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Abstract

Point cloud analysis is becoming a popular research area due to the growth

in the capability of 3D sensors, which can capture detailed 3D geomet-

ric information. One of the fundamental tasks in point cloud analysis is to

extract salient geometric information from unstructured and irregularly dis-

tributed point sets for use in various applications. While many works based

on deep learning have been developed to process 3D point clouds, a common

drawback is the lack of consideration for the rotation invariance property,

resulting in poor generalization performance under rotational variations of

the point cloud.

In this dissertation, a new method for analyzing point clouds in a

rotation-invariant manner is presented to address this problem. The main

idea is to place aligned and structured additional points (i.e., kernels)

around each point, which are used to extract local geometric informa-

tion from unstructured point sets. By aligning the kernel points based

on the point distribution, the proposed method can extract consistent lo-

cal geometric information under rotational variations. To improve scale-

robustness, the optimal kernel size is determined through analysis of various

sizes of kernels. For the registration task, differences between the extracted

information (i.e., descriptors) are estimated to select and use only discrim-

inative descriptors.

The proposed method was tested on benchmark and real-world datasets

to evaluate its performance in registration, classification, and segmentation

of 3D point clouds. The results showed that the proposed method outper-

i



formed state-of-the-art methods in the registration task and also performed

better in the classification and part-segmentation tasks under random ro-

tation environments.

Keywords: Point cloud classification, point cloud registration, point cloud

segmentation, rotation-invariant point descriptor

Student Number: 2020-35803
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Chapter 1

Introduction

1.1 Background and motivation

Over the past few years, there has been rapid development in 3D acqui-

sition technologies, making various 3D sensors, including LiDAR sensors

in autonomous vehicles, RGB-D cameras in Kinect, and 3D scanners for

reconstruction tasks, more accessible and affordable. These sensors provide

vast amounts of 3D data, which offers an opportunity to gain a better un-

derstanding of the surrounding environment by providing rich geometric

and shape information. This information can be applied to various fields

such as robotics [19–21], augmented reality [22, 23], and autonomous vehi-

cles [24,25] (Fig. 1.1).

There are four types of formats used to represent 3D data, namely depth

images, point clouds, meshes, and volumetric grids. Among these formats,

point cloud representation is the closest 3D representation to raw sensor

1



Figure 1.1: Point cloud analysis using techniques such as classification,

segmentation, and registration enables diverse applications such as au-

tonomous driving, 3D reconstruction, and augmented reality.

data, as it represents the object’s surface as a collection of 3D coordinate

points. This allows it to preserve the original geometric information in 3D

space without any discretization. As a result, it is the most commonly

used format for scene understanding related applications. Deep learning-

based approaches for point cloud applications have recently been widely

researched for many fields, including point cloud registration, model seg-

mentation, and classification, and have outperformed earlier works, which

were based on hand-crafted feature extraction approaches [1, 4].

Point cloud classification is a fundamental technique for understand-

ing the collected scene data, including autonomous driving and scene per-

ception in robotics. It is also a crucial step for further point cloud process-

ing. Point cloud segmentation process partitions points based on their

similarity, and the resulting point sets should be meaningful. The segmen-

tation results can be used for further scene analysis, such as locating and

recognizing objects, and classification. The objective of point cloud reg-

2



istration is to estimate a transformation between two point clouds, which

plays a critical role in various computer vision applications. Real-world

point cloud data generated by 3D sensors represents only partial geomet-

ric information since the sensors capture scenes with a limited view range.

Therefore, the registration task is necessary to generate a complete 3D

scene from the partial scenes. As point cloud analysis is essential for many

computer vision applications, there is a growing need to develop effective

and robust analysis methods to make them more efficient and reliable for

use in various industries.

1.2 Problem statement

In point cloud processing, a descriptor is a set of compact values that

represent the local geometric information of a 3D point cloud. While there

are many methods for representing point clouds, simplistic representations

such as object color or size may not capture the intricate details required

for complex tasks like object classification or registration. To successfully

tackle these challenges, it is crucial to extract general and robust local

geometric patterns from point clouds.

Early approaches to point cloud processing relied on hand-crafted fea-

ture extraction to compute low-level features for capturing local geometric

information [1,4]. However, these methods have limitations when processing

noisy or occluded point cloud data [26], leading to inferior performance com-

pared to recent deep learning-based approaches. In contrast, deep learning-

based approaches compute features from a point cloud and then encode the

features, leading to groundbreaking results in several vision tasks compared
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to hand-crafted approaches. Nonetheless, achieving consistent performance

with real-world point clouds can be challenging due to the misalignment of

point clouds caused by rotation and translation.

To address this challenge, it is essential to achieve both rotation- and

translation-invariance properties when obtaining descriptors from point

clouds. These properties are critical for many applications, such as object

recognition, segmentation, and registration, where point clouds may be cap-

tured from different angles or locations. Translation-invariance means that

the method produces the same output regardless of the location of the point

cloud in space. Most deep learning-based approaches typically use features

that are invariant to translation, such as the relative coordinates of each

point with respect to the point cloud center. Rotation-invariance means that

the method produces the same output regardless of the rotational alignment

of the point clouds being analyzed. Compared to the translation-invariance,

achieving rotation-invariance is challenging. There are three approaches to

achieve it, but each approach has a problem. One approach involves train-

ing a network using random rotation augmentation, but this approach can

decrease network performance due to insufficient capacity to learn all ran-

domly rotated inputs. Another approach is to use rotation-invariant fea-

tures (e.g., relative distances and angles between points) as network inputs

instead of using Cartesian coordinates [12,13,27,28]. However, representing

geometric relationships between points uniquely with rotation-invariant fea-

tures is difficult compared to non-rotation-invariant features. When using

naive rotation-invariant features, there can be multiple possible point cloud

shapes corresponding to the given features (Fig. 1.2), which can result in

worse network performance compared to rotation-variant networks. A third
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Figure 1.2: For given naive rotation-invariant features to represent the

neighboring point x from the point p and m (i.e., fp,m(x)), there are mul-

tiple corresponding x locations like a green circle.

approach to achieve rotation-invariance is to align point clouds based on

point distributions to have the same orientation, but accurate alignment

can be challenging due to the presence of noise and occlusions in the point

clouds.

Despite these challenges, developing approaches that can achieve both

rotation- and translation-invariance is critical for successful processing of

real-world point clouds, opening up new opportunities for point cloud ap-

plications.

1.3 Main contributions

In this dissertation, a method is proposed for generating descriptors that

perform accurate classification, segmentation, and registration tasks un-

der rotation variations. To extract structured geometric information from

an irregular and unstructured point cloud, aligned and structured addi-
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tional points (i.e., kernels) are employed for each point while generating

the descriptor. In the descriptor generation process, the method estimates

point relationships (i.e., features) and encodes the features using the aligned

kernel points to improve rotation-robustness. The kernel-based descriptor

showed high benchmark performances with or without rotational variations.

Besides, an additional scale analysis network and aggregation method are

successfully embedded in the method to improve scale-robustness and de-

scriptor performance, respectively. Secondly, a salient descriptor selection

method is proposed for the registration task. Real-world large-scale regis-

tration tasks, where it is hard to find correspondences between source and

target point clouds, are successfully performed by excluding non-salient

descriptors from repeated and monotonous areas. A brief overview of the

algorithms and achievements is described in the following paragraphs.

Generating rotation-invariant descriptors is a crucial and challenging

task to achieve high performance in classification, segmentation, and reg-

istration. To overcome the challenges of ambiguous rotation-invariant fea-

tures and unstable alignment, the proposed descriptor generation method

uses an aligned kernel structure that places structured additional points

around each point to capture its surrounding geometric information. The

method uses these kernel points as references to accurately represent rela-

tionships between points with rotation-invariant features. It also addresses

the issue of unstable alignment by utilizing a cylindrical kernel structure.

