

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Reliability and Throughput
Enhancement in Low-power and

Lossy Networks

저전력무선네트워크의신뢰도및수율개선

2023년 8월

서울대학교대학원

전기정보공학부

김홍찬

공학박사학위논문

Reliability and Throughput
Enhancement in Low-power and

Lossy Networks

저전력무선네트워크의신뢰도및수율개선

2023년 8월

서울대학교대학원

전기정보공학부

김홍찬

Reliability and Throughput
Enhancement in Low-power and

Lossy Networks

지도교수박세웅

이논문을공학박사학위논문으로제출함

2023년 8월

서울대학교대학원

전기정보공학부

김홍찬

김홍찬의공학박사학위논문을인준함

2023년 7월

위 원 장: 심병효 (인)

부위원장: 박세웅 (인)

위 원: 이경한 (인)

위 원: 김형신 (인)

위 원: 주창희 (인)

Abstract

This dissertation addresses various challenges in low-power and lossy networks

(LLNs) by proposing innovative solutions that improve performance and efficiency.

The study explores three key aspects: mobile routing, enhancing the throughput of

time-slotted communication, and accelerating network formation in LLNs.

We first focus on mobile routing in LLNs. The existing IPv6 routing protocol for

LLNs (RPL) lacks explicit support for mobility. To address this limitation, we design

and implement an adaptive and robust mobile routing protocol called MobiRPL. Mo-

biRPL utilizes the received signal strength indicator (RSSI) to enable efficient routing

in mobile LLNs. Extensive evaluations through simulations and testbed experiments

demonstrate the effectiveness of MobiRPL, with improvements in the packet delivery

ratio by 11.3% compared to RPL and a 73.3% reduction in energy consumption when

compared to the lightweight on-demand ad-hoc distance-vector routing protocol - next

generation (LOADng).

We then target the throughput enhancement of time-slotted communications in

LLNs, such as the IEEE 802.15.4e time-slotted channel hopping (TSCH). In many

time-slotted systems, the slot length is typically fixed to a value suited for maximum-

sized packets. Consequently, time slots can be underutilized when the packet length

is shorter than the maximum, leading to residue time and throughput degradation.

To overcome this inefficiency, we propose a utility-based adaptation of slot size and

packet aggregation called ASAP. ASAP dynamically adjusts the slot length based on the

packet size distribution and employs packet aggregation to maximize time-efficiency.

Experimental evaluations using real embedded devices and large-scale testbeds demon-

strate a significant improvement in throughput by 2.21x and a reduction in latency by

78.7% compared to the default time-slotted communication of TSCH.

Finally, we address the network formation process in IPv6 over IEEE 802.15.4e

i

TSCH mode (6TiSCH) network, the standard LLN. The formation of the 6TiSCH

network often encounters severe collisions and congestion, leading to significant de-

lays. We identify the root cause as the synchronized transmission timing among nodes

within the time slot, rendering collision avoidance ineffective. To enhance the network

formation efficiency, we propose a novel offset-based collision avoidance and priori-

tization method named TOP. This approach assigns different transmission offsets to

packets, introducing diversity in their starting points. Such diversification facilitates

collision detection and enables the prioritization of formation-critical packets. Real

testbed experiments validate the effectiveness of TOP, demonstrating up to a 50% re-

duction in network formation time.

In aggregate, this dissertation presents novel approaches to address various chal-

lenges in LLNs, such as mobile routing, throughput enhancement of time-slotted com-

munication, and network formation acceleration. The proposed solutions demonstrate

significant improvements in performance, highlighting their potential to make LLNs

more reliable and efficient.

keywords: Low-power and lossy network, Internet of Things, mobile routing protocol,

reliability, throughput, latency, network formation

student number: 2015-22782

ii

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and Outline . 2

2 MobiRPL: Adaptive, Robust, and RSSI-based Mobile Routing in Low

Power and Lossy Networks 4

2.1 Introduction . 4

2.2 Background and Related Work . 8

2.2.1 RPL and Mobility . 8

2.2.2 LOADng, a MANET Protocol for LLN 13

2.3 Preliminary Study . 14

2.3.1 Static Scenario: RPL vs. LOADng 14

2.3.2 Mobile Scenario: RPL’s Problems 17

2.4 Design Requirements . 21

2.5 MobiRPL Design . 22

iii

2.5.1 Mobility Detection . 23

2.5.2 Connectivity Management 25

2.5.3 RSSI and Hop Distance-based Objective Function 29

2.6 Performance Evaluation . 33

2.6.1 Implementation and Evaluation Environments 33

2.6.2 Impact of MobiRPL Mechanisms 35

2.6.3 Impact of MobiRPL Parameters 39

2.6.4 Impact of circumstance parameters 43

2.6.5 Performance of MobiRPL in complicated scenarios 44

2.6.6 Performance of MobiRPL in real world 50

2.7 Discussion . 52

2.8 Summary . 53

3 Slot-size Adaptation and Utility-based Aggregation for Time-Slotted Com-

munication 55

3.1 Introduction . 55

3.2 Background and Motivation . 58

3.2.1 Time-Slotted Channel Hopping (TSCH) 58

3.2.2 TSCH scheduling . 59

3.2.3 Problem and Motivation . 61

3.3 Related Work . 62

3.4 ASAP Design . 63

3.4.1 SLA Design . 64

3.4.2 UPA Design . 68

3.5 Evaluation . 73

3.5.1 Implementation and experiment setup 73

3.5.2 Performance of SLA . 75

3.5.3 Performance of UPA . 78

3.5.4 Performance of ASAP: an ablation study 80

iv

3.5.5 Performance of ASAP: a comparative study 82

3.5.6 Performance of ASAP in different environment 84

3.6 Summary . 86

4 Offset-based Prioritization for Accelerating Formation of 6TiSCH Net-

works 87

4.1 Introduction . 87

4.2 Background . 89

4.2.1 Time-Slotted Channel Hopping (TSCH) 89

4.2.2 TSCH scheduling and common shared cell 90

4.2.3 6TiSCH network and formation 91

4.3 Motivation . 93

4.4 Approach and Considerations . 95

4.4.1 Approach: Transmission offset-based prioritization 95

4.4.2 Considerations . 96

4.5 Proposed Scheme . 99

4.5.1 Transmission offset assignment policy 99

4.5.2 Determination of packet urgency 100

4.5.3 Differentiation between broadcast and unicast packets 101

4.5.4 Multi-offset assignment to urgent unicast packets 102

4.5.5 Transmission offset escalation 102

4.5.6 Modification of the backoff mechanism 103

4.6 Evaluation . 103

4.6.1 Implementation and experiment setup 103

4.6.2 Performance of TOP . 104

4.7 Related Work . 107

4.7.1 Toward fast 6TiSCH network formation 107

4.7.2 Offset-based differentiation in TSCH slot 108

4.8 Summary . 108

v

5 Conclusion 110

Abstract (In Korean) 127

vi

List of Tables

2.1 Simulation scenarios for evaluating the performance of RPL in mobile

scenarios . 18

2.2 RHOF with a controllable threshold and a fixed hysteresis (4 dB) . . . 31

2.3 RHOF priority calculation from the perspective of a static node and a

mobile node . 32

2.4 Evaluation settings and parameters 38

2.5 Combination cases of MobiRPL mechanisms for evaluating the impact

of MobiRPL mechanisms . 39

2.6 Parameter settings for evaluating the impact of MobiRPL parameters . 40

2.7 Performance of MobiRPL compared to RPL and LOADng 50

vii

List of Figures

2.1 An indoor testbed with 31 static nodes and 3 mobile nodes. The mobile

nodes move along the path shown in the figure. 15

2.2 Performance of RPL and LOADng on a testbed with 31 static nodes

(Fig. 2.1) according to the number of end-to-end sessions. 16

2.3 A mobile LLN scenario on the Cooja simulator with 12 static nodes,

a mobile node, and a root. All the nodes have the same transmission

range (50 m), and one example is indicated by a large light blue circle. 17

2.4 Performance of MRHOF-based RPL in the simulation scenarios de-

scribed in Fig. 2.3 and Table 2.1. 19

2.5 Overview of MobiRPL Design. We propose three new mechanisms

(mobility detection, connectivity management, and RHOF) as a part

of RPL. Our new mechanisms better cope with mobility by interacting

with existing RPL operations and IP layer. 22

2.6 MobiRPL’s mobility detection based on the parent change interval. . . 24

2.7 MobiRPL ’s connectivity management including adaptive timeout and

adaptive probing. 28

2.8 Mobile LLN scenarios on the Cooja simulator with one root, 6 static

nodes, and up to 18 mobile nodes. A small circle indicates each node’s

transmission range. The mobile nodes move within the outer circle

following Random way-point model [1]. 35

viii

2.9 Mobile node configuration and the travel path of mobile nodes. The

model rail is installed in the path shown in Fig. 2.1, and the mobile

node travels back and forth along the model rail. 36

2.10 Performance of MobiRPL depending on the type of mechanisms ap-

plied. We test four cases described in Table 2.5 37

2.11 Performance of MobiRPL depending on various parameter settings de-

scribed in Table 2.6. For three different minimum timeout period val-

ues (Tl,min) of 16, 32, 65 seconds, we evaluate MobiRPL while varying

the number of times probing is performed (N) from 1 to 4. 41

2.12 Performance of MobiRPL depending on the speed of the mobile node.

For four different speeds of 0.5, 1, 2, 5 m/s, we evaluate MobiRPL. . . 43

2.13 Performance of MobiRPL compared to RPL varying the number of

mobile nodes in Cooja-2. 45

2.14 Performance of MobiRPL compared to RPL in complicated scenarios

(Cooja-2 and Cooja-3). 48

2.15 Performance of MobiRPL compared to RPL and LOADng on a real

world mobility-augmented testbed (Fig. 2.9). 49

3.1 Time usage breakdown of a regular TSCH Tx and Rx slot (of 10 ms)

according to packet size, including ACK in the opposite direction.

There are a lot of idle time (in white color) within a slot. 56

3.2 Example of TSCH operation. 58

3.3 SLA’s slot length adaptation process 64

3.4 Illustration of SLA’s slot length decision for adjustment. 65

3.5 An example of UPA’s packet aggregation and batch transmission (bot-

tom) compared to the default slotted operation of TSCH (top) 69

3.6 Example of impact of UPA’s packet aggregation on slot utility and bit

sequence. 72

ix

3.7 Node deployment topology at Grenoble and Lille testbeds. In both

testbeds, the node located in the upper left corner and marked in yellow

serves as the root. 74

3.8 Real-time operation of SLA: Evolution of slot length over time in ac-

cordance to payload (packet) size changes. 76

3.9 Performance of SLA with varying k-percentile values vs. ALICE, at

the Grenoble testbed, for data collection scenario. 76

3.10 Performance of UPA: maximum slot utility and an example of aggre-

gating seven packets to reduce residue time. 78

3.11 Ablation study on ASAP: Goodput and latency results for upward vs.

downward scenarios and 14 vs. 63 byte payloads 79

3.12 Performance comparison of ASAP, ALICE, DBT, and A3 at Greno-

ble testbed with dual-linear topology. ASAP achieves better goodput,

latency, and PDR with only a slight increase in duty-cycle (<1%) . . 83

3.13 Performance comparison of ASAP, ALICE, DBT, and A3 at Lille testbed

with grid-like topology. ASAP achieves better goodput, latency, and

PDR with only a slight increase in duty-cycle (<1%) 85

4.1 TSCH common shared cell with slotframe size of 101. 90

4.2 6TiSCH network stack. 91

4.3 An example of state transition during 6TiSCH network formation. . . 92

4.4 Time evolution of packet transmissions within the common shared cell

and the time when the state transition of all nodes completed. 93

4.5 Collision is inevitable in common shared cell due to the closely aligned

transmission start times. 94

4.6 Assigning differentiated offsets to the packet transmission start times

enables the detection of collisions among packets. 95

x

4.7 Example of potential side effects of offset-based prioritization. Or-

ange, blue, and green rectangles represent CCA, transmission of data

packet, and transmission of ACK respectively. 98

4.8 Transmission offset assignment policy. 99

4.9 Node deployment topology at Lille testbed. he node located in the up-

per left corner and marked in yellow serves as the root. 104

4.10 Network formation time for different slotframe sizes 105

4.11 Time evolution of transmissions within the common shared cell and

the time when the state transition of all nodes completed for Random

and TOP. 106

xi

Chapter 1

Introduction

1.1 Motivation

LLNs play a pivotal role in various domains, including Internet of Things (IoT) ap-

plications, smart cities, and industrial automation. However, LLNs face diverse chal-

lenges that impede their performance and efficiency. In this dissertation, our motiva-

tion is to tackle these obstacles head-on and present innovative solutions to enhance

the overall performance of LLNs.

The first challenge arises from the increasing need for mobility support in LLNs.

The standard routing protocol, RPL, lacks an explicit mechanism to handle mobile

nodes. With the growing deployment of LLN applications involving mobile devices, it

becomes crucial to design a mobile routing protocol that can adapt to network dynam-

ics and ensure reliable communication. The absence of a robust and efficient mobile

routing protocol motivates us to develop a reliable mobile routing protocol termed

MobiRPL.

The second challenge stems from inherent inefficiencies in time-slotted commu-

nication systems, such as TSCH. Traditionally, time slots are designed to accommo-

date maximum-sized packets, leading to significant wastage of resources when smaller

packets are prevalent. This inefficiency adversely affects both throughput and latency,

1

limiting the overall performance of time-slotted systems. Consequently, there is a

pressing need to develop techniques that can minimize residue time within each slot.

As a result, we propose a utility-based adaptation of slot size and packet aggregation

called ASAP.

The third motivation arises from the challenges faced during the network formation

process in 6TiSCH networks. Synchronized transmission timing among nodes within

a time slot poses difficulties in collision avoidance and congestion management. These

issues hinder the efficient establishment of network connectivity, leading to increased

network formation time and degraded overall performance. Therefore, it is essential to

develop techniques that can enhance the efficiency of network formation in 6TiSCH

networks. This motivation drives our research in proposing the offset-based prioritiza-

tion technique, named TOP, to optimize the network formation process.

Overall, the motivation behind this dissertation is to address the challenges in mo-

bile routing, time-slotted communication, and network formation in LLNs. By tackling

these key issues, we aim to enhance the reliability and efficiency of LLNs, unlocking

their full potential in various application domains.

1.2 Contributions and Outline

This dissertation makes significant contributions in addressing key challenges in LLNs

and proposes innovative solutions to enhance performance of LLNs. The contributions

can be summarized as follows:

Mobile routing protocol: We propose MobiRPL, an adaptive and robust mobile rout-

ing protocol based on RPL. MobiRPL utilizes RSSI and focuses on maintaining reli-

able routing topology in mobile LLNs. Extensive evaluations demonstrate improved

packet delivery ratio by 11.3% compared to RPL and a 73.3% reduction in energy

consumption compared to LOADng.

Throughput enhancement of time-slotted communication: We present ASAP, a

2

utility-based adaptation of slot-size and packet aggregation technique for time-slotted

systems. ASAP dynamically adjusts slot length based on actual packet size distribution

and employs packet aggregation to maximize slot utility. Experimental evaluations

show a 2.21x improvement in throughput and a reduction in latency by 78.7%.

Acceleration of 6TiSCH network formation: We propose TOP, an offset-based pri-

oritization technique to enhance network formation efficiency in 6TiSCH networks.

TOP assigns offsets to packets during transmission initiation to diversify starting points

within slot, enable collision detection, and prioritize critical packets. Real testbed ex-

periments demonstrate up to a 50% reduction in network formation time.

In summary, these contributions address critical issues in mobile routing, time-

slotted communication, and network formation, thereby improving the overall perfor-

mance of LLNs.

This dissertation is structured as follows. In Chapter 2, we introduce MobiRPL. In

Chapter 3, we psesent ASAP. In Chapter 4, we propose TOP. Chapter 5 concludes this

dissertation.

3

Chapter 2

MobiRPL: Adaptive, Robust, and RSSI-based Mobile

Routing in Low Power and Lossy Networks

2.1 Introduction

RPL, the IPv6 routing protocol for LLNs standardized in 2012, has been considered as

a building block of IoT and received great attention from LLN researchers [2–5]. RPL

reliably and energy-efficiently forms a quasi-forest routing topology to provide IPv6

connectivity to a large number of resource-constrained embedded devices through a

few border routers. Motivated by LLN application scenarios, such as home, industrial,

urban, and building applications [6–9], RPL was designed under the assumption that

most devices are static, having no mechanism to explicitly support mobile devices. Not

surprisingly, most researches on RPL have considered only static nodes [3].

At the same time, however, there are non-zero mobile devices in the above applica-

tion scenarios: remote controllers and wearable devices at home [8], cranes, forklifts,

and workers in an industrial environment [7], and occupants and movable assets in a

building [9]. In addition, clinical applications include mobile medical staffs and pa-

tients [10]. To minimize network dynamics with these mobile nodes, there is a routing

design guideline in [9]: “mobile devices, while in motion, should not be allowed to act

4

as forwarding devices.” Following this, a number of studies have investigated RPL in

hybrid settings: static router nodes and mobile leaf1 nodes (walking speed [11–18].

They showed that RPL is problematic even in hybrid environments and attempted to

alleviate the problem.

However, depriving mobile nodes of routing/forwarding capability gives a non-

trivial constraint: every mobile node must be within the (unpredictable) coverage of

at least one static router node. Strictly speaking, this constraint requires predicting all

possible travel areas of mobile nodes and deploying static router nodes sufficiently to

cover all the areas, which is hard or impractical in many cases. Even if static router

nodes are sufficiently deployed, problems can still arise. Communication environments

may change while the network operates. For example, an obstacle added to the network

(e.g., a person passing through the network) can make the connection between nodes

lost. If the static router nodes are battery-powered, they may fail to provide connectiv-

ity due to low battery. In these situations, the remaining static router nodes may not be

able to provide connectivity throughout the network [19, 20].

This work considers more general mobility scenarios (i.e., non-hybrid settings)

where both static and mobile nodes (still having walking speed) participate in packet

routing and forwarding. Our intuition is that allowing routing/forwarding of mobile

nodes can significantly improve connectivity, reduce the deployment burden, and im-

prove their ability to cope with network dynamics. There have been some studies that

explored RPL in more general mobility scenarios [21–28]. However, some of these

studies have limitations arising from inefficient operation designs, and some studies

require several assumptions or the support of external mechanisms to operate correctly.

Therefore, there is a need for a mobile RPL that considers the fundamental problems

of RPL in mobile LLNs and works with minimal assumptions.

On the other hand, given that the RPL design does not aim to support the gen-

eral mobility scenario above, why don’t we use or improve another routing proto-

1Nodes that do not have sub-nodes and do not perform routing/forwarding for other nodes.

5

col originally designed for mobile networks, such as (LOADng) [29], rather than

RPL? LOADng is a lightweight routing protocol designed for mobile ad-hoc networks

(MANETs). Considering that LLN mostly generates upward traffic (i.e., data collec-

tion), it is not clear to say that LOADng is well suited for LLN. Indeed, there have

been various studies comparing RPL and LOADng [30–34]. Because the existing rout-

ing protocols designed for data collection do not cope with mobility well, it is worth

testing LOADng under various scenarios.

Although LOADng is designed for mobile networks, we found that LOADng has

scalability issues as traffic increases due to its flooding-based reactive nature. Besides,

to the best of our knowledge, RPL, in terms of both protocol design and implementa-

tion, has been most extensively investigated and tested in LLN environments consid-

ering resource constraints and link dynamics. In this regard, studying mobile routing

in the context of RPL builds on two decades of LLN research and makes our work

well-grounded.

Challenges. In a scenario where mobile nodes perform forwarding, challenges are on

the protocol design phase rather than the deployment phase. Given that including mo-

bile router nodes increases network dynamics, how can we design RPL to be reliable

and energy-efficient under such dynamics? The following two requirements need to be

fulfilled.

(1) Parent2 table management: A node should keep track of each neighbor node’s

link quality and Rank information reasonably fast to maintain the parent table freshly.

At the same time, information tracking should not impose too much control overhead

on the network.

(2) Parent selection3: To cope with dynamics, a parent selection mechanism should

focus on stability rather than efficiency (e.g., shortest path). Selecting an efficient but
2In RPL, a candidate node for the next-hop node in the upward route is called a parent. The cur-

rently selected parent node is called a preferred parent. The parent table stores all the parent nodes (both

preferred and non-preferred).
3Parent selection means choosing a preferred parent among the parents.

6

barely connected node as the preferred parent may cause confusion in a dynamic mo-

bile network. Although efficiency is not a primary concern in parent selection, it should

not be overlooked either.

Approach. RPL fails to meet the above requirements and provide an appropriate rout-

ing topology in a mobile network scenario. We introduce MobiRPL, which addresses

the challenges without violating the RPL standard. Compared to previous work re-

garding RPL, MobiRPL design puts more weight on reliability than energy efficiency.

The idea is that low energy consumption makes sense only when a reliable routing

topology is given. To this end, we design MobiRPL with three main components.

(1) Mobility detection: MobiRPL allows both mobile and static nodes to participate in

packet forwarding. However, the characteristics of mobile and static nodes in the rout-

ing process are very different. To ensure good routing performance, MobiRPL allows

each node to detect its mobility from routing information and makes routing decisions

based on the detected mobility.

(2) Connectivity Management: Each node manages the connectivity with parent

nodes according to its mobility. To this end, MobiRPL performs timeout and prob-

ing in which the period is adaptively adjusted. If a parent node is determined as dis-

connected, MobiRPL excludes the parent node from the parent table. If there are not

enough valid parent nodes in the parent table, MobiRPL discovers new parent nodes

through proactive discovery.

(3) RSSI and hop distance-based objective function: In order to select a suitable

preferred parent for stable routing in mobility scenarios, MobiRPL uses RSSI and hop

distance as routing metrics instead of the popular expected transmission count (ETX).

MobiRPL makes parent selection more stable under dynamic environments by consid-

ering node mobility along with the RSSI and hop distance based routing metric.

Contributions. We summarize the contributions of this work as follows.

• We perform a measurement study of RPL and LOADng, verifying that LOADng is

not a good choice for LLNs by showing its scalability issues.

7

• We give routing/forwarding capability to mobile LLN nodes and show the feasibility

of dynamic scenarios by resolving challenges on the RPL protocol design.

• We design MobiRPL, including the above three components, implement it on Con-

tiki operating system. We make our prototype implementation publicly available.4

• We verify the effectiveness of MobiRPL on Cooja simulation [35] and a 34-node

testbed. On the testbed, MobiRPL shows an 11.3% increase in packet delivery ra-

tio compared to RPL and a 73.3% decrease in energy consumption compared to

LOADng at mobile nodes, outperforming RPL and LOADng.

The remainder of this chapter is organized as follows. We first discuss the brief

background and related work in §2.2. In §2.3, we present the preliminary study re-

sults. We summarize the requirements for our proposed scheme in §2.4. We introduce

our proposed scheme, MobiRPL, and elaborate on its main functional blocks in §2.5.

We discuss the implementation details and the evaluation results in §2.6. We provide

discussion in §2.7 and conclude the chapter in §2.8.

2.2 Background and Related Work

There have been two types of research efforts to support mobile LLN: (1) extending

RPL [2] to cover mobile nodes and (2) modifying routing protocols for MANETs to

support LLNs. The latter results in LOADng [29], a lightweight version of ad-hoc

on-demand distance vector (AODV) (a standard MANET routing protocol) [36]. This

section reviews the two representative protocols, RPL and LOADng, and their related

work.

2.2.1 RPL and Mobility

RPL Design. Given that traffic mostly goes upwards in LLN (i.e., data collection),

RPL forms a destination-oriented directed acyclic graph (DODAG) rooted at a root
4https://github.com/Hongchan-Kim/MobiRPL

8

node, generally an LLN border router to external networks. Each RPL node in a

DODAG, including the root node, propagates routing information by broadcasting

a control message named DODAG information objective (DIO). An RPL node ob-

tains RPL configurations by receiving DIO and participates in a DODAG by choosing

a preferred parent. The DIO transmission interval follows TrickleTimer [37], which

doubles the DIO interval after each DIO transmission to minimize control overhead

while resetting it to the minimum upon inconsistency detection for fast route recovery.

In addition, a node triggers a DIO transmission from its neighbor nodes on demand by

sending a DODAG information solicitation (DIS) message.

An RPL node selects the best preferred parent from many candidates by using

the path metric called Rank. The definition of Rank and rules for parent selection,

called objective function (OF), are decoupled from the main RPL standard. The most

widely used OF is minimum rank with hysteresis objective function (MRHOF) [38],

which uses ETX as the link quality metric and accumulated ETX over a node’s upward

path as its Rank. The use of ETX is to minimize upward transmission overhead. Lastly,

each node transmits destination advertisement object (DAO) messages to the root node

along the upward route, which sets its downward route from the root as the reverse of

the upward route.

Mobility Support with RPL. Several studies have investigated RPL operation in mo-

bile scenarios, showing that RPL suffers significant performance degradation due to

lack of consideration for mobile nodes [3, 39–41].

A number of studies have tried to improve RPL to support mobile nodes, most

of which use mobile nodes only as leaf nodes (i.e., hybrid setting). For example, KP-

RPL supports a parent handover for mobile leaf nodes [11]. A mobile node estimates

its location by applying Kalman filter to the RSSI from adjacent static nodes. Then

it calculates the expected ETX from RSSI and handovers to the best static node. The

authors in [14] proposed mobility-aware parent selection RPL, which considers hop

distance and RSSI value together to detect the moving direction of a mobile leaf node

9

and then handover to the parent located on the path of movement.

Under the hybrid settings, some studies have attempted to support mobility in an

energy-efficient way. EMA-RPL [15] delegates most of their mobility support oper-

ations to static nodes to reduce the overhead of mobile nodes. When a static node

detects the mobility of a mobile node from RSSI changes, it triggers the mobile node

to start burst DIS broadcasting. Neighboring static nodes measure the average RSSI

of DIS messages, append it to DIO, and reply to the mobile node. Then the static

node that firstly detected the mobility compares RSSI values in DIO messages and

informs the mobile node of the best static node. Finally, the mobile node connects

to the next static node. EKF-MRPL [16] further improves EMA-RPL by introducing

the Extended Kalman filter (EKF). EKF-MRPL assumes that mobile nodes know the

exact location of static nodes. Static nodes detect mobility and trigger mobile nodes,

similar to EMA-RPL. However, in EKF-MRPL, a mobile node broadcasts DIS once

and receives a unicast DIO response from each DIS recipient. By applying EKF to the

RSSI values from DIO responses, the mobile node estimates its location and direction,

then determines the best static node for connection.

However, depriving mobile nodes of routing/forwarding capability significantly

increases the deployment burden; static nodes should be deployed in large enough

numbers to cover all areas of the network. Whenever an area where static nodes cannot

provide connectivity appears, mobile nodes will not be able to communicate with other

nodes without additional static nodes deployed.

