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Abstract 
 

 

Scheduling flat block assembly line in a shipyard is crucial for 

overall shipbuilding performance in terms of its high volume of 

workload. This problem is commonly known as the Permutation 

Flow-shop Scheduling Problem (PFSP) in Operation Research (OR), 

which has been extensively studied in various papers since the 1950s. 

However, existing solutions often involve simplifying real-world 

problems with certain assumptions, limiting their practical 

applicability.  

In recent times, Constraint Programming (CP) has emerged as a 

strong alternative to exact algorithms and has been successfully 

applied to various PFSP problems, addressing the limitations of exact 

algorithms. In light of this, our study proposes a two-step 

optimization process to overcome these limitations. First, a novel CP 

algorithm is introduced to incorporate actual industrial constraints. 

The modelled PFSP can be categorized as a Multi-Objective PFSP 

with hard due date constraint (MOPFSP-hd). Next, the feasibility 

and objective value of the optimized solution is validated using 

Discrete-Event Simulation (DES).  

To evaluate the performance of our proposed framework, two 

industrial cases are conducted. The experimental results from both 

cases demonstrated an improvement in makespan compared to 

manually planned schedule. Additionally, the solutions derived from 
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our proposed model are reported to be feasible, while the manually 

planned schedules are often infeasible either due to not satisfying 

industrial constraints or encountering delays. Finally, the difference 

between the objectives calculated from CP and DES model is 

analyzed quantitatively using Critical Path Method (CPM). 

The proposed solution in this paper presented a practical and 

effective approach to address PFSP with real-world constraints. By 

combining CP and DES techniques, the authors demonstrated 

improved makespan and feasible schedules compared to traditional 

methods using two industrial cases.  

 

Keyword: Optimization, Constraint programming, Discrete-event 

simulation, flat block assembly, shipbuilding 

Student Number: 2020-21233 
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Chapter 1. Introduction 
 

 

Hull block assembly process is one of the main processes in 

shipbuilding industry, where block parts and sub-blocks are 

assembled to form a larger block. The development of the ring-type 

erection process has allowed for the assembly of ship parts built in 

different shipyards, alleviating spatial constraints in the ship 

assembly process (Kim et al., 2005). However, from a cost and 

business perspective, shipbuilding companies still strive to perform 

shipbuilding processes within their premises as much as possible 

(Ahn & Kim, 2022). The hull blocks can be classified into two types 

based on their shape: flat blocks and curve blocks. As ship size has 

increased, most blocks are flat blocks (Yang et al., 2019). Therefore, 

scheduling flat block assembly line in shipyard is crucial for overall 

shipbuilding performance.  

The flat block assembly line scheduling problem is considered as 

a typical Permutation Flow-shop Scheduling Problem (PFSP) in 

Operation Research (OR). Numerous papers have studied various 

types of PFSP using both exact algorithms and heuristics or meta-

heuristic algorithms since the 1950s. For instance, Nagar et al. (1995) 

used the branch and bound (B&B) algorithm to solve the bi-objective 

PFSP with 2 machines. Framinan et al. (2003) conducted Nawaz, 

Enscore, Ham (NEH) heuristics to address the bi-objective PFSP 

with multiple machines (ranging from 5 to 25). Varadharajan and 
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Rajendran (2005) utilized a meta-heuristic algorithm, Simulated 

Annealing (SA), to optimize the bi-objective PFSP with 20 machines.  

Several studies have applied the introduced algorithms on flat 

block assembly line in shipyards. Shie Gheun (1996) proposed a 

Genetic Algorithm (GA) to solve a PFSP problem in the case of block 

assembly shop in a shipbuilding company. Lee et al. (2009) also 

proposed a GA to optimize makespan on a dedicated assembly line 

using a simulation framework to calculate the exact makespan. Yang 

et al. (2019) adopted a multi-objective memetic algorithm for a 

parallel panel block assembly line. The authors formulated the line 

with fuzzy makespan, fuzzy processing time, and fuzzy due date to 

reflect the uncertainty of the process. However, these solutions had 

limitations in the model that failed to reflect real-world problems and 

instead simplified the problems with assumptions.  

The limitations of conducting such algorithms in assembly lines 

in shipyard have left practitioners to schedule the plans based on 

their knowhow, relying on their knowledge and experiences. 

However, this had led to severe problems, such as a lack of 

consistent rules. Firstly, the problem has resulted in different 

qualities of schedules according to schedulers. This not only 

increased the company’s reliance on certain schedulers but also put 

too much pressure on them to come up with better solutions without 

providing clear guidance. Secondly, it became an obstacle in the 

automation of scheduling (Kwak et al., 2022). Unclear strategies in 

scheduling have been a major obstacle to automate the process in 
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shipyards. It substantially increased the time spent on scheduling 

process whenever there was a need for a change in the schedule due 

to unexpected events or variations. Lastly, rule-based scheduling 

lacks validation of feasibility. The scheduling rules are based on the 

scheduler’s experience and feedbacks from the shops, making it 

hard to guarantee the improvements in the quality of the solutions. 

Recently, CP has been introduced as a competitor of exact 

algorithms, overcoming their limitations in handling problem 

complexity (Samarghandi & Behroozi, 2017). CP also offers high 

flexibility in formulating constraints mathematically and logically, 

enabling the representation of real-world constraints (Hooker, 

2002). Therefore, this study aims to develop a CP model to solve the 

dedicated flat block assembly line with real-world constraints, 

referred to as “industrial constraints” in this paper. The modelled 

PFSP can be categorized as a Multi-Objective PFSP with hard due 

date constraint (MOPFSP-hd), and Discrete-Event Simulation (DES) 

is applied as a validation tool. Table 1 presents the related studies 

and their limitations, along with the aims of this study. In summary, 

the contributions of the paper are listed below: 

1. A novel CP algorithm for MOPFSP-hd with industrial 

constraints are proposed. To the best of the author’s 

knowledge, this is the first attempt to apply CP in MOPFSP-

hd. Moreover, industrial constraints are not considered in 

most papers due to the complexity of the problem when 

modeled with traditional methods. 
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2. The proposed scheduling process is a 2-step scheduling 

process that integrates CP and DES model sequentially. The 

integration of the DES model aims to demonstrate the 

optimality and feasibility of the derived solution by validating 

it through simulation. 

3. The superiority of the proposed model is demonstrated and 

analyzed using two actual industrial cases to assess its 

performance in a generalized context. The experimental 

results of the two cases prove the superiority of the model 

compared to current manually planned schedules. 

The rest of the paper is organized as follows. Section 2 presents 

the related studies of the PFSP and the theoretical backgrounds of 

the proposed algorithms. In Section 3, the development of CP and 

DES models used to model the target flat block assembly line of this 

study is explained. Section 4 provides the experimental results and 

analysis of the two cases. Finally, the conclusion is discussed in 

Section 5. 
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Table 1 Related studies of PFSP and uniqueness of the proposed method 
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Chapter 2. Theoretical Backgrounds 
 

 

2.1. Permutation Flow-shop 
 

2.1.1. Development of PFSP algorithms 

Permutation flow-shop scheduling problem (PFSP) is a special 

type of flow-shop problem, where the processing order of jobs on 

the resources remains the same for each subsequent step of 

processing (Tseng & Stafford Jr, 2008). As a result, the job 

sequence plays a crucial role in determining the performance of the 

dedicated shop. The primary objective of PFSP is to determine the 

job sequence that minimizes the makespan. In industrial scenarios, 

however, it becomes necessary to consider various conditions and 

strategies, including makespan, tardiness, earliness, and idle time 

(Yenisey & Yagmahan, 2014).  

Figure 1 presents an example of a general PFSP comprising 3 

jobs and 4 operations. Each job follows a pre-defined order of 

operations, such as 1 → 2 → 3 → 4 in this particular case. In this 

example, each operation is assigned to a single machine, and there 

are no parallel operations. In Figure 1 (a), a Gantt chart depicts the 

scenario where jobs are fed to the shop in ascending order. The first 

job initiates its operation at t = 1, and the last job completes its 

operation at t = 24, resulting in a total makespan of 23 time units. On 

the other hand, Figure 1 (b) shows the situation where jobs are fed 

in descending order. The first job commences its operation at t = 1; 
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however, the last job finishes its operation between t = 22 and t =

23. This change in job sequence affects the makespan. It is worth 

noting that, in the absence of any other dynamic conditions, such as 

a stochastic operation time or re-entrant processes, the job 

sequence becomes the sole governing factor that influences the 

makespan.  

  

(a) 

 
  

(b) 

 
  

Figure 1 An example of makespan minimization in PFSP 

A basic PFSP with 2 machines is initially introduced, and it is 

proven that the optimal sequence can be determined using a heuristic 

algorithm, known as Johnson’s rule (Johnson, 1954). When the 

problem involves more than 2 machines, however, it is classified as 

an NP-Complete problem (Garey et al., 1976). This inherent 

complexity of the problem has motivated researchers not only to 

seek solutions using exact algorithms, but also to explore various 

heuristic and meta-heuristic algorithms, especially for larger-sized 

problems (Yenisey & Yagmahan, 2014).  
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Various algorithms and methodologies have been applied to solve 

both single and multi-objective PFSP. As mentioned above, 

Johnson’s rule was initially used by Johnson (1954) to solve PFSP 

with 2 machines. Subsequent studies expanded Johnson’s rule to 

address PFSP with multiple machines (Campbell et al., 1970; Dudek 

& Teuton Jr, 1964). Nawaz et al. (1983) introduced NEH heuristics, 

which demonstrated superior optimization capabilities compared to 

15 existing heuristics, including Johnson’s rule. Numerous 

comprehensive studies with standard PFSP have confirmed that NEH 

heuristic outperforms other existing heuristics (Framinan et al., 2004; 

Ruiz & Maroto, 2005). In addition to heuristic algorithms, various 

meta-heuristic algorithms, such as SA, GA, and tabu search, have 

been extensively explored in many studies (Chen et al., 1995; Osman 

& Potts, 1989; Widmer & Hertz, 1989; Zheng & Wang, 2003). 

Another metaheuristic algorithm called Iterated Local Search (ILS), 

was introduced by Stützle (1998) for PFSP and was compared with 

several other metaheuristics mentioned above (Ruiz & Maroto, 2005). 

The results showed that ILS outperformed other metaheuristic 

algorithms in this context. 

On the other hand, there also have been many studies focusing 

on finding optimal solutions using exact algorithms for various PFSP. 

Exact algorithms encompass B&B algorithm, Integer Programming 

(IP), and mixed-integer programming (MIP). Nagar et al. (1995), 

Liao et al. (1997), and Lee and Wu (2001) utilized B&B algorithm in 

PFSP with two machines. Chou and Lee (1999) and Eren and Güner 
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(2008) implemented IP to tackle multi-objective PFSP two machine, 

while Selen and Hott (1986) applied MIP to bi-objective PFSP with 

two machine. These studies, however, predominantly focused on 

small-sized problems, which are often inadequate to address real-

world problems effectively. 

Recently, CP has emerged as a strong alternative to exact 

algorithms, and it has been successfully applied to various PFSP 

problems, addressing  the limitations of exact algorithms (Rossi et 

al., 2006). For instance, Öztop et al. (2022) proposed and compared 

Mixed-Integer Linear Programming (MILP) models and a CP model 

for no-idle PFSP problem, and their findings indicated that the CP 

model outperformed the other models in terms of performance. 

