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Abstract

This dissertation proposes a methodology to verify the safe operation of analog

mixed-signal (AMS) circuits under formal specifications. With integrating many AMS

integrated circuits (IC) in a car, assuring the safety of the system is getting a critical

issue for developing such safety-critical systems. While the operating ranges of ana-

log circuits and their semiconductor devices such as MOSFETs and diodes should be

limited under safe-operating area (SOA) specified in the process design kit (PDK) or

datasheets, the existing verification procedures relying on SPICE simulations in indus-

try lack of capability to cover all possible dynamic behavior that causes the change of

the applied terminal voltages or branch current of the devices. The formal verification

algorithm, especially reachability analysis (RA), can prove that the system is safe by

computing all reachable states from the specified initial conditions and finding if the

reachable set of states intersects with the unsafe set of states causing failures of devices

or circuits. However, computing the reachable set is burdensome for practical circuits

since it takes too long to compute reachable sets in a high dimensional system dynam-

ically operating in a high frequency, due to the continuous nature of the states that

require quantization to many discrete steps of continuous value. This dissertation ad-

dresses the challenges while applying reachable analysis to AMS circuits and proposes

an efficient way to compute reachable sets.

The proposed RA algorithm can compute the reachable set of analog mixed-signal

circuits in a fast and accurate way by proposing a novel trajectory form of zonotope,

combining two main ideas using scalable geometric set representation, such as zono-

tope and the XMODEL algorithm that computes analog signals in a trajectory form

that represents the signal in a closed functional form with few algebraic coefficients.

Any analog circuits, even those containing nonlinear components can be analyzed

using the efficient piecewise-linear (PWL) approximation technique that only parti-
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tions the state space of the circuit depending on the operating modes of the included

devices. The resulting PWL system in the partitioned state space with several sub-

regions is more difficult to be computed with conventional RA algorithms relying on

time discretization since it calls for many additional computationally expensive geo-

metric intersection operations, resulting in exponentially increasing runtimes with the

number of transitions over sub-regions. Applying the proposed trajectory form is not

straightforward because the intersection between the trajectory form and the switching

boundary can not maintain the same form, requiring additional segmentation of the

set shapes to keep the original form as before. Recognizing that every state after the

intersection starts from the boundary plane, by computing the time evolution of the

boundary itself, it has been shown that the associated computation can be done with

the proposed trajectory form without increasing runtime.

The proposed method was demonstrated by verifying the exemplary DC-DC switch-

ing converters, yielding over 107x speed-up than the existing reachability analysis al-

gorithm in SpaceEx. The computational complexity for state dimensions was reduced

by two orders than SpaceEx without losing accuracy, compared to the bound obtained

equivalent Monte-Carlo simulations. Finally, SOA for DC-DC converters varying cir-

cuit parameters was derived and compared to typical 90-nm process criteria, showing

the proposed method usable for verifying SOA specification of AMS circuits.

keywords: Reachability analysis, formal verification, safety verification, analog

mixed-signal circuits, DC-DC converters, Laplace s-domain analysis, XMODEL

student number: 2018-36370
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Chapter 1

INTRODUCTION

1.1 Background and Challenges

With emerging autonomous systems such as electrical vehicles, drones, and robots,

verifying such safety-critical systems becomes a significant issue today, since failures

or malfunction of these systems can lead to severe economical loss or environmental

damage and even risks to human lives. For example, Toyota’s recent brake problems

were known as software defects due to incomplete verification and Toyota’s market

capitalization of $25 billion was lost in the two months with the recalls in January 2010

[1]. The famous floating-point division (FDIV) bug in the Pentium IV processor in the

90s cost $475M charge for Intel to cover the replacement of every defective CPU [2].

As, however, the number of its parameters that interacts with each block in the system

increases with the growing design complexity, randomly generated test benches mostly

failed to detect the rare bug hidden in the deep state of complex designs, which is like

hitting the center of the target with a dart [3]; therefore, formal verification is necessary

and indispensable for state-of-the-art complex mixed-signal integrated circuits (IC)

and system-on-chips (SoC).

In particular, semiconductor devices such as MOSFETs and diodes, and other

metal interconnection layers are vulnerable to exposure to high current or voltage.

1



Therefore, analog circuit designers generally ensure reliable operation of their AMS

circuits according to the safe-operating area (SOA) specification for all devices and

circuits [4], which is specified in process design kits (PDK) that describes the be-

haviors and requirements of the design components including active elements such

as MOSFETs and passive interconnecting elements such as metal layers or resistors

of the corresponding manufacturing process used. Circuit designers should verify that

the devices used in their circuits should operate within the allowed regions defined

in terms of voltages and currents. However, the conventional design methodology for

analog circuits relies on limited simulation-based methodologies that only simulate

parts of test cases based on heuristics, leading to incomplete verification and most of

them can cause malfunction of the entire system such as car accidents. In addition,

due to the scaling of the process, the design window for SOA is getting smaller than

before and the complex interaction between analog and digital blocks also becomes

more threats of unexpected behavior, increasing the likelihood of such critical design

errors.

Formal verification can prove the correctness of the systems with given specifica-

tions considering every possible state of the system with mathematical algorithms [5],

while simulations never guarantee. Numerous formal verification solutions have been

developed for verifying complicated control algorithms for software and hardware af-

ter the success story of Pentium bug hunting [2] with the development of algorithmic

logical reasoning such as model checking [5] and theorem proving methodologies [6];

however, compared to the rich achievements for fore-mentioned areas, a way towards

formally verifying analog mixed-signal (AMS) circuits is still far from the sight.

The main difficulty comes from the fact that the analog circuits operate with con-

tinuous state values represented in the state space with continuous time. For example,

let’s assume that one needs to verify the function of two circuits given shown in Fig. 1.1

[7]. While the possible states of the logical AND gate with two inputs and single output

have only four cases, verifying an analog op-amp circuit requires exploring an infinite

2



Figure 1.1: Analog verification challenge vs. digital. (a) Logical AND gate and (b)

analog OP amp. Analog formal verification requires additional quantization, resulting

in the dimensional complexity problem.

number of cases for exhaustively exploring possible states due to the continuous na-

ture of the input and state variables. This requires quantization of a set of continuous

states, leading to additional dimensional complexity problems that require exponen-

tially increasing complexity with respect to the number of state dimensions at least.

In addition, as one uses more accurate shapes for reducing the over-approximation er-

ror, the computational time will be further increased. This work addresses a way to

verify the safety of AMS circuits by efficiently modeling AMS circuits and comput-

ing their states fast and accurately with tacking the time complexity problem from the

quantization of continuous value.

1.1.1 Safety Verification of AMS Circuits Using Reachability Analysis

We focus on verifying the safety of AMS circuits in this dissertation. In practice, safety

verification of analog circuits involves two steps: i) Formal abstraction: abstraction

of circuits to explore reachable states such as hybrid system and ii) Reachability anal-
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ysis: computing the evolution of continuous states with time t by computing the set

containing the states and their time evolution; therefore, it requires computationally

efficient set structure with less approximation errors.

1.1.2 Hybrid System

We model AMS circuits as hybrid systems in this study. A hybrid system can capture

every possible dynamic behavior of AMS circuits, which is a system combining the

behavior of both discrete variables q ∈ Q and continuous variable x ∈ X , where we

can apply formal analysis techniques. Its model is represented by hybrid automata

M = ⟨X,Q,E, F,G⟩ (1.1)

which can be considered as a graph structure, where each node corresponds to a con-

tinuous system associating its differential equations F , a set of discrete transitions,

the guard G that conditions for the variable that triggers the discrete transition in E

(or jump in the different literature) and assignment associated with the transition (or

reset). Each differential equation F can be linear or nonlinear; when every differential

equation F is linear, then the automata M is defined by linear hybrid automata, which

we address how to efficiently transform the nonlinear circuits to this class of automata

that we mainly use through the dissertation. A simple example of hybrid automata is

illustrated in Fig. 1.2. The automata has two discrete states, also referred to as a loca-

tion. The transition between the locations in the automata is determined by the value

of continuous variable t. When the variable t becomes greater than T , it switches its

location and the associated differential equation simultaneously.

1.1.3 Reachability Analysis

The main topic of this dissertation is reachability analysis [8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 6, 21, 22, 23, 24, 5], which is one of the most prominent formal

algorithms for checking the model that can prove the safety property of the system;

4



Figure 1.2: Simple hybrid automata example with two discrete states.

Figure 1.3: Difference between (a) test-bench simulations and (b) reachability analysis.

Simulation may not capture hidden bugs while reachability analysis exhaustively finds

possible set of states from the initial set of states.

it is originally developed for verifying complex communication protocols in 70s and

expanding its application area even for continuous systems. While original automata

can only consider the case that its continuous variable and their derivative is limited

as constant such as ẋ = 1, so-called timed automata, the system we focus on in this

dissertation is the linear hybrid system mentioned above. The main difference is that

the derivative of the continuous variable has the linear equation of the variable. Same

to the general cases, hybrid reachability analysis verifies safety by finding all hybrid

states that can be reached from a specified range of initial states and checking if the

reachable states are within a target range.

Safety verification using reachability analysis is a formal procedure that finds every

5



Figure 1.4: Over-approximation depending on geometrical set representations.

reachable state from the initial states X0 and then collecting the resulting states yields

the set of reachable states R, commonly referred as reachable set, and this procedure

is called reachability analysis. We can conclude the system is safe if the reachable set

R does not contain any unsafe states defined in unsafe set U .

1.1.4 Main Challenges

The main challenge in computing the reachable sets for an AMS circuit is three-fold.

Space discretization problem First, as shown in Fig. 1.4, computing a set of analog

states in the state space introduces a geometrical shape that encloses every possible

state and is represented by a set of vectors representing the vertices or faces. However,

exact representation for an arbitrary region of reachable sets R is impossible because

it requires an infinite number of vertices or faces; thus, one needs to conservatively

6



Figure 1.5: Over-approximation depending on time steps.

approximate the exact one with efficient geometrical shapes with fewer vertices and

should balance the trade-off between the accuracy and the computational efficiency of

the geometry. As shown in the Fig. 1.4, an oriented rectangular set (ORH) using fewer

vectors causes a large over-approximation error due to its coarse shape, while the com-

plex and fine shape using more vectors can reduce the resulting over-approximation

error but increase the runtime of the analysis. After decades of efforts for finding com-

putationally efficient geometrical set representations, several set representations using

linear algebra are gaining popularity for this purpose, such as oriented rectangular hull

[25], ellipsoid [18], convex polyhedra [16] and zonotopes [14]. These set represen-

tations are very efficient for computing the reachable set in linear systems even with

hundreds of state variables, but have limitations in that they can only be applied to

linear systems.

Time discretization problem Secondly, to compute the change of a set of states for

a given time period, conventional reachability algorithms first segment the analysis

time duration into several discrete steps of time and then compute the reachable sets

by iteratively multiplying the system matrix with the sets at each time steps, incur-

ring a large computational cost. Furthermore, mixed with the first problem concerning

space discretization, it needs to split the period with more fine time steps if it fails to

7



accurately represent the trajectory of the set with the selected set representation with

given error tolerance. However, there have been few approaches to address this issue

yet.

nonlinearity Lastly, typical analog circuits are nonlinear, while those methods de-

scribed above are applied only for linear systems; thus, they need to be linearized

into several disjoint sub-regions. However, the computational cost for the transition

between each region grows fast with the number of time steps to compute the time

evolution of the reachable sets.

The most simple and efficient approach is converting them into a piecewise linear

system that operates in different differential equations in each region segmented by

specified switching conditions [26, 27]. However, we found that conventional reach-

ability tools suffer from computing the transition at the switching boundary, which is

commonly referred to as a guard intersection and is a computationally expensive geo-

metrical intersection operation. guard set is equivalent to the set enclosing the switch-

ing condition, and their intersection should be computed in other sub-region of the

PWL system with its own set of differential equations. While sliding the reachable set

with time over the boundary, it intersects with the boundary and generates infinite sets

of intersections. With the conventional method with time discretization reachable set

computation, the analysis incurs a tremendous number of computations proportional

to Nt × Nt where Nt is the number of steps resulting from time discretization. Even

worse, every increasing number of states to be computed is multiplied by each other,

generating an exponential increase with respect to the number of discrete transitions

over the guard.

