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Abstract

Meta-learning is a subfield of machine learning that aims to develop an algo-

rithm capable of rapid adaptation to new tasks. This quick adaptation of ma-

chines can be achieved by leveraging a meta-learner, which learns the learning

process rather than focusing on learning individual tasks. Then, the meta-

learner can be utilized to adapt machines for new tasks efficiently. Recently,

diverse meta-learning approaches have been introduced in this field, including

metric-based, optimization-based, and model-based methods, and applied to

many applications such as few-shot regression, few-shot classification, active

learning, and reinforcement learning. However, the conventional meta-learning

approaches, specifically the meta-learner, still have limitations, such as compu-

tational demands, scalability, and model over-fitting.

This thesis introduces a new Bayesian meta-learning approach called a

Meta-Variaitonal Dropout (MetaVD). MetaVD leverages a hyper-network to

approximate conditional dropout rates for each neural network weight. This fa-

cilitates quick reconfiguration of global learning and sharing neural networks for

new tasks while enabling data-efficient learning in the multi-task environment.

Several novel techniques regarding this framework are discussed, including the

low-rank approximation for memory-efficient mapping of dropout rates for the

entire neural network weights and a new shared variational prior interpretation

for regularizing the dropout posterior. MetaVD is a versatile approach that can

be applied to a wide range of conventional deep neural network algorithms. The

proposed methodology was tested and demonstrated excellent adaptation and

generalization performance in various few-shot learning applications, including

i



1d regression, image inpainting, and classification.

Federated learning (FL) is a research field in machine learning that aims to

train a global inference model from remotely distributed local clients, gaining

popularity due to its benefit of improving data privacy. However, conven-

tional FL approaches encounter many challenges in practical scenarios, includ-

ing model overfitting and diverging local models due to the limited and non-i.i.d.

data among clients’ devices. To address these issues, MetaVD is extended and

applied to the distributed environment. In the FL, the shared hypernetwork

is kept in the server and is learning to predict client-dependent dropout rates.

This allows an effect model personalization of FL algorithms in the limited non-

i.i.d. data settings. In addition, the posterior aggregation based on conditional

dropout posterior is also introduced. We performed extensive experiments on

various sparse and non-i.i.d. FL datasets. MetaVD demonstrated outstanding

classification accuracy and generalization performance, particularly for out-of-

distribution (OOD) clients. In addition, MetaVD compresses the local model

parameters needed for each client, reducing communication costs and improving

the calibration of the model prediction.

Overall, we propose a novel Bayesian meta-learning approach that can ad-

dress many challenges in few-shot learning and federated learning applications.

The conditional dropout posterior enables efficient model personalization, un-

certainty calibration, and outstanding predictive performance. Experimental

results show the excellent performance of the proposed approach. This con-

tributes to the development of meta-learning and application in real scenarios.

Keywords: Deep Learning, Meta-Learning, Bayesian Neural Network, Varia-

tional Dropout, Multi-task Learning, Few-shot Learning, Federated Learning

Student Number: 2012-23237
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Chapter 1

Introduction

1.1 Motivation

The evolution of deep learning in machine learning has resulted in remarkable

progress in numerous applications, ranging from image recognition to natural

language processing [1, 2, 3, 4]. The heart of this progress lies in the core as-

sumption that a large amount of (labeled or unlabeled) data is available for

training robust and generalizable models. However, this assumption may not

hold in many real-world situations (e.g., medical imaging, robotics, military AI,

and federated learning) due to the different devices, personal and environmental

conditions, and security issues. In addition, the collected data typically follow

a long-tail distribution1. The traditional deep-learning methods could be less

effective for the generalization in tasks with limited data environments [5].

On the other hand, humans often can quickly understand new tasks and

solve problems even from a few examples [6, 7, 8, 9]. A child does not require
1A distribution with a small number of tasks of high frequency and a large number of tasks

of low frequency. This brings many challenges: data imbalance, underfitting, and overfitting.
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Figure 1.1: A person who can ride snow-board might be able to learn to ride
skate-board or surfing-board quickly. This quick adaptation ability of humans
is due to the efficient generalization ability of their cognitive system.

thousands of images to differentiate between a dog and a cat. Instead, they can

quickly learn general concepts and then can infer new dogs and cats they have

never seen before. This remarkable learning efficiency of the human cognitive

system is referred to as meta-learning (or learning-to-learn) ability [7, 8]. Hu-

mans can adapt to new tasks quickly since they can utilize past experiences for

new learning. Humans do not just learn a task; they learn how to learn better.

The inquiry to develop machines with human-like adaptation efficiency has

long been an active research topic in machine learning [10, 8, 11, 12, 13]. Meta-

learning aims to design such machines that can seamlessly adapt to new tasks

and generalize successfully even with limited data. This pursuit has led to a

variety of different methodologies, including metric-based [14, 12, 13, 15, 16],

model-based [17, 18, 19, 20, 21], and optimization-based methods [22, 23, 24, 11,

25, 26]. A fundamental idea shared by them is the concept of a higher-level

learning algorithm, called a meta-learner, which, by drawing upon experiences

from multiple tasks, can generalize for new, unseen tasks. This mimics the

cognitive systems of humans, which enhance their adaptation capabilities for

new tasks based on accumulated knowledge and experiences.

While the conventional meta-learning approaches have shown considerable
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progress in many few-shot2 tasks. These methodologies have not yet entirely

overcome the issue of model overfitting yet [27]. Deep learning generally involves

a vast number of parameters [1, 3, 2]. The conventional meta-learning methods

are based on a point estimation of them. Thus, the meta-learner proposed in

the previous works are still prone to overfitting on unseen tasks; simultaneously

learning an adaptation-efficient but also robust meta-learner is difficult.

In response to this challenge, a new field known as Bayesian meta-learning

has recently emerged [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Bayesian deep learn-

ing, which reinterprets deep learning models using a probabilistic perspective

[37, 38, 39, 40, 41, 42, 43, 44], excels in preventing overfitting and quantifying

inherent uncertainties of the model. Thus, incorporating the uncertainty and

regularization mechanism into the meta-learning framework can improve the

generalization. The Bayesian perspective also provides a unifying view of vari-

ous existing approaches, broadening our understanding of meta-learning.

Despite those recent achievements, the field of Bayesian meta-learning is still

in the development stage and poses several challenges. The optimization-based

Bayesian approach [27, 28, 29, 36] is a universal approach since the adaptation of

meta-learner is based on stochastic gradient descent (SGD) algorithm. However,

they could require a costly computation of second-order derivatives, Hessians,

of parameters and additional memory space to keep the parameter particles.

On the other hand, the model-based approach [31, 32, 33, 34, 35] is more compu-

tationally efficient during testing than the optimization-based approach since

the adaptation process in amortized in a deep learning model. Nonetheless, the

model-based meta-learner like Neural Processes (NP) [33, 34, 45] exhibit under-

fitting and posterior-collapsing issues. Also, a hyper-network [46, 47, 48, 49]
2The few-shot learning assumes only a few examples (e.g., 1 or 5) are available for each

task, with the number of tasks being large [8].
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type of meta-learner, Versatile Amortized inference (VERSA) [50], can be chal-

lenging to scale due to the complexity of the meta-learner’s output, and they

still tend to overfit due to the lacking of explicit regularization mechanism [35].

These issues of robust adaptation and scalability can limit the practical applica-

bility of Bayesian meta-learning approaches in real-world scenarios. Motivated

by these challenges, in this thesis, we propose a new model-based Bayesian

meta-learning approach, leveraging the dropout [42, 44, 43, 51, 52] and Varia-

tional Inference (VI) [53, 1, 54, 2] techniques. This new approach offers a more

efficient and robust but also versatile deep meta-learning framework.

1.2 Contribution

The key contributions in this work can be summarized as follows:

Development of a Variational Dropout-based Meta-learning Approach

(Chapter 3) In this thesis, we propose a new model-based Bayesian meta-

learning approach called Meta-Variational Dropout (MetaVD). MetaVD is a

new type of meta-learner that is built on dropout techniques and variational

inference. MetaVD utilizes a model-based meta-learner to predict the task-

specific dropout rates for each weight of the agent neural network (NN). This

enables a quick reconfiguration of neural networks only by selectively switching

off a subset of the global NN’s weight. MetaVD can modulate various different

task functions into one NN while data-efficiently learning the weight from mul-

tiple different sources. Our approach is also computationally efficient relative

to the other model-based approach because the meta-learner only approximates

the dropout rates (or partial variance) instead of the full distributions of weight.

MetaVD also suffers less from the model-collapsing problem of the existing ap-

proach because the dropout can be efficiently applied to all layer of the agent
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NN model. To enable this advancement, several techniques, such as a low-rank

approximation of dropout rates, a shared and reversed prior distribution, and

a theoretical analysis of them, have been presented. In addition, MetaVD as-

sumes a well-posed Bayesian prior distribution for the meta-learner regulariza-

tion. This can not only improve the generalization of the model’s prediction but

also compress the size of the weight. Lastly, MetaVD is a versatile approach;

it can be combined with any existing (optimization-based) meta-learning or

regular deep-learning method without touching their necessary assumption.

Application of MetaVD in Few-Shot Learning (Chapter 4) We have

tested the MetaVD in various few-shot learning tasks: 1D regression, image

inpainting, classification, and active learning tasks. The key attribute of these

experiments was to support that the MetaVD can simultaneously improve the

adaptation by fitting the data while capturing the variability of task function

as well via the conditional dropout. To show this, we have provided a training

objective of the MetaVD for few-shot learning. We also derived a computa-

tionally efficient inference algorithm based on a local reparameterization trick

and stochastic gradient descent (SGD). We call this algorithm Neural Varia-

tional Dropout Processes (NVDPs), satisfying the exchangeable properity of a

stoachasitc process. The experimental results demonstrate our method achieved

outstanding performance compared to other model-based meta-learning meth-

ods [32, 34, 33, 55] in terms of many metrics such as log-likelihood, reconstruc-

tion, predictive accuracy for unseen tasks, and adaption efficiency.

Application of MetaVD in Federated Learning (Chapter 5) We have

extended the MetaVD to address non-i.i.d. and limited data issues in the Fed-

erated Learning (FL) domain, offering a novel Bayesian FL approach. MetaVD

5



was extended to approximate the dropout for effectively estimating the client’s

personal model. We also present an additional novel posterior aggregation

strategy based on the client-specific dropout uncertainty, enabling a more prin-

cipled Bayesian way to consolidate the distributed local models into a global

one. When applied to the conventional FL algorithms, MetaVD facilitates

flexible model personalization across diverse non-i.i.d. clients’ data, achieving

state-of-the-art results across a wide range of experimental scenarios, such as

different participation rates and multi-domain environments. In addition, the

hierarchical prior is also leveraged, enabling model compression and reducing

communication costs of exchanging the model weights for the efficient FL.

1.3 Thesis Organization

This thesis is structured as follows. Chapter 2 provides a quick background

for deep learning, Bayesian learning, and Variational Dropout (VD). We also

discuss the basic concept and recent developments of Bayesian meta-learning

and challenges in this field. In Chapter 3, We introduce the Variational In-

ference (VI) framework for meta-learning and dropout. Then, a new Bayesian

meta-learning approach, Meta-Variational Dropout (MetaVD), is presented. In

Chapter 4, we demonstrated the experimental results of our approach in the

various few-shot learning tasks. In Chapter 5, we further assess our approach

in the Federated Learning (FL) domain, illustrating the versatility of MetaVD

that can be combined with various other existing algorithms. Finally, we con-

clude the thesis in Chapter 6. Here, we summarize our findings, the potential

implications of our contributions to the field of machine learning, and the aim

for the future research.
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Chapter 2

Background

2.1 Neural Networks

Neural Networks (NNs) are a subset of the machine learning models built based

on a simple activation function called perception. Perceptron is a mathematical

model of how a neuron transmits an electrical signal in our brain [56]. NNs

consist of several layers of perceptrons, each of which utilizes a set of weights

to transform its input and then applies an activation function to the output.

Mathematically, a NN model can be defined as a function f : Rn → Rm

that maps an input vector x ∈ Rn to an output vector y ∈ Rm. For a NN with

L layers, the output for each l-th layer can be written as:

h(l) = f (l)(W(l)h(l−1) + b(l)) (2.1)

where h(l) is the output of the l-th layer, W(l) and b(l) are the weight matrix

and bias vector (or the model parameters) for each l-th layer respectively, and

h(0) = x. In the multilayer architecture, the output of one layer serves as a

new set of inputs for the following layer [1]. The activation function f (l) in the
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intermediate layer is typically set as a non-linear function (e.g., a sigmoid [3] or

ReLU [57]), making the NN a universal approximator [58] that can learn any

complex patterns among the data. The last activation function f (L) is often

set to be a softmax or an identity function depending on the machine learning

tasks (e.g., classification or regression). Then the NN function’s output can be

given as ŷ = f(x) = (f (1) ◦ · · · ◦ f (L))(x). An optimal set of NN parameters,

the weights and biases, is typically obtained by minimizing a predefined error

(or objective) function O(ŷ, y) through backpropagation and gradient descent

algorithms [1, 3, 59].

NN models are characterized by their hierarchical structure, which enables

them to learn complex representations of input data. Initial layers typically

capture low-level features, such as edges in an image, while deeper layers com-

bine these to interpret higher-level concepts [60, 61]. The capacity to learn

such high-level representations directly from raw data, without the need for

manual feature engineering, is a key advantage of deep learning. Recent ad-

vancements in deep architectures based on NNs, have led to the development

of models such as Convolutional Neural Networks (CNNs) [62],Recurrent Neu-

ral Networks (RNNs) [63], Long Short-Term Memory (LSTM) networks [64],

and attention models [65, 66]. These deep learning models have demonstrated

remarkable success across a range of machine learning tasks, from image gen-

eration to natural language processing [67, 68].

2.2 Maximum Likelihood Estimation of Neural Net-
works

Maximum Likelihood Estimation (MLE) is a statistical framework for optimiz-

ing a NN model. In machine learning, a conditional probability, or likelihood, is

often constructed with the NN model [1, 2]. For example, a simple probabilistic
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modeling of input x and output y can be described as follows:

p(y|x;ϕ) = 1√
2πσ2

exp
(
−
(y − fϕ(x))2

2σ2

)
(2.2)

Here, the likelihood model p(y|x;ϕ) is a Gaussian distribution. The output

of the NN model, fϕ(x), acts as a conditional mean of the distribution over

the output y. The parameters vectors of the NN model are represented by

ϕ = {(W(l), b(l))}Ll=1. The equation 2.2 indicates that a Gaussian noise is

added to the observed output (e.g., y = fϕ(x) + ϵ, where ϵ ∼ N(0, σ2) ) where

σ2 is the variance of random noise. Accounting for the noise in the data and

interpreting the NN as a conditional likelihood is a standard approach in prob-

abilistic machine learning1 since most real-world label data are often distorted

or corrupted by noise due to measurement or human errors.

Given a training dataset, D = (xi, yi)
N
i=1 withN independent and identically

distributed (i.i.d.) pairs of input and output data. The core principle of MLE is

to find the optimal model parameter ϕ that maximizes the likelihood model

p(y|x;ϕ) under the dataset D. The mathematical expression for the MLE

objective, L(ϕ), can be given as:

L(ϕ) = p(D;ϕ) =

N∏
i=1

p(yi|xi, ϕ). (2.3)

Each likelihood p(yi|xi, ϕ) represents the conditional probability of observing

the output yi given the input xi and NN parameter ϕ. Thus, the product of

the likelihoods for each individual data pair yields the probability of observing

the entire dataset.

In practice, we minimize the negative log-likelihood, −ℓ(ϕ) = − logL(ϕ) due

to mathematical convenience. Since the logarithm is a strictly increasing func-

tion, minimizing the negative log-likelihood maximizes the likelihood. Thus,
1For a classification problem, we assume a Bernoulli or Multinomial distribution.
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the optimal parameter under the MLE is typically expressed as:

ϕMLE = arg min
ϕ
−ℓ(ϕ) = arg min

ϕ

(
N∑
i=1

− log p(yi|xi;ϕ)
)
. (2.4)

If we assume the Gaussian likelihood model pϕ(y|x) defined by equation 2.2 and

a fixed noise variance σ2 = 1, the negative log-likelihood can be reduced to a

squared loss over the dataset, −ℓ(ϕ) ≃ 1
2

∑N
i=1(yi − fϕ(xi))2, which is a typical

error function used for the NN training in the classical regression problem2.

The minimization of the −ℓ(ϕ) with respect to the parameter ϕ is non-trivial

due to the complexity of the NN function. However, modern development in

the optimization algorithms, such as backpropagation, gradient descent, and

activation function such as ReLU, enables efficient optimal parameter search

under the framework of MLE [69].

Although MLE is a standard methodology for optimizing the NN model,

they do have limitations. As the number of training epochs in the gradient

descent algorithm increases, the model becomes increasingly adept at fitting

the training data. However, learning the training data too specific can lead to

a failure in generalizing to unseen data. This phenomenon, known as overfit-

ting [70, 71], occurs when the complexity of the model is high relative to the

available training data. The optimization process with MLE does not include

any regularization mechanism for the model complexity. As such, MLE typi-

cally requires a lot of training data to prevent the NN model from overfitting.

Unfortunately, accessing such large datasets is not always possible. From a

methodological perspective, the overfitting issue is further compounded by the

fixed point estimation of NN parameters. This is because a single set of NN

parameters cannot adequately learn the systemic uncertainty within the whole

dataset.
2If pϕ(y|x) is a Bernoulli distribution, the −ℓ(ϕ) is a binary entropy loss for classification.
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2.3 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are alternatives to traditional neural network

models, which employ Bayes’ theorem for the robust parameter optimization

[72, 73, 74]. Bayes’ theorem is a concept in probability theory and statistics

learning that describes the updating process of our prior belief of an event based

on new observations. From the model optimization perspective, this means that

we would like to learn a probability distribution over the NN parameters, p(ϕ),

(for weights and biases) using the dataset rather than a fixed point estimation of

them. The prior distribution also allows for incorporating previous knowledge

about the model parameter.

Suppose a training dataset D and the likelihood model p(y|x, ϕ) is given

as in the equation 2.2. Bayes’ rule can be applied to compute the posterior

distribution as follows:

p(ϕ|D) = p(ϕ)p(D|ϕ)
p(D)

=
p(ϕ)

∏N
i=1 p(yi|xi, ϕ)∏N

i=1

∫
ϕ p(yi|xi, ϕ)p(ϕ) dϕ

. (2.5)

In this equation, the likelihood p(D|ϕ) represents the probability of observing

the data, while the prior p(ϕ) reflects our initial beliefs about the NN model

parameters (e.g, the prior is often modeled as a Gaussian distribution). The

posterior distribution p(ϕ|D) represents the updated probability of the param-

eters after incorporating the observed data. Essentially, computing the optimal

posterior p(ϕ|D) is to goal in Bayesian learning. This posterior distribution over

the parameters in BNNs can help to mitigate the model overfitting issues and

also provides a means to quantify uncertainty in the model’s predictions.

Posterior Inference Computing the posterior distribution in equation 2.5

requires the computation of the evidence p(D): a normalization constant that

ensures the posterior distribution is a valid probability distribution. However,
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solving the internalization in the evidence is a difficult problem due to the com-

plexity of the parameter structure. Although there could exist a conjugate prior

relationship for a simple likelihood model, which allows a simple computation

of the posterior distribution. In the case of the likelihood model with a NN,

the direct computation of the exact posterior is computationally infeasible.

Therefore, various approximation methods for computing the posterior dis-

tribution of BNNs have been studied in the past. Buntine and Weigend [75]

proposed maximum-a-posteriori (MAP) schemes for neural networks and intro-

duced second-order derivatives in the prior distribution to encourage smooth-

ness in the approximate posterior distribution. Hinton and Van Camp [76]

later introduced variational methods that served as regularizers in NNs, with

the amount of information in weights controlled by adding Gaussian noise.

Hochreiter and Schmidhuber [64] incorporated an information theory perspec-

tive, utilizing a minimum description length (MDL) loss that penalized non-

robust weights based on perturbations of the weights on the outputs. Denker

and LeCun [77] and MacKay [74] investigated posterior probability distribu-

tions of neural networks using Laplace approximations. Neal [72] explored the

use of hybrid Monte Carlo methods for training neural networks, although scal-

ability remained a challenge for large networks in practical applications. More

recently, Graves [78] derived a variational inference scheme for neural networks,

and Blundell et al. [79] extended it with an unbiased update for the variance.

