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Abstract

Today, large amount of data are being generated on numerous heterogeneous

machines around the globe. Due to its the large sizes of the data in terms

of number and volume, big data processing increasingly demands for higher

throughput performances in order to extract business-critical information while

meeting the service level objective (SLO) requirements. While the target data

for distributed processing can be categorized into large-scale batch data or

real-time data streams, both types of data possess different characteristics that

can be unpredictable and quickly alter in its nature. In order to dynamically

optimize to the different environments, there exists different cases where it

requires efficient and adaptive management for different resources including

CPU, network, and memory.

For example, real-time event streams of data can always change in its vol-

ume, as there can be incalculable random events that can cause the data traffic

to increase, which requires dynamic adaptation in CPU power to increase the

engine throughput. In another case, data that have to be processed could be

scattered around the globe, and requires them to be gathered during the data

analytics job through heterogeneous and unstable long-distance networks, for

them to be summarized into particular statistics in order to timely provide the

user with useful information. Moreover, in cases of dealing with iterative work-

loads that accumulate large amounts intermediate data, like machine learning

or graph processing, one may optimize the workload through caching reusable

data, where management of memory resources is crucial to timely provide the

job with its cached data while preventing recomputation overheads whenever
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required. If these conditions and environments for the data are not handled, it

causes massive performance losses upon facing such situations. Moreover, these

problems are commonly unpredictable and alters dynamically during runtime.

In order to deal with the unpredictable resource problems, this dissertation

proposes dynamic resource management techniques that makes efficient and

adaptive use of resources from cloud environments to overcome resource short-

ages and bottlenecks in terms of CPU, network, and memory, with mathemati-

cal modeling and analytical approaches, through systems called Sponge, SWAN,

and Blaze. Sponge provides fast dynamic adaptation for stream workloads to

overcome shortages in CPU resources by acquiring resources from serverless in-

stances to provide the system with additional CPU at a sub-second latency un-

der situations where the input load increases sporadically and instantaneously.

SWAN dynamically measures and analyzes the different bandwidth capacities

of heterogeneous network connections to find the optimal path and operator

placement among the operators to mitigate the limited network resources and

ensure that the data efficiently flows from one place to another in a globally

scattered environment. Blaze provides automatic caching mechanisms based on

live tracking of partition metrics and sophisticated predictions on cache usages

and overheads to efficiently use limited memory resources for caching in a timely

manner for iterative data processing workloads.

Our evaluations show that the dynamic resource management methods sig-

nificantly improve system performance in terms of throughput, latency (i.e.,

for streaming workloads), and end-to-end completion time (i.e., for batch work-

loads) compared to existing systems, by up to 5.64× increase, 88% reduction,

and 2.86× speed-up, respectively, by providing the distributed data processing

systems with sufficient resources at all times and by efficiently using the limited

resources with regard to the dynamically changing environments.

ii



Keywords: Distributed Systems, Big Data, Machine Learning, Cloud Com-

puting, Resource Management, Scheduling

Student Number: 2017-28182

iii



For my family and friends, for all the love and support



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Resource Management in Distributed Data Processing . . . . . . 1

1.1.1 Dynamic CPU Resources . . . . . . . . . . . . . . . . . . 5

1.1.2 Dynamic Network Resources . . . . . . . . . . . . . . . . 6

1.1.3 Dynamic Memory Resources . . . . . . . . . . . . . . . . 8

1.2 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Dynamic Supply of CPU Resources through Serverless

Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Profiling Heterogeneous Networks to Find Efficient Global

Network Paths . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Dynamic Tracking of Partition Metrics to Find the Op-

timal Caching State . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Background 16

2.1 Iterative Data Processing Models and Caching . . . . . . . . . . 16

v



2.1.1 Dataflow Execution Model . . . . . . . . . . . . . . . . . 16

2.1.2 Parallel Execution and Partition Sizes . . . . . . . . . . . 17

2.1.3 Caching in Existing Systems . . . . . . . . . . . . . . . . 18

2.2 Stream Processing Models and Event Latency . . . . . . . . . . . 20

2.2.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Stream Operators and Resource Demands . . . . . . . . . 21

2.2.3 Stream Operator Placement . . . . . . . . . . . . . . . . . 22

2.3 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Resource Size . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Start-up time . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Usage cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Sponge: Fast Reactive Scaling for Stream Process-

ing with Serverless Frameworks 25

3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Sponge Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Compile-time Graph Rewriting Algorithm . . . . . . . . . 31

3.2.3 Dynamic Offloading Policy . . . . . . . . . . . . . . . . . 33

3.2.4 Reducing Cold Start Latency . . . . . . . . . . . . . . . . 36

3.2.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 SWAN: WAN-aware Stream Processing on Geographically-

distributed Clusters 40

4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . 46

vi



4.2.3 Operator Placement Algorithm . . . . . . . . . . . . . . . 47

4.2.4 Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 5 Blaze: Holistic Caching for Iterative Data Processing 51

5.1 Observation and Motivation . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Caching and Eviction Mechanisms . . . . . . . . . . . . . 51

5.1.2 Recomputation and Disk I/O Costs . . . . . . . . . . . . 53

5.2 Design Goals and Challenges . . . . . . . . . . . . . . . . . . . . 56

5.2.1 To Cache, or Not To Cache? . . . . . . . . . . . . . . . . 56

5.2.2 To Evict, or Not To Evict? . . . . . . . . . . . . . . . . . 56

5.2.3 Dynamically Changing Data Dependency . . . . . . . . . 58

5.3 Blaze Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Blaze Overview . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 The CostLineage for Tracking Partition Metrics . . . . . 61

5.3.4 Potential Recovery Cost Estimation . . . . . . . . . . . . 63

5.3.5 Finding the Optimal Partition States . . . . . . . . . . . . 64

5.3.6 Automatic Caching . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 6 Implementation 66

6.1 Sponge Implementation . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 SWAN Implementation . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Blaze Implementation . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 7 Evaluation 69

7.1 Sponge Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . 74

vii



7.1.3 Graph Rewriting Effect . . . . . . . . . . . . . . . . . . . 78

7.1.4 Cold Start Latency Reduction Methods . . . . . . . . . . 81

7.1.5 Latency-Cost Trade-Off . . . . . . . . . . . . . . . . . . . 82

7.2 SWAN Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2.2 Throughput and Latency . . . . . . . . . . . . . . . . . . 84

7.2.3 Query Placement Speed . . . . . . . . . . . . . . . . . . . 85

7.2.4 Effect of Query Rewriting . . . . . . . . . . . . . . . . . . 86

7.3 Blaze Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . 92

7.3.3 Performance Breakdown . . . . . . . . . . . . . . . . . . . 95

7.3.4 Number of Evictions and Recomputation Time . . . . . . 98

7.3.5 Profiling Overhead vs. Benefits . . . . . . . . . . . . . . . 99

Chapter 8 Related Works 100

Chapter 9 Conclusion and Future Directions 104

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2.1 Centralized vs. Decentralized Designs . . . . . . . . . . . 106

9.2.2 Increasing The Model Complexity . . . . . . . . . . . . . 106

9.2.3 Expanding to Other Resources and New Hardwares . . . 107

초록 108

viii



List of Tables

Table 7.1 Characteristics of different NEXMark stream queries. . . . 71

ix



List of Figures

Figure 2.1 A simplified code snippet of a Spark PageRank [19] on

GraphX [51] (a), and the RDD dependencies of the PageR-

ank application (b). A Spark job is submitted for each

iteration. Some stages, RDDs, and shuffle dependencies

are omitted for simplicity. Sx denotes a stage number

and Rx denotes the ID of an RDD. . . . . . . . . . . . . 17

Figure 2.2 Caching and eviction on a Spark executor. Each task

computes and caches RDD partitions into memory or

disk within the executor that it is scheduled onto. . . . . 19

Figure 2.3 (a) Logical DAG of four operators including a stateful

Sum operator with two key groups. (b) The correspond-

ing physical DAG with parallel tasks. . . . . . . . . . . 20

Figure 2.4 CPU and memory usage patterns for (a) stateful win-

dowed join and (b) stateless map operators upon pro-

cessing a fixed input rate of 80K events/s on identical 4

vCore nodes. The CPU and memory usage of the stateful

operator increase until the window is full. . . . . . . . . 22

x



Figure 3.1 While scaling out on SF instances, the system must be

aware that aO task state migration overheads lead to

latency spikes, and bO direct data communication among

adjacent tasks is prohibited between SF instances. . . . . 26

Figure 3.2 A comparison of the overheads of different steps of work-

load scaling on stream processing systems in the cloud.

The VM, SF, and managed runtime initialization over-

heads are averaged across all instances, and the data

redirection and task/state migration overheads are av-

eraged across all single-scaling operations for the 5× in-

put load experiment in §7.1. Error bars indicate the 95%

confidence interval. . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.3 Sponge architecture. . . . . . . . . . . . . . . . . . . . . 31

Figure 3.4 DAG transformation after graph rewriting. . . . . . . . . 32

Figure 3.5 Once an operator (A2) tries to scale, an offload message

(M) is generated at the RO (R2) to activate its TO (T2)

and MO (M2). The offload message acts as a boundary

among input events (1-9) for operator scaling and state

merging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1 A CDF of networks showing the spatial variation of a

geo-distributed cluster. . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 A graph showing the temporal variation of a network

through time. . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.3 An overall architecture of the SWAN system. . . . . . . 46

Figure 4.4 An example of a geo-distributed cluster setup. . . . . . . 48

xi



Figure 5.1 Caching at dataset granularity causes different sizes of

evicted data among different executor machines on a

PageRank application in our evaluation (§7.3). . . . . . . 52

Figure 5.2 The accumulated execution time of tasks in four appli-

cations (§7.3), including the total time of disk I/O costs

for recovering evicted data. Data (de)serialization is in-

cluded in the disk I/O time. . . . . . . . . . . . . . . . . 54

Figure 5.3 Breakdown of the total recomputation time for each it-

eration in PageRank (§ 7.3). The RDDs incurring the

highest recomputation time within the iteration are la-

beled from iteration 6 to 10 (RDD 85, 97, 109, 121, and

133). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.4 The dynamically changing comp(pdes) and ref(panc)

upon evicting and unpersisting p1 from the cache. . . . . 57

Figure 5.5 The overview of Blaze. . . . . . . . . . . . . . . . . . . . 59

Figure 5.6 A CostLineage constructed from the extracted RDD

lineages of the PageRank application in the dependency

extraction phase. Duplicate RDDs are dynamically de-

tected and merged upon new iterations and future iter-

ations are induced. . . . . . . . . . . . . . . . . . . . . . 61

Figure 7.1 A simplified application DAG of stream queries used in

our evaluation. M and F are map and filter operators,

GbK is a stateful group-by-key operator for incremen-

tal aggregation on windows, and SI is a non-mergeable

stateful operator for the join operation. . . . . . . . . . . 70

xii



Figure 7.2 Examples of different bursty input patterns used in some

experiments, where input rates increase at time t = 380.

(a) shows a sudden increase from 60K to 300K (5×) for

60 seconds, (b) shows a sine-curve increase and decrease,

and (c) shows a gradual increase. . . . . . . . . . . . . . 72

Figure 7.3 The tail latency graph, under a bursty load (Fig. 7.2(a))

at t = 380s and scaling is triggered at t = 381s. . . . . . 73

Figure 7.4 The CPU utilization graph, under a bursty load (Fig. 7.2(a))

at t = 380s and scaling at t = 381s. . . . . . . . . . . . . 75

Figure 7.5 Summarized results of the experiments, with similar set-

tings as in Fig. 7.3, displaying the average peak tail la-

tency across the different NEXMark queries under di-

verse input patterns and burstiness. . . . . . . . . . . . . 76

Figure 7.6 The latency graphs for SF, SpongeRO, SpongeTO, SpongeS-

nap, and Sponge to analyze and break down the perfor-

mance improvements of Sponge. . . . . . . . . . . . . . . 78

Figure 7.7 Comparison on Q4 for (a) SFBase and SpongeRO on

diverse burstiness, and (b) SpongeRO and SpongeTO on

different degrees of parallelism (# of parallel tasks). . . . 80

Figure 7.8 (a) The latency during a bursty period, and (b) a rough

calculation of the cost according to the % of the bursty

duration throughout the day. . . . . . . . . . . . . . . . . 82

Figure 7.9 A graph of the 95th percentile latency of the workload

after triggering optimization at time = 0 of execution of

NEXMark benchmark query 4. . . . . . . . . . . . . . . . 85

Figure 7.10 A graph comparing the scheduling overhead of the dif-

ferent approaches. . . . . . . . . . . . . . . . . . . . . . . 86

xiii



Figure 7.11 A graph of the throughput of the data transfer rate with

and without the relay task insertion in NEXMark bench-

mark query 4. . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 7.12 An end-to-end performance comparison on MEM ONLY Spark,

MEM+DISK Spark, Spark+Alluxio, LRC, MRD, and Blaze

in various applications. We run each application three

times and plot the average with an error bar at the top. 87

Figure 7.13 A breakdown of cost with the accumulated total task ex-

ecution times. In MEM+DISK Spark (annotated as Spark

(+DISK)), LRC, and MRD, the disk I/O time of cached

data becomes the cost. In Spark+Alluxio, the Alluxio

I/O time of cached data becomes the cost, as they are

the potential recovery cost experienced from the appli-

cations that are run on Spark. . . . . . . . . . . . . . . 88

Figure 7.14 A performance breakdown for Blaze. . . . . . . . . . . . 92

Figure 7.15 The number of evictions and total recomputation time

of evicted RDDs while only using memory. . . . . . . . . 97

Figure 7.16 The normalized ACT of Blaze with and without depen-

dency profiling, including the profiling overhead. . . . . . 99

xiv



Chapter 1

Introduction

1.1 Resource Management in Distributed Data Pro-

cessing

Today, large amount of data are produced from numerous heterogeneous ma-

chines distributed across the globe. Such data are often processed by data an-

alytics workloads, especially as a distributed workload, in order to refine the

vast amount of data to make business decisions and to provide various statis-

tics. Due to the increasing number and volume of such data, the input data

and the cluster environment where we run our distributed data processing sys-

tems are becoming more and more diversified with different characteristics. In

order to deal with the sudden changes in the environments of distributed data

processing systems, it is important to adaptively provide the system with suffi-

cient computational resources for them at all times to provide satisfying system

performances.

While there are different runtime components that contribute to the per-
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formance of distributed data analytics, CPU, network, and memory are the

computational resources that play a key role in determining the performances

in distributed systems. First of all, CPU directly affects the throughput per-

formance, as it is related to the number of computations that a machine can

perform for a specific period of time. Next, network affects the performance

while transferring data between operators on different machines, especially for

shuffle operations, which is an operation that transfers data to the following ag-

gregate task related to a particular key into a particular aggregated intermediate

data (§2.2). Finally, memory affects the performance for aggregating interme-

diate data and operator states for aggregative operators in stream workloads,

as well as for caching and providing reusable input and intermediate data to

downstream operators in batch workloads. In modern data processing, we face

many diverse situations where we require the system to dynamically manage

the computational resources for different cases.

For example, streaming workloads, which deal with data that is generated

in real-time, has to deal with data volumes that are often unpredictable and

change rapidly in volume [108, 107]. To deal with these fluctuations, current

systems aim to dynamically scale in and out their CPU resources, to redis-

tribute and migrate computing tasks across a cluster of machines. In another

case, wide-area stream analytics is commonly being used to extract operational

or business insights from the data issued from multiple distant datacenters.

However, timely processing of such data streams is challenging because wide-

area network (WAN) bandwidth is scarce and varies widely across both differ-

ent geo-locations (i.e., spatially) and points of time (i.e., temporally). Lastly,

modern data processing workloads, such as machine learning and graph process-

ing, involve iterative computations to create models that converge into higher

accuracy. An effective caching mechanism is crucial to expedite iterative com-
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putations since the intermediate data that need to be stored in memory grows

larger over time, often exceeding the memory capacity.

In order to solve these problems, many prior works have focused on reduc-

ing the overhead of system reconfiguration and state migration on pre-allocated

cluster resources to redistribute CPU resources, these approaches still face sig-

nificant challenges in meeting latency SLOs at low operational costs, especially

upon facing unpredictable bursty loads. On the other hand, stream analytics

desirable under a WAN setup requires the consideration of path diversity and

the associated bandwidth from data source to sink when performing operator

task placement for the query execution plan. It also has to enable fast adapta-

tion to dynamic resource conditions, e.g., changes in network bandwidth, to keep

the query execution stable. Lastly, to provide caching mechanisms in memory,

existing systems handle intermediate data through separate operational layers

(e.g., caching, eviction, and recovery), with each layer working independently in

a cost-agnostic manner. These layers typically rely on user annotations and past

access patterns, failing to make globally optimal decisions for the workload.

In order to dynamically adapt our CPU resources, we propose Sponge, a

new stream processing system that enables fast reactive scaling of long-running

stream queries by leveraging serverless framework (SF) instances. Sponge ab-

sorbs sudden, unpredictable increases in input loads from existing VMs with

low latency and cost by taking advantage of the fact that SF instances can be

initiated quickly, in just a few hundred milliseconds. Sponge efficiently tracks

a small number of metrics to quickly detect bursty loads and make fast scaling

decisions based on these metrics. Moreover, by incorporating optimization logic

at compile-time and triggering fast data redirection and partial-state merg-

ing mechanisms at runtime, Sponge avoids optimization and state migration

overheads during runtime while efficiently offloading bursty loads from existing
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VMs to new SF instances. Our evaluation on AWS EC2 and Lambda using

the NEXMark benchmark shows that Sponge promptly reacts to bursty input

loads, reducing 99th-percentile tail latencies by 88% on average compared to

other stream query scaling methods on VMs. Sponge also reduces cost by 83%

compared to methods that over-provision VMs to handle unpredictable bursty

loads.

Next, to overcome unstable long-distance network conditions, we present

SWAN, a WAN stream analytics engine that incorporates two key techniques

to meet the aforementioned requirements. First, SWAN provides a fast heuris-

tic model that captures WAN characteristics at runtime and evenly distributes

tasks to nodes while maximizing the network bandwidth for intermediate data.

Second, SWAN exploits a stream relaying operator (or RO) to extend a query

plan for better facilitating path diversity. This is driven by our observation

that oftentimes, a longer path with more communication hops provides higher

bandwidth to reach the data sink than a shorter path, allowing us to trade-off

query latency for higher query throughput. SWAN stretches a given query plan

by adding ROs at compile time to opportunistically place it over such a longer

path. In practice, throughput gains do not necessarily lead to significant la-

tency increases, due to higher network bandwidth providing more in-flight data

transfers. Our prototype improves the latency and the throughput of stream

analytics performances by 77.6% and 5.64×, respectively, compared to existing

approaches, and performs query adaptations within seconds.

