creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Safety Verification of
Analog Mixed-Signal Circuits
Using Reachability Analysis

L7 4SS o]t ofd R 4=
/\]_/EENQ ;dsg O} % 74% 7]1@

Kim Seyoung

AUGUST 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Safety Verification of
Analog Mixed-Signal Circuits
Using Reachability Analysis

L7 4SS o]t ofd R 4=
/\]_/EENQ ;dsg O} % 74% 7]1@

Kim Seyoung

AUGUST 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Safety Verification of
Analog Mixed-Signal Circuits

Using Reachability Analysis

3

A% w5 7]

]

o

20234 8

Tod

]

o

20234 8

A
ZF

A

o
o)

oF T

oF

o OF oF

||||||

Abstract

This dissertation proposes a methodology to verify the safe operation of analog
mixed-signal (AMS) circuits under formal specifications. With integrating many AMS
integrated circuits (IC) in a car, assuring the safety of the system is getting a critical
issue for developing such safety-critical systems. While the operating ranges of ana-
log circuits and their semiconductor devices such as MOSFETs and diodes should be
limited under safe-operating area (SOA) specified in the process design kit (PDK) or
datasheets, the existing verification procedures relying on SPICE simulations in indus-
try lack of capability to cover all possible dynamic behavior that causes the change of
the applied terminal voltages or branch current of the devices. The formal verification
algorithm, especially reachability analysis (RA), can prove that the system is safe by
computing all reachable states from the specified initial conditions and finding if the
reachable set of states intersects with the unsafe set of states causing failures of devices
or circuits. However, computing the reachable set is burdensome for practical circuits
since it takes too long to compute reachable sets in a high dimensional system dynam-
ically operating in a high frequency, due to the continuous nature of the states that
require quantization to many discrete steps of continuous value. This dissertation ad-
dresses the challenges while applying reachable analysis to AMS circuits and proposes
an efficient way to compute reachable sets.

The proposed RA algorithm can compute the reachable set of analog mixed-signal
circuits in a fast and accurate way by proposing a novel trajectory form of zonotope,
combining two main ideas using scalable geometric set representation, such as zono-
tope and the XMODEL algorithm that computes analog signals in a trajectory form
that represents the signal in a closed functional form with few algebraic coefficients.
Any analog circuits, even those containing nonlinear components can be analyzed

using the efficient piecewise-linear (PWL) approximation technique that only parti-

tions the state space of the circuit depending on the operating modes of the included
devices. The resulting PWL system in the partitioned state space with several sub-
regions is more difficult to be computed with conventional RA algorithms relying on
time discretization since it calls for many additional computationally expensive geo-
metric intersection operations, resulting in exponentially increasing runtimes with the
number of transitions over sub-regions. Applying the proposed trajectory form is not
straightforward because the intersection between the trajectory form and the switching
boundary can not maintain the same form, requiring additional segmentation of the
set shapes to keep the original form as before. Recognizing that every state after the
intersection starts from the boundary plane, by computing the time evolution of the
boundary itself, it has been shown that the associated computation can be done with
the proposed trajectory form without increasing runtime.

The proposed method was demonstrated by verifying the exemplary DC-DC switch-
ing converters, yielding over 107x speed-up than the existing reachability analysis al-
gorithm in SpaceEx. The computational complexity for state dimensions was reduced
by two orders than SpaceEx without losing accuracy, compared to the bound obtained
equivalent Monte-Carlo simulations. Finally, SOA for DC-DC converters varying cir-
cuit parameters was derived and compared to typical 90-nm process criteria, showing

the proposed method usable for verifying SOA specification of AMS circuits.

keywords: Reachability analysis, formal verification, safety verification, analog
mixed-signal circuits, DC-DC converters, Laplace s-domain analysis, XMODEL

student number: 2018-36370

ii

Contents

Abstract
Contents
List of Tables

List of Figures

1 INTRODUCTION

1.1 Background and Challenges
1.1.1 Safety Verification of AMS Circuits Using Reachability Analysis
1.1.2 HybridSystem
1.1.3 Reachability Analysis
1.1.4 Main Challenges

1.2 Main Contribution o

1.3 Thesis Organization

2 Formal Safety Verification of AMS circuits

2.1 Overview of Model Checking

2.2 Problem Definition oL
2.2.1 Formal Definition of Safety Verification
2.2.2 Safe operation of AMS circuits

2.3 Conventional Hybrid System Reachability Analysis

iii

iii

vi

vii

o AN B~ b~ W

10

23.1 SpaceEx. 15

3 TRAJECTORY-FORM REACHABILITY ANALYSIS 19
3.1 Reachability Analysis on Linear Circuits 19
3.1.1 General Trajectory Form of Reachable Set. 19

3.1.2 Zonotope Trajectory Form of Reachable Set 21

3.2

3.1.3 Computing Trajectory Form using Laplace s-domain Transfer

Function 22
3.1.4 Example: Reachable set of RC circuit 23
3.1.5 Example: Reachable set of LC circuit 25
3.1.6 Comparison with Existing Algorithms 25
Hybrid System Reachability Analysis 28
3.2.1 Hybrid System Representation of AMS Circuits 28

3.2.2 Hybrid System Reachability Analysis Using Trajectory Form 29
3.2.3 Example: Switched RC Circuit 30

4 HYBRID SYSTEM REACHABILITY ANALYSIS OF NONLINEAR CIR-

CUIT 33
4.1 Piecewise-Linear Modeling of AMS Circuits 33
4.2 Piecewise-Linear Approximation of Nonlinear Circuits 34
4.3 Computing Guard Intersections at PWL Switching Boundary 36
4.3.1 Hybrid System Representation of PWL circuits 36
4.3.2 Computing Guard Intersection Using Trajectory Form 36
4.3.3 Computing Reachable Sets in New Sub-Regions 40
4.4 Time Complexity Analysis 45
4.4.1 Trajectory Form Computation 45
4.4.2 Guard Intersection Compuatation 46
4.4.3 Reachable Set Computation from Guard Intersection 46
444 Overall Complexity 47

v

4.5 Computing Safety Bounds from Reachable Sets in Trajectory Form . .

4.6 Benchmark: Numerical Example
4.6.1 Error Measures
4.6.2 Comparison of accuracy and runtime . .

47 Conclusion

5 SOA VERIFICATION OF DC-DC BUCK CONVERTERS

5.1 SOA Verification of DC-DC Buck Converters . .
5.2 Open-Loop Verification with PWM Control . . .

5.2.1 Experimental Scalability
5.3 Closed-Loop Verification with PWM Control . .

5.3.1 DC-DC Buck Converter with Digital Pulse-Width Modulation

(DPWM) Control
5.4 Verifying Safe Operating Area (SOA)

6 CONCLUSION

7 APPENDIX

7.1 Code Implementation

7.1.1 Example: Trajectory Form Reachable Set

Abstract (In Korean)

47
48
49
50
53

55
57
57
62
64

65
69

72

76
76
76

82

5.1

List of Tables

Default Circuit Parameters

vi

1.1

1.2
1.3

1.4
1.5

2.1

2.2
23
24
25
2.6

3.1
3.2

List of Figures

Analog verification challenge vs. digital. (a) Logical AND gate and (b)
analog OP amp. Analog formal verification requires additional quan-
tization, resulting in the dimensional complexity problem.
Simple hybrid automata example with two discrete states.
Difference between (a) test-bench simulations and (b) reachability anal-

ysis. Simulation may not capture hidden bugs while reachability anal-

ysis exhaustively finds possible set of states from the initial set of states.

Over-approximation depending on geometrical set representations. . .

Over-approximation depending on time steps.

Concepts of model checking in discrete systems represented as a finite
state machine (FSM).
Concepts of safety verification.
Model checking of safe operation of circuits.
SOA verification of a circuit with two state variables.
Conventional reachability analysis tool SpaceEx.
Reachable set obtained in SpaceEx compared to simulation traces in

XMODEL.

Simple exemplary circuits (a) RC circuit (b) LC circuit.

Reachable set of the exemplary circuits (a).

vii

12
13
15
16
17

3.3 Reachable set of the LC harmonic oscillator circuit. (a) Iy-t (b) V-t

3.4 Reachable set in SpaceEx (a) I-t b)) Vot (c) Ve-Ip..
3.5 Reachable set in SpaceEx (a) I1-t (b) Vo-t (¢) Vo-Ip.
3.6 Switched RC Circuit with cyclic pulse inputs and the corresponding

linear Circuits. e

4.1 PWL partitioning of the circuit withadiode.
4.2 The problem of computing the guard intersection R(¢) N G in PWL
system representation.o e e
4.3 The overall algorithm to compute the guard intersection at the disjoint
regions Spand Spy.
4.4 Search process for the best [;’s in the procedure for approximating
R(t) N G with low over-approximation error getOrthogonalBasis.
4.5 The procedure getintersect2D for computing the range of segment
[m, M]ina (w,lg)-plane.
4.6 Case when external discrete state m(t) changes its state at t = 7" while
the reachable set R(t) is crossing int = [t1,¢2].
4.7 Hybrid automata of the LC oscillating system.
4.8 Error measure err; using MC integration method.
4.9 Reachable sets computed for a 2-D linear hybrid system example with
aguard hyperplane. L.
4.10 Increasing err; as the number of cycles (guard intersections).
4.11 Safety boundof state ().

4.12 Runtimes and error comparison vs. SpaceEx algorithms (errz).

5.1 Opverall flow of safety verification methodology for a given circuit. . .
5.2 Switching power supplies operating as switched-linear systems.

5.3 DC-DC buck converter operatingin DCM.

viii

38

41

54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1

The reachable set computed for the DC-DC buck converter circuit. . .
Performance for open-loop operation including DCM.
Buck converter circuit with multiple RC loadings.
Reachable set with multiple RC loadings.
Scalability as the number of state dimensions compared to SpaceEx. .
DC-DC buck converter with PWM feedback loop.
DC-DC buck converter with Digital PWM feedback loop.
Reachable sets varying Vrgr for PWM DC-DC buck converter.

Reachable sets varying Vypr for PWM DC-DC buck converter.

Performance comparison for PWM DC-DC buck converter.
Verifying safe operating area of the circuit under verification.

Verifying safe operating area of the circuit under verification.

Conservative error compared to simulations.

73

6.2 Backward reachability analysis extending the proposed trajectory-form. 74

ix

Chapter 1

INTRODUCTION

1.1 Background and Challenges

With emerging autonomous systems such as electrical vehicles, drones, and robots,
verifying such safety-critical systems becomes a significant issue today, since failures
or malfunction of these systems can lead to severe economical loss or environmental
damage and even risks to human lives. For example, Toyota’s recent brake problems
were known as software defects due to incomplete verification and Toyota’s market
capitalization of $25 billion was lost in the two months with the recalls in January 2010
[1]. The famous floating-point division (FDIV) bug in the Pentium IV processor in the
90s cost $475M charge for Intel to cover the replacement of every defective CPU [2].
As, however, the number of its parameters that interacts with each block in the system
increases with the growing design complexity, randomly generated test benches mostly
failed to detect the rare bug hidden in the deep state of complex designs, which is like
hitting the center of the target with a dart [3]; therefore, formal verification is necessary
and indispensable for state-of-the-art complex mixed-signal integrated circuits (IC)
and system-on-chips (SoC).

In particular, semiconductor devices such as MOSFETs and diodes, and other

metal interconnection layers are vulnerable to exposure to high current or voltage.

Therefore, analog circuit designers generally ensure reliable operation of their AMS
circuits according to the safe-operating area (SOA) specification for all devices and
circuits [4], which is specified in process design kits (PDK) that describes the be-
haviors and requirements of the design components including active elements such
as MOSFETs and passive interconnecting elements such as metal layers or resistors
of the corresponding manufacturing process used. Circuit designers should verify that
the devices used in their circuits should operate within the allowed regions defined
in terms of voltages and currents. However, the conventional design methodology for
analog circuits relies on limited simulation-based methodologies that only simulate
parts of test cases based on heuristics, leading to incomplete verification and most of
them can cause malfunction of the entire system such as car accidents. In addition,
due to the scaling of the process, the design window for SOA is getting smaller than
before and the complex interaction between analog and digital blocks also becomes
more threats of unexpected behavior, increasing the likelihood of such critical design
erTors.

Formal verification can prove the correctness of the systems with given specifica-
tions considering every possible state of the system with mathematical algorithms [5],
while simulations never guarantee. Numerous formal verification solutions have been
developed for verifying complicated control algorithms for software and hardware af-
ter the success story of Pentium bug hunting [2] with the development of algorithmic
logical reasoning such as model checking [5] and theorem proving methodologies [6];
however, compared to the rich achievements for fore-mentioned areas, a way towards
formally verifying analog mixed-signal (AMS) circuits is still far from the sight.

The main difficulty comes from the fact that the analog circuits operate with con-
tinuous state values represented in the state space with continuous time. For example,
let’s assume that one needs to verify the function of two circuits given shown in Fig. 1.1
[7]. While the possible states of the logical AND gate with two inputs and single output

have only four cases, verifying an analog op-amp circuit requires exploring an infinite

Figure 1.1: Analog verification challenge vs. digital. (a) Logical AND gate and (b)
analog OP amp. Analog formal verification requires additional quantization, resulting

in the dimensional complexity problem.

number of cases for exhaustively exploring possible states due to the continuous na-
ture of the input and state variables. This requires quantization of a set of continuous
states, leading to additional dimensional complexity problems that require exponen-
tially increasing complexity with respect to the number of state dimensions at least.
In addition, as one uses more accurate shapes for reducing the over-approximation er-
ror, the computational time will be further increased. This work addresses a way to
verify the safety of AMS circuits by efficiently modeling AMS circuits and comput-
ing their states fast and accurately with tacking the time complexity problem from the

quantization of continuous value.

1.1.1 Safety Verification of AMS Circuits Using Reachability Analysis

We focus on verifying the safety of AMS circuits in this dissertation. In practice, safety
verification of analog circuits involves two steps: i) Formal abstraction: abstraction

of circuits to explore reachable states such as hybrid system and ii) Reachability anal-

&) i

ysis: computing the evolution of continuous states with time ¢ by computing the set
containing the states and their time evolution; therefore, it requires computationally

efficient set structure with less approximation errors.

1.1.2 Hybrid System

We model AMS circuits as hybrid systems in this study. A hybrid system can capture
every possible dynamic behavior of AMS circuits, which is a system combining the
behavior of both discrete variables ¢ € () and continuous variable x € X, where we

can apply formal analysis techniques. Its model is represented by hybrid automata
M=(X,Q,E,F,G) (1.1)

which can be considered as a graph structure, where each node corresponds to a con-
tinuous system associating its differential equations F', a set of discrete transitions,
the guard G that conditions for the variable that triggers the discrete transition in £
(or jump in the different literature) and assignment associated with the transition (or
reset). Each differential equation F’ can be linear or nonlinear; when every differential
equation F' is linear, then the automata M is defined by linear hybrid automata, which
we address how to efficiently transform the nonlinear circuits to this class of automata
that we mainly use through the dissertation. A simple example of hybrid automata is
illustrated in Fig. 1.2. The automata has two discrete states, also referred to as a loca-
tion. The transition between the locations in the automata is determined by the value
of continuous variable t. When the variable ¢ becomes greater than 7', it switches its

location and the associated differential equation simultaneously.