Dropout and Gaussian Dropout have also been viewed as approximate varia-

tional inference schemes [42, 80, 42].

BNNs with Markov Chain Monte Carlo sampling One straightforward

approach to approximating the posterior distribution in BNNs is the Markov

chain Monte Carlo (MCMC)method [72, 81]. MCMC methods for BNNs state
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Figure 2.1: An illustration of Bayesian Neural Network framework. qψ(ϕ) is
the prior distribution over the parameter ϕ of NN model p(y|x, ϕ). ψ is the
parameter of prior. Bayesian learning is a prior distribution learning.

that we can employ a predefined posterior distribution qψ(ϕ) to approximate the

exact posterior p(ϕ|D) via a simple sampling technique. This allows us to learn

a probability distribution over the model parameters instead of a deterministic

one. MC sampling technique for approximating the BNNs’ posterior can be

defined as follows:

L(ψ) =
1

S

S∑
s=1

p(y|x, ϕs) where ϕs ∼ qψ(ϕ) (2.6)

Here, the approximate posterior predictive distribution is obtained by sampling

from the approximate posterior distribution qψ(ϕ) and averaging the predictions

over the samples. S represents the number of samples used in the approxima-

tion; the more samples are taken, the better the distribution is approximated.

Here, the goal is to maximize a parameter ψ that defines the approximate pos-

terior distribution qψ(ϕ) rather than the original NN parameters ϕ. MCMC ap-

proach updates the posterior distribution using the samples obtained from the

partially updated posterior distribution. By iteratively updating the approxi-

mate posterior distribution on the subset of the dataset, it will reach the desired

equilibrium states, which can approximate the true posterior p(ϕ|D). Stochas-

tic Gradient Descent (SGD) [82] and parameterization trick [83] is commonly

used to optimize the parameter of approximating posterior ψ via maximizing
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the posterior distribution in the equation 2.6. Once the optimal approximate

posterior distribution qψ(ψ) is learned, we can also make predictions using the

posterior predictive distribution. The posterior predictive distribution provides

uncertainty quantification in predicting a new observation given the new input.

BNNs with Variational Inference Another popular approach to optimize

the BNNs is Variational Inference (VI) [76, 78, 79, 80, 84]. The VI approach sets

a variational posterior model qψ(ϕ) parameterized by a tractable parameter ψ

to approximate the true posterior distribution p(ϕ|D). The learning objective

in VI is the Kullback-Leibler divergence KL(qψ(ϕ)|p(ϕ|D)). In practice, the

optimization problem for the tractable variational posterior qψ(ϕ) is defined as:

log p(D) ≥ Eqψ(ϕ)[log p(y|x;ϕ)]−KL(qψ(ϕ)||p(ϕ)). (2.7)

The right side of equation 2.7, also referred to as the evidence lower bound

(ELBO), embodies a trade-off between the expected log-likelihood on the train-

ing dataset D and the KL term with some pre-specified prior distribution p(ϕ).

Maximizing the ELBO in equation 2.7 with respect to the tractable variational

parameter ψ is equivalent to minimizing the divergence KL(qψ(ϕ)||p(ϕ|D)).

Thus, the variational posterior qψ(ϕ) is closely optimized to the true posterior

distribution. Unlike the MCMC sampling technique, the VI technique utilizes

the explicit prior distribution p(ϕ) in the optimization to enable a stochastic

regularization for the qψ(ϕ), which can prevent the degeneration of the model.

Posterior Predictive distribution Once we learned the variational pos-

terior distribution qψ∗(ϕ) with an optimal variational parameter ψ∗ via the

MCMC sampling or VI, it can be utilized to approximate the posterior distri-

bution p(ϕ|D). The learned posterior distribution provides valuable insights

about the model parameter (e.g., the uncertainty and the structure of the
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parameter). One primary use of the posterior distribution is to compute the

posterior predictive distribution [1, 2, 85]. The posterior predictive distribution

allows us to predict the probability of the next data point given newly observed

data. Although computing the exact posterior predictive distribution for NNs

is difficult due to the complex parameter, we can approximate it by utilizing

the variational posterior with MCMC sampling technique [72, 81] defined as

follows:

p(ynew|xnew,D) ≈
1

S

S∑
s=1

p(ynew|xnew, ϕs) where ϕs ∼ qψ∗(ϕ) (2.8)

where xnew is the new input and ynew is the new data point we want to pre-

dict. The equation equation 2.8 states that, under Bayesian learning, we should

aggregate all the possible parameters that we can get from the posterior dis-

tribution p(ϕ|D) to predict the new output, which also takes into account the

uncertainty in the parameter estimates [80, 40]. This can provide the uncer-

tainty quantification in predicting ynew given the new unseen input xnew.

2.4 Variational Dropout

Variational Dropout [83, 42, 86, 87, 88] is a set of approaches that models the

variational posterior over the NN parameter qψ(ϕ) in equation 2.7 based on the

dropout regularization technique [89, 90]. The dropout regularization randomly

turns off some of the Neural Network (NN) parameters during training by multi-

plying discrete Bernoulli random noises to the parameters. This technique was

initially popularized as an efficient way to prevent the NN model’s over-fitting.

Consider a fully connected neural network (NN)with L layers. During train-

ing, dropout can be applied to the deterministic parameters θ of each l-th layer.

This operation can be formalized as follows [91, 92]:

B = A(Ξ ◦ θ), with Ξ ∼ Bernoulli(1− p) (2.9)
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Here, A represents the M ×K matrix of input features for a mini-batch of M

data points, while B corresponds to the M ×D output matrix before applying

the activation function. θ is the K ×D parameter matrix for each layer of the

NN. The dropout operation introduces a K×D noise matrix Ξ whose elements

Ξk,d are independently sampled from a Bernoulli distribution with dropout rate

pk,d. Each parameter of the matrix θ is then multiplied by the corresponding

noise element in Ξ using the element-wise product operation, denoted by ◦.

Then, we get the masked NN parameter ϕ = Ξ ◦ θ. In essence, the variational

dropout procedure perturbs the model parameters during training using the

randomly sampled noise matrix, which helps prevent overfitting by effectively

averaging over many different network configurations.

Gaussian Dropout Later, fast dropout [92, 93] proposes an alternative to

the conventional Bernoulli dropout: it replaces the Bernoulli noise with con-

tinuous noise drawn from a Gaussian distribution, Ξ ∼ N (1, α), where α is

reparameterized dropout parameter defined by α = (1 − p)/p. This Gaussian

dropout approximates the Bernoulli dropout, as justified by the Central Limit

Theorem [89, 92]. Thus the approximate posterior distribution can be defined

as:

qψ(ϕ) =
K∏
k=1

D∏
d=1

q(ϕk,d) =
K∏
k=1

D∏
d=1

N (ϕk,d|θk,d, αk,dθ2k,d). (2.10)

In the equation above, the mean and variance of each independent Gaussian dis-

tribution are dictated by the independent dropout rate αk,d and the determin-

istic parameter θk,d, respectively. Thus, in Gaussian dropout, the variational

parameter of the posterior model is ψ = {α, θ}. The significant advantage of

this approach lies in its ease of interpretation. Gaussian dropout yields a fully

factorized posterior distribution over the independent parameters of the NN.

16



Unlike conventional dropout[89, 90], which uses a single fixed dropout rate

for all parameters, VD assigns individual dropout rates to each parameter,

effectively learning a unique regularization for every feature in the model [83,

87, 86, 42, 88]. The learned dropout rates can be interpreted as the variational

parameters of the approximated posterior distribution in the Bayesian Neural

Network. This aspect of VD has been shown to effectively capture the model’s

uncertainty from data, improving its generalization ability.

Prior The optimization of ELBO objective in equation 2.7 requires a prior

distribution p(ϕ). VD approaches often employ sparse priors for regularization

[44, 43, 51, 52], which facilitate the learning of independent dropout rates on

the NN parameters. In the original VD literature [83], the posterior model

equation 2.10 with a specially chosen log-uniform prior (e.g., p(log(|ϕ|) ∝ c) is

employed to optimize the ELBO in equation 2.7. The log-uniform prior in the

VD was designed to satisfy that the analytical derivation of the KL(qψ(ϕ)||p(ϕ))

in equation 2.7 does not depend on the θ. This allows the consent optimization

of the ELBO w.r.t all the independent variational parameters (i.e. θl,k,d and

pl,k,d for all the l = 1 . . . L, k = 1 . . .K and d = 1 . . . D) via the SGD algorithm.

The learnable dropout rates for each independent parameter distinguish the

VD from the conventional dropout approaches using the same fixed dropout

rate for all the parameters. The VD approaches based on the dropout posterior

have been proven effective for learning the uncertainty of the model from the

data (i.e., qψ(ϕ) ≈ p(ϕ|D)) and improving the model’s generalization [83, 87,

88, 86, 42, 88].
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Figure 2.2: Probabilistic graphical model of Bayesian multi-task learning frame-
work given a multiple dataset Dt for each task t = 1, ..., T . The θ is a global
parameter shared across different tasks. ϕt is a task-specific parameter for
each task. DtC is a small subset of data for each task (e.g., M t(<< N t)), which
is used as a context set to approximate the ϕt.

2.5 Bayesian Meta-Learning

A goal of meta-learning is to construct a model that can quickly solve new

tasks from small amounts of observed data [10, 8, 11, 12, 13]. A fundamental idea

shared by them is the concept of a higher-level learning algorithm, called a meta-

learner, which allows the learning process of learning itself rather than only

learning a specific task. The premise is that if the meta-learner has encountered

numerous similar tasks, it might accumulate enough knowledge to generalize

across different tasks. However, the conventional meta-learning methods are

based on a point estimation [17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 26]. Thus, the

meta-learner proposed in the previous approach was prone to overfitting.

Recently, various Bayesian meta-learning approaches have been introduced,

interpreting the meta-learning as a posterior distribution approximation in

Bayesian Learning [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. A multi-task learning

environment is often assumed for training a robust meta-learner. Suppose a

collection of T related tasks is given and each t-th task has the training data Dt

containing N i.i.d. observed tuples (xt, yt) = (xti, y
t
i)
N
i=1, Bayesian meta-learning
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Figure 2.3: Bayesian meta-learning is a posterior predictive distribution learn-
ing across multiple tasks. p(yt|xt, ϕt) is a likelihood (or NN model) on the
t-th training data and ϕt is a t-th task-specific variable. The qψ(ϕt|DtC , θ) is a
conditional posterior distribution (or meta learner), learned to predict the task-
specific parameter ϕt conditioned on a smll set DtC . The θ is a global parameter
shared across different tasks.

objective can be defined using MCMC sampling as follows:

L(θ, ψ) =
1

T

T∑
t=1

log 1

S

S∑
s=1

p(yt|xt, ϕts) where ϕts ∼ qψ(ϕt|DtC , θ) (2.11)

Here, p(yt|xt, ϕt) is a likelihood (or NN model) on the t-th training data and ϕt

is a t-th task-specific variable (i.e. a latent representation or weights of NN). The

θ is a global parameter shared across different tasks. This hierarchical structure

enables data-efficient learning. DtC is an additional small sampled data (e.g.,

M t(<< N t)) for each task, which is used as a context set (e.g., an input to

meta learner) in meta-learning. The qψ(ϕ
t|DtC , θ) is a conditional posterior

distribution (or meta learner), learned to map the context set DtC to predict

the distribution over the task-specific parameter ϕt. The objective corresponds

to the approximation of log posterior predictive distribution over the T tasks

(or datasets) while sharing the global parameter θ (and ψ) across tasks. Based

on the modeling approach of the task-specific posterior qψ(ϕ
t|DtC , θ), many

of the recent Bayesian meta-learning approaches can be roughly categorized

into the optimization-based [27, 28, 29, 31, 30, 36] or the model-based posterior

approximation approaches [32, 34, 33, 55, 35].
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Figure 2.4: MAML aims to find a global parameter θ that can rapidly adapt
to the related task parameter ϕt with only a few gradient update steps. The
meta-learner in this context is an implicit gradient descent optimizer.

2.6 Model Agnostic Meta-Learning (MAML)

Model-Agnostic Meta-Learning (MAML) [25] is a meta-learning algorithm de-

signed to quickly adapt to new tasks with a small amount of data. The core

idea is to train an initial NN model parameter θ on a variety of tasks such that

it can learn new tasks using only a small number of gradient updates. The

learning objective for the initial parameter θ in MAML can be formalized as

follows:

θ∗ = arg min
θ

T∑
t=1

Lt(θ − η∇θLt(θ;DtC);Dt), (2.12)

Where ∇θLt(θ,DtC) is the gradient of the loss computed on the small subset3

of data DtC (that is also called meta-training set). η is the adaptation step

size (or learning rate). By substrating the gradient from the initial parameter θ

(formalizing one-step gradient update in this case),we get a task-specific param-

eter ϕt(θ,DtC) = θ − η∇θLt(θ;DtC). In general, a few inner gradient updates

on meta-training data DtC are performed to get the tasks specific parameter

ϕt. Then, we minimize the loss Lt(ϕt(θ,DtC);Dt) computed on the meta-test

dataset Dt with respect to the initial parameter θ. Hence, MAML aims to find
3The subset Dt

C(⊆ Dt) is known as a context (or support) set for each task. A small S size
of context set (e.g., 1-shot, 5-shot, or random) is often used in the few-shot learning tasks [8].
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a parameter θ such that, after a small number of gradient steps on task t, the

updated parameter ϕt performs well on task t.

The objective equation 2.12 can be optimized with the SGD algorithm. The

crucial aspect of MAML lies in its ability to compute second-order derivatives

(or the Hessian)with respect to the parameter θ. While calculating the Hessian

is generally expensive, MAML avoids an explicit computation by using the

automatic differentiation engine such as Pytorch or Tensorflow or by utilizing

a first-order approximation [26].

Bayesian view of MAML In the optimization-based Bayesian meta-learning

approaches, the task-specific variable ϕt can be seen as the adapted NN weights.

For example, the posterior distribution (or meta-learner) of MAML [25] in equa-

tion 2.11 can be considered as a Dirac delta variational posterior modeling:

q(ϕt|DtC ; θ) ≈ δ(ϕt − SGDj(DtC , θ)) (2.13)

where the goal is to learn the shared global initialization NN’s parameters θ

such that a few j steps of SGD updates on the small subset DtC of the t-th

dataset Dt provides a good approximation of the task-specific weights ϕt.

Other optimization-based approaches Many optimization-based meta-

learning methods such as LLAMA [27], PLATIPIS [29], BMAML [28], and

ABML [31] have incorporated the Gaussian type of posterior and prior models

into the deterministic adaptation framework of MAML to improve the robust-

ness of models. However, the adaptation cost of optimization-based meta-

learning methods is often computationally expensive due to the inversion of

the Hessian or kernel matrix; they may not be suitable for environments with

limited computing resources at test.
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Figure 2.5: VERSA is a model-based Bayesian approach that extends the pos-
terior distribution in BNNs as a meta-learner.

2.7 Versatile Amortized Inference (VERSA)

The model-based Bayesian meta-learning approaches such as VERSA [32] allow

an instant estimation of the Bayesian predictive distribution at test time via

NN-based conditional posterior modeling. VERSA employs an additional NN-

based meta-model gθ(·) parameterized by θ to directly predict the Gaussian

posterior of agent NN’s task-specific weight ϕt from the small context set DtC :

q(ϕt|DtC ; θ) = N (ϕt|(µ, σ) = gθ(DtC)). (2.14)

In this case, the shared structure θ represents the meta-model’s parameters.

However, the direct approximation of agent NN weights in VERSA could limit

their scalability due to the large dimensionality of the NN’s weights; they only

consider the task-specific weights for the single softmax output layer. In ad-

dition, VERSA did not utilize any task-specific prior p(ϕt), so the conditional

posterior could collapse into a deterministic one while training with the Monte

Carlo approximation [35].

2.8 Neural Processes (NPs)

Stochastic processes Stochastic processes in the regression problem treat

the function f as a random variable and impose a distribution over the function

as p(f). Given that the n pairs of input and output data D = {xi, yi}ni=1
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are independently sampled from the unknown distribution, the likelihood of

stochastic processes can be defined as:

p(y1:n|x1:n) =
∫
p(y1:n|f, x1:n)p(f)df =

∫ n∏
i=1

N (yi|f(xi), σ2)p(f)df. (2.15)

The σ2 is an observation variance4 and f(xi) is a predicted mean for the output

yi using the input xi and a function f drawn from the distribution over function

p(f). The stochastic processes allow for reasoning about the uncertainty in the

multiple underlying functions that might be presented in the data-generating

process. Modeling p(f) = GP(N (m(xi), k(x1:n, x1:n))) (as Gaussian Processes

[94]) is a popular machine learning approach.

Neuarl Processes Recently, Garnelo et al. [33] proposed NN model-based

stochastic processes method called Neural Processes (NPs), combining desirable

proprieties of Gaussian Processes (GPs) [94] and the NN. NPs offer an implicit

measure of the distribution over function that can be learned from data effi-

ciently, avoiding the requirement for specifying a suitable type of kernel in GPs.

The likelihood of NPs is defined as follows

p(y1:n|x1:n) =
∫
p(y1:n|z, x1:n)p(z)dz =

∫ n∏
i=1

N (yi|gθ(xi, z), σ2)p(z)dz.

(2.16)

Where the z is the latent variable, p(z) = N (z; 0, I) is a multivariate Normal

prior, and gθ(x, z) is a decoder NN parameterized by θ in NPs. the variable z

is introduced for modeling the distribution over function p(f) in equation 2.15.

The randomness of the decoder gθ(xi, z) in NPs is arising due to the stochasticity

in the representation z. Each sample of z would correspond to one realization

of the stochastic process. Since the decoder is non-linear, amortized variational
4In the experiment, σ2 is also learned as σ2(xi). For clarity, we use a fixed variance notion.
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inference (VI) is performed to learn the parameter θ. The evidence lower-bound

(ELBO) objective of NPs can be given by:

log p(y1:n|x1:n) ≥ Eq(z|x1:n,y1:n)[log pθ(y1:n|x1:n, z)]−DKL(qϕ(z|x1:n, y1:n)||p(z)).

(2.17)

Here, the variational posterior qϕ(z|x1:n, y1:n) is modeled as a factorized Gaus-

sian with mean µϕ(·) and variance σϕ(·) NN parameterized by ϕ, analogous to

the encoder in variational auto-encoders (VAE) [95], but the variational poste-

rior in NPs is defined on a set of data D = {xi, yi}ni=1 as:

qϕ(z|x1:n, y1:n) = N (z;µϕ(r)), σϕ(r))),where r = a({ri}ni=1), ri = hψ(xi, yi),

(2.18)

where hψ(·) is a NN parameterized by ψ, an aggregator a is defined by the mean

function i.e. , a(·) =
∑

(·)/n, and r is a representation summarising the dataset

[33, 96]. In other words, µϕ(·) and σϕ(·) in equation 2.18 take encoded and

aggregated input-output pairs as inputs and parameterize a normal distribution

from which z is sampled. The reparameterization trick [95] applied to sample

the z. The optimization of the parameter θ, ϕ, ψ of NPs can be performed via

Stochastic Gradient Descent [33].

Posterior predictive inference Although the first ELBO formulation of

NPs was given as equation 2.17. Carmelo et al. [33] introduced another formu-

lation of NPs that better reflects the Bayesian posterior predictive propriety of

GPs [94]. Consider the set of dataset D is randomly split into input-out pairs

of the context set DC = {xC , yC} = {xi, yi}mi=1 of size m, and the target set

DT = {xT , yT } = {xi, yi}ni=1 of size n at each training iteration (DC ̸⊆ DT in

general [33],DC ⊆ DT in practice [34, 55]).
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Figure 2.6: NPs are model-based Bayesian approaches that employ a
representation-based posterior distribution as a meta-learner.