Finally, to overcome the limitations regarding memory shortage for caching

in iterative jobs, Blaze introduces a unified caching mechanism that integrates

the separate operational layers together. Blaze dynamically captures the work-

load structure and metrics using profiling and inductive methods, and automat-

ically estimates the potential data caching efficiency associated with different
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operational decisions based on the profiled information. By analyzing the work-

load, Blaze incorporates the potential data recovery costs across stages into a

single cost optimization function, which informs the optimal state for each in-

dividual partition. This fine-grained approach reduces the significant disk I/O

overheads caused by oversized partitions and the recomputation overheads for

partitions with long lineages, while maximizing the efficient utilization of mem-

ory space. Our evaluations demonstrate that Blaze can accelerate end-to-end

application completion time by up to 2.86× and reduce cache data stored on

disk by 90% on average compared to Spark.

In the following subsections, we introduce the individual problems in more

detail.

1.1.1 Dynamic CPU Resources

Stream queries continuously process real-time data to extract insights and make

business-critical decisions, such as analyzing real-time logs to extract statistics,

detect anomalies, and provide notifications [7, 68, 23, 111, 120]. Latency is an

essential service level objective (SLO) in these streaming workloads, as faster

up-to-date results mean more value. Stream systems are expected to run 24/7

while meeting their SLOs [121].

Meanwhile, stream systems regularly face significant challenges due to sud-

den, unpredictable bursts of input loads caused by random events, e.g., in-

fluencer tweets, breaking news, and natural disasters [108, 107]. These bursts

can abruptly increase the input load by more than 10× in just a few sec-

onds [62, 44, 131, 89, 30]. If stream processing systems do not quickly acquire

additional computing resources that can handle the bursty loads and do not

promptly redistribute the load to the newly allocated computing resources,

events will soon pile up on the existing resources, leading to cascading impacts
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on query latencies that can have fatal consequences such as reduced user satis-

faction and revenues [111].

One approach to quickly acquiring additional computing resources is to

over-provision resources. Existing work such as Rhino [45], Megaphone [59],

and Chronostream [130] builds efficient stream load redistribution mechanisms

by harnessing over-provisioned resources to minimize latency spikes on load

bursts. For instance, Megaphone [59] smoothly migrates stream query loads to

extra resources during stable load in preparation for load spikes. However, over-

provisioning solutions can be costly and inefficient, as a significant amount of

resources will remain idle for most of the time.

Cloud services can reduce operational costs by offering on-demand resource

allocations. Existing scaling approaches for on-demand resources dynamically

migrate stream operator instances, in units of parallel tasks, to the allocated on-

demand virtual machines (VMs). They redistribute the tasks and their states,

which are key-value pairs of aggregated intermediate results [25, 39, 112, 40,

47, 84]. However, migrating tasks and their states incurs extra overheads (e.g.,

(de)serialization), which increase proportionally to the state size (e.g., a large

number of key-value pairs), and can violate low latency SLOs. Moreover, using

VMs, which are popular on-demand cloud resources, can further exacerbate

latency spikes due to the considerable launch delay of VM instances which can

take dozens of seconds (i.e., 25-30 secs) with conventional cloud providers [49,

102, 71].

1.1.2 Dynamic Network Resources

With the surging demand for global services, service providers are increasingly

demanding wide-area stream data analytics in order to extract information from

the global data generated from multiple distant datacenters [76]. For example,
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global services need a real-time log processing system for monitoring systems

from thousands of distant servers to ensure their SLOs [64, 83]. Also, global

services like Twitter [76] need to process distant data in real-time to keep track

of global news and social media. Many of such applications often require pro-

cessing the data with high throughput and low latency as extracting timely

information means more value for service providers.

A wide-area analytics system is typically composed of multiple geo-distributed

edge clusters and datacenters connected by wide-area networks (WAN) [57, 61,

105, 140]. In this setup, the variability and unpredictable nature of WAN band-

widths make it challenging to achieve both high throughput and low latency.

WAN exhibits diverse levels of peer-to-peer (P2P) bandwidths depending on

the geo-location, each of which can change in the order of minutes [140, 127].

Essentially, a streaming engine for WAN analytics should be adaptive to these

spatial and temporal variability of network bandwidths.

Prior works that consider the spatial variability of networks under wide-

area data analytics often focus on short-lived batch processing while reducing

network data transfers to lower the network budget and assume that network

bandwidth is relatively stable throughout the query execution [101, 123, 125].

On the other hand, existing WAN-aware stream processing systems that run

long-running streaming queries try to perform centralized processing after adap-

tively collecting data to a single data center. Such an approach requires users to

trade-off the query output accuracy for performance through pre-aggregation,

degradation, and statistical approximation [58, 105, 140], especially when trans-

mitting a large volume of raw data under limited network bandwidths. Despite

their great effectiveness, these approaches are frequently application-dependent

and may not apply generally. For queries that require high accuracies, such as

fraud detection and billing queries, any loss in the query output accuracy may
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result in undesirable reliability or additional costs. Moreover, determining the

right accuracy-performance trade-off typically relies heavily on the expertise of

the analyst and requires parameter tuning for each of the different workloads,

which may be cumbersome.

1.1.3 Dynamic Memory Resources

Data analytics applications today are increasingly focused on formulating mod-

els to emulate real-world phenomena through methods like machine learning

and graph processing. For example, the PageRank algorithm captures the im-

portance of web pages from the vast amount of internet data [96], while logis-

tic regression has proven effective in forecasting probabilities of certain events

across numerous fields [17]. Many of such applications exhibit multiple iterations

of repetitive operations that evolve the model into high accuracy [51, 88, 37, 60].

For these workloads, caching plays a key role in system efficiency by reusing

intermediate data to avoid recomputations on their repeated usages.

However, these iterative computations result in a consistent expansion of

intermediate data, putting a strain on memory resources [117]. Unfortunately,

simply provisioning ample memory to accommodate all intermediate data is

not a silver-bullet solution given that data size can increase more than 10× the

input size over the iterations (§7.3.2). Moreover, while each of the iterations has

a declarative job structure, such jobs are submitted until convergence iteration-

by-iteration, which makes the overall lineage of the workload unpredictable

before the actual execution. As the memory size is fixed and the workload

lineage expands, it causes intermediate data to be evicted from memory and the

state of intermediate data to dynamically change within the fixed memory space

along the iterations, posing a challenge in accurately estimating the potential

recovery costs of evicted intermediate data.
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Existing systems provide caching mechanisms composed of three separate

operational layers that individually behave upon predefined conditions: caching,

eviction, and recovery layers [14, 115, 135, 136, 110]. For caching, existing sys-

tems traditionally delegate caching decisions to expert users with sophisticated

knowledge of each of the workloads, like the aforesaid PageRank application.

These systems offer proper APIs to users but allow intermediate data to be man-

aged at a coarse-grained dataset granularity, despite individual data partitions

being the actual computation units for each parallel task [115, 135, 13, 14, 39].

With the caching layer that blindly adheres to user annotations without consid-

ering whether or not each individual partition provides more significant caching

benefits than others, some annotated data may incur minimal benefits from

caching or even have no future use at all [20]. As a result, this approach often

leads to inefficient utilization of memory space and inevitable cache misses.

Furthermore, when memory falls short, existing systems typically evict cached

data and recover it upon subsequent access. The eviction and recovery layers in

these systems are far from performance-optimized because they tend to be cost-

agnostic and lack proper harmonization. For example, the decision regarding

which intermediate data to evict usually relies on heuristic methods that lever-

age past usage patterns, e.g., LRU [18] and LFU [46]. The recovery of evicted

data can be achieved either through recomputation from its ancestor operators

or input data or data swapping on multi-tiered storages, but the potential re-

covery costs of each method can vary significantly[104, 142]. Specifically, victim

data may incur substantial disk I/O overheads if the data is oversized or con-

versely may result in high regeneration costs if a long and expensive sequence of

recomputations is necessary. Unfortunately, current data analytics systems do

not determine how to handle victims for performance and cost efficiency within

the memory capacity.
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1.2 Proposed Solutions

We suggest the following methods to overcome the problems mentioned above.

First, we suggest our mathematical model that orchestrates the process of dy-

namically supplying CPU resources to our existing VMs through serverless

frameworks. Second, we suggest methods for profiling and probing for network

paths with diverse locations and lengths to find efficient network paths in the

global scale of network connections. Third, we suggest dynamic tracking and

calculation of the potential costs to find the caching solution that minimizes

the future expectations of recomputation and disk overheads.

1.2.1 Dynamic Supply of CPU Resources through Serverless

Frameworks

In this dissertation, we design Sponge, a new stream processing system that re-

quires low operational costs and keeps low latency upon sudden bursty loads [114].

Sponge is designed with the following three design principles:

Combining two heterogeneous cloud resources to have the best of

both worlds: Sponge harnesses two heterogeneous cloud resources: VMs and

serverless function (SF) instances. Serverless solutions provided by conventional

cloud providers [62, 44, 131, 89, 30] only take hundreds of milliseconds (i.e., 300-

750 ms) to launch and prepare and are designed to achieve high scalability, while

the operational costs are much higher than those of VMs. Therefore, to achieve

low latency and low operational costs, Sponge uses VMs for processing stable

streaming loads for longer periods of time, while quickly invoking SF instances

and using them for short periods of time to handle bursty loads. If the bursty

input loads persist, we may consider launching new VMs to permanently offload

the tasks with existing state migration techniques [112, 40, 47, 84, 67, 130, 106,
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59, 45, 53]. In such cases, on-demand SF instances can be used to accomplish

system SLOs by hiding the launch overhead during the preparation of the new

VM instances.

Keeping tasks with high migration overheads on VMs, while quickly

redirecting data to SFs: When VMs process streaming data with stable

loads over long periods of time, the states of stream tasks are materialized,

and the state size may increase on the existing VMs. To avoid the state migra-

tion overheads from VMs to SFs, Sponge incorporates the redirect-and-merge

mechanism: Sponge immediately redirects the increased load to SFs, which are

imminent to offload, so that each SF instance can build small partial states

and periodically send them back to the VMs to merge with the original states.

This approach allows Sponge to promptly exploit fast-launching SF instances

and bypass the prohibition of direct network communication between SF in-

stances. For quick data redirection, Sponge exploits SF properties to prevent

cold start latencies and pre-initiates copies of VM tasks on SFs to keep its

runtime, process, and pre-initiated tasks readily available on time.

Fast reactive scaling : On top of the fast resource scaling mechanisms on

SF instances, Sponge identifies bottleneck tasks reactively and makes precise

decisions on which part of the query to offload and how much of the compute

resources to request. At runtime, Sponge continuously monitors the CPU usage,

the major resource constraint of task execution, to quickly react to the changing

input loads. Our offloading policy determines the fraction of input loads to

offload based on excess events accumulated in the input queue and accounts for

the optimal time to recover from load increases to meet the SLOs for a given

query.

Sponge is built atop Apache Nemo [135, 115] with about 10K lines of code.

We evaluate Sponge on EC2 instances (5× r5.xlarge) and AWS Lambda in-
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stances (up to 200 Lambda instances of 1,769MB memory with one full CPU

core) with NEXMark [119], a popular benchmark for stream processing. The ef-

fectiveness of our optimizations varies according to the characteristics of queries

(e.g., dataflow pattern, # of tasks, and state size). Our evaluations show that

Sponge exhibits similar performance to costly over-provisioned approaches, and

reduces input event 99th-percentile tail latencies by 88% on average compared

to scaling queries on VMs and by 70% compared to scaling on SFs without our

techniques.

1.2.2 Profiling Heterogeneous Networks to Find Efficient Global

Network Paths

To overcome the shortcomings of prior approaches, we investigate a solution

that can effectively distribute the query workload over the nodes without loss of

query accuracy. In particular, there are multiple ways to distribute the tasks of

an analytics workload over geo-distributed computing resources. Our approach

for WAN analytics seeks to avoid exercising a path from data source to sink

that provides poor bandwidth that comes from very different P2P bandwidths.

Moreover, the system aims to adapt the task placement quickly to keep task

executions stable despite changing network bandwidths [9, 10, 95]. To achieve

the goals, we profile networks to obtain a holistic view on the network path

diversity, and keep monitoring the network usage so that more resources could

be spent on the networks that need more attention and the system can rapidly

adapt to the abrupt changes in resource conditions.

To overcome the problem, we propose SWAN, a new WAN stream analytics

engine that achieves the goals by incorporating two key techniques [113]. First,

instead of trying to make an ultimate task scheduling solution, SWAN aims to

alter the focus on providing a fast solution to keep the latency low, by pro-
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viding a speed-oriented solution based on a fast heuristic model. Next, SWAN

improves the quality of the generated solution by providing more flexibility to

task placements through leveraging longer network paths that exhibit higher

bandwidths. We have implemented SWAN on Apache Nemo [135, 115] and

evaluated it with the NEXMark benchmark suite [119], a popular benchmark

suite including multiple queries focusing on different areas of stream analytics.

Within seconds, SWAN reduces the average job latency of the queries by 77.6%

and increases the throughput rate by 5.64× over using the state-of-the-art dis-

tributed query execution.

1.2.3 Dynamic Tracking of Partition Metrics to Find the Opti-

mal Caching State

To prevent inefficient memory utilization, Blaze introduces a unified caching

mechanism that integrates the separate operational layers together. In doing so,

Blaze introduces techniques that capture workload lineage through profiling and

induction methods and dynamically monitor and update metrics for individual

partitions, which continuously influence potential recovery costs throughout the

workload. By capturing the lineage, Blaze enables an automatic caching mech-

anism that identifies caching candidates at partition granularity based on their

anticipated future references throughout the workload. The metrics profiled

for each partition include the time required to recompute the partition from its

computational input, the actual size of the partition, and the current location or

state of the partition. Using these lineage and partition metrics, Blaze provides

a potential recovery cost estimation model. This model empowers the system

to estimate potential recovery costs, including the overheads of recomputation

from the list of available cached data based on the lineage, as well as the disk

I/O overheads that would be incurred if the partition were to be written to and
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read from the disk.

Blaze’s cost model solves for selecting optimal partition states that will

result in the smallest potential recovery cost in the workload. The state of a

partition is defined by its location—whether it is in memory, on disk, or not

in any persistent storage. The cost model is implemented as an integer linear

programming (ILP) model, a popular solution for finding optimal values for

minimization problems [56].

We implement Blaze on Apache Spark [14], with 6K lines of code. Our eval-

uations on 11 r5.xlarge AWS EC2 instances [2] show the performance improve-

ments on two graph processing workloads, PageRank and Connected Compo-

nents, logistic regression (LR), representing supervised iterative ML algorithms,

and singular value decomposition++ (SVD++), representing unsupervised it-

erative ML algorithms. In the evaluations, Blaze accelerates the end-to-end

execution time by up to 2.86× and reduces the cache data stored on disk by

90% on average compared to Spark.

1.3 Contribution

In this dissertation, we make the following contributions:

�We provide insights in the resource management problem in distributed data

processing

�We propose dynamic system optimization techniques to supply the system

with sufficient resources at all times for the different problems of data processing

systems.

�We design and implement complete systems that run with our suggested

mathematical models and calculations, to show that our proposed techniques

significantly improve the performance in terms of throughput, latency, and JCT.
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1.4 Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 describes batch

and stream processing models, and describe the data processing runtime layer

that utilizes computer resources to execute data analytics workloads. Chap-

ter 3 proposes our method of dynamically supplying CPU resources for unpre-

dictable fluctuation of input loads through serverless frameworks. Chapter 4

proposes our methods to profile and find efficient network paths with higher

bandwidths among the highly unpredictable heterogeneous global network con-

nections. Chapter 5 proposes our methods to dynamically track and calculate

potential overheads within iterative data processing workloads to find the most

effective caching methods. Chapter 6 illustrates how each of the systems are im-

plemented, and Chapter 7 shows the evaluation results with which we show that

the solutions are effective in solving each of the problems. Chapter 8 describes

existing works that try to handle similar problems to point out the novelty and

the differences, and Chapter 9 concludes the work.
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Chapter 2

Background

2.1 Iterative Data Processing Models and Caching

2.1.1 Dataflow Execution Model

Modern data analytics systems adopt a dataflow-based execution model, which

represents data processing jobs as directed acyclic graphs (DAGs) [135, 115,

139, 3], as illustrated in Fig. 2.1. For example, in Spark [139, 14], vertices of a

computational DAG represent resilient distributed datasets (RDD) and edges

represent the computations that occur between the datasets. The computa-

tions can be categorized into a transformation or an action, which computes

a dataset to derive another dataset or a workload result (e.g., statistics or a

converged model), respectively. Each transformation lazily performs parallel

computations (e.g., map, filter, join, groupByKey) to build intermediate data

as new RDDs [139], whereas actions trigger computations and output results

(e.g., collect, reduce).

Different computations have different overheads and resource usage pat-
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Figure 2.1: A simplified code snippet of a Spark PageRank [19] on GraphX [51]

(a), and the RDD dependencies of the PageRank application (b). A Spark job

is submitted for each iteration. Some stages, RDDs, and shuffle dependencies

are omitted for simplicity. Sx denotes a stage number and Rx denotes the ID

of an RDD.

terns. For example, simple operators like map and filter use less resources (e.g.,

CPU, memory, network) compared to resource-heavy join or groupByKey oper-

ators [117, 113]. Most dataflow execution models behave in this way, and a job

acts as a unit of execution, triggered by an action, defined by the designated

group of operators represented as a DAG. In iterative workloads, each iteration

is triggered as identically-shaped jobs, which are chained according to their de-

pendencies on the input read job and previous iterations. Each logical dataset

(i.e., RDD) can be annotated to be cached or unpersisted through user APIs.

2.1.2 Parallel Execution and Partition Sizes

A job can be divided into multiple stages, each of which is a pipeline of operators

that can be performed on individual elements. Within a job, each logical dataset

(i.e., RDD) can be partitioned and processed by parallel computational tasks

containing the computational logic defined by the operators within a stage,

to simultaneously produce computational results for the different partitions

across a cluster of machines. Data processing engines schedule jobs in units
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of tasks on different machines, while also providing optimizations to leverage

data locality by scheduling dependent tasks on equivalent machines [14, 39,

135, 115]. Logically, stages have their boundaries on shuffle operators, which

search and fetch elements of specific keys from each of the parent partitions

(e.g., groupByKey), involving data transfer and aggregation over elements from

multiple upstream tasks.

The actual computations defined by the operators are executed while materi-

alizing the intermediate data into objects in memory, and data (de)serialization

is required if it requires disk access or data transfer across a network. Along

the computations, partition sizes vary depending on the element keys that each

partition is designated with, as one key may be overloaded compared to an-

other. Consequently, task execution times also vary although parallel tasks per-

form identical computations. Hence, bottleneck tasks are key to optimization as

their dependent tasks require them to complete before performing the following

shuffle operations and computations. In iterative data processing, partitions of

different jobs and stages have complex and repetitive data dependencies among

each other, and particular intermediate data are reused over the iterations.

