

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Addressing Centralization, Security and

Performance Issues in Real-World Blockchain

Systems

블록체인 시스템의 중앙화, 보안 및 성능 이슈 해결 연구

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Jongbeen Han

August 2023

Addressing Centralization, Security and Performance

Issues in Real-World Blockchain Systems

블록체인 시스템의 중앙화, 보안 및 성능 이슈 해결 연구

지도교수 엄현상

이 논문을 공학박사 학위논문으로 제출함

2023 년 6 월

서울대학교 대학원

컴퓨터 공학부

한종빈

한종빈의 공학박사 학위논문을 인준함

2023 년 6 월

위 원 장 유 승 주 (인)

부위원장 엄 현 상 (인)

위 원 전 병 곤 (인)

위 원 문 수 묵 (인)

위 원 손 용 석 (인)

Abstract

A blockchain system is engineered to facilitate the execution of transactions

in a consistent and dependable manner within an untrusted and decentralized

environment. This innovative technology also enables the execution of various

contracts without intermediary authorities, due to the capabilities of smart

contracts embedded within the blockchain system. The blockchain system can

permit the reliable execution of transactions because it distributes all data in

a decentralized manner and provides trust through consensus mechanisms.

Nevertheless, in the blockchain system, centralization issues exist. For exam-

ple, there are problems such as the security vulnerability of the single signature

wallet, the centralization issue in the external database when looking up the

transaction history in the blockchain, and the centralization tendency of the

miner (verifier) of the consensus algorithm.

In this article, we concentrate on solving the centralization issues in blockchain.

By addressing these centralization issues, we enhance the security and perfor-

mance within the blockchain system. There are three key aspects: wallet secu-

rity, the performance of transaction retrieval, and consensus algorithms.

First, centralized single-signature schemes are insecure. To solve this, we in-

troduce an efficient multi-signature wallet that enhances security, performance,

storage efficiency, and privacy without altering the underlying blockchain pro-

tocol. By exploiting a threshold elliptic curve digital signature algorithm (T-

ECDSA) and bloom filter in the transactions, the proposed wallet demonstrates

improved verification performance and reduced transaction size and fee com-

pared to existing wallets.

i

Next, services using a centralized external database have to rely on their

service and have issues with data authority. To solve this, we propose a new

scheme to provide SQL query operations within each blockchain node to retrieve

the history information of smart contracts and general transactions within the

blockchain system. To do this, we combine an embedded relational database

in an Ethereum-based blockchain system to provide the SQL query. It enables

range query in blockchain without any user-defined data structure and decreases

the management cost for the regular transaction without any external database.

Lastly, consensus algorithms tend to be centralized depending on the amount

of mining power or staking. To solve this, we propose the Proof of Double

Committee (PoDC) consensus mechanism for more decentralization of a block

proposer, preventing collusion, and improving performance. In the PoDC, val-

idators are divided into two groups (i.e., standing and steering members), and a

coordinator and steering members are randomly selected using double hashing

and a Verifiable Random Function (VRF). This approach not only mitigates

centralization issues associated with existing consensus algorithms but also can

improve blockchain performance than other consensus algorithms, such as Proof

of Work (PoW) and Tendermint.

Keywords: Blockchain, Multi-signature, T-ECDSA, Bloom Filter, Delay Func-

tion, Zero-knowledge Proof, Double Hashing, Verifiable Random Function (VRF)

Student Number: 2019-38471

ii

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables 1

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Problems and Approaches 3

1.2 Contributions . 6

1.3 Outline . 7

Chapter 2 Background 9

2.1 Blockchain . 9

2.2 Blockchain Wallet . 10

2.2.1 Single-signature wallet . 10

2.2.2 Multi-signature wallet . 11

2.3 Regular transaction in blockchain system 12

iii

2.4 Smart contract in blockchain system 12

2.5 Key-Value Store . 12

2.6 Consensus Algorithm . 13

2.7 Related Work . 14

Chapter 3 Efficient and Secure Multi-Signature Wallet 20

3.1 Motivation . 20

3.1.1 Blockchain wallet . 20

3.1.2 Threshold signature scheme 22

3.1.3 Bloom filter . 23

3.2 Design and Implementation . 24

3.2.1 Overview . 25

3.2.2 Preparing to exchange information. 27

3.2.3 Generating a multi-signature wallet 28

3.2.4 Signing transaction via multi-signature and Bloom-

filter . 30

3.2.5 Identifying a participant of a transaction 33

3.3 Evaluation . 34

3.3.1 Experimental setup . 34

3.3.2 Performance results . 34

3.3.3 Discussion of usecase . 38

3.3.4 Discussion of privacy . 39

3.4 Summary . 40

Chapter 4 Enabling SQL-Query Processing in Blockchain Sys-

tems 41

4.0.1 Motivation . 41

4.1 Design and Implementation . 44

iv

4.1.1 Design . 45

4.1.2 Implementation . 50

4.1.3 Usage . 52

4.2 Evaluation . 53

4.2.1 Experimental setup . 53

4.2.2 Performance results . 54

4.2.3 Impact on the number of threads 58

4.2.4 Measuring resource usage 59

4.2.5 Byzantine Fault Tolerant 63

4.3 Conclusions . 64

Chapter 5 Proof of Double Committee for Decentralization Con-

sensus Algorithm in Blockchain system 65

5.1 Motivation . 65

5.1.1 Centralization of Blockchain 65

5.1.2 Verifiable Random Function 67

5.2 Design and Implementation . 69

5.2.1 Overview . 70

5.2.2 Selecting a coordinator and seed value 74

5.2.3 Selecting steering members 75

5.2.4 Crash Fault Tolerant of the coordinator 76

5.3 Evaluation . 77

5.3.1 Experimental setup . 77

5.3.2 Distribution of block proposers 78

5.4 Summary . 90

Chapter 6 Conclusion 92

6.1 Discussion . 92

v

6.2 Summary . 93

Abstract 105

vi

List of Figures

Figure 3.1 Overall architecture of proposed scheme 25

Figure 3.2 A pre-processing overview 26

Figure 3.3 A key generation process for 2 of 3 multi-signature wallets 29

Figure 3.4 Using bloom-filter in a multi-signature wallet (H: hash

function, pub: public key) 30

Figure 3.5 A signing process for a 2 of 3 multi-signature wallet (p:

random number, k: random number, G: generate point,

sig: signature) . 32

Figure 3.6 Transaction Validation Time in Two Networks: Bitcoin

Blockchain (left) and Ethereum Blockchain (right) 35

Figure 3.7 Transaction Size in Two Networks: Bitcoin Blockchain

(left) and Ethereum Blockchain (right) 36

Figure 3.8 Transaction Fee in Two Networks: Bitcoin Blockchain

(left) and Ethereum Blockchain (right)(BTC: bitcoin,

ETH: ethereum) . 36

Figure 4.1 Opensea transaction statistics May-June 2023 42

vii

Figure 4.2 Classification of the database on Ethereum-based blockchain

node (Left: external database, Right: Embedded database) 44

Figure 4.3 System overview (left: existing system, right: proposed

system) . 46

Figure 4.4 Process overview (left: register and store process, right:

query process) . 50

Figure 4.5 Retrieval regular transaction in the blockchain 52

Figure 4.6 Execution time of select operations (top: smart contract,

bottom: regular transaction) 55

Figure 4.7 Throughput of insert operations (top: smart contract,

bottom: regular transaction) 56

Figure 4.8 Execution time of select operations in smart contract . . 58

Figure 4.9 Execution time of insert operations in regular transaction 59

Figure 4.10 Resource usage with the different number of entities

(top: CPU, bottom: memory) 60

Figure 4.11 Resource usage with the different number of threads

(left: CPU, right: memory) 61

Figure 4.12 Resource usage with the different number of entities

(left: CPU, right: memory) 62

Figure 4.13 Resource usage with the different number of entities

(left: CPU, right: memory) 63

Figure 4.14 Influence on Byzantine Fault Tolerant according to use

in a database (left: external database, right: embedded

database) . 64

Figure 5.1 Ratio of Pool Distribution (calculated by blocks), 2023.04

2023.05 [1] . 66

viii

Figure 5.2 Overview of Proof of Double Committee 71

Figure 5.3 Detail of Proof of Double Committee 72

Figure 5.4 Process of the selecting next coordinator and current

seed value in a round . 73

Figure 5.5 Process of selecting steering members 75

Figure 5.6 The block generation count of a proposer (miner) in Bit-

coin blockchain . 79

Figure 5.7 The block generation count of a proposer (miner) in

Ethereum blockchain . 80

Figure 5.8 The block generation count of a proposer in Algorand

blockchain . 81

Figure 5.9 The block generation count of a proposer in Cosmos

blockchain . 82

Figure 5.10 The block generation count of a proposer in EOS blockchain 83

Figure 5.11 The block generation count of a proposer (coordinator)

in PoDC blockchain . 84

Figure 5.12 The block proposer order in EOS blockchain 85

Figure 5.13 The block proposer order in PoDC 85

Figure 5.14 The block generation count of a proposer (coordinator)

with different standing members in PoDC 87

Figure 5.15 Probability of validator selection of steering committee

candidates in PoDC . 89

Figure 5.16 Probability of validator selection in cosmos(tendermint) 90

ix

Chapter 1

Introduction

1.1 Motivation

Since the advent of Bitcoin in 2009, blockchain systems have become a signifi-

cant component in processing transactions between users without the need for a

centralized trusted authority. The blockchain systems comprise a large number

of non-trusted nodes and utilize a node-to-node consensus algorithm to main-

tain data integrity [2]. Additionally, to ensure non-repudiation of transactions

between users, transactions are signed using the private keys of the involved

parties [3].

Blockchain systems are used for several reasons. Primarily, it overcomes the

limitations of traditional centralized systems by facilitating reliable transactions

in a decentralized environment. For example, the 2008 financial crisis, triggered

by the bankruptcy of Lehman Brothers, exposed the vulnerability and unrelia-

bility of centralized financial systems. And it led to the emergence of Bitcoin’s

blockchain as proposed by Satoshi Nakamoto [4]. Public ledgers of blockchain

1

systems offer transactional transparency, making it challenging for malicious

users to manipulate data [4,5]. As a result, users can securely conduct transac-

tions, and blockchain technology holds the potential to revolutionize numerous

industries, including finance, insurance, healthcare, logistics, and real estate.

Nonetheless, blockchain technology is still in a relatively early stage of de-

velopment and exists centralization issues. The following aspects highlight the

need for the technology to evolve further:

• Addressing security vulnerabilities. While blockchain inherently en-

sures data integrity, it remains susceptible to 51% attacks, smart contract

vulnerabilities, and wallet security vulnerabilities. Especially in wallets,

single-signature wallets are subject to hacking. Consequently, research is

necessary to resolve these security issues and enhance the technology’s

safety [6].

• Enhancing scalability and efficiency. Current blockchain systems face

limitations in transaction throughput and processing speed [7]. To address

this, various research efforts, including fixed validators, new consensus

algorithms, layer 2 solutions [8], and sharding [9], are underway.

In providing transaction histories, most services use an external database

to improve service performance. However, due to this way, users have to

trust the services that use external databases, which generates another

centralization. Ongoing research is essential for solving centralization and

improving performance and ensuring their applicability in large-scale sys-

tems.

• Mitigating threats to decentralization. Blockchain systems have a

decentralized structure with multiple participants involved in the net-

work, validating transactions, and creating blocks [10]. The structure

2

aims to overcome the vulnerabilities and shortcomings of centralized sys-

tems. However, centralization may occur in blockchain systems employ-

ing the Proof of Work (PoW) algorithm, as large mining pools or mining

companies come to dominate the market [11]. The centralization issue

in blockchain systems contradicts the blockchain’s nature and warrants

continuous research and improvement for resolution.

Research on enhancing the performance and security of blockchains has a sig-

nificant interest within the blockchain community, leading to numerous papers

being published at recent conferences. This article seeks to offer new insights

by exploring blockchain systems and addressing the fundamental challenges of

blockchain systems.

1.1.1 Problems and Approaches

There are several challenges associated with blockchain systems. The followings

are the three problems to be addressed in this dissertation:

Security and performance of blockchain wallet One of the blockchain

features is a digital signature that provides non-repudiation. And, blockchain

wallets support digital signatures via using keys (i.e., private and public keys).

The keys are used to sign a transaction and verify the identity of the transac-

tion signer. Depending on the number of keys used, there are two types of dig-

ital signature schemes: single-signature and multi-signature schemes. A single-

signature scheme is a digital signature scheme that allows only one user to agree

to a transaction by their own sign. Therefore, this scheme can be vulnerable

to security attacks due to a single-point attack. By contrast, a multi-signature

scheme is a digital signature scheme that allows a group of users to agree to a

transaction by their sign [12]. Therefore, the multi-signature scheme provides

3

higher security than a single-signature scheme by distributing the authority for

signing a transaction. However, the multi-signature usually generates multiple

signatures that are to be validated and includes all participants’ public keys in

a transaction for validating the transaction. And it shows a lower performance

for validating signed transactions and larger transaction sizes since multiple

signatures are to be made and validated.

Previous studies [13, 14] show the result of investigating multi-signature

on blockchains to enhance the blockchain wallet’s security. BitGo [14] proposed

pay-to-script hash (P2SH), which is a new type of Bitcoin address introduced as

part of Bitcoin improvement proposal (BIP) 16 for supporting multi-signature

on Bitcoin. MultiSigWallet [13] provides high security by allowing multiple par-

ties to agree on transactions based on a smart contract. The study reported

herein uses the approaches [13,14] in terms of investigating a blockchain wallet.

We focus on providing high-performance multi-signature and storage efficiency

on blockchains by reducing the number of transactions to be validated and the

transaction size.

Search performance issue Most blockchain systems are built using Lev-

elDB. The LevelDB is a sort of key-value store and provides great performance

in sequential reads and writes. However, the LevelDB (i.e., key-value database)

does not support SQL query operations such as range queries. Furthermore,

LevelDB provides low retrieval performance for a large amount of data. There-

fore, to handle these issues, existing systems use user-defined data structures

for a smart contract and an external relational database to retrieve a range

of data [15, 16]. However, user-defined data structures in a smart contract can

decrease the overall performance. Also, an external database can increase man-

agement costs.

To provide higher search performance in the blockchain system, the previ-

4

ous studies [15,17,18] show the result of improving the select query operation.

Etherscan [15] supports the select query operation that retrieves blockchain in-

formation such as transactions, addresses, tokens, prices, and other activities

using an external database system. Pratama et al. [17] have let users and de-

velopers easily access blockchain data by adding three main query functions

(retrieval query, aggregate query, and aggregate query). The Graph [18] pro-

vides services of querying from blockchain data by continually scanning all of

the events. Our study is in inline with these studies [15, 17, 18] in terms of

inspecting the search performance issues in a blockchain system. In contrast,

to improve search performance and reduce management costs while maintain-

ing decentralization, we concentrate on retrieving range data of both smart

contracts and regular transactions using an embedded relational database in a

blockchain system.

Centralization and Performance Degradation Issues by Consensus Al-

gorithms One of the important blockchain features is a consensus algorithm

which is designed to ensure the accuracy and consistency of the transaction

data [19]. Each blockchain has a different consensus algorithm to provide data

integrity and high performance while maintaining decentralization. For exam-

ple, Bitcoin and Ethereum blockchain use a proof of work (PoW) consensus

algorithm that the miner who first solves the crypto puzzle has a block gen-

eration authority [4]. And, in the case of Cosmos blockchain, which is using

the Tendermint consensus algorithm, a proposer who is among the validators

has the block generation authority [20]. And, only validators who are selected

according to the staking and delegated amount of digital assets can participate

in the consensus to validate a block. Therefore, for gaining the authority of

creating blocks, users need huge computing power to solve the crypto puzzle in

PoW or need many digital assets (e.g., ATOM) to get vote power in the Ten-

5

dermint. It means that a user who has more economically superior power has

more chance to generate a block and vote a block, and it brings out to increase

the likelihood of centralization.

To solve centralization issues in the blockchain, the previous studies [21,22]

show the result of investigating validators and proposer selection on blockchains

consensus algorithm for providing security. Alzahrani et al. [21] proposed a new

true decentralized consensus protocol utilizing game theory and randomness.

They mainly address the problem of validators’ selection in terms of how to

select them and how many to select to achieve a satisfactory trade-off between

security and efficiency. Additionally, their protocol selects the feature offered

by game theory to reward honest adhered parties and punish malicious ones.

Gilad et al. [22] proposed a new Byzantine Agreement (BA) protocol mech-

anism based on Verifiable Random Functions (VRF). The protocol allows users

to privately check whether they are selected to participate in the BA.

Our study is in line with those approaches [21,22] in terms of investigating

a consensus algorithm for random selection of validators. In contrast, we focus

on distributing the validator set as two groups (i.e., standing committee and

steering committee) for complementing the disadvantage of preventing unity

and providing high performance.

1.2 Contributions

In this dissertation, our contributions are summarized as follows:

• We have analyzed the security and performance of existing blockchain

wallets. And we propose a new multi-signature wallet that shows better

performance, storage efficiency, and privacy than existing blockchain wal-

lets; the proposed wallet involves T-ECDSA and a Bloom filter and does

6

not require any modification of the blockchain protocol. We experimen-

tally demonstrate that the proposed multi-signature wallet shows better

transaction validation performance, storage efficiency, and cost efficiency

compared with existing multi-signature wallets.

• We have investigated the performance of existing blockchain systems with

search operations. And we propose a scheme that enables SQL query

processing to provide decentralization, decrease the management over-

head and increase search performance on a blockchain. In addition, we

show that the proposed system improves the search performance of smart

contract data and reduces the management cost for regular transactions

without any external database.

• We have investigated the existing consensus algorithm in terms of both

decentralization and performance. We propose a new consensus algorithm

(PoDC) that enables the secure selection of a coordinator and validators

via double hashing and verifiable random function (VRF) on a blockchain

system. The proposed consensus algorithm shows more decentralized and

better performance compared with the existing consensus algorithm.

1.3 Outline

This dissertation is structured as follows:

• Chapter 2 covers the background of blockchain systems.

