounded natural navigation performance of the
agent. The agent must navigate to the predefined goal point given image ob-
servations and language instructions in an unseen environment.

SOON is also a goal-oriented VLN benchmark. Natural language instructions
in SOON have an average length of 47 words. The agent should locate the target
location and detect the location of an object to find the target object.
REVERIE is a goal-oriented VLN benchmark that provides natural language
instruction about target locations and objects. In REVERIE, the agent is given
an instruction referring to a remote object with an average length of 21 words.
With this instruction and a panoramic observation from the environment, the
agent should navigate to the location the instruction describes and find the

correct object bounding box among the predefined object bounding boxes.
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2.3.2 Evaluation Metrics

Navigation performance

We evaluate algorithms using the trajectory length (TL), success rate (SR),
and success weighted by inverse path length (SPL) [50], and oracle success
rate (OSR) for the navigation performance comparison. An episode is recorded
as a success if the agent takes a stop action within 3 m of the target loca-
tion. TL is the average path length in meters. SR is denoted as the number
of successes divided by the total number of episodes, M. SPL is calculated as
ﬁ Zf\i 1 Sim, where S; denotes the success as a binary value. p; and [;

denote the shortest path and actual path lengths for the i** episode. OSR uses

the oracle stop policy instead of the stop policy of the agent.
Object grounding performance

We also evaluate the object grounding performance of the agent by the success
rate of finding the target object (FSR) and the target finding success weighted
by inverse path length (FSPL)! [19,20]. FSPL is calculated as follows:

N
FSPL = % > Spersiec - 17 fmax(Ip*, 19Y), (2.5)

i=1
where S;'® is whether the agent navigates to the target, Sf"c is whether the
agent finds a target object bounding box, and [7'*” and lft are the navigation

trajectory length and ground truth trajectory length, respectively.
2.3.3 Baselines and Implementation Details

We compare our method with several other baselines as follows. For each task,
we compare our method with a number of baselines that use various types of

memory (recurrent, sequential, and topological map). For methods implemented

dentical with its original term, Remote Grounding Success (RGS).
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Methods Memory| Exploit Val Seen Val Unseen Test Unseen
SRt SPLt TL| NE/|SRt SPLt TL| NE||SRf SPLt TL| NEJ
Random - - 16 - 9.568 9.45| 16 - 9.77 9.23| 13 12 9.89 9.79
Human - - - - - - - - - - |11.85 1.61 86 76
Seq2Seq [2] Rec X 6.0 39 11.33 - 22 - 8.39 7.84| 20 18 8.13 7.85
VLNOBERT [34] Rec X 72 68 11.13 2.90| 63 57 12.01 3.93| 63 57 12.35 4.09
SMNAT [24] Rec homing | 69 63 11.69 3.31| 47 41 12.61 5.48| 61 56 - 4.48
Regretful-Agent [25] Rec homing | 69 63 - 3.23| 50 41 - 5.32| 48 40 - 5.69
FAST (short) [37] Rec homing - - - - 56 43  21.17 4.97| 54 41 22.08 5.14
FAST (long) [37] Rec homing | 70 04 188.06 3.13| 63 02 224.42 4.03| 61 03 196.53 4.29
HAMT-e2e [36] Seq X 76 72 11.15 2.51| 66 61 11.46 2.29| 65 60 12.27 3.93
DUET [27] Top. Map X 79 73 12.32 2.28| 72 60 13.94 3.31| 69 59 14.73 3.65
SSM [29] Top. Map| jump 71 62 14.7 3.10| 62 45 20.7 4.32| 61 46 20.4 4.57
Meta-Explore (Ours)|Top. Map|local goal| 81 75 11.95 2.11| 72 62 13.09 3.22| 71 61 14.25 3.57

Table 2.1: Comparison and evaluation results of the baselines and our model
in the R2R Navigation Task. Gray shaded rows describe hierarchical navigation
baselines. Three memory types: Rec (recurrent), Seq (sequential), and Top. Map (topo-
logical map)

with a hierarchical navigation framework, we compare the specific exploitation
methods: homing, jump, and local goal search. Homing makes the agent back-
track, and jump makes the agent jump to a previously visited node. The hy-
perparameters and detailed model architecture of Meta-Explore are described

in the supplementary material.
2.3.4 Comparison with Navigation Baselines

We compare our method with navigation baselines?. We focus on the success
rate and SPL. Rendered results and detailed analyses with other evaluation
metrics are provided in the supplementary material.