In the split dataset regime, another VI formulation of NPs [33] provides an

ELBO objective to approximate the posterior predictive distribution as follows:

log p(yT |xT , xC , yC) ≥ Eq(z|xT ,yT )[log p(yT |xT , z)]−DKL(q(z|xT , yT )||q(z|xC , yC)),

(2.19)

where the prior p(z) in equation 2.17 is replaced with the variational poste-

rior q(z|xC , yC) in equation 2.19, approximating the unknown true posterior

distribution p(z|xC , yC). That is to say, the decoder of NPs trained with equa-

tion 2.19 learns to reconstruct targets, regularised by the KL term that encour-

ages the posterior representation z given the target set to be not too far from

the posterior representation z given the context set.

Bayesian view of NPs Although NPs [33, 97] were originally proposed as

efficient NN-based stochastic processes. The meta-learner in NPs can be in-

terpreted as a representation-based posterior distribution approximation in the

context of Bayesian meta-learning of equation 2.5. The conditional posterior

employing the latent representation zt in NPs can be interpreted as:

q(zt|Dt; θ) = N (zt|(µ, σ) = gθ(Dt)) (2.20)

The task-specific latent representation zt is approximated from the NN-based

meta-learner gθ(Dt, which approximates the mean, µ, and variance, σ, of the
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latent representation, based on the t-th task dataset mathcalDt. Regarding

the zt as a second input to the NN model p(yt|xt, zt) (similar to [95] or [98])

provides an efficient way to conditioning the agent NN [33].

Despite many desirable properties of NPs, one weakness is that the decoder

NNs of NPs tends to underfit the context set [55, 99]. Kim et al. [55] hypothesis

that the underfitting behavior of NPs is due to the mean aggregation step in

the encoder of NPs acts as a bottleneck and introduce an attention mechanism

[65, 100] to mitigate the problem. By letting the decoder of NP take an ad-

ditional deterministic representation extracted by using the multi-head cross

attention between input and context set, ANPs [55] could significantly resolve

the underfitting issues in NPs.

NPs are a flexible approach for modeling stochastic processes since the dis-

tribution over function in NPs is based on NNs and can be learned from data

directly. However, the high flexibility of the decoder NN could still cause the

risk of overfitting when the size of training data is small [89, 101]. Allowing the

deterministic paths to decoder might also cause the model tends to ignore the

latent variable z when they have a deterministic path [102] since the posterior

collapsing problem of the latent model, a powerful decoder such as NN tends to

ignore the latent variable z, is well-known [103, 104, 105, 106, 107, 108, 109, 110].

We conjecture that this overfitting behavior in ANPs is involved with the orig-

inal formulation of neural processes. Although the posterior representation z

with targets is trained to be not too far from the posterior with the contexts by

the KL term, the posterior conditioned on the small contexts set, q(z|DC), at

test time might not be sufficient to estimate the expected term for predicting

new targets.
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Chapter 3

Methodology: Meta-Variational
Dropout

3.1 Variational Inference for Bayesian Meta-Learning

A goal of meta-learning is to construct a model that can quickly solve new tasks

from small amounts of observed data. To achieve this, it is important to learn

a general (or task-invariant) structure from multiple tasks that can be utilized

for efficient model adaptation when necessary. Bayesian meta-learning methods

[32, 33, 31] formulate this objective as an amortized variational inference (VI)

of the posterior distribution in a multi-task environment.

Suppose a collection of T related tasks is given, and each t-th task has

the training data Dt containing N i.i.d. observed tuples (xt, yt) = (xti, y
t
i)
N
i=1.

Then, the evidence lower-bound (ELBO) over the log-likelihood of the multi-
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Figure 3.1: Illustration of VI of Bayesian meta-learning in a multi-task learning
setting. p(yt|xt, ϕt) is a likelihood (or NN model) on the t-th training data and
ϕt is a t-th task-specific variable. The qψ(ϕt|DtC , θ) is a conditional posterior
distribution (or meta learner), learned to predict the task-specific parameter
ϕt conditioned on a smll set DtC . The θ is a global parameter shared across
different tasks. In the VI framework, we can explicitly regularize the meta-
learner with a prior distribution p(ϕt).

task dataset can be derived as:
T∑
t=1

log p(Dt; θ) ≥
T∑
t=1

{Eq(ϕt|Dt)[log p(yt|xt, ϕt)]−KL(q(ϕt|Dt; θ)||p(ϕt))}.

(3.1)

Here, p(yt|xt, ϕt) is a likelihood (or NN model) on the t-th training data and

ϕt is a t-th task-specific variable (i.e. a latent representation or weights of NN)

and q(ϕt|Dt; θ) is a tractable amortized variational posterior model utilized to

approximate the true unknown posterior distribution over ϕt for each given

t-th task data (i.e., p(ϕt|Dt)) [95, 32, 33, 31, 35]. The parameter θ represents

the common structure that can be efficiently learned across multiple different

tasks. The prespecified prior distribution p(ϕt) in the Kullback–Leibler (KL)

divergence term provides a stochastic regularization that can help to capture

the task-conditional uncertainty and prevent the collapsing of q(ϕt|Dt; θ). In

fact, the maximization of the ELBO, right side of equation 3.1, with respect
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Figure 3.2: (a)The low-rank product of Bernoulli experts meta-model of condi-
tional dropout posterior. (b)The probabilistic graphical model of Neural Varia-
tional Dropout Processes (NVDPs)with the variational prior. Where {xti, yti}Ni=1

is the N i.i.d samples from the t-th training dataset Dt among T tasks. The
context set DtC = {xti, yti}Si=1 is a small subset of the t-th training dataset.

to the conditional variational posterior model is equivalent to the minimization

of
∑T

t=1 KL(q(ϕt|Dt; θ)||p(ϕt|Dt)). Essentially, the goal in the amortized VI of

Bayesian meta-learning is to learn the inference process of the true conditional

posterior distribution via the variational model q(ϕt|Dt; θ) and the shared gen-

eral structure θ across multiple tasks since this task-invariant knowledge can

later be utilized for the efficient adaptation of the NN function on new unseen

tasks. The approximation of the conditional posterior also enables ensemble

modeling and uncertainty quantification.

3.2 Meta Variational Dropout

This section introduces a new model-based Bayesian meta-learning approach

called Neural Variational Dropout Processes (NVDPs). Unlike the existing

methods such as NPs or VERSA employing conditional latent representation or

direct modeling of NN’s weights, NVDPs extend the posterior modeling of the

Variational Dropout (VD) in the context of meta-learning. We also introduce a

new type of task-specific prior to optimizing the conditional dropout posterior

in variational inference.
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Conditional dropout posterior. We propose a new amortized variational

posterior model that can be efficiently adapted for each given task. Suppose

we train a fully connected NN of L layers, then a conditional dropout poste-

rior1 based on the task-specific dropout rates Pt over the K × D dimensional

deterministic parameters θ of each l-th layer of the NN can be given as follows:

q(ϕt|DtC ; θ) =
K∏
k=1

D∏
d=1

q(ϕtk,d|DtC) (3.2)

=

K∏
k=1

D∏
d=1

N (ϕtk,d|(1− Ptk,d)θk,d,Ptk,d(1− Ptk,d)θ2k,d). (3.3)

The parameter2 θk,d is shared across different tasks, representing the common

task-invariant structure. In the equation 5.3, the task-specific NN parameter

ϕt are fully described by the mean and variance of each independent Gaussian

distribution via θk,d and Ptk,d. This, the θk,d can be seen as a shared module

that operates on separate tasks selectively by the conditional dropout rates

Ptk,d, Note that the variational posterior model is explicitly conditioned on the

subset of the t-th training dataset DtC = {xti, yti}Si=1 (⊆ Dt) known as the t-th

context set. The key idea of conditional posterior modeling in NVDPs is to

employ an NN-based meta-model to predict the task-specific dropout rate Ptk,d
from the small context set DtC . The meta-model to approximate Ptk,d for each

given task is simply defined as:

Ptk,d = s(ak) · s(bd) · s(c), where (a, b, c) = gψ(r
t). (3.4)

Here, the set representation rt is defined as the mean of features obtained from

each data in t-th context set DtC (i.e., rt =
∑S

i=1hω(xti, yti)/S, where hω is a
1The original Gaussian approximation in the VD is q(ϕk,d) = N (ϕk,d|θk,d, αθ2k,d) with

α = Pk,d/(1− Pk,d). But, NVDPs extend the Bernoulli dropout model [92, 91].
2We omit the layer index l of the parameter θl,k,d for brevity.
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feature extracting NN parameterized by ω), summarizing order invariant set in-

formation [98, 111]. The gψ(·) is meta NN model parameterized by ψ to predict

a set of logit vectors (i.e., a ∈ RK , b ∈ RD and c ∈ R). Then, the sigmoid func-

tion with a learnable temperature parameter τ (i.e., sτ (·) = 1/(1+ exp(−(·)/τ)

) is applied to them to get the low-rank components of task-specific dropout

rates Ptk,d: the row-wise s(ak), column-wise s(bd), and layer-wise dropout rate

s(c). In other words, the task-specific dropout rate Ptk,d is obtained by multi-

plying low-rank components of the conditionally approximated dropout rates

from the NN-based meta-model gψ(DtC) (see Figure1 (a)).

The product of n Bernoulli random variables is also a Bernoulli variable [112].

By exploiting this property, we interpret the approximation of the task-specific

dropout rates in terms of the low-rank product of Bernoulli experts. Unlike

VERSA whose meta-model’s complexity is O(LKD) to model the full NN

weight posterior directly, the complexity in NVDPs is O(L(K+D+1)). In ad-

dition, the meta-model’s role is only to predict the low-rank components of

the task-specific dropout rates. With the shared parameter θ, this can greatly

reduce the complexity of the posterior distribution approximation of the high-

dimensional task-specific NN’s weights using only a few observed context ex-

amples. The product model tends to give sharp probability boundaries, which

is often used for modeling the high dimensional data space [113].

In the Bayesian perspective, the permutation invariant representation r in

MetaVD is particularly important due to the exchangeability By choosing the

aggregator a(·) in r to be the mean function, MetaVD could model the epistemic

distribution of function that is invariant to an arbitrary number and order of

the observed contexts [114, 96]. In probability theory, de Finetti’s theorem also

states that the exchangeability guarantees the existence of a prior distribution

on model’s weight p(w) [115, 116]. The amortized PoB VD can be regarded as
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an application of de Finetti’s theorem; The existence (1−p) of each parameter in

the decoder NN is governed by the (meta) NN conditioned on the permutation

invariant representation r from which the posterior on weight is defined.

3.3 Variational Prior

To optimize the conditional dropout posterior in equation 5.3, a specification of

the prior distribution p(ϕt) is necessary to get a tractable derivation of the KL

regularization term of the ELBO in equation 3.1. The question is how we can

define the effective task-specific prior. In fact, an important requirement in the

choice of the prior distribution in the conventional VD framework [83] is that

the analytical derivation of the KL term (i.e., KL(q(ϕt|DtC ; θ)||p(ϕt)) in equa-

tion 3.1) should not depend on the deterministic NN parameter θ. This allows

the constant optimization of the ELBO w.r.t all the independent variational

parameters (i.e., θl,k,d and Pl,k,d for all l = 1 . . . L, k = 1 . . .K and d = 1 . . . D).

One way of modeling the prior is to employ the log-uniform prior p(log(|ϕ|) ∝ c

as in the conventional VD [83]. However, a recently known limitation is that the

log-uniform prior is an improper prior (e.g., the KL divergence between the pos-

terior and the log-uniform prior is infinite). This could yield a degeneration of

the dropout posterior model to a deterministic one [86, 87, 117, 88]. Besides, the

conventional prior used in VD approaches does not support a task-dependent

regularization.

We introduce a new task-specific prior modeling approach to optimize the

proposed conditional posterior; it is approximated with the variational prior

defined by the same dropout posterior model in equation 5.3 except that the

prior is conditioned on the whole task data (i.e., p(ϕt) ≈ q(ϕt|Dt)). The KL

divergence between the conditional dropout posterior (with the only context

32



set) and the variational prior (with the whole task data) can be derived as:

KL(q(ϕt|DtC)||q(ϕt|Dt)) (3.5)

=

K∑
k=1

D∑
d=1

{
Ptk,d(1− Ptk,d) + (P̂tk,d − Ptk,d)2

2P̂tk,d(1− P̂tk,d)
+

1

2
log

P̂tk,d(1− P̂tk,d)
Ptk,d(1− Ptk,d)

} (3.6)

where both Pk,d and P̂k,d are the dropout rates predicted from the meta-model

but with different conditional set information: Pk,d is obtained from the small

context set DtC , while P̂k,d is from the whole task set Dt. Interestingly, the

analytical derivation of the KL is independent of the shared parameter θ, thus

this satisfies the necessary condition to be used as a prior in the VI optimization

of the dropout posterior. Figure 1(b) depicts the variational prior is conditioned

on the whole dataset.

The shared posterior model for the task-specific prior introduced here was

inspired by recent Bayesian meta-learning approaches [33, 55, 35], but some crit-

ical differences are that: 1)we have developed the variational prior to regularize

the task-specific dropout rates in the optimization of the conditional dropout

posterior, 2) the denominator and the numerator of the KL divergence term in

equation 3.5 are reversed compared with the existing approaches. In fact, some

other recent studies of amortized VI inference [118, 119] analytically derived

that the optimal prior maximizing VI objective is the variational posterior ag-

gregated on the whole dataset: p∗(ϕ) =
∫
D q(ϕ|D)p(D). Thus, we hypothesized

the conditional posterior model that depends on the whole dataset should be

used to approximate the optimal prior p∗(ϕt) ≈ q(ϕt|Dt) since the variational

model conditioned on the aggregated set representation with much larger con-

text (e.g.,Dt ⊇ DtC) is likely to be much closer to the optimal task-specific prior

than the model conditioned only on a subset. The experiments in Section 5.4

demonstrate that the proposed variational prior approach provides a reliable
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regularization for the conditional dropout posterior and the similar formula-

tion is also applicable to the latent variable-based conditional posterior models

[33, 55].

3.4 Derivation of the ELBO

This section describes a detailed derivation of the evidence lower-bound (ELBO)

of NVDPs in equation 5.4. Given the context data DtC = (xtC , ytC) and target

data Dt = (xt, yt), the KL divergence between the true unknown posterior dis-

tribution over parameter p(ϕt|xt, yt) and the (conditional) variational posterior

q(ϕt|DtC) is given by:
T∑
t=1

DKL(q(ϕ
t|DtC)||p(ϕt|Dt)) =

T∑
t=1

∫
q(ϕt|DtC) log q(ϕt|DtC)

p(ϕt|xt, yt)dϕ
t

=
T∑
t=1

∫
q(ϕt|DtC) log q(ϕ

t|DtC)p(yt|xt)
p(yt|xt, ϕt)p(ϕt) dϕ

t (3.7)

=
T∑
t=1

∫
q(ϕt|DtC)

{
log q(ϕ

t|DtC)
p(ϕt)

+ log p(yt|xt)− log p(yt|ϕt, xt)
}
dϕt

=
T∑
t=1

DKL(q(ϕ
t|DtC)||p(ϕt)) + log p(yt|xt)− Eq(ϕt|DtC)[log p(yt|ϕt, xt)]. (3.8)

The step (7) is due to Bayes rule of p(ϕt|xt, yt) = p(yt|ϕt,xt)p(ϕt)
p(yt|xt) where ϕt is often

assumed to be independent of xt. By reordering (8), we get
T∑
t=1

log p(yt|xt) ≥
T∑
t=1

Eq(ϕt|DtC)[log p(yt|xt, ϕt)]−DKL(q(ϕ
t|DtC)||p(ϕt)) (3.9)

≈
T∑
t=1

Eq(ϕt|DtC)[log p(yt|ϕt, xt,DtC)]−DKL(q(ϕ
t|DtC)||q(ϕt|Dt))

(3.10)

The last step is due to the non-negativity of the
∑T

t=1DKL(q(ϕt|DtC)||p(ϕt|Dt)).

In the lower-bound of (9), the choice of p(ϕt) is often difficult since the biased
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prior can lead to over-fitting or under-fitting of the model. However, some re-

cent studies of the amortized VI inference [118, 119] analytically discussed that

the optimal prior in the amortized variational inference is the aggregated condi-

tional posterior model on whole dataset: p∗(ϕ) =
∫
D q(ϕ|D)p(D). Usually, the

aggregated posterior cannot be calculated in a closed form due to the expen-

sive computation cost of the integral. However, the aggregation on the whole

dataset in the model-based conditional posterior is constructed based on the

set representation. This motivates us to define the conditional posterior given

the whole task dataset as an empirical approximation of the optimal prior (i.e.,

p∗(ϕt) ≈ q(ϕt|Dt)). We call this a variational prior. Thus, the approximation

of pt(ϕ) in (9) with the variational prior yields the approximated lower bound

of (10).

3.5 Derivation of the KL Divergence

Gaussian Approximation. An essential requirement in the choice of the

prior is that the analytical derivation of the KL divergence term in equation

(10) should not depend on the deterministic NN parameter θ [83, 86, 87, 117, 88].

This allows the constant optimization of the ELBO w.r.t all the independent

variational parameters (i.e. θl,k,d and Pl,k,d for all l = 1 . . . L, k = 1 . . .K, and

d = 1 . . . D). In fact, the conditional posterior defined in (2) is a Gaussian
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distribution, thus KL(q(ϕt|DtC ; θ)||q(ϕt|Dt; θ)) is analytically defined as:

DKL(q(ϕ
t|DtC ; θ)||q(ϕt|Dt; θ)))

=
Pt(1− Pt)θ2 + ((1− Pt)θ − (1− P̂t)θ)2

2P̂t(1− P̂t)θ2
+ log

√
P̂t(1− P̂t)θ2√
Pt(1− Pt)θ2

− 1

2
(3.11)

=
Pt(1− Pt)@@θ2 + (P̂t − Pt)2@@θ2

2P̂t(1− P̂t)@@θ2
+

1

2
log P̂t(1− P̂t)@@θ2

Pt(1− Pt)@@θ2
− 1

2
(3.12)

=
Pt(1− Pt) + (P̂t − Pt)2

2P̂t(1− P̂t)
+

1

2
log P̂t(1− P̂t)

Pt(1− Pt) −
1

2
(3.13)

where both P and P̂ are the dropout rates predicted from the meta-model via

the equation (3) but with different conditional set information: P is obtained

from the small context set DtC , while P̂ is from the whole task set Dt. (11) is

derived using the analytical formulation of KL divergence between two Gaussian

distributions. (13) is equivalent to the KL term defined in (4) of the manuscript

(except that the constant term 1/2 is omitted for brevity). Interestingly, the

analytical derivation of the KL is independent of the shared parameter θ, thus

this satisfies the necessary condition to be used as a prior in the VI optimization

of the dropout posterior.

The KL divergence in (13) intuitively means that the dropout rates predicted

from a small context set should be close to the dropout rates predicted from

a much larger context set while training. The experiments validated that this

surprisingly works well to induce a robust conditional functional uncertainty.

However, one practical issue while training the dropout rate with the KL term

(13) is that the dropout rate could converge to zeros during the early training

period due to the larger gradients from the KL than from the likelihood 3.

In practice, we adopt the dropout rate clipping technique often used in other
3It also turns out to be a floating-point exception problem. We later set the minimum noise

(i.e., eps) to 1e 9 10 in the calculation of log, sqrt, and division function, and the collapsing
problem did not occur again.
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Variational Dropout approaches [83, 87, 88, 86, 42, 88].We use the dropout rate

range of (0.01, 0.99) for all experiments.

Bernoulli Approximation. If I ∈ {0, 1} is a Bernoulli random variable,

denoted I ∼ Bernoulli(p), the probability mass function is defined as:

f(I; p) =


p if I = 1,

1− p if I = 0.

(3.14)

Bernoulli random variables and indicator variables are two aspects of the same

concept. The random variable I is called an indicator variable for an event A

if I = 1 when A occurs and I = 0 if A does not occur. p(I = 1) = p(A) and

E[I] = P (A). Indicator random variables are Bernoulli random variables, with

p = p(A).