2.1.3 Caching in Existing Systems

Modern dataflow applications often consist of multiple jobs to execute complex

workloads like iterative machine learning and graph processing applications

that share and reuse data partitions within their application DAGs. In order

to prevent redundant recomputations caused by missing partitions within the

system storage, data processing systems provide user APIs for caching reusable

data within memory or disks by annotating the datasets to cache, preparing

them for potential computations (Fig. 2.1(a), Fig. 2.2 1 ). Once each dataset

is no longer required in the workload, the user can also annotate them to be
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Figure 2.2: Caching and eviction on a Spark executor. Each task computes

and caches RDD partitions into memory or disk within the executor that it is

scheduled onto.

unpersisted and discarded from the system (Fig. 2.1(a), Fig. 2.2 2 ). The sys-

tem compliantly follows the annotations and performs caching and discarding

in units of datasets. Upon caching, the system first checks whether there is

enough space in memory, and evicts data according to the eviction policy if

it requires additional space [18]. Data eviction occurs by unpersisting and dis-

carding data (Fig. 2.2 2 ) or spilling data on disk (Fig. 2.2 3 ), according to

the system settings (§5.1.2), especially upon memory-heavy computations like

join and groupByKey [117, 113]. Upon cache misses during the execution, the

system recovers the data by fetching them from disk (Fig. 2.2 4 ), or regen-

erates the data in memory through recomputations, instructed by recursive

fault-tolerance mechanisms of the systems [139, 14]. Data recovery may also

incur evictions to provide enough space in memory, and it can be cached again

in memory according to the eviction policy. In short, runtime caching follows

separate rules in a conditional manner on three different operational layers, as

cache and unpersist operations are performed by the user, evictions occur

according to the eviction policy, and data is recovered by retrieving them from
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disks or recomputing them upon cache misses [139, 14].

2.2 Stream Processing Models and Event Latency

2.2.1 Execution Model

A stream processing query processes an unbounded number of timestamped

events to derive specific results (e.g., top K, statistics) on every temporal win-

dow. The execution of the query is generally expressed as a directed acyclic

graph (DAG) of operators and data dependencies. As shown in Fig. 2.3, a ver-

tex represents a stream operator that transforms input events and emits output

events, and an edge represents how data flows between its adjacent operators.

Popular stream engines like Flink [39], Spark Streaming [25], and Beam [31] aid

users with high-level languages (e.g., declarative language) to facilitate query

expressions. To provision compute resources over stream operators in response

to the input data rate, the stream engine generates an optimized physical DAG

(Fig. 2.3(b)) after translating a user query into a logical DAG (Fig. 2.3(a)).

In a physical DAG, each logical operator is expanded into n parallel tasks,

p0, ..., pn−1, where each task processes a disjoint data partition.

Stream operations that simply process an input record and emit its result
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to downstream operations (e.g., map, filter) are connected with one-to-one de-

pendencies, while operations that accumulate data from multiple source tasks

(e.g., groupByKey, join) require shuffle dependencies ahead of performing the

transform. Systems often group the operations connected with one-to-one de-

pendencies as a stage, to pipeline the operations of a task together on a par-

ticular machine to reduce the data transfer. These stages are split into parallel

tasks to distribute the job to a cluster of multiple machines. Unlike one-to-one

dependencies, shuffle dependencies require data transfers over the network from

multiple upstream tasks placed on different machines. In an environment with

limited network resources, shuffle operations have to occur on the right network

in order to prevent the query from suffering network bottlenecks.

2.2.2 Stream Operators and Resource Demands

A stream operator is either stateless or stateful. Stateless operators, such as map

and filter, are typically used to compute individual events or drop unneces-

sary events or fields by applying predicates. Due to their simplicity, stateless

operators can be pipelined together within a single node to leverage data local-

ity and reduce network overheads. On the other hand, stateful operators, such

as groupByKey and join, perform data grouping within a window boundary

to organize unbounded streaming events into disjoint groups based on times-

tamps and aggregation keys, requiring computationally extensive key lookups

. Thus, most streaming engines apply parallelism specifically to stateful oper-

ators such that a single stateful task pi processes events that only belong to a

non-overlapping key partition groupKi out of the entire key spaceK = ∪n−1
i=0 Ki.

Stateful operators are often the major source of system bottlenecks [113, 90].

In particular, since each parallel stateful task is assigned to a key partition

group, it incurs shuffle communication for the events in its key group that are
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(a) stateful join (b) stateless map

Figure 2.4: CPU and memory usage patterns for (a) stateful windowed join

and (b) stateless map operators upon processing a fixed input rate of 80K

events/s on identical 4 vCore nodes. The CPU and memory usage of the state-

ful operator increase until the window is full.

collected from the preceding (upstream) operators. Shuffle communication often

requires the data to travel across different nodes, requiring data serialization

and deserialization on top of the computation performed for the key lookups.

As a result, as shown in Fig. 2.4, it is prevalent to provision more CPUs to

execute stateful operators rather than stateless operators [67, 128].

2.2.3 Stream Operator Placement

In conventional stream processing systems [39, 54, 81, 103, 130], tasks are gen-

erally scheduled in a round-robin fashion for an even distribution of tasks across

executors. In order to perform custom task placements on such systems, one

must annotate node names on the individual tasks, with the features supported

by resource managers. Since existing stream processing systems generally run

on local clusters equipped with an excess amount of network resources, they

focus on optimizing CPU and memory resources. In order to implement custom

scheduling policies, existing systems require modifications on the scheduling
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layer, as they are often designed with simple support for batch and stream

modes for scheduling.

2.3 Resource Provisioning

Several real-world stream analytics systems report high temporal variability

in the event count of data streams, even across one-minute time windows [84,

100, 80, 111]. This means that stream processing may need to frequently adjust

resource provisioning and query execution plans in response to changes in input

loads. Upon facing increased input loads, the system needs to allocate more

resources to avoid operators being congested and maintain stable query latency.

Cloud offers primarily two options for on-demand resource allocation: virtual

machines (VM) and serverless functions (SF). We compare three representative

characteristics between these two options in more detail.

2.3.1 Resource Size

VMs are machine-isolated by bare-metal hypervisors, whereas SFs are process-

isolated by OSes. Therefore, SFs are much more flexible in allocating resources.

Cloud providers typically provide VMs in chunks of a pre-defined, fixed amount

of resources (e.g., r5.xlarge with 4 vCores and 32GB memory). In contrast, SFs

are allocated based on a specified memory size. For the memory size, cloud

providers assign a certain number of CPU power (e.g., vCores) guided by their

pricing model [27]. We observe that network bandwidth per SF instance is about

100Mbps and concurrently using multiple SFs can increase the bandwidth up

to GBs of effective bandwidth, which VMs already support, providing enough

capacities to handle most streaming workloads.
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2.3.2 Start-up time

VM instances take a significant amount of time to launch and to prepare the

runtime stack for query workload as they virtualize resources using bare-metal

hypervisors. We observe that provisioning a new VM instance in major cloud

service providers, like AWS, Azure, and GCP, mostly has a latency of over 25

seconds. On the contrary, SF instances provided by these cloud vendors take

only 300-750 ms to launch and be ready to run because SF instances share

runtimes and resources at the OS level.

2.3.3 Usage cost

SF instances are much more expensive to use than VM instances, e.g., 4× more

expensive when running a 1GB SF instance with AWS Lambda (with < 1

vCPU) compared to a t2.micro EC2 instance, which is equipped with 1 vCPU

and 1GB RAM. However, temporarily using SF instances primarily for frequent

short-lived bursty loads that constitute only a small fraction of time throughout

the day [62] does not significantly increase the operational cost (§7.1.5).
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Chapter 3

Sponge: Fast Reactive Scaling for
Stream Processing with Serverless
Frameworks

3.1 Challenges

Based on these observations, we propose to use a combination of VMs and SFs

to have the best of both worlds. To achieve low latency and cost, we use cheap

and stable VMs for handling continuous loads for long periods of time, and

costly and reactive SFs for bursty loads during short periods of time. In this

section, we describe several challenges in scaling streaming loads from VMs to

on-demand SF instances.

C1. Migration with large operator states. For stream scaling in the

cloud, existing approaches trigger resource adaptation primarily by re-scaling

operators (i.e., increasing or decreasing parallelism) and migrating the bot-

tlenecked tasks to the instances with available resources (i.e., load redistribu-
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Figure 3.1: While scaling out on SF instances, the system must be aware that

aO task state migration overheads lead to latency spikes, and bO direct data

communication among adjacent tasks is prohibited between SF instances.

tion) [112, 40, 47, 84, 67, 25, 39]. Thus, even if we can set up SF instances

quickly, the task state migration overhead is inevitable with existing systems,

as shown by Fig. 3.1 aO, and paradoxically often inflicts damage to system per-

formance.

Fig. 3.2 illustrates the various overheads that occur during a single work-

load scaling for the queries evaluated in § 7.1. As shown in this figure, the

task migration and reconfiguration require a few extra seconds (3-4 seconds)

to resume the work after the migration. Also, the state migration takes several

seconds (e.g., from 4 to 17 seconds) depending on the state size because of the

(de)serialization overheads of states. These task and state migration overheads

lead to increased query latency due to the delay in receiving events from up-

stream tasks. The system that aims to meet low-latency SLOs must correctly

and rapidly carry out task offloading to SFs. In particular, some use cases are

expected to generate outputs even in order of seconds or less, without query
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Figure 3.2: A comparison of the overheads of different steps of workload scal-

ing on stream processing systems in the cloud. The VM, SF, and managed

runtime initialization overheads are averaged across all instances, and the data

redirection and task/state migration overheads are averaged across all single-

scaling operations for the 5× input load experiment in §7.1. Error bars indicate

the 95% confidence interval.

accuracy loss [111, 84].

C2. Indirect data communication between SF instances. As SFs are

designed to be provisional and temporary, cloud vendors usually prohibit run-

ning a server process that can accept inbound network connections on an SF

instance. Hence, direct data communication across SF instances is prohibited.

This prevents neighboring stream operators (parent and child operators) from

being offloaded to SFs simultaneously, as these operators require direct shuffle

data transfers to group data by its key partitions, as shown in Fig. 3.1 bO.

Therefore, we can choose to migrate only certain tasks to SFs (e.g., either

operator A or B in Fig. 3.1), but this eventually leads the bursty input load

to end up on VMs on the adjacent operators and fails to alleviate latencies.

Alternatively, we can offload all the tasks involved in the shuffle communication
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on a large SF instance. However, this forces parallel tasks to be located on a

single SF instance, which can lead to network pressure while leaving VMs idle.

Consequently, it is essential to design the system to be able to offload adjacent

operators together to SFs while bypassing the prohibited direct communication

across SF instances.

C3. Quick decision making and scaling. With frequent unpredictable

changes in input events, offloading decisions must be made quickly at runtime.

Stream systems often detect symptoms of bottlenecks from system metrics and

decide on whether and how much to scale. However, existing approaches can

be too slow, as they require multiple iterations of optimization that scale bot-

tleneck operators one after another [47]. Other work prevents such iterations

by providing a global optimum after collecting all metrics from all executors

to redistribute tasks [67]. While these approaches effectively find the target

throughput and may be suitable for throughput-oriented workloads, they only

work in intervals of multiple 10s of seconds and may not be suitable for latency-

oriented workloads. For a stream system operating with diverse intervals and

window sizes, it is important to have a uniformly fast and effective optimization

level to prevent window outputs from being delivered too late.

3.2 Sponge Design

In this section, we describe the key pillars of our system design and explain

the details by illustrating our graph rewriting algorithm, dynamic offloading

policy, and the mechanisms that prevent cold start latencies and enable system

correctness.
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3.2.1 Design Overview

Latency spikes occur when the input rate ri exceeds the maximum throughput

mi on a particular task pi. When this happens, data starts to accumulate on

the event queue, along with the operator state in memory, leading to high CPU

usage and memory pressure. In a cloud environment, the maximum throughput

mi often depends on the CPU capacity allocated to the task, regardless of the

operator type. This is because most cloud providers are equipped with GBs of

network bandwidths, and memory pressure starts to increase when the CPU be-

comes saturated, and the input data builds up in the event queue with ri > mi.

Therefore, our goal is to primarily focus on relieving CPU pressure. To achieve

this, we design a system that accurately estimates the amount of additional re-

sources needed and provides fast mechanisms for offloading CPU computation

from VMs to SFs through two design principles: redirect-and-merge and fast

reactive scaling.

Redirect-and-merge. Sponge is designed to rapidly forward increased in-

put load to available resources in SF instances. To ensure speed, we bypass

expensive query optimizations during runtime by performing DAG optimiza-

tions during compile time, i.e., when the application is launched (Fig. 3.3 aO).

During compile time, there are no concerns yet about runtime synchronization

and progress, so it only takes about 200ms upon workload initialization to per-

form the DAG optimizations. After the optimization, Sponge scheduler places

tasks on appropriate executors (Fig. 3.3 bO). This allows Sponge to focus on

which operators and how much of their data volume to offload to SFs based

on monitoring CPU usage (Fig. 3.3 cO) without having to relaunch queries at

runtime.

While stateful operators are our primary focus as initial bottlenecks, any
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operator can become a subsequent bottleneck. Thus, we enable offloading for

any operator, regardless of its type and statefulness. We design transient oper-

ators (TOs) so that operator logic can be prepared on SF instances to receive

events immediately after detecting an increase in the input load and CPU us-

age on VMs (Fig. 3.3 dO). We also enable offloading to be activated at any

time with high efficiency and responsiveness. To meet these requirements, we

introduce a set of new proxy operators: router operators (ROs) and merge op-

erators (MOs). ROs supervise the data communication to downstream VM and

SF instances, in order to enable the system to rapidly and elastically forward

data from any existing operators to the designated instances (Fig. 3.3 eO). To

minimize state migration overhead, which is a major bottleneck in task migra-

tion [130, 59, 45, 53], the states, exclusively for the offloaded input load, are

maintained separately on SFs. MOs enable the system to later merge the cor-

responding states of offloaded workload created on SFs with the states on the

original VMs for any stateful operators (Fig. 3.3 fO). This way, the offloading

overhead for both stateful and stateless operators is substantially reduced, as

we only have to offload the computational logic, and not the states. The proxy

operators are inactive during non-scaling periods to avoid extra costs and are

only activated when needed.

Fast reactive scaling. With the principle above, we provide a fast reactive

approach that prevents inaccurate predictions on resource provisioning by mon-

itoring local performance metrics within the executors. Bottlenecks often occur

individually on VMs, so it is sufficient to mitigate them locally within each VM.

As briefly mentioned, relieving CPU pressure when the input rate ri is greater

than the operator throughput mi is key to reducing CPU and memory strain

in stream processing systems. Sponge has low monitoring overhead, with less
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Figure 3.3: Sponge architecture.

than 10ms per observation. Based on input rate and CPU usage observations,

Sponge estimates the amount of CPU resources needed to increase operator

throughput and meet our SLOs under increased input loads.

3.2.2 Compile-time Graph Rewriting Algorithm

At the start of the application, our compiler applies the graph rewriting al-

gorithm (Algorithm 1) to the application DAG, which produces a new DAG

based on a set of conditional rules, as shown in Fig. 3.4. In our algorithm, TOs,

ROs, and MOs are inserted as follows. TOs are cloned stream operators with

additional features to run on SF instances, such as maintaining partial states

for stateful operators. Since all original operators are potential candidates for

offloading, we first create TOs for all operators (line 3, Fig. 3.4 aO). This way,

all operators causing CPU bottlenecks can scale on SFs with TOs. ROs enable

data communications between VM and SF instances when the communication
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pattern involves a shuffle or a broadcast (as one-to-one communications typ-

ically occur locally between pipelined operators) (§ 2.2). ROs run on existing

VMs to redirect the input data to the downstream tasks running on either VMs

or SFs without performing additional computations (line 5-12, Fig. 3.4 bO). If

the communication pattern involves the same number of partitions and tasks

between two operators, we pipeline the corresponding TOs with a one-to-one

edge (line 13-15). ROs incur almost no costs as they simply redirect events to

the tasks on target instances (e.g., conventional or TO tasks). Lastly, we in-

sert an MO after each stateful operator for every edge, so that the partially

aggregated states on the TOs can be merged back into the original states on

VMs (line 16-23, Fig. 3.4 cO), where the details of the merging mechanisms are

provided in § 3.2.5. Stateless operators do not need to merge states, so they

simply pass on their output to the following operators (e.g., filter operator in

Fig. 3.4). During non-scaling periods, ROs are not activated and TOs and MOs

do not receive any data, adding no computational costs to the runtime. The

operators are only activated upon offloading actions.
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3.2.3 Dynamic Offloading Policy

In this section, we describe when Sponge triggers offloading, how many SF

instances it uses, and how many events it offloads. Our goal is to constantly

maintain low query latencies while keeping CPU utilization stable across all ac-

tive cloud instances. To achieve this, Sponge quickly calculates the total number

of CPU cores needed to meet this goal and the Sponge scheduler redistributes

the workload accordingly among the tasks placed on VMs and SFs.

Overall workflow. The Sponge runtime, shown in Fig. 3.3, is a main sys-

tem component that performs monitoring of the resources and operator states

to take immediate scaling actions as needed. Each executor continuously mon-

itors CPU resources and input rates, typically every second, and observes if

the CPU load falls outside a stable range for consecutive periods. If so, the

Sponge runtime initiates the scaling phase by first calculating the target sys-

tem throughput, based on the over-subscription period of CPUs and the current

input rates (that jointly decide the number of events in the queue), and the re-

covery deadline (the time remaining to clear the events and return the system

to a stable state). Subsequently, the Sponge runtime adds new SF instances

as needed to meet the recovery deadline by sending requests to the Sponge

scheduler. The number of new SF instances is chosen to be minimum to neither

over-subscribe nor under-subscribe the active cloud instances, minimizing op-

erational costs. After a scaling action is taken, the Sponge runtime returns to

the monitoring phase. It is possible that the Sponge runtime may go through

multiple monitoring-scaling phases before the system becomes stable.
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3.2.3.1 Detailed Offloading Process

CPU utilization goals. Along with system metrics, such as the input rate

and operator latency, Sponge measures the CPU load of the executor in order to

maintain adequate CPU loads on individual nodes. Through extensive experi-

ments, we have observed that the input rate ri exceeds operator throughput mi

and event queues start to build up (i.e., ri > mi) when the CPU is occupied at

around 75-80% of its capacity. We have also seen symptoms of over-provisioned

system resources when the CPU load falls under 50-60%. Due to such reasons,

we aim to maintain the CPU utilization range between 60-80%.

Events in the queue. Assuming ri(t) > mi(t) between times tp and tp+1

(tp < tp+1), the number of excess events accumulated in the queue can be

formulated as
∫ tp+1

tp
(ri(t)−mi(t)) dt. Obviously, the accumulated events in the

queue will be smaller if the duration d = tp+1 − tp is smaller. This is the main

reason for using SF instances over VMs – to reduce the duration of ri(t) > mi(t).

