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Abstract

Scheduling flat block assembly line in a shipyard is crucial for
overall shipbuilding performance in terms of its high volume of
workload. This problem is commonly known as the Permutation
Flow—shop Scheduling Problem (PFSP) in Operation Research (OR),
which has been extensively studied in various papers since the 1950s.
However, existing solutions often involve simplifying real—world
problems with certain assumptions, limiting their practical
applicability.

In recent times, Constraint Programming (CP) has emerged as a
strong alternative to exact algorithms and has been successfully
applied to various PFSP problems, addressing the limitations of exact
algorithms. In light of this, our study proposes a two—step
optimization process to overcome these limitations. First, a novel CP
algorithm is introduced to incorporate actual industrial constraints.
The modelled PFSP can be categorized as a Multi—Objective PFSP
with hard due date constraint (MOPFSP—hd). Next, the feasibility
and objective value of the optimized solution is validated using
Discrete—Event Simulation (DES).

To evaluate the performance of our proposed framework, two
industrial cases are conducted. The experimental results from both
cases demonstrated an improvement in makespan compared to

manually planned schedule. Additionally, the solutions derived from
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our proposed model are reported to be feasible, while the manually
planned schedules are often infeasible either due to not satisfying
industrial constraints or encountering delays. Finally, the difference
between the objectives calculated from CP and DES model is
analyzed quantitatively using Critical Path Method (CPM).

The proposed solution in this paper presented a practical and
effective approach to address PFSP with real—world constraints. By
combining CP and DES techniques, the authors demonstrated
improved makespan and feasible schedules compared to traditional

methods using two industrial cases.

Keyword: Optimization, Constraint programming, Discrete—event
simulation, flat block assembly, shipbuilding
Student Number: 2020—21233
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Chapter 1. Introduction

Hull block assembly process is one of the main processes in
shipbuilding industry, where block parts and sub—blocks are
assembled to form a larger block. The development of the ring—type
erection process has allowed for the assembly of ship parts built in
different shipyards, alleviating spatial constraints in the ship
assembly process (Kim et al., 2005). However, from a cost and
business perspective, shipbuilding companies still strive to perform
shipbuilding processes within their premises as much as possible
(Ahn & Kim, 2022). The hull blocks can be classified into two types
based on their shape: flat blocks and curve blocks. As ship size has
increased, most blocks are flat blocks (Yang et al., 2019). Therefore,
scheduling flat block assembly line in shipyard is crucial for overall
shipbuilding performance.

The flat block assembly line scheduling problem is considered as
a typical Permutation Flow—shop Scheduling Problem (PFSP) in
Operation Research (OR). Numerous papers have studied various
types of PFSP using both exact algorithms and heuristics or meta—
heuristic algorithms since the 1950s. For instance, Nagar et al. (1995)
used the branch and bound (B&B) algorithm to solve the bi—objective
PFSP with 2 machines. Framinan et al. (2003) conducted Nawaz,
Enscore, Ham (NEH) heuristics to address the bi—objective PFSP

with multiple machines (ranging from 5 to 25). Varadharajan and
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Rajendran (2005) utilized a meta—heuristic algorithm, Simulated
Annealing (SA), to optimize the bi—objective PFSP with 20 machines.

Several studies have applied the introduced algorithms on flat
block assembly line in shipyards. Shie Gheun (1996) proposed a
Genetic Algorithm (GA) to solve a PFSP problem in the case of block
assembly shop in a shipbuilding company. Lee et al. (2009) also
proposed a GA to optimize makespan on a dedicated assembly line
using a simulation framework to calculate the exact makespan. Yang
et al. (2019) adopted a multi—objective memetic algorithm for a
parallel panel block assembly line. The authors formulated the line
with fuzzy makespan, fuzzy processing time, and fuzzy due date to
reflect the uncertainty of the process. However, these solutions had
limitations in the model that failed to reflect real=world problems and
instead simplified the problems with assumptions.

The limitations of conducting such algorithms in assembly lines
in shipyard have left practitioners to schedule the plans based on
their knowhow, relying on their knowledge and experiences.
However, this had led to severe problems, such as a lack of
consistent rules. Firstly, the problem has resulted in different
qualities of schedules according to schedulers. This not only
increased the company’ s reliance on certain schedulers but also put
too much pressure on them to come up with better solutions without
providing clear guidance. Secondly, it became an obstacle in the
automation of scheduling (Kwak et al., 2022). Unclear strategies in

scheduling have been a major obstacle to automate the process in
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shipyards. It substantially increased the time spent on scheduling
process whenever there was a need for a change in the schedule due
to unexpected events or variations. Lastly, rule—based scheduling
lacks validation of feasibility. The scheduling rules are based on the
scheduler’ s experience and feedbacks from the shops, making it
hard to guarantee the improvements in the quality of the solutions.

Recently, CP has been introduced as a competitor of exact

algorithms, overcoming their limitations in handling problem
complexity (Samarghandi & Behroozi, 2017). CP also offers high
flexibility in formulating constraints mathematically and logically,
enabling the representation of real—world constraints (Hooker,
2002). Therefore, this study aims to develop a CP model to solve the
dedicated flat block assembly line with real—world constraints,
referred to as “industrial constraints” in this paper. The modelled
PFSP can be categorized as a Multi—Objective PFSP with hard due
date constraint (MOPFSP—hd), and Discrete—Event Simulation (DES)
is applied as a validation tool. Table 1 presents the related studies
and their limitations, along with the aims of this study. In summary,
the contributions of the paper are listed below:

1. A novel CP algorithm for MOPFSP—hd with industrial
constraints are proposed. To the best of the author’ s
knowledge, this is the first attempt to apply CP in MOPFSP—
hd. Moreover, industrial constraints are not considered in
most papers due to the complexity of the problem when

modeled with traditional methods.
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2. The proposed scheduling process is a 2—step scheduling
process that integrates CP and DES model sequentially. The
integration of the DES model aims to demonstrate the
optimality and feasibility of the derived solution by validating
it through simulation.

3. The superiority of the proposed model is demonstrated and
analyzed using two actual industrial cases to assess its
performance in a generalized context. The experimental
results of the two cases prove the superiority of the model
compared to current manually planned schedules.

The rest of the paper is organized as follows. Section 2 presents
the related studies of the PFSP and the theoretical backgrounds of
the proposed algorithms. In Section 3, the development of CP and
DES models used to model the target flat block assembly line of this
study is explained. Section 4 provides the experimental results and
analysis of the two cases. Finally, the conclusion is discussed in

Section 5.



Table 1 Related studies of PFSP and uniqueness of the proposed method
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Chapter 2. Theoretical Backgrounds

2.1. Permutation Flow-shop

2.1.1. Development of PFSP algorithms

Permutation flow—shop scheduling problem (PFSP) is a special
type of flow—shop problem, where the processing order of jobs on
the resources remains the same for each subsequent step of
processing (Tseng & Stafford Jr, 2008). As a result, the job
sequence plays a crucial role in determining the performance of the
dedicated shop. The primary objective of PFSP is to determine the
job sequence that minimizes the makespan. In industrial scenarios,
however, it becomes necessary to consider various conditions and
strategies, including makespan, tardiness, earliness, and idle time
(Yenisey & Yagmahan, 2014).

Figure 1 presents an example of a general PFSP comprising 3
jobs and 4 operations. Each job follows a pre—defined order of
operations, such as 1 » 2 -» 3 - 4 in this particular case. In this
example, each operation is assigned to a single machine, and there
are no parallel operations. In Figure 1 (a), a Gantt chart depicts the
scenario where jobs are fed to the shop in ascending order. The first
job initiates its operation at t=1, and the last job completes its
operation at t = 24, resulting in a total makespan of 23 time units. On
the other hand, Figure 1 (b) shows the situation where jobs are fed

in descending order. The first job commences its operation at t=1;
vl L. -
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however, the last job finishes its operation between t=22 and t=
23. This change in job sequence affects the makespan. It is worth
noting that, in the absence of any other dynamic conditions, such as
a stochastic operation time or re—entrant processes, the job

sequence becomes the sole governing factor that influences the

makespan.
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Figure 1 An example of makespan minimization in PFSP

A basic PFSP with 2 machines is initially introduced, and it is
proven that the optimal sequence can be determined using a heuristic
algorithm, known as Johnson' s rule (Johnson, 1954). When the
problem involves more than 2 machines, however, it is classified as
an NP—Complete problem (Garey et al., 1976). This inherent
complexity of the problem has motivated researchers not only to
seek solutions using exact algorithms, but also to explore various
heuristic and meta—heuristic algorithms, especially for larger—sized

problems (Yenisey & Yagmahan, 2014).
7 2 M E g
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Various algorithms and methodologies have been applied to solve
both single and multi—objective PFSP. As mentioned above,
Johnson’ s rule was initially used by Johnson (1954) to solve PFSP
with 2 machines. Subsequent studies expanded Johnson' s rule to
address PFSP with multiple machines (Campbell et al., 1970; Dudek
& Teuton Jr, 1964). Nawaz et al. (1983) introduced NEH heuristics,
which demonstrated superior optimization capabilities compared to
15 existing heuristics, including Johnson' s rule. Numerous
comprehensive studies with standard PFSP have confirmed that NEH
heuristic outperforms other existing heuristics (Framinan et al., 2004;
Ruiz & Maroto, 2005). In addition to heuristic algorithms, various
meta—heuristic algorithms, such as SA, GA, and tabu search, have
been extensively explored in many studies (Chen et al., 1995; Osman
& Potts, 1989; Widmer & Hertz, 1989; Zheng & Wang, 2003).
Another metaheuristic algorithm called Iterated Local Search (ILS),
was introduced by Stitzle (1998) for PFSP and was compared with
several other metaheuristics mentioned above (Ruiz & Maroto, 2005).
The results showed that ILS outperformed other metaheuristic
algorithms in this context.