The (conditional) Bernoulli dropout (DropConnect) on the weight in the

manuscript is defined4 as:

wk,d = Ξk,d · θk,d, where Ξk,d ∼ Bernoulli(1− pk,d), and Ξk,d ∈ {0, 1}. (3.15)

If we regard the Ξk,d as an indicator variable of the parameter θk,d, then the

(conditional) posterior on weight wk,d induced from the Bernoulli dropout can

be interpreted as:

q(Ξk,d = 1|DC) = q(wk,d|DC) ≃ Bernoulli(1− pk,d). (3.16)

The pC and pT are the dropout rate in the variational posterior q(w|DC) and

the variational prior q(w|DT ). Therefore, the KL divergence between the two
4We found an error in the equation (7) of the manuscript, the correct description of

Bernoulli dropout should be given as (20) (e.g., Bernoulli(1−p)) in this document. Except for
the error in (7) and line 185 of the manuscript, other equations or descriptions do not need to
be changed.
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Bernoulli distributions and can be represented as:

DKL(q(w|DC)||q(w|DT ))) =
K∑
k=1

D∑
d=1

{(1− pCk,d) log
1− pCk,d
1− pTk,d

+ pCk,d log
pCk,d

pTk,d
}

(3.17)

Which is equivalent to the equation (12) in the manuscript, and proofs that the

KL divergence is independent of the parameter θ.

In fact, the KL divergence between the Bernoulli dropout posteriors can

be also approximated with the Gaussian approximation of used in (9) of the

manuscript as follows:

DKL(q(w|DC)||q(w|DT ))) (3.18)

=
K∑
k=1

D∑
d=1

{
pCk,d(1− pCk,d) + (pTk,d − pCk,d)2

2pTk,d(1− pTk,d)
+

pTk,d(1− pTk,d)
2pCk,d(1− pCk,d)

− 1

2
} (3.19)

The KL term is also independent of the parameter θ, so we have tested this

KL term in our experiment. However, this Gaussian approximated version

of the KL term was more unstable than the direct KL divergence defined in

(22). Specifically, training NVDPs with (23) was also possible, but it was very

sensitive to the parameter τ of the Gumbel-sigmoid trick we will introduce in

the next section. On the other hand, the direct KL divergence in (22) was

much more robust than (23) in terms of the training stability, performance, and

sensitivity to the parameter τ .

Derivation of the KL Divergence with Hierarchical Prior With the hi-

erarchical prior p(w, γ) = p(w|γ)p(γ) proposed in variational bayesian dropout

(VBD) [88] and the (conditional)variational posterior q(w, γ|DC) = q(w|DC)q(γ)
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in NVDPs, we have

DKL(q(w, γ|DC)||p(w, γ|DT ,DC)) =
∫
q(w, γ|DC) log q(w, γ|DC)

p(w, γ|xT , yT ,DC)
dwdγ

=

∫
q(w, γ|DC) log q(w, γ|DC)p(yT |xT ,DC)

p(yT |w, xT ,DC)p(w, γ)
dwdγ (3.20)

=

∫
q(w, γ|DC)

{
log q(w, γ|DC)

p(w, γ)
+ log p(yT |xT ,DC)− log p(yT |w, xT ,DC)

}
dwdγ

= DKL(q(w, γ|DC)||p(w, γ)) + log p(yT |xT ,DC)− Eq(w,γ|DC)[log p(yT |w, xT ,DC)].

(3.21)

The step (6) is due to Bayes rule of p(w, γ|DT ,DC) = p(yT |w,xT ,DC)p(w,γ)
p(yT |xT ,DC) where

the (hierarchical) joint prior on weight and variance p(w, γ) is assumed to be

independent of the xT and DC . By reordering (7), we get

log p(yT |xT ,DC) ≥ Eq(w,γ|DC)[log p(yT |w, xT ,DC)]−DKL(q(w, γ|DC)||p(w, γ))

(3.22)

= Eq(w|DC)Eq(γ)[log p(yT |w, xT ,DC)]−DKL(q(w, γ|DC)||p(w, γ))

= Eq(w|DC)[log p(yT |w, xT ,DC)]−DKL(q(w, γ|DC)||p(w, γ)) (3.23)

The lower-bound in (8) is due to the positivity of theDKL(q(w, γ|DC)||p(w, γ|DT ,DC)).

By replacing the p(yT |w, xT ,DC) of (9)with the (posterior predictive) likelihood

of CNPs, we get

log p(yT |xT ,DC) ≥ Eqϕ(w|DC)[logN (yT |gw(xT , r), σ2)]−DKL(qϕ(w, γ|DC)||p(w, γ)).

(3.24)

which is equivalent to the ELBO objective of NVDPs with hierarchical prior

described in the manuscript.

KL divergence. The KL divergence with hierarchical prior in (10) can be
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further decomposed as:

DKL(q(w, γ|DC)||p(w, γ)) =
∫
q(w, γ|DC) log q(w, γ|DC)

p(w, γ)
dwdγ

=

∫
q(w|DC)q(γ) log q(w|DC)q(γ)

p(w|γ)p(γ)
dwdr

=

∫
q(w|DC)q(γ) log q(w|DC)

p(w|γ)
dwdγ +

∫
q(w|DC)q(γ) log q(γ)

p(γ)
dwdγ

= DKL(q(w|DC)||p(w|γ)) +DKL(q(γ)||p(γ)). (3.25)

Since both the (conditional) variational posterior q(wk,d|DC) and the hierarchi-

cal prior p(wk,d|γ) follows factorized Gaussian distribution as described in the

manuscript, the first KL divergence term in (11) can be written as:

DKL(q(wk,d|DC)||p(wk,d|γk,d))

= 0.5 log( γk,d
pk,d(1− pk,d)θ2k,d

) +
pk,d(1− pk,d)θ2 + (1− p)2θ2k,d

2γk,d
− 0.5 (3.26)

To find the optimal γk,d, referred as γ∗k,d in the optimization of (10),we can take

a partial differential of (12) with respect to γk,d to zero. Then, we have:

γ∗k,d = pk,d(1− pk,d)θ2k,d + (1− pk,d)2θ2k,d (3.27)

Replacing rk,d in (12) with r∗k,d in (13), we get:

0.5 log(
pk,d(1− pk,d)θ2k,d + (1− pk,d)2θ2k,d

pk,d(1− pk,d)θ2k,d
) (3.28)

+

hhhhhhhhhhhhhhh
pk,d(1− pk,d)θ2 + (1− p)2θ2k,d

2

hhhhhhhhhhhhhhhhh
pk,d(1− pk,d)θ2k,d + (1− pk,d)2θ2k,d

− 0.5

= 0.5 log(1 + (1− pk,d)
pk,d

) = −0.5 log(pk,d) (3.29)

In addition, with the mean-field approximation of q(γ) =
∏K
k=1

∏D
d=1 q(γk,d)

where q(γk,d) obeys a delta distribution and the uniform prior q(γk,d) =
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∏K
k=1

∏D
d=1 U(γk,d|a, b) described in the manuscript, we can obtain the second

KL terms in (11) as:

DKL(q(γk,d)||p(γk,d)) =
∫
q(γk,d) log q(γk,d)

p(γk,d)
dγk,d

=

∫
q(γk,d) log q(γk,d)dγk,d −

∫
q(γk,d) log p(γk,d)

= −H(γk,d)−
∫
q(γk,d) log p(γk,d), (3.30)

where the entropy of a random variable γk,d is zero (e.g., H(γk,d) = 0) because

the delta distribution q(γk,d) do not provide any uncertainty [2]. As a result,

we obtain:

DKL(q(γk,d)||p(γk,d)) = −
∫
q(γk,d) log p(γk,d)dγk,d (3.31)

To simplify the problem, assuming the dimension of rk,d is 1, e.g, p(rk,d) =

1/(b− a), thus we have:

DKL(q(γk,d)||p(γk,d)) = −
∫
q(γk,d) log p(γk,d)dγk,d

= −
∫ a

−∞
q(γk,d) log p(γk,d)−

∫ b

a
q(γk,d) log p(γk,d)−

∫ +∞

b
q(γk,d) log p(γk,d)

= − logβ
∫ a

−∞
q(γk,d)− log(1/(b− a))

∫ b

a
q(γk,d)− logβ

∫ +∞

b
q(γk,d), (3.32)

Here, β is an infinitesimally small value, effectively zero. It represents the neg-

ligible probability of γk,d being outside the interval [a, b]. Hence, if q(γk,d),

modeled as a delta function, falls within the interval [a, b], the outer two inte-

grals are zero, and the KL divergence is simply the log of the interval length

(b - a). If the delta function lies outside this interval, the KL divergence is

effectively infinite. However, to avoid such infinite KL divergence, it’s common

to consider [a, b] as a sufficiently large interval such that q(γk,d) falls within

it. Thus, the KL divergence is treated as a constant log(b − a) and can be
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disregarded in calculations. For a more detailed theoretical derivation of this

part please refer to [88].

Hence, with all the aforementioned assumptions and equations, we get

DKL(q(w, γ|DC)||p(w, γ)) = DKL(q(w|DC)||p(w|γ)) +DKL(q(γ)||p(γ))

=

K∑
k=1

D∑
d=1

{−0.5 log(pk,d) + log(b− a)} (3.33)

(18) is equivalent to the KL divergence term defined in (11) of the manuscript.

The KL divergence between amortized PoB dropout posterior with hierarchical

prior is independent of the parameter θ, thus we can employ it to perform VI.

Advantages of the hierarchical prior. This brings two aspects of advan-

tages. Firstly, two kinds of very simple distributions in hierarchical structure

can produce much more complicated distribution, e.g., a hierarchical sparse

prior [36], a zero-mean Gaussian distribution with variance depicted by a gamma

distribution, the student-t prior, and the super-Gaussian scale mixture model.

Thus the two-level structure increases the possible solution spaces for the proper

and feasible prior to interpreting variational dropout. Secondly, the hierarchi-

cal structure enables the two-level prior separable in the involved Bayesian

inference and thus is possible to simplify the Bayesian inference or make the

intractable inference tractable.
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Chapter 4

Application in Few-shot Learning

4.1 Introduction

In this section, We have evaluated NVDPs compared with other methods on

various few-shot learning tasks and datasets. In the experiment, we first com-

pared the NVDP with Neural Process (NP) family [33, 34, 55] on the few-shot

1D regression task with the Gaussian Process (GP) dataset. In the GP dataset,

we additionally performed active learning experiment to see the model’s fast

adaptation ability. Then, the few-shot image completion task is performed

on the MNIST and CelebA dataset. To see the generalization performance

of models on completely new dataset, we also tested the models trained with

MNIST on the Omniglot dataset in the image completion task. Finally, we

tested the NVDP on the standard few-shot classification tasks such as the Om-

niglot and MiniImagenet dataset with other baseline such as VERSA [32],CNP

[34],MAML [25], and others [12, 13]. The experiments show that NVDPs can

circumvent the under-fitting and posterior collapsing and achieve outstanding
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Figure 4.1: An overview of variational prior (or shared prior) in NVDP.

performances.

4.2 Neural Variational Dropout Processes for Few-shot
Learning

With the conditional dropout posterior defined in equation 5.3 and the KL reg-

ularization term in equation 3.5, we can now fully describe the ELBO objective

of NVDPs for the multi-task dataset as:
T∑
t=1

log p(Dt) ≥
T∑
t=1

{Eq(ϕt|DtC ;θ)[log p(yt|xt, ϕt)]−KL(q(ϕt|DtC ; θ)||q(ϕt|Dt; θ))}.

(4.1)

The goal is to maximize the ELBO equation 5.4 w.r.t. the variational parame-

ters (i.e. θ,ψ, ω, and τ ) of the posterior q(ϕt|DtC ; θ) defined in equation 5.3. The

optimization of these parameters is done by using the stochastic gradient varia-

tional Bayes (SGVB) [95, 120]. The basic trick in the SGVB is to parameterize

the random weights ϕt ∼ q(ϕt|Dt) using a deterministic differentiable transfor-

mation ϕt = f(ϵ,DtC) with a non-parametric i.i.d. noise ϵ ∼ p(ϵ). Then, an

unbiased differentiable minibatch-based Monte Carlo estimator, L̂(θ, ψ, ω, τ ),
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of the ELBO of NVDPs can be defined as:

1

T ′

T ′∑
t=1

{ 1

M

M∑
i=1

log p(yti|xti, f(ϵ,DtC)) − (
Pt(1− Pt) + (P̂t − Pt)2

2P̂t(1− P̂t)
+

1

2
log P̂t(1− P̂t)

Pt(1− Pt))}

(4.2)

T ′ and M are the sizes of randomly sampled mini-batch of tasks and data

points, respectively, per each epoch (i.e.,{xti, yti}Mi=1 = Dt ∼ {Dt}T ′
t=1 ∼ D). DtC

is the subset set of Dt discussed in section 3.2 and 3.3. The transformation

of the task-specific weights is given as ϕtk,d = f(ϵk,d,DtC) = (1 − Ptk,d)θk,d +√
Ptk,d(1− Ptk,d)θk,dϵk,d with ϵk,d ∼ N(0, 1) from the equation 5.3. The inter-

mediate weight ϕtk,d is now differentiable with respect to θk,d and Ptk,d. Also,

Ptk,d (and P̂tk,d) is deterministically computed by the meta-model parameter-

ized by ψ, ω, and τ as in equation 3.4. Thus, the estimator L̂(θ, ψ, ω, τ ) in

equation 4.2 is differentiable with respect to all the variational parameters and

can be optimized via the SGD algorithm. In practice, a local reparameteriza-

tion trick1 is further utilized to reduce the variance of gradient estimators on

training [83].

Few-shot Posterior Adaptation. The learned variational model in equa-

tion 5.4 can be later leveraged for the agent model’s few-shot adaptation on

a new unseen task D∗. For example, given a few observed examples D∗
s =

{x∗
i , y∗

i }Si=1 from the new task, a posterior predictive distribution for the un-

known target y∗ conditioned on the newly observed input x∗ ∼ D∗ can be

approximated with the Monte Carlo (MC) approach:

p(y∗|x∗,D∗) ≈ 1

C

C∑
i=1

pϕ∗
(i)
(y∗|x∗), (4.3)

1We can sample pre-activations Bm,d for a mini-batch of size M directly using inputs Am,k
(Bm,d ∼ N (Bm,d|

∑K
k=1 Am,k(1− Ptk,d)θk,d,

∑K
k=1 A

2
m,kPtk,d(1− Ptk,d)θ2k,d)).
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where ϕ∗(i) ∼ q(ϕ∗|D∗
s ; θ). This enables approximation and uncertainty approx-

imation for newly observed data.

4.3 Experiments

Metrics in regression. In the evaluation of the conditional NN models’

adaptation, the newly observed task data D∗ is split into the input-output

pairs of the context set D∗
C = {xi, yi}Si=1 and the target set D∗

T = {xi, yi}Ni=1

(D∗
C ̸⊆ D∗

T in evaluation [33, 32]).

1. The log-likelihood (LL), 1
N+S

∑
i∈D∗

C∪D
∗
T
Eq(ϕ∗|D∗

C)
[log p(yi|xi, ϕ∗)],measures

the performance of the NN model over the whole dataset D∗ conditioned

on the context set.

2. The reconstructive log-likelihood (RLL), 1S
∑

i∈D∗
C
Eq(ϕ∗|D∗

C)
[log p(yi|xi, ϕ∗)],

measures how well the model reconstructs the data points in the context

set. A low RLL is a sign of under-fitting.

3. The predictive log-likelihood (PLL), 1
N

∑
i∈D∗

T
Eq(ϕ∗|D∗

C)
[log p(yi|xi, ϕ∗)],

measures the prediction on the data points in the target set (not in the

context set). A low PLL is a sign of over-fitting.

4.3.1 1D few-shot Regression with GP samples.

The 1D regression task is to predict unknown functions given some observed

context points; each function (or data point) is generated from a Gaussian Pro-

cess (GP) with the random kernel, then the standard data split procedure is

performed (i.e., S ∼ U(3, 97) and N ∼ U [S + 1, 100)) at train time. For the

baseline models, the Neural Process model (NP) and NP with additional deter-

ministic representation (NP+CNP) described in [33, 34, 55] is compared. We
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also adopted the variational prior (VP) into the representation-based posterior

of NP and its variants (NP+VP and NP+CNP+VP). For all models (including

our NVDP), we used the same fixed variance and learned variance likelihood

architecture depicted in [55]: the agent NN with 4 hidden layers of 128 units

with LeLU activation [57] and an output layer of 1 unit for the mean (or an

additional 1 unit for variance). The dimensions of the set representation rt were

fixed to 128. The meta NNs in the conditional dropout posterior in NVDP has

4 hidden layers of 128 units with LeakyReLU and an output layer of 257 units

(i.e. K+D+1) for each layer of the agent model. All models were trained with

Adam optimizer [121]with learning rate 5e-4 and 16 task-batches for 0.5 million

iterations. On validation, 50000 random tasks (or functions)were sampled from

the GP function generator and the split data of S ∼ U(3, 97) and N = 400−S

were used to compute the log-likelihood (LL) and other evaluation metrics.

Table 1 summarizes the validation results of 1D regression with the GP

dataset. NVDP achieves the best LL scores compared with all other baselines

in both the fixed and learned variance likelihood model settings. The NVDPs

record high RLL on the observed data points and excellent PLL scores on the

unseen function space in the new task; this indicates that the proposed condi-

tional dropout posterior approach can simultaneously mitigate the under-fitting

and over-fitting of the agent model compared with the other baselines. When

VP is applied to NP or NP+CNP, the PLL scores tend to increase by meaning-

ful margins in all cases. This demonstrates that the proposed variational prior

(VP) approach can also reduce the over-fitting of latent representation-based

conditional posterior. Figure 2 visualizes the few-shot 1D function regression

results in both model settings. In the fixed variance setting, the functions

sampled from NPs show high variability but cannot fit the context data well.

NP+CNP can fit the context data well but loses epistemic uncertainty due to
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the collapsing of conditional posterior. On the other hand, the functions from

NVDPs show a different behavior; they capture the function’s variability well

while also fitting the observed context points better. NVDPs also approximate

the mean and variance of unknown functions well in learned variance setting.

4.3.2 Active Learning with Regression.

Figure 4.3: Active learning performance on regression after up to 19 selected
data points. NVDPs can use its uncertainty estimation to quickly improve LLs,
while other models are learning slowly.

To further compare the uncertainty modeling accuracy, we performed an

additional active learning experiment on the GP dataset described above. The

goal in active learning is to improve the log-likelihood of models with a min-

imal number of context points. To this end, each model chooses additional

data points sequentially; the points with maximal variance across the sampled

regressors were selected at each step in our experiment. The initial data point

is randomly sampled within the input domain, followed by 19 additional points

that are selected according to the variance estimates. As seen in Figure 3,

NVDPs outperform the others due to their accurate variance estimation, espe-

cially with a small number of additional points, and show steady improvement
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with less over-fitting.

4.3.3 Few-shot Image Completion Tasks

The image completion tasks are performed to validate the performance of the

models in the more complex function spaces [33, 34, 55]. Here, we treat the

image samples from MNIST [122] and CelebA [123] as unknown functions. The

task is to predict a mapping from normalized 2D pixel coordinates xi (∈ [0, 1]2)

to pixel intensities yi (∈ R1 for greyscale, ∈ R3 for RGB) given some context

points. We used the same learned variance baselines implemented in the GP

data regression task (except the 2D input and 3D output for the agent NN

and rt = 1024 were used for CelebA). At each iteration, the images in the

training set are split into S context and N target points (e.g., S ∼ U(3, 197),

n ∼ U [N + 1, 200) at train and S ∼ U(3, 197), N = 784 − S at validation).

Adam optimizer with a learning rate 4e-4 and 16 task batches with 300 epochs

were used for training. The validation is performed on the separated validation

set. To see the generalization performance on a completely new dataset, we

also tested the models trained on MNIST to the Omniglot validation set.

Table 2 summarizes the validation results of image completion tasks. NVDPs

achieve the outperforming LLs compared with all other baselines. Interestingly,

NVDPs (trained on the MNIST dataset) also achieve the best results on the Om-

niglot dataset. Figure 4 shows the image reconstruction results with a varying

number of random context pixels. NP generated various image samples when

the number of contexts was small (e.g., m ≤ 30 or half), but those samples could

not approximate the true unknown images well compared with the other mod-

els. The NP+CNP achieves crisp reconstruction results compared with NP and

also shows a good generalization performance on the Omniglot dataset, but

the sampled images (or functions) from NP+CNP had almost no variability
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due to its posterior collapsing behavior. On the other hand, the samples from

NVDPs exhibit comparable reconstruction results while also showing a reason-

able amount of variability. In addition, NVDPs also present an outstanding

generalization performance on the unseen Omniglot dataset. This implies that

NVDPs not only fit better in the complex function regression but can also

capture more general knowledge that can be applied to new unseen tasks.