1.2 Main Contribution

This work proposes a methodology for verifying the safe operation of AMS circuits

using a fast trajectory-form reachability analysis algorithm. The key idea is to reduce

8



the number of evaluations at the discrete time steps to represent the trajectory of the

reachable sets R as a sequence of sets {R′, ...,RNt}, where the number of time steps

by discretizing the period of continuous time [0, T ]. Instead, in this work, the reachable

set is represented by a closed and exact form of the function R(t), where each vertex

follows a trajectory described by an exact, analytical function of time t.

This approach has mainly two advantages. At first, it can compute the exact tra-

jectory from the initial set at once without discrete evaluation at discrete time steps of

t similar to the numerical integration method in the simulation algorithm. This adopts

the idea of [28] representing analog signals as s-domain signals using the coefficients

representing the poles, zeros, and gains of the signal. In this way, it outperformed typi-

cal numerical solvers when solving AMS circuit behaviors, demonstrating wide ranges

of AMS circuits and systems such as switching power supplies, decision feedback

equalizers (DFE), phase-locked loops (PLL) and etc. Therefore, it efficiently avoids

the concern of trade-offs scarifying the resulting accuracy to get better performance.

One can represent the exact trajectory R(t) starting from the initial set X0 as shown

in Fig. 1.5.

Second, this idea can further improve the scalability especially when computing

the reachable set of hybrid systems, which increases the number of computations pro-

portional to Nt × Nt. This limitation prohibits most of the existing reachability tools

fails to evaluating the practical nonlinear circuits even for simple and trivial circuits.

Using the proposed trajectory-form reachability analysis, one can accurately compute

the guard intersection R(t) ∩ G without generating additional time steps to get an

accurate intersecting range or region. The subsequent reachable set from the guard

intersection also can be efficiently evaluated.

The dissertation demonstrates that the proposed method can verify the safe opera-

tion of practical switching power supply circuits: buck converters and various switch-

ing pulse control schemes. Firstly, we demonstrate the basic buck converter circuits

operating in continuous conduction mode (CCM) changing their behavior depending
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on the duty cycle of the input pulse applied to its transistor switch to show the com-

putational scalability for simple hybrid systems. Secondly, we demonstrate a more

general buck converter exhibiting discontinuous conduction mode (DCM) operation

due to the non-linear characteristic of the diode, showing the improved performance

when computing the continuous guard intersectionR(t) ∩ G occurs. The term contin-

uous means that the intersections occur in the continuous time period [t1, t2] not at the

specific time instant.

In the experiment, resulting accuracy was estimated compared to the equivalent

Monte-Carlo simulations, and the performance is compared to one of the reachability

analysis tools, SpaceEx [17], which implements the convex polyhedra set-based reach-

ability analysis tool using the support function and the other advanced algorithms. It

serves as a golden reference for evaluating the performance of the new reachability

analysis algorithm owing to its flexibility.

1.3 Thesis Organization

Chapter 2 explains the concepts of formal verification of circuits. Chapter 3 describes

the proposed trajectory-form reachability analysis in detail with mathematical defini-

tion and derivation. Chapter 4 presents the proposed reachability analysis algorithm for

non-linear circuits. Chapter 5 demonstrates the proposed methodology with practical

circuit examples for verifying their safe operations. Chapter 6 draws the conclusion of

this thesis.
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Chapter 2

Formal Safety Verification of AMS circuits

This chapter explains the concepts of formal safety verification of AMS circuits. With

the growing complexity of hardware design having millions of lines of code, human

verification reached its limitation, creating tons of trivial bugs and imposing critical

system risks. Consequently, formal verification gains attention for decades from the-

oretical to practical views. Its category can be classified by its intent to verify: equiv-

alence checking, model checking, and theorem proving. At the beginning of the 70s,

there were approaches using logical inductive reasoning like human proof with pencil-

and-paper, which we call theorem proving. This is ideal proof, but hard for a non-

expert to use. Instead, with the recent great improvement of computing capability with

massively parallel computing, more practical methods gain more attention, so-called

model checking. In this chapter, we explain how we can guarantee the safe operation

of AMS circuits using formal model-checking techniques, and reachability analysis.

2.1 Overview of Model Checking

Model Checking is a general concept of a computer-assisted method for the analysis

of dynamical systems that can be modeled by state-transition systems. Model check-

ing is now widely used for formal verification of software and hardware in industry,
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Figure 2.1: Concepts of model checking in discrete systems represented as a finite state

machine (FSM).

including many mathematical algorithms with model structure abstracting given sys-

tems. Model checking consists of three main concepts: modeling, specification, and

algorithms. As we stated in the definition, its model has the form of a finite-state ma-

chine. It can be applied to any dynamical system and can be represented in the form of

a state transition system. Second, verifying a system requires specifying the design in-

tent formally. It is typically given by the description of the system specification, which

should be transformed into a formal representation. For example, temporal logics such

as LTL and CTL, or Synopsys Verification Assertion (SVA) language are used in in-

dustry for formal verification. Finally, there is a decision procedure for determining

(i.e. verifying) that the given model behavior always satisfies the given specification.

This concept of model checking can be summarized as shown in Fig. 2.1. The proce-

dure of model checking is to check if model M satisfies the specification φ, where the

system starts from the state S1 and reaches the state S3 in less than three steps if not,

it produces the counterexample. One can see that the result will become true because

the FSM reaches S3 in two steps.

The main challenge of model checking is the state-explosion problem due to its

exhaustive nature, increasing its runtime proportionally. The resulting number of states
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Figure 2.2: Concepts of safety verification.

to explore exponentially increase with a combinatorial number of bit size of states (e.g.

memory of computer program or number of flip-flops of digital system). Therefore,

computing directly the model of a given system in the real world is impossible; instead,

one needs to model the system in an efficient way.

2.2 Problem Definition

In this section, we formally define the problem of verifying the safe operation of cir-

cuits and highlight the goal of this thesis.

2.2.1 Formal Definition of Safety Verification

Safety verification is widely used in verifying safety-critical hybrid dynamic systems

such as robots, autonomous control of cars and drones, etc. The goal of dynamic con-

trol of these hybrid systems is not to hit critical obstacles such as humans or valuable

objects. This is a reachability problem that checks if all the reachable states from any

possible initial conditions after the finite duration of time reach safe or unsafe regions

as shown in Fig. 2.2.

Formally, this model checking problem of any safety property can be reduced to

the reachability problem of deciding reachability to a set of bad state U . If M |= φ,

then φ is called an invariant of model M . That is, collecting every reachable state, i.e.

reachable set R is equivalent to getting invariant φ of the model M ; therefore, safety
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verification is a reachability problem that checks if there is any state s satisfying:

(s ∈ R ⊆ φ) ∧ (s ∈ U). (2.1)

This is equivalent to finding the intersection of R ∩ U and if there is any state in U .

We can apply this concept of safety verification to verify the safe operation of circuits

in the same manner in the state space of circuits.

2.2.2 Safe operation of AMS circuits

Verifying the safe operation of circuits not to be damaged by high operating voltages

or current applied to devices also can be represented in the safety verification problem

of (2.1). Fig. 2.3 illustrates the concepts in terms of verifying the safety of circuits. In

this case, the reachable set R(t) can be computed by a set of the moving states x(t)

in the state space of circuit state variables consisting of capacitor voltages VC(t) and

inductor currents IL(t). Then, if the reachable set R(t) containing the circuit states

x(t) intersects the unsafe region U that is defined in terms of critical voltage or current

specified safe operating area (SOA) in PDKs.

Fig. 2.4 illustrates the problem of verifying if the operating region of a circuit is

kept within the allowed safe-operating area in the state space. Given a circuit as Fig.

2.4, the behavior of the circuit is described with two continuous state variables IL and

VC as Fig. 2.4 (b). However, the circuit can start with any initial values of the state

variables IL and VC , leaving the possibility of un-tested errors that may cause damage

to circuits. Reachability analysis can compute the reachable set of circuits from a set

of initial conditions given by specification, leading to correct verification results as

illustrated in Fig. 2.4 (d).

2.3 Conventional Hybrid System Reachability Analysis

Conventional hybrid system reachability analysis methods are mostly based on hybrid

system abstraction and set-based reachability analysis. The algorithm can compute the
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Figure 2.3: Model checking of safe operation of circuits.

time evolution of a set of states using efficient set representation and hybrid dynamics

formally specified by the hybrid automata model.

As we mentioned above, the efficiency of this technique highly depends on the se-

lected set representation. In this section, we review the formal definition of the widely

used set representation and their fundamental limitations. Lastly, we also explain the

state-of-the-art reachability analysis tool SpaceEx, to which we will compare the pro-

posed method.

2.3.1 SpaceEx

The SpaceEx is a tool platform implementing algorithms related to reachability and

safety verification suitable for continuous hybrid dynamic systems. It models the target

system as hybrid automata with hierarchical automata and templates. The model editor

for model hybrid automata is implemented with visual user interfaces as shown in Fig.

2.5.

It basically based on computing reachable sets depending on time steps multi-

plied by δ. Then, the resulting reachable sets in each time interval are computed as in

Ω0,Ω1, .... There are several options to express the reachable set depending on the op-

tions depending on target accuracy and the resulting reachable sets are displayed over

the output user interfaces as blue polygons as in Fig. 2.6, which shows the comparison
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(a) circuit (b) Operating region of a circuit in state space

(c) Undiscovered bugs with set of initial conditions (d) Operating region obtained from reach-

able sets

Figure 2.4: SOA verification of a circuit with two state variables.

16



(a) circuit

(b) SOA in state space

Figure 2.5: Conventional reachability analysis tool SpaceEx.
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(a) Simulation results varying load resistances using

XMODEL.

(b) Reachable set using SpaceEx until t=10us.

Figure 2.6: Reachable set obtained in SpaceEx compared to simulation traces in

XMODEL.

of the output simulation traces for currents and voltages of the exemplary circuits.

However, it fails to run until the end of the analysis due to exponentially increasing

runtimes for our initial model describing the piecewise linear behavior of the typical

circuits with MOSFETs or didoes. The rest of the dissertation tackles the problem

associated with the conventional reachability analysis algorithm based on time dis-

cretization similar to the numerical integration algorithm of analog simulators such as

SPICE simulators.
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Chapter 3

TRAJECTORY-FORM REACHABILITY ANALYSIS

This chapter presents the main idea of the proposed trajectory-form reachability anal-

ysis methodology for analog/mixed-signal (AMS) circuits. We consider here specifi-

cally a linear hybrid system, which is a hybrid system, and its behavior in each contin-

uous system is described by a linear system. First, we transform the linear circuit from

topology to state space representation using the modified nodal analysis technique

(MNA). Then, the obtained system matrices are transformed into transfer functions

using the XMODEL algorithm. Combined with the s-domain input expression, we can

obtain the trajectory form of the reachable set from the circuits.