Similarly, Karabulut et al. (2022) developed MILP and CP models for 

distributed PFSP with sequence-dependent setup times in small-

sized problem, and the result demonstrated that the proposed CP 

model outperformed the MILP model in terms of solution time. These 

studies showcase the effectiveness and potential of CP as a viable 

alternative to exact algorithms in solving PFSP. 

Among all research conducted in this field, very few studies have 

explored hard due date constraints (Samarghandi & Behroozi, 2017). 

“Hard due date constraint” refers to constraints where each part 

has its own specific due date, and has to be satisfied. In most studies, 

tardiness objective has been considered as an alternative to due date 

constraints (Blazewicz et al., 2008; Brah, 1996; Gowrishankar et al., 

2001; Hunsucker & Shah, 1992), because incorporating due date 
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constraints into the PFSP is a challenging task (Perez-Gonzalez & 

Framinan, 2015). 

In this study, the flat block assembly line scheduling problem can 

be classified as a multi-objective permutation flow-shop scheduling 

problem with hard due date constraint (MOPFSP-hd). This 

classification is supported by the following reasons: 

1. Both the flat block assembly line scheduling problem and the 

permutation flow-shop scheduling problem share the same 

primary objective, which is the minimization of the makespan. 

However, in this study, the objective is not limited to 

makespan minimization; it also includes considerations for 

workload balancing and stock management. 

2. Both problems involve ensuring that all parts (blocks) follow 

the same predetermined operation sequence in the shop 

(assembly line). Additionally, all parts strictly adhere to the 

First-Come-First-Served (FCFS) rule, without any 

skipping or re-entrant operations. 

3. The problem in this study incorporates a hard due date 

constraint. Unlike most studies that deal with tardiness 

objectives, this study specifically aims to address the PFSP 

with a hard due date constraint. 

 

2.1.2. Makespan in Permutation Flow-shop 

In project-based industries, such as shipbuilding, the evaluation 

of successful projects revolves around three parameters: time, cost, 
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quality. Ships in the shipbuilding industry are constructed based on 

the specific requirements of individual contract. Makespan, in this 

context, serves as one of the essential Key Performance Indicators 

(KPIs) that reflects the lead time performance of the project. 

Reducing makespan directly correlates with reducing the lead time of 

a contract, making the minimization of makespan a critical aspect in 

the scheduling process. Achieving a shorter makespan is crucial to 

ensuring efficient project completion and meeting contractual 

deadlines. 

In this study, makespan is further analyzed to distinguish the 

results obtained from the proposed CP and DES model. One of the 

most widely used analysis method for makespan is the Critical Path 

Method (CPM). The critical path represents the sequence of tasks 

that determine the minimum time required for the entire process. 

CPM calculates both critical and non-critical tasks through forward 

and backward procedures. The detailed steps of these procedures 

are outlined below, 

Forward Procedure 

Step 1. 

   Set time t = 0 

   Set 𝑆𝑗
′ = 0 and 𝐶𝑗

; = 𝑝𝑗 for each job 𝑗 that has no predecessors 

Step 2. 

   Compute inductively for each job 𝑗 

𝑆𝑗
′ =  max

{𝑎𝑙𝑙 𝑘→𝑗}
𝐶𝑘

′  

𝐶𝑗
′ = 𝑆𝑗

′ + 𝑝𝑗 

Step 3. 
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   The makespan is 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐶1
′ , … , 𝐶𝑛

′ ). 

   STOP 

where 𝐶𝑗
′ is earliest possible completion time of job 𝑗, 𝑆𝑗

′ is earliest 

possible starting time, 𝑝𝑗 is processing time, and {𝑎𝑙𝑙 𝑘 →  𝑗} is the 

set of all jobs that are predecessors of job 𝑗 . The backward 

procedure is, 

Backward Procedure 

Step 1. 

   Set time 𝑡 = 𝐶𝑚𝑎𝑥. 

   Set 𝐶𝑗
′′ = 𝐶𝑚𝑎𝑥 and 𝑆𝑗

′; = 𝐶𝑚𝑎𝑥 − 𝑝𝑗 for each job 𝑗 that has no successors 

Step 2. 

   Compute inductively for each job 𝑗 

𝐶𝑗
′′ =  min

{𝑗→𝑎𝑙𝑙 𝑘}
𝑆𝑘

′′ 

𝑆𝑗
′′ = 𝐶𝑗

′′ − 𝑝𝑗 

Step 3. 

   Verify that min(𝑆1
′′, … , 𝑆𝑛

′′) = 0. 

   STOP 

where 𝐶𝑗
′′  is latest possible completion time of job 𝑗 ,𝑆𝑗

′′  is latest 

possible starting time, and {𝑗 →  𝑎𝑙𝑙 𝑘} is the set of all jobs that are 

successors of job 𝑗. 

 

2.2. Constraint Programming 
 

Constraint Programming (CP) is recognized as a powerful 

technology for solving practical problems represented in the form of 

a Constraint Satisfaction Problem (CSP) (Rossi et al., 2006). The 

CSP is defined by three main elements: 

 Variable: X = {𝑥1, … , 𝑥𝑛}, 
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 Domain: D = {𝑑1, … , 𝑑𝑛}, 

 Constraint: C = {𝑐1, . . , 𝑐𝑚} 

where 𝑥𝑖 represents the decision variable of CSP, 𝑑𝑖 represents the 

possible range of each variable, and 𝑐𝑗 restricts the possible range 

of variables by specifying relationships between the variables. 

The primary objective of CP is to find a feasible solution to a  

given CSP (Hooker, 2002). However, it is now extensively employed 

as an optimization tool by adapting an objective function. Constraint 

Programming, in essence, refers to the computer implementation of 

an algorithm designed for solving CSPs (Brailsford et al., 1999). 

Some well-known algorithms in CP include backtracking, forward 

checking, and Maintaining Arc Consistency (MAC) as mentioned in 

Brailsford et al. (1999).  

The three algorithms all rely on tree search techniques. The 

process of searching involves assigning values to variables, which 

are within the defined domain and satisfy all constraints. In other 

words, selecting a branch in the tree corresponds to specifying the 

value of the next variable.  

The distinction between the algorithms lies in the search process 

when the domain of the next branch variable no longer exists. The 

backtracking method selects a different branch if the selected 

variable, along with previously selected variables, violates any 

related constraints. On the other hand, the forward checking and MAC 

consider the relative constraints among the variables of the current 

branch, past branches, and the next branch. As a result, the algorithm 
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backtracks the branch when a single related variable fails to have a 

feasible solution. Although forward checking and MAC may take 

longer to calculate due to considering all related variables, they 

effectively increase the search efficiency by not exploring the 

infeasible branches. The difference between forward checking and 

MAC is that MAC adopts chaining-arc-consistency, which checks 

constraints for the changed next branch’s variable, thereby further 

reducing the domain of variables and detecting failures more quickly. 

Hooker (2002) exposits detailed descriptions of search techniques 

and classifies them according to theories of search. 

In this study, the CSP of hull block assembly line is modeled, and 

CP is employed to search for an optimal solution. The detailed model 

is explained in Section 3.2. 

 

2.3. Discrete Event Simulation 
 

Simulation is a virtual environment that replicates the operation 

of a real-world process or system over time (Banks, 2005). It is 

commonly utilized as a virtual experiment environment because of its 

flexibility, controllability, time-effectiveness, and cost effectiveness 

(Robinson, 2014). Simulation is categorized into two types: DES and 

continuous simulation, based on the manner in which state changes 

are handled (Banks & Carson, 1986). In a DES model, the state 

changes occur only at specific discrete points known as event times, 

while continuous simulation model allows for state changes to occur 
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continuously and smoothly over time. The continuous simulation, 

however, require a substantial amount of calculation time compared 

to DES. 

DES has proven to be an effective testbed in various studies, 

providing a reflection real-world factory operation. For example, 

Rogers and Brennan (1997) utilized DES as an experimental testbed 

to evaluate alternative control architectures. Brennan and William 

(2000) developed a simulation testbed to assess a distributed multi-

agent control architecture for holonic manufacturing systems. Huynh 

et al. (2020) presented a DES model of a manufacturing process to 

generate data for calculating production KPIs. This model served as 

the baseline for the factory performance management, and was 

further utilized to optimize production flow. Lee et al. (2009) 

employed DES to model a panel block assembly line in a shipyard for 

calculating the makespan of scheduled block sequences using a GA. 

These examples demonstrate the versatility and practicality of using 

DES as a valuable tool in the evaluation, management, and 

optimization of various industrial processes. 

In this study, a specialized DES framework for factory simulation 

is utilized to model the assembly line. Figure 2 illustrates the 

Simcomponent framework introduced by Nam et al. (2022). The 

framework consists of several modules, each serving a specific 

function in the simulation process.  

1. Adapter Module: the adapter module is responsible for data 

preprocessing, converting raw data into a format suitable for 
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simulation data input.  

2. Modeler Module: The modeler module serves as a connection 

between the preprocessed data and simulation. In ensures 

that the data is correctly integrated into the simulation model 

3. Simulation Module: The simulation module defines the 

components of modeled simulation. It includes the DES kernel, 

where the actual simulation is performed.  

4. Analyzer Module: After the simulation is completed, the 

analyzer takes charge of the post-processing step. It 

calculates KPIs that represent the performance of the 

simulation.  

5. Reporter Module: The reporter module is responsible for 

saving the simulation result and calculated KPIs in a separate 

file, making them easily accessible for analysis and reporting.  

 

Figure 2 Simcomponent framework introduced by Nam et al. (2022) 

The simulation module comprises several components, each 

representing a crucial aspect of the designed factory. The 

components are Part, Source, Resource, Process, Sink, and Monitor. 
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The part class represents the part that flows in the designed factory. 

It contains all the part information that simulation requires. The 

source class generates part in pre-defined or random sequence in 

specific time. The process class defines detailed process of part in 

dedicated operation, and the resource class determines the machine 

number in the process. The sink class eliminates the part from the 

system if needed. Lastly, the monitor class stores all the event logs 

and information that user assigns. This information is sent to analyzer 

for further analysis when the simulation is completed. Specific 

classes defined to model the flat block assembly line is mentioned in 

Section 3.3.  
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Chapter 3. Development of Hull Block Assembly Line 

Model 
 

 

3.1. Problem Definition 
 

 

Figure 3 Simple illustration of the target flat block assembly line 

Shipbuilding process involves the assembly of multiple hull 

blocks, and each hull block is composed of several sub-blocks, with 

most of them being flat blocks (Yang et al., 2019). This characteristic 

of shipbuilding introduces the possibility of the flat block assembly 

becoming a bottleneck process. Figure 3 provides an illustration of 

the target flat block assembly line that is the focus of this research. 

The assembly line comprises two lines; the Grand-assembly line 

(Line A) and the Unit(Sub)-assembly line (Line B). Line A consists 

of 10 operations, while Line B has 9 operations, excluding assembly 

2. As all blocks entering each line follow the same order of operations, 

the flat block assembly line can be classified as a permutation flow-

shop scheduling problem. Hence, the main objective of the flat block 
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assembly line scheduling problem is to minimize the makespan and 

prevent it from becoming a bottleneck in the shipbuilding process. 