• Chapter 3 introduces new efficient multi-signature wallet, which

can provide high validation performance on blockchains owing to the ad-

vantage of using a single signature and can identify each transaction’s

participant with a small transaction size. We describe the details of the

7

design and implementation of our scheme and evaluate our scheme on the

Bitcoin and Ethereum blockchain.

• Chapter 4 introduces an enable SQL query processing with combin-

ing embedded database systems and providing register and query mecha-

nism. We start by explaining the problems of existing retrieval of historical

data in the blockchain and analyze the root cause of searching problems.

And we give details of how we can address the challenge and evaluate our

scheme compared to existing mechanisms in the blockchain.

• Chapter 5 introduces Proof of Double Committee (PoDC) consensus

algorithm by separating validators into two groups and selecting the

validators via double hashing and verifiable random function (VRF) for

improving the security and performance of the blockchain. We start by

explaining the problems of existing consensus algorithms in blockchain

systems and analyze the decentralization of the blockchain and its per-

formance. And we give details of how we can address the challenge and

evaluate our scheme compared to existing consensus algorithms (e.g., bit-

coin, tendermint, etc.).

• Chapter 6 summarizes and concludes the dissertation. It also points out

directions for future work.

8

Chapter 2

Background

2.1 Blockchain

Blockchain is a distributed storage technology that records data transparently

and replicates it across multiple nodes, creating a public ledger accessible to

anyone. Additionally, blockchain serves as a decentralized infrastructure and

distributed computing system that employs consensus algorithms and chain

data structures to verify data integrity. As a result, users can distribute data

through blockchain technology, maintain data integrity, support Byzantine fault

tolerance (BFT), and transfer digital assets without intermediaries [23].

A blockchain consists of transactions, blocks, and the blockchain itself. A

transaction represents data that alters the state value associated with a wallet

or smart contract address on the blockchain. Users sign transactions with their

private keys to approve state changes, and these transactions are validated using

a public key mapped to the private key. Once a transaction is validated, it can

be included in a block. A block, the fundamental unit of a blockchain, contains

9

information such as transaction data, block hash, the previous block’s hash, a

timestamp, a nonce, etc. Transaction data is stored in the order in which trans-

actions occur within a block, while the block hash serves as a unique identifier

for the block [24]. The previous block’s hash is used to connect blocks into a

chain, ensuring the data integrity of the blockchain. A blockchain represents a

continuous chain of blocks, with each current block linked to the previous one

based on the previous block’s hash value [25].

2.2 Blockchain Wallet

2.2.1 Single-signature wallet

A blockchain wallet is a financial application at provides an interface for man-

aging digital assets (e.g., Bitcoin, Ethereum, etc.). It manages a user’s private

and public keys for signing a transaction involving the transfer of digital assets

and execution of a smart contract. A user can prove that he/she owns the digi-

tal assets on the blockchain by signing a transaction with the private key in the

wallet. Most blockchain wallets manage digital assets using a single-signature

scheme such as the elliptic curve digital signature algorithm (ECDSA) [26].

This algorithm is a variant of the digital signature algorithm (DSA) by using

elliptic curve cryptography (ECC). ECC is a public-key cryptography approach

that is based on the algebraic structure of elliptic curves over finite fields [27].

The ECDSA is more secure than the Rivest–Shamir–Adleman (RSA) [28]

algorithm against current cracking methods such as brute-force attacks ow-

ing to its complexity. Consequently, a blockchain wallet based on the ECDSA

can sign a transaction with a higher security level and a relatively small key

size. However, the blockchain wallet has security issues since the private key is

susceptible to attack from a single attack point because of the nature of the

10

ECDSA. Therefore, a more secure mechanism is required for blockchain wallets.

2.2.2 Multi-signature wallet

To compensate for the disadvantage of the single-signature wallet, the multi-

signature wallet allows a group of users to agree to a transaction by their

signs and divides up responsibility for the transmission of digital assets and

execution of a smart contract among multiple users [12]. Participants signing

a transaction can be identified from the participant’s public key in the multi-

signature wallet. This multi-signature wallet can provide higher security for

blockchain transactions since it distributes the authority of the wallet to several

participants. For example, in the case of a single-signature wallet, if only a

private key of the wallet is obtained by a malicious attacker, the digital assets

can be stolen. Meanwhile, a multi-signature wallet provides higher security than

a single-signature wallet because a malicious attacker has to acquire a certain

number of private keys; this number of keys is configured when the wallet is

generated.

However, the multi-signature wallet has some issues that increase the trans-

action validation and the transaction size in blockchains. For example, in the

Bitcoin blockchain, a multi-signature wallet signs a transaction while generating

multiple signatures, and the signed transaction is verified by the full nodes on

the blockchain network. Therefore, it increases the verification time compared

with that of a single-signature scheme because multiple signatures should be

verified. Moreover, when the multi-signature wallet is used on a blockchain,

the blockchain protocol should be modified [29]. Meanwhile, in the case of

Ethereum, a smart contract should be used for utilizing the multi-signature

wallet [13].

11

2.3 Regular transaction in blockchain system

A regular transaction in the blockchain system is cryptographically signed in-

structions from accounts. An account will initiate a transaction to update the

state of the account in the blockchain network. Thus, a regular transaction is an

act of transferring digital assets from one wallet address to another wallet ad-

dress. For example, in the Ethereum blockchain, if Bob sends Alice 1 eth, Bob’s

account must be debited and Alice’s must be credited. This state-changing

action takes place by a transaction [30]. The submitted regular transaction in-

cludes the following information: recipient, signature, amount of eth to transfer

from sender to recipient data, gas limit, the maximum amount of gas, etc.

2.4 Smart contract in blockchain system

A smart contract is an important component in the Ethereum blockchain sys-

tem that was initially proposed by Vitalik Buterin [31]. Smart contracts are

carried out correctly on the blockchain system guaranteed by consensus proto-

col. [32]. In addition, a smart contract can encode any set of rules represented in

its programming language (e.g., solidity). A smart contract, for example, may

make transfers and apply various business logic, including financial instruments,

insurance, real estate, and medical, among other things, on the blockchain.

2.5 Key-Value Store

An Ethereum blockchain system maintains three tries (i.e., world state trie,

transaction trie, and transaction receipts trie) [33,34]. The Ethereum blockchain

system’s world state trie includes the states of users and smart contracts; the

transaction trie records transactions that alter states of users and smart con-

tracts; and the transaction receipts trie keeps the results of completed transac-

12

tions. These three tries are stored in a key-value database known as a sort of

database designed for storing, retrieving, and managing data.(i.e., LevelDB [35]).

The key-value store performs well in sequential reads and writes and offers quick

read and write operations for each key. Yet, the operation of several keys in the

key-value store can be slow because the key-value store does not provide range

query operations without the relational data model.

2.6 Consensus Algorithm

A blockchain consensus algorithm is a set of rules and procedures by which

participants in a blockchain network agree on the validity of transactions and

blocks. Consensus algorithms play a crucial role in ensuring the security, sta-

bility, and decentralized nature of blockchains. Various consensus algorithms

exist, each with specific goals and use cases [36].

Proof of Work (PoW) The first consensus algorithm used in many blockch

ain networks, including Bitcoin. In PoW, participants solve complex mathemat-

ical problems to create blocks and receive rewards proportional to the amount

of work they contribute to the network. PoW provides high security but has

the disadvantage of very high energy consumption and can have centralization

issues by the mining pool [37].

Tendermint Tendermint is a consensus algorithm based on PBFT, provid-

ing high throughput and short block times. However, there is a risk of central-

ization in the process of electing voters, and it may be vulnerable to Byzantine

attacks. Tendermint works best in situations where trust exists between partic-

ipants, and performance can suffer in situations where trust is lacking [20].

Proof of Stake (PoS) As a consensus algorithm developed to reduce

energy consumption, participants gain block creation rights proportional to

13

their token stake. PoS is energy-efficient and can alleviate centralization is-

sues. Ethereum is transitioning to Ethereum 2.0, a PoS-based consensus algo-

rithm [38].

Practical Byzantine Fault Tolerance (PBFT) An algorithm that achie

ves consensus while tolerating Byzantine faults in a distributed system. Partic-

ipants send and receive messages to each other to verify the validity of blocks

and reach a consensus. PBFT offers high throughput and low latency but is only

effective in situations where reliability is required like private blockchain [39].

Delegated Proof of Stake (DPoS) As a consensus algorithm that im-

proves on PoS, participants delegate their stake to specific nodes to give them

the right to create blocks. Delegated nodes are responsible for block genera-

tion and validation, achieving high throughput and low latency [40]. However,

DPoS has also been criticized for allowing delegated nodes to exercise too much

power.

The research and development of consensus algorithms play a crucial role

in the advancement of blockchain technology. As a result, further investigation

into blockchain consensus algorithms is necessary, and it is anticipated that the

security, scalability, fairness, and energy efficiency of blockchain networks will

continue to improve.

2.7 Related Work

In several academic fields, blockchain presents many challenges. In terms of

wallet security, there are several research. First, to increase security in digital

signature schemes, previous studies [41–43] show the result of investigating the

threshold signature scheme for improving the signature performance. Gennaro

et al. [43] proposed the first protocol that supports a multi-party threshold

14

ECDSA with an efficient distributed key generation. Thus, it reduces the ex-

ecution time and data transfer time for key generation. Goldfeder et al. [41]

introduced the first practical t-of-n threshold signature scheme compatible with

Bitcoin’s ECDSA signatures. They show how Bitcoin wallets use a threshold

signature scheme for signing and verifying a transaction. Gennaro et al. [42]

introduced a threshold-optimal digital signature algorithm (DSA) scheme for

minimizing the number of servers targeted by a malicious attacker. Our study is

in line with existing approaches [41–43] in terms of exploiting the threshold sig-

nature in the blockchain wallet system to decrease the validation and signature

times. However, we furthermore reduce the transaction size and improve pri-

vacy by using a bloom filter apart from improving the validation and signature

performance.

In addition, to keep crypto funds safe, studies show the result of investi-

gating hardware wallets. Hardware wallets (e.g., Ledger [44], Trezor [45], and

Keepkey [46]) allow storing the private key in offline and secure storage. They

can operate directly on a personal computer or mobile phone through Bluetooth

or by being plugged in via USB instead of the Internet. Thus, the private keys

would remain completely secure even if the hardware wallet connects to a com-

puter infected with a virus. In addition, for higher security, a multi-signature

provides multiple keys to authorize a Bitcoin transaction, rather than a sin-

gle signature from one key. Our study is in line with these approaches [44–46]

in terms of improving the security of wallets. Furthermore, we improve higher

security by distributing the authorities of the wallets against a single-point

attack.

Also, there have been studies on improving the security of blockchain wal-

lets via distributing the authorities. MultiSigWallet [13] provides an m-out-of-n

multi-signature wallet with smart contracts on Ethereum. It executes basically

15

smart contracts able to store tokens and requires that the issued transaction

needs to accept some requirements, including a specific signing configuration.

BitGo [14] proposed a 2-of-3 multi-signature wallet and a new type of Bitcoin

address introduced as part of BIP 16 (Bitcoin Improvement Proposal 16). It

provides more secure Bitcoin addresses compared with traditional Bitcoin ad-

dresses by using the multi-signature wallet. Our study is in line with these

approaches [13, 14, 44–46] in terms of improving the security of wallets. In

particular, we focus on providing higher performance for multi-signature on

blockchains by reducing the number of transactions to be validated and the

transaction size.

In terms of the performance of retrieval procedures in blockchain, there are

several research. Systems using an external database. To increase retrieval

performance, previous systems [15,47,48] use an external database for making

an indirect query in a blockchain system. Etherscan [15], a search, API, and ana-

lytics platform for Ethereum, is one of the attempts to use an external database.

It enables users to browse the Ethereum blockchain in search of transactions,

addresses, tokens, prices, and other Ethereum-related activity. Etherchain [47]

is an explorer for the Ethereum blockchain by extending the Ethereum native

API. It offers basic statistical information like transaction count and block time.

Additionally, it enables users to investigate smart contract transactions, search

for transactions, and monitor user account balances. Ethstats [48] is a visual

interface for monitoring the Ethereum network’s health, and it offers the most

recent data on a block number, connected node information, pending transac-

tions, gas prices, etc. FlureeDB [49], and BigchainDB [50] provide developing

blockchain database solutions to support SQL-like queries. However, in the case

of those systems (e.g., Etherchain [47], EtherScan [15], and Ethstats [48]), users

cannot verify whether the results of the external database and the blockchain

16

data are identical since they use external database outside of the blockchain

system. Also, External database systems have significant maintenance costs to

manage.

Embedded Blockchain systems. There are other ways to increase re-

trieval performance, previous studies [17,51–54] proposed a new layer and new

language for the blockchain. To increase select query efficiency, for instance,

EtherQL [51] added a querying layer to the Ethereum client. It offers a vari-

ety of queries, such as top K queries and range queries for transactions and

blocks. VQL [53] provided efficient query services by extracting transactions

from the underlying blockchain system and adding a middleware layer. EQL [54]

proposed a query language that can retrieve information from the blockchain

written in the programming language smalltalk [55]. And, through this query

language, users can get block and transaction data. Pratama et al. [17] added

three main query functions (retrieval query, aggregate query, and aggregate

query) so that users and developers can easily access blockchain data.

For users or analysts who often generate transactions, these earlier sys-

tems and studies enhance the performance of searching for information about

Ethereum’s blocks, transactions, and accounts. Our study is in line with these

studies in terms of investigating the performance of select operations in the

blockchain system. On the other hand, our work focuses on decentralization

and obtaining a range of data from both smart contracts and transactions uti-

lizing an embedded relational database in a blockchain system that is based on

Ethereum.

In terms of decentralization, previous research [33,56] has explored consen-

sus algorithms, a collection of mechanisms designed to address the problem of

centralization. Bitcoin [56] introduced the proof of work consensus algorithm

to tackle this issue, leveraging the concept of decentralization by enabling net-

17

work participants to competitively undertake computational tasks. These tasks

allow the generation of blocks encompassing new transactions, eventually lead-

ing to a consensus. The purpose of the proof of work (PoW) consensus algo-

rithm is to achieve decentralization for digital asset transactions. Moreover,

Ethereum [33], utilizing both Proof of Work and Proof of Stake algorithms,

facilitates the transfer of data ownership from corporations to users in existing

centralized systems via smart contracts. However, Mauro et al. [57] highlighted

that although blockchains based on the PoW consensus algorithm are designed

to achieve network-wide consensus, certain participants can wield undue influ-

ence, thereby undermining decentralization due to economic advantages during

the process. Our study aligns with these investigations in its exploration of the

centralization problem within blockchain systems. However, we further concen-

trate on resolving the issue of disproportionate influence exerted by certain

participants by introducing a random selection method for block proposers us-

ing double hashing.

Previous studies [22,58,59] have investigated the consensus algorithm with

fixed validators and validator selection algorithm for improving performance

in the blockchain. Cosmos [58] proposed the Tendermint BFT(Byzantine Fault

Tolerance) consensus algorithm for selecting block validators and generating

blocks. This algorithm operates on a Proof of Stake (PoS) mechanism, where

validators are chosen based on the quantity of the token, ATOM, they have

staked. Currently, the top 150 staking participants are selected as block val-

idators. Gilad et al. [22] proposed a new Byzantine Agreement (BA) consensus

algorithm based on Verifiable Random Functions (VRF). In particular, Al-

gorand employs the Pure Proof of State(PPoS) mechanism, where users are

randomly chosen as block validators in proportion to the quantity of Algorand

tokens (Algos) they hold. EOS [59] exploits Delegated Proof of State (DPoS)

18

consensus algorithm. EOS users nominate 21 block producers on the network

who are responsible for validating all transactions and generating the blocks.

This selection process occurs through the votes of EOS token holders, with the

voting power increasing proportionally to the number of tokens held. Our study

is in line with these studies in terms of investigating to improve performance via

fixed the number of validators in the blockchain system. On the other hand, our

work additionally focuses on allowing all nodes to participate in the network

and fairly distributing block generation rights.

19

Chapter 3

Efficient and Secure
Multi-Signature Wallet

3.1 Motivation

3.1.1 Blockchain wallet

In the rapidly evolving world of blockchain technology, secure management of

digital assets has become a critical concern for users. One of the key components

of a blockchain system is the wallet, which enables users to store and manage

their digital assets. However, various instances of hacking and theft have ex-

posed the vulnerabilities in single-signature wallets, highlighting the need for

more secure alternatives.

For example, In 2018, when the Japanese cryptocurrency exchange Co-

incheck was hacked, resulting in the loss of approximately 530 million dollars

worth of NEM tokens [60]. In September 2020, KuCoin experienced a mas-

sive breach, losing approximately 280 million dollars in funds, which included

Ethereum and ERC20 tokens [61]. In November 2019, Upbit faced a similar

20

predicament when hackers made off with 50 million dollars of Ethereum [62]. In

May 2019, Binance faced a hack where around 40 million dollars was stolen [63].

The hackers exploited the exchange’s usage of single-signature wallets, which

rely on a single private key for transaction authentication. The theft demon-

strated the inherent security weaknesses in single-signature wallets and em-

phasized the necessity of developing more robust wallet security measures to

protect user assets.

Therefore, cryptocurrency exchanges employ a multitude of strategies to

safeguard their customers’ assets, typically employing a dual structure of ”Hot

Wallets” and ”Cold Wallets.” Hot Wallets are online, connected to the inter-

net, and facilitate real-time transactions. They allow exchanges to expedite the

processing of user deposit and withdrawal requests. Nevertheless, their internet

connectivity also renders them susceptible to hacking threats. Cold Wallets,

on the other hand, are disconnected from the internet, offering a much higher

level of security. Most cryptocurrency exchanges store the majority of their

customer assets in these cold wallets to ensure their safety. However, even in

this way, Hotwallet is still subject to hacking. In addition to these measures,

many exchanges adopt multi-signature wallets to enhance security, but it is im-

possible to use multi-signature wallets unless the blockchain protocol supports

multi-signature methods. To compensate for this, a multi-signature method is

programmed and used in a blockchain where smart contracts can be written.

