

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

A Unified Framework of
Homomorphic Encryption for

Multiple Parties with
Non-Interactive Setup

다중 참여자를 위한 동형암호 통합 프레임워크

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

Hyesun Kwak

August 2023

A Unified Framework of Homomorphic
Encryption for Multiple Parties with

Non-Interactive Setup

Professor Yongsoo Song

Submitting a master’s thesis of

Computer Science and Engineering

July 2023

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

Hyesun Kwak

Confirming the master’s thesis written by
Hyesun Kwak

July 2023

Chair 박근수 (Seal)

Vice Chair 송용수 (Seal)

Examiner 문병로 (Seal)

Abstract

Homomorphic Encryption (HE), first demonstrated in 2009, is a class of encryption schemes

that enables computation over encrypted data. The standard HE, however, poses an au-

thority issue when multiple parties are involved, as the authority is concentrated solely to

whom that owns the (single) secret key. To solve this issue, variants of HE have emerged

in the context of multiple parties, resulting in the development of two different lines of HE

schemes – Multi-Party HE (MPHE) and Multi-Key HE (MKHE). MPHE schemes tend to

be much more efficient; but require the interaction between parties in the key generation

and the set of parties is fixed throughout the entire evaluation. On the other hand, MKHE

schemes have poor scaling with the number of parties but allow us to add new parties to

the joint computation anytime.

In this work, we construct the first MPHE scheme that features a non-interactive key

generation. We refactor the evaluation key to be nearly linear, allowing it to be computed

by simple summation. As a result, our MPHE allows each party to independently and

asynchronously broadcasts its key.

In addition, we propose a new HE primitive, called Multi-Group HE (MGHE). Stated

informally, an MGHE scheme provides seamless integration between MPHE and MKHE,

and combines the best of both these primitives. In an MGHE scheme, a group of parties

generates a public key jointly which results in compact ciphertexts and efficient homomor-

phic operations, similar to MPHE. However, unlike MPHE, it also supports computations

on encrypted data under different keys, a property enjoyed by MKHE schemes. We present

a construction of MGHE from the BFV scheme and provide a proof-of-concept implemen-

tation to demonstrate its concrete performance.

Finally, we describe a general approach to construct a multi-party protocol from

MGHE. We provide a proof-of-concept implementation of a logistic regression model where

our MGHE interpolates between MPHE (where the training is performed) and MKHE

(where the inference is performed).

Keyword: Multi-Key Homomorphic encryption, Multi-Party Homomorphic Encryption

Student Number: 2021-22848

i

Table of Contents

1 Introduction 1

1.1 Our Contributions . 2

1.2 Technical Overview . 3

1.3 Related Work . 5

2 Background 6

2.1 Notation . 6

2.2 Ring Learning with Errors . 6

2.3 Gadget Decomposition and External Product 6

2.4 Variants of HE for Multiple Parties . 7

3 MPHE with Non-Interactive Setup 10

3.1 Basic Scheme . 11

3.2 Basic Operations . 13

3.3 Security . 15

4 Construction of MGHE 16

4.1 Formalizing MGHE . 16

4.2 Basic Scheme . 18

4.3 Basic Operations . 19

4.4 Security . 23

5 Constructing MPC from MGHE 24

5.1 Overview . 24

5.2 MPC Protocol Secure Against Semi-Malicious Corruptions 26

6 Experimental Results 30

6.1 Basic Operations . 31

6.2 Application to Machine Learning Service . 31

Bibliography 34

Appendix 38

ii

A Construction of MGHE with CKKS 38

A.1 MPHE with Non-Interactive Setup . 38

A.2 Extension to MGHE with CKKS . 39

B Noise analysis 40

B.1 Encryption . 40

B.2 Relinearization . 40

B.3 Multiplication . 41

Abstract in Korean 43

iii

1 Introduction

Acknowledgement. This work is a collaborative effort with Yongsoo Song (y.song@snu.ac.kr),

Dongwon Lee (dongwonlee95@snu.ac.kr) from Seoul National University, and Sameer

Wagh (sameer@devron.ai) from Devron.

Homomorphic Encryption (HE) enables computation over encrypted data without de-

cryption. It prevents the leakage of private information while evaluating data within an

untrusted environment. However, HE typically requires a large resource even when it com-

putes a simple arithmetic operation such as multiplication. As a result, HE is particularly

well-suited for implementation in cloud systems that can supply large computing power

for evaluation.

A typical HE only supports computations between data encrypted by the same key.

Consequently, when multiple data owners are involved, it relies on a trusted third party

who possesses a key distributed to each party for encryption. Still, this merely transfers

the trust problem from the cloud service provider to the new third party and thus does

not provide an acceptable solution to this problem. To overcome this challenge, exten-

sive research has explored the use of distributed trust in designing HE schemes involving

multiple parties.

In the context of multiple parties, two important lines of HE schemes have emerged:

Threshold HE and Multi-Key HE (MKHE). In Threshold HE [4, 8, 38, 40, 37], multiple

parties collaborate to generate a joint public key, and encryption is performed under this

joint key. Threshold HE has a t-out-of-n (t ≤ n) access structure where any t parties can

reconstruct the secret key to decrypt the ciphertext. Studies on Threshold HE are again

diverged into two different directions: the case where t < n and the case where t = n.

In our work, we focus on the case when t = n, which we is referred to as Multi-Party

HE (MPHE). Like any other Threhold HE schemes, MPHE is comparable to that of the

single-key HE schemes since encryption and homomorphic computation are performed in

a similar manner. However, the set of participants should be determined beforehand and

fixed in the preparation phase and no other parties can join the computation in the middle.

Moreover, the existing MPHE schemes are based on a multi-round key generation protocol

in which the involved parties should interact with each other.

On the other hand, MKHE [35, 21, 39, 41, 13, 15] features a distributed setup phase

where each party independently generates its own key pair, without requiring any informa-

1

tion about other participants. The encryption can be done by a single key, and it allows to

perform arithmetic operations on ciphertexts that do not necessarily have to be encrypted

under the same key. The main advantage of MKHE lies in its flexibility: it is not necessary

to pre-determine the list of participants or the computational task. From the performance

perspective, however, the size of ciphertexts increases with the number of involved parties,

and so does the complexity of homomorphic operations.

1.1 Our Contributions

Construction of MPHE with Non-Interactive Setup. We present the first construc-

tion of an MPHE scheme with fully non-interactive setup based on the BFV [9, 24] and

CKKS [18] schemes. To the best of our knowledge, all known MPHE schemes [4, 38, 40]

require parties to interact with each other in order to generate a common evaluation key

with non-linear structure. We present a nearly linear key generation algorithm where the

joint encryption and evaluation keys are obtained from independently generated individual

keys by simply summing them.

Formalization of Multi-Group HE.We propose a novel variant of HE designed for mul-

tiple parties, called Multi-Group HE (MGHE), and define its security notion. An MGHE

scheme can be viewed as a generalization of both MPHE and MKHE, which enjoys the

best of both primitives. In MGHE, a group of parties collaboratively generates a pub-

lic key that is commonly used among the parties for encryption. Hence, MGHE behaves

like an MPHE scheme in a single group. Moreover, an MGHE scheme has the capability

to perform arbitrary computations on encrypted data, regardless of whether the input

ciphertexts are encrypted under the same group key or not, a crucial property of MKHE.

Construction of MGHE. We extend our MPHE scheme to construct an MGHE scheme

and provide a rigorous proof of its semantic security. Our MGHE scheme regards an MPHE

ciphertext as a single-key encryption under the joint secret key so that ciphertexts corre-

sponding to different group keys can be operated in a multi-key manner. Consequently,

our MGHE scheme has a hierarchical structure where a ciphertext is decryptable by the

joint secret keys of the associated groups, each of which is additively shared among the

group members.

Building Multi-Party Computation Protocol from MGHE. We build a round-

optimal Multi-Party Computation (MPC) protocol on top of our MGHE scheme, which

2

is naturally derived from the non-interactive key generation (setup). We show that the

protocol is secure against semi-malicious adversaries in the dishonest majority setting,

relying on the semantic security of MGHE.

Experimental results.We implement our MGHE scheme based on both BFV and CKKS

and present its concrete performance. We provide basic benchmark and demonstrate a

logistic regression model as a proof-of-concept.

As the author of this thesis, I would like to highlight my contributions. I played a

significant role in analyzing the proposed schemes, including thorough examinations of

correctness, noise, and security aspects. Additionally, I proposed an application scenario

for our scheme and implemented the logistic regression model as a proof of concept. I

also conducted literature reviews and actively contributed to writing every section of the

paper.

1.2 Technical Overview

At the heart of our construction lies a non-interactive key generation algorithm. This

allows the joint key of a group to be constructed non-interactively from independently

generated keys of the group members. The key generation follows a hybrid construction

between MPHE (the encryption key aspects) and MKHE (the relinearization mechanisms).

We begin by giving a high-level overview of our MPHE construction.

We assume that each party is identified as a unique index i and let I be a group of

parties. The homomorphic property of LWE makes the summation of public and secret

key pairs be a valid key pair. To be precise, an MPHE scheme behaves like a single-

key HE scheme where the joint secret key s =
∑

i∈I [s]i is additively shared among the

members of I. We make the Common Random String (CRS) assumption to construct

a joint public (encryption) key: given a random polynomial a ∈ Rq, each party i ∈ I

generates [b]i = a · [s]i + [e]i (mod q) for some error [e]i, then the joint public key is

obtained as b =
∑

i∈I [b]i ≈ a · s (mod q). However, it is more challenging to generate

a joint evaluation key because, roughly speaking, the evaluation key is usually supposed

to be an ‘encryption’ of s2 which has quadratic structure with respect to the individual

secrets [s]i. In the previous constructions [4, 38], the key generation procedure involves

a multi-round protocol among the parties: (1) parties publish individual encryption keys

to build a joint encryption key, then (2) use it to generate ‘encryptions’ of [s]i · s and

broadcast them to construct a joint evaluation key. We propose a new key generation

3

Figure 1: A schematic presenting the overall structure of MGHE schemes. Each boxed
group of participants acts as an MPHE scheme. The secret keys and ciphertext equations
for each group and the entire set of participants (including between groups) are described
above.

algorithm which is nearly linear with respect to the secret key. This property enables the

non-interactive key generation in that each party independently generates and broadcasts

its public key [pk]i once, which adds up to the joint public (encryption and evaluation)

key jpk =
∑

i∈I [pk]i corresponding to the joint secret s =
∑

i∈I [s]i.

Finally, to construct our MGHE scheme, we extend the functionality of our MPHE

scheme to support homomorphic computation between ciphertexts under different keys.

For example, if we perform homomorphic computation on MPHE ciphertexts ctj under the

joint secret keys sj =
∑

i∈Ij [s]i of groups Ij for 1 ≤ j ≤ k, then it outputs a ‘multi-group’

ciphertext under the secret (s1, . . . , sk). In particular, the joint public keys of the involved

groups themselves are used in the relinearization process of multi-group ciphertexts so that

no further interaction is required among the parties. The technical details of our MPHE

and MGHE constructions are described in Sections 3 and 4.

Thus, our MGHE scheme behaves as if it is an MKHE scheme in which each key is

jointly generated by a group of parties (akin to MPHE). This makes MGHE an ideal

generalization of both these HE variants and the hierarchical key structure allows an

MGHE scheme to take advantage of strengths of both MPHE and MKHE.

4

1.3 Related Work

We first remark that the terminology for HE-like primitive has not been agreed upon yet

in the literature. We use the terms ‘MPHE’ and ‘MKHE’ to classify the related works.

Asharov et al. [4] designed the first MPHE scheme from BGV [10]. Mouchet et al. [38]

proposed a simplified construction from BFV [9, 24] and presented some experimental

results. Park [40] recently modified the key generation protocol to reduce the interaction

and also suggested a conversion between MPHE and MKHE. To the best of our knowledge,

all known MPHE schemes require a multi-round protocol among the parties to generate

a shared key pair.

On the other hand, there have been several attempts to construct an MKHE scheme

by generalizing single-key HE schemes. López-Alt et al. [35] designed the first MKHE

from NTRU [31], and [21, 39, 41] studied multi-key variants of GSW [27]. Then, Brakerski

and Perlman [11] presented an LWE-based MKHE [11], followed by Chen et al. [13] who

presented a multi-key variant of TFHE [19]. Another line of work [16, 15] studied MKHE

schemes from batched HEs such as BGV [10], BFV [9, 24] and CKKS [18]. Our MGHE

construction is inspired by [15], but we make an additional CRS assumption to possess the

linearity property. Recently, Ananth et al. [3] proposed a general methodology to design

an MKHE scheme in the plain model. The construction is done by combining an oblivious

transfer protocol and MKHE schemes with limited functionality or trusted setup.

