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Abstract

A Novel Hierarchical Edge-based
Architecture for Service Oriented IoT

Euiseok Kim

Department of Computer Science and Engineering

College of Engineering

The Graduate School

Seoul National University

The Internet of Things (IoT) is becoming more common in our daily lives, and there are

many commercially available IoT platforms. As IoT platforms are the core of building

IoT solutions, the design of IoT platforms determines the characteristics of IoT systems,

so various designs of platforms are being researched. Among them, edge-based platforms

have the advantage of responsiveness and privacy protection because the middleware is

located close to the device, and service-oriented IoT has the strength of allowing users

to communicate with the IoT without specifying a device. Various research efforts are

underway to overcome the weakness of edge-based platforms, which is the lack of scal-

ability, but they all consider only a flat structure, i.e., edge-to-edge connectivity through

a single layer.

In this thesis, we propose a hierarchical architecture for edge middleware that main-

tains the advantages of edge-based IoT and service-oriented IoT while allowing flexible

scaling along a tree structure. We identify design requirements and technical challenges

to realizing this new architecture and propose solutions. The five main requirements of

the hierarchical middleware structure, resource sharing, and scheduling are addressed

through two novel techniques. First, we introduce a new type of service called a super
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service to enable privacy-preserving edge-to-edge communication and resource sharing.

It acts as a service request arbiter in the layer and takes over service requests between

each middleware. Second, to enable flexible mapping between devices and services in

the service-oriented IoT, we devise a distributed algorithm for the scheduling problem

that is made more complex by the addition of super services. This enables real-time

responsiveness of super services while distributing the scheduling load across multiple

edges to avoid computational overload on any one edge.

As another contribution of this thesis, we develop a simulation framework to eval-

uate the proposed platform. When building an IoT system, its characteristics can vary

depending on the purpose and scale, such as a smart home or a smart factory, and the

goals of the system administrator can also vary, such as saving energy and improving user

experience. IoT systems are characterized by a large number of different devices, making

them difficult to model. We implement a hardware-in-the-loop simulator that creates a

hierarchical IoT environment on top of multiple real devices and observes the actual in-

teraction between middlewares and end devices by triggering randomly generated events

according to the settings. Based on this simulator, we provide a framework for evalu-

ating the performance of different scheduling algorithms in different IoT environments.

This allows users to pre-create IoT environments based on the size and characteristics of

their target system and find the optimal scheduling algorithm. This framework has been

released on GitHub for further research.

Finally, we verify the feasibility of the proposed platform through the implementa-

tion of a smart campus testbed and various experiments using the simulation framework.

We installed Raspberry Pi in two buildings and five rooms at Seoul National University to

build a hierarchical structure and run various IoT applications connecting different edges

to verify that it works in the real world. To check the performance of the super service,

we adjusted the height, width, and number of applications in the tree and measured the

response speed as the load increased, proving that the performance of the super service

ii



is sufficient even in a large hierarchy. We also show that different scheduling policies

give different results when applied to the same environment, demonstrating the need for

a scheduling framework to help develop scheduling algorithms.

Keywords : IoT Platform, Edge-based, Service-oriented, Hierarchical Architecture

Student Number : 2015-21232
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Chapter 1

Introduction

1.1 Motivation

As IoT (Internet of Things) is becoming increasingly prevalent in everyday life, it is

predicted that there will be 19.1 billion IoT devices by 2025 [1]. Early IoT devices such

as Google Nest [2] and Amazon Alexa [3] have demonstrated how IoT can change our

daily lives. Smart devices can sense the environment and react according to our intention

without our intervention [4, 5]. These days, the emergence of the Matter protocol [6] is

making IoT devices more interoperable even though their manufacturer is different.

Hundreds of IoT platforms have been developed to keep pace with this IoT growth,

and as of the end of 2021, more than 400 IoT platforms exist in the market, either as open-

source or commercialized products [7, 8, 9]. An IoT platform is a software framework

that enables the management and connectivity of various smart devices and applications

over the Internet, serving as a bridge between the layers of an IoT system, from the device

layer to the application layer.

IoT platforms can be categorized into two main types based on the location of their

middleware: cloud-based and edge-based. A cloud-based platform deploys a PaaS (Plat-

form as a Service) middleware in the cloud and connects IoT devices through the Internet

network [10]. While cloud-based platforms are more popular because of their ease of im-

plementation, low price, and scalability, edge-based platforms have several benefits over
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cloud-based platforms by bringing the capabilities of cloud computing to an edge device.

An edge-based IoT platform provides improved responsiveness with lower latency and

additional safety benefits since data does not have to be transmitted to the cloud. In ad-

dition, it has the advantage of being able to continue operations even when the network

situation is bad. To mitigate their weaknesses, many cloud-based platforms tend to adopt

a hybrid approach by incorporating edge middleware between the device and the cloud

or allowing for connectivity between edges through the cloud, which forms a hierarchical

IoT architecture. Distinguished from these hybrid approaches, the proposed IoT platform

in this work is a purely edge-based platform that solves the scalability problem of an

edge-based platform by introducing a hierarchical structure of edge middlewares.

Recent privacy concerns have led to the emergence of applications such as messag-

ing apps that prioritize data protection by not storing personal information. This is true

for IoT systems as well, where there is a lot of information flowing around, so the edge-

based IoT approach of not storing any information externally at all is the best way to

protect privacy. Edge-based IoT systems are built around edge middleware, and as long

as there are secure connections between them, the privacy-preserved safe system can be

scaled up incrementally. So, it’s worth thinking about how to scale up an edge-based IoT

system with these advantages, which brings us to the next question: How can edge-based

IoT be applied to large-scale systems?

There exist edge-based IoT platforms that try to solve the scalability problem by pro-

viding a mesh network for interconnections between edges, such as openHAB[11] and

HomeAssitant[12]. Although mesh topology offers advantages such as link robustness

and short communication paths, as the number of edges grows, the complexity of man-

aging them grows exponentially, which can be overwhelming for an edge device. Hence

mesh-style interconnection is applicable to small-scale IoT systems like smart homes.

In contrast, we propose a novel hierarchical structure of middlewares through a tree

topology of edges. An example of the proposed structure is illustrated in Fig. 1.1. As
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shown in the figure, at the bottom level, an edge-based platform makes a smart office. A

floor has an upper-level middleware that is connected to bottom-level middlewares. Mul-

tiple floors compose a building, and multiple buildings cover the entire campus. Since

an addition or deletion of a middleware can be done by simply changing the connec-

tion between a middleware and its parent middleware, it offers scalability and flexibility.

Section 4.6 presents how a toy-level test-bed has been built in our campus as a proof-of-

concept implementation of the proposed IoT platform.

IoT platforms can also be classified into two approaches: device-oriented and service-

oriented. A user can control an IoT device directly to define an IoT application in a

device-oriented platform. In a service-oriented platform, on the other hand, an IoT de-

vice is abstracted as a set of services it provides, and an IoT application is specified by a

set of services requested by the user [13, 14]. Such abstraction enables us to attach any

computing resource, including the cloud, to the IoT platform by assigning each service

provided by the computing resource to a virtual device. The proposed IoT platform is a

service-oriented platform, as shown in Fig. 1.1, where two IoT applications (User App

1 and User App 2) are programmed by a script that requests services without specifying

which device to use. For reusability and convenience, we may define a composite service

that is a sequence of services that can be conditionally triggered or repeated with a given

termination condition. For instance, User App 1 can be defined as a composite service.

An IoT application can be modeled using a directed graph, referred to as a service graph,

in which nodes represent services and directed edges represent dependencies between

them [14]

We first identify the five main design requirements to design the new edge-based

hierarchical middleware structure for a service-oriented IoT platform: how to organize

the tree, how to share resources between edges, how to preserve privacy, etc. The details

of the proposed structure are derived from these requirements and associated technical

challenges, which are also a technical contribution to this work. The proposed platform
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Figure 1.1: Overview of the proposed hierarchical middleware structure

includes techniques for connecting many edges, and for specifying and executing services

on each edge in a service-oriented manner. Reliability issues arising from hierarchical in-

direct communication between nodes rather than peer-to-peer connections can be another

challenge, but we believe that they can be complemented by currently known solutions

and that maximizing the management and performance benefits of hierarchical structures

is well suited to edge-based IoT systems.

To ensure effective communication and resource sharing while maintaining the pri-

vacy advantages of the edge-based platform, we introduce a novel element called the
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super service This service type is a composite service defined at an upper level above

Level 1 in the hierarchical tree structure illustrated in Fig. 1.1. The example showcases

a Python-based super service, find all(x), situated at the top level. When invoked, this

service sends the find service request down through intermediate nodes to the bottom

level. Super services serve multiple purposes within the system. They can be utilized for

upper-level middleware to manage and monitor lower-level nodes, enabling efficient hier-

archical control. Additionally, they are invaluable when one middleware requires access

to a service provided by another middleware. To achieve this, the super service is made

visible to the lower-level middleware, allowing the latter to call the defined super service

from the upper level. This is exemplified in Fig. 1.1, where User App 2 successfully calls

the find all super service located at the bottom layer.

In a service-oriented IoT platform, the middleware assumes a critical role as the

central scheduler responsible for mapping and scheduling services onto available de-

vices. Unlike traditional distributed systems, an IoT environment presents dynamic varia-

tions in computing resource status, necessitating real-time monitoring by the middleware

before making scheduling decisions. The complexity intensifies with the introduction

of super services, as their service requests from upper-level nodes may arrive unpre-

dictably and with varying deadline constraints. As a distributed scheduler, the middle-

ware faces the challenge of efficiently managing multiple concurrent applications across

networked computing resources while considering the constantly changing device states.

The scheduling process must adapt to the dynamic nature of IoT environments and ef-

ficiently map service requests to devices. Moreover, the presence of super services in-

troduces additional scheduling complexities, as their calls may have different priority

levels and dynamic timing requirements. The middleware must effectively handle such

scenarios to ensure timely and reliable service execution.

For the study of scheduling techniques, we have developed a comprehensive simula-

tion framework to evaluate various scheduling policies. This framework empowers users
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to configure the IoT system by adjusting hyper-parameters such as the number of nodes

at each level, services, applications, and more. Leveraging these configurable settings,

the simulation automatically constructs the IoT system by deploying middlewares on

real hardware platforms and virtual devices on the simulation host. The framework offers

flexibility in testing different scheduling policies, allowing users to seamlessly switch be-

tween policies and observe their impact on the performance of the simulated IoT system.

By analyzing the system under different scheduling policies, researchers and practition-

ers gain valuable insights into the strengths and weaknesses of each policy in various

scenarios. This framework1 is publicly available to let anyone use it for further study on

the scheduling policies.

1https://github.com/sopiot/simulation-framework
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1.2 Contribution

The contributions of this work can be summarized as follows.

• We present the hierarchical middleware structure of edge-based IoT platforms and

associated design requirements. In this platform, unlike the existing edge-based

IoT platform with one middleware in the center, multiple middlewares are hier-

archically connected to form an extension structure. At this time, technical chal-

lenges related to the design requirements are described, and solutions to resolve

them are presented.

• We introduce super service, a new type of service that enables collaboration among

middlewares at the service level, as well as management of middlewares in a hier-

archy. A super service is a composite service made up of a combination of multiple

services and can request the execution of other middleware services. Users exploit

desired functionalities through IoT applications that include super services.

• We propose a scheduler to map and schedule service requests to devices in each

level of middleware. Since each middleware manages only the devices registered

to it, it supports super service through a distributed scheduler. Efficient distributed

algorithms for each super service scheduling and execution are devised.

• We present a simple test bed implementation with the proposed hierarchical IoT

platform. At Seoul National University, we have built a small smart campus system

that includes two buildings and five rooms.

• A simulator that creates an IoT environment with the proposed platform and trig-

gers various events is implemented. It automatically builds a middleware tree and

generates codes of virtual devices according to the configuration. It also dynam-

ically registers/unregisters the devices and observes interactions between middle-

wares and virtual devices by executing IoT applications in parallel.
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• An IoT simulation framework of the IoT system based on the simulator is devel-

oped to estimate the performance of the given IoT system and evaluate the schedul-

ing algorithms.

• Various experiments are performed with the simulator to confirm the effectiveness

of the proposed platform. It shows the negligible overhead of the super service and

the improvement of the latency when changing the scheduling policy. Moreover,

additional measurements that break down the overhead and show the importance

of the scheduling policies are conducted.
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1.3 Dissertation Organization

The remaining chapters of this thesis are organized as follows. In the next chap-

ter, related works are reviewed. Chapter 3 explains some background knowledge of this

work, and Chapter 4 presents the proposed hierarchical platform in detail, including the

design requirements and associated technical challenges with our solutions for those. In

this chapter, the practical use case of the proposed technique is demonstrated by imple-

menting a simple smart campus test bed. Next, the IoT simulation framework for this

platform is proposed in Chapter 5. The IoT simulator that generates IoT environments

and evaluates the performance of the scheduler is developed, and with this simulator as

an engine, the performance and scalability of the proposed IoT platform are evaluated

through extensive experiments in this chapter. Finally, the conclusion and future work

are outlined in Chapter 6.
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Chapter 2

Related Works

2.1 Cloud-based and Edge-based Platforms

In the landscape of IoT platforms, many popular platforms initially adopted a cloud-

based approach due to its ease of installation and rapid user adoption. However, to ad-

dress the limitations of cloud-based IoT platforms, such as reliance on internet connec-

tivity and potential latency issues, a trending shift towards a hybrid architecture, known

as fog computing, has emerged. Fog computing includes edge devices as intermediate

hubs, reducing response time and network dependence. Despite these benefits, concerns

regarding privacy persist as information is ultimately transmitted to the cloud [15].

Among the cloud-based IoT platforms, several well-known systems have gained

significant recognition. AWS IoT Core [16], for instance, constructs an IoT platform

utilizing a general-purpose cloud infrastructure. It establishes connectivity between de-

vices and the AWS cloud, enabling the development of IoT systems that accesses cloud

resources such as databases and computing capabilities. The platform offers an easily

manageable initial setup process through pre-written installation scripts. However, cus-

tomization of the system may require a deeper understanding of its intricacies. Samsung

SmartThings [17] and Apple HomeKit [18], on the other hand, are exemplary cloud-

based IoT platforms offered by device companies. These platforms enable users who

purchase their devices to enjoy IoT capabilities through a free cloud-based platform. In
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an effort to improve latency and enhance user experiences, both platforms have recently

adopted a hybrid approach. This approach uses computing resources in devices, such as

televisions, as local hubs. However, it is important to note that while the hybrid approach

improves performance, the majority of the management process still occurs in the cloud,

raising concerns regarding privacy and data security.

