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Abstract

Guhyun Han

Department of Electrical Engineering & Computer Science

College of Engineering | Seoul National University

Ambient information visualization is a category of visual representations that lon-

gitudinally convey information in the periphery of user attention in an aestheti-

cally pleasing form. It aims to expand users’ informational benefits with manage-

able distractions in today’s information-overloaded world. Ambience, its unique

characteristic shaped by information, delivery method, and representation, has

been predetermined by visualization designers, resulting in visualizations not aligned

with the end-user’s design perspectives and attentional demands.

This dissertation presents a conceptual framework, Personally Adaptable Am-

bient Information Visualization (PAAIV). It offers flexible customization capabili-

ties for ambience, allowing end-users to reflect their design perspectives on resul-

tant visualizations. Moreover, it suggests an extended design space for attention-

adaptive ambient information visualization, incorporating users’ real-time atten-

tion demands using Brain–Computer Interface (BCI) technologies. I argue that

PAAIV will provide end-users with visualizations of desired information, notice-

ability, and engagement in harmony with individualized contexts by addressing

the following three research questions.

The first question involves designing flexible and usable customization capa-

bilities for PAAIV for smartphone users. DataHalo, a customizable ambient notifi-

cation visualization system, was designed and evaluated in a lab environment.

With flexible customization support, it enabled smartphone users to prioritize
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notifications of interest, define their longitudinal delivery, and represent them

as prolonged notification badges on the home screen. A usability study demon-

strated its potential to embody personalized ambience, allowing participants to

rediscover everyday information they had missed due to notification overload.

The second question investigates the commonalities and differences among

end-users’ personalization strategies regarding PAAIV in a real-world context. An

improved DataHalo was deployed in a three-week field study, revealing that the

system met participants’ diverse needs and improved satisfaction. Mixed-method

analyses of interview and log data identified users’ personalization patterns at

multiple levels, suggesting the guidelines for future systems that support end-

users in building and refining their PAAIV more effectively.

The third question examines the technological constraints and design oppor-

tunities of attention-adaptive features applied to PAAIV. Brain waves measured by

electroencephalography (EEG) were used to infer the user’s real-time attentional

information. First, the technological constraints were examined under the con-

straints of everyday contexts where ambient information visualizations are de-

ployed. Next, a semi-structured interview was conducted to understand the end-

user’s needs for utilizing real-time attentional information. The results revealed

limitations, potentials, and design guidelines for further integration with PAAIV.

This dissertation contributes to the fields of Human–Computer Interaction by

proposing a user-centric framework (PAAIV), which includes designing and evalu-

ating a practical system (DataHalo), providing insights from real-world usage, and

exploring the potential for attention-adaptive features. They inform design guide-

lines for personalized information delivery across various displays in personal

contexts. The findings also suggest directions to integrate attention-adaptive fea-

tures into ambient information visualization, alleviating user distraction and re-

alizing calmer technology.
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Chapter 1

Introduction

1.1 Background and Motivation

Taking a balance between ever-expanding information and our daily lives
has been an increasingly important issue in the Human–Computer Interac-
tion (HCI) community [1, 42, 86, 104]. These days, people are surrounded
by multiple smart devices which connect themwith a variety of information
technology (IT) services. Each service aims to constantly produce ‘useful‘ in-
formation and deliver it ‘timely‘ to individual users, mainly via notification
method. However, this information collectively exceeds the users’ cognitive
capacity and its delivery often disrupts the users’ primary task.

Initiated by the notion of calm technology [104] suggested by Weiser and
Brown, HCI researchers have been interested in these problems. In the same
context, Google, which distributes one of the most influential operating sys-
tems of smart devices, also suggested the concept of digital well-being [32]
and has launched commercial and experimental projects to handle the limi-
tations. Smartphone notifications, often cited as the cause of user distraction
in exchange for delivering information relevant to the personal context, are
one of the technologies intensively handled in their projects.

1



Figure 1.1: Three dimensions of Personalized Ambience. Ambience is a unique character-
istic shaped by information, longitudinal delivery method, and representation of a given
information display. The personalized ambience contributes to a satisfactory user expe-
rience in one’s personal context, which maximizes the informational benefits and mini-
mizes distraction costs.

Ambient information visualization [65, 86] is a concept of visualization
methodology that tackles the balancing problembetween informational ben-
efit and user distraction mentioned above. It visualizes the information of
users’ interests in an aesthetically pleasing form, enables users to longitudi-
nally access the information in the periphery of their daily context through
various personal displays, and persistently provides the change in the infor-
mation in a less disruptive manner. By doing so, it aims to improve both the
amount and quality of information people can reach and provide a satisfac-
tory experience of longitudinal interaction with manageable distractions.

To fulfill the goal, the key challenge is to personalize ambience for individ-
ual users (See Figure 1.1): It should (1) provide the prioritized information
that fits the user’s interest and information capacity, (2) convey the informa-
tion for the opportune time spanwhen users feel it usefulwithout disrupting
them, and (3) represent the information using the preferred visual encoding
that persistently motivates users to engage with it.

However, previous ambient information visualizations have providedusers
with limited capability to customize the information, delivery, and repre-
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sentation as they wish. They usually had to choose a ready-made visual-
ization as-is, of which information, delivery, and representation are deter-
mined by designers. Thus, the ambience provided by the pre-carved visu-
alization could be sub-optimal for users from the beginning or become less
satisfactory as their usage context changes in the long term. While previous
works [17, 18] have highlighted the importance of providing customization
capabilities for users, only a few works [14, 70] have addressed the issue, in-
dicating the limited knowledge about what kinds of capabilities end-users need
and how end-users utilize these capabilities to reach personalized ambience.

Moreover, previous ambient information visualizations have been im-
possible to finely accordwith the user’s attentional demands in real-time.De-
signers of ambient information visualization take heed of the user’s attention
capability. They have sought a suitable amount of the delivered visual infor-
mation that fits the user’s attention capacity and an acceptable level of no-
tification strength that does not disrupt the user’s daily task. However, they
had to depend on indirect and post-hoc methods that probed the attention
state, such as retrospective user feedback [63] or observation of user behav-
iors [6, 17, 19, 97]. These methods could hardly adapt to real-time changes.
In addition, the subjective responses through self-reflection or observation
results might not be consistent with the internal attention state.

This dissertation presents a conceptual framework calledPersonallyAdapt-

able Ambient Information Visualization (PAAIV) to overcome the limitations
mentioned above. PAAIV aims to provide end-users with personalized am-
bient information visualizations alignedwith end-users’ (1) design perspec-
tives and (2) real-time attentional demands. First, it enables end-users to
personalize the ambience by supporting a flexible and usable customization
interface. This approach can support end-users to build a more satisfactory

3



ambient visualization than pre-carved ones and improve it according to the
temporal change in their preference. Next, it suggests an extended design
space in which end-users can alleviate distraction further according to their
real-time attentional demands. For example, they might update information
faster or add make the visualization more noticeable (e.g., graphical marks
get bigger, and the animation starts) only when they feel less disruptive.

The framework was developed based on two works that studied the per-
sonalization approaches, respectively. The first work presents a design study
in which a customizable ambient visualization system was suggested for
smartphone notifications andwasdeployed to the real usage context of smart-
phoneusers. The secondwork covers an empirical study on electroencephalo-
gram (EEG) data in which the technological feasibility of attention-adaptive
features, followed by an interview with end-users experienced in designing
ambient information visualization, which explored possible application sce-
narios.

Thanks to the implications of these twoworks, PAAIV is expected to pro-
vide design guidelines for customizable ambient information visualization
systems,which could be generalized to various personal smart devices incor-
porating visual displays and notificationmethods, such as personal comput-
ers, smartwatches, and extended reality (XR) devices. It can also suggest the
future directions of integrating attention-adaptive features into the design
of ambient information visualization, which would alleviate user distraction
further and realize the calmer technology.
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1.2 Research Questions and Overview of Approaches

Over the course of the dissertation, I have sought ways to address the fol-
lowing research questions.

• Q1. How should we design flexible customization capabilities for PAAIV, al-

lowing people to enhance informational benefits while effectively managing

distractions across diverse types of personal information?

• Q2. What would be commonalities and diversities in people’s customization

strategies for embodying their personalized ambience by utilizing the PAAIV

system in everyday contexts?

• Q3.What are the limitations and opportunities for integrating attention-adaptive

personalization into PAAIV, considering technical constraints and user needs

related to real-time attentional information?

To address Q1, I designed and developed DataHalo, a customizable no-
tification visualization system that represents smartphone notifications as
prolonged ambient visualizations on the smartphone home screen. It is im-
plemented as anAndroid home screen launcher embeddedwith fine-grained
personalization capabilities of (1) prioritizing app notifications intomultiple
virtual categories, (2) modeling longitudinal interaction with them, and (3)
representing themwith extended notification badges specified by flexible vi-
sual encoding. The feasibility of DataHalo was assessed through a usability
lab study. The result showed that the customization capabilities provided by
DataHalo were feasible to embody PAAIV: participants could manage no-
tifications better and rediscover the value of diverse information delivered
by smartphone notifications. On the other hand, customization fatigue was
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identified as a potential obstacle, leading to improvements based on user
feedback.

To addressQ2, I deployed the improvedversion ofDataHalo into the real-
world context to explore people’s personalization strategies for better man-
agement of notification information. A three-week field deployment study
collected usage logs of DataHalo and partial notification logs. The results
indicated that DataHalo helped actualize the participants’ diverse needs for
bettermodeling, expressing, and consumingnotification information.Mixed-
method analyses involving the participants’ customization events, partial
notification data, and interview data identified the personalization patterns
from three perspectives: (1) customization over time, (2) their design strate-
gies to embody the personalized ambience, and (3) notification logs affected
by halos. On these bases, the suggestions for the future smartphone notifica-
tion system were summarized, which could support laypeople to build and
refine their PAAIV more easily and expressively.

To address Q3, I investigated both the technological constraints and de-
sign opportunities of the Attention-Adaptive Ambient Information Visual-
ization (A3InfoVis), which aims to integrate the Brain–Computer Interface
(BCI) method into the design of the PAAIV. First, three technological chal-
lenges (i.e., the feasibility of attention state prediction for everyday tasks, the
limited spatial resolution of EEG data available for end-user devices, and the
burden of data acquisition for building user-specific classifiers) were exam-
ined through an empirical study. The results revealed the possibilities and
current technological limitations.Next, a semi-structured interview forData-
Halo users, experienced in customizing ambient information visualizations,
was conducted to understand end-users’ needs for utilizing their real-time
attentional information to enhance their informational benefits and mini-
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mize distraction. On these bases, the design guidelines for A3InfoVis were
summarized, which further extends the design space of PAAIV.

1.3 Contribution

The core contributions of this dissertation are as follows:

1. Design and implementation of the DataHalo, a flexible notification vi-
sualization system that helps people to realize their PAAIV for the in-
formation delivered by smartphone notifications.

2. Empirical findings, acquired through afielddeployment study ofData-
Halo, that clarify the design motivations and relevant choices posed
by smartphone users to achieve their personalized ambience through
managing notification information.

3. Empirical findings, acquired through an empirical study and a user
interview, that provide insights on the technological constraints and
design opportunities of integrating attention-adaptive personalization
into PAAIV.

Thesis Statement PersonallyAdaptableAmbient InformationVisualization
(PAAIV) is a conceptual framework that enables end-users to personalize
the longitudinal interaction with visual information in everyday contexts
according to their (1) design perspectives and (2) real-time attentional de-
mands, eventually providing them with the visualization of desired infor-
mation, persistence, and appearance in harmony with attentional demands
of the personal context.
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1.4 Structure of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents prior
works that serve as a theoretical basis for PAAIV from three perspectives:
(1) ambient information visualization, (2) smartphone notification, and (3)
attention state prediction leveraging brain waves.

Chapter 3 illustrates the design of DataHalo, a customizable notification
visualization system that supports smartphone users to build PAAIV for di-
verse app notifications. The chapter also covers its evaluation in the lab en-
vironment (N = 17) to prepare for field deployment.

Chapter 4 reports on the qualitative and quantitative findings regarding
how smartphone users construct PAAIV in their smartphone home screen.
The chapter describes a three-week field deployment study (N = 12) with
DataHalo and the results of three mixed-method analyses.

Chapter 5 presents the limitations and potentials ofA3InfoVis, Attention-
AdaptiveAmbient InformationVisualization,which integrates attention-adaptive
features into PAAIV. The chapter covers (1) an empirical study including
EEG data collection (N = 27) followed by performance analysis of ML-
based attention state classifiers and (2) a semi-structured interview (N = 7)
with end-users familiar with customization of ambient information visual-
izations.

Chapter 6 discusses design challenges raised by the above studies and
further implications for improving PAAIV. The limitations of the studies are
also acknowledged.

Finally, Chapter 7 concludes the dissertation by summarizing the find-
ings in this dissertation and the opportunities for future research.
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Chapter 2

Related Work

This chapter covers the related work of the dissertation. Section 2.1 covers
the background of ambient information visualization and its practice, focus-
ing on usage in the personal context. Barriers and challenges for these areas
are also indicated from two perspectives: (1) customization support and (2)
tight accordance with the user’s attention. Section 2.2 reviews prior works
on (smartphone) notification methods, which provide the theoretical back-
ground of DataHalo. It highlights the prior efforts on (1) improving notifica-
tion delivery mechanisms to minimize distraction and (2) supporting longi-
tudinal interactions with notifications. Section 2.3 presents the background
of BCI technologies applicable to A3InfoVis. It covers (1) the relationship
between brain waves and the user’s attention and (2) the prediction of at-
tention information by leveraging EEG data.
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2.1 Personal Ambient Information Visualization and Its
Challenges

2.1.1 Background and Practice in the Personal Context

Ambient information visualization [85] longitudinally conveys useful but
non-critical information with an abstract representation in the casual and
personal context. Following the notion of calm computing, which utilizes the
periphery of user-attention to convey information [104], researchers have
incorporated ambient displays to visualize personal data in a longitudinal
and less disruptive manner [64, 65, 85].

Unlike traditional information visualizations such as charts, ambient vi-
sualizations tend to involve abstract and artistic expressions to deliver the
subtle change of data in an aesthetically pleasing manner [64, 85]. Typi-
cal information visualization usually assumes that people dedicate their full
attention to its visual analytic task during a focused session. On the other
hand, ambient information visualization targets audiences who might be
less interested in analytic insight but need to reach useful information in
diverse contexts of everyday life. To involve these daily contexts, ambient
information visualizations have covered different information sources (e.g.,
bus arrivals [96], physical activities [19]), devices (e.g., public displays [96],
smartphone [8, 19], smart wearables [34], dedicated artifacts [14]), and vi-
sual representations (e.g., geometric shapes [95, 96], flowers [59], collage [28,
70]). For example, Kandinsky system [28] was inspired by the abstract art of
Kandinsky to visualize the text data like email. Skog and colleagues’work [96]
was inspired by the abstract art of Mondrian to visualize the bus arrival in-
formation. Ubifit Garden visualized various aspects of physical activity us-
ing flowers and insects in a virtual garden on the phone screen [17, 18, 19].
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Similarly, Info-Lotus visualized email notifications as decorative flowers on
a peripheral region of the desktop screen [108].

Moreover, they are often deployed in personal context [42] that involves
personal devices (e.g., PC [108], smartphone [8, 19]) or private spaces (e.g.,
bedroom [53]). Such ambient visualization systemsmaintain information on
a glanceable spot such as screen corners on the desktop (e.g., screen time [52]),
phone screen background (e.g., sleep-related activities [8], physical activ-
ity [17, 18, 19]), smart wearable (e.g., physical activity [34]), physical envi-
ronment (e.g., auditory activity data [95]), or dedicated devices other than
ones for main tasks (e.g., a clock-like object visualizing time schedules [57,
58], an LCD display in the bedroom [53], a mobile system visualizing the
communication via multiple smartphones [59]).

2.1.2 Necessity of Personalization Support

Because individual users might have different perspectives on useful infor-
mation, attentional demand, and aesthetics, some previous works [14, 70]
provided users with customization capabilities to personalize ambient visu-
alization to achieve satisfactory user experience. However, end-users often
had to use ready-made ambient visualizations without the ability to adjust
them to individual contexts. The long-term deployment study by Consolvo
and her colleagues pointed out the potential limitation due to the lack of
customizability [17]. Participants suggested supporting their preferred vi-
sual themes in addition to the pre-defined theme to prevent boredom and
keep them motivated to use the ambient visualization.

Some systems have been designed to provide users with a certain de-
gree of freedom to create custom ambient visualizations. In the InfoCanvas
system [70], users could generate a custom ambient visualization from a pre-
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defined set of data and visual representations. Although the data and visual
resources could be further expanded by editing XML codes, this seems out of
reach to lay users. Calm Automaton [14] introduced a programmable, phys-
ical ambient display. Users could define a simple visual mapping between
the data values and the motion of artifacts and change the visual metaphor
by replacing images. DataSelfie [51] provided a more advanced interface
for generating custom, personal visualizations. Users could define the vi-
sual mapping between random categorical data variables and user-created
visual expressions by manipulating a questionnaire-style interface.

However, these researches are limited in further exploring the appropri-
ate level of customization capabilities that should be offered to users. Doing
so can contribute to broadening the understanding of users’ design perspec-
tives, which has been pointed out byHuang et al. [42] as an important design
challenge. This dissertation intended to explore the question by investigating
how users make use of the flexible customization interfaces for each design
step of ambient visualization fromprocessing a rawnotification to specifying
a visual presentation.

2.1.3 Necessity of Tight Accordance with User’s Attention

User’s attentional demand has been a crucial factor in the design of ambi-
ent information visualization. It is anchored in the notion of calm technol-
ogy [104], which aimed to help users to access more valuable information
about their surroundings in a less disruptive manner.

Emphasis on the virtue of manageable distraction has influenced the for-
mulation of design dimensions and evaluation criteria that assess if a visual-
ization delivers an affordable amount of information with acceptable notifi-
cation strength [63, 65, 85, 93]. Pousman and colleagues [85] investigated 19
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ambient information visualization systems according to their design dimen-
sions, which included information capacity, the number of discrete infor-
mation sources the visualization delivers, and notification level, the degree
to which system interrupts users. Bakker [6] modeled and explained the at-
tentional transition between the center and periphery based on the obser-
vation of user behaviors. On these bases, designers evaluated their ambient
information visualization by observing the usage in the lab or field and by
collecting the retrospective feedback after the usage [6, 17, 19, 97].

However, the previous design and evaluation approaches have been lim-
ited to indirect methods in terms of involving the user’s internal attention
state. For example, the inquiry methods depend on the user’s reflection so
they hardly capture the real-time transition of attentional states. The obser-
vation could characterize the distinct user behaviors during the usage but is
ineffective in figuring out what the exact internal state is. Therefore, this dis-
sertation tried to examine if brainwaves, real-time physiological data, would
be a useful source of information to improve the user experience of ambient
visualization.