1.1.3 Reachability Analysis

The main topic of this dissertation is reachability analysis [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 6, 21, 22, 23, 24, 5], which is one of the most prominent formal

algorithms for checking the model that can prove the safety property of the system;

continuous state

& differential equqtions T
x'(t) = Ax(t) + u(t) x'(t) = Bx(t) + w(t)
t'=1 t'=1
t>T
discrete state simple hybrid automata

Figure 1.2: Simple hybrid automata example with two discrete states.

@

undetected
bug

....... X2

X Simulation Reachable sets
x 0 traces %1

Figure 1.3: Difference between (a) test-bench simulations and (b) reachability analysis.
Simulation may not capture hidden bugs while reachability analysis exhaustively finds

possible set of states from the initial set of states.

it is originally developed for verifying complex communication protocols in 70s and
expanding its application area even for continuous systems. While original automata
can only consider the case that its continuous variable and their derivative is limited
as constant such as £ = 1, so-called timed automata, the system we focus on in this
dissertation is the linear hybrid system mentioned above. The main difference is that
the derivative of the continuous variable has the linear equation of the variable. Same
to the general cases, hybrid reachability analysis verifies safety by finding all hybrid
states that can be reached from a specified range of initial states and checking if the
reachable states are within a target range.

Safety verification using reachability analysis is a formal procedure that finds every

infinite VorH

veritces i :

Convex polyhedra

: ;E }g's

Oriented Zonotobe
Rectangular Hull P
x; (ORH)

Figure 1.4: Over-approximation depending on geometrical set representations.

reachable state from the initial states Xy and then collecting the resulting states yields
the set of reachable states R, commonly referred as reachable set, and this procedure
is called reachability analysis. We can conclude the system is safe if the reachable set

‘R does not contain any unsafe states defined in unsafe set /.

1.1.4 Main Challenges

The main challenge in computing the reachable sets for an AMS circuit is three-fold.

Space discretization problem First, as shown in Fig. 1.4, computing a set of analog
states in the state space introduces a geometrical shape that encloses every possible
state and is represented by a set of vectors representing the vertices or faces. However,
exact representation for an arbitrary region of reachable sets R is impossible because

it requires an infinite number of vertices or faces; thus, one needs to conservatively

Figure 1.5: Over-approximation depending on time steps.

approximate the exact one with efficient geometrical shapes with fewer vertices and
should balance the trade-off between the accuracy and the computational efficiency of
the geometry. As shown in the Fig. 1.4, an oriented rectangular set (ORH) using fewer
vectors causes a large over-approximation error due to its coarse shape, while the com-
plex and fine shape using more vectors can reduce the resulting over-approximation
error but increase the runtime of the analysis. After decades of efforts for finding com-
putationally efficient geometrical set representations, several set representations using
linear algebra are gaining popularity for this purpose, such as oriented rectangular hull
[25], ellipsoid [18], convex polyhedra [16] and zonotopes [14]. These set represen-
tations are very efficient for computing the reachable set in linear systems even with
hundreds of state variables, but have limitations in that they can only be applied to

linear systems.

Time discretization problem Secondly, to compute the change of a set of states for
a given time period, conventional reachability algorithms first segment the analysis
time duration into several discrete steps of time and then compute the reachable sets
by iteratively multiplying the system matrix with the sets at each time steps, incur-
ring a large computational cost. Furthermore, mixed with the first problem concerning

space discretization, it needs to split the period with more fine time steps if it fails to

accurately represent the trajectory of the set with the selected set representation with
given error tolerance. However, there have been few approaches to address this issue

yet.

nonlinearity Lastly, typical analog circuits are nonlinear, while those methods de-
scribed above are applied only for linear systems; thus, they need to be linearized
into several disjoint sub-regions. However, the computational cost for the transition
between each region grows fast with the number of time steps to compute the time
evolution of the reachable sets.

The most simple and efficient approach is converting them into a piecewise linear
system that operates in different differential equations in each region segmented by
specified switching conditions [26, 27]. However, we found that conventional reach-
ability tools suffer from computing the transition at the switching boundary, which is
commonly referred to as a guard intersection and is a computationally expensive geo-
metrical intersection operation. guard set is equivalent to the set enclosing the switch-
ing condition, and their intersection should be computed in other sub-region of the
PWL system with its own set of differential equations. While sliding the reachable set
with time over the boundary, it intersects with the boundary and generates infinite sets
of intersections. With the conventional method with time discretization reachable set
computation, the analysis incurs a tremendous number of computations proportional
to Ny x Ny where Vy is the number of steps resulting from time discretization. Even
worse, every increasing number of states to be computed is multiplied by each other,
generating an exponential increase with respect to the number of discrete transitions

over the guard.

1.2 Main Contribution

This work proposes a methodology for verifying the safe operation of AMS circuits

using a fast trajectory-form reachability analysis algorithm. The key idea is to reduce

the number of evaluations at the discrete time steps to represent the trajectory of the
reachable sets R as a sequence of sets { R, ..., Ry, }, where the number of time steps
by discretizing the period of continuous time [0, T']. Instead, in this work, the reachable
set is represented by a closed and exact form of the function R(¢), where each vertex
follows a trajectory described by an exact, analytical function of time .

This approach has mainly two advantages. At first, it can compute the exact tra-
jectory from the initial set at once without discrete evaluation at discrete time steps of
t similar to the numerical integration method in the simulation algorithm. This adopts
the idea of [28] representing analog signals as s-domain signals using the coefficients
representing the poles, zeros, and gains of the signal. In this way, it outperformed typi-
cal numerical solvers when solving AMS circuit behaviors, demonstrating wide ranges
of AMS circuits and systems such as switching power supplies, decision feedback
equalizers (DFE), phase-locked loops (PLL) and etc. Therefore, it efficiently avoids
the concern of trade-offs scarifying the resulting accuracy to get better performance.
One can represent the exact trajectory R(t) starting from the initial set X as shown
in Fig. 1.5.

Second, this idea can further improve the scalability especially when computing
the reachable set of hybrid systems, which increases the number of computations pro-
portional to Ny x Ny. This limitation prohibits most of the existing reachability tools
fails to evaluating the practical nonlinear circuits even for simple and trivial circuits.
Using the proposed trajectory-form reachability analysis, one can accurately compute
the guard intersection R(t) N G without generating additional time steps to get an
accurate intersecting range or region. The subsequent reachable set from the guard
intersection also can be efficiently evaluated.

The dissertation demonstrates that the proposed method can verify the safe opera-
tion of practical switching power supply circuits: buck converters and various switch-
ing pulse control schemes. Firstly, we demonstrate the basic buck converter circuits

operating in continuous conduction mode (CCM) changing their behavior depending

on the duty cycle of the input pulse applied to its transistor switch to show the com-
putational scalability for simple hybrid systems. Secondly, we demonstrate a more
general buck converter exhibiting discontinuous conduction mode (DCM) operation
due to the non-linear characteristic of the diode, showing the improved performance
when computing the continuous guard intersection R(¢) N G occurs. The term contin-
uous means that the intersections occur in the continuous time period [¢1, t2] not at the
specific time instant.

In the experiment, resulting accuracy was estimated compared to the equivalent
Monte-Carlo simulations, and the performance is compared to one of the reachability
analysis tools, SpaceEx [17], which implements the convex polyhedra set-based reach-
ability analysis tool using the support function and the other advanced algorithms. It
serves as a golden reference for evaluating the performance of the new reachability

analysis algorithm owing to its flexibility.

1.3 Thesis Organization

Chapter 2 explains the concepts of formal verification of circuits. Chapter 3 describes
the proposed trajectory-form reachability analysis in detail with mathematical defini-
tion and derivation. Chapter 4 presents the proposed reachability analysis algorithm for
non-linear circuits. Chapter 5 demonstrates the proposed methodology with practical
circuit examples for verifying their safe operations. Chapter 6 draws the conclusion of

this thesis.

10

Chapter 2

Formal Safety Verification of AMS circuits

This chapter explains the concepts of formal safety verification of AMS circuits. With
the growing complexity of hardware design having millions of lines of code, human
verification reached its limitation, creating tons of trivial bugs and imposing critical
system risks. Consequently, formal verification gains attention for decades from the-
oretical to practical views. Its category can be classified by its intent to verify: equiv-
alence checking, model checking, and theorem proving. At the beginning of the 70s,
there were approaches using logical inductive reasoning like human proof with pencil-
and-paper, which we call theorem proving. This is ideal proof, but hard for a non-
expert to use. Instead, with the recent great improvement of computing capability with
massively parallel computing, more practical methods gain more attention, so-called
model checking. In this chapter, we explain how we can guarantee the safe operation

of AMS circuits using formal model-checking techniques, and reachability analysis.

2.1 Overview of Model Checking

Model Checking is a general concept of a computer-assisted method for the analysis
of dynamical systems that can be modeled by state-transition systems. Model check-

ing is now widely used for formal verification of software and hardware in industry,

11

How model behave

Set of
Properties(¢p)
Model
checking
algorithm Formal assertion language
e.g. SVA
IIMI= (pll
@ = (RESET - Sz and n < 3)

Finite State Machine

. ”
w/ initial state (S,) Results: “True

Figure 2.1: Concepts of model checking in discrete systems represented as a finite state

machine (FSM).

including many mathematical algorithms with model structure abstracting given sys-
tems. Model checking consists of three main concepts: modeling, specification, and
algorithms. As we stated in the definition, its model has the form of a finite-state ma-
chine. It can be applied to any dynamical system and can be represented in the form of
a state transition system. Second, verifying a system requires specifying the design in-
tent formally. It is typically given by the description of the system specification, which
should be transformed into a formal representation. For example, temporal logics such
as LTL and CTL, or Synopsys Verification Assertion (SVA) language are used in in-
dustry for formal verification. Finally, there is a decision procedure for determining
(i.e. verifying) that the given model behavior always satisfies the given specification.
This concept of model checking can be summarized as shown in Fig. 2.1. The proce-
dure of model checking is to check if model M satisfies the specification , where the
system starts from the state .S; and reaches the state S5 in less than three steps if not,
it produces the counterexample. One can see that the result will become true because
the FSM reaches S5 in two steps.

The main challenge of model checking is the state-explosion problem due to its

exhaustive nature, increasing its runtime proportionally. The resulting number of states

12

Stay out of here Obstacle Unsafe operating conditions
(“reachable set”) (Don’t hit this) (Outside of red square)

</
(M
(“reachable set”)
hit (unsafe)
ar (system)

Figure 2.2: Concepts of safety verification.

Safety envelope

d
(

-
e
=

0O

to explore exponentially increase with a combinatorial number of bit size of states (e.g.
memory of computer program or number of flip-flops of digital system). Therefore,
computing directly the model of a given system in the real world is impossible; instead,

one needs to model the system in an efficient way.

2.2 Problem Definition

In this section, we formally define the problem of verifying the safe operation of cir-

cuits and highlight the goal of this thesis.

2.2.1 Formal Definition of Safety Verification

Safety verification is widely used in verifying safety-critical hybrid dynamic systems
such as robots, autonomous control of cars and drones, etc. The goal of dynamic con-
trol of these hybrid systems is not to hit critical obstacles such as humans or valuable
objects. This is a reachability problem that checks if all the reachable states from any
possible initial conditions after the finite duration of time reach safe or unsafe regions
as shown in Fig. 2.2.

Formally, this model checking problem of any safety property can be reduced to
the reachability problem of deciding reachability to a set of bad state U. If M = o,
then ¢ is called an invariant of model M. That is, collecting every reachable state, i.e.

reachable set R is equivalent to getting invariant ¢ of the model M ; therefore, safety

.":r'\'\.—-'! - l‘.I-.\:l T 1_-] i ...‘.l]

13

T

verification is a reachability problem that checks if there is any state s satisfying:
(sERCp)A(s€U). 2.1)

This is equivalent to finding the intersection of R N U/ and if there is any state in U.
We can apply this concept of safety verification to verify the safe operation of circuits

in the same manner in the state space of circuits.

2.2.2 Safe operation of AMS circuits

Verifying the safe operation of circuits not to be damaged by high operating voltages
or current applied to devices also can be represented in the safety verification problem
of (2.1). Fig. 2.3 illustrates the concepts in terms of verifying the safety of circuits. In
this case, the reachable set R(¢) can be computed by a set of the moving states x(t)
in the state space of circuit state variables consisting of capacitor voltages V() and
inductor currents I7,(t). Then, if the reachable set R(t) containing the circuit states
x(t) intersects the unsafe region U/ that is defined in terms of critical voltage or current
specified safe operating area (SOA) in PDKs.

Fig. 2.4 illustrates the problem of verifying if the operating region of a circuit is
kept within the allowed safe-operating area in the state space. Given a circuit as Fig.
2.4, the behavior of the circuit is described with two continuous state variables /7, and
Ve as Fig. 2.4 (b). However, the circuit can start with any initial values of the state
variables I, and Vo, leaving the possibility of un-tested errors that may cause damage
to circuits. Reachability analysis can compute the reachable set of circuits from a set
of initial conditions given by specification, leading to correct verification results as

illustrated in Fig. 2.4 (d).

2.3 Conventional Hybrid System Reachability Analysis

Conventional hybrid system reachability analysis methods are mostly based on hybrid

system abstraction and set-based reachability analysis. The algorithm can compute the

14

Describe how model behaves

Model Set of
oae Properties(¢p)
Model
checking Safe :pe;g‘tjt;nlof f:vices
AMS circuits e.g. V< <
L
Y. (ALGORITHM) - Safe Operating Area

Vin @ operating

range L. unsafe
Results: “True” safe «—| (damage)

i—

Figure 2.3: Model checking of safe operation of circuits.

time evolution of a set of states using efficient set representation and hybrid dynamics
formally specified by the hybrid automata model.

As we mentioned above, the efficiency of this technique highly depends on the se-
lected set representation. In this section, we review the formal definition of the widely
used set representation and their fundamental limitations. Lastly, we also explain the
state-of-the-art reachability analysis tool SpaceEx, to which we will compare the pro-

posed method.

2.3.1 SpaceEx

The SpaceEx is a tool platform implementing algorithms related to reachability and
safety verification suitable for continuous hybrid dynamic systems. It models the target
system as hybrid automata with hierarchical automata and templates. The model editor
for model hybrid automata is implemented with visual user interfaces as shown in Fig.
2.5.

It basically based on computing reachable sets depending on time steps multi-
plied by 4. Then, the resulting reachable sets in each time interval are computed as in
Qo, 21, There are several options to express the reachable set depending on the op-
tions depending on target accuracy and the resulting reachable sets are displayed over

the output user interfaces as blue polygons as in Fig. 2.6, which shows the comparison

":l"\-_i _'-;.': ok 11

15

State trajectory

:, - .rea.chable states
V. :
I(t) /\/ : operating
L i region
Vin 0—G0—4p—""—0—> H
l _L Vdt) | e&— ... 5
SW ee=eee-- S C % circuit state = (1,(t), VA{t))
|_ I
swon circuit state space
(a) circuit (b) Operating region of a circuit in state space
Reachable set
V.