We remark that some MKHE schemes can be converted into MGHE: if the key gener-

ation algorithm of an MKHE scheme has the homomorphic property, then we can simply

operate on the public keys of multiple parties to build a shared key for the group. For

example, multi-key GSW schemes [21, 39, 41] hold the condition since GSW does not

require an evaluation key for multiplication.

Aloufi et al. [2] combined MPHE and MKHE to perform computation on ciphertexts

under two different keys: a joint key of model owners and the other of a client. This can

be viewed as a special case of MGHE in which there are two groups consisting of model

owners and a client, respectively. However, its key generation procedure also involves an

interactive protocol to obtain a evaluation key.

Boneh et al. [8] suggested the notion of threshold FHE that has t-out-of-n access

structure protocol by splitting the secret key into shares. Its key generation is based

on a Shamir secret sharing scheme where each party receives a share of the secret key.

Badrinarayanan et al. [5] also presented a threshold FHE scheme but in the distributed

5

setting.

2 Background

2.1 Notation

We assume all logarithms are in base two unless otherwise indicated. Vectors are denoted

in bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote the inner product of

two vectors u, v as ⟨u,v⟩. For a finite set S, U(S) denotes the uniform distribution over

S.

Let N be a power of two. We denote by R = Z[X]/(XN + 1) the ring of integers of

the (2N)-th cyclotomic field and Rq = Zq[X]/(XN + 1) the residue ring of R modulo an

integer q. An element of R (or Rq) is uniquely represented as a polynomial of degree less

than N with coefficients in Z (or Zq). We identify a =
∑

0≤i<N ai ·Xi ∈ R with the vector

of its coefficients (a0, . . . , aN−1) ∈ ZN . For σ > 0, we denote by Dσ a distribution over

R which samples N coefficients independently from the discrete Gaussian distribution of

variance σ2 and χ as a key distribution.

For a, b ∈ Rq, we informally write a ≈ b (mod q) if b = a+ e (mod q) for some small

e ∈ R.

2.2 Ring Learning with Errors

Given the parameters (N, q, χ, σ), consider the samples of the form bi = s ·ai+ei (mod q)

for polynomial number of i’s where ai ← U(Rq) and ei ← Dσ for a fixed s ← χ. The

Ring Learning with Errors (RLWE) assumption states that the RLWE samples (bi, ai)’s

are computationally indistinguishable from uniformly random elements of U(R2
q).

2.3 Gadget Decomposition and External Product

The gadget decomposition is a widely used technique in HE schemes to manage the noise

growth of homomorphic operations. For a gadget vector g = (gi) ∈ Zd
q and an integer q,

the gadget decomposition is a map g−1 : Rq → Rd such that a =
〈
g−1(a),g

〉
(mod q)

for all a ∈ Rq. Typical examples are bit decomposition [9, 10], digit decomposition [19],

and Residue Number System (RNS) based decompositions [6, 28]. Our implementation is

based on an RNS-friendly decomposition for efficiency.

6

For µ ∈ R, we call U = (u0,u1) ∈ Rd×2
q a gadget encryption of µ under secret s if

u0 + s · u1 ≈ µ · g (mod q). Chillotti et al. [19] formalized an operation between RLWE

and RGSW ciphertexts and named it the external product. We adopt and generalize this

concept as follows: For c ∈ Rq and v ∈ Rd
q , we define the external product as c ⊡ v :=〈

g−1(c),v
〉

(mod q). We also write c⊡U = (c⊡u0, c⊡u1) for U = (u0,u1) ∈ Rd×2
q . We

note that ⟨c⊡U, (1, s)⟩ = c⊡ (u0 + s · u1) ≈ c · µ (mod q) if U is a gadget encryption of

µ.

The special modulus technique [26] is a well-known technique to reduce the noise

growth of homomorphic operations. Although the special modulus technique is applied to

the external product in our implementation, we do not describe it in our scheme description

for simplicity.

2.4 Variants of HE for Multiple Parties

The standard HE schemes support computation on ciphertexts encrypted under the same

secret key. In the context of multiple parties, however, the template raises an issue where

authority is concentrated on whom possesses the key. To extend HE to the case of multiple

parties, research has been undertaking in two directions: threshold HE and multi-key HE

(MKHE). Threshold HE [4, 8, 38, 40, 36] has t-out-of-n access structure, that is, any set of

t parties can reconstruct the secret key. Several studies on threshold HE are dedicated to

the case of t = n (which we call MPHE), while there have been a few number of studies for

t < n with some limitations such as huge parameter requirement or intricate assumptions

for decryption. The other line of work, MKHE [35, 21, 39, 41, 13, 15], gets the parties

who are associated with the output ciphertext involved in the decryption phase. The key

difference is that, unlike MPHE where the participating parties should be pre-determined

in the key generation phase, MKHE is free to involve new parties in computation. In this

paper, we focus on MPHE and MKHE.

An MPHE scheme over a plaintext space M is a tuple of algorithms and protocols

MPHE = (Setup, KeyGen, Enc, Dec, Eval):

• Setup: pp ← MPHE.Setup(1λ, 1d). On input the security parameter λ and a depth

bound d, the setup algorithm outputs a public parameter set pp.

• Key Generation Protocol: (jpk, {[sk]i}i∈I)← MPHE.KeyGen(I). A set of parties I

runs the key-generation protocol to generate a joint public key jpk. Each party i ∈ I

7

also obtains a private share [sk]i of the (implicitly defined) secret key sk.

• Encryption: ct ← MPHE.Enc(jpk;m). Given a joint public key jpk and a message

m ∈M, output a ciphertext ct.

• Evaluation: ct ← MPHE.Eval(jpk;C, ct1, . . . , ctL). Given input a circuit C :ML →

M and ciphertexts ct1, . . . , ctL, the evaluation algorithm outputs a ciphertext ct.

• Decryption: m← MPHE.Dec({[sk]i}i∈I ; ct). Given a ciphertext ct and the secret key

shares {[sk]i}i∈I , the decryption algorithm outputs a message m ∈M.

In MPHE, the same public key is used among all parties for encryption and homo-

morphic evaluation. We note that the key generation protocol of existing MPHE schemes

(e.g. [4, 38, 40]) required multiple rounds to construct a joint evaluation (relinearization)

key. The security and correctness of MPHE are defined as follows.

Definition 2.1 (Correctness of MPHE). Let pp← MPHE.Setup(1λ, 1d) and (jpk, {[sk]i}i∈I)←

MPHE.KeyGen(I) for a set of parties I. Then for any m1, . . . ,mL ∈ M and for any circuit

C :ML →M of depth ≤ d, the probability that

MPHE.Dec({[sk]i}i∈I ; ct) ̸= C(m1, . . . ,mL)

is negligible with λ where ctj ← MPHE.Enc(jpk;mj) for j = 1, . . . , L and ct← MPHE.Eval(jpk;

C, ct1, . . . , ctL)).

Definition 2.2 (Security of MPHE). Let I be a set of parties. An MPHE scheme is said

to be secure if, for any set A ⊊ I and H = I\A, the advantage of A in the following game

is negligible for any PPT adversary A:

1. The challenger generates a public parameter pp← MPHE.Setup(1λ, 1d).

2. The adversary plays with an honest challenger the key generation protocols MPHE.KeyGen(I).

At the end of the protocol, the adversary gets the joint public key jpk and secret shares

[sk]i for i ∈ A while the challenger obtains jpk and [sk]i for i ∈ H.

3. The adversary chooses messages m0,m1 ∈M and sends them to the challenger. The

challenger samples a random bit b ∈ {0, 1} and sends MPHE.Enc(jpk;mb) back to the

adversary.

4. The adversary A outputs b′. The advantage of the adversary is defined as 2
∣∣Pr[b = b′]− 1

2

∣∣.
8

MKHE is yet another variant of HE with different key structure and functionality from

MPHE. In the MKHE setting, each party can generate its key pair (ski, pki) independently

and messages can be encrypted using different public keys. A fresh ciphertext corresponds

to a single party i who generated the public key pki used in encryption, but a multi-key

ciphertext is in general associated with an (ordered) set I of parties (we will assume that

it is implicit in the ciphertext). More specifically, if we perform some operations on multi-

key ciphertexts ct1, . . . , ctk where each cti corresponds to Ii, the resulting ciphertext is

associated to the parties in I1 ∪ · · · ∪ Ik.

An MKHE scheme for a plaintext space M is a tuple of algorithms MKHE = (Setup,

KeyGen, Enc, Dec, Eval):

• Setup: pp ← MKHE.Setup(1λ, 1d). On input the security parameter λ and a depth

bound d, the setup algorithm outputs a public parameter set pp.

• Key Generation: (ski, pki)← MKHE.KeyGen(i). Each party i generates its own key

pair (ski, pki).

• Encryption: ct← MKHE.Enc(pki;m). Given a public key pki and a message m ∈M,

output a ciphertext ct.

• Evaluation: ct ← MKHE.Eval({pki}i∈I ;C, ct1, . . . , ctL). Given input a circuit C :

ML →M, ciphertexts ct1, . . . , ctL, and the collection of public keys pki which are

associated to at least one input ciphertext, output a ciphertext ct (corresponding to

I).

• Decryption:m← MKHE.Dec({ski}i∈I ; ct). Given a ciphertext ct and the correspond-

ing secret keys ski for i ∈ I, output a message m ∈M.

MKHE is more flexible and dynamic in that any new party can join the computation

in the middle, contrasting with MPHE where parties must be pre-determined in the key

generation phase.

Definition 2.3 (Correctness of MKHE). Let pp ← MKHE.Setup(1λ, 1d) and (ski, pki) ←

MKHE.KeyGen(i) for i ∈ I. For party i ∈ I, pki be a public key and ski be the corresponding

secret key generated by party i. For any m1, . . . ,mL ∈ M and k1, . . . , kL ∈ I, let ctj ←

MKHE.Enc(pkkj ;mj) for 1 ≤ j ≤ L. For any circuit C :ML → M of depth ≤ d, it holds

9

that

MKHE.Dec({ski}i∈I ; MKHE.Eval({pki}i∈I ;C, ct1, . . . , ctL)) = C(m1, . . . ,mL)

with an overwhelming probability in λ.

Definition 2.4 (Security of MKHE). An MKHE scheme is said to be secure if it is se-

mantically secure. In other words, for the security parameter λ, pp← MKHE.Setup(1λ, 1d),

(ski, pki)← MKHE.KeyGen(i) and for any m0,m1 ∈M, the distributions MKHE.Enc(pki;m0)

and MKHE.Enc(pki;m1) are computationally indistinguishable.

Both MPHE and MKHE are useful generalizations of single-key HE with different pros

and cons, but it may not be straightforward to build a secure multi-party protocol from

these HE primitives. We will discuss relevant issues and provide a general strategy in

Sec. 5.

3 MPHE with Non-Interactive Setup

In this section, we present a new MPHE scheme with non-interactive key generation. To

the best of our knowledge, all known MPHE constructions [4, 38, 40] have a common

limitation in that the geratation of a joint pulbic and evaluation keys require a multi-

round protocol among the parties since the relinearization key has a non-linear structure

with respect to the joint secret key. For instance, in the latest work on MPHE [40], the

joint key generation consists of two steps:

1. Each party i samples a secret [s]i, then uses a CRS a ∈ Rq to generate and broadcast

[b]i ≈ −a · [s]i (mod q). At the end, all parties share a joint encryption key jek =

(b =
∑

i bi, a) ∈ R2
q such that b + as ≈ 0 (mod q) corresponding to the joint secret

s =
∑

i[s]i.

2. Each party i uses jek to generate a gadget encryption of [s]i · s under s. This is

done by first generating a gadget encryption of zero (whose rows are independently

sampled as an RLWE encryption of zero using jek) then adding [0|[s]i ·g] to it. At the

end, all parties broadcast gadget encryptions of [s]i · s and aggregate them to build

a gadget encryption of
∑

i[s]i · s = s2, which will be used as a joint relinearization

key.