 

Figure 4 Characteristics of the operations in flat block assembly line 

Figure 4 provides a detailed description of the characteristics of 

each operation in flat block assembly line. The operations and their 

sequence in the process are listed within a gray box, along with their 

respective names. Each operation is carried out at a specific location 

on the line, referred to as a “stage”. The dotted box represents the 

spatial constraint, where operations within the same box share the 

same stage. As the assembly line operates, there is a limited capacity 

for blocks to be considered. To address this capacity constraint, the 

sum of lengths of blocks in each stage is limited to the stage length. 

The spatial capacity of each stage is shown in Table 2.  

Table 2 Spatial capacity of each stage 

Stage 
Capacity (m) 

Line A Line B 

Plate installation 30 30 

Plate welding 64 64 

Longitudinal frame assembly 53 53 
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1st assembly 31.5 24 

2nd assembly 32 - 

Final assembly 131 160 

 

The operations can be classified into two categories based on the 

level of automation: machine-driven operations and human-driven 

operations. Machine driven operations are mostly automated, with 

required machines regulating the capacity of the operation. Table 3 

provides the number of machines for each machine-driven operation. 

All operations, except for plate welding, have only one machine, 

indicating that each operation can process a single block. However, 

in the plate welding process, there are 3 and 2 machines in each line, 

respectively, and only two machines could be assigned to one block 

due to spatial limitation. As a result, the operation in Line B could be 

considered as a single-machine process, while Line A should be 

considered as a parallel machines process. The machine assignment 

in Line A follows a strict logic to minimize the makespan, adhering to 

the FCFS rule.  

Table 3 Number of machines in machine driven operations 

Stage 
Machine 

Line A Line B 

Plate installation 1 1 

Plate welding 3 2 

Longitudinal frame installation 1 1 

Longitudinal frame welding 1 1 

1st assembly 1 1 

2nd assembly 1 - 

 

The worker-driven operations rely on the work schedule to 
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determine their process time. The schedule is divided into two shifts: 

day and night, and the number of workers varies for each shift. The 

total man-hours required for each operation are provided based on 

task types and materials, and the process time can vary depending 

on the start time of the operation, as the number of workers is 

determined by the work schedule. In some operations, no workers 

are assigned during the night shift. The daily working hours are 

typically 10 hours for the day shift and 8 hours for the night shift. 

Although an operation is machine driven, there is still a need for 

workers to be assigned to manage the process. As a result, the 

operation time of all operations follows the work schedule, and the 

availability of workers during different shifts can impact the process 

time for each operation. 

From a scheduling perspective, several sequential rules are 

applied to ensure operational efficiency and achieve business 

objectives. The first rule is the “set block” rule. Since a ship hull 

is axisymmetric, port and starboard blocks are identical and referred 

as “set blocks”. These blocks are assembled simultaneously in a 

berth and involve similar tasks. To optimize operational efficiency 

and stock management, it is advantageous to process these block set 

at the same time. Therefore, these set blocks should be scheduled 

consecutively.  

The second rule pertains to nonconsecutive blocks that should 

be kept separate within the sequence. These block sets require a 

significant amount of operation time. By keeping these blocks 
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separate, workload balancing is achieved not only in the assembly 

line, but also in subsequent processes.  

Finally, there are scheduled blocks and operating blocks in the 

factory. These block sequence and factory conditions should be 

carefully considered in the operational scheduling step, as the 

feasibility of the completed schedule depends on their proper 

evaluation and integration. By incorporating these sequential rules, 

the scheduling process aims to enhance overall operational 

performance and ensure the successful execution of the flat block 

assembly line.  

The block sequence scheduling process involves three distinct 

objectives. The first objective is the minimization of makespan. This 

objective focuses on reducing the total lead time and cost by 

minimizing the makespan and optimizing operation utilization. By 

achieving a shorter makespan, the overall production process 

becomes more efficient, leading to cost savings and timely project 

delivery.  

The second objective is workload balancing between the two 

teams in the assembly line. In each operation, there are two teams, 

each assigned to blocks alternatively. The objective is to evenly 

distribute the workload between these two teams. This balancing 

mechanism complements the “set block” rule mentioned earlier, as 

set blocks typically have a comparable workload. Similarly, set blocks 

with substantial amount of workload should be placed apart by an 

even number of cells in the sequence, further enhancing workload 
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balance.  

The third objective is related to due date objective. Blocks with 

earlier due dates are prioritized and positioned ahead in the sequence. 

This objective aligns with the principles of lean manufacturing, aiming 

to minimize block stock in the shipyard and prevent delays in 

subsequent processes. By giving priority to blocks with imminent due 

dates, the production process becomes more responsive and adaptive 

to changing project requirements. 

In the scheduling process for the assembly line, the makespan 

minimization objective is applied to both line A and line B. However, 

line B does not consider the other two objectives, namely workload 

balancing and due date prioritization. The reason for this difference 

is that unit and sub-assembly blocks in line B have similar workloads 

for most block types. Additionally, their sizes are relatively small 

compared to grand assembly blocks processed in line A. As a result, 

stock management is not as important for line B as it is for line A. 

Considering these factors, the optimization model for line A considers 

all three objectives: makespan minimization, workload balancing 

between the two teams in the line, and due date prioritization to 

achieve lean manufacturing principles. On the other hand, the 

optimization model for line B only focuses on makespan minimization, 

as the other objectives are not as relevant for this specific line.  

In this study, the goal is to solve the real-world problem of flat 

block assembly line scheduling by considering all the conditions that 

schedulers encounter in the factory and scheduling process. To 
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achieve this, two categories are classified from the various conditions: 

general PFSP conditions and industrial conditions. Figure 5 shows the 

classification of various conditions according to general PFSP or 

industrial conditions.  

The general PFSP conditions include constraints and objectives 

commonly found in typical PFSPs, such as process time, operation 

capacity, FCFS rule, due date, and makespan minimization. These 

conditions form the foundation of the problem and are considered in 

the optimization model.  

On the other hand, the industrial conditions are specific to the flat 

block assembly line in the shipbuilding industry and include spatial 

arrangement, shift calendar, set block, separate block, and scheduled 

block rules, workload balancing, and due date priority. These 

conditions are critical in reflecting the real-world complexities of the 

assembly line and are incorporated into both the optimization model 

and the simulation model.  

However, due to the computational complexity of considering all 

industrial conditions in the optimization model, some simplifications 

are made to improve search efficiency. These simplifications are then 

validated in simulation model, which provides a more detailed and 

accurate representation of the assembly line’s performance under 

real-world conditions. By comparing the result between the 

optimization model and the simulation model, the effectiveness of the 

proposed scheduling approach in solving the actual industrial problem 

is ensured. 
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Figure 5 Classification of various conditions according to two perspectives 

 

3.2. Constraint Programming Model 
 

In the CP model, some conditions are simplified to improve the 

efficiency of the search speed. Three specific simplifications are 

made in this study.  

First, block movement is not considered in the CP model. Block 

movement time depends on the sequence and process time of each 

block, making it a dynamically determined variable that adds 

complexity to the model. Due to this complexity, block movement is 

not explicitly modeled in the CP model.  

Second, parallel machine process in plate welding process (Line 

A) is simplified as a single machine process with 3 machines. In line 

A, the plate welding process involves 3 welding machines, and each 

block can be processed using 2 machines simultaneously. However, 

defining resource variables and assigning process times of each 
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resource dynamically significantly decrease the search efficiency of 

the CP model. To mitigate this, a simplification is applied by assuming 

that all machines can be used for a single block at the same time until 

the operation is finished. As a result, the operation time (𝑝𝑖𝑗) of the 

plate welding is divided by 3 in the CP model.  

Third, the dynamic operation time of assembly 1 and 2 (Line A) 

is also simplified for computational efficiency. In the actual assembly 

line (line A), the operation time of assembly 1 and 2 is dynamically 

determined during the processing to minimize the makespan. 

Specifically, the assembly 1 and 2 operation can be divided into 3 

sub-tasks: assembly 1, assembly 2, and assembly 1 or 2. The 

operation time of assembly 1 or 2 is dynamically assigned to 

assembly 1 or assembly 2 stage, ensuring minimization of the 

makespan. The CP model, however, this dynamic condition is 

simplified by dividing the total operation time of assembly 1 or 2 

equally between assembly 1 and assembly 2.  

By applying these simplifications, the CP model can still capture 

the general characteristics of the assembly line and produce feasible 

solutions while reducing the complexity of the optimization problem. 

However, it is important to note that these simplifications may 

introduce some differences between the results obtained from the CP 

model and the DES model. As such, the DES model is used to validate 

and compare the results, ensuring that the simplifications made in the 

CP model do not significantly impact the quality of the solutions. The 

analysis of these differences provides valuable insights into the 



 

 ２７ 

performance of the proposed scheduling approach for the flat block 

assembly line. 

In The CP model, the problem is formulated as a CSP. The 

variables, domains, constraints, and objective functions are defined 

to represent the scheduling problem for the flat block assembly line. 

The notations used in the developed CSP are described in Table 4.  

Table 4 Description of notations of the flat block assembly line model 

Symbol Description Symbol Description 

𝐼 Set of blocks 𝑁𝑗 
Machine (worker) number 

of operations 𝑗 

𝐼𝑖
𝐷 

Set of blocks which  

block due date> 𝑑𝑖 
𝑁𝐵 Number of blocks 

𝑖 Block number 𝑀𝐻𝑖 Man-hour of block 𝑖 

𝑗 Operation number 𝐵𝑡
𝑘 

Set of blocks in stage 𝑘 

in time 𝑡 

𝑘 Stage number 𝐿𝑖 Length of block 𝑖 

𝜆 Weight value of objective 𝐿𝑘 Length of stage 𝑘 

𝑚 Sequence number 𝑑𝑖 Due date of block 𝑖 

𝛼 Cell distance parameter 𝑆(𝐽𝑖𝑗) Start time of 𝐽𝑖𝑗 

𝑖, 𝑖′ Set block 𝐹(𝐽𝑖𝑗) Finish time of 𝐽𝑖𝑗 

𝐽𝑖𝑗 
Interval variable of 

operation 𝑗 in block 𝑖 
𝑁(𝐽𝑖𝑗)

𝑡
 

Number of jobs ( 𝐽𝑖𝑗 ) in 

time 𝑡 

𝐴𝑖𝑘 
Interval variable of stage 

𝑘 in block 𝑖 
𝑉𝑎𝑟𝑆𝑒𝑞 Sequential variable 

𝑇𝑖𝑗 
Length of interval 

variable (𝐽𝑖𝑗) 
𝑉𝑎𝑟𝑠𝑒𝑞

𝑟𝑒𝑓
 

Sequential variable that 

order of variable is 

predefined 

𝑝𝑖𝑗 
Total operation time of 

process 𝑗  in block 𝑖 
𝐶𝑜𝑠𝑡 

Total man-hour assigned 

to the team 

 

3.2.1. Variables in the CP Model 

Indeed, the search efficiency of CP heavily depends on problem 

modeling and the number of variables considered in the CSP. 