Assuming hybrid environments, some other studies have improved timer opera-

tions of RPL to better support mobility. The authors in [12] designed a node having

a mobile leaf node as a child to exploit a reverse TrickleTimer (i.e., halving the DIO

interval after each DIO transmission). The intuition is that the link quality between

a mobile leaf node and its preferred parent is likely to be degraded as time goes by,

and reducing the parent’s DIO interval enables the mobile leaf node to update routing

information quickly. The authors in [13] proposed DIS interval adaptation for mobile

10

nodes to get DIO quickly when needed. A mobile node calculates the time taken to

leave the communication range of the currently connected static node by using RSSI

and the Doppler effect. Then it schedules DIS broadcast before it departs the static

node, thus enabling timely DIO reception and handover.

However, the modified timer mechanisms designed for mobile nodes to receive

DIO faster or more often do not necessarily help mobile nodes. No matter how fast

or how often DIO is sent, if RPL does not manage newly updated routing informa-

tion appropriately, this information will be outdated and incorrect soon. Such incor-

rect routing information may lead mobile nodes to choose unreachable parents and

lose connectivity repetitively. Therefore, the improvement in parent table management

should precede the enhancement in timer operations.

Some studies have considered more general mobility (i.e., non-hybrid setting) sce-

narios where mobile nodes can perform routing or forwarding. The authors in [21]

proposed ME-RPL, which gives mobile nodes routing capability in a limited way.

When selecting its preferred parent, a ME-RPL node prefers static nodes to mobile

nodes since static nodes are more likely to provide robust connectivity. mRPL [22]

and mRPL+ [23] support parent handover for mobile nodes. When a mobile node de-

tects that the RSSI from its preferred parent is low, it broadcasts a batch of DISes.

Each DIS recipient measures the average RSSI of the DIS batch and includes it when

sending a DIO as a reply. Then the mobile node selects a node reporting the best RSSI

as its preferred parent.

To cope with dynamics in mobile LLNs, MoMoRo [24] detects route disconnec-

tion from link loss and obtains neighbor information quickly by requesting a unicast

response. It introduces a fuzzy estimator that considers multiple link metrics to find a

neighbor connected through a good link. Co-RPL [25] defines corona ID (minimum

hop distance) to indicate how close a node is to the root node and uses it for parent

selection. RRD [26] utilizes the RSSI of a broadcast message and an ACK message

to detect a mobile node’s moving direction. RRD updates the Rank and assigns an

11

appropriate length of lifetime to a route based on this direction and the RSSI value.

GTM-RPL [27] introduces game theory into the RPL to support mobility. It finds an

optimal parameter setup to minimize mobile nodes’ disconnected period. However,

GTM-RPL did not investigate the problems arising from the protocol design of RPL.

Although these prior studies extend RPL for mobility scenarios, their Rank (i.e.,

ETX) and parent selection are from mobility-unfriendly MRHOF, which is their funda-

mental limitation. MRHOF was designed without considering mobility. For example,

even between links that show the best ETX, some other difference may exist, such as

the physical distance gap between nodes [42, 43]. This distance gap can be an essen-

tial parameter in choosing a long-lasting routing path in mobility scenarios, but ETX

cannot provide such significant information. Moreover, MRHOF applies an exponen-

tially weighted moving average (EWMA) filter to the ETX. This filtering lowers the

responsiveness of the link metric to the link quality change and makes it challeng-

ing for mobile nodes to cope with mobility. Therefore, ETX and MRHOF should be

reconsidered together to better support mobility.

Several recent studies have attempted to improve the performance of RPL in mo-

bile scenarios based on specific assumptions or external mechanisms. The authors

in [17] proposed Coral software-defined networks (SDN), which cooperates with per-

formance-limited IoT devices. Coral SDN can change RPL parameters to suit mobile

scenarios even during runtime. However, the authors only naively controlled parame-

ters related to DIO interval. SDMob [18] is another example of SDN-based mobility

support for RPL in a hybrid setting. In SDMob, mobile nodes are equipped with iner-

tial measurement unit (IMU) sensors. The SDN controller knows the precise location

of static nodes. Each mobile node periodically broadcasts a beacon, including velocity

information from IMU sensors. Static nodes receiving the beacon append the measured

RSSI and relay it toward the SDN controller. Then the SDN controller calculates the

best next static node for the mobile node based on information contained in the beacon

and notifies the result to the mobile node.

12

ARMOR [28] aims at a mobile RPL for a non-hybrid setting. In ARMOR, all

nodes are assumed to know their velocity and location using IMU sensors or external

localization mechanisms. Then, each node calculates the time-to-reside (TTR) within

the communication range of each neighboring node. ARMOR chooses the parent with

the longest connection time using the TTR as a new routing metric.

As aforementioned, many studies have tried to improve RPL to support mobile

nodes. However, despite their various attempts, each has its own limitations. Therefore,

it is necessary to fundamentally investigate why RPL does not work well on mobile

nodes and design a mobile RPL that comprehensively considers the problems observed

in RPL. Besides, the assumptions or mechanisms introduced to better support mobility

may limit the usability of mobile RPL protocols. For example, it will not be able to

add IMU-free devices to the network where a routing protocol is assumed to use IMU

sensors. On the other hand, routing protocols that require localization or SDN will

not function properly unless the conditions are met. Therefore, we need a mobile RPL

protocol that operates with minimal assumptions.

2.2.2 LOADng, a MANET Protocol for LLN

Many routing protocols have been developed for MANETs [44], such as destination

sequenced distance vector (DSDV) [45], optimized link-stated routing (OLSR) [46],

AODV [36], and dynamic source routing (DSR) [47]. In LLN, however, these pro-

tocols cause significant control overhead and/or slow recovery [48]. To alleviate the

problems, LOADng [29, 49, 50], a lightweight version of AODV, was proposed as a

routing solution for mobile LLNs.

As in AODV, a source node in LOADng broadcasts a route request (RREQ) mes-

sage to discover a path toward its destination node. Different from AODV, however,

LOADng allows only the destination node to send a route reply (RREP) message back

to the source as a response to the RREQ; an intermediate node only relays the RREQ,

which simplifies protocol operation. When detecting a route failure, a LOADng node

13

sends a route error (RERR) message only to the source node, which removes mem-

ory overhead for maintaining a precursor list. LOADng also exploits a random jitter

when sending an RREQ to resolve congestion due to RREQ flooding. Despite its opti-

mization for LLNs, LOADng is fundamentally not free from AODV’s RREQ flooding

overhead, which increases with the number of end-to-end sessions [48] and worsens

in a duty-cycled network.

LOADng has not been investigated extensively in academia, much less than RPL.

Several studies have revealed that in static scenarios, LOADng provides similar perfor-

mance as RPL only in sparse LLN deployments [30–34]. Otherwise, LOADng under-

performs RPL. As an improvement, LOADng-CTP [50,51] tweaks LOADng to better

support data collection, building a tree-shaped routing structure rooted at a sink node as

RPL and CTP do. Nevertheless, without any experimental evaluation, it is still unclear

if LOADng is really an effective solution for mobile LLNs. One of our contributions

is to provide the measurement study of LOADng on a mobile LLN testbed.

2.3 Preliminary Study

The previous sections qualitatively showed why it makes sense to design a new mobile

routing protocol for LLNs. Building on this intuition, this section presents an experi-

mental, quantitative study of RPL and LOADng on an LLN testbed in static scenarios

and a simulation in mobile scenarios.

2.3.1 Static Scenario: RPL vs. LOADng

We configure an indoor testbed with 31 static TelosB-clone nodes where one node acts

as the root, as depicted in Fig. 2.1. Each node uses -10 dBm transmission power and

an antenna of 5 dB gain. For the routing layer, RPL and LOADng implementations on

Contiki OS [52] version 3.0 are used. The underlying link layer is ContikiMAC [53],

the asynchronous duty-cycling MAC of Contiki OS. We set the sleep interval of Con-

14

0 10m

34

2

5
6

10

11

12

13

18 19

2223

24

29

7

8

9

31

25

28
30

27 1416
15

17

26

3

4
20 21

Root node

Static node (group A)

Static node (group B)

Static node (group C)

Mobile node

32

33

1

Figure 2.1: An indoor testbed with 31 static nodes and 3 mobile nodes. The mobile nodes

move along the path shown in the figure.

tikiMAC as 31.25 msec (32 Hz channel check rate).

To evaluate the scalability of RPL and LOADng according to the number of end-

to-end sessions, we divide 30 nodes (except the root) into three groups (group A, B,

and C), each of which has ten nodes. Then, we observe the performance of RPL and

LOADng with varying the number of data senders. We consider a bidirectional traffic

scenario. Each sender node transmits an upward packet every 60 seconds. At the same

time, the root node generates the same amount of downward traffic as the upward

traffic by sequentially sending downward packets to the sender nodes over 60 seconds.

The total number of upward and downward packets generated for each sender is 120

each. Fig. 2.2 plots various performance metrics in the scenario (the average of five

repetitive experiments).

As seen in Fig. 2.2a, the end-to-end packet delivery ratio (PDR) of LOADng de-

creases sharply as the number of sender nodes increases, while RPL maintains high

PDR. This performance difference comes from the different routing mechanisms of

RPL and LOADng; while RPL manages a single DODAG topology for all nodes,

LOADng builds a separate end-to-end route per sender-destination pair, resulting in

up to 30 independent routes in our setting. Given that LOADng floods RREQ mes-

sages to build a route for a sender-destination pair, its routing overhead increases with

15

10 20 30

Number of sender nodes

0

20

40

60

80

100
P

D
R

 (
%

)

RPL

LOADng

(a) PDR

10 20 30

Number of sender nodes

0

20

40

60

80

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

RPL

LOADng

(b) Routing overhead

10 20 30

Number of sender nodes

0

0.2

0.4

0.6

0.8

1

Q
u
e
u
e
 l
o
s
s
 /
m

in

RPL

LOADng

(c) Queue loss

10 20 30

Number of sender nodes

0

5

10

15

20

D
u
ty

 c
y
c
le

 (
%

)

RPL

LOADng

(d) Duty cycle

Figure 2.2: Performance of RPL and LOADng on a testbed with 31 static nodes (Fig. 2.1)

according to the number of end-to-end sessions.

the number of data senders (i.e., the number of routes). This is verified in Fig. 2.2b,

which shows the routing overhead of RPL and LOADng. While RPL maintains low

routing overhead regardless of the number of senders, LOADng incurs much higher

routing overhead than RPL, and the amount increases with the number of senders. As

a result, LOADng incurs ∼150 times more routing overhead than RPL. If we add more

senders to the network, LOADng causes more routing overhead, while RPL would

maintain a similar level of routing overhead.

With an asynchronous duty-cycling MAC, such as ContikiMAC, the large flooding

overhead causes severe congestion and contention problems. Fig. 2.2c shows that in

LOADng cases, several nodes suffer severe queue loss when the number of senders is

16

10m

Root node

Static node

Mobile node

10m

5

6

7

8

9

10

11

12

13

2

3

4

14

1

Figure 2.3: A mobile LLN scenario on the Cooja simulator with 12 static nodes, a mobile

node, and a root. All the nodes have the same transmission range (50 m), and one example is

indicated by a large light blue circle.

large. This confirms that the congestion level caused by LOADng is above the thresh-

old which resource-constrained nodes can cope with. According to Fig. 2.2d, the large

routing overhead decreases PDR due to congestion and increases duty cycle since each

node frequently turns on the radio to exchange more routing control packets. Given the

relationship between the number of nodes and flooding overhead of LOADng, duty cy-

cle also increases in proportion to the number of senders. Duty cycle, calculated as a

percentage of the time the radio is turned on during the entire operating time, is directly

related to energy consumption. If the network’s size becomes very huge, LOADng will

not be able to avoid large energy consumption.

Overall, LOADng’s performance in a static LLN is very bad. Although it is de-

signed to support mobility, it is not an alternative to RPL as it cannot support many

data senders. Its performance degrades as the number of data senders increases. Given

that RPL performs well on static LLNs, it is worth improving RPL to support mobile

LLNs.

2.3.2 Mobile Scenario: RPL’s Problems

We now focus on RPL and investigate how it behaves in a mobile LLN. To do this, we

perform simulations by using the Cooja simulator with the 14-node topology depicted

17

Table 2.1: Simulation scenarios for evaluating the performance of RPL in mobile scenarios

Scenario Node 14 Data interval (s) DIO interval (s)

1 Static 30 4-1048

2 Mobile 30 4-1048

3 Mobile 6 4-1048

4 Mobile 30 1-4

5 Mobile 6 1-4

in Fig. 2.3. To focus on the routing layer’s behavior, we use NullRDC, an always-

on link layer implementation on Contiki OS. Only upward packets are transmitted to

facilitate analysis.

We perform simulations on five different scenarios, as shown in Table 2.1. Scenario

1 sets all nodes to be static, which serves as a ground result. In the other four scenar-

ios, a mobile node (node 14) moves along the line illustrated in Fig. 2.3 at a speed of

1 m/s. We conducted the same simulation for the speeds of 0.5 m/s, 2 m/s, and 5 m/s,

but the experimental results were similar to that for 1 m/s. In all the scenarios, all the

13 nodes except the root send upward packets. All the scenarios allow the mobile node

to participate in packet forwarding. Both data and DIO intervals affect the routing per-

formance of RPL. Therefore, we conduct a simulation with various parameter values.

Scenarios 1 and 2 have the default configuration. Scenarios 3 and 4 decrease data and

DIO intervals of not only the mobile node but also static nodes, respectively. Scenario

4 decreases both data and DIO intervals of static and mobile nodes.

Fig. 2.4 plots the simulation results (the average of five repetitive experiments with

different random seeds). As Fig. 2.4a shows, all 14 static nodes show the PDR of nearly

100% in Scenario 1, meaning that RPL operates well in static LLNs. However, in all

the other scenarios, while the static nodes have PDR close to 100%, the PDR of the

mobile node plunges down to below 40% regardless of DIO and data intervals. This

implies that RPL’s problem in mobile scenarios is not simply about parameter settings

18

1 2 3 4 5

Scenario

0

20

40

60

80

100
P

D
R

 (
%

)
Node 2-13

Node 14

(a) PDR

2 3 4 5

Scenario

0

0.2

0.4

0.6

0.8

1

P
a
re

n
t
c
h
a
n
g
e
 /
m

in
 /
n
o
d
e

(b) Parent change (mobile node)

2 3 4 5

Scenario

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)

(c) Accuracy of routing decision (mobile node)

2 3 4 5

Scenario

0

20

40

60

80

100

P
a
re

n
t
ta

b
le

 a
c
c
u
ra

c
y
 (

%
)

Precision

Recall

(d) Accuracy of parent table (mobile node)

Figure 2.4: Performance of MRHOF-based RPL in the simulation scenarios described in

Fig. 2.3 and Table 2.1.

but something more fundamental.

For a mobile node to communicate well, it is necessary to change the (communi-

cation) route as it moves. As seen in Fig. 2.4b, however, reducing data or DIO interval

does not sufficiently increase the number of parent changes5. This means that RPL

does not detect its need for parent change. Even in scenario 4, where the number of

parent changes increases the most, PDR is not improved significantly. RPL’s efforts to

update routes do not end up working as intended.

We further analyze the simulation results to reveal why RPL’s path update mech-

anisms do not operate well in mobile LLNs. We examine the ratio at which the mo-
5We will briefly call a change of a preferred parent a parent change.

19

bile node selects a new preferred parent that is actually connected when changing its

preferred parent. Fig. 2.4c shows that the ratio is below 40%. The mobile node signifi-

cantly misunderstands its environment, identifying a disconnected neighbor as a valid

parent candidate. This implies that the mobile node’s parent table may not be managed

timely.

To confirm this, we measure the average precision (the ratio of actually connected

nodes among the nodes regarded to be connected in the parent table) and recall (the

ratio of nodes considered to be connected in the parent table among the actually con-

nected parents) of the mobile node’s parent table measured at the moment the parent

node changes. Fig. 2.4d shows that recall becomes high when DIO interval is low (i.e.,

scenarios 4 and 5), meaning that the mobile node fast discovers new parents. On the

other hand, precision is lower than 30% in all the cases regardless of parameter set-

tings, confirming that the mobile node misunderstands that a disconnected parent is

connected. The low precision incurs faulty parent changes, resulting in performance

degradation.

Problem Analysis: Looking into the RPL design together with the experimental re-

sults, we have found the three problems in RPL as below, which motivates us to design

MobiRPL.

• Slow Link Quality Update: ETX in RPL is easily outdated, which is not suitable

for mobile LLNs: (1) ETX is a statistical metric, which is slowly updated and can-

not detect quick changes in link connectivity in mobile environments. (2) A node

updates ETX for a neighbor only after sending a unicast packet to the neighbor.

Given that RPL sends upward data traffic only to the preferred parent, ETX for a

non-preferred parent becomes outdated. (3) Even ETX for the preferred parent can

be outdated depending on upward packet interval. When upward packet interval is

too long compared to mobility, a mobile node can misunderstand that its outdated

preferred parent is still valid, losing many upward data packets in the air.

• Rough Link Quality Representation: Even when ETX is completely up-to-date, it

20

has an inherent limit in design: representing link quality in terms of packet transmis-

sion reliability (i.e., link PDR). Given that PDR does not decrease linearly with RSSI

but suddenly drops from > 90 percent to < 10 percent at a certain RSSI threshold

(e.g., –87 dBm) [54], ETX can finely distinguish link quality around that threshold.

However, it cannot distinguish a very robust link from possibly fragile links. For ex-

ample, when choosing an upward route, two candidate links may have the current

ETX of 1 (best quality), but one link has an RSSI of –60 dBm and the other has –85

dBm. Although the –85 dBm candidate link currently has good reliability, it is likely

to become bad (below –87 dBm) in the near future due to mobility. The –60 dBm

candidate link is more robust to mobility, which cannot be identified by ETX.

• Lack of Connectivity Management: RPL, as a routing protocol instead of a neigh-

bor management protocol, does not have an explicit mechanism to manage connec-

tivity with neighbors. Although a disconnected neighbor may have a bad ETX value,

it can be still in the parent table as a valid parent candidate and selected as the pre-

ferred parent. For example, under MRHOF, a node with a high ETX value can be

selected as the preferred parent if it has a very low Rank.

2.4 Design Requirements

We summarize the requirements for MobiRPL to support mobility as follows.

• MobiRPL should update the link quality of the preferred parent frequently enough

to timely detect its disconnection, regardless of the data interval.

• MobiRPL should determine connectivity with all known parents and avoid choosing

a disconnected parent as its preferred parent.

• MobiRPL should discover new potential parents fast and efficiently when needed.

• MobiRPL should have a new objective function that is more suitable for mobility

support than ETX-based MRHOF. It should give preference to robust links over

possibly fragile links, regardless of current packet delivery performance.

21

200710. 수정버전

RPL

Link layer

Preferred parent change

Mobility, Lifetime, RSSI, and
Consecutive loss

Lifetime reset, Blacklisting

My Mobility

RSSI, Consecutive loss update

Preferred parent selection

Proactive Discovery,
Unicast Probing

Rx Tx
Incoming packet

Additional Information for MobiRPL Additional Module for MobiRPL

Parent Table

Entry 1

Mobility Lifetime

RSSI
Consecutive

loss

Entry 2

…
…

Entry k

Mobility
Detection

IP layer

Forwarding
Table

Packet
Queue

Connectivity
Management

RHOF

Figure 2.5: Overview of MobiRPL Design. We propose three new mechanisms (mobility

detection, connectivity management, and RHOF) as a part of RPL. Our new mechanisms

better cope with mobility by interacting with existing RPL operations and IP layer.

In addition to meeting these requirements to improve reliability in mobile LLNs, en-

ergy efficiency should be also considered since MobiRPL runs on energy-constrained

embedded devices. In the considered scenario, since many nodes are still static, it

can be overkill to put a significant effort into quickly updating the link quality for all

nodes. For example, if a static node has a static preferred parent, it does not have to

frequently update the link quality of the preferred parent. In this case, saving energy

would be a better choice. To provide energy-efficient operation for static nodes while

improving reliability for mobile nodes, MobiRPL should detect the mobility of each

node and treat mobile nodes differently from static nodes. Therefore, we add one more

requirement for MobiRPL design:

• MobiRPL should detect the mobility of each node and differentiate between static

and mobile nodes.

2.5 MobiRPL Design

In this section, we design MobiRPL to satisfy the above five requirements of RPL in

detail. MobiRPL introduces three new mechanisms: (1) mobility detection, (2) connec-

22

tivity management, and (3) RSSI and hop distance-based objective function, as shown

in Fig. 2.5.

2.5.1 Mobility Detection

Our first mechanism, mobility detection, enables MobiRPL to determine the node’s

mobility.6 We let MobiRPL detect mobility from the average interval of parent changes:

mobility increases as the parent change interval decreases. Our intuition is that mobile

nodes should be able to change their preferred parent more often than static nodes.

Given that RPL is designed to make static nodes rarely change preferred parents, this

interval of parent change would be significantly large for static nodes while small for

mobile nodes. Therefore, by setting a threshold (tc,thr) large enough, we can distin-

guish most mobile nodes from static nodes.

Specifically, we use the exponentially weighted moving average (EWMA) of the

parent change interval to avoid misjudgment from the temporary parent change caused

by network fluctuations other than mobility. Let tc and tc denote the parent change

interval and EWMA value of tc, respectively, and α be a coefficient between 0 and

1. When the i-th parent change occurs, MobiRPL calculates the i-th EWMA value

(tc,i) from the previous EWMA value (tc,i−1) and the newly measured parent change

interval (tc,i) as

tc,i = α · tc,i−1 + (1− α) · tc,i. (2.1)

It is then intuitive for MobiRPL to classify a node as a static node if its tc,i is greater

than or equal to a threshold (tc,thr), or as a mobile node otherwise.

For static nodes, however, tc may not be updated timely. Specifically, when tc,i is

very long due to stable link quality (e.g., more than an hour), an update from tc,i−1 to

tc,i is significantly delayed. For example, a newly installed static node may frequently

change its preferred parent i times (i.e., low tc,i−1 value) and settle in one preferred

6If additional hardware components, such as accelerometer, are allowed, this mechanism can be re-

placed. This mechanism is to enable mobility support regardless of such external components.

23

𝑡𝑚,𝑖
𝑗

= 𝛼 ∙ 𝑡𝑐,𝑖 + 1 − 𝛼 ∙ ෍

𝑘=0

𝑗−1

𝑡𝑚,𝑖
𝑘

𝑡𝑚,𝑖
0 = 𝑡𝑐,𝑖

𝑡𝑐,𝑖 = 𝛼 ∙ 𝑡𝑐,𝑖−1 + 1 − 𝛼 ∙ 𝑡𝑐,𝑖

Preferred parent change Mobility metric update

𝑡𝑐,1

𝑡𝑐,0 𝑡𝑐,1

𝑡𝑚,0
0

𝑡𝑚,0
0

……
𝑡𝑚,0
1

𝑡𝑚,0
1 𝑡𝑚,0

2 𝑡𝑚,1
0……

Figure 2.6: MobiRPL’s mobility detection based on the parent change interval.

parent (i.e., very long tc,i). In this case, tc remains small for a long time, resulting in

misclassification of the static node as a mobile node. To alleviate such a problem, we

define another average value, tm, and use it as the mobility metric for MobiRPL, rather

than tc.

MobiRPL calculates tm in two cases. As exemplified in Fig. 2.6, when the i-th

parent change occurs, MobiRPL calculates t0m,i as (using the newly calculated tc,i)

t0m,i = tc,i. (2.2)

Even without the parent change, every moment when tjm,i has passed since the last

calculation of tjm,i, MobiRPL calculates tj+1
m,i as

tj+1
m,i = α · tc,i + (1− α) ·

j∑
k=0

tkm,i. (2.3)

and uses tj+1
m,i as tm for the moment. Then, MobiRPL compares tm with a predeter-

mined threshold tc,thr to determine mobility. In this way, static nodes can fast increase

tm even without their parent changes, avoiding misclassification.

MobiRPL piggybacks the detected mobility in the reserved bits of the RPL control

messages (e.g., DIO message) and advertises it on the neighboring nodes. This pig-

gybacking enables each node to know the mobility of its neighboring nodes. Overall,

the mobility detection mechanism enables a MobiRPL node to detect the mobility of

24

itself and its neighbors. The other two mechanisms of MobiRPL utilize this mobility

information for routing and energy saving in mobile LLNs.

Our mobility detection relies on the average interval of parent changes (tm). There-

fore, even if we set the threshold (tc,thr) large enough, the speed or mobility patterns

of mobile nodes can affect detection accuracy. For example, a mobile node that moves

extremely slowly and does not change its preferred parent frequently may consider

itself a static node. However, the other two mechanisms help MobiRPL resolve such

exceptional cases. We will discuss more details later, but RHOF makes static nodes

prefer static nodes in parent selection and rarely change their preferred parents. There-

fore, the parent change interval of static nodes gradually increases, making it possible

to distinguish between slow mobile nodes and static nodes. The connectivity man-

agement mechanism also helps MobiRPL find a valid routing path, even if mobility

detection is temporarily inaccurate.

2.5.2 Connectivity Management

An explicit connectivity management mechanism is necessary for a MobiRPL node to

timely include (or exclude) a new (or disconnected) parent in (or from) the parent table

and to change the preferred parent accurately in mobile LLNs. At the same time, the

connectivity management mechanism should balance between energy efficiency and

timely operation. To this end, our connectivity management includes adaptive timeout-

based connectivity detection, adaptive probing, and proactive discovery, which operate

adaptively based on the result of mobility detection.

Adaptive timeout: MobiRPL utilizes timeout-based connectivity detection. We let tl,0

denote the timeout period (to be used as the initial value of the lifetime). Then, each

MobiRPL node detects that its neighbor is disconnected if it cannot receive any packet

from the neighbor during a timeout period tl,0. MobiRPL excludes disconnected par-

ents from the valid parent candidate set. The timeout period tl,0 is a key parameter for

timely and accurate connectivity management. If tl,0 is too long, a MobiRPL node will

25

consider a disconnected node as a valid parent, resulting in faulty parent changes due

to the outdated information. On the other hand, if tl,0 is too short (i.e., shorter than

packet interval), a MobiRPL node will misunderstand that a connected node with a

long packet interval is disconnected.

Then, what value should MobiRPL use as tl,0? Considering that an RPL node peri-

odically transmits DIO messages, the DIO interval can be used to configure the timeout

period. If the timeout period is shorter than the DIO interval, MobiRPL may hastily

mark a connected node as disconnected. Another factor is mobility since a mobile

node should fast update its connectivity with each neighbor, which a static node does

not have to do.

Considering these two factors, we define tl,0 as

tl,0 = TDIO,max · 2−m, 0 ≤ m ≤ M. (2.4)

where TDIO,max is the maximum DIO interval, and the exponent m is a control pa-

rameter. We design tl,0 to be exponentially adjusted, given that the DIO interval is

also exponentially adjusted by TrickleTimer. Specifically, a MobiRPL node updates

the control parameter m when its mobility detection mechanism updates tm. Suppose

the updated tm classifies that the node is mobile. In that case, the node sets its param-

eter m to M (maximum), which minimizes the timeout period tl,0 to the minimum

timeout period Tl,min and enables the fastest connectivity updates right away. Other-

wise, if the node is determined to be static, it decreases m by 1 (i.e., doubles tl,0),

gradually increasing tl,0 toward TDIO,max.