2.2 Personalization of Notification Method

2.2.1 Notification Delivery Mechanisms to Minimize Distraction

The HCI community put intensive effort into collecting and understand-
ing smartphone notifications (c.f., NotificationLog [102]). A rich body of
research has pointed out the negative aspects of notifications, particularly
interrupting people’s daily activities and causing stress [50, 56, 72, 80, 81,
94]. For example, Kushlev and colleagues found that interruptions caused
by smartphone notifications could trigger higher levels of inattention and
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hyperactivity of people, which harms their mental well-being [54]. The HCI
andUbiComp communities have exploredways to alleviate interruption and
distraction primarily by delivering (1) only relevant notifications and (2) at
opportune moments. For example, there exists a line of research to under-
stand people’s mental modal on the relevance of notifications [5, 61, 91, 103].
Shirazi and colleagues found that smartphone users assess the importance
of notifications by the category of the source app, the topic of the content,
and the sender that triggered a notification (e.g., system, self, and family
members) [91]. As a result of their in-situ study,Weber and colleagues [103]
pointed out that a substantial portion of daily notificationswas not important
(38.91%) and not urgent (51.75%) for smartphone users. Users’ assessment
of notifications was discrepant with the system-side priority, carved by app
providers. Lin and colleagues also utilized people’s rating of notifications in
four dimensions—importance, urgency, sender attractiveness, and content
attractiveness—to analyze the seven types of notification attendance they
suggested [61]. The highly-rated notifications tended to be handled faster
than others regardless of the system-provided display order of notifications.
These works call for a fine-grained and personalized approach for determin-
ing the relevance of individual notifications, even from a single app. How-
ever, major smartphone operating systems rarely support filtering out un-
necessary notifications based on their content because users can suppress
notifications as a whole, by an app, or by a channel that an app developer
predefined.

Another line of research explored ways to deliver notifications at oppor-
tune moments to be interrupted. “Do Not Disturb” is the one primitive and
straightforwardmethod to specifywhen is not the opportunemoment. Some
systems incorporated automated prediction mechanisms for opportune mo-
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ments. For example, Social Context-Aware Smartphone Notification System
(SCAN) delays notifications depending on the person’s social context (e.g.,
presence of others) [76]. Mehrotra and colleagues proposed a data-driven
mechanism for classifying notifications and delivering them at opportune
moments based on the content of the notification and other contextual infor-
mation such as location and surrounding sound [68]. The authors further
extended the mechanism into a semi-automated notification control system
called PrefMiner [67], which presents the data-driven rules in a human-
readable form and allows people to manipulate them. Pielot and colleagues
explored a machine learning approach to predict the opportune moment for
engaging with a notification with hundreds of features covering the data
about the users and their contexts [79]. Cadvar and colleagues analyzed and
modeled the association between mobile app usage and the users’ workload
in an office setting [11] to study their responsiveness to a break-reminder
notification. However, one common limitation of these systems is that the
content on the deferred notifications is likely outdated because it is not up-
dated since the notification was originally generated.

2.2.2 Supporting Longitudinal Interactions with Notifications

Smartphone notifications are often designed to be instant and ephemeral:
Once a person taps on a notification to run the source app, it is discarded
from the notification drawer/list. On the other hand, research has shown
that people often interact with notifications in an opposed way. For exam-
ple, Pielot and colleagues analyzed people’s attendance to notifications by
capturing the transition over the interaction stages (shown, seen, checked,
consumed, and removed) over time [82]. They reported that not all seen or
checked notifications are immediately consumed (i.e., tapping) or removed,
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and participants showed different patterns depending on the source app.
Some people deliberately keep specific notifications on a drawer to lever-
age them (or badges on an app icon) as visual reminders [61]. However,
people often lose notifications by unintentionally tapping on the list or the
‘dismiss all’ button. In this vein, numerousmobile apps that enable people to
review past notifications were released in practice, such as “NotificationHis-
tory” [73], which was downloaded over five million times from Google Play
Store. Weber and colleagues found that managing the history of dismissed
notifications could relieve the user’s anxiety of losing important notifications
due to careless actions [101].

People also snooze a notificationwhen theywant to be notified again later.
However, the snoozing feature of both Android and iOS allows people to set
only a fixed time interval; people often repetitively snooze a notification for a
short termuntil they are ready to consume it.Weber and colleagues explored
how people snooze notifications when provided with extended operations
(e.g., snooze for time duration or snooze until specific time points) [101]
and reported that it was necessary to provide personalized options that fit
individuals’ contexts and behaviors.

Previousworks revealed the smartphone users’ desire beyond the one-off
interaction and the desire could be diverse based on individual users’ smart-
phone environments (e.g., installed apps and their usages). However, to the
best of our knowledge, few studies further explored what the specific sce-
narios are and how these scenarios could differ among people. Hence, This
dissertation aimed to inquire about the day-to-day scenarios of people and
understand what kinds of support they need. In addition, a novel method
to personalize the duration for persisting informative notifications was con-
templated to overcome these limitations.
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2.3 Integration of BCI into Attention-Adaptive Ambience

2.3.1 Background of EEG and BCI

Brain waves refer to rhythmic fluctuations of voltage between parts of the brain

resulting in the flow of an electric current [25]. Electroencephalography (EEG)
is a non-invasive method to record brain wave activities by calculating the
temporal and spatial sums of the post-synaptic field potential measured at
the scalp. Electroencephalogram refers to the data recorded by the method.
The electrodes of EEGdevices cover different brain lobes of distinct functions
so that the EEG channels illustrate different spatial patterns. Researchers ap-
ply frequency domain analysis methods to understand the complex patterns
underlying EEG data, such as calculating the power spectral density (PSD).
There are five popular frequency bands for analysis: delta (1-4Hz), theta (4-
8Hz), alpha (8-12Hz), beta (12-30Hz), and gamma (over 30Hz). Previous
works have identified the connection between the features of these bands
and the subject’s attention state from diverse perspectives. Not only the in-
dividual bands (e.g., [38] for the delta, [16] for the theta, [29] for the alpha,
[26] for the beta, and [40] for the gamma) but also the interaction of mul-
tiple bands [10, 78, 100] could explain the different status of cognition and
memory.

Researchers have been interested in predicting the user’s engagement
with the target task using one’s EEG data. A heuristic task engagement index
(β/(α+ θ)) [84] suggested by Pope and colleagues has been widely used. It
involved the relative power of the theta, alpha, and beta bands as parame-
ters. Researchers have interpreted subjects’ attention states during the task
of interest (e.g., playing games [66]) based on the measure. HCI researchers
also have utilized it to prototype BCI systems adaptive to user’s attentional
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change (e.g., a storytelling robot that reacts to the drop of the audience’s en-
gagement [98], a visualization for the lecturer that monitored the students’
engagement during the class [39]). The engagement measure itself might
not reveal the target task where the user is currently focused. The recent
work [47] presented the possibility of separating the task-related and task-
unrelated thoughts by inspecting the P300 (P3) component of event-related
potentials (ERP), the brain response of positive amplitude measured as the
direct result of stimuli within a delay of 250-500ms [83], and alpha power
variability.

2.3.2 Prediction of Attention State based on EEG data

Researchers also have addressed personalizedMLapproaches to classify dis-
tinct attention states. Nuamah and colleagues computed the Pope’s index
values for every EEG channel and trained ML models with them [74, 75].
They could effectively distinguish five cognitive tasks (i.e., baseline, mul-
tiplication, letter composition, geometric figure rotation, and visual count-
ing). Berka and colleagues [9] derived an individualized, four-classmodel of
task engagement (i.e., high, low, relaxedwakefulness, and sleep onset) based
on quadratic DFA (Discriminant Function Analysis). They then utilized the
prediction probability of the ‘high’ class to be the task engagement index.
They examined the index while the subjects performed various cognition
and memory tasks (e.g., forward/backward-digit-span, mental-addition).
The result indicated that their task engagement measure could be feasible to
capture the allocation of attention within the subject. Lelis-Torres et al. [60]
adopted a similar approach to analyze the user’s motor skills.

Despite the successful results, there exists a gap between previous works
and the goal of applying BCI methods to ambient information visualization.
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First, they explored the attention state with very simple and specific cogni-
tive tasks (e.g., mental-addition) in a highly controlled environment (i.e.,
laboratories). However, everyday tasks that take place in users’ casual con-
text, such as watching Youtube videos, consist of complex audiovisual stim-
uli and are hard to quantify the performance. Second, most of them utilized
professional EEG devices with a large number of channels (typically over 64
channels) that densely cover the brain regions. These devices are expensive
and hardly usable; users cannot wear these devices for themselves without
aid. On the other hand, end-user EEG devices cover the limited brain regions
with a few electrodes so the data quality might not be sufficient to repro-
duce previous results. Finally, individual users should collect EEG signals
by themselves to train personalizedML-based classifiers that distinguish the
attention states of their interest. The user burden of data acquisition needs
to be clarified to support users to utilize personalized attention information.

19



Chapter 3

DataHalo: Customizable
Smartphone Notification
Visualization System to Embody
PAAIV

This chapter1 presents DataHalo, a customizable notification visualization
system that represents notifications as prolonged ambient visualizations on
the smartphone home screen. It covers the first research question:How should

we design flexible customization capabilities for PAAIV, allowing people to enhance

informational benefits while effectively managing distractions across diverse types of

personal information? Smartphone notifications cover diverse kinds of timely
information generated in the personal context, including notices from app
services, communicationswith others, and self-organized events.On the other
hand, their overflow burdens users with two challenges: (1) prioritizing the

1The preliminary version of Chapter 3 and Chapter 4 were published as a paper [37] in Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems. In these
chapters, "we" denote me and my collaborators: Jaehun Jung, Young-Ho Kim, and Jinwook
Seo.
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informative notifications as they wish and (2) retaining the delivered infor-
mation as long as they want to utilize it. To provide flexible customizability,
DataHalo supports keyword-based filtering and categorization and displays
favorable graphical marks based on the time-varying importance model to
enable longitudinal interactionwith the notifications. The feasibility of Data-
Halo was assessed via a usability lab study, which revealed that the cus-
tomization features offered by the system could enhance the management
and rediscovery of various information communicated through smartphone
notifications. Based on usability feedback, DataHalo was improved further
to alleviate the possible customization fatigue.

3.1 Design Rationale

DR1: Support personalized categorization of notifications. Prior literature
suggests that people have individualized assessment on the relevance of no-
tifications [5, 61, 91], which is not well supported by existing smartphone
operating systems. As such, we aimed to allow people to categorize notifica-
tions based on the intrinsic information. In addition, considering the diver-
sity of mobile apps [21], the categorization method should be applicable to
any apps. As a result, we enabled people to define categorization rules by an
app, based on keywords in the textual information of the notification (e.g.,
sender and content).

DR2: Support longitudinal interactionswith notifications.Although the ex-
isting notification drawers (usually) dismiss a notification upon attendance,
prior literature suggests that attendance proceeds longitudinally and people
oftenwant to retain notifications even after attendance [61, 82, 101]. As such,
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Figure 3.1: Visual interface of DataHalo: (a) DataHalo integrated with the smartphone
home screen. Each app has its own halo visualization that extends a conventional app
notification badge; (a-b) explanation of the side-lighting visualization. A dot on the left
side in (a) provides users with a visual guidance for the unsighted notifications on the
left home screen pages. Navigating to the left page, users can discover another halo acti-
vated; (c) entrance to the halo design interface triggered by a long touch; and (d-g) exam-
ple halos with their source apps. Each graphical mark corresponds to a notification. For
each designated app, users can customize data, mapping, and encoding rules for distinct
marks.
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we allowed people to customize how long the notifications should be acces-
sible and how the relevance of the information should change by elapsed
time and user interaction, which we call the ‘importance model’ as a whole.
Because the Android system did not allow much flexibility on the design of
notification drawers for developers, we incorporated dedicated ‘Notification
History’ views inside a companion app where people can access past notifi-
cations regardless of the status of the notification drawer.

To effectively display notifications according to the importance model,
we incorporated ambient visualization on the home screen by representing
each notification as graphical marks (See Figure 3.1). With marks, we can
visualize the varying importance of a notification through visual properties
such as color and size. We chose the home screen as an ambient display for
two main reasons: (1) We can display the graphical marks for notifications
in close proximity to icon of the source app; and (2) app icons tend to be
arranged according to the frequency of the attendance so the notification
visualizations for frequently used apps are likely to be exposed more pre-
attentively.

DR3: Facilitate lay individuals to customize the visual encoding.Our target
audience is the general public who uses smartphones and might not be fa-
miliarwith information visualization. Therefore,we followed the bottom-up,
or constructive design paradigm [43] (Figure A.1), in which (1) an individ-
ual data item is assigned to a unit graphical mark without aggregation, (2)
the user-defined visual grammar specifies the presentation ofmarks, and (3)
themarks are assembled based on user-defined rules to construct the final vi-
sual representation. This bottom-up approach is known to bemore accessible
to lay individuals [69]. We mapped each notification element with a mark,
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assuming that the number of marks around each source app would not be
many considering the average number of daily notifications [91]. In addi-
tion, we enabled people to choose the marks that can best depict the paired
notification category. For example, one can assign a heart icon for notifica-
tions regarding messages from their significant other. By allowing personal-
ized visual encoding, we expected people to easily catch the comprehensive
trend of the current notifications at a glimpse.

3.2 System Design and User Interfaces

3.2.1 System Components

DataHalowas built uponRootless Pixel Launcher [107], an open-source launcher
on Android that allows us to customize the home screen. The system con-
sists of two main components: (1) A halo configuration page that can be
accessed via a context menu (See Figure 3.1c) of the installed app icons ei-
ther on the home screen or the app drawer and (2) halo visualizations on
the home screen. In its back-end, DataHalo includes (1) a new data struc-
ture of enhanced notifications and its periodic update logic, (2) an enhanced
notification manager based on Android NotificationListenerService, and (3) a
manager of users’ halo design specifications.

3.2.2 Halo Configuration

Figure 3.2 describes the pipeline for halo configuration of an app (in this
case, Kakaotalk, a messenger app that is widely used in South Korea). Here,
people can configure halo visualizations for the app by defining categoriza-
tion rules, importance model, and visual encoding.
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TheNotifications tab (Figure 3.2a, top) lists the notifications that are cur-
rently being manged by DataHalo, regardless of their status on the notifica-
tion drawer, in the order of their current importance.

On the Filters tab (Figure 3.2b, top), people can define a global filter
for notifications that they want to see as halos (DR1). For example, peo-
ple may filter out notifications for advertisement messages, which are likely
to include an “[AD]” prefix in their text, by adding “AD” to the ‘Block-
List’ (See Figure 3.2b); the notifications filtered out do not affect the visu-
alization pipeline.

On the Notification Categories tab (Figure 3.2c, top), people can define
virtual categories with keyword-based rules applied to the textual informa-
tion of notifications (e.g., sender, title, and content; DR1). According to these
categorization rules, DataHalo automatically categorizes the incoming noti-
fications of the app. The notifications unhandled by the categories people
created belong to a special virtual category, “Remainder”. For each virtual
category, people can assign independent importance model and visual en-
coding.

On the ImportanceModels tab (Figure 3.2d, top), people can define how
the importance of the notification should change over time, before and after
people attend it (i.e., tap on the notification; DR2). First, people can set the
initial importance between 0.0 and 1.0 and the target importance to pursue
until attendance. They can set the duration for the pursuit before attendance
to the notification (“Before attendance” in Figure 3.2d, top) and if the notifi-
cation is not attended after the importance reaches the target, the importance
value remains the same. Second, people can set the saturation importance

and the duration for the pursuit after attendance to the notification (“Af-
ter attendance” in Figure 3.2d, top). Once people attend the notification, its
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importance moves to the saturation value for the duration. Since the initial
delivery, a notification persists in the (DataHalo) system for the lifespan du-
ration people set. By default, the importance model behaves identical to the
ordinary notification; the importance value does not change until the atten-
dance (initial importance = target importance = 0.3); it disappears just after
the attendance (target importance = 0.0). For novice users, we included a set
of preset importance models, based on the implications from the usability
study (Section 3.4).

3.2.3 Halo Visualization

Each notification that passed the global filter (See Figure 3.2b) is represented
as a graphical mark around the source app icon on the home screen (DR2,
DR3). People can configure how marks will look for each virtual category
and encode importance/time variables or constants to visual properties of
the mark. The system sorts the notifications by importance and draws them
in clockwise order, starting from the top. If people do not customize the vi-
sual encoding of the virtual category, its default graphical mark is a static
gray circle (See the mark of the Remainder category in Figure 3.2d and e).

On the Visual Specifications tab (Figure 3.2e, top), people can config-
ure the visual encoding of each virtual category (DR3). DataHalo supports
modification of five visual properties: (1) shape, (2) color, (3) animation, (4)
size, and (5) distance from the center. As a shape of the graphical mark, peo-
ple can choose one from a set of icons, upload a custom image, or use a text
for the name of the category. For animation, people can combine four types
of looped animations (blink, scale, rotate, jitter) to make the mark more at-
tractive. Beside setting a constant value for the properties, people can encode
importance, a ratio of elapsed time since delivery to lifespan, and a binary
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Figure 3.3: The halo visualization Han created.

status of attendance to any of color, animation, and size. For example, one
can configure a graphical mark for depicting a visual metaphor of sunrise;
its color changes from red to yellow over time; its distance from the center
becomes greater as importance increases. For novice users, we included a set
of preset graphical marks with the visual encoding configured, based on the
implications from the usability study (Section 3.4).

Thediscoverability of the halo visualization could be sub-optimal as users
cannot easily glance at the visualization if it is not located on the first page of
the home screen. To overcome this problem, we introduced a side-lighting
visualization (Figure 3.1a-b). Each graphical mark provides a navigational
cue that one or more activated halos exist if the user moves along the des-
ignated direction. Its brightness is proportional to the sum of the existing
informative values of the activated halos along the direction.

3.2.4 Use case

Here we describe DataHalo’s interactions with a usage scenario of Han, a
graduate student whowants to better manage text messages, from amessen-
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Figure 3.4: The change of graphical mark based on visual encoding. Elapsed time and
Han’s attendance triggered the change.

ger app called KakaoTalk, regarding important notices from his laboratory
and his advisor. Han receives about a hundred of notifications per day from
KakaoTalk, about incoming messages from friends and group chat rooms.
Not to be distracted,Han has sustained the smartphone notification feedback
silent for most of the day and checked the smartphone for about every 2-3
hours. Skimming a pile of notifications, Han often dismissed them in bulk by
tapping “dismiss all” in the notification drawer. Meanwhile, Han occasion-
ally dismissed and forgot important or urgent messages about his research
and school. Hence, Han runs DataHalo to manage the KakaoTalk notifica-
tions by emphasizing ones related to his school. In particular, he wants to
easily distinguish the lab notices from other KakaoTalk messages, and main-
tain them for several hours as a visual reminder even if he dismisses the
notifications on the drawer by mistake.
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Defining Global Filter and Virtual Category

Han long-presses the KakaoTalk icon on the home screen and opens theHalo
Configuration page via a context menu. He first configures a global filter to
exclude unnecessary advertisement spams (Figure 3.2b). To separate notifi-
cation regarding his school, Han decides to capture the direct messages from
his advisor and ones from the group chat room with his colleagues. On the
Notification Categories tab, he adds a new virtual category named “LabNo-
tices” and appends two keywords, “Prof.X”, his advisor’s name, and “Lab
Announcement”, the name of the group chat room (Figure 3.2c).

Importance Modeling

Now Han turns to the importance modeling for the Lab Notices category.
He wants to retain the halos as low importance, but for a long period even
after he attends the notifications. Han opens the ImportanceModels tab and
sets the lifespan to be 3 hours, which is longer than the usual period that he
checks his phone (Figure 3.2d). To keep the low importance throughout the
lifespan, Han sets both the initial and target importance to be 0.5, but the
saturation importance to be 0.2 as he wants to lower the importance after he
checks the notification.