10

As shown above, the main challenge was to generate a joint relinearization key, which

is a gadget encryption of s2 under s, due to its quadratic structure. In this work, we solve

this issue by modifying the public key to have a nearly linear structure. Consequently,

our MPHE scheme allows each party to independently generate an individual public key

at once (even without any information about other parties), and the joint public key

can be built on the server by simply adding individual public keys. We describe a multi-

party variant of BFV to present our idea, but also provide a CKKS-based construction in

Appendix A.1.

In Section 3.1, we first provide the basic algorithms including setup, key generation,

encryption, and decryption. In Section 3.2, we provide the algorithms of arithmetic oper-

ations and automorphism, together with their correctness. In Section 3.3, we provide the

security analysis of our scheme.

3.1 Basic Scheme

Our scheme is based on the Common Reference String (CRS) model, i.e., all parties have

access to the same random string. A parameter set also includes the RLWE dimensions,

ciphertext modulus, the key distribution, as well as the error parameter.

• MPHE.Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext

modulus q, the key distribution χ over R, and the error parameter σ. Sample random

vectors a,u,k← U(Rd
q) and choose a gadget decomposition g−1 : Rq → Rd with a gadget

vector g ∈ Rd
q . Return the parameter set pp = (N, t, q, χ, σ,a,u,k,g−1,g). We write

∆ = ⌊q/t⌉.

We note that the parameter set in our scheme include multiple CRSs denoted as a,u,

and k. However, this should not be considered as a strong assumption. From a practical

point of view, we can implement a CRS of arbitrary size using a keyed pseudorandom

function (PRF). This allows us to rely on the CRS assumption for a fixed-size seed, re-

gardless of the number of common random polynomials used for public and automorphism

keys.

• MPHE.IndKeyGen(i): Each party i samples [s]i, [r]i ← χ and [e0]i, [e1]i, [e2]i, [e3]i ← Dd
σ.

Set [b]i = −[s]i · a + [e0]i (mod q), [d]i = −[r]i · a + [s]i · g + [e1]i (mod q), [v]i =

−[s]i · u− [r]i · g + [e2]i (mod q), and [h]i = −[s]i · k+ ψ([s]i) · g + [e]i (mod q). Return

the secret key [sk]i = [s]i, the public key [pk]i = ([b]i, [d]i, [v]i, [h]i).

11

• MPHE.JointKeyGen({[pk]i : i ∈ I}): Let I be a group of parties. Given a set of public

keys [pk]i of parties i in I, return the joint public key jpk = (b,d,v,h) ∈ Rd×4
q where b =∑

i∈I [b]i, d =
∑

i∈I [d]i, v =
∑

i∈I [v]i, and h =
∑

i∈I [h]i (mod q). We denote the joint

encryption key as jek = (b[0],a[0]) ∈ R2
q , the joint relinearization key as jrlk = (b,d,v),

and the joint automorphism key as jak = h.

The key generation procedure consists of two steps; each party i first generates (locally)

a key pair and publishes a public key [pk]i, and then a joint public key of a group of parties

is built as pk =
∑

i[pk]i from the collection of public keys from the associated parties. The

generation of the individual keys can be done locally without knowing any information

about other parties, and building the joint public key can be done publicly by the cloud

without further interaction with the involved parties. This ‘non-interactive’ property not

only has advantages in communication, but also provide better flexibility. For instance, if

a party i would like to participate as a member of several groups, it is not necessary to

run the key generation algorithm multiple times but allowed to reuse the same key [pk]i

for all groups. More discussions on this feature will be given in Section 5.1.

Each component of the public key [pk]i forms a gadget encryption with a CRS under

the secrets [s]i or [r]i. We call s =
∑

i∈I [s]i the (implicitly defined) joint secret key of the

group I of parties. The individual secrets [s]i of parties i ∈ I can be viewed as additive

shares of s. Furthermore, the public key [pk]i is nearly linear with respect to [s]i and [r]i

so that the joint public key jpk = (b,d,v,h) satisfies the same properties as the individual

keys:

b ≈ −s · a (mod q)

d ≈ −r · a+ s · g (mod q)

v ≈ −s · u− r · g (mod q)

h ≈ −s · k+ ψ(s) · g (mod q)

Note that the encryption key jek can be viewed as an RLWE instance with secret s.

The usual BFV encryption and decryption algorithms are used in our scheme as follows.

• MPHE.Enc(jek;m): Given a message m ∈ Rp and the joint encryption key jek, sample

w ← χ and e0, e1 ← Dσ. Return the ciphertext ct = w · jek+ (∆ ·m+ e0, e1) (mod q).

• MPHE.Dec(sk; ct): Given a ciphertext ct = (c0, c1) and a secret key sk = s, output m =

12

⌊(t/q) · (c0 + c1 · s)⌉ (mod t).

Correctness of encryption. Our encryption algorithm returns a valid BFV ciphertext

under the secret s. The only difference is that our encryption key has a larger noise variance

depending on the number of parties which also affects the final encryption noise.

Ideally, an MPHE ciphertext is decryptable by the joint secret key s, however, the

basic decryption algorithm is not generally useful in practice since the joint secret is

shared between the parties in I. On the other hand, the parties can perform a simple

multi-party protocol to decrypt an MPHE ciphertext in a distributed manner. As an

example, we present a well-known method based on the noise smudging technique [4,

38]. In this protocol, each party i ∈ I partially decrypts the input ciphertext using [s]i

and publishes its approximate value by adding auxiliary noise, then the plaintext can be

recovered from the sum of partial decryptions. We discuss how to choose appropriate σ′,

an error parameter for noise smudging, for the partial decryption in Section 5.2.

• MPHE.DistDec({[sk]i : i ∈ I}, σ′; ct): Let ct = (c0, c1) be a multi-party ciphertext, σ′ > 0

an error parameter, and [sk]i = [s]i the secret key of party i ∈ I. The distributed decryption

protocol consists of the following procedures:

• Partial decryption: Each party i ∈ I samples [e′]i ← Dσ′ , then computes and pub-

lishes [µ]i = c1 · [s]i + [e′]i (mod q).

• Merge: Compute µ = c0 +
∑

i∈I [µ]i (mod q) and return m = ⌊(t/q) · µ⌉.

3.2 Basic Operations

In the following, we present basic operations which are homomorphic addition, multipli-

cation, and automorphism algorithms. The major difference between our scheme and the

standard BFV scheme is in their multiplication: our relinearization algorithm during the

multiplication is more expensive due to the linear structure of a joint public key, but it

provides the same functionality as shown below.

• MPHE.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
q , output ctadd = ct+ ct′ (mod q).

• MPHE.Mult(jrlk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct
′ = (c′0, c

′
1) and a joint

relinearization key jrlk, let ctmul = (c′′0, c
′′
1, c

′′
2) where c′′0 = ⌊(t/q) · (c0c′0)⌉ (mod q), c′′1 =

⌊(t/q) · (c0c′1 + c1c
′
0)⌉ (mod q) and c′′2 = ⌊(t/q) · (c1c′1)⌉ (mod q). Return the ciphertext

13

Algorithm 1 Relinearization procedure of MPHE

Input: jrlk = (b,d,v), ctmul = (c′′0, c
′′
1, c

′′
2)

Output: ctrelin = (c∗0, c
∗
1) ∈ R2

q

1: c∗2 ← c′′2 ⊡ b
2: (c∗0, c

∗
1)← (c′′0, c

′′
1 + c′′2 ⊡ d) + c∗2 ⊡ (v,u) (mod q)

ctrelin ← MPHE.Relin(jrlk; ctmul) where MPHE.Relin(·; ·) is the relinearization procedure de-

scribed in Alg. 1.

Correctness of homomorphic multiplication. Let [s]i, [r]i be the polynomials sampled

from χ during the generation of a key pair [sk]i = [s]i and [rlk]i = ([b]i, [d]i, [v]i) of the

i-th party and let s =
∑

i∈I [s]i and r =
∑

i∈I [r]i. First of all, we remark that the first step

of homomorphic multiplication computing ctmul is identical to the usual BFV scheme. If

ct and ct′ are valid BFV encryptions of m and m′, respectively, then ctmul = (c′′0, c
′′
1, c

′′
2) is

an encryption of mm′ under (1, s, s2), that is, c′′0 + c′′1 · s+ c′′2 · s2 ≈ ∆ ·mm′ (mod q).

Now suppose that (c∗0, c
∗
1) ← MPHE.Relin(jrlk; (c′′0, c

′′
1, c

′′
2)) is the output of our relin-

earization algorithm. We claim that c∗0+c
∗
1 ·s ≈ c′′0+c′′1 ·s+c′′2 ·s2 (mod q). Recall that the

joint public key satisfies b+s ·a ≈ 0 (mod q), d+r ·a ≈ s ·g (mod q) and v+s ·u ≈ −r ·g

(mod q). Then, we have

c∗0 + c∗1 · s = c′′0 + c′′1 · s+ (c′′2 ⊡ d) · s+ c∗2 ⊡ (v + s · u) (mod q)

≈ c′′0 + c′′1 · s+ c′′2 ⊡ (−rs · a+ s2 · g)− c∗2 ⊡ (r · g) (mod q)

≈ c′′0 + c′′1 · s+ r · (c′′2 ⊡ b) + c′′2 · s2 − r · c∗2 (mod q)

≈ c′′0 + c′′1 · s+ c′′2 · s2 (mod q)

as desired.

The packing technique of the BFV scheme enables us to encode multiple values in a

finite field into a single plaintext polynomial for better efficiency [10]. The (un)packing

algorithm has a similar algebraic structure with the canonical embedding map over the cy-

clotomic field K = Q[X]/(XN +1), and the automorphisms in the Galois group Gal(K/Q)

provide special functionality on the plaintext slots such as rotation. Below, we introduce

the homomorphic operation of the automorphism ψ.

• MPHE.Auto(jak; ct): Given a ciphertext ct = (c0, c1) and the joint automorphism key

jak = h, compute and return the ciphertext ctaut = (ψ(c0), 0) + ψ(c1)⊡ (h,k) (mod q).

Correctness of homomorphic automorphism. Let ctaut = (c′0, c
′
1) ← Auto(jak; ct)

14

for a ciphertext ct = (c0, c1). As mentioned above, the joint automorphism key jak = h

satisfies that h+ s · k ≈ ψ(s) · g (mod q). Therefore, we have

c′0 + c′1 · s = ψ(c0) + ψ(c1)⊡ (h+ s · k) (mod q)

≈ ψ(c0) + ψ(c1) · ψ(s) (mod q)

= ψ(c0 + c1 · s) (mod q)

3.3 Security

In this section, we show that our MPHE scheme achieves a semantic security under the

RLWE assumption.

Lemma 3.1 (Security of MPHE). The MPHE scheme described above is semantically

secure under the RLWE assumption with parameter (n, q, χ, σ).

Proof. Let I be a group of parties, A ⊊ I be a set, and H = I\A. We define some hybrid

games as follows:

• Game 0: This is a real world execution of the security game defined in Definition 2.2.

• Game 1: It is similar to Game 0, but the challenger samples [pk]i uniformly at

random from Rd×4
q for i ∈ H.

• Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of mb.

Let [pk]i = ([b]i, [d]i, [v]i, [h]i) be the public key of party i ∈ H. Since ([b]i,a) and

([v]i,u) follow the RLWE distribution of secret [s]i, a pair ([b]i, [v]i) is indistinguishable

from a uniform distribution over Rd×2
q . In addition, ([d]i,a) follows the RLWE distribution

of secret [r]i, [d]i is also indistinguishable from a uniform distribution over Rd
q . Meanwhile,

([d]i,a) and ([v]i,u) can be viewed as a ‘chain’ of two gadget encryptions of [s]i and

−[r]i under secrets [r]i and [s]i, respectively. Here we make an additional circular security

assumption which guarantees that our scheme remains secure even if [d]i, [v]i, and [h]i are

public. On the other hand, [h]i is an gadget encryption of ψ([s]i) under [s]i with a random

vector k. Therefore, Game 0 and Game 1 are computationally indistinguishable.

In both Game 1 and Game 2, the encryption key b[0] =
∑

i∈A[b]i[0] +
∑

i∈H [b]i[0]

is computationally indistinguishable from a uniform random variable over Rq. This is

because H is non-empty, and each [b]i is sampled uniformly from Rd
q for all i ∈ H.