R2R. Table 2.1 compares the proposed Meta-Explore with baselines for the
R2R navigation task. We categorize the baseline methods based on the type
of constructed memory and the type of exploitation. Our method outperforms

other exploration-only baselines over all types of validation and test splits in suc-

2T indicates reproduced results.
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Methods Memory| Exploit | Val Seen Instruction Val Seen House Test Unseen House

SRT SPLTOSRAFSPLYSRT SPLTOSRA|FSPLHSRT SPLTOSRT|FSPLT

Human - - - - - - - - - - 90.4 59.2 91.4 | 51.1
Random Rec X 0.0 1.5 0.1 1.4 (0.1 0.0 0.4 09 |21 04 2.7 0.0
Speaker-Follower [30] Rec X 97.9 97.7 97.8| 24.5 |61.2 60.4 69.4| 9.1 |7.0 6.1 9.8 0.6
RCM [51] Rec X 84.0 82.6 89.1| 10.9 (62.4 60.9 72.7| 7.8 (7.4 6.2 12.4| 0.7
AuxRN [26] Rec X 98.4 97.4 98.7| 13.7 [68.8 67.3 78.5| 83 |81 6.7 11.0| 0.5
GBE w/o GE Top. Map X 89.5 88.3 91.8| 24.2 [62.5 60.8 73.0| 6.7 |11.4 8.7 18.8| 0.8
GBE [19] Top. Map X 98.4 97.9 98.6 | 44.2 [76.3 62.5 64.1| 7.3 (11.9 10.2 19.5| 1.4
GBET Top. Map X - 19.5 13.3 28.5| 1.2 |12.9 9.2 21.5| 0.5
DUET [27] Top. Map X 94.0 91.6 90.0| 31.1 [36.3 22.6 50.9 | 3.8 |33.4 21.4 43.0| 4.2
Meta-Explore (Ours)Top. Mapllocal goal100.099.1 96.0 | 33.9 [44.7 34.8 52.7| 8.9 [39.125.8 48.7| 4.0

Table 2.2: Comparison and evaluation results of the baselines and our model
in the SOON Navigation Task.

cess rate and SPL. Compared with hierarchical baselines SMNA [24], Regretful-
Agent [25], FAST [37], and SSM [29], Meta-Explore improves success rate and
SPL by at least 16.4% and 8.9%, respectively. The main difference is that Meta-
Explore constructs a topological map during exploration and uses the map for
local goal search in exploitation. On the contrary, homing exploitation policies
in SMNA, Regretful-Agent, and FAST only rely on the current trajectory, in-
stead of taking advantage of the constructed memory. Jump exploitation in SSM
uses a topological map to search a successful previous node, but it makes an
unrealistic assumption that the agent can directly jump to a previously visited
distant node and unfairly saves time. In our approach, we plan a path to the lo-
cal goal based on the topological map. The experiment results reveal that even
if we design a hierarchical navigation framework, exploration and exploitation
are not entirely separate but they can complement each other.

SOON, REVERIE. Table 2.2 compares Meta-Explore with baselines in the
SOON navigation task. While the proposed method does not improve perfor-
mance in val seen split, Meta-Explore outperforms other baselines in the test
unseen split of SOON for success rate by 17.1% and SPL by 20.6%. The result

implies that for the goal-oriented VLN task, high performance in train or val
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seen splits can be the overfitted result. Because the agent can be easily overfitted
to the training data, making a generalizable model or providing a determinis-
tic error-correction module for inference is essential. Meta-Explore chooses the
latter approach by correcting the trajectory via exploitation in regretful cases.
The evaluation results in the REVERIE navigation task are described in the
supplementary material. Meta-Explore shows improvement in the val split of
REVERIE for success rate and SPL, but the improvement in the test split
is lower than the results in R2R and SOON. We found 252 meaningless ob-
ject categories (e.g., verbs, adjectives, and prepositions) and 418 replaceable
object categories (e.g., typographical errors and synonyms) in the REVERIE?
dataset. Because our exploitation method utilizes object-based parsing of the
given instruction to match with the detected object categories, the effective-
ness of the proposed method is lessened due to inaccuracies and inconsistencies
in the dataset. We expect to have higher performance if the mistakes in the

dataset are fixed.
2.3.5 Local Goal Search using SOS Features

To discuss the significance of modeling exploitation policy, we conduct specific
experiments about choosing the local goal for R2R and SOON. We evaluate our
method using different types of local goal search, as shown in Table 2.3 and 2.4.
Oracle denotes a method which selects a local goal using the ground truth
trajectory. The performance of the oracle provides the achievable performance
for each dataset. The results imply that local goal search using either spatial or
spectral visual representations is more effective than random local goal search.
The results show that local goal search using spectral visual representations,

i.e., SOS features, lead the agent to desirable nodes the most. We also compare

310.7% and 41.2% of a total of 46,476 words in the bounding box dataset correspond to
meaningless and replaceable object categories, respectively.
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Local Val Seen Val Unseen

Goal SRt SPLt OSRtT TL| NE|| SRt SPLt OSRtT TL| NE|
Oracle | 81.88 74.12 87.46 13.06 1.93| 75.95 62.53 84.16 14.00 2.71
Random | 79.33 72.67 85.31 13.19 2.22| 70.97 59.45 80.16 14.92 3.34
Homing | 80.22 73.63 85.60 12.51 2.14 | 71.65 60.60 80.33 13.91 3.26
Spatial | 79.63 73.14 85.60 12.99 2.22 | 71.56 60.01 80.33 14.90 3.27
Spectral | 80.61 75.15 85.80 11.95 2.11|71.78 61.68 80.76 13.09 3.22

Table 2.3: Comparison of Exploitation Policies. (R2R)