Minimizing the number of variables while still capturing all the 
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relevant constraints and objectives is essential for improving the 

search efficiency. In the context of the flat block assembly line, three 

types of variables are required in the CSP model: operational variable 

( 𝐽𝑖𝑗 ), spatial variable ( 𝐴𝑖𝑘 ), and sequential variable ( 𝑉𝑎𝑟𝑠𝑒𝑞 ). 𝐽𝑖𝑗 

represent the jobs (blocks) and their assignments to specific 

machines at specific times. They capture the initial times of the 

operations, processing times, and completion times. 𝐴𝑖𝑘  represent 

the spatial arrangement of the blocks in the assembly line. They 

determine which stage the block is located, considering the spatial 

constraints and capacity limitations of each stage. 𝑉𝑎𝑟𝑠𝑒𝑞 represent 

the block sequence and capture the order in which the blocks are 

processed on the assembly line. They ensure that the sequence of 

blocks follows the specified rules and objectives, such as the set 

block rule and separate block rule. 

Figure 6 provides an overview of the designed variables required, 

and Table 5 summarizes the total number of variables in the model. 

Each block has 10 operation variables representing the start and 

finish time of each operation. To efficiently manage these parameters, 

the “Interval_var” in ILOG CPLEX Optimizer is used. Additionally, 

there are 6 spatial variables on each block representing the start and 

finish time of stage occupation. These variables also utilize the 

“Interval_var” to effectively model the spatial arrangement of 

blocks in the assembly line. A sequence variable and reference 

sequence variable is also defined to implement sequential constraints 

such as set blocks, separate blocks, and scheduled blocks. However, 
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the sequence variable itself cannot represent the order of specific 

blocks. Therefore, a reference sequence variable is introduced, 

which contains a predefined order of blocks to represent the order 

number of blocks in the sequence variable.  

In the developed CSP model, the domains of variables are not 

explicitly defined, but instead, it is constrained by various operational 

constraints such as FCFS rule and due date constraint. These 

constraints define the allowable values for the variable dynamically, 

ensuring that solutions satisfy the specific operational requirements. 

For most variables in the model, the initial domain is defined as 

[0, 𝑚𝑎𝑥 𝑑𝑎𝑡𝑒] , where 𝑚𝑎𝑥 𝑑𝑎𝑡𝑒  represents the maximum possible 

time or deadline in the scheduling problem. The scheduled blocks and 

operating blocks, however, entering time into the assembly line is 

known in advance. In the model, this information is used to assign the 

entering time as the start time of the first operation variable, which 

corresponds to the plate installation. 

Table 5 Number of variables according to the type of variable 

Variable type Number of variables 

Operation 10𝑁 

Space 6𝑁 

Sequence 1 

Reference 𝑁 + 1 

Total 17𝑁 + 1 
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Figure 6 Variables designed for the flat block assembly line CSP model 
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3.2.2. Constraints and Objectives in the CP Model 

Constraints and objectives in this case are explained in Figure 5. 

They are mathematically and logically formulated using variables 

defined in the Section 3.2.1. The formulations of the constraints and 

objectives are shown below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝜆1𝑂𝑏𝑗𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝜆2𝑂𝑏𝑗𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 𝜆3𝑂𝑏𝑗𝑑𝑢𝑒𝑑𝑎𝑡𝑒)  (1) 

s.t.   

𝑂𝑏𝑗𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐹𝑀 − 𝑆𝑀  (2) 

𝑂𝑏𝑗𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = |𝐶𝑜𝑠𝑡𝑜𝑑𝑑 − 𝐶𝑜𝑠𝑡𝑒𝑣𝑒𝑛|  (3) 

𝑂𝑏𝑗𝑑𝑢𝑒𝑑𝑎𝑡𝑒 =  ∑ ∑ (𝑆(𝐽𝑖11) − 𝑆(𝐽𝑖21) > 0)𝑖2𝑖1
,  ∀𝑖2 ∈ 𝐼𝑖1

𝐷  (4) 

{
𝑆𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑆(𝐽𝑖𝑗) (𝐽𝑖𝑗  ∀(𝑖,  𝑗))

𝐹𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐹(𝐽𝑖𝑗) (𝐽𝑖𝑗  ∀(𝑖,  𝑗))
  (5) 

{
𝐶𝑜𝑠𝑡𝑜𝑑𝑑 = ∑ ((𝑆(𝐽i1) = 𝑆(𝑉𝑎𝑟𝑚

𝑟𝑒𝑓
)) × 𝑀𝐻𝑖) , 𝑚 ∈ {𝑚|𝑚 = 2𝑛 − 1, 𝑛 ∈ ℕ}

𝐶𝑜𝑠𝑡𝑒𝑣𝑒𝑛 = ∑ ((𝑆(𝐽i1) = 𝑆(𝑉𝑎𝑟𝑚
𝑟𝑒𝑓

)) × 𝑀𝐻𝑖) , 𝑚 ∈ {𝑚|𝑚 = 2𝑛, 𝑛 ∈ ℕ}   
 (6) 

𝑇𝑖𝑗 = 𝐹(𝐽𝑖𝑗) − 𝑆(𝐽𝑖𝑗) =  {
𝑝𝑖𝑗/𝑁𝑗

𝑓(𝑝𝑖𝑗 , 𝑁𝑗)
  (7) 

𝑁(𝐽𝑖𝑗)
𝑡

≤ 1, ∀𝑖 ∈ 𝐼  (8) 

𝐹(𝐽𝑖𝑗) ≤ 𝑆(𝐽𝑖(𝑗+1)), ∀(𝑖, 𝑗)  (9) 

{(𝑆(𝐽𝑖11) − 𝑆(𝐽𝑖21)) × (𝑆(𝐽𝑖1𝑗) − 𝑆(𝐽𝑖2𝑗))} > 0, ∀𝑗 ∈ {2, 3, … , 10}  (10) 

∑ 𝐿𝑖
(𝑖,𝑗)

(𝑖,𝑗) ∈ 𝐵𝑡
𝑘 ≤ 𝐿𝑘  (11) 

{
𝑆(𝐴𝑖𝑘) ≤ 𝑆(𝐽𝑖𝑗1

)

𝐹(𝐽𝑖𝑗2
) ≤ 𝐹(𝐴𝑖𝑘)

,  ∀ (𝑗1, 𝑗2,  𝑘) ∈ {(1,  1,  1),  (2,  2,  2), … ,  (7,  10,  6)}  (12) 

𝐹(𝐴𝑖𝑘) = 𝑆(𝐴𝑖(𝑘+1))  (13) 

{

𝐿𝑖𝑛𝑒 𝐴  : 𝐹(𝐴i6) ≤ 𝑑𝑖 ,   ∀𝑖 ∈ 𝐼𝐴

             𝐿𝑖𝑛𝑒 𝐵 :  {
𝐹(𝐴𝑖6

𝐵 ) ≤ 𝑆(𝐴𝑖4
𝐴 )

𝐹(𝐴i5
𝐵 ) ≤ 𝑑𝑖    

,   ∀𝑖 ∈ 𝐼𝐵  (14) 

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠(𝐽𝑖1, 𝐽𝑖′1)  (15) 
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𝐼𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚(𝑉𝑎𝑟𝑠𝑒𝑞 ,  𝑉𝑎𝑟𝑠𝑒𝑞
𝑟𝑒𝑓

)  (16) 

{

(𝑆(𝐽𝑖1) =  𝑆(𝑉𝑎𝑟𝑚
𝑟𝑒𝑓

)) +  (𝑆(𝐽𝑖′1) =  𝑆(𝑉𝑎𝑟𝑚+2𝛼+1
𝑟𝑒𝑓

)) = 0

𝑜𝑟

(𝑆(𝐽𝑖1) =  𝑆(𝑉𝑎𝑟𝑚
𝑟𝑒𝑓

)) +  (𝑆(𝐽𝑖′1) =  𝑆(𝑉𝑎𝑟𝑚+2𝛼+1
𝑟𝑒𝑓

)) = 2

,     

∀𝑚 ∈ {1,  2,  … ,  𝑁𝐵 − 2(𝛼 + 1)},  𝛼 ∈ {1,  2,  3}  

(17) 

 

The objective function (1) and relative sub-objective functions 

(2) ~ (6) ensure that the search algorithm aims for makespan 

minimization, workload balancing, and stock management. The 

coefficient 𝜆 can vary based on the scheduling strategy. Equations 

(2) and (5) represent the makespan minimization objective function, 

which is calculated as the difference between the minimum start time 

and the maximum finish time of all operations.  

Equation (3) and (6) is the workload balancing objective function. 

As discussed in Section 3.1, there are two teams in each operation 

that take turns receiving block assignments. Therefore, the total 

workload of each team can be calculated using equation (6). This 

equation is formulated as a logical expression representing a boolean 

value that returns 1 if true and 0 otherwise. It’s expressed as a 

bracket (𝑆(𝐽i1) = 𝑆(𝑉𝑎𝑟𝑚
𝑟𝑒𝑓

)).  

The stock management function is formulated as equation (4). 

Individual block (𝑖1) counts all blocks (𝑖2) that have longer due date 

but are placed earlier in the sequence. Minimizing this value aims to 

arrange the blocks according to their due dates. Thus, this objective 

function adds all values of individual blocks to be considered in 

equation (1).  
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The constraints are classified as operational constraints and 

sequential constraints. The operational constraints are listed in 

equations (7) to (14), and sequential constraints are listed in 

equations (15) to (17). The operational constraints define the 

relationship between operation variables and spatial variables, and 

they consist of single operation constraints, constraints between 

operations and including stage, and constraints between the stages. 

The single operation constraints are formulated as equation (7) 

and (8). Equation (7) determines the operation time according to 

operation type. For machine-driven operations, the operation time is 

defined as the total operation time (𝑝𝑖𝑗) divided by the number of 

machines (𝑁𝑗 ) in the operation. As discussed in Section 3.2, all 

operations are considered to have only one block capacity, which 

forbids a parallel operation (Equation (8)). The operation time of a 

worker-driven operation is also defined similarly, but the number of 

workers differs according to shift time. Therefore, the calculation of 

the operation time according to the work shift schedule is presented 

as a function 𝑓 in the formulation. Figure 7 shows an example of 

operation time calculation according to the work shift. Let’s assume 

there is an operation with total operation time of 28 hours. The 

operation starts at 12 with 5 workers assigned, and workers are 

switched at 16 due to the work shift schedule. The remaining hour of 

workload is 8 hours with 4 workers, so the operation finishes at 18. 

This constraint is applied using intensity function, which is embedded 

function of “Interval_var” in ILOG CPLEX Optimizer. 
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Figure 7 Example of operation time calculation according to work shift 

The constraints between multiple operations and a stage are 

formulated as equation (9) to (12). Equation (9) defines the 

operation sequence of each block. Since the line can be categorized 

as a permutation flow shop, all blocks have the same operation 

sequence. Equation (10) regulates the block dispatching method on 

the operations as the FCFS rule. This ensures that the blocks are 

processed in the order they arrive at the operation. Equation (11) 

constrains the spatial capacity of the available blocks in a stage by 

length. In this model, blocks are assumed to be placed in a row, so 

the sum of the block lengths  (∑ 𝐿𝑖
(𝑖,𝑗)

(𝑖,𝑗) ∈ 𝐵𝑡
𝑘 ) in a stage should not 

exceed the stage capacity (𝐿𝑘). Equation (12) ensures the existence 

of a block in a stage until all operations in the stage are finished. 

