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Abstract

Distributionally robust control (DRC) and optimization (DRO) have recently be-

come popular approaches for handling uncertain distributional information in stochas-

tic systems with accuracy. In this work, we develop novel control methods for au-

tonomous systems in situations where only limited information is available about the

uncertainties in system or environment models. To achieve this, we estimate the un-

certainty distribution using disturbance samples or state-of-the-art learning techniques

and construct an ambiguity set around the nominal distribution. Our ambiguity set

contains all distributions whose Wasserstein distance from the nominal one is less

than the given radius. We then solve the optimal control problem with respect to the

worst-case distribution within the ambiguity set. However, the resulting problem is

infinite-dimensional and intractable. Therefore, we apply modern tools from DRO to

develop several methods for solving the Wasserstein DRC (WDRC) problem in various

settings with different theoretical properties and applications.

Our first method proposes a novel safety specification tool, the distributionally ro-

bust risk map (DR-risk map), for motion planning and control of a mobile robot in

a learning-enabled environment. The DR-risk map reliably assesses the conditional

value-at-risk of collision with obstacles whose movements are inferred by Gaussian

process regression. Our tool measures the risk under the worst-case distribution within

the ambiguity set to account for errors in the inferred distribution. To resolve the in-

tractability, we develop a semidefinite programming (SDP) formulation that provides

an upper bound of the risk. We apply the DR-risk map to perform motion planning and

control of autonomous systems in learning-enabled environments.

Our second method introduces a novel learning-based motion control tool that uses

an uncertainty propagation scheme based on an unscented transform to achieve better

prediction accuracy and computational efficiency. In addition, this approach replaces
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the DR-risk constraint for any arbitrary safety loss function with a novel simpler upper

bound.

The WDRC framework can be applied not only to fully observable systems but

also to partially observable systems, which are more realistic. In our next stage, we

focus on the WDRC problem for partially observable linear stochastic systems and

present a new approximation scheme. This method leverages the Gelbrich bound of

the Wasserstein distance to penalize deviations from the nominal distribution. We de-

rive a closed-form expression for the optimal control policy and a tractable SDP prob-

lem for the worst-case distribution policy in both finite-horizon and infinite-horizon

average-cost settings. Our proposed method features several salient theoretical proper-

ties, such as a guaranteed cost property and a probabilistic out-of-sample performance

guarantee, demonstrating the distributional robustness of our controller. Furthermore,

the resulting controller ensures the closed-loop stability of the mean-state system.

Finally, we present a novel distributionally robust differential dynamic program-

ming algorithm for approximately solving the general nonlinear WDRC problem in

a tractable and scalable way. It provides a closed-form control policy for nonlinear

stochastic systems and therefore is applicable to learning-enabled environments. Our

approach features a novel decomposition of the value function and its iterative local-

quadratic approximations, making our method tractable and scalable without the need

for numerically solving any minimax optimization problems.

We analyze and demonstrate the effectiveness of our methods through simulation

studies on various systems, ranging from oscillator synchronization to autonomous

driving problems. Our contributions enable controllers that can handle distributional

uncertainties in both system and environment dynamics, as well as learning outcomes.

keywords: Distributionally Robust Control, Distributonally Robust Optimization,

Motion Planning, Motion Control, Robot Safety

student number: 2021-37761
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Chapter 1

BACKGROUND AND OBJECTIVES

1.1 Motivation and Objectives

Autonomous systems such as self-driving cars, robots, and smart manufacturing sys-

tems can have transformative impacts on our society. However, the performance of

such systems critically depends on the quality of information about the system model,

its environment, and the stochastic uncertainties affecting the system. This becomes

particularly challenging when the controller only has access to partial information

about the system coming from the noisy measurements. Advances in machine learning

allow inferring the unknown models given sensor measurements. However, the accu-

racy of the inference depends significantly on the quality of the data, statistical models,

and learning methods used. Therefore, in practice, obtaining an accurate probability

distribution of disturbances is often challenging.

The theory of optimal control addresses uncertain systems with full or partial state

information through stochastic or robust control frameworks. Stochastic control ap-

proaches assume the accuracy of provided distributional information and utilize it di-

rectly for system control. However, relying on unreliable information about uncertain-

ties can lead to undesirable system behavior, resulting in catastrophic events such as

collisions and accidents. For instance, as depicted in Fig. 1.1, a collision occurs due

1



Figure 1.1: Comparison of stochastic, robust, and DRC methods. The planned trajec-

tory of the ego vehicle is shown in red, while the learned trajectories of obstacles are

represented by green and blue lines.

to learning inaccuracies when executing a stochastic control policy that uses learned

trajectories of surrounding obstacles to control the ego vehicle (red). On the other

hand, Robust control methods aim to design a controller for the worst-case realization

of uncertainties, disregarding potentially useful but unreliable statistical information

about the disturbance distribution. This often leads to overly conservative behavior,

exemplified in Fig. 1.1.

The primary objective of this research is to tackle the core question:

How can we design an optimal controller for fully and partially observable

autonomous systems that is robust against distributional inaccuracies in given

(learned) nominal information?

To address this question, we propose several control approaches based on the dis-

tributionally robust optimization (DRO) that use limited data to make decisions while

hedging against distributional mismatches between the true distribution and the nomi-

2



nal one. Moreover, we demonstrate that these methods offer theoretical and empirical

performance guarantees, including system safety, stability, and out-of-sample perfor-

mance, among others. By employing the proposed methods, we bridge the gap between

stochastic and robust control approaches by striking a balance between performance

and conservativeness (e.g., Fig. 1.1).

1.2 Related Works

1.2.1 Optimal Control of Systems Under Uncertainties

The literature on optimal control of systems under uncertainties can be mainly cate-

gorized into stochastic and robust methods. Stochastic optimal control methods aim to

design a controller by considering the underlying uncertainty distribution, often assum-

ing it to be Gaussian. A notable approach in this direction is the linear quadratic Gaus-

sian (LQG) control method [1–4]. LQG minimizes the expected value of the quadratic

cost function given the measurements and assumes known disturbance statistics. By

leveraging the certainty equivalence principle, it provides a feedback control policy

with the same closed-form expression as in the deterministic case [5]. Under specific

conditions, LQG exhibits outstanding asymptotic behavior, resulting in a stable closed-

loop system with a steady-state policy [4].

Another popular tool is the stochastic version of model predictive control (MPC) [6],

which is often used to handle control problems in nonlinear stochastic systems with

uncertainties and disturbances [7, 8]. Stochastic MPC considers the probabilistic na-

ture of uncertainties and optimizes control actions to minimize the expected cost or

achieve desired performance criteria over a finite future horizon. It formulates the con-

trol problem as a finite-horizon optimization problem, where the control inputs are

computed by optimizing a cost function that incorporates the system dynamics and

uncertainty distributions. Various techniques from stochastic optimization and numer-

ical optimization, such as stochastic programming-based approaches [9,10], scenario-
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based approaches [11,12], or simulation-based optimization methods [13,14], are em-

ployed to solve stochastic MPC problems. Stochastic MPC often requires generating

multiple scenarios or samples to adequately capture the uncertainty distribution, using

techniques like Monte Carlo simulation or sample-based optimization.

On the other hand, robust optimal control addresses uncertainties without assum-

ing a specific underlying distribution. Instead, it considers a prespecified uncertainty

set and seeks to find a worst-case controller for achieving robust performance [15–18].

Of particular interest are the H2 and H∞-optimal control methods, which are closely

associated with robust stabilization of uncertain systems [18–21]. Both methods aim

to design a stabilizing controller by minimizing the H2 or H∞-norm of the closed-

loop system, treating disturbances as external inputs. Although the original problem is

formulated in the frequency domain, it can be equivalently formulated as a two-player

zero-sum game in the time domain. Robust MPC has witnessed significant develop-

ments in the past two decades, aiming to handle uncertainties in stochastic constrained

nonlinear optimal control problems. Early work on robust MPC primarily relied on

minimax formulations, where control actions are designed with respect to worst-case

evaluations of the cost function and constraints that must hold for all possible uncer-

tainty realizations [22, 23]. To address the conservativeness and infeasibility of min-

max MPCs, tube-based MPC has been developed, which employs a partially separable

feedback control law to handle uncertainties and their interactions with system dynam-

ics [24–26].

In practice, only limited knowledge, such as previous observations, is available

about the uncertainties. In such settings, stochastic optimal control methods are not

appropriate, as possible inaccuracies are ignored during control design. On the other

hand, robust methods result in conservative controllers, as any distributional informa-

tion about the uncertainties is disregarded. Recently, distributionally robust control

(DRC) has emerged as an alternative to stochastic and robust methods, capturing ro-

bust yet not overly-conservative performance [27–35]. In DRC, the optimal control
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Figure 1.2: Illustration of the concept of DRC.

policy sought to minimize the expected cost with respect to the worst-case probability

distribution within an ambiguity set (see Fig. 1.2). DRC can be regarded as a dynamic

or multi-stage version of DRO. In the literature regarding DRO, it is common to de-

sign the ambiguity set based on a nominal distribution constructed from data so that it

contains the true distribution with high probability. For example, moment-based am-

biguity sets are popular in DRO, which include distributions satisfying some moment

constraints [36, 37]. Despite outstanding tractability properties, such sets often yield

conservative decisions and require accurate moment estimates. Designing the ambigu-

ity set based on statistical distances to contain distributions close to the given nominal

one is another popular option. Among various distances, such as the KL-divergence

and Prokhorov metric [38], the Wasserstein metric attracts significant attention not

only in DRO [39–41] but also in DRC [29–33,42]. The Wasserstein ambiguity set has

a number of useful features, including offering a powerful finite-sample performance

guarantee [39, 43]. Furthermore, it is rich enough to contain relevant distributions,

thereby encouraging the DRO problem to avoid providing pathological solutions [40].

In contrast to research on fully observable settings, the literature about partially

observable DRC is relatively sparse. A few works are devoted to the distributionally

robust version of the LQG control method. For example, [44, 45] propose a mini-

max LQG controller that minimizes the worst-case performance by restricting the KL-

divergence between the disturbance distribution and a given reference distribution.

In [46], a partially observable Markov decision process is considered with finite state,

action, and observation spaces. The ambiguity set is chosen to bound the moments of
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the joint distribution of the transition-observation probabilities. Another type of par-

tially observable systems, namely the Markov jump linear system, is studied in [28].

The authors propose a mechanism for estimating the active mode in a receding hori-

zon fashion and integrate this procedure with a data-driven distributionally robust con-

troller design using the total variation distance. In [31], a data-enabled distributionally

robust predictive control method is proposed and studied using noise-corrupted input

and output data.

1.2.2 Safety in Learning-Enabled Environments

Safe learning for control is a fundamental problem in the field of robotics. Existing

methods can be categorized based on the learning models they employ, namely de-

terministic or probabilistic approaches. The first class predominantly includes deep

neural networks [47–49], while the second class comprises methods like Gaussian Pro-

cesses (GPs) [50–52], Bayesian linear regression [53, 54], and others. These learning

methods are often combined with safety specification tools, such as reachability-based

approaches [55–57].

Another direction in ensuring safety during learning is through safe exploration

techniques that leverage Lyapunov stability [52, 58, 59] or barrier functions [53, 60].

Learning-based MPC is also a popular approach that applies safe learning to control.

Most research efforts in this field focus on improving the prediction model by learn-

ing the system dynamics or fine-tuning its parameters [61–63]. Recently, MPC-based

safety filters have been introduced to enforce constraint satisfaction for any learning-

based controller [64, 65].

In addition to conventional safety specification tools, modern approaches address

robot safety through various risk measures. Often, the risk is quantified by the probabil-

ity of collision, where the uncertainty arises from the learned robot model [51,66,67].

Another approach for assessing risk is conditional value-at-risk (CVaR) [68], a coher-

ent measure widely advocated as a rational risk metric in robotics [69]. CVaR quan-
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tifies potential safety losses in the tail of the distribution and accounts for rare but

catastrophic events, such as collisions. For example, in [70], the authors propose a

safety constraint using CVaR to ensure safe robot navigation. Furthermore, in [71],

risk-averse policies are learned using offline data by optimizing the CVaR of the cost.

However, all the mentioned methods utilize the learned distribution to evaluate safety

risk without considering learning errors.

Recent research has addressed learning inaccuracies by employing DRC. Moment-

based ambiguity sets are often used to add robustness to chance constraints [72, 73].

However, such sets tend to be overly conservative and rely on the reliability of mo-

ment estimates. Wasserstein balls are another popular type of ambiguity sets used in

robotics [31, 74, 75]. Both [31] and [75] limit the risk of unsafety through a distri-

butionally robust version of the CVaR constraint using the empirical distribution of

the system outputs and the learned mean and covariance of the environment states,

respectively.

1.3 Research Contributions

In this thesis, we present four novel Wasserstein distributionally robust control and

optimization methods, each designed using different techniques and problem settings.

The main properties and features of these methods are summarized in Figure 1.3. The

main contributions of this work can be summarized as follows.

First, we address the issue of safety in motion planning and control of learning-

based autonomous systems evolving in an unknown dynamic environment. In our

method, the obstacles’ behavior is inferred via a Gaussian process regression (GPR)

using real-time observation. Then, we propose a novel safety specification tool called

the distributionally robust risk map (DR-risk map) that is robust against errors in learn-

ing results about the obstacles’ locations. Our risk map utilizes CVaR to measure

the risk of unsafety given the worst-case distribution within a Wasserstein ambigu-
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Figure 1.3: The main properties and features of the proposed methods.

ity set. To alleviate the infinite-dimensionality issue of the DR-risk map, we propose

a tractable semidefinite programming formulation that provides an upper bound of the

DR-risk map. Furthermore, we show that the DR-risk map provides a probabilistic

guarantee on the loss of safety. Next, we demonstrate the utility of the risk map in

learning-based planning and control. Specifically, we develop a planning algorithm

that uses the risk map for generating safe trajectories and introduce an MPC method

with a risk constraint that can be evaluated by using its neural network approximation.

The performance and utility of the DR-risk map are demonstrated through simulation

studies for autonomous vehicles and service robots.

Next, we focus on ensuring the safe motion control of learning-based systems,

where the system model is not known, in contrast to the previous approach that only

dealt with unknown environment dynamics. We propose learning the unknown dynam-

ics using GPR and then exploiting unscented transform (UT) to improve the compu-

tation efficiency and prediction accuracy of both the robot and the environment. To

immunize the controller against distributional uncertainties, we again design an MPC

controller with the distributionally robust CVaR constraint (DR-CVaR), which com-

8



bines the advantages of both UT and DRO within a single framework. To overcome

the intractability, we devise a simple analytical upper bound of DR-CVaR exploiting

UT to estimate the safety loss distribution. As a result, we obtain a tractable distribu-

tionally robust UT-MPC algorithm that guides the robot to take cautious actions de-

spite learning inaccuracies. Our experiment results in an autonomous driving problem

demonstrate the capability of our algorithm to promote safe motion control in dynamic

environments, even in the presence of learning errors.

The distributionally robust control framework is not limited to fully observable

systems, such as those mentioned previously, but can also be applied to partially ob-

servable systems that are more representative of real-world scenarios. As a result, we

tackle the challenge of controlling partially observable stochastic systems, with a par-

ticular emphasis on the linear-quadratic case where the actual distribution of system

disturbances is not known. We first formulate a Wasserstein distributionally robust

control (WDRC) problem and propose a novel approximation technique with a spe-

cial penalty term using the Gelbrich bound on the Wasserstein distance. The resulting

partially observable WDRC (PO-WDRC) problem is solved using the dynamic pro-

gramming principle to derive a non-trivial Riccati equation alongside the closed-form

optimal control policy in both finite- and infinite-horizon settings. Finally, an exten-

sive theoretical analysis is performed for the resulting controller, which is shown to

possess a number of salient features, such as a guaranteed cost property, probabilistic

out-of-sample performance guarantee, closed-loop stability, etc.

Finally, we introduce a new algorithm called distributionally robust differential dy-

namic programming (DR-DDP) that can handle a broader range of nonlinear WDRC

problems, thereby closing the gap between existing WDRC methods for linear sys-

tems and enabling its application in learning-based environments. We develop a novel

method that uses a locally quadratic approximation of the nonlinear WDRC problem

to provide closed-form control policies that are robust against inaccuracies in the dis-

tributional information of the disturbances. For tractability, we use the Kantorovich
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duality principle and decompose the value function in a novel way to derive com-

putationally tractable backward and forward passes. The advantage of the proposed

approach is not only tractability but also scalability, as there is no need to numerically

solve any minimax optimization problem. We show that unlike the standard dynamic

programming algorithm for nonlinear WDRC, the computational complexity of our

DR-DDP is polynomial in the dimension of the state space. Moreover, the resulting

control policy is shown to enjoy guaranteed cost property. We demonstrate the perfor-

mance of the algorithm on a kinematic car navigation and oscillator synchronization

problem, showing its applicability to a wide range of real-world problems.

In summary, the proposed WDRC methods enable the design of controllers that

are robust to distributional uncertainties in both system and environment dynamics,

even in the presence of learning inaccuracies. Our methods demonstrate exceptional

empirical performance while also featuring a number of salient theoretical properties

and guarantees.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the DR-risk map,

presenting its tractable upper bound and probabilistic guarantee on safety loss. We

also describe the motion planning and control algorithms that utilize the DR-risk map

to address errors caused by GPR. Simulations demonstrate the effectiveness of this ap-

proach in various autonomous navigation problems. Chapter 3 introduces the UT-MPC

algorithm, which utilizes a UT-based uncertainty propagation scheme for improved

computational efficiency and prediction accuracy. We devise an analytical upper bound

of DR-CVaR that exploits the UT approach, ensuring the tractability of the problem.

The performance of the proposed method is demonstrated through simulations in an

autonomous driving scenario. Chapter 4 addresses the WDRC problem for partially

observable linear stochastic systems. We introduce a tractable approximation and de-
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rive its solution in both finite- and infinite-horizon average-cost settings. We analyze

the theoretical properties of the resulting controller and discuss the stability aspects

of the closed-loop system. We demonstrate the performance of the proposed method

through numerical experiments on a power system frequency control problem. Finally,

Chapter 5 introduces the DR-DDP algorithm for nonlinear stochastic systems. We de-

rive an approximation to the nonlinear WDRC problem and develop a computationally

tractable backward and forward passes. Numerical experiments demonstrate the out-

of-sample performance of our algorithm and its scalability to high-dimensional state

spaces.
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Chapter 2

Distributionally Robust Risk Map for Learning-Based

Motion Planning and Control: A Semidefinite Program-

ming Approach

2.1 Introduction

Ensuring safety in motion planning and control critically depends on the quality of

information about the possibly uncertain environment in which a robot operates. For

example, a mobile robot may use sensor measurements to take into account the un-

certain behavior of other robots, human agents, or obstacles for collision avoidance.

With advances in machine learning, sensing, and computing technologies, the adop-

tion of state-of-the-art learning techniques is rapidly growing for a robot to infer the

evolution of its environment. Unfortunately, the accuracy of inference is often poor

since it is subject to the quality of the observations, statistical models, and learning

methods. Using inaccurately learned information in the robot’s decision-making may

induce unwanted behaviors and, in particular, may lead to a collision. This work aims

to develop a safety risk specification tool that is robust against distribution errors in

learned information about moving obstacles and is thus useful for ensuring safety in

learning-based motion planning and control.
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Safety specification tools for systems with learning-enabled components can be

categorized into two classes. The first class concerns the safety of learning-enabled

robots, while the second class considers learning-enabled environments. The tools in

the first class use or learn reachable sets [56,76], Lyapunov functions [77,78], or con-

trol barrier functions [60, 79, 80] as a certificate for safety when the system dynamics

of robots are unknown. The literature on the second class is relatively sparse. Existing

methods to handle learning-enabled environments use chance constraints [81], logis-

tic functions [82], collision detection via Monte Carlo sampling [83], and detection

of conflicts between intention and expectation [84], among others. Our method be-

longs to the second class. Departing from the aforementioned tools, we propose to use

a risk measure for safety analysis in learning-enabled environments. Among various

risk measures [85–87], we adopt the conditional value-at-risk (CVaR) for its capability

of distinguishing rare tail events [68, 88].

This work is also related to learning-based motion planning and control, which are

the main applications of our safety specification tool. The following two cases are con-

sidered in the literature: (i) learning the system dynamics of robots, and (ii) learning

the environment. The first case is the most well-studied direction, which is based on

RRT* [89, 90], model-predictive control [51, 61, 67, 91], and model-based reinforce-

ment learning (RL) [92–94], among other methods. These tools employ various learn-

ing or inference techniques to update unknown system model parameters that are, in

turn, used to improve control actions or policies. On the other hand, the methods in the

second class emphasize learning the environment. In particular, for learning the behav-

ior (or intention) of obstacles or other vehicles, several methods have been proposed

that use inverse RL [95–97], imitation learning [98, 99], and Gaussian mixture mod-

els [100,101], among others. The learned information about environments can then be

used in probabilistic or robust motion planning and control algorithms [102–107]. Our

method is classified as the second type since it uses the learned information about the

motion of obstacles. However, unlike the previous approaches, we emphasize the im-
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portance of decision-making that is robust against potential errors caused by learning

the environment. For this, we take a distributionally robust optimization (DRO) ap-

proach [39–41] to address errors in learned information about the motion of obstacles.

In this work, we propose a novel safety specification tool, which we call the distri-

butionally robust risk map (DR-risk map). It is a spatially varying function that speci-

fies the safety risk in a way that is robust against errors in learning or prediction results

about the obstacles’ locations. Specifically, the obstacles’ future trajectories are as-

sumed to be inferred using GPR based on the current and past observations. However,

the predicted probability distribution of the obstacles’ locations is subject to errors,

making it difficult to accurately evaluate the risk of collision. To resolve this issue,

our method evaluates the risk under the worst-case distribution in a so-called ambi-

guity set. Thus, the robot’s decision made using the DR-risk map will generate a safe

behavior even when the true distribution deviates from the learned one within the am-

biguity set. Unfortunately, the computation of DR-risk is challenging since it involves

the infinite-dimensional optimization problem over the ambiguity set of probability

distributions.

The main contributions of this work are threefold. First, we propose a tractable

semidefinite programming (SDP) formulation that provides an upper bound of the

DR-risk map. The SDP approach, which exploits techniques from DRO, alleviates

the infinite-dimensionality issue inherent in the DR-risk map. Further, we provide its

dual formulation, which has fewer generalized inequalities, as well as a probabilistic

guarantee on the loss of safety. Second, we demonstrate the utility of the DR-risk map

in learning-based motion planning. A distributionally robust RRT* algorithm is pro-

posed to use the risk map for generating a safe path despite the learning errors caused

by GPR. Third, we devise a motion control tool that employs the neural network (NN)

approximation of the DR-risk map. Our method uses MPC with risk constraints that

can be evaluated by solving SDPs. To avoid solving the SDPs in real-time, we propose

approximating the DR-risk map as an NN, which is then embedded in the MPC prob-
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lem. Our NN approximation has the salient feature that the same NN can be used to

approximate the DR-risk map for any time and any obstacles since the dependence is

encoded in the input information. The performance and utility of the DR-risk map are

demonstrated through simulation studies for autonomous vehicles and service robots.

The results of our experiments show that our motion planning and control tools suc-

cessfully ensure safety even in the presence of distribution errors caused by GPR.

This paper has been significantly expanded from its preliminary conference ver-

sion [74]. The DR-risk map is formally defined, and its SDP approximation and perfor-

mance guarantee are proposed in this chapter. In particular, the construction of DRO

is simplified without sampling from the distribution obtained by GPR. Furthermore, a

motion planning algorithm is proposed using the DR-risk map, unlike the conference

version, which focuses on motion control. Last but not least, the NN approximation of

risk constraints in motion control is newly considered in this chapter. We also clarify

the distinction between this paper and our previous work [33]. In [33], a DR-CVaR

constraint is used to ensure the safety of the robot in the presence of additive environ-

mental uncertainties by simply considering the empirical distribution. However, the

focus of the current paper is entirely different in that we aim to address learning inac-

curacies when the motion of the obstacles is learned by GPR. In this distinct setting,

our motion control tool is constructed in a novel way exploiting techniques from SDP

and NN approximations.

The remainder of the paper is organized as follows. In Section 2.2, we introduce the

problem setup and the GPR approach to learning the future trajectories of obstacles.

In Section 2.3, we define the DR-risk map and present its tractable reformulation as

an SDP. In Section 2.4, we propose a motion planning algorithm using the DR-risk

map to address errors caused by GPR. In Section 2.5, the risk map is approximated

by an NN and applied to an MPC problem for motion control. Finally, in Section 2.6,

we present the application of our risk map to motion planning and control problems

through simulations in various environments.
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2.2 Preliminaries

2.2.1 Mobile Robot and Obstacles

In this work, we consider a mobile robot modeled by the following discrete-time sys-

tem:

xr(t+ 1) = f(xr(t), ur(t))

yr(t) = Cxr(t),
(2.1)

where xr(t) ∈ Rnx , ur(t) ∈ Rnu and yr(t) ∈ Rny are the robot’s state, input, and

output, respectively, where the subscript ‘r’ represents ‘robot’. The system output is

defined as the Cartesian coordinates of the robot’s center of mass (CoM).

The robot navigates a cluttered environment with L moving obstacles, e.g., other

robotic vehicles. The motion of the ℓth obstacle is described by the following discrete-

time system for ℓ = 1, . . . , L:

xℓo(t+ 1) = ϕℓ(xℓo(t), u
ℓ
o(t)) (2.2)

yℓo(t) = Cℓox
ℓ
o(t), (2.3)

where xℓo(t) ∈ Rnℓ
x and uℓo(t) ∈ Rnℓ

u are the obstacle’s state and input, respectively.

The subscript ‘o’ represents ‘obstacle’. The output yℓo(t) ∈ Rny is the Cartesian coor-

dinates of the obstacle’s CoM and has the same dimension as the robot’s output yr(t).

Here, ϕℓ is a possibly unknown (nonlinear) function. In practice, ϕℓ can be replaced

with its parametric approximation ϕℓw, for example, using NNs, and the parameters w

can be estimated using training data. See Appendix 2.8.1 for an example. For ease of

exposition, we assume that ϕℓ or its parametric approximation is given.

For safety, our robot should navigate within a safe region, which is determined by

the obstacles’ behaviors. To define the safe region, we over-approximate each obstacle

as the smallest enclosing ball centered at the CoM of the obstacle.1 The safe region
1Our method can handle obstacles of any shape through the proposed over-approximation. This ap-

proach might be conservative in certain cases. However, the conservativeness is beneficial for ensuring

safety.
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Figure 2.1: The car-like robot (green) is centered at yr := (xr, yr), while the obstacle

(orange) is centered at yo := (xo, yo). The smallest balls enclosing the robot and the

obstacle have radii rr and ro, respectively. With margin rs, the safe distance rℓ can be

chosen as rr + ro + rs.

for each obstacle can be defined as the region outside the open ball centered at the

obstacle’s CoM with safe distance rℓ > 0:

Yℓ(t) :=
{
yr(t) ∈ Rny | dist(yr(t), yℓo(t)) ≥ rℓ

}
, (2.4)

where dist(yr(t), y
ℓ
o(t)) is the Euclidean distance between the robot’s CoM and the

obstacle’s CoM, defined by

dist(yr(t), y
ℓ
o(t)) := ∥yr(t)− yℓo(t)∥2.

An example of such a configuration is shown in Fig. 2.1, where a car-like robot

(green) should navigate to avoid a car-like obstacle (orange). Both the robot and the

obstacle are approximated by the smallest balls enclosing them with radii rr and rℓo,

respectively. Using an additional safety margin rs, the distance between the CoMs of

the robot and the obstacle should be no smaller than the sum of all radii:

rℓ = rr + rℓo + rs.

17



0 2 4 6 8 10 12

X

0

1

2

3

4

5

6

7

Y

(a) t = 3

0 2 4 6 8 10 12

X

0

1

2

3

4

5

6

7

Y

(b) t = 20

0 2 4 6 8 10 12

X

0

1

2

3

4

5

6

7

Y

(c) t = 29

Figure 2.2: Trajectories of an obstacle predicted using GPR with and without neural

network approximation of the dynamics. The mean of each trajectory is represented

by a point, while the covariance is represented by an ellipsoid.

Having L surrounding obstacles, the safe region with respect to all obstacles is

defined as the intersection of all the safe regions Yℓ(t):

Y(t) :=
L⋂
ℓ=1

Yℓ(t).

Note that the safe region is time-varying.

2.2.2 Learning the Motion of Obstacles via Gaussian Process Regression

Even though the dynamics ϕℓ of obstacles are assumed to be known or estimated us-

ing some function approximators, the actions taken by the obstacles are unknown;

thus, our robot has no information about the obstacles’ future behaviors. Furthermore,

even if the actions were known, the resulting trajectories might include some inaccu-

racies since ϕℓ might not accurately describe the real motion of the obstacles. To take

such uncertainties into account, the observations made by the robot can be useful for

inferring (or learning) the obstacles’ movements.

In this study, we use GPR, which is one of the most popular non-parametric meth-

ods for learning a probability distribution over all possible values of a function [108].

Ideally, GPR can be used to directly infer the future state of obstacle ℓ given the current

state information. However, leveraging some information about the system dynamics
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as a global model can significantly increase the accuracy of local predictions and re-

duce the size of the required training data. Hence, in this work, we aim to learn the

function ψℓ that corresponds to the control action of the obstacle ℓ given its state in-

formation and use it in conjunction with the obstacle dynamics ϕℓ to predict the future

trajectory. For ease of exposition, we suppress the superscript ℓ.

GPR is performed on a training dataset, which is constructed from previous obser-

vations about the obstacle’s state and action. In particular, at stage t, the training input

data is chosen as x̂ = {xo(t − 1), xo(t − 2), . . . , xo(t −M)} with the correspond-

ing training output data ŷ = {uo(t − 1), uo(t − 2), . . . , uo(t −M)}, where M is the

number of observations. Since observations are imperfect, we assume that for the ith

observation

ŷi = ψ(x̂i) + v(i),

where v is an i.i.d. zero-mean Gaussian noise with covariance

Σv = diag([σ2v,1, σ
2
v,2, . . . , σ

2
v,nu

]).

Assuming that each control action has independent entries, the GPR dataset for the jth

dimension of control action is constructed as

Dj =
{(

x̂i, ŷij
)
, i = 1, . . . ,M

}
for j = 1, . . . , nu.

In GPR, each dimension of ψ(·) has a Gaussian prior distribution with mean func-

tion mj(x) and kernel kj(x, x′). In this work, we use a zero-mean prior with the fol-

lowing radial basis function (RBF) kernel:

kj(x, x
′) = σ2f,j exp

[
−1

2
(x− x′)⊤L−1

j (x− x′)
]
,

whereLj is a diagonal length scale matrix and σ2f,j is a signal variance. The prior on the

noisy observations is a normal distribution with mean function mj(x̂
i) and covariance

function Kj(x̂, x̂) + σ2v,jI , where Kj(x̂, x̂) denotes the M ×M covariance matrix of

training input data, i.e., K(l,k)
j (x̂, x̂) = kj(x̂

(l), x̂(k)).
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For a new arbitrary test point x, the posterior distribution of the jth output entry is

also Gaussian. Its mean and covariance are calculated as follows:

µju(x) = mj(x) +Kj(x, x̂)(Kj(x̂, x̂) + σ2v,jI)
−1(ŷj −mj(x̂)) (2.5)

Σju(x) = kj(x,x)−Kj(x, x̂)(Kj(x̂, x̂) + σ2v,jI)
−1Kj(x̂,x). (2.6)

The resulting GP approximation of ψ(x) is given by

ψ(x) ∼ N (µu(x),Σu(x)),

where

µu(x) = [µ1u(x), µ
2
u(x), . . . , µ

nu
u (x)]⊤

and

Σu(x) = diag([Σ1
u(x),Σ

2
u(x), . . . ,Σ

nu
u (x)]).

The GP approximation of the obstacle’s input is computed given its current state. At

stage t, for each prediction time t + k, where k = 1, . . . ,K and K is the prediction

horizon, the obstacle’s state and action are approximated as a joint Gaussian distribu-

tion of the form xo(t+ k)

uo(t+ k)

 ∼ N
µ̃t,kx

µ̃t,ku

 ,
Σ̃t,kx Σ̃t,kxu

Σ̃t,kux Σ̃t,ku

 ,

where the superscript (t, k) denotes the (t+k)th prediction at stage t. By the first-order

Taylor expansion of (2.5) and (2.6), the mean and covariance of uo(t+k) are obtained

as

µ̃t,ku = µu(µ̃
t,k
x )

Σ̃t,ku = Σu(µ̃
t,k
x ) +∇µu(µ̃t,kx )Σ̃t,kx

(
∇µu(µ̃t,kx )

)⊤
Σ̃t,kxu = Σ̃t,kx (∇µu(µ̃t,kx ))⊤.

(2.7)

To propagate the obstacle’s state with the new distribution information about uo(t+

k), we perform the following update starting from the current state xo(t): Set µ̃t,0x =
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xo(t) and Σ̃t,0x = 0, and successively linearize ϕ around (µ̃t,kx , µ̃t,ku ):

µ̃t,k+1
x = ϕ(µ̃t,kx , µ̃t,ku ),

Σ̃t,k+1
x = ∇xϕ(µ̃t,kx , µ̃t,ku )Σ̃t,kx ∇xϕ(µ̃t,kx , µ̃t,ku )⊤

+∇uϕ(µ̃t,kx , µ̃t,ku )Σ̃t,ku ∇uϕ(µ̃t,kx , µ̃t,ku )⊤

+ 2∇xϕ(µ̃t,kx , µ̃t,ku )Σ̃t,kxu∇uϕ(µ̃t,kx , µ̃t,ku )⊤.