With the edge-based approach, there is no need for a cloud infrastructure in IoT. In-

stead, an edge middleware is deployed within the local network. This placement enables

resource management and computation to occur directly at the edge, offering several ad-

vantages such as improved responsiveness, privacy, and network robustness [19, 20]. Ex-

ploiting these benefits, numerous edge-based IoT platforms have been proposed across

various application domains. In the agricultural sector, where internet connectivity in

farming areas may be unstable, edge-based platforms with edge nodes have been in-

troduced to enable local storage and lightweight data processing for livestock and crop

monitoring [21]. These platforms address the specific needs of the industry, ensuring re-

liable and efficient operations even in challenging network conditions. For smart home

applications, openHAB [22] and Home Assistant [23] have garnered attention as pop-

ular edge-based IoT platforms. These open-source solutions have vibrant communities

contributing to the development of useful plugins and extensions, flourishing the func-

tionality and customization options available to users. These platforms let users set up

a smart home environment without any dependency on external cloud services. In the

healthcare industry, Pasquale Pace et al. [24] propose an edge-based platform as an alter-

native to cloud-based solutions. This platform aims to address the unique requirements

and privacy concerns in healthcare by enabling data processing and analytics at the edge,

closer to the source of data generation. By capitalizing on edge computing, healthcare

providers can enhance data privacy, reduce latency, and ensure reliable operation, ulti-

mately improving the quality of care and patient outcomes.

These edge-based IoT platforms exemplify the growing trend of deploying IoT so-
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lutions without relying on the cloud. By bringing computation and data processing ca-

pabilities closer to the edge, users can benefit from improved performance, privacy, and

reliability within their local network environments. The adoption of edge computing in

diverse application domains continues to expand, catering to specific requirements and

unlocking the potential of edge-based IoT solutions.

2.2 Large-scale System Construction with Edge-based
IoT

Some existing edge-based platforms have attempted to set connectivity between

multiple edges via add-ons to make the system scalable. For example, openHAB offers

a plug-in called ”Remote openHAB Binding” that enables the communication between

edges, allowing for the exchange of service information and the creation of multi-edge

applications. Similarly, Home Assistant provides ”Remote Home-Assistant” integration,

which lets one edge middleware connect to other edge middlewares and request services

based on events or service requests from the other edge middlewares. However, the scal-

ability offered by this approach is insufficient to build a large-scale IoT system, such as a

smart campus, as the resource capacity of an edge device is limited. Both platforms force

one edge to manage all other edges, which exponentially increases the computational

workload. These plug-ins are designed for integration within a single user’s system and

do not support system-level management functions, such as edge-specific access control,

distributed scheduling, etc.

There exist some platforms designed for scalable edge-based IoT. Alonso et al.

[9] proposed a scalable architecture for mobile healthcare applications based on edge

computing to achieve the benefits of privacy and latency. They have an edge gateway

that communicates with other edges from different areas to support distributed services.

Rivera et al. [25] proposed a scalable edge-based blockchain platform. The edge layer

and blockchain layer of this architecture let edge nodes form a distributed peer-to-peer
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Figure 2.1: Mesh-based vs. tree-based

network to manage secure data transactions between IoT devices. They try to distribute

the data transaction between IoT nodes which can surpass the capability of a single server

with the distributed ledger technique, but the other type of IoT service and scheduling is-

sue is not considered. In all of these approaches, edges are connected with a single-layer

network such as mesh and star.

On the other hand, it may be possible to connect the edges vertically as proposed

in SoPIoT [14]. Fig. 2.1 compares two interconnection structures between edge devices:

mesh-based and tree-based. The letters in the diagram represent service information data

that must be stored at an edge. Due to the fact that the mesh-based approach requires the

system to store and manage information for every linked node, it requires more effort to

maintain the topology.

There are several benefits to using a tree structure over a mesh structure. In com-

parison to a mesh-based structure, a tree structure requires less overall communication

volume between edge devices, although it may require more hops of communication

between edges. Moreover, the tree structure inherently supports the clustering of edges

based on their geographic location. Adding a new edge device to the existing system is

also a straightforward process, as it can be connected to a parent node without affecting

other middlewares. This scalability makes management and maintenance simpler.
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Table 2.1: Comparison of scalable edge-based IoT platforms

Aspect openHAB
[22]

HA
[23]

Alonso
et al. [9]

Rivera
et al. [25]

SoPIoT
[14] Ours

Hierarchical
Edge MW

X X X X △ O

Service-
oriented

△ △ △ X O O

Mapping and
Scheduling

△ △ X X O O

Load
Balancing

X X O O X O

Even though the authors of [14] have proposed a tree-based hierarchical structure

of edge devices, no real implementation is shown and associated technical challenges are

not identified nor solved. In contrast, we present the technical issues to consider in the

construction of a tree-based hierarchical IoT platform and propose a real implementation

in this work.

Table 2.1 compares five existing scalable edge-based platforms with the proposed

platform in four aspects: edge middleware topology, device-oriented or service-oriented,

mapping and scheduling, and load balancing. All existing platforms but SoPIoT use a

mesh topology to connect multiple edge middlewares for scalability. Even though SoPIoT

proposes a hierarchical tree structure of edge middlewares, no implementation has been

made.

While openHAB and HomeAssistant abstract a device with a set of services the de-

vice offers, they are not service-oriented in a strict sense since multiple devices may not

share a service. Device-oriented platforms do not need a mapping of services to devices.

Instead, openHAB and HomeAssistant allow scheduling the timing of execution through

time conditions when running IoT applications. Since SoPIoT and the proposed plat-

form are service-oriented, they perform mapping of service to devices as well as service

scheduling.

Alonso et al. [9] targets microservices running through Docker containers and pro-

vides load balancing through dynamic microservice deployment. Rivera et al. [25] fo-
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cuses solely on data transactions between edges and decentralizes data communication

in IoT through blockchain technology. These two works consider load balancing as a

feature of middleware.

In summary, the proposed platform is distinguished from the existing works as the

only service-oriented edge-based IoT platform, providing scalability with a hierarchical

tree structure of edge middlewares. Note that hierarchical edge middleware is suggested

and implemented with technical considerations only in this work.

2.3 Scheduling in IoT

The scheduling problem in IoT systems, which involves allocating incoming ap-

plications to devices, has been a subject of study due to the heterogeneous, complex,

and dynamic nature of such systems [26, 27, 28, 29, 30]. Mabrouk et al. [26] proposed

a heuristic approach that dynamically composes multiple services, optimizing both the

quality of service (QoS) and energy consumption. However, their method did not con-

sider service dependencies or real-time constraints, which are crucial factors in many

IoT scenarios.

Li et al. [28] tackled the scheduling problem in service-oriented IoT systems. They

developed a model that represents an IoT system as a composition of application, net-

work, and sensing layers. QoS metrics associated with each layer were determined and

optimized during the scheduling process. While their approach enabled rapid service de-

ployment in the IoT environment, it did not take into account the dependencies between

IoT services, limiting its applicability in scenarios where service interdependencies are

significant.

Kolomvatsos et al. [30] proposed a two-stage task allocation methodology for edge

computing environments. Their approach involved assigning tasks to things (devices)

that could execute them locally or delegate them to peers. To determine the group of

peers capable of executing a task, they employed the k-nearest Neighbor (KNN) algo-
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rithm. Rejected tasks were then allocated to another set of peers using the multi-attribute

utility theory. While their methodology demonstrated effective load balancing in a dis-

tributed manner, it did not consider latency constraints, which are crucial in real-time IoT

applications.

Extensive research has been conducted on hybrid scheduling approaches that bridge

the cloud-edge continuum in IoT systems [31, 32, 33]. Bhatia et al. [34] proposed a

quantum computing-inspired scheduler, exploring the potential of quantum computing

techniques in optimizing task scheduling. Pusztai et al. [35] introduced an edge-aware

scheduler specifically designed for asynchronous IoT applications, aiming to achieve

load balancing in fog computing environments. Lim [36] presented an IoT application

scheduling method based on artificial intelligence, targeting small-scale fog computing

environments. These studies showcase the diverse range of approaches in hybrid schedul-

ing, each with its own objectives and assumptions. However, they may differ from the fo-

cus of this work, which revolves around a purely edge-based IoT platform and addresses

challenges such as device failures and real-time requirements.

In the realm of hierarchical fog IoT systems, researchers have proposed architec-

tures and scheduling techniques that utilize the hierarchical structure of fog layers. De et

al. [37] and Chekired et al. [38] introduced architectures that construct hierarchies within

the fog layer, enabling efficient resource management and scheduling based on the hier-

archical structure. While these studies provide valuable insights into hierarchical fog IoT

systems, their assumptions and objectives are for systems with the cloud and may differ

from the scope of this study.

In the context of runtime modifications in distributed systems, researchers have ex-

plored techniques for dynamically adapting task execution and system configuration.

Yerraballi et al. [39] and Zhu et al. [40] investigated variations in task execution times in

real-time distributed systems, considering the dynamic nature of task execution. Bate and

Emberson [41] focused on enhancing the flexibility of embedded systems by considering
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runtime modifications to task graph topology. However, these studies typically require

comprehensive offline optimization before any runtime reconfiguration can be applied.

A recent study introduced a hybrid scheduling technique that considers the real-

time requirements of IoT applications and the dynamic changes in system configuration

due to device addition and deletion [42]. This algorithm incorporates both global and

incremental steps to effectively respond to the dynamic nature of the IoT environment.

However, it does not specifically address the hierarchical structure of middlewares and

the associated technical challenges, which are the focus of this work.

2.4 Service Composition in IoT

Service composition stands as a pivotal advantage offered by service-oriented IoT

platforms, allowing users to amalgamate abstracted services from individual devices to

create new, integrated services. The capability to compose services within a single IoT

system to craft customized applications is a prominent feature provided by most service-

oriented platforms, as highlighted in [43] and [44]. Moreover, service composition can

extend beyond the boundaries of a singular IoT environment, encompassing heteroge-

neous IoT landscapes in what is termed as federated service composition. This advanced

concept facilitates the development of large-scale IoT systems by seamlessly integrating

diverse types of IoT systems, as exemplified by the work of [45]. IoT ecosystem can

transcend individual administrative domains, culminating in a synergistic collaboration

between distinct IoT environments through federated service composition.

Federated service composition allows for the seamless integration of services from

disparate IoT environments, enabling collaboration and interaction between different sys-

tems. It extends the capabilities of service-oriented IoT platforms beyond a single admin-

istrative entity, facilitating the creation of larger, more comprehensive IoT systems. The

challenges associated with federated service composition are multifaceted. Interoperabil-

ity becomes a critical concern, as services from different administrative domains may
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employ different communication protocols, data formats, or security mechanisms. Stan-

dardization efforts, such as the development of common data models and interoperability

frameworks, play a vital role in addressing these challenges.

Furthermore, ensuring security, privacy, and trust across federated IoT environments

is of utmost importance. Establishing secure communication channels, implementing ac-

cess control mechanisms, and adhering to privacy regulations become vital components

of federated service composition. Efforts in federated service composition have gained

attention in various domains, including smart cities, industrial IoT, and healthcare, where

collaboration between multiple entities is necessary to create comprehensive IoT solu-

tions. Research and industry initiatives are underway to develop frameworks, protocols,

and best practices for federated service composition to integrate diverse IoT environments

into a cohesive ecosystem.

However, it is important to note that this work focuses on a single administrating

entity for the IoT system, and therefore, the intricacies surrounding federated service

composition and distributed scheduling issues lie beyond the scope of this research.
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Chapter 3

Background

3.1 Service-oriented IoT

Since the emergence of IoT, various types of IoT platforms have been proposed [46].

Device-oriented IoT refers to an approach where the focus is primarily on individual de-

vices and their direct communication with each other. In a device-oriented IoT system,

devices are considered the central entities and interactions primarily occur between de-

vices. The main objective is to enable devices to connect and exchange data without

significant intermediation or abstraction. Device-oriented IoT platforms often emphasize

device-level functionalities and provide protocols and frameworks for device discovery,

connectivity, and data exchange. These platforms typically allow direct communication

between devices, enabling developers to build applications based on device interactions.

On the other hand, service-oriented IoT takes a higher-level view, focusing on the

services provided by devices rather than individual devices themselves. In a service-

oriented IoT system, devices are abstracted and organized based on the services they

offer. Services represent specific functionalities or capabilities that devices provide, such

as sensing, actuation, or data processing. Service-oriented IoT platforms aim to unify

and manage the services offered by various devices from different manufacturers. They

provide frameworks and protocols for service discovery, composition, and consumption.

Users interact with the IoT system by requesting services rather than directly accessing
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individual devices. The platform handles the underlying complexities of device discov-

ery, connectivity, and data exchange, allowing users to create applications by composing

services from multiple devices.

The shift from device-oriented to service-oriented IoT architectures offers several

advantages. Service-oriented IoT enables higher levels of abstraction and interoperabil-

ity by focusing on the capabilities and functionalities offered by devices rather than their

specific implementations. It allows for greater flexibility, scalability, and composability

as services can be combined and reused across different applications. Service-oriented

IoT platforms facilitate easier integration of devices from various manufacturers and pro-

vide a more user-friendly and intuitive interface for application development. Addition-

ally, service-oriented approaches can enable advanced features such as dynamic service

composition, adaptive service selection, and context-awareness, enhancing the overall

capabilities and intelligence of the IoT system.

While the service-oriented IoT architecture has been studied for more than a decade

[47, 48, 49], early IoT platforms were mostly device-oriented, allowing direct commu-

nication between devices [50, 51, 52] as the concept is clear to implement. However,

service-oriented IoT has gained significant attention in recent years because it offers a

higher-level view of the system to users, as evidenced by the popularity of state-of-the-

art platforms [17, 22, 53]. They claim to be service-oriented platforms based on the fact

that they can abstract and view devices as services.

Since they do not allow multiple devices to share the same service name, however,

they are not service-oriented in a strict sense. In the strict sense of service orientation, an

IoT system can be considered as a distributed system in which devices act as processing

elements (PEs) and services as tasks. Service Oriented Middleware (SOM) is an OS-

like manager supporting adaptive service composition, management of heterogeneous

devices, and scheduling of services to devices. Exploiting this position, the middlewares

are able to support useful smart features such as auto-recovery and auto-optimization to
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users by adjusting service providers for their requirements in run-time. An IoT platform

can interact with users through a composite service that can be represented as a directed

acyclic graph (DAG) of service nodes [14].

As IoT technologies continue to develop and evolve, it is becoming increasingly

clear that service-oriented IoT will emerge as the dominant paradigm shaping the future

of IoT. The inherent advantages of service-oriented architectures, such as high levels of

abstraction, interoperability, and composability, are driving widespread adoption of per-

sonal IoT technologies. Service-oriented platforms that provide optimization and recom-

mendation capabilities through intelligent service composition will enable IoT to reach its

full potential. With service-oriented IoT at the forefront, users can expect a future where

IoT technologies seamlessly integrate into their daily lives, simplifying and enhancing

their experiences across various domains such as smart homes, healthcare, transportation,

and beyond. The unparalleled scalability, flexibility, and intelligence offered by service-

oriented IoT will revolutionize the way we interact with our environment, unleashing the

true potential of the IoT in transforming our world into a seamlessly interconnected and

personalized ecosystem.