Visual Encoding

To configure visual encoding for the category, Han opens the Visual Spec-

ification tab. He first sets the shape of the symbol to be a test tube icon, in-
dicating a “laboratory.” To make the symbol noticeable, he configures the
color to gradually changes from yellow to red over time, and assigns a blink

animation to be played until attendance. Finally, Han encodes the current

importance value to the distance from the center of app so that the symbol
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would move closer to the app icon as the importance decreases. The result-
ing appearance of Han’s halos for KakaoTalk and its dynamic change based
on the visual encoding is described in Figure 3.3 and Figure 3.4, respectively.

3.3 Usability Study

To assess the feasibility of the personalization features provided byDataHalo
and identify usability issues, we conducted a usability study. The study was
approved by the institutional review board.

3.3.1 Study Procedure

At the beginning of each session, we conducted a semi-structured interview
asking about participants’ usual patterns and strategies of (1) configuring
notification feedback, (2) dealing with notifications stacked in the status bar,
and (3) managing app icons on the home screen. The interview took about
five to ten minutes.

After a short introduction ofDataHalo,we installed theDataHalo launcher
on participants’ smartphones and had a ten-minute tutorial. In the tutorial,
we provided them with a short material describing the interface and exam-
ple usages of DataHalo. We then proceeded to two halo design tasks (task 1
and task 2). For each task, participants designed an alternative notification
method of a selected app by reflecting on their daily inconveniences. For task
1, participants chose their most frequently used messenger because messen-
ger apps are the most significant source of notifications smartphone users
receive. For task 2, participants freely chose any other app freely. During the
task, we encouraged participants to think aloud; they were also free to ask
questions or request technical support. We also recommended that they try
all the customization capabilities to collect holistic feedback.
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After completing the tasks, we had a ten-minute interview covering (1)
participants’ strategies to set up satisfying halos and (2) suggestions to im-
prove the usability of DataHalo. The whole process took about an hour. We
rewarded participantswith 10,000 KRW(equivalent to 8.50USD).We audio-
recorded both the interviews and the design tasks, logged their halo settings
during the design task, and collected the System Usability Scale (SUS).

3.3.2 Participants

From a local university, we recruited 17 participants (U01–17; 4 women and
13 men) who have used smartphones for at least a year and are currently
using Android smartphones with version 8.0 Oreo or later. We employed
opportunity sampling by recruiting participants through an online forum
for university students and faculty members. All participants were under-
graduate or graduate students in their 20-30s.

3.3.3 Analysis

Two researchers transcribed the audio recordings from the interviews and
the halo design tasks. We then categorized participants’ responses in terms
of the following topics: (1) the usefulness ofDataHalo, (2) the assessment on
the halo representation, and (3) the feedback about the customization capa-
bilities. Based on the topics, we investigated 32 completed halo settings (Task
1: 17, Task 2: 15; we excluded two because of incomplete logging) that illus-
trated how participants categorized notifications, modeled the importance,
mapped data variables to visual channels, and encoded graphical marks of
the halo visualization for a selected app; we utilized the results to triangu-
late the interview findings. We graded the collected SUS data according to
the traditional school grade [7].
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3.3.4 Result

App Selection & Virtual Category Creation

In the first halo design task of a messenger app, 15 out of 17 participants
chose KakaoTalk, and the rest (U03, U09) chose the default text messaging
app. They thought of diverse virtual categories that curated communication
with people of interest (e.g., family, one’s beloved, advisor, personal fitness
trainer) and that subscribed to their topic of interest (e.g., lab meeting, pay-
ment & shipping information of product, a favorite sports team). In the sec-
ond task, they chose apps from 10 distinct categories: secondary messenger,
email, social media, financing, video streaming, movie ticketing, language
learning, food delivery, game, and paid survey. We elaborated on all the vir-
tual categories authored during the second task with the reason for creation
in Appendix B.1.

Visual Design of Graphical Marks

Figure 3.5 presents examples of the halos created by participants. Partici-
pants were motivated to combine multiple visual properties to create de-
sired graphical marks. Shape and color were the most popular properties
they customized. Pictograph was the most preferred option to encode the
shape of a graphical mark; the provided icon set was broad and attractive
enough to delineate their intention. U16 worried that images (e.g., portraits
of her intimates) or text might easily expose the notification content to some-
body in reduced-privacy situations such as shoulder surfing. However, the
image option couldprovide userswith an enjoyable experience during the de-
sign process. P9was satisfiedwith selecting an attractive food selfie from her
photo gallery when designing halo for a food delivery app. When choosing
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Figure 3.5: Examples of app halos created by participants during the usability study. In
the end of each halo design task, we captured the preview from the halo configuration
page.

the color, participants considered the followings: (1) to highlight the urgency
of information, (2) to tell apart distinct virtual categories quickly, and (3) to
reflect their color tastes. They frequently encoded the importance value to
the size or distance from the center. Most participants considered animation
as an auxiliary option to highlight graphical marks further.

Scalability & Discoverability of Halo Visualization

We asked participants about two possible limitations of halo in our design
constraints: the issues of (1) scalability, and (2) discoverability. Firstly, scala-
bility could be problematic if halo must present numerous app notifications.
We currently limited themaximumnumber (currently up to 10) of graphical
marks in the halo to prevent visual clutter due to the overlap among graph-
ical marks. All but one (U10) responded that this issue would not matter to
them, and they thought conveying the exact number was unnecessary. If it
exceeded a certain level, they accessed the notification drawer or the target
app. Participants limited the maximum number of graphical marks in a halo
to 3.78 on average (min = 2,max = 10,median = 3, std = 1.92), which
is much lower than our limit. Secondly, participants agreed that the side-
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lighting visualization could resolve the discoverability issue adequately. P10
further commented that it would be beneficial when utilizing halo for some
apps forwhich he needsmore privacy (e.g., games). He has been reluctant to
place these apps on the first page of the home screen due to possible privacy
leaks (e.g., shoulder surfing).

Usefulness of DataHalo & Customization Fatigue

Participants’ reactions to DataHalo were generally positive. The average SUS
of DataHalo was in the range of OK and GOOD. After usage, they all agreed
that DataHalo could successfully support their demand for personalized no-
tification management for various apps. In addition, the flexibility of Data-
Halo also encouraged participants to rethink the value of previously ignored
notifications. For example, U09 had deactivated most app notifications ex-
cept phone calls and text messages since she felt overwhelmed by unnec-
essary notifications. After completing her design task for the food delivery
app, however, she expressed her desire to reactivate more app notifications
on DataHalo. On the other hand, they expressed the fatigue of configuration
from scratch. Compared to editing virtual categories, they struggled with
configuring the importance model and visual encoding, which needed the
support of the experimenter.

3.4 Implications and Design Improvements

Despite the promising results from the usability study, we thought it would
be crucial to relieve the user’s customization fatigue not to demotivate usage
of DataHalo in the wild. We improved the customization flow of the impor-
tance model (Figure 3.6) and visual setting (Figure 3.7) of a virtual category
by modifying predefined or user-created examples. First, we added a set of
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Figure 3.6: Customization flow of example-based importance modeling.

predefined examples for importance models and visual encodings to allevi-
ate the burden of initial customization. People could quickly start customiza-
tion by choosing an exemplary importancemodel and visual setting from the
gallery. After completing the customization, people could choose to register
the results to the gallery. Then, they can easily reuse these new presets when
customizing other virtual categories across different apps.
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Figure 3.7: Customization flow of example-based visual encoding.
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Chapter 4

Understanding User’s Design
Strategies toward PAAIV in Daily
Context

This chapter reports the field deployment study conducted to understand
smartphone users’ personalization strategies for better longitudinal inter-
action with notification information, emerging in the real-world context. It
covers the second research question:What would be commonalities and diversi-

ties in people’s customization strategies for embodying their personalized ambience

by utilizing the PAAIV system in everyday contexts? The improved version of
DataHalo was installed into 12 Android smartphone users as an open source
launcher. They could apply customization capabilities of DataHalo to any
smartphone apps they actualize use in daily context. Participants had in-
terviews before and after deployment. During the three-week deployment,
DataHalo usage data and partial, anonymized notification data were col-
lected. As a result of the mixed-method analyses involving usage data, par-
tial notification data, and interview data, participants’ customization pat-
terns and underlying designmotivations to realize their desirable interaction
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with smartphone notifications were revealed. On these bases, the chapter fi-
nally covers the suggestions for the future smartphone notification system,
which could support end-users to build and refine their PAAIV more easily
and expressively.

4.1 Deployment study

With the improved interface, a field deployment study was conducted to
explore the commonalities and differences among people’s personalization
strategies for better notification management, emerging in the real-world
context. The study was approved by the institutional review board.

4.1.1 Study Design

Pre-study session

We met each participant on Zoom. We first conducted a semi-structured in-
terview inquiring about daily experiences related to notifications. The ques-
tionswere identical to those of the pre-study interview of our usability study.
Participants then had an exercise of designing a halo for the KakaoTalk app
where they (1) created a virtual category to manage the study announce-
ments from the experimenter, (2) set an importance model, and (3) speci-
fied a visual setting of a graphical mark. Finally, they responded to the set of
apps that they currently planned to manage halo during the usage.

Deployment

Participants immediately started using DataHalo. For the following 3 weeks,
we communicated with participants via the 1-to-1 chat room of KakaoTalk.
Participants were free to ask questions or request technical support. We sent
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announcements such as app updates and weekly summaries of their Data-
Halo usage. The content of theweekly summary consisted of (1) an initial us-
age plan summarized from the participants’ pre-study interview responses,
(2) a list of apps for which they currently manage halo, (3) the most fre-
quently edited halo, and (4) the accumulated number of app notifications
influenced by their halo settings; we sent three in total per participant. If
someparticipants did not utilizeDataHalo since they received the lastweek’s
summary,we added a sentence, “Do you satisfywith the current settings ofData-

Halo? If not, how about creating a new halo or adjusting the existing halos for better

notification management?” to the summary of this week.

Debriefing

After three weeks of usage, participants had an exit session for about an
hour. We asked participants about (1) the experience of using DataHalo’s
capabilities of managing notifications, (2) halo design goals and strategies
for the apps they customized. We also collected the System Usability Scale
(SUS) and a 7-point Likert scale questionnaire (Appendix C.1) inquiring
the user experience of notification management before and after using Data-
Halo. Both the feasibility of core capabilities and their influence on improv-
ing the experience of notification management were positively assessed. We
rewarded them 50,000 KRW (equivalent to 44 USD) for their complete par-
ticipation. If participants hoped to continue using DataHalo launcher, they
could voluntarily use more.

4.1.2 Participants

We employed opportunity sampling by recruiting participants through the
two most active online communities for students and alumni of a local uni-
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versity. We advertised our study with an introductory material. The require-
ments were primarily identical to those of the formative lab study, except for
additional conditions: (1) they should be available for a video conference
and (2) we log the usage of DataHalo and the part of the information from
their daily notifications (specified in Section 4.1.3).

Eighteen people initially applied, and four withdrew during the pre-
study session; one dropped because of the compatibility issue with the open
source launcher, and the rest resigned because three weeks were too long
for them to participate. We also screened out two applicants because they
did not utilize DataHalo during the deployment despite our additional re-
minders. Of the final 12 participants (six males and six females; we call them
P01-P12 in the following), 11 participants were in their 20s, and one was in
her 40s. Seven participants were undergraduate students, 4 were graduate
students, and 1was a full-time employee. They utilized ten differentAndroid
smartphones from two manufacturers (9 Samsung models and a single Xi-
aomi model); the distribution was consistent with the market share of An-
droid smartphones in South Korea, where Samsung occupied 91% [88]. We
sent 2-3 messages per week to each of them, including the announcements
and theweekly summaries. After completing participation, four participants
(P02, P03, P05, P07) hoped to continue using DataHalo. We monitored their
extra usage for about three more weeks.

4.1.3 Technical Specifications

Communication with Participants

Bothpre- andpost-study sessionswere video conferences remotely held through
Zoomand recorded for interview analysis.WeutilizedAndroid TeamViewer
QuickSupport app for screen sharing and remote technical support. During
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the deployment, we used the open chat feature of KakaoTalk to communi-
cate with participants; it did not require any personal information and was
easily accessible for most South Koreans.

Update Releases

We offered participants an exclusive invitation to install DataHalo via Fire-
base App Tester for Android. They could receive notifications about app up-
dates and install the latest version from the tool. We monitored the app dis-
tribution from the Firebase console and kept participants up to date with
DataHalo; we contacted them if they did not install the necessary update.
There were five updates to improve (1) app crashes reported by Firebase
Crashlytics, (2) device compatibility issues regarding the screen resolution
& aspect ratio, and (3) log transfers during the bad data connection (e.g.,
flight mode). We managed the distribution of the latest version among par-
ticipants from Firebase console and contacted them via KakaoTalk open chat
if they did not install the necessary updates.

Log Data Collection

Tounderstand (1) howparticipants utilizedDataHalo and (2) how the usage
affected their interactionwith daily notifications,we loggedhalo setting logs

and notification logs. The halo setting log, the latest configuration of a halo
of an app, consisted of (1) virtual categories and their keyword elements, (2)
parameter settings of user-defined importancemodels, and (3) visual encod-
ing results of user-defined visual settings. A notification log was generated
when it ended its informative lifespan based on its importance model. Each
notification log included information about (1) the identification of the vir-
tual category (e.g., user-id, app name, virtual category label), (2) Android
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notification channel (e.g., channel name and system importance), and (3)
user interaction (e.g., post time, interaction time, the system flag about the
reason of notification removal, and lifespan). We did not log and transmit
the sensitive part of notification contents (e.g., title, subtitle, text, and image)
outside participants’ smartphones. DataHalo sent a stack of halo setting logs
and notification logs to Firebase Realtime Database (RTDB) [33] hourly.

4.2 Data Analysis

In the following, analytic approach toward transcriptions of the pre and post-
study interviews, halo setting logs, and notification logs was elaborated in
detail.

4.2.1 Data Preprocessing

We transcribed the responses of the semi-structured interview. Regarding
the interview of the pre-study session,we grouped the transcriptions accord-
ing to the topics describing their current notification management: (1) filter-
ing, (2) feedback setting, (3) attending, and (4) accessing information in a
longitudinal manner. We also categorized the responses about the current
home screen management: app shortcuts and their layout.

Regarding the interview of the post-study session, we summarized the
transcriptions into a table that listed the participants’ considerations during
each app halo customization from the following perspectives: (1) their high-
level motivation of app choice, (2) notification filtering & categorization, (3)
importance modeling, and (4) visual encoding; we named the table as halo
design table in the following. The table consisted of 91 cases of app halos; it
included 205 design scenarios of the graphical mark applied to each virtual
category.
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Regarding the collected halo setting logs, we reconstructed the temporal
events of DataHalo customization; we denoted the data as halo customiza-

tion events in the following. Halo customization events consisted of follow-
ingproperties: (1) participant_id, (2) timestamp, (3) target_app, (4) app_category
provided by Google Play Store, and (5) the halo configuration at that time.

Regarding the collected notification logs, the following notificationswere
filtered out to obtain the notifications of interest with which participants ac-
tually interacted.

1. Notifications sent by the Android system (e.g., charging state)

2. Notifications not clearable by users (e.g., media control ofmusic/video
players accessible in the notification drawer)

3. Notifications controlled by app services (e.g., a summary notification
of unread messages in KakaoTalk; the app automatically repeats post
and removal whenever the number of unread messages changes.)

Among the filtered notifications of interest, we separated ones from the apps
for which participants managed custom halos; we named these notifications
as halo notifications in the following.

4.2.2 App-Level Customization Analysis

First, we aimed to understand the participants’ DataHalo usage in app level:
choice of apps and customization over time. We labeled the halo customiza-
tion events based on (1) customization type (i.e., creation or edit) and (2)
weeks (i.e., first week, second week, third week, and extra weeks). We then
investigated halo creation and edits over time by app category and partici-
pant. Finally, we reviewed the adjacent edit events and the halo design table
to understand why participants repeatedly edited app halos over time.
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4.2.3 Virtual Category-Level Design Analysis

Next, we aimed to understand the design motivations and choices underly-
ing participants’ halo designs. Because the virtual category was the unit of
notificationmanagement inDataHalo,wedrilleddown into virtual category-
level analysis. The analysis proceeded in two steps. First, we derived the
high-level design motivations. We analyzed 205 graphical mark design sce-
narios in the halo design table referring to (1) our design considerations,
(2) the major findings from the usability study, (3) user–notification inter-
action patterns summarized from the interview results of the pre-study ses-
sion, and (4) design dimensions or evaluation criteria of ambient informa-
tion visualization [63, 65, 85]. Next, we derived participants’ customization

choices regarding these motivations. We reviewed the last halo customiza-
tion events of 91 app halos, which included the final configuration of 205
virtual categories. For each virtual category, we compared the correspond-
ing motivation described in halo design table with the relevant part of the
halo configuration; we validated if the configuration could output the graph-
ical mark that behaves as participants described. If two data were consistent,
we labeled the pair of description and configuration. we iteratively refined
and grouped similar labels, and named the final set of labels as choices.

4.2.4 Halo Notification Analysis

Wealso aimed to understand the similarities and differences between the vir-
tual categories made by participants the notification channels carved by app
providers. We first investigated the volume of halo notifications by partici-
pant and app category. We then compared (1) the category and (2) the im-
portance of notification carved by the system (i.e., notification channel and
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channel importance of the Android System) to those defined by participants
(i.e., virtual category and user-defined importance).

4.3 Result

This section startswith a brief summary of the conventional user–notification
interaction before using DataHalo. Next, the results of analysis on (1) app-
level usage, (2) virtual category-level design, and (3) halo notifications were
presented. Finally, usability of DataHalo and its contribution to a better user
experience of notification management were reported.

4.3.1 Notification Management and Attendance before Using
DataHalo

Most participants (9 out of 12) have struggled to control the volume of app
notifications. They decided to disable the advertisements when installing an
app or block all the notifications of some apps (e.g., messengers, social apps)
later in the usage. To avoid being distracted, most (except P01) preferred less
noticeable feedback (i.e., vibration or silence) over the sound as a default
feedback method regardless of their spatial or eventual context. It led partic-
ipants to frequently attend a stacked list of notifications in the drawer when
they visited the smartphone home screen. Most (except P08) frequently ex-
perienced the need to access some notices for a longer duration when at-
tending notifications. They kept the notification untouched in the drawer or
manually duplicated the content using other services (e.g., calendars, image
capture). Most participants (except P11) preferred to locate the frequently
used app shortcuts on the first page of the home screen, where they could
access the apps quickly. Other criteria (e.g., proximity among the apps with
similar features, comfortable area for touch, and aesthetics) also influenced
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Figure 4.1: Halo creation and edit events by app category. We aggregated the events ac-
cording to app category provided by Google Play Store. The color encodes the week the
event occurred.

their home screen layout. Participants eventually placed some useful apps
on the subsequent pages, and they thought the badges of these apps were
less effective; they could not glimpse the badges immediately.