Local Val Seen House Test Unseen House
Goal SRT SPLT OSRtT FSPLT | SR?T SPLT OSRt FSPL?t

Oracle 54.42 37.96 63.72 11.01 48.38  28.45 62.98 4.74
Random | 24.78 11.97 34.96 3.08 24.19 7.41 35.84 1.29
Homing | 42.04 27.72 48.23 10.18 | 35.40 19.18 51.62 3.14
Spatial | 32.30 11.60 39.38 1.90 26.11  10.58 39.23 1.43
Spectral | 44.69 34.84 52.65 8.89 39.09 25.80 48.67 4.01

Table 2.4: Comparison of Exploitation Policies. (SOON)

local goal search with homing and the difference between the performance of
the two methods is most noticeable in the test split of the SOON navigation
task. As shown in Table 2.4, choosing the local goal with only spatial-domain
features, the navigation performance does not improve compared to homing. On
the contrary, spectral-domain local goal search shows significant improvement
against homing by 10.4% in success rate, 34.5% on SPL, and 27.4% on FSPL.
The results imply that using spectral-domain SOS features helps high-level
decision making, thereby enhancing the navigation performance. To further
show the effectiveness of SOS features, we provide sample local goal search

scenarios in the supplementary material.
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2.3.6 Ablation Study

We conduct an ablation study to compare the proposed method against language-
triggered hierarchical exploration. Results in the supplementary material show
that among the three representation domains, spatial, spectral, and language,
the spectral-domain features enhance navigation performance the most. Addi-
tionally, to implicate further applications of Meta-Explore in continuous envi-
ronments, we evaluate our method on the photo-realistic Habitat [52] simulator
to solve image-goal navigation and vision-and-language navigation tasks. Im-
plementation details and results are included in the supplementary material.

Results show that our method outperforms baselines in both tasks.

2.4 Discussion

In this Chapter 2, we have proposed Meta-Explore, a hierarchical navigation
method for VLN, by correcting mistaken short-term actions via efficient ex-
ploitation. In the exploitation mode, the agent is directed to a local goal which
is inferred to be the closest to the target. A topological map constructed during
exploration helps the agent to search and plan the shortest path toward the local
goal. To further search beyond the frontier of the map, we present a novel visual
representation called scene object spectrum (SOS), which compactly encodes
the arrangements and frequencies of nearby objects. Meta-Explore achieves the
highest generalization performance for test splits of R2R, SOON, and val split of
REVERIE navigation tasks by showing less overfitting and high success rates.
We plan to apply Meta-Explore for VLN tasks in continuous environments in

our future work.
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Appendices

We provide additional details and analyses of the proposed method in this sup-
plementary material. Section A.1 provides model details. Section A.2 provides
detailed settings and data preprocessing for experiments. Section A.3 provides
evaluation results with detailed analyses. Section A.4 provides implementation

details and detailed results for the ablation study.

A.1 Model Details
A.1.1 Algorithm Details

Algorithm 1 summarizes the overall hierarchical exploration process. The mode
selector supervises the process and chooses whether the agent should explore

or exploit at each time step.

A.1.2 Exploitation Module

Reference SOS Features.

In the proposed method, we approximate the reference SOS feature of an ob-

ject token by using prior information about objects in the training data. For in-
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Algorithm 1: Meta-Explore

Pexplore «—1
Success < False
Initialize G; and node features
while t < T do
Update G;
Update node features
H; < cross-modal embedding at time ¢
if Peypiore > 0.5 then
Q¢ <— argmaxy;, (Fea:plore([Ht]i))
ﬁt — Fprogress (Ht)
t+—t+1
else
Vioeal < unvisited but observed nodes in Gy
Vlocal <~ aXgMmax/cy, . (Snav (T/(U(), U/)))
T < PathPlanning(ve, Vipcal)
while not arrived at vjyeq do
a; < pop(T)
t—t+1
end

end
Peacplore «—1- Smode(Ht)
if a; is stop and d(ve, Vgoal) < dsuccess then Success < True

end

stance, for the ‘chair’ object, we collected the widths and heights of the detected
bounding boxes as shown in Figure A.1. Figure A.2 shows two representative
values: median and mean for each distribution. We choose the median values,
which minimizes the L1 error, to represent the reference bounding box of each
object.

To generate rotation-invariant SOS features, we convert the four vertices
of the bounding box detected from the front view image of size 640 x 480 to
the vertices of a bounding box detected from the panoramic view image of size

2048 x 512 using coordinate transformations. To simplify the implementation,
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Front View Object Detection

Viewindex 13 Viewindex 14 Viewindex 15 Viewindex 16

Panoramic View Object Detection

Figure A.1: Bounding box coordinate transformation. Front-view visual
observations from different angles at the same location. Each bounding box
shows the ‘chair’ detection. We use coordinate transformation to convert coor-
dinates into panoramic view.
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>0 200
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(a) width (px) (b) height (px) (c) size x10%(px?)