There are single operation–single stage relationships, such as plate 

installation, plate welding, and assembly, and multiple operations–

single stage relationships, such as longitudinal frame stage and final 

assembly stage. The notation (𝑗1, 𝑗2, 𝑘) represents the relationships.  
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The constraints between the stages are formulated as equation 

(13) and (14). Equation (13) ensures the existence of blocks in the 

line, meaning that there should not be any gaps in time between the 

spatial variables in a block. This constraint guarantees that the blocks 

move continuously through the line without any interruptions. 

Equation (14) represents the due date constraint. The line A and line 

B have different due date constraints, because some blocks from line 

B are assembled with blocks on line A at assembly operation. 

Therefore, line A regulates the block due date with individually 

determined due dates, whereas line B discretizes the block if it is an 

input of line A or not, and regulates the due date accordingly.  

The sequence constraints are shown in equations (15) to (17). 

Equation (15) uses “Previous” function, that is an embedded 

constraint in ILOG CPLEX Optimizer utilized with sequence variable. 

This constraint ensures that block 𝑖 is scheduled previous to block 

𝑖′ in the sequence. The set block constraint is designed using this 

constraint. To design separate block constraint, there needs a 

distance variable that represents a distance between two blocks in a 

sequence should be available to express the even cell distance. To 

achieve this, a reference variable is designed to indirectly represent 

the cell distance. Equation (16) is the isomorphism constraint 

between the sequence variable and the reference variable, which 

creates a one-to-one correspondence relation between the set of 

two interval variables. The sequence of interval variables in the 

reference variable is known, and it indirectly addresses the sequence 
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of interval variables in the sequence variable using a boolean value, 

(𝑆(𝐽𝑖1) =  𝑆(𝑉𝑎𝑟𝑚
𝑟𝑒𝑓

)) . Equation (17) shows the separate block 

constraint. This constraint ensures that block 𝑖 and block 𝑖′ should 

have cell distance in one of 2, 4, and 6 between them.  

 

3.3. Discrete-Event Simulation Model 
 

The simulation model is built using the Simcomponent framework, 

as shown in Figure 2, which was introduced by Nam et al. (2022). To 

simulate the assembly line, seven classes of factory simulation 

components are adjusted to fit the specific problem. Table 6 provides 

a description of these classes defined for the assembly line. All 

classes, except the process class, have analogous purposes and 

structures with the classes in Simcomponent. The process class is 

further divided into two classes: the operation class serves as a 

workspace where operations are processed, and the stage class 

functions as a physical line where spatial movement is considered. 

Table 6 Description of adjusted classes defined from Simcomponent 

Classes Adjustment Description 

Part Block Contains block information 

Source Source Creates block object and feed to first stage 

Process 

Operation A workspace where operation is processed 

Stage 
Physical line where spatial movement is 

considered 

Resource Worker 
Controls the number of workers based on 

shift calendar 

Sink Sink 
Eliminates finished objects from the line 

when delivered 
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Monitor Monitor Records all events occurred in a scenario 

 

 The simulation process involving the classes are shown in 

Figure 8. Initially, a block object is created by the source class, based 

on either a predetermined schedule or a block sequence generated 

from the optimization model. This block object contains essential 

block specifications and status data that are tracked throughout the 

simulation process. The block is then stored in a designated storage 

area and awaits its turn to move to the next stage storage. Within the 

stage class, there are two storage areas: “storage (in)” and 

“storage (out)”, which are used to control the movement of blocks. 

The “storage (in)” assesses the available space in the stage, 

comparing the stage length with the lengths of blocks currently 

present. When sufficient space is available, the “storage (in)” 

either receives a new block from the source storage or retrieves a 

block from the storage (out) of the previous stage. Subsequently, the 

block is transferred to the first operation storage within the stage 

once the operation becomes available. Upon completing the last 

operation in the stage, the block is moved to “storage (out)”, from 

where it can proceed to the next stage or be eliminated from the line, 

depending on whether all processes have been completed. Even the 

block is moved to the operation stage, the stage storage still take 

account to the block length until the block is transferred to next stage. 

Therefore, block occupation is promised during all processes. 

Ultimately, the blocks moved to the sink storage are eliminated from 
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the line, signifying the end of their simulation journey. 

 

Figure 8 Simulation process and information of each class 

As stated in Section 3.2, the CSP model simplifies or does not 

consider three important aspects for search efficiency: block 

movement, parallel operation in plate welding, and dynamic operation 

time in assembly 1 and 2. However, the simulation model aims to 

accurately reflect the reality and considers all processes without 

simplification. Consequently, the three processes are also 

incorporated in the simulation model based on the actual system’s 

functioning principles. 

In the proposed simulation model, the block movement is 

considered within the stage class. Each block object is assigned 
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location information as depicted in Figure 8. This information is 

updated when a block enters or leaves the stage. Upon entering the 

stage, the block is placed in the farthest available position. The block 

movement speed within the line is set at 1m/min. Conversely, when 

a block leaves the stage, all blocks in the stage move simultaneously 

to create space for the incoming block from the preceding stage. Even 

operating blocks stops their processes, moves first, and then resume 

their operations at the new position. 

The simulation model appropriately incorporates the parallel 

operation in the plate welding within the process class by utilizing 

multiple resources. In this model, both machines and workers are 

represented as resources in the process class. Since all welding 

machines have the same specifications, a simple assignment rule 

based on the FCFS principle is adopted. The simulation ensures that 

no block can cut in line, meaning machines are assigned to blocks in 

the order of their arrival. Specifically, two machines are always 

assigned to the first block in the queue. If there are other blocks in 

line A, the second block takes the remaining machine. In line B, where 

there are only two machines, all machines are assigned to the first 

block. 

Lastly, the dynamic operation time in assembly 1 and 2 in line A 

is considered using a simple rule. The subtasks of the assembly 

operation are distinguished as assembly 1, assembly 1 or 2, and 

assembly 2. While assembly 1 and assembly 2 tasks are exclusively 

processed in designated stage, the assembly 1 or 2 task can be 
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processed in either one. To minimize makespan and prevent the 

assembly operation from being a bottleneck, this task is processed in 

assembly 2 whenever it is available. This strategy avoids the 

situation where assembly 2 is idle while assembly 1 is working when 

the block could be processed in assembly 2 instead. In this scenario, 

it is advantageous to process the block in the assembly 1 within 

assembly 2, thus optimizing the overall production flow and reducing 

makespan. 

 

3.4. Optimization Strategy 
 

The optimization of the flat block assembly line sequence covers 

both grand assembly and unit (sub) assembly lines, as these two lines 

are interconnected and have a precedence relationship that impacts 

the overall factory environment.  

In the shipbuilding industry, scheduling is typically done based 

on backward planning, where the scheduling of preceding steps is 

determined using the due date from subsequent steps to ensure 

smooth logistics and timely completion. In case of the flat block 

assembly line, most sub and unit blocks processed in line B serves 

as inputs for line A blocks. As a result, the block sequence schedule 

for line A must be established before scheduling the blocks in line B. 

However, the operation scheduling process is not just about 

determining the sequence for undecided blocks; it also needs to 

consider the real-time shop conditions of already decided blocks. 
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This means the established schedule should be robust and considers 

the dynamic nature of the shop floor, as optimization models may 

overlook certain factors. To address this issue and evaluate the 

feasibility of the optimized schedule, this study proposes a simulation 

model (as described in Section 3.3). This simulation model is 

connected with the optimization model to simulate the actual 

production process and evaluate the performance of the optimized 

schedule.  

Figure 9 illustrates the hierarchical scheduling process that 

integrates the optimization model and simulation model. The process 

begins with target blocks of line A being fed to the optimization model, 

which then searches for the optimal sequence based on the objective 

function. During the search, the optimization model generates feasible 

solutions while continuously updating the objective function.  

Once the search is complete, the optimization model produces 

feasible solutions with the least makespan, and these solutions are 

then validated using the simulation model. However, for this 

validation, the workload balancing and due date objective are not 

considered, as these objectives are solely related to the block 

sequence.  

Next, the simulation result of the feasible solution with the least 

makespan are delivered to line B, where the due dates of blocks are 

adjusted accordingly. The scheduling process for line B follows the 

same order as the optimization process for line A. If there is no 

feasible solution found initially, the feasible solution with the second 
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smallest makespan from line A is delivered to line B for further 

iterations. This iterative process continues until a set of feasible 

solutions for both line A and B are obtained.  

The scheduling process is considered complete when the set of 

feasible solutions from both lines is combined and announced as the 

optimal solution for the given case. This hierarchical approach allows 

for the integration of optimization and simulation techniques, ensuring 

that the proposed schedule is both feasible and capable of achieving 

the minimum makespan. 
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Figure 9 Hierarchical scheduling process using optimization and simulation 

model  
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Chapter 4. Performance Analysis 
 

 

4.1. Case Studies 
 

Target schedule is 2 weeks of blocks in flat block assembly line 

from an actual shipyard in South Korea. Two cases are experimented 

to validate the performance of the proposed framework. Each case is 

optimized following the optimization strategy mentioned in Section 

3.4, and the result is compared with the manually planned schedule 

by actual schedulers.  

Table 7 shows the block composition according to the case. Case 

1 line A has 69 total 69 blocks with 3 scheduled blocks, 17 sets of 

set blocks, 5 sets of separate blocks, and 22 individual blocks. 

Individual blocks refer to blocks that doesn’t fit either set blocks 

and separate blocks, mostly consists of hull center blocks that are 

not accompanied by an axisymmetric block. According to the 

schedulers, these blocks contribute to effectively easing workload 

balancing in scheduling perspective, since these blocks doesn’t have 

any sequential constraints. Line B blocks has 40 blocks with 4 

scheduled blocks, 14 sets of set blocks, 2 separate blocks, and 4 

individual blocks. Compared to line A, line B has fewer separate 

blocks, because there aren’t many types of blocks that require 

heavy workload in unit and sub assembly lines. 



 

 ４５ 

Table 7 Block composition according to the case 

Case Line 
Total 

blocks 

Scheduled 

blocks 

Set 

blocks 

Separate 

blocks 

Individual 

blocks 

1 
A 69 3 34 10 22 

B 40 4 28 4 4 

2 
A 60 4 30 10 16 

B 61 3 42 0 16 

 

Similarly, case 2 has total 60 and 61 blocks in each line, and line 

A has 4 sets of blocks, and line B doesn’t have any separate blocks. 

The separate block constraint defined in Section 3.2 is complex 

compared to other sequential constraints, formed with logical 

constraints and comparison operator. This decreases the search 

speed significantly. Therefore, line A optimization usually require 

significantly more time to search for the optimal solution than line B.  

In addition, grand assembly is known to be the bottleneck process 

among all assembly processes (unit, sub, and grand), so it is more 

critical to find a solution with smaller makespan in line A than B in 

limited optimization time. Accordingly, search limit for each line is 

defined within search time, and number of solutions. Table 8 shows 

the CSP search limit in each line. The Line A optimization has an hour 

limit of search time, whereas the line B has only 20 minutes. Also, 

the line B optimization has additional search constraint, the number 

of solutions. It is because the line B solution is derived to validate the 

feasibility of the line A solution. The line B solution has an impact on 

the feasibility of the solution for line A, necessitating that the 

operation scheduling considers the shop condition of preceding 
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processes, which involves unit and sub assembly. 