4.3.2 App-level Usage of DataHalo

Overview

In total, participants managed 91 halos of 55 different Android apps from
19 app categories provided by Google Play Store (Figure 4.1). On average,
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Figure 4.2: Halo creation and edit events by participant. The color encodes the week the
event occurred.

participants have created 7.58 app halos (min = 3,median = 7,max = 15).
After the creation, participants edited their app halos 188 times in total. They
edited the app halos 15.67 times on average (min = 5,median = 14.5,max =

33) during the usage (Figure 4.2). The edit count per app halowas 2.07 times
on average (min = 0,median = 1,max = 18). 51 out of 91 app halos have
been edited by participants at least one additional time after creation; these
apps covered 14 out of 19 categories.
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The major categories, where the number of the created app halos was
more than five, included the following apps.

1. Communication (24): KakaoTalk (12; instant messaging app), Mes-
sages (6), etc.

2. Social (15): Instagram (5; social media), Between (2; relationship app
for couple), EveryTime (2; community app for university students),
etc.

3. Productivity (10): Calendar (5), Email (3), etc.

4. Entertainment (7): KakaoPage (3; web comic & novel service), Netflix
(2; video-on-demand service), etc.

The communication category accounted for 61% (114) of total edits, and
KakaoTalk (94)mainly contributed to the result. Participants editedKakaoTalk
7.83 times on average (min = 2,median = 7,max = 18).

Halo Creations & Edits over Weeks

Overall, halo creation and edits decreased in a different pattern over time.
Most participants completed the creation of halos during the first twoweeks.
Of the 91 app halos, participants created 67% (61) in the first week, 24% (22)
in the second week, and 8% (7) in the third week. The rest, 1% (1), occurred
during the extra usage of four participants. The number of halo edits also
decreased over time, but the speed was slower than that of creation. Of the
188 edit events, 46% (87) occurred in the first week of usage, 26% (49) in
the seconds week, and 22% (42) in the third week; the rest 5% (10) occurred
during the extra usage. Figure 4.2 supports the difference. Five participants
(P02, P03, P04, P06, and P10) completed halo creation in the first week but
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continued editing afterward. P02 and P03 had consistently edited app halos
of messenger, email, and webtoon services even during the voluntary extra
usage to adjust the change. Their primary reason for the edit was to newly
create the virtual category or refine the existing ones because new commu-
nication partners or webtoons of interest appeared.

Halo Edits for New Notifications of Interest

Participants became constantly motivated to manage notifications of new in-
terests within an app halo; the motivation originated from themselves (e.g.,
P03’s need to curate messages from her intimates) or their surroundings
(e.g., P11’s need for a subscription to the confirmed COVID-19 cases that oc-
curred on campus). They either created a new virtual category or expanded
the keyword-based rules of the existing ones to reflect the new interests;
the choice depended on how definite/flexible they conceptualized the vir-
tual category. Participants managed specific virtual categories because they
could control notifications finely, especially using various graphical marks.
For example, P03 started with a virtual category for curating messenger no-
tifications sent from a friend. Finding the customization helpful and joyful,
she created four new virtual categories by person and assigned distinct im-
ages to them. On the other hand, participants could also finish editing faster
by adding new keywords to the virtual category of broader concepts.

Halo Edits for Improvements for Current Category

Participants edited halos when they faced a critical but unseen notification
that the current category could not successfully classify. They experienced
both the user-side and the app provider-side issues while improving the
keyword-based rules of their virtual categories.
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When initially building a virtual category, participants skimmed the re-
cent app notifications from the notification drawer or the notification history
in our halo configuration page. When the relevant app notifications users
could reachwere too small, the initial keyword-based rules needed improve-
ments to actualize their goal. For the apps triggering notifications frequently
(e.g., messenger app), participants could realize the problem and comple-
ment the rules. However, P09, who created a virtual category that subscribed
to an irregularly updated podcast, needed a long time until she received the
new notification.

P03 explained the “advertisement cop” issue caused by app providers
while managing the keyword composition of virtual categories. When she
tried to subscribe to notifications about the arrival of new short pants for
the fashion app, she found that her keywords failed to hit these notifica-
tions. Their notification text, colloquial expression written by a copywriter,
changed frequently and utilized synonyms or indirect expressions so that
the current keywords became quickly outdated.

We could observe a primitive use case where a participant utilized the
app-provided notification control method and DataHalo at the same time.
P07 utilized the structured notification features provided by his blog app; he
could figure out what notifications the app would trigger easier than look-
ing up the list of the received notifications. He disabled the unnecessary no-
tifications from the app-provided menu and moved to halo customization.
Because he thought all the notifications the app triggered were informative,
he did not create any virtual category and just edited the graphical mark of
the Remainder category. P09 also commented on unifying the app-specific
methods of Kakaotalk into theDataHalo interface. She came upwith the idea
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while filtering and categorizing diverse notifications, but did not take action;
she felt the app-provided features added another complexity.

Null Halo and Removal from Home Screen

Participants disabled halo visualization for 11 apps in total. They either hid
all the graphical marks in the halo configuration setting or removed the halo
from the home screen. As a result of the former approach, participants got
a “null halo”; they chose it when app notifications were useless, but they
wanted to use the app on the home screen. For example, P08 set null halos
for the app store, web browser, gallery, and banking apps to maintain his
home screen neatly. Participants chose the latter when they decided not to
use an app on the home screen. For example, P05 had become indifferent
to the matching service provided by the dating app, so he blocked all the
notifications and finally dropped the app from the home screen. P01 had re-
moved the halo for the webtoon app, although subscriptions she made were
still valuable for her; she worried her halo visualization, which highlighted
the update for her favoritewebtoons,might disturb her concentration during
the midterm period.

Contrasting Use Cases of DataHalo

We present use cases of P02 and P06 that indicate the diversity of DataHalo
usage. P02 (Figure 4.3a) was one of the most passionate users of DataHalo
according to the number of halos and the total number of virtual categories
she created. She managed 42 virtual categories (31 user-created and 11 Re-
mainder categories) in total for 11 halos. The app halo of KakaoTalk even
included ten virtual categories. She tried to control the notifications of her
interest as sophisticated as possible. Because P02 attached the highest pri-
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Figure 4.3: Personal difference in usage of DataHalo. (a) P02 pursued pragmatism while
(b) P06 valued aesthetic experience. Upon P06’s request of not disclosing the photo of
her favorite cat directly, we masked its face with a sunglasses.

ority on the discernibility of multiple graphical marks, she frequently pre-
sented the name of virtual categories directly (i.e., text) or assigned unique
pictographs to different virtual categories. Her home screen wallpaper was
also solid white, supporting her design goal of extensive and effective noti-
fication management.

On the other hand, P06 (Figure 4.3b) created a minimal number of cat-
egories. She created only three custom categories in total while managing
six halos. Besides two communication apps (KakaoTalk and Telegram), P06
was not motivated to classify notifications. Instead, she made a great effort
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to design a home screen that reflected her aesthetic preference. First, she laid
out halos where they did not occlude the image of her favorite cat on the
wallpaper. Second, she decorated halos by selecting pictographs irrelevant
to the app or notification but visually satisfying (e.g., cat for Instagram and
crown for Facebook).

4.3.3 Participants’ Design Motivations and Choices

As a result of the virtual category-level design analysis, we derived partic-
ipants’ five design motivations (M1-5) and corresponding design choices

(see Figure 4.4), consisting of an app-level and four virtual-category-level
motivations. We provide an exhaustive list of the virtual category-level sce-
narios in the supplementary material.

M1. Control the Scalability Issue of App Notification Control

Participants left 54% of the apps (49 out of 91 apps) as-iswhen they had no
desire to filter. For 34% (31) of them, participants mixed various features, in-
cluding Pass-List, Block-List, and themaximumnumber of visualizedmarks,
to selectively control. Participants tried the selective control for 17 of 24 com-
munication apps and 4 of 15 social apps. Lastly, participants blocked notifi-
cations of 12% (11) of the apps by setting zero to the number of visualized
marks.

M2. Classify Notifications based on User-defined Schema

Participants prioritized self-organized events, which involved scheduled events,
to-dos, or daily goals created and registered by themselves. Their curated
communications focused on senders of interestwho communicatewith them
via messenger, email, and social apps. Personal subscriptions covered di-
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verse topics of interest. The notifications participants did not want to cat-

egorize belonged to the Remainder category. However, some of them nat-
urally covered the notifications of interest (Figure 4.5a); some apps (e.g.,
to-do app) triggered only the notifications that the user organized; P07 fil-
tered the blog app notifications using app-provided features so that he could
subscribe to notifications of interests from the Remainder category.

M3. Respond to Notifications according to Urgency and Persistence

Participants wanted to recognize the useful but non-critical notifications in
the sameway theyused to; they left the default importancemodel untouched.
They wanted to react immediately to urgent notifications by imposing high
initial and target importance values but a zero saturation importance to the
category. They wanted to remind themselves of persistently helpful notifi-
cations by setting the long lifespan and keeping the saturation importance
non-zero. They disregarded unnecessary notifications by setting the initial,
target, and saturation importance to zero or the lowest value within the app.
Figure 4.5b indicates that participants chose more diverse responding ap-
proaches for the user-created virtual category, while they thought that the
recognition was enough for the notifications of the Remainder category.

M4. Control the Complexity of Visual Information Conveyed through
Marks

Participants expected the graphicalmark to behave similarly to the dot-shaped
notification badge by which they could only guess if any notification ex-

ists; they left the default visual encoding untouched. Participants made the
graphical mark identifiable by assigning a distinct combination of visual
properties (e.g., shape, color) to the default encoding. Participants addition-
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ally wanted to track the change of information state by configuring a more
complex visual encoding, starting from our predefined examples. In terms
of visual variables, the most preferred visual encoding was the following:

• user_checked → shape (i.e., the shape changes after the user attends
to notification.)

• elapsed_time → color (i.e., the color changes over time.)

• user_checked → motion (i.e., themotion changes after the user attends
to notification.)

• importance_value → size (i.e., the size is proportional to the current
importance.)

• importance_value → position. (i.e., the position is proportional to the
current importance.)

Participants tended to configure the more complex visual encoding for the
user-created virtual categories (Figure 4.5c). However, P06managed the cat-
egory “non-urgent group chats” in her messenger and assigned an uniden-
tifiable graphical mark to disregard the targeted messages.

M5. Determine the Visual Theme of Marks

Participants pursued conciseness by utilizing the default graphical mark
(i.e., circle) as-is or with color change. They pursued straightforwardness

by presenting the name of the virtual category directly. Participants wanted
to represented their interpretation of the category (e.g., a pictograph of the
office building). Participants were motivated to express their impression

to the mark (e.g., a bomb-shaped icon to express the negative and press-
ing moods). Figure 4.5d indicates that participants applied diverse visual
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themes to the user-created virtual categories, while they generally favored
concise graphical marks for the Remainder category. We also observed the
individual difference regarding the preferred theme of the mark. We revisit
P02 andP06’s usage in Section 4.3.2. 43% (18 out of 42) of the graphicalmarks
created by P02 highlighted straightforwardness, while P06 created 56% (5
out of 9) of the marks emphasizing her impression.

4.3.4 Virtual Category-Level Design Strategies

We denoted a combination of the design choices along the five design mo-
tivations participant made for a virtual category as its virtual category-level
design strategy. In the following,We further describe the commonalities and
diversities among the participants’ halo designs by comparing their design
strategies. We listed the selected design strategies that were (1) frequently
adopted and (2) widely shared among participants in Appendix C.2.

Explanation of Terminology by Example

Figure 4.6 describes the relationship between the designmotivations, the de-
sign choices, the virtual category-level strategy, and the graphical mark with
a halo of LoopHabit Tracker created by P02. It was a self-tracking appwhere
she registered her daily goals and monitored their achievement. Although
the app could send notifications that remind her of daily goals, they eas-
ily disappeared when “dismissing all” from the drawer. So, she decided to
manage a virtual category called “Supplements” that reminded her of a daily
goal to take nutritional supplements. Our design motivations (M1–5) pro-
vide the five viewpoints of P02’s design scenario. Next, our design choices
regarding thesemotivations give a detailed explanation of her customization
behaviors. Finally, the resultant virtual category-level design strategy —M1:
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as-is, M2: self-organized event, M3: remind, M4: identification, M5: personal
interpretation— comes out; it enables the scenario-to-scenario comparison
with other virtual categories made by P02 and by other participants.

No Intersection between Design Strategies of User-Created Category and
Remainder Category

We could observe 74 unique design strategies from the 205 virtual category-
level design scenarios; 50 of themwere for the user-created virtual categories
(118 out of 205); 24 of them were for the 87 Remainder categories. There
was no intersection between two sets of unique strategies, indicating that
participants posed distinct design approaches based on whether they were
actively involved in category creation.

Individual Differences of Design Strategies Applied to User-Created
Category

Participants tended to reuse the same design strategies multiple times for
similar virtual categories in the same app or across apps. 58% (7 out of 12)
of participants reused their design strategies. For example, P02 repeated her
three design strategies nine, eight, and five times, respectively. Individual
design strategies hardly overlapped among participants. 1.61 Participants
shared the same design strategy on average (median = 1,max = 4, std =

1.60). Only 26% (13 out of 50) of the design strategies were shared by two
or more participants. The most widely shared strategy, used by four partici-
pants, was to subscribe to the experiment notices (Section 3.2.4) provided as
an exercise; all participants initially utilized the same setting, but eight par-
ticipants changed the strategies by further customization during their usage.
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(a) Halo notifications by participant. (b) Distribution of Android channel
importance by type of virtual category.

Figure 4.7: The result of halo notification analysis.

Homogeneity of Design Strategies Applied to Remainder Category

As illustrated in Figure 4.5, design strategies for the Remainder category
were more homogeneous than those for the user-created category: The two
most frequent strategies took up 55% (48 out of 87) of usage. These twowere
identical except for the choice of M1. They corresponded to the default con-
figuration of theRemainder category; participants did not customize because
they focused on managing the categories they created.

4.3.5 Halo Notification Analysis

Overview

Of the 1,088,368 total notification logs collected, we filtered 114,316 notifi-
cations of interest. Of the 114,316 notifications of interest, halo notifications
occupied 65,200. The communication category was prevailing in halo notifi-
cations (52,995 out of 65,200); KakaoTalk dominated this category (51,023
out of 52,995). The second most frequent app category was social (7,910
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out of 65,200). Therefore, these two categories, related to communication
among users, were the primary source (93%) of halo notifications. On av-
erage, participants received 5433.3 halo notifications (min = 627,median =

2, 773,max = 26, 992, Figure 4.7a).

Comparative Analysis on Virtual Categories and Android Notification
Channels

At a high level, we found some commonalities between the notification im-
portance imposed by the user’s information schema and one provided by the
channel structure of the current notification system. We observed a signifi-
cant difference in the distribution of notification’s channel importance (Fig-
ure 4.7b) based on whether it belongs to the user-created virtual category or
the Remainder category (i.e., not classified by user schema). Similarly, no-
tifications that belonged to user-created categories also had higher channel
importance than the Remainder categories. It coincidedwith the observation
from the halo design table; all but one participant imposed a higher or equal
importance value to the virtual category they created than the Remainder
category automatically generated.

However, the detailed investigation contrasted the schema of virtual cat-
egories with Android notification channels. Virtual categories frequently ac-
commodated heterogeneous notification channels. 41% (39 out of 94) of vir-
tual categories included two or more distinct notification channels (min =

1,max = 9,mean = 1.54). For example, the “announcement” category cre-
ated by P01 for KakaoTalk assigned a higher informative value to the desig-
nated notifications. However, the halo notifications showed that the notifica-
tions from two different Android notification channels, “NewMessage” and
“Notification without Feedback”, were classified into her “announcement”
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category. These channels assigned contrasting system importance (“NewMes-
sage” → IMPORTANCE MAX, “Notification without Feedback” → IMPOR-

TANCE LOW) to notifications, which shows a discrepancy with user moti-
vation.

Moreover, the categorization based on notification channels was not spe-
cific enough to cover the user’s schema. 38% (31 out of 82) of Android no-
tification channels involved two or more virtual categories(min = 1,max =

8,mean = 1.77). For example, P02 managed five virtual categories for Mis-
eMise, a weather app specialized in forecasting air pollution, to subscribe to
five-graded fine-dust alarms. On the other hand, the logs indicated that its
app provider labeled all the differently-graded alarmswith a single Android
notification channel called “MiseMise Alarm”. In addition, channel impor-
tance itself could not effectively differentiate virtual categories. For example,
four different virtual categories created by P11 for KakaoTalk involved the
identical channel importance, IMPORTANCE DEFAULT, although she ap-
plied distinct importance models to all of them.

4.3.6 Usability and User Experience

Usability Feedback

Compared with the prior result of the formative study, there was no signifi-
cant increase in the score of the System Usability Scale (SUS). The score was
in the range of OK-GOOD again [7]. However, the subsequent inquiry re-
vealed that the fatigue of customization, the main usability issue of the early
prototype, has been successfully alleviated.
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User Experience of New Notification Management

Regarding the 7-point UX questionnaire (Appendix C.1), the distribution of
responses for every question was left-skewed (Figure 4.8). All participants
agreed that these capabilities provided a better experience of notification
management: (1) notification categorization, (2) prioritization of informa-
tion, (3) longitudinal interaction, and (4) delivery in a favorable visual form.
Participants who favored managing aesthetic halos (P01, P03, P06, P10) es-
pecially loved the capability of personalizing graphical marks for the noti-
fications of interest. For example, P10 responded that she voluntarily had a
brainstorming session of decorating halos with her friend for about an hour.
She thought DataHalo could appeal to her peers interested in decorating
their smartphone home screen.

As a result, all participants responded that their user–notification interac-
tion improved overall during the deployment. They hoped to use the full ver-
sion of DataHalo from the app store soon. On the other hand, the launcher-
related usability issues resulted in less positive responses toQ7, “Continue to
Use”. Many participants wanted to continue using the DataHalo capabilities
in their original launcher (e.g., One-UI). P4 also mentioned that he wanted
to use DataHalowith ‘NotiStar’, a notificationmanagement service provided
by the One-UI launcher; it supported the global search over the notifications
that can harmonize with our app-specific method.

4.4 Discussion

4.4.1 Customization Support towards the Personalized Ambience

Our studies revealeddiverse perspectives on the satisfactory user–notification
interaction among participants. In the casual context [86], participants used
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DataHalo for a broad range of purposes not limited to obtaining analytic in-
sights from notification information; some wanted to decorate their home
screen prettier, while others carefully chose graphical marks that implied
their emotion. In designing halos, participants reflected their personal pref-
erences (e.g., aesthetic taste) andusage contexts (e.g., appusage, home screen
management), producing highly personalized and unique ambient displays.
This suggests the potential of DataHalo’s customizability in supporting indi-
vidualized notificationmanagement.Althoughparticipants generated highly
individualized halos, they also tended to apply the samedesign strategies for
multiple virtual categories they created. To streamline such a unified but in-
dividualized halo configuration, a future version of DataHalo may support
global customization across multiple apps. This could lower the burden of
people who want to repeat similar design strategies for virtual categories
across multiple apps.