Figure A.2: Bounding box statistics. We collect width, height, and size of
detected bounding boxes. The histograms show statistics for ‘chair’ objects.
Yellow line and red line show the median and average values of each distribution,
respectively.

we assume that the converted bounding box has a rectangle shape with the
vertices transformed into coordinates in a panoramic view. The reference SOS
feature is calculated as the logarithmic magnitude of the Fourier transform of

the panoramic mask with mean pooling on the vertical spectral axis. Consid-
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Figure A.3: Relationship between navigation score (S,,,) and normal-
ized distance sum (nDS) in R2R. We measure navigation scores for aug-
mented trajectories which include both successful and failed trajectories. R and
@ illustrate an example case of a ground truth trajectory and a query trajec-
tory. Maximum hop of a query trajectory is 15. Trajectories with high nDS
scores also have high navigation scores.

ering that the shift in the spatial-domain only affects the phase of the Fourier

transform, the location of a reference bounding box does not matter.

Navigation Score

To compare local goal candidates, we design a navigation score of a corrected
trajectory 7" as equation A.1. This metric can also be interpreted as a weighted
correlation coefficient among SOS features and object tokens weighted by the

similarities between them.

Snav(Tl) = . ' . (Al)

Figure A.3 shows the relationship between the navigation score and an eval-

uation metric in the R2R navigation task. Both metrics measure how similar the
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current trajectory is to the ground truth trajectory. We generate 49,986 aug-
mented trajectories with an average length of 8.23m based on 5596 ground truth

trajectories. To generate various samples, we separate each augmented trajec-

tory (v1,vg, ..., v¢) into t augmented trajectories (v1), (v1,v2), ..., and (v1, va, ..., vt).

The final 421,383 augmented trajectories include trajectories with 1 to 15 nodes
and include both successful and unsuccessful trajectories. We classify the trajec-
tories with the normalized distance sum (nDS) between ground truth trajectory

R and a query trajectory @ as follows:

u;jeQ (A.2)
[RI+IQ] 4
2 sSuccess

nDS(R, Q) = exp ( —

which requires the ground truth information of R. d(u,v) denotes the geodesic
distance between two nodes, u and v, and dgyccess denotes the success distance.
The plot in Figure A.3 shows a linear relationship between the nDS and the nav-
igation score. The results imply that the proposed navigation score effectively
scores the augmented trajectories even though it only relies on the given target
instruction and observation from the augmented paths, without any location

information about the nodes on the ground truth trajectory.
A.1.3 Implementation Details

We use ViT-B/16 [44] pretrained on ImageNet to extract features from the
viewpoint panoramic images. We use pretrained LXMERT [47] for the language
encoder and cross-modal transformer. We implement the mode selector as a

two-layer feed-forward network.
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Dataset Instruction ‘ Object Tokens Target Object
R2R “Walk through the kitchen. Go past [“kitchen”, “sink”, “stove”, “chair”
the sink and stove stand in front of “stand”, “dish”, “table”,
the dining table on the bench side.” “chair”]
SOON “This is a brand new white, [“book”, “chair”, “pitcher”, “table”
rectangular wooden table, which is “flower”, “table”, “table”]

above a few chairs, under a pot of
flowers. It is in a very neat study with
many books.”

REVERIE | “Go to the bedroom with the fireplace | [“bedroom”, “fireplace”, “art”
and bring me the lowest hanging “bed”, “table”, “stand”,
small picture on the right wall across | “art”]
from the bedside table with the lamp
on it”

Table A.1: Object Parsing Examples. For each dataset, object tokens are extracted
from the instructions. Target objects are inferred from the instructions using VQA.
Words that have similar meanings are unified into a single object word for categoriza-
tion.

A.2 Experiment Setup
A.2.1 Dataset Statistics

R2R. The average length of instructions is 32 words. The average path length
of the ground truth trajectory of each instruction is six steps. The number of
train, val seen, val unseen, and test episodes are 14,025, 1020, 2349, and 4173.
SOON. Theaverage pathlength of the ground truth trajectory of each instruction
is four to seven steps. The number of train, validation seen instruction, validation
seen house, validation unseen house episodes are 3085, 245, 195, and 205.

REVERIE. The average path length of the ground truth trajectory of each in-
struction is 9.5 steps. The number of train, val seen, val unseen, and test episodes

are 10,466, 1423, 3521, and 6292.
A.2.2 Data Preprocessing

To calculate reference SOS features, we preprocess object tokens from language
instructions. Using a pretrained visual question answering (VQA) model [53] with

the question ”What is the target object? Answer in one word.”, we extract tar-
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get objects from the instructions in R2R and REVERIE datasets. For SOON
dataset, the target object names are already given. After extracting target ob-
jects, we perform object parsing for the instructions as shown in Table A.1. The
final object tokens are sorted by order of appearance in the instructions for R2R
and REVERIE. For SOON, considering that the full instruction is divided into 5
parts: object name, object attribute, object relationship, target area, and neighbor