The background and motivation of this research article stem from such real-

world cases of hacking and the increasing demand for security solutions in the

blockchain ecosystem. By exploring the limitations of single-signature wallets

and examining the potential of multi-signature wallets, we aim to develop an

efficient and secure wallet solution that mitigates risks, enhances storage effi-

ciency, and ensures user privacy. This research not only addresses the current

21

challenges faced by wallet users but also contributes to the broader goal of fos-

tering trust and confidence in blockchain technology as a reliable platform for

digital asset management.

3.1.2 Threshold signature scheme

A threshold signature scheme (e.g., T-ECDSA and Shamir’s secret sharing

scheme) enables n participants to share the power to generate a digital sig-

nature with a single public key. A threshold t is specified such that any subset

of t + 1 participants can jointly sign, but any smaller subset cannot [43,64]. For

example, the T-ECDSA generates a single signature from all the signatures of t

+ 1 participants while Shamir’s secret sharing scheme generates one signature

by using a private key reconstructed with t + 1 shares of participants centrally.

Both threshold signature schemes produce a signature that is validated with

a common public key and they are compatible with an existing ECDSA that

does not require the modification of the blockchain protocol.

Generally, when signing a transaction, the ECDSA generates a signature by

using the generation point of an elliptic curve G, a random number k, a hash

value of message (e.g., transaction) z, and a private key pk [26]. As shown in

the equation 3.1, first, the ECDSA generates a point Pxy by multiplying the

generation point of elliptic curve G and the random number k. The r value

is used to generate the s value, and both r and s values are used to validate

the transaction. The r value is calculated using the x coordinate of point P

(Px) by modulo n. The parameter n is the integer order of G and is a large

prime number. The s is a value generated by a hash value of message (e.g.,

transaction) z, random k, private key pk and r by a single user. In the case of

the T-ECDSA, k and pk are decided by multiple users rather than a single user,

without exposing the user information. For example, the k and pk values can

22

be calculated via shared keys (i.e., k1/pk1, k2/pk2, ..., kn/pkt) between users

(i.e., user1, user2, ..., usern). Therefore, this algorithm provides higher security

than the ECDSA since it distributes the signing authority.

Pxy = k ·G, r = Px mod n

s = k−1(z + rpk) mod n
(3.1)

Furthermore, the security of the T-ECDSA is identical to that of a multi-

signature scheme despite the use of a single signature since it generates sev-

eral shared keys. Additionally, the verification algorithm of the T-ECDSA is

identical to that of a single signature scheme the T-ECDSA generates a single

signature. Therefore, we use the T-ECDSA on a blockchain to provide bet-

ter security and verification performance compared with single-signature and

multi-signature schemes, respectively.

3.1.3 Bloom filter

A bloom filter is a space-efficient probabilistic data structure. It is used to

validate whether an element is a member of a set [65]. One of the bloom filter

features is a false-positive resulting from a hash collision. Therefore, a query of

the bloom filter returns the information that an element is probably in a set or

that it is definitely not in a set. A bloom filter consists of an array structure of

sizem bits and uses k different hash functions. A bloom filter size can be decided

with an array of m-bits and the k hash functions by using an equation 3.2.

m = ceil((N ∗ log(P))/log(1/pow(2, log(2))))

k = round((m/N) ∗ log(2))
(3.2)

N is the maximum number of items added to the filter, and P is the proba-

bility of false positives. A bloom filter involves two processes: adding an element

23

to the filter and validating whether the element is in a set or not. To add an

element, a bloom filter uses the k hash functions to obtain the k array positions.

The bloom filter then sets the bit value at all these positions to one on an array

of size m bits. To validate whether an element is in a set, the bloom filter uses

each of the k hash functions to obtain the k array positions. If the bit at any

of these positions is zero, the element is definitely not in the set; otherwise, it

is probably in the set.

We use a bloom filter to identify participants in a signed transaction. By

storing the bloom filter instead of a participant’s information (i.e., public key

or address) on the blockchain, we can provide higher confidence and reduce the

transaction size1.

3.2 Design and Implementation

To achieve higher performance, storage efficiency, and privacy, we propose a

new efficient multi-signature wallet. We aim to increase security compared with

a single-signature wallet and improve performance and storage efficiency com-

pared with a multi-signature wallet. To do this, to improve the performance (i.e.,

transaction validation), we devise a blockchain wallet by exploiting a thresh-

old elliptic curve digital signature algorithm (T-ECDSA) [43]. With T-ECDSA,

our proposed wallet can generate a single signature by reconstructing the par-

ticipant’s multiple signatures and validating the generated single signature on

blockchains. It provides better validation performance since a single signature

validation performance is better than that of multiple signatures.

Second, we exploit a Bloom-filter [65] on a transaction to enhance privacy

and storage efficiency. With the Bloom filter, we could identify each participant

1Generally, the size of a public key is 64 bytes and the size of an address is 20 bytes.
Meanwhile, the size of the bloom filter is up to 36 bytes

24

Figure 3.1: Overall architecture of proposed scheme

of the single signature generated by the T-ECDSA. This scheme can increase

storage efficiency by storing the Bloom filter instead of public keys in a signed

transaction or addresses (the size of public keys and addresses are larger than

that of the Bloom filter). This scheme can also prevent the exposure of per-

sonal information since the Bloom filter does not store actual data. Finally,

our proposed multi-signature wallet can be used in any blockchain (e.g., Bit-

coin, Ethereum) without modifying the blockchain protocol or using a smart

contract.

3.2.1 Overview

Figure 3.1 shows the overall architecture of the proposed multi-signature wallet

which comprises clients (i.e., blockchain wallets).

The client supports managing private/public keys and signs a transaction.

To facilitate this, we devise seven modules in the client as shown in Figure 3.1.

The information exchange module supports the exchange of each client’s

information such as public key, encryption key, and local reconstruction of the

25

Figure 3.2: A pre-processing overview

participants’ multiple signatures and validation signature. To do this, we de-

vise four functions such as channel generation, channel connection, information

store, and information provision in the module. The channel generation cre-

ates a channel for client communication. The channel connection allows clients

to connect to the created channel to exchange information. For example, the

clients can generate a common public key of a multi-signature wallet via the

channel2. The information store stores the information generated by each client

and the information provision transfers the participants’ stored information to

2The common public key becomes the representative address of a multi-signature wallet.
The address is used to receive and send digital assets on the blockchain network [66].

26

the clients. Note that all information stored is encrypted, protecting the infor-

mation against a malicious client.

The key generation module generates private and public keys. It also creates

a common public key of a multi-signature wallet by recombining all partici-

pant’s public keys. The encryption and decryption module performs encryption

and decryption to prevent the disclosure of the participants’ information. The

transaction generation module generates a blockchain transaction (e.g., Bitcoin

and Ethereum). Also, it creates and stores a bloom filter that represents par-

ticipants signing a transaction.

The signing module signs a transaction by generating a local signature per

participant for the transaction and reconstructing the local signatures. This

module generates a single signature from multiple local signatures. The com-

munication module connects the information exchange module to the store or

extracts information on clients. The validation module verifies whether the client

information is forged. If the information is forged, the module stops the process

of generating a multi-signature wallet or signing a transaction. Furthermore,

this module identifies participants of a transaction by using the Bloom filter.

3.2.2 Preparing to exchange information.

Before generating a multi-signature wallet and signing a transaction, clients

perform a preprocessing step for secure information exchange. In this step,

the clients connect to a information exchange module and exchange their own

encryption keys with each other. Figure 3.2 shows the preprocessing step.

First, client A requests to create and join a channel with a channel’s pass-

word (passwd) and the number of wallet participants (n) to the information

exchange module via createChannel(). The channel generation module in the

information exchange module generates a channel ID (channel id) with the

27

received password. It returns the channel ID to the client3. After then, the rest

of the clients (clients B and C) can join the channel with the channel ID and

password via joinChannel().

After all, clients join the channel, each client generates an encryption key

(encKey) / decryption key (decKey) pair via createKeyPair() and, uploads the

encryption key to the information exchange module via setEncKey(). The in-

formation store module stores and manages the encryption key. And then, each

client requests the other client’s encryption keys to the information provision

module, and the module provides the encryption keys to clients. The encryption

key is used to encrypt the information when generating a multi-signature wal-

let, for high security. To verify whether the encryption key is correct or not, we

use zero-knowledge proof [67], which is a method that allows data to be verified

without revealing that data. If the proofs are not valid, the key generation and

signing process is stopped. This preprocessing guarantees that a multi-signature

is generated and a transaction is signed securely.

3.2.3 Generating a multi-signature wallet

To transfer digital assets on a blockchain, the clients create a multi-signature

wallet. In our scheme, the multi-signature wallet operates as a single-signature

wallet to reduce the validation time. To do this, we generate a common public

key and shared keys as follows. As mentioned in Section 3.2.2, clients perform a

preprocessing step before generating a multi-signature wallet. After the step, all

the clients generate private/public keys via the key generation module and share

and bind the public key among themselves by using a commitment scheme via

the communication module. A commitment scheme is a cryptographic primitive

that allows one to commit to a chosen value (i.e., public key) while keeping it

3The channel ID and password will be shared between clients offline

28

Client_A’s Private key Client_B’s Private key Client_C’s Private key

Client_A's
Shared keys

Client_B's
Shared keys

Client_C's
Shared keys

Enc
SharePK

[A-2]

Enc
SharePK

[A-3]

Enc
SharePK

[B-1]

Enc
SharePK

[B-3]

Enc
SharePK

[C-1]

Enc
SharePK

[C-2]

Enc
SharePK

[B-1]

Enc
SharePK

[C-1]

Enc
SharePK

[A-2]

Enc
SharePK

[C-2]

Enc
SharePK

[A-3]

Enc
SharePK

[B-3]

SharePK
[A-1]

SharePK
[A-2]

SharePK
[A-3]

SharePK
[B-1]

SharePK
[B-2]

SharePK
[B-3]

SharePK
[C-1]

SharePK
[C-2]

SharePK
[C-3]

SharePK
[A-1]

SharePK
[B-1]

SharePK
[C-1]

SharePK
[A-2]

SharePK
[B-2]

SharePK
[C-2]

SharePK
[A-3]

SharePK
[B-3]

SharePK
[C-3]

dividePK()1

encrypt()2

share()3

4 decrypt()

Figure 3.3: A key generation process for 2 of 3 multi-signature wallets

hidden from others, with the ability to reveal the committed value later [68]. If

all the public keys are valid, each client generates a common public key with

the public keys. The common public key represents the multi-signature wallet

and is generated by the key generation module.

To generate shared keys, each client divides its own private key to N shared

keys with the threshold (T) and the number of participants (N). For example,

Figure 3.3 shows a 2 of 3 multi-signature wallet generating shared keys of a

multi-signature wallet. Each client (i.e., client A, client B, and client C) first

splits its own private key as three shared keys (SharedPK) via dividePK() in

the key generation module (1○). The shared keys are used to sign a transaction.

Second, each client encrypts the shared keys with participants’ encryption keys

via encrypt() in the encryption module (2○). For example, client A encrypts

the shared key (sharedPK [A-2]) to be transferred to client B with client B’s

encryption key. Similarly, the shared key (sharedPK [A-3]) to be transferred to

client C is encrypted client C’s encryption key. The encrypted shared key [A-2]

29

1 1 1 1 … 1 1

1 1 1 1 1 1

Validate : { z }

Add : { x, y }

Add : {client A’s public key, client B’s public key}

Value

Index 0 1 2 3 4 5 53 54 55 56 57

1

2

Bloom-filter

Identify : {client A’s public key}

H1(A_pub) H2(A_pub) H20(A_pub)

H1(B_pub) H2(B_pub) H20(B_pub)

H1(A_pub) H2(A_pub) H20(A_pub)

...

...

...

Figure 3.4: Using bloom-filter in a multi-signature wallet (H: hash function,
pub: public key)

(enc sharedPK [A-2]) can be opened only by client B, and the encrypted shared

key [A-3] (enc sharedPK [A-3]) can be opened only by client C.

After the encryption, each client distributes encrypted shared keys to their

associated clients via share() in the communication module (3○). Next, the

clients decrypt the transferred shared keys with their decryption keys via decryp

t() in the decryption module (4○). Note that the clients exchange each shared

key by using zero-knowledge proof (ZKP). Therefore, all clients verify whether

the shared keys are valid without actually transferring the shared keys via vali-

dation module. If the proofs are not valid, the key generation process is stopped.

3.2.4 Signing transaction via multi-signature and Bloom-filter

As mentioned in Section 3.2.2, clients perform a preprocessing step before sign-

ing a transaction using multi-signature. After the preprocessing step, to identify

the participant of a transaction, clients generate a bloom filter with the partici-

pants’ public keys via the transaction generation module. As mentioned Section

in 2.4, because the bloom filter has a false-positive feature, all clients should

decide on a bloom filter size with an array of m-bits and k hash functions. We

30

calculate the m-bits size and the number of k hash functions by using an equa-

tion 3.2, the fixed number of participants, and a false positive rate. We set the

probabilistically safe state as 2−20 and the maximum number of participants in

a transaction as ten. As a result, the bloom filter has from 29 bits up to 289

bits of size and 20 hash functions, which is the optimal number of the bloom

filter.

Figure 3.4 shows generating a bloom filter of a transaction when two clients

(clients A and B) participate in a signing process of a 2 of 3 multi-signature

wallet. First, each client calculates m-bits size with the number of participants

(i.e., 2). In this case, the Bloom-filter size is 58 bits. Next, each client calculates

its own 20 hash values (H1∼ H20) with each participant’s public key (i.e., A pub

and B pub) and sets the corresponding bit to 1 for each hash value as the bit

array index (1○). The generated bloom filter is exchanged and validated by each

client using a commitment scheme. For example, to identify whether client A

signs in the transaction, all the clients calculate their own 20 hash values (H1∼

H20) with client A’s public key. They then check the corresponding bit for each

hash value as the bit array index (2○). If all values are 1, it indicates that client

A has participated in the signing of the transaction. This process is performed

for client B in the same manner. After verifying that the bloom filter indicates

that all clients (clients A and B) have participated in the signing process, the

clients store the bloom filter in the transaction. If the validation fails, the signing

process is stopped.

After generating the bloom filter, the clients perform the process of signing

the transaction. In our scheme, we distribute the authority of signing a trans-

action by using the T-ECDSA for high security. For this, we use multi-party

computation (MPC) in the T-ECDSA which is a method for creating a single

signature by distributing the authority to multiple clients. In this process, to

31

Client_A

Client_C

Client_B

Local sig
[A]

Enc
p_A

p_A

Local sig
[B]

Shared keys of A

SharePK
[A-1]

SharePK
[B-1]

SharePK
[C-1]

Shared keys of B

SharePK
[A-2]

SharePK
[B-2]

SharePK
[C-2]

Enc
p_B

p_B

k_B k_B ・ G

ecc()2

encrypt()1

k_A k_A ・ G

ecc()2

encrypt()1

createLocalSig()4

createLocalSig()4

exchangeLocalSig()5

exchangeLocalSig()5

exchangeInfo()3

exchangeInfo()3

Single
signature

Local sig
[A]

Local sig
[B]

Single
signature

Local sig
[A]

reconstructSig()6

reconstructSig()6
Local sig

[B]

Secure Information

k_A ・G
Enc
p_B

k_B ・G
Enc
p_A

Secure Information

k_A ・G
Enc
p_B

k_B ・G
Enc
p_A

Figure 3.5: A signing process for a 2 of 3 multi-signature wallet (p: random
number, k: random number, G: generate point, sig: signature)

distribute the authority and hide information, we generate random numbers

and a local signature for each client, respectively. Figure 3.5 shows the signing

process of a 2 of 3 multi-signature wallet. Clients A and B first generate their

own random numbers (k and p), which are used to generate a single signature

via the T-ECDSA. For example, clients A and B generate random numbers such

as p A/k A and p B/k B, respectively. The parameter k is used to generate a

local signature and p is used to hide its own shared keys in the signing process.

Next, the clients encrypt their own p via encrypt() (1○). Each client then

calculates a point of an elliptic curve with its own random k and generation

point G via ecc() (2○).

To generate a local signature, the clients exchange the encrypted p (i.e.,

enc p A and enc p B) and the points (i.e., k A·G and k B·G) with each other

via exchangeInfo() (3○). The clients load the generated information (shared

keys, private keys, etc) mentioned in Section 3.2.3. Subsequently, the clients

generate their local signatures (local sig A and local sig B) with the shared

keys and secure information (i.e., enc p A, enc p B, k A·G, and k B·G) via

createLocalSig() (4○). Each local signature is part of a single signature and

32

contains information about each participant’s shared keys encrypted. The signa-

tures are used to reconstruct a complete single signature. After creating the local

signature, the clients exchange their local signature via exchangeLocalSig()

(5○). Furthermore, each client completes signing the transaction by reconstruct-

ing the local signatures to obtain a single signature via reconstructSig() (6○).

A signed transaction is generated for each participant, and the transaction is

sent to the blockchain by client A who creates a channel in the preprocessing

step of Section 3.2.2 by the wallet rule.

Unlike Shamir’s secret sharing [69] scheme, the process of generating a single

signature is more secure because in the process, each local signature, rather than

a common private key, is reconstructed for signing the transaction. Therefore,

each participant cannot acquire secure information such as private keys and

shared keys, and a malicious client cannot sign another transaction with the

information. In contrast to other multi-signature wallets [13, 14], the proposed

wallet does not include any participant’s public key or wallet address since it

uses a bloom filter, thereby providing more privacy.

3.2.5 Identifying a participant of a transaction

After signing a transaction, the proposed multi-signature wallet identifies who

signs the transaction in order to hold clients accountable for the transfer of

digital assets. For this, the validation module in a client downloads the trans-

action data from blockchains for identifying a participant in a transaction. The

module extracts the bloom filter from the transaction and checks who signs

the transaction via the bloom filter. For example, as shown in Figure 3.4, the

Bloom-filter identifies whether client A signs a transaction. If all the values of

the index corresponding to the hash value of client A’s public key are 1, we

can identify that client A signed the transaction. Otherwise, we can identify

33

that client A does not sign the transaction. Through these processes, we can

identify the participant via the bloom filter values, without exposing private

information.

3.3 Evaluation

3.3.1 Experimental setup

In our evaluation, we use a server node comprising two Intel Xeon E5-2683

processors (total 32 cores), 64 GiB DRAM, and running Ubuntu 16.04.5 LTS.