Additionally, a scale analysis network is used to determine the optimal ker-

nel size for improving scale-robustness. To enhance descriptor performance,

a weighting-based descriptor aggregation method is employed to aggregate

all descriptor values according to point distances. The proposed method
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is evaluated against state-of-the-art methods, and the results show its su-

perior performance. Parameter and ablation studies are also conducted to

validate the proposed methods.

For the registration task with real-world large-scale point clouds, a

dissimilarity-based salient descriptor selection method is proposed to ex-

clude non-salient descriptors obtained from monotonous and repeating ar-

eas. Firstly, a fixed number of points (i.e., anchors) and their neighbor

points (i.e., patches of the anchors) are sampled from all the points. Sec-

ondly, a descriptor is generated for each sampled patch using the aforemen-

tioned rotation-robust descriptor generation method. Finally, a dissimilarity-

based salient descriptor selection method is applied to the generated de-

scriptors for accurate registration. The proposed method analyzes dissimi-

larities between descriptors and excludes descriptors that are similar to the

other descriptors (i.e., non-salient descriptors). Indoor and outdoor real-

world point clouds are used for a parameter study and quantitative evalu-

ation. The performance of the proposed method is evaluated by comparing

it with other state-of-the-art methods, and the results show that the pro-

posed method significantly improves the overall performance by excluding

non-salient descriptors.

1.4 Contents and organization

The remainder of this dissertation is organized as follows. First, point cloud

definition and properties are introduced. Then, related works are explored

in chapter 3. In chapter 3, several hand-crafted and deep learning based

methods for point cloud descriptors are illustrated. The proposed descrip-
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tor method and several point cloud analysis tasks based on the method are

described in chapters 4. The proposed method for the point cloud registra-

tion is described in chapters 5. Each chapter comprises an overview, detail

methodology, corresponding experimental results, and discussion. The con-

clusion and future works are presented in chapter 6.
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Chapter 2

Preliminary

2.1 Point cloud

Point clouds are widely used in various applications such as computer

graphics, robotics, and computer vision. They are typically represented as

a collection of points in a space. However, point clouds have specific char-

acteristics and properties that make them different from other data types.

In this section, the point cloud definitions and notations are introduced.

Point cloud definition

A point cloud is a collection of points in space. In this dissertation, a point

cloud P in the 3D Euclidean space R3 is defined as:

P = {xi ∈ R3}i<N (2.1)

Where N is the number of points in the cloud. The points in a point cloud

are typically represented in 3D space, but they can also be represented in
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Figure 2.1: Two N point sets, which are sorted without specific order,

represent the same point cloud.

lower or higher dimensional spaces. In addition to point coordinates, point

clouds can contain more information, such as colors or any other types of

features. Point clouds with additional features are much more descriptive

than point clouds with only point coordinates, making them more suitable

for deep learning algorithms.

Point cloud properties

Point clouds have specific properties that make them different from other

data types. When designing point cloud processing algorithms, it is crucial

to take these properties into account.

Unordered: Point clouds are unordered point sets, meaning that every

operation on point clouds should be invariant to any permutation of points

(Fig. 2.1). This property is essential because using non-symmetric functions

to each point would lead to bad results.

Unstructured: Point clouds are unstructured point sets, meaning that

there is no inherent connectivity or organization between points. This prop-

erty makes it difficult to process and analyze the point cloud, as there is
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no inherent structure to rely on.

Continuity: Point clouds are continuous data, which means that the point

coordinates are not a countable set of locations. This property makes point

clouds different from 2D image grids and makes it challenging to adapt 2D

image convolution methods to point clouds.

Large data size: Point clouds can be very large, and this property makes

it challenging to store and process the data. Limited storage capacity and

slow processing speeds can make it difficult to work with large datasets.

Irregular distribution: The point density can be non-uniform, and the

distribution can vary depending on the shape and reflectivity of the objects

being scanned. This property makes it challenging to accurately analyze the

data using algorithms that rely on the density or proximity of points.

When designing point cloud processing algorithms, it is crucial to take

into account these properties. Having a clear understanding of these prop-

erties is essential to ensure that point cloud data is accurately processed

and analyzed.

Point cloud descriptor

Point cloud descriptors are feature vectors that summarize the geometry

and structure of a point cloud. In this dissertation, a set of descriptors D

for a point cloud is defined as:

D = {di ∈ RM}i<N (2.2)

Where M is the dimension of the features.

These descriptors are essential for tasks such as classification, segmen-

tation, and registration of point clouds. The primary goal of point cloud
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descriptors is to encode the relevant information of the point cloud in a

compact and invariant way. Invariant descriptors are essential for various

applications as they can robustly represent the geometry and structure of

a point cloud, even when it is subjected to variations in its orientation and

position.

Translation invariance is a crucial property of point cloud descriptors,

as it ensures that the same descriptor is obtained for two point clouds

that are identical, except for their position in space. Since point clouds can

be shifted or moved, their positions in space can vary, and this can affect

their descriptors. Therefore, having translation-invariant descriptors is im-

portant to accurately represent the geometry of the point cloud regardless

of its position. Rotation invariance is another important property of point

cloud descriptors, which ensures that the same descriptor is obtained for

a point cloud regardless of its orientation. Point clouds can be captured

from different viewpoints, and their orientation can vary. Therefore, hav-

ing rotation-invariant descriptors is essential to represent the geometry and

structure of the point cloud independently of its orientation.

To process real-world data, it is important to have invariant descriptors

that can represent the essential information of point clouds while being

insensitive to variations in rotation and translation. These descriptors en-

able the processing of unaligned data and are essential for tasks such as

classification, segmentation, and registration of point clouds in various ap-

plications.
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Figure 2.2: (a) Input point cloud and interest region (dotted box). (b) local

reference frame (LRF) of the region. (c) Aligned region based on the LRF.

(d) Rotational and normal sign variations due to the incorrect LRF.

2.2 Local reference frame

In point cloud processing, a local reference frame (LRF) refers to a canon-

ical coordinate system that is defined at a specific point (i.e., keypoint or

interest point) in the point cloud data. This coordinate system is used to

describe the orientation of points relative to the specific point at which the

LRF is defined. LRFs are commonly used in point cloud registration, which

involves aligning two or more point clouds with different orientations and

positions to form a coherent model (Fig. 2.2). By defining LRFs at spe-

cific points in each point cloud, it becomes possible to transform the point

clouds to a common coordinate system and align them.

One common method for obtaining an LRF is to compute the principal

component analysis (PCA) of the points in the local neighborhood of the

specific point. To compute the PCA, the first step is to identify the k

nearest neighbors of the specific point. Then, the covariance matrix of these
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neighbors is calculated, which contains information about the distribution

of the points in the neighborhood. The eigenvectors of the covariance matrix

represent the principal axes of the point cloud in the neighborhood, and

the eigenvalues correspond to the variances along each of these axes. The

eigenvector with the smallest eigenvalue corresponds to the normal vector

of the LRF, while the other two eigenvectors can be used to define the

other two orthogonal axes of the LRF. The origin of the LRF is located

at the specific point. Once the LRF is established, each point in the point

cloud can be represented as a vector relative to the origin of the LRF,

simplifying geometric operations and enabling accurate registration and

analysis of the point cloud data. The problem is that the alignment may

not be accurate due to variations caused by occlusion or noise in the point

cloud. When estimating the LRF using point distributions, there may be

rotational variations in the XY-plane and changes in the normal axis sign

(Fig. 2.2 (d)).
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Chapter 3

Related Works

3.1 Overview

In this chapter, a literature review on point cloud processing is presented.