(c) Undiscovered bugs with set of initial conditions (d) Operating region obtained from reach-

able sets

Figure 2.4: SOA verification of a circuit with two state variables.

16

Model AMS circuit as hybrid automata

SpaceEx - Model Editor (0.8.385) - dam_model_27052011.xml

File Edit Help

Blalem|@ (=8 [Fsa]v]n

Component(s):

St st 2 | i ot 1 % | et tsmpite | st e x | ezl tempite x | workt o %

ju§ay=g=g=gugayayayal

Networks of Hybrid Automata | =
—templates

—hierarchy

(a) circuit

reachable set
2

initial set

time steps
—
0 b 20 35 t

(b) SOA in state space

Figure 2.5: Conventional reachability analysis tool SpaceEx.

17

simulation traces

AR NN

(a) Simulation results varying load resistances using (b) Reachable set using SpaceEx until t=10us.

XMODEL.

Figure 2.6: Reachable set obtained in SpaceEx compared to simulation traces in

XMODEL.

of the output simulation traces for currents and voltages of the exemplary circuits.
However, it fails to run until the end of the analysis due to exponentially increasing
runtimes for our initial model describing the piecewise linear behavior of the typical
circuits with MOSFETs or didoes. The rest of the dissertation tackles the problem
associated with the conventional reachability analysis algorithm based on time dis-
cretization similar to the numerical integration algorithm of analog simulators such as

SPICE simulators.

18

Chapter 3

TRAJECTORY-FORM REACHABILITY ANALYSIS

This chapter presents the main idea of the proposed trajectory-form reachability anal-
ysis methodology for analog/mixed-signal (AMS) circuits. We consider here specifi-
cally a linear hybrid system, which is a hybrid system, and its behavior in each contin-
uous system is described by a linear system. First, we transform the linear circuit from
topology to state space representation using the modified nodal analysis technique
(MNA). Then, the obtained system matrices are transformed into transfer functions
using the XMODEL algorithm. Combined with the s-domain input expression, we can

obtain the trajectory form of the reachable set from the circuits.

3.1 Reachability Analysis on Linear Circuits

3.1.1 General Trajectory Form of Reachable Set

If a system representing the circuit is linear, computing reachable sets is straightfor-
ward. The dynamics of the continuous variable in the subset S of the state space,

xz(t) € S C R™ and the output y(t) € R™ with the input u(t) € R™ in a n-

19

dimensional system are defined by

z(t) = Ax(t) 4+ Bu(t), 3.1

y(t) = Cux(t) + Du(t) (3.2)

where the system matrices A € R"*", B € R™"*"i (C € R™*"™ and D € R"*™ n,
and n, are the numbers of inputs and outputs, respectively. Then, the state trajectory
x(t) € R™ from the initial condition, 2y € X governed by the linear system (3.1) is
given by

t
z(t) = ey + / A=) Bu(r)dr (3.3)
0

Therefore, the reachable set R(¢) from the initial conditions Xy C R" in the linear
system (3.1) is defined by set of state trajectories (3.3) as
t
R(t) = {x(t) = e*tzg + / A=) Bu(r)dr | 2o € Xo}. (3.4)
0
It has been shown in [28] that when each of the input variable u(t) has the form:
u(t) =Y eit™ie %" (3.5)
J
where the coefficients a;’s and c;’s are complex numbers and m;’s are non-negative
integers, then the time-domain solutions for the state variables x(¢) and output vari-
ables y(t) governed by (3.1) can be represented by the identical form again. That is, if

the set of initial condition Ry is specified by vector set C' = {v1,vo, ..., v, € R™} by
Ro = {)\1’01 +Xve+ ... v, eCoNERI=1,2, } (3.6)

Recognizing that each vector changes with time ¢ and the scaling factor A;’s remains
constant, we only need to compute the time evolution of vector v;’s; thus, applying the
trajectory form of (3.5), we get the identical form with (3.6) having its vector element
as trajectory form of (3.5) as:

R(t) = {z(t) = Z Nivi(t) | vi(t) = Zcijtm“e_aijt, X eR}Y. (37)

J

20

This general form of the reachable set can express any states x(t) starting from the vec-
tor set [7p including the initial conditions X at arbitrary time ¢ by a linear combination
of vector v;’s expressed as a set of real coefficients { (Re(c), Im(c), Re(a), Im(a),m);, ...}.
In addition, a set of states sampled at a specific time instant ¢, R(¢') have an identi-
cal form with the initial condition set Rg, from which we can iteratively compute the
discrete change of the input u(¢) or the system matrices of the circuit. This concept
can be extended to any kind of set representations introduced in the previous chapter.
However, we focus on representing a reachable set with zonotope owing to its scala-

bility.

3.1.2 Zonotope Trajectory Form of Reachable Set

Let assume that the range of initial states R(¢ = 0) is given as a zonotope Z, which is

described by a point, referred as center c € R™ and a set of generators g;’s € R"™ [14]:

Z=(c{g1,9r) ={c+ > aigi| o €[0,1]} (3.8)
=1

which is a special case of (3.7) having 1 + r vectors and its scaling factors have range
of values \g = 1 for center and \; = a; = [0, 1] for &k = 1, ..., r for the others. This
is the special case of (3.6) when the one of vectors in set C' is point ¢ and the other
vectors g;’s are vectors originating from the point, referred to as an affine combination
[29]. Therefore, any point within a zonotope can be expressed as a linear combination
of generator g;’s from the center c. Its computational complexity for a linear map
depends on the number of generators r, yielding

This is also a linear combination of vectors with constant scaling factor a; thus we

can define its trajectory form of reachable set R z(¢) having input u(t) of (3.5)[30] as:

Rz(t) = (c(t),(q1(t), ..., (1)) (3.9)
= {c(t) + Zaigi(t) | oy €10,1],9; = Zcijtm“e_“”t,} (3.10)
i J

21

is the zonotopic trajectory form of the reachable set R z(t). For convenience, after that,
simply we denote the trajectory form reachable set R(¢) for the zonotopic trajectory

form of reachable set Rz (t).

3.1.3 Computing Trajectory Form using Laplace s-domain Transfer Func-

tion

In this subsection, we explain a procedure named getTrajectoryZonotope() that com-
putes the trajectory form of R(¢) from the zonotope range of the initial states R(t = 0)
defined by zonotope Z in (3.8) and the inputs expressed in the form of (3.5). For
instance, the time-domain expressions of u(t) in (3.5) can be transformed into the
Laplace s-domain expression U (s):

- b
u(t) =3 et t S U(s) =3 m (3.11)
J j J

and the Laplace-domain transform of resulting state trajectory x (), X (s) can be com-

puted using the matrices in (3.1) as:
X(s) = (sI — A7 BU(s) + (sI — A)~1z(0), (3.12)

which can be transformed back to a time-domain expression in (3.5). The zonotope
reachable set R(t) is computed by applying this procedure to the vectors of the initial
zonotope Z. That is, the Laplace transform of vectors in the zonotope Z is computed

by the same matrices derived from the given circuit as:

c(s) = (sI—A)'BU(s) + (sI — A)~te(0) (3.13)

gi(s) = (sI —A)"'BU(s)+ (sI — A)71g;(0), (3.14)
and its time domain solution is given by its inverse Laplace transform
c(t) =) eot™ie ! (3.15)
J

gilt) = Y cit™ie i, (3.16)
j

22

That is, keeping a set of coefficients {(aoo, coo, m00), ---, (@i, Cij, Mij), ...} in the ex-
pression (3.16), one can sample arbitrary states in the reachable set R(t) for range of
time ¢ € [0,t]. Lets define it as the canonical form the zonotopic reachable set R(t),
which is

R(t) ={(a,c,m);; | i=(0,...,7),5 =(0,..., Np)} (3.17)

where a’s, and ¢’s are complex-numbered vectors € R™ and m’s are integers € C".
The coefficient of © = 0 denotes that of center vector c and the others are for those
of generators g;’s. It has been shown that the coefficients can be computed by the
partial fraction decomposition of s-domain expression and the number of coefficients
N, increase with the number of resulting first order poles in [28]. Therefore, we can
express a continuous set of states until time ¢ using a zonotope reachable set with r
generators by (r + 1) x 5N, number of real vectors € R".

To avoid redundant matrix computations of the transfer function (sI — A)~! and

sI — A)~1B , we define the expression of transfer function
p
H(s)= (s — A% (3.18)

for the same linear differential equation in (3.1), we keeps the previously computed
transfer function H (s) and reuse in the the remaining computation. For example, given
a zonotope having comprising two generators Zy = (c(0), (91(0), g2(0))), the reach-
able set from the zonotope Zy, is obtained as c¢(s) = H(s)(BU(s) + Ec(0)) and
g1(s) = H(s)(Eg1(0)),92(s) = H(s)(Eg2(0)) in s-domain. The time-domain state
of the reachable set can be obtained from the inverse Laplace transform, i.e. the form

in (3.16).

3.1.4 Example: Reachable set of RC circuit

Now, assume that a linear circuit having a resistor R and capacitor C' in Fig 3.1 with
a range of initial condition V,.(0) = [1, 2]. Then, applying nodal analysis to the given

circuit, the behavior of the state variable V. can be represented as a first-order linear

23

+
R = C== Vdt) 1 TI o = v (Y
L

1 1

Ry, () =[e ' 2¢]

~v

Figure 3.2: Reachable set of the exemplary circuits (a).

system of a state space representation as:
Vo=——-V. (3.19)

Then, its reachable set R(¢) of the form (3.17) from the initial condition V.(0) can be

obtained as:

Ry () = {c = (%, 1.5,1), (go = (%,0.5, 1))} (3.20)

This represents the set of trajectories having infinite states from the initial states X
until ¢ in the circuit using only two sets of algebraic coefficients. Fig. 3.2 illustrates the

resulting reachable set.

24

3.1.5 Example: Reachable set of LC circuit

In the same manner, the example of LC circuits exhibits harmonic oscillating behavior
repeating charging and discharging the LC energy storage elements. The state space

representation of the circuit is given by :

. 1
I;, = _ZVC (3.21)

. 1
A 3.22
Ve ol (3.22)

and the corresponding system matrix A € R? can be derived from (3.22) as

0 -1/L
A= . (3.23)
1/c 0

In the same manner, its reachable set R ¢ (t) is defined by a two-dimensional zonotope

having a single 2-D generator vector as:

Roctt) = fo= [(02D (Um0 05,
{(7o+155.1)} {(75:055,1)}

Fig. 3.3 shows that the proposed reachable set of the circuit can accurately repre-
sent every state x(t) = (I(t), V.(t)) from xy € X, with respect to a single period
of time ¢ € [0,27v/LC] by a linear sum of the trajectory of center point c(t) and
scaled generator vector g;(t). Each circuit element has the value of L = 1pH and

C = 1uF, respectively, resulting in the harmonic oscillation with the frequency of

wo =27 fo =1/VLC = 1 Mad,

3.1.6 Comparison with Existing Algorithms

Conventional reachability analysis algorithm iteratively computes the reachable set at
each time step ¢, = {kAt | k = 0,..., Ny} where the size of the unit time step
At = T /Ny, resulting in the trade-off between the accuracy and the runtime of the
computation of reachable sets. In this subsection, we compare the results of the equiv-

alent LC harmonic oscillator system performed in SpaceEx.

25

I

Vc

0 1 2 3 4

time (us)

(a)

5

time (us)

(b)

x(1) = (1), Ve () = c(t) + a8, (1)

o (£}
20 L0 —
: / e(?) \
(S8 . 7 \ ‘\,‘IXO
> . [| r ’I‘
; I\\ \ / ’f
I
(©

Figure 3.3: Reachable set of the LC harmonic oscillator circuit. (a) Iz-t (b) V-t (c)
Vo-1r.

Fig. 3.4 shows the reachable set computed using the size of the unit time step
At = 0.5ps. It took 0.004 s to compute a single period of oscillation but exhibits a
large over-approximation error compared to the ideal time-domain response having
a form of sine wave as shown in Fig. 3.3. With finer time steps of At = 0.1 ps, it
shows a more accurate reachable set compared to the ideal one, but the computation
time increased 5X than that of coarse time steps. Furthermore, if the circuit operates

with a higher frequency, this discrepancy would become larger, which is the problem

5 A 2

26

.{ﬁ]_
|

1L

1 1 1 1 1 1 b L L 1 L
5 8 0 1)

time (u§) time (u;;)

(a) (b)

()

Figure 3.4: Reachable set in SpaceEx (a) I-t (b) V-t (¢) Vo-1f.

that recent reachability analysis suffers from. The proposed trajectory-form reachable
set can obtain the exact reachable set within 26 pus, outperforming the conventional

algorithm by 69x.

27

e S s m

! less error
) but slower
1 1 -
—= ¢ >” 0 X
1 1
-3 1 1 1 1 1 1 -3 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 [
time (us) time (us)
(@) (b)
0 0
> .~ 0 4
-3 2 1 0 1 3
I

()

Figure 3.5: Reachable set in SpaceEx (a) I1-t (b) V-t (¢) Vo-1f.
3.2 Hybrid System Reachability Analysis

3.2.1 Hybrid System Representation of AMS Circuits

Analog and mixed-signal circuits are in general non-linear so they require hybrid sys-

tem representation, i.e. hybrid automata. This is a finite state machine that has con-

I ey 1
-":lx_! 1 |: ;-

28

tinuous and discrete variables, of which each discrete state ¢ € () has continuous
states x € X C R" that operate as a different linear system represented by a set of
differential-algebraic equations F'. Mixed signal circuits change their discrete states
that represent the topology of the circuit depending on the state of the switches con-
necting the remaining circuit. Then, in the selected linear system, the time evolution of
the continuous variable x(t) is iteratively computed from the set of continuous states
xo = z(t’) in the previous discrete state. The resulting hybrid automata are defined by
M ={(Q, X, F,E,G) where F is a set of discrete transitions that describe the switch-
ing condition of the circuit, and G is a set of guard condition that determines when to

transit to next discrete state.

3.2.2 Hybrid System Reachability Analysis Using Trajectory Form

From the hybrid automata M representing a given circuit and the initial conditions
Xo € X and ¢y € Q, the proposed algorithm computes the reachable set R(t) of the
continuous variable z(¢) C X and discrete variable m(t) C @. The resulting hybrid
reachable set is a series of tuples consisting of values of discrete state m(t¢) and each
continuous reachable set R (t) and the corresponding each time segment [t;_1, t¢] the

trajectory form of the reachable set R(¢) of (3.16) as :

R(t) = {(ma, [to, t1], R1 (1)), (ma, [t1, ta], Ra(t)), ..., (me, [tc—1,tc], Re(t),)}
(3.25)
where (is the index of each time period of operating the linear system of (-th discrete
state of the sequence m¢ € Q).