On the other hand, there also have been many studies focusing
on finding optimal solutions using exact algorithms for various PFSP.
Exact algorithms encompass B&B algorithm, Integer Programming
(IP), and mixed—integer programming (MIP). Nagar et al. (1995),
Liao et al. (1997), and Lee and Wu (2001) utilized B&B algorithm in

PFSP with two machines. Chou and Lee (1999) and Eren and Glner
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(2008) implemented IP to tackle multi—objective PFSP two machine,
while Selen and Hott (1986) applied MIP to bi—objective PFSP with
two machine. These studies, however, predominantly focused on
small—sized problems, which are often inadequate to address real—
world problems effectively.

Recently, CP has emerged as a strong alternative to exact
algorithms, and it has been successfully applied to various PFSP
problems, addressing the limitations of exact algorithms (Rossi et
al., 2006). For instance, Oztop et al. (2022) proposed and compared
Mixed—Integer Linear Programming (MILP) models and a CP model
for no—idle PFSP problem, and their findings indicated that the CP
model outperformed the other models in terms of performance.
Similarly, Karabulut et al. (2022) developed MILP and CP models for
distributed PFSP with sequence—dependent setup times in small—
sized problem, and the result demonstrated that the proposed CP
model outperformed the MILP model in terms of solution time. These
studies showcase the effectiveness and potential of CP as a viable
alternative to exact algorithms in solving PFSP.

Among all research conducted in this field, very few studies have
explored hard due date constraints (Samarghandi & Behroozi, 2017).

“Hard due date constraint” refers to constraints where each part
has its own specific due date, and has to be satisfied. In most studies,
tardiness objective has been considered as an alternative to due date
constraints (Blazewicz et al., 2008; Brah, 1996; Gowrishankar et al.,

2001; Hunsucker & Shah, 1992), because incorporating due date
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constraints into the PFSP is a challenging task (Perez—Gonzalez &
Framinan, 2015).

In this study, the flat block assembly line scheduling problem can
be classified as a multi—objective permutation flow—shop scheduling
problem with hard due date constraint (MOPFSP—hd). This
classification is supported by the following reasons:

1. Both the flat block assembly line scheduling problem and the
permutation flow—shop scheduling problem share the same
primary objective, which is the minimization of the makespan.
However, in this study, the objective is not limited to
makespan minimization; it also includes considerations for
workload balancing and stock management.

2. Both problems involve ensuring that all parts (blocks) follow
the same predetermined operation sequence in the shop
(assembly line). Additionally, all parts strictly adhere to the
First—Come—First—Served (FCFS) rule, without any
skipping or re—entrant operations.

3. The problem in this study incorporates a hard due date
constraint. Unlike most studies that deal with tardiness
objectives, this study specifically aims to address the PFSP

with a hard due date constraint.

2.1.2. Makespan in Permutation Flow-shop

In project—based industries, such as shipbuilding, the evaluation

of successful projects revolves around three parameters: time, cost,
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quality. Ships in the shipbuilding industry are constructed based on
the specific requirements of individual contract. Makespan, in this
context, serves as one of the essential Key Performance Indicators
(KPIs) that reflects the lead time performance of the project.
Reducing makespan directly correlates with reducing the lead time of
a contract, making the minimization of makespan a critical aspect in
the scheduling process. Achieving a shorter makespan is crucial to
ensuring efficient project completion and meeting contractual
deadlines.

In this study, makespan is further analyzed to distinguish the
results obtained from the proposed CP and DES model. One of the
most widely used analysis method for makespan is the Critical Path
Method (CPM). The critical path represents the sequence of tasks
that determine the minimum time required for the entire process.
CPM calculates both critical and non—critical tasks through forward
and backward procedures. The detailed steps of these procedures
are outlined below,

Forward Procedure
Step 1.
Set time t = 0

Set Sj' =0 and Cj = pj foreachjob j that has no predecessors

Step 2.
Compute inductively for each job j

Sj - {alrln%)—ij} Ck

C], = S]’ + p]
Step 3.

11 A “._, ‘_]l



The makespan is Cppgy = max(Cy, ..., Cy).
STOP

where Cj' is earliest possible completion time of job j, Sj’ 1s earliest
possible starting time, p; is processing time, and {allk — j} is the
set of all jobs that are predecessors of job j. The backward

procedure is,

Backward Procedure

Step 1.

Set time t = Cpay-

Set Cj' = Cpqx and Sj'; = Cinax — Pj foreachjob j that has no successors
Step 2.

Compute inductively for each job j

G = Gy 4
= -

Step 3.

Verify that min(Sy, ...,S;)) = 0.

STOP

where (' is latest possible completion time of job j,S§/" is latest
possible starting time, and {j — all k} is the set of all jobs that are

successors of job j.

2.2. Constraint Programming

Constraint Programming (CP) is recognized as a powerful
technology for solving practical problems represented in the form of
a Constraint Satisfaction Problem (CSP) (Rossi et al.,, 2006). The
CSP is defined by three main elements:

m  Variable: X = {xq,...,x,},

19 .__:Ix_s _'q.;:-'_ T



m  Domain: D ={dy,..,d,},

m  Constraint: C = {cq,.., ¢}
where x; represents the decision variable of CSP, d; represents the
possible range of each variable, and ¢; restricts the possible range
of variables by specifying relationships between the variables.

The primary objective of CP is to find a feasible solution to a
given CSP (Hooker, 2002). However, it is now extensively employed
as an optimization tool by adapting an objective function. Constraint
Programming, in essence, refers to the computer implementation of
an algorithm designed for solving CSPs (Brailsford et al., 1999).
Some well—known algorithms in CP include backtracking, forward
checking, and Maintaining Arc Consistency (MAC) as mentioned in
Brailsford et al. (1999).

The three algorithms all rely on tree search techniques. The
process of searching involves assigning values to variables, which
are within the defined domain and satisfy all constraints. In other
words, selecting a branch in the tree corresponds to specifying the
value of the next variable.

The distinction between the algorithms lies in the search process
when the domain of the next branch variable no longer exists. The
backtracking method selects a different branch if the selected
variable, along with previously selected variables, violates any
related constraints. On the other hand, the forward checking and MAC
consider the relative constraints among the variables of the current

branch, past branches, and the next branch. As a result, the algorithm
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backtracks the branch when a single related variable fails to have a
feasible solution. Although forward checking and MAC may take
longer to calculate due to considering all related variables, they
effectively increase the search efficiency by not exploring the
infeasible branches. The difference between forward checking and
MAC is that MAC adopts chaining—arc—consistency, which checks
constraints for the changed next branch’ s variable, thereby further
reducing the domain of variables and detecting failures more quickly.
Hooker (2002) exposits detailed descriptions of search techniques
and classifies them according to theories of search.

In this study, the CSP of hull block assembly line is modeled, and
CP is employed to search for an optimal solution. The detailed model

is explained in Section 3.2.

2.3. Discrete Event Simulation

Simulation is a virtual environment that replicates the operation
of a real-world process or system over time (Banks, 2005). It is
commonly utilized as a virtual experiment environment because of its
flexibility, controllability, time—effectiveness, and cost effectiveness
(Robinson, 2014). Simulation is categorized into two types: DES and
continuous simulation, based on the manner in which state changes
are handled (Banks & Carson, 1986). In a DES model, the state
changes occur only at specific discrete points known as event times,

while continuous simulation model allows for state changes to occur
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continuously and smoothly over time. The continuous simulation,
however, require a substantial amount of calculation time compared
to DES.

DES has proven to be an effective testbed in various studies,
providing a reflection real—world factory operation. For example,
Rogers and Brennan (1997) utilized DES as an experimental testbed
to evaluate alternative control architectures. Brennan and William
(2000) developed a simulation testbed to assess a distributed multi—
agent control architecture for holonic manufacturing systems. Huynh
et al. (2020) presented a DES model of a manufacturing process to
generate data for calculating production KPIs. This model served as
the baseline for the factory performance management, and was
further utilized to optimize production flow. Lee et al. (2009)
employed DES to model a panel block assembly line in a shipyard for
calculating the makespan of scheduled block sequences using a GA.
These examples demonstrate the versatility and practicality of using
DES as a valuable tool in the evaluation, management, and
optimization of various industrial processes.

In this study, a specialized DES framework for factory simulation
is utilized to model the assembly line. Figure 2 illustrates the
Simcomponent framework introduced by Nam et al. (2022). The
framework consists of several modules, each serving a specific
function in the simulation process.

1. Adapter Module: the adapter module is responsible for data

preprocessing, converting raw data into a format suitable for

1 5 -":rxﬁ-! "%

3 =11 =1
- T O



simulation data input.

2. Modeler Module: The modeler module serves as a connection
between the preprocessed data and simulation. In ensures
that the data is correctly integrated into the simulation model

3. Simulation Module: The simulation module defines the
components of modeled simulation. It includes the DES kernel,
where the actual simulation is performed.

4. Analyzer Module: After the simulation is completed, the
analyzer takes charge of the post—processing step. It
calculates KPIs that represent the performance of the
simulation.

5. Reporter Module: The reporter module is responsible for
saving the simulation result and calculated KPIs in a separate

file, making them easily accessible for analysis and reporting.