The chapter covers two main subjects: 1) Hand-crafted approaches for point

cloud processing, and 2) deep learning-based approaches for point cloud

processing. In particular, deep learning-based approaches are extensively

reviewed. The following section describes common limitations of current

algorithms and the corresponding motivations.

3.2 Hand-crafted method

3.2.1 Overview

Before the advancement of deep learning, a 3D feature descriptor was de-

veloped based on handcrafted methods. Owing to the specific properties

15



of 3D point clouds, such as unstructured and unordered, handcrafted ap-

proaches are important in 3D point cloud processing. These approaches

mostly extract features from aligned volumes (using the normal or LRF)

or directly extract rotation-invariant features to create a rotation-robust

descriptor. The approaches can be classified into two main categories: LRF

based descriptors and non-LRF based descriptors.

3.2.2 LRF based method

These approaches first compute a LRF and compute the spatial distribution

of the local neighbors or geometric relationships between points according

to the LRF.

Figure 3.1: (a) Two kinds of descriptors: signatures and histograms; (b)

SHOT descriptor [1].

Signature of Histogram of Orientation (SHOT) [1] is a combination of
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two approaches: Signatures and Histograms (Fig. 3.1(a)). Signatures de-

scribe the neighborhood of a given keypoint by estimating a LRF and en-

coding geometric values computed for each point of a subset of the support

based on the local coordinates. These Signatures are highly descriptive by

using the spatially well-localized information, but vulnerable to small per-

turbations in the local coordinates. On the other hand, Histograms describe

the 3D surface information by encoding quantities of local geometric charac-

teristics (e.g. point coordinates, curvatures, normal angles) into histograms.

Histograms are less descriptive when compared to Signatures, but improve

robustness by compressing point information into histogram bins. By using

the combination of Signatures and Histograms, SHOT aims at a more fa-

vorable balance between robustness and descriptive power. It encodes the

surface information within a spherical support structure with 32 bins (8

divisions along the azimuth, 2 along the elevation, and 2 along the radius)

(Fig. 3.1(b)). For every bin, values of a one-dimensional local histogram are

computed, such as the angle between the normal of the keypoint and the

current point within the bin. When the computations have been completed,

all local histograms are merged to build a final descriptor.

3D Shape Context (3DSC) [29] creates a spherical support structure

centered at the keypoint. The North Pole of the sphere is placed to match

with the normal of the keypoint. Then, the sphere is divided in bins (di-

visions are equally spaced along the azimuth and elevation, divisions are

logarithmically spaced along the radius so that they are smaller towards

the center), and the number of neighboring points within the bin is ac-

cumulated for each bin. However, this still remains one degree of freedom

because the method uses only the normal vector. To overcome this am-
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biguous problem, the sphere is rotated around the normal vector N times.

As a result of the repeated calculations for each rotation, a total of N de-

scriptors are built for the keypoint. Unique Shape Context (USC) [30] is

an improvement of the 3DSC descriptor by defining a LRF to provide a

unique orientation for each point. This method estimates the LRF same

way as the SHOT method. First, a covariance matrix of a keypoint and its

neighboring points within the spherical support region is computed. The

unit vectors of LRF are estimated using the Eigen Vector Decomposition

of the covariance matrix. The eigenvectors corresponding to the maximum

and minimum eigenvalues are used as unit vectors. The third unit vector

is computed by the cross product of the two unit vectors. By using the

LRF, the method improves the accuracy of the descriptor and also reduces

descriptor size by removing the unnecessary multiple descriptors.

Figure 3.2: (a) RGB-D image; (b) Range image of the interest point; (c)

NARF descriptor [2].
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Normal aligned radial feature descriptor (NARF) [2] takes range images

as inputs instead of a point cloud. The method first projects a point cloud

into an image with depth values (RGB-D image), and then finds interest

points, which show significant changes of the surface in their local neigh-

borhood. Subsequently, they computed the NARF descriptor by building

a normal aligned range value patch around the interest point and project-

ing a star pattern onto this patch to extract values for the final descriptor.

This method also achieves the rotation invariance by shifting the NARF de-

scriptor according to a unique orientation value extracted from the original

descriptor.

Figure 3.3: (a) PFH descriptor [3] and (b) FPFH descriptor [4].

Point Feature Histogram (PFH) [3] captures geometric information around

each point by analyzing the relationships between points. The algorithm

first pairs the keypoint with its neighbors and pairs the neighbors with

themselves (Fig. 3.3(a)). Subsequently, for each pair, a Darboux frame is
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computed from their normals as follows:

u = ns, v = u× pt − ps
||pt − ps||2

, w = u× v, (3.1)

where ps and pt are points of the pair, and ns is the normal vector of

ps. Then, using this frame, the difference between the normals and the

Euclidean distance between the points are computed. Finally, the PFH de-

scriptor is created by binning these computed angular and distance features

into histogram bins. However, the theoretical computational complexity for

a point cloud of n points with k neighbors is O(nk2), and the computa-

tional complexity makes PFH inappropriate for real-time or near real-time

applications. Therefore, Fast Point Feature Histogram (FPFH) [4] is pro-

posed to resolve the computation complexity problem. They first computed

angular features between only keypoint and its neighbors using the same

way as PFH and bin into histograms (Fig. 3.3(b)). In the second step, the

final histogram (FPFH) is calculated as the weighted-average of the com-

puted histograms based on the distance between keypoint and its neighbors.

The FPFH descriptor can reduce the computational complexity to O(nk)

by considering only the direct connections between the keypoint and its

neighbors, while still having effective power like PFH.

3.2.3 Non-LRF based method

Unlike the LRF based approaches, non-LRF based approaches builds the

geometric relationships between each point and its neighbors to describe

the local surface information without certain LRF.

Spin Image [5] was originally designed to describe mesh surfaces, but

can be used for point clouds. They used an aligned cylinder using the nor-
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Figure 3.4: (a) Geometric relationship between the keypoint p and its neigh-

bor point x; (b) SPIN descriptors (spin-images) [5] for three keypoints.

mal vector as the support structure. This cylinder is divided in bins along

the radial and vertical values (Fig. 3.4(a)), and the final descriptor of the

keypoint is established by counting the number of neighbor points lying in-

side each discrete 2D bin. The descriptor is displayed as a grayscale image,

where dark areas correspond to bins with higher density.

Radius based Surface Descriptor (RSD) [31] describes the surface by

computing an approximated radius of the fitting curve between a keypoint

and its neighbor points. They assumed that the keypoint and its neighbors

lie on the sphere surface and find the sphere by using the distance between

points and angle between their normal vectors. In the case of an ideal plane,

the estimated radius value will be infinite with all neighbors, and in the case

of a corner, the radius value changes similarly as for spheres. From all the

neighbor points of the keypoint, they computed radius values, and only the

maximum and minimum radius values are saved to the descriptor of the
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keypoint. The advantage is that this method is simple but effective.

3.3 Deep learning based rotation-variant method

3.3.1 Overview

The rapid developments of deep learning technology also bring develop-

ments in researching 3D point cloud descriptors. However, it is challenging

to apply deep learning architectures to 3D point cloud straightforwardly

because of the specific properties of 3D point clouds. Therefore, the repre-

sentation format of 3D point clouds to be fed into deep learning pipeline

becomes an important issue for many research works. One common ap-

proach is to build structured representations, which deep learning architec-

tures can process, from the point clouds. The deep learning based descriptor

approaches can be classified into three categories: volumetric based descrip-

tors, multi-view based descriptors, and point based descriptors. The point

based descriptors can be classified into three categories: pointwise MLP

based descriptors, graph based descriptors, and point convolution based

descriptors (Fig. 3.5).