3.1 Reachability Analysis on Linear Circuits

3.1.1 General Trajectory Form of Reachable Set

If a system representing the circuit is linear, computing reachable sets is straightfor-

ward. The dynamics of the continuous variable in the subset S of the state space,

x(t) ∈ S ⊆ Rn and the output y(t) ∈ Rno with the input u(t) ∈ Rni in a n-
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dimensional system are defined by

ẋ(t) = Ax(t) +Bu(t), (3.1)

y(t) = Cx(t) +Du(t) (3.2)

where the system matrices A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and D ∈ Rno×ni . ni

and no are the numbers of inputs and outputs, respectively. Then, the state trajectory

x(t) ∈ Rn from the initial condition, x0 ∈ X0 governed by the linear system (3.1) is

given by

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ (3.3)

Therefore, the reachable set R(t) from the initial conditions X0 ⊆ Rn in the linear

system (3.1) is defined by set of state trajectories (3.3) as

R(t) = {x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ | x0 ∈ X0}. (3.4)

It has been shown in [28] that when each of the input variable u(t) has the form:

u(t) =
∑
j

cjt
mje−ajt (3.5)

where the coefficients aj’s and cj’s are complex numbers and mj’s are non-negative

integers, then the time-domain solutions for the state variables x(t) and output vari-

ables y(t) governed by (3.1) can be represented by the identical form again. That is, if

the set of initial conditionR0 is specified by vector set C = {v1, v2, ..., vk ∈ Rn} by

R0 = {λ1v1 + λ2v2 + ... | vi ∈ C, λi ∈ R, i = 1, 2, ...}. (3.6)

Recognizing that each vector changes with time t and the scaling factor λi’s remains

constant, we only need to compute the time evolution of vector vi’s; thus, applying the

trajectory form of (3.5), we get the identical form with (3.6) having its vector element

as trajectory form of (3.5) as:

R(t) = {x(t) =
∑
i

λivi(t) | vi(t) =
∑
j

cijt
mije−aijt, λi ∈ R}. (3.7)
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This general form of the reachable set can express any states x(t) starting from the vec-

tor set R0 including the initial conditions X0 at arbitrary time t by a linear combination

of vector vi’s expressed as a set of real coefficients {(Re(c), Im(c), Re(a), Im(a),m)j , ...}.

In addition, a set of states sampled at a specific time instant t′, R(t′) have an identi-

cal form with the initial condition set R0, from which we can iteratively compute the

discrete change of the input u(t) or the system matrices of the circuit. This concept

can be extended to any kind of set representations introduced in the previous chapter.

However, we focus on representing a reachable set with zonotope owing to its scala-

bility.

3.1.2 Zonotope Trajectory Form of Reachable Set

Let assume that the range of initial statesR(t = 0) is given as a zonotope Z , which is

described by a point, referred as center c ∈ Rn and a set of generators gi’s ∈ Rn [14]:

Z = (c, ⟨g1, ..., gr) = {c+
r∑

i=1

αigi | αi ∈ [0, 1]} (3.8)

which is a special case of (3.7) having 1 + r vectors and its scaling factors have range

of values λ0 = 1 for center and λi = αi = [0, 1] for k = 1, ..., r for the others. This

is the special case of (3.6) when the one of vectors in set C is point c and the other

vectors gi’s are vectors originating from the point, referred to as an affine combination

[29]. Therefore, any point within a zonotope can be expressed as a linear combination

of generator gi’s from the center c. Its computational complexity for a linear map

depends on the number of generators r, yielding

This is also a linear combination of vectors with constant scaling factor αi thus we

can define its trajectory form of reachable setRZ(t) having input u(t) of (3.5)[30] as:

RZ(t) = (c(t), ⟨g1(t), ..., gi(t)⟩) (3.9)

= {c(t) +
∑
i

αigi(t) | αi ∈ [0, 1], gi =
∑
j

cijt
mije−aijt, } (3.10)
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is the zonotopic trajectory form of the reachable setRZ(t). For convenience, after that,

simply we denote the trajectory form reachable set R(t) for the zonotopic trajectory

form of reachable setRZ(t).

3.1.3 Computing Trajectory Form using Laplace s-domain Transfer Func-

tion

In this subsection, we explain a procedure named getTrajectoryZonotope() that com-

putes the trajectory form ofR(t) from the zonotope range of the initial statesR(t = 0)

defined by zonotope Z in (3.8) and the inputs expressed in the form of (3.5). For

instance, the time-domain expressions of u(t) in (3.5) can be transformed into the

Laplace s-domain expression U(s):

u(t) =
∑
j

cjt
mje−ajt → U(s) =

∑
j

bj
(s+ aj)mj+1 (3.11)

and the Laplace-domain transform of resulting state trajectory x(t), X(s) can be com-

puted using the matrices in (3.1) as:

X(s) = (sI −A)−1BU(s) + (sI −A)−1x(0), (3.12)

which can be transformed back to a time-domain expression in (3.5). The zonotope

reachable setR(t) is computed by applying this procedure to the vectors of the initial

zonotope Z . That is, the Laplace transform of vectors in the zonotope Z is computed

by the same matrices derived from the given circuit as:

c(s) = (sI −A)−1BU(s) + (sI −A)−1c(0) (3.13)

gi(s) = (sI −A)−1BU(s) + (sI −A)−1gi(0), (3.14)

and its time domain solution is given by its inverse Laplace transform

c(t) =
∑
j

c0jt
m0je−a0jt (3.15)

gi(t) =
∑
j

cijt
mije−aijt. (3.16)
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That is, keeping a set of coefficients {(a00, c00,m00), ..., (aij , cij ,mij), ...} in the ex-

pression (3.16), one can sample arbitrary states in the reachable set R(t) for range of

time t ∈ [0, t]. Lets define it as the canonical form the zonotopic reachable set R(t),

which is

R(t) = {(a, c,m)ij | i = (0, ..., r), j = (0, ..., Np)} (3.17)

where a’s, and c’s are complex-numbered vectors ∈ Rn and m’s are integers ∈ Cn.

The coefficient of i = 0 denotes that of center vector c and the others are for those

of generators gi’s. It has been shown that the coefficients can be computed by the

partial fraction decomposition of s-domain expression and the number of coefficients

Np increase with the number of resulting first order poles in [28]. Therefore, we can

express a continuous set of states until time t using a zonotope reachable set with r

generators by (r + 1)× 5Np number of real vectors ∈ Rn.

To avoid redundant matrix computations of the transfer function (sI − A)−1 and

(sI −A)−1B , we define the expression of transfer function

H(s) = (sI −A)−1. (3.18)

for the same linear differential equation in (3.1), we keeps the previously computed

transfer function H(s) and reuse in the the remaining computation. For example, given

a zonotope having comprising two generators Z0 = (c(0), ⟨g1(0), g2(0)⟩), the reach-

able set from the zonotope Z0, is obtained as c(s) = H(s)(BU(s) + Ec(0)) and

g1(s) = H(s)(Eg1(0)),g2(s) = H(s)(Eg2(0)) in s-domain. The time-domain state

of the reachable set can be obtained from the inverse Laplace transform, i.e. the form

in (3.16).

3.1.4 Example: Reachable set of RC circuit

Now, assume that a linear circuit having a resistor R and capacitor C in Fig 3.1 with

a range of initial condition Vc(0) = [1, 2]. Then, applying nodal analysis to the given

circuit, the behavior of the state variable Vc can be represented as a first-order linear
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Figure 3.1: Simple exemplary circuits (a) RC circuit (b) LC circuit.

Figure 3.2: Reachable set of the exemplary circuits (a).

system of a state space representation as:

V̇c = −
1

RC
Vc (3.19)

Then, its reachable set R(t) of the form (3.17) from the initial condition Vc(0) can be

obtained as:

RVC
(t) = {c = (

1

RC
, 1.5, 1), ⟨g0 = (

1

RC
, 0.5, 1)⟩} (3.20)

This represents the set of trajectories having infinite states from the initial states X0

until t in the circuit using only two sets of algebraic coefficients. Fig. 3.2 illustrates the

resulting reachable set.
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3.1.5 Example: Reachable set of LC circuit

In the same manner, the example of LC circuits exhibits harmonic oscillating behavior

repeating charging and discharging the LC energy storage elements. The state space

representation of the circuit is given by :

İL = − 1

L
Vc (3.21)

V̇c =
1

C
IL (3.22)

and the corresponding system matrix A ∈ R2 can be derived from (3.22) as

A =

 0 −1/L

1/C 0

 . (3.23)

In the same manner, its reachable setRLC(t) is defined by a two-dimensional zonotope

having a single 2-D generator vector as:

RLC(t) = {c =

 {( 1
RC , 1.5, 1)}

{( 1
RC , 1.5j, 1)}

 , ⟨g0 =

 {( 1
RC , 0.5, 1)}

{( 1
RC , 0.5j, 1)}

⟩} (3.24)

Fig. 3.3 shows that the proposed reachable set of the circuit can accurately repre-

sent every state x(t) = (IL(t), Vc(t)) from x0 ∈ X0 with respect to a single period

of time t ∈ [0, 2π
√
LC] by a linear sum of the trajectory of center point c(t) and

scaled generator vector g1(t). Each circuit element has the value of L = 1 µH and

C = 1 µF, respectively, resulting in the harmonic oscillation with the frequency of

ω0 = 2πf0 = 1/
√
LC = 1 Mrad

s .

3.1.6 Comparison with Existing Algorithms

Conventional reachability analysis algorithm iteratively computes the reachable set at

each time step tk = {k∆t | k = 0, ..., Nt} where the size of the unit time step

∆t = T/Nt, resulting in the trade-off between the accuracy and the runtime of the

computation of reachable sets. In this subsection, we compare the results of the equiv-

alent LC harmonic oscillator system performed in SpaceEx.
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(a) (b)

(c)

Figure 3.3: Reachable set of the LC harmonic oscillator circuit. (a) IL-t (b) VC-t (c)

VC-IL.

Fig. 3.4 shows the reachable set computed using the size of the unit time step

∆t = 0.5 µs. It took 0.004 s to compute a single period of oscillation but exhibits a

large over-approximation error compared to the ideal time-domain response having

a form of sine wave as shown in Fig. 3.3. With finer time steps of ∆t = 0.1 µs, it

shows a more accurate reachable set compared to the ideal one, but the computation

time increased 5× than that of coarse time steps. Furthermore, if the circuit operates

with a higher frequency, this discrepancy would become larger, which is the problem
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(a) (b)

(c)

Figure 3.4: Reachable set in SpaceEx (a) IL-t (b) VC-t (c) VC-IL.

that recent reachability analysis suffers from. The proposed trajectory-form reachable

set can obtain the exact reachable set within 26 µs, outperforming the conventional

algorithm by 69×.
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(a) (b)

(c)

Figure 3.5: Reachable set in SpaceEx (a) IL-t (b) VC-t (c) VC-IL.

3.2 Hybrid System Reachability Analysis

3.2.1 Hybrid System Representation of AMS Circuits

Analog and mixed-signal circuits are in general non-linear so they require hybrid sys-

tem representation, i.e. hybrid automata. This is a finite state machine that has con-
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tinuous and discrete variables, of which each discrete state q ∈ Q has continuous

states x ∈ X ⊆ Rn that operate as a different linear system represented by a set of

differential-algebraic equations F . Mixed signal circuits change their discrete states

that represent the topology of the circuit depending on the state of the switches con-

necting the remaining circuit. Then, in the selected linear system, the time evolution of

the continuous variable x(t) is iteratively computed from the set of continuous states

x0 = x(t′) in the previous discrete state. The resulting hybrid automata are defined by

M = ⟨Q,X,F,E,G⟩ where E is a set of discrete transitions that describe the switch-

ing condition of the circuit, and G is a set of guard condition that determines when to

transit to next discrete state.

3.2.2 Hybrid System Reachability Analysis Using Trajectory Form

From the hybrid automata M representing a given circuit and the initial conditions

X0 ⊆ X and q0 ∈ Q, the proposed algorithm computes the reachable set R(t) of the

continuous variable x(t) ⊆ X and discrete variable m(t) ⊆ Q. The resulting hybrid

reachable set is a series of tuples consisting of values of discrete state m(t) and each

continuous reachable setRζ(t) and the corresponding each time segment [tζ−1, tζ ] the

trajectory form of the reachable setR(t) of (3.16) as :

R(t) = {(m1, [t0, t1],R1(t)), (m2, [t1, t2],R2(t)), ..., (mζ , [tζ−1, tζ ],Rζ(t), ...)}

(3.25)

where ζ is the index of each time period of operating the linear system of ζ-th discrete

state of the sequence mζ ∈ Q.