We use ten client nodes, and each client includes an Intel i7 processor and 32

GiB DRAM running macOS. We evaluate the existing multi-signature wallets

go-bitcoin-multisig [70] and MultiSigWallet [13] and our proposed wallet on

two blockchains (i.e., Bitcoin and Ethereum). We compare the proposed wal-

let with go-bitcoin-multisig supporting multi-signature and using pay-to-script-

hash (P2SH) for the Bitcoin protocol. We also compare our multi-signature

wallet with MultiSigWallet, which uses a smart contract, since the Ethereum

blockchain does not support multi-signature as a protocol. We evaluate the

transaction validation time, transaction size, and transaction fees (cost), and

examine the privacy. Note that we measure the performance for 1 of 1, 2 of 2,

and 2 of 3 since Bitcoin supports a multi-signature up to 2 of 3. In Ethereum,

generally, the number of participants is ten, and therefore, we measure the

performance in the case of 1 of 1, 2 of 2, 2 of 3, 3 of 4, 4 of 5, and 5 of 10.

3.3.2 Performance results

Transaction validation time. The left side of Figure 3.6 shows the transac-

tion validation time of one of the existing wallets (go-bitcoin-multisig) and our

proposed wallet on the Bitcoin blockchain. We compare multi-signature until 2

of 3 participants since Bitcoin supports multi-signature up to 2 of 3 by default.

34

0

70

140

210

280

350

1 of 1 2 of 2 2 of 3T
ra

n
sa

ti
o

n
 v

al
id

at
io

n
 t

im
e

 (
μ

s
)

The type of multi-signature wallet

Existing wallet (go-bitcoin-multisig) Proposed wallet

0

80

160

240

320

400

1 of 1 2 of 2 2 of 3 3 of 4 4 of 5 5 of 10T
ra

n
s

at
io

n
 v

al
id

at
io

n
 t

im
e

(μ
s)

The type of multi-signature wallet

Existing wallet (MultiSigWallet) Proposed wallet

Figure 3.6: Transaction Validation Time in Two Networks: Bitcoin Blockchain
(left) and Ethereum Blockchain (right)

In the case of 1 of 1, the performance as a baseline of the existing and proposed

schemes is equal since both wallets use the general single signature scheme. For

the multi-signature types 2 of 2 and 2 of 3, the proposed wallet shows perfor-

mance improvement by up to 2x and 1.89x compared with the existing wallet,

respectively. The transaction signed by the existing wallet requires more vali-

dation time since multiple signatures have to be validated. By contrast, since

the proposed wallet signs a transaction with a single signature, the verification

time is the same as that of a single-signature scheme. Therefore, the proposed

wallet shows higher validation performance than the existing multi-signature

wallet.

The right side of Figure 3.6 shows the transaction validation time for the

other existing wallet (MultiSigWallet) and our proposed wallet on the Ethereum

blockchain. Likewise, the performance of the wallet is equal for the existing and

proposed schemes for 1 of 1. For the multi-signature types 2 of 2, 2 of 3, 3 of 4,

4 of 5, and 5 of 10, the proposed wallet shows performance improvements by up

to 24.7x, 22.9x, 41.1x, 44.3x, and 58.3x compared with the existing wallet, re-

spectively. MultiSigWallet generates multiple smart contract transactions such

as submit and confirm transactions, and these transactions should be validated

by executing the smart contract on Ethereum, which increases the validation

time. Since it generates only a single transaction, the proposed wallet shows

35

0

200

400

600

800

1,000

1 of 1 2 of 2 2 of 3

T
ra

n
s

ac
ti

o
n

 s
iz

e
(b

yt
es

)

The type of multi-signature wallet

Existing wallet (go-bitcoin-multisig) Proposed wallet

0

400

800

1,200

1,600

1 of 1 2 of 2 2 of 3 3 of 4 4 of 5 5 of 10

T
ra

n
s

ac
ti

o
n

 s
iz

e
(b

yt
es

)

The type of multi-signature wallet

Existing wallet (MultiSigWallet) Proposed wallet

Figure 3.7: Transaction Size in Two Networks: Bitcoin Blockchain (left) and
Ethereum Blockchain (right)

0

0.0002

0.0004

0.0006

0.0008

0.001

1 of 1 2 of 2 2 of 3

T
ra

n
sa

c
ti

o
n

 f
ee

s
 (

B
T

C
)

The type of multi-signature wallet

Existing wallet (go-bitcoin-multisig) Proposed wallet

0

0.0005

0.001

0.0015

0.002

0.0025

1 of 1 2 of 2 2 of 3 3 of 4 4 of 5 5 of 10

T
ra

n
s

ac
ti

o
n

 f
ee

s
 (

E
T

H
)

The type of multi-signature wallet

Existing wallet (MultiSigWallet) Proposed wallet

Figure 3.8: Transaction Fee in Two Networks: Bitcoin Blockchain (left) and
Ethereum Blockchain (right)(BTC: bitcoin, ETH: ethereum)

higher validation performance than the existing wallet.

Transaction size. The left side of Figure 3.7 shows the transaction size of

the existing wallet (go-bitcoin-multisig) and our proposed wallet on the Bitcoin

blockchain. The proposed wallet reduces the transaction size by up to 1.58x and

1.86x compared with the existing wallet for the multi-signature types 2 of 2 and

2 of 3, respectively. This is because the existing wallet signs a transaction with

multiple signatures. Moreover, a transaction of the existing wallet involves all

participants’ public keys for validating a transaction. Therefore, as the number

of participants increases, the transaction size of the existing wallet increases.

By contrast, the proposed wallet signs a transaction with a single signature,

a bloom filter, and a common public key for validating a transaction, which

reduces the transaction size.

The right side of Figure 3.7 shows the transaction size of the existing wallet

36

(MultiSigWallet) and our proposed wallet on the Ethereum blockchain. The

proposed wallet reduces the transaction size by up to 3.15x, 3.2x, 4.24x, 5.2x,

and 6.18x compared with the existing wallet for the multi-signature types 2

of 2, 2 of 3, 3 of 4, 4 of 5, and 5 of 10, respectively. As the number of par-

ticipants increases, the total transaction size of the existing wallet increases

since the number of multiple transactions increases. By contrast, in the case of

the proposed wallet, the transaction size is almost constant or increases only

slightly. The reason is that the wallet generates a single transaction even though

the number of participants increases and the size of the bloom filter increases

slightly according to the number of participants.

Transaction fee. A client should pay a transaction fee when transmitting

a digital asset on a blockchain. In the case of Bitcoin, the transaction fee de-

pends on the transaction confirmation time4 Before the final transaction fee is

determined, an optimal transaction fee per byte is decided by considering the

Bitcoin network status and transaction confirmation time by using a Bitcoin fee

calculator [71]. The final transaction fee is decided by the optimal transaction

fee and the transaction size. The left side of Figure 3.8 shows the transaction fee

of the existing wallet (go-bitcoin-multisig) and the proposed wallet on the Bit-

coin blockchain. The proposed wallet reduces a transaction fee by up to 1.58x

and 1.86x compared with the existing wallet for the multi-signature types 2 of 2

and 2 of 3, respectively. Thus, we could reduce the transaction fee by reducing

the transaction size through the use of a single signature.

In the case of Ethereum, the transaction fee depends on gas usage and gas

price5. Before determining the transaction fee, an optimal gas price is decided

4The transaction confirmation time is the time interval from the beginning and the approval
of the transaction on a blockchain. We set this confirmation time as 60 minutes based on a
previous study [56].

5The unit of transaction fee in Ethereum is gas

37

by considering the Ethereum network status and the transaction confirmation

time via an Ethereum gas station [72]. The transaction fee is then determined

by the optimal gas price and gas usage. The gas usage is charged cumulatively

whenever a smart contract is executed or extra data is included. The right side of

Figure 3.8 shows the transaction fees of the existing wallet (MultiSigWallet) and

our proposed wallet on the Ethereum blockchain. The proposed wallet reduces

the transaction fee by up to 10.7x, 11.6x, 15.2x, 20.7x, and 27x compared with

the existing wallet for the multi-signature types 2 of 2, 2 of 3, 3 of 4, 4 of 5,

and 5 of 10, respectively. The existing wallet creates multiple transactions and

executes a smart contract to sign a transaction, which incurs more gas usage.

By contrast, our scheme does not require the execution of a smart contract.

Although additional data is obtained from the bloom filter, it hardly affects gas

usage. Consequently, the proposed wallet incurs a lower transaction fee than

the existing wallet.

3.3.3 Discussion of usecase

Multi-signature wallets bring significant security enhancements to the blockchain

ecosystem. These wallets require multiple keys to authorize a transaction, pro-

viding a more secure environment compared to conventional wallets.

One of the primary areas of application for multi-signature wallets is in the

management of corporate funds within an organization. In a traditional setting,

the handling of an organization’s funds is typically done through a centralized

system with checks and balances in place. For instance, a transaction might

require the signatures of several key members of the organization. Implementing

multi-signature wallets can replicate this secure environment in a decentralized

manner. Transactions can be set to require the authorization of multiple key

holders, ensuring that no single person can misappropriate funds.

38

Additionally, multi-signature wallets are useful in managing shared funds in

less formal situations, such as family trusts or joint accounts. In such cases, the

requirement for multiple signatures can serve as protection against one party

misusing the funds, making the management of shared assets more secure and

transparent.

Finally, multi-signature wallets can also serve as a security mechanism for

individual users. By distributing the keys across multiple devices or locations,

users can protect themselves against the loss or theft of a single key. This

security measure is particularly relevant in situations where large amounts of

assets are being stored, making the potential losses from a single point of failure

extremely high.

While the advantages of multi-signature wallets are clear, there are also

challenges to be addressed. For instance, the need to manage multiple keys

introduces additional complexity for users. Moreover, the technology underlying

multi-signature wallets is still evolving, and there may be unforeseen technical

challenges to overcome. Therefore, further research and development are needed

to fully realize the potential of multi-signature wallets.

3.3.4 Discussion of privacy

Any client can access data on public blockchains such as Bitcoin and Ethereum.

Thus, there can be privacy problems for the existing wallets on public blockchains

since the blockchains can store participants’ information such as public key and

wallet address. For example, in the case of MultiSigWallet, a signed transac-

tion on the blockchain includes the associated participants’ wallet addresses. In

the case of go-bitcoin-multisig, a signed transaction on the blockchain includes

all participants’ public keys that are required to verify the transaction. Con-

sequently, in both existing schemes, there can be privacy problems since the

39

participants’ information (public keys or wallet addresses) on the blockchain

can be exposed to any client. In the proposed wallet, the signed transaction

includes a common public key and a bloom filter instead of the participants’

information. Therefore, the proposed wallet can provide more privacy than the

existing wallets by preventing the exposure of participants’ information.

3.4 Summary

We investigate blockchain wallets that support a digital signature in blockchains

and found that while a multi-signature wallet provides higher security than a

single-signature wallet, it increases the transaction validation time and trans-

action size. Furthermore, the use of a multi-signature wallet requires the mod-

ification of the blockchain protocol. To overcome these issues, we develop a

new multi-signature wallet with high performance and a small transaction size

by using a T-ECDSA and a bloom filter. Through the bloom filter, users can

reduce transaction size and preserve privacy. We implement the proposed multi-

signature wallet using a Multi-party ECDSA and evaluate the wallet’s perfor-

mance for Bitcoin and Ethereum. Our experimental results show that the pro-

posed multi-signature wallet reduces the validation time and transaction size

more than other existing multi-signature wallets.

40

Chapter 4

Enabling SQL-Query Processing
in Blockchain Systems

4.0.1 Motivation

By using smart contracts, users can implement a wide range of business logic

such as distributed applications (DApp) on the blockchain.

Smart contracts frequently require the ability to obtain data in a range

(such as purchase history and sales history). For example, Opensea, famous for

its NFT market, shows that 121 million people visit the site every month [73].

However, as shown in Figure 4.1, the transactions are only 974,220 per month.

In other words, it can be seen that the frequency of checking the details in each

wallet is greater than the transaction frequency. However, a key-value store in

the blockchain is challenging since it does not provide range query processing.

In this instance, a smart contract can often retrieve range data in one of the

following two ways:

• Using user-defined data structure. As one method for retrieving the

41

Figure 4.1: Opensea transaction statistics May-June 2023

range and condition data of a smart contract, a user-defined data structure

can be used in the smart contract. For example, when a user requests the

states in a range, the blockchain system retrieves the requested states,

saves the results in the data structure (e.g., an array or map), and gives it

to the user. Even though this method can provide a range of data, it can

decrease the overall performance. The reason is that an Ethereum Virtual

Machine (EVM) is loaded and it runs the smart contract by reading states

from the database one by one instead of a range query.

• Using an external relational database. To retrieve the range and

condition data of a smart contract and regular transaction, we can use

an external database in a blockchain system. For serving the transac-

tion history, usually, DApp collects all transactional data occurring on

the blockchain is gathered, with a specific focus on transactions taking

place through the DApp smart contract. After that, the Collected transac-

tion’s event history is stored in an external database. Finally, when a user

queries a transaction on the DApp, the DApp then retrieves the relevant

42

data from the external database and provides the results to the user. The

external database enables the range query processing and so it provides

higher search performance. However, this method can require additional

management in the blockchain system. For instance, we should manually

carry out many tasks when a blockchain node connects to an external

database system (e.g., setting database APIs, constructing a database,

and making tables). However, in our proposal, each node in a blockchain

system has an embedded database system to automatically carry out these

processes. By doing this, the user may quickly connect to the database

system and leverage the embedded database system’s range query pro-

cessing.

There are multiple challenges associated with providing services that rely on

data from the blockchain to external databases. Firstly, it is critically important

for the service provider to maintain data consistency between the blockchain

and the external database. Each new transaction occurring on the blockchain

requires immediate updates to the external database, which can introduce sig-

nificant technical complexities. Secondly, the use of external databases, which

are inherently centralized systems, introduces significant security concerns. It

means that there is a possibility that Oracle problems [74] may occur in the situ-

ation in which data is transferred. Lastly, the fundamental design of blockchain

technology promotes data that is public and accessible to all. However, this

principle could be compromised when using an external database. In such a

case, the company operating the database assumes full ownership, which could

limit data accessibility. This poses a potential contradiction to the inherent de-

centralization ethos of blockchain technology. To solve this problem, we would

like to introduce a method of exploring the range of data through SQL within

43

External DB
(Mysql, MongoDB, etc.)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based blockchain nodeEthereum-based blockchain nodeEthereum-based blockchain node

Database

Embedded DB
(SQLite)

Key-value DB
(LevelDB)

External DB
(Mysql, MongoDB, etc.)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based
blockchain node

Database

Key-value DB
(LevelDB)

Ethereum-based blockchain nodeEthereum-based blockchain nodeEthereum-based blockchain node

Database

Embedded DB
(SQLite)

Key-value DB
(LevelDB)

Figure 4.2: Classification of the database on Ethereum-based blockchain node
(Left: external database, Right: Embedded database)

the blockchain.

4.1 Design and Implementation

To achieve higher searching performance and reduce the management cost in

a blockchain system, we aim to enable the retrieval of range data and con-

ditional data in the blockchain system. To do this, we combine an embedded

database system into the blockchain system that provides SQL query operations

for a range of data inside a blockchain without manually building an external

database and a user-defined data structure.

Figure 4.2 shows the difference between an external database system and an

embedded database system. It is whether the database is built in an application

or not [75]. As shown in left Figure 4.2, an external database has to install a

standalone application and centralized server. On the other hand, as shown

in right Figure 4.2, the embedded database is built into an application and

stores data among users without installing a separate database server [76]. Also,

when using the external database for retrieving the information of the regular

transaction, the blockchain system has to rely on a third entity (e.g., a DBMS

server). Meanwhile, when using the embedded database, the blockchain system

does not need to rely on a third entity.

44

Due to these embedded database advantages, we select the embedded databa

se as the database in the blockchain node. Therefore, through the embedded

database, we can provide a decentralized architecture and enable SQL query op-

erations for retrieving range and conditional data. For an embedded database,

we choose SQLite which is an embedded relational database system. SQLite

is an open-source Database Management System (DBMS) and a lightweight

embedded database that manages data with a single file and does not require

a separate database server. So, via SQLite, we can be built into a client appli-

cation [77].

Meanwhile, we maintain an existing key-value database (LevelDB) used in

the blockchain system to exploit its advantages. For example, when a key-value

database retrieves a block or a transaction to validate the transaction or block,

it provides better performance in searching. Also, our system does not sacrifice

the consistency of existing blockchain systems.

4.1.1 Design

Figure 4.3 shows the system overview(architecture) of the existing and pro-

posed systems. In the existing system, as shown in the left side of Figure 4.3,

when the service interface layer is transmitted from the application layer to an

Ethereum-based blockchain system, it gets the transaction from the application

layer. Then, it is sent from the service interface layer to the transaction layer.

After then, the transaction layer classifies if the transaction type is a smart con-

tract transaction or a regular transaction. If the type of transaction is a smart

contract, the smart contract manager performs the smart contract transaction

on Ethereum Virtual Machine(EVM). Then, the smart contract manager vali-

dates the performed transaction result. And, if the result is valid, the manager

stores the transaction to mempool as a pending transaction.

45

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

Figure 4.3: System overview (left: existing system, right: proposed system)

On the other hand, if the type of transaction is regular, the transaction

manager verifies the regular transaction by checking the sender’s balance in the

transaction. After the transaction is verified, the transaction manager stores

the transaction as a pending transaction in a transaction pool (mempool) which

has the validated pending transactions.

When a block has to be generated, the block layer generates a block with

pending transactions. The pending transactions include regular and smart con-

tract transactions in the mempool. At this time, the pending transactions are

performed so that the states are updated according to the transaction results.

Finally, the information of the block with transactions is stored in a key-value

database (i.e., LevelDB). Because the blockchain constructs a database as a

key-value database, it is impossible to search for conditions or ranges in the

existing blockchain. Therefore, a separate database has been established for re-

trieving the range and condition of blockchain data (e.g., smart contracts and

46

regular transactions).