areas, we sort the object tokens by reversed order of sentences.
A.2.3 Baselines

Seq2Seq [2] uses sequence-to-sequence action prediciton to generate actions from
the agent trajectory. Speaker-Follower [30] uses the speaker model to augment nat-
ural language instructions and evaluate the candidate action sequence. FAST [37]
uses both local and global signals to look forward the unobserved environment
during exploration and backtrack to the originally visited nodes when needed.
SMNA [24] uses visual-textual co-grounding module that encodes the past in-
structions and the instructions and actions to be done. SMNA also uses a progress
monitor to estimate the current progress of the agent relative to the total instruc-
tions. Regretful-Agent [25] improves SMNA via two modules. The regret module
decides whether to continue to explore or rollback to previous state by a learned
policy, and the progress marker decides the direction the agent should head to
by selecting visited nodes with progress estimates. RCM [51] applies reinforce-
ment learning to enforce the global matching between the agent trajectory and
the given natural language instruction. Via cycle-reconstruction reward, RCM
allows the agent to comprehend the natural language instruction and penalize
paths that do not match with the given instructions. FAST-MATTN [20] intro-
duces a Navigator-Pointer model to both navigate to the target point and to

localize the object from the navigation point according to the language guidance.
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AuxRN [26] introduces four auxiliary tasks that help learning the navigation pol-
icy: a trajectory retelling task, a progress estimation task, an angle prediction
task, and cross-modal matching task, and improves navigation success by align-
ing representations in these unseen domains with seen domain. HAMT [36] uses
transformer instead of a recurrent unit to predict actions from a long-range tra-
jectory of observations and actions. Airbert [33] uses ViLBert [32] to measure
the correlation between the language instructions and the viewpoint trajectories.
VLNOBERT [34] adds a recurrent unit in the transformer to predict the action
from the trajectory. STA [54] first pretrains the agent to learn the cross-modality
between object grounding task and scene grounding task, and then generates real
action sequences with memory-based attention. SSM [29] integrates information
during exploration and constructs a scene memory and chooses the most probable
node among visited nodes during backtracking. GBE [19] models the navigation
state as a graph and explores the environment based on the navigation graph.
DUET [27] uses two models, a local encoder and a global map planner, to fuse the

local observations and coarse scale encoding for planning actions.

A.3 Navigation Experiments

In this section, we analyze the evaluation results of navigation experiments with

different evaluation metrics. The results are provided in the paper.
A.3.1 Detailed Analyses in R2R

Navigation Error (NE). Navigation error (NE) is measured as the average
distance between the final location of the agent and the target location of episode
in meters. Because each episode is recorded as success if NE is less than 3m, NE is
strongly related with the success rate. Meta-Explore shows the lowest NE in the

val seen and test unseen splits of the R2R navigation task. The results imply that
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hierarchical exploration with local goal search helps the agent arrive to the target
location closer than other baselines.

Trajectory Length (TL). Among all the R2R navigation baselines, Seq2Seq
shows the lowest TL. However, Seq2Seq shows low success rate and low SPL in
all data splits. Compared to navigation baselines with SPL higher than 50% in
the test split, VLNOBERT, SMNA, and HAMT-e2e show lower TL than Meta-
Explore. However, all three of these methods show a lower success rate, SPL, and
NE than Meta-Explore. According to R2R [2], train episodes show a wide range
of average trajectory length from 5m to 25m, while the test episodes have an
average trajectory length of 9.93m. This implies that the agent is trained with
longer trajectories than the test split trajectories, thereby the navigation policy

might have learned to navigate longer paths better than shorter paths.

A.3.2 Detailed Analyses in SOON

Oracle Success Rate (OSR). In the SOON navigation task, Meta-Explore
achieves the highest OSR in the test split while it does not improve the OSR in
the val seen instruction and val seen house splits. The proposed method shows
a significant generalization result compared to the baselines. AuxRN shows the
highest OSR in both the val seen instruction split and the val seen house split
as 78.5% and 97.8%, respectively, but shows the OSR in the test unseen split as
11.0%. On the other hand, Meta-Explore shows OSR as 96.0%, 52.7%, and 48.7%
in the val seen instruction, val seen house, and test unseen splits, respectively.
Meta-Explore outperforms AuxRN on OSR by 442.7% in the test split.

Object Grounding Performance (FSPL). Following [19], we measure the
object grounding performance with the target finding success weighted by path
length (FSPL). Although Meta-Explore show the highest success rate and SPL

in the val seen instruction and test splits, it does not improve FSPL over baseline
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methods. We expect to achieve better performance on FSPL if the agent uses the
SOS features as deterministic clues to find the target object at the end of each

episode.
A.3.3 Evaluation Results in REVERIE benchmark

Table A.2 compares Meta-Explore with the baselines in the REVERIE naviga-
tion task. While the proposed method does not improve performance in the val
seen split, Meta-Explore outperforms other baselines in the val unseen on success
rate, SPL, FSR, FSPL, and OSR. However, the improvement of performance is
lower than the improvements shown in R2R and SOON benchmarks. We found
252 meaningless object categories (e.g., verbs, adjectives, and prepositions) and
418 replaceable object categories (e.g., typographical errors and synonyms) in the
REVERIE dataset. 10.7% and 41.2% of a total of 46,476 words in the bounding
box dataset correspond to meaningless and replaceable object categories, respec-
tively. Because our exploitation method utilizes object-based parsing of the given
instruction to match with the detected object categories, the effectiveness of the
proposed method islessened due to inaccuracies and inconsistencies in the dataset.
We expect to have higher performance if the mistakes in the dataset are fully fixed.
To provide evidence for this hypothesis, we evaluate Meta-Explore with a mod-
ified dataset, which is partially fixed. Typographical errors are fixed and words
that have similar meanings are unified into a single object category. For instance,
‘blackboard’, ‘whiteboard’, and ‘bulletin’ are all unified into ‘board’. The results
are shown as the performance of Meta-Explore* in Table A.2. The results im-
ply that the proposed method can effectively enhance the SPL by classifying the
detected objects correctly, using the modified dataset.