3.3.2 Volumetric based method

In the case a 2D image, a convolution method uses a kernel to extract cer-

tain features from an input image by sliding the kernel across the image

and multiplying that with the input. However, typical convolutional meth-

ods require highly regular input data formats. Therefore, the volumetric

based methods voxelize an unstructured point cloud into a regular format

like 3D occupancy grid, which the standard convolutional methods can
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Figure 3.5: Taxonomy of deep learning based approaches.

process [6, 32] (Fig. 3.6). Moreover, by doing so, these methods represent

unordered and irregular point clouds with simple and efficient structure,

which makes the manipulation and storage easier.

VoxNet [6] is a pioneering work towards deep learning on 3D point cloud.

They converted an input point cloud to an occupancy grid, and applied 3D

convolutional methods on the occupancy grid for object recognition. The

success of VoxNet boosts the development of deep learning on 3D point

cloud. However, the quantification of the floating-point data results in an

approximation, such that the input data intrinsically contains discretized

artifacts. Moreover, because of the sparsity property of 3D point cloud,

the conversion into the grid leads to a memory wastage problem due to

existing of unoccupied space. Because the voxelization process consumes

memory severely, these kinds of methods typically convert an input point
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Figure 3.6: (a) Typical 2D image convolution and (b) 3D grid convolution

of VoxNet [6].

cloud into a coarse grid of volumetric representation. Otherwise, the point

cloud sparsity results in many zero multiplication operations for 3D convo-

lution, and the additional third dimension makes the convolution process

even more computationally expensive when compared to 2D image convolu-

tions. To address the problem, certain methods represent point cloud data

by optimizing the memory consumption or optimize the convolution pro-

cess to ignore the unoccupied grids. In the case of optimizing the memory

consumption, OctNet [33] divides the space by employing a set of unbal-

anced octrees based on density, and FCGF [34–36] uses a sparse tensor

that only saves the nonempty space coordinates and features. In the case
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of optimizing the convolutional process, Vote3Deep [37] constructs efficient

convolutional layers to apply the convolution only at each non-zero location

by using flipped the convolutional weights. However, it is still challenging

to deal with a large scale point cloud data.

3.3.3 Multi-view based method

Multi-view based approaches are one of the simplest ways to analyze a 3D

point cloud by using a set of 2D images rendered with different virtual

cameras. The basic idea of these approaches is to generate 2D images of a

3D point cloud from different camera views and establish descriptors from

the 2D view images with 2D CNNs.

Figure 3.7: Network architecture of MVCNN [7] for 3D shape recognition.

MVCNN [7] is the earliest multi-view based method for 3D shape recog-

nition. To generate rendered 2D views of 3D models, the method uses the

Phong reflection model [38], and then the convolution network is trained

to produce a descriptor for each 2D views. To produce a single and com-

pact 3D shape descriptor, they aggregated the multiple descriptors at a
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view-pooling layer and processed the aggregated descriptor with the sec-

ond convolution network (Fig. 3.7). The method has made the milestone for

3D shape recognition, and many methods have been developed to improve

the view aggregation method. In the case of MVCNN, all view descrip-

tors are treated equally and aggregated using the view-pooling operation.

This naive procedure smooths out the subtle local patterns and constrains

the descriptor performances. To address the problems, Fuseption-ResNet

(FRN) [39] uses the Inception-style architecture [40,41] as a shortcut branch

at the view-pooling layer. This shortcut branch reinforces the view-pooling

layer by using the feature maps obtained from the Inception-style networks.

GVCNN [42] employs a grouping module to group the views according to

their contents, and the group level descriptors are built using the group in-

formation. Subsequently, all group level descriptors are weighted ensembled

to generate the final shape level descriptor. View-GCN [43] builds a graph

with view descriptors and hierarchically aggregates view descriptors on the

graph to generate the final descriptor. These methods improved perfor-

mances on both 3D shape classification and retrieval tasks when compared

to MVCNN, but there is an additional view-related issue in the multi-view

based approach. It is a trade-off between performance and time efficiency.

If the number of views decreases, the network performance drops sharply,

while too many views increase time consumption. The optimal selection on

the number of views needs to be determined based on the tasks.

3.3.4 Point based method

The aforementioned approaches, which convert point clouds into regular

representations, have unsatisfactory performances because of the informa-
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tion loss and quantitation artifacts. Therefore, recent works shift attention

toward point-based approaches, which process raw 3D point cloud directly

without data conversions, such as the voxelization [8, 44, 45] The point-

based approaches can be classified into three categories: pointwise MLP

based descriptors, graph based descriptors, and point convolution based

descriptors.

Pointwise MLP based method

The basic idea of these approaches is to process raw 3D point cloud directly,

but deep learning on 3D point clouds faces a significant challenge. The

problem is that point clouds are an unordered set of points, unlike pixel

arrays in 2D images or 3D volumetric grids. This means that even if point

clouds, which represent the same 3D shape but are sorted in different data

feeding order, are given as inputs, the network outputs of the inputs should

be the same. This requires a network, which uses a 3D model with N input

points, to be invariant to any permutations of the input points in data

feeding order.

Figure 3.8: Network architecture of PointNet [8]. N and D denote the num-

ber of input points and output dimension.
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PointNet [8] is a pioneering work, which deals with irregular and un-

ordered point cloud straightforwardly. This method encodes each point in-

dividually using a shared multi-layer perceptron (MLP) and selects the

maximum values among all the encoded features to generate a single global

feature through global max pooling (Fig. 3.8). Because the shared MLP and

global max pooling are symmetric functions, the method achieves permu-

tation invariance. However, since the features are encoded independently

for each point, the local spatial relationships between points are not cap-

tured, leading to limited network performance. To capture local geometric

structure, some works [46–48] extend PointNet [8] by adopting hierarchi-

cal architectures that group each point’s local neighbors and apply Point-

Net [8] to each group. Due to its simplicity, several works have adopted

PointNet [8, 46] in the feature extraction and learning [49–51].

Graph based method

The success of pointwise MLP based approaches has been extended to var-

ious other approaches, such as graph based approaches. These approaches

construct a graph from an input point cloud by using each point as a graph

vertex and generating graph edges based on relationships between points.

Then, the constructed graph is encoded to capture local spatial relation-

ships among points.

DGCNN [9] is a pioneering work in the graph-based approaches. It con-

structs a graph using k-nearest neighbor (k-NN) strategy and encodes each

edge of the graph using MLP independently (Fig. 3.9). The encoded edges

are then aggregated to the connected points, and the graph is updated

using the aggregated point features. LDGCNN [52] removes the transfor-
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Figure 3.9: Graph construction and encoding operation (EdgeConv) of

DGCNN [9]. The output of EdgeConv is calculated by aggregating the

edge features associated with all the edges emanating from each connected

vertex.

mation network of DGCNN, which is used to align an input point cloud,

to reduce the network size and links the hierarchical features from differ-

ent dynamic graphs by adding shortcuts between different layers to improve

the performance. Similarly, the work [53] encodes multi-level graph features

obtained from different sizes of graphs. DenseGCN [54] uses Inception ar-

chitectures [55,56] in feature extraction to obtain multi-scale features.

These approaches improve performance by constructing graph struc-

tures, but their performance is more sensitive to changes in point distribu-

tion than point-based approaches since they use neighboring points’ coor-

dinates directly in the graph construction.

Point convolution based method

Similar to image or volumetric-based approaches, point convolution-based

approaches utilize convolutional kernels. To overcome the limitations of
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volumetric-based approaches, which require a large amount of memory and

have a high ratio of unoccupied grids, point convolution-based approaches

define convolutional kernels on a 3D continuous space. This allows for the

efficient processing of convolution operators.