3.2 SoPIoT

The proposed platform is based on a service-oriented IoT platform called SoPIoT

[14]. This platform is the foundation of an independent IoT system, each node in the

proposed hierarchy. Since the basic design and the local middleware as individual nodes

follow SoPIoT, a background knowledge of the platform’s features is necessary to un-

derstand this research. In this section, we will provide a detailed overview of SoPIoT,

including its application specifications, service mapping, and service scheduling.
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Figure 3.1: Overview of SoPIoT system

3.2.1 Overview

The baseline IoT platform of this thesis, SoPIoT, adopts a comprehensive architec-

ture as depicted in Figure 3.1. At the heart of this architecture is the middleware, which

encompasses key functionalities commonly associated with SOM, including device man-

agement and programmability [54, 55]. The middleware serves as a crucial component

facilitating communication between IoT devices and the broader system.

To establish the connection between the middleware and IoT devices, the MQTT

(Message Queuing Telemetry Transport) communication protocol is employed. MQTT is

a widely adopted ISO standard publish-subscribe-based messaging protocol built on top

of the TCP/IP protocol [56]. In SoPIoT, the Mosquitto open-source project [57] is adapted

as the MQTT broker. This broker process operates as a daemon, running simultaneously

with the middleware. Both the middleware and the IoT devices run as MQTT clients,

enabling the exchange of messages. The Mosquitto broker offers various options, includ-
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ing Secure Sockets Layer (SSL) [58] for communication security and Quality of Service

(QoS) settings for balancing speed and reliability. With the chosen QoS-0 protocol, no

handshaking occurs after message transmission, resulting in faster communication. How-

ever, it is worth noting that this approach introduces certain risks, such as the potential for

communication order reversal. By adopting the MQTT communication protocol and the

Mosquitto broker, SoPIoT ensures efficient and secure communication between the mid-

dleware and IoT devices. This foundation enables seamless data exchange and integration

within the IoT platform, enhancing its overall functionality and reliability.

SoPIoT is designed with a strong focus on safety and privacy. It embraces a pure

edge-based IoT design, eliminating the reliance on cloud infrastructure. This architectural

choice ensures structural privacy, as all personal information generated by IoT systems

remains stored on edge devices. Moreover, there is a local server that collects the IoT

sensor data and analyzes the patterns. This is a separate server that stores IoT data and

logs that the middleware only forwards. For system security, it can provide AI solutions

for anomaly detection or provide a system monitoring user interface.

In SoPIoT, the middleware plays a crucial role as a centralized administrator within

the edge network. It manages the communication between devices and acts as a gate-

keeper to validate the authenticity and integrity of device communications. When a de-

vice’s identity is registered with the middleware, it gains permission to communicate

within the network. By centralizing communication and enforcing validation, the design

mitigates concerns regarding potential hacks and unauthorized access to IoT devices.

Even if one device is compromised, the restricted direct communication between devices

prevents the occurrence of widespread catastrophic damage.

The safety-conscious design of SoPIoT prioritizes the protection of user data and

the integrity of the IoT system. By relying on local servers and a centralized middleware,

the framework provides a secure and controlled environment for IoT communication.

This approach addresses the potential risks associated with cloud-based IoT platforms
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and empowers users with enhanced privacy and safety measures. With its edge-based

architecture and stringent communication management, SoPIoT offers a robust solution

for deploying IoT systems with privacy and security in mind.

Since each service included by an application specified in SoPIoT does not directly

specify a device, it is the role of the SoPIoT scheduler to map the user’s service request to

the best device for the situation. The mapping algorithm that selects the device to execute

the requested functionality has a significant impact on system performance. Depending

on which mapping algorithm is applied, the system can be tailored to the user’s needs,

such as the size and speed of the system. Research has been conducted on this topic and

proposed an adaptive scheduling technique on SoPIoT in [42]. The scheduling algorithms

improve overall system performance, such as energy and utilization, while maintaining

rapid response.

3.2.2 Device Management

SoPIoT offers a flexible approach to discovering and registering a wide range of IoT

devices. To facilitate device integration, the platform provides a comprehensive Software

Development Kit (SDK) that device developers can utilize. By embedding the code from

the SDK and communicating with the middleware via MQTT, developers can seamlessly

integrate their devices into the SoPIoT ecosystem.

In addition to supporting various IoT devices, SoPIoT extends its device coverage

through the integration of the MQTT-SN (Message Queuing Telemetry Transport for Sen-

sor Networks) gateway [59, 60]. This gateway serves as a bridge, enabling connectivity

with constrained devices via Zigbee [61, 62]. By incorporating the MQTT-SN gateway,

SoPIoT expands its compatibility and interoperability with a broader range of devices.

To accommodate embedded devices with constraints, such as Arduino [63], a dedicated

SDK is provided. This SDK allows devices running firmware developed with it to con-

nect to the middleware using Zigbee communication through the MQTT-SN gateway.
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Figure 3.2: Abstract model of SoPIoT

This approach caters to the specific requirements of embedded devices, ensuring their

seamless integration into the SoPIoT platform.

Furthermore, SoPIoT offers a versatile integration mechanism for devices from

other platforms that may not have dedicated SDKs provided by the platform. This is made

possible through the manager thing, which acts as a plug-in capable of discovering third-

party devices or devices that employ unsupported communication protocols. The man-

ager thing serves as a bridge, converting these devices into SoPIoT-compatible things.

With this capability, the platform can embrace additional protocols, such as Bluetooth

Low Energy (BLE) for low-power communication. Each platform may have a different

integration approach, and developers can easily add a manager thing for each specific

platform. In addition, starting in 2023, SoPIoT will facilitate easy integration of devices

from even more platforms through the adoption of the Matter protocol, further expanding

its interoperability and device integration capabilities.

In SoPIoT, devices are registered to an abstract model through a uniform interface

mechanism without affecting other devices at runtime. Because the abstract model hides

the hardware characteristics of the device, it can easily accommodate a wide variety of

IoT devices, including third-party devices originally developed for other IoT platforms.
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Figure 3.3: A script editor in SoPIoT

The abstract model of a device comprises identifiers and services, as depicted in Fig-

ure 3.2. Identifiers contain the name and description of the device. Services are catego-

rized into value type and function type. Value-type services refer to the values reported

periodically to the middleware. Functions represent the services that the device can offer,

which may involve input arguments and return values. Additionally, functions can in-

clude optional non-functional attributes like latency and energy consumption for service

execution. When provided, these properties are considered in the middleware’s service

mapping and scheduling process.

3.2.3 Script Language

Several IoT platforms, such as Watson IoT [64], ThingWorx [53], IFTTT [65], and

ThingSpeak [66], offer users the ability to define composite services using the Event-

Condition-Action (ECA) paradigm. This paradigm allows actions to be triggered based

on specific events that satisfy predefined conditions. While some platforms, like Things-
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Figure 3.4: Syntax definition of the SoPIoT script language

Board [67] and SmartThings [17], provide support for rich programming languages like

Groovy, these options can still be challenging for users without traditional programming

knowledge.

To address this issue, SoPIoT introduces a high-level scripting language designed

specifically for users without programming backgrounds to easily develop composite ser-

vices. The syntax of this scripting language is illustrated in Figure 3.4. In this language, a

composite service is defined as a list of services, with each service specified by its range

type, tag list, and name. Tags play a crucial role in specifying the intended mapping of

things. Users can attach tags to services and utilize them to express their intentions when

creating applications. The scripting language supports three types of control structures.
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(a) Smart gardener

(b) Corona detector

(c) Environment manager

Figure 3.5: Script samples
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Conditional execution of services is achieved using an if-else construct, while iterative

execution is facilitated by a loop construct. The loop execution can be repeated within a

defined period, with the option to specify termination conditions. Additionally, the wait

until statement allows the blocking of loop execution until a specific condition is met.

Services are executed sequentially, and the middleware waits for the return of results from

the devices. To specify service candidates for mapping in an application, the # construct

is utilized. For more fine-grained control, the scripting language offers the all and any

constructs. The all construct maps to all devices that satisfy the tag specifier for function

services, as opposed to mapping to only one device by default. Conversely, the any con-

struct allows a conditional statement to be true if any of the candidates for a value service

are satisfied, as opposed to requiring all candidates to be satisfied by default.

Figure 3.5 provides some examples of application scripts written in this language,

showcasing the creation of a smart garden and an access control system within a single

script. This scripting language offers a more expressive interface compared to simple

condition-based specifications, enabling users to define complex applications that cater

to their specific needs. The hashtag approach provides flexibility and clarity in issuing

commands, while the simple syntax facilitates the creation of applications. Furthermore,

the easy conversion from block coding or voice commands to this scripting language is

possible, ensuring user-friendly application development in SoPIoT.

3.2.4 How to Define an IoT Application

SoPIoT includes a client that features a script editor, as depicted in Figure 3.3. This

editor empowers users to define IoT applications, specifically composite services, during

runtime. It supports the simple language mentioned earlier, enabling users to express their

requirements at a high level without needing detailed knowledge about the underlying

physical devices.

In SoPIoT, a service-oriented platform, users approach application specification
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from a service-based perspective. The left part of Figure 3.3 shows how users create

applications by selecting services provided by the middleware. These services can be

categorized into two types: function types and value types. Function types in SoPIoT en-

compass a wide range of actions that can be performed by IoT devices. They are designed

to accept parameters and produce return values, enabling users to invoke the internal

functions of the devices. This flexibility allows users to simply exploit the capabilities of

their IoT devices. For example, users can initiate hardware actuation to control physical

components, such as turning on a smart light bulb or adjusting the temperature of a smart

thermostat. Additionally, they can make cloud API calls to access various services and

functionalities offered by cloud platforms, such as retrieving weather data or performing

language translation. Moreover, SoPIoT supports AI inference functions, allowing users

to harness the power of machine learning algorithms deployed on IoT devices for tasks

like object recognition or predictive maintenance. By utilizing these function types, users

can create sophisticated and intelligent IoT applications that enhance the automation and

interactivity of their IoT systems.

On the other hand, value types in SoPIoT represent data collected periodically from

IoT devices, providing crucial information for evaluating conditional statements within

IoT applications. These values are typically sensor readings or timestamps that reflect the

state or behavior of the devices. For instance, a temperature sensor may provide tempera-

ture readings, enabling users to create conditional statements based on specific tempera-

ture thresholds. This could be used to trigger actions such as turning on an air conditioner

if the temperature exceeds a certain level. Similarly, a motion sensor may provide binary

values indicating the presence or absence of motion, allowing users to create conditional

statements that activate security measures when motion is detected. Timestamps, on the

other hand, provide temporal information and enable users to track the occurrence of

events over time. For example, users can create conditional statements that execute spe-

cific actions at specific times, such as turning on outdoor lights at dusk. By leveraging
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these value types, users can incorporate real-time data from IoT devices into their appli-

cations and make informed decisions based on the current state of their environment.

To ensure seamless integration and prevent conflicts caused by duplicated service

names across devices, SoPIoT employs the powerful specifier tag mechanism. By as-

signing tags to services of any type, users can easily construct their applications by sim-

ply referencing the associated tags from the service list. This approach eliminates the

complexity of managing unique service names across multiple devices, streamlining the

application development process. Before finalizing an application, SoPIoT performs a

thorough verification process, meticulously checking the compatibility of the application

with the available services and tags provided by the middleware. Additionally, the syntax

is rigorously validated to guarantee correctness. Once the application successfully passes

the verification stage, the ”Add Application” button becomes active, empowering users to

request the creation of their own applications within the middleware. The middleware’s

advanced scheduler intelligently evaluates the schedulability of the application, seeing

its comprehensive knowledge of device capabilities and availability. As a result, users

are promptly informed of the scheduling outcome, receiving a success notification if a

suitable device capable of executing the application is found, or a failure message if the

requested application is not feasible. With SoPIoT’s ingenious specifier tag system, users

can make their IoT applications without the burden of managing complex service name

conflicts, enabling a seamless and efficient development experience.

3.3 Comparison of Mesh and Tree Structures

There are two structures that edge-based IoT systems can adopt as they incremen-

tally expand their systems with edge-to-edge connectivity: mesh-based and tree-based.

In a distributed system, connecting multiple edges refers to establishing communication

paths or links between nodes to realize data transmission and message exchange. In a

mesh structure, each node is directly connected to every other node in the network, form-
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Table 3.1: Comparison of mesh and tree structures in distributed systems

Aspect Mesh-based Tree-based

Fault Tolerance
High fault tolerance

with multiple comm. paths
Vulnerable

to single-node failures.
Total

Comm. Volume
Higher overhead

due to many direct links
Lower overhead

Latency
Between Nodes

Lower
Direct communication

Higher
Long communication paths

Structure
Management

Difficult to configure
roles and relationships

Easier to configure
with well-defined roles

Connection
Maintenance

Higher overhead
as the network grows

Lower overhead
due to less connections

ing a fully connected topology. This means that multiple edges exist between each pair of

nodes. For example, if there are N nodes in the mesh network, each node will have N-1

edges connected to it. In a tree structure, nodes are connected in a hierarchical manner,

with a single root node at the top and child nodes branching out from the root. Each node

has only one parent except for the root, and multiple child nodes can be connected to a

parent node.

Table 3.1 shows the comparison of mesh and tree structures in distributed systems.

First and foremost, the mesh structure excels in fault tolerance due to its interconnected

nature. In a mesh network, all edges are connected to each other, forming a fully con-

nected topology. This interconnectivity ensures that even if one node fails or a link breaks,

there are alternative paths available for data transmission. Data can be rerouted through

different edges, bypassing the failed node or link. This fault-tolerant characteristic of the

mesh structure enhances the resilience and robustness of the system, allowing it to con-

tinue functioning even in the presence of failures. The tree structure, in contrast to the

mesh structure, is more vulnerable to a single point of failure. In a tree-based network,

nodes are connected hierarchically, with a single root node at the top and child nodes

branching out from it. If the top node (root) or a critical link in the tree fails, it can have

a cascading effect on all nodes in the network. The failure at the top affects the entire
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hierarchy, requiring repair or restoration to ensure the normal operation of the network.