Algorithm 1 summarizes the described iterative procedure to compute the reach-

able set with given conditions. This assumes the number of cycles for analysis is

bounded to Ncycle to avoid undecidable conditions such as infinite loops. In each loop,

the procedure GetTrajectoryZonotope() computes the reachable set of continuous state

x(t) in the discrete state m(t) = qζ , i.e.Rq(t), t ∈ [tζ , tζ+1] using the trajectory form

in (3.16). This begins with the last set of states sampled at the previous discrete state
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Algorithm 1: Computing hybrid reachable setR(t).
Input : M, (q0,Z0)

Output: R(t)

1 R(t)← ∅ ;

2 for ζ ∈ (1, ..., Ncycle) do

3 Rj(t)← GetTrajectoryZonotope(ζ,Z0) ▷ ζ-th trj. form

4 (q′, tζ+1)← GetNextState(ζ,Rζ(t)) ;

5 R(t)← R(t) ∪ {(q0, [tζ , tζ+1],Rζ(t))} ;

6 q0 ← q′ ;

7 Z0 ← Rζ(tζ+1 − tζ) ;

8 end

9 returnR(t)

at tζ , Z0. It returns the resulting reachable set Rζ(t) for the time range t = [tζ , tζ+1].

The hybrid reachability analysis algorithm iteratively computes the reachable set us-

ing this procedure until the bounded number of cycles Ncycle. Then, the procedure

GetNextState determines the next value of the continuous and discrete states, q′ and

Rζ(tζ+1− tζ) from the next beginning time tζ+1 by computing the guard intersection

Rζ(t)∩G. However, in this section, we limit the scope of analysis by assuming that the

guard set is only set for the time variable t, i.e. timed automata with a hybrid system,

not by the internal continuous state variable x(t), which will be discussed at the next

chapter.

3.2.3 Example: Switched RC Circuit

As an illustrative example, we analyze the behavior of an AMS circuit, switched RC

circuit controlled by input pulses for switches. It is simple but represents the basic

building block of a wide range of circuit applications such as charge pumps, DRAM

cells, and other switching power supplies. This can be equivalently modeled by a

switched linear system as previously studied in [28].
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Figure 3.6: Switched RC Circuit with cyclic pulse inputs and the corresponding linear

circuits.

Fig. 3.6 shows the circuit under analysis, which changes its discrete state q ∈ Q

depending on the input level Vsw of the switch transistor, which is often controlled

by pulse-width modulation or pulse-frequency modulation control. We assume it has

two discrete states q1, q2 ∈ Q and switched depending on the Ton, Toff , periodically,

where q1 corresponds to the charging state where the external voltage VIN charges the

capacitor C and q2 is discharging state where the charges in the capacitor C discharges

to the shunt resistor R. When the input Vsw is larger than the threshold of the transistor

(q = q1), the control switch is turned on or is turned off (q = q2), elsewhere. Therefore,

the set of discrete transitions depending on the switch state q is defined by E = {q1 →

q2(sw:off), q2 → q1(sw:on)}. Each linear system corresponding to two discrete states

q1 and q2 is derived using basic circuit analysis as :

V̇c = −( 1

RC
+

1

RONC
)Vc +

1

RONC
VIN for q1 (3.26)

V̇c = − 1

RC
Vc for q2 (3.27)

The trajectory form from (3.27) can be solved by using the Laplace technique in
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(3.25). For switch on state q1, the resulting trajectory-form reachable set is :

Vc(s) =
V (0)

s+ 1
RC + 1

RONC

+
1

s+ 1
RC + 1

RONC

· VIN

sRONC
(3.28)

The second term in (3.28) results in two sets of coefficients by the partial fraction

decomposition a′

s +
b′

s+ 1
RC

+ 1
RONC

where b′ = −a′ = VIN
RON /( 1

RC + 1
RONC ). That is, we

require three tuples of coefficients for representing the voltage Vc when the circuit is in

the charging state q1 with a range of initial condition Vc(0) = [Vc,lb, Vc,ub]. Therefore,

the resulting reachable set is given by :

Rq1(t) = {c = {(ωp1, V
′
c , 1), (ωp2, a

′, 1), (ωp1, b
′, 1)}

⟨g = {(ωp1, V
′′
c , 1), (ωp2, a

′, 1), (ωp1, b
′, 1)⟩}

(3.29)

where at the beginning of the analysis the initial voltage is given by V ′
c = (Vc,lb +

Vc,ub)/2 and V ′′
c = (Vc,lb − Vc,ub)/2 for the center cq1 and the generator gq1, respec-

tively, and each system pole ωp1 = 1
RC + 1

RONC and ωp2 = 0. The reachable set in

discharging state q2 also can be solved in the same manner, yielding :

Rq2(t) ={c = (ωp, V
′
c , 1),

⟨g = (
1

RC
+

1

RONC
, V ′′

c , 1)⟩}
(3.30)

where the initial values V ′
c and V ′′

c are computed at the last time in the previous discrete

state q1. The resulting reachable set is given by a set of (3.29) and (3.30).

R(t) = {(q1, [t0, t1],Rq1(t)),

(q2, [t1, t2],Rq2(t)), ...

(q1, [t2, t3],Rq1(t)),

(q2, [t3, t4],Rq2(t)), ...}

(3.31)
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Chapter 4

HYBRID SYSTEM REACHABILITY ANALYSIS OF

NONLINEAR CIRCUIT

We discussed the hybrid system with linear circuits in the previous chapter. In this

chapter, we present the methodology for the hybrid system including nonlinear circuit

behavior [31].

4.1 Piecewise-Linear Modeling of AMS Circuits

The most prevalent approach for analyzing nonlinear circuits is to model them as a

piecewise-linear (PWL) system that divides a state space having nonlinear dynamics

into several regions operating in linear systems. It has been announced that most analog

circuits are nonlinear owing to two nonlinear elements, diodes, and MOSFETs; their

non-linear characteristics are efficiently and accurately modeled by PWL model with

the threshold voltage VTH and the on-resistance RON [26].

As shown in Fig. 4.1, when any circuit has a diode, the circuit can be represented

by two linear systems depending on the terminal voltage VD, and each linear system is

represented in two systems having RON and ROFF (or open). In addition, the MOS-

FET characteristics also can be efficiently represented with two PWL diodes, and the

resulting system would be partitioned by four linear systems. Using this PWL parti-
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Figure 4.1: PWL partitioning of the circuit with a diode.

tioning, we can model a nonlinear AMS circuit and apply hybrid reachability analysis.

4.2 Piecewise-Linear Approximation of Nonlinear Circuits

In the PWL approximation, the continuous state space of a non-linear system is parti-

tioned into a set of disjoint sub-regions {S1, ..., Sp, ..., SNr}, and the continuous state

x(t) ∈ Sp is governed by a different linear system depending on the sub-region x(t)

belong to, where each sub-region Sp for p = 1, ..., Nr corresponds to the discrete state

d(t) ∈ {1, ..., Nr} ∈ Qd. The key challenge in computing the reachable set R(t) of

x(t) and d(t) (or with m(t)) representing the change of linear system due to time t lies

mainly with computing the guard intersection R(t) ∩ G. This chapter addresses how

to compute this guard intersection of continuous state x(t) efficiently and accurately.

The challenges in computing the guard intersection I = R(t) ∩ G in conventional

methods are two-fold. First, when the reachable set R(t) is evaluated at discrete steps

of time t, the guard intersection must be computed repeatedly for each time step, incur-

ring a large computational cost. In addition, this cost further increases when comput-
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Figure 4.2: The problem of computing the guard intersectionR(t)∩G in PWL system

representation.

ing the subsequent reachable set from the guard intersection I since each intersection

requires computing the successor reachable set RI(t), resulting in the exponential in-

crease of runtime with respect to the number of guard intersection, referred to cycles

here.

To address this challenge, this work proposed an efficient, scalable way of com-

puting the guard intersection of reachable set R(t) represented in a trajectory form

of (3.16). In the previous chapter, it has been shown that for linear hybrid systems,

computing the time evolution of R(t) within a region Si does not need the evalua-

tion of R(t) at discrete steps of time. Instead R(t) can be represented using a set of

vertices, where each vertex follows a trajectory described by an exact and analytical

function of time t of (3.7). The proposed method can compute the intersection ofR(t)

in this trajectory form with a linear guard G, and also a new reachable setR(t) starting

from the computed intersection I, both in the trajectory forms that do not rely on time

discretization. The proposed method also adopts the scalable method in [15] that com-

putes the intersections in the high-dimensional state space using only two-dimensional
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operations via projections.

4.3 Computing Guard Intersections at PWL Switching Bound-

ary

4.3.1 Hybrid System Representation of PWL circuits

The continuous state space of the PWL approximated circuit is partitioned into a set

of sub-regions Sp for p = 1, ..., Np by a set of linear hyperplane guards G′s:

Gh : wh · x+ bh = 0 for h = 1, 2, ... (4.1)

where wh ∈ Rn is an unit vector normal to each hyperplane and bh ∈ Rn is an offset.

Within a sub-region Sp and for a given discrete state d(t) ∈ 1, ..., q, the continuous

state variable x(t) ∈ Rn, the input u(t) ∈ Rni , and the output y(t) ∈ Rno are governed

by a linear differential equation :

ẋ(t) = Apx(t) +Bpu(t),

y(t) = Cpx(t) +Dpu(t)
(4.2)

where Ap ∈ Rn×n, Bp ∈ Rn×ni , Cp ∈ Rno×n, and Dp ∈ Rno×ni ; and p denotes the

index of the operating sub-region of PWL system. Then, the trajectory of x(t) starting

from an initial state x0 can be represented by the hybrid system trajectory form R(t)

of (3.25). Each transfer function Hp(s) = (sI−Ap)
−1 for the system matrices in (4.2)

is computed in the same manner in the previous chapter, indexed by the sub-region Sp.

4.3.2 Computing Guard Intersection Using Trajectory Form

This section describes the proposed algorithm for computing the guard intersection

I = R ∩ Gh. For a zonotope reachable set R(t) in (3.16) and a hyperplane guard Gh
in (4.1), using a set of orthogonal unit vectors lk’s to the vector wh of the guard Gh.

The pseudo-codes of the overall algorithm are listed in Algorithm 2.
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Figure 4.3: The overall algorithm to compute the guard intersection at the disjoint

regions Sp and Sp′ .

.

The algorithm first obtains the reachable set in the initial sub-region Sp as:

Rī(t) = getTrajectoryZonotope(p,Zī). (4.3)

where p is the index for the corresponding linear system and ī denotes the index for the

initial zonotopes, previously segmented by ī = 1, ..., Ns. Then, the reachable set in the

sub-region Sp is added byR(t) = R(t) ∪ {Rī(t)} at each iteration of ī = 1, ..., Ns.

Then, the algorithm can determine the time range [t1, t2] for which the intersection

R ∩ Gh ̸= ∅. The procedure named findCrossZonotope() finds the values of t1 and t2

by solving the equation

c(t)wh +
∑
i

|gi(t) · wh| = 0 (4.4)

iteratively until the time t reaches the maximum time bound T .

Since the guard intersection R(t) ∩ G does not yield a closed-form expression in

terms of t, the algorithm computes the approximate intersections of R(t) sampled at

Ns + 1 time steps spanning the range [t1, t2] as :

ts,j̄ = t1 + j̄
t2 − t1
Ns

for j̄ = 1, ..., Ns (4.5)
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Figure 4.4: Search process for the best lk’s in the procedure for approximatingR(t)∩G

with low over-approximation error getOrthogonalBasis.

In addition, this algorithm adopts the projection method introduced in [15], which

computes the guard intersection of the reachable setR(t) projected into a two-dimensional

space instead of the original high-dimensional reachable set R(t) itself. The resulting

intersections are obtained as the same zonotopes using the same set of projection vec-

tors lk for k = 1, ..., n − 1, which are easy to combine with the subsequent step of

computing the reachable set explained in the next section.