Recovery deadline. Recovering from this event backpressure is achieved by

providing the system with additional resources to achieve higher throughput,

mio . If additional resources are available from time to, we should set a deadline

to+1 until which we aim to empty the queue to return to a stable state for

our streaming system. We base the deadline on the window interval of the

query (e.g., 10 seconds) so that we can deliver the query results within the

query’s next output boundary. Then, the number of additional events that can

be processed from the queue can be expressed as
∫ to+1

to
(mio−ri(t)) dt, where the

increased throughput is larger than the input rate (mio > ri(t)). As a result, we

should adjust our throughput mio with sufficient additional resources to meet

our recovery deadline to+1 (e.g., to+1−to ≤ 10) such that the following equation
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holds: ∫ tp+1

tp

(ri(t)−mi(t)) dt ≤
∫ to+1

to

(mio − ri(t)) dt (3.1)

The approximation of the integrals is based on Simpson’s rule provided by

[12], which turns complex calculations into simple arithmetic that incurs trivial

overheads.

Stable throughput per VM CPU core. To calculate the target number

of SF instances required to achieve our target throughput, we maintain records

of the CPU usage rate of the VM node during stable loads. Assuming that a

task pi runs on a single VM core with an average usage rate of ucpuV M
i

(%) and

an average task input rate of ri[events/sec] based on the records, we scale and

approximate the input rate and throughput for 100% utilization of the VM core

rpcVM
i [events/(sec · core)] for task pi, as follows:

rpcVM
i =

ri
u
cpuV M

i
100

[events/(sec · core)] (3.2)

Required number of SF instances and data redistribution. Based on

the approximation of how much input throughput a VM core can handle, we can

calculate the number of required SF instances to achieve our target throughput

mio with a simple division. We offload tasks from VMs to SFs to keep the

CPU utilization of VM clusters between 60− 80% in order to prevent resource

over-provisioning. Hence, we target the VM CPU core usages at 70%, for our

approximation to solidly fall into our target with a ±10% buffer even when our

profiling measurements exhibit minor errors on time-varying variables like ri(t).

Assuming the CPU capacity of each SF instance core is different from that

of a VM core, we can derive a relation between them with profiling: capaSFcore =

ρ ∗ capaVM
core. Correspondingly, rpc

SF
i = ρ ∗ rpcVM

i because the throughput is

proportional to the CPU capacity. Altogether, the number of total SF cores c
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that we need to prepare to meet our latency goal for task pi can be derived

with Eq. 3.2 as follows:

c = ⌈ mio

0.7 · rpcSFi
⌉ = ⌈ mio · ucpus

0.7 · 100 · ρ · ri
⌉ (3.3)

where the number of required SF instance cores increases as ρ decreases. Finally,

the number of SF instances can be calculated with c
k where k is the number of

cores per SF instance (k = 1 in our evaluation).

When offloading stateless or stateful tasks, Sponge evenly redirects data or

redistributes keys to the c
k SF instances, while processing remaining events on

VMs to keep 70% CPU usage in average. If the event distribution is skewed

across the key space, the solution can be extended to use key histograms for

more accurate key partitioning, as in existing approaches [69, 35]. Both during

scaling up and down, the target CPU usage is set at 70% within our target

range.

3.2.4 Reducing Cold Start Latency

In order to timely gain access to SFs, Sponge provides two options: (1) warm-up

SF workers in advance by sporadically processing short events [92, 49, 141] to

minimize the managed runtime initialization overheads [82], and (2) use solu-

tions like AWS SnapStart [74], which bring shorter initialization times of SFs

by taking a snapshot of the initialized SF instance environment and caching it

for low-latency access [6]. As SFs are charged based on the memory usage time

and the number of requests [28, 29, 52], prices for pre-warming SFs are trivial

(nearly zero). By default, Sponge prepares and keeps enough SFs warm to han-

dle up to 5× the stable load during the workload. For bursty loads that exceed

5× the stable load, Sponge timely prepares new instances with SnapStart [74]

on AWS. SFs on AWS SnapStart [74, 6] show a slightly worse start-up time

compared to the instances that are kept warm in advance, but the overhead
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is reduced by more than 80% compared to unoptimized JVM initializations,

resulting in a sub-second total start-up time for SFs (§ 7.1.4). As a result, by

enabling both methods for initializing the managed runtime, Sponge can timely

gain access to SFs upon facing unpredictable bursty input loads.

3.2.5 Correctness

As stream systems are designed to be long-running, progress is tracked by the

positions of the watermarks that flow along with stream events [135, 115, 39,

31]. Based on the intuition, Sponge maintains correctness by (1) introducing

a watermark in the event stream as a control message upon (de)activating an

operator and (2) ensuring that all events between two watermarks are processed

in the original system (i.e., without offloading) or on the offloaded operators [84,

53].

Concretely, upon detecting a possible bottleneck in an operator task pi on an

executor, Sponge fires a watermark message M into the data channel (Fig. 3.5).

37



Upon receiving watermark messages, operators checkpoint their states to later

recover from the checkpointed states, guaranteeing exactly-once processing.

Sponge scales after temporarily pausing operators upon control messages and

delivering messages to downstream tasks. Once all on-the-fly events in the data

plane are consumed, downstream tasks send acks back to the upstream tasks

to guarantee no event and state loss.

Thus, the events that arrive after M are immediately redirected to the tasks

of the TOs on SFs, where partial states are aggregated if the operator is stateful.

For stateful operators, TOs send the aggregated states to the following MOs

placed on VMs, which know where to start merging the partial states with the

original ones. Both incremental and appended aggregation can be mergeable

with partial states, similar to how Flink [39] manages shared states, which

causes moderate overhead on VMs. Even if events arrive out-of-order in the

merge operators, they wait for the same watermark to arrive from the task in

VM and its transient tasks so that the states can be synchronized. This ensures

that all input data before and after M are processed according to the proposed

optimizations.
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Algorithm 1: DAG rewriting for operator insertion.

1 Function OperatorInsertion(dag)

2 for vertex, inedges in dag.topological sort() do

3 t op = TransientOp.for(vertex)

4 for inedge in inedges do

5 if inedge.comm != 1to1 then

6 r op = RouterOp.create()

7 dag.remove edge(inedge)

8 e1 = {inedge.src→r op, inedge.comm}

9 e2 = {r op→vertex, 1to1}

// connect transient operators

10 e3 = {inedge.src.t op→r op, inedge.comm}

11 e4 = {r op→vertex.t op, 1to1}

12 dag.add edges([e1, e2, e3, e4])

13 else

14 e = {inedge.src.t op→t op, 1to1}

15 dag.add edges([e])

16 if inedge.src.is stateful() then

17 m op = MergeOp.create()

18 dag.remove edge(inedge)

19 e1 = {inedge.src→m op, inedge.comm}

20 e2 = {m op→vertex, 1to1}

21 e3 = {inedge.src.t op→m op,inedge.comm}

22 e4 = {m op→vertex, 1to1}

23 dag.add edges([e1, e2, e3, e4])

24 return dag
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Chapter 4

SWAN: WAN-aware Stream
Processing on
Geographically-distributed
Clusters

4.1 Challenges

Existing policies designed for local clusters result in significant performance

loss and inefficient resource utilization under WAN, due to the fundamental

differences in network environments [101, 123, 125]. While the superfluous net-

work infrastructure on local clusters enables datacenters to reserve network

resources for network traffics from particular machines, long-distance cables in-

stalled across continents must be shared by multiple different network traffics

due to the limited infrastructure. Due to such nature of WAN networks, it ex-

hibits unpredictable variability in both space and time. We characterize the

network with two aspects, into spatial and temporal variations, to gain insights

on how to optimize streaming engines for WAN environments.
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Figure 4.1: A CDF of networks showing the spatial variation of a geo-

distributed cluster.

Spatial variability. Spatial variations are caused by the distances and the

different network infra connecting the clusters. The infrastructures (e.g., cables,

satellites) are usually managed by the internet service providers (ISPs) to con-

nect different LAN networks together. As the infrastructures are each designed

with different technologies and budgets, a large diversity exists among the dif-

ferent paths over the WAN. Fig. 4.1 shows the diversity of network bandwidths

in a geo-distributed cluster of 16 nodes (i.e., 16C2 = 120 connections), scat-

tered around 8 different sites over 3 continents (details in §7.2.1). Here, we can

witness varying average bandwidths as low as about 500KB/s up to 900MB/s,

depending on the different locations and distance between the sites, while most

network connections show average bandwidths below 100MB/s.

When suggesting a network path between two sites, the ISPs usually provide

the path with the lowest latency, but this does not necessarily have the highest

bandwidth. If the size of the data to be transferred is larger than the provided

bandwidth, it results in network congestion, which causes the latency to rise,

as the large traffic has to wait in the queue before being processed. Therefore,
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Figure 4.2: A graph showing the temporal variation of a network through

time.

it is important to find a network connection that has sufficient bandwidth to

accommodate the expected traffic. Subsequently, operator placement decisions

need to appropriately made to effectively harvest the available bandwidth across

the globe.

Temporal variability. Temporal variations are caused by the high concen-

tration of network traffics through the limited bandwidths of WAN settings. Due

to the large number of network users sharing the provided WAN bandwidths,

network patterns are highly unpredictable and display diverse patterns over

time. Also, the long distance within the WAN adds other physical factors that

contribute to the instability of the network. While WAN networks over longer

distances often show more instability compared to the ones that are relatively

shorter, there also exists heterogeneous variability among the participating re-

gions. WAN network bandwidth patterns can be transient or permanent, and

steep or gradual, depending on the cause of the effect, and can occur in band-
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width rises or drops, as shown in Fig. 4.2. Our observations on a geo-distributed

cluster show that over half of WAN networks suffer from bandwidth drops of

over 20% every 6 minutes on average.

While bandwidth rises do not directly affect the stream analytics perfor-

mance, bandwidth drops result in increased latency and lower throughput if

not handled appropriately. Permanent changes or significant bandwidth drops

are particularly considered detrimental and require the system to adapt the

task placement to mitigate potential network bottlenecks.

Prior approaches and limitations. Existing data processing systems de-

signed for WAN environments focus on a single type of variation depending

on the type of data that they target. Existing systems that target short-lived

batch processing jobs [123, 101, 124] focus on the spatial variability to reduce

the network data transfers for lower network budget and assume stable network

throughout the job.

Regardless, the question of how to perfectly schedule tasks to the geo-

distributed nodes while considering all network conditions and task dependen-

cies altogether is known to be NP-hard [85, 91]. Existing works often depend on

ILP solvers to schedule tasks in a way that minimizes the longest link transfer

finish time of the reduce tasks [123, 101]. Specifically, they optimize the job by

observing each stages one after another, to find the right proportion of tasks to

place for each node of the geo-distributed cluster. Nevertheless, scheduling tasks

using ILP solvers are still significantly slow compared to other conventional

scheduling methods despite their simplicity of illustrating the problem [101].

The optimization overhead depends on the length of the query execution plan,

but on average, it is 25× slower than conventional scheduling for NEXMark

streaming benchmark queries (§ 7.2.3). Since stream processing has strict la-

43



tency requirements, it is difficult to adopt an ILP model to effectively handle

the temporal variation.

On the other hand, existing systems that target WAN-aware stream pro-

cessing [105, 140, 61] describe methods to adaptively collect data to a single

data center. In order to do so, such systems propose effective ways to pre-

aggregate, degrade, and statistically estimate the raw data and trade the output

quality for better performance over limited bandwidths. However, while such

optimizations are very effective in specific applications (e.g., video processing),

accuracy-sensitive applications, such as fraud detection, billing queries, and

global stock or transactional analysis, cannot adapt such methods, as lower

accuracy can often lead to undesirable reliability and additional problems for

such queries [57, 61, 105, 140]. In order to bypass such problems, it is required

for the WAN-aware stream processing systems to be designed to run on tasks

distributed across a geo-distributed cluster, in a way that can rapidly adapt to

the altering conditions.

4.2 System Design

4.2.1 Insights

Good heuristics over an expensive solver. While ILPs provide efficient

simple abstractions for materializing the optimization problem of distributing

tasks to geo-distributed nodes of a cluster to solve the spatial variability, ILP

solvers are too slow to be dynamically used for stream processing systems. ILP

could be a good solution if WAN networks do not possess temporal variability

and the optimization occurs just a single time. However the 25× overhead

is not trivial with job latency if the optimization is to occur repeatedly. In

order to mitigate the optimization overhead, we propose using a fast heuristic
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model that effectively captures WAN characteristics. In building the heuristic

model, we aim to put our focus on two primary aspects. First, we aim to find

a model that accurately captures the network costs, based on the number of

upstream and downstream tasks and the measured network bandwidths, and

minimize the network cost throughout the stream analytics job. Second, we

try to distribute an even number of tasks to each nodes if possible, in order

to prevent computational bottlenecks that can occur when the distribution of

tasks are too concentrated on a specific set of nodes.

Query rewriting to fully cover promising longer paths. Wide-area net-

works are usually managed by ISPs, who, by default, provide the network with

the minimum latency upon each request. However, this does not relate to higher

bandwidth. Fig. 4.4 shows an example of a network connection between Seoul

and Paris that exhibits more network bandwidth if travelled through New York,

instead of travelling directly to each other. When provided with a low-latency

network with limited bandwidths, the data transfer can suffer from even more

latency due to the congestion caused by excess network traffics. Moreover, lim-

ited bandwidths lead to full usage of the bandwidth, leaving less room to act

as a buffer upon sudden small bandwidth drops with temporal variations. In

order to prevent such cases and leverage the network connections with more

bandwidths, we perform query rewriting to cover longer paths that are more

promising for our workload. In order to capture such network connections, we

enable our system to extend the query execution plan with relay operators that

simply pass on the data from the uplinks to the downlinks.
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Figure 4.3: An overall architecture of the SWAN system.

4.2.2 Design Overview

We capture these insights in our system, SWAN, which uses a fast and effective

heuristic model for placing tasks on the geo-distributed cluster, with extended

optimization techniques to rewrite queries and expand the query execution plan

to capture promising longer paths with more bandwidths. Fig. 4.3 shows the key

system components involved in the scheduling and optimization of the query

execution plan. Once a dataflow application is submitted to SWAN, the com-

piler performs basic optimizations, such as stage partitioning and determining

the number of tasks for the workload, and builds the application into a physical

execution plan, which is composed of a group of tasks. With the query execution

plan, the SWAN planner collects network metrics and the total number of tasks

and their dependencies, to calculate the predicted network cost, and determines

where to place each of the tasks. The scheduler takes the physical plan with

the placement information and distributes them to the geo-distributed cluster

in the way specified by the plan.

When the latency increases in the workload, the metric monitor triggers

dynamic optimization, which submits a modified physical plan with the new

placement specification to the scheduler. The scheduler fires an optimization
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mark, which is a special implementation of a watermark that triggers each

tasks to checkpoint their data to be migrated according to the new placement

specification. Each tasks are sequentially migrated to replay the data from the

point of the optimization mark.

4.2.3 Operator Placement Algorithm

A stream processing application typically has source tasks fixed on specific

sites. The tasks of children stages can predict the potential network cost that it

incurs if placed on a specific site s ∈ S among all sites S, based on the number

of upstream tasks on the upstream site u ∈ S and the given bandwidth between

the sites bandwidthsu. We also find the appropriate number of task slots for each

site to evenly distribute tasks among the multiple sites. Based on the calculation

of these two values, we distribute tasks according to the ratio of the number

of remaining slots divided by the expected network cost of a site. This way, we

distribute more tasks to the sites where the network cost is smaller, while also

distributing tasks to sites that have more task slots left. We describe the logic

above with the following equations:

Distribution ratio factors =
task slotss − tasks counts

network costs
, (4.1)

s.t. network costs =
∑
u∈S

upstream tasks countu
bandwidthsu

(4.2)

and task slotss =
∑

node∈s
⌈
∑

tasks count∑
node count

+
1

2
⌉ (4.3)

To understand the scheduling algorithm, we use an example on a WAN

setting illustrated on Fig. 4.4, where three nodes are allocated on each of the

three sites, making it a cluster of
∑

node count = 9 nodes. Let us assume a

case of executing a three-stage application, where 8 tasks are generating source
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Figure 4.4: An example of a geo-distributed cluster setup.

data in stage 0, followed by 5 tasks in stage 1, and 3 tasks in stage 2. Since the

application consists of a total of 16 tasks to be placed on a total of 9 nodes, we

set the upper limit for the number of tasks on each node to ⌈
∑

tasks count∑
node count +

1
2⌉ =

⌈169 + 1
2⌉ = 3, which results in a total of 3× 3 = 9 slots for each site. Specifying

task slots enables us to prevent tasks from being too crowded on a specific site.

Let us assume a case where 3 data source tasks are placed in Seoul and NY,

while 2 data source tasks are placed in Paris. In order to schedule the following

5 tasks in stage 1, we first observe the remaining slots for each site, where a

total of 9−3 = 6 slots are left in Seoul and NY and 9−2 = 7 slots in Paris. We

next calculate the network cost for a potential individual task if it was to be

placed on a specific site, described in Eq. 4.2. By this calculation, NY, Paris,

and Seoul has the cost of 2
18+

3
7 ≈ 0.5, 3

18+
3
2 ≈ 1.7, and 3

7+
2
2 ≈ 1.4, respectively.

With these numbers, we find the target ratio of task distribution as described

in Eq. 4.1. This way, NY, Paris, and Seoul has the target distribution ratio of

6
0.5 : 7

1.7 : 6
1.4 ≈ 3 : 1 : 1. Consequently, 3 tasks of Stage 1 are scheduled on NY,

and Seoul and Paris are each scheduled with a single task.

The remaining 3 tasks of stage 2 are scheduled by repeating the steps above.

The remaining slots are 3, 6, 5, respectively for NY, Paris, and Seoul. Network

costs are 1
18 +

1
7 ≈ 0.2, 3

18 +
1
2 ≈ 0.7, and 3

7 +
1
2 ≈ 0.9 for NY, Paris, and Seoul.

According to the logic above, the target distribution ratio is 3
0.2 : 6

0.7 : 5
0.9 ≈ 6 :
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3 : 2 ≈ 2 : 1 : 0, and hence 2 tasks are scheduled on NY and a single task is

scheduled in Paris.

Our operator placement algorithm can be generally applied to any physical

plan consisting of multiple tasks, to place them on an arbitrary number of nodes

placed on different sites. In our example, we can observe that NY has the best

network conditions among the three sites, and our scheduling algorithm places

a total of 8 tasks on NY, while placing 4 tasks each in Paris and Seoul. This way,

data can flow into the direction of the site with the most available bandwidths,

while preventing a specific site from having too many tasks. While our example

illustrates a small example, the slot allocation comes into great usage when the

scale of the physical plan grows to hundreds of tasks.

4.2.4 Query Rewriting

Now that we have a query execution plan with annotations specifying the nodes

to place each of the tasks on, we can do further optimizations on the schedul-

ing. On the setting illustrated in Fig. 4.4, we can see that the network between

Seoul and Paris exhibit a much narrower bandwidth compared to the band-

width between two areas through New York. Although we try to use the high

bandwidths as much as possible with our operator placement algorithm, a few

tasks inevitably have to transfer data through the low bandwidth between Seoul

and Paris. In such cases, we provide an extra option to insert a relay task be-

tween the tasks in order to be able to send the data through the network going

through New York, instead of using the original option.

