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Abstract

Distributionally robust control (DRC) and optimization (DRO) have recently be-
come popular approaches for handling uncertain distributional information in stochas-
tic systems with accuracy. In this work, we develop novel control methods for au-
tonomous systems in situations where only limited information is available about the
uncertainties in system or environment models. To achieve this, we estimate the un-
certainty distribution using disturbance samples or state-of-the-art learning techniques
and construct an ambiguity set around the nominal distribution. Our ambiguity set
contains all distributions whose Wasserstein distance from the nominal one is less
than the given radius. We then solve the optimal control problem with respect to the
worst-case distribution within the ambiguity set. However, the resulting problem is
infinite-dimensional and intractable. Therefore, we apply modern tools from DRO to
develop several methods for solving the Wasserstein DRC (WDRC) problem in various
settings with different theoretical properties and applications.

Our first method proposes a novel safety specification tool, the distributionally ro-
bust risk map (DR-risk map), for motion planning and control of a mobile robot in
a learning-enabled environment. The DR-risk map reliably assesses the conditional
value-at-risk of collision with obstacles whose movements are inferred by Gaussian
process regression. Our tool measures the risk under the worst-case distribution within
the ambiguity set to account for errors in the inferred distribution. To resolve the in-
tractability, we develop a semidefinite programming (SDP) formulation that provides
an upper bound of the risk. We apply the DR-risk map to perform motion planning and
control of autonomous systems in learning-enabled environments.

Our second method introduces a novel learning-based motion control tool that uses
an uncertainty propagation scheme based on an unscented transform to achieve better

prediction accuracy and computational efficiency. In addition, this approach replaces



the DR-risk constraint for any arbitrary safety loss function with a novel simpler upper
bound.

The WDRC framework can be applied not only to fully observable systems but
also to partially observable systems, which are more realistic. In our next stage, we
focus on the WDRC problem for partially observable linear stochastic systems and
present a new approximation scheme. This method leverages the Gelbrich bound of
the Wasserstein distance to penalize deviations from the nominal distribution. We de-
rive a closed-form expression for the optimal control policy and a tractable SDP prob-
lem for the worst-case distribution policy in both finite-horizon and infinite-horizon
average-cost settings. Our proposed method features several salient theoretical proper-
ties, such as a guaranteed cost property and a probabilistic out-of-sample performance
guarantee, demonstrating the distributional robustness of our controller. Furthermore,
the resulting controller ensures the closed-loop stability of the mean-state system.

Finally, we present a novel distributionally robust differential dynamic program-
ming algorithm for approximately solving the general nonlinear WDRC problem in
a tractable and scalable way. It provides a closed-form control policy for nonlinear
stochastic systems and therefore is applicable to learning-enabled environments. Our
approach features a novel decomposition of the value function and its iterative local-
quadratic approximations, making our method tractable and scalable without the need
for numerically solving any minimax optimization problems.

We analyze and demonstrate the effectiveness of our methods through simulation
studies on various systems, ranging from oscillator synchronization to autonomous
driving problems. Our contributions enable controllers that can handle distributional

uncertainties in both system and environment dynamics, as well as learning outcomes.

keywords: Distributionally Robust Control, Distributonally Robust Optimization,
Motion Planning, Motion Control, Robot Safety
student number: 2021-37761
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Chapter 1

BACKGROUND AND OBJECTIVES

1.1 Motivation and Objectives

Autonomous systems such as self-driving cars, robots, and smart manufacturing sys-
tems can have transformative impacts on our society. However, the performance of
such systems critically depends on the quality of information about the system model,
its environment, and the stochastic uncertainties affecting the system. This becomes
particularly challenging when the controller only has access to partial information
about the system coming from the noisy measurements. Advances in machine learning
allow inferring the unknown models given sensor measurements. However, the accu-
racy of the inference depends significantly on the quality of the data, statistical models,
and learning methods used. Therefore, in practice, obtaining an accurate probability
distribution of disturbances is often challenging.

The theory of optimal control addresses uncertain systems with full or partial state
information through stochastic or robust control frameworks. Stochastic control ap-
proaches assume the accuracy of provided distributional information and utilize it di-
rectly for system control. However, relying on unreliable information about uncertain-
ties can lead to undesirable system behavior, resulting in catastrophic events such as

collisions and accidents. For instance, as depicted in Fig. a collision occurs due
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(m 3

Stochastic Control

Robust Control
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Distributionally Robust
Control

Figure 1.1: Comparison of stochastic, robust, and DRC methods. The planned trajec-
tory of the ego vehicle is shown in red, while the learned trajectories of obstacles are

represented by green and blue lines.

to learning inaccuracies when executing a stochastic control policy that uses learned
trajectories of surrounding obstacles to control the ego vehicle (red). On the other
hand, Robust control methods aim to design a controller for the worst-case realization
of uncertainties, disregarding potentially useful but unreliable statistical information
about the disturbance distribution. This often leads to overly conservative behavior,
exemplified in Fig. [I.1]

The primary objective of this research is to tackle the core question:

How can we design an optimal controller for fully and partially observable
autonomous systems that is robust against distributional inaccuracies in given

(learned) nominal information?

To address this question, we propose several control approaches based on the dis-
tributionally robust optimization (DRO) that use limited data to make decisions while

hedging against distributional mismatches between the true distribution and the nomi-

5 A 2T 8



nal one. Moreover, we demonstrate that these methods offer theoretical and empirical
performance guarantees, including system safety, stability, and out-of-sample perfor-
mance, among others. By employing the proposed methods, we bridge the gap between
stochastic and robust control approaches by striking a balance between performance

and conservativeness (e.g., Fig. [L.1).

1.2 Related Works

1.2.1 Optimal Control of Systems Under Uncertainties

The literature on optimal control of systems under uncertainties can be mainly cate-
gorized into stochastic and robust methods. Stochastic optimal control methods aim to
design a controller by considering the underlying uncertainty distribution, often assum-
ing it to be Gaussian. A notable approach in this direction is the linear quadratic Gaus-
sian (LQG) control method [[1-4]. LQG minimizes the expected value of the quadratic
cost function given the measurements and assumes known disturbance statistics. By
leveraging the certainty equivalence principle, it provides a feedback control policy
with the same closed-form expression as in the deterministic case [S[]. Under specific
conditions, LQG exhibits outstanding asymptotic behavior, resulting in a stable closed-
loop system with a steady-state policy [4].

Another popular tool is the stochastic version of model predictive control (MPC) [6],
which is often used to handle control problems in nonlinear stochastic systems with
uncertainties and disturbances [[7,|8]]. Stochastic MPC considers the probabilistic na-
ture of uncertainties and optimizes control actions to minimize the expected cost or
achieve desired performance criteria over a finite future horizon. It formulates the con-
trol problem as a finite-horizon optimization problem, where the control inputs are
computed by optimizing a cost function that incorporates the system dynamics and
uncertainty distributions. Various techniques from stochastic optimization and numer-

ical optimization, such as stochastic programming-based approaches [9,/10], scenario-



based approaches [11}/12], or simulation-based optimization methods [|13}{14]], are em-
ployed to solve stochastic MPC problems. Stochastic MPC often requires generating
multiple scenarios or samples to adequately capture the uncertainty distribution, using
techniques like Monte Carlo simulation or sample-based optimization.

On the other hand, robust optimal control addresses uncertainties without assum-
ing a specific underlying distribution. Instead, it considers a prespecified uncertainty
set and seeks to find a worst-case controller for achieving robust performance [[15H18]].
Of particular interest are the Hy and H.-optimal control methods, which are closely
associated with robust stabilization of uncertain systems [[18-21]]. Both methods aim
to design a stabilizing controller by minimizing the Hy or H.,-norm of the closed-
loop system, treating disturbances as external inputs. Although the original problem is
formulated in the frequency domain, it can be equivalently formulated as a two-player
zero-sum game in the time domain. Robust MPC has witnessed significant develop-
ments in the past two decades, aiming to handle uncertainties in stochastic constrained
nonlinear optimal control problems. Early work on robust MPC primarily relied on
minimax formulations, where control actions are designed with respect to worst-case
evaluations of the cost function and constraints that must hold for all possible uncer-
tainty realizations [22,23]]. To address the conservativeness and infeasibility of min-
max MPCs, tube-based MPC has been developed, which employs a partially separable
feedback control law to handle uncertainties and their interactions with system dynam-
ics [24H26].

In practice, only limited knowledge, such as previous observations, is available
about the uncertainties. In such settings, stochastic optimal control methods are not
appropriate, as possible inaccuracies are ignored during control design. On the other
hand, robust methods result in conservative controllers, as any distributional informa-
tion about the uncertainties is disregarded. Recently, distributionally robust control
(DRC) has emerged as an alternative to stochastic and robust methods, capturing ro-

bust yet not overly-conservative performance [27H35]]. In DRC, the optimal control
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Figure 1.2: Illustration of the concept of DRC.

policy sought to minimize the expected cost with respect to the worst-case probability
distribution within an ambiguity set (see Fig.[1.2). DRC can be regarded as a dynamic
or multi-stage version of DRO. In the literature regarding DRO, it is common to de-
sign the ambiguity set based on a nominal distribution constructed from data so that it
contains the true distribution with high probability. For example, moment-based am-
biguity sets are popular in DRO, which include distributions satisfying some moment
constraints [36,37]]. Despite outstanding tractability properties, such sets often yield
conservative decisions and require accurate moment estimates. Designing the ambigu-
ity set based on statistical distances to contain distributions close to the given nominal
one is another popular option. Among various distances, such as the KL-divergence
and Prokhorov metric [38]], the Wasserstein metric attracts significant attention not
only in DRO [39-41] but also in DRC [29-33,42]. The Wasserstein ambiguity set has
a number of useful features, including offering a powerful finite-sample performance
guarantee [[39}/43]]. Furthermore, it is rich enough to contain relevant distributions,
thereby encouraging the DRO problem to avoid providing pathological solutions [40].

In contrast to research on fully observable settings, the literature about partially
observable DRC is relatively sparse. A few works are devoted to the distributionally
robust version of the LQG control method. For example, [44}45] propose a mini-
max LQG controller that minimizes the worst-case performance by restricting the KL-
divergence between the disturbance distribution and a given reference distribution.
In [46]], a partially observable Markov decision process is considered with finite state,

action, and observation spaces. The ambiguity set is chosen to bound the moments of



the joint distribution of the transition-observation probabilities. Another type of par-
tially observable systems, namely the Markov jump linear system, is studied in [28].
The authors propose a mechanism for estimating the active mode in a receding hori-
zon fashion and integrate this procedure with a data-driven distributionally robust con-
troller design using the total variation distance. In [31]], a data-enabled distributionally
robust predictive control method is proposed and studied using noise-corrupted input

and output data.

1.2.2 Safety in Learning-Enabled Environments

Safe learning for control is a fundamental problem in the field of robotics. Existing
methods can be categorized based on the learning models they employ, namely de-
terministic or probabilistic approaches. The first class predominantly includes deep
neural networks [47-49]], while the second class comprises methods like Gaussian Pro-
cesses (GPs) [50552], Bayesian linear regression [53,54]], and others. These learning
methods are often combined with safety specification tools, such as reachability-based
approaches [55H57].

Another direction in ensuring safety during learning is through safe exploration
techniques that leverage Lyapunov stability [52}/58|59]] or barrier functions [53}/60].
Learning-based MPC is also a popular approach that applies safe learning to control.
Most research efforts in this field focus on improving the prediction model by learn-
ing the system dynamics or fine-tuning its parameters [61-63]. Recently, MPC-based
safety filters have been introduced to enforce constraint satisfaction for any learning-
based controller [|64,/65].

In addition to conventional safety specification tools, modern approaches address
robot safety through various risk measures. Often, the risk is quantified by the probabil-
ity of collision, where the uncertainty arises from the learned robot model [51,66.(67]].
Another approach for assessing risk is conditional value-at-risk (CVaR) [68]], a coher-

ent measure widely advocated as a rational risk metric in robotics [69]. CVaR quan-



tifies potential safety losses in the tail of the distribution and accounts for rare but
catastrophic events, such as collisions. For example, in [[70]], the authors propose a
safety constraint using CVaR to ensure safe robot navigation. Furthermore, in [71]],
risk-averse policies are learned using offline data by optimizing the CVaR of the cost.
However, all the mentioned methods utilize the learned distribution to evaluate safety
risk without considering learning errors.

Recent research has addressed learning inaccuracies by employing DRC. Moment-
based ambiguity sets are often used to add robustness to chance constraints [[72,[73]].
However, such sets tend to be overly conservative and rely on the reliability of mo-
ment estimates. Wasserstein balls are another popular type of ambiguity sets used in
robotics [31,/74,(75[]]. Both [31]] and [[75]] limit the risk of unsafety through a distri-
butionally robust version of the CVaR constraint using the empirical distribution of
the system outputs and the learned mean and covariance of the environment states,

respectively.

1.3 Research Contributions

In this thesis, we present four novel Wasserstein distributionally robust control and
optimization methods, each designed using different techniques and problem settings.
The main properties and features of these methods are summarized in Figure The
main contributions of this work can be summarized as follows.

First, we address the issue of safety in motion planning and control of learning-
based autonomous systems evolving in an unknown dynamic environment. In our
method, the obstacles’ behavior is inferred via a Gaussian process regression (GPR)
using real-time observation. Then, we propose a novel safety specification tool called
the distributionally robust risk map (DR-risk map) that is robust against errors in learn-
ing results about the obstacles’ locations. Our risk map utilizes CVaR to measure

the risk of unsafety given the worst-case distribution within a Wasserstein ambigu-



System Uncertainty Controller

Method Type type Type

Properties

= Learned environment
DR-risk map Nonlinear Environment Implicit = Tractable SDP risk upper bound
= Probabilistic guarantee of safety

= Learned system and environment dynamics
System/ = |mproved prediction accuracy and computational

UT-MPC Nonlinear . Implicit -
Environment efficiency
= Tractable analytical risk upper bound
= Approximation via a Wasserstein penalty
Partially = Works in both finite- and infinite-horizon settings
PO-WDRC  observable, System Explicit = Theoretical properties (guaranteed cost property,
Linear probabilistic out-of-sample performance guarantee,
closed-loop stability)

= Approximation via a Wasserstein penalty
= |terative locally- drati imati

DR-DDP Nonlinear System Explicit erative ‘ocafly-quadratic approximations

= Scalable to high-dimensional systems
= Guaranteed cost property

Figure 1.3: The main properties and features of the proposed methods.

ity set. To alleviate the infinite-dimensionality issue of the DR-risk map, we propose
a tractable semidefinite programming formulation that provides an upper bound of the
DR-risk map. Furthermore, we show that the DR-risk map provides a probabilistic
guarantee on the loss of safety. Next, we demonstrate the utility of the risk map in
learning-based planning and control. Specifically, we develop a planning algorithm
that uses the risk map for generating safe trajectories and introduce an MPC method
with a risk constraint that can be evaluated by using its neural network approximation.
The performance and utility of the DR-risk map are demonstrated through simulation
studies for autonomous vehicles and service robots.

Next, we focus on ensuring the safe motion control of learning-based systems,
where the system model is not known, in contrast to the previous approach that only
dealt with unknown environment dynamics. We propose learning the unknown dynam-
ics using GPR and then exploiting unscented transform (UT) to improve the compu-
tation efficiency and prediction accuracy of both the robot and the environment. To
immunize the controller against distributional uncertainties, we again design an MPC

controller with the distributionally robust CVaR constraint (DR-CVaR), which com-



bines the advantages of both UT and DRO within a single framework. To overcome
the intractability, we devise a simple analytical upper bound of DR-CVaR exploiting
UT to estimate the safety loss distribution. As a result, we obtain a tractable distribu-
tionally robust UT-MPC algorithm that guides the robot to take cautious actions de-
spite learning inaccuracies. Our experiment results in an autonomous driving problem
demonstrate the capability of our algorithm to promote safe motion control in dynamic
environments, even in the presence of learning errors.

The distributionally robust control framework is not limited to fully observable
systems, such as those mentioned previously, but can also be applied to partially ob-
servable systems that are more representative of real-world scenarios. As a result, we
tackle the challenge of controlling partially observable stochastic systems, with a par-
ticular emphasis on the linear-quadratic case where the actual distribution of system
disturbances is not known. We first formulate a Wasserstein distributionally robust
control (WDRC) problem and propose a novel approximation technique with a spe-
cial penalty term using the Gelbrich bound on the Wasserstein distance. The resulting
partially observable WDRC (PO-WDRC) problem is solved using the dynamic pro-
gramming principle to derive a non-trivial Riccati equation alongside the closed-form
optimal control policy in both finite- and infinite-horizon settings. Finally, an exten-
sive theoretical analysis is performed for the resulting controller, which is shown to
possess a number of salient features, such as a guaranteed cost property, probabilistic
out-of-sample performance guarantee, closed-loop stability, etc.

Finally, we introduce a new algorithm called distributionally robust differential dy-
namic programming (DR-DDP) that can handle a broader range of nonlinear WDRC
problems, thereby closing the gap between existing WDRC methods for linear sys-
tems and enabling its application in learning-based environments. We develop a novel
method that uses a locally quadratic approximation of the nonlinear WDRC problem
to provide closed-form control policies that are robust against inaccuracies in the dis-

tributional information of the disturbances. For tractability, we use the Kantorovich



duality principle and decompose the value function in a novel way to derive com-
putationally tractable backward and forward passes. The advantage of the proposed
approach is not only tractability but also scalability, as there is no need to numerically
solve any minimax optimization problem. We show that unlike the standard dynamic
programming algorithm for nonlinear WDRC, the computational complexity of our
DR-DDP is polynomial in the dimension of the state space. Moreover, the resulting
control policy is shown to enjoy guaranteed cost property. We demonstrate the perfor-
mance of the algorithm on a kinematic car navigation and oscillator synchronization
problem, showing its applicability to a wide range of real-world problems.

In summary, the proposed WDRC methods enable the design of controllers that
are robust to distributional uncertainties in both system and environment dynamics,
even in the presence of learning inaccuracies. Our methods demonstrate exceptional
empirical performance while also featuring a number of salient theoretical properties

and guarantees.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter [2] introduces the DR-risk map,
presenting its tractable upper bound and probabilistic guarantee on safety loss. We
also describe the motion planning and control algorithms that utilize the DR-risk map
to address errors caused by GPR. Simulations demonstrate the effectiveness of this ap-
proach in various autonomous navigation problems. Chapter 3|introduces the UT-MPC
algorithm, which utilizes a UT-based uncertainty propagation scheme for improved
computational efficiency and prediction accuracy. We devise an analytical upper bound
of DR-CVaR that exploits the UT approach, ensuring the tractability of the problem.
The performance of the proposed method is demonstrated through simulations in an
autonomous driving scenario. Chapter {] addresses the WDRC problem for partially

observable linear stochastic systems. We introduce a tractable approximation and de-
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rive its solution in both finite- and infinite-horizon average-cost settings. We analyze
the theoretical properties of the resulting controller and discuss the stability aspects
of the closed-loop system. We demonstrate the performance of the proposed method
through numerical experiments on a power system frequency control problem. Finally,
Chapter 5 introduces the DR-DDP algorithm for nonlinear stochastic systems. We de-
rive an approximation to the nonlinear WDRC problem and develop a computationally
tractable backward and forward passes. Numerical experiments demonstrate the out-
of-sample performance of our algorithm and its scalability to high-dimensional state

spaces.

11



Chapter 2

Distributionally Robust Risk Map for Learning-Based
Motion Planning and Control: A Semidefinite Program-

ming Approach

2.1 Introduction

Ensuring safety in motion planning and control critically depends on the quality of
information about the possibly uncertain environment in which a robot operates. For
example, a mobile robot may use sensor measurements to take into account the un-
certain behavior of other robots, human agents, or obstacles for collision avoidance.
With advances in machine learning, sensing, and computing technologies, the adop-
tion of state-of-the-art learning techniques is rapidly growing for a robot to infer the
evolution of its environment. Unfortunately, the accuracy of inference is often poor
since it is subject to the quality of the observations, statistical models, and learning
methods. Using inaccurately learned information in the robot’s decision-making may
induce unwanted behaviors and, in particular, may lead to a collision. This work aims
to develop a safety risk specification tool that is robust against distribution errors in
learned information about moving obstacles and is thus useful for ensuring safety in

learning-based motion planning and control.
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Safety specification tools for systems with learning-enabled components can be
categorized into two classes. The first class concerns the safety of learning-enabled
robots, while the second class considers learning-enabled environments. The tools in
the first class use or learn reachable sets [56.[76|], Lyapunov functions [77,/78]], or con-
trol barrier functions [60}/79,[80] as a certificate for safety when the system dynamics
of robots are unknown. The literature on the second class is relatively sparse. Existing
methods to handle learning-enabled environments use chance constraints [81]], logis-
tic functions [82]], collision detection via Monte Carlo sampling [83]], and detection
of conflicts between intention and expectation [84], among others. Our method be-
longs to the second class. Departing from the aforementioned tools, we propose to use
a risk measure for safety analysis in learning-enabled environments. Among various
risk measures [85H87]], we adopt the conditional value-at-risk (CVaR) for its capability
of distinguishing rare tail events [68],88]].

This work is also related to learning-based motion planning and control, which are
the main applications of our safety specification tool. The following two cases are con-
sidered in the literature: (¢) learning the system dynamics of robots, and (i) learning
the environment. The first case is the most well-studied direction, which is based on
RRT* [89,90], model-predictive control [511/61,/67,91]], and model-based reinforce-
ment learning (RL) [92194]], among other methods. These tools employ various learn-
ing or inference techniques to update unknown system model parameters that are, in
turn, used to improve control actions or policies. On the other hand, the methods in the
second class emphasize learning the environment. In particular, for learning the behav-
ior (or intention) of obstacles or other vehicles, several methods have been proposed
that use inverse RL [95-97], imitation learning [98,/99], and Gaussian mixture mod-
els [100,/101]], among others. The learned information about environments can then be
used in probabilistic or robust motion planning and control algorithms [[102H107]]. Our
method is classified as the second type since it uses the learned information about the

motion of obstacles. However, unlike the previous approaches, we emphasize the im-
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portance of decision-making that is robust against potential errors caused by learning
the environment. For this, we take a distributionally robust optimization (DRO) ap-
proach [39-41]] to address errors in learned information about the motion of obstacles.

In this work, we propose a novel safety specification tool, which we call the distri-
butionally robust risk map (DR-risk map). It is a spatially varying function that speci-
fies the safety risk in a way that is robust against errors in learning or prediction results
about the obstacles’ locations. Specifically, the obstacles’ future trajectories are as-
sumed to be inferred using GPR based on the current and past observations. However,
the predicted probability distribution of the obstacles’ locations is subject to errors,
making it difficult to accurately evaluate the risk of collision. To resolve this issue,
our method evaluates the risk under the worst-case distribution in a so-called ambi-
guity set. Thus, the robot’s decision made using the DR-risk map will generate a safe
behavior even when the true distribution deviates from the learned one within the am-
biguity set. Unfortunately, the computation of DR-risk is challenging since it involves
the infinite-dimensional optimization problem over the ambiguity set of probability
distributions.

The main contributions of this work are threefold. First, we propose a tractable
semidefinite programming (SDP) formulation that provides an upper bound of the
DR-risk map. The SDP approach, which exploits techniques from DRO, alleviates
the infinite-dimensionality issue inherent in the DR-risk map. Further, we provide its
dual formulation, which has fewer generalized inequalities, as well as a probabilistic
guarantee on the loss of safety. Second, we demonstrate the utility of the DR-risk map
in learning-based motion planning. A distributionally robust RRT* algorithm is pro-
posed to use the risk map for generating a safe path despite the learning errors caused
by GPR. Third, we devise a motion control tool that employs the neural network (NN)
approximation of the DR-risk map. Our method uses MPC with risk constraints that
can be evaluated by solving SDPs. To avoid solving the SDPs in real-time, we propose

approximating the DR-risk map as an NN, which is then embedded in the MPC prob-
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lem. Our NN approximation has the salient feature that the same NN can be used to
approximate the DR-risk map for any time and any obstacles since the dependence is
encoded in the input information. The performance and utility of the DR-risk map are
demonstrated through simulation studies for autonomous vehicles and service robots.
The results of our experiments show that our motion planning and control tools suc-
cessfully ensure safety even in the presence of distribution errors caused by GPR.

This paper has been significantly expanded from its preliminary conference ver-
sion [[74]]. The DR-risk map is formally defined, and its SDP approximation and perfor-
mance guarantee are proposed in this chapter. In particular, the construction of DRO
is simplified without sampling from the distribution obtained by GPR. Furthermore, a
motion planning algorithm is proposed using the DR-risk map, unlike the conference
version, which focuses on motion control. Last but not least, the NN approximation of
risk constraints in motion control is newly considered in this chapter. We also clarify
the distinction between this paper and our previous work [33]]. In [33[], a DR-CVaR
constraint is used to ensure the safety of the robot in the presence of additive environ-
mental uncertainties by simply considering the empirical distribution. However, the
focus of the current paper is entirely different in that we aim to address learning inac-
curacies when the motion of the obstacles is learned by GPR. In this distinct setting,
our motion control tool is constructed in a novel way exploiting techniques from SDP
and NN approximations.

The remainder of the paper is organized as follows. In Section[2.2] we introduce the
problem setup and the GPR approach to learning the future trajectories of obstacles.
In Section we define the DR-risk map and present its tractable reformulation as
an SDP. In Section [2.4] we propose a motion planning algorithm using the DR-risk
map to address errors caused by GPR. In Section [2.5] the risk map is approximated
by an NN and applied to an MPC problem for motion control. Finally, in Section [2.6]
we present the application of our risk map to motion planning and control problems

through simulations in various environments.
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2.2 Preliminaries

2.2.1 Mobile Robot and Obstacles

In this work, we consider a mobile robot modeled by the following discrete-time sys-

tem:
xr(t + 1) = f($7“(t)a Ur(t))
yr(t) = Cap (1),

where z,(t) € R"*, u,(t) € R™ and y,(t) € R™ are the robot’s state, input, and

@2.1)

output, respectively, where the subscript ‘r’ represents ‘robot’. The system output is
defined as the Cartesian coordinates of the robot’s center of mass (CoM).

The robot navigates a cluttered environment with L moving obstacles, e.g., other
robotic vehicles. The motion of the /th obstacle is described by the following discrete-

time system for £ = 1,..., L:

ab(t +1) = o' (z(1), ub (1)) (2.2)

y5(t) = Clal(t), (2.3)

where (1) € R and ub(t) € R are the obstacle’s state and input, respectively.
The subscript ‘o’ represents ‘obstacle’. The output y(¢) € R™ is the Cartesian coor-
dinates of the obstacle’s CoM and has the same dimension as the robot’s output y,(t).
Here, ¢ is a possibly unknown (nonlinear) function. In practice, ¢ can be replaced
with its parametric approximation ¢ , for example, using NNs, and the parameters w
can be estimated using training data. See Appendix [2.8.1]for an example. For ease of
exposition, we assume that ¢¢ or its parametric approximation is given.

For safety, our robot should navigate within a safe region, which is determined by
the obstacles’ behaviors. To define the safe region, we over-approximate each obstacle

as the smallest enclosing ball centered at the CoM of the obstacle[| The safe region

'Our method can handle obstacles of any shape through the proposed over-approximation. This ap-
proach might be conservative in certain cases. However, the conservativeness is beneficial for ensuring

safety.
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dist (Y, yo)

Figure 2.1: The car-like robot (green) is centered at y,. :== (X, y,), while the obstacle
(orange) is centered at y, := (X,,¥,). The smallest balls enclosing the robot and the
obstacle have radii r, and r,, respectively. With margin r, the safe distance 7, can be

chosen as r, + r, + 5.

for each obstacle can be defined as the region outside the open ball centered at the

obstacle’s CoM with safe distance ry > O:

VAt) = {yr(t) € R™ | dist(yr (1), y5(t)) > 7o}, 2.4)

where dist(y,(t),y5(t)) is the Euclidean distance between the robot’s CoM and the
obstacle’s CoM, defined by

dist (- (), y5(1)) == llyr(t) — y5(t)]l2-

An example of such a configuration is shown in Fig. 2.1} where a car-like robot
(green) should navigate to avoid a car-like obstacle (orange). Both the robot and the
obstacle are approximated by the smallest balls enclosing them with radii r, and 7%,
respectively. Using an additional safety margin r,, the distance between the CoMs of

the robot and the obstacle should be no smaller than the sum of all radii:

rg:m—l—rf;—i—rs.

S Eas kg

] =
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Figure 2.2: Trajectories of an obstacle predicted using GPR with and without neural
network approximation of the dynamics. The mean of each trajectory is represented

by a point, while the covariance is represented by an ellipsoid.

Having L surrounding obstacles, the safe region with respect to all obstacles is

defined as the intersection of all the safe regions Y (t):

L
Y(t) = V().
(=1

Note that the safe region is time-varying.

2.2.2 Learning the Motion of Obstacles via Gaussian Process Regression

Even though the dynamics ¢° of obstacles are assumed to be known or estimated us-
ing some function approximators, the actions taken by the obstacles are unknown;
thus, our robot has no information about the obstacles’ future behaviors. Furthermore,
even if the actions were known, the resulting trajectories might include some inaccu-
racies since ¢’ might not accurately describe the real motion of the obstacles. To take
such uncertainties into account, the observations made by the robot can be useful for
inferring (or learning) the obstacles’ movements.

In this study, we use GPR, which is one of the most popular non-parametric meth-
ods for learning a probability distribution over all possible values of a function [[108].
Ideally, GPR can be used to directly infer the future state of obstacle £ given the current

state information. However, leveraging some information about the system dynamics
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as a global model can significantly increase the accuracy of local predictions and re-
duce the size of the required training data. Hence, in this work, we aim to learn the
function 1/* that corresponds to the control action of the obstacle ¢ given its state in-
formation and use it in conjunction with the obstacle dynamics ¢! to predict the future
trajectory. For ease of exposition, we suppress the superscript £.