The large number of connections in a mesh structure leads to increased communi-

cation overhead. When a node sends a packet or message, it needs to transmit copies of

that packet to all connected nodes. This redundancy is necessary to ensure that the packet

reaches all intended destinations. Consequently, as the number of connections increases,

the overall communication overhead grows significantly. The repeated transmission of

packets to connected nodes during the communication process escalates resource utiliza-

tion and can strain the system’s capacity. With a high number of connections in a mesh

structure, the overhead of maintaining and managing these links becomes a significant

concern. Each connection requires monitoring, routing, and ensuring proper connectiv-

ity. As the number of nodes increases, the maintenance overhead becomes even more

pronounced. The task of managing a large number of connections and associated over-

head can pose challenges in terms of system resources, scalability, and complexity. The

mesh structure presents a management burden in terms of setting up roles and relation-

ships for each connection. With numerous connections, configuring and maintaining dis-

tinct roles and relationships for each one becomes complex. Defining the responsibilities

of each node, coordinating communication flows, and ensuring efficient data exchange

requires additional effort and resources. The management burden intensifies as the num-

ber of nodes and connections grows, potentially hindering the scalability and operational

efficiency of the system.

A remarkable advantage of the tree structure is that it provides well-defined roles

and communication paths. Nodes are arranged hierarchically, with a single root node at

the top and child nodes branching out from it. This hierarchical arrangement offers a clear

structure with distinct roles assigned to each node. The root node typically plays a coor-

dinating or controlling role, while child nodes have specific responsibilities within their

subtree. This structural organization simplifies management and facilitates efficient com-

munication and coordination within the system. Although the tree structure may involve
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higher latency compared to direct communication due to the requirement of several hops,

it offers a significant advantage in terms of the overall amount of communication. Since

each node has only one parent (except the root), communication flows along predefined

paths, resulting in a reduced volume of communication compared to a fully connected

mesh structure. This reduction in communication amount translates to lower communi-

cation overhead and more efficient resource utilization. The tree structure requires less

management and maintenance overhead compared to a mesh structure. With well-defined

roles and communication paths, the complexity of configuring and maintaining connec-

tions is significantly reduced. The limited number of connections and clear hierarchical

relationships make it easier to manage and maintain the system. This advantage becomes

particularly valuable for constrained edge devices, which often have limited resources

and processing capabilities.

Shortly, the tree structure offers structurally well-defined roles, lower overall com-

munication volume, and reduced management and maintenance overhead. These advan-

tages make the tree structure a suitable choice, particularly for edge devices with limited

resources and the need for efficient communication and management.

3.4 Scheduling in Service-oriented IoT

The biggest difference between service-oriented IoT and device-oriented IoT is that

middleware provides operating system-like scheduling. Applications can be seen as task

graphs with a period, and the task graphs are mapped to registered things based on the

device information that contains supporting tasks as well as the execution time and en-

ergy consumption. This is an increasingly important area of research today, as systems

become increasingly complex and AI features with long execution times are becoming

more widely used in current IoT platforms. Scheduling is broadly divided into service

mapping, which is the delivery of service requests to devices, and execution scheduling,

which is the timing and ordering of those mapped requests.
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Figure 3.6: An example showing the different mapping choices

Fig. 3.6 shows the example of mapping service requests to IoT devices in an edge.

In the example, the mapping choice for which thing to perform each task can exist in

a variety of ways. The two tables show two possible mappings. Depending on how the

mapping is done, it shows different device occupancy and energy consumption. Further-

more, this result also affects the next application that comes in. Let’s assume a new task

graph consisting of task X of period 10 Seconds comes in in this situation. In the case of

choice 1, no matter what thing is mapped, utilization exceeds 1, so mapping is not pos-

sible. However, if task W mapped to thing 1 was mapped to thing 3, a new task X could

be mapped to thing 1 or thing 3. In this case, since thing 3 is more energy efficient than
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thing 1 to perform X, the optimal result is when thing 3 is selected. In this way, a good

mapping algorithm can add more applications and save energy. Even in such a simple

example, it is not easy to find a mapping that optimizes the acceptance ratio and energy

consumption while satisfying the given timing constraints.

Fig. 3.7 shows the example of scheduling IoT applications in an edge. Given two

applications represented by a DAG of service nodes, service requests must be made in an

order based on the dependencies of each node, and the execution time required for each

device to perform the service is taken into account to populate the timeline. The order of

service requests from the two applications may need to be adjusted when they conflict

due to real-time variations in overhead or application-specific priorities. This real-time

coordination of service execution requests mapped to each device at the right time is a

critical part of scheduling.

This problem is challenging because it must reflect the characteristics of IoT sys-

tems. First, IoT systems must consider real-time requirements. Within each application,

there may be dependencies between service requests, and as these applications run con-

currently, their order may change continuously. In a situation like this, where there are

multiple applications running that are organized as service nodes, the middleware needs

to schedule each service request accordingly by allocating time to fulfill multiple require-

ments and when to do so. The more efficient this placement is, the better the performance

of the entire system.

Second, there are devices with very different capabilities and features. They may

take different amounts of time to provide the same functionality or consume different

amounts of energy. Therefore, the scheduler can get good mapping results when it con-

siders the characteristics of each device. This makes service mapping a very important

technique in service-oriented IoT, as mapping that takes into account the characteris-

tics and current state of the devices can provide real benefits, such as minimizing power

or load balancing. Finally, unexpected events happen. IoT schedulers don’t know when
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Figure 3.7: A scheduling example of two IoT applications

users will add or delete applications, and IoT devices can frequently fail due to insuffi-

cient specifications, battery life, or unstable environments. In a service-oriented system,

the mapping function enables flexible response in this dynamic IoT environment. For

example, if one camera fails unexpectedly, the middleware can switch the mapping to

another device on its own in real time.

Since these scheduling problems become even more complex as we scale into the

hierarchy, this is one of the main technical challenges in this work. The candidate map-

pings of services specified in the application now extend across the multiple edges in the

hierarchical system. The scheduling algorithm needs to take into account who will make

these decisions. It can be centralized, where the top node controls all service information

and issues requests in chronological order, or it can be distributed, where the schedul-

ing process is distributed to each node. As an example, how the information needed to

make these decisions will be shared and maintained should be determined. When a com-

posite service includes the services from many middlewares, the real-time state of the

related devices in the edges is necessary for the scheduler to decide whether a mapping

is possible or not.

The scheduler must handle unexpected events that occur within or in communica-
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tion with other edges. This means that the information shared between edges can become

invalid at any time, requiring additional work to validate it. Issues such as how to deter-

mine the validity of this information are also issues that need to be addressed in extended

scheduling. We devise a distributed scheduling algorithm, which is described in Section

4.4.1, as a solution to these technical challenges.
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Chapter 4

Proposed Hierarchical IoT Platform

4.1 Overview

In this chapter, we introduce a hierarchical architecture that addresses the design

requirements and technical challenges associated with the requirements of a new edge-

based IoT system. As illustrated in Fig. 1.1, the architecture incorporates an edge mid-

dleware at the bottom level, serving as a centralized middleware. The edge middleware

is based on SoPIoT [14] described in Section 3.2. The primary function of this edge

middleware is to facilitate the discovery and registration of IoT devices, while also pro-

viding an interface for the creation of user applications within the local area. It takes the

responsibility of managing device and application states and establishes an IoT execu-

tion environment through its internal scheduler, constructing an independent IoT system.

Notably, in order to safeguard the system against compromised or abnormal devices,

device-to-device communication is strictly prohibited, as assumed in SoPIoT. Given the

similarity of the proposed platform to conventional edge-based platforms, we omit spe-

cific details concerning the bottom-level middleware in this chapter. Instead, our focus

lies predominantly on the hierarchical structure that enables the organization of the scal-

able system.

The architecture enables connectivity between multiple edges, enabling a hierarchi-

cal middleware structure. Child nodes establish connections with parent nodes, forming a
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tree structure. To maintain connectivity, the middlewares periodically exchange live sig-

nals, with parents assuming greater authority in mediating communication among child

nodes. The proposal of such a hierarchical middleware structure involves addressing sev-

eral design requirements and related technical challenges, which can be considered tech-

nical contributions of this research. By tackling these problems, we aim to enhance the

safety, scalability, and efficiency of edge-based IoT systems, paving the way for their

effective operation in real-world scenarios.

4.2 Design Requirements

We first describe the design requirements that arose during the design phase since

this thesis is about the study of a new architecture. Below are the design considerations

of the proposed architecture in the construction of the tree structure of edge devices.

• How to assign the edges to the levels of the tree structure?

• How to request services that the other middleware can serve?

• How to maintain the privacy of the edge-based platform?

• How to map and schedule the service requests to devices in each middleware?

• How to determine if the newly added application can be served in the current IoT

system?

Within this section, we describe our proposed structure addressing each design re-

quirement through an explanation of our approach and the technical challenges we en-

countered one by one.

4.2.1 How to assign the edges to the levels of the tree structure?

Designing a tree structure with multiple vertically connected edge middlewares re-

quires attention to the challenge of hierarchical connectivity. This involves considering
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various factors, such as establishing and maintaining connections, as well as determining

the permissions and roles of parent and child nodes.

In our proposed structure, each middleware operates as an independent node within

the tree. This design allows us to set up the connection by a straightforward parent-child

relationship, adopting the inherent geographic location of the edges. By organizing the

tree structure based on spatial proximity, we enhance the efficiency and effectiveness of

communication within the system, exploiting the benefits of the tree topology described

in Section 3.3.

Whether the connection between a child node and its parent node is established

over the local network or the Internet, it remains resilient until explicitly terminated or

in the event of unresponsiveness. The parent node assumes a pivotal role as a privileged

mediator, endowed with greater authority and responsibilities, facilitating seamless com-

munication and coordination among the child nodes. This hierarchical approach not only

ensures the swift exchange of data but also authorizes the parent nodes to distribute ser-

vice requests and allocate resources, leading to a highly responsive and agile system.

Implementing the hierarchical middleware connection in our proposed platform

poses no significant technical challenges. The seamless integration of parent-child re-

lationships and the allocation of roles and permissions is trivial to implement.

4.2.2 How to request services that the other middleware can
serve?

The question of resource sharing arises when there is a need to access services from

devices residing in other edges within the middleware hierarchy. To address this, our

proposed solution introduces the concept of a super service, strategically positioned at

the common ancestor node in the tree structure. The super service acts as an arbiter,

managing resource sharing by providing access to services residing in child middlewares.

Super services are responsible for enabling resource sharing within the hierarchy. They
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are defined by the parent middleware and invoked by the child middlewares. A detailed

description of the implementation and functionality of super services is in section 4.4.1.

The introduction of new resource-sharing mechanisms brings forth a set of technical

challenges. One such challenge is encountered when accessing resources from another

middleware. The scheduler must consider the state of devices registered with that mid-

dleware to ensure non-conflicting access. Given that services can be dynamically added

or removed from each node, and their execution state can vary dynamically (e.g., run-

ning, waiting), it becomes essential to assess the availability of services before making a

request. This requires the scheduler to effectively track the current state of services and

ensure that only available and appropriate resources are accessed.

Conversely, the structure must also be capable of processing resource access re-

quests originating from other middlewares. These requests can be sporadic and unpre-

dictable, adding complexity to the scheduler of the original system. The scheduler needs

to accommodate these external requests and handle them to ensure effective resource

sharing. This entails developing mechanisms for handling incoming requests, validating

their compatibility with the local middleware, and service mapping to devices accord-

ingly. Moreover, the scheduler needs to dynamically adapt to changing resource avail-

ability and prioritize conflicting requests, ensuring fair and efficient shared resource uti-

lization.

Overcoming these technical challenges requires the design and implementation of

sophisticated scheduling algorithms, resource management mechanisms, and communi-

cation protocols. The scheduler needs to integrate intelligent decision-making capabili-

ties to assess resource availability, resolve conflicts, and optimize service mapping. These

challenges are resolved by the proposed scheduler of this platform and the detailed ex-

planation is in the Section 4.4.
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4.2.3 How to maintain the privacy of the edge-based platform?

In the context of the proposed architecture, privacy concerns arise when higher-

level middlewares have access to user data at lower-level edges. While edge-based IoT

emphasizes the preservation of private information, unrestricted access by other edge

middlewares to private devices can potentially violate the privacy of the edge owners.

Therefore, it becomes imperative to devise a strategy to resolve this privacy issue clearly.

Our solution to this problem revolves around granting users the ability to determine

the visibility of each service. Drawing inspiration from the principles of object-oriented

programming, we empower users to exercise control over the access privileges of their

services. By designating services as either public or private, users can selectively hide

certain services from the hierarchical structure. In this manner, the upper-level middle-

ware can only access the public services of lower-level middlewares, while private ser-

vices remain concealed. A comprehensive explanation of this functionality can be found

in the detailed description of the super service concept.

Addressing privacy concerns necessitates the establishment of well-defined rules

and guidelines. However, from a technical standpoint, implementing this requirement

poses no significant challenges. We set an additional property to the service object and

make the visibility of each service according to it. With this simple extension, The sys-

tem can readily accommodate user-defined access privileges, ensuring that privacy is

respected and user data remains secure within the edge-based IoT environment.

4.2.4 How to map and schedule the service requests to devices
in each middleware?

In service-oriented IoT systems, the middleware plays a pivotal role in the mapping

and scheduling of services provided by registered devices. This requirement is also true

for the extended middleware structure. To maintain the benefits of a service-oriented sys-

tem, a scheduling algorithm for the proposed platform is needed to ensure that any kind

43



of service requests, including super service requests, are available to be scheduled. With

the introduction of the super service concept, the complexity of this scheduling task is

further amplified. Mapping service requests to a device extends beyond the confines of

local space, encompassing devices across different edges. We devised a distributed algo-

rithm that schedules not only local services but super services to address this requirement,

of which detail is explained in the following sections.

The presence of super services presents new and complex technical challenges for

edge middleware schedulers. First, if a failure occurs in the middle of the scheduling

process, the progress up to that point should be rolled back. Since a super service can be

composed of services from different edges, the schedulability of the services is checked

individually. The super service is schedulable only when all its component services are

schedulable. Therefore, it is necessary to schedule the super service in two stages, using

temporal copies and verifying each scheduling result when the final result is available.

Next, even after scheduling has finished, unexpected device failures at other edges

can invalidate previous mapping results. To maintain the integrity of the scheduling pro-

cess, it is important to have the ability to immediately notify the scheduler at the other

edge when a device failure occurs and for the scheduler to react quickly once informed.

Another challenge arises when responses arrive differently than expected during the

scheduling process. The scheduler must determine whether the lack of response indicates

a malfunctioning middleware or a delay in processing. This decision is crucial, as it im-

pacts system performance, especially in scenarios with poor communication conditions.

Developing mechanisms to accurately assess response reliability and appropriately adapt

the scheduling process is essential.

These technical challenges are resolved by the development of a robust scheduling

algorithm that includes two-phased scheduling and real-time fault-tolerant handling tech-

niques in this platform. The scheduler exploits a temporal copy in the process, adapts to

failures, assesses response reliability, and efficiently manages the scheduling process in
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a dynamic, hierarchical, service-oriented IoT environment.