Overall, this timeout period adaptation enables both mobile and static nodes to

update their neighbors’ connectivity, removing disconnected nodes from the parent

table. Note that this packet reception-based connectivity detection does not incur any

additional communication overhead. A caveat is that reducing the timeout period tl,0

at a mobile node does not trigger any action at its neighbor nodes: the neighbors still

send DIO with a long interval. Therefore, this adaptive timeout mechanism classifies a

number of connected nodes as disconnected ones, reducing the number of valid parent

26

candidates.

One way to resolve this tendency is to reduce the mobile node’s neighbor nodes’

DIO interval like [12]. However, reducing the DIO interval violates the default Trickle-

Timer operation of RPL. Furthermore, considering that the mobile node does not stay

near a particular node continuously, reducing the DIO interval will benefit the mobile

node only for a very short period of time. Reduced DIO interval may instead cause

frequent unnecessary DIO transmissions in most cases. Therefore, instead of reducing

the DIO interval, we propose adaptive probing and proactive discovery mechanisms.

Adaptive probing: We design the adaptive probing mechanism to compensate for the

adaptive timeout mechanism’s defects described above. It would be good for a node to

actively probe all the neighbors at least once within its timeout period in terms of ac-

curacy. However, this aggressive approach incurs not only network congestion but also

significant energy consumption at mobile nodes as the timeout period decreases. The

adaptive probing mechanism in MobiRPL actively probes only the preferred parent

to balance between energy efficiency and accuracy. Our intuition behind this design

choice is that hastily determining the preferred parent as a disconnected node triggers

unnecessary parent changes, degrading network performance. In contrast, misclassify-

ing connected non-preferred parents as disconnected ones would be relatively fine.

Specifically, our probing mechanism sends N unicast packets to the preferred par-

ent within the timeout period tl,0 to check connectivity. This means that a MobiRPL

node detects the preferred parent’s disconnection when it fails to send N packets con-

secutively. To this end, the probing interval, tp, is calculated as

tp = tl,0/(N + 1). (2.5)

If a data transmission has been recently performed, the next probing is skipped to

reduce control overhead. Fig. 2.7 exemplifies this adaptive probing operation along

with the adaptive timeout operation introduced above.

MobiRPL can use any unicast RPL control messages (e.g., DIS, DIO, and DAO) for

adaptive probing. In the current implementation, MobiRPL uses unicast DIS messages

27

Lifetime reset 1st probing 2nd probing Nth probing Timeout

Preferred parent
𝒑

Blacklist 𝒑 and generate early timeout

𝑡𝑝 𝑡𝑝𝑡𝑝 ……

𝑡𝑙,0

Timeout

Non-preferred
parent 𝒏

Timeout occurs and blacklist 𝒏

𝑡𝑙,0

Lifetime reset

Figure 2.7: MobiRPL ’s connectivity management including adaptive timeout and adaptive

probing.

for probing. Given that a unicast DIS is replied by both link-layer acknowledgment

(ACK) and unicast DIO, it is possible to measure connectivity (link-layer information)

and get the preferred parent’s latest Rank (routing-layer information). However, it is

also possible to limit DIO replies to reduce overhead. The most important thing is to

get new RSSI information.

Proactive discovery: The two mechanisms above, adaptive timeout and adaptive prob-

ing, check whether valid parent nodes in the parent table are still connected. This is

to exclude a parent node from the parent table as soon as it is disconnected. However,

these two mechanisms do not discover potential new parents that are not in the parent

table yet. Discovering new parents timely is necessary for a mobile node to change its

preferred parent accurately. To this end, we design proactive discovery as the last piece

of connection management.

Given that static nodes operate well with the standard RPL, proactive discovery is

triggered only at a mobile node (indicated by mobility detection). Specifically, a mobile

node triggers proactive discovery when its parent table does not have any parent with

a robust link (white zone defined by RHOF in §2.5.3). In such a situation, with the

current parent table entries, the mobile node would suffer fragile link connectivity no

matter which parent it selects as the preferred parent. Instead of selecting the best

(fragile) node as the preferred parent, discovering if there are new parent candidates

will help accurate parent change.

28

When proactive discovery is triggered, MobiRPL broadcasts a single DIS message

to request DIO messages from neighboring nodes. MobiRPL uses the reserved 1 bit of

DIS message to indicate whether the DIS is for proactive discovery or not. This flagged

DIS triggers two different operations at a DIS receiver compared to a normal DIS. (1)

When a node receives a DIS sent for proactive discovery, it selectively responds to

the DIS, only when it can be a parent of the DIS sender (i.e., its Rank is lower than

or equal to the DIS sender’s Rank). Note that the proactive discovery is for finding

potential parents. (2) If the DIS receiver decides to respond, it immediately sends a

DIO message but does not reset the TrickleTimer. This is because sending multiple

DIOs to the mobile node does not add much value to its parent table. The mobile

node keeps moving, and the information given by multiple DIOs will be outdated soon

anyway. These two unique actions at a DIS receiver reduce communication overhead

without sacrificing the accuracy of proactive discovery.

Overall, with the three components described so far, our connectivity management

mechanism timely manages connectivity with low overhead in mobile LLNs. This

mechanism maintains connectable routing paths more effectively, using the RSSI and

hop distance-based objective function which will be described next.

2.5.3 RSSI and Hop Distance-based Objective Function

ETX is slowly updated and cannot distinguish a robust link from a potentially fragile

link. To alleviate the problems, we introduce RSSI and hop distance-based objective

function (RHOF) that utilizes the hop distance from the root for Rank and RSSI for

the link quality metric.

Metric choice: Hop distance, as pure routing-layer information, does not include link

quality information at all. This is why end-to-end ETX, which includes multi-hop link

cost from the preferred parent to the root, is used for Rank instead of hop distance in

static LLNs. In mobile LLNs, however, link cost information in ETX is not reliable,

even more so in the case of multi-hop link cost in end-to-end ETX (accumulated from

29

the root). Thus in mobile LLNs, simply using hop distance without link quality infor-

mation is more reliable than using inaccurate link quality information in end-to-end

ETX. Therefore RHOF calculates Rank from hop distance as follows.

Rank(N) = Rank(P) +MinHopRankInc. (2.6)

where MinHopRankInc is the minimum unit of Rank increase defined in RPL stan-

dard.

Although MobiRPL does not allow a node to know multi-hop link cost from its

parent to the root, it tries to accurately identify one-hop link cost from the node to its

parent, which is necessary for mobile LLNs. To this end, RHOF utilizes RSSI as the

link quality metric. Although RSSI is a highly fluctuating metric, there have been a

number of recent attempts to use RSSI as a link quality metric by taking advantage

of its simplicity [26, 55, 56]. As a signal strength metric related to physical distance,

RSSI can distinguish a robust link (e.g., -50 dBm) from a possibly fragile link (e.g., -85

dBm) regardless of the current transmission performance. Note that PDR can be 100%

for both links. Moreover, updating RSSI does not require any unicast transmission; it

is easily updated from receiving any packets (data, DIS, ACK, DIO, etc.). Since RSSI

is not a statistical metric, it can be measured from a single packet reception. Thus,

using RSSI enables to update link cost fast in mobile LLNs. In addition, we address

the challenge of using RSSI, high fluctuation, as below.

Link quality classification: To utilize RSSI while mitigating its fluctuation, RHOF

does not use raw RSSI values but link quality zones. Specifically, RHOF classifies

neighboring nodes into three zones according to the lastly measured RSSI as shown in

Table 2.2. Inspired by Thread [55], a network protocol currently being actively used

in the IoT domain, RHOF classifies nodes with RSSI above RSSIthr as a white zone.

The nodes connected by the link with RSSI lower than the threshold are classified

as grey zone. To handle RSSI fluctuation, RHOF considers hysteresis in comparing

RSSI values. RHOF classifies the nodes that seem to be disconnected into a black

zone. RHOF regards the link with N -consecutive packet losses as disconnected. The

30

Table 2.2: RHOF with a controllable threshold and a fixed hysteresis (4 dB)

Condition Zone

Parents with higher RSSI than RSSIthr White zone

Parents with lower RSSI than RSSIthr Gray zone

Blacklisted parents Black zone

nodes determined as disconnected by connectivity management mechanism are also

classified as the black zone. RHOF selects the best preferred parent among the parents

in the parent table based on the Rank and the zone determined by RSSI.

Parent selection: As discussed before, MobiRPL allows mobile nodes to participate

in packet forwarding. However, static nodes can provide a more stable routing path

than mobile nodes. Therefore, it is reasonable to prefer static nodes rather than mobile

nodes in the best parent selection. We propose a simple yet effective method that makes

static node be preferred in parent selection. This method does not explicitly distinguish

the roles of the mobile and static nodes.

We use the mobility information broadcasted by mobility detection mechanism.

RHOF calculates priority for each parent based on the mobility information and the

measured RSSI. RHOF prefers parents with higher priority as preferred parent. Using

this priority, RHOF can choose a preferred parent that is suitable for itself, taking into

account the mobility of neighboring nodes as well as the Rank and RSSI. Table 2.3

shows how this priority is calculated. We note that the priority is differently calcu-

lated in static nodes and mobile nodes. This is because the preference according to the

RSSI and the mobility is different between static nodes and mobile nodes. Static nodes

can select static preferred parent that can reduce Rank even if RSSI is lower than the

threshold. On the other hand, maintaining connectivity is essential for mobile nodes,

so that mobile nodes must choose high RSSI preferred parent first.

RHOF never considers the nodes in the black zone as a preferred parent candidate.

The blacklisted nodes are excluded from the parent change process until connectivity

31

Table 2.3: RHOF priority calculation from the perspective of a static node and a mobile node

Static node perspective Mobile node perspective

Zone Static Mobile Zone Static Mobile

White 1 3 White 1 2

Gray 2 4 Gray 3 4

is confirmed through packet reception. Between the nodes not in the black zone, RHOF

prioritizes nodes with a higher priority over nodes with a lower priority. The node with

a smaller Rank is preferred among the nodes with the same priority. For nodes with

the same priority and Rank, RHOF chooses the node with higher RSSI. Suppose the

current preferred parent and the newly selected best parent have the same priority and

Rank, and the difference between their RSSI values is smaller than the hysteresis. In

that case, RHOF does not change the preferred parent and reduce routing overhead.

Because RHOF considers RSSI and Rank together in the preferred parent selec-

tion, sometimes child or descendant nodes can be seen as an attractive parent candi-

date. For example, if there is a very close child node that is classified as the white zone

and all other nodes are in the gray zone, the child node might have a higher priority in

preferred parent selection. However, choosing such a child node could make a routing

loop occur. To prevent this, we add a “Rank filter” as a part of our RHOF. Rank filter

allows a node to exclude the neighbor nodes with a Rank greater than or equal to it-

self from parent candidates. This filter makes RHOF consider only nodes that are not

expected to be children or descendants.

Overall, RHOF makes MobiRPL choose the best preferred parent to maintain con-

nectivity in a mobile scenario. The synergy between the three mechanisms introduced

and the basic RPL operations enables MobiRPL to effectively perform data delivery

even in mobile LLNs.

32

2.6 Performance Evaluation

In this section, we evaluate MobiRPL on Cooja simulator and a real-world testbed.

MobiRPL aims to improve the overall performance of RPL to support mobile nodes

in non-hybrid LLNs. We, therefore, compare MobiRPL against the default RPL. In

addition, we show that appropriately improved RPL may be more suitable for mobile

LLNs than MANET routing protocols (e.g., LOADng). Therefore, we compare Mo-

biRPL with LOADng in terms of various performance perspectives. We discuss the

details of how well MobiRPL adapts to mobile LLN environments and achieves im-

proved routing performance. We first examine the impact of MobiRPL’s mechanisms

and parameters on performance. We then verify the performance of MobiRPL in more

complex and diverse scenarios. In the following sections, if static nodes achieve PDRs

of nearly 100%, we omit the plots for the PDRs of the static nodes.

2.6.1 Implementation and Evaluation Environments

We implement MobiRPL on Contiki OS version 3.0. Our implementation supports a

TelosB-clone mote. As an underlying link layer, we use both always-on link layer

(NullRDC) and ContikiMAC provided by Contiki OS. When applying ContikiMAC,

we set the sleep interval as 31.25 msec (32 Hz channel check rate), to provide enough

transmission chances in mobile scenarios. All the evaluation results are averaged over

five repetitive experiments.

For Cooja simulation-based evaluations, we use three scenarios. The first scenario

is identical to the scenario 2 in Fig. 2.3 and Table 2.1. We will call this scenario Cooja-

1. Fig. 2.8 shows the second and third scenarios of Cooja simulation-based evaluation.

In these two scenarios of multiple mobile nodes, the root node is at the center, and

six static nodes are located around the root in a regular hexagonal shape. The distance

between two adjacent nodes is 40 m. We deploy up to eighteen mobile nodes around

the root and static nodes. Mobile nodes move inside a circle around the root node. We

33

set the radius of the circle where mobile nodes can move as 200 m and 250 m. All the

nodes have the same transmission range (50 m).

There are shaded areas where mobile nodes cannot be connected to static nodes,

which is represented as a gray area in Fig. 2.8. Mobile nodes independently move

following Random way-point model [1] with the minimum and maximum speeds of

0.5 m/s and 2.0 m/s, respectively. We will name the scenarios with the radius of 200

m and 250 m as Cooja-2 and Cooja-3, respectively. Using the Cooja-2 and Cooja-3

scenarios, we examine the performance of MobiRPL in situations where the number

of mobile nodes is large. We also investigate whether the mobile node’s participation

in packet forwarding helps other mobile nodes maintain connectivity to the network

when the static nodes cannot provide connectivity.

For the testbed-based evaluation, we use the testbed shown in Fig. 2.1. For eval-

uations including mobility, we add three mobile nodes to the testbed. We configure a

mobile node using a model train, Raspberry-pi7, portable battery8, and TelosB-clone

mote, as illustrated in Fig. 2.9a. On the line drawn with arrows in Fig. 2.1, model train

rails are installed. We installed model rails in various places such as corridors, class-

rooms, laboratories, supply rooms, warehouses. Many obstacles exist there, such as

desks, chairs, PCs, wooden or steel shelves, trash cans, paper boxes, etc, which can

disrupt communication or cause RSSI fluctuations. §2.6.1 is a picture of our mobility-

augmented testbed taken at the corner where node 24 is located. Three mobile nodes

travel back and forth along their corresponding lines at a speed of about 0.4 m/s.

Table 2.4 summarizes the default experimental parameters. Unless explicitly stated

in each experiment, we apply the default parameters in Table 2.4.
7We used Raspberry-pi 2 model B for logging real-time evaluation results.
8We used a portable battery named PLM09ZM, made by Xiaomi, whose capacity is 10,000 mAh. In

our evaluation, the battery lasted about 26 hours.

34

1 2

34

5

6 7

200 m

200 m

1 2

34

5

6 7

250 m

250 m

Root node

Static node

(a) Simulation topology with a radius of

200 m (Cooja-2)

1 2

34

5

6 7

200 m

200 m

1 2

34

5

6 7

250 m

250 m

Root node

Static node

(b) Simulation topology with a radius of 250 m

(Cooja-3)

Figure 2.8: Mobile LLN scenarios on the Cooja simulator with one root, 6 static nodes, and

up to 18 mobile nodes. A small circle indicates each node’s transmission range. The mobile

nodes move within the outer circle following Random way-point model [1].

2.6.2 Impact of MobiRPL Mechanisms

We first investigate the impact of MobiRPL’s mechanisms in a simple scenario, Cooja-

1. The mobile node (node 14) moves along the line illustrated in Fig. 2.3 at a speed of 1

m/s. We apply the always-on link layer (NullRDC) to this evaluation to concentrate on

the behavior of mechanisms in mobile LLNs. We consider upward traffic only for ease

of analysis. For each node, a total of 120 upward packets are transmitted to the root

node every 30 seconds. The mobile node is allowed to participate in packet forwarding.

We measure various performance metrics while changing the combination of mech-

anisms applied. As shown in Table 2.5, we examine four cases: the default RPL (case

1), RPL with connectivity management without proactive discovery (case 2), RPL with

RHOF and connectivity management without proactive discovery (case 3), and Mo-

biRPL (case 4). We apply the mechanism of mobility detection in all cases.

The minimum timeout period (Tl,min) is 16 s, and the number of probing (N) for

adaptive probing is 2 (twice). The threshold of parent change interval for mobility

35

(a) Mobile node (b) Mobile node’s travel path consisting of model rails

Figure 2.9: Mobile node configuration and the travel path of mobile nodes. The model rail is

installed in the path shown in Fig. 2.1, and the mobile node travels back and forth along the

model rail.

detection (tc,thr) is 120 s. The RSSI threshold (RSSIthr) of RHOF is -83 dBm.

Fig. 2.10a shows the average upward PDR. While RPL shows PDR lower than

30%, the connectivity management mechanism raises the PDR of mobile nodes to

80%. Other mechanisms, such as RHOF and proactive discovery, further increase the

PDR of mobile nodes. The performance improvement comes from accurate routing de-

cisions achieved by our proposed mechanisms. As presented in Fig. 2.10c, MobiRPL’s

mechanisms successfully improve the accuracy of routing decisions made by mobile

nodes.

Fig. 2.10d, which shows the average precision and recall of the mobile node’s

parent table measured when parent changes occur, accounts for this improved routing

decision accuracy. The connectivity management mechanism dramatically improves

the inferior precision of RPL by eliminating outdated parent entries from the parent

table. Although RHOF shows a slightly lower precision than MRHOF, considering

that the connectivity management mechanism aggressively removes the parent entries

and the number of parents believed to be connected is reduced, the precision does not

drop significantly. As proactive discovery is applied, the precision rises again.

Since the connectivity management mechanism deletes the parent entries aggres-

sively, we can observe that the recall also drops. However, our RHOF and proactive

36

Static node Mobile node
0

20

40

60

80

100

P
D

R
 (

%
)

Case 1

Case 2

Case 3

Case 4

(a) PDR

Static node Mobile node
0

0.5

1

1.5

2

2.5

P
a
re

n
t
c
h
a
n
g
e
 /
m

in
 /
n
o
d
e

Case 1

Case 2

Case 3

Case 4

(b) Parent change (mobile node)

1 2 3 4

Case

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)

(c) Accuracy of routing decision (mobile node)

1 2 3 4

Case

0

20

40

60

80

100

P
a
re

n
t
ta

b
le

 a
c
c
u
ra

c
y
 (

%
)

Precision

Recall

(d) Accuracy of parent table (mobile node)

1 2 3 4

Case

0

5

10

15

20

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(e) Routing overhead (static node)

1 2 3 4

Case

0

5

10

15

20

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(f) Routing overhead (mobile node)

Figure 2.10: Performance of MobiRPL depending on the type of mechanisms applied. We

test four cases described in Table 2.5

37

Table 2.4: Evaluation settings and parameters

Parameters Testing environments Values

tc,thr All 120 s

Tl,min All 16 s

N All 2

RSSIthr All -83 dBm

TDIO,min All 4.096 s

TDIO,max All 1048.576 s

ContikiMAC

channel check rate
All 32 Hz

Cooja-1 120 upward packets (1 pkt / 30 secs)

Cooja-2 and 3 100 up/downward packets (1 pkt / 60 secs)Traffic pattern

Testbed 120 up/downward packets (1 pkt / 60 secs)

Cooja-1 1 m/s

Cooja-2 and 3 0.5-2.0 m/s (Random way-point model)Mobile node speed

Testbed 0.4 m/s

Cooja-1, 2, and 3 0 dBm
Transmission power

Testbed -10 dBm with 5 dB antenna

discovery complement this decrease in recall. MRHOF changes the preferred parent

when the link quality with the current preferred parent becomes very poor due to the

nature of ETX. On the other hand, RHOF changes the preferred parent if a better pre-

ferred parent candidate exists, even if the link quality with the current preferred parent

is not very bad. In other words, RHOF reacts more actively to the information added

to the routing table than MRHOF. Hence, the recall measured at the moment of parent

change also increases. Proactive discovery increases recall by adding new parents to

the parent table.

This improved routing accuracy allows the mobile node to change its preferred

parent more frequently and maintain connectivity. As seen in Fig. 2.10b, MobiRPL’s

38

Table 2.5: Combination cases of MobiRPL mechanisms for evaluating the impact of Mo-

biRPL mechanisms

Case
Connectivity

Management
RHOF

Proactive

discovery

1 X X X

2 O X X

3 O O X

4 O O O

mechanisms increase the number of parent changes made by the mobile node. We note

that RHOF and proactive discovery reduces the number of parent changes while they

increase PDR. This result confirms that RHOF and proactive discovery help the mobile

node select the preferred parent with more robust connectivity, thus lowering the need

to change the preferred parent.

Figs. 2.10e and 2.10f show the average routing overhead created by static nodes

and mobile nodes, respectively. Compared to RPL, MobiRPL’s mechanisms generate

more routing overhead. However, this increased routing overhead is not wasted, and it

makes mobile nodes successfully increase PDR by maintaining connectivity. Apply-

ing RHOF and proactive discovery slightly decreases static nodes’ routing overhead

because mobile nodes operate well with fewer parent changes reducing the burden on

static nodes.

2.6.3 Impact of MobiRPL Parameters

We now perform experiments with various MobiRPL parameters in Cooja-1 (one mo-

bile node) with the same evaluation settings used in §2.6.2. The most important two

parameters in MobiRPL are the minimum timeout period (Tl,min) and the number of

times (N) probing is performed within the timeout period. The mobile node sets the

timeout period of neighboring nodes to (Tl,min). Therefore, Tl,min is directly related to

39

Table 2.6: Parameter settings for evaluating the impact of MobiRPL parameters

Parameter setting Tl,min (s) N Parameter setting Tl,min (s) N

1 16 1 7 32 3

2 16 2 8 32 4

3 16 3 9 65 1

4 16 4 10 65 2

5 32 1 11 65 3

6 32 2 12 65 4

how MobiRPL aggressively blacklists neighbor nodes. MobiRPL determines the link

with N -consecutive packet losses as disconnected. Therefore, increasing N improves

the accuracy of connectivity examination, but a larger N causes a greater delay in

connectivity judgment.

We evaluate MobiRPL with different parameter settings as described in Table 2.6

and plot the results in Fig. 2.11. Fig. 2.11a shows the average end-to-end PDR of the

mobile node. When Tl,min is 16 s, except for the case where N is 1, the mobile node

achieves the PDR close to 100%. Even when N is 1, the mobile node has a PDR of

higher than 95%. If Tl,min is 32 s, the PDR is not close to 100% in all cases, but it

approaches 100% as N increases. However, the PDR decreases as N increases when

Tl,min is set to 65 s, and it never reaches 100%. As shown in Fig. 2.11b, the rout-

ing decision accuracy accounts for these two opposite tendencies of PDR. Increasing

N makes routing decisions accurate when Tl,min is 16 s or 32 s, but it degrades the

accuracy when Tl,min is 65 s.

We then discuss why N affects routing accuracy and PDR differently according

to Tl,min. If Tl,min is set large, MobiRPL generates timeouts for non-preferred parents

slowly. Considering that the probing interval for the preferred parent (tp) is set propor-

tionally to Tl,min, using large Tl,min causes MobiRPL to take a longer time performing

probing N times. Such a delay in timeout and probing can make the parent table of

40

16 32 65

 T
l,min

0

50

100
P

D
R

 (
%

)

 N = 1

 N = 2

 N = 3

 N = 4

(a) PDR (mobile node)

16 32 65

 T
l,min

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)

 N = 1

 N = 2

 N = 3

 N = 4

(b) Accuracy of routing decision (mobile node)

1 2 3 4 5 6 7 8 9 10 11 12

Parameter setting

0

2

4

6

8

10

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(c) Routing overhead (static node)

1 2 3 4 5 6 7 8 9 10 11 12

Parameter setting

0

10

20

30

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(d) Routing overhead (mobile node)

Figure 2.11: Performance of MobiRPL depending on various parameter settings described in

Table 2.6. For three different minimum timeout period values (Tl,min) of 16, 32, 65 seconds,

we evaluate MobiRPL while varying the number of times probing is performed (N) from 1 to

4.

MobiRPL full of outdated entries. In this situation, increasing N causes probing oper-

ation to take more time, and MobiRPL cannot avoid wrong routing decisions. In short,

if Tl,min is not set short enough, increasing N does not have any advantage other than

accurately determining connectivity to the preferred parent. From the discussion so far,

we can derive a design guideline for MobiRPL to set Tl,min and N . MobiRPL should

have Tl,min value small enough to cope with mobility. If Tl,min is appropriately set,

the PDR should increase as N increases.

Figs. 2.11c and 2.11d show the routing overhead of MobiRPL. Using small Tl,min

41

induces more routing overhead because it makes timeout and probing occur more fre-

quently and MobiRPL perform more routing operations. Increasing N also causes

more routing overhead because it makes MobiRPL perform more probings. Overall,

Tl,min and N affect the PDR and the amount of routing overhead, which is directly

related to the duty cycle of MobiRPL node and contention in the network. Therefore,

Tl,min and N should be set appropriately to guarantee a high PDR with acceptable

overhead.

Combining the discussions so far, although these two parameters’ appropriate val-

ues are environment-dependent, it is possible to set universally applicable parameters

in various environments. Without restrictions on network capacity and energy con-

sumption, it is sufficient to set Tl,min very small (e.g., 0.1 seconds) and then set N

to an appropriately large value (e.g., 4). If there are limitations to network capacity

and energy consumption in the real world, we cannot set Tl,min and N this way. The

device’s transmission range is generally predetermined in the deployment phase. The

mobile node’s speed is given within a specific range (e.g., a person’s walking speed is

about 1 m/s). Given this, we can derive appropriate values for Tl,min and N in advance,

which can meet the desired reliability and amount of overhead.

Considering all these, we set Tl,min to 16 s and N to 2 in the following evaluations.

With these parameters, mobile nodes can determine non-preferred parents that do not

have communication history for the last 16 seconds as disconnected. By setting N to 2,

mobile nodes can examine connectivity with the preferred parent at least once every 5

seconds via probing. Furthermore, due to the additional use of messages such as DIO,

the interval for verifying connectivity with the preferred parent node becomes less than

5 seconds. Thus, even if a mobile node selects a disconnected node as a new preferred

parent, it can quickly check real connectivity, enabling connecting with other parents

again.

42

RPL MobiRPL
0

20

40

60

80

100
P

D
R

 (
%

)
0.5 m/s

1 m/s

2 m/s

5 m/s

(a) PDR (mobile node)

RPL MobiRPL
0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

) 0.5 m/s

1 m/s

2 m/s

5 m/s

(b) Accuracy of routing decision (mobile node)

Figure 2.12: Performance of MobiRPL depending on the speed of the mobile node. For four

different speeds of 0.5, 1, 2, 5 m/s, we evaluate MobiRPL.