The procedure getOrthogonalBasis() finds the set of optimal orthogonal basis vec-

tors

D = {lk ∈ Rn | k = 1, ..., n− 1} (4.6)

, with which one can describe a minimum-volume hypercube enclosing the zonotope

R(t) at t = tmid = (t1 + t2)/2. The search process guarantees that one of the basis

vectors in D in (4.6) is selected from the generators gj’s and finds the set of basis

vectors that minimizes the volume computed by the oriented rectangular hull (ORH)

as:

V =

n−1∏
k=1

r∑
i=1

|gi · lk|. (4.7)

Fig. 4.4 illustrates how the procedure chooses the best basis vectors lk’s. The initial
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selection of lk’s shows a large over-approximation of the hypercube from lk’s approx-

imating the zonotope Z ′ = R(tmid), whereas when the volume V ′
Z is the minimum

among every VZ , the hypercube of with lk can tightly enclose the zonotope Z . This

search process assumes that the time evolution of zonotope Zis so slow for the inter-

secting time range [t1, t2] that the approximation can fit the zonotope well with the

chosen lk’s when the time in the middle of the period, tmid. Therefore, it leaves further

research issues for the method to find a better basis.

Using the vector lk in D, the algorithm projects the zonotope reachable set R(t)

different two-dimensional planes, each of which is spanned by the normal vector of

the guard hyperplane wh in (4.1) and one of the basis vectors lk for k = 1, ..., n − 1.

The projection operator Π(wh, lk) [15] is a linear transformation on the trajectory form

x(t) in (3.5) defined by

Πw,lk(x(t)) = (w · x(t), lk · x(t)). (4.8)

Note that the resulting dot product of vectors w, lk remains with the same form of the

reachable set due to linearity.

Then, the procedure getIntersect2D() computes the intersection of the zonotope

reachable set Rī(ts,j̄) for ī = 1, ..., Ns sampled at each time step ts,j̄ in (4.5) for

j̄ = 0, ..., Ns using the projections on zonotopes Πlk,w(Zīj̄) in (4.8) as :

Z̃ij̄k(t) = (Πwh,lk(c(t)), ⟨(Πwh,lk(g1(t)),Πwh,lk(g2(t)), ...⟩) (4.9)

where k = 1, ..., (n − 1) and guard hyperplane Gh is also projected in the same way,

resulting in the line x = γk = b/|wh| in the k-th projected plane as shown in Fig. 4.3.

Computing intersection in the projected plane is reduced into simple two-dimensional

intersection problems that can be solved in an algebraic way. Given a line segment

v1v2 in a 2-D plane, its intersection with the line x = γk is

y = (γk − v1x)
v2y − v1x
v2x − v1x

+ v1y (4.10)
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where v1 = (v1x, v1y) and v2 = (v2x, v2y). The procedure getIntersect2D() for zono-

tope initially set the first point v1 = c + g0 by picking the generator g0 so that v1 is

most close to the guard line x = γk; and then, the next point is iterated adding 2gnext

as:
vnext,1 = v2

vnext,2 = v2 + 2gnext

(4.11)

where gnext is picked from the first element in the sorted generators g = (gx, gy)’s

in the tangent order (i.e. arctan(gx/gy)) and this process ends when the sorted set

becomes empty. This iteration is performed in two ways, upper and lower side of ver-

tices of the zonotope Z̃īj̄k(t) until finding two intersecting values y = M and y = m,

respectively. This pair of values indicates the range of scaling factor [m,M ]̄ij̄k ap-

plied to basis vector lk. Connecting them with the vector lk into a (n−1)-dimensional

hypercube yields the approximate intersection of the exact Rī(ts,j̄) ∩ G lying on the

guard hyperplane Gh.

When computing the guard intersections of multiple reachable setsRī(t), sampled

zonotopesZīj̄ shares same direction lk at time t = ts,j̄ in the guard-crossing time inter-

val [t1, t2]. The procedure mergeSegments() combines the range segments [m,M ]̄ij̄k’s

for the same sampling instant t = ts,j̄ and the same basis vector lk. This reduces the

resulting Ns ×Ns zonotopes representing the approximate guard intersections to Ns,

yielding the guard intersection by a range of segments

I = {[m,M ]j̄k | j̄ = (1, ..., Ns), k = (1, ..., n− 1)}. (4.12)

This procedure prevents the exponential growth of the number of reachable sets, keep-

ing it at Ns.

4.3.3 Computing Reachable Sets in New Sub-Regions

Algorithm 3 lists the algorithm for computing the Ns subsequent reachable setsRI(t)

from the Ns + 1 guard intersections I of (4.12). Note that these intersections are
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(a) upper side

(b) lower side

Figure 4.5: The procedure getIntersect2D for computing the range of segment [m,M ]

in a (w,lk)-plane.
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Algorithm 2: Computing the guard intersection.
Input : Z0 = {Zī | ī = 1, ..., Ns} , Gh = (wh, bh)

Output: I = {[m,M ]j̄k | j̄ = (0, ..., Ns), k = (1, ..., n− 1)}, ts
1 R(t), I0 ← ∅;

2 for ī ∈ (1, ..., Ns) do

3 Rī(t)← getTrajectoryZonotope(p,Zī);

4 R(t)← R(t) ∪ {Rī(t)};

5 end

6 [t1, t2]← findCrossT imeInterval(R(t));

7 ts,j̄ ← {(t1 + j̄ (t2−t1)
Ns

)j̄=0,...,Ns
} ;

8 D ← getOrthogonalBasis(Gh,R(t));

9 for ī = (1, ..., Ns) ∧ j̄ = (0, ..., Ns) ∧ k = (1, ..., n− 1) do

10 Zīj̄ ← sample(Rī(t), ts,j̄) ;

11 [m,M ]̄i,j̄,k ← getIntersect2D(Zīj̄ , lk) ;

12 I0 ← I0 ∪ {[m,M ]̄ij̄k} ;

13 end

14 I ← mergeSegments(I0) ▷ Merge [m,M ]̄ij̄k’s having same j̄, k

15 returnR(t), I, ts
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crossing the guard Gh at different times of ts,j̄ for j̄ = 1, ..., Ns and each intersection

is expressed with a set of n − 1-fold range segments along the directions of the or-

thogonal basis vectors lk’s for k = 1, ..., n − 1 of (4.6). The goal is to compute a set

of Ns reachable sets in the trajectory form (3.16) valid from the last time of the guard

intersection t = t2.

First, the algorithm combines each pair of range segments [m,M ]j̄−1,k and [m,M ]j̄k

with each lk of (4.12) at two adjacent times, tj̄−1 and tj̄ into a zonotope. In advance,

let’s define ZG = (c, ⟨l1, ..., ln−1⟩) as the zonotope spanning the entire hyperplane

of the guard Gh where c = |bh|wh ∈ Gh. It is noteworthy that every states from the

guard G in the new sub-region Sp′ is included in the ZG ; thus, with the range segments

(4.12) and ZG , one can sample any set of states Z̃j̄ by the new procedure I2Z(), which

converts each set of segments [m,M ]j̄k at time ts,j̄ into a zonotope

Z̃j̄ = (c, ⟨g1, ..., gn−1⟩) (4.13)

where its center and generators are

c = wh +
∑
k

(mk +Mk)lk/2,

gk = (Mk −mk)lk/2 for k = 1, ..., n− 1.

(4.14)

Since we selected the basis lk orthogonal to each other, the resulting zonotope becomes

a hypercube. The procedure ÎH() in [14] computes a zonotope that tightly encloses

the two zonotopes P and Q using the following equation [15] as :

ÎH(P,Q) = 0.5(cP + cQ, ⟨gP,1 + gQ,1, ..., gP,i + gQ,i,

gP,1 − gQ,1, ..., gP,i − gQ,i⟩)
(4.15)

Combining pairs of intermediately generated zonotopes Zl = Z̃j̄(t = ts,j̄−1) and

Zu = Z̃j̄(t = ts,j̄ using ÎH() returns Zj̄ for each j̄ = 1, ..., Ns.

Finally, from the resulting Ns zonotopes, the subsequent reachable set valid from

t = t2 can be computed using the procedure getTrajectoryZonotope() with the new set

of matrices Ap′ , Bp′ , Cp′ , Dp′ in the next sub-region.
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Algorithm 3: Computing the subsequent reachable set from the guard inter-

section.
Input : I = {[m,M ]j̄k | j̄ = (0, ..., Ns), k = (1, ..., n− 1) }

Output: Z0 = {Z1, ...,ZNs}, tr
1 RI(t),Z0 ← ∅; ZG ← ⟨c,D⟩;

2 RG(t)← getTrajectoryZonotope(p,ZG , uj(t));

3 for j̄ ∈ (1, ..., Ns) do

4 tr,j̄ ← t2 − t1 − ts,j̄ ▷ Remaining time until T from ts,j̄

5 for k ∈ (1, ..., n− 1) do

6 [m,M ]k ← max([m,M ]j̄−1,k, [m,M ]j̄,k) ;

7 end

8 Zl ← I2Z(RG(tr,j̄−1), {[m,M ]k=(1,...,n−1)});

9 Zu ← I2Z(RG(tr,j̄), {[m,M ],k=(1,...,n−1)});

10 ZI ← ÎH(Zl,Zr)};

11 RI,j̄(t)← getTrajectoryZonotope(j,ZI , uj(t));

12 RI(t)← RI(t) ∪RI,j̄(t);

13 Z0 ← Z0 ∩ sample(RI(t), tr,j̄);

14 end

15 returnRI(t),Z0, tr

Note that in our reachability analysis method, we do not include the time vari-

able t in a reachable set unlike the other continuous variable x(t) and changes its

discrete states m(t) depending on the external pulse control; therefore, often the sys-

tem changes its discrete state m(t) independent of the state x(t) while the reachable

set R(t) is crossing the guard G, as shown in Fig. 4.6, i.e. t1 < T < t2 where T is

the maximum time bound assumed by the procedure findCrossZonotope. In this case,

the resulting reachable set R(T ) is divided into two sets R1 for tj̄=T and R2 for

t = [t1, T ] contained in distinguished sub-regions that have different discrete state

m(t). After computing the latter set in the new sub-region Sp′ , it returns the union

of the two sets. To prevent exponential growth of the number of sets, the total num-
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Figure 4.6: Case when external discrete state m(t) changes its state at t = T while the

reachable setR(t) is crossing in t = [t1, t2].

ber of two sets is kept at Ns depending on the ratio to the distances from the guard

hyperplane.

4.4 Time Complexity Analysis

4.4.1 Trajectory Form Computation

We assume that the procedure to obtain the transfer function H(s) = (sI − A)−1 has

the complexity of O(1) since we reuse the previously computed values in advance.

Then The procedure getTrajectoryZonotope() has the complexity of O(n2r) where n

is the number of state dimensions and r is the number of generators of the zonotope

reachable setR(t).

Proof. Given an initial zonotope set Z with vector c and r generators g’s, of which

each vector has n scalar components, then, it requires (r+1)-fold evaluation of trajec-

tory form in (3.5) that incur n × n scalar multiplication of single-input-single-output

(SISO) transfer functions Hi′j′(s) and inputs u′i(t) ∈ R and initial condition x0,j′ ∈ R
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as in (3.12) as:

x′j(s) = (sIi′j′ −Ai′j′)
−1B′

iU
′
i(s) + (sIi′j′ −Ai′j′)

−1x′i(0) (4.16)

for i′, j′ = 1, ..., n. This results in complexity of O((r + 1)× n2) = O(n2r).

4.4.2 Guard Intersection Compuatation

Given trajectory form reachable set R(t) consisting of Ns subsets and a guard hyper-

plane Gh in (4.1), the complexity of computing the guard intersection R(t) ∩ Gj have

complexity of O(N2
s n).