GPR is performed on a training dataset, which is constructed from previous obser-
vations about the obstacle’s state and action. In particular, at stage ¢, the training input
data is chosen as X = {x,(t — 1), z,(t — 2),...,2,(t — M)} with the correspond-
ing training output data § = {u,(t — 1), uo(t — 2),...,ux(t — M)}, where M is the
number of observations. Since observations are imperfect, we assume that for the ¢th
observation

7' =)+,

where v is an i.1.d. zero-mean Gaussian noise with covariance

Ev:diag([ag,lagg,zw-- T3 n))-

» Yung,

Assuming that each control action has independent entries, the GPR dataset for the jth

dimension of control action is constructed as
D;={(%.¥}),i=1,...,M}

forj=1,...,n,.
In GPR, each dimension of ¢(+) has a Gaussian prior distribution with mean func-
tion m;(z) and kernel k;(x, z). In this work, we use a zero-mean prior with the fol-

lowing radial basis function (RBF) kernel:
! 2 1 NT 7r—1 /
kj(z,2') = 0% ; exp 75(95756) L (z—2)],

where L; is a diagonal length scale matrix and 0]20 ; 1s asignal variance. The prior on the
noisy observations is a normal distribution with mean function m;(%") and covariance
function K;(%, %) + 03’ ;1, where K;(%,%) denotes the M x M covariance matrix of

training input data, i.e., K;l’k) (x,%) = k;j xO, xk))y,
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For a new arbitrary test point x, the posterior distribution of the jth output entry is

also Gaussian. Its mean and covariance are calculated as follows:

(%) = (%) + K (%, %) (K (%, %) + 03 1) 7H (55 — my (%)) (2.5)

57 (%) = kj(x,x) — K;(x,%)(K;(%,%) + o) ;1) 7 Kj(%,x). (2.6)
The resulting GP approximation of ¢)(x) is given by

P(x) ~ N (pu(x), Zu(x)),

where
pra (%) = [ (%), i (%), -5 g (%)) T

and

Bu(x) = diag([Z,(x), 25 (x), ..., Ty (x)]).

The GP approximation of the obstacle’s input is computed given its current state. At
stage t, for each prediction time ¢ + k, where £k = 1,..., K and K is the prediction
horizon, the obstacle’s state and action are approximated as a joint Gaussian distribu-

tion of the form

zo(t + k) % g S¢S
Uo(t + k) sl I DS S

where the superscript (¢, k) denotes the (t+k)th prediction at stage ¢. By the first-order
Taylor expansion of (2.5) and (2.6), the mean and covariance of u, (¢ + k) are obtained

as
,afjk = /Lu(ﬂ;k)
~ R B ~ . T
SEF = Su(A5Y) + Vi (B SE (V pa (55")) @D
SEE = SER(Vp (5%)) T

To propagate the obstacle’s state with the new distribution information about u, (t+

k), we perform the following update starting from the current state z,(t): Set jiz" =
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,(t) and $5° = 0, and successively linearize ¢ around (5", ik"):

A = o ),
B = Vg, S g (i, )T
Vb (A, S, )T

+ 2V, (abF, i) EENV g (AlF, i) T

(2.8)

The corresponding mean and covariance of the obstacle’s output y, (¢t + k) are com-
puted by
fiyt = Copt, ShF=c.5brc, . (2.9)

As mentioned previously, we assume that we are given only the estimate of the
obstacle dynamics ¢. For comparison, we also performed GPR without the neural
network approximation of the dynamics, directly inferring the states of the obstacles
without predicting its control input. As shown in Figure 2.2] (a), the predicted tra-
jectories in the early stages do not accurately follow the actual trajectory, as there is
limited information from the previous observations. Furthermore, even with more data
collected, it becomes impossible to predict the trajectory’s curvature when there is a
sudden change in the obstacle’s heading angle (Figure (b)). It is worth empha-
sizing that although the predictions are not entirely accurate, incorporating the neural
network dynamics significantly improves the prediction accuracy compared to the case
of directly predicting the states. Over time, as long as there are no sudden changes in
the obstacle’s behavior, the learned trajectory gradually becomes closer to the actual
trajectory (Figure [2.2](c)). This example illustrates that the prediction results of GPR
are not always reliable, even when we have an estimate of the obstacle’s dynamics.
To guarantee safety even in such cases, we propose a distributionally robust approach,

which is designed to be proactive to errors in learning such sudden changes.
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2.3 Distributionally Robust Risk Map with Wasserstein Dis-

tance

To perform safe motion planning and control, the robot may want to estimate the risk
of collision at any location in the configuration space with respect to the L obstacles.
However, it is challenging to measure the risk of collision in a reliable way since the
results of GPR may be inaccurate, as demonstrated in the previous section. To resolve
this issue, we propose the distributionally robust risk map, which is a spatially vary-
ing function of the robot’s current position. It estimates the conditional value-at-risk
(CVaR) of collision in a distributionally robust manner using the possibly erroneous

results of GPR.

2.3.1 Measuring the Risk of Collision Using CVaR

To begin, we define the loss of safety at each prediction time ¢ + k, evaluated at ¢, with

respect to obstacle £ as

Tk yh) = —llye(t + k) — y5(t + k)3 (2.10)

It follows from @24) that J; 1. (yr, y5) + r? is non-positive if and only if the robot
navigates in the safe region }(t + k). However, due to the uncertainty in the pre-
dicted y/(t + k), it may be too conservative to impose the deterministic constraint
Tk (Yr,y5) +77 0.

Instead, we consider the CVaR of the loss of safety, defined by

(Ten(yr y) — 2)F
1l -«

)

Pl
CVaRa"™ [Tk (yrs 4)] == miﬂgEPf,k z+
1S

where Pf} . is the probability distribution of y’(¢ + k), obtained by GPR (2.9) at time
t,and (2)* := max{z, 0}. The CVaR of J; (v, y’) measures the conditional expec-
tation of the loss within the (1 — a) worst-case quantile as illustrated in Fig. Thus,
if CVaREf’k [Jt,k(yr, yﬁ)] + 7“? < 0, then the robot is located in the safe region with a

probability of no less than a.
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CVaR has several advantages over its popular alternative, value-at-risk (VaR),
or, equivalently, chance constraintsE] First, unlike VaR or chance constraints, CVaR
is capable of distinguishing rare events as it takes into account the tail distribution
through conditional expectation [68]]. Second, CVaR is a convex risk measure unlike
VaR and thus is more computationally tractable than VaR for general probability dis-
tributions [109]]. Third, as opposed to VaR, CVaR is coherent in the sense of Artzner
et al. [110] and is advocated as a rational risk measure in robotics applications [[69].
Thus, CVaR has recently received a considerable attention in the robotics commu-
nity [111H113]].

In practice, it is unlikely that we can accurately compute the CVaR of the loss of
safety since Pﬁ ;. obtained by GPR is imperfect. To handle such distribution errors, we
propose using the following distributionally robust version of CVaR:

DR-CVaRoo[Joa(yry)] == sup  CVAaRS [Fon(ynsl)]. @D

Qf x€D;
which measures the risk of unsafety for the worst-case distribution in an ambiguity
set ]Dg .- We consider the Wasserstein ambiguity set, constructed as a ball with radius

0.5 > 0 around the nominal distribution va «» Obtained by GPR, i.e.,
Diy = {Q € P(R™) | Wa(Q, Piy) < 01}, (2.12)

where W5 (Q, Pf, 1) is the 2-Wasserstein distance between Q and Pf .- The p-Wasserstein
metric W), (Q, P) between two distributions Q and P supported on = C R™ is defined

as

1/p
W@ P)i= | min, { [ ly=v/IP axs) IH%:Q,H%ZPH ,

where « is the transportation plan, the ith marginal of which is denoted by IT’x. It

represents the minimum cost for transporting mass from Q to P using non-uniform

The VaR of a real-valued random variable X is defined as VaRq (X) := inf{z € R | Fx(z) > a},
where Fx is the cumulative distribution function of X. Thus, the VaR constraint VaR.(X) < 4§ is
equivalent to the chance constraint Prob{X < ¢} > . Furthermore, VaR,(X) < CVaRq(X) as

shown in Fig.
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Figure 2.3: Conditional value-at-risk of a random loss.

perturbations with the cost of moving a unit mass from y to y’ prescribed by ||y —v/'||?,
where || - || is a norm on R™.

It is worth emphasizing that the role of radius 6, . is different from that of . As
CVaR(X) considers the conditional expectation of X over the worst-case (1 — «)
quantile, « is able to correctly control the conservativeness of CVaR,, (X)) only when
the probability distribution of X is known precisely. However, this is no longer valid
when the probability distribution is inaccurate. The distributionally robust risk aims
to tackle this issue by enhancing robustness against distribution errors. The radius
0. controls the size of allowable distribution errors, unlike . As observed in our
experiments, even with a large o, CVaR is insufficient for ensuring safety in learning-
enabled environments since it is unable to anticipate distributional uncertainties such
as learning errors in GPR (refer to the last part of the supplementary video clip).

The Wasserstein metric is also known as the earth mover’s distance, as it can be
interpreted as the minimum cost of turning one pile of earth into another, where each
distribution is viewed as a unit amount of earth. The Wasserstein ambiguity sets have
several advantages over other types of ambiguity sets. First, the Wasserstein metric
incorporates a notion of how close two points in the support are to each other un-

like, for example, phi-divergences. Thus, Wasserstein DRO problems avoid providing
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unreasonable pathological solutions [40]]. Second, the Wasserstein ambiguity sets pro-
vide a powerful finite sample guarantee for empirical nominal distributions, and this
feature is useful in sequential decision-making problems [30,39]]. Third, Wasserstein
DRO is strongly related to the regularization techniques in machine learning and can
be applied to alleviate overfitting [41]].

Concerning all the obstacles, we define the distributionally robust risk map (DR-
risk map) R; . : R" — R for prediction time ¢ + k, evaluated at ¢, as

Rek(yr) = max Rk (yr V), (2.13)

where

+
RE(yr, V') 1= (DR-CVaRa o[y y5)] +77) (2.14)

The DR-risk map returns the maximum risk for all obstacles. Its value is zero if there
is no risk; otherwise, its value is positive. In our safe motion planning and control

methods, the following constraint is used to limit the risk of collision:
Rex(yr) <6, (2.15)

where § > 0 is a risk tolerance parameter.

It is important to note that the computational complexity of the risk map increases
linearly with the number of obstacles due to the maximum operator involved in its
computation. However, as the number of obstacles increases, the feasible region of
the robot that satisfies the constraint (2.15)) shrinks, making it harder to find feasible

solutions.

2.3.2 Semidefinite Programming Formulation

Unfortunately, it is nontrivial to directly compute the DR-risk map Ry (y,) or its
proxy DR-CVaR, ¢ [jt’k.(yr, yﬁ)] as this involves an infinite-dimensional optimiza-
tion problem over the set of probability distributions. We reformulate it as a finite-
dimensional problem by exploiting some structural properties of CVaR and Wasser-

I ey 1
":l"\-_i _'-;.- ok 11
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stein distance. The following theorem presents the result of reformulation as a semidef-

inite program (SDP), where the dependence on ¢, k and ¢ is encoded solely in y,(t +

k), it and LR

single NN, independent of ¢, k and /.

. Later, this feature will allow us to approximate the risk map by a

Theorem 2.1. Let Pﬁ i be the distribution of ye (t+ k) with mean [L;;’k’g and covariance

i;’k’g, estimated by GPR. Then, the DR-CVaR (2.11)) has the following upper-bound:

min z +

S.t.

~tk0 Stk L
T+ e+ Te[Z] + A(07, — |1y |3 — Te[2g"])

l1—«

A —T v+ A
_(7 + )\[Li;k7£)T €

AT A(SLHHY? -,
AEE g | T
A oyt k

+ ; 7= yr(t+ k) - 0

(Y —wt+k) Tzt +E)3
r

o
7T

AeERy, zeR, 7R, y e R™

FeS™, eeRy, ZeSP.

(2.16)

Its proof is contained in Appendix[2.8.2] The SDP problem (2.16) can be solved us-

ing well-known algorithms, such as interior-point methods [114+116], splitting meth-

ods [[117], augmented Lagrangian methods [[118], etc. Its dual problem is more of an

interest, as it involves fewer generalized inequalities.

26



6=10"%a=09 6=5x10"2,a=0.95 6=10"1a=095

N

°
%

[
=

Worst-Case-Safety Risk

Worst-Case-Safety Risk
Worst-Case-Safety Risk

So

Figure 2.4: Risk maps for two obstacles with means ﬁt kil = (3,2.5), i1 ~t r2 = (8,6)
and covariances 5" = diag[0.003,0.002], 5552 = diag[0.001,0.004] for # =
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Figure 2.5: Projection of the risk maps onto the robot’s configuration space.

Corollary 2.1. The dual problem of [2.16) can be expressed as the following SDP:
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Furthermore, the duality gap is zero.

Its proof can be found in Appendix [2.8.2] The dual problem is also a tractable SDP
problem, which can be solved using the same algorithms as for the primal. However,
the dual problem has less linear matrix inequality constraint in addition to a
number of linear equality and inequality constraints, which are easier to handle for
most of the off-the-shelf solvers than the positive semidefinite constraints in the primal
problem (2.16). The dual problem is useful in some cases the SDP solver might fail
to solve (2.16) due to numerical issues. We can use the solution to the dual problem if

there is no primal solution returned by the solver.

2.3.3 Example of DR-Risk Maps

By discretizing the robot’s configuration space and solving either or for
all discretized points, we can construct the desired DR-risk map [2.13)). Fig. [2.4] shows
examples of such risk maps, which are obtained by solving the primal problem for
a risk confidence level @« = 0.95 with two obstacles (L = 2) at stage ¢t + k. In
the shown risk maps, the estimated means and covariances for two obstacles’ CoMs
are set to iy = [3,2.5], ;™% = [8,6] and £55' = diag[0.003,0.002], 255 =
diag[0.001, 0.004], respectively. Each peak of the risk map is located at the worst-case
mean of each obstacle’s CoM with a value of 7’% = 1. The risk diminishes as the robot
moves away from the obstacle. Fig. [2.4]demonstrates that the non-zero area of the risk
map expands as the radius 6 increases. Also, the peak area for a bigger radius becomes
flatter, meaning that more regions are considered “risky”. Therefore, the robot’s deci-
sion using this map will be more robust against errors in the estimated distribution as
the Wasserstein ambiguity set gets larger.

Fig.[2.5]shows the projection of the risk map onto the robot’s configuration space. It
shows that a bigger 6 generates a more conservative risk map. The risky area enlarges
with the size of our ambiguity set. The computation time for constructing the DR-

risk map with the two obstacles is reported in Table Here, the SDP problem is
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Table 2.1: Computation time for constructing the DR-risk map with L = 2 obstacles,

averaged over 40,000 positions of the robot.

Radius 6 1074 102 5% 1072 1071

Computation
8.6+0.26 4.6+0.53 3.8+0.05 3.84+0.05
Time (ms)

solved for each obstacle separately using a conic solver, called MOSEK [119]. Even
though the computation slows down near the obstacles, the overall computation time
is relatively small for all ’s.

For an efficient construction of the risk map, we propose an NN approximation in
Section[2.5.1] The NN approach avoids any discretization of the robot’s configuration
space or training of multiple networks for different ¢, k, and £ because such dependence

y’k’e and ig’k’z as previously mentioned. In the following two

is encoded in y, (t + k), it
sections, we present applications of the DR-risk map to safe motion planning and

control in learning-enabled environments.

2.3.4 Probabilistic Guarantee on the Loss of Safety

An advantage of using the Wasserstein ambiguity sets in DRO is that one can ob-
tain a non-asymptotic probabilistic performance guarantee. For example, it is shown
in [41]] that Wasserstein DRO provides an out-of-sample performance guarantee when
the nominal distribution is chosen as an empirical distribution. However, we consider
the case where the nominal distribution is obtained by GPR. We show that the DR-risk
map provides a probabilistic guarantee on the true loss of safety under

the following assumption on GPR result.

Assumption 2.1. Let P denote the probability measure for the GP dataset D =
{(@",95) M, and let [LZ’kD and 2;’% denote the mean and the covariance matrix of

Yo(t + k) obtained from GPR performed at time t using D. We assume that there exist
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. tk .. . . . Otk
a non-negative constant wgp and an Ny X Ty posiiive semidefinite matrix Qb such

that for some p € (0, 1) the following probabilistic error bound holds:

~t,k k
P{D | lyo(t + k) — il < Wi} = (1= p)¥,
and i;’kD = Q%k with probability 1.

Assumption[2.T|represents a probabilistic bound on the GPR result evaluated view-
ing the dataset D as a random variable. This performance requirement for GPR can be
satisfied via a probabilistic uniform error bound for GPR under some mild conditions
such as the Lipschitz continuity of ¢(-) [1204/121 ]E]We now establish a probabilistic

guarantee on the loss of safety in the following theorem:

Theorem 2.2. Suppose that Assumption[2.1]is satisfied. Consider the Wasserstein am-
biguity set Dy ;. with time-varying radius 8, . If the radius satisfies the following con-
dition

07, > (wi')? + Tr[Q'], (2.18)
then the DR-risk map REI@ constructed using the GP dataset D provides the following
probabilistic guarantee on the loss of safety (2.10):

P{D| Tk (yr,¥0) < REe(yr) — 77} = (1 —p)*.

Thus, the probabilistic bound holds for any ambiguity set Dy, with a time-invariant

radius 0 > maxy i, 0 .

Its proof can be found in Appendix [2.8.2] Theorem [2.2] confirms that the DR-risk
map is capable of dealing with errors in the GPR results, often occurring due to sud-

den changes in the obstacle’s motion patternf_f] The theorem considers a time-varying

3Note, that the uniform error bound for GPR can only be derived when the obstacle dynamics ¢ are
known. However, when using a neural network approximation, an additional analysis of the bound is

required.
*Theorem holds for each obstacle. The extension to a similar probabilistic guarantee on the joint

loss of safety for all obstacles is straightforward under the assumption that the GP datasets for all obstacles

are independent. Then, the guarantee on the loss of safety holds with a probability of (1 — p)L k.
I [ ey - 1

- 'I |
|2 )
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Wasserstein radius 6; ;, computed depending on the error in the estimated obstacle’s
position. As a result, the distributional robustness of our risk map is adaptively ad-
justed according to the currently available data. At each time ¢, with zero prediction
horizon k = 0, 8 o can be set to 0 and thus the ambiguity set is a singleton that contains
only the current position y,(t) of the obstacle. As we predict further, i.e., & > 0, the
GP error bound grows, resulting in a larger radius 6, determined using (2.18). This
adaptive construction of the ambiguity sets suggests a way to adjust 6 ;. depending on
inaccuracies in the GPR results. However, the GP error bound in Assumption [2.1]is
often loose, limiting the practical use of (2.18)). If that is the case, the radius can be

calibrated using the collision probability as presented in Section[2.6]

2.4 Application to Learning-Based Distributionally Robust

Motion Planning

As the first application of the DR-risk maps, we propose a learning-based motion plan-
ning algorithm based on RRT* [[122]]. Unlike previous RRT algorithms, our algorithm
takes into account possible errors in the learned distribution of the obstacles’ behav-

iors.

2.4.1 Main Algorithm

The motion planning algorithm presented in this section is an online sampling-based
algorithm for computing a path from the robot’s starting point to the goal point in near
real-time, taking into account moving obstacles. The overall algorithm, similar to the
original RRT* algorithm, consists of the nearest neighbor search, steering towards the
sampled node, safety check, and rewiring. Inspired by [[123]], the path is generated only
for a given time, after which the robot executes the committed trajectory and restarts
the planning process from a new initial state, removing unreachable nodes from the

tree. The key extension to the original algorithm is the use of the DR-risk map for
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safety checks. In addition, the algorithm leverages GPR to infer the future trajectories
of the obstacles based on either the system dynamics or its approximation (2.28]).
The risk map in (2.13) is employed to guarantee the safety of the derived paths in
two stages. First, each node computed in the growing stage of the tree is classified as
either safe or unsafe based on the risk value to later include it in or exclude it from the
safe subtree. Second, the cost function of planning includes the risk value to escape
possibly unsafe nodes. Steering towards a sampled node is performed according to the
given robot’s dynamics by applying controls that satisfy the input constraints.
Moreover, when changing the parent from one node to another, the feasibility of the
trajectories and control inputs are checked once again to meet the given requirements.

Our learning-based distributionally robust RRT* (DR-RRT*) algorithm is pre-
sented in Algorithmm given goal state gg,1, maximum depth K, risk weight constant
w, other hyper-parameters 6, « and r, for computing risk, as well as the radius rgrrr
for neighborhood construction, computed as in [122, Theorem 38].

At the beginning of the algorithm, 7 is set as an empty tree to be expanded later.
Initially, the GP dataset D! is also an empty set. In each iteration, a new safe subtree

Tsafe 18 defined (Line . Then, the robot’s state z,(t) as well as the obstacle’s state
l

and action z,

(t) and u’(t) are observed at current stage ¢, as performed in Line @
Thereafter, the tree is constructed with z,(¢) as the root (Line . Since there might be
some nodes that are unreachable from the current state, we remove the corresponding
edges and vertices in Line[§] These nodes are all nodes that do not root from the current
state z,.(¢). In Line E], the pruned tree is updated with a new depth value starting from
the root, the depth of which is set to & = 0.

Having new perceived information about the obstacles’ motions, we perform GPR
in Line [IOHI6] Here, the GP dataset is updated with new observations, after which
the GP approximation of v/¢(x) is updated by learning mean and covariance functions

1 (x) and Dol (x) as in (2.3) and (2.6). To predict the trajectory of each obstacle

starting from ¢ + 1 to ¢t + K, the mean and covariance at ¢ are initialized as the current
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observation and the zero covariance matrix, respectively. In Line the mean
and the covariance of the obstacle’s action, state and output are computed by (2.7),
(2-8) and (2.9). Here, K corresponds to the desired time horizon or, equivalently, the
maximum depth of the path.

Using the new prediction results, the safe tree updated in Line using the
nodes of 7 satisfying the risk constraint R; ;(C,q) < ¢ with depth less than threshold
K. This is accomplished by calculating the DR-risk R ;,(C}q) for all nodes according
to (2.13), where the SDP problem or its dual needs to be solved for each
obstacle. Here, k corresponds to the depth of the node, and therefore the predictions of
step k are used to compute the risk for a node of depth k. The new value of risk is used
to update the costs for the corresponding nodes. Next, in Line 241 we proceed to
the expansion of the tree 7 for some fixed time 7, where 7gas. 1 also updated with new
nodes. The details of the tree expansion are given in Algorithm[2]and Section [2.4.2]

When the planning time is over, the best partial path is retrieved and passed to
execution, being constructed from the root of the safe tree towards the goal (Line [25),
where the current state corresponds to qu] The robot follows the path for one step
by driving it towards the next state ¢; in the planned path (Line [26). The algorithm
continues until the distance between the tree root (the current robot state) and the
desired ggq1 is no greater than tolerance e.

For real-time execution of the algorithm, it is necessary for the robot to operate
while the planning is being performed. This can be achieved by executing Line [26]in
parallel with the remaining parts of the algorithm. To ensure the termination of the

algorithm, the tree will be grown until the planning time reaches 7 seconds.

3All paths returned by the algorithm are feasible since the safe tree is constructed only from the

feasible nodes satisfying the safety condition.
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2.4.2 Tree Expansion and Rewiring

The tree expansion and rewiring algorithm is given in Algorithm [2] Similar to the
classical RRT#, the tree is expanded by randomly choosing a point in the configuration

space (Line[2). Then, in Line [3|the node to be extended is chosen as the minimizer of

C(Qa Qrand) = C(Q) + E(Qa Qrand)a

where £(q, ¢rand) is the length of the path from ¢ to ¢yang and ¢(q) is the cost of node

q, defined as
c(q) = c¢(Parent(q)) + wR; 1 (Crq) + L(Parent(q), q). (2.19)

The worst-case risk is taken into account in ¢(q), where the SDP problem is solved for
(t 4 k)th prediction performed at current stage ¢ with & being the depth of node g.

In Line [ the depth & for the new node is set to the depth of the nearest node
incremented by 1 for computing risk in the next step. The new node gyeyw 1s Obtained
in Line [5| by steering the chosen best node towards ¢;anq. Here, the control input is
chosen as the one with the least cost ¢(gnew ). The safety risk is given by (2.13) and
computed by solving the SDP or its dual forall/ =1,...,L.

In Line @ the neighborhood of ¢y is constructed from the nodes in safe subtree
Tsate With distance less than rRRT t0 gnew. The best parent of gney is chosen in Lines
The parent is initialized as gnearest- However, this is changed if the cost to gpew via
Gnear 18 less than the cost via gnearest and the new path is feasible. The node gnew With
the updated parent is added to the tree in Line [I3] only after selecting the parent. The
subtree Tsafe 1S also updated if the risk of the node gueyw With depth £ is less than the
threshold ¢ (Line [I6HI7).

Similar to the original RRT* algorithm, the rewiring of the neighborhood nodes
is performed in Line after the process of growing the tree is completed. For
all gnear in Nyear, the cost is calculated taking gpeyw as parent. If the new cost is less

than the existing one and the path is feasible, the parent of gpeay in both 7 and Ty, is
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changed to gpew. The costs for gnear as well as its children nodes are updated to take
into account the cost for gneyw. Unlike the original RRT* algorithm, in Line [25H26| we
also update the safe subtree, where the edge from gpew tO qpear is added if the new
depth is less than K. Otherwise, gpeqar is removed from the subtree to keep the safe

subtree within the maximum depth K.

2.4.3 Graphical Illustration

A step-by-step example of our algorithm is illustrated in Fig. where the blue ball
represents an obstacle centered at the predicted mean at time steps k = 0, ..., K with
K = 5. In Fig.[2.6}1, the robot is steered from the old root to the new root. Thus, the
part of the tree not growing from the new root is pruned. The vertices in orange with
depth 3 and 4 have positive risks with respect to the predicted obstacle’s location for
k = 3 and k = 4, respectively. Hence, these nodes are not included in the safe subtree
Tsafe- In Fig. 2.6}L, gyana is sampled in the configuration space and the corresponding
(nearest 18 selected from Ty, 5. with the lowest cost. A gnew is found by steering gnearest
towards Grand. In Fig [2.6}11, a ball of neighbors for gyeyw is created (in orange). This
ball includes nodes in green as well as gpearest- The current lowest cost is set to the
cost from the root of the tree to gnew Via @nearest-

In Fig [2.6H1V, the costs to gnew Via other neighboring nodes are computed. It is
observed that the length to gpeyw and the risk are larger via other neighbors than via
Gnearest- This is because the depth of gneyw becomes 5 and the risk is computed for ob-
stacles at k = 5, whereas when gpearest 1S the parent, the depth of queyw is 4 and the
obstacle is farther from the node. Therefore, in Fig V, the parent of gpeyw is cho-
Sen as Gnearest- AlSO, gnew 1S added to the safe subtree since the risk is non-positive.
Fig. 2.6} VI illustrates the rewiring process, where the cost for the neighbor node im-
proves when its parent iS ¢pew-

Our motion planning method is a learning-based algorithm based on CC-RRT* [[124],

another real-time algorithm for probabilistically feasible motion planning built upon
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the chance-constrained RRT (CC-RRT) algorithm [|125]] and the original RRT* [[122].
Unlike CC-RRT*, our algorithm first learns the distribution of the obstacles’ future
trajectories from new observations and replaces the probability of collision with the
distributionally robust risk map defined in (2.13)). Then, instead of chance constraints,
the DR-risk map is used as a constraint to ensure safety as well as to penalize pos-
sibly risky trajectories in the cost function. It is well known that CVaR constraints
induce more conservative behaviors compared to chance constraints. Moreover, our
DR-risk map yields to take into account possible errors in the learned distribution of
the obstacles’ behaviors that in practice cannot be captured by CC-RRT*. As an exten-
sion to CC-RRT, distributionally robust RRT (DR-RRT) is introduced in [[72f], where
a moment-based ambiguity set is used, unlike our algorithm. The resulting determin-
istic constraint is similar to the one in CC-RRT* with the difference that it leads to a
stronger constraint tightening. On the contrary, our DR-RRT* uses CVaR constraints
in addition to the Wasserstein ambiguity set, which inherently takes into account mo-
ment ambiguity, thereby providing an additional layer of robustness as mentioned in
Appendix [2.8.2] Furthermore, it is worth mentioning that most motion planning algo-
rithms work only for a restricted set of problems. For example, in both CC-RRT* and
DR-RRT, the region occupied by obstacles should be represented by a convex polytope
with uncertainties in translation, while in both Risk-RRT* [[106] and Risk-Informed-
RRT* [[126] the risk map is constructed as a grid by discretizing the state space. On
the contrary, our method does not impose such restrictions, allowing any obstacle of
an arbitrary shape and motion as long as the loss can be constructed as a piecewise

quadratic function.

2.5 Application to Learning-Based Distributionally Robust

Motion Control
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In addition to motion planning, our DR-risk map can be used for motion control
in risky environments. As the second application, we propose a learning-based motion
control technique that limits the risk of collision in a distributionally robust way. In
this case, our motion controller determines a control input that is robust against errors
in learned information about the obstacles’ movements.

We formulate the motion control problem as the following MPC problem with

DR-risk constraints:

K—1
min (@ (t),w) = ) ey, u) +q(vx) (2.20a)
k=0
st xpy1 = f(og, ug) (2.20b)
Y = Ciy (2.20c)
zo = 2 (t) (2.20d)
Rew(yr) <6 (2.20e)
T €X (2.201)
up €U (2.20g)
where x := (z¢,...,2x), u := (ug,...,ux—1),y := (Yo,...,yx) are the robot’s

predicted state, input and output trajectories over the prediction horizon K. The con-
straints (2.20b) and (2.20g) should be satisfied for £ = 0,..., K — 1, the constraint
(2.20c) should hold for k£ = 0, ..., K, and the constraints (2.20€) and (2.20f) are im-

posed for £ = 1,..., K. Here, the stage-wise cost function ¢ : R™ x R"* — R and
the terminal cost function ¢ : R™ — R are chosen to penalize the deviation from the
reference trajectory "¢/ and to minimize the control effort as follows:
¢y ur) = Qi — v I3 + | Ru 3
2
a(yr) = 1@y — v 5,

where (), Q¢, R = 0 are the state and control weight matrices. The sets X' and U
represent the state and input constraint sets, respectively, which are assumed to be

polyhedra for simplicity.
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The constraint integrates the risk map into the controller synthesis by lim-
iting the DR-risk to user-specified tolerance level . When f(xy, ux) is a linear
function, the DR-MPC problem can be reformulated into a bi-linear SDP by writ-
ing the risk constraint in the SDP form (2.16). However, solving such a problem is a
computationally expensive task. To alleviate the computational issue, we propose to

approximate the DR-risk map by an NN that can be trained offline.