Table 8 CSP search limit in each line 

Line Search time (s) Number of solutions 

A 3,600 - 

B 1,200 3 

 

The experiment is conducted using IBM ILOG CPLEX 

Optimization studio 20.1.0 in virtual environment of Python 3.10.9 

and docplex 2.25.236, and DES using Simpy 4.0.1 on a computer with 

an Intel Core i7-13700 2.10 GHz, 16 cores with 24 threads CPU and 

64 GB RAM.  

 

4.2. Result Analysis 
 

The two cases mentioned in Section 4.1 are scheduled following 

optimization strategy in Section 3.4. The result is analyzed 

quantitatively, and the makespan difference between CP and DES is 

analyzed using CPM. 

The weights of the objectives in CP model is defined according 

to the interviews with practitioners. Table 9 shows the determined 

weight values of each objective. It shows that ratio of each objective 

is 1:1:0.01. This is due to the relative importance of each objective; 

makespan, workload balancing, and due date in descending order. The 

unit of makespan and workload balancing is minute and hour 

accordingly. In other words, even the weight value is same, the 

sensitivity and value of makespan is larger than workload balancing. 
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Thus, the weight effectively shows the relative importance between 

the objectives. 

Table 9 Determined weight value of each objective 

Weight Value 

𝜆1 1 

𝜆2 1 

𝜆3 0.01 

 

4.2.1. Result Analysis in Case 1 

From this section, the outputs of each step in the optimization 

strategy from Figure 9, and quantitative analysis of the results are 

presented on two cases. The quantitative analysis consists of 

objective function comparison, makespan comparison between CP 

result and simulation result, feasibility analysis and relative blocks in 

individual solutions, and quantitative analysis of makespan difference 

using CPM.  

Table 10 shows the potential solutions derived from CP of line A 

in the 1st case. The search time limit follows Table 8. Total 27 

solutions were found during the search. Figure 10 illustrates the 

updated objective values during the search time. The first feasible 

solution found from CP model is shown to have small improvement 

compared to the manual, and the best (27th) has improved 15.84%, 

with 15,630.11 as the total objective according to Table 11.  

Although overall objective has continuously improved, each sub-

objective may not have improved in parallel. One sub-objective could 

be sacrificed to improve other objectives, resulting overall objective 
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improvement. This is called as “trade-off”. Figure 11 clearly 

shows the trade-off between makespan and workload balancing. 

Update from solution 14 to solution 15 clearly had big change in both 

objectives. The workload balancing and due date were sacrificed to 

achieve dramatic decrease of makespan. Note that the weight of due 

date objective is 0.01, so the value of due date objective is negligible. 

Table 10 Potential solutions derived from CP of line A in case 1 

No. 
Total 

objective 
Makespan 

Workload 

balancing 
Due date  

Search 

period (s) 

1 17,682.03 17,674 7 103 455.8 

2 17,674.64 17,667 7 64 573.3 

3 16,808.66 16,801 7 66 870.1 

4 16,610.11 16,602 7 111 889.7 

5 16,602.36 16,594 7 136 1,034.3 

6 16,602.34 16,594 7 134 1,140.3 

7 16,602.02 16,593 7 202 1,791.1 

8 16,601.98 16,593 7 198 1,868.2 

9 16,601.94 16,593 7 194 1,875.8 

10 16,601.92 16,593 7 192 2,641.2 

11 16,590.48 16,581 7 248 2,644.3 

12 16,589.98 16,581 7 198 2,697.7 

13 16,589.42 16,581 7 142 2,703.2 

14 16,580.30 16,572 7 130 2,860.0 

15 16,137.78 16,021 115 178 2,880.3 

16 16,114.18 15,997 115 218 2,888.0 

17 16,110.08 15,993 115 208 2,896.1 

18 16,062.02 15,945 115 202 2,935.3 

19 16,061.90 15,945 115 190 2,954.7 

20 16,061.86 15,945 115 186 2,972.8 

21 15,832.21 15,715 115 221 3,011.0 

22 15,721.23 15,604 115 223 3,042.3 

23 15,721.21 15,604 115 221 3,106.3 
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24 15,700.19 15,615 83 219 3,115.8 

25 15,676.19 15,591 83 219 3,120.2 

26 15,630.19 15,545 83 219 3,121.1 

27 15,630.11 15,545 83 211 3,126.6 

Manual 18,573.12 17,924 647 212 - 

 

Figure 10 Total objective according to the search time 

 

Figure 11 Sub objective values according to solutions 

Table 11 Comparison between the best solution derived from CP model and 

manually planned schedule in case 1 

Solution 
Total 

objective 
Makespan 

Workload 

balancing 

Due 

date 

Sequential 

constraint 

Manual 18,573.12 17,924 647 212 63.6% 

Best (27) 15,630.11 15,545 83 211 100%  

Improvement (%) 15.84 13.27 87.17 0.47 36.36 
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The improvement of individual objective is also presented in 

Table 11. It is shown that improvement of makespan, workload 

balancing, and due date objective is 13.27%, 87.17%, and 0.47% 

respectively. Note that the manual schedule didn’t satisfy the 

sequential constraints. This is because of two reasons. First, 

sequential constraint is one of many rules in current scheduling 

process. Other rules consist of due date priorities, workload 

balancing, etc. There is no strict standard for the priority of each rule, 

and it also differs from person to person. This is one of the main 

reasons why mathematical and algorithmic approach is developed in 

this research to ensure the consistency of the schedules, not 

dependent on schedulers. The second reason is there could be 

emergency blocks that are transferred from other shops due to 

various circumstances. Schedulers reschedule these blocks, 

acknowledging the potential risk of violating established rules. These 

blocks are considered as scheduled blocks in the proposed model.  

The following step is to validate the solutions using DES model. 

The key indices that the model validates are makespan change and 

feasibility of the derived solutions. Table 12 shows the validation 

result of 15 solutions from CP model. Last 12 solutions are omitted, 

because none are feasible. The average makespan difference 

between CP and DES model is 6.73%. The simulation result criticizes 

its justification, because only 6 out of 27 solutions are feasible. This 

is due to the increase of makespan that leads to some blocks to fail 
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to meet the due date.  

Table 12 Feasibility and makespan results calculated using DES model of line 

A in case 1 

No. 
Makespan 

(CP) 

Makespan 

(Sim) 

Difference 

(%) 
Delayed 

Search 

period (s) 

1 17,674 18,570.79 4.83 N 455.8 

2 17,667 18,814.97 6.10 N 573.3 

3 16,801 18,462.09 9.00 N 870.1 

4 16,602 18,108.07 8.32 Y 889.7 

5 16,594 18,107.56 8.36 N 1,034.3 

6 16,594 18,088.56 8.26 N 1,140.3 

7 16,593 18,087.79 8.26 Y 1,791.1 

8 16,593 18,087.79 8.26 Y 1,868.2 

9 16,593 17,981.74 7.72 Y 1,875.8 

10 16,593 17,970.74 7.67 Y 2,641.2 

11 16,581 17,498.15 5.24 Y 2,644.3 

12 16,581 17,404.85 4.73 Y 2,697.7 

13 16,581 17,435.30 4.90 Y 2,703.2 

14 16,572 17,255.12 3.96 N 2,860.0 

15 16,021 17,202.56 6.87 Y 2,880.3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Manual 17.924 18,894.12 5.14 Y - 

 

Detailed makespan difference analysis is conducted with example 

blocks from solution 7 in Table 13 and Table 14. The 7th solution is 

determined to be infeasible solution due to 2 blocks, 32nd and 54th   

block. According to Table 13, 32nd block started 107.87 minutes later 

in DES than CP model. This difference is the accumulated result of 

preceding blocks’ delay. The total lead time for this block in DES 

model is 2,046.83 minutes, which is 740.83 minutes longer than CP 

model. This directly affected the block to fail to meet the due date. 
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Therefore, although there is 750 minutes of buffer between finish 

and due date in CP model, the DES result shows 98.7 minutes of delay.  

The 54th block in Table 14 shows more dramatic difference in 

start time. This is because the block is placed back of the sequence, 

resulting more delays compare to the 32nd block. Even though CP and 

DES model show similar lead time, only 179.72 minutes of difference, 

the delay of start time critically affected the delay of finish time. 

Accordingly, the block has a delay of 326.03 minutes. 

The two blocks, 32nd and 54th block, are the primary factor 

contributing to the infeasibility of the solution. All the other infeasible 

solutions have same delays from different blocks. This result 

emphasizes the limitation of CP model and the necessity of validation 

tool, in this research is DES model. The feasible solution, however, 

also has difference between two models. The quantitative analysis of 

feasible solution is conducted in below. 

Table 13 32nd block from solution 7 simulation process analysis 

32nd Start Finish Lead time 
Due date 

(Delay) 

CP 11,804 13,110 1,306 13,860 
DES 11,911.87 13,958.7 2,046.83 13,958.7 

𝜟 107.87 848.7 740.83 -98.7 

Table 14 54th block from solution 7 simulation process analysis 

54th Start Finish Lead time 
Due date 

(Delay) 

CP 15,759 18,366 2,607 19,200 
DES 16,739.31 19,526.03 2,786.72 19,526.03 

𝜟 980.31 1,160.03 179.72 -326.03 
 

The best solution derived from DES model is 14th solution. The 
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comparison between the solution and manually planned schedule is 

shown in Table 15. The simulation result criticizes makespan 

improvement has increased from 7.54% to 8.68% compared to CP 

model. The workload balancing objective is dramatically improved by 

99%, the workload difference between teams is almost negligible. 

The due date objective has also improved by 38.68%. This means 

less blocks are sequenced reversely. Most importantly, this solution 

is viable in actual shop condition with no delay.  

Table 15 Comparison between the best solution derived from DES model and 

manually planned schedule in case 1 

Solution 
Makespan 

(CP) 

Makespan 

(Sim) 

Workload 

balancing 

Due 

date 
Delayed 

Manual 17,924 18,894.23 647 212 Y 

Best (14) 16,572 17,255.12 7 130 N 

Improvement (%) 7.54 8.68 99 38.68 - 

 

The CPM is conducted to analyze the makespan difference of the 

selected solution. This method finds the critical path regarding all 

processes and movements, and distinguishes the time according to 

difference factors, which are exclusions and simplifications in CP 

model. Figure 12 illustrates the Gantt chart and critical path of 

solution 14. The processes and movement are colored in different 

colors, and the critical path is labelled as blue. The specific 

discrimination of difference factor in the critical path is analyzed. The 

different factors between CP and DES model are block movement, 

parallel process in plate welding operation, and dynamic operation 

time in assembly.  
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Additional two factors are shift change and unit error. First, shift 

change in post assembly operations could make the difference. The 

post assembly operations have dynamic operation time due to shift 

change. For an example, no workers are assigned during the night 

shift for manual welding and grinding operation. If grinding operation 

of one block is not finished in day shift, it should wait till the next day 

shift. This difference is analyzed as shift change. Next is unit error. 

The CP model can only calculate integer units. Real values below the 

decimal point are excluded, however, the DES model consider them 

all. Thus, this difference is due to unit difference between the models, 

and it is named as “unit error”.  

Table 16 shows the discrimination of difference factor in the 

critical path of 14th solution. The makespan of DES model represents 

the lead time of critical path, and the makespan of CP model 

represents the lead time of same critical path derived from the CP 

model. The critical path in DES is not critical path is CP model, since 

the makespan of CP model is 16,572 minutes from Table 15, and the 

lead time of the critical path is 15,538. This means that difference 

factors has changed the critical path. 