Furthermore, under the RLWE assumption, encryptions of 0 and mb are computationally

15

indistinguishable. As a result, the difference in advantage between Game 1 and Game 2

is negligible.

Based on the above reasoning, we can conclude that the adversary’s advantage in

Game 0 is negligible. Therefore, our MPHE scheme achieves semantic security against

semi-malicious corruptions in a real-world execution of the game.

4 Construction of MGHE

In this section, we present a Multi-Group Homomorphic Encryption (MGHE) scheme,

which improves the functionality of our existing MPHE scheme by supporting homo-

morphic operations between multi-party ciphertexts that do not necessarily have to be

encrypted under the same key.

Following the previous section, we built an MGHE scheme from the BFV scheme, but

our idea is easily applicable to design multi-group variants of other HE schemes such as

BGV [10] and CKKS [18]. In particular, we implement MGHE schemes from both BFV

and CKKS and present experimental results in Section 6. We provide a formal description

of multi-group CKKS in Appendix A.2.

In Section 4.1, we provide a formal description of the MGHE scheme, and discuss

its connection to MPHE and MKHE. In Section 4.3, we outline the overall scheme of

MGHE together with its correctness proof and we provide the security analysis of MGHE

in Section 4.4.

4.1 Formalizing MGHE

An MGHE scheme over a plaintext spaceM is a tuple of algorithms and protocols MGHE =

(Setup, KeyGen, Enc, Dec, Eval):

• Setup: pp ← MGHE.Setup(1λ, 1d). On input the security parameter λ and a depth

bound d, the setup algorithm outputs a public parameter set pp.

• Key Generation Protocol: jpk← MGHE.KeyGen(I). For a group I, the parties i ∈ I

run the key-generation protocol and output a joint public key jpk corresponding to

I. Each party i ∈ I also obtains a private share [sk]i of the (implicitly defined) secret

key sk.

16

• Encryption: ct ← MGHE.Enc(jpk;m). Given a joint public key jpk and a message

m ∈M, output a ciphertext ct.

For convenience, we assume that every ciphertext includes references to the associ-

ated public keys even if it is not described explicitly. For example, a fresh ciphertext

contains a reference to the public key that is used in its encryption.

• Evaluation: ct ← MGHE.Eval(jpk1, . . . , jpkk;C, ct1, . . . , ctL). Given input a circuit

C :ML →M, L ciphertexts ct1, . . . , ctL, let jpk1, . . . , jpkk be the joint public keys

which are associated to at least one of input ciphertexts. The evaluation algorithm

outputs a ciphertext ct which contains L references to jpk1, . . . , jpkk.

• Decryption: m← MGHE.Dec(sk1, . . . , skk; ct). Given a ciphertext ct and the associ-

ated secret keys sk1, . . . , skk, the decryption algorithm outputs a message m ∈M.

Definition 4.1 (Correctness of MGHE). An MGHE scheme is said to be correct if

the following holds: Let pp ← MGHE.Setup(1λ, 1d). Let jpk1, . . . , jpkk be public keys each

of which is generated by parties in I1, . . . , Ik and sk1, . . . , skk the corresponding secret

keys, respectively. For any m1, . . . ,mL ∈ M and indices 1 ≤ k1, . . . , kL ≤ k, let cti ←

MGHE.Enc(jpkki ;mi). For any circuit C :ML →M of depth ≤ d, it holds that

MGHE.Dec(sk1, . . . , skk; MGHE.Eval(jpk1, . . . , jpkk;C, ct1, . . . , ctL)) = C(m1, . . . ,mL)

with an overwhelming probability in λ.

Definition 4.2 (Security of MGHE). Let I1, I2, . . . , Ik be groups and let I = ∪1≤j≤kIj.

For any set A ⊊ I, let H = I\A. An MGHE scheme is said to be semantically secure if

the advantage of A in the following game is negligible for any PPT adversary A:

• Setup: The challenger generates a public parameter pp← MGHE.Setup(1λ, 1d).

• Key Generation: The adversary plays with an honest challenger the key generation

protocols MGHE.KeyGen(pp, Ij) for all 1 ≤ j ≤ k. At the end of the protocol, the

adversary gets the secret shares {[skj]i : i ∈ A, 1 ≤ j ≤ k} and the challenger

receives {[skj]i : i ∈ H, 1 ≤ j ≤ k}.

• Challenge: The adversary chooses messages m0,m1 ∈M and an index j such that

Ij ⊈ A, and sends them to the challenger. The challenger samples a random bit

b ∈ {0, 1} and sends MGHE.Enc(pkj ;mb) back to the adversary.

17

• Output: The adversary A outputs b′. The advantage of the adversary is defined as∣∣Pr[b = b′]− 1
2

∣∣.
Connections to MPHE and MKHE. MPHE and MKHE are generalizations of HE

with distributed authority with different characteristics. Our proposal, the MGHE prim-

itive, can be considered a generalization of both primitives. In other words, MPHE and

MKHE are specific instantiations of MGHE which are obtained by restricting the number

of groups or parties. An MGHE scheme works on groups of parties, where the evaluation

within a group is done in MPHE sense while it is done in MKHE sense across the groups.

Hence, MGHE over a single group can be viewed as an MPHE scheme, on the other hand,

it can also be viewed as an MKHE scheme when each group consists of only one party.

In addition, the semantic security of MGHE is also a natural extension of security

definitions of MPHE and MKHE. In the single-group case, there is only one index to be

chosen in the challenge phase, so the security game is the same as that of MPHE [34]. On

the other hand, if each group Ij contains only one party, then the encryption is done by

a single key which corresponds to the ordinary semantic security of (MK)HE.

4.2 Basic Scheme

As we shall see, the setup, key generation, and encryption procedures happen to be identi-

cal to our MPHE scheme and thus is non-interactive. However, it also supports homomor-

phic operations between ciphertexts under different keys, and the dimension of ciphertext

dimension may increase as the homomorphic computation progresses when we add or

multiply two multi-group ciphertexts corresponding to different sets of groups.

• MGHE.Setup(1λ): Run MPHE.Setup(1λ) and return the public parameter pp = (N, t, q, χ,

σ,a,u,k,g−1,g).

• MGHE.IndKeyGen(i): Each party i runs MPHE.IndKeyGen(i) and outputs secret keys, and

public keys [sk]i = [s]i, [pk]i = ([b]i, [d]i, [v]i, [h]i), respectively.

• MGHE.JointKeyGen({[pk]i : i ∈ I}): Given a set of public keys of i ∈ I, output the joint

public key jpk = (b,d,v,h) ← MPHE.JointKeyGen({[pk]i : i ∈ I}). We write the joint

encryption key as jek = (b[0],a[0]), the joint relinearization key as jrlk = (b,d,v), and the

joint automorphism key as jak = h.

• MGHE.Enc(jek;m): Given a joint encryption key jek and a message m, return ct ←

MPHE.Enc(jek;m).

18

As we discussed in Section 4.1, an MGHE ciphertext holds the references to the as-

sociated public keys. In our scheme, each ciphertext stores an ordered set of the involved

groups. For example, a fresh ciphertext encrypted by a joint public key jpk =
∑

i∈I [pk]i is

linked to the set containing a single element I. More generally, a multi-group encryp-

tion of m corresponding an ordered set of k groups {I1, . . . , Ik} is an (k + 1) tuple

ct = (c0, c1, . . . , ck) ∈ Rk+1
q satisfying c0 + c1 · s1 + · · · + ck · sk = ∆ · m + e (mod q)

for some error e where sj =
∑

i∈Ij [s]i is the joint secret key of Ij for 1 ≤ j ≤ k.

Finally, we present a basic (ideal) decryption algorithm and a distributed decryption

protocol. For given a ciphertext ct = (c0, . . . , ck) which is linked to k groups I1, . . . ,

Ik, the basic algorithm takes as input the joint secret keys si of the associated groups

Ii and recovers the plaintext message while the distributed decryption protocol let the

parties in
⋃

1≤j≤k Ij perform the same computation securely in a distributed manner. As

we mentioned before, we describe how to set concrete σ′ for the distributed decryption

decryption in Section 5.2.

• MGHE.Dec(sk1, . . . , skk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret keys

skj = sj for 1 ≤ j ≤ k, return m =
⌊
(t/q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod t).

• MGHE.DistDec({[sk]i : i ∈ ∪1≤j≤kIj}, σ′; ct): Let ct = (c0, . . . , ck) be a multi-group cipher-

text corresponding to an ordered set of groups (I1, . . . , Ik). The distributed decryption

protocol consists of the following procedures:

• Partial decryption: Let I = ∪1≤j≤kIj . Each party i ∈ I samples [e′]i ← Dσ′ , then

broadcasts [µ]i =
(∑

1≤j≤k, i∈Ij cj

)
· [s]i + [e′]i (mod q).

• Merge: Compute m =
⌊
(t/q) ·

(
c0 +

∑
i∈I [µ]i

)⌉
(mod t).

4.3 Basic Operations

Homomorphic operations include a pre-processing step that aligns the components of input

ciphertexts as follows. For given two multi-group ciphertexts, we consider the correspond-

ing ordered sets and compute their union, say {I1, . . . , Ik}. Then, we extend the input

ciphertexts by padding some zeros and rearranging their components so that both cipher-

texts are decryptable with respect to the same secret sk = (s1, . . . , sk) where sj is the joint

secret of group Ij , 1 ≤ j ≤ k. We assume that this pre-processing is always performed

on the input ciphertext and the output ciphertext is linked to the union {I1, . . . , Ik} of

ordered sets even if it is not explicitly mentioned in the algorithm description.

19

Algorithm 2 Relinearization procedure of MGHE

Input: ctmul = (ci,j)0≤i,j≤k, jrlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗j)0≤j≤k ∈ Rk+1

q .

1: c∗0 ← c0,0
2: for 1 ≤ j ≤ k do
3: c∗j ← c0,j + cj,0 (mod q)
4: end for
5: for 1 ≤ j ≤ k do
6: c∗j ← c∗j +

∑
1≤i≤k ci,j ⊡ di (mod q)

7: end for
8: for 1 ≤ i ≤ k do
9: c′′i ←

∑
1≤j≤k ci,j ⊡ bj

10: (c∗0, c
∗
i)← (c∗0, c

∗
i) + c′′i ⊡ (vi,u) (mod q)

11: end for

• MGHE.Add(ct, ct′): Given two ciphertexts ct and ct′, return the ciphertext ctadd = ct+ ct′

(mod q).

• MGHE.Mult(jrlk1, . . . , jrlkk; ct, ct
′): Given two multi-group ciphertexts ct = (c0, . . . , ck),

ct′ = (c′0, . . . , c
′
k) and k joint relinearization keys jrlk1, . . . , jrlkk, compute ctmul = (ci,j)0≤i,j≤k

where ci,j =
⌊
(t/q) · cic′j

⌉
(mod q) for 0 ≤ i, j ≤ k. Return the ciphertext ctrelin ←

MGHE.Relin(jrlk1, . . . , jrlkk; ctmul) where MGHE.Relin(·) is the relinearization procedure de-

scribed in Alg. 2.

We remark that the relinearization algorithm can be shared between our MGHE scheme

and the previous MKHE scheme [15] as they have the same ciphertext structure. Our

relinearization algorithm is an improvement of the previous method which reduces the

number of external products by almost a factor of 2. More formally, the prior algorithm

computes lines 8-11 of Alg. 2 by repeating the following computation iteratively over

1 ≤ i, j ≤ k:

(c∗0, c
∗
i)← (c∗0, c

∗
i) + (ci,j ⊡ bj)⊡ (vi,u) (mod q).

We observe that
∑

1≤j≤k ci,j ⊡bj is pre-computable and reusable for the relinearization of

multiple ciphertext components. This idea consequently reduces the number of external

products down to 2k2 + 2k in total, compared to the former method which requires 4k2

external products.

We provide a high-level sketch of the correctness proof. We refer the reader to Ap-

pendix B for details about the noise analysis.

20

Correctness of homomorphic multiplication. Suppose that ct and ct′ are encryptions

of m and m′ under secret sk = (s1, . . . , sk), respectively, and let ctmul = (ci,j)0≤i,j≤k =⌊
(t/q) · ct⊗ ct′

⌉
(mod q). Then, it satisfies following relation:

〈
ctmul, (1, sk)⊗ (1, sk)

〉
≈

∆ · mm′ (mod q). We claim that if ctrelin ← MGHE.Relin({jrlkj}1≤j≤k; ctmul), then the

output ciphertext ctrelin = (c∗0, . . . , c
∗
k) satisfies c

∗
0+

∑
1≤j≤k c

∗
j · sj ≈

∑
0≤i,j≤k ci,j · sisj and

thereby is a valid encryption of mm′.