Figure 3.10: (a) Typical volumetric-based approaches. (b) Kernels of Point-

wiseCNN [10]. For each point, nearest neighbors are queried and binned into

kernel cells before encoding.

PointwiseCNN [10] locates a kernel at each point of a point cloud instead

of projecting a point cloud to 3D volume. For each point, nearest neigh-

bors are queried and binned into kernel cells, and then the kernel cells are

encoded like typical volumetric-based approaches (Fig. 3.10). This method

reduces the amount of memory by using the pointwise kernel but lacks flex-

ibility like volumetric-based approaches because the number of kernel cells

is constrained. Some works define kernels as polynomial functions applied

on the k-nearest neighbors with different weights depending on their dis-

tances [57, 58]. PCNN [59] and KPConv [60] use additional points, which

have learnable weights. To adapt kernel points to local geometry, KPConv
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learns the kernel point positions, maximizing the number of active kernel

points. These approaches improve efficiency when compared to volumetric-

based methods, but the choice of kernel shape can significantly affect the

results. Therefore, determining the optimal kernel shape is necessary based

on the tasks at hand.

3.4 Deep learning based rotation-invariant method

3.4.1 Overview

The aforementioned deep learning-based approaches, which are rotation-

variant descriptors, show remarkable results when aligned point clouds are

used as inputs. However, their performance is significantly reduced when

randomly rotated point clouds are fed into the networks. Recent studies

have attempted to build descriptors with rotation invariance. There are

two types of approaches to achieving rotation-invariance: 1) Aligning input

point clouds before feature extraction or 2) utilizing rotation-invariant fea-

ture extraction methods, such as relative distance or angle between points.

3.4.2 LRF based alignment

Figure 3.11: Voxelization process of 3DsmoothNet [11] using the LRF.

The aforementioned volumetric based methods simply convert points
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as occupancy grids, so the obtained grids are not invariant to rotational

variations. To address the problem, 3DsmoothNet [11] calculates a LRF for

each interest point and transforms interest points and their neighbor points

(i.e., patch) using the LRFs before the voxelization (Fig. 3.11). Similary,

for each keypoint, GCAConv [61] establishes a LRF and transforms all the

other points according to the keypoint’s LRFs. Subsequently, it divides the

transformed points into eight volumetric bins and encodes the barycenters

of the bins, but estimating the eight barycenters from all the other points

smooths out local subtle patterns. To supplement the incorrect LRF prob-

lem due to the rotational variance on the XY-plane, SpinNet [18] aligns a

point patch using only the z-axis of the LRF and converts the point patch

to the cylindrical volume, which can deal with the XY-plane rotational vari-

ance. However, since these methods build the volume for each point patch,

it requires a lot of computational memory to build descriptors.

Figure 3.12: Local coordinates (θk, ϕk, ρk) for the camera viewpoint ck in

the LRF of p.

Similar to the volumetric based methods, multi-view based methods
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also use LRFs to build rotation-invariant descriptors. LMVD [17] builds

rotation-invariant descriptors by aligning cameras instead of patches. For

a given interest point p, LMVD computes the LRF by using the normal of

the interest point and a constant upright vector u: the z-axis is collinear

with the normal of p, the x-axis is obtained by taking the cross product of

u and the z-axis, and the y-axis is obtained by taking the cross product of

the z-axis and x-axis. Then, the method places camera viewpoints in the

LRF of the interest point (Fig. 3.12). However, because u is the constant

vector, the x-axis and y-axis of the LRF can be changed under point cloud

rotations.

In the case of the point based methods, DIP [16] and GeDi [62] align

patches and then build descriptors by applying PointNet [8] and Point-

Net++ [46] methods to the aligned patches. Different from the aforemen-

tioned methods, to mitigate the incorrect LRF problems (i.e., XY-plane

rotational variation), DIP and GeDi align patches using the additional

transformation networks in addition to the LRF. However, these methods

require training the additional transformation networks with many convo-

lution channels.

3.4.3 Rotation-invariant feature extraction

REQNN [12] converts both the input point clouds and intermediate-layer

features into quaternion features, which possess the property of rotation

equivariance. This means that the feature generated from a point cloud

rotated by a specific angle is equivalent to the rotated feature generated

from the original point cloud (Fig. 3.13). To enable further tasks such as

classification, the quaternion features are transformed into real-valued vec-
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Figure 3.13: Network architecture of REQNN [12]. Both input point clouds

and intermediate-layer features are represented by quaternion features. The

quaternion feature g(R · x · R̄) generated from the point cloud rotated by

a specific angle is equivalent to the rotated quaternion feature R · g(x) · R̄

generated from the original point cloud.

tors by computing the square of the norm of each quaternion element,

which have rotation-invariant property. However, REQNN encodes each

point independently for rotation invariance, which constrains the network

performance. SFCNN [63] maps encoded 3D points, which are obtained

using PointNet [8], onto a discretized sphere graph. Since the encoded

points vary with rotations, SFCNN rotates them to a constant vector to

ensure rotation-robustness. However, this approach is similar to checking

only the distance from the origin to each point, resulting in the loss of

spatial information. RIConv [27] encodes rotation-invariant features, such

as relative angles and distances between points and their neighbors, using

a shared multi-layer perceptron (MLP) and divides points into bins based

on distances from the object center. The method subsequently encodes

the ordered bins using 1D convolution to address the point ordering issue.
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ClusterNet [28] uses hierarchical clustering to explore the geometric struc-

ture of the point cloud and applies a MLP to each point and cluster. The

previously employed rotation-invariant features of RIConv [27] and Clus-

terNet [28] are insufficient to represent the relative positions of neighbors

from each point completely. To supplement the point relationship represen-

Figure 3.14: Global and local rotation-invariant representations of RIF [13].

Two kinds of additional reference points (mi and si) are used to represent

the neighbors of pi.

tations, RIF [13] represents neighbors within the query ball of the interest

point by using rotation-invariant features and additional reference points

(centroid mi of neighbors and intersection si between the query ball and

line extended from origin in Fig. 3.14). However, the reference points have

a chance to be changed depending on object shape variation, and it may

result in insufficient consistency of the descriptors between similar object

parts. Moreover, the used encoding method (i.e, MLP) simply encodes each

point feature without considering other points [13,27,28] to avoid processing

in non-rotation-invariant order, and it constrains the network performance.

RIConv++ [64] estimates relationships between the interest point and its

neighbor points and additionally estimates relationships between neigh-
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bor points to supplement inaccurate point relationship representations. By

using additional representations, it can improve the point relationship rep-

resentations, but if one of the neighbor point is changed or occluded, it can

affect the other adjacent neighbor’s features.

36



Chapter 4

Aligned Kernel based
Rotation-Invariant Method

4.1 Overview

Point cloud analysis such as classification and segmentation is typically per-

formed using descriptors that describe point cloud geometric shapes. Thus,

generating good descriptors through geometric feature extraction and ex-

tracted feature encoding is an important task for accurate point cloud anal-

ysis. However, it is challenging to develop consistently good descriptors for

real-world point clouds obtained from 3D sensors, because real-world point

clouds are not aligned (i.e., rotated and translated) unlike the high-quality

human-made point clouds. Therefore, to make descriptors applicable to

general datasets, it is the major requirement to make rotation-robust de-

scriptors.

In this chapter, a rotation-robust descriptor generation method is pre-
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sented. The rotation-robustness is achieved by using both a LRF-based

kernel alignment and rotation-invariant features in the descriptor gener-

ation process. Additionally, to enhance both the performance and scale-

robustness of the descriptor, a global context aggregation method and a

scale adaptation module are applied.