When closely examining each factor, the block movement is only 

considered in DES model. Specifically, 1,733 minutes are the block 

movement in the critical path in DES model, and none in CP model. 

The parallel operation has increased the operation time in DES model, 

since only 2 machines are assigned simultaneously, whereas 3 

machines are assigned in CP model. Assembly 1 and 2 is calculated 
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separately and there were 316.02 and 44.11 minutes of difference 

respectively. It is due to dynamic operation time mentioned above. 

According to the result, there were more blocks operated tasks in 

the Assembly 1 than Assembly 2, since there were blocks already 

operating in Assembly 2. Lastly, shift change and unit error are also 

examined to have 535 and 12.8 minutes of difference respectively. 

The total time difference of all factors are 1,717.12 minutes of 

increment from original lead time from CP model, which is 15,538 

minutes. Therefore, total lead time of this path is 17,255.12 minutes. 
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Figure 12 The critical path of solution 14 including block movement 
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Table 16 Discrimination of difference factor in the critical path 

Factor CP 𝛥 DES 

Makespan 15,538 - - 
Movement - 1,733 1,733 
Plate weld 465 234.41 699.41 
Assembly 1 809 316.02 1125.02 
Assembly 2 6710 -44.11 6665.89 
Shift change 535 -535 0 
Unit error -12.8 +12.8 0 

Total 15,538 1,717.12 17,255.12 
 

The next step of proposed method of scheduling is optimization 

of line B. By the nature of backward scheduling, most blocks in the 

line B should inherit the due date from the line A schedule. Since 

there are 6 feasible solutions in line A, the optimization of line B 

inheriting the due date from each solution in line A is conducted with 

both time and number of solution limit noted in Table 8.  

Table 17 presents the potential solutions derived from CP of line 

B. All solutions from line A have found 3 solutions in line B 

respectively. In all cases, the first solution is found about 10 minutes 

after the algorithm is initiated, and last solution is found close to 

1,200 seconds. The makespan comparison on potential solutions are 

illustrated in Figure 13. Unlike the optimization result in line A, 

derived makespan is larger than manual plan except 2 solutions, and 

even these solutions have only 4 minutes of difference. This, 

however, is further analyzed in DES model to validate the feasibility 

of the derived solutions and manual plan.  
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Table 17 Potential solutions derived from CP of line B in case 1 

No. Makespan Start time Finish time 
Search 

periods (s) 

1 (1) 8,166 4,923 13,089 787.3 

2 (1) 8,123 4,923 13,046 1,086.0 

3 (1) 8,114 4,923 13,037 1,172.3 

1 (2) 8,166 4,923 13,089 674.0 

2 (2) 8,124 4,923 13,047 730.2 

3 (2) 8,123 4,923 13,046 738.6 

1 (3) 8,166 4,923 13,089 727.5 

2 (3) 8,123 4,923 13,046 825.7 

3 (3) 8,118 4,923 13,041 1,014.8 

1 (5) 8,166 4,923 13,089 864.6 

2 (5) 8,123 4,923 13,046 893.3 

3 (5) 8,114 4,923 13,037 1,071.1 

1 (6) 8,166 4,923 13,089 593.2 

2 (6) 8,123 4,923 13,046 667.2 

3 (6) 8,118 4,923 13,041 904.4 

1 (14) 8,166 4,923 13,089 599.4 

2 (14) 8,123 4,923 13,046 682.6 

3 (14) 8,118 4,923 13,041 1,101.8 

Manual 8,118 4,923 13,041 - 

 

Figure 13 Makespan comparison on potential solutions derived from CP of 

line B in case 1 
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Table 18 shows the validation result of feasibility and makespan 

using DES model from line B solutions. The validated makespan from 

DES model is larger makespan in CP, which is mostly contributed 

from the additional time of block movement. The average makespan 

increment is 12.12%, and all solutions showed larger makespan than 

manual plan. However, only 7 solutions out of 18 are examined to be 

feasible, and manual plan is also infeasible. As derived optimization 

solutions in line B inherited the individual block due date from line A 

simulation result, manual plan in line B also inherited from simulation 

result of manual plan in line A.  

Table 18 Feasibility and makespan results calculated using DES model of line 

B in case 1 

No. 
Makespan 

(CP) 

Makespan 

(DES) 
Delayed 

Difference 

(%) 

1 (1) 8,166 9,140.11 N 11.93 

2 (1) 8,123 9,114.86 Y 12.21 

3 (1) 8,114 9,121.25 Y 12.41 

1 (2) 8,166 9,140.11 N 11.93 

2 (2) 8,124 9,144.56 N 12.56 

3 (2) 8,123 9,114.86 Y 12.21 

1 (3) 8,166 9,140.11 N 11.93 

2 (3) 8,123 9,114.86 Y 12.21 

3 (3) 8,118 9,107.18 Y 12.18 

1 (5) 8,166 9,140.11 N 11.93 

2 (5) 8,123 9,114.86 Y 12.21 

3 (5) 8,114 9,104.25 Y 12.20 

1 (6) 8,166 9,140.11 N 11.93 

2 (6) 8,123 9,114.86 Y 12.21 

3 (6) 8,118 9,102.18 Y 12.12 

1 (14) 8,166 9,140.11 N 11.93 

2 (14) 8,123 9,114.86 Y 12.21 
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3 (14) 8,118 9,109.18 Y 12.21 

Manual 8,118 9,076.18 Y 11.80 

 

The last step is to decide the optimal solution based on the 

results from line A and B. Table 19 shows the derived combinations 

of feasible solutions from both lines. All feasible combinations are 

included in the table. The objective of the proposed optimization 

method is to obtain feasible schedule that minimizes makespan on line 

A regarding the shop conditions. According to Table 19, the optimal 

solution combination is 14th solution and 1st (14) solution respectively. 

This combination has minimum makespan of line A and also has a 

feasible line B schedule. Note that if there were no feasible line B 

solution for 14th solution, 6th solution from line A and 1st (6) solution 

from line B is the next best combination.  

Table 19 Combinations of feasible solutions from line A and B in case 1 

Solution 

No. (A) 

Solution 

No. (B) 

Makespan  

(A, DES) 

Makespan  

(B, DES) 

Total 

makespan 

1 1 (1) 18,570.79 9,140.11 27,710.9 

2 
1 (2) 18,814.97 9,140.11 27,955.1 

2 (2) 18,814.97 9,144.56 27,959.5 

3 1 (3) 18,462.09 9,140.11 27,602.2 

5 1 (5) 18,107.56 9,140.11 27,247.7 

6 1 (6) 18,088.56 9,140.11 27,228.7 

14 1 (14) 17,255.12 9,140.11 26,395.2 

 

4.2.2. Result Analysis in Case 2 

The Section 4.2.1. presented the overall optimization strategy 

and quantitative analysis in each step using various methods like CPM. 
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This section follows same step but is more focused on the optimized 

schedule with second case mentioned in Table 7. The composition of 

case 2 is more complex with 20 more blocks in line B. There are a 

smaller number of blocks and separate block sets in line A, which 

refers to looser condition than the first case. In line B, however, there 

are 20 more blocks. This case is typical assembly line condition in 

the factory. There is usually same amount or a greater number of 

blocks in line B compared to line A. The main objective of this case 

is to test the performance of the proposed algorithm in normal 

conditions. 

The first step is optimization of line A blocks using CP model. 

Table 20 shows the potential solutions of line A derived from CP 

model. 49 solutions are found during 3,600s of search time.  

Table 21 shows the comparison between the best solution and 

manually planned schedule. The total objective has improved 11.52%, 

and each sub objective has improved 5.11%, 99.9%, and -17.15% 

respectively. In both cases, workload balancing objective values have 

dramatically improved. This could be inferred that the schedulers 

could not consider this objective, rather only controlled with the 

heuristic rules such as set blocks and separate blocks. Furthermore, 

sequential constraints are also not satisfied in manual plan.  

Table 20 Potential solutions derived from CP of line A in case 2 

No. 
Total 

objective 
Makespan 

Workload 

balancing 
Due date  

Search 

period (s) 

1 14,106.24 13,905 199 224 112.8 

2 14,099.44 13,898 199 244 229.2 
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3 14,090.8 13,889 199 280 248.9 

4 14,087.78 13,886 199 278 261.1 

5 13,986.63 13,901 83 263 268.7 

6 13,983.71 13,898 83 271 272.1 

7 13,914.63 13,907 5 263 277.6 

8 13,914.62 13,907 5 262 335.4 

9 13,914.52 13,907 5 252 363.9 

10 13,896.82 13,889 5 282 495.7 

11 13,896.77 13,889 5 277 532.0 

12 13,894.24 13,886 5 324 560.7 

13 13,894.22 13,886 5 322 568.3 

14 13,893.83 13,886 5 283 578.3 

15 13,893.72 13,886 5 272 827.3 

16 13,893.62 13,886 5 262 879.0 

17 13,885.56 13,878 5 256 1,018.0 

18 13,342.06 13,334 5 306 1,079.8 

19 13,342.05 13,334 5 305 1,090.0 

20 13,341.96 13,334 5 296 1,138.0 

21 13,324.62 13,316 5 362 1,142.4 

22 13,301.28 13,293 5 328 1,144.8 

23 13,294.24 13,286 5 324 1,148.6 

24 13,294.23 13,286 5 323 1,217.9 

25 13,293.98 13,286 5 298 1,255.5 

26 13,293.95 13,286 5 295 1,505.6 

27 13,293.74 13,286 5 274 1,538.2 

28 13,293.73 13,286 5 273 1,612.0 

29 13,289.72 13,286 1 272 1,826.6 

30 13,289.7 13,286 1 270 1,874.6 

31 13,289.68 13,286 1 268 2,012.6 

32 13,289.66 13,286 1 266 2,088.5 

33 13,289.62 13,286 1 262 2,108.4 

34 13,258.62 13,255 1 262 2,245.8 

35 13,243.66 13,240 1 266 2,557.4 

36 13,243.63 13,240 1 263 2,598.0 
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37 13,243.59 13,240 1 259 2,670.9 

38 13,243.55 13,240 1 255 2,692.7 

39 13,243.53 13,240 1 253 2,753.8 

40 13,243.52 13,240 1 252 2,766.1 

41 13,229.37 13,207 19 337 2,799.0 

42 13,229.35 13,207 19 335 2,807.0 

43 13,229.31 13,207 19 331 2,814.1 

44 13,211.14 13,207 1 314 2,826.6 

45 13,211.1 13,207 1 310 2,974.3 

46 13,211.09 13,207 1 309 2,977.2 

47 13,211.08 13,207 1 308 2,987.6 

48 13,211.06 13,207 1 306 2996.4 

49 13,211.01 13,207 1 301 3273.8 

Manual 14,931.57 13,918 1,011 257 - 

Table 21 Comparison between the best solution derived from CP model and 

manually planned schedule in case 2 

Solution 
Total 

objective 
Makespan 

Workload 

balancing 

Due 

date 

Sequential 

constraint 

Manual 14,931.57 13,918 1,011 257 85% 

Best (49) 13,211.01 13,207 1 301 100%  

Improvement 

(%) 
11.52 5.11 99.90 -17.15 15 

 

The derived solutions are then validated in the DES model. Table 

22 organizes the validation result regarding the feasibility and 

makespan. Out of 49 solutions, 4 solutions are concluded to be 

feasible. From 11th solution, all solutions are all infeasible, thus they 

are not listed in this table. The average makespan increment rate in 

DES model compared to CP is 11.38%.  