2.5.1 Neural Network Approximation of DR-Risk Map

Consider the feed-forward NN in Fig. with 7 layers and N; nodes in each layer
with a ReLU activation function. The inputs of the NN are the robot’s position y,.(t+k)
and the parameters of the predicted distribution of the obstacles’ behaviors, ﬂty’k’g and
(SLF4)1/2 while the target is the solution of the SDP problem @H

For any position of the robot and the predicted position of the obstacle, the risk

map computed in (2.14) can be approximated using the NN as

R (e, V550,0) = (a5 +17) 7, (2.21)

where
Wt = max{0,a™}, i=1,...,7 -1 (2.22)
a"t = Wik b, =1, . (2.23)

Here, W; € RNi*Ni-1 and b; € RV are the weight and bias, hf’z € RV and af’é €
RV are the output and activation of the ¢th layer with hg £ e RN being the input of the
network with Ny = ny(n, + 5)/2. The activation function in (2.22)) follows from the
definition of ReLU. The input of the network is constructed from the robot’s position
yr(t + k) € R™ and the parameters of the predicted distribution of the obstacles’

behaviors ,&ty’k’z and (f]ty’k’g)l/ 2 as follows:

he' = [yt + 0T, (G55 T, Vech[(izk’z)l/Q]T}T’

®The architecture in Fig. assumes fixed 6 and «. However, these parameters may also be added as

additional input variables to the NN.
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where vech[] is an operator vectorizing the lower triangular elements of the matrix.
Note that the NN is independent of ¢, k, and ¢ since the dependence is encoded in the
input information. Therefore, we can use a single NN to approximate the DR-risk maps
for all ¢, k, and ¢. Moreover, like the exact risk map in (2.13)), the approximate risk
map does not require additional information such as the true positions of the obstacles.
Real-time behaviors are captured through the inputs of the NN, namely the robot’s
position and the probability distribution of the obstacles’ positions inferred via GPR.
This feature is inherited from our distributionally robust formulation that focuses on
the worst-case distribution determined not by the current obstacle configuration but by
the learned distribution.

To train the NN, a dataset is created by solving for different values of
yr(t + k), [ﬁy’k’z and (ig’k’g)l/ 2 for fixed # and «. Thereafter, the NN is trained via
backpropagation to approximate the DR-risk map. As an example, the mean squared
error (MSE) and mean average error (MAE) for all training, validation, and test sam-
ples are reported in Table [2.2] showing that both errors are small.

To validate this approach, we compare the DR-risk map and its NN approxi-
mation computed using 50,000 random realizations of y, ,&Z’k’e ~ U[0,10]? and
SERE ~ 14]0,0.7)3 for & = 105,104,103, 1072 and o = 0.95. We also randomly
generate the radius 7 ~ [0, 0.2] and the risk tolerance level d, ~ U[0,0.5r2] to show
the flexibility of our approximation method. As shown in Table the probability
that the approximate risk map reports safe events as unsafe is quite small. Further-
more, the approximate risk map is not so conservative since the probability of misre-
porting unsafe events as safe is also small. These results show the validity of our NN

approximation approach.

2.5.2 Approximate Distributionally Robust MPC

Using the NN approximation of the DR-risk map, we eliminate the need to solve the

optimization problem (2.16) in the constraints of the MPC problem (2.20)). Moreover,
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since only the inputs y,-(t + k), ,uz,k * and i?k’g of the NN depend on the ¢, k and /, the
same NN can be used for all time stages and obstacles, by simply providing appropriate
inputs to the NN. Therefore, the use of our NN approximation significantly reduces the
computational burden required to solve the MPC problem. More specifically, we obtain

the following approximate MPC problem.

Proposition 2.1. Suppose that the NN approximation (2.21)) of the DR-risk map is
given for fixed parameters 0 and . If the risk map in (2.20e)) is replaced with the NN

approximation, the DR-MPC problem (2.20) can be expressed as follows:

K-1
min  J(z,(t),u) := Z c(yk, ux) + q(yx) (2.24a)
k=0
stz = f(zg, ug) (2.24b)
yr = Cay (2.24¢)
zo = xr(t) (2.24d)
et = [yl (EEPOT, veeh[(S594)1/2) T T (2.24¢)
Wrh% | +bg+r <9 (2.24f)
R RS 1) S (2.24g)
hEt >0, AR >0 (2.24h)
AR =0 (2.24i)
an € X (2.24)
up €U, (2.24K)

where W; and b; are the weights and the bias for the ith layer. Constraints (2.241)-
(2.241) are imposed fori =1,..., 7.

Proof. Consider the feasible set for constraint (2.20¢)):

FSk

true *

= € B | max R{y(, ") < 8}

={yr € R™ | Ry(yw, Y') < 6 VL3
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Using the NN approximation (2.21)) of the risk map, the feasible set can be approxi-
mated by
FSEy o= {ye € R | REE(y,, V550, 0) < 6 V4. (2.25)

For fixed ¢, k and /, the ReLU in (2.22) can be interpreted as projecting a; onto the
non-negative orthant, i.e.,
.1 2
hi:argmm{fo—aiHQ | xZO}. (2.26)
oeRN: L2
Since (2.26) is a convex optimization problem, h; = z* and A} are its primal and dual

optimal solutions if and only if the following KKT conditions are satisfied:

* *
=X +a;

(2.27)

Replacing constraint (2.20¢)) in the original MPC problem with (2.25) and then ex-
pressing ReLU (2.22)) as (2.27), we obtain the approximate DR-MPC problem. O

The problem can be solved using nonlinear programming algorithms, such
as interior-point methods [127,|128]], sequential quadratic programming [[129}|130].
Moreover, it can also be solved using spatial branch-and-bound algorithms that ex-
ploit the bilinear nature of the nonconvex constraint. Similarly, branch-and-bound al-
gorithms [131-134] can be used replacing the nonlinear ineqalities (2.24¢)—(2.24h)
with corresponding big-M constraints. In this work, for computational efficiency, we
employ the interior-point solver implemented in FORCES Pro, which is tailored to

efficiently find a locally optimal solution for multistage optimization problems [[135].

2.6 Simulation Results
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In this section, we provide two case studies to demonstrate the performance and
utility of our DR-risk map: one for motion planning and another for motion control.
All algorithms were implemented in MATLAB and run on a PC with a 3.70 GHz Intel
Core 17-8700K processor and 32 GB RAM. The SDP problems and were
solved using a conic solver, called MOSEK [[119]. In the motion control experiment,

the FORCES Pro [135]] was used to solve the DR-MPC problemm

2.6.1 Motion Planning

As with the first case study, motion planning is performed using our learning-based
DR-RRT* in dynamic 2D environments. We consider a car-like robot with the follow-

ing discrete-time kinematics:

X (t 4+ 1) = x.(t) + Tsv,-(t) cos(6,.(1))
yvr(t+ 1) =y (t) + Tsvp(t) sin(6,.(t))

0,(t +1) = 0,(t) + Tyo, () tan(5,())/ Lr,

where x,.(t),y,(t) and 0,.(t) are the states of the vehicle—representing the Cartesian
coordinates of the robot’s CoM and its heading angle, while the velocity v, (¢) and
steering angle ¢,.(t) are the control inputs. The sampling time is 75 = 0.1 sec, and
L, = 0.8 m is the length of the robot. Note that the robot can be covered by a circle
with radius r, = 1.

We consider two different scenarios: (i) a 2D environment with obstacles with
unknown dynamics, and (i) a 2D environment with obstacles with single integrator
dynamics. In both cases, the parameters for the risk map are chosen as & = 0.95,r; =
0.1 and rﬁ = 1 for all £ = 1,2, while the maximum depth for the tree is chosen
as K = 10. The control inputs for the robot are limited to |v.(t)| < 5m/v? and

16,-(t)] < 30 deg. In the beginning of the algorithm, since there are no observations,

"The source code of our DR-RRT* and DR-MPC implementation is available at

https://github.com/CORE-SNU/DR-Risk-Map.
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the GPR dataset D’ includes only the current values of the /th obstacle’s states and

inputs. New samples are added to the dataset as time goes on.

Highway Scenario

In the first scenario, the robotic vehicle navigates a highway-like 2D environment with
L = 2 obstacles with unknown behaviors. We parameterize the dynamics model ¢¢
as described in Appendix using a previously obtained transition dataset of 10°
observations and a feedforward NN with 3 hidden layers, 20 neurons in each. The state
for each obstacle consists of the Cartesian coordinates of its CoM and the heading
angle, while the inputs are its velocity and angular acceleration.

Fig. shows the trajectories generated by learning-based DR-RRT* for § =
1074,1072,5 x 1072, 107! at different time instances, where two obstacles are shown
in green. The goal point is on the second lane. For this experiment the risk tolerance
level § = 0.2205 is set to be 5% of the maximum possible risk 77 = (r, + rf + 7).
Fig.[2.8|(a) presents the situation when the first obstacle changes the lane from the third
to the second lane. Since the obstacle will be on the same lane as the robot according
to the prediction, all paths generated by DR-RRT* except for § = 10~ choose to
move to the third lane. The case of § = 10~ is less conservative than the other cases
as expected.

After safely avoiding the obstacle, the robot needs to switch back to the second
lane to reach the goal point. As shown in Fig. [2.8](b), the prediction of another obsta-
cle’s future motion indicates that the obstacle will continue following the second lane,
while in reality, it plans to move to the third lane. Since DR-RRT* with § = 1074
considers errors in prediction only in a small ball, the robot chooses to overtake the
obstacle, performing risky maneuvers. Meanwhile, the robot with a larger 6§ makes a
safer decision, staying in the third lane. In Fig. [2.8](c), all cases reach the desired goal
point, completing the algorithm. Overall, it is observed that the case with the small-

est radius # = 10~* generates the most aggressive (but still safe) path. Increasing
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the radius drives the robot farther away from the obstacles, thereby guaranteeing safe
navigation with enough of a safety margin. Clearly, § = 10~! ensures a larger safety
margin compared to the case of 1072 or 5 x 1072,

Fig. illustrates how the tree grows at t = 18 in the case of §# = 1072 The
tree starts from the current state of the robot. At the same time, GPR is executed to
predict the obstacles’ future motions. Unfortunately, the prediction capability is poor
when there are abrupt changes in the behavior of the obstacles. However, the prediction
errors are taken into account in our DR-risk map, guaranteeing safety even when the
prediction is not accurate. The grey tree corresponds to 7 obtained using Algorithm|[I]
However, to ensure safety, only the nodes with depth less than or equal to K and
satisfying the risk constraint are added to the safe subtree 7gaf.. The best path (in red)
given to the robot for execution is then chosen from 7gafe.

Table. [2.4] shows the cumulative cost of the trajectories generated by DR-RRT*
with different 6’s. A bigger radius induces a more conservative behavior, driving the
robot away from the shortest path. Thus, the total trajectory length and the cost increase
with 6.

To examine the robustness of our method depending on the ambiguity set size
and determine an appropriate radius 6, the average collision probability is computed
for N = 1000 realizations of GP dataset D’. In particular, we assume a zero-mean
Gaussian measurement noise with variance 0.001/ and learn hyperparameters of the
GP prior based on each realization of D*. The probability of collision is calculated as

the collision rate averaged over IV simulations, i.e.,
tk,l - ¢ 2
PA = BL Zualyr ) + 72 > 0}

where P is the empirical distribution of the GP dataset, and (¢ + k) is the robot’s
position at time ¢ + k planned at stage ¢ using the learned distribution with D, while

y’ (t+k) is the actual position of obstacle £. The overall collision rate is then computed
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as
T K L

Peon = U U U Pzgkﬂé

t=0 k=0 ¢=1
The results of our analysis are reported in Table For all 6’s, the collision probabil-

ity is very small and decreases with the size of the ambiguity set. Therefore, one can
adjust the robustness of the robot’s decision by choosing a radius # to reach the desired
level of collision probability. In this example, § = 5 x 1072 is a reasonable choice if

the targeted collision rate is 1%.

Road Intersection Scenario

In the second scenario, we consider a road intersection, where an obstacle has an un-

known behavior with a single integrator dynamics:
To(t + 1) = 2o(t) + Tsuo(t),

where z,(t) is the obstacle’s position and wu,(t) is the velocity vector in each direc-
tion. This setting allows us to compare our method with other algorithms that can only
handle limited problem classes. Specifically, we compare our method to the classical
RRT* [[122] as well as the CC-RRT* algorithm [124]]. This comparison is impossi-
ble in the first scenario, where angular uncertainties are considered in addition to the
placement uncertainties; CC-RRT* can only handle the latter. In the case of RRT*,
we assume that the prediction results are accurate and consider the predicted mean to
be the actual obstacle’s position, ignoring uncertainties. In CC-RRT*, the obstacle is
over-approximated as an octagon to attain its polytopic representation. CC-RRT* uses
chance constraints assuring that the probability of navigating in the safe set is greater
than or equal to . We set the risk weight in the cost to w = 0 to ensure the
same conditions for all algorithms.

Fig.[2.10]shows the simulation results of DR-RRT* with § = 10741073, 5x 1073
and comparisons to RRT* and CC-RRT* at different time instances. In Fig. (a),
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the robot reaches the intersection without considering the obstacle, as it is still not in-
terfering with the robot’s path. The obstacle is trying to turn right, which is predicted
well by GPR. However, as shown in Fig. [2.10] (b), when the robot is trying to steer
left, the obstacle abruptly changes its decision to turn left. This situation is clearly not
predicted well by GPR, and therefore RRT* and CC-RRT* both fail to find a feasi-
ble solution. However, our DR-RRT* takes into account such an error in the learning
result, guiding the robot to avoid a collision. Even though DR-RRT* succeeds in gen-
erating a collision-free path for all 8’s, the path with smaller 6 is riskier than that with a
bigger one. With the biggest radius (6 = 5 x 10~3), the robot avoids the obstacle with
a sufficient safety margin. Finally, Fig. 2.10] (c) shows the completed paths generated
by DR-RRT*, whereas both RRT* and CC-RRT* fail to complete their paths. We can
conclude that RRT* is not suitable for motion planning in a highly uncertain environ-
ment, while CC-RRT* is applicable if the prediction results are accurate, as it does not
consider distributional errors. However, our DR-RRT* is capable of performing safe
path planning even with the existence of distributional errors in the learning results.
Similar to the previous scenario, the probability of collision is computed using
perturbed predictions with the same perturbation parameters. Both RRT* and CC-
RRT* fail to complete motion planning, and thus the probability of collision is 1 for
both. In the case of our DR-RRT¥, the collision probability is 0, meaning that there is

no collision for all Wasserstein ambiguity sets considered in this specific experiment.

2.6.2 Motion Control

In the second case study, we consider a motion control problem for a service robot

in a cluttered environment such as a restaurant. The mobile robot is assumed to move
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according to the following double integrator dynamics:

1 0 Ty 0O T2/2 0

01 0 Ty 0 T2/2
z(t+1) = x,(t) + ur(t),

00 1 0 T, 0

00 0 1] 0 T |

where z,.(t) = (xr(t), yr(t), Var(t), vyr(t)) € R* is the robot’s state at time ¢, consist-
ing of the Cartesian coordinates of its CoM and the corresponding velocity vector, and
the input u, (t) = (az(t), ay,(t)) € R? is chosen as the acceleration vector. Again, 7T
is the sampling time, selected as 0.1 sec.

The circular robot of radius . = 0.09 aims to track a given reference trajectory in
a cluttered 2D environment with some static and dynamic obstacles that may represent
other service robots or human agents. Each of . = 3 dynamic obstacles is a circular
object of radius rﬁ = 0.1, and the safety margin is set to be r; = 0.01. The control
input for the robot is limited to lie in U := {u € R? | |luls < 4}, while its state
is restricted to X := {z € R* | (0,0,-2,—-2) < = < (6,6,2,2)}. Each of the
Lgtay = b static obstacles is approximated by an ellipsoid, defined as 0%, := {z €

R? | (z — 2k,) P Yz — 2%,,) < 1}, where 2, is the center of ith elliptical

1 at

obstacle and P; = PZ.T > 0 determines how far the ellipsoid extends in every direction
from z’,,,. The following additional constraints are added to problem (2:24) to avoid

the static obstacles:

(yr — métat)—rpi_l(yk - métat) >1 Vi=1,..., Lstat-

The NN approximation of the DR-risk map is performed as described in Sec-
tion We sample 500,000 different values of y,.(¢+k) and ,1;3’“5 from [0, 6]? and
vech [(25%%)1/2] from U[0,0.1]* and divide them into training, validation and testing
datasets with a ratio of 0.8 : 0.1 : 0.1.

We begin the MPC algorithm by applying GPR to predict the mean ﬁty’k’ﬁ and

covariance flfjk’f for all dynamic obstacles ¢ = 1,..., L for future time steps k =
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1,..., K based on the latest M = 10 observations of the obstacles’ behaviors. This
step is repeated in every time stage t before solving the optimization problem (2.24).

We compare the performance of our approximate DR-MPC (2.24)) with that of
the CVaR-constrained sample average approximation MPC (CVaR-MPC) [70] with
N = 100 sample data generated from the predicted distribution, as well as the chance-
constrained MPC (CC-MPC) for elliptical obstacles [136]. The risk confidence level
is chosen as o = 0.95. For CVaR-MPC and DR-MPC, the risk tolerance level 6 =
4 x 107 is set to be 1% of the maximum possible risk 72 = (7, + 75 + 5)?. In our
approximate DR-MPC, the radius is chosen as § = 1075,1074,1072.

Fig. [2.T1] shows the simulation results for the three MPC methods with prediction
horizon K = 10. In both CVaR-MPC and CC-MPC, the GPR prediction results are
used for risk assessment. However, due to some sudden and unpredictable movements
of the obstacles, the GPR results are not trustworthy. As shown in Fig. [2.T1](a), the mo-
bile robot follows the reference trajectory and approaches the first dynamic obstacle. In
this stage, all controllers try to avoid the obstacle by passing it on the left with different
safety margins. However, even though CC-MPC finds a feasible solution under the in-
accurately predicted distribution, a collision occurs in reality due to the prediction and
approximation errors. Similarly, after a few steps, the robot controlled by CVaR-MPC
collides with the obstacle. Unlike the two controllers, DR-MPC controls the robot to
safely avoid the obstacle and continue following the reference trajectory despite the
inaccurate GPR results. This is because, instead of directly using the learned distribu-
tion, DR-MPC considers the risk of unsafety with respect to the worst-case distribution
within distance # from the learned one. This is shown in Fig. (b), where the robot
has already passed the obstacle. The radius 6 affects the behavior of the robot in a way
that increasing it results in a more risk-averse steering behavior. In particular, DR-
MPC with # = 1072 generates the most conservative trajectory, while the trajectory
for § = 107 is the least safe, being close to that generated by CVaR-MPC. This is

because, as § — 0, the ambiguity set vanishes, and DR-CVaR reduces to CVaR. In
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Fig. (c), the robot approaches the third and fourth dynamic obstacles. Similar to
the previous situation, DR-MPC guides the robot to safely avoid the obstacles with
some safety margins depending on the size of the ambiguity set. Finally, as shown in
Fig. (d), the robot controlled by our DR-MPC method successfully reaches the
goal point, unlike the other two methods.

The cumulative costs incurred by the three methods are reported in Table
Obviously, the cost increases as the controller becomes more conservative, as the robot
drives away from the obstacles with larger safety margins.

Table [2.5] also shows the probability of collision, averaged over 1,000 differ-
ent GP datasets computed similarly to the motion planning case. CC-MPC has the
highest probability of collision, followed by CVaR-MPC. This is justified by the fact
that chance constraint can be equivalently expressed using value-at-risk (VaR), while
CVaR-MPC uses CVaR. By definition, it holds that VaR[X]| < CVaR[X], and there-
fore the CVaR-based CVaR-MPC induces more conservative behavior compared to
CC-MPC. Our DR-MPC reduces the collision probability to 0.034 even with a very
small ambiguity set (§ = 10~°). Increasing the radius to § = 10~2 further reduces the
probability of collision with the obstacles to 0.001.

The computation time reported in Table 2.5 is measured from the starting point
to the goal point. The results show that CC-MPC and DR-MPC with # = 10~° take
a similar amount of time to complete motion control, while CVaR-MPC is slightly
slower due to the number of constraints in the optimization problem for each sample.
As for the remaining 0’s, increasing the safety of the robot is comparatively computa-
tionally heavy as finding a feasible trajectory satisfying the risk constraints becomes
more time-consuming. From these results, we can conclude that it is reasonable to use
6 = 10~% in this problem, which produces a sufficiently robust behavior with moderate

operation cost and computation time.

81n the cases of CC-MPC and CVaR-MPC, we continued to perform motion control even after colli-

sions.
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2.7 Conclusions

We have proposed a novel risk assessment tool, called the DR-risk map, for a mo-
bile robot in a cluttered environment with moving obstacles. Our risk map is robust
against distribution errors in the obstacles’ motions predicted by GPR. For computa-
tional tractability, an SDP formulation was introduced along with its dual SDP. The
utility of the risk map was demonstrated through its application to motion planning
and control. The DR-RRT* algorithm uses the DR-risk map in the cost and constraint
to generate a safe path in the presence of learning errors. Furthermore, to reduce the
computational cost, an NN approximation of the risk map was proposed and embed-
ded into our MPC problem for motion control. The results of our simulation studies

demonstrate the capability of the DR-risk map to preserve safety under learning errors.

2.8 Appendix

2.8.1 Neural Network Approximation of Obstacle Dynamics

As mentioned in Section [2.2.1] the system model of obstacles might be unknown in
practice. However, with some observation data, an approximate model ¢,, of ¢ can be
constructed using NNs. In this work, we use feedforward NNs with ReL.U activation
functions and L, hidden layers to approximate the obstacles’ dynamics. The input
of the NN consists of the obstacles’ state and action vectors at each time stage. The
target of the NN is chosen as the difference between the next state and the current
state to take advantage of the discrete nature of the dynamics. The training data is
collected through the observation of N random transitions (z,(t), us(t), zo(t + 1)),
constructing the input and target datasets DY, = {(20(t), uo(t)) i\l’o_l and D{,, =
{zo(t +1) — xo(t)}i\ﬁ’o_l, respectively. Given the datasets, the NN ¢,, is trained by

minimizing the mean squared error:
Ny—1

Lo(w) = %Iléw(wo(t),uo(t)) — (zo(t +1) = zo(t))[1%,

t=0
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where the parameter vector w represents the network weights. As a result of optimiza-

tion, we obtain the following approximate model for obstacle dynamics:

Guw(wo(t), uo(t)) = o(t) + uw(wo(t), uo(t)), (2.28)

which replaces the function ¢ in the obstacle dynamics (2.8)).

2.8.2 Proofs
Proof of Theorem 2.1]

Proof. We use the definition of CVaR to wrtie the DR-risk as follows:

. 1
DR-CVaRo, 0 [T (yr: Yo)] = sup inf (z + 7B (T (s 0) — z)*])

1
. Q — )7
<if (- e 3500w - )7)).

where the inequality follows from the minimax inequality.
It is well known that for the standard Euclidean norm || - ||2 the 2-Wasserstein
distance between two normal distributions Q = A (u1, 1) and P = A (g, 32) has a

closed-form expression [[137]]:

W2(Q,P> = \/Hlu’l — /’LQH% + B2(Zl’ 22)7
where
32(21, o) :=Tr [21 + 3, — 2(2}/22221/2)1/2}

Consider the following convex uncertianty set, which is the projection of ID onto

the space of means and covariances:

Up(, %) = {(1.3) eR™ x ST |l — @} + B, 9) < 62} 229)

The uncertainty set Uy (i, EN]) is convex and compact since it is the projection of the
Wasserstein ball. We now leverage the Gelbrich hull, defined in [41], which contains

all distributions supported on = whose mean and covariance fall into the uncertainty set
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Uy (I, f)) In our case, since we consider nominal Gaussian distributions, the Gelbrich
hull is identical to the Wasserstein ball D defined in (2.12)). Due to nonlinearity of
covariance matrix in the underlying distribution, it is reasonable to perform change
of variables and represent the uncertainty set Uy(fi, ‘Z?) by the second-order moment

M = E[yoy,] = ¥ + pup". Then the new uncertainty set Vy(ji, ¥) will be defined as:
Vo(ii, X) = { (1, M) € R™ x S | (u, M — pp") € Up (3, X) }, (2.30)

which is also a convex set.

Now, we use the fact that the Gelbrich hull or the 2-Wasserstein ball in our case can
be expressed as the union of Chebyshev ambiguity sets with means and covariances in
the uncertainty set (2.29). Equivalently, using the uncertainty set (2.30), the Gelbrich
hull can be viewed as the union of Chebyshev ambiguity sets with first- and second-

order moments in the uncertainty set (2.30), i.e.,

D= U c®™uy)
(1. X) EUp (j1,5)

= U C(Rnyvu)M_M,U’T)a
(1, M) €V (1,5)

where C(R"v, u, X)) is the Chebyshev ambiguity set containing all distributions on R™v
with mean p and covariance bounded above by >.. Thus, we have

sup EQ[(J (yr,90)—2) ] = sup sup EQ (T (Yryy0)—2) 7]
QeD (11, M)eVy(j1,5) QEC(R™Y 1, M —pupsT)

In the above equation, the inner optimization problem measures the risk for all
distributions with given first- and second-order moments, while the outer one consid-
ers the ambiguity in those moments with respect to the Wasserstein distance. Such
two-layered optimization provides additional robustness, accounting for moment am-

biguities.
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From [[138, Lemma A.1] the inner supremum gets the following dual form:

inf 742y "p+ (T, M)
st T4+ 29 Yo + (T, 90yd ) > T (Yrs Y0) — 2 Voo

7+ 27" yo + (D, 90yg ) > 0 Vo

TeR,yeR™w, ' e S™

inf 7+ 2y"p+ Tr[TM]

r+1 Y — Yr
s.t. =0
(=)' T2+ l}
_ L i e (2.31)
r v
=0
v

TeR,vyeR™w 'y € S,

\
where the second problem is obtained by replacing the quadratic constraint with the
corresponding semidefinite one. By weak duality, the dual provides an upper bound of
the inner supremum. Applying minimax inequality and replacing the inner supremum
with its dual, we arrive at the following upper bound for the worst-case expectation:
inf {’7’ + sup (QPyT p + Tr[TM]) | constraints in @]}}
TR (u)eve(an)

(2.32)
The inner supremum has an interesting form, which can be rewritten by the support

function of Vy(ji, X) evaluated at (2, I'). The support function Ty, (15 (¢, Q) for any
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g € R™ and ) € S™ can found by solving the following SDP problem [41]]:

Ty (@) = inf NO® = ] = Tr{S)) + £ + Tr(2]

[ AT i+ 2

s.t. QT A2 =0
AT+ L £

M—Q M\ZV2
PO

=0

ANeRy,eeRy, ZeST.

The result of the theorem follows from replacing the support function with the
corresponding SDP and plugging in the expression for the worst-case expectation back

into DR-risk. O

Proof of Corollary 2.1]

Proof. To derive the dual of (2.16), we write the Lagrangian functions with multipliers
X, YWV >=0andn,5 > 0as

(74 &4 (2] + A6 — 1113 — (S]] |

l1—a

L =z+
— (X11, AT = T) = 2X 5 (y + A\ji) — Xaoe — (Y11, A\ - T)
- 2<Y127)\il/2> — (Yoo, Z) — (W11, I+ 1) — 2W1—5(*y —Yr)
— War(7 + y:yr +z) — (Vir, ') = 2V1—2r’7 — Voor
— (U, Z) —nA — Pe,

where X;; is the (4, j) entry of matrix X and (-, -) is the matrix inner product. The

dual function g is obtained by minimizing the Lagrangian function with respect to the
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primal variables:

g = —Tr[Wy1] — 2W1—;yr — ngy:yr + mzin(l — Wag)z

62 — ||a)3 — Tr[S]
11—«

+ min ( — Te[ Xy + iy + 235512
—oX L - n))\ + min(—2X1 — 2Wis — 2Vi2) Ty
Y
. 1 . 1
+ min <7 — X9 — 5)5 + min <7 — Wog — VQQ)T
€ l—« T \l—«

+ ml“in<X11 + Y1 — Wi — Vl1,F> + mZin<I — Yo — U, Z>.

Finally, solving the inner minimization problems and maximizing the dual function g
with respect to the dual variables, we obtain the dual form (2.17).
Note that there exist strictly feasible points for the primal problem for any

fLeERwand Y € Siy. For example, let

i N 1 _
v=-2 2= 20Ty — el - 2l 1,
)\:2, F:I>'O,

Z=4%+1, e=7=2y"v>0.

Then the constraints in (2.16) hold with strict inequalities. Therefore, Slater’s condition

holds and so does strong duality. O

Proof of Theorem 2.2]

Proof. Let P?k and P, ;. denote the probability distribution obtained by GPR and the
Dirac measure concentrated at y, (¢ + k), respectively. It follows from the definition of

2-Wasserstein distance that
~tk Stk
Wa(PP, Prk) < [lyolt + k) — iy p 1> + Tr[S5 5]
Therefore, Assumption [2.1]implies that

2
Wa(PP Puy) < (wit) + T[] < 62,
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holds with probability no less than (1 — p)*. It indicates that the true probability dis-
tribution P j, is contained in the Wasserstein ambiguity set with radius 6, j, around the
learned distribution Pfk with probability no less than (1 — p)*. Thus, by the definition
of DR-CVaR,

P{D | CVaRE"* [Tor (. 40)] < DR-CVaRa o[ (91, 0)] | = (1= )",

where DR-CVaR,, ¢ depends on the training data D via the radius 6, ; and the learned

distribution P?,C. Since P, is the Dirac delta measure concentrated at y,(t + k),

CVaRa " [Tk (Urs Vo)) = Tek(Urs o)

Moreover, it follows from the definition of the DR-risk map R that
DR-CVaRa,0[J (4r,90)] + 7% < R (yr, V) < Rk (0r).