The primary objective of the proposed method is to enhance rotation-

robustness for practical applicability in scene understanding tasks such as

classification, segmentation, and registration. With rotated and translated

point clouds, achieving consistent results is challenging, making it necessary

to improve robustness performance. In this dissertation, a descriptor gener-

ation method that shows a great robustness performance is proposed. The

proposed method shows that the rotation-invariant feature extraction and

the aligned kernels are the most important factor for improving rotation-

robustness. Without the rotation-robustness, the network has to learn all

the varied feature patterns, resulting in reduced performance under rota-

tional variations. Moreover, because the generated descriptors only con-

tain local geometric information around each point, an additional network,

which aggregates geometric information from all the descriptors, is pro-

posed to increase the range of geometric information of each descriptor.

In addition to the rotation-robustness, an additional network, which finds

the optimal value of the input parameter affected to scale variations, is

proposed to make the network robust to scale variations. Extensive stud-

ies will be presented regarding the performance of rotation-robustness by

comparing the proposed method with several state-of-the-art methods and

self-ablations. The overall architecture is described in the following sections.
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Figure 4.1: Overview of the proposed architecture. First, features are ex-

tracted using multiple kernel sizes. Subsequently, scale analysis is employed

based on the interpolation between the kernel sizes. Finally, the descriptor

is encoded using the adjusted scale for the downstream tasks.

4.2 Descriptor generation

Figure 4.1 illustrates an overview of the proposed descriptor-generation

framework. The basic idea is to place additional aligned and structured

points (i.e., kernel points) around each point and extract rotation-invariant

point relationships (i.e. rotation-invariant features) using the aligned kernel

points (Feature extraction in Fig. 4.1). The extracted rotation-invariant

features are then encoded in a rotation-invariant manner (CNN encoding

in Fig. 4.1) to generate per-point descriptors for one of the three tasks

(Registration, Classification, and Segmentation in Fig. 4.1). Additionally, to

supplement the local geometric information of each descriptor, all descriptor

information aggregation (i.e., global context aggregation) is performed in

the encoding procedure (CNN encoding in Fig. 4.1). Moreover, to enhance
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scale-robustness, a scale analysis is performed to determine the optimal

kernel size according to the point cloud size (Scale analysis in Fig. 4.1).

This chapter is organized as follows. Section 4.2.1 presents the kernel

placement and alignment. The rotation-invariant feature extraction is de-

scribed in Section 4.2.2, and encoding the extracted features is presented in

Section 4.2.3. The global context aggregation is discussed in Section 4.2.4.

Section 4.2.5 presents the scale analysis, which enhances scale-robustness.

Various convolutional neural network (CNN) encoder architectures are pre-

sented in Section 4.3, which are used for the downstream tasks.

4.2.1 Kernel alignment

Compared to rotation-variant features (i.e., point coordinates), represent-

ing point relationships accurately with rotation-invariant features (i.e., rel-

ative distances) is difficult due to the reduced amount of information. Using

incomplete rotation-invariant features may decrease overall network perfor-

mance because too many geometric shapes can be mapped to those features

(Fig. 1.2). To resolve the problem, additional cylinder-shaped kernel points,

which are aligned using a local reference axis (i.e., normal vector), are used

to assist point relationship representations (Fig. 4.2(a)). The normal vector

is computed based on the 3DsmoothNet method [11]. Given a point cloud

P = {xi ∈ R3}i<N , a neighboring point set Pi,r = {xj : ||xj − xi||2 ≤ r},

where r is the radius, is extracted for each point xi. For the normal vector

of xi, a covariance matrix of xi is first computed using the neighbor points

Pi,r:

Σi =
1

|Pi,r|
∑

|xj∈Pi,r

(xj − xi)(xj − xi)
T . (4.1)
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Figure 4.2: (a) Kernel points are aligned using the LRF of the target point;

(b) Neighbors are selected for each kernel point; (c) Weighted-average loca-

tion is estimated based on the distance from the kernel point to the neigh-

bors; (d) For each kernel, the relative location of the averaged neighbor is

estimated using distances and angles; (e) After convolution, kernel features

are aggregated by summation and maximum value selection to represent

the interest point.
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Figure 4.3: Visualization of normal vectors. The signs for each point on a

planar surface are not determined uniquely.

Then, the eigenvector corresponding to the smallest eigenvalue of the matrix

is used as the normal vector. From the normal vector, the rotation matrix

R is estimated, and the kernel is aligned using R.

The estimated normal vector may have problems, such as sign variation

problems (Fig. 4.3), but the cylindrical shape, of which the cylinder column

is aligned to the normal vector, makes the kernel robust to the XY-plane

rotational variations and invariant to the normal axis sign variation.

4.2.2 Rotation robust feature projection

Once all the kernels are aligned for each point, the next step is to repre-

sent rotation-invariant point relationships (i.e., rotation-invariant features)

using the kernels. First, the averaged location of the neighbor points is

calculated based on their distance from the kernel point xki :

x̂ki =
∑

xj∈Pn

wjxj∑
wj

where wj = exp(
−(xj − xki )

2

d2
), (4.2)
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where x̂ki ∈ RN×3 is the weighted-average location for the k-th kernel point

xki , and d indicates the cylinder radius. For the weighting term wj , the

Gaussian function is used to reduce the influence of outliers in (4.2).

For rotation-invariant representations, four types of features are esti-

mated. First, the angle between two vectors, one is from the center point of

the kernel to the weighted-average point and the other is the normal vec-

tor, is estimated (the angle f1 in Fig. 4.2(d)). However, because the normal

vector has a normal vector sign variation problem (Fig. 4.3), a negative

sign is multiplied with the normal vector if the kernel is located below the

tangent plane, as shown below:

f1ki = vi ·
x̂ki − xi

||x̂ki − xi||
· sign(k), (4.3)

where vi indicates the normal vector of xi and sign(k) returns a negative

sign if the k-th kernel point is located below the tangent plane. This term

determines the angle value, regardless of the normal sign. Next, the distance

from the kernel center xi to the averaged neighbor point x̂ki and distance

from the kernel point xki to the averaged neighbor point x̂ki are estimated

(distances f2 and f3 in Fig. 4.2(d)):

f2ki = || x̂
k
i − xi
d

|| (4.4)

f3ki = || x̂
k
i − xki
d

|| (4.5)

Finally, to provide direction to the closest adjacent kernel points, the dis-

tance ratio from two adjacent kernel points to the averaged point is esti-

mated (ratio f4 in Fig. 4.2(d)):

f4ki =
||x̂ki − xk+1

i ||
||x̂ki − xk+1

i ||+ ||x̂ki − xk−1
i ||

(4.6)
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Figure 4.4: Green regions of (a), (b), (c), and (d) illustrate the possible

locations of the neighbor point of the interest point when (f1), (f1, f2), (f1,

f2, f3), and (f1, f2, f3, f4) are given, respectively.

where xk+1
i and xk−1

i are adjacent kernel points of xki . The relative location

of the averaged neighbor points can be successfully represented based on

the presented angle- and distance-based descriptions. Figure 4.4 illustrates

the possible locations of the neighbor point of the interest point (i.e., xi),

represented by using the proposed rotation-invariant features.

4.2.3 Circular convolution

The kernels are not aligned to the unique LRFs, so the kernel direction

may change on the XY-plane according to the distribution of points, but

the adjacent kernel points within the cylinder layer are invariant to rotation.