4.2.5 How to determine if the newly added application can be
served in the current IoT system?

To realize the super service in the proposed platform, the scheduler of each mid-

dleware can determine the schedulability when the super service is specified in an ap-

plication. The schedulability of the service should be considered based on the service

provider’s state information, which is registered in the local middleware. The decision

could be made in the local node or the central (root node). In this platform, we adopt

a distributed approach the schedulability of the local service is only determined by the

owner middleware.

The mapping process in the context of super service necessitates the establishment

of a governing entity responsible for mapping service requests to devices. The middle-

ware assumes the role of a decision-maker, determining the optimal mapping based on

various factors, such as device capabilities, availability, and performance metrics. Fur-

thermore, robust mechanisms for storing and managing the information relevant to these

mapping decisions must be in place.

To govern the mapping process effectively, the middleware requires access to com-

prehensive and up-to-date information about the devices and their associated services.

This information can include device specifications, service capabilities, location data,

and performance metrics. Efficient storage and management of this information are vital

for enabling dynamic mapping decisions.

Accessing information of the other schedulers poses a technical challenge in a dis-

tributed service-oriented IoT environment. It is impractical for every middleware to main-

tain the real-time state of all devices in other middlewares, as it would result in informa-

tion overload and resource burden. Therefore, it is important to set an efficient and scal-

able approach to gather information from edges while distributing the throughput across
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the available edge computing resources.

In our proposed structure, we tackle this challenge through an on-demand approach.

The super service plays a key role in this process by selectively requesting presence

information from each middleware as needed. This ensures that the scheduler obtains

up-to-date device states without overloading the system. Adopting an on-demand infor-

mation retrieval mechanism optimizes resource utilization and minimizes the overhead of

maintaining real-time information. By the on-demand approach and establishing appro-

priate access rules, our proposed structure achieves efficient resource sharing, enhances

system performance, and ensures the privacy preservation of the service-oriented IoT

environment. Further details regarding this approach can be found in Section 4.4.1.

Additionally, as the system extends to a tree structure, the scheduling process can be

triggered by various events at different points in time. The diversity of events requiring

scheduling decisions introduces further complexity.

To effectively handle these dynamic events and meet real-time constraints, such as

latency and execution period, we compose the scheduling algorithm with the various

event handling logics, called scheduling policy, and let developers be able to tune more

precisely. The algorithm is explained in Section 4.5.

4.3 Super Service

In the proposed IoT platform, the second and third questions are addressed through

the concept of super services. A super service represents a specialized composite service

that can access the public services offered by child middlewares within the system. An

illustrative example is the ’find all’ service depicted in Fig. 1.1, implemented as a Python

script featuring a function called request(). This function allows access to the find service

offered by all child middlewares.

To enable the execution of super services, a virtual entity called a ”super thing”

is created for each super service and registered with the middleware responsible for its
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Figure 4.1: Service list shared between middlewares in the middleware tree.

management. By default, all services are designated as private, limiting their accessibility

to the local space. However, users have the option to declare certain services as public,

thereby making them shareable with upper-level middlewares. The list of public services

is transmitted to the parent middleware, which gains the ability to access and utilize these

services within the context of a super service. The decision to declare a super service

as public or private determines its visibility to other middlewares. Figure 4.1 provides

a visualization of how the service list is shared within the hierarchy. This shared list

contains minimal information, such as service names, while each middleware retains the

responsibility of managing detailed properties and runtime information for the devices

registered within it.

In Fig. 1.1, the find service at the lowest level is declared as public, ensuring its

visibility to all upper-level middlewares within the hierarchy. Similarly, the find all ser-

vice is declared as public, enabling User App 2 to access the service at the bottom level.
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Figure 4.2: Overview diagram of the scheduler

Notably, middlewares at the same level are unable to access public services offered by

other middlewares. Resource and information sharing within the hierarchy is exclusively

achieved through super services.

It is important to note that when specifying an IoT application, public super services

are indistinguishable from local services, as demonstrated in line 2 of User App 2 in

Fig. 1.1. However, it is advisable to exercise caution when employing super services, as

they entail significant communication overhead and resource utilization across different

levels of the hierarchy. The use of super services should be minimized unless absolutely

necessary, as this approach mitigates the risk of performance bottlenecks within upper-

level middlewares and preserves the privacy of the local space.

By leveraging the concept of super services, the proposed IoT platform offers a flex-

ible and controlled mechanism for accessing and utilizing services across the hierarchical

structure, ensuring efficient resource management, privacy preservation, and optimized

performance.
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4.4 Scheduler

To answer the fourth and fifth questions above, a scheduler is developed whose

overall structure is shown in Fig. 4.2. It maintains two tables that contain the run-time

context information required for scheduling as follows:

• Service state table (Sv. table in Fig. 4.2): This table contains the run-time infor-

mation about the current state and the execution time of a service on each local

device that can execute the service as shown in Table 4.1. Available super ser-

vices from the upper layer that an application can request are also registered in

this table. While the execution time is set during the registration process of the

device, the current state of the service varies dynamically at run-time and will be

updated by the scheduler. The state transition diagram of a service is displayed in

Fig. 4.3. Note that the table can be extended to include more information, such as

energy consumption or battery lifetime, by adding more columns. That informa-

tion, as well as execution time, can be used to determine the objective function of

the scheduling problem.

• Application state table (App. table in Fig. 4.2): As shown in Table 4.2, this table

contains information about the current state, name, and period of each IoT appli-

cation. The period information is used to check if the target device can accept the

additional service based on the current utilization. The services requested in an

application and their dependency are stored separately as a directed acyclic graph

(DAG), and the table contains a pointer to the DAG information. The run-time state

of an application is managed by the scheduler at run time. The state transition di-

agram is shown in Fig. 4.4. If the mapping fails, the service is not available, or

the requested real-time constraints cannot be met, the application is rejected. Once

accepted, it goes into the initialized state and is moved to the running state if it is

time to run. If an error or time-out event occurs during the execution of the applica-
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Figure 4.3: State transition diagram of a service

Figure 4.4: State transition diagram of an application

tion, it is stuck. The scheduler tries to remap the stuck application until remapping

succeeds.

In addition, we maintain a mapping table (Mp. table in Fig. 4.2) that stores the

mapping result of service requests to devices. Table 4.3 shows the internal structure of

the mapping table. During the scheduling process, the content of this table is updated,

and when the service is executed, requests are sent to the mapped devices based on this

table. Since the same service can be requested multiple times in an application, the second

attribute of the key element is used to distinguish the same services.

Table 4.1: Service state table: an example

Key State Energy Execution Time ...
th1.sv1 READY 500mJ 100ms ...
th1.sv2 BUSY 150mJ 50ms ...
th2.sv1 ERROR 1000mJ 200ms ...

...
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Like the conventional scheduler of a computer system, the scheduler manages mul-

tiple queues for various types of events. There are two input queues to the scheduler. One

is the schedule queue that stores the mapping requests from the user or the super thing.

When the user adds an application or requests remapping, we put the mapping request

into the queue. The mapping request from a super service is also put into this queue.

Another input queue is the event queue that manages the system events caused by de-

vice addition or removal, device failure, service execution errors, etc. The corresponding

handling logic will be triggered for each event by the scheduler.

The scheduler identifies the service requests that need to be mapped now from the

schedule queue and performs mapping. When we map a service request, we check the

schedulability of the request. If mapping is successful, they are put into the run queue.

For the fetched service request from the run queue, the scheduler first checks the status

of the service by looking at the service state table. If the mapped device of the service

is ready, it sends the service request to the device and changes the state from ”ready” to

”busy”. If the mapped device is busy, the service is moved from the run queue to the wait

queue. After the device returns the completion of the requested service, the service is

put into the result queue. After completion of the service, the scheduler fetches the next

service to run from the same application and puts it into the run queue. Also, it changes

the state of the corresponding service in the service state table and moves the waiting

service on the device from the wait queue to the run queue. In case an error is detected

during the service execution on the device, a fault event is put into the event queue.

Table 4.2: Application state table: an example

Key State Period DAG
app.1 RUNNING 1s ptr
app.2 STUCKED 10s ptr
app.3 CREATED 5s ptr

. . .
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Table 4.3: Mapping table: an example

Key Type State Mapped Things ...
app1.idx1.sv1 Local READY th1, th2 ...

reqkey.sv2 Super DONE th3 ...
app2.idx1.sv1 Local ERROR th4, th5 ...

...

4.4.1 Scheduling of Super Services

The execution of a super service in the proposed IoT platform requires collaboration

between multiple middlewares, involving tasks such as mapping and execution. If a super

service requests two services from descendant middlewares, the upper-level middleware

responsible for executing the super service must verify if each service can be executed

by the respective descendant middleware.

Scheduling a super service is contingent on all the required services being exe-

cutable within the descendant middlewares. In cases where any of the services cannot

be accommodated by the descendant middlewares, scheduling the super service becomes

unfeasible. The absence of a centralized server to monitor the runtime status of all mid-

dlewares poses a significant challenge in scheduling super services. To address this chal-

lenge, we propose a distributed scheduling technique. Each middleware takes respon-

sibility for the devices registered within its own domain and communicates with other

middlewares as needed to support super services. By adopting this distributed scheduling

technique, the proposed IoT platform enables efficient and decentralized scheduling of

super services. It ensures that scheduling decisions are made in a distributed manner, ex-

ploiting local knowledge and promoting effective collaboration among middlewares. This

approach enhances scalability, flexibility, and system robustness, enabling the execution

of complex composite services that span multiple middlewares.
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4.4.1.1 Mapping of super services

The first thing we need to do to schedule a super service is to map the internal

services that make up the super service to the devices that are attached to the various

middleware. At this point, we need to deal with the fact that there may be failures dur-

ing the mapping process, as there is no one central server overseeing the entire process.

For example, if one of the services in the super service mapping process does not have

a mappable device, the super service’s mapping request will be rejected, and the previ-

ously successful mapping will no longer be valid. Therefore, instead of writing directly

to Table 4.3 during the mapping process, a temporary copy is kept and applied when the

final mapping results are available.

In the proposed technique, the mapping of a super service consists of two phases as

depicted in Algorithm 1: checking and confirming. Mapping of a super service is initi-

ated by request from a middleware to the middleware where the super service is registered

(line 5). It is triggered when a middleware adds an application calling the super service.

In the checking phase, the middleware that receives the request asks child1 middlewares

if they can schedule each service that is contained in the super service (lines 7-10). The

child middleware checks the scheduling possibility by referring to the service state infor-

mation and the current mapping information of their registered devices. In this step, the

scheduler performs an algorithm that considers the current utilization of the devices and

the execution period of the applications, and so on. If there is residual utilization on at

least one device that can accept the requested service, it is determined to be schedulable.

If the scheduler judges that it can schedule the service, it replies positively. If no child

middleware exists to schedule the service, the super service cannot be scheduled (line 9).

Otherwise, the home middleware makes a separate mapping table for the super service to

record which middlewares can schedule the constituent services.
1We call a descendant node in the tree structure as a child node for brevity even though a descendant

node is not a direct child.
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Only after the checking phase is completed successfully, does the confirming phase

start (lines 12-14). For each service in the super service, the home middleware of the

super service maps the service to one or multiple child middlewares that answered posi-

tively in the checking phase according to the range specifier. Another customizable pol-

icy is which child middleware the super ting chooses when the range specifier is single

and there are multiple possible mapping candidates. There may be other options, such

as selecting them in order of proximity to home middleware, or selecting them in or-

der of historical responsiveness, but in this work, we leave this optimization as a future

work and instead select them randomly. The selected child middleware puts the service

mapping request to the schedule queue to determine which device will serve the service

request after this mapping process as depicted in Fig. 4.2. The child middleware notifies

the mapping completion to the super thing after the local mapping decision. After the

mapping of all services in the super service is completed, the home middleware sends the

mapping result to the middleware that runs the application (line 16).

Mapping a super service as above is not a trivial task. For the mapping of a super ser-

vice, a parent middleware should communicate with each child middleware twice, once

for checking the schedulability and once for actual mapping. As the number of services

involved in the service increases and the number of levels between the home middleware

of the super service and the bottom middleware increases, the communication overhead

increases proportionally. Another overhead to pay for super service mapping is the com-

putation overhead of the local scheduler for checking the scheduling possibility before

mapping.

4.4.1.2 Execution of super services

The execution of a super service is a straightforward process, as outlined in Algo-

rithm 2. When an application requests the execution of a super service, the home mid-

dleware initiates service execution by sending execution requests to the mapped middle-
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Algorithm 1 Super Service Mapping Algorithm
Input : SS, the super service to be mapped
1: S: a set of services that should be mapped to execute SS
2: A: an application (composite service) that contains SS as a constituent service
3: C: a middleware that runs A, which is located to a lower layer
4: P: home middleware where SS is registered, which is located on an upper layer
5: C requests SS mapping to P in mapping process of A
6: P starts SS mapping
7: for each s ∈ S do ▷ Checking Phase
8: P asks child middlewares if they can map s
9: Each child checks the mapping possibility and returns

10: If no child can map s, return ”Fail”
11: end for
12: for each s ∈ S do ▷ Confirming Phase
13: P maps s to the child middlewares that answered yes
14: The mapped childs confirm device mapping for the request and respond to P
15: end for
16: P sends the mapping result to C

wares, referencing the mapping table associated with the super service. From the perspec-

tive of the local middleware, the service request from a super service is indistinguishable

from the service request originating from IoT applications.

Given that the devices responsible for executing the service requests are determined

during the mapping process, the scheduler’s role in the execution phase is to efficiently

deliver the service requests to the corresponding devices based on the mapping table.

This routing workload is relatively trivial, resulting in minimal computing overhead even

for edge devices. The execution process follows the same protocol as described earlier,

where the mapped middleware verifies the runtime status of the corresponding device to

ensure its availability. Upon confirmation, the service request is promptly executed, or if

necessary, the mapped middleware patiently awaits the device’s availability before pro-

ceeding. The outcome of the service execution is relayed back to the mapped middleware

and subsequently forwarded to the home middleware of the super service.

Upon receiving the outcomes of all service requests within the super service, the

home middleware consolidates the results and transmits the final outcome to the middle-
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Algorithm 2 Super Service Execution Algorithm
Input : SS, the super service to be mapped
1: S: a set of services that should be mapped to execute SS
2: A: an application (composite service) that contains SS as a constituent service
3: C: a middleware that runs A, which is located to a lower layer
4: P: home middleware where SS is registered, which is located to an upper layer
5: CMs: child middlewares where s is mapped
6: C requests SS execution to P
7: P starts SS execution
8: for each s ∈ S do
9: P asks CMs to execute the mapped services

10: CMs check the availability of the services.
11: CMs execute the services or wait for the devices based on the availability (async)
12: CMs send the execution results to SS (async)
13: end for
14: P sends the final result to C

ware that initially requested the super service. In addition, in scenarios where a service

needs to be executed across multiple middlewares, parallel execution can be employed

since there are no execution dependencies among them.