First, we have

c∗0+
∑

1≤j≤k

c∗j · sj = c0,0+
∑

1≤j≤k

(c0,j + cj,0) · sj +
∑

1≤i,j≤k

(ci,j ⊡di) · sj +
∑

1≤i≤k

c′′i ⊡ (vi+ si ·u)

where c′′i =
∑

1≤j≤k ci,j ⊡ bj from the definition of Alg. 2.

We also consider the properties sj ·di ≈ −risi ·a+sisj ·g ≈ ri ·bj+sisj ·g (mod q) and

vi + si · u ≈ −ri · g (mod q) of the joint public keys and deduce the following equations:

∑
1≤i,j≤k

(ci,j ⊡ di) · sj ≈
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i,j≤k

ci,j · sisj (mod q),

∑
1≤i≤k

c′′i ⊡ (vi + si · u) ≈ −
∑

1≤i≤k

ri · c′′i = −
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) (mod q).

Putting them all together, we obtain

c∗0+
∑

1≤j≤k

c∗j · sj ≈ c0,0+
∑

1≤j≤k

(c0,i+ ci,0) · sj +
∑

1≤i,j≤k

ci,j · sisj =
∑

0≤i,j≤k

ci,j · sisj (mod q)

which completes the correctness proof of the relinearization algorithm.

The idea of homomorphic automorphism for MPHE can be also extended to the multi-

group case. Given a multi-group ciphertext ct = (c0, . . . , ck) linked to k groups I1, . . . , Ik,

the joint automorphism key of Ij is used to perform the key-switching procedure of the

j-th entry ψ(cj) during the homomorphic evaluation of ψ ∈ Gal(K/Q).

• MGHE.Auto(jak1, . . . , jakk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and the joint au-

tomorphism keys jakj = hj for 1 ≤ j ≤ k, compute and return the ciphertext ctaut =

(c′0, c
′
1, . . . , c

′
k) where c

′
0 = ψ(c0)+

∑
1≤j≤k(ψ(cj)⊡hj) (mod q) and c′j = ψ(cj)⊡k (mod q)

for 1 ≤ j ≤ k.

Correctness of homomorphic automorphism. We show below the correctness of

21

multi-group homomorphic automorphism algorithm:

c′0 +
∑

1≤j≤k

c′j · sj = ψ(c0) +
∑

1≤j≤k

ψ(cj)⊡ (hj + sj · k)

≈ ψ(c0) +
∑

1≤j≤k

ψ(cj) · ψ(sj) = ψ(c0 +
∑

1≤j≤k

cj · sj) (mod q)

where ct = (c0, . . . , ck) and ctaut = (c′0, . . . , c
′
k)← MGHE.Auto(h1, . . . ,hk; ct).

Bootstrapping. For a fixed parameter set, the BFV and CKKS schemes can support

the evaluation of circuits with a limited depth due to the reduction of ciphertext modulus

or the noise growth induced from homomorphic operations. Bootstrapping is a method

to refresh a ciphertext and recover its computational capability. From the technical point

of view, bootstrapping is done by homomorphically evaluating the decryption circuit of

HE. The known bootstrapping methods of BFV or CKKS (e.g. [14, 17, 12]) follow a

similar workflow that includes arithmetic operations and linear transformations, which

can be represented using basic arithmetics and homomorphic automorphisms. As these

basic operations are supported in our MGHE schemes, the bootstrapping procedure can

be also performed in a similar manner.

Asymptotically faster multiplication. Recent research [32] has enhanced the multi-

plication of BFV and CKKS in MKHE to achieve a linear time complexity. They lever-

age a newly proposed concept called homomorphic gadget decomposition, which satis-

fies
〈
g−1(a)⊙ g−1(b),g

〉
= ab (mod q) for a, b ∈ Rq, to replace the term g−1(ci,j) with

g−1(ci)⊙ g−1(c′j). As our MGHE is a natural extension of MKHE, we can directly adopt

their algorithm to both BFV and CKKS. Notably, their multiplication in BFV entails

additional (homomorphic) gadget decomposition g̃−1 : Rq̃ → Rd̃ on q̃ := q2 with a gadget

vector g−1 ∈ Rd̃
q̃ and the corresponding external product c⊡̃v =

〈
g̃−1(c),v

〉
(mod q̃).

We briefly describe our updated algorithm below and refer the reader to [32] for further

details.

• MGHE.Mult(jrlk1, . . . , jrlkk; ct, ct
′): Given two multi-group ciphertexts ct = (c0, . . . , ck),

ct′ = (c′0, . . . , c
′
k) and k joint relinearization keys jrlk1, . . . , jrlkk, run Alg. 3 and return the

ciphertext ctrelin = (c∗0, . . . , c
∗
k).

22

Algorithm 3 Multiplication procedure of MGHE with homomorphic gadget decomposi-
tion

Input: ct = (ci)0≤i≤k, ct
′ = (c′i)0≤i≤k, jrlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.

Output: ctrelin = (c∗j)0≤j≤k ∈ Rk+1
q .

1: c∗0 ← ⌊(t/q) · c0c′0⌉ (mod q)
2: for 1 ≤ j ≤ k do

3: c∗j ←
⌊
(t/q) · c0c′j + cjc

′
0

⌉
(mod q)

4: end for
5: z←

∑
1≤i≤k g̃

−1(ci)⊙ di (mod q)

6: w←
∑

1≤j≤k g̃
−1(c′j)⊙ bj (mod q)

7: for 1 ≤ j ≤ k do
8: c∗j ← c∗j + c′j⊡̃z (mod q)
9: end for

10: for 1 ≤ i ≤ k do
11: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci⊡̃w)⊡ (vi,u) (mod q)

12: end for

4.4 Security

In this section, we show that our MGHE scheme achieves a semantic security that we

defined in Section 4.1 under the RLWE assumption.

Lemma 4.1 (Security of MGHE). The MGHE scheme described above is semantically

secure under the RLWE assumption with parameter (n, q, χ, σ).

Proof. Let Ii be sets such that I = ∪0≤i≤kIi and H = I\A for any set A ⊊ I. We define

some hybrid games as follows:

• Game 0: This is a real world execution of the security game defined in Definition 4.2.

• Game 1: It is similar to Game 0, but the challenger samples [pk]i uniformly at

random from Rd×4
q for i ∈ H.

• Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of mb.

The computational indistinguishability of Game 0 and Game 1 is directly inferred

from the indistinguishability of Game 0 and Game 1 of MPHE, which is described in

proof of Lemma 3.1. This is because the public key used in our scheme is identical to the

one used in MPHE.

In both Game 1 and Game 2, the adversary sends a group index j to the challenger

in the security game. The encryption key b[0] used in these games is given by b[0] =∑
i∈Ij∩A[b]i[0] +

∑
i∈Ij∩H [b]i[0]. Since Ij ∩ H is non-empty and each [b]i is uniformly

23

sampled from Rd
q for all i ∈ H, b[0] is computationally indistinguishable from a uniform

random variable over Rq. Thus, under the RLWE assumption, the encryptions of 0 and

mb in both games are also computationally indistinguishable. Therefore, the difference in

advantage between these two games is negligible.

According to the aforementioned reasons, we can conclude that the advantage of the

adversary in Game 0 is negligible. Since Game 0 is a real world-execution game with

the MGHE scheme, our MGHE scheme achieves semantic security against semi-malicious

corruptions.

5 Constructing MPC from MGHE

The MGHE sheme, being a generalization of both the MKHE and MPHE primitives, can

serve as a drop-in replacement for these primitives in any application built with them.

As a result, MGHE can be effectively utilized in general 2-round MPC computation [39],

outsourced computation applications [38], and distributed machine learning setups [22].

Additionally, it can be employed as a building block in MPC protocols that require varying

number of parties [20].

5.1 Overview

MPHE and MKHE are both viable options for building an MPC protocol [35, 38, 39],

but each has limitations that restrict their usefulness in certain applications. For example,

MPHE-based MPC protocols require parties to communicate with each other to generate

a shared key. On the other hand, MKHE schemes are more time and space intensive than

MPHE because ciphertexts expand as they interact with other ciphertexts under different

keys. Thus, an MGHE scheme that integrates the strengths of both these schemes can

be used to construct round-efficient MPC protocols. In Figure 2, we describe a high-

level structure of an MPC computation in three phases. Here, we assume three entities

consisting of key owners, data owners, and a cloud server.

• [Phase I] Setup: In the first step of the protocol, key owners generate their key

pairs and broadcast the public keys. We can treat this step as an offline phase since

these procedures have to be run only once and each party is able to produce a key

pair independently. When Phase I is ended, a joint public key is built publicly by

summing up the individual public keys without any interaction between the parties.

24

Figure 2: MPC protocol using MGHE and previous work [38]. In [38], cpk and rlk represent
the common public key for encryption and evaluation key, respectively. In our MGHE
scheme, these keys can be obtained from the joint public key jpk directly.

• [Phase II] Encryption: After encrypting inputs with the joint encryption key,

the ciphertexts are provided to the server which may be an external entity such as

a cloud service provider. In general, semi-honest cloud service providers or parties

themselves in MPC may play the role of computing party. When Phase II is ended,

the circuit is evaluated using the homomorphic properties of the encryption scheme

and thus does not require any interaction.

• [Phase III] Decryption: When the evaluation is over, we use an interactive proto-

col known as distributed decryption to securely decrypt the result without revealing

the secret key of each party. In the protocol, each party partially decrypts the ci-

phertext using its own secret key with noise smudging technique [4], and the output

message is obtained by adding all of the partially decrypted results.

Implication of Non-interactive Key Generation. Recall that all prior MPHE yields

multi-round key generation in Phase I due to the quadratic structure of the evaluation key

with respect to the individual secret keys. In the MPC protocol derived from the previous

MPHE, each party broadcasts twice for the key generation: (1) individual encryption key

to generate the joint encryption key and (2) individual evaluation key, which is constructed

using the joint encryption key, to generate the joint evaluation key. In our scheme, the

novel refactoring of the evaluation key enables the parties to broadcast their keys only once.

25

Each party broadcasts the individual public key, which implicitly contains the shares of the

evaluation key. Then, the joint public key is generated publicly to be used for encryption

and evaluation. By sharing the individual key pair in the first round itself, each party does

not require interaction with other parties in the rest of the process (and can be offline

until the decryption process). Thus our setup phase is non-interactive in the sense of Non-

Interactive MPC [7, 29] that each party independently and asynchronously broadcasts a

single message.

The advantages of this non-interactivity are even more pronounced when a key owner

belongs to multiple groups. For example, in the MPC protocol with interactive setup, a

key owner must join several key generation protocols to generate joint public keys cor-

responding to the groups containing the party. Moreover, all parties in the group have

to participate simultaneously since the key generation requires communications between

the parties. However, in the non-interactive setup, the server or the parties can generate

joint public keys after each party broadcasts its own public key without any interaction

with other parties. Therefore, we can achieve better efficiency since there is no need to

participate in the key generation protocol multiple times and each party can broadcast its

own key at any time before generating the joint public key.

5.2 MPC Protocol Secure Against Semi-Malicious Corruptions

We provide a concrete MPC protocol in Figure 3 for a polynomial-time deterministic circuit

C. The correctness of the protocol follows from the correctness of the MGHE construction.

In this section, we prove the protocol’s security against a semi-malicious adversary. Note

that a semi-malicious adversary follows the honest protocol specification with arbitrary

values for their random coins [4, 39, 35].

To prove the security of the MPC protocol from MGHE, we begin by demonstrating

the simulation security of the distributed decryption process in MGHE. For a circuit C, let

us denote by BC an error bound of a ciphertext obtained by evaluating the circuit C over

fresh ciphertexts. Given BC , we can guarantee the correctness and simulation security of

the distributed decryption if σ′ is exponentially larger than the bound BC .

Lemma 5.1 (Correctness of Distributed Decryption). Let n be the number of parties in

I = ∪1≤j≤kIj and Bσ′ be bound of the samples from Dσ′ with non-negligible probability.

If q ≥ 2nt(BC + Bσ′), then the distributed decryption procedure MGHE.DistDec satisfy

correctness.