(2.8)

The corresponding mean and covariance of the obstacle’s output yo(t + k) are com-

puted by

µ̃t,ky = Coµ̃
t,k
x , Σ̃t,ky = CoΣ̃

t,k
x C⊤

o . (2.9)

As mentioned previously, we assume that we are given only the estimate of the

obstacle dynamics ϕ. For comparison, we also performed GPR without the neural

network approximation of the dynamics, directly inferring the states of the obstacles

without predicting its control input. As shown in Figure 2.2 (a), the predicted tra-

jectories in the early stages do not accurately follow the actual trajectory, as there is

limited information from the previous observations. Furthermore, even with more data

collected, it becomes impossible to predict the trajectory’s curvature when there is a

sudden change in the obstacle’s heading angle (Figure 2.2 (b)). It is worth empha-

sizing that although the predictions are not entirely accurate, incorporating the neural

network dynamics significantly improves the prediction accuracy compared to the case

of directly predicting the states. Over time, as long as there are no sudden changes in

the obstacle’s behavior, the learned trajectory gradually becomes closer to the actual

trajectory (Figure 2.2 (c)). This example illustrates that the prediction results of GPR

are not always reliable, even when we have an estimate of the obstacle’s dynamics.

To guarantee safety even in such cases, we propose a distributionally robust approach,

which is designed to be proactive to errors in learning such sudden changes.
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2.3 Distributionally Robust Risk Map with Wasserstein Dis-

tance

To perform safe motion planning and control, the robot may want to estimate the risk

of collision at any location in the configuration space with respect to the L obstacles.

However, it is challenging to measure the risk of collision in a reliable way since the

results of GPR may be inaccurate, as demonstrated in the previous section. To resolve

this issue, we propose the distributionally robust risk map, which is a spatially vary-

ing function of the robot’s current position. It estimates the conditional value-at-risk

(CVaR) of collision in a distributionally robust manner using the possibly erroneous

results of GPR.

2.3.1 Measuring the Risk of Collision Using CVaR

To begin, we define the loss of safety at each prediction time t+ k, evaluated at t, with

respect to obstacle ℓ as

Jt,k(yr, yℓo) = −∥yr(t+ k)− yℓo(t+ k)∥22. (2.10)

It follows from (2.4) that Jt,k(yr, yℓo) + r2ℓ is non-positive if and only if the robot

navigates in the safe region Yℓ(t + k). However, due to the uncertainty in the pre-

dicted yℓo(t + k), it may be too conservative to impose the deterministic constraint

Jt,k(yr, yℓo) + r2ℓ ≤ 0.

Instead, we consider the CVaR of the loss of safety, defined by

CVaR
Pℓ
t,k

α

[
Jt,k(yr, yℓo)

]
:= min

z∈R
EPℓ

t,k

[
z +

(Jt,k(yr, yℓo)− z)+

1− α

]
,

where Pℓt,k is the probability distribution of yℓo(t + k), obtained by GPR (2.9) at time

t, and (z)+ := max{z, 0}. The CVaR of Jt,k(yr, yℓo) measures the conditional expec-

tation of the loss within the (1−α) worst-case quantile as illustrated in Fig. 2.3. Thus,

if CVaR
Pℓ
t,k

α

[
Jt,k(yr, yℓo)

]
+ r2ℓ ≤ 0, then the robot is located in the safe region with a

probability of no less than α.
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CVaR has several advantages over its popular alternative, value-at-risk (VaR),

or, equivalently, chance constraints.2 First, unlike VaR or chance constraints, CVaR

is capable of distinguishing rare events as it takes into account the tail distribution

through conditional expectation [68]. Second, CVaR is a convex risk measure unlike

VaR and thus is more computationally tractable than VaR for general probability dis-

tributions [109]. Third, as opposed to VaR, CVaR is coherent in the sense of Artzner

et al. [110] and is advocated as a rational risk measure in robotics applications [69].

Thus, CVaR has recently received a considerable attention in the robotics commu-

nity [111–113].

In practice, it is unlikely that we can accurately compute the CVaR of the loss of

safety since Pℓt,k obtained by GPR is imperfect. To handle such distribution errors, we

propose using the following distributionally robust version of CVaR:

DR-CVaRα,θ
[
Jt,k(yr, yℓo)

]
:= sup

Qℓ
t,k∈D

ℓ
t,k

CVaR
Qℓ

t,k
α

[
Jt,k(yr, yℓo)

]
, (2.11)

which measures the risk of unsafety for the worst-case distribution in an ambiguity

set Dℓt,k. We consider the Wasserstein ambiguity set, constructed as a ball with radius

θt,k > 0 around the nominal distribution Pℓt,k, obtained by GPR, i.e.,

Dℓt,k := {Q ∈ P(Rny) |W2(Q,P
ℓ
t,k) ≤ θt,k}, (2.12)

whereW2(Q,P
ℓ
t,k) is the 2-Wasserstein distance between Q and Pℓt,k. The p-Wasserstein

metric Wp(Q,P) between two distributions Q and P supported on Ξ ⊆ Rm is defined

as

Wp(Q,P) :=

[
min

κ∈P(Ξ2)

{∫
Ξ2

∥y − y′∥p dκ(y, y′) | Π1κ = Q,Π2κ = P
}]1/p

,

where κ is the transportation plan, the ith marginal of which is denoted by Πiκ. It

represents the minimum cost for transporting mass from Q to P using non-uniform
2The VaR of a real-valued random variable X is defined as VaRα(X) := inf{x ∈ R | FX(x) ≥ α},

where FX is the cumulative distribution function of X . Thus, the VaR constraint VaRα(X) ≤ δ is

equivalent to the chance constraint Prob{X ≤ δ} ≥ α. Furthermore, VaRα(X) ≤ CVaRα(X) as

shown in Fig. 2.3.
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Figure 2.3: Conditional value-at-risk of a random loss.

perturbations with the cost of moving a unit mass from y to y′ prescribed by ∥y−y′∥p,

where ∥ · ∥ is a norm on Rm.

It is worth emphasizing that the role of radius θt,k is different from that of α. As

CVaRα(X) considers the conditional expectation of X over the worst-case (1 − α)

quantile, α is able to correctly control the conservativeness of CVaRα(X) only when

the probability distribution of X is known precisely. However, this is no longer valid

when the probability distribution is inaccurate. The distributionally robust risk aims

to tackle this issue by enhancing robustness against distribution errors. The radius

θt,k controls the size of allowable distribution errors, unlike α. As observed in our

experiments, even with a large α, CVaR is insufficient for ensuring safety in learning-

enabled environments since it is unable to anticipate distributional uncertainties such

as learning errors in GPR (refer to the last part of the supplementary video clip).

The Wasserstein metric is also known as the earth mover’s distance, as it can be

interpreted as the minimum cost of turning one pile of earth into another, where each

distribution is viewed as a unit amount of earth. The Wasserstein ambiguity sets have

several advantages over other types of ambiguity sets. First, the Wasserstein metric

incorporates a notion of how close two points in the support are to each other un-

like, for example, phi-divergences. Thus, Wasserstein DRO problems avoid providing
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unreasonable pathological solutions [40]. Second, the Wasserstein ambiguity sets pro-

vide a powerful finite sample guarantee for empirical nominal distributions, and this

feature is useful in sequential decision-making problems [30, 39]. Third, Wasserstein

DRO is strongly related to the regularization techniques in machine learning and can

be applied to alleviate overfitting [41].

Concerning all the obstacles, we define the distributionally robust risk map (DR-

risk map)Rt,k : Rny → R for prediction time t+ k, evaluated at t, as

Rt,k(yr) := max
ℓ=1,...,L

Rℓt,k(yr,Yℓ), (2.13)

where

Rℓt,k(yr,Yℓ) :=
(
DR-CVaRα,θ

[
Jt,k(yr, yℓo)

]
+ r2ℓ

)+
. (2.14)

The DR-risk map returns the maximum risk for all obstacles. Its value is zero if there

is no risk; otherwise, its value is positive. In our safe motion planning and control

methods, the following constraint is used to limit the risk of collision:

Rt,k(yr) ≤ δ, (2.15)

where δ ≥ 0 is a risk tolerance parameter.

It is important to note that the computational complexity of the risk map increases

linearly with the number of obstacles due to the maximum operator involved in its

computation. However, as the number of obstacles increases, the feasible region of

the robot that satisfies the constraint (2.15) shrinks, making it harder to find feasible

solutions.

2.3.2 Semidefinite Programming Formulation

Unfortunately, it is nontrivial to directly compute the DR-risk map Rt,k(yr) or its

proxy DR-CVaRα,θ
[
Jt,k(yr, yℓo)

]
as this involves an infinite-dimensional optimiza-

tion problem over the set of probability distributions. We reformulate it as a finite-

dimensional problem by exploiting some structural properties of CVaR and Wasser-
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stein distance. The following theorem presents the result of reformulation as a semidef-

inite program (SDP), where the dependence on t, k and ℓ is encoded solely in yr(t +

k), µ̃t,k,ℓy and Σ̃t,k,ℓy . Later, this feature will allow us to approximate the risk map by a

single NN, independent of t, k and ℓ.

Theorem 2.1. Let Pℓt,k be the distribution of yℓo(t+k) with mean µ̃t,k,ℓy and covariance

Σ̃t,k,ℓy , estimated by GPR. Then, the DR-CVaR (2.11) has the following upper-bound:

min z +
τ + ε+Tr[Z] + λ

(
θ2t,k − ∥µ̃

t,k,ℓ
y ∥22 − Tr[Σ̃t,k,ℓy ]

)
1− α

s.t.

 λI − Γ γ + λµ̃t,k,ℓy(
γ + λµ̃t,k,ℓy

)⊤
ε

 ⪰ 0

 λI − Γ λ
(
Σ̃t,k,ℓy

)1/2
λ
(
Σ̃t,k,ℓy

)1/2
Z

 ⪰ 0

 Γ + I γ − yr(t+ k)(
γ − yr(t+ k)

)⊤
τ + z + ∥yr(t+ k)∥22

 ⪰ 0

 Γ γ

γ⊤ τ

 ⪰ 0

λ ∈ R+, z ∈ R, τ ∈ R, γ ∈ Rny

Γ ∈ Sny , ε ∈ R+, Z ∈ Sny

+ .

(2.16)

Its proof is contained in Appendix 2.8.2. The SDP problem (2.16) can be solved us-

ing well-known algorithms, such as interior-point methods [114–116], splitting meth-

ods [117], augmented Lagrangian methods [118], etc. Its dual problem is more of an

interest, as it involves fewer generalized inequalities.
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Figure 2.4: Risk maps for two obstacles with means µ̃t,k,1y = (3, 2.5), µ̃t,k,2y = (8, 6)

and covariances Σ̃t,k,1y = diag[0.003, 0.002], Σ̃t,k,2y = diag[0.001, 0.004] for θ =

{10−4, 5× 10−2, 10−1} and α = 0.95.

Figure 2.5: Projection of the risk maps onto the robot’s configuration space.

Corollary 2.1. The dual problem of (2.16) can be expressed as the following SDP:

max 2W⊤
12yr(t+ k)− Tr[W11]− ∥yr(t+ k)∥22

s.t.
θ2t,k − ∥µ̃

t,k,ℓ
y ∥22 − Tr[Σ̃t,k,ℓy ]

1− α
− 2X⊤

12µ̃
t,k,ℓ
y

− Tr[X11 + Y11 + 2Y ⊤
12

(
Σ̃t,k,ℓy

)1/2
] ≥ 0

X11 + Y11 =W11 + V11

X12 +W12 + V12 = 0

W22 = 1, V22 =
1

1− α
− 1

X22 ≤
1

1− α
, Y22 ⪯

1

1− α
I

Y ∈ S2ny

+ , X,W, V ∈ Sny+1
+ .

(2.17)
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Furthermore, the duality gap is zero.

Its proof can be found in Appendix 2.8.2. The dual problem is also a tractable SDP

problem, which can be solved using the same algorithms as for the primal. However,

the dual problem (2.17) has less linear matrix inequality constraint in addition to a

number of linear equality and inequality constraints, which are easier to handle for

most of the off-the-shelf solvers than the positive semidefinite constraints in the primal

problem (2.16). The dual problem is useful in some cases the SDP solver might fail

to solve (2.16) due to numerical issues. We can use the solution to the dual problem if

there is no primal solution returned by the solver.

2.3.3 Example of DR-Risk Maps

By discretizing the robot’s configuration space and solving either (2.16) or (2.17) for

all discretized points, we can construct the desired DR-risk map (2.13). Fig. 2.4 shows

examples of such risk maps, which are obtained by solving the primal problem for

a risk confidence level α = 0.95 with two obstacles (L = 2) at stage t + k. In

the shown risk maps, the estimated means and covariances for two obstacles’ CoMs

are set to µ̃t,k,1y = [3, 2.5], µ̃t,k,2y = [8, 6] and Σ̃t,k,1y = diag[0.003, 0.002], Σ̃t,k,2y =

diag[0.001, 0.004], respectively. Each peak of the risk map is located at the worst-case

mean of each obstacle’s CoM with a value of r2ℓ = 1. The risk diminishes as the robot

moves away from the obstacle. Fig. 2.4 demonstrates that the non-zero area of the risk

map expands as the radius θ increases. Also, the peak area for a bigger radius becomes

flatter, meaning that more regions are considered “risky”. Therefore, the robot’s deci-

sion using this map will be more robust against errors in the estimated distribution as

the Wasserstein ambiguity set gets larger.

Fig. 2.5 shows the projection of the risk map onto the robot’s configuration space. It

shows that a bigger θ generates a more conservative risk map. The risky area enlarges

with the size of our ambiguity set. The computation time for constructing the DR-

risk map with the two obstacles is reported in Table 2.1. Here, the SDP problem is
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Table 2.1: Computation time for constructing the DR-risk map with L = 2 obstacles,

averaged over 40,000 positions of the robot.

Radius θ 10−4 10−2 5× 10−2 10−1

Computation

Time (ms)
8.6± 0.26 4.6± 0.53 3.8± 0.05 3.8± 0.05

solved for each obstacle separately using a conic solver, called MOSEK [119]. Even

though the computation slows down near the obstacles, the overall computation time

is relatively small for all θ’s.

For an efficient construction of the risk map, we propose an NN approximation in

Section 2.5.1. The NN approach avoids any discretization of the robot’s configuration

space or training of multiple networks for different t, k, and ℓ because such dependence

is encoded in yr(t+k), µ̃
t,k,ℓ
y and Σ̃t,k,ℓy as previously mentioned. In the following two

sections, we present applications of the DR-risk map to safe motion planning and

control in learning-enabled environments.

2.3.4 Probabilistic Guarantee on the Loss of Safety

An advantage of using the Wasserstein ambiguity sets in DRO is that one can ob-

tain a non-asymptotic probabilistic performance guarantee. For example, it is shown

in [41] that Wasserstein DRO provides an out-of-sample performance guarantee when

the nominal distribution is chosen as an empirical distribution. However, we consider

the case where the nominal distribution is obtained by GPR. We show that the DR-risk

map (2.13) provides a probabilistic guarantee on the true loss of safety (2.10) under

the following assumption on GPR result.

Assumption 2.1. Let P denote the probability measure for the GP dataset D =

{(x̂i, ŷij)}Mi=1, and let µ̃t,ky,D and Σ̃t,ky,D denote the mean and the covariance matrix of

yo(t+ k) obtained from GPR performed at time t using D. We assume that there exist
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a non-negative constant ωt,kD and an ny × ny positive semidefinite matrix Ωt,kD such

that for some p ∈ (0, 1) the following probabilistic error bound holds:

P
{
D | ∥yo(t+ k)− µ̃t,ky,D∥ ≤ ω

t,k
D

}
≥ (1− p)k,

and Σ̃t,ky,D ⪯ Ωt,kD with probability 1.

Assumption 2.1 represents a probabilistic bound on the GPR result evaluated view-

ing the dataset D as a random variable. This performance requirement for GPR can be

satisfied via a probabilistic uniform error bound for GPR under some mild conditions

such as the Lipschitz continuity of ψ(·) [120, 121].3 We now establish a probabilistic

guarantee on the loss of safety in the following theorem:

Theorem 2.2. Suppose that Assumption 2.1 is satisfied. Consider the Wasserstein am-

biguity set Dt,k with time-varying radius θt,k. If the radius satisfies the following con-

dition

θ2t,k ≥ (ωt,kD )2 +Tr[Ωt,kD ], (2.18)

then the DR-risk mapRD
t,k constructed using the GP dataset D provides the following

probabilistic guarantee on the loss of safety (2.10):

P
{
D
∣∣Jt,k(yr, yo) ≤ RD

t,k(yr)− r2
}
≥ (1− p)k.

Thus, the probabilistic bound holds for any ambiguity set Dt,k with a time-invariant

radius θ ≥ maxt,k θt,k.

Its proof can be found in Appendix 2.8.2. Theorem 2.2 confirms that the DR-risk

map is capable of dealing with errors in the GPR results, often occurring due to sud-

den changes in the obstacle’s motion pattern.4 The theorem considers a time-varying
3Note, that the uniform error bound for GPR can only be derived when the obstacle dynamics ϕ are

known. However, when using a neural network approximation, an additional analysis of the bound is

required.
4Theorem 2.2 holds for each obstacle. The extension to a similar probabilistic guarantee on the joint

loss of safety for all obstacles is straightforward under the assumption that the GP datasets for all obstacles

are independent. Then, the guarantee on the loss of safety holds with a probability of (1− p)Lk.
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Wasserstein radius θt,k computed depending on the error in the estimated obstacle’s

position. As a result, the distributional robustness of our risk map is adaptively ad-

justed according to the currently available data. At each time t, with zero prediction

horizon k = 0, θt,0 can be set to 0 and thus the ambiguity set is a singleton that contains

only the current position yo(t) of the obstacle. As we predict further, i.e., k > 0, the

GP error bound grows, resulting in a larger radius θt,k determined using (2.18). This

adaptive construction of the ambiguity sets suggests a way to adjust θt,k depending on

inaccuracies in the GPR results. However, the GP error bound in Assumption 2.1 is

often loose, limiting the practical use of (2.18). If that is the case, the radius can be

calibrated using the collision probability as presented in Section 2.6.

2.4 Application to Learning-Based Distributionally Robust

Motion Planning

As the first application of the DR-risk maps, we propose a learning-based motion plan-

ning algorithm based on RRT* [122]. Unlike previous RRT algorithms, our algorithm

takes into account possible errors in the learned distribution of the obstacles’ behav-

iors.

2.4.1 Main Algorithm

The motion planning algorithm presented in this section is an online sampling-based

algorithm for computing a path from the robot’s starting point to the goal point in near

real-time, taking into account moving obstacles. The overall algorithm, similar to the

original RRT* algorithm, consists of the nearest neighbor search, steering towards the

sampled node, safety check, and rewiring. Inspired by [123], the path is generated only

for a given time, after which the robot executes the committed trajectory and restarts

the planning process from a new initial state, removing unreachable nodes from the

tree. The key extension to the original algorithm is the use of the DR-risk map for

31



safety checks. In addition, the algorithm leverages GPR to infer the future trajectories

of the obstacles based on either the system dynamics (2.3) or its approximation (2.28).

The risk map in (2.13) is employed to guarantee the safety of the derived paths in

two stages. First, each node computed in the growing stage of the tree is classified as

either safe or unsafe based on the risk value to later include it in or exclude it from the

safe subtree. Second, the cost function of planning includes the risk value to escape

possibly unsafe nodes. Steering towards a sampled node is performed according to the

given robot’s dynamics (2.1) by applying controls that satisfy the input constraints.

Moreover, when changing the parent from one node to another, the feasibility of the

trajectories and control inputs are checked once again to meet the given requirements.

Our learning-based distributionally robust RRT* (DR-RRT*) algorithm is pre-

sented in Algorithm 1, given goal state qgoal, maximum depth K, risk weight constant

w, other hyper-parameters θ, α and rℓ for computing risk, as well as the radius rRRT

for neighborhood construction, computed as in [122, Theorem 38].

At the beginning of the algorithm, T is set as an empty tree to be expanded later.

Initially, the GP dataset Dℓ is also an empty set. In each iteration, a new safe subtree

Tsafe is defined (Line 5). Then, the robot’s state xr(t) as well as the obstacle’s state

and action xℓo(t) and uℓo(t) are observed at current stage t, as performed in Line 6.

Thereafter, the tree is constructed with xr(t) as the root (Line 7). Since there might be

some nodes that are unreachable from the current state, we remove the corresponding

edges and vertices in Line 8. These nodes are all nodes that do not root from the current

state xr(t). In Line 9, the pruned tree is updated with a new depth value starting from

the root, the depth of which is set to k = 0.

Having new perceived information about the obstacles’ motions, we perform GPR

in Line 10–16. Here, the GP dataset is updated with new observations, after which

the GP approximation of ψℓ(x) is updated by learning mean and covariance functions

µℓ,ju (x) and Σℓ,ju (x) as in (2.5) and (2.6). To predict the trajectory of each obstacle

starting from t+1 to t+K, the mean and covariance at t are initialized as the current
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observation and the zero covariance matrix, respectively. In Line 15–16, the mean

and the covariance of the obstacle’s action, state and output are computed by (2.7),

(2.8) and (2.9). Here, K corresponds to the desired time horizon or, equivalently, the

maximum depth of the path.

Using the new prediction results, the safe tree updated in Line 17–22 using the

nodes of T satisfying the risk constraintRt,k(Crq) ≤ δ with depth less than threshold

K. This is accomplished by calculating the DR-riskRt,k(Crq) for all nodes according

to (2.13), where the SDP problem (2.16) or its dual (2.17) needs to be solved for each

obstacle. Here, k corresponds to the depth of the node, and therefore the predictions of

step k are used to compute the risk for a node of depth k. The new value of risk is used

to update the costs for the corresponding nodes. Next, in Line 23–24, we proceed to

the expansion of the tree T for some fixed time τ , where Tsafe is also updated with new

nodes. The details of the tree expansion are given in Algorithm 2 and Section 2.4.2.

When the planning time is over, the best partial path is retrieved and passed to

execution, being constructed from the root of the safe tree towards the goal (Line 25),

where the current state corresponds to q0.5 The robot follows the path for one step

by driving it towards the next state q1 in the planned path (Line 26). The algorithm

continues until the distance between the tree root (the current robot state) and the

desired qgoal is no greater than tolerance ϵ.

For real-time execution of the algorithm, it is necessary for the robot to operate

while the planning is being performed. This can be achieved by executing Line 26 in

parallel with the remaining parts of the algorithm. To ensure the termination of the

algorithm, the tree will be grown until the planning time reaches Ts seconds.
5All paths returned by the algorithm are feasible since the safe tree is constructed only from the

feasible nodes satisfying the safety condition.
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2.4.2 Tree Expansion and Rewiring

The tree expansion and rewiring algorithm is given in Algorithm 2. Similar to the

classical RRT*, the tree is expanded by randomly choosing a point in the configuration

space (Line 2). Then, in Line 3 the node to be extended is chosen as the minimizer of

c(q, qrand) = c(q) + L(q, qrand),

where L(q, qrand) is the length of the path from q to qrand and c(q) is the cost of node

q, defined as

c(q) = c(Parent(q)) + wRt,k(Crq) + L(Parent(q), q). (2.19)

The worst-case risk is taken into account in c(q), where the SDP problem is solved for

(t+ k)th prediction performed at current stage t with k being the depth of node q.

In Line 4 the depth k for the new node is set to the depth of the nearest node

incremented by 1 for computing risk in the next step. The new node qnew is obtained

in Line 5 by steering the chosen best node towards qrand. Here, the control input is

chosen as the one with the least cost c(qnew). The safety risk is given by (2.13) and

computed by solving the SDP (2.16) or its dual (2.17) for all ℓ = 1, . . . , L.

In Line 6, the neighborhood of qnew is constructed from the nodes in safe subtree

Tsafe with distance less than rRRT to qnew. The best parent of qnew is chosen in Lines 7–

12. The parent is initialized as qnearest. However, this is changed if the cost to qnew via

qnear is less than the cost via qnearest and the new path is feasible. The node qnew with

the updated parent is added to the tree in Line 13 only after selecting the parent. The

subtree Tsafe is also updated if the risk of the node qnew with depth k is less than the

threshold δ (Line 16–17).

Similar to the original RRT* algorithm, the rewiring of the neighborhood nodes

is performed in Line 18–26 after the process of growing the tree is completed. For

all qnear in Nnear, the cost is calculated taking qnew as parent. If the new cost is less

than the existing one and the path is feasible, the parent of qnear in both T and Tsafe is
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changed to qnew. The costs for qnear as well as its children nodes are updated to take

into account the cost for qnew. Unlike the original RRT* algorithm, in Line 25–26 we

also update the safe subtree, where the edge from qnew to qnear is added if the new

depth is less than K. Otherwise, qnear is removed from the subtree to keep the safe

subtree within the maximum depth K.

2.4.3 Graphical Illustration

A step-by-step example of our algorithm is illustrated in Fig. 2.6, where the blue ball

represents an obstacle centered at the predicted mean at time steps k = 0, . . . ,K with

K = 5. In Fig. 2.6-I, the robot is steered from the old root to the new root. Thus, the

part of the tree not growing from the new root is pruned. The vertices in orange with

depth 3 and 4 have positive risks with respect to the predicted obstacle’s location for

k = 3 and k = 4, respectively. Hence, these nodes are not included in the safe subtree

Tsafe. In Fig. 2.6-II, qrand is sampled in the configuration space and the corresponding

qnearest is selected from Tsafe with the lowest cost. A qnew is found by steering qnearest

towards qrand. In Fig 2.6-III, a ball of neighbors for qnew is created (in orange). This

ball includes nodes in green as well as qnearest. The current lowest cost is set to the

cost from the root of the tree to qnew via qnearest.

In Fig 2.6-IV, the costs to qnew via other neighboring nodes are computed. It is

observed that the length to qnew and the risk are larger via other neighbors than via

qnearest. This is because the depth of qnew becomes 5 and the risk is computed for ob-

stacles at k = 5, whereas when qnearest is the parent, the depth of qnew is 4 and the

obstacle is farther from the node. Therefore, in Fig 2.6-V, the parent of qnew is cho-

sen as qnearest. Also, qnew is added to the safe subtree since the risk is non-positive.

Fig. 2.6-VI illustrates the rewiring process, where the cost for the neighbor node im-

proves when its parent is qnew.

Our motion planning method is a learning-based algorithm based on CC-RRT* [124],

another real-time algorithm for probabilistically feasible motion planning built upon
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the chance-constrained RRT (CC-RRT) algorithm [125] and the original RRT* [122].

Unlike CC-RRT*, our algorithm first learns the distribution of the obstacles’ future

trajectories from new observations and replaces the probability of collision with the

distributionally robust risk map defined in (2.13). Then, instead of chance constraints,

the DR-risk map is used as a constraint to ensure safety as well as to penalize pos-

sibly risky trajectories in the cost function. It is well known that CVaR constraints

induce more conservative behaviors compared to chance constraints. Moreover, our

DR-risk map yields to take into account possible errors in the learned distribution of

the obstacles’ behaviors that in practice cannot be captured by CC-RRT*. As an exten-

sion to CC-RRT, distributionally robust RRT (DR-RRT) is introduced in [72], where

a moment-based ambiguity set is used, unlike our algorithm. The resulting determin-

istic constraint is similar to the one in CC-RRT* with the difference that it leads to a

stronger constraint tightening. On the contrary, our DR-RRT* uses CVaR constraints

in addition to the Wasserstein ambiguity set, which inherently takes into account mo-

ment ambiguity, thereby providing an additional layer of robustness as mentioned in

Appendix 2.8.2. Furthermore, it is worth mentioning that most motion planning algo-

rithms work only for a restricted set of problems. For example, in both CC-RRT* and

DR-RRT, the region occupied by obstacles should be represented by a convex polytope

with uncertainties in translation, while in both Risk-RRT* [106] and Risk-Informed-

RRT* [126] the risk map is constructed as a grid by discretizing the state space. On

the contrary, our method does not impose such restrictions, allowing any obstacle of

an arbitrary shape and motion as long as the loss can be constructed as a piecewise

quadratic function.

2.5 Application to Learning-Based Distributionally Robust

Motion Control
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In addition to motion planning, our DR-risk map can be used for motion control

in risky environments. As the second application, we propose a learning-based motion

control technique that limits the risk of collision in a distributionally robust way. In

this case, our motion controller determines a control input that is robust against errors

in learned information about the obstacles’ movements.

We formulate the motion control problem as the following MPC problem with

DR-risk constraints:

min
u,x,y

J(xr(t),u) :=
K−1∑
k=0

c(yk, uk) + q(yK) (2.20a)

s.t. xk+1 = f(xk, uk) (2.20b)

yk = Cxk (2.20c)

x0 = xr(t) (2.20d)

Rt,k(yk) ≤ δ (2.20e)

xk ∈ X (2.20f)

uk ∈ U (2.20g)

where x := (x0, . . . , xK), u := (u0, . . . , uK−1), y := (y0, . . . , yK) are the robot’s

predicted state, input and output trajectories over the prediction horizon K. The con-

straints (2.20b) and (2.20g) should be satisfied for k = 0, . . . ,K − 1, the constraint

(2.20c) should hold for k = 0, . . . ,K, and the constraints (2.20e) and (2.20f) are im-

posed for k = 1, . . . ,K. Here, the stage-wise cost function c : Rny × Rnu → R and

the terminal cost function q : Rny → R are chosen to penalize the deviation from the

reference trajectory yref and to minimize the control effort as follows:

c(yk, uk) = ∥Q(yk − yrefk ∥
2
2 + ∥Ruk∥22

q(yK) = ∥Qf (yK − yrefK )∥22,

where Q,Qf , R ≻ 0 are the state and control weight matrices. The sets X and U

represent the state and input constraint sets, respectively, which are assumed to be

polyhedra for simplicity.
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The constraint (2.20e) integrates the risk map into the controller synthesis by lim-

iting the DR-risk (2.11) to user-specified tolerance level δ. When f(xk, uk) is a linear

function, the DR-MPC problem can be reformulated into a bi-linear SDP by writ-

ing the risk constraint in the SDP form (2.16). However, solving such a problem is a

computationally expensive task. To alleviate the computational issue, we propose to

approximate the DR-risk map by an NN that can be trained offline.

2.5.1 Neural Network Approximation of DR-Risk Map

Consider the feed-forward NN in Fig. 2.7 with J layers and Ni nodes in each layer

with a ReLU activation function. The inputs of the NN are the robot’s position yr(t+k)

and the parameters of the predicted distribution of the obstacles’ behaviors, µ̃t,k,ℓy and

(Σ̃t,k,ℓy )1/2, while the target is the solution of the SDP problem (2.16).6

For any position of the robot and the predicted position of the obstacle, the risk

map computed in (2.14) can be approximated using the NN as

Rt,k,ℓNN (yr,Yℓ; θ, α) =
(
ak,ℓJ + r2ℓ

)+
, (2.21)

where

hk,ℓi = max{0, ak,ℓi }, i = 1, . . . ,J − 1 (2.22)

ak,ℓi =Wih
k,ℓ
i−1 + bi, i = 1, . . . ,J . (2.23)

Here, Wi ∈ RNi×Ni−1 and bi ∈ RNi are the weight and bias, hk,ℓi ∈ RNi and ak,ℓi ∈

RNi are the output and activation of the ith layer with hk,ℓ0 ∈ RN0 being the input of the

network with N0 = ny(ny + 5)/2. The activation function in (2.22) follows from the

definition of ReLU. The input of the network is constructed from the robot’s position

yr(t + k) ∈ Rny and the parameters of the predicted distribution of the obstacles’

behaviors µ̃t,k,ℓy and (Σ̃t,k,ℓy )1/2 as follows:

hk,ℓ0 =
[
yr(t+ k)⊤, (µ̃t,k,ℓy )⊤, vech

[
(Σ̃t,k,ℓy )1/2

]⊤]⊤
,

6The architecture in Fig. 2.7 assumes fixed θ and α. However, these parameters may also be added as

additional input variables to the NN.
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where vech[·] is an operator vectorizing the lower triangular elements of the matrix.

Note that the NN is independent of t, k, and ℓ since the dependence is encoded in the

input information. Therefore, we can use a single NN to approximate the DR-risk maps

for all t, k, and ℓ. Moreover, like the exact risk map in (2.13), the approximate risk

map does not require additional information such as the true positions of the obstacles.

Real-time behaviors are captured through the inputs of the NN, namely the robot’s

position and the probability distribution of the obstacles’ positions inferred via GPR.

This feature is inherited from our distributionally robust formulation that focuses on

the worst-case distribution determined not by the current obstacle configuration but by

the learned distribution.

To train the NN, a dataset is created by solving (2.16) for different values of

yr(t + k), µ̃t,k,ℓy and (Σ̃t,k,ℓy )1/2 for fixed θ and α. Thereafter, the NN is trained via

backpropagation to approximate the DR-risk map. As an example, the mean squared

error (MSE) and mean average error (MAE) for all training, validation, and test sam-

ples are reported in Table 2.2, showing that both errors are small.

To validate this approach, we compare the DR-risk map and its NN approxi-

mation computed using 50,000 random realizations of yk, µ̃t,k,ℓy ∼ U [0, 10]2 and

Σ̃t,k,ℓy ∼ U [0, 0.7]3 for θ = 10−5, 10−4, 10−3, 10−2 and α = 0.95. We also randomly

generate the radius rℓ ∼ U [0, 0.2] and the risk tolerance level δℓ ∼ U [0, 0.5r2ℓ ] to show

the flexibility of our approximation method. As shown in Table 2.3, the probability

that the approximate risk map reports safe events as unsafe is quite small. Further-

more, the approximate risk map is not so conservative since the probability of misre-

porting unsafe events as safe is also small. These results show the validity of our NN

approximation approach.