By following this execution process, the proposed platform ensures efficient and

reliable execution of super services and makes the best use of the mapped middlewares’

capabilities to distribute and execute service requests seamlessly.

4.5 Scheduling Policies

How to schedule the services is the key technical challenge of the scheduler in each

middleware. Since IoT applications usually have real-time constraints such as latency

or throughput, the scheduling problem is similar to the real-time scheduling problem of

dependent tasks on a heterogeneous multi-processor system since an IoT application can

be modeled as a DAG as explained in [14]. This problem is recognized as very difficult

to solve even when the application characteristics are known a priori. However, in an IoT

system, an IoT application without any prior information can be added dynamically, and

we need to determine which device to perform each service included in the application.
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Hence it is inevitable to schedule the added application incrementally without changing

the mapping results of existing applications [42].

When we make a scheduling decision, we need to evaluate the performance ac-

cording to the objective functions that are given by the user. If reducing the energy con-

sumption is an objective function, it is good to prioritize the devices with low energy

consumption first and map each service to an available device that has the lowest energy

consumption while satisfying the real-time constraint.

Another feasible objective function is to maximize the quality of service (QoS) by

reducing the response time of some selected IoT applications. Then we need to use a

different scheduling technique that aims to optimize the QoS metric. Since the schedul-

ing result by incremental scheduling is far from the optimal scheduling solution, it is

desirable to perform global re-mapping in a background process [42]. How to perform a

global remapping is beyond the scope of this work.

There is another key difference between the IoT scheduling problem and the conven-

tional task scheduling problem. In an IoT system, the status of the device that is supposed

to execute a service may vary dynamically. The device may not be available temporarily

or permanently due to various reasons, such as battery discharge, breakdown, occupation

by other services, and so on after the mapping decision is made. Quickly recovering from

these situations is also part of the IoT scheduling problem.

In addition, the scheduler should properly handle various events that may come from

the user or the system at run-time. Since finding an optimal mapping is not feasible at

run-time, we propose to handle each event with a proper scheduling policy. Table 4.4

lists 15 events that are considered in the current implementation of the scheduler and the

associated scheduling policies that handle the events. The proposed scheduling policies

are not claimed to be optimal but serve as reference policies in future studies. In the

following, we discuss more details on how to handle the events on four event types:

device status change, execution request, execution result, and timeout.
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4.5.1 Handling Events on Device State Changes

When a device is removed from the system, it renders the local applications or super

service requests mapped to that device invalid. In such situations, it is preferable to ac-

tively seek alternative candidates capable of executing the same service and remap them

accordingly. By doing so, the corresponding application or super service request can be

maintained, ensuring continuity and avoiding the need for outright abandonment.

This remapping process should be incorporated into the system’s event handling

mechanism, which addresses various events such as device failures or unregistration in

both local devices and external middleware. The scheduler needs to promptly respond

to these events and initiate the remapping procedure to mitigate the impact of device

unavailability.

Conversely, when a middleware or device is newly registered within the system,

there are two potential approaches to consider. One option is to retain the existing map-

pings if they remain valid and continue serving their intended purposes effectively. Alter-

natively, remapping can be employed to optimize the objective function by considering

the presence of additional mapping candidates. This approach allows for the considera-

tion of newly registered devices or middleware components to potentially improve overall

system performance.

By carefully managing the remapping process in response to device removals, fail-

ures, unregistrations, and the introduction of new devices or middleware, the scheduler

can maintain operational efficiency, resource utilization, and the uninterrupted execu-

tion of services. Effective remapping strategies play a vital role in adapting to dynamic

changes within the system and optimizing its overall functionality and performance.

4.5.2 Handling Events on Execution Request

When the scheduler processes service requests in the run queue, it engages with

the corresponding mapped devices in a systematic manner. For local service requests,
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the scheduler ensures the device’s availability before initiating the service request. In

scenarios where multiple applications target the same device, aggregating these requests

into a single request can enhance performance optimization. However, if the device is

currently occupied, the service request is temporarily placed in the wait queue, allowing

for subsequent attempts.

In the case of service requests originating from a super service, which can consume

a long time, it is preferable to provide an estimated worst-case waiting time to the up-

per middleware rather than subjecting the request to indefinite waiting in the queue. This

information empowers the middleware to decide whether to enqueue the service request

or explore alternative child middlewares for execution. The estimation of worst-case re-

sponse time considers factors such as the services already in the wait queue and the

service state table. Although this strategy may introduce additional communication over-

head for super services during runtime, the current implementation enqueues the service

request and triggers a time-out event if the response is not received within a predefined

time threshold.

The handling of events on execution requests is an important aspect of the sched-

uler’s role in managing service execution in an IoT system. By considering device avail-

ability, merging requests for performance optimization, and providing estimated waiting

times, the scheduler optimizes resource utilization and ensures the timely processing of

service requests.

4.5.3 Handling Events on Execution Result

The proper processing of service results in the complete queue is an important re-

sponsibility of the scheduler within the IoT system. When the execution of a service is

successful, the scheduler proceeds to transmit the results to the application or super ser-

vice that initiated the service request. In cases where multiple requests have been merged,

the scheduler ensures that the results are delivered to the respective applications in a
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suitable manner. This facilitates efficient communication and enables the applications to

make use of the obtained results effectively.

However, in the event of an error during service execution, the application enters a

stuck state, as depicted in Fig. 4.4, indicating the need for intervention. In such scenarios,

the scheduler plays a critical role in attempting to remap the faulty service to another

available device, thereby enabling continued service provision. The scheduler undertakes

a thorough examination of the error’s underlying cause to facilitate appropriate remedial

actions.

If the error stems from a device malfunction or unavailability, the device may be

removed from the mapping table, prompting the scheduler to remap all applications that

rely on that device in subsequent operations. However, it is worth noting that when deal-

ing with services requested from a super service, remapping actions have the potential

to introduce significant delays in service execution, possibly leading to indefinite delays.

In such cases, it may be more advantageous to promptly report the service failure to the

home middleware, ensuring timely acknowledgment of the issue.

The handling of error cases within scheduling policies can significantly impact the

performance of the IoT system. An effective error-handling approach improves system

robustness, resilience, and reliability. It minimizes the impact of failures, reduces down-

time, and facilitates the efficient utilization of available resources. On the other hand,

inadequate error handling can result in prolonged service disruptions, decreased system

performance, and dissatisfied users or applications. Therefore, devising a well-designed

error-handling strategy within scheduling policies is important to ensure better perfor-

mance and overall system efficiency in the context of an IoT environment.

4.5.4 Handling of Timeout Events

To ensure adherence to real-time constraints, it is necessary to establish a maximum

time duration from the initiation of a service request to its completion. In the event that
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the service exceeds this predefined duration, a timeout event is triggered to indicate the

inability to meet the specified time constraints. However, determining an appropriate

timeout value for each constituent service poses a considerable challenge, particularly

when real-time constraints are imposed on an application or a super service comprising

multiple services.

If excessively lengthy timeout values are assigned to each service, there is a risk

of failing to satisfy the latency constraint of the overall application. Conversely, if the

timeout values are set too short, even minor and temporary delays could lead to the can-

cellation of requests. It is evident that an optimal approach is required to strike a balance

between these competing factors.

One possible approach is to distribute the latency constraint proportionately among

the constituent services, thereby ensuring a fair allocation of time resources. Another

strategy involves initially setting the timeout values conservatively, considering worst-

case scenarios, and subsequently adapting them dynamically as the service continues to

be requested. The specific methodology for establishing these timeout values remains a

topic for future investigation and research.

In the event of a timeout occurrence, the scheduler can undertake certain actions,

such as retrying the execution request or modifying the mapping of the affected service.

These decisions may depend on the specific characteristics of the application, the nature

of the services involved, and the desired trade-offs between responsiveness and reliability.

4.6 Test-bed: Toy-level Smart Campus

A toy-level test-bed has been built on our campus as a proof-of-concept implemen-

tation of the proposed IoT platform. As shown in Fig. 4.5, a 3-level hierarchical mid-

dleware structure is formed with 2 buildings and 4 rooms. A local server for collecting

sensor data is installed at each building and the campus level. A total of 40 IoT devices

are distributed, as depicted by icons in the figure. In particular, the office room has a
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homemade smart watering system for potted plants using Arduino-controlled valves and

pumps. In addition to common IoT applications such as temperature control and auto-

matic power switches, the following customized IoT applications2 are installed in this

test-bed.

• When a fire is detected in any room, the IoT system activates an alarm sound

simultaneously in all rooms, ensuring that occupants are promptly alerted to the

potential danger.

• To prevent the spread of COVID-19, access to the student room is carefully moni-

tored using a thermal imaging camera. This allows for the screening of individuals

entering the room and helps identify anyone with an elevated body temperature,

enabling appropriate measures to be taken to mitigate the risk of infection.

• The IoT system intelligently detects when people gather in the meeting room and

automatically activates the TV screen. This ensures that presentations, discussions,

or other multimedia content can be easily shared and viewed by the attendees with-

out the need for manual intervention.

• As a security measure, if any movement is detected in the premises after 10 p.m.,

the IoT system promptly notifies the manager. This enables them to take appropri-

ate action and ensure the safety and security of the facility during non-operational

hours.

• In the student room, an innovative feature of the IoT system notifies students via

email whenever a professor enters the room. This real-time notification allows stu-

dents to be aware of the professor’s presence and facilitates effective communica-

tion and engagement.

2Note that we do not claim that all applications are useful. They represent various kinds of cooperation
between devices or middlewares.

62



• The IoT system incorporates automated features to maintain the well-being of

plants in the office room. It periodically waters each pot, ensuring they receive ad-

equate hydration. Additionally, if necessary, the system also activates plant lights

to provide optimal lighting conditions for plant growth.

• When the water level in the water tank falls below a certain threshold, the IoT

system generates a signal to notify the manager. This timely alert ensures that the

water tank is refilled promptly, avoiding any disruption to the watering system and

ensuring continuous supply.

• The IoT system actively monitors the air quality in the room and utilizes an air

conditioner to maintain optimal conditions. If necessary, such as in the event of

poor air quality, the system alerts the manager to ventilate the room, promoting a

healthier and more comfortable environment for occupants.

Note that the majority of the applications mentioned above rely on the utilization of

super services. Super services can be classified into two primary types, as illustrated in

Fig. 4.6.

In the first use case, administrators create public services at the upper level and make

them available to end users. End users can then develop applications utilizing these super

services at the lower level. Examples of such super services include notifying the man-

ager in case of an event, such as a fire alarm, or informing the student when a professor

enters the room. Additionally, a secure resource brokerage service can be implemented,

allowing users to access resources from other users through the system’s managers.

The second type of super service pertains to administration services that are not ac-

cessible to end users. It is important to note that the assumed IoT system operates under

a single administrating entity. At the upper-level middleware, a super service can be de-

fined to manage lower-level edge devices, such as signaling alarm signals or periodically

collecting specific information. This enables the creation of a management service that
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Figure 4.5: Smart Campus

administrators can utilize to effectively manage the IoT system. For instance, broadcast-

ing the fire alarm to all rooms or checking the water level of the water tank are examples

of super services falling under this category. By leveraging the concept of super services,

the IoT system can provide enhanced functionality, facilitate user interactions, and enable

efficient system administration and management.

Fig. 4.7 provides a visual representation of the sensor data collected from the smart

watering system over a span of five days in the smart campus test-bed. The graph reveals a

gradual decrease in the moisture level of the pot over time. To maintain the desired mois-

ture level, the system activates pumps and valves whenever the moisture level reaches

a predefined threshold. This automated replenishment process ensures that the plant re-

ceives adequate hydration. The second graph illustrates the water level in the water tank.

64



Figure 4.6: Two use-cases of Super Service

It shows that when the water level decreases significantly due to water activities, a noti-

fication signal is triggered to alert the manager to refill the tank. Interestingly, it can be

observed that on the following day, the manager visited the office and refilled the water

tank.

Furthermore, the sensor data indicates that the office room has low brightness and a

relatively low CO2 level in the morning. This is likely due to fewer people being present

in the office during that time. However, as the day progresses and the light bulbs are

turned on at night, the brightness level gradually increases, reaching approximately 300

lux.

Overall, the collected sensor data serves as a testament to the validity and effective-

ness of the IoT platform implemented in the smart campus test-bed. It shows the hierar-

chical structure’s ability to gather real-time data, facilitate autonomous control, and pro-

vide insights for informed decision-making and optimization. This validation enhances

confidence in the platform’s reliability and functionality, paving the way for broader ap-

plications and advancements in the IoT domain.
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(a) Soil moisture (b) Water level

(c) CO2 level (d) Brightness

Figure 4.7: Sensor data collected in the smart campus test-bed
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Table 4.4: Events to be handled by scheduling policies

Type Event Triggered By Scheduling Policy

Scheduling
Request

OnScheduleApplication User
Map services

in the application

OnCancelApplication
User,

Super Thing
Cancel and

leave as is or update

OnUpdateApplication
User,

Scheduler
Re-schedule

the application

OnGlobalUpdate Scheduler
Re-schedule

all of applications

OnSuperScheduleRequest Super Thing
Schedule

the service request

OnSuperCancelRequest Super Thing
Cancel and

leave as is or update

Device
Status

Change

OnThingRegister Thing Leave as is or update

OnThingUnregister Thing
Re-schedule

invalidated applications

OnMiddlewareRegister
Other

middleware
Leave as is or update

OnMiddlewareUnregister
Other

middleware
Re-schedule

invalidated applications

Execution
Request

OnServiceRequest Scheduler
Ready: execute

Busy: wait

OnSuperServiceRequest Super Thing
Ready: execute

Busy: wait

Execution
Result

OnServiceResult Thing
Success: proceed

Error: update

OnSuperServiceResult Thing
Success: reply
Error: update

OnServiceTimeout Scheduler Retry or update
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(a) Overall view of exhibition room (b) Smart garden

(c) Entrance keeper

(d) Room monitoring system

Figure 4.8: Exhibition Room
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Chapter 5

IoT Simulation Framework

The performance of the scheduler depends on the scheduling policies that determine

how to handle the events listed above. A simulation framework is developed to modify

the scheduling policies and evaluate the performance of the modified scheduler in the

proposed IoT platform. Since the performance of a scheduler also depends on the system

configuration and varying the configuration of a real IoT system is not feasible, an IoT

system simulator is developed.

5.1 IoT System Simulator

The purpose of the IoT system simulator is to evaluate the technique of the proposed

platform, such as super service and scheduling policies that are included in the scheduler.