Meanwhile, as shown in the right side of Figure 4.3, in the proposed system,

we add a register manager and a query manager and modify the block layer.

The managers handle smart contract transactions and regular transactions. The

register manager registers the smart contracts and wallet addresses for regular

transactions which are requested to retrieve range data through application and

service interface layers. Then, like the existing system, the transaction manager

and the smart contract manager perform the transactions, validates the transac-

tion results, and store the transactions to mempool. Also, when a block should

be generated, the block layer generates a block with pending transactions of

which type is both smart contracts and regular transactions in mempool. Mean-

while, our modified block layer checks whether the transaction is associated

with a smart contract or wallet address already registered by the register man-

ager. If the transaction is associated with the smart contract or wallet address,

the block layer stores the transaction in an embedded relational database (e.g.,

SQLite). After then, when a user requests the range and condition data of the

smart contract and regular transaction, the query manager performs various

SQL queries by using the database according to the requested operations.

Register Manager

For more efficiency, we register the smart contracts and wallet addresses only

requested by users for retrieving the range and condition data to avoid man-

aging all the transactions. This strategy can identify whether a transaction is

stored or not in the embedded relational database (i.e., SQLite) according to

the registered smart contract and wallet address.

To do this, we devise the register manager as shown in the bottom side of

Figure 4.3. In terms of smart contracts, we create APIs in the register manager

47

such as registerContractAddress which registers the smart contract. The

register manager stores the smart contract address which is used to identify the

smart contract in SQLite when it gets the request to register a smart contract

with registerContractAddress. Also, in terms of regular transactions, we

create APIs in the register manager such as registerWalletAddress which

registers the wallet address. When the register manager gets the request to

register the wallet address via registerWalletAddress, it stores the wallet

address in SQLite.

After the registration, the results of transactions from the registered smart

contract and the wallet address are stored in SQLite by the block layer as shown

in right Figure 4.3. Through registration, we can retrieve and track the results

of transactions in a range and conditions. We will explain this mechanism for

storing the results of smart contracts and regular transactions in SQLite in

Section 4.1.1. Meanwhile, if the results of the smart contract and user do not

need anymore, we can remove the corresponding smart contract and wallet

address via removeContractAddress and removeWalletAddress. After then,

the tracking for the smart contract and wallet address is stopped.

Query Manager

Query manager performs a SQL query for retrieving data of smart contracts

and regular transactions by using the embedded relational database system

(i.e., SQLite). To do this, we create an API such as getData for retrieving data

in the smart contract. When the query manager has received the request for

retrieval via getData, the query manager retrieves the data of the smart con-

tract and regular transaction from SQLite. Also, in the query manager, only the

SELECT query is executed, meanwhile, other queries (i.e., INSERT, UPDATE, and

DELETE) are filtered to prevent modifying the data from outside. With SQLite,

48

the query manager can perform range or conditional query operations by call-

ing getData. If a smart contract or wallet address is not registered through the

register manager, the query manager does not perform any operations for the

corresponding smart contract or regular transaction.

Block Layer

In our system, the modified block layer stores a block that includes smart

contract transactions and regular transactions to both the key-value database

(i.e., LevelDB) and relational database (i.e., SQLite). The block layer performs a

two-level check operation. First, the block layer checks whether each transaction

in a block is a smart contract transaction or a regular transaction. Second, if

the transaction is a smart contract transaction, the block layer checks whether

the smart contract transaction is associated with the smart contract already

registered by the register manager.

Also, if the transaction is a regular transaction, the block layer checks the

regular transaction is associated with the wallet address already registered by

the register manager. If the transaction is registered via the register man-

ager, the block layer stores the transaction in both LevelDB and SQLite. Oth-

erwise, the transaction data is stored in LevelDB without storing the data

in SQLite. It is because the key-value database is used for maintaining the

Ethereum-based blockchain functionality for integrity, and the embedded rela-

tional database is used for retrieving range data in the smart contract. When

the block layer receives the remove request via removeContractAddress or

removeWalletAddress from the register manager, the block layer removes all

the data related to the smart contract and wallet address in SQLite.

49

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Smart Contract Manager

Transaction Manager

Block Layer

Embedded Database

Key-value DB
(LevelDB)

Ethereum-based blockchain

Transaction Layer

Application Layer

Service Interface Layer

Query Manager

Smart Contract Manager

Transaction Manager

Register Manager

Block Layer

External Database

Relational DB
(SQLite)

Key-value DB
(LevelDB)

External Database

Relational DB
(Mysql, SQLite, etc.)

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
"SELECT"

query?

getDataQuery result

SQL query

quorum
(based on go-ethereum)

Query
result

(No)
Error

(Yes)
SQL query

LevelDB SQLiteLevelDB SQLite

Transaction data

JSON-RPC API Lib
(e.g. web3.py, web3.js)

Is this
registered

transaction?

Register or
transaction result

State,
Transaction data,

Receipt

quorum
(based on go-ethereum)

(Yes)
Transaction data

registerContractAddress,
registerWalletAddress,
sendTransaction,
sendRawTransaction

Figure 4.4: Process overview (left: register and store process, right: query pro-
cess)

4.1.2 Implementation

We implement our scheme on quorum as shown in Figure 4.4. quorum is an

Ethereum-based distributed ledger protocol with transaction/contract privacy

and new consensus mechanisms (e.g., raft and Istanbul BFT) for a private

blockc

hain. Also, we use the web3.py library of Python and SQLite3 library of golang

for applications. SQLite3 is a driver conforming to the built-in database/sql in-

terface in golang. web3.py and web3.js are a collection of libraries that allows

interaction with a local or remote Ethereum-based blockchain node by call-

ing JSON-RPC and using an HTTP or IPC (Inter-Process Communication)

connection.

As shown in left Figure 4.4, to retrieve range and condition data in a smart

50

contract and regular transaction, a user requests the registration of an address

of a smart contract via registerContractAddress. When the register manager

receives the request, the register manager creates a table according to the smart

contract in SQLite to store the transaction results. After the table is created

successfully, the register manager stores the smart contract address in SQLite.

In addition, to retrieve range and condition data in a regular transaction, a

user requests the registration of a wallet address via registerWalletAddress.

At that time, unlike a smart contract, the register manager stores the wallet

address at the pre-defined table in SQLite without creating a table.

After the registration of a smart contract, the smart contract and regular

transactions called by sendTransaction and sendRawTransaction from a user

is received and processed via quorum. When the block layer stores a block with

the transactions, the block layer checks whether each transaction in a block

should be stored in SQLite for range query according to their registration via

checkIsTrackedContract. If the block layer should store transaction data in

SQLite, the block layer stores the transaction data in both SQLite and LevelDB.

Otherwise, the block layer only stores the transaction data in LevelDB. For

example, in the case of a smart contract transaction, the block layer stores

the transaction data of the smart contract performed through EVM in SQLite

via insertValue(smart contract address, params). In the case of regular

transactions, the block layer stores the regular transaction data in SQLite via

transfer(source address, destination address, amount).

The right side of Figure 4.4 shows the query process in our system. When

range data in a smart contract needs to retrieve, JSON-RPC such as getData(SQL

select query) is called. Then, as shown in the figure, only the SELECT query

is performed in SQLite, and other SQL queries such as INSERT, UPDATE, and

DELETE are eliminated via a regular expression. If the SQL query syntax is wrong

51

ResultQueryUser-A

Where (condition)
• User-A (from)
• User-B (to)

Where (condition & range)
• User-A
• 2022-01-03 ~ 2022-03-04

2021-08-08 / A send 0.1 eth to B
2022-03-15 / A send 0.2 eth to B
2022-05-03 / A send 0.1 eth to B…

2022-01-08 / A send 0.1 eth to C
2022-02-17 / A receive 0.2 eth from B
2022-02-20 / A send 0.1 eth to D…

Query ResultUser-A

Figure 4.5: Retrieval regular transaction in the blockchain

or other queries, the query manager returns the error message. Otherwise, the

query manager returns the result data of the syntax.

4.1.3 Usage

Figure 4.5 shows how to retrieve regular transactions in the blockchain. To

retrieve the information of regular transactions for a certain period, a user

requests to query with the user A’s wallet address and the period. After then,

the blockchain returns the result of the query request. The result is transaction

information related to user A in the period. For example, user A sends 0.1 eths

to user C, user A receives 0.2 eths from user B, and user A sends 0.1 eths to

user D. In addition, user A can retrieve the transaction with a specific user.

To do this, user A enters their address and another user’s (user B) address.

After then, the blockchain returns the result of the query request. The result

is transaction information related to user A and user B. For example, user A

sends 0.1 eth to user B, user A sends 0.2 eth to user B, and user A sends 0.1

eth to user B. In this case, the query manager checks the query types whether

52

it is related to regular transactions. After then, the query manager looks up the

regular transaction table in SQLite, checks the search conditions, and responds

to the query.

On the other hand, in the case of an existing system with an external

database, it is necessary to build a separate database by synchronizing data

information from the blockchain. The reason is that the database used in the

blockchain is a key-value store, therefore, it is hard to retrieve conditions or

ranges of data. So, it receives data from the blockchain at the time the block

is generated and stores the data in a separate database such as MySQL. After-

ward, the method of retrieving general transactions is similar to the proposed

system, requesting a query to a separate service using an external database and

receiving the result accordingly.

4.2 Evaluation

4.2.1 Experimental setup

We perform all of the experiments on five 32-core machines. Each has two

Intel Xeon E5-2683 processors (without hyperthreading), 64 GiB DRAM, and

runs Ubuntu 16.04.5 LTS distribution with Linux kernel 4.4.0. We use golang

1.10.7, python 3.7 and jmeter [78] which are used to evaluate applications.

We empirically evaluate our proposed system by using a synthetic benchmark.

In the case of a smart contract, the smart contract scenario of the synthetic

benchmark is an energy usage storage application which a user stores electric

energy usage every 15 minutes, and the total duration of storing the data is one

year.

We make a smart contract for our evaluation. It consists of a variable and an

array of user-defined data structures per user. The variable stores a timestamp

that records the last time updated by a user. The array stores the actual energy

53

usage. The range to be retrieved in the smart contract is calculated as follows:

startIndex = MNE − (LSTS − STS)/c− 1

endIndex = MNE − (LSTS − ETS)/c− 1

return array[startIndex : endIndex]

(4.1)

MNE denotes the maximum number of entities in the smart contract during

one year. In our evaluation, the number is 35,040. STS and ETS denote the start

timestamp and end timestamp given by a user for retrieving the range data,

respectively. c is a constant that represents seconds of the storing cycle. We set

c as 900 seconds to convert 15 minutes to seconds. Using this smart contract,

we evaluate the existing and proposed systems in terms of INSERT and SELECT

performance.

In the case of a regular transaction, the regular transaction scenario of the

benchmark is sending and receiving cryptocurrency between users. As it is a

basic function of the blockchain, we exploit the internal function without writing

a separate contract. In addition, to compare the existing system with an external

database, we build the blockchain explorer which stores synchronized data of

blocks and transactions from the blockchain with the external database. As the

external database, we use MySQL since MySQL is typically used as an external

database in the blockchain. We run each experiment with 10 measurements and

report the average.

4.2.2 Performance results

SELECT performance

The top side of Figure 4.6 presents the SELECT performance of existing and

proposed systems in the case of smart contracts. For experimental parameters,

we set the number of threads as 1 and the number of entities as 10,000, 20,000,

54

0
0.5

1
1.5

2
2.5

3
3.5

4

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

0

0.4

0.8

1.2

1.6

2

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system with external database Proposed system

Figure 4.6: Execution time of select operations (top: smart contract, bottom:
regular transaction)

30,000, and 35,040. Thus, it shows the performance results according to the

number of entities. As shown in the figure, the proposed system improves the

performance by up to 16.9x, 16.5x, 15.8x, and 15.7x compared with the exist-

ing system when the number of entities is 10,000, 20,000, 30,000, and 35,040,

respectively. The proposed system provides a range query operation, while the

existing system has to retrieve each data one by one without the range query.

Therefore, it shows a better performance than the existing system. The exe-

cution time of the existing and proposed systems increases as the number of

entities increases. Because, as the number of entities increases, the time of data

55

0

100

200

300

400

500

600

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

0
10
20
30
40
50
60
70
80
90

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Existing system with external database Proposed system

Figure 4.7: Throughput of insert operations (top: smart contract, bottom: reg-
ular transaction)

retrieval and the amount of data is increased. Also, this result shows that the

execution time of the existing system increases rapidly, while the execution time

of the proposed system increases slowly as the number of entities increases.

The bottom side of Figure 4.6 presents the SELECT performance of the ex-

isting system with the external database and proposed system in the case of

regular transactions. For experimental parameters, like a smart contract exper-

iment, we set the number of threads as 1 and the number of entities as 10,000,

20,000, 30,000, and 35,040. As shown in the figure, the proposed system im-

proves the performance by up to 2.40x, 2.16x, 1.90x, and 2.12x compared with

the existing system with an external database when the number of entities

56

is 10,000, 20,000, 30,000, and 35,040, respectively. It is because our proposed

scheme combines SQLite for a regular transaction which is faster and simpler

compared with the existing system with MySQL.

INSERT performance

The top side of Figure 4.7 presents the INSERT performance of existing and

proposed systems. The experimental parameters used in the INSERT evaluation

are the same as those used in the SELECT evaluation. The execution time of

the proposed system increases by up to 1.013x, 0.994x, 0.992x, and 0.993x

compared with the existing system when the number of entities is 10,000, 20,000,

30,000, and 35,040, respectively. This result shows a minor overhead. In terms

of throughput, the proposed system provides 73.3, 71.4, 71.9, and 72.3 entities/s

and the existing system provides 72.3, 71.8, 72.4, and 72.7 entities/s when the

number of entities is 10,000, 20,000, 30,000, and 35,040, respectively. These

results present the throughput of INSERT operations of the proposed system as

almost the same as that of the existing system although we support additional

embedded relational databases (i.e., SQLite) for fast retrieval.

The bottom side of Figure 4.7 presents the INSERT performance of an ex-

isting system with an external database and proposed system. The experimen-

tal parameters used in the INSERT evaluation are the same as those used in

the SELECT evaluation. The proposed system increases the execution time by

up to 1.090x, 1.095x, 1.093x, and 1.081x compared with the existing system

when the number of entities is 10,000, 20,000, 30,000, and 35,040, respec-

tively. It is because the proposed system stores additional data at the SQLite

in the blockchain. Meanwhile, the proposed system decreases the execution

time by up to 1.84x, 1.82x, 1.91x, and 2.00x compared with the existing sys-

tem with an external database when the number of entities is 10,000, 20,000,

57

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32

Se
co

nd
s

The number of threads

Existing system Proposed system

Figure 4.8: Execution time of select operations in smart contract

30,000, and 35,040, respectively. It is because the existing system with ex-

ternal database stores additional data at the external database outside the

blockchain. The external database requires additional synchronizing operations

with the blockchain. However, the proposed system stores the data in the em-

bedded database (SQLite) inside the blockchain without synchronizing oper-

ations. Therefore, the result demonstrates that the proposed scheme shows a

better performance than the existing system with an external database.

Note that all the experimental results by regular transactions in the bottom

side of Figure 4.7 show better performance than those by the smart contract

of the top side of Figure 4.7. Because the smart contract transaction should

be executed by the smart contract function by the Ethereum Virtual Machine

(EVM), it takes a longer time than a regular transaction.

4.2.3 Impact on the number of threads

Figure 4.8 and Figure 4.9 present the performance in the case of SELECT op-

erations with the different numbers of threads. As shown in the figure, in all

systems, the execution time increases as the number of threads increases. In

terms of smart contract, the proposed system improves the performance by up

58

0

5

10

15

20

25

30

1 2 4 8 16 32

Se
co

nd
s

The number of threads

Existing system with external database Proposed system

Figure 4.9: Execution time of insert operations in regular transaction

to 21.1x, 22x, 18.7x, 17.4x, 18.4x, and 15x compared with the existing system

when the number of threads is 1, 2, 4, 8, 16, and 32, respectively. Especially,

in the existing system, the execution time increases rapidly when the number

of threads is beyond 16 threads. The execution time of the existing system is

higher by up to about 8 seconds compared with that of the proposed system.

In terms of the regular transaction, the proposed system improves the per-

formance by up to 2.12x, 2.31x, 4.02x, 5.46x, 4.87x, and 5.34x compared with

the existing system with an external database when the number of threads is

1, 2, 4, 8, 16, and 32, respectively. Especially, in the case of the existing system

with an external database, the execution time increases rapidly when the num-

ber of threads is beyond 16 threads. The execution time of the existing system

with the external database is higher by up to about 21 seconds compared with

that of the proposed system.

4.2.4 Measuring resource usage

To measure resource usage for one node when performing SELECT operations, we

set the number of entities as 35,040 (one-year) and measure the resource usage

from the program start to the termination. Also, we set the 35,040 regular

59

0

100

200

300

400

500

600

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

0

7

14

21

28

35

10,000 20,000 30,000 35,040

C
PU

 u
se

ag
e

(%
)

The number of entities

Existing system Proposed system

0

500

1000

1500

2000

2500

10,000 20,000 30,000 35,040

M
em

or
y

us
ag

e
(M

B
)

The number of entities

Existing system Proposed system

Figure 4.10: Resource usage with the different number of entities (top: CPU,
bottom: memory)

transactions the same as the smart contract. Figure 4.13 shows the CPU and

memory usage according to the number of threads and the number of entities in

the smart contract and regular transaction. As shown in Figure 4.12, the CPU

and memory usage is almost the same when the number of entities increases

and the number of threads is only one. It is because this number of entities

used in our evaluation does not significantly affect memory usage.

Meanwhile, as shown in Figures 4.13, CPU and memory usage increases

as the number of threads increases. In this evaluation, the multiple threads

process the entities in parallel. Thus, the required resource increases at the same

time. We note that as the number of threads increases, the required amount

60

0

100

200

300

400

500

600

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system Proposed system

0

7

14

21

28

35

1 2 4 8 16 32

C
PU

 u
se

ag
e

(%
)

The number of threads

Existing system Proposed system

0

500

1000

1500

2000

2500

1 2 4 8 16 32

M
em

or
y

us
ag

e
(M

B
)

The number of threads

Existing system Proposed system

Figure 4.11: Resource usage with the different number of threads (left: CPU,
right: memory)

of memory in the existing system increases by up to 2.6x compared with the

proposed system. The results show that, in the proposed system, EVM uses

more memory than SQLite does. The reason is that more EVMs are required

to support user-defined data structures when more threads are added to the

existing system.