Algorithm 1 summarizes the described iterative procedure to compute the reach-
able set with given conditions. This assumes the number of cycles for analysis is
bounded to Ny to avoid undecidable conditions such as infinite loops. In each loop,
the procedure GetTrajectoryZonotope() computes the reachable set of continuous state
x(t) in the discrete state m(t) = q¢, i.e. Rq(t),t € [t¢, tc41] using the trajectory form

in (3.16). This begins with the last set of states sampled at the previous discrete state

29

Algorithm 1: Computing hybrid reachable set R(t).
Input : M7 (q07 ZO)

Output: R(?)
1 R() +0;
2 for ¢ € (1,..., Neyere) do

3 R;(t) < GetTrajectoryZonotope((, Zp) > ¢(~th trj. form
4 (¢’ teq1) < GetNextState(¢,R¢(t)) s

5| R(t) < R() U {(qo, [tc, te41], Re(t))} 5

6 | Q@<+

7 ZO — Rc(t<+1 - t(:) 5

8 end

9 return R(t)

at t¢, Zo. It returns the resulting reachable set R () for the time range ¢t = [t¢, tc41].
The hybrid reachability analysis algorithm iteratively computes the reachable set us-
ing this procedure until the bounded number of cycles Ny... Then, the procedure
GetNextState determines the next value of the continuous and discrete states, ¢’ and
R¢(teq1 — te) from the next beginning time ¢+ by computing the guard intersection
R¢(t)NG. However, in this section, we limit the scope of analysis by assuming that the
guard set is only set for the time variable #, i.e. timed automata with a hybrid system,
not by the internal continuous state variable x(¢), which will be discussed at the next

chapter.

3.2.3 Example: Switched RC Circuit

As an illustrative example, we analyze the behavior of an AMS circuit, switched RC
circuit controlled by input pulses for switches. It is simple but represents the basic
building block of a wide range of circuit applications such as charge pumps, DRAM
cells, and other switching power supplies. This can be equivalently modeled by a

switched linear system as previously studied in [28].

30

v 92 91 Q2
ON ,OFF ON ,OFF

Vsw lM
+
Vsw C ==
;l-[Vin %D - Vd(t)
sw.ON

+

R
Y R C= V(t=0
" ” vy =0l
. +
L L = sw.OFF R —

Figure 3.6: Switched RC Circuit with cyclic pulse inputs and the corresponding linear

Ron
C

circuits.

Fig. 3.6 shows the circuit under analysis, which changes its discrete state ¢ €)
depending on the input level Vg, of the switch transistor, which is often controlled
by pulse-width modulation or pulse-frequency modulation control. We assume it has
two discrete states g1, g2 € () and switched depending on the T,,,, T;, s, periodically,
where ¢; corresponds to the charging state where the external voltage Vi charges the
capacitor C and g3 is discharging state where the charges in the capacitor C' discharges
to the shunt resistor R. When the input V5, is larger than the threshold of the transistor
(g = q1), the control switch is turned on or is turned off (¢ = ¢2), elsewhere. Therefore,
the set of discrete transitions depending on the switch state ¢ is defined by £ = {q; —
ga(sw:off), go — g1(sw:on)}. Each linear system corresponding to two discrete states

q1 and ¢ is derived using basic circuit analysis as :

. 1 1 1

Vo = (—+——)V.+—-Vinf 3.26
f (RC+R0NC) + RonC N or q1 (3.26)
. 1

V. = —%VC for ¢o (3.27)

The trajectory form from (3.27) can be solved by using the Laplace technique in

31

(3.25). For switch on state q1, the resulting trajectory-form reachable set is :

V(0) 1 - Vin
sRonC

Ve(s) = (3.28)

1 1 1 1
ST Re T Rone 5T RC T RonC
The second term in (3.28) results in two sets of coefficients by the partial fraction
b/
+ RC + RonC
require three tuples of coefficients for representing the voltage V. when the circuit is in

!/

decomposition %’—i— . where b/ = —a’ = 1‘%/(13]7\//(120 + Ro o)- Thatis, we

the charging state ¢; with a range of initial condition V,.(0) = [V. 5, V;us]. Therefore,

the resulting reachable set is given by :

Rq1 (t> = {C = {<w1717 Vclv 1)7 (wp27 a/’ 1)7 (wplv b/, 1)}

(9= {(wpb Vc”7 1), (pr, a, 1), (wplv v,)}

(3.29)

where at the beginning of the analysis the initial voltage is given by V. = (V. +
Veun)/2 and V' = (Vo — Vi up)/2 for the center ¢, and the generator gq1, respec-
tively, and each system pole wy,1 = % + m and wy2 = 0. The reachable set in

discharging state g2 also can be solved in the same manner, yielding :

(3.30)
1 1,
Ve, D)}

where the initial values V and V. are computed at the last time in the previous discrete

state q1. The resulting reachable set is given by a set of (3.29) and (3.30).

R(t) = {(QL [t07t1]7Rq1 (t)),
(qg, [tl,tQ],Rq2<t)),
3.31)
(q1, [t2, 3], Rg, (),
(QQ, [t3’t4]’RQ2(t))7 }

32

Chapter 4

HYBRID SYSTEM REACHABILITY ANALYSIS OF
NONLINEAR CIRCUIT

We discussed the hybrid system with linear circuits in the previous chapter. In this
chapter, we present the methodology for the hybrid system including nonlinear circuit

behavior [31].

4.1 Piecewise-Linear Modeling of AMS Circuits

The most prevalent approach for analyzing nonlinear circuits is to model them as a
piecewise-linear (PWL) system that divides a state space having nonlinear dynamics
into several regions operating in linear systems. It has been announced that most analog
circuits are nonlinear owing to two nonlinear elements, diodes, and MOSFETs; their
non-linear characteristics are efficiently and accurately modeled by PWL model with
the threshold voltage Vg and the on-resistance Roy [26].

As shown in Fig. 4.1, when any circuit has a diode, the circuit can be represented
by two linear systems depending on the terminal voltage Vp, and each linear system is
represented in two systems having Roy and Rorp(or open). In addition, the MOS-
FET characteristics also can be efficiently represented with two PWL diodes, and the
resulting system would be partitioned by four linear systems. Using this PWL parti-

33

Linear Ron
Circuit
----------- Io(Vo) |
A
‘ + Vp>Vry
Linear l
Circuit q2:PFF q::ON
i > Linear ‘!’ Rorr
Vi Vo Circuit
-"-{/“IZ-)<VTH

Figure 4.1: PWL partitioning of the circuit with a diode.

tioning, we can model a nonlinear AMS circuit and apply hybrid reachability analysis.

4.2 Piecewise-Linear Approximation of Nonlinear Circuits

In the PWL approximation, the continuous state space of a non-linear system is parti-
tioned into a set of disjoint sub-regions {S1, ..., Sy, ..., Sy, }, and the continuous state
x(t) € Sy is governed by a different linear system depending on the sub-region x(t)
belong to, where each sub-region S, for p = 1, ..., N,. corresponds to the discrete state
d(t) € {1,...,N,} € Qq. The key challenge in computing the reachable set R(t) of
x(t) and d(t) (or with m(t)) representing the change of linear system due to time ¢ lies
mainly with computing the guard intersection R(¢) N G. This chapter addresses how
to compute this guard intersection of continuous state x(¢) efficiently and accurately.
The challenges in computing the guard intersection Z = R(¢) N G in conventional
methods are two-fold. First, when the reachable set R(t) is evaluated at discrete steps
of time ¢, the guard intersection must be computed repeatedly for each time step, incur-

ring a large computational cost. In addition, this cost further increases when comput-

34

Figure 4.2: The problem of computing the guard intersection R(¢) NG in PWL system

representation.

ing the subsequent reachable set from the guard intersection Z since each intersection
requires computing the successor reachable set Rz(t), resulting in the exponential in-
crease of runtime with respect to the number of guard intersection, referred to cycles
here.

To address this challenge, this work proposed an efficient, scalable way of com-
puting the guard intersection of reachable set R(¢) represented in a trajectory form
of (3.16). In the previous chapter, it has been shown that for linear hybrid systems,
computing the time evolution of R(¢) within a region .S; does not need the evalua-
tion of R(t) at discrete steps of time. Instead R(t) can be represented using a set of
vertices, where each vertex follows a trajectory described by an exact and analytical
function of time ¢ of (3.7). The proposed method can compute the intersection of R (t)
in this trajectory form with a linear guard G, and also a new reachable set R (t) starting
from the computed intersection Z, both in the trajectory forms that do not rely on time
discretization. The proposed method also adopts the scalable method in [15] that com-

putes the intersections in the high-dimensional state space using only two-dimensional

35

operations via projections.

4.3 Computing Guard Intersections at PWL Switching Bound-

ary

4.3.1 Hybrid System Representation of PWL circuits

The continuous state space of the PWL approximated circuit is partitioned into a set

of sub-regions S, for p = 1, ..., N,, by a set of linear hyperplane guards G's:
Gy :wp-x+by,=0forh=1,2,... 4.1)

where wy, € R” is an unit vector normal to each hyperplane and b, € R" is an offset.
Within a sub-region S, and for a given discrete state d(t) € 1, ..., ¢, the continuous
state variable z(t) € R™, the input u(¢) € R™, and the output y(¢) € R™ are governed
by a linear differential equation :
&(t) = Apx(t) + Bpu(t),
4.2)
y(t) = Cpa(t) + Dyu(l)
where A, € R"*", B, € R"*"™, C}, € R™*", and D, € R™*"™; and p denotes the
index of the operating sub-region of PWL system. Then, the trajectory of z(t) starting
from an initial state 2y can be represented by the hybrid system trajectory form R(t)
of (3.25). Each transfer function H,(s) = (s — A,) ! for the system matrices in (4.2)

is computed in the same manner in the previous chapter, indexed by the sub-region S,.

4.3.2 Computing Guard Intersection Using Trajectory Form

This section describes the proposed algorithm for computing the guard intersection
Z = R N Gy, For a zonotope reachable set R(t) in (3.16) and a hyperplane guard Gy,
in (4.1), using a set of orthogonal unit vectors [;’s to the vector wy, of the guard Gy,.

The pseudo-codes of the overall algorithm are listed in Algorithm 2.

36

Zi' <« R(i =I2)

Z fori=1,..,N, Gyix=y fori=1,..,N,

5

Figure 4.3: The overall algorithm to compute the guard intersection at the disjoint

regions Sy, and Sy .

The algorithm first obtains the reachable set in the initial sub-region .S}, as:
R;(t) = getTrajectoryZonotope(p, Z;). (4.3)

where p is the index for the corresponding linear system and i denotes the index for the
initial zonotopes, previously segmented by 7 = 1, ..., N,. Then, the reachable set in the
sub-region S, is added by R(t) = R(t) U {R;(t)} at each iteration of ¢ = 1, ..., Nj.
Then, the algorithm can determine the time range [t1, t2] for which the intersection
R N Gy, # . The procedure named findCrossZonotope() finds the values of ¢1 and -

by solving the equation
c(tywn + Y |gi(t) - wp| =0 (4.4)
i

iteratively until the time ¢ reaches the maximum time bound 7.

Since the guard intersection R(¢) N G does not yield a closed-form expression in
terms of ¢, the algorithm computes the approximate intersections of R(¢) sampled at
N; + 1 time steps spanning the range [t1,t2] as :

—t _
f2 —t forj =1,..., N, 4.5)

tj=ti+]
S

-":lx_i L, '|'|i

37

:
&) 7

L

Figure 4.4: Search process for the best /;.’s in the procedure for approximating R (t)NG

with low over-approximation error getOrthogonalBasis.

In addition, this algorithm adopts the projection method introduced in [15], which
computes the guard intersection of the reachable set R () projected into a two-dimensional
space instead of the original high-dimensional reachable set R(¢) itself. The resulting
intersections are obtained as the same zonotopes using the same set of projection vec-
tors [for k = 1,...,n — 1, which are easy to combine with the subsequent step of
computing the reachable set explained in the next section.

The procedure getOrthogonalBasis() finds the set of optimal orthogonal basis vec-
tors

D={l,eR"|k=1,...,n—1} (4.6)

, with which one can describe a minimum-volume hypercube enclosing the zonotope
R(t) att = t;piq = (1 + t2)/2. The search process guarantees that one of the basis
vectors in D in (4.6) is selected from the generators g;’s and finds the set of basis
vectors that minimizes the volume computed by the oriented rectangular hull (ORH)

as:
n—1 r

V=TI lgi-tl- 4.7

k=1 1i=1

Fig. 4.4 illustrates how the procedure chooses the best basis vectors [;,’s. The initial

38

selection of [;’s shows a large over-approximation of the hypercube from lj,’s approx-
imating the zonotope Z' = R(tn:q4), Whereas when the volume Vé is the minimum
among every Vz, the hypercube of with [; can tightly enclose the zonotope Z. This
search process assumes that the time evolution of zonotope Zis so slow for the inter-
secting time range [t1,t2] that the approximation can fit the zonotope well with the
chosen [;’s when the time in the middle of the period, t,,;4. Therefore, it leaves further
research issues for the method to find a better basis.

Using the vector [;, in D, the algorithm projects the zonotope reachable set R (t)
different two-dimensional planes, each of which is spanned by the normal vector of
the guard hyperplane wy, in (4.1) and one of the basis vectors [, for k = 1,...,n — 1.
The projection operator II(wy,, [;) [15] is a linear transformation on the trajectory form

z(t) in (3.5) defined by
Moy (2(8)) = (w - 2(8), i - (). (48)

Note that the resulting dot product of vectors w, [, remains with the same form of the
reachable set due to linearity.

Then, the procedure getlntersect2D() computes the intersection of the zonotope
reachable set R;(t, 5) for i = 1,..., Ny sampled at each time step ts7 in (4.5) for

j =0, ..., N, using the projections on zonotopes IT;, 4 (Z;;) in (4.8) as :

Zix(t) = (W, 1y, (c(2)), (M, 1y, (91.(8)), Ty 1, (92(2)),) (4.9)

where k = 1, ..., (n — 1) and guard hyperplane Gy, is also projected in the same way,
resulting in the line = ; = b/|wy,| in the k-th projected plane as shown in Fig. 4.3.
Computing intersection in the projected plane is reduced into simple two-dimensional
intersection problems that can be solved in an algebraic way. Given a line segment

U102 in a 2-D plane, its intersection with the line x = yy, is

2y — Uiz + oy (4.10)

Yy=\Ukr—u1
(I)U2x*vlm

39

where v1 = (V1g, v1y) and vy = (vag, v2y). The procedure getIntersect2D() for zono-
tope initially set the first point v1 = ¢ + go by picking the generator gg so that vy is
most close to the guard line x = ~;; and then, the next point is iterated adding 2¢g,,e.¢

as:

Unext,1 = V2

@.11)
Unext,2 = V2 + 20next

where gpeq¢ is picked from the first element in the sorted generators g = (g, gy)’s
in the tangent order (i.e. arctan(g,/gy)) and this process ends when the sorted set
becomes empty. This iteration is performed in two ways, upper and lower side of ver-
tices of the zonotope ~;;k(t) until finding two intersecting values y = M and y = m,
respectively. This pair of values indicates the range of scaling factor [m, M]gjk ap-
plied to basis vector [j,. Connecting them with the vector lj; into a (n — 1)-dimensional
hypercube yields the approximate intersection of the exact ”R,;(ts’;) N G lying on the
guard hyperplane Gj,.