Thus, the result follows. O]
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Algorithm 1: Learning-based DR-RRT*

1 Input: dgoals K7 9) «, Ty, W, TRRT»
2 T =0,D" « 0
3 while |[Root(7") — ggoall|2 > € do

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

t < clock();
Tsate < 05
Observe x,(t) and x%(t), u’(t) for all £;
Root(T) « z,(t);
Remove unreachable nodes from 7T ;
Reset node depth;
for { =110 L do
Df — Df U {(mf)(t),uﬁvj(t))}, j=1,...,nk;
GP approximation of ¢ (x) via 2.3)—2.6);
Akt 2t (1), SO  o;
fork=0t0 K —1do
Compute gf;’“‘, f]f;k’é and iifje from (2.7);

Update [Lty’kﬂ’g and ié’kﬂ’f by (2.8)-(2.9);

for Vg € T with Depth(q) < K do
k < Depth(q);
Update R; ;(C'q) by solving (2.16));
Update c(q) by solving (2.19);
if R; 1(Crq) < 6 then
| Addgto T

hile clock() < 7 do

=

Expand the tree using Algorithm 2

Plan path (Root(7Tsafe)s q1s -« - -+, &) 10 Tsafes

Drive z,(t) to q1;
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Algorithm 2: Tree expansion and rewiring

1

[ ]

w

=

(9]

=)

3

®

10

11

12

13

1

S

15

1

=)

17

18

19

20

21
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Input: 7, Tsate, t;

Grand < Sample();

(nearest < NearestNeighbor(7gate, Grand);

k < Depth(gnearest) + 1;

(Gnew, ¢(@new ) R k(Cranew)) <= Steer(gnearests Grand);
Niear <= Near(Tsafes gnew, TRRT);

Gmin < Gnearests Cmin < C(qnew);

for gnear € Nicar do

k < Depth(gnear) + 1;

Cnear < C(Gnear) T WRt k(Crgnew) + L(qnears Gnew)s

if chear < Cmin and FeaS(QHearv QHew) then

L Ggmin € Qnears; Cmin < Cnears

¢(Gnew) < Cmin, Parent(gnew) < Gmin;
k <+ Depth(gnew);
Add gpew to T
if Rt 1:(Crgnew) < 0 then
Add gpew to T

for gnear € Npear do

k <= Depth(gnew) + 1

Cmin < C(gnew) + WR k(Cranear) + L(gnew: gnear);
if cmin < ¢(gnear) and Feas(gnew, qnear) then
¢(gnear) = Cnear;

Parent(gnear) < qnews

Update children nodes of ¢pea; ;

if Depth(gpear) > K then

L Remove ¢neqr and its children from g, ge;
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Figure 2.6: Illustrative example of learning-based DR-RRT*. The blue ball represents

an obstacle (at different time instances) centered at the predicted mean.
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yr(t + k)[1] —>

yr(t + k)[2] —>

~t.k
My [1] —>

k0
Hy 2] —>

E \ DR-CVaRg g [J; 1, (yr, y5)]

—
(izw) I/Z[L 1] —> Layer J
(izk() 1/2[21 1] —>

(SEEO 22, 9] —

Layer 0 Layer 1 Layer J — 1

Figure 2.7: Feed-forward NN for approximating the DR-risk map for fixed 6 and «.
The inputs are the robot’s position ¥, and the parameters of the predicted distribution
of the obstacles’” behaviors ﬂzk’é and vech [(igu) 1/ 2] , while the target is the DR-risk.
Here, [i] refers to the ith entry of a vector, while [z, j] is the entry in the ith row and

the jth column of a matrix.

Table 2.2: Mean squared error (MSE) and mean average error (MAE) for the NN ap-
proximation of the DR-risk map with 405,000 training, 45,000 validation, and 50,000

test data points.

Radius ¢ 107° 1073 1072

Train 9.036 x 107 2.780 x 106 2.909 x 1076
Czi Validation | 9.710 x 1077 2.994 x 1076 2.569 x 1076
Test 9.100 x 1077 3.343 x 1076 2.538 x 1076
Train 2.637 x 10~* 4.449 x 10~* 4.473 x 10~*
g Validation | 2.808 x 107 3.624 x 10~* 2.756 x 10~*
Test 2.806 x 10~* 3.866 x 10~* 2.757 x 104

] -11

al
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Table 2.3: Probability of the approximate risk map reporting wrong results.

Radius ¢ | Safe events reported as unsafe | Unsafe events reported as safe
105 1.5 x 1073 4.0 x 1073
104 1.4 x1073 1.1x 1073
1073 1.3 x 1073 1.0 x 1073
102 1.2x 1073 8.4 x107*

Table 2.4: The total operation cost and collision probability for the highway scenario.

Radius ¢ 1074 1072 5x 1072 101
Cumulative Cost 3222.64 3224.32 3302.63 3796.14
Collision

0.018 0.014 0.008 0.005
Probability

Table 2.5: Total operation cost, collision probability, and total computation time for

CC-MPC, CVaR-MPC, and DR-MPC.

DR-MPC (6)
CC-MPC |CVaR-MPC
107° 10-* 1072

Cumulative Cost 1.245 3.665 5.707 18.430 30.681
Collision

0.74 0.056 0.034 0.005 0.001
Probability
Computation Time

63.082 71.513 64.786  69.494 74.856
(sec)
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Figure 2.8: Application of learning-based DR-RRT* to a car-like robot on a highway

for & = 1074,1072,5 x 1072,10~!. The obstacles are shown in green, while their

predicted positions are shown in lighter color.
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Figure 2.9: Growing process of tree T (grey) and safe subtree g,z (blue) generation.

The best path for execution (red) is chosen from Tgafe.

40

40

——DR-RRT* (=10 ) —— DR-RRT* (9=10 ")
——DR-RRT* (6=10"%) —— DR-RRT* (9=10%)
35 DR-RRT* (0=5x10%) 55 DR-RRT* (9=5x10"%)
——RRT* —— RRT*
—— CC-RRT* —— CC-RRT*

30

(bt =23

—— DR-RRT* (0=10"")
—— DR-RRT* (§=10"%)

DR-RRT* (§=5x10%)
——RRT*

Figure 2.10: Application of learning-based DR-RRT* to a car-like robot in an inter-
section for § = 1074,1073,5 x 10~3 and comparison with RRT* and CC-RRT*. The

obstacle is shown in green, while its predicted positions are shown in lighter color.
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Figure 2.11: Application of learning-based DR-MPC to a car-like robot in a cluttered
environment for = 1075,107%,10~2, compared against CC-MPC and CVaR-MPC
with N = 100. The obstacles are shown in green, while predictions for the corre-
sponding obstacle are in lighter color. Star indicates collision, while the red circle is
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Chapter 3

Distributionally Robust Optimization with Unscented
Transform for Learning-Based Motion Control in Dy-

namic Environments

3.1 Introduction

Autonomous mobile robots have shown promise in many real-world applications rang-
ing from indoor services to urban navigation. In general, information about the exact
robot model and the environment dynamics is unavailable or highly limited. Learning-
based control approaches are commonly used in such settings to infer unknown models
and improve the overall control performance. However, the safety of learning-based
controllers (e.g., collision-free navigation) remains a significant concern for the appli-
cation of such methods, especially when the learned models are unreliable and inac-
curate [[139].

Existing learning-based control methods employ various machine learning tech-
niques to infer the unknown dynamics of the robot and the environment. The learning
models most commonly used for this purpose include deep neural networks [47-49|
140,/141], Bayesian linear regression [53],54}|142]], and Gaussian processes (GPs) [51]

52,/143H145]], among others. One of the most popular approaches for learning-based

65



Environment Learning
Learned State Predictions

GPR Dynamics §t+1 ----- Stk

Distributionally Robust __
Robot Learning UT-MPC
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Figure 3.1: The overview of our method.

motion control of robotic systems is model predictive control (MPC), where the un-
known models are substituted with the learned ones. Most research efforts in this field
have focused on improving the prediction model by learning the system dynamics
or fine-tuning its parameters [51,[143-145]]. In contrast, a few works learn the dy-
namic environment model and apply the controller to a system with known dynam-
ics [541[741[821[140,[146-148]]. Safety in such methods is often addressed via proba-
bilistic constraints, such as chance constraints or conditional value-at-
risk (CVaR) constraints [[70,[111}[112[153}[I54]. However, most existing methods do

not address the learning inaccuracies or unreliability of the models, applying them di-
rectly to the controller. Such distributional uncertainties are handled in distributionally
robust optimization (DRO) methods, where a given stochastic program is solved in the
face of the worst-case distribution drawn from some ambiguity set [3940/43|[155]156].
Recently, the application of DRO has been extended to learning-based control prob-
lems to account for learning errors during the control stage [31,/43][75,[157]. However,
these methods require nontrivial computational demand when solving DRO problems.

Our paper is related to learning-based distributionally robust control in that we

S EEiRT!
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learn the unknown dynamics of both the robot and the environment, as well as address
the learning errors in the motion control stage by adopting tools from DRO. As shown
in Fig. our framework consists of (i) separate learning modules for inferring the
unknown models of both the robot and the dynamic environment via Gaussian process
regression (GPR) [108]] and the unscented transform (UT), and (i) an MPC-based
control module that uses the learned models with an accurate uncertainty propagation
scheme and is robust against possible learning errors. Unlike typical uncertainty prop-
agation schemes used in GP-based MPC methods [51,{143//144]], we propose exploiting
UT to improve computational efficiency and prediction accuracy. Prior works utilize a
similar uncertainty propagation approach in stochastic MPC settings with known sys-
tem dynamics [[158-160]. In contrast, we apply the UT method to the learned models
to predict the states of both the robot and the environment. In addition, to immunize the
system against learning errors, we adopt tools from Wasserstein DRO and design a risk
constraint to limit the distributionally robust CVaR (DR-CVaR) of the safety loss. This
leads to a novel distributionally robust UT-based MPC algorithm (UT-MPC), which
combines the advantages of both UT and DRO within a single framework. Unfortu-
nately, the DR-CVaR constraint is intractable as it involves an infinite-dimensional
optimization problem over the space of probability distributions. To overcome this
challenge, we devise a simple analytical upper bound of DR-CVaR that exploits UT to
estimate the safety loss distribution. As a result, we obtain a tractable distributionally
robust UT-MPC algorithm that guides the robot to take cautious actions despite learn-
ing inaccuracies. Finally, the performance and the utility of our method are demon-
strated through simulations in an autonomous driving scenario. Our experiments show
the capability of our algorithm to promote safe motion control in a dynamic environ-

ment, even in the presence of learning errors.
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Figure 3.2: An autonomous driving scenario.

3.2 Preliminaries

3.2.1 The Setup

Consider a mobile robot modeled by the following discrete-time dynamics:

w(t +1) = f(2(t),u(t)) + g(x(t), u(t)), 3.1

where z(t) € X C R™ and u(t) € U C R™ are the robot state and control input at
time ¢, respectively. The dynamic model consists of a known part f : R"* x R™ — R
that can be derived from the physics of the system and an unknown mismatch term
g : R™ x R™ — R, often occurring due to oversimplifying complex dynamics,

unexpected interactions with the environment, etc.

Example 3.1. Consider the autonomous driving scenario in Fig. 3.2} The evolution
of the ego vehicle can be described by the kinematic bicycle model, which disregards
essential features, such as the slip angles, tire type, as well as driving ground. There-
fore, it is reasonable to use the kinematic model with an additional mismatch term to

compensate for the limited fidelity of the simple model.

S Eas kg

e |
—

68 s



The robot operates in a dynamic environment, whose state {(t) € R™ evolves

according to
§(t+1) = fenr (§(2))-

Such a model is reasonable as the environment evolves independently of the robot. For
instance, the safety of the ego vehicle in Example depends on the behavior of the
blue car with state £(t) in Fig.

To promote the safe operation of our robot, we introduce a safety loss function

J : R™ x R"™ — R and impose the following constraint:

J(x(t),&(t)) <0. (3.2)

In Fig. the loss can be chosen to avoid collisions, e.g., J (z,&) =12, — ||C(z —
€)||3, where 7yt is a safety radius, and C' maps the states to the position vector.

In this work, assuming that the dynamics of the robot and the environment are
unknown, we aim to design a learning-based motion controller that guides the robot to

perform a specified task in a cautious manner despite learning errors.

3.2.2 Uncertainty Propagation via UT

When the dynamics (3.1)) is learned as a stochastic approximator, the uncertainty in the
states is propagated over time. Unfortunately, it is challenging to compute the resulting
state distribution for non-Gaussian uncertainties passing through nonlinear dynamics.
Linearization techniques from extended Kalman filter (EKF) [161]] suffer from large
estimation errors and require the computationally expensive Jacobian matrix. An al-
ternative approach is UT, which can be applied to an arbitrary nonlinear function. The
intuition behind UT is that with fixed parameters, it is easier to approximate the given
distribution than it is to approximate a nonlinear transformation [162]. Therefore, UT
aims to find a parameterization that completely encodes the statistics of the inputs,

allowing its accurate propagation through a nonlinear function.
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Consider a random variable x € R"™ with a mean vector x4 and a covariance
matrix >* that undergoes a nonlinear transformation d : R — R™. The goal of UT
is to accurately calculate the statistics of the output y = d(z). For that, first, a set of
vectors called sigma points are generated in a way to capture the moments of the input
distribution. It has been shown that choosing 2n + 1 points is sufficient for encoding
the mean and covariance of the inputs [163]]. The sigma points are selected according

to the following rule:
X(i):u$+( (n+/\)zw) ci=1,...,n, (3.3)

where ) is a scaling parameter and (y/-); is the ith column of the matrix square root.
Next, the sigma points are propagated through the nonlinear function to obtain the
transformed points YV = d(X()). The mean and covariance of the output y can then

be computed as

where WT(,? and Wc(i) are the weights chosen according to [|163]].

One of the main advantages of UT is the accuracy of uncertainty propagation. For
any nonlinearity, UT captures the output mean and covariance accurately to the third
order of the Taylor series expansion for Gaussian inputs and to at least the second order
for non-Gaussian inputs [164]). In contrast, the EKF-based method provides only first-
order accuracy. Another feature of UT is the implementation simplicity, as it involves
only algebraic operations without the need to evaluate the Jacobian matrix needed in

EKF.
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3.3 Unscented Transform and Distributionally Robust Opti-

mization for Learning-Based Control

The overall structure of our learning-based control scheme is illustrated in Fig. It
consists of two main parts: (i) separate modules for learning the robot and environment
dynamics, and (4¢) a distributionally robust UT-MPC module for controlling the robot
and addressing learning errors. First, the unknown dynamics are inferred via GPR
using real-time observations and then used as prediction models in UT-MPC. However,
due to the stochastic nature of the learned dynamics, state propagation through the
GP models is not straightforward. Our algorithm mitigates this issue by exploiting UT
for uncertainty propagation, achieving superior prediction accuracy and computational
efficiency. Moreover, using DRO in UT-MPC immunizes the system against learning

inaccuracies and promotes the robot’s safety despite erroneous models.

3.3.1 Learning the Robot and Environment Dynamics

In this study, we use GPR, a non-parametric Bayesian regression method, to infer the
dynamics of both the robot and the environment. A major challenge in GPR is the un-
certainty propagation through the learned model, which is generally intractable. The
most typical approach is linearizing the GP model around the current state mean [51,
143](144]. However, as mentioned in Section such an approach is not only
computationally demanding but also degrades the prediction accuracy. Motivated by
the state update equations in GP-UKF [|165]], we propose an uncertainty propagation
scheme for GP dynamics based on the concept of UT. This approach not only improves
the prediction accuracy but also involves only simple algebraic operations, relieving
the computational burden. Therefore, we apply the proposed scheme to learn the dy-
namics of both the robot and the environment.

At stage ¢, GPR for the robot is performed using the training input data X}°P =
{(x(t—=1),u(t-1)),..., (x(t—M),u(t—M))} with the corresponding training output
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data y}°P = {Ax(t),...,Ax(t — M + 1)}, where Ax(t) = z(t + 1) — f(x(t),u(t))
is the residual between the observed system state and the nominal model. Following
the ordinary GPR procedure, the unknown dynamics of the robot is approximated by

GP(p9,39). The dynamics of the robot is then inferred as

w(t+1) = f(a(t), ut) + u? ((t), u(t)) + i, (3.4

where w}° is a zero-mean noise with covariance X9 (x(t), u(t)).

For state prediction, we recursively apply the UT presented in Section and
propagate the states along the horizon. In particular, the distribution of the state vec-
tor can be predicted starting from the current observation uff = z(t) with ¥§ = 0

according to the following rule:

X = [t k= (e + A0) T (3.5)
V= £ ) + 9 (X ), i =0, 20, (3.6)
2Ny )
i = > Wiy 3.7)
=0
2Ng A ) ) T
P =2 WO O = i) O - i) 2 w). (B)
1=0

Similarly, using datasets X"V = {¢(t—1),...,{(t—M)}and yi™ = {£(8), ..., E(t—

M +1)}, the dynamics of the environment is approximated by GP (™, X*"V). Then,

the environment states evolve according to

§(t+1) = p™(E(1)) + wi™,

where w{™" is a zero-mean noise with covariance 3"V (£(t)). By applying a UT scheme

similar to (3.3)-(3.8) with weights W, and W,

env Cenv

the environment states can be
predicted over the horizon to obtain ,ui and Zi starting from ,ug = &(t) and Zg =0.
Unlike the robot, the environment states are independent of the control inputs. There-
fore, as illustrated in Fig. [3.1] the environment state prediction can be performed out-

side the control loop, saving computational resources.
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For our further analysis, it is convenient to denote the joint state of the robot and
the environment by z; = [a:;, f;—]—r. Then, assuming the independence of the states,
the estimated joint distribution [P, of z;, at any time step ¢ + k can be represented by

its mean vector % = [(u¥) ", (,ui)T]T and covariance matrix 37 = diag(¥7, Zi)

3.3.2 Distributionally Robust UT-MPC

Since the state information is no longer deterministic due to the use of GPR, the MPC
problem attains a stochastic formulation, where the deterministic constraint is not
valid anymore. Instead, a risk measure can be used to assess the risk of unsafe events
using the learned joint state distribution. Among several risk measures, we use the
CVaR, which is a coherent measure in the sense of Artzner et al. [[110] and has been
advocated as a rational risk measure in robotics [69]]. CVaR of a random loss X ~ P
is defined as
CVaR![X] := min EF [z + M] ,
zeR 1-—ce¢

where € € (0,1] is some confidence level. It quantifies the average loss beyond e,
accounting for rare but crucial events.

However, the quality of risk assessment highly depends on the accuracy of the
learned safety loss distribution. Unfortunately, in our case, the learned information
might be unreliable for measuring the robot’s safety due to inaccuracies in GP models.
To immunize the system against such distributional uncertainties, we propose evaluat-

ing the following distributionally robust version of CVaR:

J
DR-CVaR.* [J(z4)] := sup CVaR% [7(zy)], (3.9)
Qx€Dy(PY)

which evaluates the worst-case CVaR over an ambiguity set Dy (ij ) constructed using
the learned safety loss distribution IP’;z . In this work, we define the ambiguity set as a

Wasserstein ball of radius 6 > 0 centered at ij :

Dy(PY) = {Qk € P2(R) | Wa(PY, Q) < 0}, (3.10)
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where P2(W) is the space of Borel probability measures on ¥V with a finite second

moment. Here, W5 (P, Q) is the 2-Wasserstein distance between P and Q, which is

defined as
1/2
Wa(P,Q) = inf { ( JERET dn(x,w) T = P, 1% = @},
KEP(W?) W2
where k is the transport plan, with II'k denoting its ith marginal, and || - || is the Eu-

clidean norm quantifying the transportation cost. Wasserstein distance represents the
minimum cost of transporting mass from one distribution to another using nonuniform
perturbations. It has received great interest in DRO for its superior features, such as
providing a finite-sample performance guarantee and addressing the closeness between
two points in the support [30,40,41].

Combining the UT-based GP dynamics (3.5)—(3.8) and the DR-CVaR risk (3.9),

we formulate the following distributionally robust UT-MPC problem:

mUianE_:lEP’“ [e(xg, ur)] + EF% [q(zk)] (3.11a)
k=0

s.t. (33) — 33) (3.11b)
DR-CVaR'* [ ()] < 0 (3.11c)
uE e X (3.11d)
up € U G.11e)
©E = xz(t), 5% = 0, (3.11)

where ¢ : R™ x R™ — R is the stage-wise cost function, and ¢ : R™ — R is
the terminal cost function. Here, the constraints (3.11b) and (3.11¢) hold for £ =
0,...,K — 1, while the constraints (3.11c)) and (3.11d) hold for k = 0,..., K.

The constraint on UT-based GP dynamics (3.11b) plays an important role in our
distributionally robust UT-MPC problem. First, the UT-based state propagation scheme
provides better state prediction accuracy than the linearization technique often met in

prior GP-based MPC approaches [51},|143}/144]. Second, the nonconvexities in the

74



equality constraints involve simple algebraic operations and, thus, are relatively easy
to handle than the derivatives in linearization. Another key component of our MPC
problem is the DR-CVaR constraint (3.11c)). It limits the safety risk under the worst-
case distribution within the ambiguity set of the learned loss distribution for all time
stages. Notably, adjusting the radius 6 changes the conservativeness of the constraint,
as it determines the range of distributions in the neighborhood of IP’kj to be included
in the ambiguity set. In summary, the combination of UT-based GP dynamics and
DR-CVaR risk constraint reinforces our distributionally robust UT-MPC problem with
superior prediction accuracy and computational efficiency, as well as the capability of

limiting the safety risk despite learning inaccuracies.

3.4 Tractable Reformulation and Algorithm

Despite the advantages of the distributionally robust UT-MPC problem (3.1T), it is in-
tractable due to the objective function (3.1Ta)) and the safety constraint (3.T1c). The
objective function can be handled relatively easily by approximating it around the pre-
dicted state mean. Our primary concern is the DR-CVaR in constraint (3.11¢), which
is challenging to evaluate as it involves an infinite-dimensional optimization problem
over the ambiguity set of probability distributions. In our method, we overcome the
intractability of the MPC problem using a novel UT-based approximation scheme.
Specifically, we take advantage of UT to estimate the statistics of the safety loss dis-
tribution. Then, we use the approximate distribution and modern tools from DRO to
derive an upper bound of DR-CVaR. As a consequence, we arrive at a tractable distri-

butionally robust UT-MPC algorithm.

3.4.1 UT-Based Upper Bound of DR-CVaR

The Wasserstein ambiguity set in (3.10) is built around the learned loss distribution

ij . However, in each prediction step k, we are given only the mean and covari-
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ance of the joint state vector zy. Therefore, our first goal is to determine ]P’kj by
propagating z; through the loss function. Fortunately, we can apply the UT-based
uncertainty propagation scheme in Section [3.2.2] to directly estimate the statistics of
the loss distribution. For that, we first generate sigma points Zj, for 7 and X7 ac-
cording to (3.3), pass them through the loss function, and obtain transformed points
£§j) = j(Z,ii)), i =0,...,2(ngy + ng). Then, the mean and the variance of the loss

can be obtained as

2(nz+ng) ' ‘
w =y wi o (3.12)
1=0
nm—i-ng -
Z O (L) =) =) " (3.13)

Though there is still no full knowledge about the distribution IP’;Z , UT provides us
with knowledge about its mean and variance. In the following proposition, we show
how this statistical information can be used to obtain a tractable and simple upper

bound on DR-CVaR.

Proposition 3.1. Let ]P’kj be the distribution of the loss J (zy,) with mean and variance
defined in (3.12) and (3.13), respectively. Then, the DR-CVaR (3.9) with a radius 6 > 0

has the following upper bound:
T
DR-CVaR(* [ (z;)] < 1l +v0y + 03/1 + 12, (3.14)

where v = \/€/(1 — ¢€).

Proof. We use the Gelbrich bound on Wasserstein distance, for which

Wa(BY, Qi) = 1/ Gk — 1 )? + (o — o )2,

where iy, € R and 07 € R, are the mean and variance of the loss under the distri-
bution Qj, [166, Proposition 8]. The bound is exact if }P’kj and Qg are elliptical dis-

tributions with the same density generator. It follows that the DR-CVaR is bounded
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as

J
DR-CVaR.* [J(z)] < sup CVaRZ [T (ap)],
QrEDy (ij)

where Dy (IP’kj ) is an ambiguity set with respect to the Gelbrich bound defined as

Do(PY) := { Qi € P2(R) | (1, 0%) € Uy(s, (o] )?),
B[ J (z1)] = 1, E® [(T (z4) — p)?] = 07},

and
Up(uf ,(07)?) = {(n.02) € Rx Re | (= il )2 + (0 — o7 )2 < 67}

is the mean-covariance uncertainty set around the estimated mean uﬁ and variance
JN\2
(o3,)°
In order to solve the right-hand side of the inequality, also known as the Gelbrich
risk, we decompose it into

sup CVaR?k [T (z1)]

Dy (PY

= sup sup  CVaR®* [7(z1)],
(k,07) €Uy (1] (07 )2) Qe EC (k0%

where C (1, 02) is the Chebyshev uncertainty set with mean y and variance 2.

To solve the inner supremum, we apply [[167, Proposition 2] according to which
sup  CVaR® [T (z1)] = ps + Yo
QreC(pr,07)
By substituting the above solution into (3.13)), the problem reduces to the following

convex optimization problem, which is a quadratically constrained quadratic program:

max {puy, + 0% | (e — p)* + (o) — o )? < 6%},
HE,0620

Using the standard duality, the solution of the above optimization problem corresponds

to the right-hand side of (3.14). O
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Figure 3.3: Snapshots of simulations for Mean-MPC and UT-MPC. The MPC predic-
tions for the ego vehicle are shown in red, while the GP predictions for the obstacle

are drawn in green.

The upper bound (3.14) is attained for elliptical distributions and is tight for all
other distributions. Despite relying solely on the mean and variance, this bound ex-
hibits exceptional computational properties, as it requires simple algebraic operations.
Moreover, unlike the existing methods (e.g., [31}[75]]), we directly estimate the loss

distribution ]P’kj , enabling the use of our approach for any safety loss function.

3.4.2 Tractable Algorithm

The UT-based upper bound of DR-CVaR can be directly incorporated into the distri-
butionally robust UT-MPC problem (3.11) to alleviate the intractability without sig-
nificantly affecting the computational complexity. For that, we replace the risk con-
straint (3.11c) with a constraint on the upper bound (3.14) and introduce additional
equality constraints and (3:13) for estimating the loss distribution. As a result,
the reformulated MPC problem constitutes a tractable nonlinear optimization problem.
Despite its nonconvexity due to the GP dynamics and the UT approximations, it can
be efficiently solved using existing algorithms, such as interior-point and sequential
quadratic programming methods [168].

The overall distributionally robust UT-MPC scheme is presented in Algorithm 3]

given the UT weights W,,,,, W¢,,i = {rob, env,loss}, as well as risk parameters €

5 X2 0] 8} 3
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Algorithm 3: Distributionally Robust UT-MPC

1 Input: UT parameters W,,,,, W, i = {rob, env, loss} and risk parameters
€,0

2 Collect M observations to Xi°P, yioP, Xenv yenv

3 Observe x(0) and £(0)

4 fort=0,1,...do

5 Train GPs for p9, 39 and p®v, 3%

6 Predict ,ui and Zi fork =0,..., K — 1 starting from p5 = £(t), Eg =0

7 Solve problem (3.11)) with (3.14)

8 Apply u(t) = uf and observe z(t + 1), &(t + 1)

9 | Update X}%%, y;9} and X2y, yiiy

and 6. First, GPR training datasets X5°P, yt°P and X&", y¢"v are initialized by col-
lecting M observations (line 2). Next, the states of the robot and the environment are
observed to begin the main loop (line 3). In each time stage, GP models for the robot
and environment are learned (line 5). Then, we predict the environment states for K
time stages starting from the current state £(¢) (line 6). Using the learned models, the
UT-MPC problem (3.11) is solved with the DR-CVaR upper bound (line 7).
The first element of the optimal control sequence u* returned by the UT-MPC is then
applied to the robot (line 8). Finally, we observe the new states and update the GPR

datasets with the latest M observations (line 9).

3.5 Experiment Results

In this section, we present the simulation results of our algorithm in an autonomous
driving scenario performed in an open-source traffic simulation platform CARLA [[169]].

The goal is to control the ego vehicle to follow the given waypoints without colliding
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with the obstacle. The source code of our implementation is available onlineﬂ

3.5.1 Experiment Settings

In our experiments, the nominal model of the ego vehicle is chosen as the following

kinematic bicycle model:

+ Tsv(t) cos(o(t) + Bs(t))

)+ Tuolt)
)+ Tyo(t) sin(8(t) + B, (1))

) + Too(t) tan(37(t)) cos(Bs(1)) /L
)+ Talt)

+ Tsal(t),

where z(t) = [x(t),y(t), ¢(t),v(t)]" is the ego vehicle’s state vector, consisting of
its position, heading angle and velocity, u(t) = [a(t),d7(¢)]" is the control input
vector, comprising acceleration and steering angle, 3,(t) := arctan (5 tan(d7(t))) is
the slipping angle, T, = 0.1sec. is the sampling time, and L = 4.611m. is the car
length. The control inputs are limited to |a(¢)| < 3m/sec.?,|d;(¢)| < 1.22rad. with
an additional limit on the change of front steering angle |Adf(¢)| < 0.05 rad. The cost

function is chosen to track the waypoints p; and penalize control input changes, i.e.,

C($kauk) = Hwk —pt+k|’gg + HAukH%, Q(iUK) = HwK _pt-l-K”%a

where Q = diag(1,1,0,0.2) and R = diag(1.5,3). We consider an MPC with a
horizon of K = 30 and a zero-mean GPR with a radial basis function kernel trained on
M = 50 real-time observations. The parameters for DR-CVaR are tuned to € = 0.95
and 6 = 0.1.