In the regular transaction, as shown in Figure 4.12, like smart contract, the

CPU usage in the proposed system is higher than that of the existing system

with an external database when the number of entities increases. Even if the

CPU usage in the proposed system is higher, the CPU usage of the proposed

system is average of about 2% and it shows that the CPU usage itself is still low.

61

0

0.4

0.8

1.2

1.6

2

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system with external database Proposed system

0
0.4
0.8
1.2
1.6

2
2.4
2.8

10,000 20,000 30,000 35,040

C
PU

 u
se

ag
e

(%
)

The number of entities

Existing system with external database Proposed system

0

1000

2000

3000

4000

5000

10,000 20,000 30,000 35,040

M
em

or
y

us
ag

e
(M

B
)

The number of entities

Existing system with external database Proposed system

Figure 4.12: Resource usage with the different number of entities (left: CPU,
right: memory)

Also, the memory usage in both systems is similar even if the number of entities

increases. The top side of Figure 4.13 shows that the CPU usage increases

as the number of threads increases in the proposed system. Meanwhile, the

existing system with an external database does not increase CPU usage. Since

the existing system with an external database is a more complex architecture

(e.g., locking mechanism) than SQLite, the CPU usage is almost the same even

if the number of threads increases. Finally, the bottom side of Figure 4.13 shows

that both systems slightly increase memory usage according to the number of

threads.

62

0

0.4

0.8

1.2

1.6

2

10,000 20,000 30,000 35,040

Se
co

nd
s

The number of entities

Existing system with external database Proposed system

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32

C
PU

 u
se

ag
e

(%
)

The number of threads

Existing system with external database Proposed system

0
1000
2000
3000
4000
5000
6000

1 2 4 8 16 32

M
em

or
y

us
ag

e
(M

B
)

The number of threads

Existing system with external database Proposed system

Figure 4.13: Resource usage with the different number of entities (left: CPU,
right: memory)

4.2.5 Byzantine Fault Tolerant

The left side of Figure 4.14 shows the existing system using an external database.

When an existing system external database is used, the external database is a

centralized system and can be attacked by security. Therefore, if the database

is attacked or corrupted, users may not be able to view transaction data prop-

erly. On the other hand, as shown right side of Figure 4.14, if the proposed

system is used using the embedded database, users can access data on multiple

blockchains and check the correct data. In addition, the blockchain provides

public data that anyone can access in principle. However, while the company

63

Figure 4.14: Influence on Byzantine Fault Tolerant according to use in a
database (left: external database, right: embedded database)

operating the external database has full ownership of the database, the pro-

posed system allows each blockchain node to take full ownership of it. This is

a way to uphold blockchain principles.

4.3 Conclusions

In this article, we enable SQL query operations in a blockchain system. To

do this, we combine an embedded relational database with an Ethereum-based

blockchain system to provide SQL queries. This enables range query for the

smart contract without any user-defined data structure and decreases the man-

agement cost for the regular transaction without any external database. We

have implemented the proposed scheme on an Ethereum-based blockchain sys-

tem and evaluated the proposed system using a synthetic benchmark. Our ex-

periment results show that the proposed system in the case of smart contracts

can improve the performance by up to about 22x compared with the existing

system. Also, our system shows a similar search performance compared with

the existing system including an external database in the case of regular trans-

actions.

64

Chapter 5

Proof of Double Committee for
Decentralization Consensus
Algorithm in Blockchain system

5.1 Motivation

5.1.1 Centralization of Blockchain

The issue of centralization in blockchain technology, notably in Ethereum’s

transition to a Proof-of-Stake (PoS) mechanism, has become a subject of sig-

nificant concern within the cryptocurrency industry. These concerns predomi-

nantly arise from the risks associated with a high market-cap cryptocurrency

relying heavily on a limited number of centralized validators [79].

Interestingly, this centralization dilemma is not restricted to Ethereum alone.

Bitcoin’s network has faced similar challenges, making the centralization of Bit-

coin a critical issue that resonates across the entire cryptocurrency market. This

concern is particularly significant given that the vast majority of Bitcoin blocks

are now produced by merely two mining pools [80]. For example, as shown in

65

Figure 5.1: Ratio of Pool Distribution (calculated by blocks), 2023.04
2023.05 [1]

Figure 5.1, the global hash rate distribution of Bitcoin reveals that over half

of the network’s hash rate emanates from Foundry USA and Antpool. Specifi-

cally, Foundry’s block production accounts for an estimated 31.6% of the entire

network, and Antpool contributes about 22.5%. This concentration of block

production within these two entities underscores an alarming level of central-

ization, with a consortium of interconnected companies effectively controlling

half the network.

Moreover, the influence of these two entities extends beyond Bitcoin, con-

tributing to a wider trend of centralization within the cryptocurrency industry.

For example, Antpool operates mining pools for various other cryptocurrencies,

including Litecoin (LTC), ZCash (ZEC), Bitcoin Cash (BCH), Ethereum Clas-

sic (ETC), and Dash (DASH). Similarly, Foundry provides enterprise staking

66

support for a range of cryptocurrencies, including Ethereum (ETH), Solana

(SOL), Polkadot (DOT), Avalanche (AVAX), and Cosmos (ATOM).

In essence, these trends underscore the escalating concerns regarding cen-

tralization within the blockchain industry. The concentration of control within

a select few entities not only compromises the security and trustless nature of

these networks but also poses substantial risks to their stability and durability.

Against this backdrop, it is imperative to investigate and develop mechanisms

that can alleviate the centralization risks, bolster the decentralization of block

production, and ensure the long-term viability of blockchain networks.

5.1.2 Verifiable Random Function

A Verifiable Random Function (VRF) [81] was first introduced by Micali, Ra-

bin, and Vadhan in 1999, and since then, they’ve been extensively studied and

implemented in various cryptographic and decentralized systems. The VRF is

a cryptographic random function that maps inputs to verifiable pseudorandom

outputs. It means that, unlike typical random functions, VRFs require a private

key to compute the output, and anyone with the corresponding public key can

verify the correctness of the output. This unique property makes VRFs particu-

larly useful in decentralized systems and cryptographic protocols, where a way

to prove the randomness and correctness of output can be critical. For exam-

ple, they are particularly useful in proof-of-stake (PoS) blockchains for leader

election and other randomized processes, because they provide a way to select

nodes for participation in the consensus process in a way that is unpredictable,

unbiased, and verifiable by all participants.

In a VRF, each input maps to a unique output and a unique proof. The

owner of the private key can compute the output and the proof for any given

input. Anyone else can use the public key, the input, the output, and the proof

67

to verify that the output and proof were correctly computed without need-

ing the private key. Importantly, without proof, the output looks random to

anyone who doesn’t know the private key. VRFs consist of keygen, prove, and

verify functions. First, as shown in equation 5.1, the keygen function is that

generates private key SK and public key PK using an arbitrary input value k.

keygen(k) = (SK,PK) (5.1)

Second, as shown in equation 5.2, the prove function uses the user’s pri-

vate key (sk) and input value (alpha) to calculate the VRF result value (beta)

and the VRF result proof value (pi).

prove(sk, alpha) = (beta, pi) (5.2)

Finally, as shown in equation 5.3, verify function verifies whether the

generated value is the same as the VRF result value (beta) using the user’s

public key (pk) and the proof value (pi) of the VRF result. If the calculated

value and the result value of VRF are the same, verification succeeds (True),

otherwise verification fails (False).

verify(pk, alpha, beta, pi) = True or False (5.3)

In summary, VRFs are a useful tool in cryptography protocols and decentral-

ized systems, providing a source of randomness that is unpredictable, unbiased,

verifiable, and resistant to manipulation. We use VRF to select validators (i.e.,

standing members) for consensus of block generation. By using the VRF, in se-

lecting the validators, we can provide higher confidence and unbiased, verifiable,

and resistant to manipulation.

68

5.2 Design and Implementation

To attain a higher degree of decentralization and performance, we introduce

a novel consensus algorithm, the Proof of Double Committee (PoDC). The

PoDC algorithm distinguishes validators into two categories: standing members

and steering members. Standing members operate continuously and steering

members are selected by a coordinator based on Verifiable Random Function

(VRF) results. Both standing and selected steering members participate in the

consensus process for block generation.

To do this, first, the proposed algorithm aims to decentralize the selection

of a block proposer and block validators. For each round, a coordinator is se-

lected among the standing members using a double hashing technique. Also, to

prevent standing members collusion in block validation, we incorporate steering

members, selected based on VRF, for changing the validator set every round.

Therefore, with a double committee system, the proposed consensus algorithm

ensures the random selection of validators in each round based on double hash-

ing and VRF. This mechanism can offer superior randomness compared to the

validator selection process in staking-based and Proof-of-Work (PoW) systems.

In terms of performance, the PoDC algorithm enables the participation of

only 29 nodes (14 Standing Committee and 15 Steering Committee members)

in the consensus process, even as the total number of nodes increases. There

are several reasons for configuring the number of nodes. To thwart potential

collusion within the standing committee, the proportion of steering members

participating in the consensus is always maintained above 51%. It fulfills the

existing Byzantine Fault Tolerance (BFT) consensus algorithm criteria of n =

3f + 1 (n: the number of total nodes / f: the number of faulty nodes), thus

ensuring decentralization.

69

In addition, the PoDC is imperative that the number of steering committee

candidates in the network exceeds 15. This requirement ensures that validators

can be selected randomly for each round. Also, standing committee nodes, which

are always operational, can be modified through governance votes, ensuring

transparency in all nodes’ operations.

5.2.1 Overview

The PoDC consists of the coordinator, standing members, steering members,

and steering committee candidates:

• Coordinator. The coordinator is a block proposer who generates a block

and proposes the block to each validator for block consensus. Coordinators

are selected from standing members using double hashing.

• Standing members Standing members are steady nodes that consis-

tently operate within the blockchain network and perpetually participate

in block consensus. To serve as a standing member node, 44 million coins

must be staked to ensure the stable operation of the consensus. If a stand-

ing member node operates abnormally, the staked amount is slashed.

While rewards are provided to each standing member during block gen-

eration to ensure the stable operation of standing members.

• Steering members The steering members serve as a validator node to

prevent collusion among the standing members. To participate as a steer-

ing member node, 110 thousand coins must be staked, and steering mem-

bers for the next round are randomly selected based on VRF by the co-

ordinator for each round. If a steering member node behaves abnormally,

the staked amount is slashed. While, by participating in the consensus

of block generation to prevent collusion of the standing members, they

70

Figure 5.2: Overview of Proof of Double Committee

receive compensation upon block generation.

• steering committee candidates Steering committee candidates are

nodes awaiting selection as steering members. 110,000 coins are staked,

and the candidates should generate VRF results and deliver the VRF

results to the coordinator for each round. Notice that a node serving as

a steering member in the current round also is included as a steering

committee candidate of the subsequent round.

Figure 5.2 shows the overall process of the proposed PoDC consensus algo-

rithm which comprises a round. The round refers to the period for selecting the

next validator. For example, during the first round, the coordinator and steering

members for the second round are selected. The reason for selecting the valida-

tor group for the upcoming round during the current one is to accommodate

network delays caused by communication across all nodes.

In each round, there are 3 steps. The first step is generating and collecting

random values among standing members. And it selects the coordinator and

extracts the seed value. The second step is generating VRF based on seed value

71

Figure 5.3: Detail of Proof of Double Committee

which is extracted in the first step and collecting VRF result values. The last

step is setting the validators. The validators are 29 nodes and consist of standing

members that are always in operation and randomly selected steering members.

Figure 5.3 shows the detailed process of a round in the proposed PoDC

consensus algorithm. Each round is divided into three periods: the Random

Period (RP), VRF Period (VP), and Setting Validators Period (SVP), each

consisting of several blocks.

During the RP, standing members generate and propagate their own ran-

dom values, which are used to determine the next coordinator and seed value.

At the end of this period, all nodes derive a seed value based on the received

random values and select the next coordinator (1○). Following the RP, the VP

commences. In this period, the steering committee candidates generate Veri-

fiable Random Function (VRF) outcomes based on the seed derived from the

RP (2○). These VRF values are propagated to all nodes during the period. At

the end of the VP, the coordinator selects 15 steering members based on the

propagated VRF values (3○). The final period, SVP, is dedicated to updating

information about the standing members, selected steering members, random

72

Figure 5.4: Process of the selecting next coordinator and current seed value in
a round

values, and VRF results across all nodes. At the beginning of the SVP, the cur-

rent round’s coordinator disseminates information about the steering members

selected during the VP to all nodes(4○). Each node then verifies whether the

data propagated by the current round’s coordinator aligns with their data(5○).

Upon successful verification and at the end of the SVP, all nodes update the

status of random values, VRF results, and the next round’s validators and

coordinator.

73

5.2.2 Selecting a coordinator and seed value

Figure 5.4 illustrates the process of selecting the next coordinator and seed

value during a random period in the PoDC consensus algorithm. Initially, each

standing member generates a random value, which is then disseminated to all

other nodes in the network (1○). This random value is signed by the standing

member using their private key to ensure authenticity. The dissemination of

the random values employs the gossip protocol, a peer-to-peer communication

procedure modeled after the widespread propagation characteristic of epidemics

(2○). This protocol enables rapid and efficient distribution of the values across

the network. Upon receiving the signed random value, all nodes verify its sig-

nature and confirm that the signer is indeed a registered standing member. If

the verification is successful, the random value is added to a collective list of

random values, referred to as the ’random list’.

Once all random values from the standing members are collected, a process

of double hashing is performed based on the random list and each individual

random value. The primary objective of this double-hashing process is to pre-

vent any standing committee or coordinator from manipulating the random

values. As shown in the equation 5.4, the initial step of the double hashing pro-

cess concatenates all values in the random list, then subjects this concatenated

string to a hashing operation (3○). Subsequently, another hashing operation is

performed on each individual random value in conjunction with the result of

the initial hash (4○). And, the result of this operation is the final hash value

for each standing member. After then, all final hash values are sorted, and

the highest value is designated as the seed value for the current round. And

the standing member associated with this highest hash value is selected as the

coordinator for the next round (5○). This mechanism ensures a fair and un-

74

Figure 5.5: Process of selecting steering members

biased selection process, contributing to the decentralized nature of the PoDC

consensus algorithm.

randomListHash = Hash(R[1] +R[2] +R[3]...+R[14])

h[i] = Hash(randomListHash+R[i]) ∀i ∈ R

seed = NextMax(h list)

(5.4)

5.2.3 Selecting steering members

Each steering committee candidate initiates the process by generating a VRF

result. This result is generated using the seed value, which was selected during

the preceding random period, and the candidate’s private key. The VRF result

consists of two key components: a random value and a proof value. The random

value is a pseudo-random number that is generated based on the seed and the

candidate’s private key. The proof value, on the other hand, provides a method

for verifying the legitimacy of the generated random value (1○). Notably, due

75

to the deterministic nature of the VRF, the result is consistently the same

for a given seed and private key pair. This deterministic attribute ensures the

reliability of the generated values and underpins the fairness of the validator

selection process.

Once the VRF result has been generated, it is then disseminated across the

network. This is achieved by leveraging the efficient propagation capabilities

of the gossip protocol. While the VRF result is not signed separately, the le-

gitimacy of the steering committee candidate is verified using the proof. This

proof value can be checked by each node using the public key of the candidate,

affirming that the VRF result was indeed generated by a registered steering

committee candidate. Upon successful verification, the random value is then

added to the VRF list maintained by each node (2○).

At the end time of the VRF period, the current coordinator performs a

critical role. The coordinator assesses the VRF list and ranks the candidates

based on the largest VRF random value. The top 15 ranked steering committee

candidates, determined by this process, are then selected to participate as val-

idators in the upcoming round (3○). In summary, the VRF period represents

a key phase of the PoDC consensus algorithm, facilitating a fair and verifiable

process for the selection of steering committee candidates. This process ensures

that the consensus mechanism remains robust and decentralized, reinforcing

the integrity of the blockchain network.

5.2.4 Crash Fault Tolerant of the coordinator

The coordinator within the PoDC consensus algorithm plays a crucial role in

both block generation and the selection of steering members for the subsequent

round. However, due to factors such as network instability or node failure, there

may be instances where the coordinator fails to fulfill its duties. This could

76

potentially disrupt the liveness of the blockchain and cause the blockchain to

become inactive or unresponsive.

In PoDC, we incorporate a fail-safe algorithm to counter such situations.

Each node in the network maintains a random list (i.e., prev random list) of

the previous round’s standing members which is used when the selection of

the current round’s coordinator. And, If the coordinator node fails to act, the

timeout of the block proposer is triggered and all nodes then shift to a changing

coordinator.

They update the status of the node with the second-largest hash value based

on the prev random list to assume the role of the current round’s coordinator.

And, the standing committee member elevated to this role proceeds to create

and propose a block as the current coordinator. The proposed block is then

voted upon by all nodes in order to achieve Byzantine Fault Tolerance (BFT),

satisfying the consensus criteria of 3f+1. Note that in cases where the former

faulty coordinator re-establishes connection with the blockchain, it will receive

the sink of the block. Upon receiving this, it will acknowledge the node with

the second-highest hash value as the current coordinator. Subsequently, the

former faculty coordinator will participate in the voting process for the block

as a regular standing member, ensuring the continued smooth operation of the

consensus process.

5.3 Evaluation

5.3.1 Experimental setup

We evaluate the distribution of block producers within a blockchain by con-

trasting it against Bitcoin, Cosmos (Tendermint), Algorand, and EOS. Consid-

ering that each blockchain functions under unique circumstances, our evalua-

tion hinges on the block information from the main network of each respective

77

blockchain. We accumulated data from 10,000 blocks for each blockchain. The

block information for each blockchain is as follows:

• Bitcoin. Information was collated from blocks 770,001 to 780,000.

• Ethereum. Information was collated from blocks 17,470,001 to 17,480,000.