Nevertheless, if too many tasks transfer data over the high bandwidth, that

bandwidth can also be congested due to the large number of traffic. Therefore,

we choose to insert the relay task only if the average bandwidth among the tasks

transferring data through the network becomes higher with the new option:
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bandwidthrelay network∑
tasks countrelay network

>
bandwidthoriginal∑
tasks countoriginal

(4.4)

Since the major problems in WAN-based analytics occur with lower band-

widths that are intolerable with temporal fluctuations, inserting relay tasks do

not significantly increase the latency, as with higher bandwidth, we can allow

higher degree of concurrent stream data transfers.
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Chapter 5

Blaze: Holistic Caching for
Iterative Data Processing

5.1 Observation and Motivation

In this section, we observe the three separate operational layers of current

caching mechanisms, composed of caching, eviction, and recovery layers, in more

detail, and point out their limitations to motivate our work.

5.1.1 Caching and Eviction Mechanisms

Caching layer. As shown in Fig. 2.1(a), caching interfaces are provided

through cache() and unpersist() APIs for users to analyze the workload

and hint the datasets to persist after each iteration and later reuse them with-

out recurring recomputation overheads. For example, in Fig. 2.1(b) Iteration

2, we can see that as a result of caching annotations in Fig. 2.1(a), R49 and

R55 are cached, while R37 and R43 are unpersisted from disk, which happens

similarly in different iterations. Nevertheless, not only do the current interfaces
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Figure 5.1: Caching at dataset granularity causes different sizes of evicted data

among different executor machines on a PageRank application in our evaluation

(§7.3).

require the users to have app-specific knowledge to cache the right datasets, but

they also fall short in providing fine-grained caching at partition granularity,

while each partition varies in terms of size and computational time. As shown in

Fig. 5.1, this can become problematic as the current coarse-grained caching at

dataset granularity causes executors to cache partitions with different sizes (i.e.

disk I/O overheads) and computation overheads, to incur different amounts of

evictions on different executors. Also, coarse-grained caching can lead to unnec-

essary caching for certain partitions with smaller potential overheads, making

inefficient usage of memory space and making the system prone to future evic-

tions. For example, although the user only annotates caching for rankGraph

in Fig. 2.1(a), it leads to caching of all relevant partitions of the RDDs in

Fig. 2.1(b), some of which are unnecessary as they may not have any future

usages or incur trivial recovery costs [55] (§7.3.2).

Eviction layer. Existing policy-based mechanisms for evicting and manag-

ing cache data show several limitations. Basically, an eviction policy keeps a

list of partitions and determines the priority of partitions in which to evict
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from the cache storage. A few different eviction policies include classic LRU

(least recently used) [18] and GDWheel [77] policies, learning-based TinyLFU

(lightweight least frequently used) [46] and LeCaR (learning cache replace-

ment) [122] policies, as well as dependency-aware LRC (least reference count) [137]

and MRD (most reference distance) [98] policies. As each name suggests, each

policy determines which cached partitions to prioritize and evict from memory

based on historical usage patterns and logical references. While these policies

have been successful in handling caches in other contexts (e.g., CDN and web

services) [77, 116, 46, 122, 34, 26, 36, 33, 32], eviction for data processing

workloads requires consideration of many other factors. For example, for inter-

mediate data partitions, evictions have to consider the future access patterns,

different sizes, and the corresponding recomputation and disk I/O costs of the

different partitions, in order to accurately capture the potential recovery costs.

As such information evolves dynamically over the iterations, it requires the

system to be adaptive to changing situations.

5.1.2 Recomputation and Disk I/O Costs

While managing cache storage according to the caching policies, current sys-

tems fix their way (i.e., MEMORY ONLY or MEMORY AND DISK) for each workload

in using the different storages in handling evictions, without the flexibility to

choose which way to take for the different datasets or partitions [14, 139, 115,

135], due to their implementation designs and challenges regarding the dy-

namically changing potential recovery costs upon different situations (§5.2.3).

The first way is to simply discard the data from memory upon eviction (i.e.,

MEMORY ONLY), to rely on the fault tolerance mechanisms that recover data

through recursive recomputations. Similar ways include (de)serializing data in

memory or in off-heap space to save some memory, but the basic mechanism is
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Figure 5.2: The accumulated execution time of tasks in four applications

(§ 7.3), including the total time of disk I/O costs for recovering evicted data.

Data (de)serialization is included in the disk I/O time.

similar in that they recover data through recomputations. The second way is

to keep a two-tiered storage to evict data into cheaper supplementary storage,

to recover data by fetching them from slower secondary storages upon cache

misses (i.e., MEMORY AND DISK) [1]. While these two ways recover data by incur-

ring different potential recovery costs, the costs are not comparably uniform or

deterministic, making it difficult to calculate which method is better than the

other [104, 142].

Disk I/O costs. Disk I/O costs are incurred upon writing and reading cached

data to and from underlying storages (e.g., SSDs, HDDs) to spill and bring the

data back in memory for evicting and recovering data in MEMORY AND DISK

mode. We can see in Fig. 5.2 that disk I/O overhead is the major source of

bottleneck in two graph processing (i.e., PageRank and ConnectedComponents)

and one machine learning (i.e., SingularValueDecomposition++) applications,

where the detailed experimental setup is described in §7.3. The disk I/O costs

also exhibit the overhead for (de)serializing data in memory to access them on

disks. Obviously, if the partitions are larger in size, it would incur more disk I/O
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Figure 5.3: Breakdown of the total recomputation time for each iteration in

PageRank (§7.3). The RDDs incurring the highest recomputation time within

the iteration are labeled from iteration 6 to 10 (RDD 85, 97, 109, 121, and 133).

costs. Therefore, for applications with large partition sizes, it incurs more disk

I/O costs than other applications, especially like PageRank where disk costs

compose more than 70% of the end-to-end execution time.

Recomputation costs. Recomputation costs are the computational time in-

curred when a partition requires upstream ancestor operators to recursively

produce their intermediate data in order to derive the desired result. As shown

in Fig. 5.3, computations with longer lineages in later iterations tend to incur

more recomputation costs. While it can be easily sought that it would be more

advantageous to use disks as secondary storages to store cache data, in Fig. 5.2,

we can see that LogisticRegression is the only workload that produces small

disk I/O overheads due to the relatively smaller size of the cached data (i.e.,

ML model) and fewer datasets that are annotated to cached. In other cases,

recomputation costs may be smaller than disk costs, and they should be con-

sidered as an option for some partitions to take for recovering the intermediate

data, instead of simply spilling them on disks.
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5.2 Design Goals and Challenges

In this section, we describe our design goals and the challenges to achieving the

ideal case for caching in comparison to the existing mechanisms.

5.2.1 To Cache, or Not To Cache?

First of all, instead of blindly caching all data that is annotated to be cached as

in existing systems [14, 18], one needs to first determine whether or not it would

be advantageous to cache the data in memory (Fig. 2.2 1 ). We should first keep

in mind that only the partitions with future usages should be considered, as the

others will occupy memory space without any benefit. For a reused partition

pi, it is obvious that it is advantageous to cache it if there is enough memory

space to store pi. However, in cases where memory space is constrained, it is

advantageous to cache data in memory only if the pi is to incur more potential

recovery costs than other cached partitions that are already in memory. If the

potential recovery costs are not considered, it results in evictions of some par-

titions that will eventually incur more costs in the future, which is undesirable.

Therefore, upon trying to cache a partition pi, we must compare its potential

recovery costs against other available cached partitions, and also consider the

options to directly discard them or write them on disk if the benefits of storing

in memory are limited. This consideration should be taken both when a par-

tition first attempts to be cached, as well as when the partition is recovered

through a cache miss and becomes a candidate for caching.

5.2.2 To Evict, or Not To Evict?

In cases where it requires some evictions of cached partitions, when the fixed

memory space is saturated, to store a potentially expensive partition pi, one
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Figure 5.4: The dynamically changing comp(pdes) and ref(panc) upon evict-

ing and unpersisting p1 from the cache.

needs to carefully select the partitions to evict based on the potential costs,

instead of on history-based caching policies [18, 137, 87, 46, 122]. Since each

partition incurs a different recomputation and disk cost, it is also important to

choose in which state to evict and keep each of the partitions, as discussed in

§5.1.2. For some partitions, it may be advantageous to simply discard the data

and recompute them, if they are too oversized compared to their recomputation

overheads (Fig. 2.2 2 ). For others, it may be more advantageous to spill and

store them on disk, if they have smaller partition sizes while their computations

have been more time-consuming (e.g., model calculation for LR) (Fig. 2.2 3 ).

Both aspects have to be carefully considered in choosing and evicting partitions

from memory, while also keeping the potential recovery costs in the calculations,

also to perform data recovery in memory or from disks in a timely manner if it

is more beneficial to do so (Fig. 2.2 4 ).
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5.2.3 Dynamically Changing Data Dependency

The most important challenge to address is that the potential recovery costs

dynamically change during runtime. At one point in time, a partition can be

in memory, while at another point it can be evicted and discarded or written

on disk. For example, in Fig. 5.4, if p1 is unpersisted, the recomputation cost

for pdes will increase from p1→pdes to panc→p1→pdes, if panc resides in the

cache. This recomputation cost can be extended even further from the source

input data if the required partitions are not in the cache. Moreover, future

dependencies can also dynamically change upon unpersisting partitions. When

trying to compute for pdes and p2, it initially does not incur any references to

panc, but after unpersisting p1, panc is referenced by both pdes and p2 through

p1. Such evictions and unpersist actions cause dynamic chained reactions in

the potential recovery costs over the progress of the workload, as the cached

partitions also change dynamically. Therefore, it is exceptionally difficult to

derive and consider all of the different cases to calculate the potential costs.

5.3 Blaze Design

In this section, we describe an overview of how our system operates and our

design principles in formulating a universal cost model for caching. Next, we

describe how we estimate and keep track of the partition metrics throughout

the workload. Finally, we formulate our cost model for optimizing the memory

space and describe our solution for finding the optimal caching state for each

of the partitions.
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Figure 5.5: The overview of Blaze.

5.3.1 Blaze Overview

Blaze performs cost optimization based on the different partition states and

metrics, and on the potential recovery costs derived from them. In order to

track and accurately estimate the potential recovery costs, Blaze goes over two

phases, as shown in Fig. 5.5. First, 1O Blaze runs the workload on a small

portion of the original input data (i.e., < 1MB) to extract the code path and

dependencies between datasets, and 2O builds a CostLineage that keeps track
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of the workload lineage and performs inductions on future partition metrics

based on the extracted partition dependencies and existing metrics (§ 5.3.3).

Next, 3O Blaze sends the metrics to the executor 4O to automatically make

unified decisions for caching, eviction, and recovery (§5.3.5, §5.3.6), based on

the lineage and the calculated costs on the CostLineage (§5.3.4). Once a task

finishes its execution for a particular partition, 5O the executor sends the meta-

data of the new partitions back to the master to 6O dynamically update and

manage the partition metrics back on the CostLineage with timely information

on the run.

5.3.2 Design Principles

Our key idea for addressing the limitations of existing approaches is to devise

a unified cost-aware caching mechanism that automatically decides on whether

to keep our cache data of a particular partition pi ∈ P in memory (mi), on disk

(di) or to simply discard and unpersist (ui) them based on our cost estimation

for the potential overheads. The state of each partition pi can be defined as

follows:

∀pi ∈ P, mi + di + ui = 1 (mi, di, ui ∈ {0, 1}) (5.1)

State transitions among the cached partitions can occur as evictions (mi→ui,

mi→di), recomputations (ui→mi, ui→di), and recovery (di→mi). Disks may

also unpersist data (di→ui), in cases where the disk size is also constrained.

A potential recovery cost of a partition is the overhead that may occur in

the future if the partition does not reside in memory at the execution time. Con-

cretely, we estimate the potential disk access cost of pi at time t, costd(pi, t),

along with the potential recomputation cost of partition pi at time t, costr(pi, t)

(§5.3.4). If the costr(pi, t) is smaller than costd(pi, t), discarding and recomput-
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Figure 5.6: A CostLineage constructed from the extracted RDD lineages of

the PageRank application in the dependency extraction phase. Duplicate RDDs

are dynamically detected and merged upon new iterations and future iterations

are induced.

ing pi would be more beneficial than writing it on disk, as it reduces the high

(de)serialization and disk read/write time while incurring a small recomputa-

tion time. Therefore, assuming that we have abundant disk space for caching,

the ideal potential recovery cost cost(pi, t) of the partition, if it was not cached

in memory, would be the minimum between the two values:

cost(pi, t) = min(costd(pi, t), costr(pi, t)) (5.2)

If the cached partition pi resides in memory (i.e., mi = 1, di = 0, ui = 0),

the potential recovery cost is disregarded, while our aim is to keep the sum

of all potential recovery costs,
∑

i∈P−M cost(pi, t), as low as possible, where

M = {pi ∈ P | mi = 1} while Eq. 5.1.

5.3.3 The CostLineage for Tracking Partition Metrics

In order to dynamically keep track of the partition metrics, Blaze first builds

a CostLineage based on the workload DAG produced by the initial profiling

phase. Since the input data is minuscule (i.e., < 1MB), the profiling phase

usually succeeds in capturing the dependency among the multiple iterations of

the workload DAG until its convergence within its timeout (i.e., 10 sec). Even if
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it fails to do so, Blaze is able to perform inductions on future iterations based on

the already captured iterations, which we describe later in this subsection. Also,

Blaze can derive the number of potential references for each of the partitions

until the end of the application based on the dependencies, which are used for

automatic caching (§5.3.5).

As shown in Fig. 5.6, the CostLineage dynamically detects and merges

duplicate dataset abstractions from different jobs together, based on their IDs,

to manage them as a single abstraction. For example, R37 from iterations 1 and

2 are merged together in the CostLineage. On the captured data dependencies,

CostLineage annotates the list of profiled partition sizes and their states on

the vertices (i.e., datasets) and the computation times on the edges between

each of the dependent partitions. After the actual execution of the workload

starts, the partition metrics for the initial iterations are simply recorded on the

CostLineage since the initial iterations of the actual workload do not request

for any evictions due to sufficient memory space. CostLineage updates the

partition metrics upon receiving new partition metadata from the executors,

which actually materialize the iterators of the partition data upon execution,

and gain access to the partition sizes, locations, and computation time. Also,

if the partition data is read or written to disk, Blaze also measures the time

it takes for the disk operations and derives the disk throughput to keep the

hardware performance metrics with timely information.

Once the metrics of the initial iterations are recorded, CostLineage de-

tects the datasets that play the same role in different iterations by analyzing

the sizes of the datasets from the initial iterations. Concretely, CostLineage

takes the sum of partition sizes for each dataset and uses a simple automata

algorithm based on the differences in the dataset sizes of adjacent operators to

find the repeated patterns. By doing so, we can detect the iterative patterns
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among datasets that are generated from the same code path in the loop, and

perform inductions to predict the partition sizes for future iterations. For the

missing values of partition metrics in the CostLineage, Blaze inductively fills

in temporary approximated values of metrics for the undiscovered partitions

by applying a lightweight linear regression model based on the existing metrics

from previous iterations, until the end of the application. Likewise, future iter-

ations that had not been captured during the profiling phase can be inducted

similarly. Based on these partition metrics, we can estimate potential costs for

recomputation and disk overheads of the different partitions whenever a caching

decision needs to be made.

5.3.4 Potential Recovery Cost Estimation

We describe how we estimate costd(pi, t) and costr(pi, t) individually. The disk

cost, costd(pi, t), can be calculated simply by dividing the size of the partition

size(pi) with the profiled read/write throughput of the disk, throughputdisk,

which can be profiled within the system during runtime or initially approxi-

mated through conventional softwares [4]. The recomputation cost for a par-

tition pi has to be defined recursively with respect to the ancestor upstream

partitions Ai = {pj ∈ P | pj → pi} that are not cached in memory {pj ∈

Ai | mj = 0}. We define the longest recomputation time from the upstream

partitions as the recomputation cost, costr(pi, t) (§ 2.1.2), which dynamically

changes according to the CostLineage. We can compute the potential recovery

costs within milliseconds with the following logic:

costd(pi, t) =
size(pi)

throughputdisk
(5.3)

costr(pi, t) = max
pj∈Ai

((1−mj) · cost(pj , t) + costj→i) (5.4)
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where costj→i is the computation time for deriving pi from pj and cost(pj , t)

is defined in Eq. 5.2.

5.3.5 Finding the Optimal Partition States

Based on the collected dependencies and the partition metrics on our CostLineage

(§5.3.3), we can now formulate our solution as an integer linear programming

(ILP) model, with respect to our cost estimation methods (§5.3.4). Recognizing

that a job corresponds to an iteration in iterative workloads, assume that we

wish to optimize our cache storage for a set of future partitions within a set of

jobs, pj ∈ J , which is captured and induced within our CostLineage. We can

set up a constraint for our memory space for all relevant partitions, pi ∈ P ,

that are recorded within our CostLineage, as well as our objective function

to minimize the potential costs for the partitions that are to be used in our

upcoming jobs pj ∈ J . In our solution, we set the boundary for the set of jobs

J to be the current job and its successive job, inferred by the CostLineage and

the system metrics on the workload progress [16], to ensure ILP performance

(i.e., < 5 seconds). This adaptively minimizes the potential costs, including the

disk I/O and recomputation overheads, for the near future, regardless of the

workload progress in the current job:

Minimize
∑
pj∈J

(dj · costd(pj , t) + uj · costr(pj , t)) (5.5)

Subject to:
∑
pi∈P

size(pi) ·mi ≤ capacitymem ,

Eq. 5.1, Eq. 5.2, Eq. 5.3, Eq. 5.4 (5.6)

In cases where disk space is also constrained, the ILP can be simply extended

by adding another constraint,
∑

pi∈P size(pi) · di ≤ capacitydisk, where we set

capacitydisk as an abundant value in this dissertation.
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5.3.6 Automatic Caching

As the CostLineage keeps track of the partition states and metrics, and hence

the potential recovery costs of each of the partitions, it can easily find the min-

imum potential cost among the partitions that reside in memory. If a partition

has future references in the CostLineage and is expected to be reused in the

future, Blaze attempts to automatically cache the partition if its potential re-

covery cost is larger than any of the partitions that reside in memory. Similarly,

if the partition does not have any future usages, Blaze automatically unpersists

the data from the cache storage to quickly acquire free space, like [55]. Note

that automatic caching and unpersists consider the full application DAG cap-

tured by the CostLineage, whereas our ILP considers the potential costs only

for a couple of upcoming iterations, to optimize ILP performance and trigger

state transitions only for the near future. The ILP solver is triggered whenever

a new job is submitted and auto-caching is triggered whenever a stage is com-

pleted, and partitions are subsequently migrated or unpersisted. Through these

steps, Blaze automatically decides on the caching, eviction, and recovery of the

partitions on a unified layer in each executor, according to the derived optimal

state of the partitions.

65



Chapter 6

Implementation

We implement each of the systems as described in this chapter.