Due to the simulation model, the obstacle’s behavior is not deterministic and varies
in each execution. Therefore, for reliability, we have performed 20 simulation runs
under identical conditions. We compare our method to an MPC without any learn-

ing component (Vanilla-MPC), a learning-based MPC with the safety constraint (3.2)

“https://github.com/CORE-SNU/DR-UT-MPC
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Table 3.1: The total cost, average computation time per stage, and maximum safety

loss value for for all algorithm computed over 20 simulations (mean = std).

Total Cost ( x 103 ) Comp. Time (sec) Safety Loss (m?)

UT-MPC 28.056 £ 0.204 0.467 £ 0.013 1.864 + 0.133
Vanilla-MPC 00 0.031 £ 0.002 12.342 + 0.742
Mean-MPC 00 0.435 £ 0.001 9.314 £ 1.054
CVaR-MPC 29.356 £ 0.142 0.418 + 0.023 2.032£0.101

evaluated at the mean of the predicted state (Mean-MPC), and a non-robust version of

UT-MPC with a CVaR constraint (CVaR-MPC).

3.5.2 Results

Snapshots of representative scenarios for distributionally robust UT-MPC and Mean-
MPC are demonstrated in Fig. Initially, the obstacle navigates far from the ego
vehicle and plans to continue in the same lane. Therefore, in the early stages, both
controllers drive the car along the reference path. However, when the vehicles ap-
proach the intersection, the obstacle suddenly steers to the left. This situation causes
errors in the GPR prediction, making the learned distribution unreliable. Nevertheless,
the Mean-MPC trusts the learned information even in such a situation and decides to
perform a cut-in maneuver, eventually leading to a collision between the ego vehi-
cle and the obstacle. On the contrary, UT-MPC makes the car stop at the intersection
and then slowly bypass the obstacle from the right. Due to its robustness to learning er-
rors, UT-MPC takes cautious actions and overtakes the obstacle without any collisions.
Consequently, it outperforms Mean-MPC in terms of navigation quality and safety.
The statistics of our quantitative analysis for 20 simulation runs are reported in

Table In terms of safety, our algorithm outperforms all the baselines, followed
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by the CVaR-MPC. Such results are expected, as UT-MPC is the only method that
accounts for learning errors. On the other hand, both Vanilla-MPC and Mean-MPC
become infeasible after colliding with the obstacles, making the total cost infinitely
large. In terms of computation time, Vanilla-MPC surpasses all the baselines due to
its simplicity. Meanwhile, all the learning-based algorithms, including our UT-MPC,
require similar computation time for solving the problem. As a result, we confirm the
capabilities of our algorithm for promoting safety with a comparably short computa-

tion time.

3.6 Conclusions

We have proposed a novel learning-based MPC framework for robotic systems in un-
known environments. Our method exploits the learned dynamics and UT-based un-
certainty propagation scheme for accurate and efficient prediction of the robot and
environment states. Furthermore, it uses a DR-CVaR constraint to proactively limit the
risk of unsafety even under errors in the learned models. To tackle the computational
intractability of the resulting UT-MPC problem, we have approximated the safety loss
distribution using UT and derived a simple upper bound of DR-CVaR. The experiment
results demonstrate the computational efficiency of our method and its capability to

promote safety.
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Chapter 4

Wasserstein Distributionally Robust Control of Partially

Observable Linear Stochastic Systems

4.1 Introduction

Optimal control of linear dynamical systems under uncertainties has a long history
and is regarded as one of the most fundamental topics in control theory [170]. In
various practical systems, the system states are not entirely observable, and there is
only partial information available about the system coming from the noisy measure-
ments. The theory of optimal control handles such imperfect state information either
in stochastic or robust control frameworks. Robust optimal control methods address
uncertainties in a pre-specified disturbance set and seek to find a controller concern-
ing the worst-case realization of the disturbance (e.g., [15]). However, the resulting
controllers are often conservative as no information other than the support of distur-
bances is used, and potentially useful statistical properties of the disturbances are dis-
regarded. On the contrary, stochastic optimal control approaches design a controller
using the knowledge of the disturbance distribution, which is typically modeled as
Gaussian (e.g., [171]). However, it is often difficult to obtain an accurate probability

distribution of disturbances. Using imperfect distributional information does not guar-
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Figure 4.1: Block diagram of the proposed WDRC scheme.

antee the optimality of the resulting controller and may even cause undesirable system
behaviors (e.g., [[172,173]).

To alleviate the aforementioned issues and bridge the gap between the two meth-
ods, distributionally robust control (DRC) has emerged as an alternative tool, balancing
the tradeoff between required information and conservativeness [27,28130,[31}/33],42,
44145,|174-182]]. With DRC, a controller is designed to minimize the expected cost
of interest with respect to the worst-case probability distribution of disturbances in a
so-called ambiguity set. Thus, the resulting controller proactively manages possible
deviations of the true distribution from the nominal one used in the controller design.

DRC can be regarded as a dynamic or multi-stage version of distributionally ro-
bust optimization (DRO). In the literature regarding DRO, it is common to design the
ambiguity set based on a nominal distribution constructed from data so that it con-
tains the true distribution with high probability. For example, moment-based ambigu-
ity sets are popular in DRO, which include distributions satisfying some moment con-
straints [36,37,{155]]. Despite outstanding tractability properties, such sets often yield

conservative decisions and require accurate moment estimates. Designing the ambigu-
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ity set based on statistical distances to contain distributions close to the given nominal
one is another popular option. Among various distances, such as the KL-divergence
and Prokhorov metric [38],/183]], the Wasserstein metric attracts significant attention
not only in DRO [39-41,|184] but also in DRC [29-33,/42]]. The Wasserstein ambi-
guity set has a number of useful features, including offering a powerful finite-sample
performance guarantee [39,43]]. Furthermore, it is rich enough to contain relevant dis-
tributions, thereby encouraging the DRO problem to avoid providing pathological so-
lutions [40]].

In contrast to research on fully observable settings, the literature about partially
observable DRC is relatively sparse. A few works are devoted to the distribution-
ally robust version of the linear-quadratic-Gaussian (LQG) control method. For ex-
ample, [17,/44,45| propose a minimax LQG controller that minimizes the worst-case
performance by restricting the KL-divergence between the disturbance distribution and
a given reference distribution. In [46]], a partially observable Markov decision process
is considered with finite state, action, and observation spaces. The ambiguity set is cho-
sen to bound the moments of the joint distribution of the transition-observation proba-
bilities. Another type of partially observable systems, namely the Markov jump linear
system, is studied in [28]]. The authors propose a mechanism for estimating the active
mode in a receding horizon fashion and integrate this procedure with a data-driven
distributionally robust controller design using the total variation distance. In [31]], a
data-enabled distributionally robust predictive control method is proposed and studied
using noise-corrupted input and output data.

Departing from the existing literature, our particular interest is in the Wasserstein
DRC (WDRC) methods for partially observable linear-quadratic optimal control in
discrete time, motivated by the superior properties of Wasserstein DRO. The WDRC
problem is challenging to solve due to partial observability in addition to the infinite-
dimensionality of the Wasserstein DRO problem in the Bellman equation. To resolve

these issues, we propose a novel approximation technique for partially observable

85



WDRC problems by replacing the Wasserstein ambiguity set with a special penalty
term using the Gelbrich bound. The approximate problem is first solved in the finite-
horizon setting by deriving a non-trivial Riccati equation alongside a closed-form ex-
pression for the optimal control policy. Then, we examine the asymptotic behavior of
the controller and extend the results to the infinite-horizon average-cost setting. Con-
sequently, we obtain optimal control and distribution policies by solving an algebraic
Riccati equation (ARE) and a tractable semidefinite programming (SDP) problem. The
overall scheme of the proposed WDRC method is illustrated in Fig.

The proposed controller possesses several salient theoretical properties. First, it is
shown to enjoy a guaranteed cost property for any worst-case disturbance distribution
in the Wasserstein ambiguity set. This demonstrates the distributional robustness of
our controller despite being constructed by solving an approximate WDRC problem.
Second, the proposed controller offers a probabilistic out-of-sample performance guar-
antee. Last but not least, the proposed controller is shown to ensure the stability of the
closed-loop mean-state system as well as its bounded-input, bounded-output (BIBO)
stability when viewing the disturbances as input.

The rest of this article is organized as follows. In Section 4.2} we introduce the
partially observable WDRC problem for linear systems. In Section [4.3] we introduce
the tractable approximation and derive its solution in both finite- and infinite-horizon
average-cost settings. In addition, we analyze the optimality of the resulting solution
and describe the overall WDRC algorithm. In Section f.4] we present the guaranteed
cost property and out-of-sample performance guarantee of our controller. Section [4.3]
concerns the stability properties of the closed-loop mean-state system. Finally, Sec-
tion demonstrates the performance and utility of the proposed method through

numerical experiments on a power system frequency control problem.

86



4.2 Preliminaries

4.2.1 Notation

We let P()V) denote the set of Borel probability measures with support VV. The ex-
pected value of function f(x), where z is a random variable with a probability distri-
bution P, is denoted by E,[f(z)]. We denote the space of all symmetric matrices in
R™*™ by S". In addition, S'} represents the cone of all symmetric positive semidef-
inite (PSD) matrices in S with S’} , denoting its subset of symmetric positive def-
inite (PD) matrices. For any A, B € S'}, the relation A = B(A > B) means that
A—BeSY(A-BeSyy).

4.2.2 Problem Setup
Consider the following discrete-time linear stochastic system:

Ti4+1 = A$t + But + wy
4.1

yr = Cay + vy,

where z; € R", u; € R™, and y; € R™v are the system state, control input, and
output at stage ¢, respectively. Here, w; € R"™* represents the system disturbance with
unknown distribution, while v; € R™v is the output noise drawn from a zero-mean
Gaussian distribution with covariance matrix M. The initial state xz( is also random,
drawn from a probability distribution with known mean vector mg and covariance
matrix M. We assume the independence of wg and w; and that of vs and v; for any
s # t. Moreover, the random vectors wy, v¢, and x; are assumed to be independent.
Unlike the fully observable setting, the only information available at time ¢ is the
history of noisy measurements o, ...,y and the past control inputs ug, ..., Uz_1.

Therefore, the information given to the controller at time ¢ can be represented as

It::(yﬂv"'aytvuﬂv"'aut—l)7 t:1727"'7

IU = Yo,

87



where I; is called the information vector. Note that the information vector is updated

according to the following dynamical system:

i1 = (L, Yig1, we)- 4.2)

In the theory of stochastic optimal control, it is well-known that the information vector
serves as a sufficient statistic. Thus, it suffices to consider control policies 7; that map
1; to a control input u; for each ¢. The dynamics can be viewed as describing the
evolution of a system where the state is the information vector I; and the control is ;.
The system output 4,1 plays the role of a stochastic disturbance due to its dependence
on system disturbance w; and measurement noise v;1, introducing randomness and
impacting the dynamics of the augmented system through the measured variables.

In many practical problems, the probability distributions of output noise and initial
state are given a priori (e.g., known sensor noise). In contrast, the distribution of the
system disturbances is usually unknown (e.g., unmodelled dynamics). For simplicity,
the disturbance distribution is often assumed to be Gaussian or estimated from data.
However, when this assumption is invalid, the imperfect distributional information can
deteriorate the controller’s performance, especially when it has to operate for an infi-
nite amount of time. Thus, our goal is to design a control policy that is robust against
deviations of the true disturbance distribution from the given nominal one. In the lit-
erature of DRO, such distributional uncertainties are captured by a set of probability
distributions D; C P(R™*), called the ambiguity set. It encompasses prior information
about the underlying true distribution and includes distributions with shared structural
information. As a result, we consider a distribution policy -y, that maps I; to a proba-
bility distribution IP; of wy, chosen from the ambiguity set D;.

Now, consider the following finite-horizon quadratic cost function:

T-1
Jr(m,7) = Ey |Epp[20Qrar | IT] + Z Ey, 2] Qv + v, Ruy | I, ut]},
=0

where 7 := (7, ..., m7—1) and v := (y0,...,77-1), Q € S}",Qy € ", R € ST,
are the cost weights, and the outer expectation is taken with respect to the joint distri-

.':l'-\._i "'::- TH &l
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bution of all measurements y := (yo,-..,yr). Since our eventual goal is to design a
controller for the infinite-horizon case, we define the following average-cost criterion:

T-1
. 1
Joo(m,7) = lim sup TEy [ Z Eo, ) Qs 4+ u) Rug | I, ug] |- (4.3)

T—o00 —0

The DRC problem can be formulated as a two-player zero-sum game, where the
first player is the controller and the second player is the adversary. The controller
selects a policy m = (mg, 71, ...) to minimize the cost, while the adversary player
aims to find a distribution policy v = (70,71, . .. ) to maximize the same cost. More

precisely, we aim to solve the following minimax stochastic control problem:

i J ), 4.4
min max oo () 4.4)

where II := {7 | m(I;) = uy, mis measurableVt} and I'p := {v | v(I;) = P, €
Dy, 7y is measurable V¢ } are the sets of admissible control and distribution policies.
Note that the ambiguity set is embedded in the policy space for the adversary, and thus
the ambiguity set plays a critical role in characterizing the distributional inaccuracies

that are proactively addressed by the controller.

4.2.3 Wasserstein Ambiguity Set

Motivated by the superior properties of Wasserstein DRO mentioned in Section
we choose D; as a Wasserstein ball. The Wasserstein metric of order p between two
measures [P and Q supported on W C R” quantifies the minimum cost of redistributing

mass from one measure to another using non-uniform perturbations and is defined as

1/p
W=t ([ - wirarea) ),

where 7 (P, Q) is the set of all measures in P(VV?) with the first and second marginals
P and Q, respectively. Here, 7 is called the transport plan, which describes the amount
of mass to move from w to w’, and ||-|| is a norm on R™ that measures the transportation

cost.
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Using the Wasserstein metric of order p = 2 together with the standard Euclidean
norm, we define the ambiguity set as a ball of radius # > 0 centered at the given

nominal distribution Q;:
Dt = {]P)t c ,P(an) | WQ(]P)t,Qt) S 9}

In later sections, we show that employing the Wasserstein metric is useful in partially
observable LQ control, as it contributes to obtaining a tractable solution and an out-of-

sample performance guarantee, among others.

4.3 Tractable Approximation and Solution

The WDRC problem is difficult to solve for two major reasons. First, the Bell-
man equation for (4.4) involves an infinite-dimensional minimax optimization prob-
lem. Second, partial observability aggravates the situation because the value (or cost-
to-go) function is defined over the space of the information vectors. To resolve these
issues, we propose a novel approximation technique and a simple solution to the ap-
proximate WDRC problem. Our method uses a Riccati equation and a tractable SDP

problem.

4.3.1 Tractable Approximation

Our approximation technique has two main steps. We first introduce an additional
penalty term in the cost function, motivated by our previous work for the fully observ-
able case [42]]. However, this approximation is insufficient when the system is partially
observable. Thus, the second step is to further approximate the problem using the Gel-
brich bound introduced in [41]].

For the first step of the proposed approximation, instead of constraining the ad-
versary player to select a disturbance distribution from the ambiguity set, we penalize

the deviation of the distribution P, from the nominal distribution ;. Specifically, a
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Wasserstein penalty term is added to the cost function as follows:
3 1 T-1
JA (m,7) == limsup 7 Ey > o lr] Qo+ uf Rug | I, ue] — \Wa(Py, Q)?|
T—o0 —0
where A > 0 is a user-specified penalty parameter designated for adjusting the con-

servativeness of the control policy. Then, the following minimax control problem ap-

proximates the original WDRC problem:

. FA
4.5
min max Joo(m57), (4.5)

where the set of admissible distribution policies is defined as I' := {v | % (I;) =
P, € P(R™), ~ is measurable Vt}. This set is different from I'p in that it does not
restrict the distribution PP, to be selected from the ambiguity set. This would give too
much freedom to the adversary if there were no penalty terms. In general, the minimax
control problem with the new cost function is intractable due to partial observability
and the Wasserstein penalty term. In fully observable settings, when Q; is chosen as an
empirical distribution, the minimax problem attains a finite-dimensional formulation.
However, problem (4.3)) remains intractable due to partial observability, as demon-
strated in Appendix [4.8.1]

The intractability of motivates the need for another approximation step, where
we propose employing the Gelbrich bound introduced in [41]]. The Gelbrich bound is
lower than the Wasserstein distance and is valid for any nominal distribution with finite

first- and second-order moments. Let
Wt 1= Ewt"’Pt [wt], Wy 1= EthQt [wt] (46)
denote the mean vectors of w; with respect to P; and ¢, respectively. Also, we let

St = Bug o, [(wr — @) (wy — wy) '],
R @a.7
S 1= By, [(we — ) (we — 1) T

denote the covariance matrices of w; with respect to IP; and Q, respectively. The

Gelbrich bound for Wasserstein distance can be described as follows.
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Lemma 4.1. Suppose the mean vectors and covariance matrices of Py and Q; are
given by [.0) and [4.7), respectively. Then, the following lower-bound holds for the

2-Wasserstein distance:

G, Q1) = \/ 101 — ol + B2(2,54) < Wa(P,, Q), 48)
where
B2(%,3) = T[S + 5 — 2(51°, 5317,
Furthermore, the inequality holds with equality if Py and Qy are elliptical with the

same density-generating function.

The Gelbrich bound relies only on the mean and covariance information, which is

a crucial feature for obtaining a tractable solution.

Remark 4.1. The Gelbrich bound provides a generic lower-bound for the Wasserstein
distance for distributions that are not necessarily elliptical. Thus, it is applicable to
problems with non-Gaussian disturbance distributions. The bound discards informa-
tion about the nominal distribution QQ; beyond its first- and second-order moments,
thereby sacrificing possibly useful information. However, it trades available informa-
tion for tractability, providing a simple strategy for evaluating the closeness of two
distributions. In Sectionsd-4|and we also show that the resulting controller enjoys

various useful theoretical properties despite the limited use of available information.m

We leverage the Gelbrich bound and define the following cost function, replacing

the Wasserstein penalty term with its lower-bound:

T—1
. 1
Jg‘o(w,'y) = hjrp sup TEy E E., [J:tTQast + utTRut | I, us] — )\G(}P’t,(@t)Q .

Using this cost function, the penalty version (@.5)) of the WDRC problem can be ap-
proximated as follows:

i J . 4.9
min max Joo (1, 7) (4.9)

10The empirical performance of a Gelbrich bound-based approximation has been demonstrated through

motion control problems in [[75].
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Having the approximate problem (4.9), a closed-form expression of its optimal
solution is derived using a Riccati equation in the following subsections. We first con-
sider the case of finite-horizon problems and then extend the obtained results to the

infinite-horizon average cost setting.

4.3.2 Finite-Horizon Problem

We begin our analysis by first considering the following finite-horizon approximate
WDRC problem:

i Jp 4.10
min max J7(, 7). (4.10)

where the cost function is defined as

I m2) = By EurleF Qror | ]
T-1
+ Z (Emt (2] Que +uf Rug | I, ug) — )\G(IPt,Qt)2>].
=0

To solve the minimax problem (4.10), we apply the dynamic programming (DP)
algorithm by first defining the optimal value function recursively as follows.
Let
Vr(Ir) == EoplopQpar | Ir)

and

Vilh) = il sup o, (2] Quu+ul Ruy = XG(PL Q) @1D)
ut u P;eP(R"=
+ Vi1 (It Y1, we) | It,ut]

. T T
= inf  sup Eg, g, (2, Qo+ up Ruy
ut ERMu Wy ERNT
p3M GSiw

— M@y — e ]|* + B*(Ze, S0)] + Vigr (s g1, we) | Leyue]  (4.12)

fort =T —1,...,0. Suppose for a moment that the outer minimization problem has

an optimal solution u; and the value function is measurable for every ¢. Then, by the
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DP principle (e.g., [185-188]]), we have

inf sup J%(Wv 7) - Eyo [VE)(IO)]?
well ~er

and an optimal control policy 7} can be constructed using the optimal solutions of the
outer optimization problems for all ¢. To this end, we inductively show that the outer
minimization problem in the Bellman equation admits an optimal solution.

Let the expected value of the state z; conditioned on the information vector I;

under the disturbance distribution generated by the adversary’s policy v be denoted by

.f't = Ea;t [l't ’ It]

Also, let
§ =Tt — Ty
denote the deviation of the system state from its conditional expectation, and let

1
®:= BR'BT - XI € S,

As the first step for our inductive argument, we identify an optimal solution to the
outer minimization problem in {.12) for time ¢ when V. ; has the following quadratic

form.

Lemma4.2. Fixt € {0,1,...,T — 1}, and suppose that

Vitr1(Ier1) = oy [0 Prr1wer + &)1 Ser1&en + 2r e | La] + g,

for some Piyy € S, Siyq € Si¥,rip1 € R™, and qiq1 € R. Moreover, assume that

the penalty parameter satisfies \I > P,y1. Then, the following results hold:

* The outer minimization problem in @.12) with respect to u; has the following
unique optimal solution:

uf = K@y + Ly, (4.13)
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where
Ki=-R'BT"(I+P 1) 'P A (4.14)

Li=—R'B"(I+ P ®) Y (Pry1tbs + 7141). (4.15)

* Given uj, the inner maximization problem in @.12) with respect to wy has the

following unique optimal solution:

'ID: = Hyzy + Gy, (4.16)

where
Hy = (M — Piy1) " 'Py1(A + BKy) (4.17)
Gy = (A — Piy1) Y (Pig1 BLy + 141 + Miy). (4.18)

* The inner maximization problem in (4.12)) with respect to ¥y € S” reduces to

the following maximization problem:

max Eapiryess (6641 St416041 | 1)
o (4.19)

F TY[(Pryy — ADS, 4 20525512,

The proof of this lemma can be found in Appendix Using this lemma, we

can also show that V; has the same form as V;;1 whenever Al > P; . To preserve the
structure of the value function through the Bellman recursion, we impose the following
assumption on the penalty parameter, which is also required for the fully observable

case [42]].

Assumption 4.1. The penalty parameter satisfies \I = P, forallt =1,...,T.

Under this assumption, we can use mathematical induction backward in time to

recursively show that the value functions V;’s have a specific quadratic form for all ¢
because Vi = E,, [37;@ srr | I is already in that form. Consequently, it follows

from the DP principle that the optimal control policy can be constructed as follows.
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Theorem 4.1. Suppose that Assumptiond.1| holds and {@.19)) attains an optimal solu-
tion. Then, the value function for allt = 0, ... ,T has the following form:

T-1
Vi(l) = By, [z Prve + & Sie + 2r) @y | L] + ¢ + Z 2 (11, 8).

s=t
Here, the coefficients P, € S, S; € S",r € R™, and q; € R are found recursively

using the following Riccati equation:

P=Q+A"(I+ P19 'P,A (4.20)
S, =Q+ AP A-P, (4.21)
re =A"(I 4 Py ®) Hreg1 + Pryaily) (4.22)

Gt = Gr1 + (20 — Preg1) (1 + Pop1®) ' riga

4 (I 4 Py ®) " Py — T[S (4.23)

with the terminal conditions Pr = Qy¢, St = 0,77 = 0, and qr = 0. The term
zt(Iy,s) fors =t,...,T — 1is given by
zt(It73) = Ssup E$s+1yyt+17---7ys+l[§J+1S5+1€5+1 ’ It]

o (4.24)
+ Tr[(Pop1 — A S, 42X (225, 521/2)1/2),

Moreover, an optimal policy pair can be obtained as follows:

» The optimal control policy is uniquely given by
W:(It) = Kt.i‘t + Lt,
with K, and L, defined as @14) and @.13)), respectively; and

* For each I, let vf (I;) = P}, where P} is a probability distribution with mean
vector defined as @16) and covariance matrix ¥} obtained as the maximizer
of @.24) for stage t. Then, ~y/ is an optimal policy for the adversary that gener-

ates the worst-case distribution.
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The proof of this theorem can be found in Appendix In the theorem, the
existence of X} is not guaranteed in general. However, we will see that >} exists and
is obtained in a tractable way if the Kalman filter is used.

It is worth comparing our result with that of the fully observable case [42]]. Due
to partial observability, the optimal control policy and the mean vector of the worst-
case distribution are affine in the conditional expectation Z; instead of the actual state
x¢. An additional estimator, such as the Kalman filter, is required for computing the
state estimates based on the information I; collected so far. However, the Riccati recur-
sion {.20)—(@.23), as well as the controller parameters (4.14)) and (.13)), are indepen-
dent of the information vector I;. Thus, the separation principle holds for our WDRC
method, where the state estimation and the optimal control parts can be decoupled,
allowing each component to be designed independently.

The standard Kalman filter uses the mean vector and covariance matrix of the
ground-truth disturbance distribution. However, in our problem setting, it is required
to estimate the states under disturbances drawn from the worst-case distribution P;.

The expected value of ;11 conditioned on I; is then estimated as follows:
Tps1 = Tpoq + Xe1CT M (yes1 — CZpyy), (4.25)

where 7, | = Az + Buj + wf with z, = my. Here, X, is the covariance matrix of
x¢ given Iy, i.e.,

Xi =B, [(we — 24) (1 — 20) " | I,

which can be precomputed by applying the following recursion forward in time:

X1 = Xy — X O (CX,CT + M)TICX (4.26)

X =AX AT + 55, (4.27)

starting from XJ = M.
It follows from Theorem {.T|and Kalman filter equations (.25)—(@.27)) that the op-

timal cost J2(7*, v*) depends on the worst-case distribution P; = ~; (I;) only through
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its first- and second-order moments. Therefore, any distribution with mean vector w;
and covariance matrix 3} is the worst-case distribution in {.10). If the worst-case dis-
tribution is chosen to be Gaussian, then the Kalman filter is an optimal state estimator,
as it minimizes the expected mean-squared error of state estimation [[189]]. As stated
previously, when the Kalman filter is used for state estimation, the optimization prob-

lem (4.24) attains an optimal solution and can be recast as a tractable SDP problem.

Proposition 4.1. Suppose that the system state at time t is estimated using the Kalman
filter given the information vector Iy. Then, z; (I, t) given in (4.24) corresponds to the

optimal value of the following tractable SDP problem:

max Tr[Si1 X + (Pey1 — A)X + 2)Y]
X, X,
Y, zesh®
S2vsi?y
s.t. =0

Y I

- (4.28)
X —-X xX-co7

CX- CX CT+M

CXCT+M=0
X~ =AXAT + 3,
where X, is the covariance matrix of x; conditioned on I.

Moreover, an optimal solution ¥* to the SDP problem is the covariance

matrix of the worst-case distribution P} in Theorem

The proof of this proposition can be found in Appendix Notably, the refor-
mulated SDP problem is independent of real-time data such as the measurement
y+ and the control input u;. Therefore, the covariance matrix >} of the worst-case dis-
tribution in each time stage can be computed offline by solving the SDP problem (4.28)
using existing algorithms [[114,/117,/119]]. Having the covariance matrix 2}, the condi-
tional state covariance matrix X; can also be calculated offline by applying the Kalman

filter recursion (4.26) and (4.27). Finally, in order to compute the value function at time
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t, it is sufficient to have z5(Is, s) for s = ¢,..., T — 1 as from the law of total expec-

tation, it follows that z;([¢, s) = z5(Is,s),s =t..., T — 1.

4.3.3 From Finite-Horizon to Infinite-Horizon Problems

The results obtained for the finite-horizon problem can be extended to the infinite-
horizon average cost setting (4.9) as letting 7" tend to co. Throughout this subsection,

we assume the following:

Assumption 4.2. The nominal distribution Q; has a stationary mean vector and a

stationary covariance matrix, i.e., Wy = w and Y, = i]for allt=0,1,....
Assumption 4.3. ® = 0, and (A, ®'/?) is stabilizable and (A, Q/?) is observable.

To examine the asymptotic behavior of the recursion (4.20)—.23)), we first show
the convergence of the Riccati equation (4.20) to a steady-state solution Pss of an ARE.

Proposition 4.2. Suppose that Assumptions hold. Then, there exists a matrix

Py, € S* such that for every Pr € S'*, we have

lim P; = Pss. (4.29)

T—o00

Furthermore, Pgg is the unique symmetric PSD solution of the following ARE:
Py =Q+ AT(I+ P,,®) 1P, A. (4.30)

The proof of this proposition can be found in Appendix As a direct conse-

quence, we can show the convergence of Sy and 7 to their corresponding limits.

Lemma 4.3. Suppose that Assumptions hold. Then, the matrix S; and the
vector + computed recursively according to (@.21) and @.22) starting from St = 0

and rr = 0 converge to

Sss = Q+ATPssA_P537 (431)

rss = [[ — AT (I + Pys®) 7 AT (I + Py ®) 7! Pyt (4.32)

as T — o0, respectively.
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The proof of this lemma can be found in Appendix Proposition and
Lemma.3|yield to identify the limiting behavior of the finite-horizon optimal policy

as the horizon length tends to infinity.

Theorem 4.2. Suppose that Assumptions hold. Then, as 'T' — oo, the optimal

control policy 7} (1) converges pointwise to the steady-state policy

W:s(lt) = K5t + Lgs, (4.33)

where
KSS = 7R_1BT(I + Pssq))_lpssAa (434)
Lgs = —R'BT(I + Pye®) Y (Pytd + 74s). (4.35)

Furthermore, as T — oo, the mean vector of the worst-case distribution P} generated

by the adversary converges to

ﬂ);ss = HssTt + Gsss, (4.36)

where
H, = (M — P,,) 'P,(A + BK,,), (4.37)
GSS = (/\I - Pss)_l (PssBLss + rss + /\'UAJ) (4.38)

The convergence of K, Ly, Hy, and G, in (4.14)—(@.18) directly follows from the
convergence of P, and ;. The steady-state control policy (4.33) is again affine in the
conditional expectation of the system state. However, it is now stationary, making the
controller more attractive for practical implementation.