Proof. The algorithm that computes guard intersection first computes the projection

of zonotope Zī ∈ R(r+1)×n at Ns + 1 time steps segmenting [t1, t2], and then com-

putes the two-dimensional intersection of the zonotopes Zī in the k-th plane for k =

1, ..., (n − 1), incur (Ns + 1) × Ns-fold 2-D intersection procedure getIntersect2D

that is pure algebraic operation of constant complexity O(1) in (4.10). Therefore, the

resulting complexity is O(N2
s n).

4.4.3 Reachable Set Computation from Guard Intersection

Given I = {[m,M ]j̄,k | j̄ = (0, ..., Ns), k = (1, ..., n− 1)}, computing the reachable

setRI(t) have a complexity of O(Nsn
2r).

Proof. The algorithm 3 first combine the pair of two scalar value m and M in [m,M ]̄ij̄k

for k = 1, ..., n − 1 having same i, j̄ indices into Ns zonotopes, which is a series of

Ns × (n − 1)-fold scalar interval arithmetic operations. After that, it computes the

trajectory form reachable set RI,j̄(t) from each resulting zonotope ZI,j̄ by getTra-

jectoryZonotope(). Therefore, overall complexity adding two procedures is given by

O(Ns(n− 1) +Nsn
2r) = O(Nsn

2r)
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4.4.4 Overall Complexity

The overall complexity for the entire algorithm is O(N2
s + Nsn

2r), where Ns is the

number of time steps discretizing the guard intersecting time range t = [t1, t2] and

is independent of the number of dimension n. So if we keep Ns small compared to

n and limit the number of generators r to scale linearly with n using the dimensional

reduction technique in [14, 15], the overall complexity becomes O(n3Ns).

4.5 Computing Safety Bounds from Reachable Sets in Tra-

jectory Form

To verify the safety of the circuits using the computed reachable sets, one needs a way

to compute the range of the reachable set R(t) along an arbitrary direction l ∈ Rn. In

[16], it has been shown that such a range for time t can be computed using the support

function ρR(t)(l):

ρR(t)(l) = c(t) · l +
r∑

j=1

|gj(t) · l|. (4.17)

We need to evaluate the peak values (min/max) for a trajectory-form reachable set

R(t) for a time range t = [0, T ], calls for two scalar optimization procedures with

respect to time t

boundsl(x(t), t = [0, T ]) = [ min
t=[0,T ]

ρR(t)(l), max
t=[0,T ]

ρR(t)(l)]. (4.18)

Note that this function calls for a piecewise evaluation with the knowledge when the

polarities of gj(t) · l change. With gj’s expressed in the analytical, trajectory form of

(3.5), one can find the values of t that satisfy gj(t) · l = 0 and subsequently find the

minimum and maximum values of (4.17) for each time interval split by the solutions

of t. Finally, by combining these results, the minimum and maximum bounds of R(t)

along the direction of l for t ∈ [0, T ] can be found.
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Figure 4.7: Hybrid automata of the LC oscillating system.

4.6 Benchmark: Numerical Example

This section demonstrates the proposed reachability analysis method with an illustra-

tive linear hybrid oscillator system with associated guard hyperplanes G1 = G2 = G

as:

G : w · x+ b = 0 (4.19)

where w = (0.1, 1) and b = −1, which splits the continuous state space into two

disjoint sub-regions at the guard hyperplane, each linear system

ẋ = Aix (4.20)

with the system matrix Ai of two discrete state q1, q2 for i = 1, 2 is given by :

A1 =

 1 −10

10 0

 , A2 =

 2 −20

20 0

 . (4.21)

The hybrid automata in Fig. 4.7 models the behavior of the discrete state d(t) =

{q1, q2} and the continuous state x(t) ∈ R2. It switches its discrete states when x(t)

intersects the guard line G in (4.19).

In this section, we compare the reachable sets computed with two different al-

gorithms, including proposed algorithm, Girard’s algorithm in [14, 15, 32] with two

references, reachable set Rref using Delaunay triangulation (DT) RDT and brute-

force Monte-Carlo (MC) RMC . The reachable set using DT RDT is to evaluate the
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Figure 4.8: Error measure err1 using MC integration method.

over-approximation error of the proposed method caused by the zonotope approxima-

tion since DT can accurately represent the arbitrary shapes with a fine set of triangles,

which also can be computed by the trajectory form reachable set in (3.7). In addition,

the brute force MC method is widely used for accounting the range of initial conditions

and provides a reference for evaluating the accuracy of the reachable set RMC . Note

that the results obtained from the envelope of the MC method are under-approximation

of the theoretically exact reachable set, but when the number of random samples is

large enough and the number of system dimensions is relatively small, then we can

roughly evaluate the relative accuracy of the different reachability analysis algorithm

compared to it.

4.6.1 Error Measures

We defined an error measure to compare the accuracy of reachability analysis algo-

rithms err1 that estimates the over-approximation error at specific sample time t. The

error measures the area difference between the approximation and the exact set. The

over-approximation error err1 compared to the reference set is evaluated by

err1 =
Area(R−Rref )

Area(R)
(4.22)
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where the reachable setR andRRef refers the set sampled at the specific sampling in-

stant t = t′. However, computing the exact area (or volume) of an arbitrary polygonal

intersection is a computationally expensive operation with many sets in a large-scale

system so we introduced a simple Monte-Carlo integration method that computes the

area (volume) of the difference set using random sampling. It generates random sam-

ples in a hypercube enclosing two sets and counts the number of samples included in

the target region. Fig. 4.8 illustrates the described error evaluation method. The area

of the target reachable set R(t) can be approximated by the number of random point

NR(t) and the over-approximation error can be estimated by :

err1 ≈
N(R−Rref

)

NR
(4.23)

where NR refers to the number of sample in the setR.

4.6.2 Comparison of accuracy and runtime

The proposed method can compute the accurate reachable set after the guard intersec-

tion compared to the classic reachable set in [14, 15, 32], which assumes that every

continuous state x(t) starts from the guard intersection starts at the same time, adding

large over-approximation each time guard intersection occurs.

Fig. 4.9 compares the proposed method and the classic reachability algorithm (Gi-

rard) with two reference sets RDT and RMC . It can be observed that comparing the

proposed reachable R(t′) set at each guard intersection (t′ = t2 at every four cycles)

agrees well with the reference sets in Fig. 4.9 (c) DT (Delaunay triangulation) and (d)

Monte-Carlo (MC). While the classic method can enclose the states at the instants t′’s,

it is shown that large approximation errors are added each time with cycles.

Fig. 4.10 shows the over-approximation at the instant of the guard intersection as

increasing the number of cycles. Fig. 4.10 (a) compared the reachable sets obtained

from the proposed and Girard’s one with the reference set from DT RDT (t), as in-

creasing the number of time segmentation ts,j̄ in the guard intersecting interval [t1, t2]
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(a) Proposed (b) Girard

(c) Delaunay triangulation (DT) (d) Monte-Carlo (MC)

Figure 4.9: Reachable sets computed for a 2-D linear hybrid system example with a

guard hyperplane.
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(a) err1 vs. DT (b) err1 vs. MC

Figure 4.10: Increasing err1 as the number of cycles (guard intersections).

in (4.5). As expected, increasing the number of time steps of the range results in a

smaller error, where the err1 of 5.06% with Ns = 20 leads to 25.3× more accurate

than 141.7% of Ns = 4. In addition, even with Ns = 4 time steps, the proposed

method achieves 18% improvement of accuracy than 168% of the Girard’s.

Furthermore, compared with the MC reference set RMC(t) with the same config-

urations, the proposed algorithm achieved a 30× improvement with err1 of 0.506%

while the Girard’s algorithm has 2.477% as shown in Fig. 4.10 (b). The error err1

increases slowly with the number of cycles while the error of the Girard’s increases

fast with cycles.

Then, we evaluated the accuracy of safety bounds defined by evaluating (4.17) for

each axis direction and runtimes compared to the SpaceEx, providing performance

reference for the different reachability analysis algorithms. As shown in Fig. 4.11, we

defined new error measure err2, comparing the range [xi,min, xi,max] of each state

value xi(t), estimated by applying (4.17) for xi-direction on the reachable sets R(t)

andRMC(t) as :

err2 =
1

n

n∑
i=1

|x̂i,max − xi,max|+ |x̂i,min − xi,min|
xi,max − xi,min

(4.24)

where [xi,min, xi,max] is the range of state variable xi(t) computed by the reference

setRMC(t),RDT and [x̂i,min, x̂i,max] is the range of the reachable setR(t) computed
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Figure 4.11: Safety bound of state x(t).

with each algorithm with different options that configure the set shape, box (box) and

octagon (oct), the default time step Ts = 0.01 s, and error tolerance for computing

reachable set ϵ = 0.01.

Fig. 4.12 shows that the runtime of the proposed algorithm increases linearly with

the number of cycles since it keeps a fixed number of sets with cycles. Computing the

safety bounds over given 12 cycles, the proposed algorithm shows a 13.8× average

speed-up compared to the less accurate ’box’ option yielding the err2 of 8.55%, and a

1074× speed-up compared to the accurate but slow ’oct’ option yielding 4.26% err2

in average. On the other hand, the proposed algorithm keeps the error below 1% for the

entire cycles. Note that the relative error metric err2 decreases with guard intersection

cycles, mainly due to the increase of the radius of the reachable set while absolute

error stays almost constant with cycles.

4.7 Conclusion

In summary, we concluded that the proposed method using the trajectory form reach-

able set computation outperforms over 1074× speed-ups compared to the existing
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(a) Runtime (b) Error

Figure 4.12: Runtimes and error comparison vs. SpaceEx algorithms (err2).

method relying on time discretization reachable set computation by suppressing ex-

ponentially increasing number of reachable sets. Simultaneously, it achieved better

accuracy below 1% than the time discretization method due to its nature of not re-

quiring more fine time steps to lower the required error tolerance. These achievements

have been demonstrated with a simple numerical benchmark example but it represents

a wide range of circuits, whereby, in the next chapter, we demonstrate the safety of

practical circuits with the proposed methodology.
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Chapter 5

SOA VERIFICATION OF DC-DC BUCK CONVERT-

ERS

In this chapter, we demonstrate that the proposed trajectory form methodology ex-

plained in Chapters 3 and 4, can verify the safety of switching power supply circuits in

a fast and accurate way. A switching power supply operates as a switched linear sys-

tem and its switching activities are controlled by input pulses applied to its switches,

unintentionally causing abrupt changes in the internal inductor current and leading to

malfunctions or permanent damage to the system.

The overall flow of the safety verification procedures is listed in Fig. 5.1. This can

be done in three steps: First, the circuit topology is converted into a set of differential-

algebraic equations (DAEs). Secondly, the matrices from DAEs are then converted into

the hybrid automata representation M with the set of matrices F , the set of discrete

transitions E, and the associated guard G with each element of E. Secondly, its reach-

able setR(t) is computed using the proposed method. Finally, the bounds of reachable

sets are compared to the given specification for safety in ranges of operating voltages

and currents for each circuit element.
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Figure 5.1: Overall flow of safety verification methodology for a given circuit.

Figure 5.2: Switching power supplies operating as switched-linear systems.
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5.1 SOA Verification of DC-DC Buck Converters

Fig. 5.2 shows the two representative basic circuit topologies mainly used for DC-DC

converters. These two converters are distinguished depending on whether the output

voltage is greater than the input voltage VIN or not. However, the operating principle

is similar so we focus on analyzing the buck converter.

A DC-DC buck converter topology is used for step-down of the input voltage VIN

by regulating its voltage by modulating the duty cycle of the switch control input u(t).

When the switch is turned on, the input voltage VIN charges the inductor current, on

the contrary, when the switch is turned off, the inductor current discharges. The steady-

state value of output voltage VC gets proportional to the duty-cycle D of the input u(t),

i.e., VC ≈ D · VIN .