User Interface

lation (SimComy ts)

[ @) (o) [
(@) (= O [wn@)

Adapter Modeler SimPy (DES Kernel) Analyzer Reporter

Event D Process Resource

Environment %.[:D:]. {9

Figure 2 Simcomponent framework introduced by Nam et al. (2022)

The simulation module comprises several components, each
representing a crucial aspect of the designed factory. The

components are Part, Source, Resource, Process, Sink, and Monitor.
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The part class represents the part that flows in the designed factory.
It contains all the part information that simulation requires. The
source class generates part in pre—defined or random sequence in
specific time. The process class defines detailed process of part in
dedicated operation, and the resource class determines the machine
number in the process. The sink class eliminates the part from the
system if needed. Lastly, the monitor class stores all the event logs
and information that user assigns. This information is sent to analyzer
for further analysis when the simulation is completed. Specific
classes defined to model the flat block assembly line is mentioned in

Section 3.3.
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Chapter 3. Development of Hull Block Assembly Line

Model
3.1. Problem Definition
[ 6) Assembly 2 (Line A) | )
N : n,»’/ Line B
| 3) Longitudinal Frame Installation |
.f_. /
sl

" [5 Manuat wtdng|

Figure 3 Simple illustration of the target flat block assembly line

Shipbuilding process involves the assembly of multiple hull
blocks, and each hull block is composed of several sub—blocks, with
most of them being flat blocks (Yang et al., 2019). This characteristic
of shipbuilding introduces the possibility of the flat block assembly
becoming a bottleneck process. Figure 3 provides an illustration of
the target flat block assembly line that is the focus of this research.
The assembly line comprises two lines; the Grand—assembly line
(Line A) and the Unit(Sub) —assembly line (Line B). Line A consists
of 10 operations, while Line B has 9 operations, excluding assembly
2. As all blocks entering each line follow the same order of operations,
the flat block assembly line can be classified as a permutation flow—
shop scheduling problem. Hence, the main objective of the flat block
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assembly line scheduling problem is to minimize the makespan and

prevent it from becoming a bottleneck in the shipbuilding process.

Machme driven
p[ate ......... On ....... P dedmgsmge Mﬁmnemnbtymge .......... 151a$embbfstgge
§ stage H ]
Plate installation Plate welding - on i i Assembly 1
Fmal assembly stage :
. Marual I Fi Assembl
o | ey || Meddveme | re =
Human diven Machine driven

Figure 4 Characteristics of the operations in flat block assembly line

Figure 4 provides a detailed description of the characteristics of
each operation in flat block assembly line. The operations and their
sequence in the process are listed within a gray box, along with their
respective names. Each operation is carried out at a specific location
on the line, referred to as a “stage” . The dotted box represents the
spatial constraint, where operations within the same box share the
same stage. As the assembly line operates, there is a limited capacity
for blocks to be considered. To address this capacity constraint, the
sum of lengths of blocks in each stage is limited to the stage length.

The spatial capacity of each stage is shown in Table 2.

Table 2 Spatial capacity of each stage

Capacity (m)
Stage - -
Line A Line B
Plate installation 30 30
Plate welding 64 64
Longitudinal frame assembly 53 53

73 by I ]
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1* assembly 31.5 24
2" assembly 32 -
Final assembly 131 160

The operations can be classified into two categories based on the
level of automation: machine—driven operations and human—driven
operations. Machine driven operations are mostly automated, with
required machines regulating the capacity of the operation. Table 3
provides the number of machines for each machine—driven operation.
All operations, except for plate welding, have only one machine,
indicating that each operation can process a single block. However,
in the plate welding process, there are 3 and 2 machines in each line,
respectively, and only two machines could be assigned to one block
due to spatial limitation. As a result, the operation in Line B could be
considered as a single—machine process, while Line A should be
considered as a parallel machines process. The machine assignment
in Line A follows a strict logic to minimize the makespan, adhering to

the FCFS rule.

Table 3 Number of machines in machine driven operations
Machine

Line A Line B

Plate installation 1 1

Stage

Plate welding
Longitudinal frame installation

Longitudinal frame welding

— = = DN

1% assembly

— = = W

2" assembly

The worker—driven operations rely on the work schedule to
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determine their process time. The schedule is divided into two shifts:
day and night, and the number of workers varies for each shift. The
total man—hours required for each operation are provided based on
task types and materials, and the process time can vary depending
on the start time of the operation, as the number of workers is
determined by the work schedule. In some operations, no workers
are assigned during the night shift. The daily working hours are
typically 10 hours for the day shift and 8 hours for the night shift.
Although an operation is machine driven, there is still a need for
workers to be assigned to manage the process. As a result, the
operation time of all operations follows the work schedule, and the
availability of workers during different shifts can impact the process
time for each operation.

From a scheduling perspective, several sequential rules are
applied to ensure operational efficiency and achieve business
objectives. The first rule is the “set block” rule. Since a ship hull
is axisymmetric, port and starboard blocks are identical and referred
as “set blocks” . These blocks are assembled simultaneously in a
berth and involve similar tasks. To optimize operational efficiency
and stock management, it is advantageous to process these block set
at the same time. Therefore, these set blocks should be scheduled
consecutively.

The second rule pertains to nonconsecutive blocks that should
be kept separate within the sequence. These block sets require a

significant amount of operation time. By keeping these blocks
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separate, workload balancing is achieved not only in the assembly
line, but also in subsequent processes.

Finally, there are scheduled blocks and operating blocks in the
factory. These block sequence and factory conditions should be
carefully considered in the operational scheduling step, as the
feasibility of the completed schedule depends on their proper
evaluation and integration. By incorporating these sequential rules,
the scheduling process aims to enhance overall operational
performance and ensure the successful execution of the flat block
assembly line.

The block sequence scheduling process involves three distinct
objectives. The first objective is the minimization of makespan. This
objective focuses on reducing the total lead time and cost by
minimizing the makespan and optimizing operation utilization. By
achieving a shorter makespan, the overall production process
becomes more efficient, leading to cost savings and timely project
delivery.

The second objective is workload balancing between the two
teams in the assembly line. In each operation, there are two teams,
each assigned to blocks alternatively. The objective is to evenly
distribute the workload between these two teams. This balancing
mechanism complements the “set block” rule mentioned earlier, as
set blocks typically have a comparable workload. Similarly, set blocks
with substantial amount of workload should be placed apart by an

even number of cells in the sequence, further enhancing workload
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balance.

The third objective is related to due date objective. Blocks with
earlier due dates are prioritized and positioned ahead in the sequence.
This objective aligns with the principles of lean manufacturing, aiming
to minimize block stock in the shipyard and prevent delays in
subsequent processes. By giving priority to blocks with imminent due
dates, the production process becomes more responsive and adaptive
to changing project requirements.

In the scheduling process for the assembly line, the makespan
minimization objective is applied to both line A and line B. However,
line B does not consider the other two objectives, namely workload
balancing and due date prioritization. The reason for this difference
is that unit and sub—assembly blocks in line B have similar workloads
for most block types. Additionally, their sizes are relatively small
compared to grand assembly blocks processed in line A. As a result,
stock management is not as important for line B as it is for line A.
Considering these factors, the optimization model for line A considers
all three objectives: makespan minimization, workload balancing
between the two teams in the line, and due date prioritization to
achieve lean manufacturing principles. On the other hand, the
optimization model for line B only focuses on makespan minimization,
as the other objectives are not as relevant for this specific line.

In this study, the goal is to solve the real—world problem of flat
block assembly line scheduling by considering all the conditions that

schedulers encounter in the factory and scheduling process. To
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achieve this, two categories are classified from the various conditions:

general PFSP conditions and industrial conditions. Figure 5 shows the
classification of various conditions according to general PESP or
industrial conditions.

The general PFSP conditions include constraints and objectives
commonly found in typical PFSPs, such as process time, operation
capacity, FCFS rule, due date, and makespan minimization. These
conditions form the foundation of the problem and are considered in
the optimization model.

On the other hand, the industrial conditions are specific to the flat
block assembly line in the shipbuilding industry and include spatial
arrangement, shift calendar, set block, separate block, and scheduled
block rules, workload balancing, and due date priority. These
conditions are critical in reflecting the real—world complexities of the
assembly line and are incorporated into both the optimization model
and the simulation model.

However, due to the computational complexity of considering all
industrial conditions in the optimization model, some simplifications
are made to improve search efficiency. These simplifications are then
validated in simulation model, which provides a more detailed and
accurate representation of the assembly line’ s performance under
real—world conditions. By comparing the result between the
optimization model and the simulation model, the effectiveness of the
proposed scheduling approach in solving the actual industrial problem

1s ensured.
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— Constraints and objectives — - General and industrial PFSP —

¥ Single operation
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Spatial arrangement . i
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v Workload balancing (A)
¥ Due date priority (A)

Figure 5 Classification of various conditions according to two perspectives

3.2. Constraint Programming Model

In the CP model, some conditions are simplified to improve the
efficiency of the search speed. Three specific simplifications are
made in this study.

First, block movement is not considered in the CP model. Block
movement time depends on the sequence and process time of each
block, making it a dynamically determined variable that adds
complexity to the model. Due to this complexity, block movement is
not explicitly modeled in the CP model.

Second, parallel machine process in plate welding process (Line
A) is simplified as a single machine process with 3 machines. In line
A, the plate welding process involves 3 welding machines, and each
block can be processed using 2 machines simultaneously. However,

defining resource variables and assigning process times of each
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resource dynamically significantly decrease the search efficiency of
the CP model. To mitigate this, a simplification is applied by assuming
that all machines can be used for a single block at the same time until
the operation is finished. As a result, the operation time (pij) of the
plate welding is divided by 3 in the CP model.

Third, the dynamic operation time of assembly 1 and 2 (Line A)
is also simplified for computational efficiency. In the actual assembly
line (line A), the operation time of assembly 1 and 2 is dynamically
determined during the processing to minimize the makespan.
Specifically, the assembly 1 and 2 operation can be divided into 3
sub—tasks: assembly 1, assembly 2, and assembly 1 or 2. The
operation time of assembly 1 or 2 is dynamically assigned to
assembly 1 or assembly 2 stage, ensuring minimization of the
makespan. The CP model, however, this dynamic condition is
simplified by dividing the total operation time of assembly 1 or 2
equally between assembly 1 and assembly 2.