26

Setup: A public parameter pp is generated by MGHE.Setup(1λ). All parties share the same
parameter set.

Input: A circuit C :ML →M where L is the number of inputs. The inputs x1, x2, . . . , xL
are held among the parties.

The Protocol

Phase I: Let I be the set of parties. Each party i ∈ I generates a key pair ([sk]i, [pk]i)←
MGHE.IndKeyGen(i) and an automorphism key [ak]i ← MGHE.IndAutKeyGen([sk]i), then
broadcasts ([pk]i, [ak]i).

Phase II:

• Now anybody can compute the joint public and automorphism keys of an arbitrary
group. We suppose that the joint keys of k groups I1, I2, . . . , Ik ⊆ I are generated as
follows:

jpkj ← MGHE.JointKeyGen({[pk]i : i ∈ Ij}),
jakj ← MGHE.JointAutKeyGen({[ak]i : i ∈ Ij}).

We denote by jekj the encryption key of Ij .

• For each 1 ≤ ℓ ≤ L, the party with input xℓ encrypts it using a joint public key jpkj
for some 1 ≤ j ≤ k and broadcasts the ciphertexts ctℓ ← MGHE.Enc(jekj ;xℓ).

Phase III:

• The circuit C is evaluated as following:

ct← MGHE.Eval({jpkj}1≤j≤k, {jakj}1≤j≤k;C, ct1, . . . , ctL).

• Finally, the parties concurrently take part in the distributed decryption protocol
with the error parameter σ′ to deduce the output m:

m← MGHE.DistDec(I, σ′; ct)

Output: Return the decrypted message m.

Figure 3: πC : MPC protocol for a circuit C using MGHE

27

Proof. Given the partial decryptions [µ]i of parties i ∈ I, we have

c0 +
∑
i∈I

µi = c0 +
∑
i∈I

 ∑
1≤j≤k,i∈Ij

cj

 · [s]i +∑
i∈I

[e′]i

= ∆ ·m+ e+ e′

where e is bounded by nBC and e′ =
∑

i∈I [e
′]i is bounded by nBσ′ . Since q ≥ 2nt(BC +

Bσ′), we have |e+ e′| ≤ q/2t, which ensures the correctness.

Below, we show that the simulation security of the distributed decryption and the

MPC protocol. We consider a scenario where n− 1 out of n parties are corrupted.

Lemma 5.2 (Security of Distributed Decryption). If σ′ > 0 is a real number such that

the samples from Dσ′ are larger than 2λBC without negligible probability, then the dis-

tributed decryption procedure MGHE.DistDec achieves statistical simulation security against

any static semi-malicious adversary corrupting exactly n− 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S against the

adversary A which has an access to the inputs and secret keys of all parties except h and

receives the output message m from the ideal functionality. For given evaluated ciphertext

ct = (c0, . . . , cL), the simulator computes and publishes the simulated partial decryption

[µ]′h of the honest party h using a smudging error [e′]smh ← Dσ′ :

[µ]′h = ∆ ·m+ [e′]smh −
∑
i ̸=h

γi − c0 (1)

where γi =
(∑

1≤j≤k,i∈Ij cj

)
· [s]i (mod q) for i ̸= h.

Then, the partial decryption of h is generated from the partial decryptions of corrupted

parties and the output message as ∆ ·m+ [e′]smh −
∑

i ̸=h γi − c0. On the other hand, the

real partial decryption also can be written as ∆ ·m + e + [e′]smh −
∑

i ̸=h γi − c0 where e

is the noise in the ciphertext ct. By the smudging lemma [4], the distributions of [e′]smh

and e + [e′]smh are statistically indistinguishable. It concludes that the simulated partial

decryption and the real partial decryption are statistically indistinguishable.

Theorem 5.1 (Security of MPC protocol). Given a poly-time computable deterministic

circuit C with L inputs, the protocol πC described in Figure 3 UC-realizes the circuit C

against any static semi-malicious adversary corrupting exactly n− 1 parties.

28

Proof. Let a party h be the only honest party. We construct a simulator S against the

adversary A as follows.

The Simulator. In Phase I, the simulator samples the public key of h from uniform

distribution over Rd×4
q instead of MGHE.IndKeyGen(h). The simulator also plays Phase II

honestly on behalf of the honest party, but encrypts 0 instead of the real input from h, if

any. As the simulator has access to the inputs and secret keys of all parties except h from

the witness tape, the simulator can evaluate the circuit C on ciphertexts ct1, . . . , ctL and

obtain the resulting ciphertext ct. In addition, it also receives the output message m from

the ideal functionality. In Phase III, the simulator computes the partial decryption for the

party h as same as the simulator introduced in the security proof of Lemma 5.2.

Now, we define some hybrid games and prove the computational indistinguishability

between the real and ideal worlds.

• The game REAL(π,A,Z): An execution of the protocol π in the real world with

environment Z and semi-malicious adversary A.

• The game HYB1
(π,A,Z): This is the same as REAL(π,A,Z) except the output of partial

decrpytion of h. In Phase III, it publishes the simulated partial decryption which is

computed via (1).

• The game HYB2
(π,A,Z): This is similar to HYB1

(π,A,Z), but in Phase II the party h

encrypts 0 instead of the real input if any.

• The game IDEAL(F ,S,Z): It executes the MPC protocol with the simulator S.

The difference from HYB2
(π,A,Z) is that the public key of h is sampled from a

uniform distribution over Rd×4
q instead of the individual key generation algorithm

MGHE.IndKeyGen(h) in Phase I.

From the above games, we consider the following claims.

Claim 1. REAL(π,A,Z) and HYB1
(π,A,Z) are statistically indistinguishable.

Proof. According to the description of the simulator, the partial decryption of h in the

game HYB1
(π,A,Z) is generated from the partial decryptions of corrupted parties and the

output message as ∆ ·m+ [e′]smh −
∑

i ̸=h γi− c0, while the real partial decryption also can

be written as ∆ ·m+ e+ [e′]h −
∑

i ̸=h γi − c0 where e is the noise in the ciphertext ct. By

29

Lemma 5.2, the distributions of [e′]smh and e+[e′]h are statistically indistinguishable. This

indicates that REAL(π,A,Z) and HYB1
(π,A,Z) are also statistically indistinguishable.

Claim 2. HYB1
(π,A,Z), HYB

2
(π,A,Z), and IDEAL(F ,S,Z) are computationally indistinguish-

able.

Proof. The differences in three games correspond to the differences in Game 0, Game 1,

and Game 2 of Lemma 4.1. In detail, the difference between HYB1
(π,A,Z) and HYB2

(π,A,Z)

is that the party h encrypts the real input in HYB1
(π,A,Z) while it encrypts 0 in the game

HYB2
(π,A,Z), if any. Furthermore, the difference between HYB2

(π,A,Z) and IDEAL(F ,S,Z) is

in the public key pkh. In HYB2
(π,A,Z), pkh is a valid public key generated by h while it

is sampled from a uniform distribution over Rd×4
q in the game IDEAL(F ,S,Z). Thus, by

Lemma 4.1, the three games HYB1
(π,A,Z), HYB

2
(π,A,Z), and IDEAL(F ,S,Z) are computa-

tionally indistinguishable.

According to the claims, we conclude that the MPC protocol πC is secure in the semi-

malicious model against n− 1 corrupted parties.

To handle the arbitrary number of corruptions, we can establish security proof by

constructing the extended protocol as outlined in [39]. In addition, we can transform

our MPC protocol, which is secure against semi-malicious attackers, into a protocol that

offers security against malicious corruptions without introducing any additional rounds.

This transformation can be achieved by leveraging non-interactive zero-knowledge proofs,

as described in [4].

6 Experimental Results

We implemented our MGHE scheme based on BFV and CKKS. The source code is written

in GO programming language and is built on Lattigo [33] version 2.3.0. We conducted

experiments on a system equipped with Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz and

64GB RAM. In our implementation, the key distribution χ samples the coefficients from

the ternary set −1, 0, 1 with equal probabilities of 0.25 for −1 and 1, and a probability of

0.5 for 0. The error parameter is set to σ = 3.2.

30

6.1 Basic Operations

Table 1 shows the execution time of multiplication of our MGHE scheme. The experiment

was conducted using two different parameter sets: (N, ⌈log pq⌉) = (214, 438) and (215, 880)

where p is a special modulus. Both parameter sets ensure a security level of at least 128

bits [1]. Ours shows the performance of Alg. 2 where a minor optimization is introduced

and Ours+ shows that of Alg. 3 which applies the technique of [32]. As our MGHE supports

computation on groups of parties, we measured the performance varying the number of

groups.

According to Table 1, the number of parties in groups does not affect the execution

time in both BFV and CKKS. It is because, as described in Section 3.1, the size of

ciphertext does not expand even if there are many parties in the group. On the other

hand, the execution time depends on the dimension of the base ring and the number

of groups participating in the evaluation. As the dimension of the plaintext increases,

the ciphertext modulus increases and eventually affects the execution time of arithmetic

operations. Moreover, according to Section 4.3, relinearization (or automorphism) requires

more external products when there are more groups involved in the evaluation. Therefore,

the execution time increases with the number of groups.

We also present the performance of the MKHE scheme [15] and MPHE scheme [38] for

comparison. Since MKHE and MPHE are instances of MGHE where each group consists

of a single party and single group, respectively, the MKHE scheme and MPHE scheme

have its results in Table 1 only when n = k and k = 1, respectively. Upon comparing the

performance of MKHE and our method, the table shows that our multiplication algorithm

exhibits slightly faster operation times than previous MKHE. This is due to our approach,

as explained in Section 4.2, where we reduce the number of external products during the

relinearization. Moreover, in the case of a large number of groups, it is even faster than

our method when we apply the recent technique introduced in [32]. We also remark that

although MPHE shows better performance than other methods, it requires interactions

among the parties before the evaluation to generate the joint public key.

6.2 Application to Machine Learning Service

One possible application of MGHE is to enable a secure workflow of machine learning

comprising multiple model owners. Consider a scenario where a model is trained using

datasets owned by multiple providers. If the data owners can be determined before training,

31

N n k

Mult + Relin

BFV CKKS

Ours Ours+ [15] [38] Ours Ours+ [15] [38]

214

1 1 78.7 118.4 84.1 32.6 51.6 72.9 51.2 17.7

2
1 77.9 120.4 - 33.4 50.8 75.3 - 17.1

2 173.4 224.4 196.2 - 122.8 133.4 139.7 -

4

1 80.1 121.6 - 32.9 51.6 76.9 - 17.4

2 175.3 224.1 - - 124.5 133.6 - -

4 476.4 420.8 589.7 - 335.8 250.5 450.7 -

8

1 78.4 118.9 - 33.3 50.8 77.2 - 17.2

2 178.1 223.5 - - 123.6 135.1 - -

4 461.4 422.7 - - 337.1 249.4 - -

8 1473.0 811.7 2014.2 - 1081.9 495.9 1600.7 -

215

1 1 595.9 1036.8 605.5 202.0 414.2 642.5 404.1 165.7

2
1 593.1 1019.4 - 201.5 412.9 640.7 - 170.8

2 1308.3 1929.8 1477.9 - 1014.9 1094.3 1089.7 -

4

1 599.2 1024.4 - 204.2 413.7 643.1 - 164.6

2 1324.9 1945.7 - - 1008.4 1100.6 - -

4 3556.5 4006.8 4582.9 - 2844.5 2177.3 3553.1 -

8

1 593.2 1033.9 - 202.7 413.3 645.5 - 168.7

2 1319.8 1987.1 - - 1011.4 1103.5 - -

4 3515.2 3954.5 - - 2825.1 2147.2 - -

8 10681.1 6871.5 15257.5 - 9008.9 4449.3 13052.8 -

Table 1: Performance of our MGHE schemes, the MKHE scheme by Chen et al. [15],
and the MPHE scheme by Mouchet et al. [38]: execution times to operate homomorphic
multiplication (Mult + Relin), taken in milliseconds (ms). N denotes the dimension of base
ring, n and k denote the number of the associated parties and groups (keys), respectively,
to the ciphertext. Ours+ refers to our MGHE scheme combined with the technique of [32].

the MPHE scheme would be a reasonable solution for privacy-preserving training of the

model. In the case of inference, however, the clients may not be determined aforehand and

the model may deal with multiple independent clients. In this case, employing an MKHE

scheme for inference becomes more practical due to its enhanced flexibility. The model

and the client’s data are encrypted using distinct keys owned by the model owners and

the client, respectively. These encrypted inputs are then transformed into encrypted multi-

key ciphertext under their respective keys. After performing inference in 2-key MKHE, the

output can be obtained through distributed decryption involving both the model owners

and the client. As a result, our MGHE interpolates between MPHE (where the model is

trained) and MKHE (where the inference is performed) so that the entire process can be

done in the same encryption scheme.