2.5.2 Approximate Distributionally Robust MPC

Using the NN approximation of the DR-risk map, we eliminate the need to solve the

optimization problem (2.16) in the constraints of the MPC problem (2.20). Moreover,
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since only the inputs yr(t+k), µ̃
t,k,ℓ
y and Σ̃t,k,ℓy of the NN depend on the t, k and ℓ, the

same NN can be used for all time stages and obstacles, by simply providing appropriate

inputs to the NN. Therefore, the use of our NN approximation significantly reduces the

computational burden required to solve the MPC problem. More specifically, we obtain

the following approximate MPC problem.

Proposition 2.1. Suppose that the NN approximation (2.21) of the DR-risk map is

given for fixed parameters θ and α. If the risk map in (2.20e) is replaced with the NN

approximation, the DR-MPC problem (2.20) can be expressed as follows:

min J(xr(t),u) :=

K−1∑
k=0

c(yk, uk) + q(yK) (2.24a)

s.t. xk+1 = f(xk, uk) (2.24b)

yk = Cxk (2.24c)

x0 = xr(t) (2.24d)

hk,ℓ0 =
[
y⊤k , (µ̃

t,k,ℓ
y )⊤, vech

[
(Σ̃t,k,ℓy )1/2

]⊤]⊤ (2.24e)

WJ h
k,ℓ
J−1 + bJ + r2ℓ ≤ δ (2.24f)

hk,ℓi = λk,ℓi +Wih
k,ℓ
i−1 + bi (2.24g)

hk,ℓi ≥ 0, λk,ℓi ≥ 0 (2.24h)

(λk,ℓi )⊤hk,ℓi = 0 (2.24i)

xk ∈ X (2.24j)

uk ∈ U , (2.24k)

where Wi and bi are the weights and the bias for the ith layer. Constraints (2.24f)–

(2.24i) are imposed for i = 1, . . . ,J .

Proof. Consider the feasible set for constraint (2.20e):

FSktrue :={yk ∈ Rny | max
ℓ=1,...,L

Rℓt,k(yk,Yℓ) ≤ δ}

={yk ∈ Rny | Rℓt,k(yk,Yℓ) ≤ δ ∀ℓ}.
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Using the NN approximation (2.21) of the risk map, the feasible set can be approxi-

mated by

FSkNN := {yk ∈ Rny | Rt,k,ℓNN (yr,Yℓ; θ, α) ≤ δ ∀ℓ}. (2.25)

For fixed i, k and ℓ, the ReLU in (2.22) can be interpreted as projecting ai onto the

non-negative orthant, i.e.,

hi = argmin
x∈RNi

{1

2
∥x− ai∥22 | x ≥ 0

}
. (2.26)

Since (2.26) is a convex optimization problem, hi = x∗ and λ∗i are its primal and dual

optimal solutions if and only if the following KKT conditions are satisfied:

x∗ = λ∗i + ai

(λ∗i )
⊤x∗ = 0

λ∗i ≥ 0

x∗ ≥ 0.

(2.27)

Replacing constraint (2.20e) in the original MPC problem with (2.25) and then ex-

pressing ReLU (2.22) as (2.27), we obtain the approximate DR-MPC problem.

The problem (2.24) can be solved using nonlinear programming algorithms, such

as interior-point methods [127, 128], sequential quadratic programming [129, 130].

Moreover, it can also be solved using spatial branch-and-bound algorithms that ex-

ploit the bilinear nature of the nonconvex constraint. Similarly, branch-and-bound al-

gorithms [131–134] can be used replacing the nonlinear ineqalities (2.24e)–(2.24h)

with corresponding big-M constraints. In this work, for computational efficiency, we

employ the interior-point solver implemented in FORCES Pro, which is tailored to

efficiently find a locally optimal solution for multistage optimization problems [135].

2.6 Simulation Results
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In this section, we provide two case studies to demonstrate the performance and

utility of our DR-risk map: one for motion planning and another for motion control.

All algorithms were implemented in MATLAB and run on a PC with a 3.70 GHz Intel

Core i7-8700K processor and 32 GB RAM. The SDP problems (2.16) and (2.17) were

solved using a conic solver, called MOSEK [119]. In the motion control experiment,

the FORCES Pro [135] was used to solve the DR-MPC problem.7

2.6.1 Motion Planning

As with the first case study, motion planning is performed using our learning-based

DR-RRT* in dynamic 2D environments. We consider a car-like robot with the follow-

ing discrete-time kinematics:

xr(t+ 1) = xr(t) + Tsvr(t) cos(θr(t))

yr(t+ 1) = yr(t) + Tsvr(t) sin(θr(t))

θr(t+ 1) = θr(t) + Tsvr(t) tan(δr(t))/Lr,

where xr(t), yr(t) and θr(t) are the states of the vehicle—representing the Cartesian

coordinates of the robot’s CoM and its heading angle, while the velocity vr(t) and

steering angle δr(t) are the control inputs. The sampling time is Ts = 0.1 sec, and

Lr = 0.8m is the length of the robot. Note that the robot can be covered by a circle

with radius rr = 1.

We consider two different scenarios: (i) a 2D environment with obstacles with

unknown dynamics, and (ii) a 2D environment with obstacles with single integrator

dynamics. In both cases, the parameters for the risk map are chosen as α = 0.95, rs =

0.1 and rℓo = 1 for all ℓ = 1, 2, while the maximum depth for the tree is chosen

as K = 10. The control inputs for the robot are limited to |vr(t)| ≤ 5 m/v2 and

|δr(t)| ≤ 30 deg. In the beginning of the algorithm, since there are no observations,

7The source code of our DR-RRT* and DR-MPC implementation is available at

https://github.com/CORE-SNU/DR-Risk-Map.
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the GPR dataset Dℓ includes only the current values of the ℓth obstacle’s states and

inputs. New samples are added to the dataset as time goes on.

Highway Scenario

In the first scenario, the robotic vehicle navigates a highway-like 2D environment with

L = 2 obstacles with unknown behaviors. We parameterize the dynamics model ϕℓ

as described in Appendix 2.8.1 using a previously obtained transition dataset of 105

observations and a feedforward NN with 3 hidden layers, 20 neurons in each. The state

for each obstacle consists of the Cartesian coordinates of its CoM and the heading

angle, while the inputs are its velocity and angular acceleration.

Fig. 2.8 shows the trajectories generated by learning-based DR-RRT* for θ =

10−4, 10−2, 5×10−2, 10−1 at different time instances, where two obstacles are shown

in green. The goal point is on the second lane. For this experiment the risk tolerance

level δ = 0.2205 is set to be 5% of the maximum possible risk r2ℓ = (rr + rℓo + rs)
2.

Fig. 2.8 (a) presents the situation when the first obstacle changes the lane from the third

to the second lane. Since the obstacle will be on the same lane as the robot according

to the prediction, all paths generated by DR-RRT* except for θ = 10−4 choose to

move to the third lane. The case of θ = 10−4 is less conservative than the other cases

as expected.

After safely avoiding the obstacle, the robot needs to switch back to the second

lane to reach the goal point. As shown in Fig. 2.8 (b), the prediction of another obsta-

cle’s future motion indicates that the obstacle will continue following the second lane,

while in reality, it plans to move to the third lane. Since DR-RRT* with θ = 10−4

considers errors in prediction only in a small ball, the robot chooses to overtake the

obstacle, performing risky maneuvers. Meanwhile, the robot with a larger θ makes a

safer decision, staying in the third lane. In Fig. 2.8 (c), all cases reach the desired goal

point, completing the algorithm. Overall, it is observed that the case with the small-

est radius θ = 10−4 generates the most aggressive (but still safe) path. Increasing
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the radius drives the robot farther away from the obstacles, thereby guaranteeing safe

navigation with enough of a safety margin. Clearly, θ = 10−1 ensures a larger safety

margin compared to the case of 10−2 or 5× 10−2.

Fig. 2.9 illustrates how the tree grows at t = 18 in the case of θ = 10−2. The

tree starts from the current state of the robot. At the same time, GPR is executed to

predict the obstacles’ future motions. Unfortunately, the prediction capability is poor

when there are abrupt changes in the behavior of the obstacles. However, the prediction

errors are taken into account in our DR-risk map, guaranteeing safety even when the

prediction is not accurate. The grey tree corresponds to T obtained using Algorithm 1.

However, to ensure safety, only the nodes with depth less than or equal to K and

satisfying the risk constraint are added to the safe subtree Tsafe. The best path (in red)

given to the robot for execution is then chosen from Tsafe.

Table. 2.4 shows the cumulative cost of the trajectories generated by DR-RRT*

with different θ’s. A bigger radius induces a more conservative behavior, driving the

robot away from the shortest path. Thus, the total trajectory length and the cost increase

with θ.

To examine the robustness of our method depending on the ambiguity set size

and determine an appropriate radius θ, the average collision probability is computed

for N = 1000 realizations of GP dataset Dℓ. In particular, we assume a zero-mean

Gaussian measurement noise with variance 0.001I and learn hyperparameters of the

GP prior based on each realization of Dℓ. The probability of collision is calculated as

the collision rate averaged over N simulations, i.e.,

Pt,k,ℓcoll = P̂
{
Jt,k(y∗r , yℓo) + r2ℓ > 0

}
,

where P̂ is the empirical distribution of the GP dataset, and y∗r (t + k) is the robot’s

position at time t + k planned at stage t using the learned distribution with Dℓ, while

yℓo(t+k) is the actual position of obstacle ℓ. The overall collision rate is then computed
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as

Pcoll =
T⋃
t=0

K⋃
k=0

L⋃
ℓ=1

Pt,k,ℓcoll .

The results of our analysis are reported in Table 2.4. For all θ’s, the collision probabil-

ity is very small and decreases with the size of the ambiguity set. Therefore, one can

adjust the robustness of the robot’s decision by choosing a radius θ to reach the desired

level of collision probability. In this example, θ = 5 × 10−2 is a reasonable choice if

the targeted collision rate is 1%.

Road Intersection Scenario

In the second scenario, we consider a road intersection, where an obstacle has an un-

known behavior with a single integrator dynamics:

xo(t+ 1) = xo(t) + Tsuo(t),

where xo(t) is the obstacle’s position and uo(t) is the velocity vector in each direc-

tion. This setting allows us to compare our method with other algorithms that can only

handle limited problem classes. Specifically, we compare our method to the classical

RRT* [122] as well as the CC-RRT* algorithm [124]. This comparison is impossi-

ble in the first scenario, where angular uncertainties are considered in addition to the

placement uncertainties; CC-RRT* can only handle the latter. In the case of RRT*,

we assume that the prediction results are accurate and consider the predicted mean to

be the actual obstacle’s position, ignoring uncertainties. In CC-RRT*, the obstacle is

over-approximated as an octagon to attain its polytopic representation. CC-RRT* uses

chance constraints assuring that the probability of navigating in the safe set is greater

than or equal to α. We set the risk weight in the cost (2.19) to w = 0 to ensure the

same conditions for all algorithms.

Fig. 2.10 shows the simulation results of DR-RRT* with θ = 10−4, 10−3, 5×10−3

and comparisons to RRT* and CC-RRT* at different time instances. In Fig. 2.10 (a),
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the robot reaches the intersection without considering the obstacle, as it is still not in-

terfering with the robot’s path. The obstacle is trying to turn right, which is predicted

well by GPR. However, as shown in Fig. 2.10 (b), when the robot is trying to steer

left, the obstacle abruptly changes its decision to turn left. This situation is clearly not

predicted well by GPR, and therefore RRT* and CC-RRT* both fail to find a feasi-

ble solution. However, our DR-RRT* takes into account such an error in the learning

result, guiding the robot to avoid a collision. Even though DR-RRT* succeeds in gen-

erating a collision-free path for all θ’s, the path with smaller θ is riskier than that with a

bigger one. With the biggest radius (θ = 5× 10−3), the robot avoids the obstacle with

a sufficient safety margin. Finally, Fig. 2.10 (c) shows the completed paths generated

by DR-RRT*, whereas both RRT* and CC-RRT* fail to complete their paths. We can

conclude that RRT* is not suitable for motion planning in a highly uncertain environ-

ment, while CC-RRT* is applicable if the prediction results are accurate, as it does not

consider distributional errors. However, our DR-RRT* is capable of performing safe

path planning even with the existence of distributional errors in the learning results.

Similar to the previous scenario, the probability of collision is computed using

perturbed predictions with the same perturbation parameters. Both RRT* and CC-

RRT* fail to complete motion planning, and thus the probability of collision is 1 for

both. In the case of our DR-RRT*, the collision probability is 0, meaning that there is

no collision for all Wasserstein ambiguity sets considered in this specific experiment.

2.6.2 Motion Control

In the second case study, we consider a motion control problem for a service robot

in a cluttered environment such as a restaurant. The mobile robot is assumed to move
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according to the following double integrator dynamics:

xr(t+ 1) =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

xr(t) +

T 2
s /2 0

0 T 2
s /2

Ts 0

0 Ts

ur(t),

where xr(t) = (xr(t), yr(t), vxr(t), vyr(t)) ∈ R4 is the robot’s state at time t, consist-

ing of the Cartesian coordinates of its CoM and the corresponding velocity vector, and

the input ur(t) = (axr(t), ayr(t)) ∈ R2 is chosen as the acceleration vector. Again, Ts

is the sampling time, selected as 0.1 sec.

The circular robot of radius rr = 0.09 aims to track a given reference trajectory in

a cluttered 2D environment with some static and dynamic obstacles that may represent

other service robots or human agents. Each of L = 3 dynamic obstacles is a circular

object of radius rℓo = 0.1, and the safety margin is set to be rs = 0.01. The control

input for the robot is limited to lie in U := {u ∈ R2 | ∥u∥∞ ≤ 4}, while its state

is restricted to X := {x ∈ R4 | (0, 0,−2,−2) ≤ x ≤ (6, 6, 2, 2)}. Each of the

Lstat = 5 static obstacles is approximated by an ellipsoid, defined as Oistat := {x ∈

R2 | (x − xistat)
⊤P−1

i (x − xistat) ≤ 1}, where xistat is the center of ith elliptical

obstacle and Pi = P⊤
i ≻ 0 determines how far the ellipsoid extends in every direction

from xistat. The following additional constraints are added to problem (2.24) to avoid

the static obstacles:

(yk − xistat)⊤P−1
i (yk − xistat) ≥ 1 ∀i = 1, . . . , Lstat.

The NN approximation of the DR-risk map is performed as described in Sec-

tion 2.5.1. We sample 500,000 different values of yr(t+k) and µ̃t,k,ℓy from U [0, 6]2 and

vech
[
(Σ̃t,k,ℓy )1/2

]
from U [0, 0.1]3 and divide them into training, validation and testing

datasets with a ratio of 0.8 : 0.1 : 0.1.

We begin the MPC algorithm by applying GPR to predict the mean µ̃t,k,ℓy and

covariance Σ̃t,k,ℓy for all dynamic obstacles ℓ = 1, . . . , L for future time steps k =
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1, . . . ,K based on the latest M = 10 observations of the obstacles’ behaviors. This

step is repeated in every time stage t before solving the optimization problem (2.24).

We compare the performance of our approximate DR-MPC (2.24) with that of

the CVaR-constrained sample average approximation MPC (CVaR-MPC) [70] with

N = 100 sample data generated from the predicted distribution, as well as the chance-

constrained MPC (CC-MPC) for elliptical obstacles [136]. The risk confidence level

is chosen as α = 0.95. For CVaR-MPC and DR-MPC, the risk tolerance level δ =

4 × 10−4 is set to be 1% of the maximum possible risk r2ℓ = (rr + rℓo + rs)
2. In our

approximate DR-MPC, the radius is chosen as θ = 10−5, 10−4, 10−2.

Fig. 2.11 shows the simulation results for the three MPC methods with prediction

horizon K = 10. In both CVaR-MPC and CC-MPC, the GPR prediction results are

used for risk assessment. However, due to some sudden and unpredictable movements

of the obstacles, the GPR results are not trustworthy. As shown in Fig. 2.11 (a), the mo-

bile robot follows the reference trajectory and approaches the first dynamic obstacle. In

this stage, all controllers try to avoid the obstacle by passing it on the left with different

safety margins. However, even though CC-MPC finds a feasible solution under the in-

accurately predicted distribution, a collision occurs in reality due to the prediction and

approximation errors. Similarly, after a few steps, the robot controlled by CVaR-MPC

collides with the obstacle. Unlike the two controllers, DR-MPC controls the robot to

safely avoid the obstacle and continue following the reference trajectory despite the

inaccurate GPR results. This is because, instead of directly using the learned distribu-

tion, DR-MPC considers the risk of unsafety with respect to the worst-case distribution

within distance θ from the learned one. This is shown in Fig. 2.11 (b), where the robot

has already passed the obstacle. The radius θ affects the behavior of the robot in a way

that increasing it results in a more risk-averse steering behavior. In particular, DR-

MPC with θ = 10−2 generates the most conservative trajectory, while the trajectory

for θ = 10−5 is the least safe, being close to that generated by CVaR-MPC. This is

because, as θ → 0, the ambiguity set vanishes, and DR-CVaR reduces to CVaR. In
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Fig. 2.11 (c), the robot approaches the third and fourth dynamic obstacles. Similar to

the previous situation, DR-MPC guides the robot to safely avoid the obstacles with

some safety margins depending on the size of the ambiguity set. Finally, as shown in

Fig. 2.11 (d), the robot controlled by our DR-MPC method successfully reaches the

goal point, unlike the other two methods.

The cumulative costs incurred by the three methods are reported in Table 2.5.8

Obviously, the cost increases as the controller becomes more conservative, as the robot

drives away from the obstacles with larger safety margins.

Table 2.5 also shows the probability of collision, averaged over 1, 000 differ-

ent GP datasets computed similarly to the motion planning case. CC-MPC has the

highest probability of collision, followed by CVaR-MPC. This is justified by the fact

that chance constraint can be equivalently expressed using value-at-risk (VaR), while

CVaR-MPC uses CVaR. By definition, it holds that VaR[X] ≤ CVaR[X], and there-

fore the CVaR-based CVaR-MPC induces more conservative behavior compared to

CC-MPC. Our DR-MPC reduces the collision probability to 0.034 even with a very

small ambiguity set (θ = 10−5). Increasing the radius to θ = 10−2 further reduces the

probability of collision with the obstacles to 0.001.

The computation time reported in Table 2.5 is measured from the starting point

to the goal point. The results show that CC-MPC and DR-MPC with θ = 10−5 take

a similar amount of time to complete motion control, while CVaR-MPC is slightly

slower due to the number of constraints in the optimization problem for each sample.

As for the remaining θ’s, increasing the safety of the robot is comparatively computa-

tionally heavy as finding a feasible trajectory satisfying the risk constraints becomes

more time-consuming. From these results, we can conclude that it is reasonable to use

θ = 10−4 in this problem, which produces a sufficiently robust behavior with moderate

operation cost and computation time.
8In the cases of CC-MPC and CVaR-MPC, we continued to perform motion control even after colli-

sions.
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2.7 Conclusions

We have proposed a novel risk assessment tool, called the DR-risk map, for a mo-

bile robot in a cluttered environment with moving obstacles. Our risk map is robust

against distribution errors in the obstacles’ motions predicted by GPR. For computa-

tional tractability, an SDP formulation was introduced along with its dual SDP. The

utility of the risk map was demonstrated through its application to motion planning

and control. The DR-RRT* algorithm uses the DR-risk map in the cost and constraint

to generate a safe path in the presence of learning errors. Furthermore, to reduce the

computational cost, an NN approximation of the risk map was proposed and embed-

ded into our MPC problem for motion control. The results of our simulation studies

demonstrate the capability of the DR-risk map to preserve safety under learning errors.

2.8 Appendix

2.8.1 Neural Network Approximation of Obstacle Dynamics

As mentioned in Section 2.2.1, the system model of obstacles might be unknown in

practice. However, with some observation data, an approximate model ϕw of ϕ can be

constructed using NNs. In this work, we use feedforward NNs with ReLU activation

functions and Lϕ hidden layers to approximate the obstacles’ dynamics. The input

of the NN consists of the obstacles’ state and action vectors at each time stage. The

target of the NN is chosen as the difference between the next state and the current

state to take advantage of the discrete nature of the dynamics. The training data is

collected through the observation of Nϕ random transitions (xo(t), uo(t), xo(t + 1)),

constructing the input and target datasets Dℓ
in =

{
(xo(t), uo(t))

}Nϕ−1

t=0
and Dℓ

tar ={
xo(t + 1) − xo(t)}

Nϕ−1
t=0 , respectively. Given the datasets, the NN ϕ̂w is trained by

minimizing the mean squared error:

Lϕ(w) =

Nϕ−1∑
t=0

1

2
∥ϕ̂w(xo(t), uo(t))− (xo(t+ 1)− xo(t))∥2,
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where the parameter vector w represents the network weights. As a result of optimiza-

tion, we obtain the following approximate model for obstacle dynamics:

ϕw(xo(t), uo(t)) = xo(t) + ϕ̂w(xo(t), uo(t)), (2.28)

which replaces the function ϕ in the obstacle dynamics (2.8).

2.8.2 Proofs

Proof of Theorem 2.1

Proof. We use the definition of CVaR to wrtie the DR-risk as follows:

DR-CVaRα,θ
[
J (yr, yo)

]
= sup

Q∈D
inf
z∈R

(
z +

1

1− α
EQ

[(
J (yr, yo)− z

)+])
≤ inf

z∈R

(
z +

1

1− α
sup
Q∈D

EQ
[(
J (yr, yo)− z

)+])
,

where the inequality follows from the minimax inequality.

It is well known that for the standard Euclidean norm ∥ · ∥2 the 2-Wasserstein

distance between two normal distributions Q = N (µ1,Σ1) and P = N (µ2,Σ2) has a

closed-form expression [137]:

W2(Q,P) =
√
∥µ1 − µ2∥22 +B2(Σ1,Σ2),

where

B2(Σ1,Σ2) := Tr
[
Σ1 +Σ2 − 2

(
Σ
1/2
1 Σ2Σ

1/2
1

)1/2]
.

Consider the following convex uncertianty set, which is the projection of D onto

the space of means and covariances:

Uθ(µ̃, Σ̃) =
{
(µ,Σ) ∈ Rny × Sny

+ | ∥µ− µ̃∥22 +B2(Σ, Σ̃) ≤ θ2
}
. (2.29)

The uncertainty set Uθ(µ̃, Σ̃) is convex and compact since it is the projection of the

Wasserstein ball. We now leverage the Gelbrich hull, defined in [41], which contains

all distributions supported on Ξ whose mean and covariance fall into the uncertainty set
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Uθ(µ̃, Σ̃). In our case, since we consider nominal Gaussian distributions, the Gelbrich

hull is identical to the Wasserstein ball D defined in (2.12). Due to nonlinearity of

covariance matrix in the underlying distribution, it is reasonable to perform change

of variables and represent the uncertainty set Uθ(µ̃, Σ̃) by the second-order moment

M = E[yoy⊤o ] = Σ + µµ⊤. Then the new uncertainty set Vθ(µ̃, Σ̃) will be defined as:

Vθ(µ̃, Σ̃) =
{
(µ,M) ∈ Rny × Sny

+ | (µ,M − µµ⊤) ∈ Uθ(µ̃, Σ̃)
}
, (2.30)

which is also a convex set.

Now, we use the fact that the Gelbrich hull or the 2-Wasserstein ball in our case can

be expressed as the union of Chebyshev ambiguity sets with means and covariances in

the uncertainty set (2.29). Equivalently, using the uncertainty set (2.30), the Gelbrich

hull can be viewed as the union of Chebyshev ambiguity sets with first- and second-

order moments in the uncertainty set (2.30), i.e.,

D =
⋃

(µ,Σ)∈Uθ(µ̃,Σ̃)

C(Rny , µ,Σ)

=
⋃

(µ,M)∈Vθ(µ̃,Σ̃)

C(Rny , µ,M − µµ⊤),

where C(Rny , µ,Σ) is the Chebyshev ambiguity set containing all distributions on Rny

with mean µ and covariance bounded above by Σ. Thus, we have

sup
Q∈D

EQ
[(
J (yr, yo)−z

)+]
= sup

(µ,M)∈Vθ(µ̃,Σ̃)

sup
Q∈C(Rny ,µ,M−µµ⊤)

EQ
[(
J (yr, yo)−z

)+]
.

In the above equation, the inner optimization problem measures the risk for all

distributions with given first- and second-order moments, while the outer one consid-

ers the ambiguity in those moments with respect to the Wasserstein distance. Such

two-layered optimization provides additional robustness, accounting for moment am-

biguities.
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From [138, Lemma A.1] the inner supremum gets the following dual form:

inf τ + 2γ⊤µ+ ⟨Γ,M⟩

s.t. τ + 2γ⊤yo + ⟨Γ, yoy⊤o ⟩ ≥ J (yr, yo
)
− z ∀yo

τ + 2γ⊤yo + ⟨Γ, yoy⊤o ⟩ ≥ 0 ∀yo

τ ∈ R, γ ∈ Rny ,Γ ∈ Sny

=



inf τ + 2γ⊤µ+Tr[ΓM ]

s.t.

 Γ + I γ − yr

(γ − yr)⊤ τ + z + ∥yr∥22

 ⪰ 0

 Γ γ

γ⊤ τ

 ⪰ 0

τ ∈ R, γ ∈ Rny ,Γ+ ∈ Sny ,

(2.31)

where the second problem is obtained by replacing the quadratic constraint with the

corresponding semidefinite one. By weak duality, the dual provides an upper bound of

the inner supremum. Applying minimax inequality and replacing the inner supremum

with its dual, we arrive at the following upper bound for the worst-case expectation:

inf
τ,γ,Γ

{
τ + sup

(µ,M)∈Vθ(µ̃,Σ̃)

(
2γ⊤µ+Tr[ΓM ]

)
| constraints in (2.31)

}
.

(2.32)

The inner supremum has an interesting form, which can be rewritten by the support

function of Vθ(µ̃, Σ̃) evaluated at (2γ,Γ). The support function σVθ(µ̃,Σ̃)(q,Q) for any
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q ∈ Rm and Q ∈ Sm can found by solving the following SDP problem [41]:

σVθ(µ̃,Σ̃)(q,Q) = inf
λ,ε,Z

λ(θ2 − ∥µ̃∥22 − Tr[Σ̃]) + ε+Tr[Z]

s.t.

 λI −Q λµ̃+ q
2

λµ̃⊤ + q⊤

2 ε

 ⪰ 0

λI −Q λΣ̃1/2

λΣ̃1/2 Z

 ⪰ 0

λ ∈ R+, ε ∈ R+, Z ∈ Sm+ .

The result of the theorem follows from replacing the support function with the

corresponding SDP and plugging in the expression for the worst-case expectation back

into DR-risk.

Proof of Corollary 2.1

Proof. To derive the dual of (2.16), we write the Lagrangian functions with multipliers

X,Y,W, V ⪰ 0 and η, β ≥ 0 as

L = z +

[
τ + ε+Tr[Z] + λ

(
θ2 − ∥µ̃∥22 − Tr[Σ̃

])]
1− α

− ⟨X11, λI − Γ⟩ − 2X⊤
12(γ + λµ̃)−X22ε− ⟨Y11, λI − Γ⟩

− 2⟨Y12, λΣ̃1/2⟩ − ⟨Y22, Z⟩ − ⟨W11,Γ + I⟩ − 2W⊤
12(γ − yr)

−W22(τ + y⊤r yr + z)− ⟨V11,Γ⟩ − 2V ⊤
12γ − V22τ

− ⟨U,Z⟩ − ηλ− βε,

where Xij is the (i, j) entry of matrix X and ⟨·, ·⟩ is the matrix inner product. The

dual function g is obtained by minimizing the Lagrangian function with respect to the
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primal variables:

g = −Tr[W11]− 2W⊤
12yr −W22y

⊤
r yr +min

z
(1−W22)z

+min
λ

(θ2 − ∥µ̃∥22 − Tr
[
Σ̃
]

1− α
− Tr

[
X11 + Y11 + 2Y ⊤

12Σ̃
1/2

]
− 2X⊤

12µ̃− η
)
λ+min

γ
(−2X12 − 2W12 − 2V12)

⊤γ

+min
ε

( 1

1− α
−X22 − β

)
ε+min

τ

( 1

1− α
−W22 − V22

)
τ

+min
Γ
⟨X11 + Y11 −W11 − V11,Γ⟩+min

Z
⟨I − Y22 − U,Z⟩.

Finally, solving the inner minimization problems and maximizing the dual function g

with respect to the dual variables, we obtain the dual form (2.17).

Note that there exist strictly feasible points for the primal problem (2.16) for any

µ̃ ∈ Rny and Σ̃ ∈ Sny

+ . For example, let

γ = −2µ̃, z = 2µ̃⊤yr −
1

2
∥yr∥22 − 2∥µ̃∥22 + 1,

λ = 2, Γ = I ≻ 0,

Z = 4Σ̃ + I, ε = τ = 2γ⊤γ > 0.

Then the constraints in (2.16) hold with strict inequalities. Therefore, Slater’s condition

holds and so does strong duality.

Proof of Theorem 2.2

Proof. Let PD
t,k and Pt,k denote the probability distribution obtained by GPR and the

Dirac measure concentrated at yo(t+ k), respectively. It follows from the definition of

2-Wasserstein distance that

W2(P
D
t,k,Pt,k) ≤ ∥yo(t+ k)− µ̃t,ky,D∥

2 +Tr
[
Σ̃t,ky,D

]
.

Therefore, Assumption 2.1 implies that

W2(P
D
t,k,Pt,k) ≤

(
ωt,kD

)2
+Tr

[
Ωt,kD

]
≤ θ2t,k
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holds with probability no less than (1 − p)k. It indicates that the true probability dis-

tribution Pt,k is contained in the Wasserstein ambiguity set with radius θt,k around the

learned distribution PD
t,k with probability no less than (1− p)k. Thus, by the definition

of DR-CVaR,

P
{
D | CVaRPt,k

α [Jt,k(yr, yo)] ≤ DR-CVaRα,θ[J(yr, yo)]
}
≥ (1− p)k,

where DR-CVaRα,θ depends on the training data D via the radius θt,k and the learned

distribution PD
t,k. Since Pt,k is the Dirac delta measure concentrated at yo(t+ k),

CVaR
Pt,k
α [Jt,k(yr, yo)] = Jt,k(yr, yo).

Moreover, it follows from the definition of the DR-risk mapR that

DR-CVaRα,θ
[
J (yr, yo)

]
+ r2 ≤ RD

t,k(yr,Y) ≤ RD
t,k(yr).

Thus, the result follows.
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Algorithm 1: Learning-based DR-RRT*

1 Input: qgoal,K, θ, α, rℓ, w, rRRT;

2 T = ∅,Dℓ ← ∅;

3 while ∥Root(T )− qgoal∥2 > ϵ do

4 t← clock();

5 Tsafe ← ∅;

6 Observe xr(t) and xℓo(t), u
ℓ
o(t) for all ℓ;

7 Root(T )← xr(t);

8 Remove unreachable nodes from T ;

9 Reset node depth;

10 for ℓ = 1 to L do

11 Dℓj ← Dℓj ∪
{
(xℓo(t), u

ℓ
o,j(t))

}
, j = 1, . . . , nℓu;

12 GP approximation of ψℓ(x) via (2.5)–(2.6);

13 µ̃t,0,ℓx ← xℓo(t), Σ̃
t,0,ℓ
x ← 0;

14 for k = 0 to K − 1 do

15 Compute µ̃t,k,ℓu , Σ̃t,k,ℓu and Σ̃t,k,ℓxu from (2.7);

16 Update µ̃t,k+1,ℓ
y and Σ̃t,k+1,ℓ

y by (2.8)–(2.9);

17 for ∀q ∈ T with Depth(q) ≤ K do

18 k ← Depth(q);

19 UpdateRt,k(Crq) by solving (2.16);

20 Update c(q) by solving (2.19);

21 ifRt,k(Crq) ≤ δ then

22 Add q to Tsafe;

23 while clock() ≤ τ do

24 Expand the tree using Algorithm 2

25 Plan path (Root(Tsafe), q1, . . . , . . . , qK) in Tsafe;

26 Drive xr(t) to q1;
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Algorithm 2: Tree expansion and rewiring

1 Input: T , Tsafe, t;

2 qrand ← Sample();

3 qnearest ← NearestNeighbor(Tsafe, qrand);

4 k ← Depth(qnearest) + 1;

5 (qnew, c(qnew),Rt,k(Crqnew))← Steer(qnearest, qrand);

6 Nnear ← Near(Tsafe, qnew, rRRT);

7 qmin ← qnearest, cmin ← c(qnew);

8 for qnear ∈ Nnear do

9 k ← Depth(qnear) + 1;

10 cnear ← c(qnear) + wRt,k(Crqnew) + L(qnear, qnew);

11 if cnear < cmin and Feas(qnear, qnew) then

12 qmin ← qnear, cmin ← cnear;

13 c(qnew)← cmin,Parent(qnew)← qmin;

14 k ← Depth(qnew);

15 Add qnew to T ;

16 ifRt,k(Crqnew) ≤ δ then

17 Add qnew to T ;

18 for qnear ∈ Nnear do

19 k ← Depth(qnew) + 1;

20 cmin ← c(qnew) + wRt,k(Crqnear) + L(qnew, qnear);

21 if cmin ≤ c(qnear) and Feas(qnew, qnear) then

22 c(qnear) = cnear;

23 Parent(qnear)← qnew;

24 Update children nodes of qnear ;

25 if Depth(qnear) > K then

26 Remove qnear and its children from Tsafe;
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Figure 2.6: Illustrative example of learning-based DR-RRT*. The blue ball represents

an obstacle (at different time instances) centered at the predicted mean.
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Figure 2.7: Feed-forward NN for approximating the DR-risk map for fixed θ and α.

The inputs are the robot’s position yr and the parameters of the predicted distribution

of the obstacles’ behaviors µ̃t,k,ℓy and vech
[
(Σ̃t,k,ℓy )1/2

]
, while the target is the DR-risk.