We need to verify the actual performance of the super service and how effective the

scheduling policies are in handling each event when they are made customizable. To

choose a scheduling algorithm, one must comprehend its effectiveness, which can only

be ascertained via real-world testing. Predicting outcomes can be arduous, especially

when confronting unforeseen circumstances. Hence, we have developed a hardware-in-

the-loop simulator to tackle this problem.

In the proposed simulator, we use real edge devices that run the middleware in the

IoT system simulator, while other IoT devices are modeled as virtual things that are ex-
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Figure 5.1: Overview of Simulation Process

ecuted in the simulation host. The events such as IoT applications addition and thing

registration are also triggered by the simulation host. Note that communication between

middlewares or between a middleware and the simulation host occurs through the air with

the real communication protocols. Even though there are well-known analyses for mod-

eling the communication workload [68, 69], the communication delay is not calculated

by an analytical formula but estimated by direct measurement, which assures the most

accurate result.

Figure 5.1 shows the overall simulation process that is divided into two main stages:

simulation environment generation and actual simulation. In this way, the simulator en-

ables users to build a variety of IoT environments of their choice and observe actual

system performance by calculating statistics for each performance metric.
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Figure 5.2: Simulation environment generation

5.2 IoT Environment Generation

The strength of this IoT simulator is that it allows the users to create IoT environ-

ments with a variety of settings. Users can create any tree topology at will, and fine-tune

the configuration of the things, services, applications, etc. that belong to that environ-

ment. Most importantly, it gives users the option to randomly generate unexpected faults,

so they can see how their IoT middleware responds when something like this happens in

their system.

In the generation stage, the Environment Generator receives the configuration file
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that specifies the system configuration and generates the simulation environment that

contains all the information necessary to run the simulation. Examples of the input con-

figuration file and the generated environment files are shown in Fig. 5.2.

The configuration information is composed of three parts. Firstly, we establish the

service pool by identifying the quantity of service types and the scope of execution time

and energy consumption. We also specify the number of super services, along with the

amount of services within each super service. Moreover, the generator can determine

a range of characteristics for the services to be produced, such as execution time and

energy consumption. This segment determines the services to be employed in the simu-

lation, which are subsequently chosen at random and positioned during the creation of

the Things.

Next, we set the number of things and how many services each thing can serve in

the thing pool configuration. In this part, we also configure the fault simulation, specify-

ing the probability of unexpected error occurrence, failure of registration, and abnormal

termination. Currently, we only support these three faults, but in the future, we will add

more faults that may occur in IoT systems to help create a fault-tolerant scheduling algo-

rithm. For instance, communication reversal when using the MQTT QoS-0 protocol can

be simulated.

Finally, the tree structure of the middleware can be set up in two ways. The first is

to specify the width and height of the tree so that the simulator automatically creates a

structured tree, and the second is to allow the user the flexibility to design different tree

structures through specific tree configuration files. This is where the user sets the size of

the simulation environment since we can set the number of applications and the num-

ber of things for each middleware. These settings are specified as ranges and randomly

generated within them. Based on the given configuration information, the Environment

Generator generates a simulation environment that contains information on the distribu-

tion of devices and applications within the middleware hierarchy as well as thing codes
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and application scripts.

This gives users the flexibility to create the IoT environments they want to test, with

control over complexity, reliability, and scale. Users can create anything from a simple

home environment with a single piece of middleware to an environment with multiple

edges. They can also control the stability of this IoT environment through error rates

to simulate an unstable environment, or they can increase the number of applications

added to the system or control the unregistration rate, the probability that a device will

disconnect unexpectedly, to simulate an environment with a lot of user interaction.

5.3 IoT Event Simulation

After the simulation environment is generated, the simulation stage begins. We first

load the middleware code to the edge devices and thing codes to the virtual things through

a secure shell connection to prepare them for execution, following the middleware tree

structure specified in the configuration file. This is an advantage when testing in various

IoT environments because it significantly reduces the time and effort to access and run

programs on each device for simulation. If the middleware tree is already established and

codes are not changed, this step can be omitted. Next, events are triggered according to

the event timing list, starting with the events to register things and applications. Subse-

quently, dynamic events in the system, such as ”Unregister Thing”, ”Kill Thing”, and

”Stop/Resume application”, are triggered to examine how the IoT system handles them.

Table 5.1 shows all the types of events supported by the simulator. There are events

that start and end the simulation and delay events that wait for a certain amount of time.

Some events are simulated by the simulator, such as all kinds of user request events,

while others are generated by other devices during the simulation, such as events related

to super services. The events that the simulator generates are marked with asterisks. This

is done by connecting to each middleware-managed MQTT broker as a single client to

publish MQTT messages, adding little additional overhead to the IoT environment.

73



Table 5.1: Events to be supported by the simulator

Event Description
SIM START Sim. initiates simulation.

SIM END Sim. stops simulation.
WAIT Sim. waits for specified time.

MW RUN Sim. executes mw on device.
MW KILL Sim. terminates mw on device.

THING RUN Sim. executes thing on device.
THING KILL Sim. terminates thing on device.
THING REG Thing sends registeration request to mw.

THING UNREG Thing sends unregisteration request to mw.
THING REG RES MW sends registeration ack to thing.

THING UNREG RES MW sends unregisteration ack to thing.
SERVICE EXEC MW sends service execution request packet to thing.

SERVICE EXEC RES Thing sends service execution result.
APP ADD Sim. sends app addition request to mw.
APP RUN Sim. sends app run request to mw.
APP STOP Sim. sends app stop request to mw.

APP UPDATE Sim. sends app re-mapping request to mw.
APP DEL Sim. sends app deletion request to mw.

APP ADD RES Sim. receives app addition result from mw.
APP RUN RES Sim. receives app run result from mw.
APP STOP RES Sim. receives app stop result from mw.

APP UPDATE RES Sim. receives app re-mapping result from mw.
APP DEL RES Sim. receives app deletion result from mw.

SUP SERV EXE MW sends super service execution to super thing.
SUP SERV EXE RES Super thing sends super service execution result.

SERVICE EXE Super thing sends service execution request to mw.
SERVICE EXE RES MW sends service execution result to super thing.

SUP SCHED MW sends super service schedule request to super thing.
SUP SCHED RES Super thing sends super service schedule result to mw.

SCHED Super thing sends schedule request to mw.
SCHED RES MW sends schedule result to super thing.

THING REG WAIT Sim. waits until the things are registered.
APP ADD CHECK Sim. waits until the applications are added.
APP RUN CHECK Sim. waits until the applications are started.
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5.4 IoT System Evaluation

During the simulation process, the evaluator of the simulator plays a crucial role

in collecting and analyzing packets exchanged between middlewares and virtual things.

This is achieved by establishing a connection with an MQTT broker and subscribing to

relevant topics to capture the packets. These packets contain vital information, including

requests for services sent to the device, as well as responses from the device to the mid-

dleware, which may include service execution results or information exchange between

different middleware levels.

By meticulously aggregating the arrival times of each packet, the evaluator is able to

derive insightful data about the progress of currently running applications and the overall

state of the device. This data is then utilized to generate valuable output such as timelines

of service executions on each middleware and statistical metrics like average latency, en-

ergy consumption, and device utilization for each middleware. Furthermore, the evaluator

provides percentage values that offer a measure of how well each application succeeded

in scheduling and meeting real-time requirements.

By carefully analyzing these simulation results, users are empowered to identify

specific devices that are overutilized and incapable of running applications effectively.

Additionally, they can assess whether the current IoT device scale of a particular mid-

dleware is capable of meeting the demanding requirements of the running applications.

Fig. 5.4 serves as a visual representation of a simplified example of the simulation result,

aiding users in comprehending and interpreting these valuable insights.

The simulation results obtained by the evaluator are highly precise and reliable due

to their basis on real hardware. By capturing and analyzing the packets exchanged be-

tween middlewares and virtual things, the evaluator operates in a realistic environment

that closely emulates the actual behavior of hardware devices in an IoT system. This en-

sures that the derived timeline of service executions, statistical information, and success
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metrics accurately reflect the performance and behavior of the system when deployed on

real-world hardware.

The utilization of real hardware in the simulation process enhances the credibility of

the results, allowing users to make informed decisions and optimizations based on accu-

rate representations of the system’s performance characteristics. This empowers users to

identify potential bottlenecks, optimize resource allocation, and make necessary adjust-

ments to meet the real-time requirements of applications efficiently.

The evaluator provides the profiling option, which calls the log profiler of the sim-

ulator, which is intended to provide even more detailed measurements and extract infor-

mation by aggregating logs from each device to obtain information that is not available

through the MQTT broker.

The log profiler is a powerful tool designed to assist users in identifying bottle-

neck steps within a system by providing a comprehensive view of every communication

and inner-computation step. It enables detailed analysis and understanding of the perfor-

mance of individual components and their interactions within the system.

Through its logging capabilities, the profiler captures and records the sequence of

events and operations that take place during the execution of the system. This includes all

communication exchanges between middlewares and virtual things, as well as the inner-

computation steps performed within them. By meticulously logging this information, the

profiler offers a granular level of insight into the system’s behavior. Users can trace the

flow of data and operations throughout the system from the initial input to the final out-

put. By examining the logged information, they can identify specific steps or components

that exhibit slower execution times or excessive resource consumption, thereby indicat-

ing potential bottlenecks within the system. The log profiler serves as a valuable tool in

the optimization process, enabling users to make informed decisions based on a compre-

hensive analysis of the system’s performance characteristics.

To ensure accurate measurement of communication overhead with the logged times-
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tamp, it is crucial to synchronize the device time before evaluation. The evaluator pro-

vides accurate device timing for simulating environments with multiple devices. The two

methods used to handle time differences are Network Time Protocol (NTP) [70] and

Precision Time Protocol (PTP) [71]. NTP facilitates device time synchronization with

a single time server over the air. Prior to each simulation, we undergo a time synchro-

nization process using NTP. It continues sending synchronization requests until the time

difference between each device and the NTP server is reduced to 0.1ms or less, at which

point the experiment begins.

While this approach represents a modest improvement, it is important to note that

the average time synchronization error of approximately 10ms may result in a reversal of

the log order for certain communication processes, making it insufficient for detailed pro-

filing purposes. As an alternative, the evaluator has the option to utilize the PTP method,

which achieves clock accuracy in the sub-microsecond range and is well-suited for mea-

suring systems within a local area network. During our experiments with the simulator,

we discovered that although wireless synchronization using PTP still exhibits inaccura-

cies, wired connections yield reliable results without any log reversal in communication

processes. Through these time synchronization techniques, the simulator effectively mit-

igates device time mismatches and measures communication overhead in detail. This

fine-grained profiling capability allows users to more precisely optimize scheduling al-

gorithms or make target system performance predictions.

5.5 Scheduling Framework

After developing the simulator, we discovered that simulating the system involves

handling numerous hyperparameters. This complexity arises from the variety of schedul-

ing policies that can be applied in the simulation and the need to evaluate each policy

across different IoT environments. However, manually experimenting with all the policies

and environments is a tedious and error-prone task. Therefore, we require a framework
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that automates this repetitive process and manages everything from setup to statistical

analysis in a cohesive manner.

Hence, we propose a scheduling framework that automates the evaluation of differ-

ent scheduling policies using the IoT simulator as its core engine. The workflow of the

framework, as depicted in Fig. 5.3, outlines the steps involved in exploring and assessing

the performance of various scheduling policies. By watching the IoT simulation envi-

ronment, each scheduling policy can be thoroughly evaluated. It is worth noting that the

middleware is designed to facilitate easy replacement of scheduling policies, allowing for

seamless automation of the process.

The framework systematically explores multiple candidate policies, compares their

simulation results, and ranks them based on specific scheduling objectives such as energy

consumption or average response time. Users have the flexibility to incorporate multiple

objectives or vary the scheduling objectives within the framework. This empowers users

to observe the impact of different scheduling policies on their specific IoT system. More-

over, the framework offers default algorithms that users can identify the most effective

scheduling policies for their system’s scale. Alternatively, users can develop and evaluate

their own custom scheduling algorithms using the framework’s capabilities.

By adopting the proposed scheduling framework, users can streamline the process

of evaluating and selecting suitable scheduling policies for their IoT systems. The au-

tomation provided by the framework eliminates the need for manual configuration and

analysis, enabling efficient decision-making and optimization of system performance.

5.6 Experiments

In this hierarchical IoT platform, one important concern is the potential increase

in latency of super services as the number of communications between layers within

the platform grows. To address this concern and evaluate the scalability of the proposed

platform, a series of experiments are conducted. These experiments aim to measure the
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Figure 5.3: Workflow of the proposed scheduling framework

latency of super services while varying the system configuration.

Additionally, further experiments are performed to observe how different schedul-

ing policies impact the overall performance of the system. By analyzing the effects of

different scheduling policies, valuable insights can be gained regarding their influence

on latency and system responsiveness. All of these experiments are carried out using the

simulator described earlier, providing a controlled environment to measure and assess the

performance of the hierarchical IoT platform. The simulator enables researchers to repli-

cate various system configurations, simulate communication between layers, and gather

quantitative data on latency and other performance metrics.

Through these experiments, a comprehensive understanding of the scalability and

performance characteristics of the proposed hierarchical IoT platform can be obtained.

The results of these experiments will provide valuable insights for optimizing the sys-

tem’s configuration, selecting appropriate scheduling policies, and ensuring efficient and

responsive operation in real-world IoT deployments.

5.6.1 Experimental Setup

The hardware platforms used in the experiments are as follows.

• Server (Simulator and Virtual Things): Intel Core i9-12900K, 64GB RAM, and

Ubuntu 22.04.1 LTS x86 64
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Figure 5.4: A simulation result example

• Raspberry Pi 4 (Middlewares): ARM Cortex A72, 8GB RAM, and Raspbian GNU/Linux

11 (bullseye) armv7l

Ten Raspberry Pi boards are used to run a middleware and an MQTT broker, one for each,

constructing a tree architecture. They connect to each other based on the tree structure

configuration file. A simulation is repeated 10 times to obtain the result by averaging

the simulation outcomes. In the repetition, to mitigate the unexpected performance gap

between the devices, we randomly pick and assign to the levels of the tree. For IoT

devices, we generate virtual things that model hardware devices and execute lightweight

processes to simulate them. Thus, the simulator and virtual things are run together on the

same server.

To vary the system configuration, 20 normal services, and three super services are

first generated. We let each thing pick three services randomly, allowing duplication. The

execution time of each service is randomly set between 0.1 to 1.0 seconds. While all

super services are defined at the top-level middleware, they can be requested either at the

bottom level or the top level, depending on two use cases shown in Fig. 4.6.
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The system configuration is defined by the following tuple: Con f ig= {h,w,Na,Nt ,St ,

Sb,NSs} where h and w indicate the height and the width of the tree structure, Na and Nt

mean the number of IoT applications and the number of devices running at the bottom

level, St and Sb mean the number of super services called at the top level and the bottom

level, and NSs indicates the number of services contained in a super service. Even though

we may define more parameters to define a general system configuration, we assume that

the same configuration parameters are applied to all applications or all middlewares, in

order to avoid unnecessary complexity by restricting the configuration space.