5.2 Open-Loop Verification with PWM Control

Fig. 5.3 shows the hybrid automata model for DC-DC buck converter circuits under

open-loop duty control, i.e., the input for the MOSFET switch u(t) has fixed duty

cycle D. The automata model involves three modes, q1, q2, and q3, depending on the

state of switches. The model includes the generation of u(t) in the automata with the

period T using an additional state variable δ. Depending on the value of local time

δ ∈ [0, T ] where T is the pulse duration of a clock period, the discrete state changes

its state between q1 and q2 (or q3).

While the state of the MOSFET switch is directly set by the control input u(t), i.e.

δ in the automata, the switch state of the diode depends on the internal circuit states,

i.e., the voltage across the diode VD. The state space of the circuit has two independent

variables IL(t) and VC(t), and the diode voltage VD is a linear sum of those variables,

yielding VD = −ILROFF in Fig. 5.3. Therefore, when the inductor current IL at the

instant when the MOSFET switches off is positive, the diode turns on with a negative

VD, and IL stays positive. Otherwise, the diode turns off with positive VD, and the
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(a) (b)

Figure 5.3: DC-DC buck converter operating in DCM.

current IL becomes zero. The former operation is called continuous conduction mode

(CCM) and the latter is called discontinuous conduction mode (DCM). This chapter

addresses a way to verify the safety of the practical circuits using the methodology

explained so far.

Each switching behavior of CCM operation (q1 ↔ q2) and DCM operation (q1 →

q2 → q3 → q1...) has different impacts on its computational time due to the way the

reachable set R(t) intersects the guard set with time. In CCM switching mode, it is

easy to compute the discrete transition of the circuit state variable x(t) = (IL(t), VC(t))

because the circuit states changes its discrete states q depending on only local time

variable δ compared to the guard time DT , (1 − D)T , independent of the internal

circuit states x(t). With the last sampled reachable setR(t = δ), one can compute the

reachable set at the next iteration, exactly.

On the other hand, when operating in DCM mode, the circuit states VC(t) and

IL(t) in the reachable set R(t) partially changes its discrete states q with time, gen-

erating infinite small intersections until the associated guard intersection ends. These

guard intersections are problematic because the required number of computations in-

creases exponentially with the number of the guard intersection events as in Fig. 4.2.

In this case, the value of the diode terminal voltage VD set the guard G : VD < VON .
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Table 5.1: Default Circuit Parameters

Parameter Symbol Value

Inductor L 10 µH

Capacitor C 20 µF

Load resistor R 10Ω

Input voltage VIN 10V

Switching period T 1 µs

Diode turn-on voltage VON 0.5V

Diode on-resistance RON 1Ω

Diode off-resistance ROFF 1GΩ

This guard condition is equivalent to the condition for the inductor current IL <

VON/RD,OFF , represented at the guard line in the two-dimensional IL − VC state

space.

We computed the reachable sets with the circuit parameters listed in Table 5.1.

Nodal analysis on the circuit yields the system matrices when the MOSFET switch is

closed (q1) and when the switch is open (q2) state in each state while CCM, Ac for q1

and Ao for q2 as:

Ac = Ao =

 −105 −105

5× 104 −5× 103

 . (5.1)

The system matrix Ad when the inductor is discharging with turned-off diode (q3) is

given by:

Ad =

 0 0

0 −5× 103

 , (5.2)

The associated input matrix Bc and Bo(Bd) for each mode are given by

Bc =

 1

0

Bo =

 0

0

 (5.3)
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and the DC voltage source VIN is converted to trajectory form by representing a step

function in the s-domain :

U(s) =
VIN

s
. (5.4)

represented a set of coefficient (a, c,m) = (0, VIN/L, 1) in (3.5).

Fig. 5.4 shows the reachable sets after 100 µs, starting with the initial set of states

VC = [0, 2]V, IL = [0, 2]A. The reachable sets obtained are represented in blue

compared to those with a 1000-point MC simulation in green for two cases of duty-

cycle D = 0.25 and D = 0.75, resulting in the safety bounds of IL = [0, 2.25],

VC = [0, 2.69] for D = 0.25 and IL = [0, 5.06], VC = [0, 7.11] for D = 0.75, re-

spectively. In two cases, the reachable sets computed with the proposed method show

excellent agreement with trajectories of the equivalent Monte-Carlo simulations, yield-

ing the resulting error err2 are only 1.97%. Its runtime only took 4.967 s for D = 0.25

and 0.063 s for D = 0.75. It seems that when D = 0.25 the runtime abruptly increases

than the other. This is because, in the case with low duty value D = 0.25, the circuit

operates in DCM that switches its states from q2 to q3 when the inductor discharges,

incurring massive guard intersection computations and resulting in 34-fold increased

runtime than the case with low duty-cycle. On the other hand, in the case with high

duty value D = 0.75, the buck converter operates only in CCM that switches its states

only in q1 and q2 without any guard intersection events, resulting in fast runtime.

We evaluated the performance for various cases with varying duty D = 0.1, 0.5, 0.9

and the switching cycles cycles = 4, 10, 20, 30, 40, 50 in terms of runtime and accu-

racy for estimating safety (err2), compared to the other algorithm STC of SpaceEx

with different set shapes coarse ’box’ and fine ’oct’ shapes in the same manner as

the previous chapter. Fig. 5.5 summarizes the results and comparison, showing that

the proposed algorithm achieved the fastest runtimes for all cases, ranging 0.03–2.02 s

and the lowest average error 0.99%. The proposed method outperformed the speed-

up factor was 2–656× and 107× in average compared to the SpaceEx results with

accurate ’oct’ shapes; 7–414× and 79× in average compared to those of ’box’.
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(a) D=0.25 (b) D=0.75

Figure 5.4: The reachable set computed for the DC-DC buck converter circuit.

(a) Runtime

(b) Error

Figure 5.5: Performance for open-loop operation including DCM.
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Conventional time discretization-based algorithm shows the abrupt increase of the

runtime at the instants where the buck converter circuit enters into DCM at cycle > 10

for D = 0.1, cycle > 40 for D = 0.5, cycle > 50 for D = 0.9. Lower duty leads to

a steep increase of the runtime because the circuit operating with small duty tends to

have low inductor currents, so easily reaches the guard line G that is equivalent to the

line IL = 0 at the state space.

The flat regions after the runtimes abruptly increase are because the MAX iteration

limit is set to prevent infinite runtime. This is because that SpaceEx continuously keeps

breaking the time steps into more fine small pieces indefinitely, causing exponentially

increasing or indefinite runtimes. On the other hand, the runtimes of the proposed

method scale only linearly with the number of cycles, demonstrating the effectiveness

of the proposed algorithm.

5.2.1 Experimental Scalability

We also demonstrated the scalability of the proposed method with a scalable circuit,

which is a DC-DC buck converter with cascaded RC loadings. Fig. 5.3 shows how

the runtime increases as the number of state variables, i.e. capacitors N increases. For

comparison, the results with SpaceEx are also shown. The runtime of SpaceEx scales

depending on the selected algorithm LGG and STC and the complexities of the shapes

’oct’ and ’box’ showed different scalability.

The proposed reachability analysis algorithm has the runtime proportional to the

cubic number of dimensions O(n2), whereas the SpaceEx algorithm has the same

scalability with a coarse shape ’box’ selected. With the more accurate shape ’oct’, the

runtime of the SpaceEx scales as O(n3). For example, for the circuit with 12 state vari-

ables, our algorithm achieves 8.5× quicker compared to SpaceEx with STC and ’oct’

shapes. It shows that the proposed trajectory form method can compute the reachable

set accurate and scalable way. Note that in this comparison, the transfer function is not

cached so the speed-up is relatively low than the other comparison in other sections.
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Figure 5.6: Buck converter circuit with multiple RC loadings.

Figure 5.7: Reachable set with multiple RC loadings.

Figure 5.8: Scalability as the number of state dimensions compared to SpaceEx.
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Figure 5.9: DC-DC buck converter with PWM feedback loop.

5.3 Closed-Loop Verification with PWM Control

In this section, we demonstrate our method for closed-loop controlled DC-DC buck

converter examples. A practical buck converter circuit requires a feedback regulation

loop that stabilizes the output voltage VC(t) at the reference voltage level VREF (t)

against the changes of the input voltage VIN , load resistance RL, etc, which may

cause unexpected large transient over-voltage issues. Unlike the previous open-loop

controlled examples, we need to consider two more aspects to apply reachability anal-

ysis: i) one is the reachability algorithm requires more states to store the current states,

i.e. duty values in digital or analog values, ii) the other is that the algorithm should

compute the guard intersections of the current reachable states with more guard sets to

get the desired duty D(t) for the error e(t) of the current output voltage VC from the

desired output voltage VREF .

In the linear control of DC-DC buck converter, such as widely-used PID control

[], the controller first measures the error compared to the reference voltage e(t) =

VC(t)− VREF and the duty is determined according to the transfer function HPID(s)

and the error e(t), by D(s) = HPID(s)e(s), whereas in digitally-controlled PWM

(DPWM), the control principle is similar except that the error voltage e(t) is measured

at the ADC digitally and the subsequent duty values are computed using digital filters

implementing the transfer function HPID(s). Implementing it in a reachability anal-
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Figure 5.10: DC-DC buck converter with Digital PWM feedback loop.

ysis algorithm requires 2m guard sets G2m where m is the number of bits to measure

discrete levels for error e(t), equivalent to the number of output bits of the ADC.

In this work, we modeled a simple digital PWM DC-DC buck converter, with

bang-bang (BB) control, that is ADC with one bit (m = 1). It is not a practically-used

scheme for switching power supply due to power inefficiency caused by a number

of fast switching activities, but it can provide an understandable example to show how

the proposed reachability analysis algorithm can model digitally-controlled analog cir-

cuits.

5.3.1 DC-DC Buck Converter with Digital Pulse-Width Modulation (DPWM)

Control

The circuit under verification is a DC-DC buck converter circuit with the same topol-

ogy in 5.3 and the circuit parameter as Table 5.1. In addition, the duty of the input u(t)

is controlled digitally by the polarity of the error level e(t) = Vc(t)−VREF . The con-

troller measures the output voltage Vc(t) at the end of the switching pulse u(t) period

and compares the measured value with the desired reference voltage VREF (t). when

the measured output voltage VC(t) is larger than the voltage VREF , the controller in-

creases the digital duty value encoding the real duty-cycle D(t) by +1 before the next

cycle begins.

Fig. 5.11 shows the computed reachable sets R(t) varying the output reference
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(a) Vref = 3V (b) Vref = 5V

(c) Vref = 7V

Figure 5.11: Reachable sets varying VREF for PWM DC-DC buck converter.
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(a) RL = 1Ω (b) RL = 10Ω

(c) RL = 50Ω (d) RL = 100Ω

Figure 5.12: Reachable sets varying VREF for PWM DC-DC buck converter.

voltage VREF = 3, 5, 7V in the state space of the continuous circuit state x(t) =

(IL(t), VC(t)), compared to the equivalent Monte-Carlo (MC) simulation trajectories.

Each reachable set accurately encloses the state trajectories from initial samples ran-

domly selected in the initial set IL = [0, 2]A and VC = [0, 2]V while converging to

different reference voltage VREF = 3/5/7V set.

In the same way, the reachable set while varying the output load resistance in the

range of 1,10,100,1000Ω are shown in Fig. 5.12. The default reference voltage is set

to 3V for all cases. The case of RL = 1Ω converges to reference voltage 3V without

reaching the DCM operation at the guard line IL = 0A. On the contrary, the other
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(a) Runtime and error (b) Speed-ups vs. SpaceEx

Figure 5.13: Performance comparison for PWM DC-DC buck converter.

cases reach the guard line and the voltage VC slowly gets smaller due to discharging

with low inductor current IL, incurring massive guard intersection computation and

increasing corresponding runtimes. The results also show good agreement with the

MC simulation results in green.

Fig. 5.13 summarizes the runtime of the proposed methods and the relative error

of safety bound measured by err2 in (4.24) compared to MC. The speed-up improve-

ments compared to the SpaceEx using ’STC’ algorithm and ’oct’ shapes are compared

in Fig. 5.13 (b), showing the speed-up ranging 22–69×, while the accuracy is main-

tained below 2% compared to MC simulation references. The runtime ranges 50–98 s.