Here, [i] refers to the ith entry of a vector, while [i, j] is the entry in the ith row and

the jth column of a matrix.

Table 2.2: Mean squared error (MSE) and mean average error (MAE) for the NN ap-

proximation of the DR-risk map with 405,000 training, 45,000 validation, and 50,000

test data points.

Radius θ 10−5 10−3 10−2

M
SE

Train 9.036× 10−7 2.780× 10−6 2.909× 10−6

Validation 9.710× 10−7 2.994× 10−6 2.569× 10−6

Test 9.100× 10−7 3.343× 10−6 2.538× 10−6

M
A

E

Train 2.637× 10−4 4.449× 10−4 4.473× 10−4

Validation 2.808× 10−4 3.624× 10−4 2.756× 10−4

Test 2.806× 10−4 3.866× 10−4 2.757× 10−4

60



Table 2.3: Probability of the approximate risk map reporting wrong results.

Radius θ Safe events reported as unsafe Unsafe events reported as safe

10−5 1.5× 10−3 4.0× 10−3

10−4 1.4× 10−3 1.1× 10−3

10−3 1.3× 10−3 1.0× 10−3

10−2 1.2× 10−3 8.4× 10−4

Table 2.4: The total operation cost and collision probability for the highway scenario.

Radius θ 10−4 10−2 5× 10−2 10−1

Cumulative Cost 3222.64 3224.32 3302.63 3796.14

Collision

Probability
0.018 0.014 0.008 0.005

Table 2.5: Total operation cost, collision probability, and total computation time for

CC-MPC, CVaR-MPC, and DR-MPC.

CC-MPC CVaR-MPC
DR-MPC (θ)

10−5 10−4 10−2

Cumulative Cost 1.245 3.665 5.707 18.430 30.681

Collision

Probability
0.74 0.056 0.034 0.005 0.001

Computation Time

(sec)
63.082 71.513 64.786 69.494 74.856
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Figure 2.8: Application of learning-based DR-RRT* to a car-like robot on a highway

for θ = 10−4, 10−2, 5 × 10−2, 10−1. The obstacles are shown in green, while their

predicted positions are shown in lighter color.
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Figure 2.9: Growing process of tree T (grey) and safe subtree Tsafe (blue) generation.

The best path for execution (red) is chosen from Tsafe.
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Figure 2.10: Application of learning-based DR-RRT* to a car-like robot in an inter-

section for θ = 10−4, 10−3, 5× 10−3 and comparison with RRT* and CC-RRT*. The

obstacle is shown in green, while its predicted positions are shown in lighter color.
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Figure 2.11: Application of learning-based DR-MPC to a car-like robot in a cluttered

environment for θ = 10−5, 10−4, 10−2, compared against CC-MPC and CVaR-MPC

with N = 100. The obstacles are shown in green, while predictions for the corre-

sponding obstacle are in lighter color. Star indicates collision, while the red circle is

the collision ball of radius rℓ.
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Chapter 3

Distributionally Robust Optimization with Unscented

Transform for Learning-Based Motion Control in Dy-

namic Environments

3.1 Introduction

Autonomous mobile robots have shown promise in many real-world applications rang-

ing from indoor services to urban navigation. In general, information about the exact

robot model and the environment dynamics is unavailable or highly limited. Learning-

based control approaches are commonly used in such settings to infer unknown models

and improve the overall control performance. However, the safety of learning-based

controllers (e.g., collision-free navigation) remains a significant concern for the appli-

cation of such methods, especially when the learned models are unreliable and inac-

curate [139].

Existing learning-based control methods employ various machine learning tech-

niques to infer the unknown dynamics of the robot and the environment. The learning

models most commonly used for this purpose include deep neural networks [47–49,

140, 141], Bayesian linear regression [53, 54, 142], and Gaussian processes (GPs) [51,

52, 143–145], among others. One of the most popular approaches for learning-based
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Figure 3.1: The overview of our method.

motion control of robotic systems is model predictive control (MPC), where the un-

known models are substituted with the learned ones. Most research efforts in this field

have focused on improving the prediction model by learning the system dynamics

or fine-tuning its parameters [51, 143–145]. In contrast, a few works learn the dy-

namic environment model and apply the controller to a system with known dynam-

ics [54, 74, 82, 140, 146–148]. Safety in such methods is often addressed via proba-

bilistic constraints, such as chance constraints [81, 149–152] or conditional value-at-

risk (CVaR) constraints [70, 111, 112, 153, 154]. However, most existing methods do

not address the learning inaccuracies or unreliability of the models, applying them di-

rectly to the controller. Such distributional uncertainties are handled in distributionally

robust optimization (DRO) methods, where a given stochastic program is solved in the

face of the worst-case distribution drawn from some ambiguity set [39,40,43,155,156].

Recently, the application of DRO has been extended to learning-based control prob-

lems to account for learning errors during the control stage [31,43,75,157]. However,

these methods require nontrivial computational demand when solving DRO problems.

Our paper is related to learning-based distributionally robust control in that we
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learn the unknown dynamics of both the robot and the environment, as well as address

the learning errors in the motion control stage by adopting tools from DRO. As shown

in Fig. 3.1, our framework consists of (i) separate learning modules for inferring the

unknown models of both the robot and the dynamic environment via Gaussian process

regression (GPR) [108] and the unscented transform (UT), and (ii) an MPC-based

control module that uses the learned models with an accurate uncertainty propagation

scheme and is robust against possible learning errors. Unlike typical uncertainty prop-

agation schemes used in GP-based MPC methods [51,143,144], we propose exploiting

UT to improve computational efficiency and prediction accuracy. Prior works utilize a

similar uncertainty propagation approach in stochastic MPC settings with known sys-

tem dynamics [158–160]. In contrast, we apply the UT method to the learned models

to predict the states of both the robot and the environment. In addition, to immunize the

system against learning errors, we adopt tools from Wasserstein DRO and design a risk

constraint to limit the distributionally robust CVaR (DR-CVaR) of the safety loss. This

leads to a novel distributionally robust UT-based MPC algorithm (UT-MPC), which

combines the advantages of both UT and DRO within a single framework. Unfortu-

nately, the DR-CVaR constraint is intractable as it involves an infinite-dimensional

optimization problem over the space of probability distributions. To overcome this

challenge, we devise a simple analytical upper bound of DR-CVaR that exploits UT to

estimate the safety loss distribution. As a result, we obtain a tractable distributionally

robust UT-MPC algorithm that guides the robot to take cautious actions despite learn-

ing inaccuracies. Finally, the performance and the utility of our method are demon-

strated through simulations in an autonomous driving scenario. Our experiments show

the capability of our algorithm to promote safe motion control in a dynamic environ-

ment, even in the presence of learning errors.
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Figure 3.2: An autonomous driving scenario.

3.2 Preliminaries

3.2.1 The Setup

Consider a mobile robot modeled by the following discrete-time dynamics:

x(t+ 1) = f(x(t), u(t)) + g(x(t), u(t)), (3.1)

where x(t) ∈ X ⊆ Rnx and u(t) ∈ U ⊆ Rnu are the robot state and control input at

time t, respectively. The dynamic model consists of a known part f : Rnx ×Rnu → R

that can be derived from the physics of the system and an unknown mismatch term

g : Rnx × Rnu → R, often occurring due to oversimplifying complex dynamics,

unexpected interactions with the environment, etc.

Example 3.1. Consider the autonomous driving scenario in Fig. 3.2. The evolution

of the ego vehicle can be described by the kinematic bicycle model, which disregards

essential features, such as the slip angles, tire type, as well as driving ground. There-

fore, it is reasonable to use the kinematic model with an additional mismatch term to

compensate for the limited fidelity of the simple model.
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The robot operates in a dynamic environment, whose state ξ(t) ∈ Rnξ evolves

according to

ξ(t+ 1) = fenv(ξ(t)).

Such a model is reasonable as the environment evolves independently of the robot. For

instance, the safety of the ego vehicle in Example 3.1 depends on the behavior of the

blue car with state ξ(t) in Fig. 3.2.

To promote the safe operation of our robot, we introduce a safety loss function

J : Rnx × Rnξ → R and impose the following constraint:

J (x(t), ξ(t)) ≤ 0. (3.2)

In Fig. 3.2, the loss can be chosen to avoid collisions, e.g., J (x, ξ) = r2safe − ∥C(x−

ξ)∥22, where rsafe is a safety radius, and C maps the states to the position vector.

In this work, assuming that the dynamics of the robot and the environment are

unknown, we aim to design a learning-based motion controller that guides the robot to

perform a specified task in a cautious manner despite learning errors.

3.2.2 Uncertainty Propagation via UT

When the dynamics (3.1) is learned as a stochastic approximator, the uncertainty in the

states is propagated over time. Unfortunately, it is challenging to compute the resulting

state distribution for non-Gaussian uncertainties passing through nonlinear dynamics.

Linearization techniques from extended Kalman filter (EKF) [161] suffer from large

estimation errors and require the computationally expensive Jacobian matrix. An al-

ternative approach is UT, which can be applied to an arbitrary nonlinear function. The

intuition behind UT is that with fixed parameters, it is easier to approximate the given

distribution than it is to approximate a nonlinear transformation [162]. Therefore, UT

aims to find a parameterization that completely encodes the statistics of the inputs,

allowing its accurate propagation through a nonlinear function.
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Consider a random variable x ∈ Rn with a mean vector µx and a covariance

matrix Σx that undergoes a nonlinear transformation d : Rn → Rm. The goal of UT

is to accurately calculate the statistics of the output y = d(x). For that, first, a set of

vectors called sigma points are generated in a way to capture the moments of the input

distribution. It has been shown that choosing 2n + 1 points is sufficient for encoding

the mean and covariance of the inputs [163]. The sigma points are selected according

to the following rule:

X (0) = µx,

X (i) = µx +
(√

(n+ λ)Σx
)
i
, i = 1, . . . , n,

X (n+i) = µx −
(√

(n+ λ)Σx
)
i
, i = 1, . . . , n,

(3.3)

where λ is a scaling parameter and (
√
·)i is the ith column of the matrix square root.

Next, the sigma points are propagated through the nonlinear function to obtain the

transformed points Y(i) = d(X (i)). The mean and covariance of the output y can then

be computed as

µy =
2n∑
i=0

W (i)
m Y(i), Σy =

2n∑
i=0

W (i)
c

(
Y(i) − µy

)(
Y(i) − µy

)⊤
,

where W (i)
m and W (i)

c are the weights chosen according to [163].

One of the main advantages of UT is the accuracy of uncertainty propagation. For

any nonlinearity, UT captures the output mean and covariance accurately to the third

order of the Taylor series expansion for Gaussian inputs and to at least the second order

for non-Gaussian inputs [164]. In contrast, the EKF-based method provides only first-

order accuracy. Another feature of UT is the implementation simplicity, as it involves

only algebraic operations without the need to evaluate the Jacobian matrix needed in

EKF.
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3.3 Unscented Transform and Distributionally Robust Opti-

mization for Learning-Based Control

The overall structure of our learning-based control scheme is illustrated in Fig. 3.1. It

consists of two main parts: (i) separate modules for learning the robot and environment

dynamics, and (ii) a distributionally robust UT-MPC module for controlling the robot

and addressing learning errors. First, the unknown dynamics are inferred via GPR

using real-time observations and then used as prediction models in UT-MPC. However,

due to the stochastic nature of the learned dynamics, state propagation through the

GP models is not straightforward. Our algorithm mitigates this issue by exploiting UT

for uncertainty propagation, achieving superior prediction accuracy and computational

efficiency. Moreover, using DRO in UT-MPC immunizes the system against learning

inaccuracies and promotes the robot’s safety despite erroneous models.

3.3.1 Learning the Robot and Environment Dynamics

In this study, we use GPR, a non-parametric Bayesian regression method, to infer the

dynamics of both the robot and the environment. A major challenge in GPR is the un-

certainty propagation through the learned model, which is generally intractable. The

most typical approach is linearizing the GP model around the current state mean [51,

143, 144]. However, as mentioned in Section 3.2.2, such an approach is not only

computationally demanding but also degrades the prediction accuracy. Motivated by

the state update equations in GP-UKF [165], we propose an uncertainty propagation

scheme for GP dynamics based on the concept of UT. This approach not only improves

the prediction accuracy but also involves only simple algebraic operations, relieving

the computational burden. Therefore, we apply the proposed scheme to learn the dy-

namics of both the robot and the environment.

At stage t, GPR for the robot is performed using the training input data Xrob
t =

{(x(t−1), u(t−1)), . . . , (x(t−M), u(t−M))}with the corresponding training output
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data yrob
t = {∆x(t), . . . ,∆x(t−M + 1)}, where ∆x(t) = x(t+ 1)− f(x(t), u(t))

is the residual between the observed system state and the nominal model. Following

the ordinary GPR procedure, the unknown dynamics of the robot is approximated by

GP(µg,Σg). The dynamics of the robot is then inferred as

x(t+ 1) = f(x(t), u(t)) + µg (x(t), u(t)) + wrob
t , (3.4)

where wrob
t is a zero-mean noise with covariance Σg(x(t), u(t)).

For state prediction, we recursively apply the UT presented in Section 3.2.2 and

propagate the states along the horizon. In particular, the distribution of the state vec-

tor can be predicted starting from the current observation µx0 = x(t) with Σx0 = 0

according to the following rule:

Xk =
[
µxk, µ

x
k ±

√
(nx + λx)Σxk

]
(3.5)

Y(i)
k = f(X (i)

k , uk) + µg(X (i)
k , uk), i = 0, . . . , 2nx (3.6)

µxk+1 =

2nx∑
i=0

W (i)
mrob
Y(i)
k (3.7)

Σxk+1 =

2nx∑
i=0

W (i)
crob

(
Y(i)
k − µ

x
k+1

)(
Y(i)
k − µ

x
k+1

)⊤
+Σg(µxk, uk). (3.8)

Similarly, using datasets Xenv
t = {ξ(t−1), . . . , ξ(t−M)} and yenv

t = {ξ(t), . . . , ξ(t−

M +1)}, the dynamics of the environment is approximated by GP(µenv,Σenv). Then,

the environment states evolve according to

ξ(t+ 1) = µenv(ξ(t)) + wenv
t ,

wherewenv
t is a zero-mean noise with covariance Σenv(ξ(t)). By applying a UT scheme

similar to (3.5)–(3.8) with weights Wmenv and Wcenv , the environment states can be

predicted over the horizon to obtain µξk and Σξk starting from µξ0 = ξ(t) and Σξ0 = 0.

Unlike the robot, the environment states are independent of the control inputs. There-

fore, as illustrated in Fig. 3.1, the environment state prediction can be performed out-

side the control loop, saving computational resources.
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For our further analysis, it is convenient to denote the joint state of the robot and

the environment by zk = [x⊤k , ξ
⊤
k ]

⊤. Then, assuming the independence of the states,

the estimated joint distribution Pk of zk at any time step t + k can be represented by

its mean vector µzk = [(µxk)
⊤, (µξk)

⊤]⊤ and covariance matrix Σz
k = diag(Σxk,Σ

ξ
k).

3.3.2 Distributionally Robust UT-MPC

Since the state information is no longer deterministic due to the use of GPR, the MPC

problem attains a stochastic formulation, where the deterministic constraint (3.2) is not

valid anymore. Instead, a risk measure can be used to assess the risk of unsafe events

using the learned joint state distribution. Among several risk measures, we use the

CVaR, which is a coherent measure in the sense of Artzner et al. [110] and has been

advocated as a rational risk measure in robotics [69]. CVaR of a random loss X ∼ P

is defined as

CVaRP
ϵ [X] := min

z∈R
EP

[
z +

(X − z)+

1− ϵ

]
,

where ϵ ∈ (0, 1] is some confidence level. It quantifies the average loss beyond ϵ,

accounting for rare but crucial events.

However, the quality of risk assessment highly depends on the accuracy of the

learned safety loss distribution. Unfortunately, in our case, the learned information

might be unreliable for measuring the robot’s safety due to inaccuracies in GP models.

To immunize the system against such distributional uncertainties, we propose evaluat-

ing the following distributionally robust version of CVaR:

DR-CVaR
PJ
k
ϵ [J (zk)] := sup

Qk∈Dθ(PJ
k )

CVaRQk
ϵ [J (zk)] , (3.9)

which evaluates the worst-case CVaR over an ambiguity set Dθ(PJ
k ) constructed using

the learned safety loss distribution PJ
k . In this work, we define the ambiguity set as a

Wasserstein ball of radius θ > 0 centered at PJ
k :

Dθ(PJ
k ) =

{
Qk ∈ P2(R) |W2(PJ

k ,Qk) ≤ θ
}
, (3.10)
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where P2(W) is the space of Borel probability measures on W with a finite second

moment. Here, W2(P,Q) is the 2-Wasserstein distance between P and Q, which is

defined as

W2(P,Q) := inf
κ∈P(W2)

{(∫
W2

∥x− y∥2 dκ(x, y)
)1/2∣∣Π1κ = P,Π2κ = Q

}
,

where κ is the transport plan, with Πiκ denoting its ith marginal, and ∥ · ∥ is the Eu-

clidean norm quantifying the transportation cost. Wasserstein distance represents the

minimum cost of transporting mass from one distribution to another using nonuniform

perturbations. It has received great interest in DRO for its superior features, such as

providing a finite-sample performance guarantee and addressing the closeness between

two points in the support [30, 40, 41].

Combining the UT-based GP dynamics (3.5)–(3.8) and the DR-CVaR risk (3.9),

we formulate the following distributionally robust UT-MPC problem:

min
u

K−1∑
k=0

EPk [c(xk, uk)] + EPK [q(xK)] (3.11a)

s.t. (3.5)− (3.8) (3.11b)

DR-CVaR
PJ
k
ϵ [J (zk)] ≤ 0 (3.11c)

µxk ∈ X (3.11d)

uk ∈ U (3.11e)

µx0 = x(t),Σx0 = 0, (3.11f)

where c : Rnx × Rnu → R is the stage-wise cost function, and q : Rnx → R is

the terminal cost function. Here, the constraints (3.11b) and (3.11e) hold for k =

0, . . . ,K − 1, while the constraints (3.11c) and (3.11d) hold for k = 0, . . . ,K.

The constraint on UT-based GP dynamics (3.11b) plays an important role in our

distributionally robust UT-MPC problem. First, the UT-based state propagation scheme

provides better state prediction accuracy than the linearization technique often met in

prior GP-based MPC approaches [51, 143, 144]. Second, the nonconvexities in the
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equality constraints involve simple algebraic operations and, thus, are relatively easy

to handle than the derivatives in linearization. Another key component of our MPC

problem is the DR-CVaR constraint (3.11c). It limits the safety risk under the worst-

case distribution within the ambiguity set of the learned loss distribution for all time

stages. Notably, adjusting the radius θ changes the conservativeness of the constraint,

as it determines the range of distributions in the neighborhood of PJ
k to be included

in the ambiguity set. In summary, the combination of UT-based GP dynamics and

DR-CVaR risk constraint reinforces our distributionally robust UT-MPC problem with

superior prediction accuracy and computational efficiency, as well as the capability of

limiting the safety risk despite learning inaccuracies.

3.4 Tractable Reformulation and Algorithm

Despite the advantages of the distributionally robust UT-MPC problem (3.11), it is in-

tractable due to the objective function (3.11a) and the safety constraint (3.11c). The

objective function can be handled relatively easily by approximating it around the pre-

dicted state mean. Our primary concern is the DR-CVaR in constraint (3.11c), which

is challenging to evaluate as it involves an infinite-dimensional optimization problem

over the ambiguity set of probability distributions. In our method, we overcome the

intractability of the MPC problem using a novel UT-based approximation scheme.

Specifically, we take advantage of UT to estimate the statistics of the safety loss dis-

tribution. Then, we use the approximate distribution and modern tools from DRO to

derive an upper bound of DR-CVaR. As a consequence, we arrive at a tractable distri-

butionally robust UT-MPC algorithm.

3.4.1 UT-Based Upper Bound of DR-CVaR

The Wasserstein ambiguity set in (3.10) is built around the learned loss distribution

PJ
k . However, in each prediction step k, we are given only the mean and covari-
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ance of the joint state vector zk. Therefore, our first goal is to determine PJ
k by

propagating zk through the loss function. Fortunately, we can apply the UT-based

uncertainty propagation scheme in Section 3.2.2 to directly estimate the statistics of

the loss distribution. For that, we first generate sigma points Zk for µzk and Σz
k ac-

cording to (3.3), pass them through the loss function, and obtain transformed points

L(i)k = J
(
Z(i)
k

)
, i = 0, . . . , 2(nx + nξ). Then, the mean and the variance of the loss

can be obtained as

µJk =

2(nx+nξ)∑
i=0

W (i)
mloss
L(i)k (3.12)

(σJk )
2
=

2(nx+nξ)∑
i=0

W (i)
closs

(
L(i)k − µ

J
k

)(
L(i)k − µ

J
k

)⊤
. (3.13)

Though there is still no full knowledge about the distribution PJ
k , UT provides us

with knowledge about its mean and variance. In the following proposition, we show

how this statistical information can be used to obtain a tractable and simple upper

bound on DR-CVaR.

Proposition 3.1. Let PJ
k be the distribution of the loss J (zk) with mean and variance

defined in (3.12) and (3.13), respectively. Then, the DR-CVaR (3.9) with a radius θ > 0

has the following upper bound:

DR-CVaR
PJ
k
ϵ [J (zk)] ≤ µℓk + γσJk + θ

√
1 + γ2, (3.14)

where γ =
√
ϵ/(1− ϵ).

Proof. We use the Gelbrich bound on Wasserstein distance, for which

W2(PJ
k ,Qk) ≥

√
(µk − µJk )2 + (σk − σJk )2,

where µk ∈ R and σ2k ∈ R+ are the mean and variance of the loss under the distri-

bution Qk [166, Proposition 8]. The bound is exact if PJ
k and Qk are elliptical dis-

tributions with the same density generator. It follows that the DR-CVaR is bounded
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as

DR-CVaR
PJ
k
ϵ [J (zk)] ≤ sup

Qk∈D̃θ(PJ
k )

CVaRQk
ϵ [J (zk)] ,

where D̃θ(PJ
k ) is an ambiguity set with respect to the Gelbrich bound defined as

D̃θ(PJ
k ) :=

{
Qk ∈ P2(R) | (µ, σ2) ∈ Uθ(µJk , (σ

J
k )

2),

EQk [J (zk)] = µ,EQk
[
(J (zk)− µ)2

]
= σ2

}
,

and

Uθ(µJk , (σ
J
k )

2) :=
{
(µ, σ2) ∈ R× R+ | (µ− µJk )

2 + (σ − σJk )
2 ≤ θ2

}
is the mean-covariance uncertainty set around the estimated mean µℓk and variance

(σJk )
2.

In order to solve the right-hand side of the inequality, also known as the Gelbrich

risk, we decompose it into

sup
Qk∈D̃θ(PJ

k )

CVaRQk
ϵ [J (zk)]

= sup
(µk,σ

2
k)∈Uθ(µ

J
k ,(σ

J
k )2)

sup
Qk∈C(µk,σ2

k)

CVaRQk
ϵ [J (zk)] ,

(3.15)

where C(µ, σ2) is the Chebyshev uncertainty set with mean µ and variance σ2.

To solve the inner supremum, we apply [167, Proposition 2] according to which

sup
Qk∈C(µk,σ2

k)

CVaRQk
ϵ [J (zk)] = µk + γσk.

By substituting the above solution into (3.15), the problem reduces to the following

convex optimization problem, which is a quadratically constrained quadratic program:

max
µk,σk≥0

{µk + γσk | (µk − µJk )
2 + (σk − σJk )

2 ≤ θ2}.

Using the standard duality, the solution of the above optimization problem corresponds

to the right-hand side of (3.14).
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Figure 3.3: Snapshots of simulations for Mean-MPC and UT-MPC. The MPC predic-

tions for the ego vehicle are shown in red, while the GP predictions for the obstacle

are drawn in green.

The upper bound (3.14) is attained for elliptical distributions and is tight for all

other distributions. Despite relying solely on the mean and variance, this bound ex-

hibits exceptional computational properties, as it requires simple algebraic operations.

Moreover, unlike the existing methods (e.g., [31, 75]), we directly estimate the loss

distribution PJ
k , enabling the use of our approach for any safety loss function.

3.4.2 Tractable Algorithm

The UT-based upper bound of DR-CVaR can be directly incorporated into the distri-

butionally robust UT-MPC problem (3.11) to alleviate the intractability without sig-

nificantly affecting the computational complexity. For that, we replace the risk con-

straint (3.11c) with a constraint on the upper bound (3.14) and introduce additional

equality constraints (3.12) and (3.13) for estimating the loss distribution. As a result,

the reformulated MPC problem constitutes a tractable nonlinear optimization problem.

Despite its nonconvexity due to the GP dynamics and the UT approximations, it can

be efficiently solved using existing algorithms, such as interior-point and sequential

quadratic programming methods [168].

The overall distributionally robust UT-MPC scheme is presented in Algorithm 3,

given the UT weights Wmi ,Wci , i = {rob, env, loss}, as well as risk parameters ϵ
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Algorithm 3: Distributionally Robust UT-MPC

1 Input: UT parameters Wmi ,Wci , i = {rob, env, loss} and risk parameters

ϵ, θ

2 Collect M observations to Xrob
0 ,yrob

0 ,Xenv
0 ,yenv

0

3 Observe x(0) and ξ(0)

4 for t = 0, 1, . . . do

5 Train GPs for µg,Σg and µenv,Σenv

6 Predict µξk and Σξk for k = 0, . . . ,K − 1 starting from µξ0 = ξ(t),Σξ0 = 0

7 Solve problem (3.11) with (3.14)

8 Apply u(t) = u∗0 and observe x(t+ 1), ξ(t+ 1)

9 Update Xrob
t+1,y

rob
t+1 and Xenv

t+1,y
env
t+1

and θ. First, GPR training datasets Xrob
0 ,yrob

0 and Xenv
0 ,yenv

0 are initialized by col-

lecting M observations (line 2). Next, the states of the robot and the environment are

observed to begin the main loop (line 3). In each time stage, GP models for the robot

and environment are learned (line 5). Then, we predict the environment states for K

time stages starting from the current state ξ(t) (line 6). Using the learned models, the

UT-MPC problem (3.11) is solved with the DR-CVaR upper bound (3.14) (line 7).

The first element of the optimal control sequence u∗ returned by the UT-MPC is then

applied to the robot (line 8). Finally, we observe the new states and update the GPR

datasets with the latest M observations (line 9).

3.5 Experiment Results

In this section, we present the simulation results of our algorithm in an autonomous

driving scenario performed in an open-source traffic simulation platform CARLA [169].

The goal is to control the ego vehicle to follow the given waypoints without colliding
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with the obstacle. The source code of our implementation is available online.9

3.5.1 Experiment Settings

In our experiments, the nominal model of the ego vehicle is chosen as the following

kinematic bicycle model:

x(t+ 1) = x(t) + Tsv(t) cos(ϕ(t) + βs(t))

y(t+ 1) = y(t) + Tsv(t) sin(ϕ(t) + βs(t))

ϕ(t+ 1) = ϕ(t) + Tsv(t) tan(δf (t)) cos(βs(t))/L

v(t+ 1) = v(t) + Tsa(t),

where x(t) = [x(t), y(t), ϕ(t), v(t)]⊤ is the ego vehicle’s state vector, consisting of

its position, heading angle and velocity, u(t) = [a(t), δf (t)]
⊤ is the control input

vector, comprising acceleration and steering angle, βs(t) := arctan
(
1
2 tan(δf (t))

)
is

the slipping angle, Ts = 0.1 sec. is the sampling time, and L = 4.611m. is the car

length. The control inputs are limited to |a(t)| ≤ 3m/sec.2, |δf (t)| ≤ 1.22 rad. with

an additional limit on the change of front steering angle |∆δf (t)| ≤ 0.05 rad. The cost

function is chosen to track the waypoints pt and penalize control input changes, i.e.,

c(xk, uk) = ∥xk − pt+k∥2Q + ∥∆uk∥2R, q(xK) = ∥xK − pt+K∥2Q,

where Q = diag(1, 1, 0, 0.2) and R = diag(1.5, 3). We consider an MPC with a

horizon ofK = 30 and a zero-mean GPR with a radial basis function kernel trained on

M = 50 real-time observations. The parameters for DR-CVaR are tuned to ϵ = 0.95

and θ = 0.1.

Due to the simulation model, the obstacle’s behavior is not deterministic and varies

in each execution. Therefore, for reliability, we have performed 20 simulation runs

under identical conditions. We compare our method to an MPC without any learn-

ing component (Vanilla-MPC), a learning-based MPC with the safety constraint (3.2)
9https://github.com/CORE-SNU/DR-UT-MPC
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Table 3.1: The total cost, average computation time per stage, and maximum safety

loss value for for all algorithm computed over 20 simulations (mean ± std).

Total Cost (×103) Comp. Time (sec) Safety Loss (m2)

UT-MPC 28.056± 0.204 0.467± 0.013 1.864± 0.133

Vanilla-MPC ∞ 0.031± 0.002 12.342± 0.742

Mean-MPC ∞ 0.435± 0.001 9.314± 1.054

CVaR-MPC 29.356± 0.142 0.418± 0.023 2.032± 0.101

evaluated at the mean of the predicted state (Mean-MPC), and a non-robust version of

UT-MPC with a CVaR constraint (CVaR-MPC).

3.5.2 Results

Snapshots of representative scenarios for distributionally robust UT-MPC and Mean-

MPC are demonstrated in Fig. 3.3. Initially, the obstacle navigates far from the ego

vehicle and plans to continue in the same lane. Therefore, in the early stages, both

controllers drive the car along the reference path. However, when the vehicles ap-

proach the intersection, the obstacle suddenly steers to the left. This situation causes

errors in the GPR prediction, making the learned distribution unreliable. Nevertheless,

the Mean-MPC trusts the learned information even in such a situation and decides to

perform a cut-in maneuver, eventually leading to a collision between the ego vehi-

cle and the obstacle. On the contrary, UT-MPC makes the car stop at the intersection

and then slowly bypass the obstacle from the right. Due to its robustness to learning er-

rors, UT-MPC takes cautious actions and overtakes the obstacle without any collisions.

Consequently, it outperforms Mean-MPC in terms of navigation quality and safety.

The statistics of our quantitative analysis for 20 simulation runs are reported in

Table 3.1. In terms of safety, our algorithm outperforms all the baselines, followed
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by the CVaR-MPC. Such results are expected, as UT-MPC is the only method that

accounts for learning errors. On the other hand, both Vanilla-MPC and Mean-MPC

become infeasible after colliding with the obstacles, making the total cost infinitely

large. In terms of computation time, Vanilla-MPC surpasses all the baselines due to

its simplicity. Meanwhile, all the learning-based algorithms, including our UT-MPC,

require similar computation time for solving the problem. As a result, we confirm the

capabilities of our algorithm for promoting safety with a comparably short computa-

tion time.

3.6 Conclusions

We have proposed a novel learning-based MPC framework for robotic systems in un-

known environments. Our method exploits the learned dynamics and UT-based un-

certainty propagation scheme for accurate and efficient prediction of the robot and

environment states. Furthermore, it uses a DR-CVaR constraint to proactively limit the

risk of unsafety even under errors in the learned models. To tackle the computational

intractability of the resulting UT-MPC problem, we have approximated the safety loss

distribution using UT and derived a simple upper bound of DR-CVaR. The experiment

results demonstrate the computational efficiency of our method and its capability to

promote safety.
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Chapter 4

Wasserstein Distributionally Robust Control of Partially

Observable Linear Stochastic Systems

4.1 Introduction

Optimal control of linear dynamical systems under uncertainties has a long history

and is regarded as one of the most fundamental topics in control theory [170]. In

various practical systems, the system states are not entirely observable, and there is

only partial information available about the system coming from the noisy measure-

ments. The theory of optimal control handles such imperfect state information either

in stochastic or robust control frameworks. Robust optimal control methods address

uncertainties in a pre-specified disturbance set and seek to find a controller concern-

ing the worst-case realization of the disturbance (e.g., [15]). However, the resulting

controllers are often conservative as no information other than the support of distur-

bances is used, and potentially useful statistical properties of the disturbances are dis-

regarded. On the contrary, stochastic optimal control approaches design a controller

using the knowledge of the disturbance distribution, which is typically modeled as

Gaussian (e.g., [171]). However, it is often difficult to obtain an accurate probability

distribution of disturbances. Using imperfect distributional information does not guar-
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Figure 4.1: Block diagram of the proposed WDRC scheme.

antee the optimality of the resulting controller and may even cause undesirable system

behaviors (e.g., [172, 173]).

To alleviate the aforementioned issues and bridge the gap between the two meth-

ods, distributionally robust control (DRC) has emerged as an alternative tool, balancing

the tradeoff between required information and conservativeness [27, 28, 30, 31, 33, 42,

44, 45, 174–182]. With DRC, a controller is designed to minimize the expected cost

of interest with respect to the worst-case probability distribution of disturbances in a

so-called ambiguity set. Thus, the resulting controller proactively manages possible

deviations of the true distribution from the nominal one used in the controller design.

DRC can be regarded as a dynamic or multi-stage version of distributionally ro-

bust optimization (DRO). In the literature regarding DRO, it is common to design the

ambiguity set based on a nominal distribution constructed from data so that it con-

tains the true distribution with high probability. For example, moment-based ambigu-

ity sets are popular in DRO, which include distributions satisfying some moment con-

straints [36, 37, 155]. Despite outstanding tractability properties, such sets often yield

conservative decisions and require accurate moment estimates. Designing the ambigu-

84



ity set based on statistical distances to contain distributions close to the given nominal

one is another popular option. Among various distances, such as the KL-divergence

and Prokhorov metric [38, 183], the Wasserstein metric attracts significant attention

not only in DRO [39–41, 184] but also in DRC [29–33, 42]. The Wasserstein ambi-

guity set has a number of useful features, including offering a powerful finite-sample

performance guarantee [39,43]. Furthermore, it is rich enough to contain relevant dis-

tributions, thereby encouraging the DRO problem to avoid providing pathological so-

lutions [40].