2.6.4 Impact of circumstance parameters

We now set Tl,min and N to 16 s and 2, respectively. In Cooja-1, and with the same

evaluation settings applied in §2.6.2, we perform experiments while varying circum-

stance parameters, i.e., the speed of the mobile node to 0.5, 1, 2, and 5 m/s. Fig. 2.12

plots the result. As shown in Fig. 2.12a, at all speeds, MobiRPL outperforms RPL in

PDR. When the speed is 0.5, 1, and 2 m/s, MobiRPL achieves a PDR above 90%. At a

speed of 5 m/s, which is much faster than the speed we consider, the PDR of MobiRPL

drops to around 60%, but it is still 40% higher than RPL.

As shown in Fig. 2.12b, the PDR improvement comes from accurate routing de-

cisions achieved by MobiRPL. At the speed of 1 m/s, MobiRPL shows the best rout-

ing decision accuracy and PDR. At 0.5 m/s, MobiRPL’s routing decision accuracy

decreases slightly. The topology setting of Cooja-1 accounts for this difference. The

threshold of the parent change interval for mobility detection (tc,thr) is 120 s. If the

mobile node moves at 0.5 m/s in the current topology, changing the preferred parent

sometimes takes longer than 120 s, leading to inaccurate mobility detection and some

decline in routing decision accuracy.

When the mobile node does not move too slowly (e.g., faster than 0.5 m/s), it cor-

43

rectly detects its mobility most of the time. However, if the mobile node moves quickly

(e.g., 2 m/s), the routing decision accuracy can degrade due to the proactive nature of

MobiRPL. Nevertheless, as shown in Fig. 2.12a, MobiRPL overcomes deterioration

in routing decision accuracy and achieve high PDR through its connectivity manage-

ment mechanism. MobiRPL still surpasses RPL even if the mobile node moves very

fast (e.g., 5 m/s), but more appropriate parameters may be required for MobiRPL to

perform better at such a rapid speed.

RPL shows poor PDR and routing decision accuracy regardless of the mobile

node’s speed. We found that no matter the mobile node’s speed, once outdated routing

information fills the mobile node’s parent table, RPL begins to make wrong routing de-

cisions repeatedly. RPL shows low PDR at all speeds because it cannot make accurate

routing decisions.

2.6.5 Performance of MobiRPL in complicated scenarios

From now on, we evaluate MobiRPL in more complicated scenarios, Cooja-2 and

Cooja-3. The underlying link layer is ContikiMAC (with a channel check rate of 32

Hz) in both scenarios. We consider a bidirectional traffic scenario. All the nodes, in-

cluding static and mobile nodes, transmit one upward packet and one downward packet

every 60 s (100 upward packets and 100 downward packets in total). In these two sce-

narios, static nodes cannot cover all the areas; thus, there is a shaded area. We first

examine the impact of the number of mobile nodes, in Cooja-2. We then evaluate the

impact of allowing mobile nodes to participate in routing, in both Cooja-2 and cooja-3

scenarios. We use boxplots to plot and analyze the performance of all individual nodes.

Impact of the number of mobile nodes: We now test the impact of the number of

mobile nodes. To this end, in Cooja-2, we evaluate the performance of RPL and Mo-

biRPL, changing the number of mobile nodes to 2, 3, 6, 12, and 18. There are six static

nodes (excluding the root node) in Cooja-2; thus, the ratio of mobile nodes to static

nodes varies by 1/3, 1/2, 1, 2, and 3, respectively. In addition, we measure duty cycle

44

2 3 6 12 18

Number of mobile nodes

0

20

40

60

80

100

P
D

R
 (

%
)

(a) PDR of RPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

20

40

60

80

100

P
D

R
 (

%
)

(b) PDR of MobiRPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(c) Duty cycle of RPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(d) Duty cycle of MobiRPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(e) Duty cycle of RPL (static node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(f) Duty cycle of MobiRPL (static node)

0 1000 2000 3000

Latency per hop (ms)

0

0.2

0.4

0.6

0.8

1

2 nodes

3 nodes

6 nodes

12 nodes

18 nodes

(g) Latency of RPL (mobile node)

0 1000 2000 3000

Latency per hop (ms)

0

0.2

0.4

0.6

0.8

1

2 nodes

3 nodes

6 nodes

12 nodes

18 nodes

(h) Latency of MobiRPL (mobile node)

Figure 2.13: Performance of MobiRPL compared to RPL varying the number of mobile nodes

in Cooja-2.

45

to compare energy consumption. We also examine per-hop latency.

Fig. 2.13 plots the performance of RPL and MobiRPL. Figs. 2.13a and 2.13b show

the PDR of mobile nodes in RPL and MobiRPL, respectively. While RPL always shows

PDR lower than 50%, MobiRPL achieves PDR around 80%. Interestingly, MobiRPL’s

PDR even increases with the number of mobile nodes. The positive impact of mobile

nodes in MobiRPL is because MobiRPL makes mobile nodes participate in packet

forwarding timely and effectively. Given that a node in the shaded area can deliver

its packets only through other mobile nodes, more mobile nodes in MobiRPL cause

more potential forwarders for the nodes in the shaded area. In contrast, RPL cannot

timely update routes with mobile nodes, resulting in lower PDR in the presence of

more mobile nodes; mobile nodes cause nothing but chaos in RPL.

Figs. 2.13c to 2.13f show the duty cycle of static and mobile nodes in RPL and

MobiRPL. In all the cases, MobiRPL shows a higher duty cycle than RPL since it

generates more control packets to maintain connectivity. However, in exchange for in-

creased energy consumption, MobiRPL achieves much higher PDR compared to RPL.

Lastly, Figs. 2.13g and 2.13h show the average per-hop latency among the packets

successfully delivered to the destination node. The results show that MobiRPL delivers

twice as many packets as RPL with slightly increased latency; it saves many packets

by using more time for proper routing. It is important to note that low latency in RPL

does not mean that it is effective in mobile LLNs but that it delivers packets only from

the nodes nearby the root. Moreover, due to its effective mobile routing, the maximum

latency in MobiRPL is much shorter than that in RPL, meaning that MobiRPL is not

likely to make packets wander in the network. We note that this latency will vary

according to the underlying link layer protocol.

Impact of allowing mobile nodes to participate in routing: From now on, we eval-

uate MobiRPL in Cooja-2 and Cooja-3. We set the number of mobile nodes to 18, and

test the performance of MobiRPL and RPL. We designed MobiRPL to allow mobile

nodes to participate in packet forwarding, assuming this will improve mobile nodes’

46

packet delivery in mobile LLNs. To examine this, we simulate two cases: 1) mobile

nodes are not allowed to participate in packet forwarding, and 2) mobile nodes par-

ticipate in packet forwarding. In case 1, a mobile node operates as a leaf node that

does not generate multicast DIO messages and does not become the preferred parent

of other nodes.

Fig. 2.14 plots the performance of RPL and MobiRPL. Figs. 2.14a and 2.14b show

the PDR of mobile nodes in Cooja-2 and Cooja-3. In both scenarios, regardless of

whether packet forwarding of mobile nodes is prohibited or not, MobiRPL successfully

increases the PDR by two to three times compared to RPL. Cooja-3 has a wider shaded

area than Cooja-2, and it shows lower PDRs. However, MobiRPL still shows higher

PDR than RPL.

The PDR of RPL decreases if mobile nodes participate in packet forwarding due to

its ineffective mobile routing. In MobiRPL, however, the participation of mobile nodes

in packet forwarding improves the PDR. This is because a mobile node that moves into

the shaded area can acquire connectivity to the root node with the help of other mobile

nodes. The performance improvement is more significant in Cooja-3 than Cooja-2;

using mobile nodes for packet forwarding becomes more useful as the shaded area

becomes broader.

We now analyze energy consumption. Figs. 2.14c to 2.14f show the duty cycle

of RPL and MobiRPL in the both scenarios. In the same scenarios, for both static and

mobile nodes, MobiRPL shows a higher duty cycle than RPL since MobiRPL generates

more control packets than RPL to maintain connectivity.

In Cooja-2 (a narrow shaded area), if mobile nodes are allowed to forward pack-

ets, the duty cycles of static and mobile nodes increase in the both protocols due to

the mobile nodes’ routing and forwarding overheads. On the other hand, in Cooja-3

(a broad shaded area), allowing packet forwarding of mobile nodes still increases the

duty cycle of RPL, but decreases the duty cycle of MobiRPL. Despite mobile nodes’

additional control overhead, MobiRPL’s timely management of mobile routes signifi-

47

RPL MobiRPL
0

20

40

60

80

100

P
D

R
 (

%
)

Prohibited

Allowed

(a) PDR in Cooja-2 (mobile node)

RPL MobiRPL
0

20

40

60

80

100

P
D

R
 (

%
)

Prohibited

Allowed

(b) PDR in Cooja-3 (mobile node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(c) Duty cycle in Cooja-2 (mobile node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(d) Duty cycle in Cooja-3 (mobile node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(e) Duty cycle in Cooja-2 (static node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(f) Duty cycle in Cooja-3 (static node)

Figure 2.14: Performance of MobiRPL compared to RPL in complicated scenarios (Cooja-2

and Cooja-3).

48

RPL MobiRPL LOADng
0

20

40

60

80

100
P

D
R

 (
%

)

(a) PDR (mobile node)

RPL MobiRPL LOADng
0

20

40

60

80

100

P
D

R
 (

%
)

(b) PDR (static node)

RPL MobiRPL LOADng
0

10

20

30

40

D
u
ty

 c
y
c
le

 (
%

)

(c) Duty cycle (mobile node)

RPL MobiRPL LOADng
0

10

20

30

40

D
u
ty

 c
y
c
le

 (
%

)

(d) Duty cycle (static node)

Figure 2.15: Performance of MobiRPL compared to RPL and LOADng on a real world

mobility-augmented testbed (Fig. 2.9).

cantly reduces route repair overhead, resulting in lower duty cycle. In RPL, however,

there is no benefit for mobile nodes to participate in packet forwarding.

Lastly, note that, as discussed in §2.2, most of RPL-based mobile routing proto-

cols prohibit mobile nodes from participating in packet forwarding [11–18]. Without

careful design choices, allowing mobile nodes to forward packets can result in perfor-

mance degradation as RPL. For example, some RPL-based mobile routing protocols

allow mobile nodes to forward packets [21, 24–26], but exploits ETX-based MRHOF

which is inappropriate for mobile LLNs as shown in §2.6.2. In contrast, the results

show that our design choices for MobiRPL to allow mobile nodes’ packet forwarding

is effective.

49

Table 2.7: Performance of MobiRPL compared to RPL and LOADng

Protocol
Node

type

PDR

(%)

Duty

cycle

(%)

Routing

overhead

(routing pkts

/min /node)

Parent

change

(parent change

/min /node)

Queue

loss

(queue loss

/min /node)

RPL
Static 98.63 3.47 0.64 0.03 0.00

Mobile 84.75 3.94 1.52 0.17 0.00

MobiRPL
Static 98.06 5.58 13.07 0.51 0.01

Mobile 94.36 8.28 29.83 2.96 1.41

LOADng
Static 22.01 23.88 146.71 - 21.17

Mobile 11.92 31.07 180.96 - 96.60

2.6.6 Performance of MobiRPL in real world

We evaluate MobiRPL on a real indoor testbed, the same as in §2.3.1. There are 31

TelosB-clone static nodes, including one root node, as depicted in Fig. 2.1. Besides,

three mobile nodes (nodes 32, 33, and 34) are deployed. Each node uses -10 dBm

transmission power and an antenna of 5 dB gain. With various real-world obstacles,

the testbed setting forms a 4-hop network where the communication range is 10-15

m, shorter than that in Cooja-based simulations (50 m). Considering that the mobile

nodes move around at the speed of 0.4 m/s, we apply the same system parameters:

Tl,min = 16s and N = 2. For the underlying link layer, ContikiMAC with a channel

check rate of 32 Hz is used. We consider a bidirectional traffic scenario where all nodes

generate one upward packet and one downward packet every 60 s (120 upward packets

and 120 downward packets in total). We allow mobile nodes to participate in packet

forwarding. We compare MobiRPL with RPL and LOADng in terms of PDR and duty

cycle. Fig. 2.15 and Table 2.7 show the results.

As can be seen in Figs. 2.15a and 2.15b, although the mobile nodes’ movement

paths is simpler than those in the previous Cooja simulation scenarios, RPL provides

50

significantly lower PDR for mobile nodes than static nodes. LOADng shows the lowest

PDR because LOADng’s flooding-based routing operation incurs severe congestion,

preventing proper route discovery. On the other hand, MobiRPL stably provides high

PDR both for mobile and static nodes.

For static nodes, MobiRPL provides slightly low PDR in the early stage since its

mobility detection mechanism requires some time for each node to identify itself: static

or mobile node. Once static nodes identify themselves as static, however, they start to

provide high PDR values, with a smaller deviation compared RPL. This is because

MobiRPL utilizes the mobility type information, letting static nodes select other static

nodes (robust paths) as preferred parents, instead of mobile nodes (fragile paths). With-

out mobility detection, RPL sometimes selects mobile nodes as preferred parents.

As presented in Figs. 2.15c and 2.15d, compared to RPL, MobiRPL increases the

duty cycle (energy consumption) of both static nodes and mobile nodes due to more

control traffic (Table 2.7). This increase is larger than that observed in the simulations

(Cooja-1, Cooja-2, and Cooja-3) because the topology in the testbed is much denser

than that in the simulation environments, resulting in more control packets. However,

the control traffic is needed to timely update mobile routes, resulting in more parent

changes in MobiRPL than RPL as shown in Table 2.7. In addition, MobiRPL’s con-

trol traffic still low enough to deliver most data packets without congestion problems,

which is verified by the high PDR in Figs. 2.15a and 2.15b. Compared to LOADng that

shows the worst duty cycle and PDR performance (see queue loss in Table 2.7) due

to too much control traffic, MobiRPL provides a reasonable trade-off between control

traffic and PDR performance.

We have observed that when a mobile node goes far away from the root node, it

can be an attractive parent candidate even for static nodes since it has a smaller Rank

compared to the nodes it will meet. If parent selection relies only on Rank, even static

nodes will handover to mobile nodes. However, our RHOF chooses preferred parents

by considering the priority derived from RSSI and mobility with Rank. Therefore, Mo-

51

biRPL successfully prevents mobile nodes from becoming preferred parents of static

nodes.

2.7 Discussion

There were three considerations for the design of MobiRPL: (1) it should operate in

non-hybrid mobile LLNs, (2) it should operate with minimal assumptions and external

mechanisms, and (3) it should operate proactively. While satisfying these three con-

siderations, MobiRPL shows improved performance over RPL and LOADng, even at

a speed of 2 m/s (similar to human movement), even when duty cycling is applied.

However, MobiRPL did not completely solve all the problems with mobile LLNs. Mo-

biRPL can perform better if some assumptions or external mechanisms are applied. For

example, if an external localization method can accurately detect mobility, MobiRPL

would be able to make more correct routing decisions.

Considering the proactive nature of MobiRPL, a slight deterioration in the accuracy

of routing decisions is inevitable. For example, MobiRPL’s connectivity management

mechanism can misclassify connectable parents as disconnected due to the aggressive

timeout. However, the proactive discovery mechanism in MobiRPL can find new parent

nodes before all parent nodes are blacklisted. As such, MobiRPL overcomes the inac-

curacy of proactive routing through the cooperation between its mechanisms. At the

same time, parameter settings are important in MobiRPL. Although we provide some

guidelines to choose appropriate parameters, additional parameter tuning considering

operation environments will be required for better energy efficiency.

Despite these limitations, we have shown that MobiRPL improves the performance

of mobile LLNs as a stand-alone proactive routing protocol. The results from Cooja-2

and Cooja-3 demonstrate that MobiRPL operates effectively even in complicated sit-

uations. Besides, the results support our intuition that allowing mobile nodes’ routing

participation is helpful for mobile nodes to deliver more packets. According to the

52

results from the testbed, we confirmed the capability of MobiRPL to cope well with

network dynamics. Therefore, we believe that MobiRPL will perform well, even in

large-sized random mobile LLNs. In addition, for mobile LLN routing protocols that

require some assumptions and mechanisms, MobiRPL may provide basic connectivity

as long as the requirements are satisfied.

As future work, we plan to investigate how to find the best MobiRPL parameter val-

ues according to the environment. We also plan to apply the state-of-the-art link layer

protocol instead of the currently used ContikiMAC. We are considering time-slotted

channel hopping (TSCH) [57] to test how TDMA link layer protocol affects the perfor-

mance of MobiRPL. While resource allocation methods [58, 59] for TSCH protocols

considering mobility have been proposed, combining TSCH with mobile routing pro-

tocols requires further research. Maintaining synchronization would be a challenge,

but the application of TDMA link layer protocol would help lower contention and

improve the performance of MobiRPL.

2.8 Summary

In this chapter, we investigated the routing issues of mobile LLNs. In particular, we de-

signed a routing protocol that operates well in a general mobile LLN, which uses duty

cycling and has static and mobile nodes. In this scenario, we examined the performance

of two representative routing protocols: RPL and LOADng, through experiments us-

ing an indoor testbed and Cooja simulator. As a result, we found that LOADng suffers

severe performance degradation as the number of transmitting nodes increases due to

its reactive operation. On the other hand, we found that RPL does not experience such

a performance deterioration because of its proactive characteristics.

Through extensive experiments, we showed the reasons why RPL cannot support

node mobility. Aiming to support node mobility while maintaining RPL’s proactive

characteristics in mobile LLNs, we designed a more general routing protocol named

53

MobiRPL. MobiRPL includes three new mechanisms: mobility detection, connectivity

management, and RSSI and hop distance-based objective function. We implemented

MobiRPL on Contiki OS and evaluated its performance through simulation and testbed

evaluation. According to the evaluation results, we confirm that MobiRPL outperforms

RPL in reliability and LOADng in energy efficiency. Our MobiRPL can be applied for

more general and various mobile LLNs.

54

Chapter 3

Slot-size Adaptation and Utility-based Aggregation for

Time-Slotted Communication

3.1 Introduction

Time-slotted communication has been long-loved by various communication protocols

and systems. It synchronizes the network, divides time into slots, and a communication

transaction occurs within each timeslot. In contrast to asynchronous random access ap-

proaches such as pure ALOHA and carrier sense multiple access (CSMA), time-slotted

communication can easily coordinate communication or better allocate resources be-

tween devices given that there is a coordinator/master to manage the synchronization.

Therefore, it can improve reliability and throughput by preventing collisions and inter-

ference due to uncoordinated transmissions, and also reduce energy waste attributed to

redundant rendezvous attempts or idle listening [60].

IEEE 802.15.4 TSCH [57], a MAC protocol for LLN, is one of those examples. It

has been designed to satisfy the growing demand for more reliable and energy-efficient

LLNs in emerging IoT applications such as industrial IoT [61–66], in-vehicle IoT [67,

68], environmental monitoring [69–72], home IoT [73], and health IoT [74–76]. TSCH

brings the benefits of time-slotted communication to LLN, and its channel hopping

55

0 2 4 6 8 10

Time (ms)

48

64

80

96

112

128
P

a
c
k
e

k
t

s
iz

e
 (

b
y
te

s
)

Tx

Rx

Process

Offset

Idle

(a) TSCH Tx slot

0 2 4 6 8 10

Time (ms)

48

64

80

96

112

128

P
a

c
k
e

k
t

s
iz

e
 (

b
y
te

s
)

(b) TSCH Rx slot

Figure 3.1: Time usage breakdown of a regular TSCH Tx and Rx slot (of 10 ms) according

to packet size, including ACK in the opposite direction. There are a lot of idle time (in white

color) within a slot.

allows the network to become more robust to external interference or multi-path fading

through frequency diversity. As such, TSCH has shown remarkable performance in the

literature [77–84]

However, time-slotted systems have one fundamental drawback; ‘a slot’ is prede-

fined to be sufficiently long enough to accommodate one exchange of a maximum-

sized packet and an acknowledgment (ACK) 1. If most packets in the system are much

shorter than the maximum, substantial amount of residue time within each slot are

wasted, leading to corresponding amount of loss in effective data rate. The same is

true for TSCH. Fig. 3.1 plots the time usage breakdown of a TSCH slot according

to data packet length, for both transmission (Tx) side and reception (Rx) side includ-

ing ACK, measured from an actual testbed experiment. Idle time ratio increases to

almost 50% as the packet size decreases; i.e., nearly half of the time may be wasted

(§3.2.3). This means, conceptually, a 250 kbps IEEE 802.15.4 PHY can only achieve

up to ∼125 kbps effective data rate using TSCH.

A naive approach would be to shorten the time-slot length. But to what size? Ob-
1There are variant systems where multiple slots can be assigned for a large transaction (e.g. cellular),

but the fundamental concept still holds.

56

viously, a size smaller than the packets would break the basic assumptions of slotted

operation. What if the system has mix of packet sizes from small to big? Furthermore,

what if the application running on the network (and thus the packet sizes) changes after

configuring the slot size? or if multiple applications are running concurrently? These

questions cannot be answered using a pre-configured fixed size slot.

To address this fundamental challenge, we propose “utility-based adaptation of

slot-size and aggregation of packets" (ASAP), a scheme that enables time-slotted sys-

tems to operate more time-efficiently by reducing the idle residue time and improving

the time utility of the slots. ASAP consists of two orthogonal methods: (1) slot-length

adaptation (SLA) adjusts timeslot length network-wide according to the distribution

of packet and ACK sizes observed in the network. (2) utility-based packet aggrega-

tion (UPA) aggregates packets and transmits them in a batch over multiple consecutive

slots when and only when beneficial in terms of slot-utility2. Both methods aim to

minimize wasted time and maximize slot utility, thus achieving higher throughput and

lower latency than the fixed-size time-slotted operation.

We case-study ASAP in the context of TSCH. We implement ASAP on real em-

bedded IEEE 802.15.4 devices using Contiki-OS [85], and evaluate on multiple large-

scale topologies in the FIT/IoT-LAB public LLN testbed [86] with various state-of-

the-art TSCH schedulers. Results show that ASAP improves throughput and reduces

latency of TSCH network by up to 2.21x and 78.7% respectively. Given that our ap-

proaches are not limited to TSCH but can be applied to other time-slotted communi-

cation protocols and systems, we believe ASAP can be a generic solution to the funda-

mental challenge of time-slotted communication.

Our contributions can be summarized as follows.

• We present an analysis of time usage breakdown in TSCH through real measure-

ments to demonstrate the time wastage in slotted communication.
2We later (in §3.4) define ‘slot utility’ as the ratio of the number of packets transmitted to the number

of slots used for those transmissions.

57

A

B

C D

E

(a) Topology

≤ 4.256 ms ≤ 2.4 ms

DATA ACK

TSCH timeslot = 10 ms

Channel
offset

ASN

Timeslot

DàBEàDDàBEàD2

CàBCàB1

BàABàA0

543210

Slotframe Slotframe

(b) TSCH timeslot and channel hopping operations

Figure 3.2: Example of TSCH operation.

• We propose ASAP, consisting of SLA and UPA, to address the problem.

• We case-study ASAP in the context of TSCH. We implement ASAP on real em-

bedded devices, and evaluate in multiple sizeable public testbeds to demonstrate

significant performance improvement.

The remainder of this chapter is organized as follows. We present the background

and motivation in §3.2, and discuss related work in §3.3. We present the design of

ASAP in §3.4, and evaluate ASAP in §3.5. Finally, §3.6 concludes the chapter.

3.2 Background and Motivation

We first provides a brief introduction of TSCH and representative TSCH schedulers

that we case-study on. We then describe the problem and motivation of this work.

3.2.1 Time-Slotted Channel Hopping (TSCH)

TSCH is a MAC protocol standardized in IEEE 802.15.4e [57] that combines time-

slotted communication and channel hopping. TSCH synchronizes the network, and

devices communicate in a time-slotted manner to improve reliability and energy effi-

58

ciency. Channel hopping enables TSCH to be robust to external interference and fading

through channel diversity.

As Fig. 3.2 illustrates, TSCH divides time into timeslots. The length of a timeslot is

typically set to 10 ms, sufficiently long enough for exchanging a maximum-sized (128

Bytes) frame and an ACK of up to 70 Bytes. Each timeslot has an absolute slot number

(ASN), which is initialized to zero at the beginning of the network and then sequentially

incremented. A set of timeslots constructs a slotframe, which is repeated in time and

functions as a unit of TSCH schedule. The number of timeslots in a slotframe is called

slotframe length (LSF). Then, time offset (to) is a relative position of a specific timeslot

within a slotframe calculated as,

to = mod(ASN, LSF). (3.1)

Each schedule has a channel offset (co) used for channel selection in TSCH’s chan-

nel hopping. TSCH decides which channel to operate in each timeslot based on the

following calculation,

Channel = Listc[mod(ASN + co, sizeof(Listc))] (3.2)

where Listc is a set of channels to be used and sizeof(Listc) is the number of channels

in Listc. As ASN increases, each timeslot with a particular co hops over different chan-

nels. Even on a timeslot with the same ASN, different co leads to the usage of distinct

channels.

3.2.2 TSCH scheduling

TSCH standard defines how to perform time-slotted communication and channel hop-

ping. However, it leaves resource scheduling (i.e., determining when (to) and on which

channel (co) for each device to communicate) as an open problem. Nevertheless, as

with any other slotted communication protocols, TSCH requires a scheduling method

for efficient and reliable packet exchange. To this end, various TSCH schedulers have

59

been proposed. Most TSCH schedulers can be categorized into centralized, distributed,

and autonomous schedulers.

Centralized schedulers [87–92] use global network information (e.g., topology,

link quality, etc.) to construct a schedule, and distribute it to the network for each node

to use. Although they can potentially optimize the schedule based on a global view of

the network, collecting network information and disseminating the schedule requires

a huge communication overhead. With distributed schedulers [80–82, 93–95], every

node has a scheduling function that determines its schedule based on local information

or negotiation with neighboring nodes. Although distributed schedulers can lower con-

trol overhead compared to centralized schedulers, they still suffer from non-negligible

overhead. Lastly, autonomous schedulers [77, 79, 83] determine a schedule accord-

ing to predetermined rules (e.g., a hash function) and self-obtainable information (e.g.,

node ID) in each node. Therefore, autonomous schedulers have the advantage of re-

quiring no additional control overhead. However, since each node schedules itself au-

tonomously and independently, autonomous schedulers inherently cannot consider the

schedules or situations of neighboring nodes.

It is important to note that the problem we are trying to solve is orthogonal to

how the schedulers operate. Regardless of the type of the scheduler, residue time may

always exist under fixed-size time-slotted operation. Therefore, without loss of gener-

ality, we select ALICE [79], a state-of-the-art autonomous scheduler among many, to

case-study ASAP. In ALICE, nodes autonomously determine their own unicast sched-

ule by utilizing routing information (i.e., the node IDs of neighboring nodes) and a

hash function that is shared between all nodes in the network. For instance, the time

offset of a unicast schedule for a directional link from node A to node B can be calcu-

lated as;

to(A,B) = mod(Hash(α · ID(A) + ID(B) + ASFN), LSF). (3.3)

The coefficient α is used to differentiate traffic direction, while ID(x) denotes the

node ID of x. ASFN stands for absolute slotframe number, which is initialized to zero

60

at the beginning of the network and then incremented as the slotframe progresses.