• Cosmos. Information was collated from blocks 15,200,001 to 15,210,000.

• Algorand. Information was collated from blocks 28,940,001 to 28,950,000.

• EOS. Information was collated from 308,990,001 to 309,000,000.

• PoDC. Information was collated from 100,001 to 110,000.

In terms of validators that authenticate and vote for the validity of a block,

Bitcoin is the absence of block validator information within the block. Therefore

we do not evaluate validator variance.

In our evaluation, we use AWS’s c2.xlarge environment running Ubuntu

20.04 LTS. Our proposed PoDC algorithm is based on the tendermint of the

Cosmos, therefore, we compare with tendermint and PoDC while keeping the

number of validators constant. We further scrutinized the performance by pro-

gressively increasing the number of nodes from 4 which is the minimum number

of validators required for Byzantine Fault Tolerance (BFT) - up to 175, which

corresponds to the current validator count in Cosmos.

5.3.2 Distribution of block proposers

Figure 5.6 displays the block generation count by individual miner addresses

in the Bitcoin blockchain. During the generation of 10,000 blocks, we observed

that 129 miner addresses were involved. Of these, the address bc1qxhmduf...

contributed to the generation of 3,296 blocks, and 38XnPvu9Pm... produced

78

Figure 5.6: The block generation count of a proposer (miner) in Bitcoin
blockchain

1,878 blocks. Hence, these two wallet addresses were responsible for 5,174 blocks

(51.74%) of all blocks generated, surpassing 51% of the total block generation

rate. Moreover, four wallet addresses, including 1KFHE7w8Bh... (1,462 blocks)

and 3L8Ck6bm3s... (1,102 blocks), both of which exceeded 1,000 blocks in a

generation, collectively produced 7,738 (77.38%) blocks. This statistic repre-

sents only 3.1% of the total 129 wallet addresses, underscoring that a majority

of blocks were generated by a small subset of wallets. Because Bitcoin employs

the Proof of Work (PoW) consensus algorithm for block generation, mining

pools are predominantly responsible for block production. Consequently, Bit-

coin’s blockchain faces significant challenges in achieving true decentralization.

Figure 5.7 displays the block generation count by individual miner ad-

dresses in the Ethereum blockchain. During the generation of 10,000 blocks,

we observed that 665 miner addresses were involved. Of these, the address

0x1f9090a... contributed to the generation of 1,810 blocks, 38XnPvu9Pm...

produced 1,252 blocks, 0xdafea49... produced 1,189 blocks, and 0x388c818...

produced 1,095 blocks. Hence, these four wallet addresses were responsible for

79

Figure 5.7: The block generation count of a proposer (miner) in Ethereum
blockchain

5,346 blocks (53.46%) of all blocks generated, surpassing 51% of the total block

generation rate. This statistic represents only 0.6% of the total 665 wallet ad-

dresses, underscoring that a majority of blocks were generated by a small subset

of wallets. Because Ethereum employs the Proof of Work (PoW) consensus al-

gorithm for block generation, mining pools are predominantly responsible for

block production. Also, Ethereum employs a Proof of Stake (PoS) consensus al-

gorithm for block finalization. It means that finality in Ethereum is provided by

utilizing PoS, but it ultimately only proceeds with voting for blocks created by

miners. Consequently, Ethereum’s blockchain also faces significant challenges

in achieving true decentralization.

Figure 5.8 illustrates the distribution of block generation by addresses in

the Algorand blockchain. From a total of 10,000 blocks, 66 unique addresses

contributed as block proposers. The address identified as OFB2SM... was the

most productive, generating 710 blocks, accounting for 7.1% of the total blocks.

Additionally, the top 12 addresses collectively produced 5,302 blocks or 53.02%

80

Figure 5.8: The block generation count of a proposer in Algorand blockchain

of the total. These addresses represent 18.18% of the 66 unique addresses con-

tributing to block generation. Furthermore, the top 23 addresses, making up

34.84% of all unique addresses, generate 7,769 (77.69% of the total)blocks. This

indicates that a significant portion of block generation is concentrated among

a minority of addresses.

Algorand exploits a Verifiable Random Function (VRF) to select block pro-

posers, designed to give every participant in the network an equal opportunity to

generate blocks, reinforcing blockchain decentralization. However, it also adopts

proof of stake, so it does not provide a fair opportunity for block creators. Sim-

ilar to Bitcoin, it appears that the decentralization of the Algorand blockchain

is threatened due to the dominance of block generation by addresses holding a

larger share.

Figure 5.9 illustrates the count of block generations per validator address on

the Cosmos blockchain. Out of the total 10,000 blocks generated, 174 distinct

addresses participated as block proposers. The address D68EEC... was most

81

Figure 5.9: The block generation count of a proposer in Cosmos blockchain

active, creating 748 blocks, accounting for 7.48% of the total blocks generated.

Furthermore, the top 15 wallet addresses together produced 5,165 blocks, which

equates to 51.65% of all the blocks, indicating a significant majority of block

generation by these top wallets. This group of 15 represents merely 8.62% of the

total 174 wallet addresses, further emphasizing that a small fraction of wallets

was responsible for the majority of block production. A more stark observation

is that the top 41 wallet addresses (representing 23.56% of the total addresses)

were responsible for 7,701 blocks, or 77.01% of the total blocks.

Cosmos uses a round-robin mechanism for selecting block proposers, where

the privilege of block production is systematically passed on to each validator

following a defined sequence. However, this system has limitations in protecting

the network from Byzantine attacks. To solve this issue, Cosmos implements

vote weights, determined by the number of Cosmos tokens a validator holds,

leading validators with more tokens to exert more influence. In such a setting,

the decentralization of the blockchain can be threatened if wallets with higher

82

Figure 5.10: The block generation count of a proposer in EOS blockchain

stakes dominate block production, as observed with other blockchains.

Figure 5.10 displays the block generation count per miner address on the

EOS blockchain. A total of 10,000 blocks were generated, with 21 addresses

participating as block proposers. Out of these, 13 addresses each produced 480

blocks, which each account for 4.8% of the total block generation. Moreover, the

top 11 wallet addresses collectively generated 5,280 blocks (52.8%), surpassing

51% of the overall block generation rate. These 11 wallets make up 52.38% of all

21 wallet addresses, indicating a relatively even distribution of block production.

The reason behind this trend is that EOS selects 21 fixed validators based

on stake, and employs a round-robin mechanism to determine block generators.

The order of block generation is transferred to each validator in turn according

to specific rules. Although this approach allows for a more equal distribution of

block creators compared to other blockchains, it has limitations in protecting

the network from Byzantine attacks due to its reliance on fixed validators.

Figure 5.11 illustrates the block generation count per block proposer address

83

Figure 5.11: The block generation count of a proposer (coordinator) in PoDC
blockchain

in the PoDC system. In generating a total of 10,000 blocks, 14 addresses par-

ticipated as block proposers. Of these, the A7B07C... address created the most

blocks, with a count of 921 out of 10,000 blocks. This corresponds to 9.21% of

the total block generation. Furthermore, the top 7 wallet addresses collectively

produced 5,280 blocks (53.45%), surpassing the 51% threshold of the overall

block generation rate. These top 7 wallet addresses constitute 50% of all 14

wallet addresses, indicating a relatively even distribution of block creation.

This pattern can be attributed to the PoDC system’s approach. 14 fixed

validators (i.e., standing members) are selected based on a fixed stake(44 mil-

lion), and block generation order is determined by a double-hashing rule. Un-

like other blockchains like Bitcoin, Cosmos, and Algorand, this allows for an

equitable distribution of block generators. Furthermore, block generators are

randomly chosen, enhancing network protection against Byzantine attacks.

Figure 5.12 and Figure 5.13 indicate the sequence of block generators. In

the case of EOS, as shown in Figure 5.12, the order of the block proposer is

84

Figure 5.12: The block proposer order in EOS blockchain

Figure 5.13: The block proposer order in PoDC

changed by 12 blocks, and it can be seen that it is changed in a certain order.

In other words, it can be seen that EOS creates blocks in the form of round

robin.

The round-robin method is a method in which the block generation order is

determined sequentially for each node. It may seem that the rules are straight-

forward and that all players in the system are given an equal chance. However,

this arrangement is vulnerable to Byzantine attacks. The reason is that byzan-

85

tine attacks can occur when malicious nodes gain a majority of the system.

These malicious nodes can work together to harm or manipulate the network.

For example, a malicious node selected as a block producer may include false

information in a block or not create a block. Since the order of block generation

in the round-robin method is pre-determined, malicious nodes can know the

order of block generation. Therefore, malicious nodes can use this information

to perform Byzantine attacks. For example, since malicious nodes know the

order in which certain nodes generate blocks, they can attack the network in

that order or attack nodes to disrupt block creation.

Meanwhile, in the case of PoDC as shown in Figure 5.13, the order of the

block proposer (coordinator) is changed by 12 blocks, but it is not a determin-

istic block proposer. Therefore, it can provide more security than EOS while

providing fair block producers. However, PoDC can also identify the next block

producer up to 12 blocks in advance. Based on the average block generation time

of 5 seconds, this can take about 1 minute. So, to solve this issue, the number

of blocks in each period can be adjusted, and the identification of the following

block creator can be reduced to at least 3 blocks (15 seconds) depending on the

situation.

Figure 5.14 depicts the count of block generation by a proposer (coordina-

tor), varying with different standing members. The top figure shows that with

14 standing members, the average number of blocks generated within 10,000

blocks is 714, translating to an average block generation probability of 7.14%.

As shown in the figure, 19A481 generates 803 blocks, accounting for 8.03%, and

499A4B produces 485 blocks, making up 4.85%. This variance is attributed to

the random selection of proposers via double hashing. Moreover, as exhibited in

the middle and bottom diagrams, when the standing members’ count escalates

to 21 and 30 respectively, the average block generation drops to 476 (4.76%)

86

Figure 5.14: The block generation count of a proposer (coordinator) with dif-
ferent standing members in PoDC

and 333 (3.33%). This implies that an increase in the number of standing mem-

bers can decrease the weight of block generation. If the number of standing

87

members is set with 21 nodes, as displayed in Figure 5.10, the percentage of

blocks a single node can generate spans from a minimum of 3.4% to a maxi-

mum of 6%, indicating a similar level of fairness. Furthermore, increasing the

standing members to 30 leads to each node producing a minimum of 1.93%

and a maximum of 4.55% of blocks. This trend suggests a more stable block

generation ratio with fewer nodes than Cosmos, as depicted in Figure 5.9.

Distribution of validators.

Figure 5.15 shows the probability of being selected as a validator in 10,000

blocks, contingent on the number of steering committee candidates. We main-

tain the number of standing members at 14 and select 15 steering members

for the steering member to account for more than 51% of the total number of

validators. As shown in the top figure of Figure 5.15, if the number of steer-

ing committee candidates is set to 15, all candidates are selected as steering

members, participating in all blocks as validators. However, due to the high

potential for collusion in such a scenario, it is advisable to expand the number

of participating steering members.

Therefore, as shown in the middle and bottom figures of Figure 5.15, when

the number of steering committee candidates is increased to 46 and the 16,1

participation rate of each node as a validating member would significantly de-

crease, and then the random selection process could mitigate collusion. The

number of steering committee candidates is augmented to 46, approximately

three times the number of selected steering members, and the probability of

a single steering committee candidate participating as a validator is on aver-

age 32.6%. The range of probabilities shows from a minimum of 29.33% to a

maximum of 38.87%.

Furthermore, selecting 161 steering committee candidates is aimed at match-

ing the current composition of validators in Cosmos, which consists of 175

88

Figure 5.15: Probability of validator selection of steering committee candidates
in PoDC

members. In this case, the average probability for a single steering commit-

tee candidate to participate as a validator is 9.31%. The range of probabilities

89

Figure 5.16: Probability of validator selection in cosmos(tendermint)

shows from a minimum of 5.46% to a maximum of 12.8%. This can be seen

as having the same effect as all validators participating and reaching a consen-

sus, as shown in Figure 5.16. Moreover, since only 29 nodes are required for

consensus, this PoDC algorithm is faster in achieving consensus compared to

the 175 nodes in Cosmos. Lastly, since not all validators are fixed and can be

randomly selected, stability is ensured. It means that, in the case of Cosmos,

only the top 175 validators are eligible to participate and it almost does not

be changed. Therefore, increasing the likelihood of collusion. However, our pro-

posed Proof of Decentralized Consensus (PoDC) allows participation as steering

member candidates through minimal staking and random selection of steering

members. Through this approach, we can form a more diverse set of validators.

5.4 Summary

We investigate blockchain consensus algorithms, which serve as the mechanism

enabling all network participants to reach an agreement on the validity of trans-

actions and the blocks to be added to the chain. And we found that most consen-

sus algorithms suffer from a centralization problem and performance issue. To

90

overcome these issues, we propose a new consensus algorithm which is proof of

double committee(PoDC). We implement PoDC using the random selection of

a fixed number of validators via double hashing and verifiable random function

(VRF) and evaluate the algorithm’s degree of decentralization and performance

for each blockchain. Our experimental results show that PoDC provides high

decentralization rate and high performance than other existing blockchains.

91

Chapter 6

Conclusion

6.1 Discussion

This article provides an extensive exploration into several core elements of

blockchain technology, specifically focusing on enhancements in wallet secu-

rity, enabling SQL query, and block generation consensus algorithm. Each of

these facets contributes significantly to the blockchain ecosystem, and the ad-

vancements proposed in this research have the potential to greatly influence the

future development of this technology.

The article introduces a novel wallet model that incorporates the Threshold

Elliptic Curve Digital Signature Algorithm (T-ECDSA) and Bloom filters to

create a multi-signature wallet. This is an impressive leap in addressing exist-

ing security vulnerabilities that have been plaguing blockchain wallets. How-

ever, while the proposed wallet model shows promise in lab tests, real-world

applications might present unforeseen challenges. Further research and testing

in diverse, real-world environments are necessary to ascertain its performance

92

under various conditions and to identify potential limitations. A comprehensive

analysis of its resilience to different types of security threats should also be

conducted to ensure robustness.

The introduction of a mechanism to incorporate SQL query operations into

blockchain systems is another significant development. By embedding a rela-

tional database within an Ethereum-based blockchain system, it becomes possi-

ble to execute SQL queries directly. However, while this enhancement promises

to streamline the operation of the blockchain system and improve efficiency,

potential challenges need to be addressed. The integration process must en-

sure data consistency and security. Further studies could explore how to ef-

fectively manage potential inconsistencies or discrepancies in data between the

blockchain and the embedded database.

Lastly, the dual committee proof (PoDC) consensus mechanism introduced

in this article offers a promising solution to centralization issues related to

traditional consensus algorithms like Proof of Work (PoW) and Tendermint.

However, like any new consensus mechanism, the long-term stability of this

method will require rigorous scrutiny. Extensive testing and performance anal-

yses under various scenarios would provide a comprehensive understanding of

the overall benefits and potential pitfalls of this approach.

6.2 Summary

Blockchain facilitates dependable transactions within a decentralized environ-

ment, making various user contracts possible without the need for an intermedi-

ary authority. However, with the increasing interest in and usage of blockchain

technology, several problems have come to light. These include wallet security

vulnerabilities, user manipulation of transaction execution orders, and issues re-

garding blockchain centralization and scalability linked to consensus algorithms.

93

Therefore, enhancing blockchain security and performance has become a pri-

ority. In this article, we concentrate on three aspects to bolster the security of

the blockchain system and enhance its performance: wallet security, transaction

execution order determination, and block generation consensus algorithm.

Firstly, we propose an efficient multi-signature wallet, utilizing Threshold

Elliptic Curve Digital Signature Algorithm (T-ECDSA) and Bloom filters. This

wallet offers improved performance, storage efficiency, and privacy, addressing

the security vulnerabilities of blockchain wallets. It also enhances verification

performance and reduces transaction size without altering the blockchain pro-

tocol.

Secondly, we introduce a mechanism to incorporate SQL query operations

within a blockchain system. It allows us to embed a relational database within

an Ethereum-based blockchain system, facilitating SQL queries. Consequently,

we can perform range queries for smart contracts without the need for user-

defined data structures, and we reduce management costs for regular transac-

tions by eliminating the necessity for an external database. Our experimental

results show that our proposed system can improve the search performance of

smart contracts up to approximately 22 times compared to existing systems.

Moreover, our system exhibits comparable search performance to existing sys-

tems that incorporate an external database in the case of regular transactions.

Finally, we introduce a dual committee proof (PoDC) consensus mechanism

within the blockchain consensus. This mechanism divides validators into stand-

ing members and steering members, randomly selecting validators through a

double-hashing process and a Verifiable Random Function (VRF). Our method

alleviates centralization issues associated with existing consensus algorithms

like Proof of Work (PoW) and Tendermint, and it also improves performance

in blockchains with a fixed number of validators. In conclusion, this article

94

breaks significant ground in the field of blockchain technology, tackling sev-

eral pressing challenges with innovative solutions. The potential enhancements

it suggests in terms of security, efficiency, and decentralization not only hold

promise for immediate implementation but also open the door for further re-

search. By continuing to explore and develop these concepts, we can build a

more secure, efficient, and fair blockchain ecosystem, capable of meeting the

demands of an increasingly digital future.

95

Bibliography

[1] “Bitcoin pool distribution.” https://btc.com/stats/pool?pool_mode

=month, 2023.

[2] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-

lenges and opportunities: A survey,” International journal of web and grid

services, vol. 14, no. 4, pp. 352–375, 2018.

[3] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical sur-

vey on decentralized digital currencies,” IEEE Communications Surveys &

Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentral-

ized Business Review, p. 21260, 2008.

[5] S. S. Sarmah, “Understanding blockchain technology,” Computer Science

and Engineering, vol. 8, no. 2, pp. 23–29, 2018.

[6] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable does

not imply exploited.,” in USENIX Security Symposium, pp. 1325–1341,

2021.

96

[7] J. Herrera-Joancomart́ı and C. Pérez-Solà, “Privacy in bitcoin transac-

tions: new challenges from blockchain scalability solutions,” in Modeling

Decisions for Artificial Intelligence: 13th International Conference, MDAI

2016, Sant Julià de Lòria, Andorra, September 19-21, 2016. Proceedings

13, pp. 26–44, Springer, 2016.