6.1 Sponge Implementation

We have implemented Sponge with about 10K lines of Java with support for

AWS Lambda, as follows:

Programming interface: To express a stream query as an application DAG,

we use Apache Beam [31] application semantics, which is a widely used dataflow

programming interface for various systems (e.g., Spark [25], Flink [39], Cloud-

Dataflow [8]). In addition, as Beam provides APIs for developers to build asso-

ciative and commutative operations (e.g., combiners), Sponge can extract this

information to build the merge operators.

Compiler: Apache Nemo [135, 115] provides the intermediate representation

and optimization pass abstractions, with which we can flexibly optimize appli-

cation DAGs. We split our operator insertion into three separate optimization
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passes for inserting ROs, TOs, and MOs on Nemo to reshape the application

DAG, defined by Apache Beam semantics.

Runtime: We modify the Nemo runtime [135, 115] to support the migration of

tasks and the redirection of the data from VMs to SFs. Sponge executes worker

processes on VM and SF instances, which each manages a thread pool that

contains a fixed number of threads and assigns tasks to the threads. VM workers

set up Netty [94] network channels and communicate with other VMs and SF

workers, while there are no network channels set up between SF instances due

to the communication constraint. For launching new VM and SF instances, as

well as for deploying the worker code on AWS Lambda, we use boto3, the AWS

SDK API for controlling AWS instances [38].

6.2 SWAN Implementation

SWAN is implemented on top of Apache Nemo [135, 115] with around 2K lines of

Java code. We use Apache Beam [31] application semantics to express a stream

query as an application DAG, which is widely used as a dataflow programming

interface for various systems (e.g., Spark [25], Flink [39], CloudDataflow [8]).

Apache Nemo [135, 115] provides the intermediate representation and optimiza-

tion pass abstractions, with which we can flexibly optimize application DAGs.

We implement optimization passes to insert relay vertices where applicable. We

measure network performances with the iPerf [75] library on linux machines,

and use Google OR-tools [99] to implement ILP solvers for our baseline.

6.3 Blaze Implementation

Blaze is implemented on top of Spark 3.3.2 with around 6K lines of Scala 2.12

code, and the Blaze runner is implemented with 500 lines of bash script. We
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implement BlazeBlockManagerEndPoint in the Spark master that maintains

CostLineage. We modify the default Spark memory manager, UnifiedMemory-

Manager [22] to cache data in the local executor memory. To communicate with

the BlazeBlockManagerEndPoint, we also modify the Spark BlockManager

and MemoryStore. The BlockManager and MemoryStore communicate with the

BlazeBlockManagerEndPoint to acquire the costs of different partitions and

make decisions. Each task caches its partitions into the executor where it is

scheduled, without storing and sending the partitions to other executors, as

most tasks access the cached data on local executors with the locality-aware task

scheduling optimizations implemented on Spark. The ILP solver is implemented

with the Gurobi optimizer 10.0.1 [56].
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Chapter 7

Evaluation

We evaluate the performances of the designs proposed for each of the solutions

in this chapter.

7.1 Sponge Evaluation

In our evaluation, we observe Sponge performance compared to other scaling

mechanisms (§ 7.1.2), distinguish the factors that contribute to the Sponge

performance (§ 7.1.3), compare the cold start latency reduction mechanisms

(§7.1.4), and observe the latency-cost trade-off between SFs and VMs (§7.1.5).

7.1.1 Methodology

Environment. We use AWS EC2 r5.xlarge instances (32GB of memory and 4

vCores) as VM workers, and AWS Lambda instances as SF workers. As AWS

Lambda offers one vCPU per 1, 769MB and provides constant network band-

width (i.e., ∼ 100Mbps) regardless of the instance size, we use single-core SF in-
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Figure 7.1: A simplified application DAG of stream queries used in our eval-

uation. M and F are map and filter operators, GbK is a stateful group-by-key

operator for incremental aggregation on windows, and SI is a non-mergeable

stateful operator for the join operation.

stances of 1, 769MB to provision each instance with enough network bandwidth

to achieve the throughput of the CPU core. VMs generally provide 10Gbps net-

works, which effortlessly cover the traffic generated by the CPU core throughput

(i.e., < 10% bandwidth utilization when offloading 450K events/sec). We set

up Amazon Virtual Private Cloud (VPC) for the data communication between

the VM and SF instances for stable network connections.

Workloads. NEXMark[119] is a widely used streaming benchmark [67, 79] that

analyzes auctions and bid data streams. NEXMark contains diverse stream

queries with complex dataflow and stateful operations. Among the 8 (Q1-8)

NEXMark queries, we choose 6 queries as shown in Table 7.1 because they

represent distinctive data communication patterns and stateless and stateful

operations. We omit Q2-3 because Q2 is a stateless query similar to Q1, and

Q3 is a non-associative stateful query like Q7.
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Query Stateful State

Size

# of

Tasks

(per Op.)

Stable

input

rate

Q1 X - 120 550 K/s

Q4 O ∼90 MB 60 190 K/s

Q5 O ∼2.4 GB 70 19 K/s

Q6 O ∼73 MB 70 230 K/s

Q7 O ∼1.5 GB 90 15 K/s

Q8 O ∼7 GB 60 60 K/s

Table 7.1: Characteristics of different NEXMark stream queries.

Fig. 7.1 illustrates the simplified original DAG of NEXMark queries, and

Table 7.1 summaries the characteristics of the queries. The queries except for

Q1 contain windowed operations. We configure the window size of queries as

60 seconds and the window interval as 1 second. While the system throughput

declines with larger and more frequent windows, we evaluate under a frequent

window interval to test Sponge under requirements for frequent, time-critical

resource scaling. The throughput of the evaluated engine [135, 115] is similar

to the performance of other stream processing engines [39, 25] when the same

window size and interval are used. Nonetheless, in our evaluation, the bursty

traffic is increased by up to 10× events/sec and represents a wide range of

realistic input rates in the field (§7.1.2).

Baseline. We compare Sponge with the following baselines:

� NoScaling executes stream queries on static VMs without scaling out stream

queries.

� VMBase dynamically creates new VMs and migrates tasks to the new VMs
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Figure 7.2: Examples of different bursty input patterns used in some experi-

ments, where input rates increase at time t = 380. (a) shows a sudden increase

from 60K to 300K (5×) for 60 seconds, (b) shows a sine-curve increase and

decrease, and (c) shows a gradual increase.

for scaling without dataflow reshaping.

� SFBase dynamically creates SF instances and migrates tasks to SFs for scal-

ing without dataflow reshaping. For SFBase and Sponge, we prevent cold start

latencies on SF workers as described in §3.2.4.

� VMInit initializes new VMs in advance and migrates tasks to the new VMs

for scaling without dataflow reshaping.

� Over over-provisions VMs and already has enough resources to cover input

loads without dataflow reshaping.

Bursty traffic and resource allocation. We emulate bursty traffic by in-

creasing the input rate over a short period of time, as shown in Fig. 7.2. In this

traffic pattern, we first generate stable input streams where the input rate is sta-

ble and does not fluctuate. At a specific point (e.g., t = 380s in our evaluation),

we increase the input rate for a short period of time (e.g., 60 seconds) to emu-

late an increased load and then decrease the rate back to the stable input rate.

In § 7.1.2, we observe the average performance of the different systems under

72



350 375 400 425 450
Elapsed time (sec)

Q1

0
10
20
30
40

La
te
nc
y 
(s
)

NoScaling VMBase SFBase VMInit Over Sponge

350 375 400 425 450
Elapsed time (sec)

Q4

0
10
20
30
40

350 375 400 425 450
Elapsed time (sec)

Q5

0
10
20
30
40

La
te
nc
y 
(s
)

350 375 400 425 450
Elapsed time (sec)

Q6

0
10
20
30
40

350 375 400 425 450
Elapsed time (sec)

Q7

0
10
20
30
40

La
te
nc
y 
(s
)

350 375 400 425 450
Elapsed time (sec)

Q8

0
10
20
30
40

Figure 7.3: The tail latency graph, under a bursty load (Fig. 7.2(a)) at t =

380s and scaling is triggered at t = 381s.

up to 10× burstiness (bursty input rate
stable input rate ), and we provide detailed analysis on the

effects of the burstiness rising from 3× to 6× in §7.1.3. By default, the bursti-

ness is set to 5×, as it distinctly shows the limitations of existing approaches

comparatively. For example, as the stable CPU load is kept at 60− 80%, most

baselines already experience high latencies from 2× burstiness, but the perfor-

mance results are more clearly distinguishable between the baselines under the
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5× burstiness.

During the stable load, we run 5 VM workers. We generate events (per

second) for the stable load such that all 5 VM workers undergo CPU usage

between 60% and 80%, preventing the VM cluster from being under-loaded

or over-loaded. As queries have different computational complexity, the stable

input rate is configured differently for each query as shown in the last column

of Table 7.1. Once bursty loads occur, we dynamically allocate up to 200 single-

core SF instances for Sponge and SFBase, and up to 50(10×) new extra VM

instances for VMBase depending on the query load.

7.1.2 Performance Analysis

Fig. 7.3 and Fig. 7.4 illustrate the 99th-percentile tail latency and CPU utiliza-

tion, respectively, of the different systems across different queries for the Burst

traffic pattern in Fig. 7.2. Overall, Sponge and Over exhibit lower latencies

compared to others during bursty periods and successfully keep the CPU uti-

lization stable. The latency of NoScaling continuously increases with full CPU

utilization as the existing VMs are overloaded and never perform offloading.

Henceforth, we discuss Sponge and other baselines that perform scaling. For

SF-based strategies that are restricted by the prohibited direct communication

between SF instances, we profile their operator costs and manually configure

them to make the best scaling decisions.

Sponge. Sponge reduces the tail latency on average by 88% compared to VM-

Base and 70% compared to SFBase and performs comparably to Over. Sponge

also keeps the CPU utilization relatively stable across time, as shown in Fig. 7.4.

Subsequently, we illustrate below why other scaling strategies cannot deliver the

same benefits as Sponge in further detail.

VMBase. The latency of VMBase in Fig. 7.3 increases by at least 30s due to
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Figure 7.4: The CPU utilization graph, under a bursty load (Fig. 7.2(a)) at

t = 380s and scaling at t = 381s.

the slow start-up time of the VMs. Specifically, we observe that it takes around

25-30 seconds for the VMs to start, and around 4 extra seconds for managed

runtime (i.e., JVM) worker processes to start on the newly started VMs. More-

over, as JVM processes are cold at the beginning and JIT compilation is not

triggered, the processing throughput is low in the beginning, which causes extra

latency of up to 44 seconds. After new VMs are instantiated, tasks are migrated
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Traffic pattern Burstiness Duration

Figure 7.5: Summarized results of the experiments, with similar settings as in

Fig. 7.3, displaying the average peak tail latency across the different NEXMark

queries under diverse input patterns and burstiness.

to new VMs, and the latency of the VM decreases as the throughput eventu-

ally becomes larger than the input rate. Nevertheless, the CPU utilization of

VMBase shown in Fig. 7.4 is continually kept high after the peak load, as it

tries to climb down from the latency peak by heavily processing the data in the

event queue.

SFBase. The slow start-up time of VMs can be mitigated by using SFs as shown

in SFBase. Upon scaling out Q1 (a simple stateless query), SFBase significantly

reduces the latency and CPU compared to VMBase, as the start-up time of an

SF instance only takes a few hundred milliseconds in our evaluation. This result

suggests that only by using SFs instead of VMs, we can significantly improve

the latency for scaling out a simple stateless query, similar to MArk which

handles bursty loads of stateless inference jobs [141].

However, for scaling out other complex queries with N-to-N shuffle data

communications and stateful operations, the performance gain of SFBase com-

pared to VMBase declines. It indicates that näıvely scaling queries on SFs

without any operator insertion has limitations due to the challenges explained
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in §3.1. In Q4 and Q6, latency increases by up to 12 seconds because the op-

erators with shuffle edges cannot be redistributed to SFs and VMs become the

bottleneck. In Q5, Q7, and Q8, latency and CPU spikes are caused by task and

state migration overheads.

VMInit. Like SFBase, VMInit reduces the slow start-up time of VMs by

starting them in advance. For VMInit, queries with N-to-N shuffle data com-

munications can be offloaded, but we can see that it still incurs task and state

migration overheads resulting in short steep peaks of tail latencies and CPU

usage, which is highlighted in Q8.

Over. The over-provisioned case is the most expensive solution, providing

enough resources for the peak loads without considering an upper bound for

runtime costs. In Fig. 7.3, we can see a slight increase in latency as the input

load increases, but it soon stabilizes back. The CPU usage in Fig. 7.4 displays

an under-utilization before the peak load, but shows an adequate utilization

rate afterward, as it is allocated with an adequate amount of resources for the

peak load.

Input patterns. In Fig. 7.5, we can see the average tail latency among the

different queries along the different input patterns. We can see that Sponge and

Over show good performance among all settings, and NoScaling continuous

increases in most cases. The sine and gradual bursts show a relatively mild

effect compared to others, as their bursts are more gentle. We can see that

while 120s and 30s bursts show somewhat similar results, 7× and 10× bursts

show higher tail latencies due to the increased load.
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Figure 7.6: The latency graphs for SF, SpongeRO, SpongeTO, SpongeSnap,

and Sponge to analyze and break down the performance improvements of

Sponge.

7.1.3 Graph Rewriting Effect

To validate our design, we analyze the performance gain on Sponge with the

following additional baselines:

� SpongeRO scales queries on SFs while allowing direct communication be-

tween SF instances with ROs only.

� SpongeTO scales queries on SFs by adding event redirection atop SpongeRO

with ROs and TOs.

� SpongeSnap shows performance for Sponge, with ROs, TOs, and MOs, on

SnapStart, without pre-warming instances.
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Fig. 7.6 illustrates the tail latencies of SFBase, SpongeRO, SpongeTO, SpongeS-

nap, and Sponge in more detail. Q1 and Q7 are omitted in the figure, as Q1 is

a simple stateless query, and Q7 is represented by Q5 and Q8.

Router operator effect. Comparing SpongeRO with SFBase shows the ef-

fect of router operators. In Q4 and Q6, SFs exhibit higher latencies as VMs are

bottlenecked while processing events for M operators (Fig. 7.1) on VMs (only

3% of input events are filtered before M2). As naive SFs can only offload one of M

and GbK, we choose to offload GbK, as the amount of computation on M is smaller

than that of GbK due to the additional aggregation. However, the input rate of

M on VMs becomes higher than the maximum throughput on the VMs with

5× bursts in Q4 and Q6, and events pile up in M operators, incurring latency

increases in SFs. In Q5 and Q8, the latency of SFBase is similar to SpongeRO

as VMs sufficiently handle the load on M operators. The main bottlenecks in

Q5 and Q8 are GbK operators, which incur large aggregate computations. This

result indicates that the RO is effective when the input rate and the overhead

caused by the operators running on VMs are high.

We also evaluate when VMs become bottlenecks on M operators, by varying

the burstiness (bursty input rate
stable input rate from 3 to 6 in Q4 (Fig. 7.7(a)). In the figure, the

bottom and top of the box are the 25th and 75th percentiles, the line indicates

the median, error bars are the 95% confidence interval, and outliers are dotted

as rhombi. VMs sufficiently handle 3× and 4× burstiness, and the latency

of SFBase does not increase and is similar to SpongeRO. However, when the

burstiness increases to 6×, VMs become the bottleneck in processing the input

events of M. Unlike SFBase, SpongeRO adds an RO between M and GbK, and

migrates both M and GbK to SFs while keeping the RO on VMs. As an RO

does not (de)serialize events and does not perform computation, the amount of
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Figure 7.7: Comparison on Q4 for (a) SFBase and SpongeRO on diverse

burstiness, and (b) SpongeRO and SpongeTO on different degrees of parallelism

(# of parallel tasks).

computation of RO is always smaller than that of M, and reduces latencies by

up to 70%.

Transient operator effect. Transient operators enable Sponge to redirect

data without stopping the workload for rescheduling. The effectiveness of tran-

sient operators increases as the number of tasks to be migrated (or redirected)

increases. Q4 requires a large number of tasks to be migrated or redirected.

For Q4, we had to migrate or redirect 85% of total tasks to SF to mitigate the

bottleneck in the VMs in SpongeRO and SpongeTO. SpongeRO takes around

2.8 seconds for migrating its tasks. In contrast, SpongeTO takes around 1.4 sec-

onds for redirecting its tasks. Due to the fast redirection mechanism, SpongeTO

additionally reduces the latency by up to 28% compared to SpongeRO.

When the degree of parallelism increases, the number of tasks to be mi-

grated or redirected also increases. Fig. 7.7(b) illustrates the tail latency under

different degrees of parallelism in Q4. With 50 parallel tasks for each operator,
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the task migration/redirection overhead is small, but the latency increases after

the migration and redirection in both SpongeRO and SpongeTO, as a smaller

degree of parallelism makes the system more prone to unevenly skewed tasks.

With 70 parallel tasks, the overall latency decreases but the task migration

overhead increases in SpongeRO. As a result, the peak latency increases by up

to 8 seconds. In contrast, due to the lightweight redirection optimization, the

peak latency of SpongeTO is kept at around 3.5 seconds, which is 56% smaller

than SpongeRO.

Merge operator effect. Even with ROs and TOs, SpongeTO still suffers

from high latencies in Q5 and Q8 due to the state encoding/decoding overheads.

The state migration overhead is trivial in Q4 and Q6 (< 100MB), but the

overhead increases with the state size. The time to encode/decode the states of

Q5 and Q8 takes around 13s (for ∼2.4GB state) and 35s (for ∼ 7 GB state),

respectively. As a result, the latency of SpongeTO increases by up to 15 and 38

seconds in Q5 and Q8. In contrast, Sponge significantly reduces the latencies to

4 seconds in Q5, and to 6 seconds in Q8, preventing state migration overheads

with MOs.

7.1.4 Cold Start Latency Reduction Methods

In § 3.2.4, we describe two methods for reducing the cold start latency: by

keeping warm SF instances and by using snapshots of SFs through tools like

SnapStart [74]. In Fig. 7.6, we can see that the performance of SpongeSnap,

which solely bases its initialization method on SnapStart [74], is slightly worse,

but comparable with Sponge, which uses a hybrid of both methods in optimizing

the managed runtime (e.g., JVM) initialization overhead. Since the overhead

is reduced by more than 80% with SnapStart [74], and > 90% with warm SF
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Figure 7.8: (a) The latency during a bursty period, and (b) a rough calculation

of the cost according to the % of the bursty duration throughout the day.

instances compared to the original managed runtime initialization methods on

SF instances, both methods succeed to timely supply SFs within a sub-second

total start-up time.

7.1.5 Latency-Cost Trade-Off

The cost of using SF instances may be higher than over-provisioning VMs when

the bursty input persists. In such cases, it makes more sense to launch new VMs

while Sponge handles the bursty traffic and offload our tasks to the VM. To

investigate the latency-cost trade-off and figure out when it is more benefi-

cial to launch new VMs, we compare the following two VM over-provisioning

approaches with Sponge in terms of latency and cost on the workload shown

in Fig. 7.2(a). One is 20-VMs (static), where 20 VMs are statically allocated

without dynamic scaling, and the other is 25-VMs (static), where 25 VMs are

statically allocated. As the default number of VMs used in Sponge is 5, 20-VMs

and 25-VMs allocate 4× and 5× more VMs compared to Sponge, respectively.