Therefore, a naive 1 × 1 × 1 channel-wise convolution method (4.7), which

encodes each kernel point independently (Fig. 4.5(a)), can be extended to

(4.8):

xi =
∑
x̂k
i

f(g(x̂ki )), (4.7)

xi =
∑
x̂k
i

f(g(x̂
c(k,−1)
i ), g(x̂ki ), g(x̂

c(k,+1)
i )), (4.8)
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Figure 4.5: (a) Channel-wise convolution and (b) circular convolution. The

red transparent region indicates the receptive field. S indicates the kernel

size of the convolution.

where g(·) and f(·) are the feature extraction function and convolution func-

tion, respectively. c(k,+1) and c(k,−1) indicate the clockwise and coun-

terclockwise adjacent kernel points of the k-th kernel point in the cylinder

layer. Subsequently, to avoid the sign problem, kernel points are divided

into two groups: the collection of kernel points above the tangent plane

and the collection of kernel points below the tangent plane. If the k-th ker-

nel point belongs to the first group, the kernel point for c(k,+1) is selected

in a clockwise order. Otherwise, the kernel point for c(k,+1) is selected

in a counterclockwise order (red arrows in Fig. 4.5(b)). By dividing ker-
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Figure 4.6: Same point cloud, different normal vector signs. Regardless of

the normal vector sign, the kernel point located at “1” in (a) (“4” in (b)) is

processed together with the kernel point located at “2” in (a) (“3” in (b)).

In addition, the kernel weight applied to the kernel “1” in (a) and kernel

“4” in (b) is the same by using the symmetric convolution method.

nel points into two groups and applying symmetric convolution, the deep

learning result remains the same even if the cylindrical kernel flips due to

changes in the normal vector signs (Fig. 4.6). This is because the adjacent

kernels chosen for each kernel do not change.

In addition, if the layers belong to the same group, multiple layers are

encoded together (Fig. 4.5(b) right), i.e., (4.8) is extended to

xi =
∑
x̂k
i

f(g(x̂ki ), g(x̂
j
i )j∈adj(k)), (4.9)

where adj(k) indicates a set of adjacent kernel points of the k-th kernel

point in the same group. A circular padding convolution operation was

used to implement (4.9). Figure 4.5 illustrates the convolution process using

the kernels, and figure 4.6 illustrates an example of the process with the

same point cloud but different normal vector signs. After convolution, the
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encoded features, which are stored in the kernel points, are aggregated by

the summation and maximum value selection.

Figure 4.7: Left: two descriptors obtained from repeated area have same

values because local descriptors only have the limited range of geomet-

ric information around the interest points. Right: two global descriptors

obtained by aggregating all the descriptors have different values. Gray cir-

cles indicate the range of encoded geometric information of descriptors.

By merging local descriptors and global descriptors, two descriptors have

different values.

4.2.4 Global context aggregation

Typically, a descriptor for a point (i.e., local descriptor) only contain geo-

metric information around the point, not all point cloud information. The

problem is that local descriptors of monotonous and repeating areas have

same or similar values because of the limited geometric information range

(Fig. 4.7), and these similar descriptors can hinder further analyses, such
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Figure 4.8: Colors of point cloud indicate global context weights of the

interest point. Red indicates a weight value of one and blue indicates a

weight value of zero.

as registration. To make distinguishable descriptors, the global context (i.e.

global descriptor) is estimated from all the local descriptors. However, sim-

ply aggregating all the local descriptor values using max-pooling or summa-

tion makes only a single global context, which is not useful for improving

descriptor distinctness. Therefore, rather than estimating a single global

context, the adaptive global contexts for each point are estimated by using

distance-based weights.

To estimate the global context for the i-th point (i.e., interest point),

weights wij are calculated based on the Gaussian distance between the i-th

and j-th points (weights for an interest point in Fig. 4.8). Subsequently,

the averaged local descriptor value gi is estimated using the weights wij for

all j.

gi =
∑ wijfj∑

wij
where wij = exp(

−(xj − xi)
2

d2
), (4.10)
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Figure 4.9: Multiple features are extracted using multiple kernel sizes (α

and β). By applying simple convolution operations to these features, an

interpolation weight W between the two kernel sizes is estimated. The final

kernel size is then determined by applying the interpolation weight to the

original kernel sizes.

where fj indicates the descriptor value of the j-th point, and d is the kernel

size. This way, points that are close to the interest point have a higher

weight than those that are far away, and their descriptor values are more

influential in calculating the global context. Once the global contexts are

estimated for each point, the global contexts are concatenated to each local

descriptors. Finally, a simple 1 × 1 × 1 channel-wise convolution operation

is performed on concatenated descriptors (equation 4.7 in Section 4.2.3) to

refine the descriptors for downstream tasks.
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4.2.5 Scale adaptation module

The point cloud size can vary for the same object, depending on the view-

point of capture. Similar to the rotational and translational variations, scale

variations also increase the burden of the deep learning network by increas-

ing the input patterns. To resolve the scale variation problem, one common

approach is to normalize point cloud coordinates to be within a range of

-1.0 and 1.0. However, If an input point cloud has some noises or has an

unusual shape when compared to the training data, the normalization pro-

cess might fail to resolve the scale problem. To mitigate the scale problem,

the proposed scale adaptation module is performed after the point cloud

normalization.

In the proposed method, the kernel size (d in (4.2)) is the key parameter

affected by scale variation. This implies that the features extracted, which

describe the nearby geometric structure, can vary depending on the used

kernel size. If a kernel size that is too large is used, the extracted features

may contain overly approximate geometric information or miss important

details. Conversely, if a kernel size that is too small is used, the features

extracted may only contain a limited range of regional information, which

could be insufficient for effectively analyzing the shape of the point cloud.

Therefore, the task of the scale adaptation module is to analyze multiple

kernel sizes to identify the optimal one, thereby modifying the kernel size

instead of altering the point cloud scale.

First, multiple features using multiple sizes of the kernels (α and β

in Fig. 4.9) are extracted. Subsequently, the multiscale features are con-

catenated, simple 1 × 1 × 1 channel-wise convolution operations and fully
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connected layer operations are employed for the scale analysis (Convolution

and Fully connected layer in Fig. 4.9). By extracting and analyzing multi-

scale features, the scale adaptation module is able to estimate the optimal

kernel size. As a result, the convolution’s output is the interpolation weight

(Scale weight W in Fig. 4.9), between the smallest and largest kernel sizes

used. Finally, the kernel, which is derived from interpolating among multi-

ple kernels, is used to generate the proposed descriptor for the classification,

registration, and segmentation tasks. The weights of this module are con-

currently learned during the training of the registration and classification

networks.

4.3 CNN encoding

The designed CNN encoders are illustrated in Fig. 4.10. There are five

modules: feature extraction module (Section 4.2.2), three kinds of encod-

ing related modules (circular convolution (Section 4.2.3), global context

aggregation (Section 4.2.4), and MLP), and registration related module

(SVD).

The feature extraction modules are initially used, and then the circular

convolution modules are applied to generate descriptors from the extracted

features. The generated multiscale descriptors are concatenated using a

shortcut connection (side arrows in Fig. 4.10). Subsequently, global contexts

are estimated from the concatenated descriptors to improve the descriptor

distinctness.

For the registration task, the singular value decomposition (SVD) mod-

ule [14] is used to estimate the rotation matrix R and translation vector t
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Figure 4.10: Network architectures for (a) registration, (b) classification,

and (c) part segmentation.

from the two descriptor sets. For given two descriptor sets DP ∈ RN×512

and DQ ∈ RN×512, the module first estimates D̂P from DQ based on the

similarity matrix MatP,Q = DP ×DQ
T :

D̂P = softmax(MatP,Q)×DQ, (4.11)

where softmax(∗) is the row-wise normalization function. Then, using DP

and D̂P , the module estimates the covariance matrix H:

H = (DP − centroidDP
)(D̂P − centroidD̂P

)
T
, (4.12)

52



where centroid∗ is the center location of ∗. Finally, by applying the sin-

gular value decomposition to H (i.e., [U, S, V ] = SV D(H)), R and t are

estimated:

R = V UT , (4.13)

T = centroidD̂P
−R× centroidDP

. (4.14)

The registration network is trained by minimizing the following loss func-

tion as DCP [14]:

Lossregi = ||RTRgt − I||2 + ||T − Tgt||2, (4.15)

where Rgt and tgt are the ground-truth rotation matrix and translation

vector.