By applying these simplifications, the CP model can still capture
the general characteristics of the assembly line and produce feasible
solutions while reducing the complexity of the optimization problem.
However, it is important to note that these simplifications may
introduce some differences between the results obtained from the CP
model and the DES model. As such, the DES model is used to validate
and compare the results, ensuring that the simplifications made in the
CP model do not significantly impact the quality of the solutions. The

analysis of these differences provides valuable insights into the
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performance of the proposed scheduling approach for the flat block

assembly line.

In The CP model, the problem is formulated as a CSP. The

variables, domains, constraints, and objective functions are defined

to represent the scheduling problem for the flat block assembly line.

The notations used in the developed CSP are described in Table 4.

Table 4 Description of notations of the flat block assembly line model

Symbol Description Symbol Description
Machine (worker) number
I Set of blocks N; ) .
of operations j
b Set of blocks which
I; Ng Number of blocks
block due date> d;
i Block number MH,; Man-hour of block i
Set of blocks in st k
j Operation number B ] ¢ . Ob blocks I stage
n time t
k Stage number L; Length of block i
A Weight value of objective Ly Length of stage k
m Sequence number d; Due date of block i
a Cell distance parameter S(]ij) Start time of Jj;
ii' Set block F(]ij) Finish time of J;;
Interval variable of Number of jobs (J;) in
Jij . . N(]ij)t :
operation j in block i time t
Interval variable of stage . .
Ay . ) Varseq Sequential variable
k in block i
S tial iable that
Length of interval ref equentia Vané © ?
T;j . Varg, order of variable is
variable (J;;) ,
predefined
Total operation time of Total man—hour assigned
Dij Cost

process j in block i

to the team

3.2.1. Variables in the CP Model

Indeed, the search efficiency of CP heavily depends on problem

modeling and the number of variables considered in the CSP.

Minimizing the number of variables while still capturing all the
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relevant constraints and objectives is essential for improving the
search efficiency. In the context of the flat block assembly line, three
types of variables are required in the CSP model: operational variable
(J;;), spatial variable (A ), and sequential variable (Varsg). Ji;
represent the jobs (blocks) and their assignments to specific
machines at specific times. They capture the initial times of the
operations, processing times, and completion times. A;, represent
the spatial arrangement of the blocks in the assembly line. They
determine which stage the block is located, considering the spatial
constraints and capacity limitations of each stage. Varg,, represent
the block sequence and capture the order in which the blocks are
processed on the assembly line. They ensure that the sequence of
blocks follows the specified rules and objectives, such as the set
block rule and separate block rule.

Figure 6 provides an overview of the designed variables required,
and Table 5 summarizes the total number of variables in the model.
Each block has 10 operation variables representing the start and
finish time of each operation. To efficiently manage these parameters,
the “Interval_var” in ILOG CPLEX Optimizer is used. Additionally,
there are 6 spatial variables on each block representing the start and
finish time of stage occupation. These variables also utilize the

“Interval_var” to effectively model the spatial arrangement of
blocks in the assembly line. A sequence variable and reference
sequence variable is also defined to implement sequential constraints
such as set blocks, separate blocks, and scheduled blocks. However,
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the sequence variable itself cannot represent the order of specific
blocks. Therefore, a reference sequence variable is introduced,
which contains a predefined order of blocks to represent the order
number of blocks in the sequence variable.

In the developed CSP model, the domains of variables are not
explicitly defined, but instead, it is constrained by various operational
constraints such as FCFS rule and due date constraint. These
constraints define the allowable values for the variable dynamically,
ensuring that solutions satisfy the specific operational requirements.
For most variables in the model, the initial domain is defined as
[0,max date], where max date represents the maximum possible
time or deadline in the scheduling problem. The scheduled blocks and
operating blocks, however, entering time into the assembly line is
known in advance. In the model, this information is used to assign the
entering time as the start time of the first operation variable, which

corresponds to the plate installation.

Table 5 Number of variables according to the type of variable

Variable type Number of variables
Operation 10N
Space 6N
Sequence 1
Reference N+1
Total 17N +1
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Figure 6 Variables designed for the flat block assembly line CSP model
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3.2.2. Constraints and Objectives in the CP Model

Constraints and objectives in this case are explained in Figure 5.

They are mathematically and logically formulated using variables

defined in the Section 3.2.1. The formulations of the constraints and

objectives are shown below:

Minimize (/11 Objmakespan + /12 Objbalance + A3 Objduedate)

S.t.

Objmakespan =Fy — Sy

Objyaiance = |COStodd - COStevenl

Objaueqate = Xi, 2ip(SUi;1) = SUin) > 0), Vi, € IP

Fy = argmaxg;, ) (]ij v(i, j))

Costygq = SUi) = S(Var'))x MH,),m € {mim =2n—1,n € N
odd m 14

COStopen = Z ((5(/11) = S(Var,fff)) X MHi>,m € {m|m = 2n,n € N}

pij/N;
Ty = F(Jy) = SUy) = {f(P]ij"\]’f)

N(j), <1 viel

F(Ji;) < SUigsn), YN

{(S(]ill) - 5(/i21)) X (5(111,') - S(]iz]'))} >0, Vj €{2,3,..,10}

ZE”) L <Ly

ij) € BF
{S(Aik) <S(ij,)
F(]ijz) < F(Ay)
F(Ay) = S(Aigrs))

Line A :F(Ay) < d;, Vi€l
F(AR) < s5(44

Line B :
e {F(A?S)Sdi

Previous(Ji1,];71)
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Isomorphism(Varg,,, Vagzzf (16)
(SUw) = S(Varg”)) + (SUr) = S(VargLpesr)) =0
ref o ref ' (17)
(SU) = s(ary)) + (5Ui) = S(Varyess)) = 2
Vvme(l, 2 .., Ng—2(@+1)}, a€{l, 2 3}

The objective function (1) and relative sub—objective functions
(2) ~ (6) ensure that the search algorithm aims for makespan
minimization, workload balancing, and stock management. The
coefficient A can vary based on the scheduling strategy. Equations
(2) and (5) represent the makespan minimization objective function,
which is calculated as the difference between the minimum start time
and the maximum finish time of all operations.

Equation (3) and (6) is the workload balancing objective function.
As discussed in Section 3.1, there are two teams in each operation
that take turns receiving block assignments. Therefore, the total
workload of each team can be calculated using equation (6). This
equation is formulated as a logical expression representing a boolean
value that returns 1 if true and O otherwise. It" s expressed as a
bracket (5(/11) = S(Var,:ff)).

The stock management function is formulated as equation (4).
Individual block (i;) counts all blocks (i,) that have longer due date
but are placed earlier in the sequence. Minimizing this value aims to
arrange the blocks according to their due dates. Thus, this objective
function adds all values of individual blocks to be considered in
equation (1).
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The constraints are classified as operational constraints and
sequential constraints. The operational constraints are listed in
equations (7) to (14), and sequential constraints are listed in
equations (15) to (17). The operational constraints define the
relationship between operation variables and spatial variables, and
they consist of single operation constraints, constraints between
operations and including stage, and constraints between the stages.

The single operation constraints are formulated as equation (7)
and (8). Equation (7) determines the operation time according to
operation type. For machine—driven operations, the operation time is
defined as the total operation time (p;;) divided by the number of
machines (N;) in the operation. As discussed in Section 3.2, all
operations are considered to have only one block capacity, which
forbids a parallel operation (Equation (8)). The operation time of a
worker—driven operation is also defined similarly, but the number of
workers differs according to shift time. Therefore, the calculation of
the operation time according to the work shift schedule is presented
as a function f in the formulation. Figure 7 shows an example of
operation time calculation according to the work shift. Let’ s assume
there is an operation with total operation time of 28 hours. The
operation starts at 12 with 5 workers assigned, and workers are
switched at 16 due to the work shift schedule. The remaining hour of
workload is 8 hours with 4 workers, so the operation finishes at 18.
This constraint is applied using intensity function, which is embedded

function of “Interval_var” in ILOG CPLEX Optimizer.
33 ] £

3 =11 =1
|-1-'l| .J!'



r 3
«——  Day shift ———»<— Night shift —»

PEI' =28 hrs

Number of workers
LS

Y

9 10 11 12 13 14 15 16 17 18 19
Time (hrs.)

Figure 7 Example of operation time calculation according to work shift

The constraints between multiple operations and a stage are
formulated as equation (9) to (12). Equation (9) defines the
operation sequence of each block. Since the line can be categorized
as a permutation flow shop, all blocks have the same operation
sequence. Equation (10) regulates the block dispatching method on
the operations as the FCFS rule. This ensures that the blocks are
processed in the order they arrive at the operation. Equation (11)
constrains the spatial capacity of the available blocks in a stage by

length. In this model, blocks are assumed to be placed in a row, so

the sum of the block lengths (Zgg c BkLl-) in a stage should not
) t

exceed the stage capacity (L). Equation (12) ensures the existence
of a block in a stage until all operations in the stage are finished.
There are single operation-single stage relationships, such as plate
installation, plate welding, and assembly, and multiple operations-
single stage relationships, such as longitudinal frame stage and final

assembly stage. The notation (j;,j,, k) represents the relationships.
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The constraints between the stages are formulated as equation
(13) and (14). Equation (13) ensures the existence of blocks in the
line, meaning that there should not be any gaps in time between the
spatial variables in a block. This constraint guarantees that the blocks
move continuously through the line without any interruptions.
Equation (14) represents the due date constraint. The line A and line
B have different due date constraints, because some blocks from line
B are assembled with blocks on line A at assembly operation.
Therefore, line A regulates the block due date with individually
determined due dates, whereas line B discretizes the block if it is an
input of line A or not, and regulates the due date accordingly.