Fig. 7.8(a) illustrates the latency of 20-VMs, 25-VMs, and Sponge during

the bursty period. The latency of Sponge is in between 20-VMs and 25-VMs.

Compared to 25-VMs, which has enough resources to handle 5× bursty loads,

Sponge has inherent scaling overheads due to the redirection and migration
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protocols. This is why the latency of Sponge is slightly higher than 25-VMs.

In terms of cost, Fig. 7.8(b) shows a rough calculation of cost according to

the bursty duration in a day. For instance, 1% of bursty duration represents that

bursty loads happen for 24hr ∗ 0.01 during a day. Basically, the cost of Sponge

is smaller than others when bursty loads occur in short durations. When the

duration of the bursty load is less than 15%, Sponge has lower latency and

cost compared to 20-VMs. When the bursty load persists (at more than 25%

in Fig. 7.8(b)), the cost of Sponge exceeds 25-VMs due to the high cost of the

SF instances. In this case, it is more beneficial to statically over-provision VM

resources in terms of latency and cost. Nevertheless, as presented in existing

works [84, 93], bursty loads are mostly short-lived, and persistent peaks are

comparatively much rare, resulting in their duration generally falling much

below 15% of the total time. Sponge provides mechanisms to initially provide

prompt scaling with fast-starting SFs regardless of the peak duration and later

expands the cluster to additional slow-starting VMs if the peaks persist, making

the solution effective with any bursty traffic in terms of both cost and latency.

7.2 SWAN Evaluation

7.2.1 Methodology

Testbed setup. We deploy our system on 16 GCP Compute Engine e2-

standard-4 nodes, each equipped with 4vCPUs and 16GB of memory. We launch

2 nodes on each of the 8 regions on three continents: Taiwan, Mumbai (Asia),

Finland, Belgium, Netherlands (Europe), Iowa, South Carolina, and Oregon

(America). All nodes run Ubuntu 18.04.
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Workloads. We measure the performance of queries from the NEXMark

Benchmark Suite [119], a popular benchmark containing a large variation of

stream processing queries representing an online auction system. Among the

different queries, we spotlight query 4, which calculates for the average price

for each category, illustrating an example of using join and aggregation, which

involves shuffle operations.

Prior approaches in comparison. In addition to our implementation of the

scheduling policy for operator placement and query rewriting, we also imple-

ment prototypes of existing ILP-based solutions described in both Clarinet [123]

andWASP [66]. Among the ILP solutions, I have included the ILP solutions that

perform better among the two solutions for the results. In order to compare the

effectiveness of the heuristic model, we also run the conventional computation-

oriented scheduling algorithm for comparison [39, 135, 115].

Performance metrics. We measure the latency and the throughput of the

stream analytics for different queries. For measuring latency, we fix the through-

put at a fixed input rate and observe the 95th percentile latency changing over

time. For measuring throughput, we maximize the input rate, and observe the

system performance under the given conditions.

7.2.2 Throughput and Latency

Fig. 7.9 shows a 95th percentile latency graph comparing the heuristic model

with ILP-based model and the conventional scheduling policy over time. In this

workload, we set the input rate to 100K events per second, which is about

10MB/s in its actual size. On the graphs, we can see that ILP-based models

exhibit the slowest starting time, displaying high latency at the beginning of
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Figure 7.9: A graph of the 95th percentile latency of the workload after trig-

gering optimization at time = 0 of execution of NEXMark benchmark query 4.

the workload. As the time goes on, it performs better than the conventional

approach, which gradually degrades over time, as it is designed without the

consideration of WAN networks. The heuristic model on SWAN exhibits some

latency at the beginning of the job compared to the conventional approach, but

the latency is negligible compared to ILP solvers. Among the different solu-

tions, SWAN shows the most stable overall latency throughout the workload,

displaying its effectiveness for optimizing operator placement on appropriate

WAN.

7.2.3 Query Placement Speed

Fig. 7.10 displays a graph comparing the different approaches of the schedul-

ing algorithms. As described earlier, we can witness a huge overhead, rang-

ing from 20× up to 32× overhead in both ILP cases, compared to the simple

heuristic algorithm described in § 4.2.3. We can witness ILPs suffering from

higher overheads with larger query execution plans for queries 4, 13, and 14,

with σ = 1747ms and σ = 1824ms each, while the heuristic model exhibits
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Figure 7.10: A graph comparing the scheduling overhead of the different ap-

proaches.

σ = 46.2ms throughout the list of different queries.

7.2.4 Effect of Query Rewriting

In order to spotlight the effect of relay tasks upon query rewriting, we measure

the data transfer rate of the workload over time for a workload with inserted

relay tasks, and another without the optimization, as shown in Fig. 7.11. We

launch the job with maximum input rate, and observe the data transfer rate for

the workload. On the graph, we can see that the throughput with the insertion of

the relay task shows much better performance compared to the original option.

While the throughput rate gradually decreases with the network bottleneck for

both options, the relay-inserted workload always displays superior performance

for the data transfer compared to the original approach.
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Figure 7.11: A graph of the throughput of the data transfer rate with and

without the relay task insertion in NEXMark benchmark query 4.
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Figure 7.12: An end-to-end performance comparison on MEM ONLY Spark,

MEM+DISK Spark, Spark+Alluxio, LRC, MRD, and Blaze in various applications.

We run each application three times and plot the average with an error bar at

the top.

7.3 Blaze Evaluation

In our evaluation, we observe Blaze performance compared to other caching

mechanisms (§7.3.2), distinguish the factors that contribute to the Blaze perfor-

mance improvement (§7.3.3), and provide additional details on specific settings

and Blaze components (§7.3.4, §7.3.5).

7.3.1 Methodology
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Figure 7.13: A breakdown of cost with the accumulated total task execution

times. In MEM+DISK Spark (annotated as Spark (+DISK)), LRC, and MRD, the

disk I/O time of cached data becomes the cost. In Spark+Alluxio, the Alluxio

I/O time of cached data becomes the cost, as they are the potential recovery

cost experienced from the applications that are run on Spark.

Environment. All evaluations are executed on 11 r5a.2xlarge (8 vCPU, 64GB

memory, and 10Gbps network) AWS EC2 instances, where one is reserved for

the master and the other ten are for the executors. A 100GB SSD (gp2) is used

as a disk caching store in each instance. Each instance runs 2 executors, each

with 25GB executor memory, which totals up to 20 executors with a total of

500GB executor memory in our evaluation. As the size of the memory that

the system uses to store caches in each executor cannot be defined as a fixed

value [22], we empirically consent on the upper bound of aggregate memory

store capacity as 170 GB by observing that Spark uses up to 170 GB (i.e., 34%)

of the total executor memory for caching for all applications in our evaluation.

Although we set the total memory sizes in our environment to be reasonable

towards the input dataset sizes in our evaluation workloads, it would require

larger proportions of memory capacities on the cluster to execute workloads on

larger datasets.
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Workloads. We evaluate two graph processing and two machine learning

applications, which are widely-used representative iterative applications that

benefit from caching of RDDs in the execution. In all of the applications, the

peak amount of cached data exceeds the cache memory size of Spark. For each

application, we report an average of three results of the execution. For all sys-

tems aside from Blaze that require manual caching and unpersist decisions, we

follow the caching decisions implemented on Spark GraphX [51] and MLlib [88]

libraries [19, 15, 17, 21].

� PageRank (PR): PR is a graph processing algorithm that calculates the

importance of web pages. Web pages are represented as vertices, and connec-

tivities between them are represented as edges [96]. We generate a synthetic

dataset with 25 million vertices using SparkBench [78].

� Connected Components (CC): CC is another graph processing algorithm

that finds all connected components in a given graph [43]. We use the same

input dataset as in PR.

� Logistic Regression (LR): LR is a basic regression algorithm in machine

learning [70]. For input data, we use the criteo dataset [118] day 0 data, which

is 106 GB, among the 24 days of data. LR also represents supervised iterative

ML algorithms like decision trees and support vector machines.

� Singular Value Decomposition++ (SVD++): SVD++ is an extension

of SVD, which is a machine learning algorithm that uses matrix factorization

for recommendations, such as for recommending new movies based on user

preferences [72]. We generate a synthetic 31 GB input dataset with a rating data

of 15 million users, each with 50 items. SVD++ also represents unsupervised

iterative ML algorithms like K-means clustering.
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Systems. We compare Blaze against the performance of the workloads on

the following systems.

� MEM ONLY Spark: Spark abides by the cache and unpersist annotations pro-

vided by users with a least-recently-used (LRU)-based eviction policy by de-

fault. Spark runs on the MEM ONLY mode by default, which unpersists cached

data upon evictions and performs recomputations to recover data on cache

misses. We use Spark 3.3.2.

� MEM+DISK Spark: Spark provides the MEM AND DISK mode, which enables the

system to use two-tiered storage for storing evicted cache data onto secondary

storage like disks, to later recover data by reloading them from disks, instead

of by recomputing them, on cache misses. This mode also follows caching an-

notations provided by users with the LRU-based eviction policy.

� Spark + Alluxio: Alluxio [1] is a widely used tiered distributed storage for

data analytics systems. As an external caching store, Alluxio optimizes the

placement of cached data between its fast (i.e., memory) and slow tiers (i.e.,

disks) while transparently exposing them to the client side. Spark+Alluxio also

represents other variants of the MEM AND DISK Spark (e.g., MEMORY AND DISK SER

and OFF HEAP), as it provides serialization to reduce the size of cached data in

memory, with additional disk support. We integrate Alluxio v2.9.1 on Spark

v3.3.2, where all cached data are written to and read from Alluxio. We con-

figure the Alluxio memory tier for it to use the same amount of memory that

Spark uses for its memory store, and co-locate Alluxio and Spark on the same

cluster for its best performance.

� LRC and MRD: Among numerous works that optimize eviction policies through

conventional algorithms and those that exploit the data dependency information

on dataflow lineages, we choose LRC (Least Reference Count) [137] and MRD
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(Most Reference Distance) [98] as representative ones. The considered conven-

tional caching algorithms include LRU, FIFO, LFUDA [24, 86], GDWheel [77],

TinyLFU [46], and LeCaR [122], and data dependency-aware algorithms include

LERC [138], LCRC [126], and LCS [50]. The conventional algorithms exhibit

limitations in capturing future information and show marginal improvements,

if any, to the default LRU algorithm, which exhibits limited performance com-

pared to the dependency-aware algorithms. Among the dependency-aware al-

gorithms, we selectively compare the ones with the best performances in our

evaluations: LRC and MRD. LRC evicts data with the smallest reference count,

which is the number of future references in RDD lineages. MRD evicts data with

the largest reference distance, which is the number of stages left until being ref-

erenced, and prefetches data with the smallest reference distance whenever free

space becomes available in the executor memory. Unlike Blaze, which captures

application-wide dependencies during the dependency extraction phase, they

only use the dependency information provided by the currently submitted job,

without utilizing the complete knowledge of the dependencies across multi-

ple jobs. LRC and MRD on MEM+DISK Spark are evaluated in § 7.3.2, and on

MEM ONLY Spark are evaluated in §7.3.4.

Terms. In order to reduce the confusion regarding jobs and completion times,

we use the term application completion time (ACT) to describe the end-to-end

completion times, instead of job completion time (JCT), in our evaluations.

Also to distinguish the evictions to disks and by unpersisting, we use the terms

eviction (to disk) to represent the state mi → di and unpersist to represent the

states mi → ui and di → ui (§ 5.3.2). The accumulated task execution times

are the sum of the execution times among all of the tasks from all the jobs in

the particular applications.
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7.3.2 Performance Analysis

Fig. 7.12 shows the end-to-end ACT for all workloads in various systems. Note

that for all results of Blaze, the time taken for the dependency extraction phase

and performing inductive methods are included in the measurements, which

takes up < 4% of the total ACT. Overall, Blaze achieves 2.52×, 2.02×, 2.38×,

and 2.42× speed up compared to MEM ONLY Spark, and 2.86×, 1.57×, 1.08×,

and 2.15× speed-up compared to MEM+DISK Spark in PR, CC, LR, SVD++,

respectively. The key reason for the performance improvement comes from auto-

caching and the unified decision layer of Blaze that significantly reduces the

recomputation time and the aggregate disk I/O time. As shown in Fig. 7.13,

while MEM ONLY Spark does not exhibit any disk usages, Blaze reduces the disk

I/O overhead by 95%, 87%, 99%, and 98% for the accumulated value for all tasks

on MEM+DISK Spark in PR, CC, LR, and SVD++, respectively. This indicates

that Blaze uses the fixed memory space efficiently as a caching store.
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Figure 7.14: A performance breakdown for Blaze.

The potential benefit of the unified cost-aware caching and eviction decisions

of Blaze is distinct in cases where the disk I/O overhead dominates the ACT.

For example, Blaze achieves the highest speed-up of the end-to-end execution

time compared to MEM+DISK Spark in PR (Fig. 7.12 (a)). This is because, in

PR, aggregate disk I/O time takes 69% of the accumulated total task execution

time of MEM+DISK Spark, which is the largest percentage among all applications

(45%, 2.9%, and 55% in CC, LR, SVD++, respectively).
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The main reason for PR having the largest disk I/O overhead in MEM+DISK

Spark is that its working set size is much larger than other applications. As the

working set size increases, more amounts of data are written to disk, and this

results in higher disk I/O overheads. For PR, the average total size of data on

disk reaches 306 GB (peak 427 GB) in MEM+DISK Spark, whereas that of CC,

LR, and SVD++ reaches 220 GB (peak 335 GB), 41 GB (peak 122 GB), and 45

GB (peak 98 GB), respectively. While the executor disk capacity is abundant

(i.e., 1000GB) to host all spilled data in our evaluations, we can see that the

performance of MEM+DISK Spark is worse compared to MEM ONLY Spark due to

the large disk I/O overheads. On the other hand, Blaze significantly reduces the

amount of data on disk compared to MEM+DISK Spark; by 83%, 81%, 100% and

97% in PR, CC, LR, SVD++, respectively. This is mainly due to the timely

removal of data with smaller potential recovery costs on Blaze, which eliminates

unnecessary disk I/O overheads caused by evictions to disk, for the data that

incur small recomputation overheads. Blaze writes data to disk only when its

recomputation overhead is larger than its disk I/O overhead, which reduces the

aggregate disk write time for the data with future usages.

In LR, the speed-up of Blaze is 1.08× compared to MEM+DISK Spark (Fig. 7.12

(c)) which is relatively small, because the main bottleneck comes from the com-

putation, and not the disk I/O overhead, due to fewer references and smaller

ML model sizes. Unlike other applications, LR only caches a total of three RDDs

for each iteration, where only one of them is actually referenced to be reused

later on. As Blaze automatically captures this fact through CostLineage, it

prevents unnecessary disk I/O overhead and incurs no evictions at all. Other

solutions blindly adhere to the caching annotation, and incur disk I/O over-

heads. While disk I/O overheads are relatively small in LR, this eventually

incurs evictions from the unnecessary caching and inefficient memory usage
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in MEM ONLY and MEM+DISK Spark. This causes large recomputation overheads

in MEM ONLY Spark and contributes to the 2.38× speedup in Blaze. LRC and

MRD policies successfully capture future references within the job, and perform

relatively well (1.06× speedup in Blaze for both cases) by avoiding misguided

eviction decisions, but still incur disk I/O overhead for evicting the unnecessary

data on disks. This also contributes to the reason for Spark+Alluxio perform-

ing worse compared to MEM+DISK Spark in LR, because Spark+Alluxio requires

additional data (de)serialization overheads in memory, to read and write data

through Alluxio [1].

Interestingly, the amount of cached size of SVD++ is smaller than CC in

MEM+DISK Spark, but its disk I/O time takes 55% of the accumulated total task

execution time, which is larger than that of CC. We observe that the average

time for serializing a partition in SVD++ is 2.5−6.4× larger than that of others,

as the serialization overhead differs across different data types. Still, due to the

smaller model sizes, MEM+DISK Spark shows better performance compared to

MEM ONLY Spark. In short, the main bottleneck of SVD++ comes from the data

serialization time, which contributes to disk I/O overheads, and this is the main

reason for SVD++ displaying large disk I/O overheads even when the amount

of cached data is small.

Compared to the MEM+DISK Spark that adapts LRC and MRD policies,

Blaze achieves up to 1.8× speed-up, mainly because such eviction policies only

optimize the eviction layer among the three layers (i.e., caching, eviction, and

recovery layers), while Blaze incorporates the separate operational layers to-

gether in its solution. Moreover, as existing dependency-aware policies only

consider the data dependency of the current job, they are prone to underesti-

mating the future numbers of data references that are to be reused across future

jobs. Also, they often face situations where multiple partitions have the same
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reference counts or reference distances, in which case they arbitrarily break the

tie between the potential victims, without considering the fact that the different

partitions are likely to incur largely different disk I/O overheads.

7.3.3 Performance Breakdown

In this section, we provide a detailed breakdown of the performance gain achieved

by Blaze through Fig. 7.14. For the breakdown, we implement the following two

cases on top of MEM+DISK Spark with individual components of Blaze:

� +AutoCache automatically caches and unpersists individual partitions based

on future usages after each stage completion like Blaze, on top of MEM+DISK

Spark, instead of adhering to user annotations in the caching layer. This option

does not consider the potential recovery costs.

� +CostAware performs the cost-aware eviction like Blaze along with the auto-

caching enabled, which additionally selects the victim partitions from the mem-

ory based on the sorted potential recovery costs for disk I/O overheads in the

eviction layer. It includes the Blaze cost model for evictions to disks but ex-

cludes the option to recompute data for recovery, as well as the ILP solution.

Note that Blaze incorporates the AutoCache, CostAware mechanisms, and also

the ILP caching decision solution that solves for the minimum potential recom-

putation and disk I/O costs, on top of MEM+DISK Spark.

+AutoCache vs. MEM+DISK Spark. Comparing +AutoCache against MEM+DISK

Spark shows the effectiveness of the automatic caching and unpersisting mech-

anism of Blaze in the caching layer. +AutoCache accelerates the ACT by 1.15×,

1.14×, 1.08×, and 1.06× in PR, CC, LR and SVD++, respectively. +AutoCache

in LR already consumes all of the 1.08× speed-up, as it successfully prevents

the disk I/O overheads incurred by the evictions and recovery of the models in
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MEM+DISK Spark. With +AutoCache, the automatically-selected working set of

potentially-referenced cached data in LR fits in memory during the iterations,

as discussed in §7.3.2. In PR, CC, and SVD++, auto-caching improves system per-

formance due to the following two reasons. First, it selects a smaller number

of partitions to cache compared to the annotation-based and coarse-grained

caching techniques on Spark. Concretely, auto-caching selectively caches par-

titions from 26 and 33 RDDs in PR and CC, whereas Spark caches 28 and 36

RDDs as a whole. The cached number of RDDs is identical in both cases for

SVD++, but fine-grained caching reduces the amount of cached data. Second, as

auto-unpersisting timely removes RDDs without future references at the end of

each stage execution, it allows the system to quickly acquire free space, increas-

ing the effective memory store space before having to find the user annotation

to unpersist data. Consequently, this reduces the inefficient usage of memory

space and the unnecessary disk write overheads caused by evictions of unused

data.