Comparison between exploitation policies in the REVERIE navigation task

is shown in Table A.3. Among the four exploitation methods: random, spatial,
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Figure A.4: Local goal search scenarios in R2R. Ground truth trajectory (or-
ange) and current trajectory at time ¢ = 6 (blue) are shown in the left. Traj. denotes
trajectory. The number next to each node denotes the navigation score S, of the
shortest path trajectory from the start node to the corresponding node. If the local
goal is chosen from the previously visited nodes, the local goal becomes the node with
Snav = 0.11. If the local goal is chosen from the unvisited but observed nodes, the local
goal becomes the node with 5,4, = 0.22.

spectral local goal search and homing, spectral-domain local goal search shows

the highest performance. The results in Table A.3 are consistent with the results

in R2R and

SOON.
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A.3.4 Local Goal Search

In this section, we provide sample local goal search scenarios. Figure A.4 shows
two scenarios of choosing the local goal when the agent moves to a wrong direction.
The agent is given an instruction “Turn right and turn right again after the desk
on the right. Wait next to the cabinets and microwave.”. In both scenarios, we
assume that the agent chooses thelocal goal as the node with the highest navigation
score among the possible candidates. If the local goal is chosen from the previously
visited nodes, the agent has to move back toward the explored regions. In contrast,
ifthelocal goal is chosen from unvisited but observered nodes, the agent can choose
alocal goal which is close to the global goal. The two scenarios imply that the local
goal search in Meta-Explore is more effective than exploitation methods that

return the agent to a previously visited node.

A.4 Ablation Study
A.4.1 Language-triggered Hierarchical Exploration

In the proposed method, the target instruction and local goal candidates are com-
pared in spectral-domain using SOS features. Since semantic information can also
be expressed in language-domain, we further experiment with the local goal search
method using synthesized language captions from visual observations in the R2R
navigation task. We compare three types of representation domains: spatial, spec-
tral, and language, which are implemented as panoramic RGB image embeddings,
SOS features, and sentence embeddings, respectively. To compare features in dif-
ferent domains, we transfer the source domain to another using augmentation or

cross-domain similarity.
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(b)

a kitchen with stainless steel « a bathroom with a toilet and V

appliances and wood cabinets a mirror

(d) (e)

a room with a bed, a chair, («.' a bathroom with a mirror, (x)

and a window a sink and a bathtub

Figure A.5: Sample image captions. (a), (b), (c), and (d) show captions that
successfully describe the scenes. (e) and (f) shows failure cases of caption gen-
eration. For successful language-triggered hierchical exploration, image captions
should correctly describe the scenes. However, current image captioning methods
often generates misdescribed captions, thereby leading to a low navigation per-
formance.

Implementation Details

We address that the agent can use image captioning to extract contextual informa-
tion from visual observations such as room type, color, and object placements. To
compare local goal candidates and target instruction in language domain, we use
pretrained ViT [44] and GPT-2 [55] to generate the caption for each viewpoint as
Figure A.5. The Figure shows four successful cases and two failure cases of image
captions. To find a local goal using the generated captions, we calculated the simi-
larities between the captions corresponding to local goal candidates and the target
instruction using a fine-tuned sentence transformer ‘all-MiniLM-L6-v2’ [56]. The
local goal is chosen as the candidate with the highest similarity. Additionally, we
use pretrained CLIP [57] to evaluate local goal search based on cross-modal sim-
ilarities between the visual observations of local goal candidates and the target

instruction.
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Domains Val Seen | Val Unseen

Nav. Target ‘ Local Goal | SR SPL SR SPL
Lang. X 79.92 7279 | 70.63 59.81
Lang. Spatial | 78.84 71.96 | 71.05 58.86
Lang. Lang. Aug. | 77.96 70.77 | 69.52 57.26
Spectral Aug. | Spectral |80.61 75.15|71.78 61.68

Table A.4: Comparison and evaluation results of the local goal search
methods using different target and candidate domains. (R2R)

Experiment Results

Table A.4 shows the evaluation results of the local goal search methods using
different target and candidate domains in R2R navigation task. Nav. Target de-
notes the target of VLN, initially given as language. Lang. Aug. denotes language
captions generated from images. Spectral Aug. denotes reference SOS features
generated from language instructions. Among the three representation domains,
the spectral-domain features enhance navigation performance the most. This im-
plies that hierarchical exploration is most effective when used with spectral visual
features. Table 2.1 and Table 2.2 in the paper also show the improvement of nav-
igation performance by using both hierarchical exploration and spectral visual
features over DUET [58], which uses the same ViT-B/16 to extract spatial visual
features, resulting in 17.1% increase in SR and 20.6% increase in SPL in the SOON

test unseen split.
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Figure A.6: Exploitation by searching a local goal. In the exploit mode, the agent
aims to escape from the stranded local area. It first searches for the most similar node
to the goal. Then, it finds an optimal local goal which is unexplored and also similar
to the goal image. We use SOS features to compare with the target image.