The sequence constraints are shown in equations (15) to (17).
Equation (15) uses “Previous” function, that is an embedded
constraint in [ILOG CPLEX Optimizer utilized with sequence variable.
This constraint ensures that block i is scheduled previous to block
i" in the sequence. The set block constraint is designed using this
constraint. To design separate block constraint, there needs a
distance variable that represents a distance between two blocks in a
sequence should be available to express the even cell distance. To
achieve this, a reference variable is designed to indirectly represent
the cell distance. Equation (16) is the isomorphism constraint
between the sequence variable and the reference variable, which
creates a one—to—one correspondence relation between the set of
two interval variables. The sequence of interval variables in the

reference variable is known, and it indirectly addresses the sequence
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of interval variables in the sequence variable using a boolean value,

(S(/il) = s(vars® )) .

Equation (17) shows the separate block

constraint. This constraint ensures that block i and block i’ should

have cell distance in one of 2, 4, and 6 between them.

3.3. Discrete-Event Simulation Model

The simulation model is built using the Simcomponent framework,

as shown in Figure 2, which was introduced by Nam et al. (2022). To

simulate the assembly line, seven classes of factory simulation

components are adjusted to fit the specific problem. Table 6 provides

a description of these classes defined for the assembly line. All

classes, except the process class, have analogous purposes and

structures with the classes in Simcomponent. The process class is

further divided into two classes: the operation class serves as a

workspace where operations are processed, and the stage class

functions as a physical line where spatial movement is considered.

Table 6 Description of adjusted classes defined from Simcomponent

Classes Adjustment Description
Part Block Contains block information
Source Source Creates block object and feed to first stage
Operation A workspace where operation is processed
Process Physical line where spatial movement is
Stage .
considered
Controls the number of workers based on
Resource | Worker .
shift calendar
. . Eliminates finished objects from the line
Sink Sink :

when delivered
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Monitor Monitor Records all events occurred in a scenario

The simulation process involving the classes are shown in
Figure 8. Initially, a block object is created by the source class, based
on either a predetermined schedule or a block sequence generated
from the optimization model. This block object contains essential
block specifications and status data that are tracked throughout the
simulation process. The block is then stored in a designated storage
area and awaits its turn to move to the next stage storage. Within the
stage class, there are two storage areas: “storage (in)” and

“storage (out)” , which are used to control the movement of blocks.
The “storage (in)” assesses the available space in the stage,
comparing the stage length with the lengths of blocks currently
present. When sufficient space is available, the “storage (in)”
either receives a new block from the source storage or retrieves a
block from the storage (out) of the previous stage. Subsequently, the
block is transferred to the first operation storage within the stage
once the operation becomes available. Upon completing the last
operation in the stage, the block is moved to “storage (out)” , from
where it can proceed to the next stage or be eliminated from the line,
depending on whether all processes have been completed. Even the
block is moved to the operation stage, the stage storage still take
account to the block length until the block i1s transferred to next stage.
Therefore, block occupation is promised during all processes.
Ultimately, the blocks moved to the sink storage are eliminated from
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the line, signifying the end of their simulation journey.

Source Stage Stage Sink
Operation Operation
s cos S
Block : Complete
Storage (Storage v v y Storage
Storage (in) Storage (out) Storage (in) Storage (out)

v Block name ¥ Name v Stage name

v Operation sequence ¥ Schedule v Stage length

v Current Operation ¥ Block specification v Blocksin the stage

v Current stage ¥ Initial start time v’ Storage (in)

v Operation time ¥ Storage v Storage (out)

v’ Servicing status ¥ Monitor v Monitor

v" Location

v' Operation name ¥ Name v Time

v’ Stage name v Storage v Block name

v Shift calendar ¥ Monitor v Block sequence

v Operating block v Event

v’ Storage v Resource

v" Monitor v" Location

v Operation

Figure 8 Simulation process and information of each class

As stated in Section 3.2, the CSP model simplifies or does not
consider three important aspects for search efficiency: block
movement, parallel operation in plate welding, and dynamic operation
time in assembly 1 and 2. However, the simulation model aims to
accurately reflect the reality and considers all processes without
simplification. Consequently, the three processes are also
incorporated in the simulation model based on the actual system’ s
functioning principles.

In the proposed simulation model, the block movement is

considered within the stage class. Each block object is assigned
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location information as depicted in Figure 8. This information is
updated when a block enters or leaves the stage. Upon entering the
stage, the block is placed in the farthest available position. The block
movement speed within the line is set at 1m/min. Conversely, when
a block leaves the stage, all blocks in the stage move simultaneously
to create space for the incoming block from the preceding stage. Even
operating blocks stops their processes, moves first, and then resume
their operations at the new position.

The simulation model appropriately incorporates the parallel
operation in the plate welding within the process class by utilizing
multiple resources. In this model, both machines and workers are
represented as resources in the process class. Since all welding
machines have the same specifications, a simple assignment rule
based on the FCFS principle is adopted. The simulation ensures that
no block can cut in line, meaning machines are assigned to blocks in
the order of their arrival. Specifically, two machines are always
assigned to the first block in the queue. If there are other blocks in
line A, the second block takes the remaining machine. In line B, where
there are only two machines, all machines are assigned to the first
block.

Lastly, the dynamic operation time in assembly 1 and 2 in line A
is considered using a simple rule. The subtasks of the assembly
operation are distinguished as assembly 1, assembly 1 or 2, and
assembly 2. While assembly 1 and assembly 2 tasks are exclusively

processed in designated stage, the assembly 1 or 2 task can be
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processed in either one. To minimize makespan and prevent the
assembly operation from being a bottleneck, this task is processed in
assembly 2 whenever it is available. This strategy avoids the
situation where assembly 2 is idle while assembly 1 is working when
the block could be processed in assembly 2 instead. In this scenario,
it 1s advantageous to process the block in the assembly 1 within
assembly 2, thus optimizing the overall production flow and reducing

makespan.

3.4. Optimization Strategy

The optimization of the flat block assembly line sequence covers
both grand assembly and unit (sub) assembly lines, as these two lines
are interconnected and have a precedence relationship that impacts
the overall factory environment.

In the shipbuilding industry, scheduling is typically done based
on backward planning, where the scheduling of preceding steps is
determined using the due date from subsequent steps to ensure
smooth logistics and timely completion. In case of the flat block
assembly line, most sub and unit blocks processed in line B serves
as inputs for line A blocks. As a result, the block sequence schedule
for line A must be established before scheduling the blocks in line B.

However, the operation scheduling process is not just about
determining the sequence for undecided blocks; it also needs to

consider the real—time shop conditions of already decided blocks.
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This means the established schedule should be robust and considers
the dynamic nature of the shop floor, as optimization models may
overlook certain factors. To address this issue and evaluate the
feasibility of the optimized schedule, this study proposes a simulation
model (as described in Section 3.3). This simulation model is
connected with the optimization model to simulate the actual
production process and evaluate the performance of the optimized
schedule.

Figure 9 illustrates the hierarchical scheduling process that
integrates the optimization model and simulation model. The process
begins with target blocks of line A being fed to the optimization model,
which then searches for the optimal sequence based on the objective
function. During the search, the optimization model generates feasible
solutions while continuously updating the objective function.

Once the search is complete, the optimization model produces
feasible solutions with the least makespan, and these solutions are
then validated using the simulation model. However, for this
validation, the workload balancing and due date objective are not
considered, as these objectives are solely related to the block
sequence.

Next, the simulation result of the feasible solution with the least
makespan are delivered to line B, where the due dates of blocks are
adjusted accordingly. The scheduling process for line B follows the
same order as the optimization process for line A. If there is no

feasible solution found initially, the feasible solution with the second

41 A “._, ‘_]l



smallest makespan from line A is delivered to line B for further
iterations. This iterative process continues until a set of feasible
solutions for both line A and B are obtained.

The scheduling process is considered complete when the set of
feasible solutions from both lines is combined and announced as the
optimal solution for the given case. This hierarchical approach allows
for the integration of optimization and simulation techniques, ensuring
that the proposed schedule is both feasible and capable of achieving

the minimum makespan.
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Chapter 4. Performance Analysis

4.1. Case Studies

Target schedule is 2 weeks of blocks in flat block assembly line
from an actual shipyard in South Korea. Two cases are experimented
to validate the performance of the proposed framework. Each case is
optimized following the optimization strategy mentioned in Section
3.4, and the result is compared with the manually planned schedule
by actual schedulers.

Table 7 shows the block composition according to the case. Case
1 line A has 69 total 69 blocks with 3 scheduled blocks, 17 sets of
set blocks, 5 sets of separate blocks, and 22 individual blocks.
Individual blocks refer to blocks that doesn’ t fit either set blocks
and separate blocks, mostly consists of hull center blocks that are
not accompanied by an axisymmetric block. According to the
schedulers, these blocks contribute to effectively easing workload
balancing in scheduling perspective, since these blocks doesn’ t have
any sequential constraints. Line B blocks has 40 blocks with 4
scheduled blocks, 14 sets of set blocks, 2 separate blocks, and 4
individual blocks. Compared to line A, line B has fewer separate
blocks, because there aren’ t many types of blocks that require

heavy workload in unit and sub assembly lines.
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Table 7 Block composition according to the case

. Total Scheduled Set Separate | Individual
Case | Line
blocks blocks blocks blocks blocks
) A 69 3 34 10 22
B 40 4 28 4 4
5 A 60 4 30 10 16
B 61 3 42 0 16

Similarly, case 2 has total 60 and 61 blocks in each line, and line
A has 4 sets of blocks, and line B doesn’ t have any separate blocks.
The separate block constraint defined in Section 3.2 is complex
compared to other sequential constraints, formed with logical
constraints and comparison operator. This decreases the search
speed significantly. Therefore, line A optimization usually require
significantly more time to search for the optimal solution than line B.
In addition, grand assembly is known to be the bottleneck process
among all assembly processes (unit, sub, and grand), so it is more
critical to find a solution with smaller makespan in line A than B in
limited optimization time. Accordingly, search limit for each line is
defined within search time, and number of solutions. Table 8 shows
the CSP search limit in each line. The Line A optimization has an hour
limit of search time, whereas the line B has only 20 minutes. Also,
the line B optimization has additional search constraint, the number
of solutions. It is because the line B solution is derived to validate the
feasibility of the line A solution. The line B solution has an impact on
the feasibility of the solution for line A, necessitating that the

operation scheduling considers the shop condition of preceding
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processes, which involves unit and sub assembly.