ASFN makes the outcome of the hash function distinctive every slotframe, leading

to time-varying resource assignment. This time-varying resource assignment prevents

repetitive overlaps between resources or repeated disruption from interference that can

occur with fixed location of resources. Since each node can obtain the node ID of its

neighboring nodes through the routing layer, ALICE no longer requires the exchange

of control messages for scheduling.

3.2.3 Problem and Motivation

Here we further analyze the time usage breakdown of a TSCH slot in Fig. 3.1. To

obtain the result, we measured the execution time of various TSCH operations within

a slot while exchanging packets between two IEEE 802.15.4 M3 devices with varying

packet sizes from 48 to 128 bytes. ACK length is set to 20 bytes, the typically used

size in Contiki-OS. We enabled the CCA feature before packet transmission on the Tx

side, and classified the operation times into five categories as follows:

• Transmission (TTx): Time to transmit packet or ACK.

• Reception (TRx): Time to receive packet or ACK

• Process (Tproc): Time to pre-/post-process transmission/ reception, including the

time to turn the radio on and off.

• Offset (Toffset): Required wait time to meet the predefined operation timing, includ-

ing the time to listen on wireless channel before reception and the time to perform

CCA. Cannot be regarded as idle time.

• Idle (Tidle): Idle time without any Tx/Rx-related action.

Intuitively, smaller packet size leads to decrease in Tx/Rx times, and thus an increase

in idle time within a slot (Fig. 3.1). Idle time ratio reaches almost 50% when the packet

size is at its minimum. Even with the largest packet size, ∼20% of the timeslot is still

wasted. This is because the TSCH timeslot length is set to accommodate a maximum-

61

sized packet and also a maximum-sized ACK. Since the typical ACK size is far smaller

than the maximum, significant idle time exists even when a max-sized packet is sent.

In summary, 20−50% of bandwidth is wasted in TSCH due to the fixed slot length,

and therefore, reducing the idle/residue time is crucial to increase network throughput.

This is the problem that we aim to address in this work. Finally, although we case-study

in the context of TSCH, the problem we solve is not limited to TSCH but is a common

problem of time-slotted systems. This observation motivated us to the design of ASAP,

which we believe will apply as a general solution to many time-slotted systems.

3.3 Related Work

The goal of this work is to improve the throughput of time-slotted communication by

reducing the residue time within each slot. In TSCH where we conduct case study,

various attempts have been made to improve network throughput.

One approach is to utilize temporary resources in addition to the ones allocated

by the scheduler. TSCH standard [57] defines the default burst transmission (DBT)

method that allows using an additional slot temporarily allocated between a sender and

a receiver if the sender has non-zero packets in its queue toward the receiver and there

is no schedule in the next slot for both nodes. On-demand provisioning in OST [81] is

similar to DBT, but it checks the schedule of a predetermined number of subsequent

slots and uses the earliest available slot among them to enable additional transmis-

sion. Another approach is to adjust the amount of resources adaptively based on traffic

load. In OST [81], each node measures the traffic load on its links, and allocates non-

overlapping exclusive resources for each link accordingly through negotiation between

nodes. A3 [83] divides a slotframe into multiple zones and assigns resources to each

zone, with the number of active zones adjusted adaptively according to the measured

traffic load on the links. However, none of the aforementioned approaches address the

residue time problem within a timeslot.

62

There are other approaches that utilize residue time rather than reducing it. In [96,

97], methods are proposed to mitigate collisions in shared slots and improve through-

put by performing additional collision avoidance during the residue time. However,

these approaches are only effective in shared slots and the benefits may be limited

when traffic load is not heavy enough to cause collisions.

Attempts have been made to aggregate application layer payloads from multiple

nodes into a single frame in order to increase throughput, taking advantage of the

fact that packet sizes in TSCH networks are typically short [67, 89, 98–100]. How-

ever, aggregation size is limited to a single frame and is applicable only for the same

application-layer destination whereas ASAP is a link-layer solution that allows aggre-

gating larger number of frames and slots. The idea of frame aggregation for throughput

enhancement has been used in other domains as well. For example in Wi-Fi [101], Ag-

gregated MAC Protocol Data Unit (A-MPDU) is a well-known approach that combines

multiple data frames into a larger frame, improving transmission efficiency. Similar at-

tempts have also been made in Bluetooth [102]. However, their focus is on reducing

the header/control overhead for transmission efficiency rather than reducing residue

time within a timeslot.

3.4 ASAP Design

ASAP consists of two orthogonal methods: slot length adaptation (SLA) and utility-

based packet aggregation (UPA). SLA is responsible for reducing residue time by dy-

namically adjusting the slot length based on the current packet size distribution. UPA

further reduces residue time by aggregating and transmitting multiple packets over

consecutive slots if beneficial in terms of slot utility. SLA and UPA complement each

other, achieving better time efficiency for slotted communication. The ideas in ASAP

can generalize to many, if not all, slotted communication systems, and we case-study

on the TSCH protocol in this chapter.

63

... SC

N

!!"#
!$!%

!!"#!!"#

10 ms 7.76 ms

Persistent monitoring Advertisement

Determine slot length Apply slot length

SC SLA coordinator

N Non-coordinator

"!"& "$&# Time

Timeslot

Figure 3.3: SLA’s slot length adaptation process

3.4.1 SLA Design

SLA operates in a centralized manner where a designated coordinator is responsible

for managing the slot length adaptation. SLA operates in three phases:

1. SLA coordinator persistently monitors the packet size distribution of the network.

2. Then, it periodically determines an appropriate slot length.

3. If the SLA coordinator decides to change the slot length, the new slot length and

its activation time is advertised throughout the network. Then, once the activation

time is reached, all nodes apply the new slot length simultaneously.

By repeating this procedure, SLA adapts the slot length to the packet size distribu-

tion in the network in near real-time to reduce wasted residue time. It leverages the

fact that any time-slotted system would require some form of coordinator or master

that synchronizes the network. We describe the details of SLA using an illustration in

Fig. 3.3.

Persistent monitoring: To determine an appropriate slot length for the entire network,

the SLA coordinator needs to know the distribution of packet sizes generated through-

out the network. For this purpose, we take advantage of the fact that on a multi-hop

TSCH network, RPL (IPv6 Routing Protocol for LLN) [2, 3] is the de-facto standard

64

Default TSCH slot

Unicast packet

Broadcast packet

Slot adjusted by SLA

!!"#$%&'()*

Data ACK

Unicast

!+,()*

!-,()*

!!"#$%&'.&/' = 10	ms

!∆()*

!∆()* !123.&/'

Broadcast

ACK Residue time

Figure 3.4: Illustration of SLA’s slot length decision for adjustment.

routing protocol, and the TSCH coordinator operates as an RPL root3. Almost all types

of packets flow in and out through the RPL root under most scenarios (e.g. data col-

lection, command dissemination, DIO/DAO, etc.), and thus the TSCH coordinator can

acquire the packet size distribution of the entire network by observing the packets it

sends and receives. Therefore, we assign the role of SLA coordinator to the TSCH co-

ordinator and have it monitor the packet size distribution necessary for determining

the slot length.

In our SLA design, the SLA coordinator quantizes the observed packet sizes into 8-

byte interval bins, and uses the longest length within each bin as a representative value.

This is to manage the packet size distribution in a memory-efficient manner and to pre-

vent excessively fine-grained adjustment of the slot length. To determine for how long

(Tadv) to advertise the new slot length and when to apply it (tact in Fig. 3.3), the SLA

coordinator also needs to know the depth of the multi-hop network (details explained

shortly). For this purpose, our SLA design utilizes the time-to-live (TTL) field in the

IPv6 header. The SLA coordinator monitors the number of hops each packet traverses

to derive the maximum hop distance, and use it as the network depth. However, it is

also possible to derive it directly from RPL’s routing table.

Determination of slot length: Based on the packet size distribution collected from
3DODAG root in RPL’s terminology

65

persistent monitoring, SLA coordinator determines an appropriate slot length period-

ically every Tdet. Fig. 3.4 illustrates how this is done. An appropriate slot length is

determined based on the estimated transaction time required for sending and receiv-

ing a packet. The default transaction time (T TXN
default) in TSCH is 10 ms, long enough for

exchanging a pair of maximum-sized packet and ACK. However, the actual required

transaction time varies depending on the type (i.e., unicast or broadcast) and length

of the packet. For instance, a unicast packet requires a transaction time of T TXN
UC for

both packet and ACK, whereas a broadcast packet requires T TXN
BC without an ACK,

calculated as,

T TXN
UC = Tproc + Toffset + (BUC +BACK)/R (3.4)

T TXN
BC = Tproc + Toffset +BBC/R (3.5)

where BUC, BBC, and BACK represent the total bytes in each corresponding packet

type, including both the packet body and control fields such as the preamble. R is the

data rate of the PHY layer, which is 250 kbps for IEEE 802.15.4 PHY. Tproc and Toffset

denote the total process and the total offset time within a slot, respectively, as defined

in §3.2.3. We note that the sum of Tproc and Toffset is nearly constant when SLA is

not applied (Fig. 3.1). As SLA does not affect these values, their sum remains constant

even when SLA is used. Therefore, the transaction time can be determined by adjusting

BUC and BACK, or BBC according to the desired packet size.

Then, what packet size should SLA adjust the slot length to? We propose a simple

yet effective ‘k-th percentile policy.’ From the packet size distribution, the SLA coordi-

nator determines the k-th percentile size separately for unicast and broadcast packets.

Based on their sizes, data rate, and pre-defined offset times, the coordinator calculates

the transaction times of each type, denoted as T TXN
UC,k and T TXN

BC,k , respectively. Finally,

the coordinator selects the larger value between the two as the target transaction time

to which to match the new slot length (T slot
SLA). As a result, SLA can reduce residue time

by T TXN
∆ , the difference between the default and target transaction times.

66

Advertising and applying the new slot length: When the SLA coordinator decides

to change the slot length, the new slot length must be advertised and applied through-

out the network. SLA updates the slot length of all nodes at once. This design choice

considers that synchronization in a TSCH network occurs across multiple hops. Grad-

ually changing the slot length may break the synchronization, as nodes may have to

maintain synchronization with nodes with different slot lengths at the same time. For

this simultaneous activation, the SLA coordinator must determine when the new slot

length should be applied. As illustrated in Fig. 3.3, if the SLA coordinator decides to

change the slot length at tdec and determines the advertisement duration Tadv, then the

endpoint of this advertising period becomes the activation time as, tact = tdec + Tadv.

Then, the new slot length and its activation time are advertised throughout the entire

network during Tadv, and all nodes apply the new slot length simultaneously when tact

is reached.

Then, what should Tadv be? SLA coordinator must determine an appropriate Tadv

that ensures all nodes in the network are aware of the new slot length and the activation

time. To achieve this, we consider how our SLA design propagates such information.

In a TSCH network, network synchronization information is propagated through a

control message called Enhanced Beacon (EB). Starting from the TSCH coordinator,

all TSCH nodes periodically transmit EBs, and each node maintains synchronization

by listening to EBs. Our SLA design adds the new slot length and the activation time

in this EB. When the new slot length and the activation time are determined, the SLA

coordinator begins to transmit EBs containing this information. Then, all nodes that

receive the new slot length and the activation time via EBs also transmit EBs including

this information during Tadv.

Considering this advertisement procedure, SLA coordinator determines Tadv to be

long enough to ensure that all nodes in the network can acquire the information. Specif-

ically, the SLA coordinator uses the network depth obtained during the persistent mon-

itoring. Assume that the network depth is h hops and every TSCH node has resources

67

to send EBs at a period of LEB slots. Then, considering that all nodes transmit EB

at every resource for EB transmission during the advertisement period, all nodes can

receive at least one EB after LEB · h slots. Based on these observations, the SLA coor-

dinator calculates the required advertisement duration Tadv as,

Tadv = (α · LEB · h+ β)× (current slot length) [ms] (3.6)

where α and β are coefficients considering re-transmissions4.

Discussion: We note that the responsiveness of SLA’s adaptation varies depending on

the size of Tdet. Smaller Tdet allows SLA to adjust the slot length more quickly in re-

sponse to changes in packet size distribution. However, setting Tdet too small can lead

to excessive overhead due to frequent slot length change and advertisement, as well as

the possibility of making inaccurate judgment based on too few packet size samples.

Additionally, Tdet must be set longer than Tadv for SLA to function properly. In our

implementation, considering all these factors, we set Tdet to 5 minutes, which is suf-

ficiently longer than Tadv for deep networks, provides enough samples for slot length

adjustment, and allows for slot length adaptation to occur multiple times (at least 10)

during our experiments. However, the optimal value of Tdet may vary depending on

network characteristics or user requirements.

3.4.2 UPA Design

UPA presents another approach to minimize residue time by aggregating multiple

packets and transmitting them over multiple (but fewer) consecutive slots to fully uti-

lize the time within the slots. Our intuition is that if UPA can transmit the same number

of packets with fewer slots, it would be possible to effectively reuse the previously

wasted residue time in each slot and increase effective data rate.

An example: Fig. 3.5 exemplifies how UPA operates compared to the default TSCH.

We first define ‘slot utility’ as the ratio of number of packets transmitted to the number
4α and β are both set to 1 in our experiments.

68

TSCH

UPA …

…

… …

Negotiation Batch transmission

Slotframe 1 Slotframe 2 Slotframe 3

… …

Data packet ACK Block ACK

Timeslot Time

Figure 3.5: An example of UPA’s packet aggregation and batch transmission (bottom) com-

pared to the default slotted operation of TSCH (top)

of slots used for those transmissions. Assume that a Tx node has three packets to send

to a Rx node, and one slot is scheduled for the link in each slotframe as in Fig. 3.5.

The default TSCH behaviour would be to send three packets using three slots (slot

utility of one) over three slotframes. Instead in UPA, the Tx and Rx nodes first ex-

change one packet and an ACK through which they negotiate whether additional batch

transmission is doable and can be advantageous in terms of slot utility.

If batch transmission is determined to be beneficial, then the Tx node sends the

remaining two packets immediately in a batch, and the Rx node acknowledges the

result with a block ACK. In this way, UPA finishes transmissions of three packets in

two slots within a slotframe, thus increasing the slot utility from 1 to 1.5 (3 packets

over 2 slots) and reducing latency to less than half (within one slotframe, see Fig. 3.5).

By reducing the number of slots required per packet, this increase in slot utility allows

acquiring additional resources for other transmissions and delivering multiple packets

faster in terms of both datarate (less residue time) and latency (less slotframes). To

realize this, UPA requires two phases as shown in Fig. 3.5: (1) utility-based negotiation

and (2) batch transmission.

Slot utility-based negotiation: UPA aggregates packets only when there is a gain in

terms of slot utility. To achieve this, the Tx and Rx nodes must determine whether batch

transmission is doable and beneficial. However, there is an information asymmetry

between the Tx and Rx. Only the Tx node knows the number of packets it wishes to

69

transmit and the size of each packet, and thus only the Tx can estimate the slot utility

depending on the number of packets to aggregate. On the other hand, queue status

of the Rx node may limit how many packets can be received in a batch, and the Tx

node does not know this. Therefore, the Tx and Rx nodes first perform a negotiation

whenever there is more than one packet to be sent in the Tx queue. Tx node estimates

the slot utilities for varying number of aggregated packets, and informs them to the Rx

node. Then, the Rx node selects the number of packets that maximizes the slot utility

within its buffer availability.

Specifically, the Tx node constructs a slot utility information (SUI) to represent

the slot utility according to the number of packets to be aggregated as exemplified in

Fig. 3.65. SUI consists of two bit sequences (the two 8-bit sequences shown on the

right table in Fig. 3.6). The first contains the total number of packets pending in the Tx

node, and the second represents an increment in the number of required slots according

to the number of aggregated packets. The latter is calculated as follows: Assume total

of n packets in the Tx node’s queue. The time it takes for the negotiation to complete

(TN), i.e., the time duration until the Tx node receives an ACK from the Rx node for

the first packet, is calculated as,

TN = TN
proc + TN

offset + (BUC(1) +BACK)/R (3.7)

where TN
proc and TN

offset denote the total process and offset times within the negotiation

phase. BUC(i) represent the total bytes of i-th packet, including both the packet body

and the control fields such as preamble. Again, R is the data rate of the PHY layer

(e.g., 250 kbps for IEEE 802.15.4 PHY.)

When the Tx node sends i-th packet during a batch transmission, the additional

time required until the end of transmission (T Tx
B (i)) is calculated as,

T Tx
B (i) = TB,Tx

proc + TB,Tx
offset +BUC(i)/R (3.8)

5The example in Fig. 3.6 is simplified to a uniform packet size, but the actual implementation reflects

the individual (possibly distinct) packet sizes during slot utility calculation

70

where TB,Tx
proc and TB,Tx

offset denote the total process and offset times while sending the i-th

packet.

Once all n packets have been sent, the Rx node sends a block ACK to the Tx node.

The time taken for exchanging a block ACK at the end of the batch transmission (TBA
B)

can be modeled as,

TBA
B = TB,BA

proc + TB,BA
offset +BBA/R (3.9)

where TB,BA
proc and TB,BA

offset denote the total process and offset times while exchanging

the block ACK at the end of the batch transmission. Then the total time required for

transmitting the entire n packets (i.e., TUPA(n)) via UPA can be derived as,

TUPA(n) = TN +
n∑

i=2

T Tx
B (i) + TBA

B (3.10)

and the number of slots according to the number of aggregated packets (i.e., SUPA(n))

is derived as,

SUPA(n) = ⌈TUPA(n)/(current slot length)⌉. (3.11)

We note that BACK, BBA, and all the process and offset times in Eqs. (3.7) to (3.11)

are predefined constants. Therefore, the Tx node can estimate the slot utility according

to the number of aggregated packets only by considering BUC(i). When aggregating

packets, if the number of required slots (i.e., SUPA(n)) increases, the bit of the second

bit sequence corresponding to the packet count is set to one; otherwise, it is set to zero.

Then, SUI is sent by piggybacking on the triggering (first) unicast packet. In the ex-

ample of Fig. 3.6, five packets are pending in addition to the triggering packet, and the

number of slots required increases by one when sending one additional or three more

packets. Accordingly, Tx node can construct a bit sequence representing the increase

in the number of slots as indicated by the red bits. Then the number of aggregated

packets is represented in the first bit sequence as shown by the blue numbers.

Upon receiving the SUI, the Rx node can calculate the slot utility for each number

of aggregated packets. Rx node restores SUPA(n) for each value of n from the received

71

Data packet ACK Block ACK Slot
utility

Bit
sequence

Number of
packets

100000001 000000001

100000010 010000002

1.500000011 010000003

1.3300000100 010100004

1.6700000101 010100005

200000110 010100006

Timeslot

Figure 3.6: Example of impact of UPA’s packet aggregation on slot utility and bit sequence.

SUI, and calculates the slot utility as n/SUPA(n). Then, the Rx node selects the number

of packets that maximizes the slot utility within its buffer limit (l), by solving the

following problem:

argmax
2≤n≤l

n

SUPA(n)
(3.12)

It chooses zero if there is no way to improve the slot utility. Then the selected number

of packets to aggregate is conveyed to the Tx node through ACK. Since the negotiation

information are piggybacked on unicast and ACK packets, no additional control packet

is required.

Batch transmission: Upon agreement from the negotiation, the Tx and Rx nodes start

batch transmission and reception. For each batch, the Tx node assigns a separate batch

sequence number to the packets. Then, since the Rx node knows in advance how many

packets will be received in the current batch, it can detect packet loss(es) using this

sequence number. Reception status of the packets within a batch is then converted into

a bit sequence, and sent back as a block ACK. Upon receiving the block ACK, Tx node

finds the transmission result of each packet from the bit sequence, and re-enqueues the

lost packets for retransmission.

Discussions for UPA: Since the batch transmission of UPA is performed beyond the

slot originally scheduled for the Tx and Rx nodes of UPA, it may overlap with the

schedules of other links. If the overlapped schedules are executed simultaneously,

72

a collision will occur. The collision can reduce the number of packets successfully

delivered by UPA, decreasing the slot utility. Therefore, we enable non-participants

to avoid collision with UPA’s batch transmission through clear channel assessment

(CCA). Specifically, we modify and apply the CCA operation proposed in [53] to fit

the operation procedure and timing of UPA.

3.5 Evaluation

In this section, we evaluate the effectiveness of ASAP and its key techniques. First, we

investigate whether each individual method, SLA and UPA, operates properly accord-

ing to its design purpose. Then, we conduct an ablation study to verify the efficacy

of ASAP by examining the synergistic collaboration between SLA and UPA. Finally,

we compare ASAP against two state-of-the-art TSCH schedulers, ALICE and ALICE

with A3 (referred to as A3 in the rest of this chapter), in addition to ALICE with the

IEEE 802.15.4 default burst transmission (DBT).

3.5.1 Implementation and experiment setup

We implement ASAP on M3 board using Contiki-NG6 [85]. For the comparison schemes,

we use the publicly available implementations of ALICE7, DBT8, and A39, which are

also implemented in Contiki-NG. The slot length is set to 10 ms by default, and we

set the slotframe lengths of EB, broadcast, and unicast slotframes to 397, 17, and 20,

respectively, referring to the configuration in A3 paper [83]. For channel hopping, we

utilize the four IEEE 802.15.4 channels 15, 20, 25, 26. For the routing layer, we use

RPL storing mode [103] and MRHOF [38] with ETX [104] for the objective function

in RPL. We enable the DAO-ACK option in RPL to promote reliable downward rout-
6https://github.com/iot-lab/iot-lab-contiki-ng
7https://github.com/skimskimskim/ALICE
8It is included in the implementation of Contiki-NG.
9https://github.com/skimskimskim/A3

73

0 0.5 1 1.5

X position (m)

0

5

10

15

20

26
Y

 p
o

s
it
io

n
 (

m
)

(a) Grenoble testbed

0 4 8 12 16

X position (m)

0

4

8

12

16

18

Y
 p

o
s
it
io

n
 (

m
)

(b) Lille testbed

Figure 3.7: Node deployment topology at Grenoble and Lille testbeds. In both testbeds, the

node located in the upper left corner and marked in yellow serves as the root.

ing and resource scheduling. We set the transmission power of each node to -17 dBm.

We conduct experiments on the FIT/IoT-LAB testbed [86], a large-scale public

testbed, at three sites: Lyon, Grenoble, and Lille. Lyon testbed was used for the pre-

liminary study in Fig. 3.1 and the evaluation of UPA in §3.5.3. Grenoble and Lille

testbeds were used to assess the performance of ASAP in a multi-hop topology utiliz-

ing 79 M3 nodes at each site. Fig. 3.7 depicts the physical deployment topology of the

79 nodes at Grenoble and Lille. At Grenoble, the nodes are arranged in two narrow and

long rows, while at Lille, the nodes are distributed almost evenly in a rectangular grid

shape. Approximately 8-hop routing topology is formed at Grenoble, while a 3-4 hop

topology is formed at Lille. Through experiments in these two sites with very distinct

characteristics, we comprehensively verify the performance of ASAP.

With this setup, we focus on two application scenarios: data collection (upward

traffic) and data dissemination (downward traffic) with varying traffic loads. In the

upward scenario, each node periodically transmits data packets to the root node. In the

downward scenario, the root transmits data packets to each non-root node periodically

in a round-robin fashion. Unless specified explicitly, data transmission lasts for 30

minutes in each experiment run, and sufficient time is provided for initialization and

bootstrap before starting data transmission. For each experimental case, we repeat the

74

experiment three times.

Here we list the key performance metrics for evaluation:

• App. layer goodput is the end-to-end per-minute packet goodput for each node

excluding losses and retransmissions.

• Per-hop latency is obtained by dividing the end-to-end latency of each data packet

by the path length it traverses.

• End-to-end packet delivery ratio (PDR) is the PDR of data packets from/to each

node to/from the root node.

• Slot length is calculated as the average length of the slots in which data packet

transmission occurs.

• Slot utility is calculated as the number of packets transmitted per slot with UPA.

• Duty cycle is calculated as the ratio of the time the radio is on to the total operating

time of the network.

3.5.2 Performance of SLA

We first verify the proper functioning of SLA’s slot length adaptation across the entire

network, and evaluate the impact of k in k-th percentile policy in a data collection

scenario at the Grenoble site.

Network-wide slot length adaptation: To verify whether SLA operates correctly at

run-time across the network, we conduct a four-hour experiment in which the packet

size varies over time. During four hours, each node periodically transmits a total of 960

data packets to the root node while changing the payload length to 63, 14, 46, and 30

bytes every 240 packets. We set the relevant SLA parameters as follows: Tdet is set to 5

minutes, and α and β are both set to 1, which are used to determine Tadv based on the

depth of the network. We apply the same parameters in the subsequent experiments.

The k for the k-th percentile policy is set to 90. TSCH slot length is initially set to

10 ms.

75

0 60 120 180 240

Time (min)

0

20

40

60

80
A

p
p

 p
a

y
lo

a
d

 s
iz

e
 (

b
y
te

s
)

0

2

4

6

8

10

S
lo

t
le

n
g

th
 (

m
s
)

App payload size

Slot length

Determination

Activation

Figure 3.8: Real-time operation of SLA: Evolution of slot length over time in accordance to

payload (packet) size changes.

ALICE SLA
100

SLA
90

SLA
80

0

2

4

6

8

10

A
v
g

.
s
lo

t
le

n
g

th
 (

m
s
)

(a) TSCH slot length

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24
A

v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)

Ideal

ALICE

SLA
100

SLA
90

SLA
80

(b) App layer goodput

Figure 3.9: Performance of SLA with varying k-percentile values vs. ALICE, at the Grenoble

testbed, for data collection scenario.

Fig. 3.8 plots the time-evolution of slot length in accordance to payload size changes

over time, together with the timing of SLA’s slot length determination and activation

actions. SLA coordinator continuously monitors the packet size distribution and peri-

odically determines the appropriate slot length, as indicated by the black dashed line.

Whenever there is a change in the distribution, the SLA coordinator detects it and ad-

justs the slot length accordingly. The SLA coordinator also determines the activation

time, represented by the pink dashed line. After all nodes in the network advertise the

new slot length and activation time, the new slot length is applied simultaneously at

the designated time. The overall result demonstrates that SLA successfully adjusts the

76

slot length whenever the packet size decreases or increases. We note that at the first

determination point of SLA, the slot length decreases even though the packet length

remains the same. This happens because the original slot length of 10 ms is adjusted

to fit the data packets of 63 bytes payload.

Choice of an appropriate k for the k-th percentile policy: The k-th percentile policy

serves as a reference for adjusting the slot length based on the packet size distribu-

tion, and impacts the performance of SLA. Therefore, choosing an appropriate k value

is crucial. In most of our experiments, a single-size data packet is used. While data

packets constitute the majority of total packets, there are also RPL control packets

(DIS, DIO, DAO, and DAO-ACK) and TSCH control messages (e.g., EB), which may

be larger or smaller than the data packet size. Thus, we need to find an appropriate k

value that results in a good slot length for improved performance.