32

Data Performance

MNIST # Training Samples 11,982 Training Time (single-key) 75 min

Validation Samples 1,984 Validation Time (2-key) 8 min

Features 196 Accuracy 90.6%

Iterations 5

Batch Size 1,024

Learning Rate 1.0

Table 2: Result of logistic regression on MNIST dataset. The parameter set (N, ⌈log pq⌉) =
(216, 1761) is used.

Several researches [42, 25, 43] uses only MPHE to realize secure machine learning.

Similar to our approach, the owners of the training data generate the joint key and train the

model in the MPHE scheme. However, in the inference stage, a client’s data is encrypted

using the model owners’ joint key and then evaluated to produce the output. Subsequently,

the output is key-switched to be encrypted under the client’s key, enabling the client to

decrypt it. We notice that this scenario has a drawback that, since the client’s data is

encrypted under the model owners’ key, the model owners can work together to peek the

client’s data, which further stress the advantage of MGHE in secure machine learning

services.

As a proof-of-concept, we implemented a logistic regression model on top of our MGHE

scheme. We did not apply the technique of [32] since, in the 2-group case, our multiplication

algorithm (Alg. 2) shows better performance than the method employing the aforemen-

tioned technique (Alg. 3). Following the model of [30], we solved the classification problem

between 3 and 8 of the MNIST dataset [23]. The original images of 28×28 are compressed

to 14 × 14 pixels by taking the mean of 2 × 2 pixel blocks. The sigmoid function in the

interval [−16, 16] is approximated by y = −0.0002x3+0.0843x+0.5. Using the parameter

set (N, ⌈log pq⌉) = (216, 1761), our model achieved an accuracy of 90.6% with a train-

ing time of 75 minutes and a validation time of 8 minutes. Additional details about the

dataset, hyperparameters, and performance of the experiment are provided in Table 2.

33

Bibliography

[1] Martin Albrecht et al.Homomorphic Encryption Security Standard. Tech. rep. Toronto,

Canada: HomomorphicEncryption.org, Nov. 2018.

[2] Asma Aloufi et al. “Blindfolded evaluation of random forests with multi-key homo-

morphic encryption”. In: IEEE Transactions on Dependable and Secure Computing

(2019).

[3] Prabhanjan Ananth et al. “Multi-key fully-homomorphic encryption in the plain

model”. In: Theory of Cryptography Conference. Springer. 2020, pp. 28–57.

[4] Gilad Asharov et al. “Multiparty computation with low communication, computa-

tion and interaction via threshold FHE”. In: Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer. 2012, pp. 483–501.

[5] Saikrishna Badrinarayanan et al. “Secure MPC: laziness leads to GOD”. In: Inter-

national Conference on the Theory and Application of Cryptology and Information

Security. Springer. 2020, pp. 120–150.

[6] Jean-Claude Bajard et al. “A full RNS variant of FV like somewhat homomorphic

encryption schemes”. In: International Conference on Selected Areas in Cryptogra-

phy. Springer. 2016, pp. 423–442.

[7] Amos Beimel et al. “Non-interactive secure multiparty computation”. In: Annual

Cryptology Conference. Springer. 2014, pp. 387–404.

[8] Dan Boneh et al. “Threshold cryptosystems from threshold fully homomorphic en-

cryption”. In: Annual International Cryptology Conference. Springer. 2018, pp. 565–

596.

[9] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from

classical GapSVP”. In: Annual Cryptology Conference. Springer. 2012, pp. 868–886.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homo-

morphic encryption without bootstrapping”. In: ACM Transactions on Computation

Theory (TOCT) 6.3 (2014), pp. 1–36.

34

[11] Zvika Brakerski and Renen Perlman. “Lattice-based fully dynamic multi-key FHE

with short ciphertexts”. In: Annual Cryptology Conference. Springer. 2016, pp. 190–

213.

[12] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Improved bootstrapping for approxi-

mate homomorphic encryption”. In: Annual International Conference on the Theory

and Applications of Cryptographic Techniques. Springer. 2019, pp. 34–54.

[13] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Multi-key homomorphic encryption

from TFHE”. In: International Conference on the Theory and Application of Cryp-

tology and Information Security. Springer. 2019, pp. 446–472.

[14] Hao Chen and Kyoohyung Han. “Homomorphic lower digits removal and improved

FHE bootstrapping”. In: Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques. Springer. 2018, pp. 315–337.

[15] Hao Chen et al. “Efficient multi-key homomorphic encryption with packed cipher-

texts with application to oblivious neural network inference”. In: Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security. 2019,

pp. 395–412.

[16] Long Chen, Zhenfeng Zhang, and Xueqing Wang. “Batched Multi-hop Multi-key

FHE from Ring-LWE with Compact Ciphertext Extension”. In: Theory of Cryptog-

raphy Conference. Springer. 2017, pp. 597–627.

[17] Jung Hee Cheon et al. “Bootstrapping for approximate homomorphic encryption”.

In: Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer. 2018, pp. 360–384.

[18] Jung Hee Cheon et al. “Homomorphic encryption for arithmetic of approximate

numbers”. In: International Conference on the Theory and Application of Cryptology

and Information Security. Springer. 2017, pp. 409–437.

[19] Ilaria Chillotti et al. “Faster fully homomorphic encryption: Bootstrapping in less

than 0.1 seconds”. In: international conference on the theory and application of

cryptology and information security. Springer. 2016, pp. 3–33.

[20] Arka Rai Choudhuri et al. “Fluid MPC: Secure multiparty computation with dy-

namic participants”. In:Annual International Cryptology Conference. Springer. 2021,

pp. 94–123.

35

[21] Michael Clear and Ciaran McGoldrick. “Multi-identity and multi-key leveled FHE

from learning with errors”. In: Annual Cryptology Conference. Springer. 2015, pp. 630–

656.

[22] Ivan Damg̊ard et al. “Multiparty Computation from Somewhat Homomorphic En-

cryption”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh Safavi-

Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–

662.

[23] Li Deng. “The mnist database of handwritten digit images for machine learning

research [best of the web]”. In: IEEE signal processing magazine 29.6 (2012), pp. 141–

142.

[24] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic

encryption.” In: IACR Cryptol. ePrint Arch. 2012 (2012), p. 144.

[25] David Froelicher et al. “Truly privacy-preserving federated analytics for precision

medicine with multiparty homomorphic encryption”. In: Nature communications

12.1 (2021), p. 5910.

[26] Craig Gentry, Shai Halevi, and Nigel P Smart. “Homomorphic evaluation of the

AES circuit”. In: Annual Cryptology Conference. Springer. 2012, pp. 850–867.

[27] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic encryption from learn-

ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based”. In:

Annual Cryptology Conference. Springer. 2013, pp. 75–92.

[28] Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An improved RNS variant of the

BFV homomorphic encryption scheme”. In: Cryptographers’ Track at the RSA Con-

ference. Springer. 2019, pp. 83–105.

[29] Shai Halevi et al. “Non-interactive multiparty computation without correlated ran-

domness”. In: International Conference on the Theory and Application of Cryptology

and Information Security. Springer. 2017, pp. 181–211.

[30] Kyoohyung Han et al. “Efficient logistic regression on large encrypted data”. In:

Cryptology ePrint Archive (2018).

[31] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. “NTRU: A ring-based public

key cryptosystem”. In: International algorithmic number theory symposium. Springer.

1998, pp. 267–288.

36

[32] Taechan Kim et al. “Asymptotically Faster Multi-Key Homomorphic Encryption

from Homomorphic Gadget Decomposition”. In: Cryptology ePrint Archive (2022).

[33] Lattigo v4. Online: https://github.com/tuneinsight/lattigo. EPFL-LDS, Tune

Insight SA. Aug. 2022.

[34] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “Cloud-assisted mul-

tiparty computation from fully homomorphic encryption”. In: Cryptology ePrint

Archive (2011).

[35] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly multi-

party computation on the cloud via multikey fully homomorphic encryption”. In:

Proceedings of the forty-fourth annual ACM symposium on Theory of computing.

ACM. 2012, pp. 1219–1234.

[36] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. “An Efficient Thresh-

old Access-Structure for RLWE-Based Multiparty Homomorphic Encryption”. In:

Cryptology ePrint Archive (2022).

[37] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. “An efficient thresh-

old access-structure for rlwe-based multiparty homomorphic encryption”. In: Journal

of Cryptology 36.2 (2023), p. 10.

[38] Christian Mouchet et al. “Multiparty Homomorphic Encryption from Ring-Learning-

with-Errors”. In: Proceedings on Privacy Enhancing Technologies 2021.4 (2021),

pp. 291–311.

[39] Pratyay Mukherjee and Daniel Wichs. “Two round multiparty computation via

multi-key FHE”. In: Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques. Springer. 2016, pp. 735–763.

[40] Jeongeun Park. “Homomorphic encryption for multiple users with less communica-

tions”. In: IEEE Access 9 (2021), pp. 135915–135926.

[41] Chris Peikert and Sina Shiehian. “Multi-key FHE from LWE, revisited”. In: Theory

of Cryptography Conference. Springer. 2016, pp. 217–238.

[42] Sinem Sav et al. “Poseidon: Privacy-preserving federated neural network learning”.

In: arXiv preprint arXiv:2009.00349 (2020).

[43] Sinem Sav et al. “Privacy-preserving federated neural network learning for disease-

associated cell classification”. In: Patterns 3.5 (2022), p. 100487.

37

Appendix

A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers. The BFV

and CKKS have similar structure, we can easily extend MGHE scheme of the CKKS. The

difference is that it adds an error into the plaintext itself and additionally supports the

rescaling algorithm to control the size of ciphertext. The ciphertext has a level and it de-

creases whenever rescaling is performed. To proceed arithmetics between two ciphertexts,

they should have same level and it requires bootstrapping when level is low in order to

continue evaluation. We are going to transform MPHE scheme without interactive setup

first, and extend it into the MGHE scheme. In both cases, we skip setup, key generation,

and joint key generation phase since they are same as BFV. Galois automorphism is also

not included since it has same procedure with the BFV. We assume the ciphertext modulus

q =
∏L

i=1 pi for some integers pi and denote ql =
∏l

i=1 pi.

A.1 MPHE with Non-Interactive Setup

• MP− CKKS.Enc(jek;m): Sample w ← χ and e0, e1 ← Dσ. For an input message m ∈ Rt,

return the ciphertext ct = w · jek+ (m+ e0, e1) (mod q).

• MP− CKKS.Add(ct, ct′): If ct and ct′ have same level, return ctadd = ct + ct′ (mod q). If

not, lower the high-level ciphertext to low-level ciphertext before the computation.

• MP− CKKS.Mult(jrlk; ct, ct′): If ct and ct′ have different level, make two ciphertexts have

the same level. Given two ciphertexts ct = (c0, c1), ct′ = (c′0, c
′
1) and a joint relin-

earization key jrlk, let ctmul = ct ⊗ ct′ = (c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Return the ciphertext

MP− CKKS.Relin(jrlk; ctmul) where MP− CKKS.Relin(·) is the relinearization procedure de-

scribed in Alg. 1.

• MP− CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1) ∈ R2
ql

at level l, return ct′ =

(
⌊
p−1
l · c0

⌉
,
⌊
p−1
l · c1

⌉
) ∈ R2

ql−1 which is at level l − 1.

• MP− CKKS.Dec(sk; ct): Given a ciphertext ct = (c0, c1) and a secret key sk = s, output

m = ⟨ct, sk⟩ = (c0 + c1 · s) (mod q).

38

• MP− CKKS.DistDec({[sk]i : i ∈ I}, σ′; ct): Let ct = (c0, c1) be a multi-party ciphertext,

σ′ > 0 an error parameter, and [sk]i = [s]i the secret key of party i ∈ I. The distributed

decryption protocol consists of the following procedures:

• Partial decryption: Each party i ∈ I samples [e′]i ← Dσ′ , then computes and pub-

lishes [µ]i = c1 · [s]i + [e′]i (mod q).