In contrast to research on fully observable settings, the literature about partially

observable DRC is relatively sparse. A few works are devoted to the distribution-

ally robust version of the linear-quadratic-Gaussian (LQG) control method. For ex-

ample, [17, 44, 45] propose a minimax LQG controller that minimizes the worst-case

performance by restricting the KL-divergence between the disturbance distribution and

a given reference distribution. In [46], a partially observable Markov decision process

is considered with finite state, action, and observation spaces. The ambiguity set is cho-

sen to bound the moments of the joint distribution of the transition-observation proba-

bilities. Another type of partially observable systems, namely the Markov jump linear

system, is studied in [28]. The authors propose a mechanism for estimating the active

mode in a receding horizon fashion and integrate this procedure with a data-driven

distributionally robust controller design using the total variation distance. In [31], a

data-enabled distributionally robust predictive control method is proposed and studied

using noise-corrupted input and output data.

Departing from the existing literature, our particular interest is in the Wasserstein

DRC (WDRC) methods for partially observable linear-quadratic optimal control in

discrete time, motivated by the superior properties of Wasserstein DRO. The WDRC

problem is challenging to solve due to partial observability in addition to the infinite-

dimensionality of the Wasserstein DRO problem in the Bellman equation. To resolve

these issues, we propose a novel approximation technique for partially observable
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WDRC problems by replacing the Wasserstein ambiguity set with a special penalty

term using the Gelbrich bound. The approximate problem is first solved in the finite-

horizon setting by deriving a non-trivial Riccati equation alongside a closed-form ex-

pression for the optimal control policy. Then, we examine the asymptotic behavior of

the controller and extend the results to the infinite-horizon average-cost setting. Con-

sequently, we obtain optimal control and distribution policies by solving an algebraic

Riccati equation (ARE) and a tractable semidefinite programming (SDP) problem. The

overall scheme of the proposed WDRC method is illustrated in Fig. 4.1.

The proposed controller possesses several salient theoretical properties. First, it is

shown to enjoy a guaranteed cost property for any worst-case disturbance distribution

in the Wasserstein ambiguity set. This demonstrates the distributional robustness of

our controller despite being constructed by solving an approximate WDRC problem.

Second, the proposed controller offers a probabilistic out-of-sample performance guar-

antee. Last but not least, the proposed controller is shown to ensure the stability of the

closed-loop mean-state system as well as its bounded-input, bounded-output (BIBO)

stability when viewing the disturbances as input.

The rest of this article is organized as follows. In Section 4.2, we introduce the

partially observable WDRC problem for linear systems. In Section 4.3, we introduce

the tractable approximation and derive its solution in both finite- and infinite-horizon

average-cost settings. In addition, we analyze the optimality of the resulting solution

and describe the overall WDRC algorithm. In Section 4.4, we present the guaranteed

cost property and out-of-sample performance guarantee of our controller. Section 4.5

concerns the stability properties of the closed-loop mean-state system. Finally, Sec-

tion 4.6 demonstrates the performance and utility of the proposed method through

numerical experiments on a power system frequency control problem.
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4.2 Preliminaries

4.2.1 Notation

We let P(W) denote the set of Borel probability measures with support W . The ex-

pected value of function f(x), where x is a random variable with a probability distri-

bution P, is denoted by Ex[f(x)]. We denote the space of all symmetric matrices in

Rn×n by Sn. In addition, Sn+ represents the cone of all symmetric positive semidef-

inite (PSD) matrices in Sn with Sn++ denoting its subset of symmetric positive def-

inite (PD) matrices. For any A,B ∈ Sn+, the relation A ⪰ B(A ≻ B) means that

A−B ∈ Sn+(A−B ∈ S++).

4.2.2 Problem Setup

Consider the following discrete-time linear stochastic system:

xt+1 = Axt +But + wt

yt = Cxt + vt,
(4.1)

where xt ∈ Rnx , ut ∈ Rnu , and yt ∈ Rny are the system state, control input, and

output at stage t, respectively. Here, wt ∈ Rnx represents the system disturbance with

unknown distribution, while vt ∈ Rny is the output noise drawn from a zero-mean

Gaussian distribution with covariance matrix M . The initial state x0 is also random,

drawn from a probability distribution with known mean vector m0 and covariance

matrix M0. We assume the independence of ws and wt and that of vs and vt for any

s ̸= t. Moreover, the random vectors wt, vt, and xt are assumed to be independent.

Unlike the fully observable setting, the only information available at time t is the

history of noisy measurements y0, . . . , yt and the past control inputs u0, . . . , ut−1.

Therefore, the information given to the controller at time t can be represented as

It := (y0, . . . , yt, u0, . . . , ut−1), t = 1, 2, . . . ,

I0 := y0,
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where It is called the information vector. Note that the information vector is updated

according to the following dynamical system:

It+1 = (It, yt+1, ut). (4.2)

In the theory of stochastic optimal control, it is well-known that the information vector

serves as a sufficient statistic. Thus, it suffices to consider control policies πt that map

It to a control input ut for each t. The dynamics (4.2) can be viewed as describing the

evolution of a system where the state is the information vector It and the control is ut.

The system output yt+1 plays the role of a stochastic disturbance due to its dependence

on system disturbance wt and measurement noise vt+1, introducing randomness and

impacting the dynamics of the augmented system through the measured variables.

In many practical problems, the probability distributions of output noise and initial

state are given a priori (e.g., known sensor noise). In contrast, the distribution of the

system disturbances is usually unknown (e.g., unmodelled dynamics). For simplicity,

the disturbance distribution is often assumed to be Gaussian or estimated from data.

However, when this assumption is invalid, the imperfect distributional information can

deteriorate the controller’s performance, especially when it has to operate for an infi-

nite amount of time. Thus, our goal is to design a control policy that is robust against

deviations of the true disturbance distribution from the given nominal one. In the lit-

erature of DRO, such distributional uncertainties are captured by a set of probability

distributionsDt ⊂ P(Rnx), called the ambiguity set. It encompasses prior information

about the underlying true distribution and includes distributions with shared structural

information. As a result, we consider a distribution policy γt that maps It to a proba-

bility distribution Pt of wt, chosen from the ambiguity set Dt.

Now, consider the following finite-horizon quadratic cost function:

JT (π, γ) := Ey

[
ExT [x

⊤
TQfxT | IT ] +

T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]
]
,

where π := (π0, . . . , πT−1) and γ := (γ0, . . . , γT−1), Q ∈ Snx
+ , Qf ∈ Snx

+ , R ∈ Snu
++

are the cost weights, and the outer expectation is taken with respect to the joint distri-
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bution of all measurements y := (y0, . . . , yT ). Since our eventual goal is to design a

controller for the infinite-horizon case, we define the following average-cost criterion:

J∞(π, γ) = lim sup
T→∞

1

T
Ey

[ T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]
]
. (4.3)

The DRC problem can be formulated as a two-player zero-sum game, where the

first player is the controller and the second player is the adversary. The controller

selects a policy π = (π0, π1, . . . ) to minimize the cost, while the adversary player

aims to find a distribution policy γ = (γ0, γ1, . . . ) to maximize the same cost. More

precisely, we aim to solve the following minimax stochastic control problem:

min
π∈Π

max
γ∈ΓD

J∞(π, γ), (4.4)

where Π := {π | πt(It) = ut, πt is measurable∀t} and ΓD := {γ | γt(It) = Pt ∈

Dt, γt is measurable∀t} are the sets of admissible control and distribution policies.

Note that the ambiguity set is embedded in the policy space for the adversary, and thus

the ambiguity set plays a critical role in characterizing the distributional inaccuracies

that are proactively addressed by the controller.

4.2.3 Wasserstein Ambiguity Set

Motivated by the superior properties of Wasserstein DRO mentioned in Section 4.1,

we choose Dt as a Wasserstein ball. The Wasserstein metric of order p between two

measures P and Q supported onW ⊆ Rn quantifies the minimum cost of redistributing

mass from one measure to another using non-uniform perturbations and is defined as

Wp(P,Q) := inf
τ∈T (P,Q)

{(∫
W2

∥w − w′∥pdτ(x, y)
)1/p}

,

where T (P,Q) is the set of all measures in P(W2) with the first and second marginals

P and Q, respectively. Here, τ is called the transport plan, which describes the amount

of mass to move fromw tow′, and ∥·∥ is a norm on Rn that measures the transportation

cost.
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Using the Wasserstein metric of order p = 2 together with the standard Euclidean

norm, we define the ambiguity set as a ball of radius θ > 0 centered at the given

nominal distribution Qt:

Dt := {Pt ∈ P(Rnx) |W2(Pt,Qt) ≤ θ}.

In later sections, we show that employing the Wasserstein metric is useful in partially

observable LQ control, as it contributes to obtaining a tractable solution and an out-of-

sample performance guarantee, among others.

4.3 Tractable Approximation and Solution

The WDRC problem (4.4) is difficult to solve for two major reasons. First, the Bell-

man equation for (4.4) involves an infinite-dimensional minimax optimization prob-

lem. Second, partial observability aggravates the situation because the value (or cost-

to-go) function is defined over the space of the information vectors. To resolve these

issues, we propose a novel approximation technique and a simple solution to the ap-

proximate WDRC problem. Our method uses a Riccati equation and a tractable SDP

problem.

4.3.1 Tractable Approximation

Our approximation technique has two main steps. We first introduce an additional

penalty term in the cost function, motivated by our previous work for the fully observ-

able case [42]. However, this approximation is insufficient when the system is partially

observable. Thus, the second step is to further approximate the problem using the Gel-

brich bound introduced in [41].

For the first step of the proposed approximation, instead of constraining the ad-

versary player to select a disturbance distribution from the ambiguity set, we penalize

the deviation of the distribution Pt from the nominal distribution Qt. Specifically, a
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Wasserstein penalty term is added to the cost function as follows:

J̃λ∞(π, γ) := lim sup
T→∞

1

T
Ey

[
T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]− λW2(Pt,Qt)
2

]
,

where λ > 0 is a user-specified penalty parameter designated for adjusting the con-

servativeness of the control policy. Then, the following minimax control problem ap-

proximates the original WDRC problem:

min
π∈Π

max
γ∈Γ

J̃λ∞(π, γ), (4.5)

where the set of admissible distribution policies is defined as Γ := {γ | γt(It) =

Pt ∈ P(Rnx), γt is measurable ∀t}. This set is different from ΓD in that it does not

restrict the distribution Pt to be selected from the ambiguity set. This would give too

much freedom to the adversary if there were no penalty terms. In general, the minimax

control problem with the new cost function is intractable due to partial observability

and the Wasserstein penalty term. In fully observable settings, when Qt is chosen as an

empirical distribution, the minimax problem attains a finite-dimensional formulation.

However, problem (4.5) remains intractable due to partial observability, as demon-

strated in Appendix 4.8.1.

The intractability of (4.5) motivates the need for another approximation step, where

we propose employing the Gelbrich bound introduced in [41]. The Gelbrich bound is

lower than the Wasserstein distance and is valid for any nominal distribution with finite

first- and second-order moments. Let

w̄t := Ewt∼Pt [wt], ŵt := Ewt∼Qt [wt] (4.6)

denote the mean vectors of wt with respect to Pt and Qt, respectively. Also, we let

Σt := Ewt∼Pt [(wt − w̄t)(wt − w̄t)⊤],

Σ̂t := Ewt∼Qt [(wt − ŵt)(wt − ŵt)⊤]
(4.7)

denote the covariance matrices of wt with respect to Pt and Qt, respectively. The

Gelbrich bound for Wasserstein distance can be described as follows.
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Lemma 4.1. Suppose the mean vectors and covariance matrices of Pt and Qt are

given by (4.6) and (4.7), respectively. Then, the following lower-bound holds for the

2-Wasserstein distance:

G(Pt,Qt) :=

√
∥w̄t − ŵt∥22 +B2(Σt, Σ̂t) ≤W2(Pt,Qt), (4.8)

where

B2(Σt, Σ̂t) := Tr[Σt + Σ̂t − 2(Σ̂
1/2
t ΣtΣ̂

1/2
t )1/2].

Furthermore, the inequality holds with equality if Pt and Qt are elliptical with the

same density-generating function.

The Gelbrich bound relies only on the mean and covariance information, which is

a crucial feature for obtaining a tractable solution.

Remark 4.1. The Gelbrich bound provides a generic lower-bound for the Wasserstein

distance for distributions that are not necessarily elliptical. Thus, it is applicable to

problems with non-Gaussian disturbance distributions. The bound discards informa-

tion about the nominal distribution Qt beyond its first- and second-order moments,

thereby sacrificing possibly useful information. However, it trades available informa-

tion for tractability, providing a simple strategy for evaluating the closeness of two

distributions. In Sections 4.4 and 4.5, we also show that the resulting controller enjoys

various useful theoretical properties despite the limited use of available information.10

We leverage the Gelbrich bound and define the following cost function, replacing

the Wasserstein penalty term with its lower-bound:

Jλ∞(π, γ) = lim sup
T→∞

1

T
Ey

[
T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]− λG(Pt,Qt)
2

]
.

Using this cost function, the penalty version (4.5) of the WDRC problem can be ap-

proximated as follows:

min
π∈Π

max
γ∈Γ

Jλ∞(π, γ). (4.9)

10The empirical performance of a Gelbrich bound-based approximation has been demonstrated through

motion control problems in [75].
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Having the approximate problem (4.9), a closed-form expression of its optimal

solution is derived using a Riccati equation in the following subsections. We first con-

sider the case of finite-horizon problems and then extend the obtained results to the

infinite-horizon average cost setting.

4.3.2 Finite-Horizon Problem

We begin our analysis by first considering the following finite-horizon approximate

WDRC problem:

min
π∈Π

max
γ∈Γ

JλT (π, γ), (4.10)

where the cost function is defined as

JλT (π, γ) = Ey

[
ExT [x

⊤
TQfxT | IT ]

+

T−1∑
t=0

(
Ext [x⊤t Qxt + u⊤t Rut | It, ut]− λG(Pt,Qt)

2
)]
.

To solve the minimax problem (4.10), we apply the dynamic programming (DP)

algorithm by first defining the optimal value function recursively as follows.

Let

VT (IT ) := ExT [x
⊤
TQfxT | IT ]

and

Vt(It) := inf
ut∈Rnu

sup
Pt∈P(Rnx )

Ext,yt+1

[
x⊤t Qxt + u⊤t Rut − λG(Pt,Qt)

2 (4.11)

+ Vt+1(It, yt+1, ut) | It, ut
]

= inf
ut∈Rnu

sup
w̄t∈Rnx ,
Σt∈Snx

+

Ext,yt+1 [x
⊤
t Qxt + u⊤t Rut

− λ[∥w̄t − ŵt∥2 +B2(Σt, Σ̂t)] + Vt+1(It, yt+1, ut) | It, ut] (4.12)

for t = T − 1, . . . , 0. Suppose for a moment that the outer minimization problem has

an optimal solution u∗t and the value function is measurable for every t. Then, by the
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DP principle (e.g., [185–188]), we have

inf
π∈Π

sup
γ∈Γ

JλT (π, γ) = Ey0 [V0(I0)],

and an optimal control policy π∗t can be constructed using the optimal solutions of the

outer optimization problems for all t. To this end, we inductively show that the outer

minimization problem in the Bellman equation (4.12) admits an optimal solution.

Let the expected value of the state xt conditioned on the information vector It

under the disturbance distribution generated by the adversary’s policy γ be denoted by

x̄t := Ext [xt | It].

Also, let

ξt := xt − x̄t

denote the deviation of the system state from its conditional expectation, and let

Φ := BR−1B⊤ − 1

λ
I ∈ Snx .

As the first step for our inductive argument, we identify an optimal solution to the

outer minimization problem in (4.12) for time t when Vt+1 has the following quadratic

form.

Lemma 4.2. Fix t ∈ {0, 1, . . . , T − 1}, and suppose that

Vt+1(It+1) = Ext+1 [x
⊤
t+1Pt+1xt+1 + ξ⊤t+1St+1ξt+1 + 2r⊤t+1xt+1 | It+1] + qt+1,

for some Pt+1 ∈ Snx
+ , St+1 ∈ Snx

+ , rt+1 ∈ Rnx , and qt+1 ∈ R. Moreover, assume that

the penalty parameter satisfies λI ≻ Pt+1. Then, the following results hold:

• The outer minimization problem in (4.12) with respect to ut has the following

unique optimal solution:

u∗t = Ktx̄t + Lt, (4.13)
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where

Kt = −R−1B⊤(I + Pt+1Φ)
−1Pt+1A (4.14)

Lt = −R−1B⊤(I + Pt+1Φ)
−1(Pt+1ŵt + rt+1). (4.15)

• Given u∗t , the inner maximization problem in (4.12) with respect to wt has the

following unique optimal solution:

w̄∗
t = Htx̄t +Gt, (4.16)

where

Ht = (λI − Pt+1)
−1Pt+1(A+BKt) (4.17)

Gt = (λI − Pt+1)
−1

(
Pt+1BLt + rt+1 + λŵt

)
. (4.18)

• The inner maximization problem in (4.12) with respect to Σt ∈ Snx
+ reduces to

the following maximization problem:

max
Σt∈Snx

+

Ext+1,yt+1 [ξ
⊤
t+1St+1ξt+1 | It]

+ Tr[(Pt+1 − λI)Σt + 2λ(Σ̂
1/2
t ΣtΣ̂

1/2
t )1/2].

(4.19)

The proof of this lemma can be found in Appendix 4.8.2. Using this lemma, we

can also show that Vt has the same form as Vt+1 whenever λI ≻ Pt+1. To preserve the

structure of the value function through the Bellman recursion, we impose the following

assumption on the penalty parameter, which is also required for the fully observable

case [42].

Assumption 4.1. The penalty parameter satisfies λI ≻ Pt for all t = 1, . . . , T .

Under this assumption, we can use mathematical induction backward in time to

recursively show that the value functions Vt’s have a specific quadratic form for all t

because VT = ExT [x⊤TQfxT | IT ] is already in that form. Consequently, it follows

from the DP principle that the optimal control policy can be constructed as follows.
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Theorem 4.1. Suppose that Assumption 4.1 holds and (4.19) attains an optimal solu-

tion. Then, the value function for all t = 0, . . . , T has the following form:

Vt(It) = Ext [x⊤t Ptxt + ξ⊤t Stξt + 2r⊤t xt | It] + qt +
T−1∑
s=t

zt(It, s).

Here, the coefficients Pt ∈ Snx
+ , St ∈ Snx

+ , rt ∈ Rnx , and qt ∈ R are found recursively

using the following Riccati equation:

Pt =Q+A⊤(I + Pt+1Φ)
−1Pt+1A (4.20)

St =Q+A⊤Pt+1A− Pt (4.21)

rt =A⊤(I + Pt+1Φ)
−1(rt+1 + Pt+1ŵt) (4.22)

qt = qt+1 + (2ŵt − Φrt+1)
⊤(I + Pt+1Φ)

−1rt+1

+ ŵ⊤
t (I + Pt+1Φ)

−1Pt+1ŵt − λTr[Σ̂t] (4.23)

with the terminal conditions PT = Qf , ST = 0, rT = 0, and qT = 0. The term

zt(It, s) for s = t, . . . , T − 1 is given by

zt(It, s) := sup
Σs∈Snx

+

Exs+1,yt+1,...,ys+1 [ξ
⊤
s+1Ss+1ξs+1 | It]

+ Tr[(Ps+1 − λI)Σs + 2λ(Σ̂1/2
s ΣsΣ̂

1/2
s )1/2].

(4.24)

Moreover, an optimal policy pair can be obtained as follows:

• The optimal control policy is uniquely given by

π∗t (It) = Ktx̄t + Lt,

with Kt and Lt defined as (4.14) and (4.15), respectively; and

• For each It, let γ∗t (It) = P∗
t , where P∗

t is a probability distribution with mean

vector defined as (4.16) and covariance matrix Σ∗
t obtained as the maximizer

of (4.24) for stage t. Then, γ∗t is an optimal policy for the adversary that gener-

ates the worst-case distribution.
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The proof of this theorem can be found in Appendix 4.8.2. In the theorem, the

existence of Σ∗
t is not guaranteed in general. However, we will see that Σ∗

t exists and

is obtained in a tractable way if the Kalman filter is used.

It is worth comparing our result with that of the fully observable case [42]. Due

to partial observability, the optimal control policy and the mean vector of the worst-

case distribution are affine in the conditional expectation x̄t instead of the actual state

xt. An additional estimator, such as the Kalman filter, is required for computing the

state estimates based on the information It collected so far. However, the Riccati recur-

sion (4.20)–(4.23), as well as the controller parameters (4.14) and (4.15), are indepen-

dent of the information vector It. Thus, the separation principle holds for our WDRC

method, where the state estimation and the optimal control parts can be decoupled,

allowing each component to be designed independently.

The standard Kalman filter uses the mean vector and covariance matrix of the

ground-truth disturbance distribution. However, in our problem setting, it is required

to estimate the states under disturbances drawn from the worst-case distribution P∗
t .

The expected value of xt+1 conditioned on It is then estimated as follows:

x̄t+1 = x̄−t+1 + X̄t+1C
⊤M−1(yt+1 − Cx̄−t+1), (4.25)

where x̄−t+1 = Ax̄t + Bu∗t + w̄∗
t with x̄−t = m0. Here, X̄t is the covariance matrix of

xt given It, i.e.,

X̄t = Ext [(xt − x̄t)(xt − x̄t)⊤ | It],

which can be precomputed by applying the following recursion forward in time:

X̄t+1 = X̄−
t+1 − X̄

−
t+1C

⊤(CX̄−
t+1C

⊤ +M)−1CX̄−
t+1 (4.26)

X̄−
t+1 = AX̄tA

⊤ +Σ∗
t , (4.27)

starting from X̄−
0 =M0.

It follows from Theorem 4.1 and Kalman filter equations (4.25)–(4.27) that the op-

timal cost JλT (π
∗, γ∗) depends on the worst-case distribution P∗

t = γ∗t (It) only through
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its first- and second-order moments. Therefore, any distribution with mean vector w̄∗
t

and covariance matrix Σ∗
t is the worst-case distribution in (4.10). If the worst-case dis-

tribution is chosen to be Gaussian, then the Kalman filter is an optimal state estimator,

as it minimizes the expected mean-squared error of state estimation [189]. As stated

previously, when the Kalman filter is used for state estimation, the optimization prob-

lem (4.24) attains an optimal solution and can be recast as a tractable SDP problem.

Proposition 4.1. Suppose that the system state at time t is estimated using the Kalman

filter given the information vector It. Then, zt(It, t) given in (4.24) corresponds to the

optimal value of the following tractable SDP problem:

max
X,X−,
Y,Σ∈Snx

+

Tr[St+1X + (Pt+1 − λI)Σ + 2λY ]

s.t.

Σ̂1/2
t ΣΣ̂

1/2
t Y

Y I

 ⪰ 0

X− −X X−C⊤

CX− CX−C⊤ +M

 ⪰ 0

CX−C⊤ +M ⪰ 0

X− = AX̄tA
⊤ +Σ,

(4.28)

where X̄t is the covariance matrix of xt conditioned on It.

Moreover, an optimal solution Σ∗ to the SDP problem (4.28) is the covariance

matrix of the worst-case distribution P∗
t in Theorem 4.1.

The proof of this proposition can be found in Appendix 4.8.2. Notably, the refor-

mulated SDP problem (4.28) is independent of real-time data such as the measurement

yt and the control input ut. Therefore, the covariance matrix Σ∗
t of the worst-case dis-

tribution in each time stage can be computed offline by solving the SDP problem (4.28)

using existing algorithms [114,117,119]. Having the covariance matrix Σ∗
t , the condi-

tional state covariance matrix X̄t can also be calculated offline by applying the Kalman

filter recursion (4.26) and (4.27). Finally, in order to compute the value function at time
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t, it is sufficient to have zs(Is, s) for s = t, . . . , T − 1 as from the law of total expec-

tation, it follows that zt(It, s) = zs(Is, s), s = t . . . , T − 1.

4.3.3 From Finite-Horizon to Infinite-Horizon Problems

The results obtained for the finite-horizon problem can be extended to the infinite-

horizon average cost setting (4.9) as letting T tend to∞. Throughout this subsection,

we assume the following:

Assumption 4.2. The nominal distribution Qt has a stationary mean vector and a

stationary covariance matrix, i.e., ŵt ≡ ŵ and Σ̂t ≡ Σ̂ for all t = 0, 1, . . ..

Assumption 4.3. Φ ⪰ 0, and (A,Φ1/2) is stabilizable and (A,Q1/2) is observable.

To examine the asymptotic behavior of the recursion (4.20)–(4.23), we first show

the convergence of the Riccati equation (4.20) to a steady-state solution Pss of an ARE.

Proposition 4.2. Suppose that Assumptions 4.1–4.3 hold. Then, there exists a matrix

Pss ∈ Snx
+ such that for every PT ∈ Snx

+ , we have

lim
T→∞

Pt = Pss. (4.29)

Furthermore, Pss is the unique symmetric PSD solution of the following ARE:

Pss = Q+A⊤(I + PssΦ)
−1PssA. (4.30)

The proof of this proposition can be found in Appendix 4.8.2. As a direct conse-

quence, we can show the convergence of St and rt to their corresponding limits.

Lemma 4.3. Suppose that Assumptions 4.1–4.3 hold. Then, the matrix St and the

vector rt computed recursively according to (4.21) and (4.22) starting from ST = 0

and rT = 0 converge to

Sss = Q+A⊤PssA− Pss, (4.31)

rss = [I −A⊤(I + PssΦ)
−1]−1A⊤(I + PssΦ)

−1Pssŵ (4.32)

as T →∞, respectively.

99



The proof of this lemma can be found in Appendix 4.8.2. Proposition 4.2 and

Lemma 4.3 yield to identify the limiting behavior of the finite-horizon optimal policy

as the horizon length tends to infinity.

Theorem 4.2. Suppose that Assumptions 4.1–4.3 hold. Then, as T →∞, the optimal

control policy π∗t (It) converges pointwise to the steady-state policy

π∗ss(It) := Kssx̄t + Lss, (4.33)

where

Kss = −R−1B⊤(I + PssΦ)
−1PssA, (4.34)

Lss = −R−1B⊤(I + PssΦ)
−1(Pssŵ + rss). (4.35)

Furthermore, as T →∞, the mean vector of the worst-case distribution P∗
t generated

by the adversary converges to

w̄∗
t,ss = Hssx̄t +Gss, (4.36)

where

Hss = (λI − Pss)−1Pss(A+BKss), (4.37)

Gss = (λI − Pss)−1
(
PssBLss + rss + λŵ

)
. (4.38)

The convergence of Kt, Lt, Ht, and Gt in (4.14)–(4.18) directly follows from the

convergence of Pt and rt. The steady-state control policy (4.33) is again affine in the

conditional expectation of the system state. However, it is now stationary, making the

controller more attractive for practical implementation.

Theorem 4.2 only concerns the mean vector of the worst-case distribution, which

is insufficient to analyze the steady-state behavior of the policy γ∗t of the adversary.

Therefore, in the remainder of this subsection, we consider a worst-case distribution

policy of a special form and show that it is, in fact, optimal to the infinite-horizon

average cost problem (4.9). To this end, consider a stationary distribution policy γ∗ss

100



that maps the information vector to a probability distribution with the mean vector

w̄∗
t,ss defined as (4.36) and the stationary covariance matrix Σ∗

ss defined as an optimal

solution to the following maximization problem:

max
X,X−,
Σ∈Snx

+

Tr[SssX + (Pss − λI)Σ + 2λ(Σ̂1/2ΣΣ̂1/2)1/2]

s.t. X− = AXA⊤ +Σ

X = X− −X−C⊤(CX−C⊤ +M)−1CX−.

(4.39)

For further analysis, we impose the following assumption:

Assumption 4.4. (A,C) is detectable and
(
A, (Σ∗

ss)
1/2

)
is stabilizable.

It is well known from filtering theory (e.g., [189]) that under the distribution policy

γ∗ss satisfying Assumption 4.4, the matrix X̄−
t given by the recursion in (4.27) tends to

a PSD matrix X̄−
ss that solves the following filter ARE:

X̄−
ss = A(X̄−

ss − X̄−
ssC

⊤(CX̄−
ssC

⊤ +M)−1CX̄−
ss)A

⊤ +Σ∗
ss (4.40)

for any initial state covariance matrix M0 ∈ Snx
+ . Consequently, the covariance matrix

X̄t converges to the constant PSD matrix

X̄ss = X̄−
ss − X̄−

ssC
⊤(CX̄−

ssC
⊤ +M)−1CX̄−

ss, (4.41)

with the state recursively estimated according to the following asymptotic form:

x̄t+1 = x̄−t+1 + X̄ssC
⊤M−1(yt+1 − Cx̄−t+1), (4.42)

where x̄−t+1 = Ax̄t + But + w̄∗
t,ss with x̄0|−1 = m0. This property is known as the

duality between estimation and control. As a result, the asymptotic performance of

the filter is similar to that of the standard Riccati equation, yielding the steady-state

counterpart of the Kalman filter.

Due to its constraints, the optimization problem (4.39) is intractable. Using a sim-

ilar argument to Proposition 4.1, it can be reformulated as the following tractable SDP
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problem:

max
X,X−,Y,Σ∈Snx

+

Tr[SssX + (Pss − λI)Σss + 2λY ]

s.t.

Σ̂1/2ΣΣ̂1/2 Y

Y I

 ⪰ 0

X− −X X−C⊤

CX− CX−C⊤ +M

 ⪰ 0

CX−C⊤ +M ⪰ 0

X− = AXA⊤ +Σ,

(4.43)

which is independent of the information vector It and can be solved offline.

Finally, we can build the connection between the policy pair (π∗ss, γ
∗
ss) and the

solution to the infinite-horizon minimax problem (4.9). For that, let the steady-state

average cost incurred by the stationary policy pair (π∗ss, γ
∗
ss) be denoted as

ρ := Jλ∞(π∗ss, γ
∗
ss),

which can be calculated by combining the results from Theorem 4.1 and the maxi-

mization problem (4.39) as follows.

Proposition 4.3. Suppose that Assumptions 4.1–4.4 hold. Then, the steady-state aver-

age cost is given by

ρ = (2ŵ−Φrss)
⊤(I+PssΦ)

−1rss−λTr[Σ̂]+ ŵ⊤(I+PssΦ)
−1Pssŵ+ zss, (4.44)

where zss is the optimal value of the maximization problem (4.39).

The proof of this proposition can be found in Appendix 4.8.2. Having the steady-

state average cost, it remains to verify the optimality of the policy pair (π∗ss, γ
∗
ss) in

the average-cost criterion. For that purpose, we introduce the following optimality

condition:
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Proposition 4.4. Suppose that Assumptions 4.1–4.4 hold. Then, the following average-

cost optimality equation holds:

ρ+ h(It) = inf
ut∈Rnu

sup
Pt∈P(Rnx )

Ext,yt+1

[
x⊤t Qxt + u⊤t Rut − λG(Pt,Qt)

2

+ h(It+1) | It, ut
]
,

(4.45)

where ρ is the steady-state average cost defined as (4.44) and

h(It) = x̄⊤t Pssx̄t + 2r⊤ssx̄t +Tr[(Sss + Pss)X̄ss].

In addition, (π∗ss(It), γ
∗
ss(It)) is an optimal solution pair to the minimax problem on

the right-hand side of (4.45).

The proof of this proposition can be found in Appendix 4.8.2. Here, h is called

the bias and represents the transient cost. Using the bias term, we now consider the

following extended average-cost function:

J̄λ∞(π, γ) := lim sup
T→∞

1

T
J̄λT (π, γ), (4.46)

where

J̄λT (π, γ) = Ey

[
h(IT ) +

T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It]− λG(Pt,Qt)
2

]
.

The extended average cost (4.46) allows us to investigate the optimality of the steady-

state policy pair (π∗ss, γ
∗
ss).

Proposition 4.5. Suppose that Assumptions 4.1–4.4 hold. Then, the steady-state policy

pair (π∗ss, γ
∗
ss) is optimal to

min
π∈Π̄

max
γ∈Γ̄

Jλ∞(π, γ)

for any policy spaces Π̄ ⊂ Π and Γ̄ ⊂ Γ satisfying

lim sup
T→∞

1

T
Ey[h(IT ) | π, γ∗ss] = 0, ∀π ∈ Π̄ (4.47)

lim sup
T→∞

1

T
Ey[h(IT ) | π∗ss, γ] = 0, ∀γ ∈ Γ̄. (4.48)

Moreover, the optimal value of this problem is equal to ρ.
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The proof of this proposition can be found in Appendix 4.8.2. The first condition is

similar to the one in the standard LQG control, with the difference that the disturbances

follow the worst-case distribution policy γ∗ss. If the expected value of the state with

respect to all uncertainties is bounded under the policy pair (π∗ss, γ) for some γ ∈ Γ̄,

then condition (4.48) holds. In fact, it is satisfied as long as the distribution Pt =

γ(It) has a bounded mean vector and a stationary covariance matrix so that the pair

(A,Σ1/2) is stabilizable. This is due to the stability properties of the optimal control

policy π∗ss, which is discussed in Section 4.5.

We wrap up this subsection observing the tightness of the proposed Gelbrich

bound-based approximation when the nominal distribution Qt is elliptical. This is be-

cause the worst-case distribution can be chosen to be elliptical with the worst-case

mean vector and covariance matrix.

Proposition 4.6. Suppose that the nominal distribution Qt is elliptical for all t. Let

(π∗, γ∗) denote an optimal policy pair of the approximate minimax control prob-

lem (4.9), such that the worst-case distribution P∗
t = γ∗t (It) is elliptical with the same

density generating function as Qt. Then, (π∗, γ∗) is an optimal policy pair for the

minimax control problem (4.5).