This is quite large than we expected. The cause of the slow runtime in the closed-loop

feedback system is that consistently generated a new flow of the reachable set and also

exponentially increases the required runtime until the predefined number of cycles (i.e.

equivalent to the bound of time). This also suggests further research topics. Cluster-

ing several sets with the same discrete states into a new set can be a remedy for this.

Otherwise, random walk or SMT algorithm can also efficiently reduce the exponential

increase of computation due to combinations of possible digital states and continuous

sets.
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5.4 Verifying Safe Operating Area (SOA)

Finally, we verified the safe operation of the circuits using the safe operating area

(SOA) specification under parameter variation of VREF and the load resistance RL for

the cases in the system of Fig. 5.10. In each case, the operating regions are computed

using the proposed reachability analysis method.

Fig. 5.14 summarizes the bounds of operating region in terms of voltage VC and

current IL while varying circuit parameters RL=1,10,50,100Ω and VREF=3,5,7V.

The overall bound for the inductor current IL is computed by 6.0A and the capacitor

voltage VC is given by 7.78V. So, we can conclude the operating region of the circuit

with the parameters are in IL = [0, 6.0]A and VC = [0, 7.78]V .

Fig. 5.15 shows the comparison between the SOA specification for the 90-nm pro-

cess and the compute operating regions with bounded initial conditions. For the cases

of load resistance RL = 1Ω, the design exceeds the SOA specifications by reaching

the current limit for the switch MOSFET in the test cases. Fig. 5.14 shows the bound

values for current and voltages for all test cases with varying parameters. As expected,

increasing load resistance RL resulted in the decrease of the operating current of the

buck converter, agreeing with the behavior with simulation data. In the case of low RL,

i.e. heavy load, current through the inductor increases and poses a high risk of circuit

failure. In addition, increasing the reference voltages increases the risk that the capac-

itor might be damaged due to large transient over-voltage while charging the load at

the initial charging period.

However, the proposed method still lacks the capability to formally verify with

parameter variation caused process variation in the real world, resulting in incomplete

verification. Further work to capture the parameter variation should be done in the

future.
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(a) Unsafe case

(b) Safe case

Figure 5.14: Verifying safe operating area of the circuit under verification.

70



(a) Unsafe case

(b) Safe case

Figure 5.15: Verifying safe operating area of the circuit under verification.
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Chapter 6

CONCLUSION

This dissertation presents a formal verification methodology for the safety of AMS

circuits using a reachability analysis algorithm. The proposed methodology leverages

a hybrid system modeling technique that discretizes a set of continuous state values

of the circuit variables similar to the boolean representation of the digital formal tech-

nique. Combined with a novel trajectory form of reachable set representation, it en-

ables a fast, scalable, and accurate reachability analysis. In addition, efficient piecewise

linear approximation of the nonlinearity of semiconductor devices, the basic building

block of AMS circuits, such as MOSFETs and diodes, the proposed method can be

applied to any type of AMS circuits.

The presented methodology was successfully demonstrated in verifying the safe

operation of the switching power supply circuits with open/closed loop pulse width

modulation control schemes. With varying circuit parameters and the initial conditions,

the resulting operating range of the devices changes, and the proposed method can

accurately detect its bounds compared to Monte-Carlo simulations with over 100×

speed-ups compared to the state-of-the-art reachability analysis algorithm.

The accuracy of the proposed RA algorithm was compared to the MC simulations

and remained small, less than 2%. One might worry that even this small error can

rarely lead to failures. However, the operating region computed by RA is a conserva-
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Figure 6.1: Conservative error compared to simulations.

tive approximation; that is, if this over-estimated operating region of the circuit never

reaches unsafe regions, neither does the exact one. Fig. 6.1 illustrates the resulting

error compared to the theoretical exact reachable set indicated as the circle, which is

the sum of the over-approximation error ϵover (shaded) of the reachable set R and the

under-approximation error ϵunder of the set RMC of states obtained from MC simu-

lations. While the error of MC simulations ϵunder contributes false-negatives that can

cause real failures, the error of the proposed reachable set ϵover does not, only result-

ing in false-positives. However, it is desirable to reduce this over-approximation error

since it leads to higher design costs.

The main contributions of the presented methodology are two aspects. One is to

avoid the dependency of space and time discretization to compute the time evolution

of the set of states, reducing the scalability of the method. This idea is implemented

with a zonotope set in this study, but it can be extended to any type of set representa-

tions based on linear algebra such as polyhedra or other representations, which need

to be further researched. The other is the efficient computation of guard intersection

which is the most significant bottleneck of every hybrid system reachability analysis.

In this study, based on the idea that every state is started from the guard intersection,

we iteratively generate the next initial set using the linear superposition of the basis
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(a) Forward RA (b) Backward RA

Figure 6.2: Backward reachability analysis extending the proposed trajectory-form.

vectors spanning the guard set. In this way, we can easily compute the guard intersec-

tion and iterative reachable set computation from the intersection, in an accurate and

fast way. However, the remaining concern is that the way to approximate the intersec-

tion on the guard hyperplane can also contribute to additional over-approximation in

each iteration. This still remains an open problem requiring further research.

In addition, this work can be further extended to compute backward reachability

that computes the set of initial conditions of which trajectories can reach the speci-

fied target region. From the backward reachable set computed from the given unsafe

target region, one can avoid the risky initial conditions that can lead the circuit to a

potentially unsafe operating region in advance without computing a reachable set for

every possible initial condition. Computing the backward reachable set in the proposed

trajectory-based method can be simply done by exploiting the time reversal property

of Laplace analysis. That is, if a forward reachable set of trajectory is X(s)
L←→ x(t),

then the backward reachable set is just X(−s) L←→ x(−t). Replacing s to−s in (3.12),

the transfer function for backward computation is given by H(−s) = (sI +A)−1 and

the input term U(−s) of time-reversed input u(−t) can be obtained from the basis

functions. Fig. 6.2 shows the backward reachable set using the idea. As shown in Fig.
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6.2 (b), one can exclude the unsafe initial conditions that can reach the unsafe region

Zt. Recognizing this analysis is simple linear system computation with only modify-

ing the sign of the system matrix, extending this backward trajectory analysis to the

hybrid system can be done in the same manner as Chapter 3.
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Chapter 7

APPENDIX

7.1 Code Implementation

7.1.1 Example: Trajectory Form Reachable Set

1 import numpy as np

2 n=2 % system dimension

3 A=np.array([[0,-1],[1,0]], dtype=float)

4 E=np.identity(n,dtype=float)

5 U=[xmulan.xreal(value=[0,0,0,0,1]) for i in range(n)]

6 c = np.array([1.5,0],dtype=float)

7 G = [ np.array([0.5,0],dtype=float) ]

8 Z0 = [c,G] % initial zonotope set

9 % Trajectory Form Reachable Set

10 Ztrj = get_xreal_zonotope(E,A,Z0,U)

Listing 7.1: Simple code example for trajectory form reachable set.

1 %Zonotope Trajectory Form

2 Ztrj= [

3 [xreal(((0+1j,0.75+0j,1)) @0.000s), xreal(((0+1j,0+0.75j,1))

@0.000s)],
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4 [[xreal(((0+1j,0.25+0j,1)) @0.000s), xreal(((0+1j,0+0.25j,1))

@0.000s)]]

5 ]

6 % Bounds for each axis also represented by Xreal Trajectory

7 bound(Ztrj,axis=0)= xreal(((0+1j,0.5+0j,1)) @0.000s) xreal

(((0+1j,1+0j,1)) @0.000s)

8 bound(Ztrj,axis=1)= xreal(((0+1j,0+0.5j,1)) @0.000s) xreal

(((0+1j,0+1j,1)) @0.000s)

Listing 7.2: Zonotope Trajectory Form Output.
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초록

본논문은아날로그혼성회로의안전성을공식적으로검증하기위한방법론을

제안한다.최근자동차에많은집적회로를통합하면서,시스템이안전함을보장하

는 것은 안전이 중요한 시스템을 개발하는 데 중요한 문제를 야기하고 있다. 아날

로그 회로에 포함된 모스펫 및 다이오드와 같은 관련 반도체 장치의 작동 범위는

프로세스 설계 키트 또는 데이터시트에 명시된 안전 동작 영역에 한해 제한되어야

하지만,업계의스파이스시뮬레이션에의존하는기존검증절차는가능한모든동

작을고려하지못하는문제가있다.반면,공식적인검증알고리듬,특히도달가능성

분석은 지정된 초기 조건으로부터 모든 도달 가능한 상태를 계산하고 도달 가능한

상태 집합이 안전하지 않은 상태 집합과 교차하는지 여부를 발견함으로써 시스템

이 안전하다는 것을 증명할 수 있다. 하지만, 도달 가능한 세트를 계산하는 것은

연속적인 상태값을 여러 개의 이산 상태값으로 분할하는 것을 필요로하기 때문에,

고주파에서동적으로빠르게작동하는고차원시스템에서도달가능한세트를계산

하는것은너무오래걸리며,도달가능성알고리즘을이용해실제회로를검증하기

어렵게 한다. 본 논문은 도달 가능한 분석을 아날로그 혼성 회로에 적용하여 동작

가능범위를구하는안전영역검증방법론을다루며,이와함께도달가능한세트를

효율적으로빠르고정확하게계산하는방법을제안한다.

제안된 도달 가능성 분석 알고리듬은 확장 가능한 기하학적 집합 표현을 사용

하는 두 가지 주요 아이디어인 조노토프와 아날로그 신호를 궤적을 표현하는 닫힌

함수 형태로 표현하는 알고리듬을 결합한 조노토프의 궤적 함수 형태를 제안하여,

도달 가능한 아날로그 혼합 신호 회로 세트를 빠르고 정확한 방식으로 계산할 수

있다. 또한, 포함된 장치의 작동 모드에 따라 회로의 상태 공간만 분할하는 효율적
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인조각선형근사기법을사용하여비선형구성요소를포함하는아날로그회로도

분석할 수 있다. 하위 영역으로 구성된 조각 선형 시스템은 많은 계산 비용이 드는

기하학적 교차 연산을 추가로 요구하기 때문에 시간 이산화에 의존하는 기존 도달

가능성알고리듬으로더욱계산하기어려우며,이것은하위영역에대한전환횟수

에 따라 런타임을 기하급수적으로 증가시켜 계산을 불가능하게 한다. 제안된 궤적

형태를적용해계산하는것또한궤적형태와스위칭경계사이의교차점이동일한

형태를 유지할 수 없기 때문에 간단하지 않으며, 이전과 같이 원래 형태를 유지하

기 위해 설정된 형태의 추가 분할이 필요로하게 된다. 본 논문에서는 교차 후 모든

상태가 경계면에서 시작된다는 것을 이용하여, 경계면 자체의 시간 진화를 계산함

으로써,런타임을증가시키지않고제안된궤적형태로빠르게관련계산이수행될

수있음을보여주었다.

제안된방법은예시적인전력컨버터회로를검증하여입증되었으며,기존도달

가능성 분석 알고리듬보다 107배 이상 빠른 속도를 구현하였다. 이는 동등한 몬테

카를로 시뮬레이션과 비교하여 정확도를 유지하며, 상태 차원에 대한 계산 복잡도

또한 시스템 차원수의 제곱만큼 개선하였다. 마지막으로 전력 변환 회로의 다양한

회로 매개 변수를 위한 안전 동작 영역을 도출되고 일반적인 90나노미터 프로세스

기준과 비교하여 검증함으로써, 혼성신호 회로의 안전 동작작 사양을 검증하는 데

본방법을활용할수있음을보였다.

주요어: Reachability analysis, formal verification, safety verification, analog mixed-

signal circuits, DC-DC converters, Laplace s-domain analysis, XMODEL

학번: 2018-36370
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