A.4.2 Image-Goal Navigation in Continuous Domain

To implicate further applications of Meta-Fxplore in a continuous domain, we
evaluate our method on the photo-realistic Habitat [52] simulator with continuous
action space with realistic noises to solve an image-goal navigation task. The
objective is to arrive at the target location of the given goal image in an unseen
environment. We mainly focus on the effectiveness of hierarchical exploration

using local goal search in this experiment. The results are shown in Table A.5.

Exploration-Exploitation Selection

We extend Meta-Explore to continuous environments to address the impact of hi-
erarchical exploration in realistic environments. The mode selector decides when
to explore and exploit. In the exploration mode, the agent explores around a local
area until the meta-controller decides to stop the exploration. The exploration
module consists of graph construction module and navigation module. We use re-
current action policy that takes the current and target image features and outputs
low-level actions for exploration. We illustrate that the explore-exploit switching
decision occursinstuck scenarios, such asentering asmall place or getting stranded

in a corner. Figure A.6 shows the overview of exploitation in image-goal navigation
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by searching a local goal. When the control mode is changed to exploitation mode,
the agent returns to the closest previously visited node. Then, the agent finds a
local goal among the nodes in the constructed topological map and moves toward
the local goal using dijkstra’s algorithm [59]. The local goal is chosen as the node
which has the most similar SOS feature with the SOS feature of the target image
based on cosine similarity. The agent repeats this explore-exploit behavior until
it finds the goal. This explore-exploit switching decision increases the navigation

success rate.

Experiment Details

We evaluate Meta-Explore in the Gibson dataset [60] with Habitat [52] simula-
tor to solve an image-goal navigation task. Habitat simulator allows the agent
to navigate in photo-realistic indoor environments. The exploration policy of
the agent is trained using 72 scenes. We evaluate Meta-Explore using 14 un-
seen scenes. We use panoramic RGBD observations and construct image-based
graph memory. To construct a context frequency vector, we detect objects via
Mask2Former [61] pretrained in ADE-20K dataset [62], to effectively detect the
objects that are generally located in indoor scenes. We use a discrete action space,
{stop,move forward,turn left,turn right} for navigation. With move forward
action, an agent moves forward by 0.25 m, while turn left and turn right de-
notes a 10° rotation, counter-clockwise and clockwise, respectively. The difficulty
of each episode is determined by the geodesic distance between the initial and
the goal location; easy: 1.5 m~3 m, medium: 3 m~5 m, and hard: 5 m~10 m.
The actuation noise model [41] is also applied to the agent in order to evalu-
ate in realistic situations. We also demonstrated navigation experiments in the
real world using a Jackal robot. The episodes are sampled from simulation point

goal episodes with all difficulties; easy, medium and hard. We demonstrate both
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straight and curved trajectories to evaluate that our model is not task-specific.
We used the model only trained in Habitat simulator with Gibson dataset. To
collect panoramic RGBD observations, we use one panoramic RGB camera and
four front-view RGBD cameras. In order to implement collision avoidance similar
to the construction of navigable mesh in Habitat simulator, we implemented a
collision avoidance module by clipping the action value based on the depth image

observation.

Baselines

We compare our image-goal navigation policy with various baselines. Active Neu-
ral SLAM (ANS) constructs a top-down metric map and uses a hierarchical struc-
ture consisting of global and local policies. The global policy outputs long-term
goals, which are used to generate short-term goals. The local policy uses a ge-
ometric path planner to navigate to a short-term goal. NTS [63] constructs a
topological graph during exploration and plans subgoals with graph localization
and planning, while navigating to the node with local point goal navigation policy.
Neural Planner [64] constructs a graph using an estimated connectivity probabil-
ity calculated from the neural network. VGM [65] uses unsupervised image-based
graph memory representation to compare the similarity between goal image and
the current observation image. We adapt VGM for graph construction and local
navigation policy. PCL [66] encoder with ResNet18 [43] backbone network is used
as the visual encoder for VGM [65].