4.3.4 Few-shot Classification Tasks.

NVDPs can also be successfully applied for few-shot classification tasks; we

have tested NVDPs on standard benchmark datasets such as Omniglot [8] and

MiniImagenet [11]with other baselines: VERSA [32],CNP [34],Matching Nets

[12], Prototypical Nets [13], MAML [25], Meta-SGD [124] and Meta-dropout

[30]. For the classifier, we used one-layer NNs with hidden units of 512. For

the meta-model, we used two-layer NNs with hidden units of 256 similar to

VERSA’s conditional posterior model. For an image input, the NN classifier

outputs one logit value per each class; class-specific dropout rates for the NN

classifier are computed with the image features rt ∈ R256 aggregated by the

same class in the few-shot context examples. The same deep (CONV5) feature

extractor architecture is used as in VERSA [32]. For each class, 1 or 5 few-

shot context samples (i.e., labeled images) are given. Among 5 or 20 classes,

only the logit value related to the true label is maximized. We use the same

batch sizes, learning rate, and epoch settings depicted in VERSA [32]. Table

3 summarizes the results. NVDPs achieve higher predictive accuracy than the

model-based meta-learning approaches CNP and VERSA and are comparable

with the state-of-the-art optimization-based meta-learning approaches such as

MAML or Meta-Dropout on the Omniglot dataset. NVDPs also record good

classification accuracy in the MiniImageNet dataset.
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4.3.5 Experiments on a Trigonometry Dataset
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Figure 4.5: (a) sine, (b) cosine, (c) tanh function (left) with the probabilities of
using parameters (1-Pt) (right) predicted with small NVDPs (13-12-12-2) condi-
tioned on 4-shot context points (black dots), and (d) the trigonometry dataset
(left) and the deterministic shared NN parameters θ (right).

Setup. To further investigate how the proposed meta-model utilizes the com-

mon structures of the NN parameters, we trained a small NVDP model (of the

size of 13-12-12-2) on a mixture of scaled trigonometric functions: x is sampled

in a range of [−π, π], and y is determined by y = a ∗ f(2 ∗ x− b ∗ π) where f is

one of three functions sine, cosine, and tanh with the probability of one third,

and a ∼ U(1.5, 2) and b ∼ U(−0.1, 0.1). We used the training procedures in the

next section except the simple model architecture and learning rate 5e− 4.

Results. Figure 4.5 displays the trained NVDP on the trigonometry func-

tion dataset. The NVDP could capture the probability of dropout for each

parameter θ of the agent, successfully predicting the task-specific trigonomet-

ric functions conditioned on the small (S = 4) context set. This shows that

the task-specific dropout rates can transform a single conventional NN agent

to express multiple functions. It is interesting to see that the contexts from

sine and cosine functions yield similar dropout rates for the second layer. On

the other hand, the contexts from the tanh function result in different dropout

structures for all layers.
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Figure 6 displays the result of applying the relaxed sigmoid trick with vary-

ing τ discussed in section 4 in this document. BNP (with hierarchical prior)

tends to employ more sparse parameters than BNP+ (with variational prior).

4.4 Conclusion

This study presents a new model-based Bayesian meta-learning approach, Neu-

ral Variational Dropout Processes (NVDPs). A novel conditional dropout poste-

rior is induced from a meta-model that predicts the task-specific dropout rates

of each NN parameter conditioned on the observed context. This paper also

introduces a new type of variational prior for optimizing the conditional pos-

terior in the amortized variational inference. We have evaluated the proposed

method compared with the existing approaches in various few-shot learning

tasks, including 1D regression, image inpainting, and classification tasks. The

experimental results demonstrate that NVDPs simultaneously improved the

model’s adaptation to the context data, functional variability, and general-

ization to new tasks. The proposed variational prior could also improve the

variability of the representation-based posterior model [33].
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(a)	BNP	(tau=2.0) (b)	BNP+	(tau=2.0)

(c)	BNP	(tau=3.0) (d)	BNP+	(tau=3.0)

(e)	BNP	(tau=4.0) (f)	BNP+	(tau=4.0)

Figure 4.6: Exhibiting the result of experiment with the relaxed sigmoid trick
(without Gumbel noise) mentioned in the section 4 in this document. The
descriptions are similar to Figure 1.
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Chapter 5

Application in Federated Learning

5.1 Introduction

Federated learning (FL) aims at training a global model from distributed clients

without sharing or collecting their sensitive raw data. Thanks to its privacy-

preserving aspect of FL [125], it is increasingly popular to be applied to var-

ious applications such as image classification [126, 127], object detection [128,

129], keyboard suggestion [130, 131], recommendation [132, 133], and healthcare

[134, 135]. Conventional FL methods are effective with convergence guarantee

when the data from different clients are independently and identically (i.i.d.)

distributed [136, 137]. However, due to the differences in preferences, loca-

tions, and usage habits of clients, the private data in FL are usually non-i.i.d.

When the data distributions of the clients vary, the local model learned from

each client can diverge, and thus learning an optimal global model could fail

[138, 139]. Furthermore, the client data scale may not be large enough to train

a local model with many parameters, causing model overfitting and poor gen-
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eralization [140, 141].

To overcome the challenge caused by non-i.i.d. data, personalized federated

learning (PFL) has been studied [138, 139]. Each client is allowed to have its

own personalized model trained on its local data while still participating in the

global model training. There are many branches of PFL, such as those based on

multitask learning [142, 143],meta-learning [144, 145, 146, 147, 46], and transfer

learning [148, 149, 150]. Although these approaches enhance training conver-

gence in non-i.i.d. data settings, they may still experience model overfitting

with limited client data. Recently, the Bayesian learning paradigm was in-

troduced to the FL to tackle overfitting by considering the uncertainty of the

model parameters [151, 152, 153]. However, they could also struggle with diverg-

ing local models if the data from different clients exhibit significant statistical

variability. Motivated by these challenges, our objective is to simultaneously

address the issues of FL with the limited and non-i.i.d. client data.

5.2 Background

A standard approach to FL (e.g., FedAvg [125]) iterates between the local train-

ing on the client devices and global optimization at the server. Assuming M

clients each of which has a data set Dm = {(xmi , ymi )}|D
m|

i=1 the FL problem can

be formulated as follows:

Server: min
w
J (w) =

M∑
m=1

gmJm(w), Client: Jm(w) = 1

|Dm|
∑
i

ℓ(xmi , y
m
i ;w).

(5.1)

w indicates the model parameter, and the global learning objective J (w) at the

server is a weighted average of local objectives Jm(w) across M clients. The

weight gm is proportional to the size of the local dataset (e.g. |Dm|/|D|). The

local loss is usually defined as the empirical negative log-likelihood on the m-th
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client’s dataset Dm (i.e. ℓ(Dm;w) = − log p(ym|xm, w)).

The local training is carried out in parallel fully (or partly) in each client

device, with multiple SGD epochs to update the local weight wm. Then, the

aggregation step computes the global weight (e.g. w̄ ←
∑M

m=1 g
mwm) in the

server by taking the weighted average of the local weights. The global weight

w̄ is subsequently set as the initial weight for each client in the next local

training round. FL aims to train models on large distributed datasets by only

exchanging model parameters (e.g., w̄ and wm)between server and local devices,

thereby minimizing privacy leakage of clients’ datasets.

Challenges in FL. There are many challenges for real-world FL applica-

tions. (1) Heterogeneity of client data. The original FL algorithm guarantees

convergence well when clients’ data are i.i.d. However, the data distributions of

clients often have different characteristics (e.g. classes or tasks follow non-i.i.d.),

wm would drift away from each other, causing the w̄ suboptimal [138, 139]. (2)

Sparse Connectivity. In practice, the total number of clients M can be ex-

tremely large, while the communication between the server and clients may be

spotty or unreliable. This creates a challenge of reliable and consistent training

with a small subset of participating clients in each communication round. (3)

Poor generalization due to limited data. When the training data available on

each local device are few, the local model can easily overfit, resulting in poor

generalization on novel clients [140, 141]. (4)Communication cost. FL optimiza-

tion requires frequent communication of exchanging model parameters between

local devices and the central server. This process is slow and could introduce

additional privacy concerns. Thus, reducing the model size might be important

as well.

Bayesian FL. While conventional FL methods employ a point estimate of

weight as in 5.1, recent works [151, 152, 153] have incorporated probability dis-
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Method Personalization Uncertainty Compression
FedAvg [125] 7 7 7

FedBE [151] 7 3 7

FedPA [153] 7 3 7

pFedHN [46] 3 7 7

Reptile [145] 3 7 7

PerFedAvg [146] 3 7 7

MetaVD (ours) 3 3 3

Table 5.1: Comparison of MetaVD with other PFL methods in terms of per-
sonalization, uncertainty, and compression ability.

tributions over the weights. Based on FedAvg, a Gaussian distribution is used

to represent each parameter [152], and a posterior aggregation strategy is pro-

posed using the MCMC technique [153]. FedBE [151] uses a Bayesian ensemble

global model with Gaussian or Dirichlet local distributions. In these Bayesian

FL approach, the client device first estimates local posterior using their local

data, and then the server aggregates the partially updated local posteriors into

a global posterior. This strategy improves prediction confidence and model

convergence. However, probabilistic modeling typically requires additional pa-

rameters approximating its density, which may increase communication costs

in FL. FedAG [152] and FedBE [151] use Gaussian global posterior distribu-

tions but only consider point estimates of local models. FedPA [153] assumes

Gaussian posteriors both globally and locally but only maintains the global

posterior mean on the server, which makes it challenging to track local uncer-

tainties. Moreover, previous Bayesian FL methods are not developed for model

personalization, and the performance can be degraded in non-i.i.d. client data.
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5.3 Extended MetaVD Approach for Few-shot Learn-
ing

We propose a new Bayesian PFL approach, called Meta-Variational Dropout

(MetaVD),which can simultaneously manage the local posterior personalization

and model regularization in FL with the limited non-i.i.d. datasets. MetaVD

is also a flexible approach that is compatible with conventional FL algorithms.

5.3.1 Variational Inference for FL

Instead of MCMC estimates of the local posterior in Bayesian FL, we can

utilize the (amortized) Variational Inference (VI) framework of Bayesian meta-

learning [50, 154, 155, 156] that is originally developed for few-shot multi-task

learning [157, 158, 159, 160]. Considering each client in FL as an individual task,

an evidence lower-bound (ELBO) LELBO over all the distributed M datasets is

defined as

max
ϕ
LELBO(ϕ) =

M∑
m=1

gm{Eq(wm;ϕ)[log p(ym|xm, wm)]−KL(q(wm;ϕ)||p(wm))}.

(5.2)

Here, p(ym|xm, wm) represents a likelihood model constructed with a neural

network (NN) [38, 40, 41, 161], and wm is a client-specific NN weight. q(wm;ϕ)

is a variational posterior model parametrized by ϕ. gm is the weight as defined

in equation 5.1. Each local ELBO associated with the m-th client in equa-

tion 5.2 trade-offs between the expected log-likelihood on their local dataset

Dm and the KL divergence with a prior p(wm). The prior can act as a reg-

ularizer for the variational posterior q(wm;ϕ). In the VI, maximizing the

LELBO(ϕ) with respect to the variational parameter ϕ is equivalent to mini-

mizing
∑M

t=1 g
mKL(q(wm;ϕ)||p(wm|Dm)). Thus, q(wm;ϕ) can be trained to

approximate the true unknown posterior over wm (i.e. p(wm|Dm) ≈ q(wm;ϕ))
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Figure 5.1: Overview of the Meta-Variational Dropout (MetaVD) algorithm.
The server’s hypernetwork predicts client-specific dropout rates from client em-
bedding, em. Global parameters, θ, and dropout variables, αm, are sent to m-th
client. Following local posterior adaptation, the updated parameters are trans-
mitted back to the server, which then updates its variational parameters θ, ψ,
and e.

[38, 40, 41, 161].

A straightforward Bayesian PFL approach might be utilizing a separate

variational model for all client devices (i.e. ϕ = ϕ1, · · · , ϕM ). However, only

a sparse subset of clients can participate in each FL round due to the com-

munication availability of edge devices. Moreover, the number of clients M

can be extremely large in practice, and some clients might only have small

datasets. Thus, learning the variational parameter ϕm independently for each

device is difficult. As an alternative, we introduce a new hypernetwork-based

[46, 47, 48, 49] conditional dropout posterior modeling approach that can be

data-efficiently trained across multiple clients in FL.

5.3.2 Conditional Posterior Model

To promote efficient model personalization and reduce overfitting in Bayesian

FL, we define the posterior model in 5.2 based on a Variational Dropout (VD)

technique that multiplies continuous Gaussian noise to the NN parameters dur-

ing training to prevent overfitting [44, 52, 42, 43, 51]. MetaVD extends the VD
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posterior by employing a global hypernetwork learning to predict client-specific

dropout rates (or personal model structure). In MetaVD, the variational pos-

terior model for each m-th client’s weight, q(wm;ϕ) in equation 5.2, is defined

as

q(wm;ϕ = (θ, ψ, em)) =

K∏
k=1

N (wmk |θk, αmk θ2k) where αm = hψ(e
m). (5.3)

The variational parameter ϕ is characterized by three distinct variational pa-

rameters (θ, ψ, e). θ is a global NN model parameter kept at the server (which

has no client index m), and K is the dimension of the parameter. The poste-

rior distribution over the m-th client’s weight wm is described as a product of

Gaussian distributions. Essentially, equation 5.3 describes a form of conditional

Gaussian noise multiplication to the global NN parameters (e.g. wm = θ ∗ ϵm

where ϵm ∼ N (1, αm)). αmk represents the client-specific dropout variable1 on

each k-th NN parameter θk. The hψ is a hypernetwork [47, 48, 49, 49], param-

eterized by ψ, predicting the client-specific dropout rate αm. em is a learnable

client embedding used as an input to the hψ. Since learning one hypernetwork

across multiple local clients is more efficient than learning all the local poste-

riors independently, this approach can mitigate the sparse client participation

and limited data issues in FL.

5.3.3 Hierarchical Prior Model

To optimize the posterior model q(wm;ϕ) in equation 5.2, we need to spec-

ify the KL divergence term and the prior model p(wm). The prior model in

MetaVD has two criteria: (i) the KL divergence terms must be independent of

the NN parameter θ to ensure the lower-bound assumption in VD [44, 52, 43, 51],
1The dropout rate is p = α/(1 + α) ∈ [0,1] [162, 44]. We refer to α as a dropout variable

for simplicity.
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and (ii) all clients must share the same prior model to support the multiplica-

tive posterior aggregation rule in Bayesian FL. We utilize the hierarchical

prior [163, 164, 52] discussed in [52] due to its straightforward analytic KL term

derivation and proven efficacy in network sparsification. Under the hierar-

chical prior assumption, the KL divergence term in equation 5.2 simplifies to

KL(q(wm;ϕ)||p(wm)) =
∑K

k=1 0.5 log(1 + (αmk )
−1); please refer Appendix for

more details. This KL term is independent of the global NN parameter θ and

regularizes the dropout variable efficiently. The same hierarchical prior is ap-

plied across all the 1...M clients.

5.3.4 Client-side Optimization

Initially, the hypernetwork in the server approximates the dropout variable αm

for each m-th client. The global parameter θ and αm are transmitted to each

client device. Then, the client’s posterior model of equation 5.3 is trained on

local data using the following ELBO objective:

max
θ,αm
LmELBO(θ, α) =

1

|Dm|
∑
i

log p(ymi |xmi , f(ϵ; θ, αm))−
K∑
k=1

0.5 log(1 + (αmk )
−1),

(5.4)

which maximizes LmELBO on the client dataset Dm = {(xmi , ymi )}|D
m|

i=1 with re-

spect to the variational parameters (i.e. θ, αm). The optimization can be done

by the stochastic gradient variational Bayes (SGVB) [38, 40, 41],which reparam-

eterizes the random weight variable wm using a differentiable transformation

as wmk = f(ϵk; θk, α
m
k ) = θk+

√
αmk θkϵk with a random i.i.d. noise ϵk ∼ N (0, 1).

The intermediate weight wmk is now differentiable with respect to θk and αmk

and can be optimized via the SGD. The KL term act as regularization for αmk .
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5.3.5 Server-side Optimization

Once a local posterior adaptation is done in each client device, the updated

parameters θm and αm are returned to the server, which then updates the

variational parameter (e.g. θ, ψ, em) using the collected local parameters. To

update the global NN parameter θ, we follow the posterior multiplication as-

sumption: p(w|D) ∝
∏M
m=1 p(w

m|Dm) [151, 152, 153, 165]. Since the local pos-

teriors in equation 5.3 is a Gaussian (dropout) distribution, their product are

also Gaussian: N (w|θagg, ·) ≈
∏M
m=1 q(w

m; θm, αm). This provides us with the

aggregation rule for calculating the mean of the global posterior θagg as follows:

θagg
k =

1

M

∑
m

rmk θ
m
k where rmk =

gm(αmk (θ
m
k )2)−1∑

m g
m(αmk (θ

m
k )2)−1

. (5.5)

Note that equation 5.5 has an intuitive interpretation that the aggregation

weight rmk is inversely proportional to its corresponding dropout variable (or

noise variance) αmk . Thus, parameters with high uncertainty have correspond-

ingly less influence on the overall mean prediction. In this way, we can fully

utilize the uncertainty in the model parameter for the FL. To update the

global parameter θ, we follow the parameter update rule of FedAVG except

that we use the mean aggregation in equation 5.5. For the parameter ψ, a

more general update rule in [46] is employed; we compute the changes in the

updated dropout for each client ∆αm as described in Algorithm 1. Then, the

gradient for the hypernetwork parameter is computed using the chain rule as

∇ψLmELBO(α
m) = (∇ψαm)T∆αm, where ∇ψαm is the gradient of a hypernet-

work’s output. The gradient for ∇emLmELBO(α
m) can be derived using the same

chain rule. The detailed updating rules for each parameter are summarized in

Algo.1.

67



A
lg

or
it

hm
1:

M
et

aV
D

al
go

rit
hm

w
ith

M
A

M
L

an
d

R
ep

til
e

va
ria

nt
fo

r
FL

In
pu

t:
#

of
co

m
m

un
ic

at
io

n
ro

un
d
R

,#
of

cl
ie

nt
N

,
se

rv
er

le
ar

ni
ng

ra
te
η
,c

lie
nt

le
ar

ni
ng

ra
te
γ

,i
nn

er
le

ar
ni

ng
ra

te
l,

lo
ca

ls
te

ps
E

,i
nn

er
st

ep
s
I
,K

L
di

ve
rg

en
ce

pa
ra

m
et

er
β

.
In

it
ia

liz
e:

a
gl

ob
al

pa
ra

m
et

er
θ,

hy
pe

rn
et

wo
rk
h
ψ
(·)

an
d
e.

fo
r
r
=

1
,.
..
,R

do
Sa

m
pl

e
M

cl
ie

nt
s

fro
m

1,
..
.,
N

cl
ie

nt
s

fo
r
m

=
1
,.
..
,M

do
Se

t
θm

=
θ

an
d
α
m

=
h
ψ
(e
m
)

Se
nd

θm
an

d
α
m

to
th

e
m

-t
h

cl
ie

nt
θm ∗

,α
m ∗
←

Lo
ca

lA
da

pt
at

io
n(
θm
,α

m
)

en
d

fo
r

C
om

pu
te

gl
ob

al
pa

ra
m
θa

gg
us

in
g
θm ∗
,α

m ∗
an

d
eq

ua
tio

n
5.