4.4.2 The Ease of Adaptation to Trace the Moving Sweet Spot of
User Experience

Another important lesson of our deployment study was the change of per-
sonal ‘sweet spot’ in the user experience over time. Participants added, edited,
and even removed halos during usage, similar to personal information track-
ers [27]. Although participants determinedmost of the app halos during the
first two weeks of usage, they constantly edited halo configurations for ex-
tended periods; their sweet spot (i.e., well-personalized setting at a specific
time) needed to be updated to adjust the changes originated from them-
selves and their surroundings. The result indicated that the customization
capabilities should be more accessible for people to keep up with the shift
of sweet spots. DataHalo successfully exploited the accustomed interaction
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methods of the home screen, app icons, and notification badges. Users could
intuitively organize an apt information display that adapts to their desire. For
instance, they could include or exclude information sources by placing and
removing app icons on the home screen. Plus, they could quickly access the
halo customization interface of a target app thanks to the context menu trig-
gered by directly manipulating its icon. Likewise, our design study provides
an example of integrating novel ideas into widely known interfaces and in-
teraction methods by concinnously extending their underlying semantics.

4.4.3 Generalizability beyond Culture and Population

Since we conducted the study in South Korea, some halo design patterns
may be subject to regional characteristics of app usage, given that halo cre-
ations and edits were active for communication and social apps. Especially,
KaKaoTalk, a communication app most South Koreans use (over 40 mil-
lion [46]), is more than a messenger. It incorporates various platform ser-
vices such as shopping, so many commercial chatbots also send messages
(e.g., advertisement, invoice, and delivery) to people. Receiving both chat
and non-chat messages makes KaKaoTalk a notification-intensive communi-
cation app. Most participants needed to curate notifications from this app
and subscribe to only useful ones with distinct longitudinal interactions. Be-
cause (1) DataHalo successfully covered a case of a notification-intensive
app that triggered diverse information and (2) our analysis drilled down
into the virtual category level, we believe our findings also apply to notifica-
tion management of other apps in other regions.
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4.4.4 Implications for Better Personalization Support

Integrating User Schema and Android Notification Channels

There was a discrepancy between the categorizations for app notifications
that participants implementedusingDataHalo andAndroid notification chan-
nels defined by app providers. This gap implies the necessity of the user’s
participation in modeling the notification information of an app. Further-
more, P03’s “advertisement cop” issue revealed the potential incompleteness
of inductivemethods provided by DataHalo. The exhaustive information for
the app notifications from the app provider can supplement the quality of
keyword-based rules that relies on people’s observable range of notifications
at the time. Combining the user’s schema and the app-specific control meth-
ods could lower the burden of filter and categorizing notifications. However,
this approach is not currently viable due to the limited access to Android’s
notification information. Therefore, future work may consider integrating
the notification channel structure of Android with the visualization pipeline
of DataHalo.

Semi-automated Tuning of Importance Model

Despite our efforts to alleviate the user’s burden of customization by pro-
viding more intuitive examples and user interfaces for visual summary and
reuse, some participants also reported the learning cost of tuning parame-
ters for predefinedmodels. To tackle this issue, we expect to utilize the set of
design motivations and strategies as a source of questions (e.g., “What type
of information you classified?”, “How do you want to respond to this noti-
fication?”) and options (e.g., “Personal subscription,” “I want to remind the
notification for awhile”). Based on the similar design choices in the collected
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patterns, DataHalo could suggest more sophisticated initial parameters than
those of example patterns. In the long run, these parameters could be fur-
ther adjusted based on user statistics computed by collected notification logs
(e.g., the number of notifications and average interaction delay). This semi-
automated tuning of the importance model would effectively resolve the re-
maining usability issues and possibly adapt to the temporal change of the
personal sweet spot we mentioned above.
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Chapter 5

Exploring Design Space of
Attention-Adaptive Ambient
Information Visualization

This chapter1 examines the feasibility andpotential of incorporating attention-
adaptive technologies in ambient information visualization design. It ad-
dresses the third research question: What are the limitations and opportunities

for integrating attention-adaptive personalization into PAAIV, considering technical

constraints and user needs related to real-time attentional information?.
User attention is a crucial factor of ambient information visualization,

yet designers have had to rely on indirect methods for assessing user atten-
tion, such as behavioral observations or subjective reflections, whichmay not
accurately capture real-time changes. Integrating Brain-Computer Interface
(BCI) methods into the design of ambient information visualization could
be an effective approach to overcome this limitation. Researchers have ac-
tively studied brainwaves measured non-invasively by Electroencephalogra-

1This research is in preparation for publication. In this chapter, "we" refer to myself and my
collaborators: Dantae An, Hyunjoo Song, Bohyung Kim, and Jinwook Seo.

71



phy (EEG) to predict human cognitive states. Moreover, advances in mobile
technology have allowed people to use their brainwaves in everyday contexts
with end-user EEG devices, which are more comfortable to wear and more
affordable than professional instruments used in laboratories and hospitals.

On these bases, we proposed Attention Adaptive Ambient Information
Visualization (A3InfoVis), a type of ambient information visualization that
leverages users’ attention states inferred from real-time EEG data. We ex-
plored its design space in two aspects: (1) technological constraints of avail-
able attention information and (2) users’ needs for utilizing and visualizing
attention information.

First, we identified three design challenges concerning technological con-
straints: (1) classifying attention states for everyday tasks rather than highly-
controlled cognitive tests in real-time, (2) addressing the limitations of end-
user EEGdevices (e.g., few channels andnarrowbrain coverage), and (3) ob-
taining sufficient data for a personalized classifier targeting attention states
of interest. To tackle these challenges, we collected EEG signals from 25 sub-
jects, assessed the applicability of heuristic indices related to user attention,
and compared the performance of machine learning (ML)-based attention-
state classifiers.

Next, we interviewed seven users of DataHalo [37], a customizable am-
bient information visualization system for smartphone notifications, who
had experience in creating andmanagingmultiple custom ambient informa-
tion visualizations in their daily lives for at least three weeks. We inquired
about (1) how they would enhance the ambient notification visualizations
they managed with their real-time attention information and (2) other de-
sirable application scenarios of A3InfoVis in their daily lives. Based on these
insights, the chapter concludes with design guidelines for A3InfoVis, cover-
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ing (1) personal reflection, (2) revealing attentional status to others, and (3)
sharing personal attentional information among others.

5.1 Expected Technological Challenges of A3InfoVis

This section summarizes three technological challenges of A3InfoVis based
on the literature review and survey on commercially available EEG devices.
These correspond to the following questions that need to be addressed to
make the users’ real-time attention information available in their daily con-
text: (1) Are previous heuristic indices and classifiers for attention state pre-
diction applicable to users’ everyday tasks?; (2) What are the minimum re-
quirements of the end-user EEG devices deployed to personal contexts?; and
(3) Should the data preparation for individualized attention state classifier
be totally subject-specific?

Feasibility ofAttention StatePrediction for EverydayTasks.A3InfoVis should
be able to distinguish attention states in real-time while users focus on ev-
eryday tasks. Previous studies have developed machine learning (ML) clas-
sifiers to differentiate between simple cognitive tasks, such as mental addi-
tion and forward/backward-digit-span. These tasks assess specific cognitive
abilities in highly controlled settings. In contrast, everyday tasks like watch-
ing YouTube videos involve more complex (e.g., audiovisual) stimuli that
persist for longer durations and vary depending on the video content (e.g.,
relaxing landscapes and lecture videos). To the best of our knowledge, few
studies have examinedwhetherML-based classifiers can effectively separate
these types of tasks and how finely they can differentiate between similar
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tasks (e.g., debate videos on different topics).

Limited Spatial Resolution of EEG Data Available for End-User Devices.

The prediction performance of A3InfoVis should remain reliable even when
using end-user EEGdevices, which typically have fewer electrodes and cover
narrower brain regions compared to professional devices, resulting in lower
data quality. As shown in Figure 5.1, commercially available EEG devices ex-
hibit a wide range of prices. Most devices priced under 900 USD have fewer
than 8 electrodes and only cover a limited number of electrode spots from
the 10-10 system, which is fully covered by medical devices. In addition to
the price, usability issues arise when individuals find it challenging to put
on and remove an EEG device with a large number of electrodes without
professional assistance. Therefore, it is critical to determine if attention state
prediction using EEG data with limited spatial coverage remains acceptable.

Burden of Data Acquisition for Building User-Specific Classifiers. The bur-
den of data acquisition for A3InfoVis should be clarified if end-users wish to
train a subject-specific attention state classifier that distinguishes between at-
tention states of interest. End-users may find data collection and preparation
procedures repetitive and tedious, posing a significant challenge. Further-
more, they are usually uncertain about how much data is sufficient to train
a usable model. Given the individual variability in EEG data, it is essential
to determine the extent to which models trained on other subjects’ EEG data
can be reused. If these pre-trained models can be repurposed, it would sig-
nificantly reduce the burden of initial data acquisition for end-users. Specif-
ically, comparing the performance of a general model, trained on all data,
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Figure 5.1: List of commercial EEG devices available for purchase as of 2023.
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with that of a subject-specific model would provide insights into the chal-
lenge regarding data acquisition.

5.2 EEG Collection & Statistical Feature Analysis

This section covers the collection of EEG data and statistical analysis of its
underlying patterns. First, we conducted a lab experiment that collected peo-
ple’s EEG data while they were watching video clips. We chose the task for
two reasons: (1) it is one of the most typical daily tasks that can easily cover
different attention states by varying the video sources; and (2) it does not
require frequent keyboard and mouse usages, preventing severe movement
artifacts. After collecting the data, we explored the frequency-domain fea-
tures of the EEG data. We then tested the statistical significance of their vari-
ability according to the experimental factors. The analysis result indicated
that frequency-domain features would be feasible for attention state classifi-
cation while their activation pattern was partly inconsistent with an existing
index for task engagement.

5.2.1 Study Design

We conducted a lab study at a local university to collect a dataset for analysis
and ML model training. The whole procedure was approved by the institu-
tional review board. We set up a dedicated study room in the university that
consisted of essential facilities for daily desk work environment (e.g., desks,
chairs, desktop PC, and input & output devices). We consistently managed
temperature by air conditioning to prevent artifacts due to sweat. Partici-
pants sat at the desk and put onMINDD-SCAN [106], an EEGmeasurement
devicewith 19-channel dry electrodes.We calibrated EEG signal based on its
internal SQI (Signal Quality Index). During the measurement, we requested
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participants to sustain a comfortable sitting posture as they usually do; we
monitored their rapid movements (e.g., shaking heads or legs) that possibly
trigger movement artifacts. If the movement induced a noticeable artifact to
the EEG stream, we recorded the time interval to exclude the corresponding
data from analysis. In case of the minor and brief movements, we reminded
them of the request before starting the next measurement.

We measured EEG signals of five tasks from three distinct situations:
while (1) taking a rest, (2)watching a landscape video clip, and (3)watching
a debate video clip. These situations required “low”, “medium”, and “high”
level of task engagement, respectively; regarding the third situation, we as-
signed three tasks of different topics to understand its influence to EEG data
further. First, we measured EEGwhile participants took a rest for three min-
utes (we denote this task as resting in the following). They closed their eyes
during the measurement to control confounding effects such as eye move-
ment artifacts and unintended attentions to visual stimuli. Second, partici-
pants watched a four-minute video clip of a natural landscape (we denote
this task as video-landscape in the following). We requested them to focus on
the scenery with relaxation. Third, participants watched three debate video
clips in a counterbalanced order. All the clips were official summary videos
of a weekly TV debate show provided by one of the public broadcasting ser-
vices in South Korea; they covered the three most controversial topics in the
country at the time: (1) politics [22] (i.e., abolition of the Ministry of Gen-
der Equality and Family), (2) economics [23] (i.e., overheated investment
on the cryptocurrency), and (3) social welfare [24] (i.e., provision of the ba-
sic income); the length ranged from 5 to 7 minutes; each clip started with
an introduction by the moderator and followed by arguments and rebut-
tals among two opposing groups of panelists. We named each task as video-
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debate-p, video-debate-e, and video-debate-s, respectively. We asked participants
about their opinion on the topic before and after watching every debate clip.
Specifically, we informed them in advance that they would respond to (1)
how interested theywere in the topic and (2)which opinion they supported;
these were to motivate participants to engage with the video because they
might not be interested in some of the topics. The whole process took about
an hour. We recorded participants’ upper body during the measurement.

5.2.2 Participants

We employed opportunity sampling through online forums for students and
faculty members of the local university. We recruited people who had not
suffered from brain diseases and cognitive impairments. Twenty-seven peo-
ple initially applied but we excluded the EEG data of the first two partici-
pants due to the unstable data transfer during their sessions. The final count
of participants was 25 (13 males and 12 females); their ages ranged from 19
to 31 (µ=24.68, σ=3.51); two of them were left-handed; they were all under-
graduate or graduate students. We rewarded themwith 13,000 KRW (equiv-
alent to 10.2 USD) for their complete participation.

5.2.3 Data Preprocessing

We preprocessed the collected EEG data using python open source pack-
ages, including MNE-python [35], a toolkit specialized in EEG data analy-
sis. We excluded the first four seconds of the raw EEG data to remove ab-
normal oscillations and applied a high-pass filter (f > 1.0Hz), a low-pass
filter (f < 60.0Hz), and a notch filter (f = 50.0Hz) to it.We then applied the
ICA (Independent ComponentAnalysis), one of themost famous BSS (Blind
Source Separation)methods [45];we excluded the independent components
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Figure 5.2: Correspondence between electrodes of the 10-20 system and the brain region
variable.

suspected of being generated from artifacts (e.g., ocular and muscle move-
ments). Next, we down-sampled the cleaned EEG data from 500Hz to 250Hz
and split them into non-overlapping windows for one second.We computed
the PSD (Power Spectral Density) for eachwindowbyWelch’smethod [105].
Finally, we got the time-variant PSD data of five frequency bands (i.e., delta,
theta, alpha, beta, and gamma).We referred to video records to detect if par-
ticipants made unexpected, rapid movements or dozed during the measure-
ments.

5.2.4 Statistical Analysis

We first constructed a data table for statistical analysis of frequency-domain
features of brain waves. Using the time-variant PSD data, we computed the
relative power of the five frequency bands for each measurement. We also
included a task engagement index (β/(α+θ)) [84], a brain wave index to in-
terpret the user’s attention to similar target tasks in HCI research [39, 98].
In addition, we introduced a new categorical variable, brain region (Fig-
ure 5.2), to investigate the spatial characteristic of brain waves. We catego-
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rized the electrodes into the spatially corresponding brain lobes (i.e., frontal,
parietal, temporal, and occipital regions). We then added two more regions
(prefrontal and central) according to the international 10-20 system formore
sophistication. The final table consisted of the following columns: (1) partic-
ipant ID, (2) task type, (3) brain region, (4-8) relative power values of the
five frequency bands, and (9) task engagement index.

Next, we conducted the two-way repeated measure ANOVA (Analysis
Of Variance) to investigate the influence of the factors (task type and brain
region) on the participants’ relative power and task engagement value. We
adjusted p values by the Greenhouse-Geisser correction method [36] to pre-
vent the risk of violating sphericity. We then conducted a post hoc analysis.
We applied multiple paired t-tests for every combination of tasks and brain
regions; we adjusted p values for multiple comparisons by the Bonferroni
method in a 95% confidence level.

5.2.5 Result

Relative Power of Frequency Bands

For all frequency bands, from delta to gamma, both of the factors, task type
and brain region, had a statistically significant effect on relative power of
frequency band. (Table 5.1). There were also significant interaction effects
between task type and brain region for the lower frequency bands (delta,
theta, and alpha).

According to the post-hoc analysis of task type, the relative power values
of the resting task were significantly different from those of all the video-
watching tasks (video-landscape&debate-p, e, and s) for all frequency bands.
However, the patterns were contrasting between the alpha and the rest fre-
quency bands. The mean relative alpha power was higher during the resting
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Figure 5.3: Results of the post-hoc analysis on the brain regional effect. The row corre-
sponds to the brain regions: (i) prefrontal, (ii) frontal, (iii) central, (iv) parietal, (v) tempo-
ral, and (vi) occipital regions. The column corresponds to the relative power of frequency
bands: (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma bands. For example, a subfig-
ure at (iii, c) represents all the statistically significant pairs that involve the central region
(iii) regarding the relative alpha power (c). In the subfigure, we colored the regions us-
ing three colors: light grey, red, and blue. The average relative power of the red colored
regions were significantly higher (e.g., occipital > central), and that of the blue colored
ones were significantly lower than that of the light grey region (e.g., frontal < central).

81



band factor F-value p-value significance

Delta
task F(4,96) = 39.42 p < 0.01 ✓

brain region F(5,120) = 6.4 p < 0.01 ✓
interaction F(20,48) = 9.13 p < 0.01 ✓

Theta
task F(4,96) = 24.83 p < 0.01 ✓

brain region F(5,120) = 3.32 p < 0.05 ✓
interaction F(20,48) = 17.68 p < 0.01 ✓

Alpha
task F(4,96) = 126.28 p < 0.01 ✓

brain region F(5,120) = 11.51 p < 0.01 ✓
interaction F(20,48) = 22.11 p < 0.01 ✓

Beta
task F(4,96) = 14.22 p < 0.01 ✓

brain region F(5,120) = 8.91 p < 0.01 ✓
interaction F(20,48) = 2.72 p > 0.05

Gamma
task F(4,96) = 15.36 p < 0.01 ✓

brain region F(5,120) = 7.73 p < 0.01 ✓
interaction F(20,48) = 2.15 p > 0.05

Table 5.1: Two-way RM ANOVA Results of Relative Power of Frequency Band

task than during the video-watching tasks. On the other hand, those of the
four other frequency bands were lower during the resting task than during
the video-watching tasks. Moreover, there was an additional significant dif-
ference between the video-landscape task and every video-debate task in the
theta band. Hence, the mean relative theta power significantly increased in
the order of resting, video-landscape, and video-debate tasks.

Figure 5.3 summarized the results of the post-hoc analysis on the brain
region among frequency bands. We grouped the statistically significant size
pairs for every brain region. We then delineated the reference brain region
with solid line and light grey color, and other regions with dashed line. We
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colored the region in red if its average relative power is larger than the refer-
ence region and colored in blue if the value is smaller.

Relative delta power: the average value of the frontal region was signifi-
cantly higher than those of four other regions (prefrontal, central, tem-
poral, and occipital; Figure 5.3(a)).

Relative theta power: the average value of the temporal region was signifi-
cantly lower than those of the frontal and central regions (Figure 5.3(b)).

Relative alpha power: Figure 5.3(c) illustrated the pattern inwhich the back
regions were likely to have higher values than the front regions. The
average value of the frontal region was significantly lower than those
of the prefrontal, central, parietal, and occipital region; all except the
prefrontal region were its back regions (Figure 5.3(ii, c)). The average
value of the occipital region, the backmost region, was significantly
higher than those of other regions (pre-frontal, frontal, central, and
temporal; Figure 5.3(vi, c)).

Relative beta power: Figure 5.3(d) indicated that the prefrontal and tem-
poral regions had higher values. The average value of the prefrontal
region was significantly higher than that of the frontal region (Fig-
ure 5.3(i,d)). The average value of the temporal region was signifi-
cantly higher than the frontal, central, andparietal region (Figure 5.3(v,d)).

Relative gamma power: Figure 5.3(e) also delineated the pattern similar to
the beta band. The average value of the parietal regionwas significantly
lower than those of the frontal and central regions (Figure 5.3(iv, e)).
The average value of the temporal region was significantly higher than
those of the central, parietal, and occipital regions (Figure 5.3(v, e)).
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index factor F-value p-value significance

Task Engagement
task F(4,96) = 18.37 p < 0.01 ✓

brain region F(5,120) = 5.24 p < 0.05 ✓
interaction F(20,48) = 3.39 p < 0.05 ✓

Table 5.2: Two-way RM ANOVA Result of Task Engagement Index

The interaction effectwas significant in the relatively low-frequency bands
(delta, theta, and alpha). The post-hoc analysis revealed that during the rest-
ing task the relative power values of the alpha band tended to increase by
moving from front to back regions. In contrast, those of the delta and theta
bands tended to decrease in the same direction.