The individual makespan value of solutions that are feasible is 

more interesting, because it turned out that the 1st solution has the 
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minimum makespan, which is 15,151.95 minutes. The 5th and 6th 

solution also had reversed rankings in makespan, but both had larger 

value than the first. This is an extreme example where CP result 

shows opposite result from DES model. It infers that although CP opt 

for optimal solution, lack of reality reflected in the model could 

change the result dramatically. This is critical reason why DES model 

is required to fully guarantee the optimal solution in real-world 

problem. Figure 14 shows the scatter plot of the makespan derived 

from DES model according to the makespan from CP model. The 

graph shows that there is a positive correlation between two models, 

which infers that the CP model partially reflects the real shop 

condition. 

 

Figure 14 Scatter plot of makespan (DES) according to makespan (CP) 
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improvement in makespan, the DES model, however, showed that the 

solution improved the makespan by 4.35%.  

Table 22 Feasibility and makespan results calculated using DES model of line 

A in case 2 

No. 
Makespan 

(CP) 

Makespan 

(DES) 

Difference 

(%) 
Delayed 

Search 

period (s) 

1 13,905 15,151.95 8.23 N 112.8 

2 13,898 15,334.31 9.37 N 229.2 

3 13,889 15,145.90 8.30 Y 248.9 

4 13,886 15,207.74 8.69 Y 261.1 

5 13,901 15,191.78 8.50 N 268.7 

6 13,898 15,286.78 9.08 N 272.1 

7 13,907 15,524.03 10.42 Y 277.6 

8 13,907 15,524.47 10.42 Y 335.4 

9 13,907 15,524.47 10.42 Y 363.9 

10 13,889 15,397.77 9.80 Y 495.7 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Manual 13,918 15,981.34 12.91 N - 

Table 23 Comparison between the best solution derived from DES model and 

manually planned schedule in case 2 

Solution 
Makespan 

(CP) 

Makespan 

(Sim) 

Workload 

balancing 

Due 

date 
Delayed 

Manual 13,918 15,981.34 1,011 257 N 

Best (6) 13,898 15,286.78 83 271 N 

Improvement (%) 0.14 4.35 91.79 -5.45 - 

 

The next step is to optimize the line B block schedule according 

to the 4 feasible solutions. The potential solutions derived from CP 

model of line B is listed in Table 24 with the details. In this case, all 

3 solutions are found within a minute. The results, however, show 

longer makespan than manually planned schedule. Two conditions 

could have contributed to this result. First, the number of solution 
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limit could have terminated the algorithm before more improved 

solutions could be found. Since, CP algorithm is first developed to 

find feasible solution in complex operation research problems, first 

few feasible solutions could be very different from the optimal 

solution. Secondly, the manually planned schedule is infeasible 

solution. This schedule does not fully satisfy set block constraints. It 

achieves 85.7% (36/44) satisfaction of the constraint, and it is not 

enough to be feasible, since it is a constraint. In other words, the 

manually planned schedule is not in feasible space in the perspective 

of CP model. Thus, the minimum makespan could be larger than the 

manual one.  

Table 24 Potential solutions derived from CP of line B in case 2 

No. Makespan Start time Finish time 
Search 

periods (s) 

1 (1) 11,833 1,084 12,917 17.8 

2 (1) 11,787 1,084 12,871 37.8 

3 (1) 11,783 1,084 12,867 48.0 

1 (2) 11,833 1,084 12,917 17.6 

2 (2) 11,820 1,084 12,904 61.9 

3 (2) 11,787 1,084 12,871 67.2 

1 (5) 11,833 1,084 12,917 17.2 

2 (5) 11,820 1,084 12,904 37.9 

3 (5) 11,775 1,084 12,859 40.5 

1 (6) 11,833 1,084 12,917 17.2 

2 (6) 11,820 1,084 12,904 47.8 

3 (6) 11,780 1,084 12,864 53.9 

Manual 11,772 1,084 12,856 - 

 

The validation result of line B solutions using DES model is 
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mentioned in Table 25. All solutions including manual plan has met 

the due date, resulting no delay. Note that no delay is not same with 

feasible. A feasible solution must have met due date for all blocks, 

and satisfied all constraints. In this table, only delay is analyzed, but 

manual plan has failed to satisfy set block constraints as mentioned 

above. The derived solutions, however, satisfy all constraints, thus 

they are all feasible solutions.  

Table 25 Feasibility and makespan results calculated using DES model of line 

B in case 2 

No. 
Makespan 

(CP) 

Makespan 

(DES) 
Delayed 

Difference 

(%) 

1 (1) 11,833 12,213.36 N 3.2 

2 (1) 11,787 12,154.69 N 3.1 

3 (1) 11,783 12,147.35 N 3.1 

1 (2) 11,833 12,213.36 N 3.2 

2 (2) 11,820 12,131.00 N 2.6 

3 (2) 11,787 12,154.69 N 3.1 

1 (5) 11,833 12,213.36 N 3.2 

2 (5) 11,820 12,051.5 N 2.0 

3 (5) 11,775 11,922.00 N 1.2 

1 (6) 11,833 12,213.36 N 3.2 

2 (6) 11,820 11,980.67 N 1.4 

3 (6) 11,780 11,947.79 N 1.4 

Manual 11,772 12,078.49 N 2.6 

 

As the final step, final combinations of the feasible solutions from 

line A and B could be derived as in Table 26. Since, the primary goal 

is to minimize the makespan of line A, the optimal solution is 

combination of 1st solution and 3 (1) solution in line A and B 

respectively. The optimal solution, however, could vary depending on 
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assembly line strategy. For example, if line B is overloaded now, 3 

(5) solution that has minimum makespan in line B could be optimal 

solution. In the perspective of minimizing makespan of all lines, 3 (5) 

solution with 3rd solution in line A has the minimum total makespan 

among all combinations.  

Table 26 Combinations of feasible solutions from line A and B in case 2 

Solution 

No. (A) 

Solution 

No. (B) 

Makespan  

(A, DES) 

Makespan  

(B, DES) 

Total 

makespan 

1 

1 (1) 15,151.95 12,213.36 27,365.31 

2 (1) 15,151.95 12,154.69 27,306.64 

3 (1) 15,151.95 12,147.35 27,299.30 

2 

1 (2) 15,334.31 12,213.36 27,547.67 

2 (2) 15,334.31 12,131.00 27,465.31 

3 (2) 15,334.31 12,154.69 27,489.00 

5 

1 (5) 15,191.78 12,213.36 27,405.14 

2 (5) 15,191.78 12,051.5 27,243.28 

3 (5) 15,191.78 11,922.00 27,113.78 

6 

1 (6) 15,286.78 12,213.36 27,500.14 

2 (6) 15,286.78 11,980.67 27,267.45 

3 (6) 15,286.78 11,947.79 27,234.57 
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Chapter 5. Conclusion 
 

 

In this study, a two-step optimization process is proposed to 

address the limitations of existing PFSP solutions. The first step 

involved developing a novel CP algorithm for MOPFSP-hd that 

incorporates actual industrial constraints, making it more practical for 

real-world problems. The second step involved validating the 

feasibility and objective value of the optimized solution using DES.  

Two case studies were conducted to evaluate the superiority of 

the proposed model. The experimental results from both cases 

demonstrated an improvement in makespan compared to manually 

planned schedules. Furthermore, the solutions derived from the 

proposed model were reported to be feasible, while the manually 

planned schedules often encountered delays or did not satisfy the 

industrial constraints. This highlights the significance of using 

simulation to validate the derived solutions. The analysis of the 

difference between the objective calculated from CP and DES model 

showed a difference of 2 ~ 12%, and CPM was used to identify the 

factors influencing this difference. 

Although, the proposed method demonstrated superior 

performance to existing scheduling method, there are still 

opportunities for further improvement. One potential area of 

improvement is the analysis of weight values assigned to each 

objective function. Multi-objective optimization problems often lack 
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a unified measuring unit between sub-objective functions. While time 

and cost units are commonly used as unified units in schedule 

optimization problems, more studies are needed to quantify the 

importance of each objective and assign appropriate weights to each 

sub-objective function.  

In conclusion, the proposed solution in this paper presented a 

practical and effective approach to address PFSP with real-world 

constraints. By combining CP and DES techniques, the authors 

demonstrated improved makespan and feasible schedules compared 

to traditional methods. Further investigations into weight assignment 

for objective functions could enhance the quality of the optimization 

results. 
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Abstract in Korean 

 

 

평면 블록 조립 라인의 스케줄링은 조선소의 전체 조선 건조 성능에 

있어서 높은 작업량 때문에 매우 중요하다. 이 문제는 운영 연구에서 잘 

알려진 Permutation Flow-shop Scheduling Problem(PFSP)으로서 

1950년대부터 다양한 논문에서 광범위하게 연구되었다. 그러나, 기존의 

해결책들은 실제 문제를 단순화하고 특정 가정들을 포함시키는 경우가 

많아서 실제 문제들에 대한 적용이 제한되고 있다.  

최근 제약 프로그래밍(CP)이 수리적 알고리즘들에 대한 강력한 

대안으로 등장하며, 수리적 알고리즘의 한계를 성공적으로 극복하는 

연구 사례들이 등장하고 있다. 이러한 배경에 따라, 본 연구는 기존 

알고리즘들의 한계를 극복하기 위해 두 단계 계획 수립 최적화 

프레임워크를 제안한다. 먼저, 실제 산업 제약 조건을 반영하는 새로운 

CP 알고리즘을 소개한다. 이 PFSP는 Multi-Objective PFSP with hard 

due date constraint (MOPFSP-hd)으로서 분류될 수 있다. 다음으로, 

도출된 최적화 해들의 타당성과 목적 함수 값은 이산 사건 

시뮬레이션(DES)을 통해 검증한다. 

제안한 스케줄링 프레임워크의 성능을 평가하기 위해 두 개의 산업 

사례를 대상으로 계획이 수행되었다. 두 사례에 대한 실험 결과는 

일관적으로 현재 실행 계획에 적용되는 휴리스틱 룰에 기반하여 작성된 

계획에 비해 makespan이 개선되었음을 보여준다. 또한, 본 연구에서 

제안한 프레임워크를 통해 도출된 해들은 산업 제약 조건을 모두 

만족시키고 실현 가능한 반면에, 기존의 방법으로 수립된 해는 제약을 

불만족시키거나 지연이 발생하여 실현 불가능한 해임을 DES를 통해 
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확인할 수 있었다. 마지막으로, CP와 DES 모델로부터 계산된 목적 함수 

사이의 차이는 임계 경로 분석법 (CPM)을 사용하여 분석하였다. 

본 연구에서 제시한 해결책은 현실적인 산업 환경에서의 PFSP를 

다루기 위한 실질적이고 효과적인 방법을 소개했다. 기존의 한계를 

극복하기 위해 CP와 DES 기법을 결합하여 기존의 방법들보다 개선된 

makespan을 가지는 실현 가능한 계획을 도출 할 수 있음을 두 개의 

산업 사례를 활용하여 보였다. 
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