Table 8 CSP search limit in each line

Line Search time (s) Number of solutions
A 3,600 -
B 1,200 3

The experiment 1s conducted using IBM ILOG CPLEX
Optimization studio 20.1.0 in virtual environment of Python 3.10.9
and docplex 2.25.236, and DES using Simpy 4.0.1 on a computer with
an Intel Core i17—13700 2.10 GHz, 16 cores with 24 threads CPU and

64 GB RAM.

4.2. Result Analysis

The two cases mentioned in Section 4.1 are scheduled following
optimization strategy in Section 3.4. The result is analyzed
quantitatively, and the makespan difference between CP and DES is
analyzed using CPM.

The weights of the objectives in CP model is defined according
to the interviews with practitioners. Table 9 shows the determined
weight values of each objective. It shows that ratio of each objective
is 1:1:0.01. This is due to the relative importance of each objective;
makespan, workload balancing, and due date in descending order. The
unit of makespan and workload balancing is minute and hour
accordingly. In other words, even the weight value is same, the

sensitivity and value of makespan is larger than workload balancing.
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Thus, the weight effectively shows the relative importance between

the objectives.

Table 9 Determined weight value of each objective

Weight Value
A 1
Ay 1
A3 0.01

4.2.1. Result Analysis in Case 1

From this section, the outputs of each step in the optimization
strategy from Figure 9, and quantitative analysis of the results are
presented on two cases. The quantitative analysis consists of
objective function comparison, makespan comparison between CP
result and simulation result, feasibility analysis and relative blocks in
individual solutions, and quantitative analysis of makespan difference
using CPM.

Table 10 shows the potential solutions derived from CP of line A
in the 1° case. The search time limit follows Table 8. Total 27
solutions were found during the search. Figure 10 illustrates the
updated objective values during the search time. The first feasible
solution found from CP model is shown to have small improvement
compared to the manual, and the best (27") has improved 15.84%,
with 15,630.11 as the total objective according to Table 11.

Although overall objective has continuously improved, each sub—
objective may not have improved in parallel. One sub—objective could

be sacrificed to improve other objectives, resulting overall objective
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improvement. This is called as

“trade—off” .

Figure 11 clearly

shows the trade—off between makespan and workload balancing.

Update from solution 14 to solution 15 clearly had big change in both

objectives. The workload balancing and due date were sacrificed to

achieve dramatic decrease of makespan. Note that the weight of due

date objective is 0.01, so the value of due date objective is negligible.

Table 10 Potential solutions derived from CP of line A in case 1

No. "'fota'l Makespan Worklc')ad Due date Se.arch
objective balancing period (s)
1 17,682.03 17,674 7 103 455.8
2 17,674.64 17,667 7 64 573.3
3 16,808.66 16,801 7 66 870.1
4 16,610.11 16,602 7 111 889.7
S 16,602.36 16,594 7 136 1,034.3
6 16,602.34 16,594 7 134 1,140.3
7 16,602.02 16,593 7 202 1,791.1
8 16,601.98 16,593 7 198 1,868.2
9 16,601.94 16,593 7 194 1,875.8
10 16,601.92 16,593 7 192 2,641.2
11 16,590.48 16,581 7 248 2,644.3
12 16,589.98 16,581 7 198 2,697.7
13 16,589.42 16,581 7 142 2,703.2
14 16,580.30 16,572 7 130 2,860.0
15 16,137.78 16,021 115 178 2,880.3
16 16,114.18 15,997 115 218 2,888.0
17 16,110.08 15,993 115 208 2,896.1
18 16,062.02 15,945 115 202 2,935.3
19 16,061.90 15,945 115 190 2,954.7
20 16,061.86 15,945 115 186 2,972.8
21 15,832.21 15,715 115 221 3,011.0
22 15,721.23 15,604 115 223 3,042.3
23 15,721.21 15,604 115 221 3,106.3
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Solution No.

Figure 11 Sub objective values according to solutions

24 15,700.19 15,615 83 219 3,115.8
25 15,676.19 15,591 83 219 3,120.2
26 15,630.19 15,545 83 219 3,121.1
27 15,630.11 15,545 83 211 3,126.6
Manual | 18,573.12 17,924 647 212 -
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Table 11 Comparison between the best solution derived from CP model and
manually planned schedule in case 1

. Total Workload Due  Sequential
Solution o Makespan . .
objective balancing date  constraint
Manual 18,573.12 17,924 647 212 63.6%
Best (27) 15,630.11 15,545 83 211 100%
Improvement (%) 15.84 13.27 87.17 0.47 36.36
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The improvement of individual objective is also presented in
Table 11. It is shown that improvement of makespan, workload
balancing, and due date objective is 13.27%, 87.17%, and 0.47%
respectively. Note that the manual schedule didn’ t satisfy the
sequential constraints. This is because of two reasons. First,
sequential constraint is one of many rules in current scheduling
process. Other rules consist of due date priorities, workload
balancing, etc. There is no strict standard for the priority of each rule,
and it also differs from person to person. This is one of the main
reasons why mathematical and algorithmic approach is developed in
this research to ensure the consistency of the schedules, not
dependent on schedulers. The second reason is there could be
emergency blocks that are transferred from other shops due to
various circumstances. Schedulers reschedule these blocks,
acknowledging the potential risk of violating established rules. These
blocks are considered as scheduled blocks in the proposed model.

The following step is to validate the solutions using DES model.
The key indices that the model validates are makespan change and
feasibility of the derived solutions. Table 12 shows the validation
result of 15 solutions from CP model. Last 12 solutions are omitted,
because none are feasible. The average makespan difference
between CP and DES model is 6.73%. The simulation result criticizes
its justification, because only 6 out of 27 solutions are feasible. This

1s due to the increase of makespan that leads to some blocks to fail
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to meet the due date.

Table 12 Feasibility and makespan results calculated using DES model of line

Aincase 1
No. Makespan Makéspan Difference Delayed Se.arch
(CP) (Sim) (%) period (s)
1 17,674 18,570.79 4.83 N 455.8
2 17,667 18,814.97 6.10 N 5733
3 16,801 18,462.09 9.00 N 870.1
4 16,602 18,108.07 8.32 Y 889.7
5 16,594 18,107.56 8.36 N 1,034.3
6 16,594 18,088.56 8.26 N 1,140.3
7 16,593 18,087.79 8.26 Y 1,791.1
8 16,593 18,087.79 8.26 Y 1,868.2
9 16,593 17,981.74 7.72 Y 1,875.8
10 16,593 17,970.74 7.67 Y 2,641.2
11 16,581 17,498.15 5.24 Y 2,644.3
12 16,581 17,404.85 4.73 Y 2,697.7
13 16,581 17,435.30 4.90 Y 2,703.2
14 16,572 17,255.12 3.96 N 2,860.0
15 16,021 17,202.56 6.87 Y 2,880.3
Manual 17.924 18,894.12 5.14 Y -

Detailed makespan difference analysis is conducted with example

blocks from solution 7 in Table 13 and Table 14. The 7™ solution is

determined to be infeasible solution due to 2 blocks, 32" and 54"

block. According to Table 13, 32" block started 107.87 minutes later

in DES than CP model. This difference is the accumulated result of

preceding blocks’ delay. The total lead time for this block in DES

model 1s 2,046.83 minutes, which 1s 740.83 minutes longer than CP

model. This directly affected the block to fail to meet the due date.
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Therefore, although there is 750 minutes of buffer between finish
and due date in CP model, the DES result shows 98.7 minutes of delay.

The 54" block in Table 14 shows more dramatic difference in
start time. This is because the block is placed back of the sequence,
resulting more delays compare to the 32" block. Even though CP and
DES model show similar lead time, only 179.72 minutes of difference,
the delay of start time critically affected the delay of finish time.
Accordingly, the block has a delay of 326.03 minutes.

The two blocks, 32™ and 54" block, are the primary factor
contributing to the infeasibility of the solution. All the other infeasible
solutions have same delays from different blocks. This result
emphasizes the limitation of CP model and the necessity of validation
tool, in this research is DES model. The feasible solution, however,
also has difference between two models. The quantitative analysis of

feasible solution is conducted in below.

Table 13 32nd block from solution 7 simulation process analysis

32nd Start Finish  Lead time D(Eeel‘iit)e
CcP 11,804 13,110 1,306 13,860

DES | 11,911.87 13,9587 2,046.83  13,958.7
A 107.87 848.7 740.83 -98.7

Table 14 54th block from solution 7 simulation process analysis

54th Start Finish  Lead time D(;eega;t)e
CcpP 15,759 18,366 2,607 19,200

DES | 16,739.31 19,526.03 2,786.72  19,526.03
A 980.31  1,160.03  179.72  -326.03

The best solution derived from DES model is 14™ solution. The

3 = 1 g
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comparison between the solution and manually planned schedule is
shown in Table 15. The simulation result criticizes makespan
improvement has increased from 7.54% to 8.68% compared to CP
model. The workload balancing objective is dramatically improved by
99%, the workload difference between teams is almost negligible.
The due date objective has also improved by 38.68%. This means
less blocks are sequenced reversely. Most importantly, this solution
1s viable in actual shop condition with no delay.