[8] I. Abraham, D. Malkhi, et al., “The blockchain consensus layer and bft,”

Bulletin of EATCS, vol. 3, no. 123, 2017.

[9] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,

“Towards scaling blockchain systems via sharding,” in Proceedings of the

2019 international conference on management of data, pp. 123–140, 2019.

[10] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer, “Decen-

tralization in bitcoin and ethereum networks,” in Financial Cryptography

and Data Security: 22nd International Conference, FC 2018, Nieuwpoort,

Curaçao, February 26–March 2, 2018, Revised Selected Papers 22, pp. 439–

457, Springer, 2018.

[11] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain

instant payments,” 2016.

[12] “Wikipedia: Multisignature.” https://en.wikipedia.org/wiki/Multis

ignature, 2020.

[13] “Multisigwallet.” https://github.com/Gnosis/MultiSigWallet, 2019.

[14] “Bitgo.” https://www.bitgo.com/, 2014.

[15] “Etherscan.io,” 2018. https://etherscan.io.

97

[16] “Is it possible to access storage history from a contract in solidity?.” https:

//ethereum.stackexchange.com/questions/11545/is-it-possible-t

o-access-storage-history-from-a-contract-in-solidity, 2016.

[17] F. A. Pratama and K. Mutijarsa, “Query support for data processing and

analysis on ethereum blockchain,” in 2018 International Symposium on

Electronics and Smart Devices (ISESD), pp. 1–5, IEEE, 2018.

[18] “The graph,” 2020. https://thegraph.com.

[19] M. Du, Q. Chen, and X. Ma, “Mbft: A new consensus algorithm for con-

sortium blockchain,” IEEE Access, vol. 8, pp. 87665–87675, 2020.

[20] E. Buchman, Tendermint: Byzantine fault tolerance in the age of

blockchains. PhD thesis, 2016.

[21] N. Alzahrani and N. Bulusu, “Towards true decentralization: A blockchain

consensus protocol based on game theory and randomness,” in Interna-

tional conference on decision and game theory for security, pp. 465–485,

Springer, 2018.

[22] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:

Scaling byzantine agreements for cryptocurrencies,” in Proceedings of the

26th symposium on operating systems principles, pp. 51–68, 2017.

[23] A. Baliga, “Understanding blockchain consensus models,” Persistent,

vol. 4, no. 1, p. 14, 2017.

[24] S. Gupta and M. Sadoghi, “Blockchain transaction processing,” arXiv

preprint arXiv:2107.11592, 2021.

98

[25] U. Rahardja, A. N. Hidayanto, N. Lutfiani, D. A. Febiani, and Q. Aini,

“Immutability of distributed hash model on blockchain node storage,” Sci.

J. Informatics, vol. 8, no. 1, pp. 137–143, 2021.

[26] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-

nature algorithm (ecdsa),” International journal of information security,

vol. 1, pp. 36–63, 2001.

[27] “Elliptic-curve cryptography.” https://en.wikipedia.org/wiki/Elli

ptic-curve_cryptography, 2020.

[28] A. A. Imem, “Comparison and evaluation of digital signature schemes em-

ployed in ndn network,” arXiv preprint arXiv:1508.00184, 2015.

[29] “Bip: 16.” https://github.com/bitcoin/bips/blob/master/bip-001

6.mediawiki, 2012.

[30] “Transactions,” 2022. https://ethereum.org/ko/developers/docs/tr

ansactions/.

[31] V. Buterin, “A next-generation smart contract and decentralized applica-

tion platform,” 2014.

[32] N. Szabo, “The idea of smart contracts,” 1997.

[33] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” 2014.

[34] M. S. Chishti, F. Sufyan, and A. Banerjee, “Decentralized on-chain data

access via smart contracts in ethereum blockchain,” IEEE Transactions on

Network and Service Management, vol. 19, no. 1, pp. 174–187, 2021.

[35] “Leveldb,” 2019. https://github.com/google/leveldb.

99

[36] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review

on consensus algorithm of blockchain,” in 2017 IEEE international con-

ference on systems, man, and cybernetics (SMC), pp. 2567–2572, IEEE,

2017.

[37] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,

and S. Capkun, “On the security and performance of proof of work

blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on com-

puter and communications security, pp. 3–16, 2016.

[38] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and

E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future blockchain

networks: fundamentals, applications and opportunities,” IEEE Access,

vol. 7, pp. 85727–85745, 2019.

[39] X. Hao, L. Yu, L. Zhiqiang, L. Zhen, and G. Dawu, “Dynamic practical

byzantine fault tolerance,” in 2018 IEEE conference on communications

and network security (CNS), pp. 1–8, IEEE, 2018.

[40] D. Larimer, “Dpos consensus algorithm-the missing white paper,” Bitshare

whitepaper, 2017.

[41] S. Goldfeder, R. Gennaro, H. Kalodner, J. Bonneau, J. A. Kroll, E. W.

Felten, and A. Narayanan, “Securing bitcoin wallets via a new dsa/ecdsa

threshold signature scheme,” in et al., 2015.

[42] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal

dsa/ecdsa signatures and an application to bitcoin wallet security,” in

International Conference on Applied Cryptography and Network Security,

pp. 156–174, Springer, 2016.

100

[43] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast

trustless setup,” in Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, pp. 1179–1194, 2018.

[44] “Ledger.” https://www.ledger.com/, 2020.

[45] “Trezor.” https://trezor.io/, 2020.

[46] “Keepkey.” https://shapeshift.com/keepkey, 2020.

[47] “Etherchain.” https://www.etherchain.org, 2018.

[48] “Ethstats,” 2018. https://ethstats.net.

[49] B. Platz, A. Filipowski, and K. Doubleday, “Flureedb: a practical decen-

tralized database,” 2017.

[50] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,

G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto, “Bigchaindb:

a scalable blockchain database,” white paper, BigChainDB, 2016.

[51] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “Etherql: a query layer for

blockchain system,” in International Conference on Database Systems for

Advanced Applications, pp. 556–567, Springer, 2017.

[52] “Ethereumj.” https://github.com/ethereum/ethereumj, 2018.

[53] Z. Peng, H. Wu, B. Xiao, and S. Guo, “Vql: Providing query efficiency and

data authenticity in blockchain systems,” in 2019 IEEE 35th International

Conference on Data Engineering Workshops (ICDEW), no. 7, pp. 1–6,

IEEE, 2019.

101

[54] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Ethereum query

language,” in Proceedings of the 1st International Workshop on Emerging

Trends in Software Engineering for Blockchain, pp. 1–8, 2018.

[55] A. Goldberg and D. Robson, Smalltalk-80: the language and its implemen-

tation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[56] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech. rep.,

Manubot, 2019.

[57] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and

privacy issues of bitcoin,” IEEE Communications Surveys & Tutorials,

vol. 20, no. 4, pp. 3416–3452, 2018.

[58] J. Kwon and E. Buchman, “Cosmos whitepaper,” A Netw. Distrib. Ledgers,

p. 27, 2019.

[59] B. Xu, D. Luthra, Z. Cole, and N. Blakely, “Eos: An architectural, perfor-

mance, and economic analysis,” Retrieved June, vol. 11, p. 2019, 2018.

[60] A. Ngunyi, S. Mundia, and C. Omari, “Modelling volatility dynamics of

cryptocurrencies using garch models,” 2019.

[61] “Kucoin hack: 280m dollars stolen not 150m dollars, projects take actions

to save funds- community reacts. will kucoin recover all?.” https://thec

urrencyanalytics.com/crypto-exchanges/kucoin-hack-280m-stole

n-not-150m-projects-take-actions-to-save-funds-community-rea

cts-will-kucoin-recover-all-19577.php, 2020.

[62] “Upbit is the seventh major crypto exchange hack of 2019.” https://ww

w.coindesk.com/markets/2019/11/27/upbit-is-the-seventh-major

-crypto-exchange-hack-of-2019/.

102

[63] “Hackers steal over 40 million dollars worth of bitcoin from one of the

world’s largest cryptocurrency exchanges.” https://www.cnbc.com/201

9/05/08/binance-bitcoin-hack-over-40-million-of-cryptocurre

ncy-stolen.html, 2019.

[64] V. Shoup, “Practical threshold signatures,” in International Conference

on the Theory and Applications of Cryptographic Techniques, pp. 207–220,

Springer, 2000.

[65] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[66] “What is a blockchain address?.” https://wirexapp.com/help/articl

e/what-is-a-blockchain-address-0068, 2020.

[67] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of

knowledge and chosen ciphertext attack,” in Annual International Cryp-

tology Conference, pp. 433–444, Springer, 1991.

[68] “Commitment scheme.” https://en.wikipedia.org/wiki/Commitment

_scheme, 2020.

[69] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,

no. 11, pp. 612–613, 1979.

[70] “bitcoin-multisig.” https://github.com/soroushjp/go-bitcoin-multi

sig, 2014.

[71] “Bitcoin fee calculator estimator.” https://www.buybitcoinworldwid

e.com/fee-calculator, 2020.

[72] “Eth gas station.” https://ethgasstation.info/calculatorTxV.php,

2020.

103

[73] “Opensea statistics 2023: How many users does opensea have?.” https:

//thesmallbusinessblog.net/opensea-statistics/, 2023.

[74] G. Caldarelli, “Understanding the blockchain oracle problem: A call for

action,” Information, vol. 11, no. 11, p. 509, 2020.

[75] “what is the difference between embedded database and ordinary database

like mysql or oracle.” https://goo.gl/oV9x7b, 2018.

[76] “Wikipedia: Embedded database.” https://en.wikipedia.org/wiki/Em

bedded_database, 2018.

[77] “Sqlite.” https://www.sqlite.org/index.html, 2018.

[78] “Apache jmeter,” 2022. https://jmeter.apache.org/.

[79] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,

and P. Rimba, “A taxonomy of blockchain-based systems for architecture

design,” in 2017 IEEE international conference on software architecture

(ICSA), pp. 243–252, IEEE, 2017.

[80] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Fel-

ten, “Sok: Research perspectives and challenges for bitcoin and cryptocur-

rencies,” in 2015 IEEE symposium on security and privacy, pp. 104–121,

IEEE, 2015.

[81] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in

40th annual symposium on foundations of computer science (cat. No.

99CB37039), pp. 120–130, IEEE, 1999.

104

Abstract

블록체인 시스템은 신뢰할 수 없는 탈중앙화된 환경에서 안정적인 사용자 간의 자

금 전송을 실현하며, 스마트 컨트랙트의 활용을 통해 중간 신뢰 기관 없이 다양한

계약을 체결할 수 있도록 하는 구조를 가지고 있다. 그러나, 블록체인의 확장성과

사용 증가에 따른 다양한 중앙 집중화 문제가 도출되고 있다. 특히, 단일 서명 지

갑의 보안 취약성, 블록체인 거래 내역 조회 성능의 부재 및 외부 데이터베이스의

단일 지점 실패, 그리고 합의 알고리즘에서의 검증자 중앙화 경향 등이 주요 문제

로 지적되고 있다. 이러한 이유로, 블록체인에서의 중앙화 문제를 극복하고 보안

강화와 성능을 향상시키는 것이 블록체인 시스템에서의 중요한 이슈로 부상하고

있다.본연구에서는이문제들을극복하기위해,단일서명지갑의보안강화,외부

데이터베이스 의존성 해결을 통한 거래 검색 성능 향상, 그리고 합의 알고리즘의

중앙화 이슈를 해결하는 측면에 초점을 맞춘다.

첫번째로,블록체인단일서명지갑의보안취약성을해결하기위해,임계타원

곡선 전자 서명 알고리즘(T-ECDSA)과 블룸 필터를 결합한 효율적인 다중 서명

지갑을 제안한다. 이 지갑은 블록체인 프로토콜을 변경하지 않고도 기존 지갑에

비해 검증 성능을 향상시키고 트랜잭션 크기를 축소하는 효과를 가지고 있다.

두 번째로, 외부 데이터베이스를 사용하지 않고 블록체인의 검색 성능을 향

상시키기 위해, 블록체인 시스템 내부에 SQL 질의 연산을 통합하는 메커니즘을

제안한다. 이 메커니즘을 통해 이더리움 기반 블록체인 시스템 내부에 관계형 데

이터베이스를 임베딩함으로써, 외부 데이터베이스나 별도의 사용자 정의 데이터

구조 없이도 스마트 계약 및 일반 트랜잭션에 대한 범위 질의를 실행할 수 있다.

마지막으로,블록체인의합의에있어서중앙화문제를해결하기위해,검증자를

상임위원과 운영위원으로 분리하고 이중 해싱과 검증 가능한 랜덤 함수(VRF)를

이용하여무작위로검증자를선출하는이중위원회증명 (PoDC)합의메커니즘을

105

제안한다. 이는 기존의 작업 증명 (PoW) 및 텐더민트와 같은 합의 알고리즘에서

발생하는 중앙 집중화 문제를 완화하고, 고정된 검증인 숫자를 통해 블록체인의

성능을 향상시킨다.

따라서, 본 논문은 블록체인 시스템에서 중앙 집중화 문제를 해결하고, 전반적

인 보안과 성능 최적화를 달성하는 새로운 접근 방식을 제안한다.

Keywords: Blockchain, Multi-signature, T-ECDSA, Bloom Filter, Delay Func-

tion, Zero-knowledge Proof, Double Hashing, Verifiable Random Function (VRF)

Student Number: 2019-38471

106

	Chapter 1 Introduction
	1.1 Motivation
	1.1.1 Problems and Approaches

	1.2 Contributions
	1.3 Outline

	Chapter 2 Background
	2.1 Blockchain
	2.2 Blockchain Wallet
	2.2.1 Single-signature wallet
	2.2.2 Multi-signature wallet

	2.3 Regular transaction in blockchain system
	2.4 Smart contract in blockchain system
	2.5 Key-Value Store
	2.6 Consensus Algorithm
	2.7 Related Work

	Chapter 3 Efficient and Secure Multi-Signature Wallet
	3.1 Motivation
	3.1.1 Blockchain wallet
	3.1.2 Threshold signature scheme
	3.1.3 Bloom filter

	3.2 Design and Implementation
	3.2.1 Overview
	3.2.2 Preparing to exchange information
	3.2.3 Generating a multi-signature wallet
	3.2.4 Signing transaction via multi-signature and Bloom-filter
	3.2.5 Identifying a participant of a transaction

	3.3 Evaluation
	3.3.1 Experimental setup
	3.3.2 Performance results
	3.3.3 Discussion of usecase
	3.3.4 Discussion of privacy

	3.4 Summary

	Chapter 4 Enabling SQL-Query Processing in Blockchain Systems
	4.0.1 Motivation
	4.1 Design and Implementation
	4.1.1 Design
	4.1.2 Implementation
	4.1.3 Usage

	4.2 Evaluation
	4.2.1 Experimental setup
	4.2.2 Performance results
	4.2.3 Impact on the number of threads
	4.2.4 Measuring resource usage
	4.2.5 Byzantine Fault Tolerant

	4.3 Conclusions

	Chapter 5 Proof of Double Committee for Decentralization Consensus Algorithm in Blockchain system
	5.1 Motivation
	5.1.1 Centralization of Blockchain
	5.1.2 Verifiable Random Function

	5.2 Design and Implementation
	5.2.1 Overview
	5.2.2 Selecting a coordinator and seed value
	5.2.3 Selecting steering members
	5.2.4 Crash Fault Tolerant of the coordinator

	5.3 Evaluation
	5.3.1 Experimental setup
	5.3.2 Distribution of block proposers

	5.4 Summary

	Chapter 6 Conclusion
	6.1 Discussion
	6.2 Summary

	Abstract

<startpage>13
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.1.1 Problems and Approaches 3
 1.2 Contributions 6
 1.3 Outline 7
Chapter 2 Background 9
 2.1 Blockchain 9
 2.2 Blockchain Wallet 10
 2.2.1 Single-signature wallet 10
 2.2.2 Multi-signature wallet 11
 2.3 Regular transaction in blockchain system 12
 2.4 Smart contract in blockchain system 12
 2.5 Key-Value Store 12
 2.6 Consensus Algorithm 13
 2.7 Related Work 14
Chapter 3 Efficient and Secure Multi-Signature Wallet 20
 3.1 Motivation 20
 3.1.1 Blockchain wallet 20
 3.1.2 Threshold signature scheme 22
 3.1.3 Bloom filter 23
 3.2 Design and Implementation 24
 3.2.1 Overview 25
 3.2.2 Preparing to exchange information 27
 3.2.3 Generating a multi-signature wallet 28
 3.2.4 Signing transaction via multi-signature and Bloom-filter 30
 3.2.5 Identifying a participant of a transaction 33
 3.3 Evaluation 34
 3.3.1 Experimental setup 34
 3.3.2 Performance results 34
 3.3.3 Discussion of usecase 38
 3.3.4 Discussion of privacy 39
 3.4 Summary 40
Chapter 4 Enabling SQL-Query Processing in Blockchain Systems 41
 4.0.1 Motivation 41
 4.1 Design and Implementation 44
 4.1.1 Design 45
 4.1.2 Implementation 50
 4.1.3 Usage 52
 4.2 Evaluation 53
 4.2.1 Experimental setup 53
 4.2.2 Performance results 54
 4.2.3 Impact on the number of threads 58
 4.2.4 Measuring resource usage 60
 4.2.5 Byzantine Fault Tolerant 63
 4.3 Conclusions 64
Chapter 5 Proof of Double Committee for Decentralization Consensus Algorithm in Blockchain system 66
 5.1 Motivation 66
 5.1.1 Centralization of Blockchain 66
 5.1.2 Verifiable Random Function 68
 5.2 Design and Implementation 70
 5.2.1 Overview 71
 5.2.2 Selecting a coordinator and seed value 75
 5.2.3 Selecting steering members 76
 5.2.4 Crash Fault Tolerant of the coordinator 77
 5.3 Evaluation 78
 5.3.1 Experimental setup 78
 5.3.2 Distribution of block proposers 79
 5.4 Summary 91
Chapter 6 Conclusion 93
 6.1 Discussion 93
 6.2 Summary 94
Abstract 106
</body>