Theorem [4.2] only concerns the mean vector of the worst-case distribution, which
is insufficient to analyze the steady-state behavior of the policy 7/ of the adversary.
Therefore, in the remainder of this subsection, we consider a worst-case distribution
policy of a special form and show that it is, in fact, optimal to the infinite-horizon

average cost problem (@.9). To this end, consider a stationary distribution policy .,
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that maps the information vector to a probability distribution with the mean vector
Wy ¢ defined as and the stationary covariance matrix %, defined as an optimal

solution to the following maximization problem:

max T[S, X + (Poy — AI)S + 2X(SV/2551/2)1/2
siane
st. X T =AXAT + % (4.39)
X=X -xcl(cxcT+M™tcx .
For further analysis, we impose the following assumption:

Assumption 4.4. (A, C) is detectable and (A, (X%,)'/?) is stabilizable.

It is well known from filtering theory (e.g., [[189]) that under the distribution policy
i, satisfying Assumption the matrix X, given by the recursion in (#27) tends to
a PSD matrix X, that solves the following filter ARE:

X, =AX,, - X, ,CT(CX_,CT+M)'1CX AT + %, (4.40)

for any initial state covariance matrix M, € S'}*. Consequently, the covariance matrix

X converges to the constant PSD matrix

Xoo= X5y — X,0T(CX,CT + M)T'OX G, 4.41)
with the state recursively estimated according to the following asymptotic form:
Ter1 = Ty + XasCT M (g1 — OTy), (4.42)

where T, | = AZ; + Buy + Wy 45 with Zo_; = my. This property is known as the
duality between estimation and control. As a result, the asymptotic performance of
the filter is similar to that of the standard Riccati equation, yielding the steady-state
counterpart of the Kalman filter.

Due to its constraints, the optimization problem (4.39) is intractable. Using a sim-

ilar argument to Proposition4.1] it can be reformulated as the following tractable SDP
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problem:

max Tr[Sss X + (Pss — M) X5 + 20Y]
X, XY, 5esns

_i1/2221/2 Y
S.t. =0

Y 1

Y- _ x x-CT (4.43)
=0
CX~ CXCT'+M

CX CT+M=0
X~ =AXAT + 73,
which is independent of the information vector I; and can be solved offline.
Finally, we can build the connection between the policy pair (7, ~v%;) and the

solution to the infinite-horizon minimax problem (4.9). For that, let the steady-state

average cost incurred by the stationary policy pair (77, v%,) be denoted as

A * *
p = Joo(ﬂ-ssa’)/ss)7

which can be calculated by combining the results from Theorem [4.1] and the maxi-

mization problem (4.39) as follows.

Proposition 4.3. Suppose that Assumptions hold. Then, the steady-state aver-

age cost is given by
p= (20— ®rss) | (I+ Pss®) rgs — ATY[S] + 0 (I + Pss®) ! Pyt + 255, (4.44)
where zgs is the optimal value of the maximization problem ([@.39).

The proof of this proposition can be found in Appendix 4.8.2] Having the steady-
state average cost, it remains to verify the optimality of the policy pair (7}, vZ,) in
the average-cost criterion. For that purpose, we introduce the following optimality

condition:
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Proposition 4.4. Suppose that Assumptionsd.IH#-4 hold. Then, the following average-

cost optimality equation holds:

pHh(h) = inf  sup By, (2] Qoo+ u] Rur — AG(P, Q1)
ut€R™ p,ep(Rna) (4.45)

+ h(I41) | It7ut]7

where p is the steady-state average cost defined as (¢.44) and
h(It) = &] PsTy + 2r @t + Tr[(Sss + Pos) X

In addition, (7%,(1}), v, (1)) is an optimal solution pair to the minimax problem on

the right-hand side of {@.43).

The proof of this proposition can be found in Appendix 4.8.2] Here, h is called
the bias and represents the transient cost. Using the bias term, we now consider the

following extended average-cost function:

_ 1 _
Jg\o(ﬂ, ) := lim sup —J%(W, v), (4.46)
T—o0 T
where
B T-1
Jp(m,y) = By |h(I7) + Y Bayla) Que + u/ Ruy | 1] — AG(Pr, Q;)?
t=0

The extended average cost (d.46) allows us to investigate the optimality of the steady-

state policy pair (7%, v%,).

Proposition 4.5. Suppose that Assumptionsd.IH#.4|hold. Then, the steady-state policy
pair (7kg, vi,) is optimal to

min max J2 (7, )
well ~el’

for any policy spaces I1 C Il and T’ C T satisfying

1 _
limsup —=Ey[h(I7) | 7,75 =0, Vr €11 (4.47)
T—o0 T
1 _
limsup —Ey [h(I7) | 75, 7] =0, Vy €T (4.48)
T—oo 1

Moreover, the optimal value of this problem is equal to p.
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The proof of this proposition can be found in Appendix[4.8.2] The first condition is
similar to the one in the standard LQG control, with the difference that the disturbances
follow the worst-case distribution policy ;. If the expected value of the state with
respect to all uncertainties is bounded under the policy pair (7%, ~y) for some v € T,
then condition holds. In fact, it is satisfied as long as the distribution P, =
~(I;) has a bounded mean vector and a stationary covariance matrix so that the pair
(A, »l/ 2) is stabilizable. This is due to the stability properties of the optimal control
policy 7., which is discussed in Section

We wrap up this subsection observing the tightness of the proposed Gelbrich
bound-based approximation when the nominal distribution Q is elliptical. This is be-

cause the worst-case distribution can be chosen to be elliptical with the worst-case

mean vector and covariance matrix.

Proposition 4.6. Suppose that the nominal distribution Q is elliptical for all t. Let
(7*,7*) denote an optimal policy pair of the approximate minimax control prob-
lem @.9), such that the worst-case distribution P} = ~/ (1) is elliptical with the same
density generating function as Qy. Then, (7*,~*) is an optimal policy pair for the

minimax control problem (@.3).

The proof of this proposition can be found in Appendix {.8.2] This property once
again confirms the validity of our approximation scheme, as most LQ optimal control
problems use nominal distributions as Gaussian. For general distributions, the pro-
posed approximate controller is further shown to have performance guarantees in Sec-

tion

4.3.4 Algorithm

The results presented in previous sections lead us to a novel infinite-horizon WDRC
scheme that controls the partially observable system (4. 1)) while continuously updating

the state estimates. The block diagram of our method is depicted in Fig. .1} while
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Algorithm 4: Infinite-horizon WDRC algorithm

1 Input: A,zb,f],mo,M

2 Solve ARE (#.30) to obtain Pk,

3 Calculate K5 and Lss by (.34) and (@d.35)

4 Compute parameters H,,; and G4 according to and
5 Solve SDP problem (4.43)) to obtain X7,

6 Solve filter ARE (#.40) and use (#.4T)) to obtain X

7 Measure gy and estimate T via (4.42)

g fort =0,1,... do

9 Apply uf = 7wk (I;) = KssTt + Lss to the system (@.1)

10 Compute the worst-case mean wy ;¢ according to (4.36)

1 Measure ;1 and estimate Z,;1 via (4.42)

the detailed procedure is given in Algorithm {] The penalty parameter X is initially
given to the algorithm, chosen depending on the desired level of conservativeness and
satisfying Assumption {.1] The remaining inputs of the algorithm include the mean
vector 1 and the covariance matrix 3 of the nominal distribution Qy, the initial state
mean vector mg, and the covariance matrix of the output noise M. Our algorithm
essentially comprises two stages: offline and online, where the first stage concerns the
controller and estimator design, while the second stage is for real-time deployment of
the controller.

Since the separation principle applies to our method, we disentangle the controller
from the state estimator. Therefore, in the first part, a stationary optimal control policy
is synthesized (Lines 2 and 3), followed by the worst-case distribution policy construc-
tion (Lines 4 and 5). More specifically, in Line 2, the ARE (4.30) is solved to obtain
the matrix Psg, which is used in Line 3 to calculate K, and L, according to (4.34)
and (4.33), respectively. Next, in Line 4, the parameters Hys and G of the mean vec-
tor of the worst-case disturbance distribution are found according to and ({.38),

¥ ! i
":l"\-_i _'-;.- ok 11
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respectively. In Line 5, the SDP problem is solved numerically using the steady-
state matrices Pss and Sss. Next, in Line 6, we solve the filter ARE and
to obtain the conditional state covariance matrix X, under the worst-case distribution.

The online stage for the fixed controller and estimator is presented in Lines 7—
11, where the optimal policy 7}, is deployed to control the actual partially observable
system. In the beginning, an initial measurement yq is received, and the initial state
estimate Z( is obtained by the Kalman filter (Line 7). Then, in each time stage, a
control input uf is applied to the system leveraging the optimal policy 7}, and the
current state estimate z; (Line 9). The mean vector wy ,; of the worst-case distribution
is then computed according to (#.36) using the parameters H,; and G, calculated in
the offline stage. Finally, in Line 11, the new measurements y;1 are used to update
the estimate about the state ;1.

It is worth mentioning that the infinite-horizon WDRC algorithm is applicable only
to environments where the nominal distribution is stationary, in order to satisfy As-
sumption4.2] However, in practice, the disturbance distribution is often non-stationary
and varies over time. While the infinite-horizon formulation provides performance and
stability guarantees, as explained in the following sections, the finite-horizon WDRC
algorithm is more practical, especially for autonomous systems. In the finite-horizon
formulation, the control policy is updated at each time step based on the current nom-

inal disturbance information, allowing for adaptation to changing conditions.

4.4 Performance Guarantees

Though our approach yields a closed-form expression for the optimal control policy
of the approximate minimax control problem (4.9), its relation to the original WDRC
problem is yet to be established. In this section, we demonstrate the capability
of our method to provide distributional robustness with a guaranteed cost property and

a probabilistic out-of-sample performance guarantee, which is an essential feature of

106



the WDRC method.

4.4.1 Guaranteed Cost Property

Fix a penalty parameter A > 0 satisfying Assumption The corresponding solu-
tion to ARE (4.30) will be P,;. Now, consider the average cost criterion (4.3) and its

extended version with the bias h being added as follows:

T-1
_ _ 1
Joo(m,7) = limsup —Ey | h(I7) + Z Eu, [2) Quy + u) Rug | I, uy) |-
T—o0 T =0

The following theorem demonstrates the uniform bound on the average-cost crite-
rion (4.3) under the stationary control policy computed in Theorem {.T| for any worst-

case distribution in the Wasserstein ambiguity set D.

Theorem 4.3. Suppose that Assumptionshold for a fixed A > 0. Also, let T
be the optimal control policy of the penalty problem (#9). For any policy space T'p
defined in Proposition the average cost under the worst-case distribution policy in
['p is bounded as follows:
sup Jw(wﬁg*,’y) < 0°X 4 p(N). (4.49)
vel'p
The proof of this theorem can be found in Appendix Theorem demon-
strates the distributional robustness of the optimal control policy 7Tg\5’* to the approxi-
mate penalty problem, which can be controlled by tuning A. The bound (4.49) suggests
an intuitive approach for selecting the penalty parameter given a Wasserstein ball ra-
dius 6, as it is desirable to select a A that minimizes the upper—boundE ie.,
A0) € ar§ n&in (02X 4 p(N)]. (4.50)
>

This optimal penalty parameter is used in the following subsection.

"'This approach was used to determine \ for our experiments in Section
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4.4.2 Out-of-Sample Performance Guarantee

Suppose that the standard stochastic optimal controller is constructed using an empiri-

cal disturbance distribution constructed from the training dataset w := {1, ... &N},

The performance of this controller is deteriorated when evaluated under a testing
dataset of w; which is different from the training dataset. This issue arises even if
the training and testing datasets are sampled from the same disturbance distribution. A
substantial advantage of WDRC is to address this out-of-sample issue by providing a
performance guarantee [30].

We argue that such an out-of-sample performance guarantee is achieved by the pro-
posed method despite approximation. Specifically, we show that for a well-calibrated
Wasserstein ambiguity set, our method with a nominal empirical distribution provides
an upper confidence bound on the true average cost. Throughout this section, the nom-
inal distribution is chosen as the following stationary empirical distribution Q con-

structed from a finite sample dataset w:
N
i=1

where ¢, denotes the Dirac measure concentrated at w. Here, each sample ' s

drawn from the true stationary distribution IP.
Given the optimal penalty parameter A(6) defined as (4.50), let (77?5(,9\2/*, 723(22,*)

denote the optimal stationary policy pair constructed in Section {.3.3| with the sample

dataset w. Then, the out-of-sample performance (or cost) of ﬂiéﬁ,z,’* is defined as

T—1
* . 1
Joo(wg‘§ﬁ,z,’ ,7v) = limsup ny [ Z Eq[2) Qe + uf Ruy | I, wy
t=0

A(0),*
) ,7],

T—o0

where -y is a stationary policy mapping the information vector to the true disturbance
distribution, i.e., y(I;) = P for all ¢.
However, as the true distribution P is unknown in practice, it is impossible to di-

rectly evaluate the out-of-sample performance. Instead, we consider the following al-
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ternative probabilistic performance guarantee:
PV Lw | om0, 7) < 0270) + pA0) b > 1 5, 452)

where 5 € (0,1) represents a confidence level. Here, the dataset w is viewed as a
random object governed by the distribution PV, The inequality (#.52) means that the
cost incurred by the proposed policy under the true disturbance distribution is limited
by 02X(6)+p(A(0)) with probability no less than 1— 3. Note that the cost upper-bound
62X(0) + p(A(8)) can be computed using the proposed method without the knowledge
of the true distribution IP. The probability on the left-hand side critically depends on 6.
Thus, given (3, the size of the ambiguity set must be carefully determined to attain the
probabilistic out-of-sample performance guarantee.

We identify the desired radius 6 under the following assumption, ensuring that [P

is a light-tailed distribution:
Assumption 4.5. Suppose there exist c > 2 and B > 0 such that
Ey~plexp(|lw][)] < B.

The required radius € can then be found from the following measure concentration

inequality for the Wasserstein metric [[190, Theorem 2]:

PY{w | W2(P,Q) > 0} <c1[bi(N,0)Lpg<ry + (N, 0)Lpsny],  (453)
where
exp(—caN6?) ifn, <4
— 2y .
bl(N7 9) = eXp(—CgN(m) ) lfnw = 4
exp(—caNO"™/?) otherwise

and

ba(N, 0) := exp(—caNO/?)

for some constants ¢y, c2 > 0, depending only on n,, and c. The measure concentration

inequality (4.53) provides an upper-bound on the probability that the true disturbance
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distribution P lies outside the Wasserstein ambiguity set. This inequality is essential
for determining the radius 6 required for ensuring the probabilistic out-of-sample per-

formance of our control policy.
Theorem 4.4. Suppose that Assumptions d.I1H4.5 hold. We also assume that the radius
0 is chosen as

log(c1/8) 2
co N

/c
if N < _log(e1/5)
/2

|
[eatey2) ]1 if N > Llog(c1/B), ne < 4
*
g

2N (4.54)

2/ny
esley) i > L log(er/8). ne > 4

if N > 150 10g(c1/8), n, = 4

for 0 satisfying the condition

o {log(m/ﬁ)} i
log(2 + 1/6) coN '

Then, the probabilistic out-of-sample performance guarantee {¢.52)) holds.

The proof of this theorem can be found in Appendix 4.8.2]

Under an additional assumption that the disturbance distribution P is compactly
supported, the concentration inequality suggested in [43] Proposition 3.2] can be used
to further strengthen our result. Let the diameter of a set S € R"* be denoted by
diam(S) := sup{||z — y||s | z,y € S}, and for P € P(R"*) let supp(P) denote its

support.

Corollary 4.1. Suppose that Assumptions hold and the true disturbance dis-
tribution P is compactly supported with & := %diam(supp(IP’)). Suppose the radius 0

is chosen as

5{log(q/ﬁ)r/4 ifng < 4

coN
1/ng
i e[y2] " s s
6 ifng =4
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for 0 satisfying the condition

6> B Fogm/m} 1/2
£2log(2+ €2/62) coN ’

where c1,co > 0 are some constants depending only on n,. Then, the probabilistic

out-of-sample performance guarantee (4.52) holds.

4.5 Stability

This section investigates the stability properties of the closed-loop system when the
proposed control policy 77, is employed. It follows from Theorem [4.2] that the closed-

loop system is expressed as
Ti41 = Axy + BKgsTy + wy + BLgs,
where Z; is the current state estimate. Assuming that the Kalman filter is chosen as the
state estimator, our focus is to analyze the following mean-state system:
E[zi1] = AE[x¢] + BKsE[zy] + E[wy] + BLss
EZ+1] = E[7 4] + XesCTM O w11 — 7, 4] (4.55)
Ely:] = CE[z¢] + Elvi],

where E[z, ] = (A + BK,s + Hy)E[Z] + BLss + Gss. Here, the expectation is
taken with respect to the joint probability distribution of all uncertainties up to time .
Let

Ty = Elry], Ty :=E[7]

consist of the state of the mean-state system (4.53). We can show the stabilizing prop-
erties of the policy pair (7, vZ;) for the mean-state system when the nominal distur-

bance distribution Q; has zero mean.

Proposition 4.7. Suppose that Assumptions hold. Under the policy pair (7%, k),

both &, and T, of the mean-state system [@.53)) converge to the following value:

[[ — (I 4+ ®Py) A7 (I — ®(I + Pys® — AT) 1P, . (4.56)
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Moreover, if 0 = Ey,~q,|wt] = 0, the control policy m}, stabilizes the system under

the worst-case distribution policy 7%,

The proof of this proposition can be found in Appendix Furthermore, we
can show that 7} guarantees the BIBO stability of the closed-loop system (@.55) when

viewing the disturbances as input.

Proposition 4.8. Suppose that Assumptions hold and the pair (A, C) is de-
tectable. Then, the closed-loop gain matrix (A+ BK ) is stable. Moreover, the mean-
state system (4.55)) under the control policy %, is BIBO stable when viewing the dis-

turbances as input.

The proof of this proposition can be found in Appendix [4.8.2] It follows from
BIBO stability that as long as the mean vector of the disturbance distribution is bounded,
the expected value of the closed-loop system state and the corresponding output will

remain bounded.

4.6 Case Study

In this section, we demonstrate the performance of our WDRC method in both finite-
and infinite-horizon settings and compare its performance with the standard LQG con-
troller [4]], which uses the estimated distribution of the disturbances. Since the true dis-
turbance distribution is unknown, LQG directly uses the nominal distribution in both
the controller and the estimator. For comparison, we test our algorithm in the presence
of disturbances drawn from (7) a Gaussian distribution and (¢7) uniform distribution.
All algorithms were implemented in Python and run on a PC with an Intel Core i7-
8700K (3.70 GHz) CPU and 32 GB RAM. The source code of our implementation is
available online[?]

Zhttps://github.com/CORE-SNU/PO-WDRC
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Figure 4.2: Histogram of the total costs in the case of Gaussian disturbances. The

dashed lines represent the sample means of the costs returned by the two methods.

4.6.1 Finite-Horizon Settings

In these experiments, we consider a discrete-time system with the following parame-

ters:
0.518 0.266 —2.972

A— B= €= 1023 1.955],
0.405 0.806 —2.271
which is unstable due to an eigenvalue outside the unit circle. The controller is required
to minimize the cost with parameters () = @y = R = I over the time horizon of
T = 50. The nominal disturbance distribution of w; is estimated as a Gaussian with

the empirical mean and covariance matrix constructed from N = 5 sample data. The

states are estimated via the Kalman ﬁlterE

Gaussian Case

In the first scenario, the true disturbance distribution is chosen as A/([0.01,0.02] T,
[0.01, 0.005;0.005, 0.01]), and the disturbance data wt(i) are sampled from this dis-
tribution. The observation noise v; follows zero-mean Gaussian distribution with co-

variance M = 0.2, and the initial state is assumed to be distributed according to

13Since the actual disturbance distribution is unknown, the mean and covariance of the nominal distri-

bution are used in the Kalman filter for the standard LQG.
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Table 4.1: Total cost averaged over 1,000 simulations in the finite-horizon settings.

Total Cost
WDRC LQG
Gaussian 4.599 (0.557) 5.374 (1.398)
Uniform 0.536 (0.151) 0.781 (0.267)

zo ~ N([~1,-1]7,0.0011). The penalty parameter was found according to ([#30)
for 6 = 0.1 so that it satisfies Assumption[4.1]

Fig. shows the distributions of the total costs over 1,000 simulations as a his-
togram. Overall, the cost distribution for the WDRC method has a bell shape, and thus
is more favorable than that for the LQG controller. The WDR controller returns lower
costs with a higher probability compared to the LQG controller. This is explained by
the fact that the WDRC anticipates mismatches between the true disturbance distribu-
tion and the nominal one. Meanwhile, LQG is unable to deal with such unexpected
distribution errors, causing higher total costs with a right-skewed distribution. In addi-
tion, the WDRC controller is less sensitive to the state estimates Z;, unlike LQG, which
relies solely on the inaccurate nominal distribution at both the control and estimation
stages.

The total costs for both WDRC and LQG methods are reported in Table The
WDRC controller incurs a lower average total cost with a smaller standard deviation

compared to the LQG method, confirming the superiority of our method.

Uniform Case

In the second scenario, the true disturbance distribution is assumed to be uniform,
U[—0.05,0.05]?, and the disturbance data u?iz) are sampled from this distribution. The
observation noise v; is drawn from a zero-mean Gaussian distribution with covari-

ance M = 0.11. The initial state is uniformly distributed with 2o ~ #([0.1,0.2] T,
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Figure 4.3: Histogram of the total costs in the case of uniform disturbances. The dashed

lines represent the sample means of the costs returned by the two methods.

[0.3,0.5] 7). Since the state distribution is not Gaussian in this setting, the Kalman
filter is no longer an optimal estimator. Yet, we apply the Kalman filter with the Gaus-
sian nominal distribution of disturbances to demonstrate the capability of the WDRC
to compensate for an inexact state estimator. The penalty parameter was tuned for
# = 0.03 following the same procedure as in the Gaussian case.

Fig.[.3]illustrates the cost histograms over 1,000 simulation runs. The effect of the
penalty term is more pronounced here, as the difference between the cost distributions
is larger compared to the Gaussian case. In particular, the total costs incurred by the
WDRC method are concentrated in the low-cost regions, while those incurred by LQG
are spread wider, with a right tail in the high-cost region.

Table @1 summarizes the total costs for both WDRC and LQG methods. Analo-
gous to the Gaussian case, the average total cost incurred by the WDRC method is
significantly lower than that obtained using LQG. Moreover, the standard deviation
of the costs is considerably smaller when using the WDRC controller. The reason for
this result is twofold. First, the nominal distribution is not an efficient estimator of the
true uniform distribution; therefore, relying on moment estimates is insufficient. The

WDRC approach alleviates this issue by considering all distributions close to the nom-

5 A2
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inal one, thereby enabling the system to effectively handle the distribution mismatch.
Second, the state estimation for LQG is performed for Gaussian disturbances with a
nominal mean and covariance, while the WDRC method uses the worst-case distribu-

tion in the state estimation, adding additional robustness to the estimation stage.

4.6.2 Infinite-Horizon Settings

In this section, the performance of our infinite-horizon WDRC method is evaluated
on a power system frequency regularization problem using the IEEE 39 bus system,
which models the New England power grid [42]. The linearized second-order model

for power systems has the following form:

AS 0 I AS 0
_ + AP, (4.57)

Ao ~M~'L —-M~'D| |Aw M1

where M and D are the diagonal matrices of inertia and damping coefficients, L is
the Laplacian matrix of the transmission network. The system state vector z(t) :=
[AGT (1), AwT (t)]T € R? consists of the rotor angles and frequencies for 10 gener-
ators, while the control input u(t) := AP(t) € RV is the power injection vector of
the generators. It is assumed that only the rotor angle and frequency of the first six
generators are measured, i.e., n, = 12 with C' = [I12x6, 012x4, [12x6, 012x4]. The
continuous-time system (4.57) is discretized by a zero-order hold method with sample
time 0.1 seconds. This yields a discrete-time stochastic system model of the form (4.1)).
A disturbance w(t) drawn from an unknown distribution affects the power system dy-
namics. Such disturbances arise from fluctuations in net demand, mechanical noise in

generators, etc. The results are obtained by running the algorithms for 100 time steps.

Gaussian Case

In these experiments, the initial state distribution is Gaussian with mean mg = [019, 1] "

and covariance matrix My = 0.0115y. The true disturbances are drawn from a zero-
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Figure 4.4: Trajectories of Ad7 and Awjq for the system controlled by the LQG and
WDRC methods averaged over 1,000 simulation runs in the case of Gaussian distur-

bances. The shaded regions represent 25% of the standard deviation.

mean Gaussian distribution with a covariance matrix > = 0.0115g, while the obser-
vation noise has a covariance M = 0.011;2. The nominal distribution is constructed
using N = b disturbance sample data by letting /4 = 0 and 3 be the empirical co-
variance matrix. We select the penalty parameter A by minimizing the upper-bound
in for § = 1073,

Fig.[4.4]displays the state trajectories of Ad7 and Awqg, which are both unobserv-
able states, controlled by the WDRC and LQG methods. The results are averaged over
1,000 simulation runs. These results indicate that the WDRC method reduces the fluc-
tuations and the large variance in the rotor angle and removes unnecessary undershoot
in the frequency. Besides, our method successfully keeps the states stable despite the
inaccurate nominal distribution. The total cost and the computation time for running
the whole algorithm are reported in Table 4.2l The WDRC method yields a lower av-
erage total cost with a smaller variance over the simulations than the LQG method.
Furthermore, the computation times for running the two methods are almost identical,
as the computationally expensive SDP problem and the Riccati equations are solved in

the offline stage, making the complexity of the online stage similar for both algorithms.
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Figure 4.5: (a) Histogram of the total costs incurred by the LQG and WDRC methods,
and (b) out-of-sample performance of WDRC in the case of Gaussian disturbances.

The dashed lines represent the sample means of the costs returned by the two methods.

Fig. i3] (a) displays the distribution of total costs computed for 1,000 simulation
runs. It reveals that for WDRC, the overall distribution is concentrated in the low-cost
region. In contrast, the total costs induced by the LQG controller are comparatively
higher as it relies on the nominal disturbance distribution, disregarding possible in-
accuracies due to the small sample size. Meanwhile, our WDRC method penalizes
deviations of the true distribution from the nominal one, thereby making the controller
more robust against distributional uncertainties.

Fig. @.5] (b) shows the out-of-sample cost incurred by our method for different
values of the ambiguity set radius # and various sample sizes of the dataset w estimated
for 10,000 disturbance samples drawn from the true distribution and averaged over
1,000 independent simulation runs. For each 6, the penalty parameter \(#) is found
according to (#.50). We observe that the cost slightly decreases as the radius increases
up to @ = 1073, The cost starts growing for § € [1073, 10°]. This is because a large 6
encourages the controller to be overly conservative, while the controller with a small
0 is not sufficiently robust.

As part of these experiments, we also examine the effect of partial observability

on the control performance. Specifically, Fig. 4.6 shows the total costs incurred by the

A L] &
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Table 4.2: Total cost and online computation time averaged over 1,000 simulations in

the infinite-horizon settings.

Total Cost Computation Time

WDRC LQG WDRC LQG

1842.640 2735.015 0.113 0.115
Gaussian

(341.836) (661.369) (0.019) (0.014)

1891.211 2653.224 0.0184 0.0183
Uniform

(394.855) (767.445) (0.003) (0.002)

WDRC and LQG methods under a varying number of observable generators. It can be
seen that regardless of the number of observable generators, our method outperforms
LQG. Overall, the total cost decreases as more generators become observable, resulting

in smaller mean and variance values.

Uniform Case

In this scenario, the true disturbances in each dimension follow a uniform distribution
U(—0.15,0.15). The initial state distribution is also uniform, ¢/(—0.05,0.05) for all
states, except Awig, for which the initial state is selected from 2/(0.95,1.05). The
nominal distribution is constructed using N = 5 sample data drawn from the true
distribution with its mean and covariance corresponding to the empirical ones. The
penalty parameter is chosen by minimizing the upper-bound in [#49) for § = 102
The Kalman filter is an optimal estimator only in the Gaussian case. However, we
approximate the disturbance distribution by a Gaussian, assuming w; ~ N (wy o5, £%,),
and apply the steady-state Kalman filter. Besides, unlike the usual LQG settings, where
the observation noise is assumed to be zero-mean Gaussian, we draw it from a uni-
form distribution ¢/(—0.4,0.4) and estimate the covariance matrix from 40 samples.

By doing so, we evaluate the capability of our WDRC algorithm in the presence of an
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Figure 4.6: Effect of the number of observable generators on the total cost incurred
by the LQG and WDRC methods averaged over 1,000 simulation runs in the case of

normal disturbances. The shaded regions represent 25% of the standard deviation.

erroneous state estimator.

Fig. displays the state trajectories for Adg and Awig for the WDRC and LQG
methods averaged over 1,000 simulation runs. It shows that LQG results in a larger
variance in the trajectory for Adg, which is reduced in the WDRC case. In addition,
our method smooths the unwanted fluctuations in the trajectory of Awg present in
the LQG case. The total cost and the computation time for running the algorithm are
presented in Table[d.2] Our WDRC method outperforms the LQG method in total cost,
inducing a lower average cost with a smaller variance.

The distribution of total costs computed for 1,000 simulation runs is presented as
a histogram in Fig. {.§] (a). Overall, the total costs incurred by WDRC are smaller
than the ones induced by the LQG method. Furthermore, the costs for applying the
proposed method are concentrated in the low-cost region, whereas the cost distribu-
tion for LQR is relatively widespread, covering a large range of costs. This happens
because the LQG controller is designed solely using the mean and covariance of the
nominal distribution. Furthermore, the state estimation is performed for an inaccurate

disturbance distribution, aggravating the situation. Our WDRC method resolves these
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Figure 4.7: Trajectories of Adg and Awjg for the system controlled by the LQG and
WDRC methods averaged over 1,000 simulation runs in the case of uniform distur-

bances. The shaded regions represent 25% of the standard deviation.

issues by considering the worst-case disturbance distribution close to the nominal one,
thereby anticipating mismatches between the actual and nominal distributions during
both the control and estimation stages.