5.6.2 Super Service Latency

A super service has NSs services internally that will be mapped to virtual devices at

the bottom level. Since a virtual device is run on the server and a middleware at the bot-

tom level runs on a Raspberry Pi board, the communication delay between the two hard-

ware platforms is directly measured. As explained in Section 4.4.1, we need to schedule

a super service before execution. In our experiments, we assume that the scheduling of

super services has already been performed, and we focus solely on measuring the exe-

cution delay. To obtain accurate results, each experiment is repeated 10 times, and the

average execution delay is calculated. The net overhead incurred by the execution of su-

per services is then computed by subtracting the service execution time from the total

end-to-end execution time.

By conducting these measurements and analyzing the net overhead, we can gain

insights into the performance of super services and their impact on the overall system.

This evaluation helps us understand the efficiency of the proposed platform and provides

valuable information for further optimization and improvement.
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Figure 5.5: The average latency of a super service and the overhead as we vary the height
of the middleware tree

5.6.2.1 Varying the height of the tree structure

At first, we measure the super service latency varying the height of the tree structure

whose configuration can be represented by Con f ig = {h,1,10,10,2,2,4}. To focus on

scalability with respect to the height, we set the width to 1. We assume that 10 IoT

applications are run at the bottom middleware. In addition, two super services that include

four services each are requested at the bottom level and the top level, respectively.

Fig. 5.5 shows the super service latency (blue line) and the overhead involved in

the super service execution (red bars) as the height of the tree varies from 2 to 10. Since

the service execution time is randomly set, we focus on the overhead only. The overhead

includes the scheduling overhead of the middleware and communication overhead be-

tween devices. From Fig. 5.5, it is observed that the overhead of super service execution

is proportional to the height as expected: Even when the height is ten and execution of a

super service incurs tens of inter-device communications, the total overhead is relatively

low (0.73s) compared with the super service request interval that is usually much longer.
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Figure 5.6: The average latency of a super service and the overhead as we vary the width
of the middleware tree

It means that a user in a smart city-scale IoT system could get the result of a city-level

public service with an overhead lower than 1 sec.

5.6.2.2 Varying the width of the tree structure

In this experiment, we vary the width of the tree structure while the height is fixed

to 2: Con f ig = {2,w,10,10,2,2,4}. We measure the super service latency and compute

the overhead, varying the width from 2 to 9. In contrast to the previous experiment, the

workload of the top-level middleware increases as the number of super services and the

number of services that need to be scheduled increase proportionally to the width. Thus

we can check how the top-level middleware can support the increasing workload as the

system complexity increases. Even with load balancing across middleware in the hierar-

chy, the more child nodes connected to a middleware, the more workload that middleware

is faced with at any given time.

Fig. 5.6 shows that the latency and the overhead of a super service are slowly in-

creasing as the width increases: the overhead is only 0.20s even when the top-level mid-
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Figure 5.7: The average latency of a super service and the overhead as we vary the number
of services per super service

dleware has nine child middlewares and the total number of super services is 20 (9 times

2 plus 2). It means that the computing overhead of the edge middleware involved in the

execution of a super service is not a performance bottleneck of an upper middleware.

5.6.2.3 Varying the number of services per super service

Next, we perform a similar experiment, varying the number of services per super ser-

vice while fixing the tree structure’s height and width as Con f ig= {3,2,10,10,2,2,NSs}.

Note that an upper middleware has two child middlewares so that the number of bottom

level middlewares is 4. The measurement results on the average latency and the overhead

of super service execution are shown in Figure 5.7 while varying the number of services

from 2 to 16. As the number of services increases, the latency and the overhead increase

proportionally. The impact of communication overhead can be seen indirectly through

this experiment, as every 2 increase in services within a super service increases the num-

ber of in-layer communications required to execute once by 8. Note that the involved

overhead is still under 1 sec when the number of services per super service is as large as
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Figure 5.8: The average latency of a super service and the overhead as we vary the number
of super service requests per middleware

16, where the communication occurs 130 times at maximum.

No matter how complex a super service is created, it’s highly unlikely that users will

create a super service within it that requires 16 steps of service execution, and even if it

is more complex than that, according to this graph, it would only incur a few seconds of

overhead. It implies that we can make a complex super service without worrying about

the latency overhead.

5.6.2.4 Varying the number of super service requests per mid-
dleware

In this experiment, we increase the number of super services with the following

configuration: Con f ig = {3,2,10,10,St ,Sb,4}. Compared with the earlier experiments

in which only two applications in each middleware call a super service, we increase the

number of applications that call a super service from 4 to 32 in each middleware at the top

level middleware and the bottom level. As displayed in Fig. 5.8, the execution overhead is

slowly increasing. While the overhead grows monotonically, the total latency fluctuates
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Figure 5.9: The average latency of a super service and the overhead as we vary the number
of virtual devices per bottom middleware

slightly because the execution time assigned to the service is randomly generated within

a set range when the environment is generated. The experiment results provided valuable

insights, indicating that the overhead itself is not the primary performance bottleneck

even when the number of super services in a tree reaches as high as 160. These findings

highlight the system’s ability to handle a substantial increase in the number of super

services without a drastic degradation in performance.

5.6.2.5 Varying the number of virtual devices per bottom mid-
dleware

In this particular experiment, the scalability of the system is investigated in terms

of the number of devices. To achieve this, the number of virtual devices per bottom-

level middleware is increased from 5 to 50, denoted by the configuration Con f ig =

3,2,10,Nt ,2,2,4, where Nt varies between 5 and 50. Fig. 5.9 illustrates the results of

this experiment. It can be observed that there is no significant difference in the overhead

until the total number of devices reaches 140 (Nt = 35). However, once the number of reg-
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Figure 5.10: A sequence diagram of super service execution with the overhead informa-
tion of each step

istered devices exceeds 40, the overhead starts to increase. This increase in overhead can

be attributed to the internal workload within the middleware surpassing a certain thresh-

old. Remarkably, even in an environment with 200 IoT end devices, the overhead remains

relatively small, measuring only one-third of a second. This indicates that the system per-

forms well and exhibits promising scalability potential for larger-scale deployments. The

findings of this experiment suggest that the proposed system can handle larger systems

efficiently, maintaining a manageable level of overhead even with a significant number of

IoT end devices. This scalability is crucial for accommodating the ever-growing number

of devices in IoT environments and ensuring the smooth operation of the system as it

expands.

5.6.2.6 Breaking down the super service overhead

In this experiment, we break down the execution overhead of a super service with

the following configuration: Con f ig = {3,2,10,10,2,2,4}. Figure 5.10 shows the se-

quence diagram that details the overhead at each step in the execution of a super service.
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Figure 5.11: The average latency of services as we vary the range of application periods

The overhead values are averaged over 10 executions of the super services performed

during each simulation. Since the super services are composed of four services, there are

16 communications between middlewares, 8 between a middleware and a device, and 10

between the top-level middleware and a super thing for a single execution. Communi-

cation between middlewares is performed by wireless communication between Rasberry

Pi edge devices, while communication between a middleware and a device is between

a Rasberry Pi and a simulation host. Communication between the middleware and a su-

per thing is performed in the same edge device. The experimental result shows that the

scheduling overhead within the edge middleware device is relatively low, on the order of

0.4-2.2 ms, compared with the communication overhead between edge devices.

5.6.3 Scheduling Policy

As explained in Section 4.4, we may change the scheduling policies that consti-

tute the scheduling algorithm in the proposed IoT platform. To examine the effect of

a scheduling policy on performance, we implemented two schedulers with two different

88



policies for service execution and compared them, varying the period of IoT applications.

One is the baseline policy(”No Merge”) that serves the requests one by one in the FIFO

order, and the other is to merge all requests for the same service in the run queue for

performance optimization (”Merge”).

With the same configuration, Con f ig = {3,2,10,10,2,2,4}, we vary the range of

application periods that are randomly chosen within the range. Fig. 5.11 measures the

average latency of two policies. Since we reject the service request if it violates the la-

tency constraint, more service requests are rejected as the period reduces. It explains why

the average latency is relatively stable over a wide range of periods. On the other hand,

as the period range of the applications decreases, the gap between the two policies gets

larger. As the period is reduced, the number of simultaneous requests on the same device

increases, triggering more merging. It implies that there is much room for performance

improvement in the proposed IoT platform. We leave it as future work to find better

scheduling policies for performance improvement.
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Chapter 6

Conclusion and future work

In this thesis, we present a novel and scalable hierarchical edge-based architecture

for service-oriented IoT platforms. We derive design requirements and propose technical

solutions to support the new middleware structure. The architecture includes a special

type of service called a super service, which is defined in the higher-level middleware and

enables communication and resource sharing between edges. The lower-level middleware

exploits the capabilities of the extended IoT system through IoT applications that request

and utilize these super services.

The main role of middleware in a service-oriented IoT platform is to schedule ser-

vice requests to smart devices. We present how the scheduling can be performed in the

hierarchical structure, considering the possibility of dynamic device status change and

execution of super services. To enable users to customize and evaluate their own schedul-

ing policies, a scheduling simulation framework is developed. This framework comprises

an IoT environment generator and an IoT system simulator, providing a comprehensive

toolset for studying and analyzing different scheduling algorithms.

Extensive experiments conducted using the simulation framework demonstrate the

scalability of the proposed IoT platform. The experiments focus on measuring the la-

tency of super services as the complexity of the system increases. The results confirm the

platform’s ability to handle larger-scale deployments while maintaining acceptable levels
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of latency. In addition, a toy-level smart campus test bed is implemented to examine the

viability of the proposed platform in real life.

Since device-to-device communication is not allowed in the proposed IoT platform

for safety, all of the communications among IoT devices are through the edge middleware

device. Hence the edge device may become the performance bottleneck if an IoT appli-

cation requires heavy traffic between devices, such as live video streaming. To solve this

problem, we leave it as a future work to allow device-to-device communication between

two certified devices.

There are several other research topics for the proposed IoT architecture. One is

to explore various scheduling policies to find a suitable scheduling algorithm for their

system. We may want to consider the dynamic variation of service time, conditional

execution of services, and so on in the scheduling policy. The following is a study to

improve reliability. Robust connection between edges in a tree structure compared to

peer-to-peer connections is a topic of future research. A backup middleware could be

prepared for the case an edge is destroyed, or perhaps there may be a way to build a

bypass connection in case the connection between edges is lost. And how to utilize the

IoT big data collected at each level is another topic to study. Last but not least, we will

deploy the proposed IoT platform to a real building in the future. By addressing these

research topics and continuously refining the architecture, the proposed service-oriented

IoT platform holds great promise for enabling scalable and efficient IoT deployments in

various domains.
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요약

사물인터넷(IoT)은 일상 생활에서 더 보편화되고 있으며, 많은 상용화된 IoT 플랫폼

이 사용되고 있다. IoT 솔루션을 구축하는데 가장 핵심이 되는 IoT 플랫폼은, 설계를

어떻게하느냐가 IoT시스템의특성을좌우하기때문에다양한디자인의플랫폼이연

구되고있다.그중,엣지기반플랫폼은디바이스와가까운곳에미들웨어가위치하여

반응속도와프라이버시보호의이점이있고,서비스지향 IoT는사용자가디바이스를

직접지정하지않고 IoT와소통할수있게해준다는강점이있다.엣지기반플랫폼의

약점인확장성을극복할수있도록하는다양한연구가진행되고있지만이들은모두

수평적구조즉,단일계층을통한엣지간연결만을고려하고있다.

본 논문에서는 엣지 기반 IoT와 서비스 지향 IoT의 장점들을 유지하면서도 트리

구조를따라유연하게확장될수있도록하는엣지미들웨어의계층적구조를제안한

다. 이 때, 이 새로운 구조를 실현하기 위한 설계 요구사항들과 테크니컬 챌린지들을

도출하고, 그에 대한 솔루션을 제시한다. 계층 구성, 자원 공유, 스케줄링 등의 다섯

가지 메인 요구사항들은 크게 두 가지의 새로운 기법을 통해 해결된다. 첫째, 프라이

버시를 보호하며 엣지 간 통신 및 자원 공유를 가능하게 하기 위해 슈퍼 서비스라는

새로운유형의서비스를도입한다.이는계층에서서비스요청중재자의역할을하며

각미들웨어간의서비스요청을대신한다.둘째,서비스지향 IoT의유연한디바이스

와 서비스간의 매핑을 가능하게 하기 위해 슈퍼 서비스가 추가됨으로써 더욱 복잡해

진스케줄링문제를푸는분산알고리즘을고안한다.이는슈퍼서비스를실시간으로

대응할수있게해줌과동시에스케줄링부하를여러엣지에분산시킴으로써한엣지

로의연산과부하도막아준다.

IoT시스템에서는수많은서로다른디바이스가존재하며예측불가한동적인이

벤트들을 자주 일어나기 때문에 정확한 모델링 기반 시뮬레이션은 거의 불가능하다.

따라서,설정에따라실제디바이스위에계층구조 IoT환경을생성하고,설정에따라

임의생성된이벤트를발생시켜 IoT미들웨어와디바이스간의실제교류를관측하는

하드웨어인더루프시뮬레이터를구현한다.이시뮬레이터를기반으로하여,다양한

스케줄링알고리즘의성능을여러 IoT환경에서평가할수있게해주는프레임워크를
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제공한다. 사용자는 이를 통해 자신이 목표로 하는 시스템의 규모와 특성에 따라 IoT

환경을 미리 만들어볼 수 있을 뿐더러, 최적의 스케줄링 알고리즘을 찾을 수 있다. 이

프레임워크는향후추가연구를위해깃헙에공개하였다.

마지막으로, 스마트 캠퍼스 테스트 베드 구현과 시뮬레이션 프레임워크를 이용

한다양한실험을통해제안한플랫폼의실행가능성을검증한다.서울대학교내에두

건물과 다섯 개의 방에 라즈베리 파이를 설치하여 계층 구조를 구축하고, 서로 다른

엣지를연결하는다양한 IoT응용들을실행하여실제공간에서도문제없이작동함을

확인한다.슈퍼서비스의성능을확인하기위해트리의높이,너비,응용갯수등을조

정하며 부하가 높아짐에 따른 반응속도를 측정하여 큰 규모의 계층 구조에서도 슈퍼

서비스의 성능이 충분하다는 것을 입증한다. 또, 서로 다른 스케줄링 정책을 동일한

환경에 적용했을 때 결과가 달라지는 것을 확인하며 스케줄링 알고리즘 개발을 돕는

스케줄링프레임워크의필요성을다시한번보인다.

주요어 : 사물인터넷플랫폼,엣지기반,서비스기반,계층적구조

학번 : 2015-21232
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