5
∆
θ
←
θa

gg
−
θ

∆
α
m
←
α
m ∗
−
α
m

θ
←
θ
+
η
∆
θ

ψ
←
ψ
−
η

1 M
Σ
m
g m

((
∇
ψ
α
m
)T
∆
α
m
)

fo
r
m

=
1
,·
··
,M

do
em
←
em
−
η
(∇

em
ψ
)T
(∇

ψ
α
m
)T
∆
α
m

en
d

fo
r

en
d

fo
r

P
ro

ce
du

re
Lo

ca
lA

da
pt

at
io

n_
M

A
M

L(
θ,
α
)

fo
r

Ea
ch

lo
ca

ls
te

p
i

fro
m

1
to
E

do
Se

t
θ′ i

=
θ i

an
d
α
′ i
=
α
i

Sa
m

pl
e

da
ta

se
t
D
m tr

an
d
D
m va

l
fro

m
D
m

fo
r

Ea
ch

in
ne

r
st

ep
j

fro
m

1
to
I

do
θ′ i
←
θ′ i
−
l∇

θ
′ iL
m E
L
B
O
(θ

′ i,
α
′ i;
D
m tr
)

en
d

fo
r

θ i
←
θ i
−
γ
∇
θ i
L
m E
L
B
O
(θ

′ i,
α
′ i;
D
m va

l)
α
i
←
α
i
−
γ
∇
α
i
L
m E
L
B
O
(θ

′ i,
α
′ i;
D
m va

l)
en

d
fo

r
Se

t
θ ∗

=
θ i

an
d
α
∗
=
α
i

Se
nd

θ ∗
an

d
α
∗

to
th

e
se

rv
er

P
ro

ce
du

re
Lo

ca
lA

da
pt

at
io

n_
R

ep
til

e(
θ,
α
)

fo
r

Ea
ch

lo
ca

ls
te

p
i

fro
m

1
to
E

do
θ i
←
θ i
−
γ
∇
θ i
L
m E
L
B
O
(θ
i,
α
i;
D
m
)

α
i
←
α
i
−
γ
∇
α
i
L
m E
L
B
O
(θ
i,
α
i;
D
m
)

en
d

fo
r

Se
t
θ ∗

=
θ i

an
d
α
∗
=
α
i

Se
nd

θ ∗
an

d
α
∗

to
th

e
se

rv
er

68



5.3.6 Combination with Other Meta-learning Algorithms

Since the KL regularization in equation 5.4 is independent of the global (or

initial) parameter θ, MetaVD can be combined with various existing meta-

learning-based PFL algorithms (e.g., Reptile [145, 26],MAML [144, 160],PerFe-

dAvg [146, 166]). For example, MAML [144, 160] requires a few inner update

steps using a subsampled dataset to compute the second-order gradient for θ.

Reptile [145, 26] only utilize a first-order gradient computation as described in

Algorithm 1 that is similar to FedAvg except for the learning rate η. Each local

adaptation step is performed using the LmELBO in equation 5.4 and local dataset

Dm. Unlike the conventional meta-learning-based PFL algorithms that only

keep one global initialization parameter, MetaVD enables to alteration of the

mode of the initial parameters. This approach allows effective utilization of the

global parameter in the multi-domain FL experiment.

5.4 Experiments

To verify the MetaVD approach, we perform extensive experiments under var-

ious scenarios [141] (i.e. different degrees of non-i.i.d. and client participation

rates), using multiple different FL datasets [167] such as CIFAR-10, CIFAR-100,

FEMINIST, and CelebA. In order to evaluate the effectiveness of the hyper-

network, an ablation study comparing MetaVD to regular VD is performed.

Furthermore, we evaluate the uncertainty calibration and model compression

ability of MetaVD. Lastly, we test MetaVD with multi-domain datasets.

Baselines. We compare our method with standard FL methods (e.g.

FedAvg [125] and FedProx [168]), meta-learning PFL algorithms (e.g. Rep-

tile [145],MAML [144], and PerFedAvg [146]), and Bayesian FL methods (i.e.

FedBE [151]). For all baselines, we use the widely adopted CNN model in
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FL [127, 169, 46]. Additionally, ”fine-tuning” (FT) indicates that a few local

learning steps are performed on FedAvg before the evaluation. Please see the

appendix for an overview of the baselines.

Implementation. For reproducibility, we conduct experiments in a con-

tainerized environment that simulates FL communication with clients only in a

server. We test T = 1000 of total FL rounds following the conventions in [141].

All experiments are executed on a cluster of 32 NVIDIA GTX 1080 GPUs.

The hypernetwork of MetaVD consists of an embedding layer of dimension

(1+M/4), followed by three fully connected NNs with Reaky ReLU activation

and one exponential activation for the dropout logit output. The predicted

dropout variable is then applied to the global weight of other baselines. In our

study, we apply MetaVD to just one fully connected layer before the output

layer [170, 171, 172, 173], which yields significant performance improvements in

all experiments. Please refer to Appendix for implementation details.

5.4.1 Generalization on Non-i.i.d. Settings

Datasets and training. To evaluate the generalization capabilities of the

models under non-i.i.d. data conditions, we conduct tests on both CIFAR-10

and CIFAR-100 datasets with varying degrees of heterogeneity. We follow the

similar evaluation protocols of pFL-Bench [141], leveraging Dirichlet Allocation

to partition each dataset into 130 clients with varying Dirichlet parameters

denoted as α̇ = [5, 0.5, 0.1]. As shown in Figure 5.2, the class labels and the

data size per client are heterogeneous across the clients. A smaller α̇ represents a

higher degree of heterogeneity. To evaluate the Test accuracy and generalization

performance of the baselines on new clients, we randomly select 30 out of 130

clients as out-of-distribution (OOD) clients who are not involved during the

training phase. More details are in Appendix.
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Figure 5.2: Visualization of client’s data distribution in different non-i.i.d. de-
grees (α̇ = [0.5, 0.1]).

Results. Table 5.2 presents the weighted average classification accuracy

for participating (Test) and non-participating (OOD) clients on CIFAR-10 and

CIFAR-100 datasets with varying non-i.i.d. degrees. The generalization gap,

denoted by ∆, represents the difference between OOD and Test accuracy. As

shown in Table 5.2, PFL methods such as Reptile, MAML, and PerFedAvg

generally outperform non-PFL methods like FedAvg and FedProx. While the

Bayesian ensemble approach, FedBE, improves upon FedAvg, it still lags behind

PFL methods in OOD accuracy. When α̇ changes from 5.0 to 0.5, the Test and

OOD accuracy of all models decrease since the degree of non-i.i.d. increases.

When combined with MetaVD, all baselines show significant performance en-

hancements, regardless of whether they are FL or PFL algorithms (e.g. Reptile

enhances from 47.87 to 53.71 adapting MetaVD). These results demonstrate

the adaptability and efficacy of MetaVD in mitigating model overfitting and

handling the non-i.i.d. client data in FL contexts.
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CIFAR-100 dataset
Method Test (%) OOD (%) ∆

Reptile [145] 47.87 47.73 +0.14
Reptile+VD [44] 50.20 49.28 +0.92
Reptile+EnsembleVD [174] 52.49 52.36 +0.13

Reptile+MetaVD (ours) 53.71 54.50 −0.79

Table 5.3: MetaVD ablation study in CIFAR-100.

5.4.2 Ablation Study

Settings. To evaluate the capability of the hypernetwork in MetaVD, we con-

duct an ablation study by comparing MetaVD to naive VD [44] and Ensemble

VD [174] approaches in the CIFAR-100 dataset. The naive (global) VD model

keeps one global dropout parameter shared with all clients; the dropout pa-

rameter is treated as a global model parameter as in FedAvg. In EnsembleVD,

M independent dropout parameters are kept for all clients. The client-specific

dropout parameter can be stored in each client analogous to the partial FL

[175, 129, 176]. In contrast, MetaVD utilizes a hypernetwork to learn the per-

sonal dropout rate across all clients. All models employ Bayesian posterior

aggregation rules based on dropout rates to update the global model parame-

ter [177, 178].

Results. Table 5.3 outlines the results of the ablation study; MetaVD’s

hypernetwork-based posterior modeling outperforms all other baselines. The

dropout rates in baselines like VD or EnsembleVD are not fully optimized due to

restricted client participation. On the other hand, both the hypernetwork and

the global parameter converge well in MetaVD. This observation demonstrates

that MetaVD’s hypernetwork offers a more data-efficient approach to learn the

client-specific model uncertainty compared to other baselines. More ablation
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study performed on the FEMNIST dataset is shown in Appendix.

5.4.3 Uncertainty Calibration

CIFAR-100 dataset
Method ECE (%) MCE (%)
FedAvg [125] 0.60 36.79
FedAvg+FT [141] 0.69 45.04
FedProx [168] 0.67 39.69
FedBE [151] 0.50 34.66
Reptile [145] 0.77 50.52
MAML [144] 0.75 46.57
PerFedAvg (HF-MAML) [146] 0.69 45.27

FedAvg+MetaVD (ours) 0.39 25.27
Reptile+MetaVD (ours) 0.57 42.40
MAML+MetaVD (ours) 0.52 37.26
PerFedAvg+MetaVD (ours) 0.43 30.20

Table 5.4: Uncertainty calibration scores (ECE and MCE) in CIFAR-100 (α̇ =
0.1). The lower is the better.

Settings. Identifying any potential bias in the model’s prediction is im-

portant to avoid serious consequences, especially when the model is used for

important decision-making [179, 180, 181]. In the FL environment, where clients

have limited non-i.i.d. data, it is even more critical to calibrate the prediction

model appropriately. Hence, we explore whether the proposed MetaVD ap-

proach can also enhance calibration measures for FL baselines. The Expected

Calibration Error (ECE) measures the expected deviation between a model’s

predicted probability and the actual positive class frequency, while the Maxi-

mum Calibration Error (MCE)measures the maximum difference. These cali-

bration metrics are commonly used to evaluate the confidence of probabilistic

predictions.

Results. Table 5.4 summarizes the ECE and MCE scores tested with the
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Figure 5.3: Reliability diagrams for (a) Reptile, (b) MAML, (c) Rep-
tile+MetaVD, and (d)MAML+MetaVD in CIFAR-100.

OOD clients in the CIFAR-100 dataset, indicating that the meta-learning-based

PFL algorithms (e.g. Reptile, MAML, and PerFedAvg) tend to have higher ECE

and MCE scores than the conventional FL algorithms (e.g. FedAvg, FedProx,

and FedBE). This means that PFL baselines achieve high classification accu-

racy, but their probability predictions are more likely to be biased. This may

be due to a byproduct of the additional optimization-based adaptation steps of

meta-learning with limited client local data. On the other hand, our MetaVD

approach significantly reduces both ECE and MCE scores for all the meta-

learning-based methods, indicating that MetaVD effectively mitigates overfit-

ting and reduces the bias on the OOD clients. Figure 5.3 shows the reliability di-

agrams that visualize model calibration [179, 180, 181] in CIFAR-100 (α̇ = 0.5).

They plot the expected sample accuracy as a function of confidence. If the

model is perfectly calibrated, then the diagram becomes the identity function.
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Any deviation from a perfect diagonal represents miscalibration. While Rep-

tile and MAML tend to be overconfident in their predictions, Reptile+MetaVD

most closely recovers the desired diagonal function. Remarkably, in most in-

stances, employing MetaVD leads to improved model calibration, drawing the

reliability diagrams closer to the identity function.

5.4.4 Client Participation

Settings. Under real-world FL scenarios, such as intermittent connections be-

tween clients and servers or limited client device performance, numerous clients

might not be able to participate in each FL round. This is important for cross-

device FL processes with a large number of clients or resource-limited clients.

In this experiment, we evaluate the performance of methods under different

degrees of client participation rates in each FL round. We experiment with 200

clients in the FEMNIST dataset. For each FL round, we randomly selected

40, 20, and 10 clients for participation during training, with participant client

rates s of 0.2, 0.1, and 0.05, respectively. In order to measure OOD accuracy,

we exclude 40 pre-selected clients from being selected out of 200 clients so that

they do not participate in the entire training.

Results. The overall classification results with different participant client

rate s are summarized in Table 5.5. Reptile shows better performance than

FedAvg. The effect of data heterogeneity on performance degradation becomes

more severe as more clients participate in the training. The decline in Test accu-

racy when the participant client rate s gets smaller is due to having less training

data, as fewer clients take part in each round. Meanwhile, Reptile+MetaVD

outperforms other baselines. Interestingly, the performance decrease for Rep-

tile+MetaVD is not as significant as it is for Reptile, showing that MetaVD

can also adapt well to FL scenarios with smaller participation sizes.
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5.4.5 Muti-domain Datasets

Settings. Existing federated learning algorithms usually assume a single-

domain approach, where only one dataset is used in the experiment. Multi-

domain learning [182, 183, 184] aims to leverage all available training data across

different domains to enhance the performance of the model. In this section, we

further evaluate the performance of PFL algorithms on a multi-domain FL

dataset, in which we assume each client can have data from different domains.

We use three different FL datasets to construct the multi-domain task distribu-

tions: FEMNIST, CIFAR-100, and CelebA. To sample each client’s local data,

we utilize the Dirichlet sampling technique (α̇ = 0.5) used in the §5.4.1.

Results. Table 5.6 illustrates the classification accuracies for Test and OOD

clients when using a combination of two or three datasets. The meta-learning-

based PFL algorithm consistently outperforms FedAvg in terms of classification

accuracy. Moreover, when MetaVD is applied to FL or PFL algorithm, it signif-

icantly enhances prediction accuracy across all multi-domain settings. Notably,

MetaVD exhibits larger improvements in OOD accuracy compared to the im-

provement in Test accuracy. Overall, these findings demonstrate the versatility

of MetaVD in enhancing robustness and generalization even in multi-domain

FL datasets, regardless of the specific multi-domain settings.

5.4.6 Model Compression

Settings. Federated learning optimization involves frequent communication of

model parameters between devices and the central server, which can be slow

and may raise privacy concerns. Thus, minimizing the communication cost by

reducing the model parameters is an important issue in FL. To explore the

compression capabilities of MetaVD, we performed an additional experiment

on the CIFAR-10 dataset. The sign DP indicates that each model parameter
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CIFAR-10 dataset (α̇ = 0.5)
Method Test (%) OOD (%) Sparsity(%)
Reptile+MetaVD 83.20 83.40 0
MAML+MetaVD 81.32 81.81 0
PerFedAvg+MetaVD 81.06 81.47 0

Reptile+MetaVD+DP 81.40 80.98 80.06
MAML+MetaVD+DP 81.48 81.73 79.49
PerFedAvg+MetaVD+DP 82.43 82.19 78.20

Table 5.7: Results of model compression. MetaVD+DP does not communicate
the model parameters whose dropout rates are larger than 0.8.

is dropped during the FL communication. we used the thresholding technique

to drop the model parameter; any parameter with a dropout rate greater than

0.8 was dropped during the FL rounds.

Results. Table 5.7 demonstrates the results of the Test and OOD ac-

curacy, as well as the sparsity (%) in the CIFAR-100 dataset. The sparsity

represents the ratio of zero-valued model parameters in the personalized layer.

A higher sparsity percentage indicates greater parameter pruning or elimina-

tion performed on the weight. In our experiment, MetaVD could prune about

80% of the weights in the personalized layer. In addition, when we dropped

the communication of the parameters between the client and server using the

dropout thresholding technique, MetaVD still showed relatively good perfor-

mance. In the case of Reptile+MetaVD+DP, the performance decreased by

approximately 2% while using only 20% of the weights. On the other hand,

MAML+MetaVD+DP and PerFedAvg+MetaVD+DP show an improvement in

the performance of around 1%. This demonstrates that MetaVD can compress

the model parameters required in the personalized layer, reducing the commu-

nication cost in FL without sacrificing performance a lot. The appendix shows

more experiments on model compression results in the CIFAR-100 dataset with
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different non-i.i.d. settings.

5.5 Conclusion

In this chapter, we presented a novel Bayesian personalized federated learning

(PFL) approach based on meta-variational dropout (MetaVD). MetaVD utilizes

a hypernetwork that predicts the dropout rates for each independent model pa-

rameter, which allows an effective model personalization and adaptation in FL

with the limited non-i.i.d. data environment. MetaVD can be combined with

other conventional meta-learning-based PFL personalized algorithms to prevent

overfitting of the model. The conditional dropout posterior enables a principled

Bayesian aggregation strategy for consolidating local models into a global one.

Additionally, MetaVD’s ability to compress model parameters can also reduce

communication costs during federated learning. One potential limitation of our

approach is that it might increase the complexity of the model due to the in-

troduction of an additional hypernetwork. However, the hypernetwork is kept

on the server, and applying our approach to just one last layer before the out-

put layer yields significant performance improvements in all experiments. To

validate the performance of MetaVD, we performed extensive experiments on

various FL datasets, including CIFAR-10, CIFAR-100, FEMINIST, and CelebA

and multi-domain FL datasets. It achieves outstanding classification accuracy

and uncertainty calibration, particularly for out-of-distribution (OOD) clients.

Overall, the experimental results demonstrate that MetaVD is a highly versa-

tile approach that excels in prediction, uncertainty calibration, generalization,

and communication efficiency in the context of FL. These findings support the

usefulness of MetaVD in real-world applications.
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Chapter 6

Conclusion

6.1 Summary

The main contribution of this work is to design and introduce a new type of

Neural Network (NN) based conditional posterior model for Bayesian meta-

learning that can bypass the under-fitting and posterior collapsing of existing

approaches [32, 34, 33, 35]. MetaVD effectively utilizes the capabilities of Varia-

tional Dropout’s conditional posterior modeling [83, 42, 86, 87, 88], coupled with

a hypernetwork, to generate task-specific dropout rates for each weight in the

neural network. To create a robust approximation of task-specific dropout rates,

this study employs several advanced techniques within the MetaVD frame-

work, such as an amortized Variational Inference (VI) setup, a Bernoulli ex-

pert’s meta-model offering a memory-efficient mapping of dropout rates, and

an innovative prior, dependent on the entirety of the task data, which optimizes

the conditional (dropout) posterior in the amortized VI. The primary strength

of MetaVD lies in its ability to adapt a globally learned neural network to
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new tasks rapidly. This makes it incredibly suitable for few-shot learning en-

vironments, where models quickly adapt to new tasks with limited data. We

have evaluated MetaVD on various few-shot learning tasks and datasets. The

experiments show that MetaVD can circumvent under-fitting and posterior col-

lapsing and achieve outstanding performances in log-likelihood, active learning

efficiency, prediction accuracy, and generalization.

In the context of Federated Learning (FL)—a privacy-enhancing method

training a global model from distributed clients—MetaVD addresses common

issues such as model overfitting and divergent local models caused by disparate

client data. This is achieved through learning client-specific dropout rates via

a shared hypernetwork, offering personalized models for FL algorithms. A no-

table feature is a weight given to conditional dropout uncertainty in consolidat-

ing a global model, seen through the lens of Bayesian FL’s posterior aggregation.

Experimental assessments demonstrate MetaVD’s effectiveness in various FL

and few-shot learning settings, with remarkable predictive accuracy and un-

certainty calibration, especially for out-of-distribution clients. By compressing

local model parameters, MetaVD curbs model overfitting and reduces commu-

nication costs. In essence, this thesis’s novel insights, theoretical contributions,

and empirical results advance our understanding of Bayesian Meta-Learning,

opening up new possibilities for robust and efficient learning systems that can

better adapt to varying tasks with limited data.

6.2 Future Work

There is still room for improvement in the MetaVD. In future work, we may

consider improving our proposed methods in this thesis in the following ways:

Adapting the advanced set representations. Adapting advanced set

representations could be an exciting avenue for future research. Set represen-
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tations have shown promise in tasks that involve unordered or variable-length

inputs, such as few-shot learning. The MetaVD approach could benefit from

leveraging these advanced set representations, such as those proposed in stud-

ies [111, 45, 185]. These set representations could enhance the model’s ability

to capture complex relationships and dependencies between elements in a set,

leading to improved performance in few-shot learning tasks.

Extention to more complex deep learning architectures. Explor-

ing more complex architectures could also be a fruitful direction for future

work. The cited papers [186, 187] propose various advanced architectures for

meta-learning and few-shot learning tasks. These architectures incorporate in-

novative design choices such as hierarchical structures, convolutional neural

networks, and attention mechanisms. Integrating the MetaVD framework with

these complex architectures could potentially lead to even better performance

by leveraging the strengths of both approaches. By combining the flexibility

and adaptability of MetaVD with the expressiveness and representational power

of more sophisticated architectures, it may be possible to achieve even stronger

adaptation to context data, improved functional variability, and enhanced gen-

eralization to new tasks.