Fig. 3.9a plots the average adjusted slot length according to the value of k in the

data collection (upward) scenario at the Grenoble testbed when the traffic load is 4

packets per minute per node. The payload size is 14 bytes, resulting in a maximum data

packet size of 67 bytes, with an ACK of 20 bytes. If these sizes are used as a reference,

SLA adjusts the slot length to 6.736 ms (§3.4.1). We found that a value of k=90 is

appropriate for SLA to adjust the slot length to the data packet size. k larger than 90

(e.g., 100) will end up setting the slot length to the infrequent but large control packets,

while smaller k has no effect due to large number of data packets. Therefore, we set

k to 90 in the subsequent experiments. For example, Fig. 3.9b plots the goodput of

SLA with k=90 and ALICE as a function of traffic load (same experiment as Fig. 3.9a).

By dynamically adjusting the slot length, SLA improves goodput compared to ALICE

which uses a fixed 10 ms slot. In a more complex scenario where data packets of several

different sizes coexist, selecting an optimal value for k can be a more challenging issue.

We leave this as a future work.

77

(a) Slot utility vs. packet size and

num. of slots

0 10 20 30 40 50

Time (ms)

64

80

96

112

128

P
a

c
k
e

k
t
s
iz

e
 (

b
y
te

s
)

Tx

Rx

Process

Offset

Idle

(b) Aggregating seven packets in UPA. Seven packets can be sent

in three∼five slots.

Figure 3.10: Performance of UPA: maximum slot utility and an example of aggregating seven

packets to reduce residue time.

3.5.3 Performance of UPA

Next, we measure the maximum achievable slot utility of UPA depending on the packet

size and number of slots, and also investigate the time usage breakdown of UPA to

attain insights into how the slot utility gain is achieved. For these experiments, we use

two nodes at the Lyon site and fix the TSCH slot length to 10 ms.

Fig. 3.10a plots the maximum achievable slot utility of UPA as a function of packet

size and number of slots used for aggregation. For example, if UPA utilizes five con-

secutive slots, slot utility can go up to 2.8 by aggregating 14 minimum-sized packets.

This figure can guide UPA in terms of when and how many packets to aggregate. It

shows that UPA can achieve slot utility of 1.5∼2.8 in most cases, and smaller packets

provide more opportunity for higher improvement. This analysis is corroborated by

the time usage breakdown of aggregating seven packets as illustrated in Fig. 3.10b.

Following the triggering packet and ACK, six packets are transmitted in a batch with

very short intervals, reducing the number of slots required from seven to three∼five

depending on the packet length. For example, for the seven minimum-sized packets,

UPA can improve the slot utility to 2.33 by utilizing 3 consecutive slots.

78

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24

A
v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)

Ideal

ALICE

SLA

UPA

ASAP

(a) Goodput, 14 bytes, upward

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24

A
v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)

Ideal

ALICE

SLA

UPA

ASAP

(b) Goodput, 14 bytes, downward

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24

A
v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)

Ideal

ALICE

SLA

UPA

ASAP

(c) Goodput, 63 bytes, upward

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24

A
v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)

Ideal

ALICE

SLA

UPA

ASAP

(d) Goodput, 63 bytes, downward

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE SLA UPA ASAP

(e) Latency, 14 bytes, upward

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE SLA UPA ASAP

(f) Latency, 14 bytes, downward

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE SLA UPA ASAP

(g) Latency, 63 bytes, upward

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE SLA UPA ASAP

(h) Latency, 63 bytes, downward

Figure 3.11: Ablation study on ASAP: Goodput and latency results for upward vs. downward

scenarios and 14 vs. 63 byte payloads

79

3.5.4 Performance of ASAP: an ablation study

Next, we evaluate the performance of ASAP through an ablation study with varying

traffic load (from 4 to 24 packets per minute per node) and payload length (14 bytes

and 63 bytes) in upward and downward traffic scenarios. We use ALICE as the baseline

scheduler and compare the performance of ‘ALICE with SLA’, ‘ALICE with UPA’, and

‘ALICE with ASAP’ (referred to as SLA, UPA, and ASAP, respectively, hereafter) with

ALICE. The experiments are conducted at Grenoble.

Application layer goodput: Fig. 3.11a plots the goodput in the data collection (up-

ward) scenario with the minimum payload length (14 bytes). ALICE performs the

worst beyond traffic load of 4 pkts/min/node, and fails to deliver a significant num-

ber of packets as the traffic load increases. This is because, the traffic load was higher

than ALICE’s effective data rate at the bottleneck nodes in most cases. SLA improves

over ALICE, demonstrating that SLA has successfully increased the effective data rate

by adjusting the slot length. UPA exhibits even more improvement, showing that UPA

has successfully increased the effective data rate through packet aggregation. UPA

achieves higher improvement than SLA because UPA can flush the bottleneck node’s

queue backlog in a burst within a slotframe whereas SLA still requires same number of

slotframes as the number of packets. The collaboration of SLA and UPA within ASAP

leads to further improvement outperforming UPA as the traffic load increases.

Per-hop latency: Fig. 3.11e plots the latency result in the collection (upward) scenario

with the smallest payload length (14 bytes). SLA achieves lower latency than ALICE

by adapting the slot length to be shorter. UPA further reduces latency since its packet

aggregation allows each packet to be transmitted significantly earlier than the base-

line schedule. By harmonizing the effects of these two techniques, ASAP achieves the

lowest latency.

Synergy of SLA and UPA in ASAP: Here we discuss the combined benefits of SLA

and UPA. As the slot length decreases (by SLA), the utility of packet aggregation (by

80

UPA) diminishes due to fewer packets fitting in smaller slots. Therefore, UPA becomes

slightly less effective when used together with SLA compared to UPA alone. However,

SLA increases the frequency of resource repetitions (i.e., next slotframe comes earlier),

creating more opportunities for transmissions and aggregations in the time domain.

This compensates for the reduced slot utility. Furthermore, SLA’s shorter slot length

and more frequent opportunities improve latency by enabling quicker transmission for

all nodes. Overall, UPA and SLA together create a synergy to improve both throughput

and latency beyond what can be done by each technique alone.

Impact of traffic direction: In the downward traffic scenario, the root node gener-

ates and disseminates downward traffic throughout the network. Since packets are dis-

tributed to multiple nodes, aggregation opportunity in each link may decrease, reduc-

ing the slot utility. Furthermore, the root is the main bottleneck of throughput, resulting

in an overall decrease in goodput across all schemes as shown in Fig. 3.11b. Never-

theless, SLA, UPA, and ASAP still outperforms ALICE for the same reasons discussed

earlier, with ASAP having the highest performance. Latency improves for the down-

ward scenario as well, as shown in Fig. 3.11f. However, in contrast to the upward

scenario, downward traffic has relatively constant per-hop latency. This is because the

root node is the bottleneck, and the nodes below the root forward fewer packets than

the root and rarely experience congestion. Thus, the per-hop latency does not change

significantly per traffic load.

Impact of packet length: We lastly explore the impact of packet length on the per-

formance of ASAP using experiments with a payload size of 63 bytes. The results are

plotted in Figs. 3.11c, 3.11d, 3.11g and 3.11h. We observe that the trends for goodput

and latency remain unchanged from the experiments with 14-byte payload, in both up-

ward and downward traffic scenarios. In the case of ALICE, the goodput and latency

remain almost the same because the packet length difference does not affect ALICE’s

operation. However, for SLA, UPA, and ASAP, the goodput and latency degrade slightly

as the packet size increases. This is because, with longer packets, SLA cannot shorten

81

the slot length as much as with shorter packets, and UPA cannot aggregate as many

packets. Nevertheless, SLA and UPA still achieve significantly better performance than

ALICE, and so does ASAP.

Summary: Overall, the results validate the superiority of ASAP. Across all scenarios,

irrespective of traffic direction and packet size, the proposed schemes improve effec-

tive data rate by addressing the inefficiencies of ALICE resulting from wasted residue

time, leading to enhanced goodput and latency. Notably, by leveraging the synergetic

strengths of both SLA and UPA, ASAP achieves the best performance. Specifically, at

a traffic load of 24 pkts/min/node, ASAP improves throughput and reduces latency of

the TSCH network by 2.21x and 78.1%, respectively, compared to those of ALICE.

3.5.5 Performance of ASAP: a comparative study

We now compare the performance of ASAP against other state-of-the-art schedulers,

namely ALICE, DBT, and A3. For this purpose, we run experiments for the data col-

lection scenario (i.e., upward traffic) at both Grenoble and Lille sites. While varying

the traffic load, we measure the application layer goodput, per-hop latency, end-to-end

PDR, and duty cycle.

Overall performance: As shown in Fig. 3.12, ASAP significantly outperforms all three

baseline schemes in terms of goodput, latency, and PDR. DBT performs similarly to

ALICE, with only minor improvements in some cases. A3, on the other hand, exhibits

notably better performance than ALICE and DBT. Nevertheless, ASAP has signifi-

cantly better performance especially at higher traffic load. However, ASAP exhibit a

slightly higher duty cycle than other schemes. This is because ASAP delivers more

packets successfully; That is, the radio on time is used for useful work, significantly

improving throughput.

Comparison with DBT: It is worth noting that DBT attempts to send additional pack-

ets by recursively allocating additional resource when a queue backlog occurs and

there is no schedule in the subsequent slot. This approach does provide DBT with more

82

4 8 12 16 20 24

Traffic load (pkts /node /min)

4

8

12

16

20

24
A

v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)
Ideal

ALICE

DBT

A3

ASAP

(a) Goodput in Grenoble

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE DBT A3 ASAP

(b) Latency in Grenoble

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

20

40

60

80

100

E
n

d
-t

o
-e

n
d

 P
D

R
 (

%
)

ALICE

DBT

A3

ASAP

(c) PDR in Grenoble

4 8 12 16 20 24

Traffic load (pkts /node /min)

0

1

2

3

4

5

6

D
u

ty
 c

y
c
le

 (
%

)

ALICE

DBT

A3

ASAP

(d) Duty cycle in Grenoble

Figure 3.12: Performance comparison of ASAP, ALICE, DBT, and A3 at Grenoble testbed

with dual-linear topology. ASAP achieves better goodput, latency, and PDR with only a slight

increase in duty-cycle (<1%)

opportunities to send packets than ALICE. However, it does not cope with residue time

within each timeslot. Moreover, when an existing schedule is present in the subsequent

slot, DBT prioritizes it instead of allocating additional resource, resulting in limited

improvements in reducing queue backog or alleviating congestion at the bottleneck

compared to ALICE. In contrast, ASAP exhibits superior performance compared to

DBT (Figs. 3.12a to 3.12c), primarily due to its UPA mechanism; i.e., it enables more

packets to be transmitted in fewer slots than DBT. Moreover, ASAP prioritizes trans-

missions with high slot utility over the existing schedule, which significantly enhances

network time-efficiency.

83

Comparison with A3: A3 assigns additional periodic resources based on traffic load,

allowing for transmission of more packets compared to ALICE. In our experiments,

A3 can allocate up to four times more resources than ALICE when needed. For this

reason, A3 significantly improves goodput, latency, and PDR performance compared

to both ALICE and DBT. Nevertheless, ASAP achieves even better performance than

A3. This is because, as the traffic load increases, A3’s additional resource allocation

will eventually reach its limit where it becomes impossible for A3 to send more pack-

ets. It is important to highlight that A3’s approach of allocating additional resources

is orthogonal to ASAP’s approach of reducing residue time. There may still be a sig-

nificant waste of residue time within each slot, and ASAP can reduce residue time and

allow A3 to send more packets in such a situation. Another limitation of A3 is the oc-

currence of conflicts due to overlapping resources from different links when allocating

more resources to support higher traffic load. In such situations, efficiently utilizing

residue time within each slot may be a better solution than allocating more resources.

3.5.6 Performance of ASAP in different environment

Finally, we validate whether ASAP maintains good performance in a different envi-

ronment with drastically different physical topology. For this purpose, we evaluate

ALICE, DBT, A3, and ASAP at the Lille testbed which has a compact grid deployment

(Fig. 3.7b) unlike the long dual-linear topology of the Grenoble site (Fig. 3.7a). The

network topology characteristics of the two locations are markedly different. At Lille,

the hop distance is reduced by about half compared to Grenoble, and the bottleneck

problem becomes less severe, but more nodes are connected to the root directly. Con-

sidering this topological difference, we increase the traffic load up to 32 pkts/min/node

at Lille from that of 24 at Grenoble. By comparing Fig. 3.12 and Fig. 3.13, we can

analyze the impact of topology on ASAP and other compared schemes.

As shown in Fig. 3.13, the performance trends among ALICE, DBT, A3, and ASAP

at the Lille site are similar to those observed at the Grenoble site; ASAP outperforms

84

4 8 12 16 20 24 28 32

Traffic load (pkts /node /min)

4

8

12

16

20

24

28

32
A

v
g

.
g

o
o

d
p

u
t

(p
k
ts

 /
n

o
d

e
 /

m
in

)
Ideal

ALICE

DBT

A3

ASAP

(a) Goodput in Lille

4 8 12 16 20 24 28 32

Traffic load (pkts /node /min)

0

500

1000

1500

2000

2500

3000

A
v
g

.
p

e
r-

h
o

p
 l
a

te
n

c
y
 (

m
s
)

ALICE DBT A3 ASAP

(b) Latency in Lille

4 8 12 16 20 24 28 32

Traffic load (pkts /node /min)

0

20

40

60

80

100

E
n

d
-t

o
-e

n
d

 P
D

R
 (

%
)

ALICE

DBT

A3

ASAP

(c) PDR in Lille

4 8 12 16 20 24 28 32

Traffic load (pkts /node /min)

0

1

2

3

4

5

6

D
u

ty
 c

y
c
le

 (
%

)

ALICE

DBT

A3

ASAP

(d) Duty cycle in Lille

Figure 3.13: Performance comparison of ASAP, ALICE, DBT, and A3 at Lille testbed with

grid-like topology. ASAP achieves better goodput, latency, and PDR with only a slight increase

in duty-cycle (<1%)

all other schemes. However, at the Lille site, ALICE, DBT, and A3 perform well even

at much higher traffic loads than those at the Grenoble site. This is due to the shal-

lower topology where many nodes can directly deliver packets to the root node, thus

have less resource shortage issues. Nonetheless, both ALICE and DBT experience a

decrease in goodput and an increase in latency at a traffic load of 20, while A3 expe-

riences these issues at traffic load of 24. In contrast, ASAP maintains goodput close

to ideal and minimizes latency increase even at traffic load of 32. Regarding the duty

cycle, similar trend but slightly lower energy consumption is observed at the Lille

testbed for the same reason of shallower network depth. To sum up, ASAP has shown

85

successful performances in both linear and grid shape topologies. Based on the results,

we believe that ASAP can generalize to other topologies and perform well in various

environments.

3.6 Summary

Time-slotted communication systems set the timeslot length to be sufficient for trans-

mitting a maximum-sized packet and an ACK, resulting in a significant residue time

within each timeslot and decrease in effective data rate. To address this problem, this

chapter proposed ASAP with two orthogonal approaches: SLA and UPA. SLA reduces

residue time in timeslots by adjusting the length based on the packet size distribution,

while UPA reduces residue time by aggregating multiple packets and transmitting them

in a burst over consecutive slots. Through a case study on TSCH, we verified that ASAP

improves performance significantly compared to the state-of-the-art TSCH schemes

such as ALICE, A3 and DBT. Specifically, ASAP improves throughput by up to 2.21x

and reduces latency by up to 78.7% through a synergistic collaboration of SLA and

UPA. As a future work, we plan to investigate the performance of ASAP when ap-

plied in combination with other orthogonal approaches (e.g., A3) and explore ways to

improve the performance of ASAP.

86

Chapter 4

Offset-based Prioritization for Accelerating Formation

of 6TiSCH Networks

4.1 Introduction

6TiSCH [105], which is IPv6 over the TSCH mode of IEEE 802.15.4e [57] networks

have attracted considerable attention for their applicability in diverse industrial and IoT

applications. However, the process of network formation in 6TiSCH networks poses

challenges, particularly in terms of efficiency and collision management [106].

Efficient network formation is crucial as it directly impacts the overall performance

and reliability of the network. Formation in 6TiSCH networks encompasses the pro-

cess of joining at the TSCH layer, joining at the RPL layer, and the allocation of

resources (i.e., cells) for exchanging data packets. During the 6TiSCH network for-

mation process, all nodes communicate through the common shared cell, which is a

shared resource accessible to all nodes, as resource allocation has not yet been estab-

lished. However, this can lead to collisions and congestion in the common shared cell,

resulting in packet loss, retransmissions, and severely delayed network formation time.

In relation to the congestion issue in the common shared cell during network for-

mation, we have observed that the highly synchronized transmission start times among

87

nodes within the cell significantly impede collision detection and congestion mitiga-

tion. To address this challenge, we propose TOP, a transmission offset-based priori-

tization technique to improve the efficiency of 6TiSCH network formation. The core

concept is to allocate offsets to packets during their transmission initiation, providing

distinct starting points for packets and minimizing the likelihood of collisions.

TOP comprises several components. Firstly, we introduce an offset assignment

policy that allocates offsets based on packet urgency, distinguishing between unicast

and broadcast packets. Secondly, we propose an adaptive offset adjustment mecha-

nism that dynamically modifies offsets based on network conditions, aiming for even

faster packet delivery. Lastly, we modify the backoff mechanism of TSCH to prevent

collisions and enable the offset-based prioritization to fulfill its intended performance

objectives. These three components collaborate in unison to hasten the process of net-

work formation in 6TiSCH networks.

We highlight that the congestion issue in the common shared cell can be a signif-

icant concern not only during the network formation phase but also in the operational

phase after network formation is completed. For example, in the event of a specific

node experiencing an anomaly (e.g., a security attack or battery depletion) that neces-

sitates other nodes to find new routing paths or synchronization targets, these nodes

will rely on the common shared cell for communication, thereby encountering the

aforementioned issues. Even in such scenarios, TOP can serve as an effective counter-

measure.

We implement TOP on real embedded IEEE 802.15.4 devices using Contiki-NG [85],

and evaluate it on a large-scale topology in the FIT/IoT-LAB public LLN testbed [86].

The results demonstrate substantial improvements in network formation time, with re-

ductions of up to 50%. TOP effectively mitigates collisions, congestion, and packet

losses, all of which contribute to the accelerated network formation process.

Our contributions can be summarized as follows.

• We identify collisions in the common shared cell as a significant factor causing

88

network formation delays.

• We highlight that the specific characteristic of closely aligned transmission start

times in TSCH exacerbates the challenges in collision management.

• We propose TOP, an transmssion offset-based prioritization technique for efficient

network formation in 6TiSCH networks.

• We implement TOP on real embedded devices, and evaluate in a sizeable public

testbed to demonstrate significant performance improvement.

The remainder of this chapter is organized as follows. We present the background

and motivation in §4.2, and §4.3. We present our approach in §4.4, and the design of

the proposed scheme in §4.5. We evaluate the proposed scheme in §4.6. We discuss

related work in §4.7. Finally, §4.8 concludes the chapter.

4.2 Background

4.2.1 Time-Slotted Channel Hopping (TSCH)

TSCH is a MAC protocol standardized in IEEE 802.15.4e that integrates time-slotted

communication and channel hopping. By synchronizing the network and enabling de-

vices to communicate in a time-slotted manner, TSCH enhances reliability and energy

efficiency. The utilization of channel hopping supports resilience to external interfer-

ence and fading by leveraging channel diversity.

As shown in Fig. 4.1, TSCH divides time into timeslots. The duration of a timeslot

is typically set to 10 ms, allowing for the exchange of a maximum-sized (128 Bytes)

frame and an ACK of up to 70 Bytes. Each timeslot is assigned an absolute slot number

(ASN), which starts at zero when the network begins and increments sequentially. A

collection of timeslots forms a slotframe, which repeats over time and serves as a

scheduling unit in TSCH. The number of timeslots within a slotframe is referred to as

the slotframe length (LSF). Then, time offset (to) represents the relative position of a

89

……15

……⋮

……1

……0

100…210100…210

Ch
an

ne
l o

ffs
et

Common shared cell DATA ACK

Time
offset

Figure 4.1: TSCH common shared cell with slotframe size of 101.

particular timeslot within a slotframe and is calculated as,

to = mod(ASN, LSF). (4.1)

To determine the channel to be used for channel hopping, TSCH utilizes a channel

offset (co) within its schedule. The specific channel for each timeslot is determined

through a calculation based on the aforementioned channel offset as,

Channel = Listc[mod(ASN + co, sizeof(Listc))] (4.2)

where Listc is a set of channels to be used and sizeof(Listc) is the number of channels

in Listc. As ASN increases, each timeslot with a specific co hops over different chan-

nels. Even with the same ASN timeslot, different co results in the selection of different

channels.

4.2.2 TSCH scheduling and common shared cell

The TSCH standard specifies the principles of time-slotted communication and chan-

nel hopping, but it does not provide a specific solution for resource scheduling, which

involves determining the timing and channel selection for each device’s communica-

tion. To fill this gap, several TSCH schedulers have been proposed [77,79,81–83,94].

In this study, we mainly consider ALICE [79], a state of the art TSCH scheduler.

90

However, in order to enable communication both prior to scheduling and during the

scheduling process, a minimal communication path is required. Therefore, in 6TiSCH

protocol, a common shared cell is established as the essential resource, allowing all

nodes to communicate on the same channel at the same time. Fig. 4.1 presents an ex-

ample scenario where a common shared cell is positioned at time offset 0 and channel

offset 0 within a common shared slotframe of size 101.

While the specific usage of the common shared cell may vary depending on the

functioning of the scheduler, it remains consistent that when communicating with

nodes that have not been allocated dedicated schedules or when attempting resource

scheduling, communication must pass through this common shared cell.

4.2.3 6TiSCH network and formation

A 6TiSCH network is an IPv6 communication network implemented on top of the

IEEE 802.15.4e TSCH mode. It involves the integration of various standard protocols

across different layers, as illustrated in Fig. 4.2. Specifically, the TSCH protocol is

utilized as the MAC protocol at the data link layer, while the RPL protocol is adopted

for the routing layer. For the 6TiSCH network to operate fully, network formation,

which includes join processes over multiple layers and resource scheduling, must be

carried out.

Physical
Layer IEEE 802.15.4

Data link
Layer IEEE 802.15.4e TSCH

IETF 6top/6P

Network
Layer

IETF RPL
IETF 6LoWPAN

Transport
Layer IETF UDP, DTLS

Application
Layer IETF CoAP

Figure 4.2: 6TiSCH network stack.

91

New
node

TSCH
joined

RPL
joined

Cell
alloc

Figure 4.3: An example of state transition during 6TiSCH network formation.

The network formation process in 6TiSCH involves the sequential transition of

nodes through different states. Typically, as shown in Fig. 4.3, the states include the

new node, TSCH joined, RPL joined, and cell allocated states. Initially, in the new

node state, a node waits for TSCH Enhanced Beacons (EBs) broadcasted by the nodes

in the TSCH joined state, such as the TSCH coordinator. When an EB is received,

the node extracts TSCH network information, including synchronization timing, and

joins the TSCH network (TSCH joined state), enabling participation in time-slotted

communication.

The node then listens for RPL DODAG Information Objects (DIOs) broadcasted

by the nodes in the RPL joined state, such as the RPL root. This allows the node

to acquire routing information and join the RPL network (RPL joined state). In RPL

joined state, the node can send Destination Advertisement Object (DAO) packets to its

RPL parent node to establish downward routes. In our considered network, where the

ALICE scheduler is applied, successful DAO transmission allocates dedicated cells for

links between the node and its RPL parent. That is, by successfully transmitting DAO

packets, the node enters the cell allocated state, and it can utilize these dedicated cells

for efficient and coordinated communication within the 6TiSCH network.

As aforementioned, the transition between these states relies on the exchange of

specific packets, including EBs, DIOs, and DAOs. Hence, to ensure the efficient pro-

gression of 6TiSCH network formation, it is crucial that the formation-critical (i.e.,

urgent) packets are exchanged in a timely manner, allowing each node to successfully

complete its state transitions.

92

Figure 4.4: Time evolution of packet transmissions within the common shared cell and the

time when the state transition of all nodes completed.

4.3 Motivation

The 6TiSCH network offers several advantages, such as deterministic latency, low

energy consumption, and high reliability. However, to fully utilize these benefits, net-

work formation is a prerequisite. Efficient network formation plays a crucial role in the

timely deployment and operation of 6TiSCH networks. Nevertheless, we have identi-

fied challenges in network formation within the 6TiSCH framework, primarily due to

the congestion issues in the common shared cell.

To elaborate, the common shared cell serves as the primary communication path

during network formation, which leads to significant collisions within this shared re-

source. Fig. 4.4 illustrates the number of nodes attempting packet transmissions in the

common shared cell over time. The different colors represent the various types of trans-

mitted packets. Additionally, it shows the time taken for all nodes to reach the TSCH

joined state, RPL joined state, and cell allocated state. This analysis was conducted

using a real testbed comprising 79 nodes, where network formation was performed

with a common shared slotframe size of 31.

The result reveals that immediately after network initiation, a substantial number

of nodes engage in packet transmissions within the common shared cell. In some cells,

more than 20 nodes attempt packet transmissions. However, the experimental results

93

Tx node 1

Rx node Rx packet

Tx packetC
C
A

Tx packet

Tx ACK

Rx ACK

Rx ACKC
C
ATx node 2

X
X

Tx ACK

Rx ACK

Rx ACK

Figure 4.5: Collision is inevitable in common shared cell due to the closely aligned transmis-

sion start times.

indicate a notably low success rate for these transmitted packets. As a result, it takes

more than 12 minutes for all nodes to reach the cell allocated state.

What exacerbates the problem further is that the transmission mechanism of TSCH

makes it challenging to effectively mitigate the collision issue in the common shared

cell. As depicted in Fig. 4.5, in TSCH, packets transmitted within the same slot have

closely aligned transmission start times. Despite the inclusion of clear channel assess-

ment (CCA) to determine channel availability prior to packet transmission, nodes in

the network are unable to detect collisions between packets. As a consequence, TSCH

nodes repeatedly attempt transmissions without detecting collisions, aggravating the

congestion problem.

Nevertheless, addressing the challenges of common shared cell and optimizing

the network formation process are crucial for achieving reliable and efficient com-

munication in 6TiSCH networks. This motivates us to proposes TOP, a transsmision

offset-based prioritization technique to mitigate collisions and prioritize urgent pack-

ets, aiming to expedite network formation and improve overall performance of 6TiSCH

networks.

94

Offset-0

Rx node Rx packet

Tx packetC
C
A

TSCH slot

Tx packet

Tx ACK

Rx ACK

Rx ACKC
C
AOffset-1
!

Tx packet Rx AC
C
AOffset-2

Rx ACK

Rx A

Tx packet
!

Tx packet

Figure 4.6: Assigning differentiated offsets to the packet transmission start times enables the

detection of collisions among packets.

4.4 Approach and Considerations

4.4.1 Approach: Transmission offset-based prioritization

To address the issue of unavoidable collisions in the common shared cell, we employ

a transmission offset-based prioritization technique. Fig. 4.6 provides an example of

assigning differentiated transmission offsets to multiple packets within the common

shared cell. By dispersing the transmission start times of the packets, it becomes pos-

sible for each packet to detect the presence of preceding packets through CCA. This

enables the postponement of subsequent packet transmissions, effectively mitigating

the collision problem that was previously inevitable and promoting the packet delivery

within the common shared cell.