When computing the guard intersections of multiple reachable sets R;(¢), sampled
zonotopes Z; shares same direction [, at time ¢ = ¢, ; in the guard-crossing time inter-
val [t1, t2]. The procedure mergeSegments() combines the range segments [m, M ;s
for the same sampling instant ¢ = ¢, ; and the same basis vector /5. This reduces the

resulting Vs X Ny zonotopes representing the approximate guard intersections to Ny,

yielding the guard intersection by a range of segments
7 = {[m, MJ;;, | j=(1,....,Ng),k=(1,....,n—1)}. (4.12)

This procedure prevents the exponential growth of the number of reachable sets, keep-

ing it at Ng.

4.3.3 Computing Reachable Sets in New Sub-Regions

Algorithm 3 lists the algorithm for computing the N subsequent reachable sets Rz (t)

from the Ns; + 1 guard intersections Z of (4.12). Note that these intersections are

40

(a) upper side

Vi

v

_29

(b) lower side

Figure 4.5: The procedure getlntersect2D for computing the range of segment [m, M]

in a (w,l)-plane.

.
41 A.___'_..r\-‘ll

Algorithm 2: Computing the guard intersection.

Input : Zo={Z;|i=1,..,Ns},Gn = (wn,bp)

Output: 7 = {[m,M];;, | j = (0,...,Ny), k= (1
1 R(t),Zy + 0;
2 fori € (1,...,Ny) do
3 R;(t) « getTrajectoryZonotope(p, Z;);
4 R(t) < R(t) U{R;(t)};
5 end
6 [tl,tg] + findCrossTimelInterval(R(t));
7 65— {t+ 7T)5)
8 D %getOrthogonalBaszs(gh, ®));

sy — 1)}t

9 for i=(1,...,Ns)Aj=(0,....,. Ns) Ak =(1,...,n—1)do

10 Z;5 < sample(R;(t),ts5) ;

u [m, M]; 5 , < getIntersect2D(Z3, 1) ;

2 | Iy« Zo U{[m, Mz}

13 end

14 T < mergeSegments(Zy) > Merge [m, M’
15 return R(t),Z,ts

s having same j,k

42

crossing the guard G, at different times of ¢, ; for j = 1, ..., Ny and each intersection
is expressed with a set of n — 1-fold range segments along the directions of the or-
thogonal basis vectors [;’s for k = 1,...,n — 1 of (4.6). The goal is to compute a set
of N, reachable sets in the trajectory form (3.16) valid from the last time of the guard
intersection t = to.

First, the algorithm combines each pair of range segments [m, M];_, ; and [m, M]3,
with each [j; of (4.12) at two adjacent times, ¢;_; and ¢; into a zonotope. In advance,
let’s define Zg = (¢, (l1,...,1,—1)) as the zonotope spanning the entire hyperplane
of the guard G;, where ¢ = |b,|wy, € Gp,. It is noteworthy that every states from the
guard G in the new sub-region S, is included in the Zg; thus, with the range segments
(4.12) and Z¢, one can sample any set of states 2’; by the new procedure 12Z(), which

converts each set of segments [m, M|, at time ¢, 7 into a zonotope

Zj = (C, <glu"'7gn—1>) (413)
where its center and generators are

c=wp+ Z (my + M)l /2,
k 4.14)

gr = (Mk — mk)lk/Q for k = 1, ey, — 1.
Since we selected the basis [, orthogonal to each other, the resulting zonotope becomes
a hypercube. The procedure I () in [14] computes a zonotope that tightly encloses

the two zonotopes P and () using the following equation [15] as :

TH(P,Q) = 0.5(cp + ¢, (g1 + 90,1, -+ 9P + 9. @is)

ar1 —9Q1, -, 9P — gQ,z’>)

Combining pairs of intermediately generated zonotopes Z; = 3(t = ty5-1) and

2, = Z}(t =1, ; using I/I\{() returns Z; for each j = 1, ..., N.
Finally, from the resulting Ns; zonotopes, the subsequent reachable set valid from
t = to can be computed using the procedure getTrajectoryZonotope() with the new set

of matrices A,/, By, Cyy, D,y in the next sub-region.

43

Algorithm 3: Computing the subsequent reachable set from the guard inter-

section.

Input : 7 ={[m, M]3 | j=(0,..,Ny),k=(1,...,.n—1)}
Output: 2y, ={Z21,...,2Zn.},tr

1 Rz(t), 20 + 0; Zg + (¢, D);

2 Rg(t) « getTrajectoryZonotope(p, Zg,u;(t));

3 forj € (1,...,Ns) do

4 t,7 <t —t1 —1,5> Remaining time until T from 8.7

5 fork € (1,..,n—1)do

‘ . My, = ma(m, M]j_y g [m, M]; 1)

7 end

8 2y« 12Z(Rg(t,j-1), {lm, M]r=q1,...n-1)})s

o | 24 e 122Ra(t), (. M) jir,) b

0 | Zr« IH(Z,2))

1 Rz ;(t) < getTrajectoryZonotope(j, Zz,u;(t));

12 Rz(t) < Rz(t) URz;(1);

13 Zy < Zo N sample(Rz(t),t,5);

14 end

15 return Rz(t), 2o, t,

Note that in our reachability analysis method, we do not include the time vari-
able ¢ in a reachable set unlike the other continuous variable z(t) and changes its
discrete states m(t) depending on the external pulse control; therefore, often the sys-
tem changes its discrete state m(¢) independent of the state z:(¢) while the reachable
set R(t) is crossing the guard G, as shown in Fig. 4.6, i.e. t; < T < ty where T is
the maximum time bound assumed by the procedure findCrossZonotope. In this case,
the resulting reachable set R(T’) is divided into two sets Ry for t;_p and R for
t = [t1,T] contained in distinguished sub-regions that have different discrete state
m(t). After computing the latter set in the new sub-region S, it returns the union

of the two sets. To prevent exponential growth of the number of sets, the total num-

44

R(t=T)=R,UR,

PL LT
- -

Sub-region
Sp

Sub-region
S

Figure 4.6: Case when external discrete state m(t) changes its state at ¢ = T while the

reachable set R(t) is crossing in t = [t1, ta].

ber of two sets is kept at Ny depending on the ratio to the distances from the guard

hyperplane.

4.4 Time Complexity Analysis

4.4.1 Trajectory Form Computation

We assume that the procedure to obtain the transfer function H(s) = (sI — A)~! has
the complexity of O(1) since we reuse the previously computed values in advance.
Then The procedure getTrajectoryZonotope() has the complexity of O(n?r) where n
is the number of state dimensions and r is the number of generators of the zonotope

reachable set R(t).

Proof. Given an initial zonotope set Z with vector ¢ and r generators g’s, of which
each vector has n scalar components, then, it requires (7 + 1)-fold evaluation of trajec-
tory form in (3.5) that incur n X n scalar multiplication of single-input-single-output

(SISO) transfer functions H;/;(s) and inputs «}(¢) € R and initial condition z¢ ;; € R

45

as in (3.12) as:

.’L‘;(S) = (SIi/j/ — Ai/j/)_lB;Ui/(s) + (SIi/j/ — Ai/j/)_lx;(O) (4.16)

for i/, 5/ = 1, ..., n. This results in complexity of O((r + 1) x n?) = O(n?r). O

4.4.2 Guard Intersection Compuatation

Given trajectory form reachable set R(t) consisting of Ny subsets and a guard hyper-
plane Gy, in (4.1), the complexity of computing the guard intersection R(t) N G; have

complexity of O(N2n).

Proof. The algorithm that computes guard intersection first computes the projection
of zonotope Z; € R+DX7 at N, + 1 time steps segmenting [t1, t2], and then com-
putes the two-dimensional intersection of the zonotopes Z; in the k-th plane for k =
1,...;(n — 1), incur (N5 + 1) x N,-fold 2-D intersection procedure getlntersect2D
that is pure algebraic operation of constant complexity O(1) in (4.10). Therefore, the

resulting complexity is O(N?2n). O

4.4.3 Reachable Set Computation from Guard Intersection

GivenZ = {[m,M];, | j = (0,...,Ns),k = (1, ...,n — 1)}, computing the reachable
set Rz(t) have a complexity of O(Nyn?r).

Proof. The algorithm 3 first combine the pair of two scalar value m and M in [m, M|
for k = 1,...,n — 1 having same 14, j indices into N zonotopes, which is a series of
Ng x (n — 1)-fold scalar interval arithmetic operations. After that, it computes the
trajectory form reachable set Rz ;(¢) from each resulting zonotope Z7 ; by getTra-
jectoryZonotope(). Therefore, overall complexity adding two procedures is given by

O(Ns(n — 1) + Nyn?r) = O(Nyn?r) O

46

4.4.4 Overall Complexity

The overall complexity for the entire algorithm is O(N2 + Nyn?r), where N is the
number of time steps discretizing the guard intersecting time range ¢t = [t1,t2] and
is independent of the number of dimension n. So if we keep N small compared to
n and limit the number of generators r to scale linearly with n using the dimensional

reduction technique in [14, 15], the overall complexity becomes O(n>Ny).

4.5 Computing Safety Bounds from Reachable Sets in Tra-

jectory Form

To verify the safety of the circuits using the computed reachable sets, one needs a way
to compute the range of the reachable set R(¢) along an arbitrary direction [€ R™. In
[16], it has been shown that such a range for time ¢ can be computed using the support
function pr (1)

prity (1) = c(t) -1+) |g;(t) - 1]. (4.17)
7j=1

We need to evaluate the peak values (min/max) for a trajectory-form reachable set
R(t) for a time range ¢t = [0,T7], calls for two scalar optimization procedures with
respect to time ¢

bounds;(xz(t),t = [0,T]) = [tirﬁér%}p (t)(l),t33>%] Pr) ()] (4.18)

Note that this function calls for a piecewise evaluation with the knowledge when the
polarities of g;(t) - [change. With g;’s expressed in the analytical, trajectory form of
(3.5), one can find the values of ¢ that satisfy g;(¢) - [= 0 and subsequently find the
minimum and maximum values of (4.17) for each time interval split by the solutions
of t. Finally, by combining these results, the minimum and maximum bounds of R (%)

along the direction of [for ¢ € [0, T'] can be found.

47

G :wx+b=0

S1:ap > S
X=A4x |e x=A4x

G :wx+b=0

Figure 4.7: Hybrid automata of the LC oscillating system.

4.6 Benchmark: Numerical Example

This section demonstrates the proposed reachability analysis method with an illustra-
tive linear hybrid oscillator system with associated guard hyperplanes G; = Go = G
as:

G:w-x+b=0 (4.19)

where w = (0.1,1) and b = —1, which splits the continuous state space into two

disjoint sub-regions at the guard hyperplane, each linear system
T =Ax (4.20)

with the system matrix A; of two discrete state ¢, go fori = 1,2 is given by :

Ay = Ay = . (4.21)

The hybrid automata in Fig. 4.7 models the behavior of the discrete state d(t) =
{q1, g2} and the continuous state z(t) € R2. It switches its discrete states when z(t)
intersects the guard line G in (4.19).

In this section, we compare the reachable sets computed with two different al-
gorithms, including proposed algorithm, Girard’s algorithm in [14, 15, 32] with two
references, reachable set R,.; using Delaunay triangulation (DT) Rpr and brute-

force Monte-Carlo (MC) Rsc. The reachable set using DT Rpr is to evaluate the

48

R N R Ry

Figure 4.8: Error measure err; using MC integration method.

over-approximation error of the proposed method caused by the zonotope approxima-
tion since DT can accurately represent the arbitrary shapes with a fine set of triangles,
which also can be computed by the trajectory form reachable set in (3.7). In addition,
the brute force MC method is widely used for accounting the range of initial conditions
and provides a reference for evaluating the accuracy of the reachable set R ;. Note
that the results obtained from the envelope of the MC method are under-approximation
of the theoretically exact reachable set, but when the number of random samples is
large enough and the number of system dimensions is relatively small, then we can
roughly evaluate the relative accuracy of the different reachability analysis algorithm

compared to it.

4.6.1 Error Measures

We defined an error measure to compare the accuracy of reachability analysis algo-
rithms erry that estimates the over-approximation error at specific sample time ¢. The
error measures the area difference between the approximation and the exact set. The

over-approximation error err; compared to the reference set is evaluated by

Area(R — Ryes)
Area(R)

err; =

49

where the reachable set R and R g,y refers the set sampled at the specific sampling in-
stant ¢ = t'. However, computing the exact area (or volume) of an arbitrary polygonal
intersection is a computationally expensive operation with many sets in a large-scale
system so we introduced a simple Monte-Carlo integration method that computes the
area (volume) of the difference set using random sampling. It generates random sam-
ples in a hypercube enclosing two sets and counts the number of samples included in
the target region. Fig. 4.8 illustrates the described error evaluation method. The area
of the target reachable set R(t) can be approximated by the number of random point

NR(#) and the over-approximation error can be estimated by :

Nir—
erry e 5 Rt) (4.23)
R

where N refers to the number of sample in the set k.

4.6.2 Comparison of accuracy and runtime

The proposed method can compute the accurate reachable set after the guard intersec-
tion compared to the classic reachable set in [14, 15, 32], which assumes that every
continuous state x(¢) starts from the guard intersection starts at the same time, adding
large over-approximation each time guard intersection occurs.

Fig. 4.9 compares the proposed method and the classic reachability algorithm (Gi-
rard) with two reference sets R pr and R sc¢. It can be observed that comparing the
proposed reachable R (t') set at each guard intersection (t' = ¢, at every four cycles)
agrees well with the reference sets in Fig. 4.9 (c) DT (Delaunay triangulation) and (d)
Monte-Carlo (MC). While the classic method can enclose the states at the instants ¢'’s,
it is shown that large approximation errors are added each time with cycles.

Fig. 4.10 shows the over-approximation at the instant of the guard intersection as
increasing the number of cycles. Fig. 4.10 (a) compared the reachable sets obtained
from the proposed and Girard’s one with the reference set from DT Rpr(t), as in-

creasing the number of time segmentation ¢, ; in the guard intersecting interval [t1, 2]

50

X2

-2

-4

-6

(a) Proposed (b) Girard

-1.0

=15

X2

(c) Delaunay triangulation (DT) (d) Monte-Carlo (MC)

Figure 4.9: Reachable sets computed for a 2-D linear hybrid system example with a

guard hyperplane.

51 .-'.__._.i'l:.

180% 300%

160% -0-Ns=4 Ns=12 Ns=20 Girard Ns=20 Girard

140% 250%
< 120% = 200%
5 100% 'g
é = 150%
£ s0% B
p
I 60% E 100%

40%

20% 0%

0% 0%
1 2 3 4 1 2 3 4
Cycles Cycles
(a) erry vs. DT (b) erry vs. MC

Figure 4.10: Increasing err; as the number of cycles (guard intersections).

in (4.5). As expected, increasing the number of time steps of the range results in a
smaller error, where the err; of 5.06 % with Ny = 20 leads to 25.3 x more accurate
than 141.7 % of Ns; = 4. In addition, even with N, = 4 time steps, the proposed
method achieves 18 % improvement of accuracy than 168 % of the Girard’s.