Table 15 Comparison between the best solution derived from DES model and
manually planned schedule in case 1

. Makespan Makespan Workload Due
Solution . . Delayed
(CP) (Sim) balancing  date
Manual 17,924 18,894.23 647 212 Y
Best (14) 16,572 17,255.12 7 130 N
Improvement (%) 7.54 8.68 99 38.68 -

The CPM is conducted to analyze the makespan difference of the
selected solution. This method finds the critical path regarding all
processes and movements, and distinguishes the time according to
difference factors, which are exclusions and simplifications in CP
model. Figure 12 illustrates the Gantt chart and critical path of
solution 14. The processes and movement are colored in different
colors, and the critical path 1s labelled as blue. The specific
discrimination of difference factor in the critical path is analyzed. The
different factors between CP and DES model are block movement,
parallel process in plate welding operation, and dynamic operation
time in assembly.
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Additional two factors are shift change and unit error. First, shift
change in post assembly operations could make the difference. The
post assembly operations have dynamic operation time due to shift
change. For an example, no workers are assigned during the night
shift for manual welding and grinding operation. If grinding operation
of one block is not finished in day shift, it should wait till the next day
shift. This difference is analyzed as shift change. Next is unit error.
The CP model can only calculate integer units. Real values below the
decimal point are excluded, however, the DES model consider them
all. Thus, this difference is due to unit difference between the models,
and it is named as “unit error” .

Table 16 shows the discrimination of difference factor in the
critical path of 14" solution. The makespan of DES model represents
the lead time of critical path, and the makespan of CP model
represents the lead time of same critical path derived from the CP
model. The critical path in DES is not critical path is CP model, since
the makespan of CP model is 16,572 minutes from Table 15, and the
lead time of the critical path is 15,538. This means that difference
factors has changed the critical path.

When closely examining each factor, the block movement is only
considered in DES model. Specifically, 1,733 minutes are the block
movement in the critical path in DES model, and none in CP model.
The parallel operation has increased the operation time in DES model,
since only 2 machines are assigned simultaneously, whereas 3

machines are assigned in CP model. Assembly 1 and 2 is calculated
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separately and there were 316.02 and 44.11 minutes of difference
respectively. It is due to dynamic operation time mentioned above.
According to the result, there were more blocks operated tasks in
the Assembly 1 than Assembly 2, since there were blocks already
operating in Assembly 2. Lastly, shift change and unit error are also
examined to have 535 and 12.8 minutes of difference respectively.
The total time difference of all factors are 1,717.12 minutes of
increment from original lead time from CP model, which is 15,538

minutes. Therefore, total lead time of this path is 17,255.12 minutes.
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Figure 12 The critical path of solution 14 including block movement
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Table 16 Discrimination of difference factor in the critical path

Factor CPp A DES
Makespan 15,538 - -
Movement - 1,733 1,733
Plate weld 465 234.41 699.41

Assembly 1 809 316.02 1125.02

Assembly 2 6710 -44.11 6665.89
Shift change 535 -535 0
Unit error -12.8 +12.8 0

Total 15,638 1,717.12 17,255.12

The next step of proposed method of scheduling is optimization
of line B. By the nature of backward scheduling, most blocks in the
line B should inherit the due date from the line A schedule. Since
there are 6 feasible solutions in line A, the optimization of line B
inheriting the due date from each solution in line A is conducted with
both time and number of solution limit noted in Table 8.

Table 17 presents the potential solutions derived from CP of line
B. All solutions from line A have found 3 solutions in line B
respectively. In all cases, the first solution is found about 10 minutes
after the algorithm is initiated, and last solution is found close to
1,200 seconds. The makespan comparison on potential solutions are
illustrated in Figure 13. Unlike the optimization result in line A,
derived makespan is larger than manual plan except 2 solutions, and
even these solutions have only 4 minutes of difference. This,
however, is further analyzed in DES model to validate the feasibility

of the derived solutions and manual plan.
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Table 17 Potential solutions derived from CP of line B in case 1

) .. ) Search
No. Makespan Start time Finish time .
periods (s)
1(D 8,166 4,923 13,089 787.3
2 (1) 8,123 4,923 13,046 1,086.0
3 (1) 3,114 4,923 13,037 1,172.3
1(2) 8,166 4,923 13,089 674.0
2 (2) 8,124 4,923 13,047 730.2
3(2) 8,123 4,923 13,046 738.6
1(3) 8,166 4,923 13,089 727.5
2 (3) 8,123 4,923 13,046 825.7
3(3) 8,118 4,923 13,041 1,014.8
1(5) 8,166 4,923 13,089 864.6
2 (5) 8,123 4,923 13,046 893.3
3 (5) 8,114 4,923 13,037 1,071.1
1(6) 8,166 4,923 13,089 593.2
2 (6) 8,123 4,923 13,046 667.2
3 (6) 8,118 4,923 13,041 904.4
1(14) 8,166 4,923 13,089 599.4
2 (14) 8,123 4,923 13,046 682.6
3 (14) 8,118 4,923 13,041 1,101.8
Manual 8,118 4,923 13,041 -
) ] m—) S eccccee Manual
8,170
8,160
8,150
o 8,140
©
28,130
O]
=% 8,120 uaas cacccaaciileccces sessadlbanannnns e
= 3,110
8,100
8,090
8,080
(3) (5

(D

(2)

6)

Solution No. in line A

(14)

Figure 13 Makespan comparison on potential solutions derived from CP of

line B in case 1
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Table 18 shows the validation result of feasibility and makespan

using DES model from line B solutions. The validated makespan from

DES model is larger makespan in CP, which is mostly contributed

from the additional time of block movement. The average makespan

increment is 12.12%, and all solutions showed larger makespan than

manual plan. However, only 7 solutions out of 18 are examined to be

feasible, and manual plan is also infeasible. As derived optimization

solutions in line B inherited the individual block due date from line A

simulation result, manual plan in line B also inherited from simulation

result of manual plan in line A.

Table 18 Feasibility and makespan results calculated using DES model of line

Bin case 1
Makespan Makespan Difference
No. ©P) 0ES) Pelaved (%)
1(D) 8,166 9,140.11 N 11.93
2 (1) 8,123 9,114.86 Y 12.21
3 (D) 8,114 9,121.25 Y 12.41
1(2) 8,166 9,140.11 N 11.93
2 (2) 8,124 9,144.56 N 12.56
3(2) 8,123 9,114.86 Y 12.21
1(3) 8,166 9,140.11 N 11.93
2 (3) 8,123 9,114.86 Y 12.21
3(3) 8,118 9,107.18 Y 12.18
1(5) 8,166 9,140.11 N 11.93
2 (5) 8,123 9,114.86 Y 12.21
3 (5) 8,114 9,104.25 Y 12.20
1 (6) 8,166 9,140.11 N 11.93
2 (6) 8,123 9,114.86 Y 12.21
3 (6) 8,118 9,102.18 Y 12.12
1(14) 8,166 9,140.11 N 11.93
2 (14) 8,123 9,114.86 Y 12.21
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3 (14) 8,118 9,109.18 Y 12.21

Manual 8,118 9,076.18 Y 11.80

The last step is to decide the optimal solution based on the
results from line A and B. Table 19 shows the derived combinations
of feasible solutions from both lines. All feasible combinations are
included in the table. The objective of the proposed optimization
method is to obtain feasible schedule that minimizes makespan on line

A regarding the shop conditions. According to Table 19, the optimal

solution combination is 14" solution and 1% (14) solution respectively.

This combination has minimum makespan of line A and also has a
feasible line B schedule. Note that if there were no feasible line B
solution for 14" solution, 6 solution from line A and 1% (6) solution

from line B is the next best combination.

Table 19 Combinations of feasible solutions from line A and B in case 1

Solution Solution Makespan Makespan Total
No. (A) No. (B) (A, DES) (B, DES) makespan
1 1(D) 18,570.79 9,140.11 27,710.9
5 1(2) 18,814.97 9,140.11 27,955.1
2(2) 18,814.97 9,144.56 27,959.5
3 1(3) 18,462.09 9,140.11 27,602.2
5 1(5) 18,107.56 9,140.11 27,247.7
1(6) 18,088.56 9,140.11 27,228.7
14 1(14) 17,255.12 9,140.11 26,395.2

4.2.2. Result Analysis in Case 2

The Section 4.2.1. presented the overall optimization strategy

and quantitative analysis in each step using various methods like CPM
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This section follows same step but is more focused on the optimized
schedule with second case mentioned in Table 7. The composition of
case 2 is more complex with 20 more blocks in line B. There are a
smaller number of blocks and separate block sets in line A, which
refers to looser condition than the first case. In line B, however, there
are 20 more blocks. This case is typical assembly line condition in
the factory. There is usually same amount or a greater number of
blocks in line B compared to line A. The main objective of this case
1s to test the performance of the proposed algorithm in normal
conditions.

The first step is optimization of line A blocks using CP model.
Table 20 shows the potential solutions of line A derived from CP
model. 49 solutions are found during 3,600s of search time.

Table 21 shows the comparison between the best solution and
manually planned schedule. The total objective has improved 11.52%,
and each sub objective has improved 5.11%, 99.9%, and —17.15%
respectively. In both cases, workload balancing objective values have
dramatically improved. This could be inferred that the schedulers
could not consider this objective, rather only controlled with the
heuristic rules such as set blocks and separate blocks. Furthermore,

sequential constraints are also not satisfied in manual plan.