Furthermore, taking into consideration that packets with smaller offsets initiate

their transmissions earlier, the utilization of offsets allows for packet prioritization.

This prioritization can ensure that packets requiring more timely delivery, such as those

related to the state transitions (i.e., urgent packets), are transmitted more quickly by

being delivered ahead of other packets with longer offsets.

95

4.4.2 Considerations

To successfully apply offset-based prioritization in 6TiSCH networks and accelerate

network formation, the following considerations need to be taken into account:

• The number of available offsets

• State transitions in network formation

• Differences between broadcast and unicast packets

• Impact of offset-based prioritization

• Characteristics of TSCH common shared cell

These considerations play a crucial role in optimizing the use of offsets and ensuring

efficient communication in the network formation process.

The number of available offsets: Taking into account the timeslot template in the

standard and the performance of commodity off-the-shelf devices, up to six offsets

can be conditionally supported. Among these offsets, the first five can accommodate

both unicast and broadcast transmissions, while the sixth offset is reserved exclusively

for broadcast packets. Out of these offsets, we utilize the first five for our research

purposes.

State transitions in network formation: The second consideration is the state tran-

sition in the 6TiSCH network formation. We especially focus on the transition from

the TSCH joined state to the subsequent states, namely the RPL joined and the cell

allocated states. As discussed earlier, in order to move from the TSCH joined state to

the RPL joined state, it is crucial to receive DIO packet. Similarly, to proceed from the

RPL joined state to the cell allocated state, the successful transmission of DAO packet

is necessary. Considering these factors, a careful understanding of the state transitions

and associated message exchanges is necessary for effective offset-based prioritization

in the 6TiSCH network formation.

Differences between broadcast and unicast packets: During the network forma-

tion process, both broadcast packets and unicast packets are generated, and they are

96

transmitted through a common shared cell. However, these two types of packets have

distinct characteristics that need to be considered in offset assignment. Specifically,

unicast packets are accompanied by ACKs, enabling the determination of successful

or failed transmissions. On the other hand, broadcast packets do not have ACKs, mak-

ing it impossible to ascertain the success or failure of their transmissions. Therefore, it

is desirable to avoid situations where broadcast packets and unicast packets collide by

being transmitted on the same offset.

Impact of transmission offset-based prioritization: Next, we discuss the impact of

offset-based prioritization on the network and highlight the considerations that need to

be taken into account. Firstly, it is important to note that packets with smaller offsets

will block the transmission of packets with larger offsets. While this is a design choice

to prioritize the delivery of urgent packets (assigned smaller offsets), it is desirable

to ensure that lower priority packets are not excessively delayed and are transmitted

as well. To achieve this, the smaller offsets should be emptied as quickly as possible.

Additionally, for packets that repeatedly get larger offsets and experience transmission

postponement, appropriate adjustments to the offsets can promote faster delivery.

Another consideration is to assign multiple offsets to packets of a specific type,

reducing the collision probability and promoting packet delivery. For instance, let’s

consider a scenario where multiple nodes need to transmit DAO packets. If these

DAO packets are assigned a single offset, collisions between them within the same

cell would be inevitable. However, by allowing DAO packets to have multiple off-

sets and randomly determining the offset for each node, it becomes probabilistically

possible to have DAO packets transmitted without collisions. Therefore, it is worth

consideration to allocate multiple offsets to packets of a specific type to accelerate the

packet delivery.

We now discuss the potential side effects of offset-based prioritization that need

to be addressed to achieve the desired performance. Fig. 4.7 illustrates the behavior

of five nodes across four common shared cells, omitting non-common shared cells for

97

Node 2

Node 1

Node 3

Node 4

Cell 1 Cell 2 Cell 3 Cell 4

! ! !

Node 5
X

!

Figure 4.7: Example of potential side effects of offset-based prioritization. Orange, blue,

and green rectangles represent CCA, transmission of data packet, and transmission of ACK

respectively.

convenience. Assume that nodes 1 and 2 transmit packets at offset 0, while nodes 3

and 4 transmit packets at offset 2. In this scenario, until the fourth cell where nodes 1

and 2 do not transmit packets, nodes 3 and 4 postpone their packet transmissions. In

this situation, if nodes 3 and 4 both attempt to transmit their packets in the fourth cell,

immediately after deferring packet transmissions in the third cell, a collision between

nodes 3 and 4 becomes unavoidable. Preventing such collisions is needed for TOP to

accomplish its intended purpose.

Furthermore, an issue may arise when a node defers packet transmission based

on offset-based prioritization and attempts retransmissions repeatedly. For instance, as

shown in Fig. 4.7, node 4 retries packet transmission from cell 1 to cell 3 due to the

presence of preceding packets from nodes 1 and 2. The problem lies in the fact that

the common shared cell serves as a resource not only for packet transmission but also

for reception. As a result, repetitive transmission behaviors within consecutive com-

mon shared cells can limit opportunities for receiving operations. In the mentioned

scenario, if there is another node, node 5, that needs to send a packet to node 4, com-

munication between node 5 and node 4 will continue to fail until node 4 no longer

requires transmission operations. This can lead to further delays in packet delivery.

98

For TOP to effectively expedite network formation, successful transmission should be

accompanied by successful reception.

4.5 Proposed Scheme

Taking into account the aforementioned factors, we propose transmission offset-based

prioritization (TOP) as a means to expedite 6TiSCH network formation. TOP com-

prises an offset assignment policy that allocates suitable offsets to packets based on

node state, packet type, and urgency. It incorporates offset escalation mechanisms to

promote fast packet transmission and a modified backoff mechanism to prevent colli-

sions and further improve transmission efficiency. Together, these components syner-

gistically work towards accelerating network formation in 6TiSCH networks.

4.5.1 Transmission offset assignment policy

We first propose an offset assignment policy that is tailored to the characteristics of

6TiSCH networks. Fig. 4.8 visualizes our proposed offset assignment policy by in-

dicating the assigned offsets for different packet types through color coding. As dis-

cussed earlier, the formation of a 6TiSCH network involves transitions between spe-

cific states, which necessitate the transmission or reception of certain packets. Depend-

ing on the network implementation, there may also be packets that need to be trans-

mitted or received to fulfill specific conditions, such as network stabilization. TOP

Non-urgentUrgent
43210Offset

M-DIO
DIS
DAO
KA

U-DIO

Figure 4.8: Transmission offset assignment policy.

99

classifies these formation-critical packets as “urgent packets,” requiring higher prior-

ity. To prioritize them, we assign smaller offsets, ensuring their prompt delivery. In

Fig. 4.8, offsets from 0 to 2 are allocated to urgent packets, while offsets 3 and 4 are

assigned to non-urgent packets.

4.5.2 Determination of packet urgency

To determine which packets should be classified as urgent, we consider specific packets

that play a vital role in state transitions of network formation. We first focus on the

conditions for transition from the TSCH joined state to the RPL joined state. For this

transition, the reception of RPL DIO packets from neighboring RPL joined nodes is

prerequisite. It is important to note that the challenge lies not in transmitting but in

receiving these DIO packets. Therefore, it is important for nodes in the RPL joined

state or in the subsequent states to anticipate the neighboring nodes’ need for reception

of DIO and prioritize it accordingly.

To address this, we consider the behavior of DIO Trickle timer algorithm [37],

which governs the transmission interval of DIO packets. The Trickle timer dynamically

adjusts the interval by manipulating the DIO interval exponent. At the beginning of the

network, the Trickle timer sets the interval to a minimum value to facilitate the rapid

dissemination of RPL network information. Subsequently, it gradually increases the

interval exponentially unless there are changes in the routing topology. Meanwhile,

whenever a node in the RPL joined state receives a RPL DIS packet, it resets the

Trickle timer and reverts the interval to the minimum value, enabling more frequent

DIO packet transmissions.

As a result, a smaller Trickle timer interval signifies the necessity for frequent

DIO transmissions to neighboring nodes. Hence, we classify DIO packets as urgent

when the Trickle timer exponent falls below a certain threshold. This classification

remains consistent even when the DIO Trickle timer period is reset due to changes in

the routing topology, irrespective of the state transition for network formation, as the

100

swift dissemination of network information through DIO packets remains paramount.

We next consider DAO packets. DAO packets are generated periodically and sent

to RPL parents. However, they are especially crucial when transitioning from the RPL

joined state to the cell allocated state. In other situations, their transmission does not

require immediate attention. Taking this into account, we classify DAO packets trans-

mitted during the RPL joined state as urgent packets. For the remaining cases, DAO

packets are categorized as non-urgent packets.

In Contiki-NG, where we implement TOP, after a node enters the TSCH joined

state by receiving an EB, if it fails to transmit the KA packet before clock drift correc-

tion occurs at least once, it is considered unable to achieve synchronization and reverts

back to the new node state. Therefore, it is important to successfully transmit KA

packet after transitioning to the TSCH joined state to maintain a stable state. Conse-

quently, under this condition, we classify KA packet as an urgent packet. However, in

other cases, particularly when clock drift has been corrected at least once, we classify

the KA packet as a non-urgent packet.

The remaining packets, as they do not directly participate in the state transition and

state stabilization during the network formation process, are classified as non-urgent

packets.

4.5.3 Differentiation between broadcast and unicast packets

As previously discussed, broadcast packets are more susceptible to collisions com-

pared to unicast packets. Considering this, we allocate offsets for both urgent packets

and non-urgent packets in a way that prioritizes broadcast packets over unicast packets

(i.e., assigning smaller offsets to the broadcast packets). As shown in Fig. 4.8, offset

0 is assigned for broadcast packets among the offsets designated for urgent packets,

while offset 3 is assigned for broadcast packets among the offsets designated for non-

urgent packets.

101

4.5.4 Multi-offset assignment to urgent unicast packets

In the current approach, offset 0 is assigned to urgent broadcast packets, offset 3 is

assigned to non-urgent broadcast packets, and offset 4 is assigned to non-urgent uni-

cast packets, leaving offsets 1 and 2 available. During the network formation process,

broadcast packets are transmitted in a one-to-many fashion, while unicast packets are

transmitted in a one-to-one manner. Consequently, the number of packets required for

state transitions of all nodes is generally greater for unicast packets than for broad-

cast packets. Taking this into consideration, we randomly allocate the remaining two

offsets to the urgent unicast packets. This multi-offset allocation strategy reduces the

collision probability of urgent unicast packets, thereby increasing transmission success

rates and facilitating efficient network formation.

4.5.5 Transmission offset escalation

To provide transmission opportunities for packets that are repeatedly delayed due to

being assigned a large offset, TOP incorporates offset escalation. We note that, it is

important to handle offset adjustments with care, as they have the potential to increase

congestion levels that were reduced through offset-based prioritization. Therefore, we

specifically target non-urgent broadcast packets for offset escalation. While non-urgent

broadcast packets may not be urgent in terms of network formation, they often contain

vital network information, making excessive transmission delays undesirable. Con-

versely, non-urgent unicast packets generally do not require immediate delivery or can

be offloaded to dedicated cells once transitioning to the cell allocated state. Consider-

ing these factors, we implement offset escalation exclusively for broadcast packets.

We leverage the parameter macMaxRetries defined in the TSCH standard, which

represents the maximum number of transmission attempts for a packet at the MAC

layer. If a packet experiences a greater transmission delay than this value, it has been

delayed longer than its intended transmission time. In such cases, we assign offset 0 to

non-urgent broadcast packets, allowing them to be transmitted with higher priority.

102

4.5.6 Modification of the backoff mechanism

As mentioned earlier, when applying offset-based prioritization, allowing packets that

have been delayed due to the detection of preceding packets to immediately attempt

retransmission can lead to collisions between nodes. Besides, this can result in pro-

longed transmission without reception operations. This can exacerbate congestion and

delay packet delivery, ultimately slowing down network formation. To address this,

we propose a slight modification to the default backoff mechanism in TSCH to align it

with the goal of achieving fast network formation through offset-based prioritization.

Firstly, we introduce random backoff mechanism for broadcast packets, which was

previously only applied to unicast packets. We extend the random backoff behavior de-

fined for unicast packets to also encompass broadcast packets that have experienced

delays due to the detection of preceding packets. Furthermore, in the TSCH retrans-

mission mechanism, if the number of failed transmission reaches the maximum defined

by macMaxRetries, the transmission is considered failed, and the packet is dropped.

However, when a node detects a preceding packet and defers its transmission in the

common shared cell, it is an intended postponement thus we exclude such deferred

transmissions from the count of retransmission attempts. By incorporating these mod-

ifications, we ensure that the backoff mechanism aligns with the principles of offset-

based prioritization, mitigating congestion and facilitating faster network formation.

4.6 Evaluation

4.6.1 Implementation and experiment setup

We implement TOP on the M3 board using Contiki-NG. As for the baseline scheme,

we utilized publicly available implementations of ALICE. For the comparison schemes,

we first employed random offset assignment (referred to as Random hereafter). The

slotframe lengths for EB and unicast are set to 397 and 20, respectively. We then in-

vestigate the network formation time while varying the common shared slotframe size

103

0 4 8 12 16

X position (m)

0

4

8

12

16

18

Y
 p

o
s
it
io

n
 (

m
)

Figure 4.9: Node deployment topology at Lille testbed. he node located in the upper left

corner and marked in yellow serves as the root.

from 31 to 41.

We conduct experiments on the FIT/IoT-LAB testbed, which is a large-scale pub-

lic testbed located in Lille. The physical deployment topology of the 79 nodes in Lille

is illustrated in Fig. 4.9. The nodes are almost evenly distributed in a rectangular grid

shape, forming a 3-4 hop topology. With this setup, we measured the network forma-

tion time for each scheme. We repeat the experiment three times for each experimental

case.

4.6.2 Performance of TOP

Fig. 4.10 shows the time taken for all nodes to reach the RPL joined state and the cell

allocated state for two different common shared slotframe lengths, 31 and 41. In both

slotframe sizes, TOP shows reduced transition times in two states compared to the

baseline. This improvement can be attributed to TOP effectively mitigating collisions

in the common shared cell and delivering the necessary packets promptly.

On the other hand, in the Random case, the transition to the RPL joined state is

faster compared to the baseline, while reaching the cell allocated state takes longer

than the baseline. The faster transition to the RPL joined state in Random can be at-

tributed to the fact that transitioning to the RPL joined state requires receiving DIO

packets. We note that broadcast packets like DIO can propagate throughout the net-

104

RPL joined Cell allocated
0

10

20

30

F
o
rm

a
ti
o
n
 t
im

e
 (

m
in

)

Baseline

Random

TOP

(a) Network formation time with common shared slotframe size of 31

RPL joined Cell allocated
0

20

40

60

F
o
rm

a
ti
o
n
 t
im

e
 (

m
in

)

(b) Network formation time with common shared slotframe size of 41

Figure 4.10: Network formation time for different slotframe sizes

work even with a few packets since they are delivered in a one-to-many manner. There-

fore, simply assigning offsets randomly can reduce the collision probability of DIOs

enough to expedite the transition to the RPL joined state.

However, proceeding to the cell allocated state requires successful one-to-one uni-

cast transmission of DAO packets from all nodes to their parent nodes. In Random off-

set assignment, DAO packets are also assigned offsets randomly. Therefore, the trans-

missions of DAO packets with larger offsets can be repeatedly delayed by packets with

smaller offsets, resulting in delayed state transition. That is, in the Random policy, al-

though collisions among packets can be detected and avoided through random offset

assignment, it alone was not sufficient to ensure the timely delivery of unicast packets.

On the contrary, in TOP, after successful propagation of the initial few DIO pack-

ets, DAO packets are prioritized and promptly delivered. As a result, TOP demon-

strates the shortest formation time not only in the RPL joined state but also in the cell

allocated state.

105

(a) Time evolution of Random

(b) Time evolution of TOP

Figure 4.11: Time evolution of transmissions within the common shared cell and the time

when the state transition of all nodes completed for Random and TOP.

Moreover, as the length of the common shared slotframe increases, the severity of

the collision problem intensifies due to the reduced frequency of the common shared

cell repetition. Consequently, it is evident that the overall formation time for both states

increases when the slotframe length is 41 compared to 31. However, TOP continues to

exhibit superior performance by efficiently delivering the necessary packets for forma-

tion through effective prioritization. Notably, the enhancement in TOP’s performance

is more pronounced when the slotframe length is 41, underscoring its successful miti-

gation of collision and congestion issues in the common shared cell.

Fig. 4.11, similar to Fig. 4.4, the number of nodes attempting packet transmissions

in the common shared cell over time, as well as the time at which all nodes transition to

106

the TSCH joined, RPL joined, and cell allocated states, for both the Random policy and

TOP. Under the Random policy, where offsets are assigned randomly without explicit

priorities, a notable number of packets are repeatedly transmitted at the same common

shared cell, leading to packet delivery failures and subsequent delays in transitioning to

the cell allocated state. In contrast, TOP demonstrates a different behavior. The packets

necessary for state transitions, such as DIO and DAO, are transmitted in a prioritized

manner. As a result, a prompt transition to the cell allocated state is achieved.

In summary, TOP effectively alleviates collisions in the TSCH common shared

cell by assigning different offsets to the start time of packet transmission. Moreover,

it prioritizes packet delivery based on the assigned offsets, enabling the swift trans-

mission of essential packets required for network formation and facilitating the timely

completion of the formation process in the 6TiSCH network.

4.7 Related Work

4.7.1 Toward fast 6TiSCH network formation

Numerous research studies have focused on enhancing the speed of 6TiSCH network

formation. For instance, Vallati et al. [107] proposed dynamic allocation of common

shared cells based on control packet load to mitigate collisions. However, this approach

converts dedicated cells into common shared cells, resulting in decreased network effi-

ciency and increased energy consumption. Vucinic et al. [108] found that EB transmis-

sions can cause congestion in the common shared cell and suggested a fixed and low

EB rate to alleviate this issue, but it can potentially delay state transitions. C2DBI [109]

dynamically adjusts the EB generation interval to address congestion, while Kalita et

al. [110] dynamically adjust the priority of control packets to prevent delays caused by

the highest priority given to EBs. TRGB [111] introduces a novel approach by dividing

the common shared cell into three types and differentiating packets transmitted within

each type of common shared cell. The goal is to reduce collision probability, but this

107

approach can potentially lead to resource scarcity issues. As such, there have been var-

ious research efforts aimed at improving 6TiSCH network formation. However, none

of these studies investigated a fundamental causes of delay in network formation: the

unavoidable collision problem within the common shared cell due to closely aligned

transmission start times.

4.7.2 Offset-based differentiation in TSCH slot

The concept of assigning different offsets to the transmission start times within TSCH

slots has been explored in previous studies [96, 97]. However, these studies primarily

focused on implementing this approach during the data transmission phase rather than

the network formation phase. In [96], transmission offset differentiation is utilized in

dedicated cells, allowing non-owner nodes to utilize the cell when the owner node

is not transmitting packets, with the goal of reducing communication latency. Dual-

Block [97] introduces multiple offsets in shared cells for unicast transmission, aim-

ing to alleviate packet collisions and enhance packet delivery. However, DualBlock

does not consider offset-based prioritization, which limits the effectiveness of its colli-

sion mitigation. In contrast, TOP incorporates packet differentiation and prioritization

based on offsets to address collisions in the common shared cell during the network

formation process, facilitating the timely delivery of essential packets.

4.8 Summary

In conclusion, this chapter addresses the challenges of network formation in 6TiSCH

networks by proposing TOP, an offset-based prioritization technique. The proposed

scheme enhances the efficiency of network formation by assigning offsets and pri-

oritizing packets, leveraging a comprehensive understanding of 6TiSCH networks.

Through implementation on real devices and extensive evaluations conducted on a

sizable testbed, we have successfully validated the effectiveness of TOP in signifi-

108

cantly reducing network formation time. These findings contribute to the optimization

of 6TiSCH networks, enabling faster and more reliable network deployment.

109

Chapter 5

Conclusion

In this dissertation, we have addressed significant challenges in LLNs and proposed

innovative solutions to enhance performance of LLNs. Through extensive research and

empirical evaluations, we have made notable contributions in three key areas: mobile

routing, time-slotted communication, and 6TiSCH network formation.

In the domain of mobile routing, we introduced MobiRPL, an adaptive and robust

mobile routing protocol designed to overcome the limitations of the existing IPv6 RPL

protocol. By leveraging RSSI, MobiRPL enables reliable and efficient routing in mo-

bile LLNs. The evaluations have demonstrated its superiority, achieving substantial

improvements in packet delivery ratio and energy consumption compared to conven-

tional approaches.

To enhance the time-efficiency of time-slotted communication, we presented ASAP,

a utility-based adaptation of slot-size and packet aggregation technique. By dynami-

cally adjusting slot sizes based on packet size distribution and employing packet ag-

gregation, ASAP maximizes resource utilization in time-slotted systems. Experimental

evaluations have validated its effectiveness, showcasing significant improvements in

throughput and latency compared to traditional approaches.

Moreover, we addressed the challenges in network formation in 6TiSCH networks

and proposed TOP, an offset-based prioritization technique. Within the common shared

110

cell, TOP assigns offsets to packets during transmission initiation, diversifies their

starting points, and facilitates collision detection and prioritization of critical packets.

Testbed experiments have demonstrated the remarkable reductions in network forma-

tion time achieved by TOP, further enhancing the efficiency of 6TiSCH networks.

Overall, the contributions made in this dissertation significantly advance the field

of LLNs by providing novel solutions to critical challenges. The proposed solutions

have demonstrated their effectiveness through extensive evaluations and have shown

the potential to improve the overall performance of LLNs in various application do-

mains.

111

Bibliography

[1] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” in Mobile computing. Springer, 1996, pp. 153–181.

[2] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis,

R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing Protocol for

Low-Power and Lossy Networks,” RFC 6550, Mar. 2012. [Online]. Available:

https://www.rfc-editor.org/info/rfc6550

[3] H.-S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6 Routing

Protocol for Low-Power and Lossy Networks (RPL): A Survey,” IEEE Commu-

nications Surveys and Tutorials, vol. 19, no. 4, pp. 2502–2525, Sep. 2017.

[4] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load Balancing Under Heavy Traffic

in RPL Routing Protocol for Low Power and Lossy Networks,” IEEE Transac-

tions on Mobile Computing, vol. 16, no. 4, pp. 964–979, 2016.

[5] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “MarketNet: An

Asymmetric Transmission Power-based Wireless System for Managing e-Price

Tags in Markets,” in Proceedings of the 13th ACM Conference on Embedded

Networked Sensor Systems, 2015, pp. 281–294.

[6] M. Dohler, T. Watteyne, T. Winter, and D. Barthel, “Routing Requirements for

Urban Low-Power and Lossy Networks,” Internet Eng. Task Force, RFC 5548,

May 2009.

112

https://www.rfc-editor.org/info/rfc6550

[7] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial Routing Require-

ments in Low-Power and Lossy Networks,” Internet Eng. Task Force, RFC

5673, Oct. 2009.

[8] A. Brandt, J. Buron, and G. Porcu, “Home Automation Routing Requirements

in Low-Power and Lossy Networks,” Internet Eng. Task Force, RFC 5826, Apr.

2010.

[9] J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building Automation

Routing Requirements in Low-Power and Lossy Networks,” Internet Eng. Task

Force, RFC 5867, June 2010.

[10] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh, “Wire-

less Sensor Networks for Healthcare,” Proceedings of the IEEE, vol. 98, no. 11,

pp. 1947–1960, 2010.

[11] M. Barcelo, A. Correa, J. L. Vicario, A. Morell, and X. Vilajosana, “Addressing

mobility in RPL with position assisted metrics,” IEEE Sensors Journal, vol. 16,

no. 7, pp. 2151–2161, 2015.

[12] C. Cobârzan, J. Montavont, and T. Noel, “Integrating Mobility in RPL,” in Eu-

ropean conference on wireless sensor networks. Springer, 2015, pp. 135–150.

[13] J. Park, K.-H. Kim, and K. Kim, “An algorithm for timely transmission of so-

licitation messages in RPL for energy-efficient node mobility,” Sensors, vol. 17,

no. 4, p. 899, 2017.

[14] S. Hoghooghi and R. N. Esfahani, “Mobility-Aware Parent Selection for Rout-

ing Protocol in Wireless Sensor Networks using RPL,” in 2019 5th International

Conference on Web Research (ICWR). IEEE, 2019, pp. 79–84.

113

[15] M. Bouaziz, A. Rachedi, A. Belghith, M. Berbineau, and S. Al-Ahmadi, “EMA-

RPL: Energy and mobility aware routing for the Internet of Mobile Things,”

Future Generation Computer Systems, vol. 97, pp. 247–258, 2019.

[16] M. Bouaziz, A. Rachedi, and A. Belghith, “EKF-MRPL: Advanced mobility

support routing protocol for internet of mobile things: Movement prediction

approach,” Future Generation Computer Systems, vol. 93, pp. 822–832, 2019.

[17] G. Violettas, S. Petridou, and L. Mamatas, “Evolutionary software defined

networking-inspired routing control strategies for the Internet of Things,” IEEE

Access, vol. 7, pp. 132 173–132 192, 2019.

[18] I. Rabet, S. P. Selvaraju, M. H. Adeli, H. Fotouhi, A. Balador, M. Vahabi,

M. Alves, and M. Björkman, “Pushing IoT Mobility Management to the Edge:

Granting RPL Accurate Localization and Routing,” in 2021 IEEE 7th World

Forum on Internet of Things (WF-IoT). IEEE, 2021, pp. 338–343.

[19] R. Elhabyan, W. Shi, and M. St-Hilaire, “Coverage protocols for wireless sen-

sor networks: Review and future directions,” Journal of Communications and

Networks, vol. 21, no. 1, pp. 45–60, 2019.

[20] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and connec-

tivity issues in wireless sensor networks,” Journal of Network and Computer

Applications, vol. 35, no. 2, pp. 619–632, 2012.

[21] I. El Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, “Mobility Enhanced

RPL for Wireless Sensor Networks,” in Network of the Future (NOF), 2012

Third International Conference on the. IEEE, 2012, pp. 1–8.

[22] H. Fotouhi, D. Moreira, and M. Alves, “mRPL: Boosting mobility in the Inter-

net of Things,” Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

114

[23] H. Fotouhi, D. Moreira, M. Alves, and P. M. Yomsi, “mRPL+: A mobility man-

agement framework in RPL/6LoWPAN,” vol. 104. Elsevier, 2017, pp. 34–54.

[24] J. Ko and M. Chang, “MoMoRo: Providing Mobility Support for Low-Power

Wireless Applications,” IEEE Systems Journal, vol. 9, no. 2, pp. 585–594, 2015.

[25] O. Gaddour, A. Koubâa, and M. Abid, “Quality-of-service aware routing for

static and mobile IPv6-based low-power and lossy sensor networks using RPL,”

Ad Hoc Networks, vol. 33, pp. 233–256, 2015.

[26] J. Wang, G. Chalhoub, and M. Misson, “Mobility support enhancement for

RPL,” in Performance Evaluation and Modeling in Wired and Wireless Net-

works (PEMWN), 2017 International Conference on. IEEE, 2017, pp. 1–6.