Furthermore, compared with the MC reference set R s (¢) with the same config-
urations, the proposed algorithm achieved a 30x improvement with erry of 0.506 %
while the Girard’s algorithm has 2.477 % as shown in Fig. 4.10 (b). The error err;
increases slowly with the number of cycles while the error of the Girard’s increases
fast with cycles.

Then, we evaluated the accuracy of safety bounds defined by evaluating (4.17) for
each axis direction and runtimes compared to the SpaceEx, providing performance
reference for the different reachability analysis algorithms. As shown in Fig. 4.11, we
defined new error measure erry, comparing the range [min, Zimaz| Of each state
value z;(t), estimated by applying (4.17) for x;-direction on the reachable sets R(t)
and Rasc(t) as:

1 < 4 —x B — @
erry = — Z | 1, max z,max| | 7, mwn z,mzn| (424)

— Timazx — Li,min
i=1
where [Z; min, Timaz| 1S the range of state variable z;(¢) computed by the reference

set Rare(t), Rpr and [Zi pmin, Timaz] 1S the range of the reachable set R(t) computed

I ey 1
-":lx_i L, 1_.i i

52

-
=]
1

L

i [‘xl,min ’ ‘xl,max] i
- -

Lx:l

X(t)

T o UIWT
X

[Xeur'y

X2

L, .
X1 .Y

Figure 4.11: Safety bound of state x(¢).

with each algorithm with different options that configure the set shape, box (box) and
octagon (oct), the default time step 75 = 0.01s, and error tolerance for computing
reachable set e = 0.01.

Fig. 4.12 shows that the runtime of the proposed algorithm increases linearly with
the number of cycles since it keeps a fixed number of sets with cycles. Computing the
safety bounds over given 12 cycles, the proposed algorithm shows a 13.8x average
speed-up compared to the less accurate *box” option yielding the errs of 8.55 %, and a
1074 x speed-up compared to the accurate but slow ’oct’ option yielding 4.26 % erro
in average. On the other hand, the proposed algorithm keeps the error below 1 % for the
entire cycles. Note that the relative error metric erry decreases with guard intersection
cycles, mainly due to the increase of the radius of the reachable set while absolute

error stays almost constant with cycles.

4.7 Conclusion

In summary, we concluded that the proposed method using the trajectory form reach-
able set computation outperforms over 1074 x speed-ups compared to the existing
:l ¥

—
|

53

100%
el -e-Proposed -e-box oct 7~ Proposed -e-box oct
1.E+03
= 10% s .
— X T | e---c-e----- o=
T 1E02 Avg. 1074x s St g
g Speed-up §
S LE+OL | cef-T ¢ "
-E e - ° W g0
S °- .\0—.\.\‘
o 1.E+00 ./.—_’——._____._——.
1.E-01 0%
4 6 8 10 12 4 6 8 10 12
Cycles Cycles
(a) Runtime (b) Error

Figure 4.12: Runtimes and error comparison vs. SpaceEx algorithms (errs).

method relying on time discretization reachable set computation by suppressing ex-
ponentially increasing number of reachable sets. Simultaneously, it achieved better
accuracy below 1% than the time discretization method due to its nature of not re-
quiring more fine time steps to lower the required error tolerance. These achievements
have been demonstrated with a simple numerical benchmark example but it represents
a wide range of circuits, whereby, in the next chapter, we demonstrate the safety of

practical circuits with the proposed methodology.

54 o

Chapter 5

SOA VERIFICATION OF DC-DC BUCK CONVERT-
ERS

In this chapter, we demonstrate that the proposed trajectory form methodology ex-
plained in Chapters 3 and 4, can verify the safety of switching power supply circuits in
a fast and accurate way. A switching power supply operates as a switched linear sys-
tem and its switching activities are controlled by input pulses applied to its switches,
unintentionally causing abrupt changes in the internal inductor current and leading to
malfunctions or permanent damage to the system.

The overall flow of the safety verification procedures is listed in Fig. 5.1. This can
be done in three steps: First, the circuit topology is converted into a set of differential-
algebraic equations (DAESs). Secondly, the matrices from DAEs are then converted into
the hybrid automata representation M with the set of matrices I, the set of discrete
transitions F, and the associated guard G with each element of E. Secondly, its reach-
able set R (t) is computed using the proposed method. Finally, the bounds of reachable
sets are compared to the given specification for safety in ranges of operating voltages

and currents for each circuit element.

55

(Circuit (sp))
!
circuit MNA

}

Hybrid Automata
Formal Modeling

|
Reachability Analysis

Revision

Safe?

(END)

Figure 5.1: Overall flow of safety verification methodology for a given circuit.

It > DT
| q1 L—a| qz
Louft) Ve I Ve Ly,
Boost Vin
converter I I R I I
It > (1-D)T
It > DT
q1 LA q2
t 1
Buck utv =V by, Ly,
converter V""g I II %RL é II % I
= = = = = = = w1 T = =
It > (1-D)T

Figure 5.2: Switching power supplies operating as switched-linear systems.

56

5.1 SOA Verification of DC-DC Buck Converters

Fig. 5.2 shows the two representative basic circuit topologies mainly used for DC-DC
converters. These two converters are distinguished depending on whether the output
voltage is greater than the input voltage Vi or not. However, the operating principle
is similar so we focus on analyzing the buck converter.

A DC-DC buck converter topology is used for step-down of the input voltage V;n
by regulating its voltage by modulating the duty cycle of the switch control input u(t).
When the switch is turned on, the input voltage Vry charges the inductor current, on
the contrary, when the switch is turned off, the inductor current discharges. The steady-
state value of output voltage V- gets proportional to the duty-cycle D of the input u(t),
ie,Vor D-Viy.

5.2 Open-Loop Verification with PWM Control

Fig. 5.3 shows the hybrid automata model for DC-DC buck converter circuits under
open-loop duty control, i.e., the input for the MOSFET switch u(¢) has fixed duty
cycle D. The automata model involves three modes, ¢q1, g2, and g3, depending on the
state of switches. The model includes the generation of «(t) in the automata with the
period 7" using an additional state variable 6. Depending on the value of local time
0 € [0,T] where T is the pulse duration of a clock period, the discrete state changes
its state between ¢ and ¢o (or ¢3).

While the state of the MOSFET switch is directly set by the control input u(t), i.e.
¢ in the automata, the switch state of the diode depends on the internal circuit states,
i.e., the voltage across the diode V. The state space of the circuit has two independent
variables I, (t) and Vo (), and the diode voltage Vp is a linear sum of those variables,
yielding Vp = —I; Rorr in Fig. 5.3. Therefore, when the inductor current I, at the
instant when the MOSFET switches off is positive, the diode turns on with a negative

Vp, and I, stays positive. Otherwise, the diode turns off with positive Vp, and the

57

Charging Discharging

DT (1 -D)T Sy: charging 62DT S,:discharging (CCM)
(MOSFET on, diode on) 6=0 (MOSFET off, diode off)
Vi —*& & x=Ax+But) | ccm Xx=Ax+Bu()
S=1 6 >(1-D)T 5=1
V. 6:=0
T
DCM
w)
e L S3:discharging (DCM)
- Ve) (I\/I3OSFET off, diode off) guard
Vw R, 0 Z;: oD) §= A+ Bu(r) V< Vs
I - 6=1 Vp =—1.Rp o)
(2) (b)

Figure 5.3: DC-DC buck converter operating in DCM.

current I, becomes zero. The former operation is called continuous conduction mode
(CCM) and the latter is called discontinuous conduction mode (DCM). This chapter
addresses a way to verify the safety of the practical circuits using the methodology
explained so far.

Each switching behavior of CCM operation (g1 <+ ¢g2) and DCM operation (g1 —
@2 — g3 — q1...) has different impacts on its computational time due to the way the
reachable set R(t) intersects the guard set with time. In CCM switching mode, it is
easy to compute the discrete transition of the circuit state variable x(t) = (I (t), Ve (t))
because the circuit states changes its discrete states ¢ depending on only local time
variable § compared to the guard time DT, (1 — D)T, independent of the internal
circuit states x(¢). With the last sampled reachable set R(t = §), one can compute the
reachable set at the next iteration, exactly.

On the other hand, when operating in DCM mode, the circuit states Vi (¢) and
I7,(t) in the reachable set R(t) partially changes its discrete states ¢ with time, gen-
erating infinite small intersections until the associated guard intersection ends. These
guard intersections are problematic because the required number of computations in-
creases exponentially with the number of the guard intersection events as in Fig. 4.2.
In this case, the value of the diode terminal voltage Vp set the guard G : Vp < Von.

":l"\-_i _'-;.': ok 11

58

Table 5.1: Default Circuit Parameters

Parameter Symbol Value
Inductor L 10 pH
Capacitor C 20 uF
Load resistor R 10Q
Input voltage Vin 10V
Switching period T 1us

Diode turn-on voltage Von 0.5V
Diode on-resistance Ron 1Q

Diode off-resistance ~ Roprp 1 GQ

This guard condition is equivalent to the condition for the inductor current I; <
Von/ Rp.orr, represented at the guard line in the two-dimensional I;, — Vo state
space.

We computed the reachable sets with the circuit parameters listed in Table 5.1.
Nodal analysis on the circuit yields the system matrices when the MOSFET switch is
closed (g1) and when the switch is open (g2) state in each state while CCM, A, for ¢;

and A, for g9 as:

—10° —10°
A=A, = . 5.1
5x10* —5x 103
The system matrix Ag when the inductor is discharging with turned-off diode (g3) is
given by:
0 0
Ag =) (5.2)
0 —5x10°

The associated input matrix B, and B, (B) for each mode are given by

59

and the DC voltage source V7 is converted to trajectory form by representing a step

function in the s-domain :

1%
U(s) = % (5.4)

represented a set of coefficient (a,c,m) = (0, Vin/L,1) in (3.5).

Fig. 5.4 shows the reachable sets after 100 ps, starting with the initial set of states
Ve = [0,2]V, I, = [0,2]A. The reachable sets obtained are represented in blue
compared to those with a 1000-point MC simulation in green for two cases of duty-
cycle D = 0.25 and D = 0.75, resulting in the safety bounds of I, = [0,2.25],
Ve = [0,2.69] for D = 0.25 and I, = [0,5.06], Vo = [0,7.11] for D = 0.75, re-
spectively. In two cases, the reachable sets computed with the proposed method show
excellent agreement with trajectories of the equivalent Monte-Carlo simulations, yield-
ing the resulting error errs are only 1.97 %. Its runtime only took 4.967 s for D = 0.25
and 0.063 s for D = 0.75. It seems that when D = (.25 the runtime abruptly increases
than the other. This is because, in the case with low duty value D = 0.25, the circuit
operates in DCM that switches its states from ¢o to g3 when the inductor discharges,
incurring massive guard intersection computations and resulting in 34-fold increased
runtime than the case with low duty-cycle. On the other hand, in the case with high
duty value D = (.75, the buck converter operates only in CCM that switches its states
only in ¢ and g2 without any guard intersection events, resulting in fast runtime.

We evaluated the performance for various cases with varying duty D = 0.1,0.5,0.9
and the switching cycles cycles = 4,10, 20, 30, 40, 50 in terms of runtime and accu-
racy for estimating safety (errs), compared to the other algorithm STC of SpaceEx
with different set shapes coarse 'box’ and fine ’oct’ shapes in the same manner as
the previous chapter. Fig. 5.5 summarizes the results and comparison, showing that
the proposed algorithm achieved the fastest runtimes for all cases, ranging 0.03-2.02s
and the lowest average error 0.99 %. The proposed method outperformed the speed-
up factor was 2—656 x and 107X in average compared to the SpaceEx results with

accurate “oct’ shapes; 7-414 x and 79x in average compared to those of "box’.

60

Runtime (s)

Error (%)

(a) D=0.25 (b) D=0.75

Figure 5.4: The reachable set computed for the DC-DC buck converter circuit.

1.E+03
»
1.E+02 . '3
$.
1.E+01 é / /
Py .0p<
13 0745 1102 1462 =%
1.E+00 1.’ £0.374 — ==
O.Lls e
1E01 T L 0.0B1 0.031
0014 0019 00%
1.E-02 D=0.1 R
—e—proposed -#--box -e-oct D=0.5 D=0.9
1.E-03
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Cycles Cycles Cycles
(a) Runtime
100%
-e-proposed -4~ box -m-oct
A
pot. A
Joss
10% [— R .
/ g
4 ’
1% ./._—0———0\.———4 L—J\/./\
D=0.1 =
0% 0 | | ~ Db=0.5
Y 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50
Cycles Cycles Cycles
(b) Error

Figure 5.5: Performance for open-loop operation including DCM.

5)8t
61 e

Conventional time discretization-based algorithm shows the abrupt increase of the
runtime at the instants where the buck converter circuit enters into DCM at cycle > 10
for D = 0.1, cycle > 40 for D = 0.5, cycle > 50 for D = 0.9. Lower duty leads to
a steep increase of the runtime because the circuit operating with small duty tends to
have low inductor currents, so easily reaches the guard line G that is equivalent to the
line I;, = 0 at the state space.

The flat regions after the runtimes abruptly increase are because the MAX iteration
limit is set to prevent infinite runtime. This is because that SpaceEx continuously keeps
breaking the time steps into more fine small pieces indefinitely, causing exponentially
increasing or indefinite runtimes. On the other hand, the runtimes of the proposed
method scale only linearly with the number of cycles, demonstrating the effectiveness

of the proposed algorithm.

5.2.1 Experimental Scalability

We also demonstrated the scalability of the proposed method with a scalable circuit,
which is a DC-DC buck converter with cascaded RC loadings. Fig. 5.3 shows how
the runtime increases as the number of state variables, i.e. capacitors N increases. For
comparison, the results with SpaceEx are also shown. The runtime of SpaceEx scales
depending on the selected algorithm LGG and STC and the complexities of the shapes
“oct’ and "box’ showed different scalability.

The proposed reachability analysis algorithm has the runtime proportional to the
cubic number of dimensions O(n?), whereas the SpaceEx algorithm has the same
scalability with a coarse shape 'box’ selected. With the more accurate shape ’oct’, the
runtime of the SpaceEx scales as O(n?). For example, for the circuit with 12 state vari-
ables, our algorithm achieves 8.5 x quicker compared to SpaceEx with STC and "oct’
shapes. It shows that the proposed trajectory form method can compute the reachable
set accurate and scalable way. Note that in this comparison, the transfer function is not

cached so the speed-up is relatively low than the other comparison in other sections.

62

Cascaded output loading
1Lou(t) Ve (N-stages)

v,N%ID_WWLWL "l
[T 17 9

I(A)
(A

Figure 5.7: Reachable set with multiple RC loadings.

180
160 ® Proposed ’
140 ® SpaceEx (lgg/box) .
= 120 ® SpaceEX (lgg/oct) o
E 100 SpaceEx (stc/oct)
£ 80 .
2
60 Xl
40 P
20 o o ®
o @
0 2 4 6 8 10 12

of state variables

Figure 5.8: Scalability as the number of state dimensions compared to SpaceEx.