Fig. 48] (b) illustrates the total out-of-sample cost induced by our method for dif-
ferent values of § and IV estimated for 10,000 disturbance samples drawn from the true
distribution. The results are averaged over 1,000 independent simulation runs. Simi-
lar to the previous scenario, the cost slightly decreases as the radius increases up to
6 = 10~2 and the cost increases thereafter.

Fig.[d.9)showcases the effect of distributional uncertainties in measurement noise.
Specifically, it demonstrates the total costs incurred by the WDRC and LQG methods
for measurement noise covariance matrix M estimated using different samples. It is
evident that even for only 10 samples, the average performance of WDRC reaches that
of LQG with fully known measurement noise distribution. These results illustrate the
capabilities of our method to account for erroneous measurement noise information al-
though the proposed controller is designed to achieve distributional robustness in terms

of disturbances. Using the worst-case distribution in the state estimator in our approach
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Figure 4.8: (a) Histogram of the total costs incurred by the LQG and WDRC methods,

and (b) out-of-sample cost of WDRC in the case of uniform disturbances.

induces additional robustness to the Kalman filter, yielding better overall performance

even for a small sample size compared to the standard LQG control method.

4.7 Conclusions

In this work, we have presented a novel WDRC method for discrete-time partially ob-
servable linear systems. We have proposed an approximation scheme for reformulat-
ing the original WDRC problem into a tractable one. The approximate problem is first
solved in finite-horizon settings, resulting in a closed-form expression of the optimal
control policy with the corresponding Riccati equation. The mean vector of the worst-
case distribution is also found in closed form, while the covariance matrix is found
as the solution of a tractable SDP problem. The results for the finite-horizon prob-
lem were extended to the infinite-horizon setting by observing the asymptotic behav-
iors of the optimal policy pair and the cost. Consequently, we obtained a steady-state
control policy by solving an ARE. The proposed method has several salient features,
such as guaranteed cost property, probabilistic out-of-sample performance guarantee,
and closed-loop stability. The experiment results demonstrate the capabilities of our

method to immunize partially observable linear systems against distributional ambi-

] 2-t) &) 3
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Figure 4.9: Effect of measurement noise uncertainty on the total cost incurred by the
LQG and WDRC methods averaged over 1,000 simulation runs in the case of uniform

disturbances. The shaded regions represent 25% of the standard deviation.

guity.

4.8 Appendix

4.8.1 Intractability of Minimax LQ Control Problems with Wasserstein

Penalty under Partial Observations

Consider the partially observable system (4.1) and the corresponding minimax control

problem (#.3) in a finite horizon:

. I
min max J7(m
Tell yel T( 77)a

where

T-1

IR, 7) = By | Eap [27Qprr | Ir)+ Y Eoy o] Quetu Ruy | I ug] = AWa (P, Q)|

t=0
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To solve the minimax control problem using DP, we define the value function recur-

sively as follows:

Vi(ly) := inf  sup By, [z Qui + u) Rup — AWa(Py, Q)
ug ER™u P;cP(Rm) (458)

+ By Vi1 (Tt o1, ur) | I, ]
with

Vr(It) := Byp e Qrar | Ir).

In fully observable settings, a common approach to solving the inner maximization
problem in (4.58) is to use Kantorovich duality [40]]. The most tractable case is when
the nominal distribution Q; is chosen as the empirical distribution (4.5T)). In this case,
Kantorovich duality can be expressed as

sup By [f(z,w)] — AW (P, Q)?

PeP(R")
N (4.59)

1 (i
=13 sup {fw) = M w2,
i=1 WER™®

where f : R™ x R™ — R is some function depending on the disturbance w and some
fixed parameters x.

However, unlike the fully observable case, the uncertainty of the system is rep-
resented by the output y; 1 and not w; directly. Therefore, if we can write the value
function (4.58) in a way that has the form of the left-hand side in (4.59), then Kan-
torovich duality can be applied analogously to the fully observable settings. To this
end, we recursively solve (#.58)) to check whether a specific form of the value function

is preserved. For time ¢ = T' — 1, the value function is given by

Ve 1(Ip_1) = wr ilnefRnu Epp_ [27_1Qrr_y1 | I7—1] +uj_ Rup_y

+ sup Ezr s wp o [(Azr—1 + Bup—1 + wT_l)—r X
Pr_,€P(R"=)

Qp(Avr_1 + Bur—1 +wr—1) | Ir—1,ur—1] — \Wa(Pr_1,Qr_1)*.
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It follows from Kantorovich duality that

Ve 1(Ip_1) = o ilnefRnu Eup  [2r 1Qrr_1 | Ir—1] + ug_ Rup_4
| X
+ = Z sup  {Ea,_,(Azp_1 + Bur_; + wr_1) " %
N i=1 wr_1ERM

Q(Axp_y + Bup_y +wr_1) | Ir_1,up_1] — AJ@$) | — w12},

If the penalty parameter satisfies the condition AI > (), then the inner maximiza-

tion problem for each 7 = 1,..., [NV has a unique maximizer w®*, given by
(Wx = (M- Q) ' [Qr(AE I B b
Wr_y = ( Qf) [Qf( $T71[$T—1 ‘ T—l] + uT—l) + wal] .

Solving the outer minimization problem with respect to up_; yields the following

unique minimizer:

« - _ 1.
wyp_y=—R'B"(I+Q;BR 1BT—XQf) !

N
1 i
X (ABuy, [ory | Iroa] + 5 D)),
i=1

Then, the value function at time ¢ = 7" — 1 has the following quadratic form:
y _ T T T
Vi1 =Eep (2 1 Proaxr—1 + & 1Sr—1&r—1 + 2rp_qxp_q | Ir—1] + qr—1,

where {71 = x7_1 — Eg,_ [z7—1 | Ir—1] is the difference between the state and its
estimate, while Pp_1,S7_1 € ST, rr_1 € R™ and qpr_;1 € R are coefficients.

Continuing the recursion for ¢ = T" — 2, the value function is written as

Vr_o(Ip_o) = o iglefRnu By, 27 oQrr_o | I7—2] + uf_oRur_o

+ sup  Epp o [(Azr_ 9 + Bur_o 4+ wr_o) "
Pr_seP(Rne)

X Pr_1(Azr—2 + Bur_2 + wr—2)
+ 2141 (Azp_9 + Bup_o +wr_s) | Ir_a, ur_o]
+EyT—17$T71[§;—1ST—1§T—1 | IT—l]

+qr_1 — \Wa(Pr_o, Qr_2)2.
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Due to the structure of the expression inside the maximization, it is straightforward
that the value function does not have the form in (.39). This is because the term
Eyr 1o, [g{ulsT_lgT_l | I7_1] cannot be represented by an expectation with re-
spect to wr_o, though it implicitly depends on the disturbances via x7_1 and yr_.
Consequently, the standard LQR argument is not applicable to the minimax problem

with the Wasserstein penalty under partial observations.

4.8.2 Proofs
Proof of Lemma

Proof. Having the quadratic value function for time ¢ + 1 and plugging it into (4.12)),

the value function for time ¢ is given by

Vily) = inf  sup Eg[z] Qx| It +u/ Ru
utER™u wiER™T

3 eSh”
+ By, o, [(Azy + Bug +wy) " Pry1 (Azy + Bug + wy)
+ 27”;1(14@ + Buy +wy) | I, ut] +Eapyr 01 [§15T+15t+1§t+1 | I;]
+ qrr — Al|@; — ay]|* + B (S, 30)).
Using the property that

E[w;rPtHwt] = thPtHwt + TI“[PH,lEt],

we further simplify the value function as

Vi(ly) = inf  sup By [z] Qx| Ii] + v/ Ru
ut ER?u wy ER

$eSh”
+ Ey, [(Azy + Bug + @) " Pry1 (Azy + Buy + )
+ 201 (Az + Bug + @) | I ue) = M|we — @5 4 Bay g 2 61 Ser1éeg | 1]
F Te[(Pigy — ADEY + 20Te (528522 — AT (8] + gt
Note that

Ert+1,yt+1[£t+1 ’ It] =0,
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andEz, \ g, [&Hg;l | I;] is independent of u; and w;. Thus, the objective function

for the inner maximization problem

Ea, [(Az¢ + Bus + ;)" Pry1(Axy + Buy + @) + 27"tT+1(Axt + Buy + W) | Iy, ug]
— M@ = o3 + By 1 g [0 Ser16041 | 1)
+ Tr[(Prr = ADS] + 20T (5,725 ) 7]

can be written separately in terms of w; and 3;, enabling to solve two independent

maximization problems. Specifically, the two problems are as follows:

7%%}( Ewt [(A.%'t + Buy + U_Jt)TRH_l (A.let + Bu; + U_Jt)
we nx

+2r) . (Azy + Bug +wy) | I, we] — Aoy — 3

and

e By (601G | 1]+ Trl(Pra = A+ 20(575,5, %),
t=O4

Regarding the first problem for w;y, the Hessian of value function with respect
to w; is negative definite under the assumption on the penalty parameter . Thus,
the objective is strictly concave, and its unique maximizer given control input wu; is

obtained from the first-order optimality condition as
wy (ug) = (M — Pt+1)_1(Pt+1[At53t + Byug] + 7441).

Note that the maximizer of the second problem is independent of the control input
u;. For the outer minimization problem with respect to wu;, we first differentiate the

objective function with respect to u; € R™ to obtain the following derivative:

dw; (ug)] "
2 |:B + wathEUt)] [Pt+1(A.ft + Bus + w;(Ut)) + rt+1]
t
aut

= QBTgt(ut) =+ 2Rut,
where

gt(ut) = Pt+1(Ai‘t + Bu; + ’lD:(ut)) + g1
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Differentiating the derivative with respect to u; again, we can check that the Hessian of

the objective function is positive definite under the assumption on the penalty parame-

ter \. Thus, the unique minimizer u; can be obtained by using the first-order optimality

condition:

uj = —R'BTg;.
For further simplifications, we let w; = w; (u;) and rewrite it as

w; =

(Piy1(AZ¢ + Buf 4 0f) + o1 + Mdy),

> =

which yields the following expression for g;:

* _ — * 1 * N
9; = P (Awt —BR'Blg; + ot wt) + g1

Finally, we have
9i = (I + Piy1®) " (Pey1 ATy + Pryator + 1e41)

and
T S
wt - th +wt-

We conclude the proof by replacing (4.61)) into (4.60).

Proof of Theorem 4.1]

(4.60)

4.61)

Proof. We use mathematical induction backward in time to prove the theorem. For

t = T, by definition, the value function is in the desired form

VT(IT> = EZ‘T [:L'}—PTI'T’IT]

Now, it suffices to show that V; is in the required form, given that V; is in that
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form. Specifically, the value function at time ¢ can be written as

Vi(I;) = inf sup E,, [:L’:Q:vt | It] + u:Rut
us ERMu Wy RN

EtESnI
+ Eup e [(Azy + Bug + wy) " Prya (Azy + Bug + wy)

+2r)  (Azy + Buy +wy) | Iwg] + By e (6500 S & | 1
T-1

= AllJwe — ﬁ’tHQ + B2(Et7 2t)] + 41+ Z By [z (T we, ye1, 8) | 1o, w].

s=t+1

It follows from the law of total expectation that

Ey,o [2e41 Loy ues Yoy, 8) | Iy ug] = 2e(1y, 8),

which is independent of wy, >, and wu;. Therefore, by Lemma @ the mean vec-
tor (#.16) and the covariance matrix solving (#.19) are an optimal solution pair of the
inner maximization problem. Moreover, the optimal value of (@.19) corresponds to
z¢(It, t). Meanwhile, the outer minimization problem has a unique optimal solution

given as ({.13). By plugging these values into the Bellman equation, we have

1 . .
Vi(L;) =By, [z Quy | I + (97) 'BR™'BT gf — X(gt) 9i = ATr[S] + ge

+ Ext [(Al't - (I)g: + wt)TPt+1(Al't — @g: + wt)

T—

+ 2]y (Azy — Bg; +1dy) | I ug] + 2e(Iy, t) + Z 2¢(13, 5)
1

,_.

S=
It remains to simplify the expression by substituting the values for r; and ¢; as
in (#.22)) and @.23). Then, the value function for time ¢ can be written as

T-1
‘/t(It) = Eact [l'tT(Q + ATPt+1A).’Et ’ It] — i'tTSti't + QTICEt + qt + Z Zt(It, S)

s=t
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where S; = AT P, 1 ®(I + P,y1®)"' P, A. This can be expressed as

Vi(Iy) =Eg, [, (Q+ A" Pyt A — Sp)wy | I + Ea, [ Se&e + 21 @y | I}

-1
ta+ > al,s)
s=t
T—1
=Eo, ) Pove + & Si& +2r @i | I] + ¢ + Z zi(1t, 8),
s=t

which is in the desired form with parameters (4.20)—(@.24)). This completes our induc-
tive argument.

So far, we have shown that the value function is measurable, and the outer min-
imization problem in the Bellman equation (#.12)) admits an optimal solution. Thus,
it follows from the DP principle that the control policy 7* constructed as that in the
theorem statement is optimal. Moreover, if (4.24) admits an optimal solution ¥} for

all ¢, the policy pair (7}, ;) is minimax optimal. O

Proof of Proposition 4.1

First, we notice that Xp1 = By, ., (616 | 1] 1t follows from the Kalman

filter recursion (4.26)) and that z;([;, t) is equal to the optimal value of @.19),

which in its turn is equivalent to the following optimization problem:

max Tr[Sp1X + (Pt — ADE + 205208 1/2)1/2)
XX,
BeSh*
st. X=X~ —-XCcl(CXCT+M)CX~
X~ =AXAT + 3,

where X; is the state covariance matrix conditioned on the information vector I;. The
objective function here is continuous and jointly concave in >, X~ and X due to the
positive semidefiniteness of S;4; and Assumption Therefore, the problem has an
optimal solution and we can obtain optimal (¥*, X*), corresponding to ¥} and X; 1.

The reformulation into the SDP form #.28) is performed by using the property that
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Tr[Si41X] < Tr[Si41X’] for any X < X' and then applying the Schur comple-
ment lemma to replace the inequality constraints with the corresponding linear matrix

inequalities.

Proof of Proposition 4.2]

Proof. The proof follows from the asymptotic property of the Riccati equation for the
standard LQ control. Specifically, we rewrite the Riccati equation (4.20) as follows:

P=Q+AT(I+ P21 (@) 'P1Q
o o (4.62)
=Q+ A" (Py1— P B(R+B'P 1B 'B"P)A,

where R = I, B = ®'/2. Consider a hypothetical linear system (A,B) with a
quadratic cost function replacing R with R. 1t is evident that (#.62) has the form of the
standard Riccati equation for this hypothetical LQ control problem. It follows from
the standard LQ control theory that if the pair (A, B) is stabilizable and (4, Q'/?)
is detectable, then there exists a Ps;s >~ 0 such that holds for any Pr > O.
Furthermore, it is the unique solution of the ARE (4.30)) [4, Proposition 3.1.1]. ]

Proof of Lemma 4.3

Proof. It follows from Proposition[4.2]that P, — P, as T' — oo, and thus the conver-

gence of {S;} to S, is straightforward. Moreover, r; is updated according to
T = AT(I + Pys®) " (ryy1 + Psstd)

as T — oo. Thus, to ensure the convergence of {r;}, it suffices to show that AT (I +
P,,®) . For this, we revisit the proof of Proposition 4.2and notice that the ARE can

be expressed as
Pss = Q+ AT (Pss — PssB(R+ B Py B) ' BT Pys) A,

where R = I and B = ®/2. Then, the optimal control gain matrix for the hypothet-

ical LQ control problem for the linear system (A, B) with a quadratic cost function
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replacing R with Ris given by
K = (R+ B"PyB) B P, A,
and the closed-loop “A” matrix is
A+BK =A—-B(R+ B"PysB)'BT PA,

which is stable because (A, B) is stabilizable. Since AT (I + Py,®)~' = (A+ BK)",

it is also a stable matrix. Therefore, {7} converges to its limit, which is obtained

as (4.32). O

Proof of Proposition 4.3

Proof. 1t follows from Theorem [4.1] that the finite-horizon cost incurred by the policy
pair (7%, %, is given by
I (e, Vas) = By [Eay 20 Powo + & Sobo + 2rg o | To]] + do

T-1

+ Z (Tr[St-i-lXt—i-l + (Pr1 — M)E5] + QATT[(21/222521/2)1/2])7
=0

where X, is the state covariance matrix computed using %,. It follows from (@.4T)

that {Xt+1} converges to Xes as T — oo. By the convergence of F;, .Sy, and ry, as

well as the recursion for ¢, the steady-state average cost is given by

p = limsup %J%(ﬂ;‘s, Vas)
= Tr[SusXas + (Pas = AE5, + 20828351212
+ (20 = Bry) (1 + Po®) Mgy — ATY[E] + (I + Pyy @)~ Puob.
The first term in the last equation corresponds to the optimal value zz; of the maxi-

mization problem (4.39). Therefore, the result follows. ]

Proof of Proposition 4.4

Proof. We first rewrite h as

h(I) = By, 2] Peswy + & Ses&y + 2r Lz | 1]
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with B, [&& | It] = X; = X, Next, we apply Lemmaby letting Viy1 = h,
or, by setting P11 = Psg, St+1 = Sss,Tt+1 = Tss, and ge+1 = 0. Then, the minimax

problem on the right-hand side of (@.43) has the optimal value of
T T T
Ey, [z, Pirve + & Se& + 2ry a1 | L] + q + ze(I, 1),
where

P=Q+A"(I+ P,,®) 1P A
St:Q+ATP55A_Pss
re = AT (I 4 Pos®) " (rss + Pssid)
G = (200 — Brgg) T(I + Puy®) Lrgs + 0T (I + Py®) ™' Pogtd — ANTY[S],
and
2i(I;,t) = sup Tr[SeXip1] + Tr[(Pes — A)E; + 20228, 51/2)].
EtESiI
It follows from the ARE {#.30) that P, = Ps,, while from (4.31)) and (@.32) we
have S; = S, and r; = 74, respectively. Since X; .1 = X, is stationary, the maxi-

mization problem (4.39)) yields z;(I;,t) = zss with its maximizer corresponding to the

stationary covariance matrix ¥%,.. Moreover, we have

Xos = X;py — X, CT(CX O + M) ICX

X =AXAT + 58

887

which is valid only if X; = Xs5. As aresult, the optimal value of the minimax problem
is equal to

i’;rpssjt + ZT;rsfit + Tr[(Sss + Pss)Xss] + gt + Zss-

Thus, the equality in (@.43) holds. The optimality of the solution pair (7%, (I3), v (1;))
follows directly from Lemma[4.2] O
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Proof of Proposition [4.5]

Proof. Fix an arbitrary control policy 7 := (mg, 71, ...) € II. We first show that
Jp(m,7%6) = Tp + By [h(1o)] (4.63)

using mathematical induction. For T' = 0, J3(m,~%,) = Ey,[h(Io)]. Suppose that the
induction hypothesis is true for 7' = k. When T' = k + 1, it follows from Proposi-
tion 4.4 that

j12\+1(7r7 Ves) = jl?(ﬂ—a Vas) — Eyo:k[h(lk>] + 0+ By [h(I))]
> (k+1)p+ Ey[h(l0)]-
This completes our inductive argument.

Dividing both sides of (#.63) by T and taking lim sup, we obtain that
To(m95) = p, (4.64)

which holds for any control policy 7 € II.
Now, for any 7 € II, the left-hand side of (.64) is equivalent to

_ 1
Jé\o(ﬂ-afyzs) = limsup TEy[h(IT) | 71—7'7:5]

T—o0
=
+ lim sup Thy [ Z Eq,w) Qy | 1) + u) Rup — AG(Pr, Q1)? | 7,77,
T—o0 =0

= Jci\o (7Tv '7:5)7
(4.65)

with the last equality following from the condition (#.47). Combining (4.64) and (4.63))
yields
Joo(m,75s) = p Vel

Using a similar argument, we can show that
Jo(miy) <p Vyel.

Therefore, (7%, v%;) is minimax optimal, and the optimal value corresponds to p. [

T ! 3
-":lx_i 'INI-.. -] .I | [ | 11
| A 1 -
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Proof of Proposition [4.6]

Proof. Since v* € T, it is admissible to the original minimax control problem (4.3).
Also, by Lemma if the nominal distribution Q is elliptical, then (4.8) holds with
equality, yielding
JN (7, ) = Jo(m,y) Vr el
Therefore,
T y) = inf Jo(m,y") < J3(m0") Vr €L
On the other hand, Lemma .| implies that

Jé‘o(w*, ~v*) = sup J{)\o(w*, v)
vyel

> sup Jo(m*,9) = Jo(7*,y) Yy eT.
vE

Finally, we obtain that

Jo(m* ) < T (7%, 9) < Jo(m,7*) V(m,7) €M xT.

This implies that (7*,+*) is minimax optimal to the original problem (&.3)). O

Proof of Theorem [4.3]

Proof. Fix A > 0. Let LHS := sup, ¢, Joo(m2s",7) and RHS := 62X + p()) with

I'p:=TNTp.For any € > 0, there exists v* € I'p such that
LHS — € < Joo (72, 7°).
By Lemma4.T] and the definition of the Wasserstein ambiguity set Dy, we have
G(PtaQt)Q < WQ(PtyQt)Z <6* VP, €D
Thus, it follows from ¢ € I'p and the definitions of .J,, and Jg\o that
Joo (M5, 77) < 02X+ T2 (10, 7)
< 02X+ sup Jou (12, 7) = 02X + p(N).

~yel'

Since e was arbitrarily chosen, LHS < RHS as desired. O

135



Proof of Theorem 4.4]

Proof. 1t follows from the measure concentration inequality (4.53) that for a Wasser-
stein ambiguity set with radius € chosen according to (4.54), the following probabilis-
tic bound holds:

PY{w | W2(P,Q) <6} >1 -5,

meaning that the true distribution P lies in the ambiguity set with a probability no less
than (1 — 5).
Moreover, Theorem 4.3 suggests

oo (T80, 7) < °X(0) + p(A(6)) ¥y € Tp.

Finally, the true distribution P belongs to the ambiguity set D with a probability no
less than (1 — ), the inequality holds with the same probability, thereby concluding
the proof. O

Proof of Proposition 4.7
Proof. The mean-state system under the optimal policy (7%, vZ;) can be written as
jt—i—l = Aj}t + (BKSS + Hss)«%t + BLSS + Gss
Tir1 =(A+ BKy + Hyy — X, CTM™ICA) T (4.66)
+ BLgs + Gss + X5sCT M™'C A%y

Let e; := &y — Z; be the error state, representing the difference between the ex-
pected values of the true state and its estimate. Then, the error state evolves according

to
err1 = (A— X CTM'CA)(F — Zy)
= (A-X_,CT(CX,CT + M) 'CA)e,

where the last equation follows from the identity

X CTM =X cT(CX,CT+ M)
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For the steady-state Kalman filter, it is known that under Assumption the PSD
matrix X solves the filter ARE (#.40). Therefore, the corresponding closed-loop gain
matrix A—X;,C" (CX;,CT+M)~1C A has eigenvalues strictly within the unit circle,
yielding

lim e; = 0.
t—o00

On the other hand, it follows from (4.66) that
j}t—ﬁ—l = (A + BKss + Hss)jt - (BKSS + Hss)et + BLSS + Gss- (467)

To show the convergence of {Z;11}, we rewrite H,s and G as

1 _
H,, = X(I+ P, ®)71P, A

1 _ . .
Gys = —~(I 4 Pye®) Y (Pusth + 145) + 0.

A

Substituting the above expressions and those for K4 and L into (4.67), we obtain
Fii1 = (I+®Py) AT+ (I + Py ®) L Pyg A+ (I — (I + Py ®— A7) "L P)ab.

In the proof of Lemmal4.3] we have shown that (I + ®P;) ' A is stable. Thuse, {#;}

converges to (4.56) as ¢ tends to infinity. Since Z; = %; — e, {Z;} also converges

to (4.56).

Moreover, if @ = 0, then lim;_, o Z; = 0 and lim;_,o, Z; = 0 as desired. O

Proof of Proposition 4.8

Proof. Consider an adversarial policy v/ € I that maps the information vector to
some distribution with a mean vector w; and a covariance matrix 3, such that the pair
(A, X1/2) is stabilizable. When the policy pair (7%,,’) is applied to the mean-state

system, the error state defined in the proof of Proposition 4.7 has the following form:

et =(A-X__,CH(CX_ _,CT+M)"'CA)e,

58,7 58,

where X __ _, is the solution to the filter ARE @#.40) with disturbance distribution P; =

~'(I}). Analogous to the proof of Proposition the error state e; converges to the
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origin regardless of the control gain matrix K since (A — X, o CT(CX;S o cT+

M)~1CA) has eigenvalues strictly within the unit circle. The expected value of the

state estimate for the mean-state system can now be written as
Tt41 = ATy + BLgs + Elwy) + Xg5.,,C T M71C Aey, (4.68)

where A := A+ BK ss is the closed-loop gain matrix and X ss,y' 18 the conditional state
covariance matrix under the adversary’s policy 7. When viewing the disturbances w;
as input, the above system is BIBO stable as long as E[w;] is bounded and the matrix
A has eigenvalues strictly within the unit circle. Therefore, it is sufficient to show that
for the system
Tre1 = Az

with an arbitrary initial state Z¢, the expected value of the estimated state converges to
the origin, i.e, T; — 0 as t — oo.

Using the closed-loop system matrix A, the ARE (@30) is equivalent to

P,=Q+ A"P,A+ K/ RK,,+ AT P,y(\ — P,,) "1 P, A.

Therefore, we have

=T = =T = =T, 5T = =
Ty Pos®ip1 — Ty Posty = Ty (A’ PosA — Pys) Ty

= 7 (Q+ K RK, + AT P,y(\ — Pyy) ' Py, A)Zy

<0

where the last inequality follows from @ = 0, R = 0 and (A — Pss)~! = 0 under
Assumption We also deduce that

t
i1 PasBryn = Tg PTo — Y 7 (Q + KLRK o + AT Pug(A — Puo) ™' Pos A) Ty
k=0

However, as P,; > 0, the left-hand side of the above inequality is no less than zero.
Since we have already shown that z, (Q+ K RK s+ AT P (\[—P,,) ‘P, AT, >
0 for each ¢,

Jim I](Q+ K] RK  + A" Poy(M — P,,) "1 P, A)Z; = 0.
o0
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This implies that
lim QY2%, =0, lim K@ = 0. (4.69)
t—o0 t—o0
Recall that (A4, QY 2) is observable under Assumption Furthermore, the rela-

tion T, 41 = (A + BKs)Zy yields

(QV2(Z syt — S AT BR (T, —i1) [Q1/2Ana=1]
QY (Fpyn,—2 — Y072 A BK Ty, i 2) QL2 gna—2

Q1/2(§t+1 — BKssit) Ql/QA
Q1/2%t Q1/2

From (@.69) the left-hand side tends to zero and hence the right-hand side also tends to
zero. However, by the observability assumption the matrix on the right-hand side has
full rank, implying that Z; — 0. Therefore, the eigenvalues of A lie strictly within the
unit circle, and the system (4.68) is BIBO stable. Since #; = e; — 7 and E[y;] = C'zy,

we conclude that the mean-state system is also BIBO stable. O
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Chapter 5

Distributionally Robust Differential Dynamic Program-

ming with Wasserstein Distance

5.1 Introduction

Nonlinear optimal control problems are difficult to solve exactly, particularly when
the state space dimension is high. Differential dynamic programming (DDP) allevi-
ates this issue using locally-quadratic approximations of the system dynamics and cost
function [191H196]. It efficiently computes an approximate solution with superior scal-
ability compared to the standard dynamic programming (DP) approach. However, it is
generally challenging to apply DDP to systems with random disturbances without any
means to counteract them.

Although various works have extended DDP to handle stochastic systems, existing
methods often rely on either the ground truth or potentially inaccurate approximate
probability distributions of disturbances. For example, the DDP algorithms introduced
in [[197-200] either consider Gaussian multiplicative noise or model the uncertain sys-
tem dynamics as Gaussian processes. Another line of research is devoted to the min-
imax formulation of the DDP problem (e.g., [201,/202]), where the optimal control

problem is solved in the face of the worst-case disturbances. However, such methods
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often lead to overly conservative solutions.

To address the limitations of stochastic DDP methods and handle systems with
unknown disturbance distributions, we propose a novel approach inspired by distribu-
tionally robust control (DRC). The objective of DRC is to design control policies that
maximize the worst-case performance over a set of candidate distributions without as-
suming a specific distribution of disturbances. Several techniques have been proposed
for hedging against distributional uncertainties in DRC problems, including moment-
based and statistical distance-based approaches [31}33}/174}(177,{179}/181}|{182,203].
While moment-based approaches rely on accurate moment estimates and may not ef-
fectively capture the full distributional information about the uncertainties, distance-
based methods consider distributions that are close to a given nominal one in terms of
a statistical distance measure. Many recent works have focused on Wasserstein DRC
(WDRC) [30}/42,[204-206], where the ambiguity set is designed as a statistical ball
with the distance between two distributions measured by the Wasserstein metric. The
Wasserstein ambiguity set has salient features, including a finite-sample performance
guarantee and the ability to avoid pathological solutions to distributionally robust op-
timization (DRO) problems [39,40,43|].

Despite numerous attempts, existing WDRC methods still face challenges in terms
of tractability and scalability. For instance, the DP-based approach introduced in [30]
for solving the WDRC problem results in a semi-infinite program, requiring computa-
tionally expensive state-space discretization or sampling. To overcome this limitation,
both [30] and [42]] propose a relaxation technique with a penalty on the Wasserstein
distance, which leads to an explicit solution in the linear-quadratic (LQ) setting. While
these works focus on the theoretical analysis of the obtained policies, this study aims
to design a practical and computationally efficient algorithm for solving the nonlinear
WDRC problem.