Task Engagement Index

Both of task type and brain region had a statistically significant effect on task
engagement (Table 5.2). Also. therewas a significant interaction between the
effects of task type and brain region. The post-hoc analysis on the task type
showed that the task engagement values of the resting taskwere significantly
lower than those of all the video-watching tasks (landscape & debate-p, e,
and s). The post-hoc analysis on the brain region showed that the values of
the temporal region were significantly higher than those of the central, pari-
etal, and occipital regions. The post-hoc analysis on the interaction revealed
that task engagement values of the resting task were significantly lower than
those of the video-watching tasks for all but one (occipital) brain regions.
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5.2.6 Analytic Insights

Frequency Bands and Task Classification

Along the lines of the literature, our results also indicated that the frequency-
domain features of brain waves could contribute to classifying the user’s
distinct attention states. The post-hoc analysis of the task type especially
showed promising results for the real-time binary prediction. All the fea-
tures extracted from one-second brainwaves could distinguish whether the
user was taking a rest or engaging with a video. The theta and alpha bands
deserve special emphasis among the five frequency bands. The relative al-
pha power showed a large difference with a contrasting pattern compared to
the other frequency bands, so we thought it would be an essential factor for
binary classification. The relative theta powerwas the only feature that could
differentiate three task types (resting, video-landscape, and video-debates).

Necessity of Involving Diverse Brain Regions

Significant interaction effects indicated the necessity of incorporating fea-
tures from diverse brain regions. They implied that an underlying interde-
pendency between the task type and brain region affected the characteriza-
tion of distinct patterns within the feature values. Because we need to infer
the task type given the feature values of multiple channels from different
brain regions, involving as many channels as input might contribute to bet-
ter prediction.

Inconsistency with the Heuristic Task Engagement Index

Our result was partly inconsistent with the formula of the Pope’s task en-
gagement index, which (β/(α + θ)) is inversely proportional to the relative
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power of the theta band. However, in our findings, the relative theta power
increased as our participants performed a task requiring more engagement.
Our result was consistent with the literature [10, 100] that the ratio of the
theta and alpha is the indicator of cognitive performance. The major reason
for this inconsistencymight be the different target tasks. Pope and colleagues
thought of the task of sustaining amoving symbol to be locatedwithin a rect-
angular boundary by controlling a joystick between two conditions. It was
a very focused and highly controlled task that only dealt with visual infor-
mation of the single mark. However, our video tasks involved more complex
visual and auditory information. The difference might affect the contrasting
activation pattern of the theta band. The inconsistency implied the neces-
sity of building individualized ML models that can distinguish the person-
specific cognitive states, complementing the limitation of the fixed heuristic
indices.

5.3 Analysis on Technological Challenges

Based on the findings from our EEG analysis, we investigated the feasibil-
ity of ML-based attention state classification. In advance, we addressed the
three technological challenges by investigating different experimental con-
ditions. First, we analyzed the available sophistication level of attention state
classification. We analyzed the performance of three classification models
of different target classes: 2-class (resting and video), 3-class (resting, video-
landscape, andvideo-debate), and 5-class (resting and all the video-watching
tasks). Next, we investigated the effect due to technical constraints of the
EEG devices for end users by limiting the feature selection in terms of the
brain region and the frequency band. Finally,we examined the effect of build-
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Figure 5.4: Pipeline of the real-time classification of the user’s attention state. The clas-
sifier receives the brain wave feature matrix (19 channels * 24 features) every one second
and predicts the corresponding attention state. For example, in this figure, the predicted
attention state of the user at the current time t is the ‘video-watching’. For more informa-
tion on feature matrices, see the Feature Selection subsection of the text.

ing user-specific models trained with individual EEG data compared to the
global model trained with the entire participants’ dataset.

5.3.1 Method

Figure 5.4 delineates the pipeline of the real-time classification of the user’s
attention state. The classifier received the brain wave features of one sec-
ond and predicted the corresponding attention state. We observed the per-
formance in various conditions by changing (1) the number of prediction
classes, (2) the inclusion of selective EEG channels or frequency bands, and
(3) the scope of train data (i.e., entire dataset versus individual subset).

Specification of Attention States

We wanted to examine how finely the target model could distinguish the
user’s attention states. We trained the classifiers that predicted the 2-class
(binary), 3-class, and 5-class attention states.Wevaried the number of classes
by grouping the similar task types in multiple levels. The 2-class model pre-
dicted the resting or the engaged state; the latter included all the video-
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watching tasks. The 3-class model predicted the resting or the two distinct
video-watching states (i.e., video-landscape and video-debates); each state
involved the tasks of different engagement levels. The 5-class model clas-
sified all the tasks into distinct states (i.e., resting, video-landscape, video-
debate-p, video-debate-e, and video-debate-s).

Model Selection

Considering the size of our dataset, we explored classicalMLmethods rather
than deep learning models. We thought our dataset of 125 measurements
from 25 participants would be insufficient to train deep learning models,
which would lead to underfitting. Among ML methods, we chose SVM and
the ensemble of decision trees. SVM is known to be data-efficient and robust
against overfitting while the ensemble of decision trees shows a higher per-
formance despite a higher risk of overfitting. For SVM, we utilized C-SVC
(C-Support Vector Classification) model from libSVM [12], one of the most
widely used SVM libraries, and used a radial basis kernel function to better
capture a non-linear pattern in our data. For the ensemblemodel, we utilized
XGBoost (eXtreme Gradient Boosting) [13]. It is known for one of the most
effective classification models for tabular data, even including deep learning
methods [4].

Feature Selection

We computed the total 456 features (19 channels * 24 features per channel)
for every one-second window of the preprocessed EEG data without over-
lap. For each EEG channel, we chose the 24 frequency-domain features re-
ferring to both the literature [3, 10, 15, 30, 41] and the result of our analysis.
Regarding the ratio of two frequency bands, we started with the entire com-
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binations and excluded ones that had a negligible impact on performance.
We eventually got following four features.

• Absolute power of five frequency bands (N=5)

• Relative power of five frequency bands (N=5)

• Peak power within five frequency bands (N=5)

• Peak frequency within five frequency bands (N=5)

• Ratio between different frequency bands (i.e., delta-to-theta, theta-to-
alpha, alpha-to-beta, and beta-to-gamma) (N=4)

We analyzed the effect of the feature selection from two perspectives:
spatial and frequency-domain characteristics. First, we compared themodels
trainedwith the selective channels that belonged to an identical brain region.
It was to understand how the spatial characteristics of brain waves influence
the classification of user’s attention states. We investigated nine regions: six
individual regions (i.e., prefrontal, frontal, central, temporal, parietal, and
occipital regions in Figure 5.2), two (left and right) hemispheres, and the
entire region.

Next, we compared the models trained with the three different sets of
channel features: (1) entire features (n=24), (2) task engagement-related
features (n=13), and (3) the theta-specific features (n=8). The second set in-
cluded the features of the three bands (theta, alpha, and beta) related to the
task engagement index; it also involved the four ratio features (delta-to-theta,
theta-to-alpha, alpha-to-beta, and beta-to-gamma). The third set included
the features of the theta band and the four ratio features. We covered this
feature set because the theta might contribute to a more sophisticated clas-
sification according to the results of our statistical analysis (Section 5.2.6); it
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was the only frequency band whose relative power showed the significantly
different statistics among the 3-class attention states.

Training, Validation, and Testing

As a result of feature computation, we obtained about 1,320 labeled data
points for each participant (180 points for the resting state, 240 for the video-
landscape state, and 300 for the video-debate-p, e, and s states, respectively).
We split the data points of each task measurement into train and test data
in a ratio of 4:1. To resolve the potential risk of the class imbalance, we ap-
plied the balanced option to SVM, where the model weights the train data in-
versely proportional to its class frequency. We posed two different training
approaches to figure out the strengths of personal models: first, we built 25
personalmodels for individual participants’ data; second,we trained a single
general model using the entire train dataset. During the training phase, we
conducted the four-fold cross-validation to monitor if there existed an over-
fitting problem. After the validation, we compared the average test perfor-
mances of the personal models and the general model. To better understand
the aspects of model errors, we calculated precision, recall, and F1-score to
assess a class-level performance. We then utilized the weighted average of
these class metrics to indicate the model performance.

5.3.2 Result

Available Sophistication Level of Classification

Figure 5.5 summarized the average performance of the personal models ac-
cording to the number of prediction classes, trained with the features se-
lected by the brain region. The first row of Figure 5.5 showed the model per-
formance, trained with the complete feature set. The performance tended to
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Figure 5.5: Average performance of personal models trained with channels of the se-
lected regions. For classifiers, XGBoost (solid blue) always outperformed C-SVC (light
blue). Among the region-specific models, the prefrontal, frontal, and temporal region
models consistently performed better than others.
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decrease as the number of prediction classes increased. The ensemble tree
model, XGBoost, was reliable for all the classification problems, while the
performance of C-SVC dropped for multi-class prediction. Detailed analysis
indicated that in the 3-class classification, C-SVC was inefficient (F1=0.51)
for separating the user’s landscape-engaged state from the other two states.
In the 5-class classification, C-SVC also performed unstably except for the
resting state prediction (F1=0.83); the F1-scores of the other four classes
ranged from 0.48 to 0.54.

Brain Regional Effects

Figure 5.5 summarized the average performance of the personal models,
trained with the features selected based on the brain region. XGBoost per-
formed better than C-SVC in every condition. The models that covered the
features of overall brain regions (the entire region, and the left and right
hemispheres) showed better performances than the six other models that
only covered region-specific features. The performance difference became
greater as the number of prediction classes increased. Among the region-
specific models, the prefrontal, frontal, and temporal region models consis-
tently performed better than others. The occipital region model was compa-
rable to the three models in the case of the binary classification.

Frequency Band Effects

Table 5.3 summarized the average performance of the personalmodels, trained
with the features selected based on the frequency band. XGBoost consis-
tently performed better than C-SVC. It achieved the best performance when
trained with the entire features (n=456); the performance dropped as the
number of features decreased. On the other hand, C-SVC showed a different
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ML model classifier feature set precision recall F1

XGBoost

2-class
entire set 0.9860 0.9861 0.9857
θ, α, β 0.9857 0.9857 0.9853

θ 0.9764 0.9769 0.9759

3-class
entire set 0.9692 0.9691 0.9684
θ, α, β 0.9617 0.9615 0.9605

θ 0.9341 0.9344 0.9310

5-class
entire set 0.9393 0.9383 0.9384
θ, α, β 0.9168 0.9158 0.9157

θ 0.8395 0.8380 0.8372

C-SVC

2-class
entire set 0.9583 0.9532 0.9548
θ, α, β 0.9590 0.9541 0.9558

θ 0.9598 0.9531 0.9552

3-class
entire set 0.8281 0.7884 0.8010
θ, α, β 0.8334 0.7953 0.8075

θ 0.8339 0.7912 0.8045

5-class
entire set 0.5781 0.5696 0.5692
θ, α, β 0.5910 0.5825 0.5809

θ 0.6100 0.5984 0.5962

Table 5.3: Average Performance Metrics of Personal Models by Selected Features

pattern; its performance did not monotonically decrease as the size of the
feature set did. Both the task engagement-related features (θ, α, β, n=247)
and the theta-specific features (θ, n=152) sustained the model performance
comparable to the entire feature set even with a fewer number of features.
Moreover, the theta-specific features showed the best performance among
the 5-class C-SVCmodels while the overall performance of the 5-class C-SVC
was not good in general.

93



ML model classifier F1(general) F1(pavg) F1(pmax) F1(pmin)

XGBoost
2-class 0.9744 0.9857 1.0000 0.9690
3-class 0.9192 0.9684 0.9966 0.9294
5-class 0.8186 0.9384 0.9834 0.8188

C-SVC
2-class 0.9338 0.9548 0.9902 0.8624
3-class 0.6903 0.8010 0.9436 0.6793
5-class 0.3990 0.5692 0.6880 0.4103

Table 5.4: Comparison of Performance Metric between Personal Models and General
Model.

General versus Subject-specific Models

Table 5.4 summarized the performance of the subject-specific models and
the general model, trained with the complete feature set, by the number of
prediction classes. The performance of the general model was lower than
the average performance of the subject-specific models. The gap of F1-score
(2-class=0.02, 3-class=0.05, 5-class=0.12) broadened as the classification be-
came more complex. Specifically, most personal XGBoost models (23 out of
25 2-class models and all the 3-class and 5-class models) showed a higher
F1-score than the general model. The performance of the general XGBoost
was good for every classification model, especially as high as 0.9744 for the
2-class classification. In case of C-SVC, F1-scores of sixteen 2-class, thirteen
3-class, and eleven 5-classmodels exceeded that of the generalmodel. Except
for the 2-class classification, the general model showed low performance, be-
ing unsuitable to use for classification.

5.3.3 Challenges Revisited: Possibilities and Limitations

Based on the two analysis results, we revisited the three challenges regarding
the technical feasibility of A3InfoVis and summarized the implications.
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Feasibility of Real-time Attention State Classification for Casual Tasks

We found it feasible to predict the user’s real-time attention states for ev-
eryday tasks, provided with the 19-channel EEG device. Both ML models
effectively predicted the binary attention states, whether the user is resting
or attentive to the task. Predicting a more sophisticated attention state (3-
class or 5-class) was also reliable with the ensemble tree model; our 3-class
model could successfully differentiate three levels of task engagement; our 5-
class model showed the possibility of separating the attention states further
while people performed similar casual tasks (i.e., watching debate videos of
different topics).

Trade-off between Performance and Usability of EEG technology for
End-user’s Context

We point out that BCI researchers and practitioners should consider trade-
offs between the usability and performance of end-user EEG devices. We
investigated the model performance regarding the coverage of the brain re-
gion and observed its decrease among the models trained with the limited
EEG signals from the single brain region. In this respect, researchers or prac-
titioners should deploy an EEG device that covers as diverse brain regions
as possible. However, most multi-channel (n ≥ 19) EEG devices available in
hospitals or laboratories are not usable for end users. They allow sophisti-
cated EEG measurements by covering the whole brain regions with tens of
or even hundreds of electrodes but require the help of experts even when
putting on and off these devices; the cost of purchase and maintenance is
also hardly affordable. On the other hand, casual BCI devices utilize a small
number of electrodes for the restricted brain regions.Although they aremore
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usable and accessible for ordinary people, theywould output a lower perfor-
mance in predicting attention states.

Our result provides more detailed insights about deploying an adequate
level of EEG technology into the end-user’s context regarding the trade-offs.
The binary prediction about the user’s attention remained reliable despite
the partial coverage of the brain regions. BCI researchers and practitioners
would use any of the six (i.e., prefrontal, frontal, temporal, central, parietal,
and occipital) brain regions for simple attention state classification. Themore
sophisticated models (3-class and 5-class models) required more electrodes
covering broader brain regions to sustain reliable performance, but we also
found three crucial brain regions (i.e., prefrontal, frontal, and temporal re-
gions) that would contribute to better prediction performance. We recom-
mend that researchers and practitioners prepare an EEG device (i.e., com-
mercial product or self-produced prototype) that prioritizes these regions.

Possibility of Managing End-user’s Burden for Initial Data Acquisition

Our result implies that end users can construct individual attention state
classifiers using an EEG device with a low burden of data preparation and
initial model training.We achieved a reliable classification performancewith
the few-minute EEG signals of the attention states, which ranged from three
to six minutes. Our model enabled people to compose multiple target atten-
tion states from the daily tasks of interest (e.g., watching of video lecture
with engagement or in a daze) and collect the signals for a short duration.
As we found in General versus Subject-specific Models, they can also start
the usage with the binary classifier (i.e., engaged or not) pre-trained with
the other users’ data and improve it further by fine-tuning or retraining the
model with the new data collected during the usage.
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5.4 Analysis on Design Opportunities

To understand the end-users’ interests and needs for utilizing their real-time
attention information in the design of ambient information visualization, we
conducted a semi-structured interview. The interview analysis results indi-
cated that end-users were willing to leverage their real-time attention in two
ways: (1) to fine-tune the distraction cost induced by the given ambient vi-
sualization and (2) to utilize the information as an improved tool for self-
reflection and communication with others.

5.4.1 Participants

To gather responses from end-users experienced in authoring and manag-
ing ambient information visualizations in their personal context, we inter-
viewed people who had participated in the deployment study of DataHalo
(Chapter 4). DataHalo [37] is a customizable ambient information visualiza-
tion system targeted at smartphone notifications, which offers smartphone
users flexible customization options to design personalized extended noti-
fication badges in terms of information, delivery, and visual representation.
DataHalo was deployed on their Android smartphones as an open-source
launcher for threeweeks. Among twelve participants who completed the de-
ployment study, seven of them (P02, P03, P05, P06, P10, P11, P12; two males
and five females) accepted the interview. They were senior undergraduates
and graduate students in their 20s and 30s. They had at least three weeks
of experience using DataHalo and had authored more than five custom am-
bient notification visualizations during their usage; P02 and P03 used the
system for over six weeks.
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5.4.2 Study Design

We met each participant on Zoom. At the beginning of the interview, an ex-
perimenter briefly reminded the participants of the ambient notification vi-
sualizations they had authored and managed during the deployment. Next,
the experimenter provided a short introduction to BCI technologies and ap-
plication examples for promoting better ideation. This included the defini-
tion of EEG signals, form factors of end-user EEG devices, and example BCI
scenarios of practitioners and researchers inwhich the real-time user’s atten-
tion information was visualized (e.g., EngageMeter [39]) or used as a factor
to control the system (e.g., Ena [2]). After the introduction, participantswere
asked two sets of questions. In the first set, the experimenter inquired about
how participants would further customize their ambient notification visual-
izations authored for DataHalo using their real-time attention information.
Follow-up questions addressed how their attentional information would en-
hance the personalization of the custom notification badges they had man-
aged. The second set covered broader application scenarios not limited to
smartphone notifications. The experimenter asked participants to think of
specific contexts where they would utilize attention-adaptive ambient visu-
alization. The interview took 40 minutes in total, and participants who com-
pleted the interview received 15,000 KRW (1̃1.5 USD) as a reward.

5.4.3 Analysis

We transcribed the participants’ responses from the semi-structured inter-
view. We first grouped the transcriptions into two situations where partic-
ipants were interested in utilizing real-time attention information as (1) a
factor to further minimize the distraction caused by ambient information
visualization, or (2) a new source of information to be visualized in their
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personal context. For the first group, we further categorized the transcrip-
tions into attention-adaptive personalization methods concerning (1) infor-
mation (e.g., filtering), (2) delivery (e.g., duration and noticeability of visual
feedback), and (3) visual representation (e.g., visual encoding) of ambient
information visualization. For the second group, we separated the usage sce-
narios into three situations: (1) where attention information is used only for
themselves, (2) where their attentional status is exposed to an observer, and
(3) where a group of people shares attention information among others.