&) i
63

VIN

D(t t l
RG] v O —See] Vour®
+ Controller » PWM) converter >

Figure 5.9: DC-DC buck converter with PWM feedback loop.

5.3 Closed-Loop Verification with PWM Control

In this section, we demonstrate our method for closed-loop controlled DC-DC buck
converter examples. A practical buck converter circuit requires a feedback regulation
loop that stabilizes the output voltage Vi(t) at the reference voltage level Viypp(t)
against the changes of the input voltage Vi, load resistance Ry, etc, which may
cause unexpected large transient over-voltage issues. Unlike the previous open-loop
controlled examples, we need to consider two more aspects to apply reachability anal-
ysis: 1) one is the reachability algorithm requires more states to store the current states,
i.e. duty values in digital or analog values, ii) the other is that the algorithm should
compute the guard intersections of the current reachable states with more guard sets to
get the desired duty D(t) for the error e(t) of the current output voltage V¢ from the
desired output voltage Virgr.

In the linear control of DC-DC buck converter, such as widely-used PID control
[1, the controller first measures the error compared to the reference voltage e(t) =
Ve (t) — Vrpr and the duty is determined according to the transfer function Hprp(s)
and the error e(t), by D(s) = Hprp(s)e(s), whereas in digitally-controlled PWM
(DPWM), the control principle is similar except that the error voltage e(t) is measured
at the ADC digitally and the subsequent duty values are computed using digital filters

implementing the transfer function Hprp(s). Implementing it in a reachability anal-

64

VIN

e(t) e[{] DCODE[{] u(t) l Vour(®
VREF . e ouT
Digital DC-DC
+ Abc Controller DPWM — converter >

Figure 5.10: DC-DC buck converter with Digital PWM feedback loop.

ysis algorithm requires 2™ guard sets Gam where m is the number of bits to measure
discrete levels for error e(t), equivalent to the number of output bits of the ADC.

In this work, we modeled a simple digital PWM DC-DC buck converter, with
bang-bang (BB) control, that is ADC with one bit (m = 1). It is not a practically-used
scheme for switching power supply due to power inefficiency caused by a number
of fast switching activities, but it can provide an understandable example to show how
the proposed reachability analysis algorithm can model digitally-controlled analog cir-

cuits.

5.3.1 DC-DC Buck Converter with Digital Pulse-Width Modulation (DPWM)

Control

The circuit under verification is a DC-DC buck converter circuit with the same topol-
ogy in 5.3 and the circuit parameter as Table 5.1. In addition, the duty of the input u(%)
is controlled digitally by the polarity of the error level e(t) = V.(t) — Vrgpr. The con-
troller measures the output voltage V. (¢) at the end of the switching pulse u(t) period
and compares the measured value with the desired reference voltage Vrgr(t). when
the measured output voltage Vo(¢) is larger than the voltage Vrpp, the controller in-
creases the digital duty value encoding the real duty-cycle D(t) by +1 before the next
cycle begins.

Fig. 5.11 shows the computed reachable sets R(¢) varying the output reference

65

(@) Vier =3V (b) Viey =5V

©) Veeg =TV

Figure 5.11: Reachable sets varying Vrgr for PWM DC-DC buck converter.

66 St

(@R =1Q (b) R =10Q

Bihses

() RL =50Q (d) R =100Q

Figure 5.12: Reachable sets varying Vrpgr for PWM DC-DC buck converter.

voltage Vrpr = 3,5,7V in the state space of the continuous circuit state z(t) =
(IL(t), Vo(t)), compared to the equivalent Monte-Carlo (MC) simulation trajectories.
Each reachable set accurately encloses the state trajectories from initial samples ran-
domly selected in the initial set I, = [0,2]A and Vo = [0, 2]V while converging to
different reference voltage Vrpr = 3/5/7V set.

In the same way, the reachable set while varying the output load resistance in the
range of 1,10,100,1000 €2 are shown in Fig. 5.12. The default reference voltage is set
to 3V for all cases. The case of R, = 12 converges to reference voltage 3 V without

reaching the DCM operation at the guard line I;, = 0 A. On the contrary, the other

2 A g et

=

18
67 Pl

120 2.0% 70
—e—Runtime —g—err2 1.8%

100 | o /\ 1.6% =
50
%0 1.4% 2
12% Za
60 1.0%
: . 3 30

Runtime (s)
Error (%)

0.8% Q.

40 o | 0.6% “ 20

20 0.4% 10
0.2% 0

0 0.0%

s 5 7213 5 713 5 37 3 5 7 3 5 7 3 5 7
10 50 100 10 50 100
Vref & RL Vref & RL
(a) Runtime and error (b) Speed-ups vs. SpaceEx

Figure 5.13: Performance comparison for PWM DC-DC buck converter.

cases reach the guard line and the voltage V- slowly gets smaller due to discharging
with low inductor current [r,, incurring massive guard intersection computation and
increasing corresponding runtimes. The results also show good agreement with the
MC simulation results in green.

Fig. 5.13 summarizes the runtime of the proposed methods and the relative error
of safety bound measured by errs in (4.24) compared to MC. The speed-up improve-
ments compared to the SpaceEx using *STC’ algorithm and ’oct’ shapes are compared
in Fig. 5.13 (b), showing the speed-up ranging 22—-69 x, while the accuracy is main-
tained below 2 % compared to MC simulation references. The runtime ranges 50-98 s.
This is quite large than we expected. The cause of the slow runtime in the closed-loop
feedback system is that consistently generated a new flow of the reachable set and also
exponentially increases the required runtime until the predefined number of cycles (i.e.
equivalent to the bound of time). This also suggests further research topics. Cluster-
ing several sets with the same discrete states into a new set can be a remedy for this.
Otherwise, random walk or SMT algorithm can also efficiently reduce the exponential
increase of computation due to combinations of possible digital states and continuous

sets.

68

5.4 Veriftying Safe Operating Area (SOA)

Finally, we verified the safe operation of the circuits using the safe operating area
(SOA) specification under parameter variation of Vz g and the load resistance Ry, for
the cases in the system of Fig. 5.10. In each case, the operating regions are computed
using the proposed reachability analysis method.

Fig. 5.14 summarizes the bounds of operating region in terms of voltage Vi and
current I7, while varying circuit parameters R;=1,10,50,100Q and Vrpr=3,5,7V.
The overall bound for the inductor current I, is computed by 6.0 A and the capacitor
voltage V- is given by 7.78 V. So, we can conclude the operating region of the circuit
with the parameters are in I, = [0,6.0]A and Vo = [0, 7.78]V.

Fig. 5.15 shows the comparison between the SOA specification for the 90-nm pro-
cess and the compute operating regions with bounded initial conditions. For the cases
of load resistance Ry = 12, the design exceeds the SOA specifications by reaching
the current limit for the switch MOSFET in the test cases. Fig. 5.14 shows the bound
values for current and voltages for all test cases with varying parameters. As expected,
increasing load resistance Ry, resulted in the decrease of the operating current of the
buck converter, agreeing with the behavior with simulation data. In the case of low Ry,
i.e. heavy load, current through the inductor increases and poses a high risk of circuit
failure. In addition, increasing the reference voltages increases the risk that the capac-
itor might be damaged due to large transient over-voltage while charging the load at
the initial charging period.

However, the proposed method still lacks the capability to formally verify with
parameter variation caused process variation in the real world, resulting in incomplete
verification. Further work to capture the parameter variation should be done in the

future.

69

6.05 Safe I,_ < 6.0A

6
5.95
5.9
— 5.85
< 538
— 5.75
= 57
5.65
5.6
5.55
55
3 5 7 3 5 7 3 5 7 3 5 7
1 10 50 100
VREF/RL
(a) Unsafe case
9 Safe V.< 7.78V
8
7
—
s
O 4
>3
2
1
0
3 5 7 3 5 7 3 5 7 3 5 7
1 10 50 100
VREF/RL

(b) Safe case

Figure 5.14: Verifying safe operating area of the circuit under verification.

70 e

s :SOA

8

. ’
6
x 5
£ 4
S3

2

1

0

0 2 4 6
ILmax (A)
(a) Unsafe case

s : SOA

8 .
S6 :
x 5
© -
£4 :
S 3 :

2 :

0 ammmn"

0 2 4q 6
ILmax (A)

(b) Safe case

Figure 5.15: Verifying safe operating area of the circuit under verification.

71 S

Chapter 6

CONCLUSION

This dissertation presents a formal verification methodology for the safety of AMS
circuits using a reachability analysis algorithm. The proposed methodology leverages
a hybrid system modeling technique that discretizes a set of continuous state values
of the circuit variables similar to the boolean representation of the digital formal tech-
nique. Combined with a novel trajectory form of reachable set representation, it en-
ables a fast, scalable, and accurate reachability analysis. In addition, efficient piecewise
linear approximation of the nonlinearity of semiconductor devices, the basic building
block of AMS circuits, such as MOSFETs and diodes, the proposed method can be
applied to any type of AMS circuits.

The presented methodology was successfully demonstrated in verifying the safe
operation of the switching power supply circuits with open/closed loop pulse width
modulation control schemes. With varying circuit parameters and the initial conditions,
the resulting operating range of the devices changes, and the proposed method can
accurately detect its bounds compared to Monte-Carlo simulations with over 100x
speed-ups compared to the state-of-the-art reachability analysis algorithm.

The accuracy of the proposed RA algorithm was compared to the MC simulations
and remained small, less than 2 %. One might worry that even this small error can

rarely lead to failures. However, the operating region computed by RA is a conserva-

72

Figure 6.1: Conservative error compared to simulations.

tive approximation; that is, if this over-estimated operating region of the circuit never
reaches unsafe regions, neither does the exact one. Fig. 6.1 illustrates the resulting
error compared to the theoretical exact reachable set indicated as the circle, which is
the sum of the over-approximation error €,,¢, (shaded) of the reachable set R and the
under-approximation error €, of the set Rsc of states obtained from MC simu-
lations. While the error of MC simulations €,,,4., contributes false-negatives that can
cause real failures, the error of the proposed reachable set €., does not, only result-
ing in false-positives. However, it is desirable to reduce this over-approximation error
since it leads to higher design costs.

The main contributions of the presented methodology are two aspects. One is to
avoid the dependency of space and time discretization to compute the time evolution
of the set of states, reducing the scalability of the method. This idea is implemented
with a zonotope set in this study, but it can be extended to any type of set representa-
tions based on linear algebra such as polyhedra or other representations, which need
to be further researched. The other is the efficient computation of guard intersection
which is the most significant bottleneck of every hybrid system reachability analysis.
In this study, based on the idea that every state is started from the guard intersection,

we iteratively generate the next initial set using the linear superposition of the basis

73

1.25

1.00

1.00
0.75
0.75
0.50
ol 0.50
>< 0.25 o
x 0.25
0.00 Z
0 0.00
0.0 0.5 1.0

=0.25

—0.50

1:5 Zt(l
X1 X1

(a) Forward RA (b) Backward RA

Figure 6.2: Backward reachability analysis extending the proposed trajectory-form.

vectors spanning the guard set. In this way, we can easily compute the guard intersec-
tion and iterative reachable set computation from the intersection, in an accurate and
fast way. However, the remaining concern is that the way to approximate the intersec-
tion on the guard hyperplane can also contribute to additional over-approximation in
each iteration. This still remains an open problem requiring further research.

In addition, this work can be further extended to compute backward reachability
that computes the set of initial conditions of which trajectories can reach the speci-
fied target region. From the backward reachable set computed from the given unsafe
target region, one can avoid the risky initial conditions that can lead the circuit to a
potentially unsafe operating region in advance without computing a reachable set for
every possible initial condition. Computing the backward reachable set in the proposed
trajectory-based method can be simply done by exploiting the time reversal property
of Laplace analysis. That is, if a forward reachable set of trajectory is X (s) & x(t),
then the backward reachable set is just X (—s) & x(—t). Replacing s to —s in (3.12),
the transfer function for backward computation is given by H(—s) = (s + A)~! and
the input term U(—s) of time-reversed input u(—t) can be obtained from the basis

functions. Fig. 6.2 shows the backward reachable set using the idea. As shown in Fig.

74

6.2 (b), one can exclude the unsafe initial conditions that can reach the unsafe region
Z. Recognizing this analysis is simple linear system computation with only modify-
ing the sign of the system matrix, extending this backward trajectory analysis to the

hybrid system can be done in the same manner as Chapter 3.

75

O o0 N N kAW =

—
o)

Chapter 7

APPENDIX

7.1 Code Implementation
7.1.1 Example: Trajectory Form Reachable Set

import numpy as np

n=2 % system dimension
A=np.array([[0,-1],[1,0]1], dtype=float)
E=np.identity (n,dtype=£float)

U=[xmulan.xreal (value=[0,0,0,0,1]) for i in range(n)]

c = np.array([1.5,0],dtype=£float)

G = [np.array([0.5,0],dtype=£float)]
z0 = [c,G] % initial zonotope set

[

% Trajectory Form Reachable Set

Ztrj = get_xreal_zonotope (E,A,Z0,U)

Listing 7.1: Simple code example for trajectory form reachable set.

%$Zonotope Trajectory Form

Ztri= [

[xreal (((0+13,0.75+03,1)) @0.000s), xreal(((0+13,0+0.753,1))
@0.000s) 1,

76

[[xreal (((0+15,0.254073,1)) @0.000s), xreal (((0+19,0+0.253,1))
@0.000s) 1]
]

% Bounds for each axis also represented by Xreal Trajectory

bound (Ztrj,axis=0)= xreal (((0+13,0.5+03,1)) Q@0.000s) =xreal
(((0+13,1+03,1)) @0.000s)

bound (Ztrj,axis=1)= xreal (((0+13,0+0.5j,1)) @0.000s) xreal

(((0+13,0+15,1)) @0.000s)

Listing 7.2: Zonotope Trajectory Form Output.

e g ke

77 o

|

I

TU

Bibliography

[1] E. M. Clarke, et al., Handbook of Model Checking. Springer, 2018.

[2] J. O’Leary, “Formal Verification in Intel CPU Design,” Proc. IEEE Int. Conf.
Form. Methods Model. Co-Design, p. 152, 2004.

[3] E. Seligman, et al., Formal Verification : An Essential Toolkit for Modern VLSI
Design. Elsevier, 2015.

[4] L. Goldgeisser, et al., “Modeling Safe Operating Area in Hardware Description
Languages,” in Proc. Des. Autom. Conf., Jul. 2007, pp. 377-382.

[5] E. M. Clarke, “Model Checking,” in Proc. Int’l Conf. Found. Software Technol.
Theor. Comput. Sci., Dec. 1997, pp. 54-56.

[6] M. H. Zaki, et al., “Formal Verification of Analog and Mixed Signal Designs: A
Survey,” Microelectron. J., pp. 1395-1404, Dec. 2008.

[7]1 K. D. Jones, et al., “Some Real World Problems in the Analog and Mixed Signal
Domains,” 2018.

[8] R. Alur, et al., “The Algorithmic Analysis of Hybrid Systems,” Theor. Comput.
Sci., pp. 3-34, Feb. 1995.