Table 20 Potential solutions derived from CP of line A in case 2

Total Workload S h
No. ,O a. Makespan or (?a Due date e.arc
objective balancing period (s)
1 14,106.24 13,905 199 224 112.8
2 14,099.44 13,898 199 244 229.2
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14,090.8
14,087.78
13,986.63
13,983.71
13,914.63
13,914.62
13,914.52
13,896.82
13,896.77
13,894.24
13,894.22
13,893.83
13,893.72
13,893.62
13,885.56
13,342.06
13,342.05
13,341.96
13,324.62
13,301.28
13,294.24
13,294.23
13,293.98
13,293.95
13,293.74
13,293.73
13,289.72

13,289.7
13,289.68
13,289.66
13,289.62
13,258.62
13,243.66
13,243.63

13,889
13,886
13,901
13,898
13,907
13,907
13,907
13,889
13,889
13,886
13,886
13,886
13,886
13,886
13,878
13,334
13,334
13,334
13,316
13,293
13,286
13,286
13,286
13,286
13,286
13,286
13,286
13,286
13,286
13,286
13,286
13,255
13,240
13,240
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37 13,243.59 13,240 1 259 2,670.9
38 13,243.55 13,240 1 255 2,692.7
39 13,243.53 13,240 1 253 2,753.8
40 13,243.52 13,240 1 252 2,766.1
41 13,229.37 13,207 19 337 2,799.0
42 13,229.35 13,207 19 335 2,807.0
43 13,229.31 13,207 19 331 2,814.1
44 13,211.14 13,207 1 314 2,826.6
45 13,211.1 13,207 1 310 2,974.3
46 13,211.09 13,207 1 309 2,977.2
47 13,211.08 13,207 1 308 2,987.6
48 13,211.06 13,207 1 306 2996.4
49 13,211.01 13,207 1 301 3273.8
Manual | 14,931.57 13,918 1,011 257 -

Table 21 Comparison between the best solution derived from CP model and
manually planned schedule in case 2

. Total Workload Due Sequential
Solution L Makespan . .
objective balancing date constraint
Manual 14,931.57 13,918 1,011 257 85%
Best (49) 13,211.01 13,207 1 301 100%
Improvement
(%) 11.52 5.11 99.90 -17.15 15

The derived solutions are then validated in the DES model. Table
22 organizes the validation result regarding the feasibility and
makespan. Out of 49 solutions, 4 solutions are concluded to be
feasible. From 11" solution, all solutions are all infeasible, thus they
are not listed in this table. The average makespan increment rate in
DES model compared to CP is 11.38%.

The individual makespan value of solutions that are feasible is

more interesting, because it turned out that the 1°' solution has the
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minimum makespan, which is 15,151.95 minutes. The 5" and 6"
solution also had reversed rankings in makespan, but both had larger
value than the first. This is an extreme example where CP result
shows opposite result from DES model. It infers that although CP opt
for optimal solution, lack of reality reflected in the model could
change the result dramatically. This is critical reason why DES model
1s required to fully guarantee the optimal solution in real—world
problem. Figure 14 shows the scatter plot of the makespan derived
from DES model according to the makespan from CP model. The
graph shows that there is a positive correlation between two models,

which infers that the CP model partially reflects the real shop

condition.
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5 15,300 °
7 ° °
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S [ ) [
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15,000

13,100 13,300 13,500 13,700 13,900 14,100
Makespan (CP)

Figure 14 Scatter plot of makespan (DES) according to makespan (CP)

Table 23 shows the comparison between the best solution
derived from DES model and manually planned schedule. This result
again criticizes the necessity of DES model to validate the makespan.

Even though, the CP model concluded that there were only 0.14%
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improvement in makespan, the DES model, however, showed that the

solution improved the makespan by 4.35%.

Table 22 Feasibility and makespan results calculated using DES model of line

A in case 2
No. Makespan Makespan | Difference Delayed Se.arch
(CP) (DES) (%) period (s)
1 13,905 15,151.95 8.23 N 112.8
2 13,898 15,334.31 9.37 N 229.2
3 13,889 15,145.90 8.30 Y 248.9
4 13,886 15,207.74 8.69 Y 261.1
5 13,901 15,191.78 8.50 N 268.7
6 13,898 15,286.78 9.08 N 272.1
7 13,907 15,524.03 10.42 Y 277.6
8 13,907 15,524.47 10.42 Y 335.4
9 13,907 15,524.47 10.42 Y 363.9
10 13,889 15,397.77 9.80 Y 495.7
Manual 13,918 15,981.34 12.91 N -

Table 23 Comparison between the best solution derived from DES model and
manually planned schedule in case 2

Solution Makespan Makéspan Worklc')ad Due Delayed
(CP) (Sim) balancing  date
Manual 13,918 15,981.34 1,011 257 N
Best (6) 13,898 15,286.78 383 271 N
Improvement (%) 0.14 4.35 91.79 -5.45 -

The next step is to optimize the line B block schedule according
to the 4 feasible solutions. The potential solutions derived from CP
model of line B is listed in Table 24 with the details. In this case, all
3 solutions are found within a minute. The results, however, show
longer makespan than manually planned schedule. Two conditions

could have contributed to this result. First, the number of _lsolption _ -
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limit could have terminated the algorithm before more improved

solutions could be found. Since, CP algorithm is first developed to

find feasible solution in complex operation research problems, first

few feasible solutions could be very different from the optimal

solution. Secondly, the manually planned schedule is infeasible

solution. This schedule does not fully satisfy set block constraints. It

achieves 85.7% (36/44) satisfaction of the constraint, and it is not

enough to be feasible, since it is a constraint. In other words, the

manually planned schedule is not in feasible space in the perspective

of CP model. Thus, the minimum makespan could be larger than the

manual one.

Table 24 Potential solutions derived from CP of line B in case 2

No. Makespan Start time Finish time S.earch
periods (s)
1 (D) 11,833 1,084 12,917 17.8
2 11,787 1,084 12,871 37.8
3 11,783 1,084 12,867 48.0
1(2) 11,833 1,084 12,917 17.6
2(2) 11,820 1,084 12,904 61.9
3(2) 11,787 1,084 12,871 67.2
1.5) 11,833 1,084 12,917 17.2
2®) 11,820 1,084 12,904 37.9
3 (5) 11,775 1,084 12,859 40.5
1(6) 11,833 1,084 12,917 17.2
2 (6) 11,820 1,084 12,904 47.8
3 (6) 11,780 1,084 12,864 53.9
Manual 11,772 1,084 12,856 -

The wvalidation result of line B solutions using DES model is

6 6



mentioned in Table 25. All solutions including manual plan has met
the due date, resulting no delay. Note that no delay is not same with
feasible. A feasible solution must have met due date for all blocks,
and satisfied all constraints. In this table, only delay is analyzed, but
manual plan has failed to satisfy set block constraints as mentioned
above. The derived solutions, however, satisfy all constraints, thus

they are all feasible solutions.

Table 25 Feasibility and makespan results calculated using DES model of line

Bin case 2
Makespan Makespan Difference
No- ©P) (0ES) Delayed (%)
1 (1) 11,833 12,213.36 N 3.2
2 (1) 11,787 12,154.69 N 3.1
3 11,783 12,147.35 N 3.1
1(2) 11,833 12,213.36 N 3.2
2(2) 11,820 12,131.00 N 2.6
3 (2) 11,787 12,154.69 N 3.1
1(5) 11,833 12,213.36 N 3.2
2 (5) 11,820 12,051.5 N 2.0
3 () 11,775 11,922.00 N 1.2
1(6) 11,833 12,213.36 N 3.2
2 (6) 11.820 11,980.67 N 1.4
3 (6) 11,780 11,947.79 N 1.4
Manual 11,772 12.078.49 N 2.6

As the final step, final combinations of the feasible solutions from
line A and B could be derived as in Table 26. Since, the primary goal
is to minimize the makespan of line A, the optimal solution is
combination of 1 solution and 3 (1) solution in line A and B

respectively. The optimal solution, however, could vary depending on
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assembly line strategy. For example, if line B is overloaded now, 3

(5) solution that has minimum makespan in line B could be optimal

solution. In the perspective of minimizing makespan of all lines, 3 (5)

solution with 3™ solution in line A has the minimum total makespan

among all combinations.

Table 26 Combinations of feasible solutions from line A and B in case 2

Solution Solution Makespan Makespan Total
No. (A) No. (B) (A, DES) (B, DES) makespan
1(D) 15,151.95 12,213.36 27,365.31
1 2 (1) 15,151.95 12,154.69 27,306.64
3 (1) 15,151.95 12,147.35 27,299.30
1(2) 15,334.31 12,213.36 27,547.67
2 2 (2) 15,334.31 12,131.00 27,465.31
3(2) 15,334.31 12,154.69 27,489.00
1(5) 15,191.78 12,213.36 27,405.14
5 2 (5) 15,191.78 12,051.5 27,243.28
3 () 15,191.78 11,922.00 27,113.78
1(6) 15,286.78 12,213.36 27,500.14
6 2 (6) 15,286.78 11,980.67 27,267.45
3 (6) 15,286.78 11,947.79 27,234.57

6 8



Chapter 5. Conclusion

In this study, a two—step optimization process is proposed to
address the limitations of existing PFSP solutions. The first step
involved developing a novel CP algorithm for MOPFSP—hd that
incorporates actual industrial constraints, making it more practical for
real—world problems. The second step involved wvalidating the
feasibility and objective value of the optimized solution using DES.

Two case studies were conducted to evaluate the superiority of
the proposed model. The experimental results from both cases
demonstrated an improvement in makespan compared to manually
planned schedules. Furthermore, the solutions derived from the
proposed model were reported to be feasible, while the manually
planned schedules often encountered delays or did not satisfy the
industrial constraints. This highlights the significance of using
simulation to validate the derived solutions. The analysis of the
difference between the objective calculated from CP and DES model
showed a difference of 2 ~ 12%, and CPM was used to identify the
factors influencing this difference.

Although, the proposed method demonstrated superior
performance to existing scheduling method, there are still
opportunities for further improvement. One potential area of
improvement is the analysis of weight values assigned to each

objective function. Multi—objective optimization problems often lack
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a unified measuring unit between sub—objective functions. While time
and cost units are commonly used as unified units in schedule
optimization problems, more studies are needed to quantify the
importance of each objective and assign appropriate weights to each
sub—objective function.

In conclusion, the proposed solution in this paper presented a
practical and effective approach to address PFSP with real—world
constraints. By combining CP and DES techniques, the authors
demonstrated improved makespan and feasible schedules compared
to traditional methods. Further investigations into weight assignment
for objective functions could enhance the quality of the optimization

results.
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