[27] H. Kharrufa, H. Al-Kashoash, and A. H. Kemp, “A game theoretic optimiza-

tion of RPL for mobile Internet of Things applications,” IEEE Sensors Journal,

vol. 18, no. 6, pp. 2520–2530, 2018.

[28] A. Mohammadsalehi, B. Safaei, A. M. H. Monazzah, L. Bauer, J. Henkel, and

A. Ejlali, “ARMOR: A Reliable and Mobility-aware RPL for Mobile Internet

of Things Infrastructures,” IEEE Internet of Things Journal, 2021.

[29] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igrashi, H. Satoh, U. Her-

berg, C. Lavenu, T. Lys, and J. Dean, “The Lightweight On-demand Ad hoc

Distance-vector Routing Protocol - Next Generation (LOADng),” Internet Eng.

Task Force, Draft, July 2016.

[30] M. Vučinić, B. Tourancheau, and A. Duda, “Performance comparison of the

RPL and LOADng routing protocols in a Home Automation scenario,” in Wire-

less Communications and Networking Conference (WCNC), 2013 IEEE. IEEE,

2013, pp. 1974–1979.

115

[31] U. Herberg and T. Clausen, “A comparative performance study of the routing

protocols LOAD and RPL with bi-directional traffic in low-power and lossy

networks (LLN),” in Proceedings of the 8th ACM Symposium on Performance

evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM, 2011,

pp. 73–80.

[32] S. Elyengui, R. Bouhouchi, and T. Ezzedine, “A comparative performance study

of the routing protocols RPL, LOADng and LOADng-CTP with bidirectional

traffic for AMI scenario,” in 2015 International Conference on Smart Grid and

Clean Energy Technologies (ICSGCE). IEEE, 2015, pp. 43–49.

[33] J. Yi, T. Clausen, and Y. Igarashi, “Evaluation of routing protocol for low power

and Lossy Networks: LOADng and RPL,” in 2013 IEEE Conference on Wireless

Sensor (ICWISE). IEEE, 2013, pp. 19–24.

[34] J. Tripathi and J. C. de Oliveira, “Proactive versus reactive revisited: IPv6 rout-

ing for Low Power Lossy Networks,” in 2013 47th Annual Conference on In-

formation Sciences and Systems (CISS). IEEE, 2013, pp. 1–6.

[35] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sen-

sor Network Simulation with COOJA,” in Local computer networks, proceed-

ings 2006 31st IEEE conference on. IEEE, 2006, pp. 641–648.

[36] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector

(AODV) Routing,” Tech. Rep., July 2003.

[37] P. Levis and T. H. Clausen, “The Trickle Algorithm,” Internet Eng. Task Force,

RFC 6206, Mar. 2011.

[38] O. Gnawali and P. Levis, “The Minimum Rank with Hysteresis Objective Func-

tion,” RFC 6719, Sep 2012.

116

[39] A. Oliveira and T. Vazão, “Low-power and lossy networks under mobility: A

survey,” Computer Networks, vol. 107, pp. 339–352, 2016.

[40] P. O. Kamgueu, E. Nataf, and T. D. Ndie, “Survey on RPL enhancements: A

focus on topology, security and mobility,” Computer Communications, vol. 120,

pp. 10–21, 2018.

[41] Z. Shah, A. Levula, K. Khurshid, J. Ahmed, I. Ullah, and S. Singh, “Routing

Protocols for Mobile Internet of Things (IoT): A Survey on Challenges and

Solutions,” Electronics, vol. 10, no. 19, p. 2320, 2021.

[42] K. Levis et al., “RSSI is under appreciated,” in Proceedings of the Third Work-

shop on Embedded Networked Sensors, Cambridge, MA, USA, vol. 3031, 2006,

p. 239242.

[43] S. Lin, F. Miao, J. Zhang, G. Zhou, L. Gu, T. He, J. A. Stankovic, S. Son,

and G. J. Pappas, “ATPC: Adaptive Transmission Power Control for Wireless

Sensor Networks,” ACM Transactions on Sensor Networks (TOSN), vol. 12,

no. 1, p. 6, 2016.

[44] E. M. Royer, C.-K. Toh et al., “A review of current routing protocols for ad hoc

mobile wireless networks.” IEEE Personal Commun., vol. 6, no. 2, pp. 46–55,

1999.

[45] C. E. Perkins and P. Bhagwat, “Highly dynamic Destination-Sequenced

Distance-Vector routing (DSDV) for mobile computers,” in ACM SIGCOMM

computer communication review, vol. 24, no. 4. ACM, 1994, pp. 234–244.

[46] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),”

Tech. Rep., 2003.

[47] D. Johnson, Y.-c. Hu, and D. Maltz, “The Dynamic Source Routing Protocol

(DSR) for Mobile Ad Hoc Networks for IPv4,” Tech. Rep., 2007.

117

[48] J. Tripathi, J. C. De Oliveira, and J.-P. Vasseur, “Proactive versus reactive rout-

ing in low power and lossy networks: Performance analysis and scalability im-

provements,” Ad Hoc Networks, vol. 23, pp. 121–144, 2014.

[49] T. Clausen, J. Yi, and A. C. De Verdiere, “LOADng: Towards AODV Version

2,” in 2012 IEEE Vehicular Technology Conference (VTC Fall). IEEE, 2012,

pp. 1–5.

[50] T. Clausen, J. Yi, and U. Herberg, “Lightweight On-demand Ad hoc Distance-

vector Routing-Next Generation (LOADng): Protocol, extension, and applica-

bility,” Computer Networks, vol. 126, pp. 125–140, 2017.

[51] J. Yi and T. Clausen, “Collection Tree Extension of Reactive Routing Proto-

col for Low-Power and Lossy Networks,” International Journal of Distributed

Sensor Networks, vol. 10, no. 3, p. 352421, 2014.

[52] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible

operating system for tiny networked sensors,” in Local Computer Networks,

2004. 29th Annual IEEE International Conference on. IEEE, 2004, pp. 455–

462.

[53] A. Dunkels, “The contikimac radio duty cycling protocol,” Swedish Institute of

Computer Science (SICS), Tech. Rep. T2011:13, 2011.

[54] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study of low-

power wireless,” ACM Transactions on Sensor Networks (TOSN), vol. 6, no. 2,

pp. 1–49, 2010.

[55] H.-S. Kim, S. Kumar, and D. E. Culler, “Thread/OpenThread: A Compro-

mise in Low-Power Wireless Multihop Network Architecture for the Internet

of Things,” IEEE Communications Magazine, vol. 57, no. 7, pp. 55–61, 2019.

118

[56] S. Jeong, E. Park, D. Woo, H.-S. Kim, J. Paek, and S. Bahk, “MAPLE: Mobility

support using asymmetric transmit power in low-power and lossy networks,”

Journal of Communications and Networks, vol. 20, no. 4, pp. 414–424, 2018.

[57] R. Heile, R. Alfvin, P. Kinney, J. Gilb, and C. Chaplin, “IEEE Standard for Local

and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area

Networks (LR-WPANs) Amendment 1: MAC sublayer,” IEEE, Tech. Rep.,

2012.

[58] A. Elsts, J. Pope, X. Fafoutis, R. J. Piechocki, and G. Oikonomou, “Instant: A

TSCH Schedule for Data Collection from Mobile Nodes.” in EWSN, 2019, pp.

35–46.

[59] O. Tavallaie, J. Taheri, and A. Y. Zomaya, “Design and Optimization of Traffic-

Aware TSCH Scheduling for Mobile 6TiSCH Networks,” in Proceedings of

the International Conference on Internet-of-Things Design and Implementation,

2021, pp. 234–246.

[60] L. G. Roberts, “ALOHA packet system with and without slots and capture,”

ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp. 28–42,

1975.

[61] T. Watteyne, J. Weiss, L. Doherty, and J. Simon, “Industrial IEEE802.15.4e

networks: Performance and trade-offs,” in IEEE International Conference on

Communications (ICC), 2015, pp. 604–609.

[62] V. Scilimati, A. Petitti, P. Boccadoro, R. Colella, D. Di Paola, A. Milella, and

L. Alfredo Grieco, “Industrial Internet of things at work: a case study analysis in

robotic-aided environmental monitoring,” IET wireless sensor systems, vol. 7,

no. 5, pp. 155–162, 2017.

119

[63] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. S. Pister, “6TiSCH:

Industrial performance for IPv6 Internet-of-Things networks,” Proceedings of

the IEEE, vol. 107, no. 6, pp. 1153–1165, 2019.

[64] S. Raza, M. Faheem, and M. Guenes, “Industrial wireless sensor and actuator

networks in industry 4.0: Exploring requirements, protocols, and challenges—A

MAC survey,” International Journal of Communication Systems, vol. 32, no. 15,

p. e4074, 2019.

[65] C. Orfanidis, P. Pop, and X. Fafoutis, “Active Connectivity Fundamentals for

TSCH Networks of Mobile Robots,” in 18th International Conference on Dis-

tributed Computing in Sensor Systems (DCOSS). IEEE, 2022, pp. 191–198.

[66] H. Kim, H.-S. Kim, and S. Bahk, “MobiRPL: Adaptive, robust, and RSSI-based

mobile routing in low power and lossy networks,” Journal of Communications

and Networks, vol. 24, no. 3, pp. 365–383, 2022.

[67] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Topology Management and

TSCH Scheduling for Low-Latency Convergecast in In-Vehicle WSNs,” IEEE

Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1082–1093, 2018.

[68] I. Khoufi, P. Minet, and B. Rmili, “Beacon advertising in an IEEE 802.15.4e

TSCH network for space launch vehicles,” Acta Astronautica, vol. 158, pp. 76–

88, 2019.

[69] T. Watteyne, A. L. Diedrichs, K. Brun Laguna, J. E. Chaar, D. Dujovne, J. C.

Taffernaberry, and G. A. Mercado, “Peach: Predicting frost events in peach or-

chards using iot technology,” EAI Endorsed Trans. Internet Things, vol. 2, no. 5,

Dec. 2016.

[70] S. A. Malek, F. Avanzi, K. Brun-Laguna, T. Maurer, C. A. Oroza, P. C. Hart-

sough, T. Watteyne, and S. D. Glaser, “Real-Time Alpine Measurement System

Using Wireless Sensor Networks,” Sensors, vol. 17, no. 11, p. 2583, 2017.

120

[71] K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, C. Taffernaberry, R. Leone,

X. Vilajosana, and T. Watteyne, “Using SmartMesh IP in Smart Agriculture and

Smart Building Applications,” Computer Communications, vol. 121, pp. 83–90,

2018.

[72] Z. Zhang, S. Glaser, T. Watteyne, and S. Malek, “Long-Term Monitoring of the

Sierra Nevada Nnowpack Using Wireless Sensor Networks,” IEEE Internet of

Things Journal, vol. 9, no. 18, pp. 17 185–17 193, 2020.

[73] G. Yang, A. R. Urke, and K. Øvsthus, “Mobility Support of IoT Solution in

Home Care Wireless Sensor Network,” in Ubiquitous Positioning, Indoor Nav-

igation and Location-Based Services (UPINLBS). IEEE, 2018, pp. 475–480.

[74] P. Woznowski, A. Burrows, T. Diethe, X. Fafoutis, J. Hall, S. Hannuna, M. Cam-

plani, N. Twomey, M. Kozlowski, B. Tan et al., “SPHERE: A Sensor Platform

for Healthcare in a Residential Environment,” Designing, Developing, and Fa-

cilitating Smart Cities: Urban Design to IoT Solutions, pp. 315–333, 2017.

[75] A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou, R. Piechocki,

and I. Craddock, “Enabling Healthcare in Smart Homes: The SPHERE IoT

Network Infrastructure,” IEEE Communications Magazine, vol. 56, no. 12, pp.

164–170, 2018.

[76] A. Elsts, X. Fafoutis, G. Oikonomou, R. Piechocki, and I. Craddock, “TSCH

Networks for Health IoT: Design, Evaluation, and Trials in the Wild,” ACM

Transactions on Internet of Things, vol. 1, no. 2, pp. 1–27, 2020.

[77] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra: Ro-

bust Mesh Networks Through Autonomously Scheduled TSCH,” in Proceed-

ings of the 13th ACM conference on embedded networked sensor systems, 2015,

pp. 337–350.

121

[78] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and I. Craddock,

“Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4 TSCH Net-

works,” in 13th International Conference on Distributed Computing in Sensor

Systems (DCOSS). IEEE, 2017, pp. 3–10.

[79] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous Link-based Cell

Scheduling for TSCH,” in IEEE International Conference on Information Pro-

cessing in Sensor Networks (IPSN), 2019, pp. 121–132.

[80] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-Aware Elastic

Slotframe Adjustment in TSCH Networks,” IEEE Access, vol. 7, pp. 130 468–

130 483, 2019.

[81] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-Demand TSCH Schedul-

ing with Traffic-awareness,” in IEEE Conference on Computer Communications

(INFOCOM), 2020, pp. 69–78.

[82] J. Jung, D. Kim, T. Lee, J. Kang, N. Ahn, and Y. Yi, “Distributed Slot Schedul-

ing for QoS Guarantee over TSCH-based IoT Networks via Adaptive Parame-

terization,” in ACM/IEEE International Conference on Information Processing

in Sensor Networks (IPSN), 2020, pp. 97–108.

[83] S. Kim, H.-S. Kim, and C.-k. Kim, “A3: Adaptive Autonomous Allocation of

TSCH Slots,” in International Conference on Information Processing in Sensor

Networks (IPSN), 2021, pp. 299–314.

[84] Z. Yu, X. Na, C. A. Boano, Y. He, X. Guo, P. Li, and M. Jin, “Smar-

TiSCH: An Interference-Aware Engine for IEEE 802.15.4e-based Networks,”

in ACM/IEEE International Conference on Information Processing in Sensor

Networks (IPSN), 2022, pp. 350–362.

122

[85] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and N. Tsiftes,

“The Contiki-NG open source operating system for next generation IoT de-

vices,” SoftwareX, vol. 18, p. 101089, 2022.

[86] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-

Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al., “FIT IoT-LAB: A

large scale open experimental IoT testbed,” in IEEE 2nd World Forum on Inter-

net of Things (WF-IoT), 2015, pp. 459–464.

[87] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for Wire-

lessHART Networks,” in IEEE Real-Time Systems Symposium, 2010, pp. 150–

159.

[88] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, “Traf-

fic Aware Scheduling Algorithm for Reliable Low-Power Multi-Hop IEEE

802.15.4e networks,” in IEEE International Symposium on Personal, Indoor

and Mobile Radio Communications (PIMRC), 2012, pp. 327–332.

[89] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized scheduling

algorithm for IEEE 802.15.4e TSCH based industrial low power wireless net-

works,” in IEEE Wireless Communications and Networking Conference, 2016,

pp. 1–6.

[90] D. Gunatilaka and C. Lu, “Conservative Channel Reuse in Real-Time Industrial

Wireless Sensor-Actuator Networks,” in IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), 2018, pp. 344–353.

[91] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A Flexible Re-

transmission Policy for Industrial Wireless Sensor Actuator Networks,” in IEEE

International Conference on Industrial Internet (ICII), 2018, pp. 79–88.

123

[92] O. Harms and O. Landsiedel, “MASTER: Long-Term Stable Routing and

Scheduling in Low-Power Wireless Networks,” in International Conference on

Distributed Computing in Sensor Systems (DCOSS). IEEE, 2020, pp. 86–94.

[93] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low Latency

Scheduling Function for 6TiSCH Networks,” in International Conference on

Distributed Computing in Sensor Systems (DCOSS). IEEE, 2016, pp. 93–95.

[94] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne, “6TiSCH

Minimal Scheduling Function (MSF),” 2019.

[95] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre, “LDSF:

Low-Latency Distributed Scheduling Function for Industrial Internet of

Things,” IEEE Internet of Things journal, vol. 7, no. 9, pp. 8688–8699, 2020.

[96] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Hybrid Timeslot Design for

IEEE 802.15.4 TSCH to Support Heterogeneous WSNs,” in IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),

2018, pp. 1–7.

[97] J. Park, H. Kim, H.-S. Kim, and S. Bahk, “DualBlock: Adaptive Intra-Slot

CSMA/CA for TSCH,” IEEE Access, vol. 10, pp. 68 819–68 833, 2022.

[98] D. Vasiljević and G. Gardašević, “Packet Aggregation-Based Scheduling in

6TiSCH Networks,” in IEEE EUROCON 18th International Conference on

Smart Technologies, 2019, pp. 1–5.

[99] H. Hajian, M. Nabi, M. Fakouri, and F. Veisi, “LaDiS: a Low-Latency Dis-

tributed Scheduler for Time-Slotted Channel Hopping Networks,” in IEEE

Wireless Communications and Networking Conference (WCNC), 2019, pp. 1–7.

[100] C. Michaelides, T. Adame, and B. Bellalta, “ECTS: Enhanced Centralized

TSCH Scheduling with Packet Aggregation for Industrial IoT,” in IEEE Con-

124

ference on Standards for Communications and Networking (CSCN), 2021, pp.

40–45.

[101] IEEE 802.11-2012, Part 11: Wireless LAN medium access control (MAC) and

physical layer (PHY) specifications, IEEE Std., Mar. 2012.

[102] Bluetooth SIG, “Bluetooth Core Specification: 5.0,” 2021.

[103] J. Ko, J. Jeong, J. Park, J. A. Jun, O. Gnawali, and J. Paek, “DualMOP-RPL:

Supporting Multiple Modes of Downward Routing in a Single RPL Network,”

ACM Transactions on Sensor Networks (TOSN), vol. 11, no. 2, pp. 39:1–39:20,

Mar 2015.

[104] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput

Path Metric for Multi-Hop Wireless Routing,” in ACM International Conference

on Mobile Computing and Networking (MobiCom), Sep. 2003.

[105] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and P. Thu-

bert, “Ietf 6tisch: A tutorial,” IEEE Communications Surveys & Tutorials,

vol. 22, no. 1, pp. 595–615, 2019.

[106] A. Kalita and M. Khatua, “6tisch–ipv6 enabled open stack iot network forma-

tion: A review,” ACM Transactions on Internet of Things, vol. 3, no. 3, pp. 1–36,

2022.

[107] C. Vallati, S. Brienza, G. Anastasi, and S. K. Das, “Improving network for-

mation in 6tisch networks,” IEEE Transactions on Mobile Computing, vol. 18,

no. 1, pp. 98–110, 2018.

[108] M. Vučinić, T. Watteyne, and X. Vilajosana, “Broadcasting strategies in 6tisch

networks,” Internet Technology Letters, vol. 1, no. 1, p. e15, 2018.

125

[109] A. Kalita and M. Khatua, “Channel condition based dynamic beacon interval for

faster formation of 6tisch network,” IEEE Transactions on Mobile Computing,

vol. 20, no. 7, pp. 2326–2337, 2020.

[110] A. Kalita and M. Khatua, “Opportunistic transmission of control packets for

faster formation of 6tisch network,” ACM Transactions on Internet of Things,

vol. 2, no. 1, pp. 1–29, 2021.

[111] A. Kalita and M. Khatua, “Time-variant rgb model for minimal cell allocation

and scheduling in 6tisch networks,” IEEE Transactions on Mobile Computing,

2023.

126

초 록

본 논문은 저전력 및 손실 네트워크에서 모바일 라우팅, 시간 슬롯 기반 통신,

6TiSCH 네트워크의 형성이라는 세 가지 영역에 대한 문제를 해결한다. 첫째로 모

바일 라우팅 기법, MobiRPL 은 수신 신호 세기와 주변 디바이스와의 연결성 관리

동작을 활용하여 모바일 노드가 포함된 저전력 및 손실 네트워크에서 효율적인 라

우팅이 가능하도록 한다. 시뮬레이션 및 테스트베드 실험 결과, MobiRPL 은 비교

기법에비해패킷전달률을 11.3%향상시키고에너지소비를 73.3%감소시킨다.또

한시간슬롯기반통신시스템에서의슬롯내유휴시간으로인한네트워크의통신

효율 저하를 해결하기 위해 실제 패킷 길이 분포에 따라 슬롯 크기를 동적으로 조

절하고슬롯사용효율에따라패킷집단전송을수행하는 ASAP를제안한다.실제

테스트베드에서의 TSCH기반의연구결과, ASAP은기본 TSCH에비해 throughput

을 2.21배향상시키고지연시간을 78.7%줄인다.세번째로, 6TiSCH네트워크형성

과정의비효율성을개선하기위해 TSCH슬롯내전송시작시점에 offset을부여함

으로써충돌감지및 offset기반우선순위에따른중요패킷의우선전송을가능케

하는 TOP 을 제안한다. 실제 테스트베드 실험 결과 TOP 는 네트워크 형성 시간을

최대 50%감소시킨다.이처럼실제구현및실험을통해입증된제안기법들의성능

향상은 본 논문이 저전력 및 손실 네트워크의 전반적인 효율성 향상에 기여할 수

있음을보여준다.

주요어: 저전력 손실 네트워크, 사물인터넷, 모바일 라우팅 프로토콜, 신뢰도, 통신

수율,지연시간,네트워크형성

학번: 2015-22782

127

	1 Introduction
	1.1 Motivation
	1.2 Contributions and Outline

	2 MobiRPL: Adaptive, Robust, and RSSI-based Mobile Routing in Low Power and Lossy Networks
	2.1 Introduction
	2.2 Background and Related Work
	2.2.1 RPL and Mobility
	2.2.2 LOADng, a MANET Protocol for LLN

	2.3 Preliminary Study
	2.3.1 Static Scenario: RPL vs. LOADng
	2.3.2 Mobile Scenario: RPL's Problems

	2.4 Design Requirements
	2.5 MobiRPL Design
	2.5.1 Mobility Detection
	2.5.2 Connectivity Management
	2.5.3 RSSI and Hop Distance-based Objective Function

	2.6 Performance Evaluation
	2.6.1 Implementation and Evaluation Environments
	2.6.2 Impact of MobiRPL Mechanisms
	2.6.3 Impact of MobiRPL Parameters
	2.6.4 Impact of circumstance parameters
	2.6.5 Performance of MobiRPL in complicated scenarios
	2.6.6 Performance of MobiRPL in real world

	2.7 Discussion
	2.8 Summary

	3 Slot-size Adaptation and Utility-based Aggregation for Time-Slotted Communication
	3.1 Introduction
	3.2 Background and Motivation
	3.2.1 Time-Slotted Channel Hopping (TSCH)
	3.2.2 TSCH scheduling
	3.2.3 Problem and Motivation

	3.3 Related Work
	3.4 ASAP Design
	3.4.1 SLA Design
	3.4.2 UPA Design

	3.5 Evaluation
	3.5.1 Implementation and experiment setup
	3.5.2 Performance of SLA
	3.5.3 Performance of UPA
	3.5.4 Performance of ASAP: an ablation study
	3.5.5 Performance of ASAP: a comparative study
	3.5.6 Performance of ASAP in different environment

	3.6 Summary

	4 Offset-based Prioritization for Accelerating Formation of 6TiSCH Networks
	4.1 Introduction
	4.2 Background
	4.2.1 Time-Slotted Channel Hopping (TSCH)
	4.2.2 TSCH scheduling and common shared cell
	4.2.3 6TiSCH network and formation

	4.3 Motivation
	4.4 Approach and Considerations
	4.4.1 Approach: Transmission offset-based prioritization
	4.4.2 Considerations

	4.5 Proposed Scheme
	4.5.1 Transmission offset assignment policy
	4.5.2 Determination of packet urgency
	4.5.3 Differentiation between broadcast and unicast packets
	4.5.4 Multi-offset assignment to urgent unicast packets
	4.5.5 Transmission offset escalation
	4.5.6 Modification of the backoff mechanism

	4.6 Evaluation
	4.6.1 Implementation and experiment setup
	4.6.2 Performance of TOP

	4.7 Related Work
	4.7.1 Toward fast 6TiSCH network formation
	4.7.2 Offset-based differentiation in TSCH slot

	4.8 Summary

	5 Conclusion
	Abstract (In Korean)

<startpage>16
1 Introduction 1
 1.1 Motivation 1
 1.2 Contributions and Outline 2
2 MobiRPL: Adaptive, Robust, and RSSI-based Mobile Routing in Low Power and Lossy Networks 4
 2.1 Introduction 4
 2.2 Background and Related Work 8
 2.2.1 RPL and Mobility 8
 2.2.2 LOADng, a MANET Protocol for LLN 13
 2.3 Preliminary Study 14
 2.3.1 Static Scenario: RPL vs. LOADng 14
 2.3.2 Mobile Scenario: RPL's Problems 17
 2.4 Design Requirements 21
 2.5 MobiRPL Design 22
 2.5.1 Mobility Detection 23
 2.5.2 Connectivity Management 25
 2.5.3 RSSI and Hop Distance-based Objective Function 29
 2.6 Performance Evaluation 33
 2.6.1 Implementation and Evaluation Environments 33
 2.6.2 Impact of MobiRPL Mechanisms 35
 2.6.3 Impact of MobiRPL Parameters 39
 2.6.4 Impact of circumstance parameters 43
 2.6.5 Performance of MobiRPL in complicated scenarios 44
 2.6.6 Performance of MobiRPL in real world 50
 2.7 Discussion 52
 2.8 Summary 53
3 Slot-size Adaptation and Utility-based Aggregation for Time-Slotted Communication 55
 3.1 Introduction 55
 3.2 Background and Motivation 58
 3.2.1 Time-Slotted Channel Hopping (TSCH) 58
 3.2.2 TSCH scheduling 59
 3.2.3 Problem and Motivation 61
 3.3 Related Work 62
 3.4 ASAP Design 63
 3.4.1 SLA Design 64
 3.4.2 UPA Design 68
 3.5 Evaluation 73
 3.5.1 Implementation and experiment setup 73
 3.5.2 Performance of SLA 75
 3.5.3 Performance of UPA 78
 3.5.4 Performance of ASAP: an ablation study 80
 3.5.5 Performance of ASAP: a comparative study 82
 3.5.6 Performance of ASAP in different environment 84
 3.6 Summary 86
4 Offset-based Prioritization for Accelerating Formation of 6TiSCH Networks 87
 4.1 Introduction 87
 4.2 Background 89
 4.2.1 Time-Slotted Channel Hopping (TSCH) 89
 4.2.2 TSCH scheduling and common shared cell 90
 4.2.3 6TiSCH network and formation 91
 4.3 Motivation 93
 4.4 Approach and Considerations 95
 4.4.1 Approach: Transmission offset-based prioritization 95
 4.4.2 Considerations 96
 4.5 Proposed Scheme 99
 4.5.1 Transmission offset assignment policy 99
 4.5.2 Determination of packet urgency 100
 4.5.3 Differentiation between broadcast and unicast packets 101
 4.5.4 Multi-offset assignment to urgent unicast packets 102
 4.5.5 Transmission offset escalation 102
 4.5.6 Modification of the backoff mechanism 103
 4.6 Evaluation 103
 4.6.1 Implementation and experiment setup 103
 4.6.2 Performance of TOP 104
 4.7 Related Work 107
 4.7.1 Toward fast 6TiSCH network formation 107
 4.7.2 Offset-based differentiation in TSCH slot 108
 4.8 Summary 108
5 Conclusion 110
Abstract (In Korean) 127
</body>