+CostAware vs. +AutoCache. Comparing +CostAware against +AutoCache shows

the effectiveness of the potential recovery cost model for disk I/O overheads,

specifically within the eviction layer. Compared to +AutoCache, the +Cost-

Aware accelerates the ACT by 1.69×, 1.11×, and 1.27× in PR, CC, and SVD++.

The key reason for the performance improvement of applying the cost model

comes from the reduced disk I/O overheads of evicted data, by selecting victim

partitions with the smallest disk access costs. While LR does not benefit from

the cost model in this experiment, the potential benefit is noticeable in cases

where the size of the working set exceeds the available memory store capacity,

as shown in PR, CC and SVD++.

Blaze vs. +CostAware. Comparing Blaze against +CostAware shows the ef-

fectiveness of the ILP caching decision solution on Blaze. Compared to +Cost-
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Figure 7.15: The number of evictions and total recomputation time of evicted

RDDs while only using memory.

Aware, Blaze further accelerates the ACT by 1.47×, 1.25×, and 1.61× in PR,

CC, and SVD++, respectively. The main difference between Blaze and +Cost-

Aware is two-fold. First, +CostAware always caches data in memory or writes

data on disk regardless of the costs of the data to be cached, as it does not

compare the costs before caching (§5.2.1). In contrast, Blaze unifies the caching

decision for all partitions, and caches data in memory only when the cost of

the data to cache is larger than the costs of the potential victims already in

memory. This way, Blaze prevents the case of caching data with low cost at the

expense of evicting data with high cost. Second, Blaze writes data on disk only

when its potential recomputation cost is larger than the potential disk access

cost, which reduces the potential disk I/O overhead. Also, the memory space

is used more efficiently and effectively, as it successfully solves for the partition

states in which it incurs the minimum potential recovery costs for near-future

executions.
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With all of the optimization combined, Blaze exhibits 2.86×, 1.57×, 1.02×,

and 2.15× speed-up in ACT compared to MEM+DISK Spark in PR, CC, LR, and

SVD++, respectively.

7.3.4 Number of Evictions and Recomputation Time

Fig. 7.15 illustrates the number of evictions and recomputation time of evicted

partitions on Blaze without disk support and MEM ONLY Spark, along with its

variants that use LRC and MRD policies as the eviction policy. Blaze still

shows performance improvements with its auto-caching and cost-aware evic-

tion mechanisms, while demonstrating limited application, as it excludes the

potential disk I/O costs from consideration within its solution. Especially for

LR, Blaze does not incur any eviction, as the cached partitions fit in memory by

automatically caching only the partitions with future references (§7.3.2). LRC

and MRD are also successful in capturing the cached data with future references

within the current job in LR, but evictions still occur as it also caches and evicts

the unreferenced data to abide by the user annotations. In contrast, MEM ONLY

Spark incurs a large number of evictions, as blindly caching three RDDs exceeds

the memory capacity, and the LRU policy results in frequent recomputations.

For SVD++, while Blaze incurs more evictions than other systems in terms

of number, the total recomputation time is only 32% compared to MEM ONLY

Spark, showing that Blaze successfully captures the potential recovery costs

within its mechanism. For PR and CC, even though Blaze does not use disks

and incurs some additional overheads, it successfully captures the potential re-

computation overheads and manages to efficiently use the memory capacity to

incur minimum potential overheads in the workload.
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Figure 7.16: The normalized ACT of Blaze with and without dependency

profiling, including the profiling overhead.

7.3.5 Profiling Overhead vs. Benefits

In order to analyze the performance benefit against the overhead for profiling,

we show the comparison with and without the initial profiling phase for de-

pendency extraction in Fig. 7.16. Without the dependency extraction across

jobs, the profiling overhead can be avoided, but the cost of RDDs referenced

in the future jobs can be underestimated and evicted, as Blaze can miss the

potential usages of the partitions into reflection. Consequently, enabling the

profiling phase accelerates the completion time by up to 1.64× compared to the

approach that builds the application lineage on the run, as shown in Fig. 7.16.

The profiling bases its execution on a < 1MB data from the original input load,

and the overhead is upper-bounded by the 10 second timeout, which takes up

< 2% of the total execution time in our evaluations. Profiling plays a key role

in providing automatic caching and estimating the potential costs for longer

downstream lineages within the workload. Especially, profiling is more benefi-

cial for applications where many partitions are referenced across multiple jobs

(PR and CC). The benefit of profiling in LR is limited because it only has a

single RDD in each iteration that is referenced within the jobs.
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Chapter 8

Related Works

Data communication across SF instances. Researchers have exploited

fast-starting SF instances for various workloads such as interactive data an-

alytics [102, 63], video analytics [11, 49], and daily applications [48]. These

applications are also represented as DAGs, and shuffle operations are required

between SF instances. Their solutions to enable data communication across

SF instances enable using additional VM relay servers [49], using HDFS in

VMs [63], building an ephemeral storage service [71], and using a NAT-traversal

technique [48]. Sponge router operators enable data communication across SF

instances preserving event-based stream processing with low latency, without

requiring any of the additional VM resources or NAT-traversal technique.

Optimizing state migration. Rhino [45] and ChronoStream [130] replicate

states of stream queries across extra (over-provisioned) machines to minimize

state migration overheads. Replicating and holding states requires costly over-

provisioning of long-running resources like VMs. Holding states on SFs will
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cause additional state recovery and cost when SFs are reclaimed by cloud ven-

dors. Megaphone [59] proposes fluid migration that smoothly migrates states

from source to destination resources for a long period to reconfigure system

configurations. However, when bursty loads happen, the reconfiguration must

be executed in a short period of time. As a result, a large amount of state mi-

gration is inevitable to quickly migrate the load on VMs. In contrast, Sponge

avoids state migration from VMs to SFs by just forwarding data to SFs and

merging partial states in SFs into the existing VMs.

Scaling policy. Regarding scaling policies, SEEP [40], StreamCloud [54], and

Dhalion [47] use metrics like CPU utilization for their decisions. Systems such as

DS2 [67] aim to measure the processing and output rates of individual dataflow

operators through spongetem instrumentation. Many of these scaling policies

are designed to be agnostic to the underlying scaling mechanisms and resource

acquisition schemes. In contrast, the Sponge scaling policy also explicitly con-

siders the characteristics of SF instances and offloads a right amount of com-

putations to keep the CPU utilization high.

Cost-Aware Caching. Cost-aware caching is a widely-used approach to op-

timize caching and eviction in various fields including web services [36, 33],

in-memory key-value stores [77, 32], and CDNs [34, 26], where defining the

cost metric that can properly capture the needs of various workloads plays a

key role in achieving performance gain. However, little has been known about

how to adopt cost-aware caching for iterative data analytics. Blaze defines the

cost metric by identifying the key factors specific to the context of iterative

workloads, where decisions based on the metrics successfully bring end-to-end

performance improvements.
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Exploiting Data Dependencies for Data Analytics. There are various

approaches that exploit the data dependencies of data analytics applications

to optimize prefetchings [98, 5] and evictions [132, 137, 98, 138, 126, 50, 133].

However, existing works limit optimization opportunities, as they primarily

focus on optimizing the eviction layer among the three layers that consist of

the caching mechanism: caching, eviction, and recovery layers. Blaze unifies the

decisions for caching, eviction, and recovery of data in a single decision layer and

provides automatic caching decisions based on the tracked information. Also,

compared to the cost metric of Blaze that captures the actual performance

penalties with future reference, computation, data size, and disk access time,

utilizing only the data dependencies inside a job as a metric for eviction decision

has many limitations in achieving end-to-end performance improvements, as

shown in §7.3.

Computation Sharing across Applications. In datacenters, there are

many works on sharing computations across different applications to improve

the application performance [55, 65, 109, 42]. Their primary goal is to decide on

the data to keep and share in the cluster caching store, which is large enough

to keep them all. Unlike such works, the primary goal of Blaze is to minimize

the potential overheads caused by evictions and cache misses in an application

across the memory or two-tiered storages with disks, in cases where the memory

store is limited to fit all of the data to cache. Therefore, Blaze optimizes not

only to decide on the data to cache, but also to select where to keep the data:

in memory, on disk, or simply to unpersist them.

GPU Memory Management. Recent deep learning (DL) works research

on optimizing tensor placements by deciding on the data to keep in GPU mem-
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ory, evict to CPU memory, or to unpersist and recompute [41, 129, 97, 134, 143].

Although their approach is similar to Blaze, the cost metric and decision algo-

rithm of Blaze is tailored for handling challenges that are more general than

for DL-specific workloads. Blaze is tailored for any general distributed iterative

data analytics workloads by efficiently managing and updating the estimated

costs for a large number of parallel partitions.
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Chapter 9

Conclusion and Future Directions

9.1 Conclusion

In this dissertation, I have proposed three systematic approaches that provide

solutions for fast, dynamic runtime adaptation for system resources under un-

predictable conditions, in terms of CPU, network, and storage in distributed

data processing and machine learning.

Specifically, Sponge harnesses SF instances for offloading bursty loads from

existing VMs in streaming workloads. Sponge minimizes task migration over-

heads and addresses data communication constraints on SF instances by insert-

ing new stream operators in the application DAG: router, transient, and merge

operators. Sponge also provides an offloading policy that determines when and

how to offload the increased input loads. Our evaluation on AWS EC2 and

Lambda shows that the Sponge operators are effective in significantly reducing

tail latencies in stream processing upon unpredictable bursty loads, compared

to existing scaling mechanisms on VMs and SFs.
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Next, SWAN is a stream processing system tailored for distributed stream

analytics on geo-distributed environments. We point out the problems of spa-

tial and temporal variations that co-exist in WAN settings, and discuss a fast

and effective heuristic-based model to solve the problem of scheduling tasks on

the different nodes with heterogeneous network conditions in a geo-distributed

cluster. In addition, we also discuss a way to optimize the solution further,

to add relay tasks appropriately at points where the network can be further

optimized by utilizing longer network paths that exhibit more bandwidths, to

bypass original supplies of low-bandwidth networks. Our experimental evalu-

ations on latency and throughput show a 77.6% reduction in the average job

latency and a 5.64× increase in the throughput rate within seconds.

Finally, Blaze provides an automatic caching mechanism, that unifies the

separate operational layers of existing caching methods together (i.e., caching,

eviction, and recovery layers), to adaptively provide optimal caching decisions

at any time within iterative data processing workloads. Blaze bases its caching

decisions on the dynamically-updated CostLineage, which is initially built by

extracting data dependencies through profiling, and inductively updated and

predicted on-the-run based on the partition metrics measured along the actual

execution over the iterations. By automatically choosing the partitions with fu-

ture references to cache, and calculating the potential costs with the partition

metrics collected on CostLineage, Blaze successfully captures and derives the

optimum states for the cached data in the way that it minimizes the sum of

potential costs within the workload with an ILP-based solution. Our evalua-

tions show that Blaze speeds up end-to-end performance by up to 2.86× and

optimizes the cache data by 90% on average with optimized automatic caching

compared to conventional caching mechanisms.
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9.2 Future Directions

9.2.1 Centralized vs. Decentralized Designs

SWAN deals with the problems in distributed data processing mainly within

a centralized design, to get access to the information that encompass the re-

sources throughout the distributed cluster, and derive an optimal decision based

on the global information. Nevertheless, in order to further optimize the sys-

tem, we may take a decentralized design to deliver faster results to executor

machines that require shorter latencies for their SLOs [73]. In doing so, we

may further optimize our systems, for example, to combine the global and local

information together to derive an estimation of the global optimum value for

resource management, while providing asynchronous methods for updating the

global information. Moreover, we may consider optimizations on the scheduling

of tasks in batch workloads and events in streaming workloads, to prevent the

wait time for the acks and execution results on the central coordinator machine,

and keep the workers as busy as possible at all times. While Sponge and Blaze

take similar approaches to deliver fast optimization for resource management in

the executor machines, we can take closer observations on system performances

and optimize the systems, both in terms of the control plane and the data plane,

to explore for further optimization opportunities.

9.2.2 Increasing The Model Complexity

While we consider the factors that we have observed as the main bottleneck

within the context of each of the solutions, there may also be other factors

that contribute to the system performances. In order to further optimize our

solutions, we can put these unobserved factors into consideration within our

performance analytics and proposed methods for mathematical modeling, to

deliver even faster job execution, on top of the solutions proposed in this dis-
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sertation. Also, we may simultaneously take all of these resources into consider-

ation for optimization as well. By doing so, we may increase the complexity of

the mathematical models, which also leaves room for further optimizations on

the performances of the model calculation, e.g., ILP solver performances. It is

also widely known that ILP solvers exhibit large overheads when it attempts to

solve for more complex models, and in such cases we may convert the problem

into LP solvers and approximate for a near-optimal solution. While we pro-

pose solutions that provide satisfying results for resolving the sources of main

bottlenecks that had been observed in each of the works, we may also extend

our solutions to find an optimal balance point between the cost-performance

trade-off for each of the models, for example, by using techniques for finding

Pareto optimum values.

9.2.3 Expanding to Other Resources and New Hardwares

With the advent of various deep learning and artificial intelligence workloads,

GPU resources had become one of the main resources in modern data processing

workloads for system optimization. While we deal with the traditional compu-

tational resources in this dissertation, like CPU, network, and memory, we may

take the knowledge and information on other specific environments into consid-

eration (e.g., deep learning on GPUs), and use similar mathematical modeling

and analytical approaches to optimize GPU resources, as well as under environ-

ments equipped with other new hardwares like Non-Volatile Memory Express

(NVMe) drivers and Remote Direct Memory Access (RDMA) protocols for the

problems that occur in relevant domains. Furthermore, we may also make use

of the new technologies and hardwares to further optimize our systems to bring

faster results on top of the mechanisms proposed in this dissertation, which we

leave as future work.

107



초록

오늘 날, 다양한 전자기기가 지속적으로 보편화 됨에 따라 전 세계 각지에서 더

많은 대량의 데이터가 생성되고 있다. 이러한 데이터의 종류나 양이 점점 더 증

가함에 따라 빅데이터 처리는 꾸준한 서비스 제공 시간 등의 기준을 충족하면서

유의미한 정보를 추출하기 위해 시스템에 지속적으로 보다 높은 처리량 성능을

요구한다. 현재 빅데이터 처리는 크게 대규모 배치 데이터 또는 실시간 데이터

스트림을 처리하는 용도로 나뉠 수 있으며, 이들 분산 처리의 대상이 되는 데이

터는 각각의 이유로 예측이 불가능하며, 실행 중 빠르게 그 특성이 변할 수 있는

여러가지 요소들을 내재하고 있다. 이처럼 다양한 환경에 동적으로 최적화하여

만족스러운 성능을 보장하기 위해서는 CPU, 네트워크, 메모리 등 리소스에 대한

효율적이고 유연한 관리가 필수적인 경우들이 많이 존재한다.

구체적인 예시로는 실시간 이벤트 데이터 스트림의 경우, 우리가 흔히 급작

스럽고 예측하지 못하는 자연재해나 테러, 경제위기 등의 상황들을 직면했을 때

데이터 트래픽이 기하급수적으로 증가할 수 있으며, 이와 같은 경우에서는 데이

터 처리량을 늘리기 위해 CPU 성능을 동적으로 늘릴 수 있어야 한다. 또 다른

예시로는 글로벌 서비스 등에서 세계 각지에서 흩어져서 생성된 데이터를 분석하

여 사용자에게 유용한 실시간 정보를 적시에 제공하기 위해서는 다양한 대역폭의

네트워크를통해데이터를수집하여특정통계값등으로요약해야되는경우가있

는데, 이 때 안정적이지 않은 장거리 네트워크를 이용해야 하는 경우들이 흔하게

존재한다. 또한, 머신러닝이나 그래프처리와 같이 대량의 중간 데이터가 축적되

는 반복적인 워크로드를 처리하는 경우에는 재사용 가능한 데이터를 캐싱하여

반복적인 재계산 작업을 없앰으로써 워크로드를 최적화할 수 있는데, 이 때 캐시

스토리지에 저장된 입력 데이터를 필요할 때마다 작업에 제때 제공하기 위해서는

메모리 리소스 관리가 매우 중요하다. 이와 같은 환경 아래에서 위와 같은 문제는
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일반적으로 미리 예측할 수가 매우 힘들고 런타임 중에 동적으로 변경되는데, 이

때 데이터 처리를 위한 자원을 제 때 제공하지 않으면 위와 같은 상황 아래에서

막대한 성능 손실을 초래할 수 있다.

본 논문에서는 이러한 예측 불가능한 자원 문제를 해결하기 위해 클라우드

환경 상의 자원을 수학적 모델링과 분석적 접근 등을 통해 효율적이고 동적으로

사용함으로써 시스템 상의 자원 부족과 병목 현상을 극복하는 동적 자원 관리

기법을 스펀지, 스완, 블레이즈라는 시스템을 통해 제안한다. 스펀지는 입력 부하

가 산발적이고 순간적으로 증가하는 상황에서 서버리스 인스턴스로부터 리소스를

확보하여 1초 미만의 지연 시간으로 시스템에 추가 CPU를 제공함으로써 CPU 리

소스 부족에 빠르게 동적으로 적응할 수 있도록 한다. 스완은 서로 다른 네트워크

연결의 다양한 대역폭 용량을 동적으로 측정하고 분석하여 제한된 네트워크 리소

스를 완화하고 전 세계에 흩어져 있는 환경에서 데이터가 한 곳에서 다른 곳으로

효율적으로이동할수있도록최적의경로와연산자배치방법을찾는다.블레이즈

는파티션메트릭의실시간추적과캐시사용량및오버헤드에대한정교한예측을

기반으로 자동 캐싱 메커니즘을 제공하여 반복적인 데이터 처리 워크로드를 위해

제한된 메모리 리소스를 적시에 캐싱에 효율적으로 사용할 수 있도록 한다.

실험 수행 결과, 이 논문에서 제시하는 동적 리소스 관리 방식을 통해 분산

된 데이터 처리 시스템에 항상 충분한 리소스를 제공하고 리소스 및 입력 부하가

동적으로 변화하는 환경에 맞춰 제한된 리소스를 효율적으로 사용함으로써 기존

시스템대비처리량,지연시간(스트리밍워크로드),엔드투엔드완료시간(배치워

크로드) 측면에서 각각 최대 5.64× 증가, 88% 감소, 2.86× 속도 향상 등의 결과로

시스템 성능을 크게 향상시키는 것을 관찰할 수 있다.

주요어: 분산 시스템, 빅데이터, 머신러닝, 클라우드 컴퓨팅, 리소스 관리, 스케줄

링
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