• Merge: Compute m = (c0 +
∑

i∈I [µ]i) (mod q).

A.2 Extension to MGHE with CKKS

• MG− CKKS.Enc(jek;m): For a joint encryption key jek and a message m, return ct ←

MP− CKKS.Enc(jek;m).

• MG− CKKS.Add(ct, ct′): If two given ciphertexts ct and ct′ has same level, return the

ciphertext ctadd = ct + ct′ (mod q). If not, modify ciphertexts to have same level before

the computation.

• MG− CKKS.Mult({jrlkj}1≤j≤k; ct, ct
′): Set ct and ct′ have same level. Let ct = (ci)0≤i≤k and

ct′ = (c′i)0≤i≤k be two multi-group ciphertexts and {jrlkj}1≤j≤k the collection of the joint

relinearization keys of groups Ij for 1 ≤ j ≤ k. Compute ctmul = (ci,j)0≤i,j≤k where ci,j =

cic
′
j (mod q) for 0 ≤ i, j ≤ k. Return the ciphertext MG− CKKS.Relin({jrlkj}1≤j≤k; ctmul)

where MG− CKKS.Relin(·) is the relinearization procedure described in Alg. 2.

• MG− CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
ql

at level l, com-

pute c′i =
⌊
p−1
l · ci

⌉
for 1 ≤ i ≤ k, and return ct′ = (c′0, c

′
1, . . . , c

′
k) ∈ R

k+1
ql−1 which is at level

l − 1.

• MG− CKKS.Dec({skj}1≤j≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret

keys skj = sj for 1 ≤ j ≤ k, return m = ⟨ct, sk⟩ = (c0 +
∑

1≤j≤k ci · sj) (mod q).

• MG− CKKS.DistDec({[skj]i}1≤j≤k,i∈Ij , σ
′; ct): Let ct = (c0, . . . , ck) be a multi-group ci-

phertext corresponding to the set of groups {I1, . . . , Ik} and [sk]i = [s]i be the secret of

party i ∈ Ij .

• Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′j]i ← Dσ′ , then

computes and publishes [µj]i = cj · [s]i + [e′j]i (mod q).

• Merge: Compute m = (c0 +
∑

1≤j≤k

∑
i∈Ij [µj]i) (mod q).

39

B Noise analysis

Before estimating a noise growth, we specify some distributions for sampling randomness

or errors. Let the key distribution χ be the distribution where each coefficient is sampled

from the set {0,±1} with probability 0.25 for each of −1 and 1 and with probability

0.5 for 0. Set the error distribution ψ be the discrete Gaussian distribution of variance

σ2. We also assume that the coefficients of the polynomials are independent zero-mean

random variables with the same variances. We denote by Var(a) = Var(ai) the variance

of coefficients for random variable a =
∑

i ai · Xi over the ring R. Then the variance of

the product c = a · b of two polynomials with degree n can be represented as Var(c) =

n·Var(a)·Var(b) if a and b are independent. Similarly, we define variance for a vector a ∈ Rd

of random variables as Var(a) = 1
d

∑d
i=1 Var(a[i]). We also assume that each ciphertext

behaves as if it is a uniform random variable over Rk+1
q . We analyze the noise growth of

k-group case, each comprising Ni parties for 1 ≤ i ≤ k.

B.1 Encryption

Recall that the encryption ct = (c0, c1) ∈ R2
q of m ∈ Rp is ct = t · jek + (∆ ·m + e0, e1)

(mod q) where t ← χ and e0, e1 ← Dσ. For jek = (b[0],a[0]) ∈ R2
q , we remark that

b[0] + a[0] · s =
∑

i∈I [e0]i[0] and each [e0]i[0] is sampled from Dσ. Then, it satisfies that

c0 + c1 · s = ∆ ·m+ t(b[0] + a[0] · s) + (e0 + e1 · s) = ∆ ·m+ (t
∑

i∈I [e0]i[0] + e0 + e1 · s)

(mod q). The encryption noise eenc = t
∑

i∈I [e0]i[0] + e0 + e1 · s has the variance of Venc =

σ2 · (n|I|2 + 1 + n
2) ≈

nσ2(|I|+1)
2 .

The CKKS scheme has the same encryption error as the BFV scheme. The only dif-

ference is that there is no scaling factor ∆ in the result of decryption.

B.2 Relinearization

In Alg. 2 of Section 4.2, it satisfies that

∑
1≤i≤k

c′′i ⊡ (vi + si · u) = −
∑

1≤i≤k

ri · c′′i +
∑

1≤i≤k

c′′i ⊡ ei,2

= −
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i≤k

c′′i ⊡ ei,2 (mod q)

40

and

∑
1≤i,j≤k

(ci,j ⊡ di) · sj

=
∑

1≤i,j≤k

ri · (ci,j ⊡ (bj − ej,0)) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

sj · (ci,j ⊡ ei,1)

=
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

e′i,j (mod q)

where e′i,j = ci,j ⊡ (sj · ei,1 − ri · ej,0).

We denote by Vg = Var(g−1(a)) where a is a uniform random variable over Rq. Then,

the variance of relinearization error erelin =
∑

1≤i≤k c
′′
i ⊡ ei,2 +

∑
1≤i,j≤k e

′
i,j is obtained as

follows:

Vrelin = ndVgσ
2

∑
1≤i≤k

N2
i + 2n2dVgσ

2k2
∑

1≤i≤k

N2
i ≈ 2n2dVgσ

2k
∑

1≤i≤k

N2
i

In our implementation, we use RNS-friendly decomposition Rq =
∏

iRpi such that pi’s

have the same bit-size. Here, we have Vg = 1
12d

∑d
i=1 p

2
i for d = ⌈log q/ log pi⌉.

B.3 Multiplication

We again consider k-group case, each comprising Ni parties for 1 ≤ i ≤ k. Let ct1 and ct2

be the input ciphertexts of messages m1 and m2 respectively. Each ciphertext cti satisfies

that
〈
cti, sk

〉
= q · Ii + ∆ ·mi + ei for Ii = ⌊1q

〈
cti, sk

〉
⌉ and some ei. Here, we have the

variance Var(Ii) ≈ 1
12(1+

1
2kn) ≈

1
24kn since 1

q · cti behaves as an uniform random variable

over 1
q ·R

k+1
q .

The result of tensor product satisfies that
〈
ct1 ⊗ ct2, sk⊗ sk

〉
=

〈
ct1, sk

〉
·
〈
ct2, sk

〉
= ∆2·

m1m2+q ·(I1e2+I2e1)+∆·(m1e2+m2e1)+e1e2 (mod q ·∆) and for ctmul =
⌊
p
q · ct1 ⊗ ct2

⌉
,

we have
〈
ctmul, sk⊗ sk

〉
= ∆ ·m1m2 + p · (I1e2 + I2e1) + (m1e2 +m2e1) +∆−1 · e1e2 + erd

where erd =
〈
p
q · ct1 ⊗ ct2 − ctmul, sk⊗ sk

〉
. That is, the multiplication error is obtained

by emul = p · (I1e2+I2e1)+(m1e2+m2e1)+∆−1 ·e1e2+erd. From the above equation, the

first term p · (I1e2 + I2e1) dominates the whole multiplication error. Therefore, we have

the variance of multiplication error by

Vmul ≈ np2 · (Var(I1)Var(e2) + Var(I2)Var(e1)) ≈
1

24
kn2p2(Var(e1) + Var(e2)).

41

While the relinearization error has a fixed size depending on the parameters, the multipli-

cation error increases by a certain ratio as the computation proceeds. Therefore, the total

noise is eventually dominated by the multiplication error unless (Var(e1)+Var(e2)) is very

small (e.g. fresh ciphertext).

42

요약(국문초록)

동형암호(Homomorphic Encryption)는암호화된상태에서복호화없이연산을가능하게

하는 암호 체계입니다. 일반적인 동형암호는 같은 키로 암호화된 암호문에 대해서만 연산을

지원하기 때문에, 여러 참여자가 있는 경우 권한이 (단일) 비밀 키를 소유한 참여자에게 집중

되는 문제가 있습니다. 이 문제를 해결하기 위해 두 가지 다른 동형암호 스킴인 다자간 동형

암호(Multi-Party Homomorphic Encryption)와 다중키 동형암호(Multi-Key Homomorphic

Encryption)가 개발되었습니다. 다자간 동형암호는 효율적이지만 키 생성 시 참여자 간 상호

작용이 필요하며, 참여자 집합이 고정되어야 합니다. 반면, 다중키 동형암호는 참여자 수에

비례하여 성능이 저하되지만, 연산 중간에 새로운 참여자를 추가할 수 있는 장점이 있습니다.

본 연구에서는 비대화식 키 생성을 가지는 첫 번째 다자간 동형암호를 제안합니다. 제시

한 다자간 동형암호는 재선형화 키가 비밀 키에 대해 선형적이기 때문에 참여자들이 생성한

키들의 합산으로 계산될 수 있습니다. 이로 인해 각 참여자가 상호작용 없이 독립적으로 키를

생성할 수 있습니다.

또한새로운동형암호스킴인그룹간동형암호 (Multi-Group Homomorphic Encryption)

를 제안합니다. 그룹간 동형암호는 다자간 동형암호와 다중키 동형암호를 통합한 스킴으로,

이 두 가지의 장점을 모두 가집니다. 그룹간 동형암호에서는 각 참여자 그룹이 다자간 동형암

호와 같이 공동 키를 생성하여 데이터를 암호화하고, 그룹 안에서 연산을 하는 경우 다자간

동형암호와 같이 동작합니다. 그러나 그룹 간 연산을 수행할 때에는 다중키 동형암호와 같이

연산하여 새로운 그룹이 연산에 참여할 수 있습니다.

마지막으로, 제안한 그룹간 동형암호를 이용하여 다자간 연산 프로토콜을 구축하고 그

안전성을 검증합니다. 또한 그룹간 동형암호를 이용하여 다자간 동형암호와 같이 학습을 수

행하고 다중키 동형암호와 같이 추론을 수행하는 로지스틱 회귀 모델을 제시합니다.

주요어 : 다중키 동형암호, 다자간 동형암호

학 번 : 2021-22848

43

	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Background
	2.1 Notation
	2.2 Ring Learning with Errors
	2.3 Gadget Decomposition and External Product
	2.4 Variants of HE for Multiple Parties

	3 MPHE with Non-Interactive Setup
	3.1 Basic Scheme
	3.2 Basic Operations
	3.3 Security

	4 Construction of MGHE
	4.1 Formalizing MGHE
	4.2 Basic Scheme
	4.3 Basic Operations
	4.4 Security

	5 Constructing MPC from MGHE
	5.1 Overview
	5.2 MPC Protocol Secure Against Semi-Malicious Corruptions

	6 Experimental Results
	6.1 Basic Operations
	6.2 Application to Machine Learning Service

	Bibliography
	Appendix
	A Construction of MGHE with CKKS
	A.1 MPHE with Non-Interactive Setup
	A.2 Extension to MGHE with CKKS

	B Noise analysis
	B.1 Encryption
	B.2 Relinearization
	B.3 Multiplication

	Abstract in Korean

<startpage>7
1 Introduction 1
 1.1 Our Contributions 2
 1.2 Technical Overview 3
 1.3 Related Work 5
2 Background 6
 2.1 Notation 6
 2.2 Ring Learning with Errors 6
 2.3 Gadget Decomposition and External Product 6
 2.4 Variants of HE for Multiple Parties 7
3 MPHE with Non-Interactive Setup 10
 3.1 Basic Scheme 11
 3.2 Basic Operations 13
 3.3 Security 15
4 Construction of MGHE 16
 4.1 Formalizing MGHE 16
 4.2 Basic Scheme 18
 4.3 Basic Operations 19
 4.4 Security 23
5 Constructing MPC from MGHE 24
 5.1 Overview 24
 5.2 MPC Protocol Secure Against Semi-Malicious Corruptions 26
6 Experimental Results 30
 6.1 Basic Operations 31
 6.2 Application to Machine Learning Service 31
Bibliography 34
Appendix 38
 A Construction of MGHE with CKKS 38
 A.1 MPHE with Non-Interactive Setup 38
 A.2 Extension to MGHE with CKKS 39
 B Noise analysis 40
 B.1 Encryption 40
 B.2 Relinearization 40
 B.3 Multiplication 41
Abstract in Korean 43
</body>