5.4.4 Result

Possibilities of Fine-tuning User Distraction Induced by Ambient InfoVis

All participants agreed that their real-time attention could be an essential
factor to improve ambient information visualization in terms of managing
user distractionmore delicately. Utilizing the customization features ofData-
Halo, participants could create ambient notification visualizations that con-
veyed personally relevant information at a manageable level of distraction.
However, they also noted that this “acceptable level of distraction” fluctu-
ated according to shifts in the personal context, which affects their current
attentional capacity.

The participants expressed a diverse desire to leverage their real-time at-
tention to fine-tune the ambient visualizations they had created. Especially,
they had different opinions on which notifications should be shown and
which ones could be omitted. All of them agreed that these standards should
be personalized, as they created individualized notification categorieswithin
apps to reflect their information of interest while using DataHalo. P02 hoped
to alleviate the burden of building the schema from scratch, so she thought
of providing data-driven suggestions, which leverage EEG signals and usage
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logs, to users. Specifically, she expected that attending notifications valuable
for hermight induce distinct patterns in brainwaves (e.g., high engagement)
or in usage behaviors (e.g., faster attendance). By collecting these patterns,
the personalization interface can recommend the pass list of notifications
during the working context.

All participants identified working as the most interesting context, where
they had to focus on the task of the highest priority such as studying for an
exam,working an internship fromhome, or doing academic research. For ex-
ample, P06 suggested an attention-adaptiveDo Not Disturb approach during
the working context, which suppresses most notifications if he is highly en-
gaged in the primary task during the focused research time. Likewise, most
participants (except P02 and P03) thought more notifications should be fil-
tered out during the working context to alleviate distraction. P02 and P03
worried that they might miss some important notifications as a result of fil-
tering; they suggested other methods such as ordering.

Users’ real-time attentional informationwas valuable but not a dominant
factor in determining participants’ personalization strategies. Participants
considered multiple factors (i.e., delivered information, their current con-
text, and attentional capabilities) to specify their personalization scenarios.
They repeatedlymentioned that if any of these factors changed, their person-
alization strategy would also change. Personalization scenarios among par-
ticipants were very different, even if these three factors were the same. Nev-
ertheless, there were some commonalities among participants. For example,
they usually split their notifications into "attention-invariant" and "attention-
dependent" information. Attention-invariant information always took prior-
ity over participants’ current attentional information.
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Participants tried to process real-time attention in different ways. P02
specifically suggested measuring residual attentional capacity, similar to pe-
ripheral awareness ([2]). In her mind, having time to check notifications is
a little different from the low engagement level, which indicates that she has
been not fully engaged in her primary task. People frequently explained the
state of distracted, but themeaningwas different. Somewanted to explain the
mental state of being overwhelmedwhile others described the situation they
were dizzy.

Opportunities of Ambient Attention Visualization for Self-Reflection and
Communication

All participants, consisting of senior undergraduate and graduate students,
shared a common interest in accessing and utilizing real-time attention data
to self-reflect on their study productivity. While preparing for their qualifi-
cation exams, P10 and P11 regularly engaged in extensive study sessions at
libraries or in their personal spaces. They speculated that their productiv-
ity during these sessions might be inconsistent, but no objective means of
verification were available. They wanted to undertake simpler tasks or take
breakswhen providedwith visual feedback on their fluctuating engagement
levels. In the long run, they hoped to monitor their engagement levels to de-
termine periods of optimal productivity and adjust their study plans accord-
ingly. Similarly, P05, a graduate student, posited that real-time observation
of engagement levels could bolster motivation. Given an ambient informa-
tion visualization of a candle flame that burns brightly when highly engaged
and flickers when distracted, P06 believed that facing the flickering candle
would encourage him to renew engagement with his research.
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Participants expressed varied opinions regarding the continuous obser-
vation of their attentional information by others. Some considered positive
applications within controlled and specific contexts, such as during busi-
ness hours or in the library. P10 believed that having someone monitor her
engagement level would increase her focus during study sessions compared
to self-reflection alone. However, themajority of participants found the pres-
ence of an observer highly burdensome due to the perception of surveillance,
especially when a hierarchical relationship exists. They believed that their
real-time attentional information should remain inaccessible to observers,
and individuals should maintain control over the granularity of the infor-
mation and the frequency of its updates.

On the other hand, participants responded positively to the idea of ex-
changing real-time attention information with peers in scenarios where they
gathered for shared objectives, like study groups. They found real-time shar-
ing particularly helpful in this condition, as it was crucial to the purpose of
the gathering. Nevertheless, P03 and P10 were wary of privacy intrusions
when sharing study spaces through webcams, and thus mentioned that dis-
playing real-time focus information using ambient visualization would be a
preferable solution.

5.5 Design Implications

Based on the two analysis results, we revisited the three challenges regarding
the technical feasibility of A3InfoVis and discussed what would be essential
in designing ambient visual feedback that leverages the users’ attention in-
formation.
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5.5.1 Visualization of Predicted Attention State with Credibility

We recommend that the designers deliver the predicted attention state and
its credibility forA3InfoVis. Althoughwe achieved a competitive level of per-
formance for a single prediction, even intermittent mispredictions would ac-
cumulate to a negligible extent due to the short interval (e.g., one second) of
real-time prediction. However, presenting only the prediction results cannot
give end-users accurate attention information. For example, an alternation
between the resting and engaged state in the sequence of the 2-class predic-
tions might reflect the user’s unstable task engagement but could be a false
alarm simultaneously. If the latter, the corresponding change in A3InfoVis
leads to a misunderstanding of one’s attentional state and would eventually
discredit the whole prediction results. Conveying the prediction result with
its credibility informationwould be an effective solution to differentiate these
situations.

We exemplify two information sources that can deliver meaningful in-
sights about credibility. First, the prediction probability, provided by theML
classification model, would be the possible candidate for the uncertainty in-
formation. BecausemanyML classificationmodels output onewith the high-
est prediction probability among entire classes, it could represent themodel-
side confidence. For example, the prediction probability similar to random
guess uncovers that the current model might not differentiate distinct atten-
tion states. The designers could also suggest other heuristic indices by moni-
toring the sequence of prediction results. For instance, an engaged state amid
multiple resting states is less likely to be a credible prediction; itmight be due
to an unexpected occurrence of artifacts. Likewise, we could define a simple
index called consistency, the ratio between the count of the designated pre-
dicted class and that of total predictions for a given time window. It would
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be low when the model initially outputs a new class and gradually increase
if the same prediction results repeat. These two numeric variables cover the
different aspects of credibility; the prediction probability addresses the un-
certainty of a single prediction, while the consistency metric is relevant to
the time. Hence, delivering them together would give users a deeper insight
into the credibility of prediction.

Finally, we suggest a way to manage the increased complexity of visual
information due to the additional credibility information. It has been an es-
sential design criterion [85] of ambient information visualization to deter-
mine an adequate amount of information delivery that fits the user’s capac-
ity. Because involving the multi-faceted credibility would significantly in-
crease the amount of information, users might feel overwhelmed or visually
noisy about the visualizations, which harms the virtue of the ambient infor-
mation system. Designers could refer to the methods suggested by the Info-
Vis community that aimed at better utilizing a limited budget of human per-
ception and cognition. For example, they could utilize Value–Suppressing
Uncertainty Palette (VSUP) [20], a tree-structured bivariate color map, to
encode the prediction probability to hue and the consistency to saturation.
It restricts the range of expressible hue when the consistency value is low
so that an abrupt change in the predicted result (as well as the prediction
probability) does not affect the hue immediately. As the new predicted re-
sult persists, its hue becomes more distinct, and the color becomes saturated
simultaneously, making the credibility information easier to perceive.

5.5.2 Adequate Application Scenarios of A3InfoVis

One of the essential characteristics of ambient information visualization is
its longitudinal interaction with people in a casual context. We summarized
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two crucial constraints to designing a satisfying interaction scenario. First,
we recommend that the designers present a focused usage context where the
users naturally perform a single target task. In amore complex usage context
of many simultaneous stimuli, EEG data alone is not enough to explain the
user’s attention states. Users arrange their attentional resources amongmul-
tiple tasks during usage, but the binary prediction cannot specify to which
tasks they pay attention. Additional contextual information (e.g., gaze, com-
puter usage logs, or facial expressions) is required to correctly trace the tem-
poral transitions of the user’s target task in the context.

Moreover, the scenario should naturally limit the user’s rapidmovements.
The tasks involving dynamic physical actions (e.g., playing sports) lead to
intense artifacts; theywould degrade the overall prediction during the usage.
Many desk work scenarios could satisfy the constraint. Except for some ha-
bitual actions (e.g., shaking one’s leg) or accidents (e.g., going to the toilet),
people would not continuously make strenuous movements during these
scenarios. We also found that during our EEG measurement, casual arm
movements related to desk work (e.g., typing keyboards or pointing the
mouse) did not cause significant muscle artifacts.

Based on the above constraints, we exemplify a longitudinal interaction
scenario of an online group study where A3InfoVis could help people use
their attention information. The online group study constitutes a longitudi-
nal, focused, and stationary deskwork scenario. It has becomemore popular
since the outbreak of COVID-19. People use video conference apps, stream-
ing services, and specialized online platforms to form groups and study to-
gether. Participants are highly motivated to achieve their study goals. How-
ever, the online group study environment is limited to sharing the contextual
information (e.g., the presence of other studymates and the academic atmo-
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sphere) that further motivates them. Visualizing the attention states makes
the user’s internal state observable in the environment. Because their atten-
tion information directly relates to the attainment of the goal, individual
users can monitor the visualization for self-motivation during the session.
In addition, sharing the visualization among participants can contribute to
the mood creation for the study; they can be further motivated by the visu-
alization of other passionate members’ attention information.

5.5.3 End-user Support for Design of Personalized A3InfoVis

Wefinally summarized the requirements of the interactive system that could
support end-users to design A3InfoVis adequate for individual usage con-
texts. First, supporting the EEG data collection and labeling process would
be essential for building a personalized A3InfoVis. The designers should
suggest the interface and interaction techniques that help laypeople com-
plete the data preparation. For example, labeling many data points might be
tedious work that demotivates users. The designers can consider the semi-
supervised learning method. After the user labels a part of the data, the sys-
tem could propagate the label information to the rest based on the similarity.
Integrated with the visual inspection of label prediction results, users can
further lessen the cost of validating the predicted labels.

Second, the system should allow users to customize the models based on
personalized attention states. The target attention states that the users want
to classify would differ according to their goal and context (e.g., target task,
the number of classes). To support these needs, end users needmore control
over the model building beyond data preparation. For example, they might
need to label the datawith new classes. They also need to evaluate the perfor-
mance of their model and improve it by inspecting the bottleneck. Recently,
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MLOps (Machine-Learning Operations) [99] services that tackle the similar
needs of people in the industry have come to fame. However, the designers
should also tackle the complexity due to the high customizability. It would
be desirable to hide the model details (e.g., hyperparameters) and automate
the settings to handle customization fatigue. In addition, the system should
support a more comprehensive explanation and suggestions for model im-
provement. Applying XAI (eXplainable AI) techniques such as LIME [89]
and SHAP [62] might further contribute to the more intuitive explanation of
the model.

Third, end users should have more control over the visual information
delivered by A3InfoVis. As the attention information is innately personal, its
embodiment in the environment would trigger negative side effects; laypeo-
ple might be afraid of the situation where the visualization might serve as
a surveillance method. They must control the information conveyance to re-
solve the risk. Users can achieve an adequate level of privacy by customizing
the abstraction level of information. For example, they could control the tem-
poral resolution to be broader (e.g., from seconds to minutes) or make the
information visible for the designated interval. Users also could edit the vis-
ibility of the predicted attention states by visualizing only the selected ones.
The most effective control would vary according to the longitudinal changes
in the user’s context (e.g., time, location, events). Therefore, the interface and
interaction methods to customize the abstraction strategies should be easily
accessible and continuously maneuverable.
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Chapter 6

Discussion

This chapter discusses lessons learned from the process of seeking answers
to the research questions, the design challenges encountered in this research,
and future opportunities for improving the proposed systems. The limita-
tions of the studies are also discussed.

6.1 Lessons Learned

This dissertation endeavored to answer three research questions. The first
research question focused on designing the flexible customization capabil-

ities that expand the informational benefits with manageable distractions

for diverse personal information. As an answer to the question, DataHalo
was designed and implemented. To support end-users who have struggled
with smartphone notifications, DataHalo integrated a customizable ambi-
ent information visualization system into an existing Android notification
system. Beyond blocking or suspending all the notifications, DataHalo pro-
vided end-userswith flexible capabilities to create app notification visualiza-
tions of personalized ambience (i.e., information, delivery method, and vi-
sual representation) called halos. A remarkable feature of DataHalowas that
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it could be applied to general smartphone applications. Thus, every smart-
phone user could create halo visualizations for the interested apps and uti-
lize their smartphone home screen as a personalized ambient display. The
usability study results indicated that customization capabilities provided by
DataHalo were useful for better notification management and had the po-
tential to rediscover the benefit of notification information. At the same time,
the study pointed out the necessity of alleviating the possible fatigue of cus-
tomization from scratch.

The second research question focused on exploring the patterns among

the end-users’ design strategies to personalize their ambience in their daily

context. To answer the question, an improved version of DataHalo was de-
ployed to Android smartphone users’ daily context. Participants agreed on
the improved satisfaction of daily notificationmanagement and expected the
DataHalo features to be accessible in their smartphone environment soon.
The field deployment study results revealed a number of interesting find-
ings. As expected, participants managed halo visualizations for diverse apps
and their customization strategies to construct halo visualizationwere highly
individualized. Moreover, participants persistently edited their halo visu-
alizations or sometimes removed them, which indicated that personalized
ambience is not an immutable state but changes according to various rea-
sons relevant to users themselves or their surroundings. Furthermore, the
study revealed the gap between the system-provided notification schema
(i.e. Android notification channels) and the user-created ones (i.e., virtual
categories). It implies that future notification systems need to empower end-
users to restructure the way to categorize notifications as they wish flexibly.

The third research question focused on examining the limitations and

opportunities of attention-adaptive personalization of ambience . First, an
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empirical study was conducted to investigate three technological challenges
related to real-time attention state classification in end-users’ individualized,
everyday context. The study, which involved constructing machine learning
classifiers for casual video-watching tasks, revealed that end-users would be
viable to build a binary or ternary attention state classifier using few-channel
EEG devices, without a heavy burden of initial data collection. Next, semi-
structured interviews with end-users highlighted their desire of utilizing
real-time attentional information to fine-tune their distraction cost further
or to create new ambient attention visualization for self-reflection and non-
obtrusive communication. On these bases, design implications of attention-
adaptive ambient information visualization covered issues of credible visual
representation, possible usage scenarios, and personalization supports.

6.2 Design Implications for PAAIV

Synthesizing the valuable lessons learned from the twoworks, DataHalo and
A3InfoVis, this section presents the structure of the conceptual framework,
PAAIV. The goal of suggesting the conceptual frameworkwas to design a bet-
ter ambient information visualization system that provides end-users with a
personalized ambience, which (1) provides the prioritized information that
users are interested in with suitable complexity, (2) delivers the information
for the opportune time span without user distraction, and (3) visualizes the
information in the way that persistently motivates users to engage with it
during the time span. PAAIV aimed to cover personalization according to
user’s design perspectives and real-time attentional demands. In the follow-
ing, the section presents the related design implications of each personaliza-
tion approach and then discusses their connection.
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6.2.1 Personalization According to User’s Design Perspectives

DataHalo provided end-users with personalization capabilities covering the
entire process of design of ambient information visualization for smartphone
notifications, from data to resultant visualization (Figure 6.1; blue colored).
Specifically, it supported customizable components for information prioriti-
zation by keyword-based filtering and categorization, longitudinal delivery
based on the urgency and persistency of the information, and visual encod-
ing and theming of the graphical mark.

Designers should notice that users’ personalization needs are diverse in
multiple aspects, as individual users are interested in different personaliza-
tion capabilities and have varying expectations for each component’s cus-
tomizability. Some users did not utilize some components for most of their
usage. Thus, providing reasonable default settings for untouched compo-
nents is an essential usability issue. It should not be a vacant setting but one
that covers the most familiar usage. For example, DataHalo provided initial
settings resembling conventional user–notification interaction with notifica-
tion badges, rather than rendering a “null halo” of which graphical marks
are all hidden.

Moreover, new customization capabilities that have not been granted to
end-usersmight be unfamiliar to them.AsDataHalo improved based onuser
feedback, providing diverse presets can help users learn their personaliza-
tion capabilities easily and reduce customization fatigue. Additionally, the
interface for customizable components should be easily accessible, as Data-
Halo users frequently adjusted their settings in response to self-induced or
environmental changes.

Related Design Implications
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• Prepare Default Settings that Resemble the Most Familiar Usage

• Provide Diverse Example Usages for Better Understanding and Allevi-
ation of Customization Fatigue

• Make Component Interfaces Easily Accessible to Adjust the Settings
over Time

6.2.2 Personalization According to User’s Real-time Attentional
Demands

As the empirical study on A3InfoVis indicated, customizable components
can be further extended to incorporate attention-adaptive features. The re-
sults demonstrated the feasibility of predicting binary attention states in real-
time using consumer EEG devices of a limited number of channels. Users’
predicted attention state can be introduced into the visual encoding com-
ponent as a new information property. For example, users can map resting
and engaged states into one or more visual channels such as color, size, and
animation of the graphical mark. Combined with the user-imposed impor-
tance of information, ambient visualization can deliver information more el-
egantly, aligning with users’ attention capability and informational needs.

In addition to the predicted attention state, attention-adaptive ambient
visualizations should also consider the prediction credibility for visual en-
coding. Two properties, prediction probability and consistency, were suggested
to enhance the credibility of a single prediction as well as a sequence of pre-
dictions.

Although end-user EEG devices with few channels (e.g., single-channel
devices) provide much better usability than medical devices suitable for
daily usage, wearing an additional head-mounted device remains a potential
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limitation of the BCI method. Casual contexts where people wear a helmet
or a head-mounted device, such as bicycle riding [2], VR/AR experiences,
and deskwork with noise-canceling earphones and headphones, would be
more suitable for proactive utilization of attention-adaptive features.

Finally, data preparation becomes a crucial usability issue when users
want to apply the classification of multiple attention states to their personal
context. Enhanced interactive support of data collection and labeling would
be necessary to build individualized attention state classifiers for end-users.

Related Design Implications

• Enhance the Credibility of Attention State Prediction through Visual-
ization

• Select Usage Scenarios Where Wearing a Head-Mounted EEG Device
is Natural

• Improve Interactive Support for End-user Data Collection and Label-
ing

6.2.3 Integration of Two Personalization Approaches

The semi-structured interview on design opportunities for A3InfoVis with
experienced DataHalo users provided a comprehensive view of end-users’
needs for personalized ambience. The interview results indicated potential
limitations of personalization solely depending on users’ design perspec-
tives.With attention-adaptive features, participants consideredmore diverse
personalization strategies, which significantly improved their previous de-
sign approaches. Themain reason could be the different time scales between
the two personalization strategies. Customization using DataHalo occurred
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in the long term, primarily through reflection on day-to-day experiences,
while real-time computation of attention information yielded predictions ev-
ery second.

However, due to technological constraints, users’ attentional information
may not be a universal predictor of their current context. Most participants
tended to consider three types of information, current attentional informa-
tion, the value of delivered information, and simple contextual information
like time and location, when thinking of personalization scenarios. As they
are easily accessible via smartphone systems. Researchers should consider
integrating these factors into personalization systems.