Evaluation Metrics

We evaluate both success rate (SR) and success weighted by inverse path length
(SPL) [50]. An episode is recorded as success if the agent takes a stop action

within 1 m of the target location. SR is denoted as the number of successes divided
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Methods Exploit Need Domain Easy Medium Hard Overall

Pose Info. |spatial frequency| SR SPL| SR SPL| SR SPL| SR SPL

VGM [65] X no RGBD X 0.86 0.80(0.81 0.68|0.61 0.46|0.76 0.64
Neural Planner [64] global RGBD X 0.72 0.41]0.65 0.39|0.42 0.27|0.60 0.36
NTS [63] global RGBD X 0.87 0.65|0.58 0.380.43 0.26|0.63 0.43

ANS [41] global RGBD X 0.74 0.21/0.68 0.23]|0.30 0.11|0.58 0.18
Meta-Explore (homing) local RGBD SOsS 0.82 0.61]0.83 0.61|0.70 0.48|0.78 0.57
Meta-Explore (localgoal) no RGBD SOS 0.94 0.84|0.88 0.63|0.71 0.18 |0.84 0.55

Table A.5: Evaluation results for Image-goal Navigation Task.
(SR: success rate, SPL: success weighted by path length)

. . 1 E li
by the total number of episodes, E. SPL is calculated as % > ;" Sim' Si
denotes the success as a binary value. p; and [; denote the shortest path and actual
path length for the i episode. For each task difficulty, SR and SPL are measured

separately.

Experiment Results

Detailed comparisons with the baseline methods are shown in Table A.5. The
results show that the continuous version Meta-FExplore and SOS features help
navigation and the exploitation mode provides corrections for misled exploration
or undesirable actions. Compared with the exploration policy baseline VGM [65],
Meta-Explore shows an enhancement in the overall success rate by 10.5%. The
results imply that local goal search helps the agent escape from the current location
when the agent recurrently explores alocal area but cannot find the target location.
Exploitation can reduce unnecessary exploration and help the agent reach the
target goal before the maximum time horizon. Among two methods of exploitation,
local goal search outperforms homing, presumably because of the noisy actuation
model used in the simulator. Due to the noisy actions, the agent can hardly return
to a previously visited location by directly reversing the action sequence.
Comparing our method with other graph-based hierarchical navigation meth-

ods, Meta-Explore outperforms ANS, Neural Planner, and NTS in the successrate.
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Figure A.7: Experiment visualization for image-goal navigation task in
continuous environment. The mode selector detects stuck event at t = 76 and
switches the explore mode to exploit mode. Then, the agent returns toward the
local goal, which is chosen as a position nearby one of the nodes in the previously
constructed graph.

Our model shows lower performance in SPL for hard episodes while the success
rate is higher than the baselines. This implies that the exploitation mode of the
proposed method allows the agent to explore more uncovered areas. Meanwhile,
the proposed method appears to yield a positive impact for easy episodes, with the
increase on both success rate by 9.3% and SPL by 5.0%. Specifically, our method
outperforms ANS in terms of both success rate and SPL across all episodes. When
compared to Neural Planner and N'TS, our approach shows better performance
in both success rate and SPL for easy and medium episodes, while outperforming
Neural Planner and NTS in success rate for hard episodes. On the other hand,
the proposed method shows lower SPL for hard episodes than NTS and Neural
Planner. This implies that Meta-Explore tends to explore uncovered areas in both
successful and unsuccessful episodes, which could be the result of using the SOS
features to understand scenes. Comparing the proposed method using different
exploitation methods (homing and local goal search) shows that searching for a

local goal leads the agent to better escape from a local area. Figure A.7 shows a

B e
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Methods | Memory | Exploit | SRt SPL? OSRt TL, NE|
VLN-CE [11] Rec X 32 30 40 864 737
HCM [68] Rec X - 43 15.61 8.93
SASRA [69] Semantic Map X 24 22 - 7.89 8.32
Conti-CMAT [67] Top. Map X 41 35 51 10.90 6.20

Meta-Explore (Ours) Top. Map local goal | 49 38 54 14.88 4.25

Table A.6: Evaluation results in the VLN-CE val unseen split.

simple scenario of image-goal navigation using Meta-Explore. The mode selector
detects a regretful situation when the agent is recurrently exploring a local area
but cannot find the target location. Hierarchical exploration via local goal search
helps the agent overcome the situation and move toward the global goal in fixed

time.
A.4.3 VLN in Continuous Domain

Image-goal navigation results in complex settings (continuous environments with
noisy actions, max~300 steps) imply that our model can be transferred to long-
horizon VLN with noisy actions. We further extend the proposed method in con-
tinuous environments to solve the VLN-CE [11] task. In the VLN-CE [11] task, our
agent constructs a topological map by using Conti-CMA [67] as a baseline to find
reachable nodes (i.e., waypoints) and reuses the map in the exploitation mode.
We compare our continuous version Meta-Explore with various navigation base-
lines': VLN-CE [11], HCM [68], SASRA [69], and Conti-CMA [67]. We evaluate
algorithms using the success rate (SR), success weighted by inverse path length
(SPL), oracle success rate (OSR), trajectory length (TL), and navigation error

(NE), following the definitions of the evaluation metrics in the paper.

Experiment Results

Results in Table A.6 show that our method outperforms other baselines by at least

19.5% in the success rate, 8.6% in SPL, and 5.9% in OSR. We excluded the results

I indicates reproduced results.
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of HCM for SR and SPL because HCM measures SR, SPL using oracle stop in the
official code, which is not allowed in other baselines. We address that our model can
be transferred to long-horizon (max. step 300) VLN with noisy actions in complex

settings, as demonstrated by image-goal navigation results in Sec. A.4.2.
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