The proof of this proposition can be found in Appendix 4.8.2. This property once

again confirms the validity of our approximation scheme, as most LQ optimal control

problems use nominal distributions as Gaussian. For general distributions, the pro-

posed approximate controller is further shown to have performance guarantees in Sec-

tion 4.4.

4.3.4 Algorithm

The results presented in previous sections lead us to a novel infinite-horizon WDRC

scheme that controls the partially observable system (4.1) while continuously updating

the state estimates. The block diagram of our method is depicted in Fig. 4.1, while
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Algorithm 4: Infinite-horizon WDRC algorithm

1 Input: λ, ŵ, Σ̂,m0,M

2 Solve ARE (4.30) to obtain Pss

3 Calculate Kss and Lss by (4.34) and (4.35)

4 Compute parameters Hss and Gss according to (4.37) and (4.38)

5 Solve SDP problem (4.43) to obtain Σ∗
ss

6 Solve filter ARE (4.40) and use (4.41) to obtain X̄ss

7 Measure y0 and estimate x̄0 via (4.42)

8 for t = 0, 1, . . . do

9 Apply u∗t = π∗ss(It) = Kssx̄t + Lss to the system (4.1)

10 Compute the worst-case mean w̄∗
t,ss according to (4.36)

11 Measure yt+1 and estimate x̄t+1 via (4.42)

the detailed procedure is given in Algorithm 4. The penalty parameter λ is initially

given to the algorithm, chosen depending on the desired level of conservativeness and

satisfying Assumption 4.1. The remaining inputs of the algorithm include the mean

vector ŵ and the covariance matrix Σ̂ of the nominal distribution Qt, the initial state

mean vector m0, and the covariance matrix of the output noise M . Our algorithm

essentially comprises two stages: offline and online, where the first stage concerns the

controller and estimator design, while the second stage is for real-time deployment of

the controller.

Since the separation principle applies to our method, we disentangle the controller

from the state estimator. Therefore, in the first part, a stationary optimal control policy

is synthesized (Lines 2 and 3), followed by the worst-case distribution policy construc-

tion (Lines 4 and 5). More specifically, in Line 2, the ARE (4.30) is solved to obtain

the matrix Pss, which is used in Line 3 to calculate Kss and Lss according to (4.34)

and (4.35), respectively. Next, in Line 4, the parameters Hss and Gss of the mean vec-

tor of the worst-case disturbance distribution are found according to (4.37) and (4.38),
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respectively. In Line 5, the SDP problem (4.43) is solved numerically using the steady-

state matrices Pss and Sss. Next, in Line 6, we solve the filter ARE (4.40) and (4.41)

to obtain the conditional state covariance matrix X̄ss under the worst-case distribution.

The online stage for the fixed controller and estimator is presented in Lines 7–

11, where the optimal policy π∗ss is deployed to control the actual partially observable

system. In the beginning, an initial measurement y0 is received, and the initial state

estimate x̄0 is obtained by the Kalman filter (Line 7). Then, in each time stage, a

control input u∗t is applied to the system leveraging the optimal policy π∗ss and the

current state estimate x̄t (Line 9). The mean vector w∗
t,ss of the worst-case distribution

is then computed according to (4.36) using the parameters Hss and Gss calculated in

the offline stage. Finally, in Line 11, the new measurements yt+1 are used to update

the estimate about the state xt+1.

It is worth mentioning that the infinite-horizon WDRC algorithm is applicable only

to environments where the nominal distribution is stationary, in order to satisfy As-

sumption 4.2. However, in practice, the disturbance distribution is often non-stationary

and varies over time. While the infinite-horizon formulation provides performance and

stability guarantees, as explained in the following sections, the finite-horizon WDRC

algorithm is more practical, especially for autonomous systems. In the finite-horizon

formulation, the control policy is updated at each time step based on the current nom-

inal disturbance information, allowing for adaptation to changing conditions.

4.4 Performance Guarantees

Though our approach yields a closed-form expression for the optimal control policy

of the approximate minimax control problem (4.9), its relation to the original WDRC

problem (4.4) is yet to be established. In this section, we demonstrate the capability

of our method to provide distributional robustness with a guaranteed cost property and

a probabilistic out-of-sample performance guarantee, which is an essential feature of
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the WDRC method.

4.4.1 Guaranteed Cost Property

Fix a penalty parameter λ > 0 satisfying Assumption 4.1. The corresponding solu-

tion to ARE (4.30) will be Pss. Now, consider the average cost criterion (4.3) and its

extended version with the bias h being added as follows:

J̄∞(π, γ) = lim sup
T→∞

1

T
Ey

[
h(IT ) +

T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]
]
.

The following theorem demonstrates the uniform bound on the average-cost crite-

rion (4.3) under the stationary control policy computed in Theorem 4.1 for any worst-

case distribution in the Wasserstein ambiguity set D.

Theorem 4.3. Suppose that Assumptions 4.1–4.4 hold for a fixed λ > 0. Also, let πλ,∗ss

be the optimal control policy of the penalty problem (4.9). For any policy space Γ̄D

defined in Proposition 4.5, the average cost under the worst-case distribution policy in

Γ̄D is bounded as follows:

sup
γ∈Γ̄D

J∞(πλ,∗ss , γ) ≤ θ2λ+ ρ(λ). (4.49)

The proof of this theorem can be found in Appendix 4.8.2. Theorem 4.3 demon-

strates the distributional robustness of the optimal control policy πλ,∗ss to the approxi-

mate penalty problem, which can be controlled by tuning λ. The bound (4.49) suggests

an intuitive approach for selecting the penalty parameter given a Wasserstein ball ra-

dius θ, as it is desirable to select a λ that minimizes the upper-bound,11 i.e.,

λ(θ) ∈ argmin
λ>0

[θ2λ+ ρ(λ)]. (4.50)

This optimal penalty parameter is used in the following subsection.
11This approach was used to determine λ for our experiments in Section 4.6.
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4.4.2 Out-of-Sample Performance Guarantee

Suppose that the standard stochastic optimal controller is constructed using an empiri-

cal disturbance distribution constructed from the training dataset w := {ŵ(1), . . . , ŵ(N)}.

The performance of this controller is deteriorated when evaluated under a testing

dataset of wt which is different from the training dataset. This issue arises even if

the training and testing datasets are sampled from the same disturbance distribution. A

substantial advantage of WDRC is to address this out-of-sample issue by providing a

performance guarantee [30].

We argue that such an out-of-sample performance guarantee is achieved by the pro-

posed method despite approximation. Specifically, we show that for a well-calibrated

Wasserstein ambiguity set, our method with a nominal empirical distribution provides

an upper confidence bound on the true average cost. Throughout this section, the nom-

inal distribution is chosen as the following stationary empirical distribution Q con-

structed from a finite sample dataset w:

Q =
1

N

N∑
i=1

δŵ(i) , (4.51)

where δw denotes the Dirac measure concentrated at w. Here, each sample ŵ(i) is

drawn from the true stationary distribution P.

Given the optimal penalty parameter λ(θ) defined as (4.50), let (πλ(θ),∗ss,w , γ
λ(θ),∗
ss,w )

denote the optimal stationary policy pair constructed in Section 4.3.3 with the sample

dataset w. Then, the out-of-sample performance (or cost) of πλ(θ),∗ss,w is defined as

J∞(π
λ(θ),∗
ss,w , γ) = lim sup

T→∞

1

T
Ey

[ T−1∑
t=0

Ext [x⊤t Qxt + u⊤t Rut | It, ut]
∣∣∣∣ πλ(θ),∗ss,w , γ

]
,

where γ is a stationary policy mapping the information vector to the true disturbance

distribution, i.e., γ(It) = P for all t.

However, as the true distribution P is unknown in practice, it is impossible to di-

rectly evaluate the out-of-sample performance. Instead, we consider the following al-
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ternative probabilistic performance guarantee:

PN
{
w | J∞(π

λ(θ),∗
ss,w , γ) ≤ θ2λ(θ) + ρ(λ(θ))

}
≥ 1− β, (4.52)

where β ∈ (0, 1) represents a confidence level. Here, the dataset w is viewed as a

random object governed by the distribution PN . The inequality (4.52) means that the

cost incurred by the proposed policy under the true disturbance distribution is limited

by θ2λ(θ)+ρ(λ(θ)) with probability no less than 1−β. Note that the cost upper-bound

θ2λ(θ)+ρ(λ(θ)) can be computed using the proposed method without the knowledge

of the true distribution P. The probability on the left-hand side critically depends on θ.

Thus, given β, the size of the ambiguity set must be carefully determined to attain the

probabilistic out-of-sample performance guarantee.

We identify the desired radius θ under the following assumption, ensuring that P

is a light-tailed distribution:

Assumption 4.5. Suppose there exist c > 2 and B > 0 such that

Ew∼P[exp(∥w∥c)] ≤ B.

The required radius θ can then be found from the following measure concentration

inequality for the Wasserstein metric [190, Theorem 2]:

PN
{
w |W2(P,Q) ≥ θ

}
≤ c1

[
b1(N, θ)1{θ≤1} + b2(N, θ)1{θ>1}

]
, (4.53)

where

b1(N, θ) :=


exp(−c2Nθ2) if nx < 4

exp
(
− c2N

(
θ

log(2+1/θ)

)2) if nx = 4

exp(−c2Nθnx/2) otherwise

and

b2(N, θ) := exp(−c2Nθc/2)

for some constants c1, c2 > 0, depending only on nx and c. The measure concentration

inequality (4.53) provides an upper-bound on the probability that the true disturbance
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distribution P lies outside the Wasserstein ambiguity set. This inequality is essential

for determining the radius θ required for ensuring the probabilistic out-of-sample per-

formance of our control policy.

Theorem 4.4. Suppose that Assumptions 4.1–4.5 hold. We also assume that the radius

θ is chosen as

θ :=



[
log(c1/β)
c2N

]2/c
if N < 1

c2
log(c1/β)[

log(c1/β)
c2N

]1/2
if N ≥ 1

c2
log(c1/β), nx < 4[

log(c1/β)
c2N

]2/nx

if N ≥ 1
c2
log(c1/β), nx > 4

θ̄ if N ≥ (log 3)2

c2
log(c1/β), nx = 4

(4.54)

for θ̄ satisfying the condition

θ̄

log(2 + 1/θ̄)
=

[
log(c1/β)

c2N

]1/2
.

Then, the probabilistic out-of-sample performance guarantee (4.52) holds.

The proof of this theorem can be found in Appendix 4.8.2.

Under an additional assumption that the disturbance distribution P is compactly

supported, the concentration inequality suggested in [43, Proposition 3.2] can be used

to further strengthen our result. Let the diameter of a set S ∈ Rnx be denoted by

diam(S) := sup{∥x − y∥∞ | x, y ∈ S}, and for P ∈ P(Rnx) let supp(P) denote its

support.

Corollary 4.1. Suppose that Assumptions 4.1–4.4 hold and the true disturbance dis-

tribution P is compactly supported with ξ := 1
2diam(supp(P)). Suppose the radius θ

is chosen as

θ :=


ξ
[
log(c1/β)
c2N

]1/4
if nx < 4

ξ
[
log(c1/β)
c2N

]1/nx

if nx > 4

θ̄ if nx = 4
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for θ̄ satisfying the condition

θ̄2

ξ2 log(2 + ξ2/θ̄2)
=

[
log(c1/β)

c2N

]1/2
,

where c1, c2 > 0 are some constants depending only on nx. Then, the probabilistic

out-of-sample performance guarantee (4.52) holds.

4.5 Stability

This section investigates the stability properties of the closed-loop system when the

proposed control policy π∗ss is employed. It follows from Theorem 4.2 that the closed-

loop system is expressed as

xt+1 = Axt +BKssx̄t + wt +BLss,

where x̄t is the current state estimate. Assuming that the Kalman filter is chosen as the

state estimator, our focus is to analyze the following mean-state system:

E[xt+1] = AE[xt] +BKssE[x̄t] + E[wt] +BLss

E[x̄t+1] = E[x̄−t+1] + X̄ssC
⊤M−1CE[xt+1 − x̄−t+1]

E[yt] = CE[xt] + E[vt],

(4.55)

where E[x̄−t+1] = (A + BKss + Hss)E[x̄t] + BLss + Gss. Here, the expectation is

taken with respect to the joint probability distribution of all uncertainties up to time t.

Let

x̃t := E[xt], ¯̄xt := E[x̄t]

consist of the state of the mean-state system (4.55). We can show the stabilizing prop-

erties of the policy pair (π∗ss, γ
∗
ss) for the mean-state system when the nominal distur-

bance distribution Qt has zero mean.

Proposition 4.7. Suppose that Assumptions 4.1–4.4 hold. Under the policy pair (π∗ss, γ
∗
ss),

both x̃t and ¯̄xt of the mean-state system (4.55) converge to the following value:

[I − (I +ΦPss)
−1A]−1(I − Φ(I + PssΦ−A⊤)−1Pss]ŵ. (4.56)
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Moreover, if ŵ = Ewt∼Qt [wt] = 0, the control policy π∗ss stabilizes the system under

the worst-case distribution policy γ∗ss.

The proof of this proposition can be found in Appendix 4.8.2. Furthermore, we

can show that π∗ss guarantees the BIBO stability of the closed-loop system (4.55) when

viewing the disturbances as input.

Proposition 4.8. Suppose that Assumptions 4.1–4.3 hold and the pair (A,C) is de-

tectable. Then, the closed-loop gain matrix (A+BKss) is stable. Moreover, the mean-

state system (4.55) under the control policy π∗ss is BIBO stable when viewing the dis-

turbances as input.

The proof of this proposition can be found in Appendix 4.8.2. It follows from

BIBO stability that as long as the mean vector of the disturbance distribution is bounded,

the expected value of the closed-loop system state and the corresponding output will

remain bounded.

4.6 Case Study

In this section, we demonstrate the performance of our WDRC method in both finite-

and infinite-horizon settings and compare its performance with the standard LQG con-

troller [4], which uses the estimated distribution of the disturbances. Since the true dis-

turbance distribution is unknown, LQG directly uses the nominal distribution in both

the controller and the estimator. For comparison, we test our algorithm in the presence

of disturbances drawn from (i) a Gaussian distribution and (ii) uniform distribution.

All algorithms were implemented in Python and run on a PC with an Intel Core i7-

8700K (3.70 GHz) CPU and 32 GB RAM. The source code of our implementation is

available online.12

12https://github.com/CORE-SNU/PO-WDRC
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Figure 4.2: Histogram of the total costs in the case of Gaussian disturbances. The

dashed lines represent the sample means of the costs returned by the two methods.

4.6.1 Finite-Horizon Settings

In these experiments, we consider a discrete-time system with the following parame-

ters:

A =

0.518 0.266

0.405 0.806

 , B =

−2.972
−2.271

 , C =
[
1.023 1.955

]
,

which is unstable due to an eigenvalue outside the unit circle. The controller is required

to minimize the cost with parameters Q = Qf = R = I over the time horizon of

T = 50. The nominal disturbance distribution of wt is estimated as a Gaussian with

the empirical mean and covariance matrix constructed from N = 5 sample data. The

states are estimated via the Kalman filter.13

Gaussian Case

In the first scenario, the true disturbance distribution is chosen as N ([0.01, 0.02]⊤,

[0.01, 0.005; 0.005, 0.01]), and the disturbance data ŵ(i)
t are sampled from this dis-

tribution. The observation noise vt follows zero-mean Gaussian distribution with co-

variance M = 0.2I , and the initial state is assumed to be distributed according to
13Since the actual disturbance distribution is unknown, the mean and covariance of the nominal distri-

bution are used in the Kalman filter for the standard LQG.
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Table 4.1: Total cost averaged over 1,000 simulations in the finite-horizon settings.

Total Cost

WDRC LQG

Gaussian 4.599 (0.557) 5.374 (1.398)

Uniform 0.536 (0.151) 0.781 (0.267)

x0 ∼ N ([−1,−1]⊤, 0.001I). The penalty parameter was found according to (4.50)

for θ = 0.1 so that it satisfies Assumption 4.1.

Fig. 4.2 shows the distributions of the total costs over 1,000 simulations as a his-

togram. Overall, the cost distribution for the WDRC method has a bell shape, and thus

is more favorable than that for the LQG controller. The WDR controller returns lower

costs with a higher probability compared to the LQG controller. This is explained by

the fact that the WDRC anticipates mismatches between the true disturbance distribu-

tion and the nominal one. Meanwhile, LQG is unable to deal with such unexpected

distribution errors, causing higher total costs with a right-skewed distribution. In addi-

tion, the WDRC controller is less sensitive to the state estimates x̄t, unlike LQG, which

relies solely on the inaccurate nominal distribution at both the control and estimation

stages.

The total costs for both WDRC and LQG methods are reported in Table 4.1. The

WDRC controller incurs a lower average total cost with a smaller standard deviation

compared to the LQG method, confirming the superiority of our method.

Uniform Case

In the second scenario, the true disturbance distribution is assumed to be uniform,

U [−0.05, 0.05]2, and the disturbance data ŵ(i)
t are sampled from this distribution. The

observation noise vt is drawn from a zero-mean Gaussian distribution with covari-

ance M = 0.1I . The initial state is uniformly distributed with x0 ∼ U([0.1, 0.2]⊤,
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Figure 4.3: Histogram of the total costs in the case of uniform disturbances. The dashed

lines represent the sample means of the costs returned by the two methods.

[0.3, 0.5]⊤). Since the state distribution is not Gaussian in this setting, the Kalman

filter is no longer an optimal estimator. Yet, we apply the Kalman filter with the Gaus-

sian nominal distribution of disturbances to demonstrate the capability of the WDRC

to compensate for an inexact state estimator. The penalty parameter was tuned for

θ = 0.03 following the same procedure as in the Gaussian case.

Fig. 4.3 illustrates the cost histograms over 1,000 simulation runs. The effect of the

penalty term is more pronounced here, as the difference between the cost distributions

is larger compared to the Gaussian case. In particular, the total costs incurred by the

WDRC method are concentrated in the low-cost regions, while those incurred by LQG

are spread wider, with a right tail in the high-cost region.

Table 4.1 summarizes the total costs for both WDRC and LQG methods. Analo-

gous to the Gaussian case, the average total cost incurred by the WDRC method is

significantly lower than that obtained using LQG. Moreover, the standard deviation

of the costs is considerably smaller when using the WDRC controller. The reason for

this result is twofold. First, the nominal distribution is not an efficient estimator of the

true uniform distribution; therefore, relying on moment estimates is insufficient. The

WDRC approach alleviates this issue by considering all distributions close to the nom-
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inal one, thereby enabling the system to effectively handle the distribution mismatch.

Second, the state estimation for LQG is performed for Gaussian disturbances with a

nominal mean and covariance, while the WDRC method uses the worst-case distribu-

tion in the state estimation, adding additional robustness to the estimation stage.

4.6.2 Infinite-Horizon Settings

In this section, the performance of our infinite-horizon WDRC method is evaluated

on a power system frequency regularization problem using the IEEE 39 bus system,

which models the New England power grid [42]. The linearized second-order model

for power systems has the following form:∆δ̇

∆ω̇

 =

 0 I

−M̄−1L̄ −M̄−1D̄

∆δ

∆ω

+

 0

M̄−1

∆P, (4.57)

where M̄ and D̄ are the diagonal matrices of inertia and damping coefficients, L̄ is

the Laplacian matrix of the transmission network. The system state vector x(t) :=

[∆δ⊤(t),∆ω⊤(t)]⊤ ∈ R20 consists of the rotor angles and frequencies for 10 gener-

ators, while the control input u(t) := ∆P (t) ∈ R10 is the power injection vector of

the generators. It is assumed that only the rotor angle and frequency of the first six

generators are measured, i.e., ny = 12 with C = [I12×6,012×4, I12×6,012×4]. The

continuous-time system (4.57) is discretized by a zero-order hold method with sample

time 0.1 seconds. This yields a discrete-time stochastic system model of the form (4.1).

A disturbance w(t) drawn from an unknown distribution affects the power system dy-

namics. Such disturbances arise from fluctuations in net demand, mechanical noise in

generators, etc. The results are obtained by running the algorithms for 100 time steps.

Gaussian Case

In these experiments, the initial state distribution is Gaussian with meanm0 = [019, 1]
⊤

and covariance matrix M0 = 0.01I20. The true disturbances are drawn from a zero-
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(a) (b)

Figure 4.4: Trajectories of ∆δ7 and ∆ω10 for the system controlled by the LQG and

WDRC methods averaged over 1,000 simulation runs in the case of Gaussian distur-

bances. The shaded regions represent 25% of the standard deviation.

mean Gaussian distribution with a covariance matrix Σ = 0.01I20, while the obser-

vation noise has a covariance M = 0.01I12. The nominal distribution is constructed

using N = 5 disturbance sample data by letting µ̂ = 0 and Σ̂ be the empirical co-

variance matrix. We select the penalty parameter λ by minimizing the upper-bound

in (4.49) for θ = 10−3.

Fig. 4.4 displays the state trajectories of ∆δ7 and ∆ω10, which are both unobserv-

able states, controlled by the WDRC and LQG methods. The results are averaged over

1,000 simulation runs. These results indicate that the WDRC method reduces the fluc-

tuations and the large variance in the rotor angle and removes unnecessary undershoot

in the frequency. Besides, our method successfully keeps the states stable despite the

inaccurate nominal distribution. The total cost and the computation time for running

the whole algorithm are reported in Table 4.2. The WDRC method yields a lower av-

erage total cost with a smaller variance over the simulations than the LQG method.

Furthermore, the computation times for running the two methods are almost identical,

as the computationally expensive SDP problem and the Riccati equations are solved in

the offline stage, making the complexity of the online stage similar for both algorithms.
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(a) (b)

Figure 4.5: (a) Histogram of the total costs incurred by the LQG and WDRC methods,

and (b) out-of-sample performance of WDRC in the case of Gaussian disturbances.

The dashed lines represent the sample means of the costs returned by the two methods.

Fig. 4.5 (a) displays the distribution of total costs computed for 1,000 simulation

runs. It reveals that for WDRC, the overall distribution is concentrated in the low-cost

region. In contrast, the total costs induced by the LQG controller are comparatively

higher as it relies on the nominal disturbance distribution, disregarding possible in-

accuracies due to the small sample size. Meanwhile, our WDRC method penalizes

deviations of the true distribution from the nominal one, thereby making the controller

more robust against distributional uncertainties.

Fig. 4.5 (b) shows the out-of-sample cost incurred by our method for different

values of the ambiguity set radius θ and various sample sizes of the dataset w estimated

for 10,000 disturbance samples drawn from the true distribution and averaged over

1,000 independent simulation runs. For each θ, the penalty parameter λ(θ) is found

according to (4.50). We observe that the cost slightly decreases as the radius increases

up to θ = 10−3. The cost starts growing for θ ∈ [10−3, 100]. This is because a large θ

encourages the controller to be overly conservative, while the controller with a small

θ is not sufficiently robust.

As part of these experiments, we also examine the effect of partial observability

on the control performance. Specifically, Fig. 4.6 shows the total costs incurred by the
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Table 4.2: Total cost and online computation time averaged over 1,000 simulations in

the infinite-horizon settings.

Total Cost Computation Time

WDRC LQG WDRC LQG

Gaussian
1842.640 2735.015 0.113 0.115

(341.836) (661.369) (0.019) (0.014)

Uniform
1891.211 2653.224 0.0184 0.0183

(394.855) (767.445) (0.003) (0.002)

WDRC and LQG methods under a varying number of observable generators. It can be

seen that regardless of the number of observable generators, our method outperforms

LQG. Overall, the total cost decreases as more generators become observable, resulting

in smaller mean and variance values.

Uniform Case

In this scenario, the true disturbances in each dimension follow a uniform distribution

U(−0.15, 0.15). The initial state distribution is also uniform, U(−0.05, 0.05) for all

states, except ∆ω10, for which the initial state is selected from U(0.95, 1.05). The

nominal distribution is constructed using N = 5 sample data drawn from the true

distribution with its mean and covariance corresponding to the empirical ones. The

penalty parameter is chosen by minimizing the upper-bound in (4.49) for θ = 10−2.

The Kalman filter is an optimal estimator only in the Gaussian case. However, we

approximate the disturbance distribution by a Gaussian, assumingw∗
t ∼ N (w̄∗

t,ss,Σ
∗
ss),

and apply the steady-state Kalman filter. Besides, unlike the usual LQG settings, where

the observation noise is assumed to be zero-mean Gaussian, we draw it from a uni-

form distribution U(−0.4, 0.4) and estimate the covariance matrix from 40 samples.

By doing so, we evaluate the capability of our WDRC algorithm in the presence of an
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Figure 4.6: Effect of the number of observable generators on the total cost incurred

by the LQG and WDRC methods averaged over 1,000 simulation runs in the case of

normal disturbances. The shaded regions represent 25% of the standard deviation.

erroneous state estimator.

Fig. 4.7 displays the state trajectories for ∆δ6 and ∆ω10 for the WDRC and LQG

methods averaged over 1,000 simulation runs. It shows that LQG results in a larger

variance in the trajectory for ∆δ6, which is reduced in the WDRC case. In addition,

our method smooths the unwanted fluctuations in the trajectory of ∆ω10 present in

the LQG case. The total cost and the computation time for running the algorithm are

presented in Table 4.2. Our WDRC method outperforms the LQG method in total cost,

inducing a lower average cost with a smaller variance.

The distribution of total costs computed for 1,000 simulation runs is presented as

a histogram in Fig. 4.8 (a). Overall, the total costs incurred by WDRC are smaller

than the ones induced by the LQG method. Furthermore, the costs for applying the

proposed method are concentrated in the low-cost region, whereas the cost distribu-

tion for LQR is relatively widespread, covering a large range of costs. This happens

because the LQG controller is designed solely using the mean and covariance of the

nominal distribution. Furthermore, the state estimation is performed for an inaccurate

disturbance distribution, aggravating the situation. Our WDRC method resolves these

120



(a) (b)

Figure 4.7: Trajectories of ∆δ6 and ∆ω10 for the system controlled by the LQG and

WDRC methods averaged over 1,000 simulation runs in the case of uniform distur-

bances. The shaded regions represent 25% of the standard deviation.

issues by considering the worst-case disturbance distribution close to the nominal one,

thereby anticipating mismatches between the actual and nominal distributions during

both the control and estimation stages.

Fig. 4.8 (b) illustrates the total out-of-sample cost induced by our method for dif-

ferent values of θ andN estimated for 10,000 disturbance samples drawn from the true

distribution. The results are averaged over 1,000 independent simulation runs. Simi-

lar to the previous scenario, the cost slightly decreases as the radius increases up to

θ = 10−3 and the cost increases thereafter.

Fig. 4.9 showcases the effect of distributional uncertainties in measurement noise.

Specifically, it demonstrates the total costs incurred by the WDRC and LQG methods

for measurement noise covariance matrix M estimated using different samples. It is

evident that even for only 10 samples, the average performance of WDRC reaches that

of LQG with fully known measurement noise distribution. These results illustrate the

capabilities of our method to account for erroneous measurement noise information al-

though the proposed controller is designed to achieve distributional robustness in terms

of disturbances. Using the worst-case distribution in the state estimator in our approach
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(a) (b)

Figure 4.8: (a) Histogram of the total costs incurred by the LQG and WDRC methods,

and (b) out-of-sample cost of WDRC in the case of uniform disturbances.

induces additional robustness to the Kalman filter, yielding better overall performance

even for a small sample size compared to the standard LQG control method.

4.7 Conclusions

In this work, we have presented a novel WDRC method for discrete-time partially ob-

servable linear systems. We have proposed an approximation scheme for reformulat-

ing the original WDRC problem into a tractable one. The approximate problem is first

solved in finite-horizon settings, resulting in a closed-form expression of the optimal

control policy with the corresponding Riccati equation. The mean vector of the worst-

case distribution is also found in closed form, while the covariance matrix is found

as the solution of a tractable SDP problem. The results for the finite-horizon prob-

lem were extended to the infinite-horizon setting by observing the asymptotic behav-

iors of the optimal policy pair and the cost. Consequently, we obtained a steady-state

control policy by solving an ARE. The proposed method has several salient features,

such as guaranteed cost property, probabilistic out-of-sample performance guarantee,

and closed-loop stability. The experiment results demonstrate the capabilities of our

method to immunize partially observable linear systems against distributional ambi-
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Figure 4.9: Effect of measurement noise uncertainty on the total cost incurred by the

LQG and WDRC methods averaged over 1,000 simulation runs in the case of uniform

disturbances. The shaded regions represent 25% of the standard deviation.

guity.

4.8 Appendix

4.8.1 Intractability of Minimax LQ Control Problems with Wasserstein

Penalty under Partial Observations

Consider the partially observable system (4.1) and the corresponding minimax control

problem (4.5) in a finite horizon:

min
π∈Π

max
γ∈Γ

J̃λT (π, γ),

where

J̃λT (π, γ) = Ey

[
ExT [x

⊤
TQfxT | IT ]+

T−1∑
t=0

Ext [x⊤t Qxt+u⊤t Rut | It, ut]−λW2(Pt,Qt)
2

]
.
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To solve the minimax control problem using DP, we define the value function recur-

sively as follows:

Ṽt(It) := inf
ut∈Rnu

sup
Pt∈P(Rnx )

Ext [x⊤t Qxt + u⊤t Rut − λW2(Pt,Qt)
2

+ Eyt+1 [Ṽt+1(It, yt+1, ut) | It, ut]
(4.58)

with

ṼT (IT ) := ExT [x
⊤
TQfxT | IT ].

In fully observable settings, a common approach to solving the inner maximization

problem in (4.58) is to use Kantorovich duality [40]. The most tractable case is when

the nominal distribution Qt is chosen as the empirical distribution (4.51). In this case,

Kantorovich duality can be expressed as

sup
P∈P(Rnx )

Ew[f(x,w)]− λW2(P,Q)2

=
1

N

N∑
i=1

sup
w∈Rnx

{
f(x,w)− λ∥ŵ(i) − w∥2

}
,

(4.59)

where f : Rnx×Rnx → R is some function depending on the disturbance w and some

fixed parameters x.

However, unlike the fully observable case, the uncertainty of the system is rep-

resented by the output yt+1 and not wt directly. Therefore, if we can write the value

function (4.58) in a way that has the form of the left-hand side in (4.59), then Kan-

torovich duality can be applied analogously to the fully observable settings. To this

end, we recursively solve (4.58) to check whether a specific form of the value function

is preserved. For time t = T − 1, the value function is given by

ṼT−1(IT−1) = inf
uT−1∈Rnu

ExT−1 [x
⊤
T−1QxT−1 | IT−1] + u⊤T−1RuT−1

+ sup
PT−1∈P(Rnx )

ExT−1,wT−1 [(AxT−1 +BuT−1 + wT−1)
⊤×

Qf (AxT−1 +BuT−1 + wT−1) | IT−1, uT−1]− λW2(PT−1,QT−1)
2.
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It follows from Kantorovich duality that

ṼT−1(IT−1) = inf
uT−1∈Rnu

ExT−1 [x
⊤
T−1QxT−1 | IT−1] + u⊤T−1RuT−1

+
1

N

N∑
i=1

sup
wT−1∈Rnx

{
ExT−1(AxT−1 +BuT−1 + wT−1)

⊤×

Qf (AxT−1 +BuT−1 + wT−1) | IT−1, uT−1]− λ∥ŵ(i)
T−1 − wT−1∥2

}
.

If the penalty parameter satisfies the condition λI ≻ Qf , then the inner maximiza-

tion problem for each i = 1, . . . , N has a unique maximizer w(i),∗, given by

w
(i),∗
T−1 := (λI −Qf )−1

[
Qf (AExT−1 [xT−1 | IT−1] +BuT−1) + λŵ

(i)
T−1

]
.

Solving the outer minimization problem with respect to uT−1 yields the following

unique minimizer:

u∗T−1 = −R−1B⊤(I +QfBR
−1B⊤ − 1

λ
Qf )

−1

×
(
AExT−1 [xT−1 | IT−1] +

1

N

N∑
i=1

ŵ
(i)
T−1

)
.

Then, the value function at time t = T − 1 has the following quadratic form:

ṼT−1 = ExT−1 [x
⊤
T−1PT−1xT−1 + ξ⊤T−1ST−1ξT−1 + 2r⊤T−1xT−1 | IT−1] + qT−1,

where ξT−1 = xT−1 − ExT−1 [xT−1 | IT−1] is the difference between the state and its

estimate, while PT−1, ST−1 ∈ Snx
+ , rT−1 ∈ Rnx and qT−1 ∈ R are coefficients.

Continuing the recursion for t = T − 2, the value function is written as

ṼT−2(IT−2) = inf
uT−2∈Rnu

ExT−2 [x
⊤
T−2QxT−2 | IT−2] + u⊤T−2RuT−2

+ sup
PT−2∈P(Rnx )

ExT−2,wT−2 [(AxT−2 +BuT−2 + wT−2)
⊤

× PT−1(AxT−2 +BuT−2 + wT−2)

+ 2r⊤T−1(AxT−2 +BuT−2 + wT−2) | IT−2, uT−2]

+ EyT−1,xT−1 [ξ
⊤
T−1ST−1ξT−1 | IT−1]

+ qT−1 − λW2(PT−2,QT−2)
2.
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Due to the structure of the expression inside the maximization, it is straightforward

that the value function does not have the form in (4.59). This is because the term

EyT−1,xT−1 [ξ
⊤
T−1ST−1ξT−1 | IT−1] cannot be represented by an expectation with re-

spect to wT−2, though it implicitly depends on the disturbances via xT−1 and yT−1.

Consequently, the standard LQR argument is not applicable to the minimax problem

with the Wasserstein penalty under partial observations.