Researchers also need to keep in mind that the attentional states which
end-users think of are not always consistent in terms of EEG signals. For
example, the residual attention capabilitywhich P02 namedmight be similar
to peripheral awareness or not. Moreover, the same word distracted might
indicate totally different attentional states. Hence, providers of the end-user
customization system which utilizes a certain attentional state as a factor for
personalization should consider how to align this gap.

Related Design Implications

• Integrating Attention-adaptive Features canDiversify and Improve the
End-user’s Personalization Approach

• Additional Contextual Information is Needed to Handle Realistic and
Complex Attention Management Scenarios

• Bridge the Gap between EEG Microstates and End-users’ Awareness
of their Attention State
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6.3 Future Research Opportunities for PAAIV

This section suggests future research opportunities to improve the personal-
ization approaches of PAAIV further.

6.3.1 Personalized Visualization Design Empowered by Image
Generation Models

Image generation models [31, 48, 49, 71, 77, 87, 90], which computation-
ally generate novel images, have experienced substantial advancements ow-
ing to the development of deep learning techniques. Among these, recent
text-to-image models such as Dall-E[90] and Stable Diffusion have demon-
strated the ability to produce high-quality images corresponding to natural
language prompts. Furthermore, the quality of the generated images can be
enhanced by incorporating additional, task-specific conditions (e.g., canny
edge, human pose, semantic segmentation results) into diffusionmodels us-
ing ControlNet[109]. Employing cutting-edge image generation models can
enable end-users to produce a broad range of desirable visual representa-
tions with a lower customization burden. In both the usability study and de-
ployment study, many participants enjoyed creating their preferred graph-
ical marks from the available preset pictographs. Although they had other
options to access a wider variety of images through the photo gallery, im-
age search, or digital drawing, participants did not choose these alternatives
frequently. This can be interpreted as another example of mild customiza-
tion fatigue, or cost-effectiveness: they could effortlessly find an "acceptable"
pictograph among the presets, even if it was not ideal. By integrating text-
to-image generation capabilities into the customization of visual encoding,
end-users’ burden of preparing custom images will be significantly reduced.
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It could motivate end-users further to try generating more diverse images
that express their informational intention or aestheticism.

6.3.2 Extending Expressiveness of Halo Visualization

DataHalo could be further expanded to accommodate more diverse visual
expressions. In addition to graphical marks visualizing unit notifications, In
futurework, DataHalo can additionally provide a new type of aggregated vi-
sual expression that represents notifications that belong to the same virtual
category, application, or folder. These visual expressionswould give a higher
level of abstraction over the set of notifications. Blending visual expressions
for unit notifications (i.e., graphical marks) and those for aggregated notifi-
cations will raise the diversity of visual design. For example, users can repre-
sent relatively important notifications as individual graphical marks, while
grouping less critical notifications together as an aggregated visual expres-
sion.

6.3.3 Design and Evaluation of Attention-Adaptive Ambience
Visualization for Smartphone Notifications

This dissertation identified the design challenges of A3InfoVis, verified its
technical feasibility, and derived design implications that should be consid-
ered to designA3InfoVis.Drawingupon these findings, future research could
undertake a design study of implementing anA3InfoVis system for a specific
smart display and evaluating the usefulness and effectiveness of attention-
adaptive ambience in a real-world context. Extending DataHalo system to
incorporate the smartphone users’ real-time attention state will be an inter-
esting research topic. It would enable users to create a more flexibly encoded
halo visualization. Users could customize graphical marks of the virtual cat-
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egories that possibly deliver distracting information (e.g., small chat, the
latest update of their favorite webtoons) to be invisible while they are in a
highly engaged attention state. Conversely, users could customize the graph-
ical marks of the virtual categories delivering urgent information (e.g., busi-
ness contacts) to bemore noticeablewhile they are in a resting attention state
for a long time. Leveraging attention state classifiers that can distinguish at-
tention states more sophisticatedly would extend the expressiveness of halo
visualization even further.

6.3.4 Integration of Other Contextual Information into PAAIV

In addition to the user’s attention state, there exist diverse kinds of contextual
information that can be used to identify changes in the end-users context.
Integrating the information into ambient information visualization systems
would allow a more sophisticated personalization of ambience. For exam-
ple, physiological sensors in smart wearable devices can be used to infer the
current stress level of users. Investigating the changes in the suitable level
of ambience while users are in a very stressful condition would be an inter-
esting research topic. It would provide valuable insight into the edge case
where ambient information visualization might not be effective.

6.4 Limitations

This section addresses the limitations of the conducted studies. As every
research approach possesses inherent limitations concerning unforeseen is-
sues and threats to internal or external validity [44], elucidating potential
constraints within this dissertation is of significant value.

118



6.4.1 DataHalo

The present method primarily focuses on extending the notification badge
to visualize enhanced notification information for smartphone users. More
advancements in user–notification interaction could be realized by allowing
the enhanced information to influence other visual components of notifica-
tion, such as the status bar and notification drawer, and supporting seam-
less interplay with halo visualization. For example, the notification drawer
could facilitate alternative attendance methods, like pinning halo notifica-
tions based on their importance models. This approach would grant users
intuitive access to individual notifications across app halos. Furthermore,
applying halo visualization to other smartphone displays (e.g., Always On
Display) or wearable devices could increase accessibility to enhanced no-
tification information, necessitating solutions for battery consumption and
privacy leak concerns.

Providing a weekly report of DataHalo usage might have encouraged
participants to augment their usage, particularly for halo customization events,
despite receiving identical rewards. Future iterations of DataHalo should in-
corporate features that consistentlymotivate users to better personalize their
user-notification interaction. The limited generalizability of user study re-
sults, such as the small sample size in the field study and unbalanced sam-
ples concerning age and gender, also constitutes a limitation.

6.4.2 A3InfoVis

The video-watching task was selected to represent casual tasks in a desk
work environment. Although the prediction model could accommodate a
variety of deskwork scenarios, it might not directly apply to highly inter-
active tasks, such as online FPS games, due to the necessity for immediate
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user responses and ongoing communicationwith others. Collecting datasets
encompassing various contextual data, including behavioral information or
other physiological sensors, would be essential to address these tasks.

Given the limited dataset size, the study focused on classical machine
learning methods to predict users’ attention states. While a feasible perfor-
mance level was attained, examining the performance of recent deep learn-
ing models would be more advantageous. For instance, TabNet [4] demon-
strated comparable performance to XGBoost, the selected model, and func-
tioned effectively for self-supervised learning scenarios with a substantial
portion of unlabeled data. TabNet’s strengths could help alleviate users’ data
labeling overhead. Additionally, deep learning methods specialized in EEG
data (e.g., EEGNet [55], BD-Deep4 [92]) could minimize potential biases
during feature selection by internally generating temporal and spatial fea-
tures.
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Chapter 7

Conclusion

In this dissertation, a conceptual framework called Personally Adaptable Am-

bient Information Visualization (PAAIV) was proposed to address the limita-
tions of previous ambient information visualizations. PAAIV aimed to offer
end-users personalized ambient information visualizations that align with
their design perspectives and real-time attentional demands. It expanded
upon previous ambient information visualizations through two personal-
ization approaches. First, it allowed end-users to customize the ambience
through a flexible and usable interface, supporting them in creating a more
satisfying ambient visualization and improving it over time. Second, it pro-
posed an expanded design space where end-users can further improve am-
bience by reducing distractions based on their real-time attentional needs.
The following research questions were addressed in the course of the disser-
tation.

7.1 Summary of Approaches

To address the first research question (How should we design flexible cus-
tomization capabilities for PAAIV, allowing people to enhance informational
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benefits while effectively managing distractions across diverse types of per-
sonal information?), DataHalo, a customizable notification visualization sys-
tem, was designed and developed. It represents smartphone notifications as
prolonged ambient visualizations on the home screen and is implemented
as anAndroid home screen launcherwith personalization capabilities. Data-
Halo’s feasibility was assessed through a usability lab study, which demon-
strated its potential to embody PAAIV, enabling participants to manage no-
tifications better and rediscover the value of diverse information. However,
customization fatigue emerged as a potential obstacle, prompting improve-
ments based on user feedback.

To address the second research question (What would be commonalities
and diversities in people’s customization strategies for embodying their per-
sonalized ambience by utilizing the PAAIV system in everyday contexts?),
an improved version of DataHalowas deployed in a real-world context to ex-
plore personalization strategies for better notification management. A three-
week field deployment study collected usage logs and partial notification
logs, revealing that DataHalo met participants’ diverse needs and improved
satisfaction. Mixed-method analyses identified personalization patterns and
provided suggestions for future smartphone notification systems to support
users in building and refining their PAAIV more easily and expressively.

To address the third research question (What are the limitations and op-
portunities for integrating attention-adaptive personalization into PAAIV,
considering technical constraints and user needs related to real-time atten-
tional information?), the technological constraints and design opportunities
ofAttention-AdaptiveAmbient InformationVisualization (A3InfoVis),were
explored. First, three technological challenges were assessed through an em-
pirical study, revealing possibilities and limitations of predicting user’s real-
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time attentional information. Next, a semi-structured interview with end-
users experienced in managing custom ambient information visualizations
was conducted to understand their needs for using real-time attentional in-
formation to enhance benefits and minimize distractions. Based on these
findings, design guidelines for A3InfoVis were established, further expand-
ing the design space of PAAIV.

7.2 Summary of Contributions

This research contributes mainly to the fields of human-computer interac-
tion. The contributions are summarized as follows: (1) the design and imple-
mentation of the DataHalo, a flexible notification visualization system that
helped people to realize their PAAIV for the information delivered by smart-
phone notifications; (2) empirical findings, acquired through a field deploy-
ment study of DataHalo, that clarified the design motivations and relevant
choices posed by smartphone users to achieve their personalized ambience
throughmanaging notification information; (3) empirical findings, acquired
through an empirical study and a user interview, that provide insights on the
technological constraints and design opportunities of integrating attention-
adaptive personalization into PAAIV.

7.3 Summary of Future Research Opportunities

This research inspired a number of future opportunities to improve PAAIV.

Expanding PAAIV Approach to Various Devices. DataHalo primarily con-
centrated on improving notification badges, and future advancements could
involve other visual components of smartphone notification systems. The
PAAIV approach could also be extended to a broader range of smart displays
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and wearable devices. When extending the approach, battery and privacy
concerns should be taken into consideration.

Exploring Deep Learning Techniques for Attention State Prediction.With a
limited dataset, the study used classical machine learning methods for pre-
dicting attention states. Exploring deep learning models could further im-
prove performance and minimize potential biases of manual feature selec-
tion.

Investigating Deep Learning Approaches for Enhanced Attention State Pre-

diction.With a limited dataset, A3InfoVis employed classical machine learn-
ing techniques for predicting attention states. Exploring deep learning mod-
els could further improve performance and minimize potential biases asso-
ciated with manual feature selection.

Harnessing ImageGenerationModels to Reduce Customization Burden.Re-
cent advancements in image generation models could enable end-users to
create diverse visual representations with a lower customization burden. In-
tegrating text-to-image generation capabilities could reduce end-users’ ef-
forts in preparing custom images.

Expanding DataHalo to Accommodate Diverse Visual Expressions. Data-
Halo could be expanded to include aggregated visual expressions represent-
ing sets of notifications, providing a higher level of abstraction and raising
the diversity of visual design.

IntegratingA3InfoViswithDataHalo. Future research could implement and
evaluateA3InfoVis systems on specific smart displays in real-world contexts.
Integrating real-time attention states into the DataHalo system could enable
more flexible halo visualization and customization based on users’ attention
levels, ultimately enhancing the expressiveness of the visualization.
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Integrating Diverse Contextual Information into PAAIV. Incorporating a
variety of contextual information into PAAIV could enable more advanced
personalization of the ambience. Examining shifts in optimal ambience un-
der varying user conditions, such as highly stressful situations, may offer
significant insights.
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APPENDIX A

Halo Visualization

A.1 Connection with Constructive Visualization

Components Corresponding Design Constraints of Halo

Basic Token An enhanced notification from the target app

Token Grammar User-defined visual encoding for position, size, shape, color,
and motion of graphical marks

Environment Layer of home screen over that of wallpaper and under that
of app shortcuts

Assembly Model A clockwise arrangement around the target app shortcut
starting from the top according to user-defined importance

Figure A.1: The components of constructive visualization and corresponding design con-
straints ofhalo visualization. Basic Token refers to a discrete graphical mark representing
a data unit. Token Grammar refers to a mapping of a graphical mark’s visual channels to
data properties. Environment refers to a spatial constraint on the assembling methods
of tokens based on Token Grammar. Assembly Model refers to a construction model of
the visual representation.
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APPENDIX B

Usability Study of DataHalo

B.1 Virtual Categories during the Task 2
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App Description Virtual Category / Reason of Creation

U01 Facebook Social media Notice - to subscribe to announcements from several Facebook
pages
Social - to curate the notice about other user’s reactions (e.g.,
Like, Comment)

U02 Messages Messenger Church - to curate messages related to religious activity
Private Tutoring - to curate messages sent by tutee

U03 Youtube Video stream-
ing

[Youtuber_Name] - to subscribe to the updates of the Youtube
channel

U04 Kakao
Story

Social media Story - to subscribe to the story updates of social feeds

U05 Bank
Salad

Financing Coffee - to subscribe to the purchase history of coffee
Chicken - to subscribe to the purchase history of fried chicken

U06 Megabox Movie ticketing Event - to subscribe to the notice of discount events

U07 Gmail Email Shopping - to subscribe to information letters from shopping
mall
Major - to subscribe to mails sent by the university faculty
Payment - to subscribe to mails notifying purchase cancella-
tions

U08 Cake Language
learning

Untitled - to subscribe to the notice of encouraging user to study
English

U09 BaeMin Food delivery Coupon - to subscribe to the notice of discount events

U10 Clash
Royale

Game Chest - to subscribe to the arrival of free game items

U11 Outlook Email Babymind - to subscribe to the email informing the update of
github storage
Lab - to subscribe the email sent by lab people

U12 Instagram Social media Notice - to curate the notice about user’s reaction

U13 PanelPowerPaid survey Survey - to subscribe to the notice about new paid survey

U14 Naver
Mail

Email University - to subscribe to mails sent by faculty

U15 Hana
Bank

Financing Deposit - to subscribe to the notice informing the event of ac-
count deposit

U16 WhatsApp Messenger [User_id] - to curate the messages sent by the user

U17 Messages Messenger Financial Service - to subscribe to the messages sent by bank

Table B.1: Smartphone applications that the usability study participants chose for the
second halo design task and virtual categories they created.
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APPENDIX C

Deployment Study of DataHalo

C.1 Post-study questionnaire

Types Questions

Q1. Notification Categorization I could better categorize the information delivered by notifica-
tions of interest.

Q2. Importance Modeling I could better prioritize notifications based on my information
assessment.

Q3. Longitudinal Interaction I could keep in touch with the longitudinal information as long
as I wanted.

Q4. Visual Expression I could access the useful information with my preferable visual
representations

Q5. User Satisfaction DataHalo provided more satisfactory experience of notification
management to me.

Q6. Rediscovery of Information I became more interested in the informative values of my daily
notifications.

Q7. Continue to Use If possible, I hope to continue using the personalization capabil-
ities of DataHalo.

Table C.1: Questions for inquiring the user experience during the DataHalo usage.

C.2 Popular Design Strategies
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국문초록

앰비언트 정보 시각화(Ambient Information Visualization)는 정보의 범람
속에서사용자가겪는주의분산을줄이되,정보로부터얻을수있는편익은증대
하기 위해 제안된 시각화 방법론이다. 개별 사용자의 정보 디스플레이에 다양한
일상 정보를 몰입감 높은 시각 표상으로 표현하고, 지속적으로 상호작용 가능하
도록 하여 만족스러운 사용자 경험을 제공하는 것을 목표로 한다. 그러나 기존
방법론에는두가지한계가있다.사용자맞춤형설계가어렵고주의분산여부도
실시간반영할수없다.
이논문에서는개인맞춤형및적응형앰비언트정보시각화(PersonallyAdapt-

ableAmbient InformationVisualization; PAAIV)라는새로운개념적프레임워
크를제시한다.사용자는 PAAIV롤통해맞춤형으로정보를선택,전달,표현하는
시각화를생성할수있으며,실제주의상태의변화에적합한방식으로상호작용
할수있다.이를달성하기위해아래의세개의구체화된문제를탐구하였다.
첫째, 다양한 일상 정보에 적용 가능한 유연한 사용자 맞춤 기능을 설계하는

방법을탐구하였다.가장주요하되부작용또한크다고알려진일상정보원인스
마트폰알림을대상으로개인맞춤형앰비언트알림시각화시스템인 DataHalo
를설계및구현하였다. DataHalo사용자는관심알림을원하는기간,원하는형
태로스마트폰홈스크린에표현할수있었다.사용성평가(usability study)결과,
DataHalo는개별사용자에게충분한맞춤기능을제공하였다.또한,수많은알림
속에서놓치기쉬웠던일상정보의가치를재발견할수있도록도왔다.
둘째, 개별 사용자들이 일상에서 맞춤형 앰비언트 시각화를 설계하는 전략에

어떤 공통점과 차이점이 있는지 탐구하였다. 사용성이 개선된 DataHalo를 3주
간현장배포하여연구(field deployment study)하였다. DataHalo를활용하면
실생활에서알림정보와의상호작용이더욱만족스러워짐을확인하였다.배포중
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수집한 로그 및 인터뷰 데이터를 통합연구 및 분석(mixed method analysis)한
결과, 참가자들의 다양한 개인화 방법들로부터 다층적 경향성을 확인하였다. 이
를통해, PAAIV를만들고수정하는과정을더효과적으로돕기위해미래의정보
시스템이갖춰야할점들을제안하였다.
셋째, 주의적응형(attention-adaptive) 앰비언트 시각화 설계를 위한 기술적

제한사항 및 새로운 디자인 가능성을 탐구하였다. 먼저, 일상 맥락에서 뇌전도
(Electroencephalography; EEG) 신호 패턴으로부터 실시간 주의 상태를 추론
하는 기술을 활용하기 위한 도전과제를 제시했으며, 제한사항은 무엇인지 실증
연구(empirical study)하였다.다음으로,반구조화인터뷰(semi-structured in-
terview)를 통해 일반 사용자가 일상에서 주의집중 정보를 어떻게 활용하고자
하는지분석하였다.이를통해,기술과사용자측면의요구사항을포괄한주의적
응형 PAAIV의디자인지침사항(design guideline)을도출하였다.
본논문의핵심성과는DataHalo를설계및구현하여얻은기술적산출물,현장

배포연구를통해개인별맞춤형앰비언스설계경향을실증적으로분석한결과,
그리고실시간주의적응형기술을앰비언트정보시각화에적용하기위한기술및

사용자 관점의 분석 결과이다. 이를 통해 다양한 종류의 스마트 기기 환경에서
어떻게 맞춤형 앰비언트 정보 시각화 시스템을 설계할지 지침을 제공하고, 사용
자를방해하지않으면서더풍부한정보편익(informational benefit)을제공하는
조용한기술(calm technology)의실현에기여한다.

주요어: 앰비언트 정보 시각화; 개인화; 스마트폰 알림; 현장 데이터; 뇌–컴퓨터
인터페이스;뇌전도
학번: 2013-20899
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