[9] T. A. Henzinger, et al., “HYTECH: A Model Checker for Hybrid Systems,” Int’l
J. Softw. Tools Technol. Transf., pp. 110-122, Dec. 1997.

78

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. A. Henzinger, “The Theory of Hybrid Automata,” Verif. Digit. Hybrid Syst.,
pp- 265-292, Jul. 2000.

W. Hartong, et al., “Model Checking Algorithms for Analog Verification,” in
Proc. IEEE/ACM Des. Autom. Conf., Jun. 2002, pp. 542-547.

S. Gupta, et al., “Towards formal verification of analog designs,” in Proc.

IEEE/ACM Int’l Conf. Comput. Aided Des., Nov. 2004, pp. 210-217.

T. Dang, et al., “Verification of Analog and Mixed-Signal Circuits Using Hy-
brid System Techniques,” in Proc. Int’l Conf. Form. Methods Comput. Des., Nov.
2004, pp. 21-36.

A. Girard, “Reachability of Uncertain Linear Systems Using Zonotopes,” in Proc.

Int’l Work. Hybrid Syst. Comput. Control, Apr. 2005, pp. 291-305.

A. Girard and C. Le Guernic, “Zonotope/Hyperplane Intersection for Hybrid Sys-
tems Reachability Analysis,” in Proc. Int’l Work. Hybrid Syst. Comput. Control,
Apr. 2008, pp. 215-228.

C. Le Guernic and A. Girard, “Reachability Analysis of Hybrid Systems Using
Support Functions,” in Proc. Int’l Conf. Comput. Aided Verif., Jun. 2009, pp.
540-554.

G. Frehse, et al., “SpaceEx: Scalable Verification of Hybrid Systems,” in Proc.
Int’l Conf. Comput. Aided Verif., Jul. 2011, pp. 379-395.

A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal Techniques for Reachability
Analysis of Discrete-Time Linear Systems,” IEEE Trans. Automat. Contr., pp.

26-38, Jan. 2007.

H. Lin, et al., “Verification of Digitally-Intensive Analog Circuits Via Kernel
Ridge Regression and Hybrid Reachability Analysis,” in Proc. IEEE/ACM Des.
Autom. Conf., Jun. 2013, pp. 1-6.

79

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

S. Little, et al., “Verification of Analog/Mixed-Signal Circuits Using Labeled Hy-
brid Petri Nets,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 30, no. 4,
pp. 617-630, 2011.

M. Althoff, et al., “Formal Verification of Phase Locked Loops Using Reachabil-
ity Analysis and Continuization,” in Proc. IEEE/ACM Int’l Conf. Comput. Aided
Des., Nov. 2011, pp. 659-666.

W. Denman, et al., “Formal Verification of Analog Designs Using MetiTarski,”

in Proc. Int’l Conf. Form. Methods Comput. Des., Nov. 2009, pp. 93-100.

S. Steinhorst and L. Hedrich, “Trajectory-Directed Discrete State Space Model-
ing for Formal Verification of Nonlinear Analog Circuits,” in Proc. Int’l Conf.

Comput. Des., Nov. 2012, pp. 202-209.

O. A. Beg, et al., “Model Validation of PWM DC-DC Converters,” IEEE Trans.
Ind. Electron., pp. 7049-7059, Mar. 2017.

O. Stursberg and B. H. Krogh, “Efficient Representation and Computation of
Reachable Sets for Hybrid Systems,” in Proc. Int’l Conf. Hybrid Systems: Com-
put. Control. Berlin, Heidelberg: Springer-Verlag, 2003, p. 482-497.

J. Kim, “New Opportunities for Analog Formal Verification with Piecewise-

Linear Device Modeling,” in Proc. Front. Analog CAD, 2018.

H. S. L. Lee, et al., “Automated Generation of Hybrid System Models for Reach-
ability Analysis of Nonlinear Analog Circuits,” in Proc. Asia South Pacific Des.

Autom. Conf., Jan. 2015, pp. 725-730.

J.-E. Jang, et al., “An Event-Driven Simulation Methodology for Integrated
Switching Power Supplies in SystemVerilog,” in Proc. ACM/IEEE Des. Autom.
Conf., May 2013, pp. 1-7.

80

[29] S.Boyd and L. Vandenberghe, Convex Optimization. Cambridge, 2010, vol. 25,

no. 3.

[30] S. Kim, et al., “Safety Verification of AMS Circuits with Piecewise-Linear Sys-
tem Reachability Analysis,” in Proc. Int’l SoC Des. Conf., Oct. 2021, pp. 203—
206.

[31] S. Kim, and J. Kim, “Reachability Analysis for Nonlinear Analog/Mixed-Signal
Circuits with Trajectory-Based Reachable Sets,” IEEE Access, pp. 1-1, 2023.

[32] A. Girard and C. Le Guernic, “Efficient Reachability Analysis for Linear Sys-
tems Using Support Functions,” in Proc. Int’l Fed. Autom. Control, Jul. 2008, pp.
8966-8971.

81

1t

=

13 9lc}. of

o

of7]

=

k=
vl a2

°

u}
=

X
|~EL)

L

3

S

8

=
o

2 ol

]

A

1
-

o
mnﬂcoumoqr._
EolerID_.M_w__m__n_vowno
P_,_P,._P7LIA_LL,%}
zﬁﬁl&ua_/ﬂiﬁfhﬂ}
Mwonmm_iuammkﬂﬁar%ea
UoL7dE:lwm]eazo£oE d
%Wkgﬂmmmwmamm P BT
%u_.ﬁ,__o_.% _HE__O_} v E o7
EMOXE%W@EE%}&L%LOL og,f@rmfxﬂ
i = @] ~ o E -y o
o ~ 50 = o 1| el #o o X i 1 el o
45176}_52 ﬂ%ﬂlll_/ ﬁn_dﬂlh__g_
B %mgmgﬂaqg PR
I M No X it B ENEE H o A _Eih
w_ﬂﬂﬁuurodn%tﬁuouﬂﬂ MHO_EJ_WQ%E
7EH_kﬂLoMﬂ7Lo|W%Mo&u u_.xﬂﬁAuﬂuf
ﬂﬂoﬁ}kggﬂno%ﬂ __Lom:.p_.moJ
:moztmﬁ_/oiasozlb_;%}m
| oo T_A_e 5 4__0,_L
iﬂgioﬂexPE]an,PhivﬁﬂﬁM
ﬂeﬂﬁ&ﬂﬁo“ﬁ%ﬁ.h&@ﬂ@o
quﬁJfﬂvyohszmezﬂ T
aamﬂggo%ﬁggQA7gn@@
ﬂﬂﬂ@uﬁmud.uoI_Hoﬁoaoeﬂouaimmﬂ
MAW%PHTJQHMM&EW_W%%W%*]IEmg._u
S = M:Tﬂ:ﬂof_}gg gﬂz b
B < b o © - o o um B To! j)
meﬂmtﬂ‘_y._&ewx]ﬁrllwzowai&uﬂlﬂl
%1#&5%?7171,7@%135;%
i?Ao]Zzo?lEdlﬂa,m_-ﬁvweiodﬂ
Gy PN e ﬂwagdl b % 5
T T M]_z,_,._lo_e e oMN_._. o 1] ,ED._
:.LyAE I~ VARG E.__/Eoﬂll_ —
ﬁlllﬁ‘_,.rio:: LXL_oHT_q‘BIALEo
ﬂ%ﬁ%@&tﬂmmﬁw%ﬁuﬁmﬂoﬂumaﬁ
lg%ﬁﬂmqﬂ% _%Z%M%gg
i X ._%1er m_-a._,_,_ﬂ_} -
_Z or] o o o 701__,_
zﬁuf@nﬂﬁwfjeawcm___zféw
éﬂépﬁ_hmﬂi 1&@@
g ﬂmno_%v ClE
R q}yi}_i
qouaL_ox_.oL u:w__a
aﬂogi;é@
o w__mAT7E
,.olﬂe
;ou_._._ﬂl
o%

82

tol MY 44 848 ZddteoldRI S

235

21

—_
fife)

<
il
xr
i

1o lE =g

S

=
—

oj4tetef o

| w2l Al

S

<
oK

o

&/

o

17] olejm, o]

s

glEor o5 A

A

T

o)

o

SO et Al

7t

Th
el
ol

7EA A At

S

il
T8O

oM

oF
W

mm.o

2ol Bara
o4

mmo

tod, A ZFA 2] Al

S

At AL

A}
&}

ZSHI7E A A A Al

oy

o

= A
T~ T

Hot 1078 o]

2=

ol
=)

Fsac. o

7| A1 8

ma

T

o

2| Al

Al

A HEl
—u

T A

__01_
H

Ea

=A

1L

ZQ o]: Reachability analysis, formal verification, safety verification, analog mixed-

signal circuits, DC-DC converters, Laplace s-domain analysis, XMODEL

SHH: 2018-36370

83

	Abstract
	Contents
	List of Tables
	List of Figures
	1 INTRODUCTION
	1.1 Background and Challenges
	1.1.1 Safety Verification of AMS Circuits Using Reachability Analysis
	1.1.2 Hybrid System
	1.1.3 Reachability Analysis
	1.1.4 Main Challenges

	1.2 Main Contribution
	1.3 Thesis Organization

	2 Formal Safety Verification of AMS circuits
	2.1 Overview of Model Checking
	2.2 Problem Definition
	2.2.1 Formal Definition of Safety Verification
	2.2.2 Safe operation of AMS circuits

	2.3 Conventional Hybrid System Reachability Analysis
	2.3.1 SpaceEx

	3 TRAJECTORY-FORM REACHABILITY ANALYSIS
	3.1 Reachability Analysis on Linear Circuits
	3.1.1 General Trajectory Form of Reachable Set
	3.1.2 Zonotope Trajectory Form of Reachable Set
	3.1.3 Computing Trajectory Form using Laplace s-domain

	Function
	3.1.4 Example: Reachable set of RC circuit
	3.1.5 Example: Reachable set of LC circuit
	3.1.6 Comparison with Existing Algorithms
	3.2 Hybrid System Reachability Analysis
	3.2.1 Hybrid System Representation of AMS Circuits
	3.2.2 Hybrid System Reachability Analysis Using Trajectory Form
	3.2.3 Example: Switched RC Circuit

	4 HYBRID SYSTEM REACHABILITY ANALYSIS OF NONLINEAR
	CUIT
	4.1 Piecewise-Linear Modeling of AMS Circuits
	4.2 Piecewise-Linear Approximation of Nonlinear Circuits
	4.3 Computing Guard Intersections at PWL Switching Boundary
	4.3.1 Hybrid System Representation of PWL circuits
	4.3.2 Computing Guard Intersection Using Trajectory Form
	4.3.3 Computing Reachable Sets in New Sub-Regions

	4.4 Time Complexity Analysis
	4.4.1 Trajectory Form Computation
	4.4.2 Guard Intersection Compuatation
	4.4.3 Reachable Set Computation from Guard Intersection
	4.4.4 Overall Complexity

	4.5 Computing Safety Bounds from Reachable Sets in Trajectory Form
	4.6 Benchmark: Numerical Example
	4.6.1 Error Measures
	4.6.2 Comparison of accuracy and runtime

	4.7 Conclusion

	5 SOA VERIFICATION OF DC-DC BUCK CONVERTERS
	5.1 SOA Verification of DC-DC Buck Converters
	5.2 Open-Loop Verification with PWM Control
	5.2.1 Experimental Scalability

	5.3 Closed-Loop Verification with PWM Control
	5.3.1 DC-DC Buck Converter with Digital Pulse-Width

	(DPWM) Control
	5.4 Verifying Safe Operating Area (SOA)

	6 CONCLUSION
	7 APPENDIX
	7.1 Code Implementation
	7.1.1 Example: Trajectory Form Reachable Set

	Abstract (In Korean)

<startpage>14
Abstract i
Contents iii
List of Tables vi
List of Figures vii
1 INTRODUCTION 1
 1.1 Background and Challenges 1
 1.1.1 Safety Verification of AMS Circuits Using Reachability Analysis 3
 1.1.2 Hybrid System 4
 1.1.3 Reachability Analysis 4
 1.1.4 Main Challenges 6
 1.2 Main Contribution 8
 1.3 Thesis Organization 10
2 Formal Safety Verification of AMS circuits 11
 2.1 Overview of Model Checking 11
 2.2 Problem Definition 13
 2.2.1 Formal Definition of Safety Verification 13
 2.2.2 Safe operation of AMS circuits 14
 2.3 Conventional Hybrid System Reachability Analysis 14
 2.3.1 SpaceEx 15
3 TRAJECTORY-FORM REACHABILITY ANALYSIS 19
 3.1 Reachability Analysis on Linear Circuits 19
 3.1.1 General Trajectory Form of Reachable Set 19
 3.1.2 Zonotope Trajectory Form of Reachable Set 21
 3.1.3 Computing Trajectory Form using Laplace s-domain Transfer
Function 22
 3.1.4 Example: Reachable set of RC circuit 23
 3.1.5 Example: Reachable set of LC circuit 25
 3.1.6 Comparison with Existing Algorithms 25
 3.2 Hybrid System Reachability Analysis 28
 3.2.1 Hybrid System Representation of AMS Circuits 28
 3.2.2 Hybrid System Reachability Analysis Using Trajectory Form 29
 3.2.3 Example: Switched RC Circuit 30
4 HYBRID SYSTEM REACHABILITY ANALYSIS OF NONLINEAR CIR-
CUIT 33
 4.1 Piecewise-Linear Modeling of AMS Circuits 33
 4.2 Piecewise-Linear Approximation of Nonlinear Circuits 34
 4.3 Computing Guard Intersections at PWL Switching Boundary 36
 4.3.1 Hybrid System Representation of PWL circuits 36
 4.3.2 Computing Guard Intersection Using Trajectory Form 36
 4.3.3 Computing Reachable Sets in New Sub-Regions 40
 4.4 Time Complexity Analysis 45
 4.4.1 Trajectory Form Computation 45
 4.4.2 Guard Intersection Compuatation 46
 4.4.3 Reachable Set Computation from Guard Intersection 46
 4.4.4 Overall Complexity 47
 4.5 Computing Safety Bounds from Reachable Sets in Trajectory Form 47
 4.6 Benchmark: Numerical Example 48
 4.6.1 Error Measures 49
 4.6.2 Comparison of accuracy and runtime 50
 4.7 Conclusion 53
5 SOA VERIFICATION OF DC-DC BUCK CONVERTERS 55
 5.1 SOA Verification of DC-DC Buck Converters 57
 5.2 Open-Loop Verification with PWM Control 57
 5.2.1 Experimental Scalability 62
 5.3 Closed-Loop Verification with PWM Control 64
 5.3.1 DC-DC Buck Converter with Digital Pulse-Width Modulation
(DPWM) Control 65
 5.4 Verifying Safe Operating Area (SOA) 69
6 CONCLUSION 72
7 APPENDIX 76
 7.1 Code Implementation 76
 7.1.1 Example: Trajectory Form Reachable Set 76
Abstract (In Korean) 82
</body>