4.8.2 Proofs

Proof of Lemma 4.2

Proof. Having the quadratic value function for time t+ 1 and plugging it into (4.12),

the value function for time t is given by

Vt(It) = inf
ut∈Rnu

sup
w̄t∈Rnx ,
Σt∈Snx

+

Ext [x⊤t Qxt | It] + u⊤t Rut

+ Ext,wt

[
(Axt +But + wt)

⊤Pt+1(Axt +But + wt)

+ 2r⊤t+1(Axt +But + wt) | It, ut
]
+ Ext+1,yt+1 [ξ

⊤
t+1St+1ξt+1 | It]

+ qt+1 − λ[∥w̄t − ŵt∥2 +B2(Σt, Σ̂t)].

Using the property that

E[w⊤
t Pt+1wt] = w̄⊤

t Pt+1w̄t +Tr[Pt+1Σt],

we further simplify the value function as

Vt(It) = inf
ut∈Rnu

sup
w̄t∈Rnx ,
Σt∈Snx

+

Ext [x⊤t Qxt | It] + u⊤t Rut

+ Ext
[
(Axt +But + w̄t)

⊤Pt+1(Axt +But + w̄t)

+ 2r⊤t+1(Axt +But + w̄t) | It, ut
]
− λ∥w̄t − ŵt∥22 + Ext+1,yt+1 [ξ

⊤
t+1St+1ξt+1 | It]

+ Tr[(Pt+1 − λI)Σt] + 2λTr[(Σ̂
1/2
t ΣtΣ̂

1/2
t )1/2]− λTr[Σ̂t] + qt+1.

Note that

Ext+1,yt+1 [ξt+1 | It] = 0,

126



and Ext+1,yt+1 [ξt+1ξ
⊤
t+1 | It] is independent of ut and w̄t. Thus, the objective function

for the inner maximization problem

Ext
[
(Axt +But + w̄t)

⊤Pt+1(Axt +But + w̄t) + 2r⊤t+1(Axt +But + w̄t) | It, ut
]

− λ∥w̄t − ŵt∥22 + Ext+1,yt+1 [ξ
⊤
t+1St+1ξt+1 | It]

+ Tr[(Pt+1 − λI)Σt] + 2λTr[(Σ̂
1/2
t ΣtΣ̂

1/2
t )1/2]

can be written separately in terms of w̄t and Σt, enabling to solve two independent

maximization problems. Specifically, the two problems are as follows:

max
w̄t∈Rnx

Ext
[
(Axt +But + w̄t)

⊤Pt+1(Axt +But + w̄t)

+ 2r⊤t+1(Axt +But + w̄t) | It, ut
]
− λ∥w̄t − ŵt∥22

and

max
Σt∈Snx

+

Ext+1,yt+1 [ξ
⊤
t+1St+1ξt+1 | It] + Tr[(Pt+1 − λI)Σt + 2λ(Σ̂

1/2
t ΣtΣ̂

1/2
t )1/2].

Regarding the first problem for w̄t, the Hessian of value function with respect

to w̄t is negative definite under the assumption on the penalty parameter λ. Thus,

the objective is strictly concave, and its unique maximizer given control input ut is

obtained from the first-order optimality condition as

w̄∗
t (ut) = (λI − Pt+1)

−1
(
Pt+1[Atx̄t +Btut] + rt+1

)
.

Note that the maximizer of the second problem is independent of the control input

ut. For the outer minimization problem with respect to ut, we first differentiate the

objective function with respect to ut ∈ Rnu to obtain the following derivative:

2

[
B +

∂w̄∗
t (ut)

∂ut

]⊤
[Pt+1(Ax̄t +But + w̄∗

t (ut)) + rt+1]

− 2λ
∂w̄∗

t (ut)

∂ut
(w̄∗

t (ut)− ŵt) + 2Rut

= 2B⊤gt(ut) + 2Rut,

where

gt(ut) := Pt+1(Ax̄t +But + w̄∗
t (ut)) + rt+1.
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Differentiating the derivative with respect to ut again, we can check that the Hessian of

the objective function is positive definite under the assumption on the penalty parame-

ter λ. Thus, the unique minimizer u∗t can be obtained by using the first-order optimality

condition:

u∗t = −R−1B⊤g∗t . (4.60)

For further simplifications, we let w̄∗
t = w̄∗

t (u
∗
t ) and rewrite it as

w̄∗
t =

1

λ

(
Pt+1(Ax̄t +Bu∗t + w̄∗

t ) + rt+1 + λŵt
)
,

which yields the following expression for g∗t :

g∗t = Pt+1

(
Ax̄t −BR−1B⊤g∗t +

1

λ
g∗t + ŵt

)
+ rt+1.

Finally, we have

g∗t = (I + Pt+1Φ)
−1(Pt+1Ax̄t + Pt+1ŵt + rt+1) (4.61)

and

w̄∗
t =

1

λ
g∗t + ŵt.

We conclude the proof by replacing (4.61) into (4.60).

Proof of Theorem 4.1

Proof. We use mathematical induction backward in time to prove the theorem. For

t = T , by definition, the value function is in the desired form

VT (IT ) = ExT [x
⊤
T PTxT |IT ].

Now, it suffices to show that Vt is in the required form, given that Vt+1 is in that
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form. Specifically, the value function at time t can be written as

Vt(It) = inf
ut∈Rnu

sup
w̄t∈Rnx ,
Σt∈Snx

+

Ext [x⊤t Qxt | It] + u⊤t Rut

+ Ext,wt

[
(Axt +But + wt)

⊤Pt+1(Axt +But + wt)

+ 2r⊤t+1(Axt +But + wt) | It, ut
]
+ Ext+1,yt+1 [ξ

⊤
t+1St+1ξt+1 | It]

− λ[∥w̄t − ŵt∥2 +B2(Σt, Σ̂t)] + qt+1 +

T−1∑
s=t+1

Eyt+1 [zt(It, ut, yt+1, s) | It, ut].

It follows from the law of total expectation that

Eyt+1 [zt+1(It, ut, yt+1, s) | It, ut] = zt(It, s),

which is independent of w̄t, Σt, and ut. Therefore, by Lemma 4.2, the mean vec-

tor (4.16) and the covariance matrix solving (4.19) are an optimal solution pair of the

inner maximization problem. Moreover, the optimal value of (4.19) corresponds to

zt(It, t). Meanwhile, the outer minimization problem has a unique optimal solution

given as (4.13). By plugging these values into the Bellman equation, we have

Vt(It) =Ext [x⊤t Qxt | It] + (g∗t )
⊤BR−1B⊤g∗t −

1

λ
(g∗t )

⊤g∗t − λTr[Σ̂t] + qt+1

+ Ext
[
(Axt − Φg∗t + ŵt)

⊤Pt+1(Axt − Φg∗t + ŵt)

+ 2r⊤t+1(Axt − Φg∗t + ŵt) | It, ut
]
+ zt(It, t) +

T−1∑
s=t+1

zt(It, s).

It remains to simplify the expression by substituting the values for rt and qt as

in (4.22) and (4.23). Then, the value function for time t can be written as

Vt(It) = Ext [x⊤t (Q+A⊤Pt+1A)xt | It]− x̄⊤t Stx̄t + 2r⊤t x̄t + qt +

T−1∑
s=t

zt(It, s),
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where St = A⊤Pt+1Φ(I + Pt+1Φ)
−1Pt+1A. This can be expressed as

Vt(It) =Ext [x⊤t (Q+A⊤Pt+1A− St)xt | It] + Ext [ξ⊤t Stξt + 2r⊤t xt | It]

+ qt +
T−1∑
s=t

zt(It, s)

=Ext [x⊤t Ptxt + ξ⊤t Stξt + 2r⊤t xt | It] + qt +
T−1∑
s=t

zt(It, s),

which is in the desired form with parameters (4.20)–(4.24). This completes our induc-

tive argument.

So far, we have shown that the value function is measurable, and the outer min-

imization problem in the Bellman equation (4.12) admits an optimal solution. Thus,

it follows from the DP principle that the control policy π∗ constructed as that in the

theorem statement is optimal. Moreover, if (4.24) admits an optimal solution Σ∗
t for

all t, the policy pair (π∗t , γ
∗
t ) is minimax optimal.

Proof of Proposition 4.1

First, we notice that X̄t+1 = Ext+1,yt+1 [ξt+1ξ
⊤
t+1 | It]. It follows from the Kalman

filter recursion (4.26) and (4.27) that zt(It, t) is equal to the optimal value of (4.19),

which in its turn is equivalent to the following optimization problem:

max
X,X−,
Σ∈Snx

+

Tr[St+1X + (Pt+1 − λI)Σ + 2λ(Σ̂
1/2
t ΣΣ̂

1/2
t )1/2]

s.t. X = X− −X−C⊤(CX−C⊤ +M)−1CX−

X− = AX̄tA
⊤ +Σ,

where X̄t is the state covariance matrix conditioned on the information vector It. The

objective function here is continuous and jointly concave in Σ, X− and X due to the

positive semidefiniteness of St+1 and Assumption 4.1. Therefore, the problem has an

optimal solution and we can obtain optimal (Σ∗, X∗), corresponding to Σ∗
t and X̄t+1.

The reformulation into the SDP form (4.28) is performed by using the property that
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Tr[St+1X] ≤ Tr[St+1X
′] for any X ⪯ X ′ and then applying the Schur comple-

ment lemma to replace the inequality constraints with the corresponding linear matrix

inequalities.

Proof of Proposition 4.2

Proof. The proof follows from the asymptotic property of the Riccati equation for the

standard LQ control. Specifically, we rewrite the Riccati equation (4.20) as follows:

Pt = Q+A⊤(I + Pt+1Φ
1/2I−1(Φ1/2)⊤)−1Pt+1Q

= Q+A⊤(Pt+1 − Pt+1B̃(R̃+ B̃⊤Pt+1B̃)−1B̃⊤Pt+1)A,
(4.62)

where R̃ = I , B̃ = Φ1/2. Consider a hypothetical linear system (A, B̃) with a

quadratic cost function replacing R with R̃. It is evident that (4.62) has the form of the

standard Riccati equation for this hypothetical LQ control problem. It follows from

the standard LQ control theory that if the pair (A, B̃) is stabilizable and (A,Q1/2)

is detectable, then there exists a Pss ⪰ 0 such that (4.29) holds for any PT ⪰ 0.

Furthermore, it is the unique solution of the ARE (4.30) [4, Proposition 3.1.1].

Proof of Lemma 4.3

Proof. It follows from Proposition 4.2 that Pt → Pss as T →∞, and thus the conver-

gence of {St} to Sss is straightforward. Moreover, rt is updated according to

rt = A⊤(I + PssΦ)
−1(rt+1 + Pssŵ)

as T → ∞. Thus, to ensure the convergence of {rt}, it suffices to show that A⊤(I +

PssΦ)
−1. For this, we revisit the proof of Proposition 4.2 and notice that the ARE can

be expressed as

Pss = Q+A⊤(Pss − PssB̃(R̃+ B̃⊤PssB̃)−1B̃⊤Pss)A,

where R̃ = I and B̃ = Φ1/2. Then, the optimal control gain matrix for the hypothet-

ical LQ control problem for the linear system (A, B̃) with a quadratic cost function
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replacing R with R̃ is given by

K̃ = (R̃+ B̃⊤PssB̃)−1B̃⊤PssA,

and the closed-loop “A” matrix is

A+ B̃K̃ = A− B̃(R̃+ B̃⊤PssB̃)−1B̃⊤PssA,

which is stable because (A, B̃) is stabilizable. SinceA⊤(I+PssΦ)
−1 = (A+ B̃K̃)⊤,

it is also a stable matrix. Therefore, {rt} converges to its limit, which is obtained

as (4.32).

Proof of Proposition 4.3

Proof. It follows from Theorem 4.1 that the finite-horizon cost incurred by the policy

pair (π∗ss, γ
∗
ss) is given by

JλT (π
∗
ss, γ

∗
ss) = Ey0

[
Ex0 [x⊤0 P0x0 + ξ⊤0 S0ξ0 + 2r⊤0 x0 | I0]

]
+ q0

+
T−1∑
t=0

(
Tr[St+1X̄t+1 + (Pt+1 − λI)Σ∗

ss] + 2λTr[(Σ̂1/2Σ∗
ssΣ̂

1/2)1/2]
)
,

where X̄t+1 is the state covariance matrix computed using Σ∗
ss. It follows from (4.41)

that {X̄t+1} converges to X̄ss as T → ∞. By the convergence of Pt, St, and rt, as

well as the recursion for qt, the steady-state average cost is given by

ρ = lim sup
T→∞

1

T
JλT (π

∗
ss, γ

∗
ss)

=Tr[SssX̄ss + (Pss − λI)Σ∗
ss + 2λ(Σ̂1/2Σ∗

ssΣ̂
1/2)1/2]

+ (2ŵ − Φrss)
⊤(I + PssΦ)

−1rss − λTr[Σ̂] + ŵ⊤(I + PssΦ)
−1Pssŵ.

The first term in the last equation corresponds to the optimal value zss of the maxi-

mization problem (4.39). Therefore, the result follows.

Proof of Proposition 4.4

Proof. We first rewrite h as

h(It) = Ext [x⊤t Pssxt + ξ⊤t Sssξt + 2r⊤ssxt | It]
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with Ext [ξtξ⊤t | It] = Xt ≡ X̄ss. Next, we apply Lemma 4.2 by letting Vt+1 ≡ h,

or, by setting Pt+1 = Pss, St+1 = Sss, rt+1 = rss, and qt+1 = 0. Then, the minimax

problem on the right-hand side of (4.45) has the optimal value of

Ext [x⊤t Ptxt + ξ⊤t Stξt + 2r⊤t xt | It] + qt + zt(It, t),

where

Pt = Q+A⊤(I + PssΦ)
−1PssA

St = Q+A⊤PssA− Pss

rt = A⊤(I + PssΦ)
−1(rss + Pssŵ)

qt = (2ŵ − Φrss)
⊤(I + PssΦ)

−1rss + ŵ⊤(I + PssΦ)
−1Pssŵ − λTr[Σ̂],

and

zt(It, t) = sup
Σt∈Snx

+

Tr[SssX̄t+1] + Tr[(Pss − λI)Σt + 2λ(Σ̂1/2ΣtΣ̂
1/2)].

It follows from the ARE (4.30) that Pt = Pss, while from (4.31) and (4.32) we

have St = Sss and rt = rss, respectively. Since X̄t+1 = X̄ss is stationary, the maxi-

mization problem (4.39) yields zt(It, t) = zss with its maximizer corresponding to the

stationary covariance matrix Σ∗
ss. Moreover, we have

X̄ss = X̄−
t+1 − X̄

−
t+1C

⊤(CX̄−
t+1C

⊤ +M)−1CX̄−
t+1

X̄−
t+1 = AX̄tA

⊤ +Σ∗
ss,

which is valid only if X̄t = X̄ss. As a result, the optimal value of the minimax problem

is equal to

x̄⊤t Pssx̄t + 2r⊤ssx̄t +Tr[(Sss + Pss)X̄ss] + qt + zss.

Thus, the equality in (4.45) holds. The optimality of the solution pair (π∗ss(It), γ
∗
ss(It))

follows directly from Lemma 4.2.
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Proof of Proposition 4.5

Proof. Fix an arbitrary control policy π := (π0, π1, . . . ) ∈ Π. We first show that

J̄λT (π, γ
∗
ss) ≥ Tρ+ Ey0 [h(I0)] (4.63)

using mathematical induction. For T = 0, J̄λ0 (π, γ
∗
ss) = Ey0 [h(I0)]. Suppose that the

induction hypothesis is true for T = k. When T = k + 1, it follows from Proposi-

tion 4.4 that

J̄λk+1(π, γ
∗
ss) ≥ J̄λk (π, γ∗ss)− Ey0:k [h(Ik)] + ρ+ Ey0:k [h(Ik)]

≥ (k + 1)ρ+ Ey0 [h(I0)].

This completes our inductive argument.

Dividing both sides of (4.63) by T and taking lim sup, we obtain that

J̄λ∞(π, γ∗ss) ≥ ρ, (4.64)

which holds for any control policy π ∈ Π.

Now, for any π ∈ Π̄, the left-hand side of (4.64) is equivalent to

J̄λ∞(π, γ∗ss) = lim sup
T→∞

1

T
Ey[h(IT ) | π, γ∗ss]

+ lim sup
T→∞

1

T
Ey

[ T−1∑
t=0

Ext [x⊤t Qxt | It] + u⊤t Rut − λG(Pt,Qt)
2 | π, γ∗ss

]
= Jλ∞(π, γ∗ss),

(4.65)

with the last equality following from the condition (4.47). Combining (4.64) and (4.65)

yields

Jλ∞(π, γ∗ss) ≥ ρ ∀π ∈ Π̄.

Using a similar argument, we can show that

Jλ∞(π∗ss, γ) ≤ ρ ∀γ ∈ Γ̄.

Therefore, (π∗ss, γ
∗
ss) is minimax optimal, and the optimal value corresponds to ρ.
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Proof of Proposition 4.6

Proof. Since γ∗ ∈ Γ, it is admissible to the original minimax control problem (4.5).

Also, by Lemma 4.1, if the nominal distribution Qt is elliptical, then (4.8) holds with

equality, yielding

Jλ∞(π, γ∗) = J̃λ∞(π, γ∗) ∀π ∈ Π.

Therefore,

Jλ∞(π∗, γ∗) = inf
π∈Π

Jλ∞(π, γ∗) ≤ J̃λ∞(π, γ∗) ∀π ∈ Π.

On the other hand, Lemma 4.1 implies that

Jλ∞(π∗, γ∗) = sup
γ∈Γ

Jλ∞(π∗, γ)

≥ sup
γ∈Γ

J̃λ∞(π∗, γ) ≥ J̃λ∞(π∗, γ) ∀γ ∈ Γ.

Finally, we obtain that

J̃λ∞(π∗, γ) ≤ Jλ∞(π∗, γ∗) ≤ J̃λ∞(π, γ∗) ∀(π, γ) ∈ Π× Γ.

This implies that (π∗, γ∗) is minimax optimal to the original problem (4.5).

Proof of Theorem 4.3

Proof. Fix λ > 0. Let LHS := supγ∈Γ̄D
J∞(πλ,⋆ss , γ) and RHS := θ2λ + ρ(λ) with

Γ̄D := Γ̄ ∩ ΓD. For any ε > 0, there exists γε ∈ Γ̄D such that

LHS− ϵ < J∞(πλ,⋆ss , γ
ε).

By Lemma 4.1 and the definition of the Wasserstein ambiguity set Dt, we have

G(Pt,Qt)
2 ≤W2(Pt,Qt)

2 ≤ θ2 ∀Pt ∈ Dt.

Thus, it follows from γϵ ∈ Γ̄D and the definitions of J∞ and Jλ∞ that

J∞(πλ,⋆ss , γ
ε) ≤ θ2λ+ Jλ∞(πλ,⋆ss , γ

ε)

≤ θ2λ+ sup
γ∈Γ̄

Jλ∞(πλ,⋆ss , γ) = θ2λ+ ρ(λ).

Since ϵ was arbitrarily chosen, LHS ≤ RHS as desired.
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Proof of Theorem 4.4

Proof. It follows from the measure concentration inequality (4.53) that for a Wasser-

stein ambiguity set with radius θ chosen according to (4.54), the following probabilis-

tic bound holds:

PN{w |W2(P,Q) ≤ θ} ≥ 1− β,

meaning that the true distribution P lies in the ambiguity set with a probability no less

than (1− β).

Moreover, Theorem 4.3 suggests

J∞(π
λ(θ),∗
ss,w , γ) ≤ θ2λ(θ) + ρ(λ(θ)) ∀γ ∈ Γ̄D.

Finally, the true distribution P belongs to the ambiguity set D with a probability no

less than (1 − β), the inequality holds with the same probability, thereby concluding

the proof.

Proof of Proposition 4.7

Proof. The mean-state system under the optimal policy (π∗ss, γ
∗
ss) can be written as

x̃t+1 =Ax̃t + (BKss +Hss)¯̄xt +BLss +Gss

¯̄xt+1 =(A+BKss +Hss − X̄ssC
⊤M−1CA)¯̄xt

+BLss +Gss + X̄ssC
⊤M−1CAx̃t.

(4.66)

Let et := x̃t − ¯̄xt be the error state, representing the difference between the ex-

pected values of the true state and its estimate. Then, the error state evolves according

to

et+1 = (A− X̄ssC
⊤M−1CA)(x̃t − ¯̄xt)

= (A− X̄−
ssC

⊤(CX̄−
ssC

⊤ +M)−1CA)et,

where the last equation follows from the identity

X̄ssC
⊤M−1 = X̄−

ssC
⊤(CX̄−

ssC
⊤ +M)−1.
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For the steady-state Kalman filter, it is known that under Assumption 4.4 the PSD

matrix X̄−
ss solves the filter ARE (4.40). Therefore, the corresponding closed-loop gain

matrixA−X̄−
ssC

⊤(CX̄−
ssC

⊤+M)−1CA has eigenvalues strictly within the unit circle,

yielding

lim
t→∞

et = 0.

On the other hand, it follows from (4.66) that

x̃t+1 = (A+BKss +Hss)x̃t − (BKss +Hss)et +BLss +Gss. (4.67)

To show the convergence of {x̃t+1}, we rewrite Hss and Gss as

Hss =
1

λ
(I + PssΦ)

−1PssA

Gss =
1

λ
(I + PssΦ)

−1(Pssŵ + rss) + ŵ.

Substituting the above expressions and those for Kss and Lss into (4.67), we obtain

x̃t+1 = (I+ΦPss)
−1Ax̃t+Φ(I+PssΦ)

−1PssAet+(I−Φ(I+PssΦ−A⊤)−1Pss)ŵ.

In the proof of Lemma 4.3, we have shown that (I +ΦPss)
−1A is stable. Thuse, {x̃t}

converges to (4.56) as t tends to infinity. Since ¯̄xt = x̃t − et, {¯̄xt} also converges

to (4.56).

Moreover, if ŵ = 0, then limt→∞ x̃t = 0 and limt→∞ ¯̄xt = 0 as desired.

Proof of Proposition 4.8

Proof. Consider an adversarial policy γ′ ∈ Γ that maps the information vector to

some distribution with a mean vector w̄t and a covariance matrix Σ, such that the pair

(A,Σ1/2) is stabilizable. When the policy pair (π∗ss, γ
′) is applied to the mean-state

system, the error state defined in the proof of Proposition 4.7 has the following form:

et+1 = (A− X̄−
ss,γ′C

⊤(CX̄−
ss,γ′C

⊤ +M)−1CA)et,

where X̄−
ss,γ′ is the solution to the filter ARE (4.40) with disturbance distribution Pt =

γ′(It). Analogous to the proof of Proposition 4.7, the error state et converges to the
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origin regardless of the control gain matrix Kss since (A − X̄−
ss,γ′C

⊤(CX̄−
ss,γ′C

⊤ +

M)−1CA) has eigenvalues strictly within the unit circle. The expected value of the

state estimate for the mean-state system can now be written as

¯̄xt+1 = Ã¯̄xt +BLss + E[wt] + X̄ss,γ′C
⊤M−1CAet, (4.68)

where Ã := A+BKss is the closed-loop gain matrix and X̄ss,γ′ is the conditional state

covariance matrix under the adversary’s policy γ′. When viewing the disturbances wt

as input, the above system is BIBO stable as long as E[wt] is bounded and the matrix

Ã has eigenvalues strictly within the unit circle. Therefore, it is sufficient to show that

for the system

¯̄xt+1 = Ã¯̄xt

with an arbitrary initial state ¯̄x0, the expected value of the estimated state converges to

the origin, i.e, ¯̄xt → 0 as t→∞.

Using the closed-loop system matrix Ã, the ARE (4.30) is equivalent to

Pss = Q+ Ã⊤PssÃ+K⊤
ssRKss + Ã⊤Pss(λI − Pss)−1PssÃ.

Therefore, we have

¯̄x⊤t+1Pss ¯̄xt+1 − ¯̄x⊤t Pss ¯̄xt = ¯̄x⊤t (Ã
⊤PssÃ− Pss)¯̄xt

= −¯̄x⊤t (Q+K⊤
ssRKss + Ã⊤Pss(λI − Pss)−1PssÃ)¯̄xt

≤ 0,

where the last inequality follows from Q ⪰ 0, R ≻ 0 and (λI − Pss)−1 ≻ 0 under

Assumption 4.1. We also deduce that

¯̄x⊤t+1Pss ¯̄xt+1 = ¯̄x⊤0 P ¯̄x0 −
t∑

k=0

¯̄x⊤k (Q+K⊤
ssRKss + Ã⊤Pss(λI − Pss)−1PssÃ)¯̄xk.

However, as Pss ⪰ 0, the left-hand side of the above inequality is no less than zero.

Since we have already shown that ¯̄x⊤t (Q+K⊤
ssRKss+Ã

⊤Pss(λI−Pss)−1PssÃ)¯̄xt ≥

0 for each t,

lim
t→∞

¯̄x⊤t (Q+K⊤
ssRKss + Ã⊤Pss(λI − Pss)−1PssÃ)¯̄xt = 0.
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This implies that

lim
t→∞

Q1/2 ¯̄xt = 0, lim
t→∞

Kss ¯̄xt = 0. (4.69)

Recall that (A,Q1/2) is observable under Assumption 4.3. Furthermore, the rela-

tion ¯̄xt+1 = (A+BKss)¯̄xt yields

Q1/2(¯̄xt+nx−1 −
∑nx−1

i=1 Ai−1BKss ¯̄xt+nx−i−1)

Q1/2(¯̄xt+nx−2 −
∑nx−2

i=1 Ai−1BKss ¯̄xt+nx−i−2)
...

Q1/2(¯̄xt+1 −BKss ¯̄xt)

Q1/2 ¯̄xt


=



Q1/2Anx−1

Q1/2Anx−2

...

Q1/2A

Q1/2


¯̄xt.

From (4.69) the left-hand side tends to zero and hence the right-hand side also tends to

zero. However, by the observability assumption the matrix on the right-hand side has

full rank, implying that ¯̄xt → 0. Therefore, the eigenvalues of Ã lie strictly within the

unit circle, and the system (4.68) is BIBO stable. Since x̃t = et− ¯̄xt and E[yt] = Cx̃t,

we conclude that the mean-state system is also BIBO stable.

139



Chapter 5

Distributionally Robust Differential Dynamic Program-

ming with Wasserstein Distance

5.1 Introduction

Nonlinear optimal control problems are difficult to solve exactly, particularly when

the state space dimension is high. Differential dynamic programming (DDP) allevi-

ates this issue using locally-quadratic approximations of the system dynamics and cost

function [191–196]. It efficiently computes an approximate solution with superior scal-

ability compared to the standard dynamic programming (DP) approach. However, it is

generally challenging to apply DDP to systems with random disturbances without any

means to counteract them.

Although various works have extended DDP to handle stochastic systems, existing

methods often rely on either the ground truth or potentially inaccurate approximate

probability distributions of disturbances. For example, the DDP algorithms introduced

in [197–200] either consider Gaussian multiplicative noise or model the uncertain sys-

tem dynamics as Gaussian processes. Another line of research is devoted to the min-

imax formulation of the DDP problem (e.g., [201, 202]), where the optimal control

problem is solved in the face of the worst-case disturbances. However, such methods
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often lead to overly conservative solutions.

To address the limitations of stochastic DDP methods and handle systems with

unknown disturbance distributions, we propose a novel approach inspired by distribu-

tionally robust control (DRC). The objective of DRC is to design control policies that

maximize the worst-case performance over a set of candidate distributions without as-

suming a specific distribution of disturbances. Several techniques have been proposed

for hedging against distributional uncertainties in DRC problems, including moment-

based and statistical distance-based approaches [31, 33, 174, 177, 179, 181, 182, 203].

While moment-based approaches rely on accurate moment estimates and may not ef-

fectively capture the full distributional information about the uncertainties, distance-

based methods consider distributions that are close to a given nominal one in terms of

a statistical distance measure. Many recent works have focused on Wasserstein DRC

(WDRC) [30, 42, 204–206], where the ambiguity set is designed as a statistical ball

with the distance between two distributions measured by the Wasserstein metric. The

Wasserstein ambiguity set has salient features, including a finite-sample performance

guarantee and the ability to avoid pathological solutions to distributionally robust op-

timization (DRO) problems [39, 40, 43].

Despite numerous attempts, existing WDRC methods still face challenges in terms

of tractability and scalability. For instance, the DP-based approach introduced in [30]

for solving the WDRC problem results in a semi-infinite program, requiring computa-

tionally expensive state-space discretization or sampling. To overcome this limitation,

both [30] and [42] propose a relaxation technique with a penalty on the Wasserstein

distance, which leads to an explicit solution in the linear-quadratic (LQ) setting. While

these works focus on the theoretical analysis of the obtained policies, this study aims

to design a practical and computationally efficient algorithm for solving the nonlinear

WDRC problem.

In particular, a novel DDP method is developed through a locally quadratic ap-

proximation of a nonlinear WDRC problem, where the true disturbance distribution
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is unknown but a disturbance sample dataset is given. By construction, the proposed

distributionally robust DDP (DR-DDP) algorithm provides control policies that are

robust against inevitable inaccuracies in empirical distributions of the disturbance. To

make the method tractable, we first approximate the WDRC problem with its penalty

version and then apply the Kantorovich duality principle. We show that the proposed

approximation provides a suboptimal solution to the original WDRC problem. The

value function is then decomposed in a novel way that enables deriving computa-

tionally tractable and efficient backward and forward passes. This allows us to obtain

closed-form expressions for the distributionally robust control and worst-case distri-

bution policies in each iteration of the DR-DDP algorithm. By avoiding the need to

numerically solve minimax optimization problems, our approach makes the algorithm

not only tractable but also scalable. The scalability of our DDP method is a remarkable

advantage because the computational complexity of the standard DP algorithm in [30]

for nonlinear WDRC increases exponentially with the dimension of the state space.

The experiment results on kinematic car navigation and coupled oscillator problems

indicate that our algorithm outperforms existing methods in terms of out-of-sample

performance and provides scalable solutions for high-dimensional nonlinear optimal

control problems.

5.2 Preliminaries

In this section, we introduce the WDRC problem used in our development of the DR-

DDP algorithm in Section 5.3.

5.2.1 Distributionally Robust Control

Consider the following discrete-time stochastic system:

xt+1 = f(xt, ut, wt), (5.1)
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where xt ∈ Rnx and ut ∈ Rnu are the system states and control inputs, respectively.

Here, wt ∈ Rnw is a random disturbance with an unknown (true) distribution Qtrue
t ∈

P(Rnw), where P(Rnw) is the family of all Borel probability measures supported on

Rnw . The nonlinear function f : Rnx × Rnu × Rnw → Rnx is assumed to be twice

continuously differentiable.

In practice, it is restrictive to assume that the true probability distribution Qtrue
t

is known. Instead, we are often given a sample dataset Dt := {ŵ(1)
t , ŵ

(2)
t , . . . , ŵ

(N)
t }

drawn from the true distribution, which can be used to construct an empirical estimate

about the distribution of wt as

Qt :=
1

N

N∑
i=1

δ
ŵ

(i)
t
,

where δ
ŵ

(i)
t

denotes the Dirac measure concentrated at ŵ(i)
t . It is well-known that as

N → ∞, the empirical distribution asymptotically converges to the true distribution.

However, if an inaccurate empirical estimate is used in the controller design, the re-

sulting control performance will deteriorate due to a mismatch between the true and

empirical distributions.

To hedge against such distributional uncertainties, we adopt a game-theoretic ap-

proach and consider a two-player zero-sum game in which Player I is the controller

and Player II is a hypothetical adversary. Let π := (π0, . . . , πT−1) denote the control

policy, where πt maps the state xt to a control input ut. The adversary player selects a

policy γ := (γ0, . . . , γT−1), where γt maps the current state to a probability distribu-

tion Pt chosen from an ambiguity set Dt ⊂ P(Rnw). The ambiguity set is a family of

distributions that possess certain properties to be described.

Throughout this paper, our goal is to design an optimal finite-horizon controller

with the following cost functional:

J(π, γ) := Eπ,γ
[
ℓf (xT ) +

T−1∑
t=0

ℓ(xt, ut)
]
,

where ℓ : Rnx×Rnu → R and ℓf : Rnx → R are the twice continuously differentiable
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running and terminal costs, respectively, and T is the time horizon. In our problem, the

controller seeks a policy π∗ minimizing the cost function, while the adversary aims to

find a policy γ∗ to maximize the same cost, which can be obtained by solving the

following DRC problem:

min
π∈Π

max
γ∈ΓD

J(π, γ), (5.2)

where Π := {π | πt(xt) = ut ∈ Rnu , ∀t} and ΓD := {γ | γt(xt) = Pt ∈ Dt, ∀t} are

the sets of admissible control and distribution policies, respectively.

5.2.2 Wasserstein Ambiguity Set

In problem (5.2), the adversary player is restricted to select a distribution from the

ambiguity set Dt, which determines the characteristics of the worst-case distribution.

Therefore, it is necessary to design the ambiguity set to appropriately characterize

distributional errors. Motivated by its advantages mentioned in Section 5.1, we use the

Wasserstein ambiguity set constructed around the given empirical distribution. The

Wasserstein metric of order p between two distributions P and Q supported onW ⊆

Rn represents the minimum cost of redistributing mass from one distribution to another

using a small non-uniform perturbation and is defined as

Wp(P,Q) := inf
τ∈P(W2)

{(∫
W2

∥x− y∥p dτ(x, y)
)1/p∣∣Π1τ = P,Π2τ = Q

}
,

where τ is the transport plan with Πiτ denoting its ith marginal distribution, and ∥ · ∥

is a norm on Rn which quantifies the transportation cost.