Application in language models. Language modeling tasks often require

effectively handling sequential data and capturing the dependencies between

words or phrases [66, 188, 68]. Extending the MetaVD framework to language

models could improve the model’s ability to adapt to different contexts, enhance

the variability of representations, and generalize well to new language-related

tasks. Exploring the application of MetaVD in tasks such as text generation,

sentiment analysis, and natural language understanding would be an intriguing

direction to advance the field of language modeling and improve the perfor-

mance of language-related applications.
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Appendix A

Application in Few-shot Learning

A.1 Additional Experiments on 1D Few-shot Regres-
sion

Setup. We explored the 1D function regression on the data generated from

the synthetic GPs with varying kernels1 in the previous work [33, 34, 55] that is

suitable for measuring the uncertainty adaptation. For the baseline models, the

Neural Process model (NP) and NP with additional deterministic representation

(NP+CNP) described in [33, 34, 55] are compared. We also adopted the varia-

tional prior (VP) into the representation-based posterior of NP and its variants

(NP+VP and NP+CNP+VP). For all models (including our NVDP), we used

the same fixed variance and learned variance likelihood architecture depicted

in [55]: the agent NN with 4 hidden layers of 128 units with LeLU activation

[57] and an output layer of 1 unit for the mean (or an additional 1 unit for

variance). The dimensions of the set representation rt were fixed to 128. The

meta NNs in the conditional dropout posterior in NVDPs have 4 hidden layers
1https://github.com/deepmind/neural-processes
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of 128 units with LeakyReLU and an output layer of 257 units (i.e. K+D+1)

for each layer of the agent model. All models were trained with Adam optimizer

[121] with a learning rate 5e-4 for 0.5 million iterations. We draw 16 functions

(a batch) from GPs at each iteration. Specifically, at every training step, we

draw 16 functions f(·) from GP prior with the squared-exponential kernels,

k(x, x′) = σ2f exp(−(x − x′)2/2l2), generated with length-scale l ∼ U(0.1, 0.6)

and function noise level σf ∼ U(0.1, 1.0). Then, x values was uniformly sampled

from [−2, 2], and corresponding y value was determined by the randomly drawn

function (i.e. y = f(x), f ∼ GP). And the task data points are split into a dis-

joint sample of m contexts and n targets as m ∼ U(3, 97) and n ∼ U [m+1, 100),

respectively. In the test or validation, the numbers of contexts and targets were

chosen as m ∼ U(3, 97) and n = 400 −m, respectively. 50000 functions were

sampled from GPs to compute the log-likelihood (LL) and other scores for val-

idation.

Implementation. The architecture of NVDP model is as follows: (Deter-

ministic)Feature Encoder. r(xts, yts) : 2× |C|
lin+relu−→ 128× |C|︸ ︷︷ ︸

6 times

mean−→ 128.

Decoder (Agent). f(xi) : 1
lin+relu−→ 128︸ ︷︷ ︸

4 times

lin+relu−→ 2
split−→ (µ, σ) (where σ =

0.1 + 0.9· softplus(logstd)).

Meta Model. g(l)(r) : dr
lin+leakyReLu−→ 128︸ ︷︷ ︸

4 times

lin+leakyReLu−→ (K(l), D(l), 1)
split−→

(a, b, c)

where g(l)(r) is the meta NN for the l-th layer of the decoder, and K(l) ×D(l)

is the number of parameters in the l-th layer.
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GP Dataset CNP
Fixed LL −0.94(±0.05)
Variance RLL −0.93(±0.01)

PLL −0.94(±0.05)

Learned LL 0.72(±0.54)
Variance RLL 1.03(±0.38)

PLL 0.69(±0.53)

Table A.1: An additional summary of the 1D regression with the GP with
random kernel dataset. The deterministic baseline (CNP) is presented. We
could observe that the performance of the CNP is close to or slightly better
than the NP+CNP in Tables 1 of the manuscript. However, the CNP model
could lose the functional variability as shown in Figure 2.

A.2 Additional Experiments on Few-shot Image Com-
pletion Tasks

Setup. The image completion tasks are performed to validate the perfor-

mance of the models in more complex function spaces [33, 34, 55]Here, we treat

the image samples from MNIST [122] and CelebA [123] as unknown functions.

The task is to predict a mapping from normalized 2D pixel coordinates xi
(∈ [0, 1]2) to pixel intensities yi (∈ R1 for greyscale, ∈ R3 for RGB) given some

context points. For 2D regression experiments, we used the same learned vari-

ance baselines implemented in the GP data regression task, except the input

and output of the decoder are changed according to dataset, e.g., xi ∈ [0, 1]2,

and yi ∈ R1 for MNIST (or ∈ R3 and rt = 1024 for CelebA). At each iteration,

the images in the training set are split into S context and N target points (e.g.,

S ∼ U(3, 197), n ∼ U [N + 1, 200) at train and S ∼ U(3, 197), N = 784− S at

validation). Adam optimizer with a learning rate 4e-4 and 16 batches with 300

epochs were used for training. The validation is performed on the separated

validation images set. To see the generalization performance on a completely
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new dataset, we also tested the models trained on MNIST to the Omniglot

validation set.

Image Dataset CNP
MNIST LL 0.87(±0.16)

RLL 1.14(±0.08)
PLL 0.83(±0.15)

MNIST LL 0.68(±0.11)
to RLL 0.99(±0.08)
Omniglot PLL 0.64(±0.13)

CelebA LL 0.78(±0.15)
RLL 0.93(±0.05)
PLL 0.77(±0.15)

Table A.2: An additional summary of the 2D image completion tasks on the
MNIST, CelebA, and Omniglot dataset. The deterministic baseline (CNP) is
presented. We could observe that the performance of the CNP is close to or
slightly better than the NP+CNP in Tables 2 of the manuscript. However, the
CNP model could lose the functional variability as shown in Figure 4.

A.3 Additional Details on a Trignomy Dataset

Implementation. For the small NVDP model on 1D function regression with

a Trigonometry dataset, the following architecture was employed:

(Deterministic)Feature Encoder. r(xts, yts) : 2×|C|
lin+relu−→ 12× |C|︸ ︷︷ ︸

6 times

mean−→

12.

Decoder (Agent). f(xi, r) : (1 + dr)
lin+relu−→ 12︸ ︷︷ ︸

2 times

lin+relu−→ 2
split−→ (µ, σ) (where

σ = 0.1 + 0.9· softplus(logstd)).

Meta Model. g(l)(r) : dr
lin+Mish−→ 12︸ ︷︷ ︸

4 times

lin+Mish−→ (K(l), D(l), 1)
split−→ (a, b, c)

where g(l(r) is the meta NN for the l-th layer of the decoder, and K(l)×D(l) is

the number of parameters in the l-th layer.
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A.4 Additional Implementation Details

Gumbel-Sigmoid. The Gumbel-Sigmoid function is derived from the Gumbel-

Softmax distribution originally suggested for continuous relaxation for discrete

random variables [189, 190]. Given two logits: a and 0, the Gumbel-Sigmoid

function can be derived as follows:

Gumbel-Sigmoid(a; τ) = Gumbel-Softmax((a, 0); τ)[0] (A.1)

=
exp((a+ g1)/τ)

exp((a+ g1)/τ) + exp((0 + g2)/τ)
=

1

1 + exp(−(a+ (g1− g2))/τ)
(A.2)

where g1, g2 ∼ − log(− log(Uniform(0, 1)))

where g1 and g2 are two samples from Gumbel(0,1) distribution. For low tem-

peratures (e.g., τ → 0), the expected value of a Gumbel-Softmax random vari-

able approaches the expected value of a categorical random variable with the

same logits. As the temperature increases (e.g., τ → ∞), the expected value

converges to a uniform distribution.

While training MetaVD, adapting the Gumbel-Sigmoid function with the

temperature (e.g., τ > 1) in the calculation of the hierarchical prior (or varia-

tional prior) improved the training stability. As we mentioned in the manuscript,

this makes the training of the meta NN much more flexible.

Softmax Relaxation. Although the Gumbel-Softmax distribution is origi-

nally suggested for relaxation for discrete random variables [189, 190], another

way to view the Gumbel-Softmax is a smoothing the “softmax” function with

the temperature τ . This can be more easily identifiable if we only consider the

relaxed softmax function without the random Gumbel noises:

Softmax((a1, a2); τ) =
[ exp(a1/τ)

exp(a1/τ) + exp(a2/τ)
,

exp(a2/τ)
exp(a1/τ) + exp(a2/τ)

]
(A.3)
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Using the temperature of τ , the softmax is applied on the scaled logits (i.e.,

logits/τ ). When the temperature is 1, the softmax is directly applied on the

unscaled logits. Thus, the temperature τ can control the softness of softmax in

the prediction of the probability distribution over classes.

Relation to Knowledge Distillation Softmax relaxation is also well

known as a technique for distillation [191]. Hinton et al. [191] adapted the

relaxed softmax to train a distilled model from the knowledge in an ensem-

ble model. Specifically, the soft class targets (or probabilities) produced by

the ensemble model with the relaxed softmax are used to train the distilled

model. Since the soft targets have high entropy, they tend to provide much

more information than hard targets and much less variance in the gradient es-

timation. Similarly, the relaxed sigmoid with τ is adopted in the meta NN

of NVDPs for reducing the variance in the estimation of the dropout rate p

while training. In terms of distillation perspective, the KL divergence between

the variational posterior and the (variational) prior in NVDPs can be seen as

transferring knowledge of the dropout structure of the parameters. Also, the

dropout rate predicted from the target set can act as a teacher network to the

prediction of the dropout rate predicted from the context set.

In the experiment of NVDPs, we employed the Gumbel-Sigmoid since it

allows stronger exploration than the relaxed sigmoid due to the random Gumbel

noises. However, training NVDPs with the relaxed sigmoid without the Gumbel

noises was also possible. For the empirical evidence, we provide an additional

experimental result in Section 12 of this document. The relaxed sigmoid trick

without sampling the noise could be more practical for training a large-scale

BNP model.
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NP

NP+VP

NP+CNP

NVDP

Sample	1 Sample	2

Figure A.1: The additional 1D few-shot regression results of the models on GP
dataset in fixed variance settings. The black dotted lines represent the true
unknown task functions. Black dots are a few context points (S = 5) given to
the posteriors. The blue lines are mean values predicted from the sampled NNs.
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NP

NP+VP
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NVDP
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Figure A.2: The additional 1D few-shot regression results of the models on GP
dataset in learned variance settings. The black (dash-line) represents the true
unknown task function. Black dots are a few context points (S = 5) given to
the posteriors. The blue lines and light blue area are mean values and variance
predicted from the sampled NNs, respectively.
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Figure A.3: The additional results from the 2D image completion tasks on the
MNIST dataset. Given the observed context points (10, 30, 100, half, and
full pixels), the mean values of two independently sampled functions from the
models (i.e. NP, NP+CNP, and NVDP (ours)) are presented.
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Figure A.4: The additional results from the 2D image completion tasks on the
Omniglot dataset. Given the observed context points (10, 30, 100, half, and
full pixels), the mean values of two independently sampled functions from the
models (i.e. NP, NP+CNP, and NVDP (ours)) are presented.
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10 30 100 half      1024

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Co
nt
ex
t

NP

NP+VP

NP+CNP

NP+CNP+VP

NVDP

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

10 30 100 half      1024

Figure A.5: The additional results from the 2D image completion tasks on
the CelebA dataset. Given the observed context points (10, 30, 100, half, and
full pixels), the mean values of two independently sampled functions from the
models (i.e. NP, NP+CNP, and NVDP (ours)) are presented.
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Figure A.6: The additional results from the 2D image completion tasks on
the CelebA dataset. Given the observed context points (10, 30, 100, half, and
full pixels), the mean values of two independently sampled functions from the
models (i.e. NP, NP+CNP, and NVDP (ours)) are presented.
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Appendix B

Application in Federated Learning

B.1 Additional Background

The Global Posterior Decomposition in Bayesian FL In Bayesian esti-

mation, an alternative to Maximum Likelihood Estimation (MLE) is the in-

ference or estimation of the posterior distribution of the parameters given

all the data, denoted as p(w|D ≡ D1 ∪ · · · ∪ DM ). This posterior distribu-

tion is proportional to the product of the likelihoods and a prior, p(w|D) ∝

p(w)
∏M
m=1 p(Dm|w). In the case of a uniform prior, the modes of the global

posterior coincide with the MLE solutions. This establishes an equivalence be-

tween the inference of the posterior mode and optimization. Under the uniform

prior, any global posterior distribution that exists decomposes into a product

of local posteriors:

P (θ|D) ∝
M∏
m=1

p(θ|Dm) (B.1)

This proposition is well discussed in the recent Bayesian FL work [153]. In the

FL context, the global model can be computed in the server by multiplicatively
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aggregating the local models adapted to each client. However, in practice, ag-

gregating the posterior with the overfitted local models into the global one is

difficult due to the heterogeneity among clients’ data and the permutation in-

variance property of the NN architecture [192]. Thus, frequent communications

between the server and the client are still demanded in the FL. The challenge of

inferencing the local and global model and improving communication efficiency

remains an active research area for real federated applications.

Connection of Posterior Aggregation to FedAvg. In the Bayesian fed-

erated learning (BFL) objective, the multiplicative decomposition allows more

accurate global posterior predictions by taking into account the uncertainties of

local posteriors. Intuitively, local parameters with lower uncertainty will have

smaller weights than those parameters with higher uncertainty in the global pa-

rameter aggregation of equation 5.5. A similar posterior decomposition has been

successfully applied to scale Monte Carlo methods facilitating embarrassingly

parallel posterior approximation for large datasets [165, 81], although those were

not deep neural network-based approaches.

In fact, the posterior decomposition view also exhibits a direct connection

to the FedAvg algorithm [125]. Assuming a uniform prior p(w) across all clients,

we can derive the MAP objective of Bayesian FL based on local log-likelihoods.

arg max
w

log p(w|D) = arg max
w

log(
∏
m∈S

p(w|Dm)) (B.2)

= arg max
w

{
log p(w) +

M∑
m=1

Lm(Dm;w)
}

(B.3)

where Lm(Dm;w) = log p(Dm|w) (B.4)

where log p(Dm|w) is log-likelihood on local data Dm. This is due to the Bayes

rule, which states that the posterior is proportional to the product of the like-
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lihood and the prior. We can actually treat m’t clients empirical risk Lm(w)

in the equation 5.1 as the local log-likelihood in the equation B.2. Assuming

Gaussian local distribution p(Dm|w) = 1√
2σm

exp(− ||w−wm||2
2(σm)2

), the local log-

likelihood equals to Lm(Dm;w) = Ci − 1√
2σm
||w − wm||2. Additionally, with

the same covariance (e.g. ., σm = σ) for all clients, the optimization problem

becomes

arg max
θ

log(
∏
m∈S

p(w|Dm)) = − 1

2σ2

∑
m∈S
||w − wm||2 + C. (B.5)

This is equivalent to minimizing a sum of squares. This provides one justi-

fication of the arithmetic mean w̄ =
∑M

m=1w
m as a global approximation in

FedAvg.

The Motivation of Hierarchical Prior in MetaVD. In 5.3.3, we adopt

the hierarchical prior [163, 164, 193] proposed in [52] for several reasons. The

first reason is simply that it is a well-posed Bayesian prior that can avoid a

degenerate posterior problem of the conventional VD prior [44, 43, 51]. The

second reason is that we want a sparse prior to reduce communication costs

by compressing the model; the hierarchical prior has been proven effective for

parameter pruning. Although we briefly mentioned the KL divergence term as

KL(q(wm;ϕ)||p(wm)) =
∑K

k=1 0.5 log(1 + (αmk )
−1) in the manuscript for read-

ability, here we provide more detailed descriptions of applying the hierarchical

prior.

Under the hierarchical prior assumption, we consider the joint prior and

joint posterior distributions [1]. The joint prior, p(wm, γm) = p(wm|γm)p(γm),

is defined as a combination of a zero-mean Gaussian distribution, p(wm|γm) =

N (wm|0, γm), and a uniform hyper-prior, p(γm) = U(γm|a, b), over the vari-

ance. Then, we define a (conditional) joint variational posterior, q(wm, γm|ϕ) =
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q(wm|ϕ)q(γm), comprising the (conditional)dropout posterior q(wm;ϕ = (θ, ϕ, em))

and an additional Dirac delta distribution, q(γm), to approximate the true

(joint) posterior p(wm, γm|Dm) (given the client’s dataset Dm).

ELBO. With the hierarchical prior p(wm, γm) = p(wm|γm)p(γm) and the

(conditional) joint posterior q(wm, γm|ϕ) = q(wm|ϕ)q(γm) of the MetaVD, we

can derive the local objective for each client as follows:

KL(q(wm, γm|ϕ)||p(wm, γm|Dm)) =
∫
q(wm, γm|ϕ) log q(wm, γm|ϕ)

p(wm, γm|xm, ym)
∂wm∂γm

=

∫
q(wm, γm|ϕ) log q(wm, γm|ϕ)p(ym|xm)

p(ym|xm, wm)p(wm, γm)
∂wm∂γm (B.6)

=

∫
q(wm, γm|ϕ)

{
log q(w

m, γm|ϕ)
p(wm, γm)

+ log p(ym|xm)− log p(ym|xm, wm)
}
∂wm∂γm

= KL(q(wm, γm|ϕ)||p(wm, γm)) + log p(ym|xm)− Eq(wm,γm|ϕ)[log p(ym|xm, wm)].

(B.7)

Eq. (2) is derived from Bayes’ rule: p(wm, γm|Dm) = p(ym|xm,wm)p(wm,γm)
p(ym|xm) . By

reordering Eq.(3), we get

log p(ym|xm) ≥ Eq(wm,γm|ϕ)[log p(ym|xm, wm)]−KL(q(wm, γm|ϕ)||p(wm, γm))

(B.8)

= Eq(wm|ϕ)Eq(γm)[log p(ym|xm, wm)]−KL(q(wm, γm|ϕ)||p(wm, γm))

= Eq(wm|ϕ)[log p(ym|xm, wm)]−KL(q(wm, γm|ϕ)||p(wm, γm)) (B.9)

The lower-bound in Eq.(4) is due to the positivity of the KL(q(wm, γm|ϕ)||p(wm, γm|Dm)).

Here, Eq. (5) corresponds to the ELBO objective of Eq. (3) in the manuscript.

KL term. If we further decompose the KL divergence term in Eq. (5),

KL(q(wm, γm|ϕ)||p(wm, γm)) = KL(q(wm|ϕ)||p(wm|γm)) + KL(q(γm)||p(γm))

=
K∑
k=1

{0.5 log(1 + (αmk )
−1)}+

K∑
k=1

{log(b− a)} (B.10)
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The log(b− a) is independent of the unknown variables αm, θ, and γm. Thus,

we do not need to specify the value of hyperparameters a and b and can neglect

them in practice1. Eq. (6) provides the rationale behind the KL divergence

term. In fact, the independence between the KL term and the parameter θ

ensures compatibility with other optimization meta-learning algorithms. Also,

the two-level structure in a hierarchical system can generate a much more com-

plex distribution, expanding the potential solution spaces for selecting feasible

prior. Thus, the hierarchical prior is a suitable prior for interpreting the vari-

ety of different clients’ models in the FL environment. The same hierarchical

prior is uniformly applied across all 1...M clients to ensure the global posterior

decomposition assumption.

B.2 Dataset and Methods

We follow the datasets and the evaluation protocol of pFL-Bench [141] which

is a recently proposed benchmark for federated learning.

Datasets. Here, we present descriptions of the dataset used in our experi-

ment.

• The CIFAR-10 and CIFAR-100 datasets [194] are popular for 10-class

and 100-class image classification respectively. Each dataset contains

50,000 training and 10,000 test images with a resolution of 32x32 pix-

els. Following the heterogeneous partition manners used in [141], we use

Dirichlet allocation to split this dataset into 130 clients with different

Dirichlet factors as α̇ = [5, 0.5, 0.1] (a smaller α̇ indicates a higher het-

erogeneous degree).
1For a more detailed proof of this, please see the appendix section of [52]
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• The Federated Extended MNIST (FEMNIST) is a widely used FL dataset

for 62-class handwritten character recognition [167]. The original FEM-

NIST dataset contains 3,550 clients and each client corresponds to a

character writer from EMNIST [195]. Following [141], we adopt the sub-

sampled version, which contains 400 clients and a total of 85350 training

and 21536 test images with a resolution of 28x28 pixels.