In particular, a novel DDP method is developed through a locally quadratic ap-

proximation of a nonlinear WDRC problem, where the true disturbance distribution
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is unknown but a disturbance sample dataset is given. By construction, the proposed
distributionally robust DDP (DR-DDP) algorithm provides control policies that are
robust against inevitable inaccuracies in empirical distributions of the disturbance. To
make the method tractable, we first approximate the WDRC problem with its penalty
version and then apply the Kantorovich duality principle. We show that the proposed
approximation provides a suboptimal solution to the original WDRC problem. The
value function is then decomposed in a novel way that enables deriving computa-
tionally tractable and efficient backward and forward passes. This allows us to obtain
closed-form expressions for the distributionally robust control and worst-case distri-
bution policies in each iteration of the DR-DDP algorithm. By avoiding the need to
numerically solve minimax optimization problems, our approach makes the algorithm
not only tractable but also scalable. The scalability of our DDP method is a remarkable
advantage because the computational complexity of the standard DP algorithm in [[30]
for nonlinear WDRC increases exponentially with the dimension of the state space.
The experiment results on kinematic car navigation and coupled oscillator problems
indicate that our algorithm outperforms existing methods in terms of out-of-sample
performance and provides scalable solutions for high-dimensional nonlinear optimal

control problems.

5.2 Preliminaries

In this section, we introduce the WDRC problem used in our development of the DR-

DDP algorithm in Section

5.2.1 Distributionally Robust Control

Consider the following discrete-time stochastic system:

Ti41 = f(l't,Ut,wt), (51)
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where x; € R™ and u; € R™ are the system states and control inputs, respectively.
Here, wy € R™ is a random disturbance with an unknown (true) distribution Q"¢ €
P(R™), where P(R™) is the family of all Borel probability measures supported on
R™», The nonlinear function f : R™ x R™ x R™ — R™ is assumed to be twice
continuously differentiable.

In practice, it is restrictive to assume that the true probability distribution Q}™®
is known. Instead, we are often given a sample dataset D; := {wt(” , wt(?), o ,ﬁ)t(N)}

drawn from the true distribution, which can be used to construct an empirical estimate

about the distribution of w; as

1 N
Q= N ;5@@,
1=

(

where 6@” denotes the Dirac measure concentrated at wt”. It is well-known that as
N — oo, the empirical distribution asymptotically converges to the true distribution.
However, if an inaccurate empirical estimate is used in the controller design, the re-
sulting control performance will deteriorate due to a mismatch between the true and
empirical distributions.

To hedge against such distributional uncertainties, we adopt a game-theoretic ap-
proach and consider a two-player zero-sum game in which Player I is the controller
and Player II is a hypothetical adversary. Let 7 := (7, ..., mp_1) denote the control
policy, where 7; maps the state x; to a control input u;. The adversary player selects a
policy v := (0, . -.,vr—1), Where ~; maps the current state to a probability distribu-
tion IP; chosen from an ambiguity set D, C P(R™*). The ambiguity set is a family of
distributions that possess certain properties to be described.

Throughout this paper, our goal is to design an optimal finite-horizon controller
with the following cost functional:

T-1

J(m,y) :=E™7 [Ef(xT) + Z K(mt,ut)],
t=0

where £ : R"* x R" — R and /; : R"* — R are the twice continuously differentiable

":l"\-_i _'-;.': ok 11
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running and terminal costs, respectively, and 7" is the time horizon. In our problem, the
controller seeks a policy 7* minimizing the cost function, while the adversary aims to
find a policy v* to maximize the same cost, which can be obtained by solving the
following DRC problem:

i J(m,7), 52
min max (m,7) (5.2)

where IT := {7 | m;(z) = uy € R™, Vt}and I'p := {7y | ve(z) = P € Dy, Vt} are

the sets of admissible control and distribution policies, respectively.

5.2.2 Wasserstein Ambiguity Set

In problem (5.2)), the adversary player is restricted to select a distribution from the
ambiguity set D;, which determines the characteristics of the worst-case distribution.
Therefore, it is necessary to design the ambiguity set to appropriately characterize
distributional errors. Motivated by its advantages mentioned in Section[5.1] we use the
Wasserstein ambiguity set constructed around the given empirical distribution. The
Wasserstein metric of order p between two distributions P and Q supported on W C
R™ represents the minimum cost of redistributing mass from one distribution to another
using a small non-uniform perturbation and is defined as
. 1/p
W,(P,Q) := inf {(/ |z — y||? d7(z, y)) ’HIT =P I = Q},
TeP(W?) W2

where 7 is the transport plan with TI' denoting its ith marginal distribution, and || - ||
is anorm on R™ which quantifies the transportation cost.

In this work, we consider the Wasserstein metric of order p = 2 with the trans-
portation cost represented by the standard Euclidean norm. We design the ambiguity
set as follows:

Dt = {]P)t S P(Rnw) | WQ(Pt7@t) S 0}7 (53)

where 6 > 0 determines the size of ;. The ambiguity set (5.3)) is a statistical ball cen-
tered at the empirical distribution Q; and contains all distributions whose Wasserstein

distance from the empirical distribution is no greater than radius 6.
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5.3 Distributionally Robust Differential Dynamic Program-
ming

In this section, we present our main result, called DR-DDP, which efficiently finds an
approximate solution to the WDRC problem. Our method exploits the Kantorovich
duality principle to decompose the value function in a novel way and devise a compu-

tationally tractable algorithm.

5.3.1 Approximation with Wasserstein Penalty

In [42], the tractability and effectiveness of a penalty version of the WDRC prob-
lem are studied. Motivated by this work, we begin our reformulations by replacing
the Wasserstein ambiguity set constraint with a penalty term in the cost function as

follows:

~

-1
In(m,7) = B [Cp(wr) + D e, ug) = AWa (P @0)?)
t

I
<)

where A > 0 is the penalty parameter adjusting the conservativeness of the controller.

Then, the following minimax control problem approximates the original WDRC

problem (5.2)):

i J 5.4
min max AT, ), (5.4)
where the adversary player selects policies from I" := {v := (70, ...,v7-1) | 7e(z) =

P, € P(R™)}. Note that the adversary is not restricted to select distributions from the
ambiguity set. Instead, we penalize large deviations from the empirical distribution via
the penalty term, thus limiting the freedom of the adversary player.

We demonstrate in the following proposition that the cost incurred by an arbitrary
policy 7 € II under the worst-case distributions within the Wasserstein ambiguity set
has a guaranteed cost property with respect to the worst-case penalized cost. Hence, the
penalty problem is a reasonable approximation as it yields a suboptimal solution

to the WDRC problem (5.2).
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Proposition 5.1. Given A > 0, let 7 € II be any arbitrary policy. Then, the cost
incurred by m under the worst-case distribution policy in I'y is upper-bounded as
Sfollows:

sup J(m,v) < AXT0% + sup Jy (7, 7). (5.5)
v€l'p yel'

Its proof can be found in Appendix [5.6.1] The guaranteed cost property indicates
the role of the penalty parameter A in adjusting the robustness of the control policy,
thereby providing a guideline on its selection. Specifically, the penalty parameter can
be chosen to yield the least upper bound in (5.5) under the given control policy

To formalize our algorithm, we recursively define the optimal value function for
problem (5.4) as follows:

T-1
V; = inf Eﬂﬁ E € sy Us — AW Psa 82 =
1) = g o)+ 3 ) =B Q5=

fort = T —1,...,0, with the terminal condition Vz(x) = ¢¢(x). Then, the DP
principle yields
Viw)= inf  sup f(wu)+EOF [ml (f (@, u,w)) — AWa(P, @ﬂ (56)
UER™ pep(Rrw)
with the optimal cost given by
Jx = inf sup Ia(m, ) = Vo(o)-
Unfortunately, the standard procedure for DDP cannot be applied to the value func-
tion as it constitutes an infinite-dimensional optimization problem over P(R"™»).
For tractability, we employ a modern DRO technique based on the Kantorovich duality

principle [30,[207] and reformulate the value function as follows.

4The value of A heavily depends on the choice of the Wasserstein ambiguity set radius 6, which is
typically chosen to attain a probabilistic out-of-sample performance guarantee, given a finite dataset of

disturbance samples (e.g., [39,43]).
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Proposition 5.2. Suppose that for each (x,u) € R™ x R™, the value function is
measurable and that the outer minimization problem in (5.6) has an optimal solution.
Then, for any X\ > 0, we have that

W(:c):ué%guﬁ(:c,u)+Ewat[ up Vt+1(f(:c,u,'w))—)\Hzi)t—w||2], (5.7)

for all x € R,

Its proof can be found in Appendix [5.6.2] While previous works (e.g., [30]) use
similar approaches to reformulate and analyze the solution to the WDRC problem, our
focus is on designing a practical and efficient method for obtaining tractable solutions.

For that, we let
QY (x, u, w) 1= L(z, w) + Vi (f(,u, w)) — Mio? — w]?

denote the state-action-disturbance value function or the Q-function for each sample
indexi=1,..., N and
*,(1) _ (%)
Q. (x,u) = sup Q;(x,u,w)
weRw

denote the corresponding “worst-case” state-action value function. Then, we obtain

that
1 N )
Vi(xz) = inf ;Zth’ (z,u). (5.8)

ucR"u
It is worth emphasizing that the Kantorovich duality principle enables us to obtain this
novel decomposition of the value function, which can be used to design a computa-

tionally tractable DR-DDP solution in the following subsection.

5.3.2 Solution via DDP

In each iteration of the original DDP algorithm, a backward pass is performed on the
current estimate of the state and control trajectories, called the nominal trajectories,

followed by a forward pass. In the backward pass, the cost function and the system
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dynamics are quadratically approximated around the nominal trajectories to update the
policy, while in the forward pass, the nominal trajectories are recomputed by executing
the latest policy to the system. We adopt this technique for our problem and derive the
backward and forward passes for the value function (5.7). The proposed DR-DDP

method is presented in Algorithm [5

Backward Pass

In each backward pass, we are given nominal state, control input, and disturbance tra-
jectories Enom = (&o, - - -, E7), Unom = (o, - - ., Up—1) and Wyem = (Wo, . .., Wr—_1),
respectively. For quadratic approximations, DDP considers the following deviations of
the system state, control input, and disturbance, i.e., 0x; := Tt — &4, Ouy := ur — Uy,
owy := wy — W.

We first consider the following second-order approximation of V; 1 (z¢41):
T Lo T
Vit1 + Vi 2021 + §5l’t+1Vt+1,m51’t+1, (5.9

for some (Viq1, Vitia, Viti,ze) € R x R™ x R™ ™ to be determined Let le)
be an approximate Q-function, defined by replacing V;. ;1 in the definition of ng‘) with
the approximate value function (5.9)). Then, QEZ) (¢, ur, wy) is twice differentiable and

its second-order Taylor expansion is given by

QY +5Q" (524, duy, Swy), (5.10)
where
(i) AT T Ol 1
0Qy " (0xt, dug, dwe) = Qy 07t + Qy , 0ur + @y, dwr + 2AQt(5a:t, duyg, dwy)

with -
(51‘ Qt,mx Qt,xu Qt,xw 5«73
AQt(5x7 ou, (511)) = |ou Q;I,—xu Qt,uu Qt,uw ou

T T
ow Qt@w Qt,uw Qt,ww ow

If Viyq is twice differentiable, the parameters (Vii1, Vit1,z, Vit1,z2) can be simply determined

using the second-order Taylor expansion.
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and

QY = T (@) + Vier — Al — )|

Qt,mc = gt,xm + ftTw‘/t—s—l,xxft,x + V;—l_;—.l’ggft,xx

Qt,uu = gt,uu + fgu‘/t—l—l,:m:ft,u + ‘/til,xft,uu

Qt,ww = ftTwW+1,xxft,w —2M + V;I_fot,ww

Qt,xu = ft,:nu + f;—x‘/;t+1,a:xft,u

Qt,xw = fgz‘/;+1,x$ft,wa Qt,uw = ftTu‘/t—l—l,azxft,w

Qt,x = gt,:p + fgx%—i-l,za Qt,u = Et,u + ftTuV;t—l-l,m
o = FlVerre = 20 — ).

Here, f;. and ¢; . denote the partial derivatives of f and ¢ evaluated at (Z, &, w;).
Let @, := E®~Q[p,] and 3 := E¥~Q[(1), — w;)(w; — ;) "] denote the em-
pirical mean vector and covariance matrix of disturbance wy, respectively. The above
approximation transforms the problem (5.8) into a quadratic form similar to those ad-
dressed in [[30,42]. This approximation enables us to explicitly solve the problem with

respect to du; and dwy, as presented in the following theorem.

Theorem 5.1. Let Qi < 0 and {;yy > 0. Suppose the value function at time
t + 1 is approximated as (5.9). Then, the outer minimization problem in (5.8) with
Qy) (¢, us, wy) replaced by the approximation (5.10) has the following unique mini-
mizer:

(5u§f = Kbz + kt, (5.11)
where

K = _Qt(Qqu - Qt,MUQZ&)wQwa)
kt - _Qt(Qt,u - Qt,uwQ;q};th,w)

(5.12)

with Qt = (Qt,uu - Qt,uthi&;wQZuw)_l and Qt,w = ftTwV;E+1,x - 2>\(1I7t - Uijt)

Moreover, for eachi =1, ..., N, the maximization problem in (5.8)) with le) (x4, ug, wy)

replaced by the approximation (5.10) has the following unique solution:

swi = Hyoz, + h\Y, (5.13)
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where

Hy = _Q;i;w [QtT,qut + szw]

, 4 (5.14)
W = —Q; L 1Q ke + QL)

Proof. Let 6w§i) = w§ ") _ ;. Evaluating the approximate Q-function (3.10) for
(i)

6wt(i), we see that it is strictly concave in dw; ~ as Q¢ ww < 0. Then, the first-order

optimality condition yields the following unique maximizer:

5wt Qt ww( txw(;xt + Qt uwéut + Q,E?ZU) (5.15)

Replacing Qgi) (x4, ug, wy) with the approximation (5.10)), the objective function in (5.8))

is quadratically approximated as

N Z [Q(Z) +0Q4" (0, dug, ;™ )} = Qi + Q) 0w + Qf 0ur + Q/, Swy
1 —x
+ §AQt(5l’t, 5ut, 6wt ),

where

%: = Z dwy (Z Qt ww(Q;rxw(swt + Qt uwdut + Qt w)

and
Q= (&4, Ty) + Vigr — A0y — wel|* — NTr[2] — 2202 Tr([Qy 0y X]-

To minimize this approximated objective function with respect to duy, the following

first-order optimality condition can be used:

0= Qt,u + Qt,uuéut + Q;I,—;pu(sxt + Qt,uwmz
dow;
+
(%ut

(Qtw + Qaubt + Qubut + Qraunwduwy).
By the strong convexity of the quadratic approximation, its minimizer is uniquely
given by

ou; = —Qu(Quu — QuuwQr @t + [Qf s — Qi Qg @ )01,

-":lx_! _'a.l.-_'|' |
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which is equivalent to (5.11)). By substituting du; into (5.15)), we obtain the maximizer
defined in (5.13)). ]

Theoremprovides the remarkable advantage that a DR-DDP policy pair (7%, 7*)
is constructed in the following closed-form without numerically solving any infinite-

dimensional minimax optimization problems:

T () = Uy + Ky(zp — 2¢) + Ky (5.16a)

. 1

W@ = 5 D8 4y (e (5.16b)
1=1

As a result of the backward pass, we also obtain the following equations for updating

the parameters of the approximate value function (5.9):

=Q:+ Q,Iukt + Q,Iwht + %k}?—@t,uuk‘t + %hz—@t,wwht + k;er,uwht
Vie =Qta + Qrruke + K:(Qt,u + Qtuukt + Quuwht)
+ Quwht + H (Qtw + Quawwht + Q/ yuke) (5.17)
Vige = Qtzz + KtTQt,uuKt + HtTQt,wwHt +2Q¢ 2 Kt

+ 2K1€TQt,uwHt + 2Qt,wata

where h; 1= 5 Ly, h(

In practice, it is not common to assume that control inputs are unrestricted. Often,
the control inputs are limited to some box constraints © < u; < u. Taking into ac-
count such control limits requires a careful design of the backward pass as it is required
to minimize the approximate state-action value function subject to the constraints. To
find a closed-form solution to the constrained problem for all dx;, we use the pro-
jected Newton-based approach proposed in [[192]], where the control gains are found
by solving a quadratic program.

In the next step, the nominal trajectories have to be reconstructed using the DR-
DDP policy pair (7*,%*) to update the quadratically approximated models, which is

performed during the forward pass introduced in what follows.

151



Forward Pass

In the original DDP algorithm, the forward pass is performed by executing the control
policy to the system. However, due to the disturbance term in the system dynamics
and lack of knowledge about its true distribution, it is not trivial to perform forward
rollouts for the ambiguous stochastic system (3.1)). Instead, we choose to execute the
control and distribution policy pair (7*,7*) in the following manner.

First, using and (5.16D), we construct a control input u; = @y + ak; +
K (z;—&;) and sample a disturbance realization as w; ~ % Zf\il (511_% o) Hy (- 50)’
where v € (0, 1) is a line-search parameter. Since DDP is a second-order method and
potentially takes large steps, regularization is required to prevent the blow-up of the

)

value. Therefore, we multiply k; and hii by scaling a parameter o € (0, 1) and per-
form a line-search. In particular, the line-search parameter alpha is iteratively reduced
to improve the total cost. Then, both the control input and the disturbance sample are

executed to the system for ¢ = 0,...,T — 1 starting from the initial state :UOE-I

5.4 Numerical Experiments

In this section, we compare the empirical performance of our DR-DDP method with
three baseline algorithms: GT-DDP [201]], which uses a minimax approach to consider
the worst-case disturbances, box-DDP [192], a deterministic DDP algorithm that ig-
nores uncertainties in the controller design but considers box constraints on control
inputs, and NR-DDP, the non-robust version of our DR-DDP algorithm that utilizes
the empirical distribution.

In our experiments, we choose the penalty parameter A to minimize the cost upper

bound (5.5) for & = 0.1 under the DR-DDP policy pair (7*,5*). We estimate the upper

'*The complexity of a single iteration of our algorithm is bounded by O (T'(n +nj + (N +nw)n)),
which is polynomial in state, input and disturbance dimensions and linear in the time horizon and sample

size.
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Algorithm 5: DR-DDP algorithm

1 Input: L0, Tinit, Vinit Ta A

2 Apply (Tinit, Yinit) to generate (Znom, Unom, Wnom )

3 while not converged do

10

11

12

13

// Backward Pass
Vr L (1), Vre < Lia, Vige < Lfan
fort =T —1to0do
Construct (7}, ;) using (5.16a) and (5.16Db)
Update V;, V; 4, Vi 2 according to (5.17)

// Forward Pass

Perform line-search to update «

fort =0toT — 1do
Compute uy = uy + aky + Ki(xy — )
Sample wy ~ 5 Y24 5'J)t+ahgi)+Ht(xtf§:t)

Execute u; and wy to (5.1) and observe x4

Tnom $ T0:T, Unom < U0:T—1, Wnom < Wo.T—1

14 return (7%,7%)

bound by conducting 1,000 independent Monte Carlo simulations and computing the

Wasserstein distance via a linear program. The optimal penalty parameter is then found

via numerical optimization. Note that this procedure does not require knowledge of the

true disturbance distribution.

All simulations were performed on a PC with a 3.70 GHz Intel Core i7-8700K pro-

cessor and 32 GB RAM. The source code of our DR-DDP implementation is available

online

"https://github.com/CORE-SNU/DR-DDP
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Figure 5.1: Trajectories of the kinematic car, controlled by GT-DDP, box-DDP, NR-
DDP, and DR-DDP, in the presence of a randomly moving obstacle. Star marks repre-

sent collisions.

5.4.1 Kinematic Car Navigation

In the first experiment, we consider an autonomous navigation task for a kinematic car
in an intersection where a randomly moving obstacle obstructs navigation. Consider

the following system:

. $§ir1 fcar (Jﬁfar, ut)

t 1 pu— pu—

+ obs obs 4 A obs T+ w
P11 b; yor t

with system state ; € R and control input u; € R2. Here, 252" € R? represents the
car’s state evolving according to the differential-drive kinematics feo : R3 x R? — R3
and consists of the car’s center position p and its heading angle ¢. The control input

vector comprises the velocity and steering angle of the car and has a lower limit of u =

[0,—0.6]" and an upper limit of @ = [10,0.6] ". The state component p¢"® represents

" :
1 © 1]
| I L-11
| = |
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the position vector of a random circular obstacle with radius rops = 0.2. It is assumed
that in each time instance, the obstacle has a nominal deterministic motion represented
by Ap¢P® € R2, which is obstructed with a positional disturbance vector w; € R2,
Each component of the disturbances follows a uniform distribution Z/(—0.1,0.1). Our
DR-DDP algorithm uses only N = 10 samples drawn from the true distribution. The
goal is to safely pass the intersection by tracking the given reference trajectory z**' and
avoiding the obstacle in T' = 800 steps. For this purpose, we design a time-varying
cost function as

o) = e =+l + Qo (05 22T,
(Tobs + rsafe)

where the last term is a soft constraint for avoiding the obstacle with a safe margin
of rgafe = 0.2. The weights are chosen as ) = 10/, R = 0.1/ and Qs = 20. The
terminal cost is similar to the running cost with no control cost. The penalty parameter
is set to A = 9000 found as the minimizer of the upper bound in (5.5).

Fig. [5.1] shows the trajectories of the kinematic car for a single realization of the
disturbances, while Table summarizes the computational requirements of each al-
gorithm. Only DR-DDP successfully avoids the obstacle and accomplishes the task, re-
sulting in the lowest total cost. Even though both box-DDP and NR-DDP drive the car
away from the reference path, they collide with the obstacle, leading to increased total
costs due to the soft constraint for collision avoidance. This is because box-DDP com-
pletely disregards uncertainties, while NR-DDP relies solely on inaccurate disturbance
information. Meanwhile, GT-DDP incurs extremely high costs as it fails to drive the
car away from the obstacle. Despite the distinct behaviors exhibited by the two algo-
rithms, the average total computation times for DR-DDP and GT-DDP are quite similar
(less than 25 sec.), indicating their comparable computational efficiency. To validate
our results, we conducted 1,000 independent simulation runs to measure the out-of-

sample performance of each method, which are reported in Table|5.1||"®| The proposed

'®The out-of-sample performance of the controller is defined as R~ Cf(zr) +
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Table 5.1: Out-of-sample cost, total computation time, and average computation time

per iteration for all algorithms computed over 1,000 simulations.

DR-DDP GT-DDP box-DDP NR-DDP

Out-of-sample cost 176.713 198.611 225.335 211.461
Total comp. time (sec.) 24.133 23.357 9.642 18.241
Comp. time per. iter. (sec.) 0.203 0.342 0.092 0.125

DR-DDP algorithm achieves an out-of-sample cost as low as 176.713, while box-
DDP, NR-DDP, and GT-DDP demonstrate worse out-of-sample performance costs of
225.335,211,461, and 198.611, respectively. These findings demonstrate the effective-
ness of our algorithm in addressing distributional uncertainties in nonlinear stochastic

systems.

5.4.2 Synchronization of Coupled Oscillators

In the second experiment, we demonstrate the scalability of our algorithm through a
synchronization problem with L coupled noisy oscillators using the following discrete-

time Kuramoto model [208]]:

L
nly = + At (wi + Kuy Y sin(n”) — nfz))) +w?,
j=1
where: =1,..., L. Here, x; = [Ut(l)> - ,ngL)]T € R% is the system state, and u; € R
is the control input. For each ¢-th oscillator, nt(i) represents its phase, w(®) is its natural
frequency, K is the coupling strength, and At = 0.03 sec. is the discretization step.

We assume the frequencies w(”) and disturbances wii) follow Gaussian distributions

ZtT;()l £(z¢, w5 (x¢))], which is evaluated using 10,000 disturbance samples drawn from the true
distribution Q™ and averaged over 200 simulations. It represents the expected total cost under a new

true
t

disturbance sample generated according to the true disturbance distribution Q independent of the

sample dataset used in DR-DDP.
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N (0,0.004) and A/(0.001,0.001), respectively. We aim to synchronize the oscillators
within a finite horizon of T' = 100, assuming that only N = 50 disturbance samples

are available. For that, the cost function is designed as

(e, ug) Z sin? (j t(l)) 4 0.0001u2,
i,j=1

and the penalty parameter is chosen as A = 10000 to minimize the upper bound (5.3).

To assess the scalability of our method, we evaluate the computation time to per-
form a single iteration of our DR-DDP algorithm depending on the number of oscil-
lators. The computation times required for our method and the three baselines, along
with the corresponding total costs, are presented in Fig. As expected, the com-
putation time increases with the number of oscillators. However, consistent with the
theoretical complexity, the computation time grows as a polynomial function of the
state dimension, showing the superiority of our method over the DP algorithm. No-
tably, the computation time required to perform a single iteration of DR-DDP is almost
identical to the computation times required by box-DDP, NR-DDP, and GT-DDP. Fur-
thermore, our DR-DDP algorithm consistently returns the lowest out-of-sample cost
for any number of oscillators considered, successfully synchronizing the oscillators

despite the disturbances.

5.5 Conclusions

In this work, we have proposed a practical DR-DDP algorithm for solving nonlin-
ear stochastic optimal control problems with unknown disturbance distributions. Our
approach leverages WDRC to address limited distributional information. We refor-
mulated the quadratic approximation of value functions for WDRC using the Kan-
torovich duality principle and then solved it in a DDP fashion to obtain closed-form
expressions of the distributionally robust control and distribution policies in each iter-

ation. Our simulation results demonstrate the superior out-of-sample performance of
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Figure 5.2: (a) Computation time per iteration (in seconds) and (b) out-of-sample cost

depending on the number of oscillators calculated over 1,000 simulations.

the proposed method compared to existing DDP methods, as well as its outstanding
scalability to high-dimensional state spaces. In the future, we plan to investigate the
theoretical properties of our algorithm, including its convergence rate and performance

guarantees.

5.6 Appendix

5.6.1 Proof of Proposition 5.1]

Proof. The proof is based on the arguments used in [42, Lemma 4.1] for the LQ case.

Specifically, fix A > 0. For any € > 0, there exists v* € I'p such that

sSup J(Trvl)/) —€< J(ﬂ-ar}/e)'
v€l'p

Since 7€ € I'p, it follows that v; (x;) = P, € D;. Thus,

J(m,7%) < AT0* + Ja(m,~°)

< AT6? + sup Jy (7, 7).
~vel

Since this inequality holds for any € > 0, we conclude that (5.3)) holds. 0
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5.6.2 Proof of Proposition 5.2

Proof. We first note that by the definition of the Wasserstein distance, the inner supre-

mum in (5.6) is equivalent to

sup EwP [%H(f(:n, u,w)) — AWy(P, Qt)2

PeP(R™w)
— sw [ Vialf(euw)dew
PeP(Rrw) JW
A i / lw — @2 dr(w, @) (5.18)
TeEP(W?): W2

ir=P127r=Q,

= s [ V(e w) - Alw - 0l dr(w, 0)
rePW?): JW?
HQTZQt

According to the Kantorovich duality principle [[39,/40],

27 A~
Wy (P, Q) —;};& [/W / P (w)dQy (w0 },

where @ := {(p,v) € L'(dw) x L2(dw) | p(w) + () < ||w — b, Yw, ® € W}.
Thus, for any (¢, 1) € ®, we have that

v(@) < inf [0 — wl? ~ p(w)

for each w € W. Consequently, for any A > 0, weak duality holds for the inner
problem as follows:
swp [ [V (Fla ) = M wP] drw, )
reP(W2): w2
I r=Qy (5.19)

< [ sup [Viea (4w ) = i = wl*] 4 (w).

wew
Using Proposition 1 in [207]], we can further show that strong duality holds for the
inner problem for any A > 0. We conclude the proof by substituting the expression for

the inner supremum into (3.6)). O
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have introduced several novel approaches to address the WDRC prob-
lem in situations where the controller has limited information about the uncertainty
distribution. Firstly, we have proposed a new DR-risk map tool for mobile robots oper-
ating in learning-enabled environments, which evaluates the risk of system unsafety in
a distributionally robust manner, despite errors in the learning process. To evaluate the
DR-risk map, we have introduced a computationally tractable SDP formulation with
probabilistic guarantees on the loss of safety. We have demonstrated the effectiveness
of this risk map for motion planning and control of mobile robots.

Next, we have improved the accuracy and efficiency of the learning-based motion
controller by employing a UT-based uncertainty propagation scheme. We have also
introduced a simple upper-bound replacement for the risk constraint, which proactively
limits the risk of unsafety even under learning errors.

Furthermore, we have addressed the WDRC problem for discrete-time partially ob-
servable linear systems and proposed a novel approximation scheme to obtain tractable
solutions. We have derived closed-form expressions of the control policy in both finite-
and infinite-horizon settings. The proposed method features several important proper-
ties, including guaranteed cost, probabilistic out-of-sample performance guarantees,

and closed-loop stability.
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Finally, we have presented a novel DR-DDP algorithm for solving the nonlinear
WDRC problem in situations where there is limited distributional information. Our
approach unifies the previously mentioned methods and provides an explicit controller
for nonlinear systems that can be readily applied in learning-enabled environments. We
have demonstrated the effectiveness of the proposed frameworks through numerical
experiments in various environments.

In conclusion, the contributions of this thesis provide novel approaches to address
the WDRC problem in situations where the controller has limited information about
the uncertainty distribution. These contributions have practical applications in various
fields, such as safe learning and risk-aware control of autonomous systems and robotic
decision-making with partial observations.

Future work includes applying the proposed methods to physical robots to validate
their effectiveness in real-world scenarios. Furthermore, enhancing the adaptivity of
the algorithms by updating the conservativeness in an online manner based on the ob-
served safety margin would be a promising direction for future research. Additionally,
extending the obtained results for partially observable settings to the case where the
probability distribution of measurement noise is unknown would further increase the

robustness of the proposed methods.
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