In this work, we consider the Wasserstein metric of order p = 2 with the trans-

portation cost represented by the standard Euclidean norm. We design the ambiguity

set as follows:

Dt := {Pt ∈ P(Rnw) |W2(Pt,Qt) ≤ θ}, (5.3)

where θ > 0 determines the size of Dt. The ambiguity set (5.3) is a statistical ball cen-

tered at the empirical distribution Qt and contains all distributions whose Wasserstein

distance from the empirical distribution is no greater than radius θ.
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5.3 Distributionally Robust Differential Dynamic Program-

ming

In this section, we present our main result, called DR-DDP, which efficiently finds an

approximate solution to the WDRC problem. Our method exploits the Kantorovich

duality principle to decompose the value function in a novel way and devise a compu-

tationally tractable algorithm.

5.3.1 Approximation with Wasserstein Penalty

In [42], the tractability and effectiveness of a penalty version of the WDRC prob-

lem are studied. Motivated by this work, we begin our reformulations by replacing

the Wasserstein ambiguity set constraint with a penalty term in the cost function as

follows:

Jλ(π, γ) := Eπ,γ
[
ℓf (xT ) +

T−1∑
t=0

ℓ(xt, ut)− λW2(Pt,Qt)
2
]
,

where λ > 0 is the penalty parameter adjusting the conservativeness of the controller.

Then, the following minimax control problem approximates the original WDRC

problem (5.2):

min
π∈Π

max
γ∈Γ

Jλ(π, γ), (5.4)

where the adversary player selects policies from Γ := {γ := (γ0, . . . , γT−1) | γt(xt) =

Pt ∈ P(Rnw)}. Note that the adversary is not restricted to select distributions from the

ambiguity set. Instead, we penalize large deviations from the empirical distribution via

the penalty term, thus limiting the freedom of the adversary player.

We demonstrate in the following proposition that the cost incurred by an arbitrary

policy π ∈ Π under the worst-case distributions within the Wasserstein ambiguity set

has a guaranteed cost property with respect to the worst-case penalized cost. Hence, the

penalty problem (5.4) is a reasonable approximation as it yields a suboptimal solution

to the WDRC problem (5.2).
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Proposition 5.1. Given λ > 0, let π ∈ Π be any arbitrary policy. Then, the cost

incurred by π under the worst-case distribution policy in ΓD is upper-bounded as

follows:

sup
γ∈ΓD

J(π, γ) ≤ λTθ2 + sup
γ∈Γ

Jλ(π, γ). (5.5)

Its proof can be found in Appendix 5.6.1. The guaranteed cost property indicates

the role of the penalty parameter λ in adjusting the robustness of the control policy,

thereby providing a guideline on its selection. Specifically, the penalty parameter can

be chosen to yield the least upper bound in (5.5) under the given control policy.14

To formalize our algorithm, we recursively define the optimal value function for

problem (5.4) as follows:

Vt(x) := inf
π∈Π

sup
γ∈Γ

Eπ,γ
[
ℓf (xT ) +

T−1∑
s=t

ℓ(xs, us)− λW2(Ps,Qs)
2 | xt = x

]
for t = T − 1, . . . , 0, with the terminal condition VT (x) = ℓf (x). Then, the DP

principle yields

Vt(x) = inf
u∈Rnu

sup
P∈P(Rnw )

ℓ(x,u) + Ew∼P
[
Vt+1(f(x,u, w))− λW2(P,Qt)

2

]
(5.6)

with the optimal cost given by

J∗
λ := inf

π∈Π
sup
γ∈Γ

Jλ(π, γ) = V0(x0).

Unfortunately, the standard procedure for DDP cannot be applied to the value func-

tion (5.6) as it constitutes an infinite-dimensional optimization problem over P(Rnw).

For tractability, we employ a modern DRO technique based on the Kantorovich duality

principle [30, 207] and reformulate the value function as follows.

14The value of λ heavily depends on the choice of the Wasserstein ambiguity set radius θ, which is

typically chosen to attain a probabilistic out-of-sample performance guarantee, given a finite dataset of

disturbance samples (e.g., [39, 43]).
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Proposition 5.2. Suppose that for each (x,u) ∈ Rnx × Rnu , the value function is

measurable and that the outer minimization problem in (5.6) has an optimal solution.

Then, for any λ > 0, we have that

Vt(x) = inf
u∈Rnu

ℓ(x,u) + Eŵt∼Qt

[
sup

w∈Rnw

Vt+1(f(x,u,w))− λ∥ŵt −w∥2
]
, (5.7)

for all x ∈ Rnx .

Its proof can be found in Appendix 5.6.2. While previous works (e.g., [30]) use

similar approaches to reformulate and analyze the solution to the WDRC problem, our

focus is on designing a practical and efficient method for obtaining tractable solutions.

For that, we let

Q
(i)
t (x,u,w) := ℓ(x,u) + Vt+1(f(x,u,w))− λ∥ŵ(i)

t −w∥2

denote the state-action-disturbance value function or the Q-function for each sample

index i = 1, . . . , N and

Q
∗,(i)
t (x,u) = sup

w∈Rnw

Q
(i)
t (x,u,w)

denote the corresponding “worst-case” state-action value function. Then, we obtain

that

Vt(x) = inf
u∈Rnu

1

N

N∑
i=1

Q
∗,(i)
t (x,u). (5.8)

It is worth emphasizing that the Kantorovich duality principle enables us to obtain this

novel decomposition of the value function, which can be used to design a computa-

tionally tractable DR-DDP solution in the following subsection.

5.3.2 Solution via DDP

In each iteration of the original DDP algorithm, a backward pass is performed on the

current estimate of the state and control trajectories, called the nominal trajectories,

followed by a forward pass. In the backward pass, the cost function and the system
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dynamics are quadratically approximated around the nominal trajectories to update the

policy, while in the forward pass, the nominal trajectories are recomputed by executing

the latest policy to the system. We adopt this technique for our problem and derive the

backward and forward passes for the value function (5.7). The proposed DR-DDP

method is presented in Algorithm 5.

Backward Pass

In each backward pass, we are given nominal state, control input, and disturbance tra-

jectories x̄nom = (x̄0, . . . , x̄T ), ūnom = (ū0, . . . , ūT−1) and w̄nom = (w̄0, . . . , w̄T−1),

respectively. For quadratic approximations, DDP considers the following deviations of

the system state, control input, and disturbance, i.e., δxt := xt − x̄t, δut := ut − ūt,

δwt := wt − w̄t.

We first consider the following second-order approximation of Vt+1(xt+1):

Vt+1 + V ⊤
t+1,xδxt+1 +

1

2
δx⊤t+1Vt+1,xxδxt+1, (5.9)

for some (Vt+1, Vt+1,x, Vt+1,xx) ∈ R × Rnx × Rnx×nx to be determined.15 Let Q̂(i)
t

be an approximate Q-function, defined by replacing Vt+1 in the definition of Q(i)
t with

the approximate value function (5.9). Then, Q̂(i)
t (xt, ut, wt) is twice differentiable and

its second-order Taylor expansion is given by

Q
(i)
t + δQ

(i)
t (δxt, δut, δwt), (5.10)

where

δQ
(i)
t (δxt, δut, δwt) = Q⊤

t,xδxt +Q⊤
t,uδut +Q

(i)
t,w

⊤
δwt +

1

2
∆Qt(δxt, δut, δwt)

with

∆Qt(δx, δu, δw) :=


δx

δu

δw


⊤ 

Qt,xx Qt,xu Qt,xw

Q⊤
t,xu Qt,uu Qt,uw

Q⊤
t,xw Q⊤

t,uw Qt,ww



δx

δu

δw


15If Vt+1 is twice differentiable, the parameters (Vt+1, Vt+1,x, Vt+1,xx) can be simply determined

using the second-order Taylor expansion.
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and 

Q
(i)
t = J (x̄t, ūt) + Vt+1 − λ∥w̄t − ŵ(i)

t ∥2

Qt,xx = ℓt,xx + f⊤t,xVt+1,xxft,x + V ⊤
t+1,xft,xx

Qt,uu = ℓt,uu + f⊤t,uVt+1,xxft,u + V ⊤
t+1,xft,uu

Qt,ww = f⊤t,wVt+1,xxft,w − 2λI + V ⊤
t+1,xft,ww

Qt,xu = ℓt,xu + f⊤t,xVt+1,xxft,u

Qt,xw = f⊤t,xVt+1,xxft,w, Qt,uw = f⊤t,uVt+1,xxft,w

Qt,x = ℓt,x + f⊤t,xVt+1,x, Qt,u = ℓt,u + f⊤t,uVt+1,x

Q
(i)
t,w = f⊤t,wVt+1,x − 2λ(w̄t − ŵ(i)

t ).

Here, ft,· and ℓt,· denote the partial derivatives of f and ℓ evaluated at (x̄t, ūt, w̄t).

Let ˆ̄wt := Eŵt∼Qt [ŵt] and Σ̂t := Eŵt∼Qt [(ŵt − ˆ̄wt)(ŵt − ˆ̄wt)
⊤] denote the em-

pirical mean vector and covariance matrix of disturbance wt, respectively. The above

approximation transforms the problem (5.8) into a quadratic form similar to those ad-

dressed in [30,42]. This approximation enables us to explicitly solve the problem with

respect to δut and δwt, as presented in the following theorem.

Theorem 5.1. Let Qt,ww ≺ 0 and ℓt,uu ≻ 0. Suppose the value function at time

t + 1 is approximated as (5.9). Then, the outer minimization problem in (5.8) with

Q
(i)
t (xt, ut, wt) replaced by the approximation (5.10) has the following unique mini-

mizer:

δu∗t = Ktδxt + kt, (5.11)

where

Kt = −Q̃t(Q⊤
t,xu −Qt,uwQ−1

t,wwQ
⊤
t,xw)

kt = −Q̃t(Qt,u −Qt,uwQ−1
t,wwQ̄t,w)

(5.12)

with Q̃t := (Qt,uu −Qt,uwQ−1
t,wwQ

⊤
t,uw)

−1 and Q̄t,w := f⊤t,wVt+1,x − 2λ(w̄t − ˆ̄wt).

Moreover, for each i = 1, . . . , N , the maximization problem in (5.8) withQ(i)
t (xt, ut, wt)

replaced by the approximation (5.10) has the following unique solution:

δw
∗,(i)
t = Htδxt + h

(i)
t , (5.13)

149



where

Ht = −Q−1
t,ww[Q

⊤
t,uwKt +Q⊤

t,xw]

h
(i)
t = −Q−1

t,ww[Q
⊤
t,uwkt +Q

(i)
t,w].

(5.14)

Proof. Let δw(i)
t := w

(i)
t − w̄t. Evaluating the approximate Q-function (5.10) for

δw
(i)
t , we see that it is strictly concave in δw(i)

t as Qt,ww ≺ 0. Then, the first-order

optimality condition yields the following unique maximizer:

δw
∗,(i)
t = −Q−1

t,ww(Q
⊤
t,xwδxt +Q⊤

t,uwδut +Q
(i)
t,w). (5.15)

ReplacingQ(i)
t (xt, ut, wt) with the approximation (5.10), the objective function in (5.8)

is quadratically approximated as

1

N

N∑
i=1

[
Q

(i)
t + δQ

(i)
t (δxt, δut, δw

∗,(i)
t )

]
= Q̄t +Q⊤

t,xδxt +Q⊤
t,uδut + Q̄⊤

t,wδw
∗
t

+
1

2
∆Qt(δxt, δut, δwt

∗
),

where

δw
∗
t :=

1

N

N∑
i=1

δw
∗,(i)
t = −Q−1

t,ww(Q
⊤
t,xwδxt +Q⊤

t,uwδut + Q̄t,w)

and

Q̄t := ℓt(x̄t, ūt) + Vt+1 − λ∥w̄t − ˆ̄wt∥2 − λTr[Σ̂t]− 2λ2Tr[Q−1
t,wwΣ̂t].

To minimize this approximated objective function with respect to δut, the following

first-order optimality condition can be used:

0 =Qt,u +Qt,uuδut +Q⊤
t,xuδxt +Qt,uwδw

∗
t

+
∂δw

∗
t

∂δut

⊤

(Q̄t,w +Q⊤
t,xwδxt +Q⊤

t,uwδut +Qt,wwδw
∗
t ).

By the strong convexity of the quadratic approximation, its minimizer is uniquely

given by

δu∗t = −Q̃t
(
Qt,u −Qt,uwQ−1

t,wwQ̄t,w + [Q⊤
t,xu −Qt,uwQ−1

t,wwQ
⊤
t,xw]δxt

)
,
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which is equivalent to (5.11). By substituting δu∗t into (5.15), we obtain the maximizer

defined in (5.13).

Theorem 5.1 provides the remarkable advantage that a DR-DDP policy pair (π̄∗, γ̄∗)

is constructed in the following closed-form without numerically solving any infinite-

dimensional minimax optimization problems:

π̄∗t (xt) = ūt +Kt(xt − x̄t) + kt (5.16a)

γ̄∗t (xt) =
1

N

N∑
i=1

δ
(w̄t+h

(i)
t +Ht(xt−x̄t))

. (5.16b)

As a result of the backward pass, we also obtain the following equations for updating

the parameters of the approximate value function (5.9):

Vt = Q̄t +Q⊤
t,ukt + Q̄⊤

t,wht +
1

2
k⊤t Qt,uukt +

1

2
h⊤t Qt,wwht + k⊤t Qt,uwht

Vt,x =Qt,x +Qt,xukt +K⊤
t (Qt,u +Qt,uukt +Quwht)

+Qxwht +H⊤
t (Q̄t,w +Qt,wwht +Q⊤

t,uwkt)

Vt,xx =Qt,xx +K⊤
t Qt,uuKt +H⊤

t Qt,wwHt + 2Qt,xuKt

+ 2K⊤
t Qt,uwHt + 2Qt,xwHt,

(5.17)

where ht := 1
N

∑N
i=1 h

(i)
t .

In practice, it is not common to assume that control inputs are unrestricted. Often,

the control inputs are limited to some box constraints u ≤ ut ≤ u. Taking into ac-

count such control limits requires a careful design of the backward pass as it is required

to minimize the approximate state-action value function subject to the constraints. To

find a closed-form solution to the constrained problem for all δxt, we use the pro-

jected Newton-based approach proposed in [192], where the control gains are found

by solving a quadratic program.

In the next step, the nominal trajectories have to be reconstructed using the DR-

DDP policy pair (π̄∗, γ̄∗) to update the quadratically approximated models, which is

performed during the forward pass introduced in what follows.
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Forward Pass

In the original DDP algorithm, the forward pass is performed by executing the control

policy to the system. However, due to the disturbance term in the system dynamics

and lack of knowledge about its true distribution, it is not trivial to perform forward

rollouts for the ambiguous stochastic system (5.1). Instead, we choose to execute the

control and distribution policy pair (π̄∗, γ̄∗) in the following manner.

First, using (5.16a) and (5.16b), we construct a control input ut = ūt + αkt +

Kt(xt−x̄t) and sample a disturbance realization aswt ∼ 1
N

∑N
i=1 δw̄t+αh

(i)
t +Ht(xt−x̄t)

,

where α ∈ (0, 1) is a line-search parameter. Since DDP is a second-order method and

potentially takes large steps, regularization is required to prevent the blow-up of the

value. Therefore, we multiply kt and h(i)t by scaling a parameter α ∈ (0, 1) and per-

form a line-search. In particular, the line-search parameter alpha is iteratively reduced

to improve the total cost. Then, both the control input and the disturbance sample are

executed to the system for t = 0, . . . , T − 1 starting from the initial state x0.16

5.4 Numerical Experiments

In this section, we compare the empirical performance of our DR-DDP method with

three baseline algorithms: GT-DDP [201], which uses a minimax approach to consider

the worst-case disturbances, box-DDP [192], a deterministic DDP algorithm that ig-

nores uncertainties in the controller design but considers box constraints on control

inputs, and NR-DDP, the non-robust version of our DR-DDP algorithm that utilizes

the empirical distribution.

In our experiments, we choose the penalty parameter λ to minimize the cost upper

bound (5.5) for θ = 0.1 under the DR-DDP policy pair (π̄∗, γ̄∗). We estimate the upper

16The complexity of a single iteration of our algorithm is bounded by O
(
T (n3

x+n3
u+(N+nw)n

2
w)

)
,

which is polynomial in state, input and disturbance dimensions and linear in the time horizon and sample

size.
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Algorithm 5: DR-DDP algorithm

1 Input: x0, πinit, γinit, T, λ

2 Apply (πinit, γinit) to generate (x̄nom, ūnom, w̄nom)

3 while not converged do

// Backward Pass

4 VT ← ℓf (x̄T ), VT,x ← ℓf,x, VT,xx ← ℓf,xx

5 for t = T − 1 to 0 do

6 Construct (π̄∗t , γ̄
∗
t ) using (5.16a) and (5.16b)

7 Update Vt, Vt,x, Vt,xx according to (5.17)

// Forward Pass

8 Perform line-search to update α

9 for t = 0 to T − 1 do

10 Compute ut = ūt + αkt +Kt(xt − x̄t)

11 Sample wt ∼ 1
N

∑N
i=1 δw̄t+αh

(i)
t +Ht(xt−x̄t)

12 Execute ut and wt to (5.1) and observe xt+1

13 x̄nom ← x0:T , ūnom ← u0:T−1, w̄nom ← w0:T−1

14 return (π̄∗, γ̄∗)

bound by conducting 1,000 independent Monte Carlo simulations and computing the

Wasserstein distance via a linear program. The optimal penalty parameter is then found

via numerical optimization. Note that this procedure does not require knowledge of the

true disturbance distribution.

All simulations were performed on a PC with a 3.70 GHz Intel Core i7-8700K pro-

cessor and 32 GB RAM. The source code of our DR-DDP implementation is available

online.17

17https://github.com/CORE-SNU/DR-DDP
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Figure 5.1: Trajectories of the kinematic car, controlled by GT-DDP, box-DDP, NR-

DDP, and DR-DDP, in the presence of a randomly moving obstacle. Star marks repre-

sent collisions.

5.4.1 Kinematic Car Navigation

In the first experiment, we consider an autonomous navigation task for a kinematic car

in an intersection where a randomly moving obstacle obstructs navigation. Consider

the following system:

xt+1 =

xcart+1

pobs
t+1

 =

 fcar(x
car
t , ut)

pobs
t +∆pobs

t + wt


with system state xt ∈ R5 and control input ut ∈ R2. Here, xcart ∈ R3 represents the

car’s state evolving according to the differential-drive kinematics fcar : R3×R2 → R3

and consists of the car’s center position p and its heading angle ϕ. The control input

vector comprises the velocity and steering angle of the car and has a lower limit of u =

[0,−0.6]⊤ and an upper limit of u = [10, 0.6]⊤. The state component pobs
t represents
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the position vector of a random circular obstacle with radius robs = 0.2. It is assumed

that in each time instance, the obstacle has a nominal deterministic motion represented

by ∆pobs
t ∈ R2, which is obstructed with a positional disturbance vector wt ∈ R2.

Each component of the disturbances follows a uniform distribution U(−0.1, 0.1). Our

DR-DDP algorithm uses only N = 10 samples drawn from the true distribution. The

goal is to safely pass the intersection by tracking the given reference trajectory xref and

avoiding the obstacle in T = 800 steps. For this purpose, we design a time-varying

cost function as

ℓt(x, u) := ∥xcar − xreft ∥2Q + ∥u∥2R +Qobs exp

(
−0.5 ∥p− pobs∥2

(robs + rsafe)2

)
,

where the last term is a soft constraint for avoiding the obstacle with a safe margin

of rsafe = 0.2. The weights are chosen as Q = 10I,R = 0.1I and Qobs = 20. The

terminal cost is similar to the running cost with no control cost. The penalty parameter

is set to λ = 9000 found as the minimizer of the upper bound in (5.5).

Fig. 5.1 shows the trajectories of the kinematic car for a single realization of the

disturbances, while Table 5.1 summarizes the computational requirements of each al-

gorithm. Only DR-DDP successfully avoids the obstacle and accomplishes the task, re-

sulting in the lowest total cost. Even though both box-DDP and NR-DDP drive the car

away from the reference path, they collide with the obstacle, leading to increased total

costs due to the soft constraint for collision avoidance. This is because box-DDP com-

pletely disregards uncertainties, while NR-DDP relies solely on inaccurate disturbance

information. Meanwhile, GT-DDP incurs extremely high costs as it fails to drive the

car away from the obstacle. Despite the distinct behaviors exhibited by the two algo-

rithms, the average total computation times for DR-DDP and GT-DDP are quite similar

(less than 25 sec.), indicating their comparable computational efficiency. To validate

our results, we conducted 1,000 independent simulation runs to measure the out-of-

sample performance of each method, which are reported in Table 5.1.18 The proposed

18The out-of-sample performance of the controller is defined as Ewt∼Qtrue
t [ℓf (xT ) +
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Table 5.1: Out-of-sample cost, total computation time, and average computation time

per iteration for all algorithms computed over 1,000 simulations.

DR-DDP GT-DDP box-DDP NR-DDP

Out-of-sample cost 176.713 198.611 225.335 211.461

Total comp. time (sec.) 24.133 23.357 9.642 18.241

Comp. time per. iter. (sec.) 0.203 0.342 0.092 0.125

DR-DDP algorithm achieves an out-of-sample cost as low as 176.713, while box-

DDP, NR-DDP, and GT-DDP demonstrate worse out-of-sample performance costs of

225.335, 211,461, and 198.611, respectively. These findings demonstrate the effective-

ness of our algorithm in addressing distributional uncertainties in nonlinear stochastic

systems.

5.4.2 Synchronization of Coupled Oscillators

In the second experiment, we demonstrate the scalability of our algorithm through a

synchronization problem withL coupled noisy oscillators using the following discrete-

time Kuramoto model [208]:

η
(i)
t+1 = η

(i)
t +∆t

(
ωi +Kut

L∑
j=1

sin(η
(j)
t − η

(i)
t )

)
+ w

(i)
t ,

where i = 1, . . . , L. Here, xt = [η
(1)
t , . . . , η

(L)
t ]⊤ ∈ RL is the system state, and ut ∈ R

is the control input. For each i-th oscillator, η(i)t represents its phase, ω(i) is its natural

frequency, K is the coupling strength, and ∆t = 0.03 sec. is the discretization step.

We assume the frequencies ω(i) and disturbances w(i)
t follow Gaussian distributions∑T−1

t=0 ℓ(xt, π
∗
t (xt))], which is evaluated using 10,000 disturbance samples drawn from the true

distribution Qtrue
t and averaged over 200 simulations. It represents the expected total cost under a new

disturbance sample generated according to the true disturbance distribution Qtrue
t independent of the

sample dataset used in DR-DDP.
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N (0, 0.004) andN (0.001, 0.001), respectively. We aim to synchronize the oscillators

within a finite horizon of T = 100, assuming that only N = 50 disturbance samples

are available. For that, the cost function is designed as

ℓ(xt, ut) :=
L∑

i,j=1

sin2(η
(j)
t − η

(i)
t ) + 0.0001u2t ,

and the penalty parameter is chosen as λ = 10000 to minimize the upper bound (5.5).

To assess the scalability of our method, we evaluate the computation time to per-

form a single iteration of our DR-DDP algorithm depending on the number of oscil-

lators. The computation times required for our method and the three baselines, along

with the corresponding total costs, are presented in Fig. 5.2. As expected, the com-

putation time increases with the number of oscillators. However, consistent with the

theoretical complexity, the computation time grows as a polynomial function of the

state dimension, showing the superiority of our method over the DP algorithm. No-

tably, the computation time required to perform a single iteration of DR-DDP is almost

identical to the computation times required by box-DDP, NR-DDP, and GT-DDP. Fur-

thermore, our DR-DDP algorithm consistently returns the lowest out-of-sample cost

for any number of oscillators considered, successfully synchronizing the oscillators

despite the disturbances.

5.5 Conclusions

In this work, we have proposed a practical DR-DDP algorithm for solving nonlin-

ear stochastic optimal control problems with unknown disturbance distributions. Our

approach leverages WDRC to address limited distributional information. We refor-

mulated the quadratic approximation of value functions for WDRC using the Kan-

torovich duality principle and then solved it in a DDP fashion to obtain closed-form

expressions of the distributionally robust control and distribution policies in each iter-

ation. Our simulation results demonstrate the superior out-of-sample performance of
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(a) (b)

Figure 5.2: (a) Computation time per iteration (in seconds) and (b) out-of-sample cost

depending on the number of oscillators calculated over 1,000 simulations.

the proposed method compared to existing DDP methods, as well as its outstanding

scalability to high-dimensional state spaces. In the future, we plan to investigate the

theoretical properties of our algorithm, including its convergence rate and performance

guarantees.

5.6 Appendix

5.6.1 Proof of Proposition 5.1

Proof. The proof is based on the arguments used in [42, Lemma 4.1] for the LQ case.

Specifically, fix λ > 0. For any ε > 0, there exists γε ∈ ΓD such that

sup
γ∈ΓD

J(π, γ)− ϵ < J(π, γϵ).

Since γϵ ∈ ΓD, it follows that γεt (xt) = Pt ∈ Dt. Thus,

J(π, γϵ) ≤ λTθ2 + Jλ(π, γ
ϵ)

≤ λTθ2 + sup
γ∈Γ

Jλ(π, γ).

Since this inequality holds for any ε > 0, we conclude that (5.5) holds.
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5.6.2 Proof of Proposition 5.2

Proof. We first note that by the definition of the Wasserstein distance, the inner supre-

mum in (5.6) is equivalent to

sup
P∈P(Rnw )

Ew∼P
[
Vt+1(f(x,u, w))− λW2(P,Qt)

2

]
= sup

P∈P(Rnw )

∫
W
Vt+1(f(x,u, w))dP(w)

− λ inf
τ∈P(W2):

Π1τ=P,Π2τ=Qt

∫
W2

∥w − ŵ∥2 dτ(w, ŵ)

= sup
τ∈P(W2):
Π2τ=Qt

∫
W2

[
Vt+1(f(x,u, w))− λ∥w − ŵ∥2

]
dτ(w, ŵ)

(5.18)

According to the Kantorovich duality principle [39, 40],

W2(P,Q)2 = sup
φ,ψ∈Φ

[∫
W
φ(w)dP(w) +

∫
W
ψ(ŵ)dQt(ŵ)

]
,

where Φ := {(φ,ψ) ∈ L1(dw)×L2(dŵ) | φ(w)+ψ(ŵ) ≤ ∥w− ŵ∥2,∀w, ŵ ∈ W}.

Thus, for any (φ,ψ) ∈ Φ, we have that

ψ(ŵ) ≤ inf
w∈W

∥ŵ −w∥2 − φ(w)

for each ŵ ∈ W . Consequently, for any λ > 0, weak duality holds for the inner

problem as follows:

sup
τ∈P(W2):
Π2τ=Qt

∫
W2

[
Vt+1(f(x,u, w))− λ∥ŵ − w∥2

]
dτ(w, ŵ)

≤
∫
W

sup
w∈W

[
Vt+1(f(x,u,w))− λ∥ŵ −w∥2

]
dQt(w

′).

(5.19)

Using Proposition 1 in [207], we can further show that strong duality holds for the

inner problem for any λ > 0. We conclude the proof by substituting the expression for

the inner supremum into (5.6).
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have introduced several novel approaches to address the WDRC prob-

lem in situations where the controller has limited information about the uncertainty

distribution. Firstly, we have proposed a new DR-risk map tool for mobile robots oper-

ating in learning-enabled environments, which evaluates the risk of system unsafety in

a distributionally robust manner, despite errors in the learning process. To evaluate the

DR-risk map, we have introduced a computationally tractable SDP formulation with

probabilistic guarantees on the loss of safety. We have demonstrated the effectiveness

of this risk map for motion planning and control of mobile robots.

Next, we have improved the accuracy and efficiency of the learning-based motion

controller by employing a UT-based uncertainty propagation scheme. We have also

introduced a simple upper-bound replacement for the risk constraint, which proactively

limits the risk of unsafety even under learning errors.

Furthermore, we have addressed the WDRC problem for discrete-time partially ob-

servable linear systems and proposed a novel approximation scheme to obtain tractable

solutions. We have derived closed-form expressions of the control policy in both finite-

and infinite-horizon settings. The proposed method features several important proper-

ties, including guaranteed cost, probabilistic out-of-sample performance guarantees,

and closed-loop stability.
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Finally, we have presented a novel DR-DDP algorithm for solving the nonlinear

WDRC problem in situations where there is limited distributional information. Our

approach unifies the previously mentioned methods and provides an explicit controller

for nonlinear systems that can be readily applied in learning-enabled environments. We

have demonstrated the effectiveness of the proposed frameworks through numerical

experiments in various environments.

In conclusion, the contributions of this thesis provide novel approaches to address

the WDRC problem in situations where the controller has limited information about

the uncertainty distribution. These contributions have practical applications in various

fields, such as safe learning and risk-aware control of autonomous systems and robotic

decision-making with partial observations.

Future work includes applying the proposed methods to physical robots to validate

their effectiveness in real-world scenarios. Furthermore, enhancing the adaptivity of

the algorithms by updating the conservativeness in an online manner based on the ob-

served safety margin would be a promising direction for future research. Additionally,

extending the obtained results for partially observable settings to the case where the

probability distribution of measurement noise is unknown would further increase the

robustness of the proposed methods.
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[19] T. Başar and P. Bernhard, H∞ Optimal Control and Related Minimax Design

Problems: A Dynamic Game Approach. Springer Science & Business Media,

2008.

[20] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to

standardH2 andH∞ control problems,” in IEEE American Control Conference.

IEEE, 1988, pp. 1691–1696.

[21] L. Xie, “Output feedback H∞ control of systems with parameter uncertainty,”

International Journal of Control, vol. 63, no. 4, pp. 741–750, 1996.

[22] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in

Robustness in identification and control. Springer, 2007, pp. 207–226.

[23] Z. Q. Zheng and M. Morari, “Robust stability of constrained model predictive

control,” in IEEE American Control Conference, 1993, pp. 379–383.

[24] W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust model
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초록

분포 강건 제어(Distributionally robust control, DRC)와 분포 강건 최적화(Dis-

tributionally robust optimization, DRO)는 최근에 스토캐스틱 시스템에서 부정확한

분포 정보를 처리하는 효과적인 방법으로 등장하였다. 본 연구에서는 시스템 또는

환경 모델의 불확실성에 대한 제한된 정보만이 주어진 자율 시스템에 대한 새로운

제어 방법을 개발한다. 이를 위해, 주어진 데이터를 이용하여 불확실성 분포를 추

정하고, 해당 분포를 중심으로 ambiguity set을 구성한다. Ambiguity set은 추정된

분포로부터 Wasserstein 거리가 주어진 반지름보다 작은 모든 분포를 포함한다. 추

정결과의불확실성을고려하기위해 ambiguity set내에서최악의경우분포에대한

최적제어문제를푼다.그러나이문제는무한차원최적화문제이기때문에, DRO

분야의최신도구를적용하여Wasserstein DRC(WDRC)문제를계산가능한형태로

바꾸는범용적인여러방법을개발한다.이방법들은다양한이론적특성을가지며,

여러응용분야에서탁월한성능을보인다.

본 연구에서 제안하는 첫 번째 방법은 학습 가능한 환경에서 이동 로봇의 동

작 계획과 제어를 위한 분포적으로 강건한 위험 함수(DR-risk map)이라는 새로운

안전평가방법을제안한다. DR-risk map은 Gaussian process regression(GPR)에의

해 움직임이 추론되는 장애물과의 충돌 위험성을 안정적으로 계산한다. 이 방법은

추론된 분포의 오류를 고려하기 위해 ambiguity set 내 최악의 분포에 대한 위험을

측정한다. 무한차원 특성으로 인한 문제를 해결하기 위해, DR-risk map의 상한을

해로갖는 semidefinite programming(SDP)문제를유도한다.더나아가 DR-risk map

을학습가능환경에서자율시스템의동작계획및제어를수행하기위해적용한다.

본 논문에서 제안하는 두번 째 방법은 unscented transform을 사용하는 새로운
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학습 기반의 동작 제어 도구이다, 이 방법은 GPR에서 이루어지는 불확실성 전파

에 unscented transform을 적용함으로써 분포 추정 정확성과 계산 효율성을 향상시

킨다. 또한, 임의의 안전 손실 함수에 대한 DR-risk 제약 조건을 대체하는 새로운

상한을제시한다.

분포겅건제어의아이디어는완전관찰가능시스템보다현실적인부분적관찰

가능한스토캐스틱시스템에도적용가능하다.특히본논문에서는부분적관찰가

능한선형스토캐스틱시스템을위한WDRC문제를고려하고, Wasserstein거리의

Gelbrich 상한을 이용한 새로운 근사 문제를 제안하고, 최적 제어 정책의 closed-

form표현과,최악의분포정책을찾는 SDP문제를 finite-horizon및 infinite-horizon

설정에서 모두 유도한다. 제안한 방법은 out-of-sample performance에 대한 보장과

안정성 등 여러 가지 중요한 이론적 특성을 가지며, 제어 정책의 분포 강건성을 보

장한다.

마지막으로, 일반적인 비선형 WDRC 문제를 해결하기 위한 새로운 분포 강건

한 differential dynamic programming방법을제시한다.이방법은비선형스토캐스틱

시스템에대한 closed-loop제어정책을제공하며,학습가능한환경에도적용가능

하다는측면에서열거한방법론들을포괄한다.이접근법은 value function의분해와

국소적이차근사를특징으로하여,최소-최대최적화문제를수치적으로풀필요없

이효율적이고고차원시스템에도쉽게적용가능하다.

다양한시스템에서실증적연구를통해본논문에서소개된방법론들의성능과

효율성을분석하고입증한다.결론적으로,본연구에서제안한방법들을통하여시

스템및환경,그리고추론결과의분포적불확실성을체계적으로다룰수있는제어

정책을제공한다.

주요어:분포강인최적화,분포강인최적제어,동작계획,동작제어,로봇안전

학번: 2021-37761
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