• The CelebA is a FL dataset based on [196] for 2-class image classification;

Smiling or Not. Following [141],we adopt the sub-sampled version, which

contains 500 clients and a total of 8752 training and 2347 test images with

a resolution of 84x84 pixels. Each client is assigned images of a single

celebrity.

We randomly select 30 clients for CIFAR-10 and CIFAR-100 and 40 clients for

FEMNIST as OOD clients who do not participate in the FL processes. For all of

the datasets, we follow the same heterogeneous patterns exhibited in the pFL-

Bench, which covers a wide range of scales, partition manners, and non-i.i.d

degrees. This enables comprehensive comparisons and analysis among different

methods in the non-i.i.d. data environment.

Baselines. We present an overview of the baseline models used in our exper-

iment, covering various popular and state-of-the-art approaches across three

categories: Non-PFL, meta-learning-based PFL, and Bayesian FL methods.

The following Non-PFL methods are considered in our experiments:

• FedAvg [125] is a standard FL algorithm that averages gradients weighted

by the data size of clients in each FL round.

• FedProx [168] employs a proximal term to encourage updated local models

for clients not to deviate too much from the global model.
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The following (meta-learning-based) PFL methods are considered in our ex-

periment:

• Reptile [145] inserts a meta-learning fine-tuning phase of [26, 160] after

the federated averaging algorithm stage to provide a reliable personalized

model.

• MAML [144] enhances federated learning by integrating a MAML-based

meta-learner [160], dividing the dataset into support and query sets for

more robust local training.

• PerFedAvg [146]method focuses on the convergence analysis of the HF-

MAML algorithm [166] in the FL scenario, offering a provably convergent

method based on MAML to tackle non-convex functions.

The following Bayesian FL algorithm are also compared in our experiment:

• FedBE [151] enhances robust aggregation by adopting a Bayesian infer-

ence approach, sampling high-quality global models, and combining them

through Bayesian model ensemble using Gaussian or Dirichlet distribu-

tions fitted to local models.

The following Pruning algorithm is also compared in our compression ex-

periment in the appendix:

• SNIP [197, 198] algorithm is a deep learning pruning technique that iden-

tifies and removes less important connections in neural networks before

the training begins using a small subset of the dataset. It is compared

with our algorithm in the model compression experiment in the FL envi-

ronment.
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Additionally, Fine-tuning (FT) in the baseline’s name indicates fine-tuning

the local models with a few steps before evaluation within the FL processes,

which is similar to the adaptation step of the optimization-based meta-learning.

B.3 Implementation Details

Models. To maintain consistency with previous research, we employ the

widely adopted CNN model for all algorithms and baselines [46, 169, 127].

Specifically, the global model comprises three convolutional layers with 64 fil-

ters and 3x3 kernels, followed by three fully-connected layers of 256, 128, and

64 hidden units.

The hypernetwork architecture of MetaVD consists of an embedding layer,

followed by two consecutive blocks containing a linear layer and a LeakyReLU

activation function, and one block containing a linear layer with exponential

activation to output the dropout logit parameter α. The dimension of client

embedding em is proportional to the number of clients M and is calculated as

(1 +M/4). The hidden units’ size in the hypernetwork was set to 200. The

predicted dropout logit parameter is then applied to each weight of the MetaVD

layer within the global model. In our study, we selectively apply MetaVD to

just one fully-connected layer right before the output layer of the global model.

This simple adaptation of MetaVD only in one fully-connected layer yielded

significant performance improvements across all experiments.

Hyperparameters. For all datasets, we set T to 1000 to ensure sufficient

convergence following conventions [141]. The batch size was set to 64, and

local steps was set to 5. Personalization was executed with a batch size of

64 and a 1-step update. In order to ensure a fair comparison between the

algorithms, the results presented in all of our experiments are obtained with the
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optimal hyperparameters for each model. To do so, we conducted an extensive

parameter optimization using an optimization tool called Optuna2 [199]. We

employed both the Tree-structured Parzen Estimator algorithm and Random

Sampler as hyperparameter samplers in Optuna.

For all methods, we investigated the server learning rate and local SGD

learning rate within identical ranges. The server learning rate η was explored

within the range of [0.6, 0.7, 0.8, 0.9, 1.0]. The local SGD learning rate was in-

vestigated within the range of [0.005, 0.01, 0.015, 0.02, 0.025, 0.03]. In MAML

and PerFedAvg, an additional client learning rate γ is required, for which we

searched within the range of [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1].

For MetaVD, an additional KL divergence parameter β is needed, and we sought

its optimal value within the range of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

To ensure the reproducibility of the experiments, we will release all code, in-

cluding baselines, on our GitHub repository.

Experiment Outline. To evaluate the effectiveness and robustness of the

proposed PFL methods, we tested the algorithms under various FL scenarios,

including:

• Degree of Data Heterogeneity: we assessed the performance of each al-

gorithm in scenarios where data from different clients are heterogeneous,

considering factors such as variations in data distributions, label imbal-

ance, and situations while some clients have limited training data avail-

able.

• Ablation Study: we conducted an ablation study to verify the advantages

of employing a hypernetwork in MetaVD compared to naive Variational

Dropout (VD) or Ensemble VD approaches in Federated Learning.
2https://optuna.org/
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• Client Participation: we evaluated the performance of each algorithm

under different levels of client participation rates in each FL round.

• Uncertainty Calibration: we used Expected Calibration Error (ECE)mea-

sures to evaluate the accuracy of probabilistic predictions made by the

predictive models. These measures help determine whether a model is

overconfident or underconfident in its predictions and identify any biases

in the model’s predictions.

• Multi-domain Datasets: Multi-domain learning aims to leverage all avail-

able training data across different domains to enhance the performance

of the model, but it typically results in a suboptimal global model. We

tested our approach in FL with multi-domain learning.

• Model Compression: we compared MetaVD’ s compression capabilities

with the existing pruning algorithm and evaluated the performance of

MetaVD with and without compression.

B.4 Additional Results with Non-i.i.d. Settings

To evaluate the generalization capabilities of the models under non-i.i.d. data

conditions, we conducted tests on both CIFAR-10 and CIFAR-100 datasets

with varying degrees of heterogeneous partitions. We randomly selected 30

out of 130 clients as non-participating out-of-distribution (OOD) clients who

were not involved during the training phase. Table B.4 and Table B.5 dis-

play the weighted average accuracy while adjusting the non-i.i.d. degrees with

different Dirichlet factors α̇. A smaller α̇ corresponds to a higher degree of

heterogeneity. Test(%) denotes the weighted average accuracy of participating

clients’ test samples, OOD(%) signifies the weighted average accuracy of the
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non-participants, and ∆ represents the participation generalization gap calcu-

lated as the difference between OOD accuracy and test accuracy.

In both datasets, PFL methods such as Reptile, MAML, and PerFedAvg

generally outperform non-PFL methods like FedAvg and FedProx. The Bayesian

ensemble approach on FedAvg (FedBE) offers a slight improvement in overall

performance but still lags behind PFL methods in terms of OOD accuracy.

Notably, when combined with MetaVD, all baselines experience significant

performance enhancements, regardless of whether they employ FL or PFL ap-

proaches. Importantly, our method consistently improves OOD accuracy across

all degrees of non-i.i.d. data, illustrating its versatility in effectively augment-

ing conventional FL algorithms without being limited by specific optimization

techniques, addressing non-i.i.d. data and model overfitting issues.

B.5 Additional Ablation Results in FMNIST Dataset

FEMNIST dataset
Method Test (%) OOD (%) ∆

Reptile 87.86 88.22 −0.36
Reptile+VD 87.93 85.88 +2.05
Reptile+EnsembleVD 87.99 87.97 +0.02

Reptile+MetaVD 89.43 88.71 +0.72

Table B.3: MetaVD ablation study results in the FEMNIST dataset.

In this experiment, we further performed the ablation study using the FEM-

NIST dataset to evaluate the benefits of MetaVD’s hypernetwork in FL. We

compared MetaVD to naive VD [44] and Ensemble VD [174] approaches. The

naive (global) VD model keeps one global dropout parameter shared with all

clients; the dropout parameter is treated as a global model parameter as in

FedAvg. In EnsembleVD, we updated client-specific dropout rates in a manner
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analogous to the local adaptation step of MetaVD but maintained indepen-

dent variational dropout rates for different clients on the server. In contrast,

MetaVD utilized a hypernetwork to learn the dropout rates. All models em-

ployed Bayesian posterior aggregation rules based on dropout rates to update

the global model parameter.

The ablation study’s results on the FEMNIST dataset are outlined in Table

B.3 in the manuscript. It is evident from the table that MetaVD’s conditional

variational dropout-based hypernetwork surpasses all other baselines in classi-

fication accuracy. Here too, Reptile+MetaVD consistently outperforms other

methods. We noticed that in baselines like VD or EnsembleVD, client-specific

dropout rates were not fully optimized due to restricted client participation.

Consequently, the initial dropout rates and KL divergence loss in VD and En-

sembleVD remained fairly static. Conversely, in MetaVD, both dropout rates

and KL divergence loss converged in all tests. This observation underscores that

MetaVD’s hypernetwork presents a more data-efficient approach to learning the

client-specific model uncertainty compared to other baselines.

B.6 Additional Results on Uncertainty Calibration

Addressing uncertainty calibration issues is crucial for enhancing the accuracy

and reliability of a model’s predictions, particularly when the model is employed

for making significant decisions. Uncertainty calibration metrics evaluate the

accuracy of probabilistic predictions made by a predictive model. By identify-

ing and addressing any calibration issues, it becomes possible to improve the

model’s prediction accuracy and reliability, which is of essential importance in

decision-making processes. In a Federated Learning environment where clients

have limited non-i.i.d. data, overfitting can easily occur, making the calibra-

tion of prediction uncertainty even more critical. We conducted experiments to
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evaluate the effectiveness of our proposed algorithm in improving uncertainty

calibration, demonstrating its potential to strengthen model performance in

various real applications.

Expected Calibration Error (ECE) and Maximum Calibration Error (MCE)

are widely used metrics for measuring uncertainty calibration. ECE represents

the average discrepancy between the model’s confidence and its accuracy. To

compute ECE, we group samples based on their confidence levels and calculate

the average confidence and the percentage of correct samples for each group.

ECE is then derived as the weighted average of the differences between the

average confidence and the percentage of correct samples across all groups. ECE

values range from 0 to 1, where 0 signifies perfect calibration and 1 indicates

complete miscalibration. MCE, on the other hand, is akin to ECE but focuses

on the largest gap for any group rather than the weighted average.

Table B.4 and Table B.5 summarize the ECE and MCE results for varying

non-i.i.d. degrees in CIFAR-100 and CIFAR-10 datasets, with Dirichlet factors

represented as α̇ = [5, 0.5, 0.1]. Typically, ECE and MCE values tend to in-

crease as clients possess more non-i.i.d. data, which is a result of overfitting

each client’s local data. In the CIFAR-10 dataset, all methods that incorporate

MetaVD exhibit a decline in ECE and MCE values as α̇ decreases, in contrast

to standard FL or PFL methods that show an increase in these values. MetaVD

effectively mitigates overfitting to local data and enhances calibration by lever-

aging the heterogeneity present in the training data. Consequently, methods

employing MetaVD consistently achieve the lowest ECE and MCE values in

almost all scenarios.

Examining a reliability diagram can provide a visual comparison of uncer-

tainty calibration results, as it illustrates the relationship between prediction

probabilities and true labels. Ideally, if a model predicts a specific class with a
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certain probability, the actual label should correspond to that confidence level,

placing the point on the reliability diagram’s diagonal line. However, if the pre-

diction probability and the true label do not align, the point would be below or

above the diagonal line. In this context, ECE represents the average distance of

each point from the diagonal line, while MCE indicates the maximum distance

of any point from the diagonal line, offering a comprehensive understanding of

the model’s calibration performance.

Figure B.1 and Figure B.2 present the reliability diagrams for CIFAR-100

and CIFAR-10 with α̇ = 0.5 respectively. These figures allow us to compare

the calibration performance of FedAvg, Reptile, MAML, and PerFedAvg, both

with and without the integration of MetaVD. Remarkably, in most instances,

employing MetaVD leads to improved calibration, drawing the reliability dia-

grams closer to the identity function. This supports our findings that MetaVD

significantly improves the uncertainty calibration of the models as well.

B.7 Additional Results on Muti-domain Datasets

Unlike existing federated learning algorithms that usually assume a single-

domain approach where only one dataset is used in the experiment. In this

section, we further evaluate the performance of our method on real-world non

i.i.d. FL experiments by introducing multi-domain datasets in which we as-

sume each client can have data from different domains. Multi-domain learn-

ing [182, 183, 184] aims to leverage all available training data across different

domains to enhance the performance of the model. However, directly utilizing

data from different domains typically results in a suboptimal global model. In

the context of federated learning, it becomes even more critical to apply multi-

domain learning effectively. We use three different FL datasets to construct

the multi-domain task distributions: CelebA, FEMNIST, and CIFAR-100. The
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non-i.i.d heterogeneous environment has also been assumed in the field of multi-

domain learning. We utilize the Dirichlet sampling technique (α̇ = [5.0, 0.5, 0.1])

to sample each client’s local CIFAR-100 data.

Table B.6, B.7, and B.8 illustrate the classification accuracies for Test

and OOD clients with varying degrees of heterogeneity. Employing MetaVD

leads to significantly improved prediction accuracy, with larger improvements

in OOD accuracy compared to the improvement in Test accuracy, across all

multi-domain settings and degrees of heterogeneity. The results indicate that

MetaVD can improve the versatility and performance of FL algorithms when

applied to a broad range of multi-domain datasets.

B.8 Additional Results on Model Compression

Federated Learning optimization involves frequent communication of model pa-

rameters between devices and the central server, which can be slow and may

raise privacy concerns. Therefore, it is crucial to minimize communication costs

by reducing both the size of exchanged model parameters and the number of

communication rounds. MetaVD also has the benefit of compressing the model

parameters needed for each client device. To explore the compression capa-

bilities of MetaVD, we conducted experiments on CIFAR-10 and CIFAR-100

datasets, comparing our method to the baseline Pruning algorithm SNIP [197].

For the implementation of the SNIP algorithm in the context of Federated

Learning, we referred to the work of Jiang et al. (2022) [198]; we let SNIP

prune the original model to the target sparsity right after the first round.

Table B.9 and Table B.10 demonstrate the results of Test(%),OOD(%), and

Sparsity(%) percentage of the models with or without MetaVD+DP. Sparsity

represents the ratio of zero-valued model parameters in the personalized layer.

The DP refers to the process of dropping communication of weights in the FL
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algorithm, where weights with a dropout rate greater than 0.9 are dropped after

150 rounds. We have set these 150 rounds to allow MetaVD to adequately learn

the client-specific dropout rates. The target sparsity of the SNIP algorithm was

set to 0.7. Note that, in our MetaVD+DP setting, even though we dropped

weights with a dropout rate greater than 0.9, the actual sparsity values are

observed to be lower and tend to be around 70%, as indicated in the tables.

Overall, most models removed over 70% of their parameters in the person-

alized layer without losing much performance. In CIFAR-10, as heterogeneity

increased, the performance gap between SNIP and MetaVD+DP tended to in-

crease. For instance, in CIFAR-10 with α̇ = 5.0, the OOD performance of SNIP

model and MAML+MetaVD+DP model were 81.59 and 84.95, respectively,

whereas in CIFAR-10 with α̇ = 0.1, they were 69.27 and 80.74 respectively,

demonstrating an increased difference in performance. This was similar in the

case of Reptile+MetaVD+DP and PerFedAvg+MetaVD+DP. In CIFAR-100

dataset, the performance gap, according to the increase in heterogeneity, was

not noticeable. Surprisingly, dropping model parameters could lead to perfor-

mance improvements in some cases. For example, in CIFAR-100 with α̇ = 0.5,

the PerFedAvg+MetaVD+DP model’s OOD performance increased from 48.70

to 51.47. This experiment demonstrates that the MetaVD method can decrease

the communication cost in Federated Learning (FL) by compressing model pa-

rameters. This emphasizes the efficiency of MetaVD, this approach can be

applied to numerous FL algorithms without significantly increasing commu-

nication costs. It also boosts the generalization performance for new, unseen

clients. These aspects make our approach a significant addition to the field of

Federated Learning
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Figure B.1: Reliability diagrams for (a) FedAvg, (b) FedAvg + MetaVD, (c)
Reptile, (d) Reptile + MetaVD, (e)MAML, (f)MAML + MetaVD, (g) PerFe-
dAvg and (h) PerFedAvg + MetaVD in CIFAR-100 (α̇ = 0.5).
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Figure B.2: Reliability diagrams for (a) FedAvg, (b) FedAvg + MetaVD, (c)
Reptile, (d) Reptile + MetaVD, (e)MAML, (f)MAML + MetaVD, (g) PerFe-
dAvg and (h) PerFedAvg + MetaVD in CIFAR-10 (α̇ = 0.5).

148



요약

메타러닝은기계학습의하위영역으로,새로운작업에빠르게적응하는알고리

즘개발을목표로한다. 이러한빠른적응능력은개별작업학습에중점을두는

대신, 학습 과정자체를학습하는메타학습자를이용하여구현할수있다. 이

메타학습자는기계가새로운작업에효율적으로적응하는데활용될수있다.

최근에는메트릭기반,최적화기반,모델기반등다양한메타학습전략이도입

되어, 퓨샷회귀, 퓨샷분류, 주도적학습, 강화학습등다양한영역에적용되고

있다. 그러나현재의메타학습방식, 특히메타학습자는계산요구량, 확장성,

모델과적합등의한계가여전히존재한다.

본 연구에서는 Meta-Variaitonal Dropout (MetaVD)라는 새로운베이지안

메타학습전략을제안한다. MetaVD는하이퍼네트워크를이용하여각신경망

가중치에대한작업별드롭아웃비율을추정한다. 이를통해다중작업환경에

서의데이터효율적학습과,새로운작업을위한전역적인신경망의빠른재구성

을가능하게한다. 이프레임워크에서는저차원근사와공유된변분사전해석

을이용하여드롭아웃사후모델을정규화하는등의새로운기술들을논의한다.

MetaVD는다양한기존딥러닝알고리즘에적용가능한범용적인접근법을제

공한다. 제안된방법론은 1차원회귀, 이미지인페인팅, 분류를포함한다양한

퓨샷학습응용사례에서높은적응및일반화성능을입증하였다.

연합학습(FL)은 원격에서분산된로컬클라이언트로부터글로벌추론모

델을학습하는것을목표로하는기계학습의연구분야이며, 데이터개인정보

보호의강화덕분에많은주목을받고있다. 그러나현재의 FL 접근법은실제시

나리오에서의모델과적합과제한된비독립동일분포클라이언트데이터등의

문제를가지고있다. 이러한문제를해결하기위해,MetaVD를분산학습환경에

적용하기위해확장하였다. FL에서의공유하이퍼네트워크는서버에저장되며,

149



클라이언트별드롭아웃비율을예측하는방법을학습한다. 이를통해제한된비

i.i.d. 데이터설정에서의FL알고리즘의효과적인모델개인화를가능하게한다.

또한,사후집계를위한조건부드롭아웃사후분포도도입하였다. 본연구에서는

희소하고독립동일분포가아닌다양한 FL 데이터셋을활용하여광범위한실험

을수행하였다. MetaVD는분포외클라이언트에대해특히뛰어난분류정확도

와불확실성보정성능을보였다. MetaVD는각클라이언트에필요한로컬모델

매개변수를압축함으로써모델과적합을완화하고통신비용을줄인다. 또한

MetaVD는다중도메인데이터셋을포함한 FL에서최첨단성능을발휘한다.

전반적으로이논문은퓨샷학습및연합학습영역에서의문제를해결하기

위한베이지안메타학습접근법을위한포괄적인프레임워크를다루었다. 조건

부드롭아웃사후모델링은불확실성추정및보정외에도효율적인모델적응및

개인화를가능하게한다. 실험결과는제안된접근방식의뛰어난성능을보여주

었으며,이는실제시나리오에서의메타학습과응용분야의발전에기여한다.

주요어: 딥러닝, 메타러닝, 베이지안신경망, 변형드롭아웃, 멀티태스크학습,

퓨샷학습,연합학습

학번: 2012-23237
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