For the classification tasks, the single descriptors are estimated by av-

eraging all the descriptors (i.e., N × 512 to 512) before applying the multi-

layered perceptron (MLP) modules to predict the class for the input point

cloud, not for each point. Because the number of class is 40, the output

is the vector of length 40. Each value represents the probability for each

class, and the class with the highest probability is the predicted class for

the input point cloud. The classification network is trained by minimizing

a cross-entropy loss:

Losscls = −
40∑
i

gilog(pi), (4.16)

where pi and gi are the i-th values of the output vector and ground-truth

vector, respectively.
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Similarly, for the segmentation task, MLP modules are applied to es-

timate per-point segmentation scores, and the segmentation network is

trained by minimizing a point-wise cross-entropy loss:

Lossseg = −
N∑
j

50∑
i

gilog(p
j
i ), (4.17)

where pji is the i-th values of the output vector of the j-th point.

For the training, Adam optimizer [65] is applied. The learning rate is set

to 0.001 and decayed by multiplying 0.7 for every 20 epoch. The network is

trained for 250 epochs using Intel i7-7700 CPU with 3.60 GHz processors,

16 GM memory, and NVIDIA Geforce 1080 (12 GB) GPU machine. The

PyTorch framework is used for the implementation of the network.

4.4 Experimental results

4.4.1 Overview

The aim of the experimental section is to evaluate the proposed method’s

strengths and weaknesses in three tasks: registration, classification, and

segmentation. The following sections present the configuration of prepared

data and evaluation metrics, followed by an overall comparison with state-

of-the-art methods. A rich ablation study of the proposed method is then

presented.

4.4.2 Data configurations

In total, three kinds of tasks were implemented: registration, classification,

and segmentation. For the registration task, ModelNet40 [66] database was

used. ModelNet40 contains 12,311 meshed computer-aided design models
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from 40 classes. For each model, 1,024 points were used for training and

testing. For the classification task, ScanObjectNN [67] database was used in

addition to ModelNet40 to demonstrate the adaptability on the real-world

dataset. ScanObjectNN contains 2,902 real-world models from 15 classes,

and each model is randomly translated, rotated, scaled, and partially oc-

cluded. For each model, 2,048 points were used for training and testing. For

the segmentation task, ShapeNetPart [68] database was used. ShapeNet-

Part contains 16,681 models from 16 classes. Each point is annotated using

part labels. For each model, 2,048 points were used for training and testing.

In the experiments, the rotation-robustness and generalization ability of

the proposed network were evaluated by comparing with the state-of-the-art

descriptor methods. The state-of-the-art descriptor methods, PointNet [8],

DGCNN [9], KPConv [60], RIF [13], and the proposed method were used

for the performance evaluation.

4.4.3 Evaluation metric

The registration results were measured using mean squared error (MSE),

root mean squared error (RMSE), and mean absolute error (MAE) between

ground-truth values and predicted values (rotation (R-) and translation (T-

)):

R-MSE =

3∑
i

(euler(Rpred)− euler(Rgt))
2
i , (4.18)

R-RMSE =

√√√√ 3∑
i

(euler(Rpred)− euler(Rgt))
2
i , (4.19)
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R-MAE =

3∑
i

|euler(Rpred)− euler(Rgt)|i, (4.20)

T -MSE =
3∑
i

(Tpred − Tgt)
2
i , (4.21)

T -RMSE =

√√√√ 3∑
i

(Tpred − Tgt)
2
i , (4.22)

T -MAE =

3∑
i

|Tpred − Tgt|i, (4.23)

where R and T represent the rotation matrix and translation vector, re-

spectively. ∗pred and ∗gt indicate predicted and ground-truth transformation

information, respectively. The function euler(∗) returns Euler angles for a

given rotation matrix.

For classification, results were measured using the classification overall

accuracy (OA):

OA =
NC

NT
, (4.24)

where NC and NT represent the number of correct predictions and total

number of predictions, respectively.

For the segmentation, the results were measured using the mean class

IoU (mcIoU) per class:

mcIoU =
1

C

C∑
j

1

|Cj |
∑
i∈Cj

|Li
pred ∩ Li

gt|
|Li

pred ∪ Li
gt|

(4.25)

where Li
pred and Li

gt represent predicted and ground-truth label sets of

the i-th point cloud, respectively. N , C, and Cj represent the number of

point clouds, the number of classes, and the point clouds of the j-th class,

respectively.
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4.4.4 Quantitative analysis

Method R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE C

ICP 892.601 29.876 23.626 0.086 0.293 0.251 -

Go-ICP [69] 192.258 13.865 2.914 0.000 0.022 0.006 -

FGR [70] 97.002 9.848 1.445 0.000 0.013 0.002 -

PointNetLK [71] 306.323 17.502 5.280 0.000 0.028 0.007 20

PointNetLK [71] 227.870 15.095 4.225 0.000 0.022 0.005 40

DCP [14] 9.923 3.150 2.007 0.000 0.005 0.003 20

DCP [14] 1.307 1.143 0.770 0.000 0.001 0.001 40

Proposed 0.017 0.130 0.064 0.000 0.000 0.000 20

Table 4.1: Registration results with randomly rotated same point clouds

of ModelNet40. The evaluation metrics are mean squared error (MSE),

root mean squared error (RMSE), and mean absolute error (MAE) for

rotation (R-) and translation (T-). C indicates the number of used classes

for training.

Registration

For registration, the proposed method was analyzed using randomly ro-

tated point clouds from ModelNet40 [66]. Three types of experiments were

conducted: 1) randomly rotated point clouds (Table 4.1), 2) randomly ro-

tated noisy point clouds (Table 4.2), and 3) randomly rotated and partially

sampled point clouds (Table 4.3).

As listed in Table 4.1, the proposed descriptor method significantly re-

duced the registration errors when compared to the other methods. Even
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Figure 4.11: Left: source (blue) and target (red) point clouds, Middle: reg-

istration results of deep closest point method [14]. Right: registration re-

sults of the proposed method. Green indicates the transformed source point

clouds.
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Method R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

ICP 882.564 29.707 23.557 0.084 0.290 0.249

Go-ICP [69] 131.182 11.453 2.534 0.000 0.023 0.004

FGR [70] 607.694 24.651 10.055 0.011 0.108 0.027

PointNetLK [71] 256.155 16.004 4.595 0.000 0.021 0.005

DCP [14] 1.169 1.081 0.737 0.000 0.001 0.001

Proposed 0.137 0.370 0.275 0.000 0.000 0.000

Table 4.2: Registration results with randomly rotated noisy point clouds of

ModelNet40. The evaluation metrics are mean squared error (MSE), root

mean squared error (RMSE), and mean absolute error (MAE) for rotation

(R-) and translation (T-).

when compared to the results trained with all classes (C in Table 4.1), the

proposed method showed the lowest errors in all cases while trained with

only 20 kinds of classes. The compared methods can be classified into two

main categories: non-deep learning based methods [69, 70] and deep learn-

ing based methods [14, 71]. Deep learning based methods typically showed

better performance than non-deep learning based methods because ICP

and its variants (Go-ICP, FGR) often stalled in suboptimal local minima

due to the problem’s non-convexity [9]. PointNetLK [71] encoded a point

cloud to generate a single descriptor using PointNet [8] and estimated a

rigid transformation using descriptors of two point clouds. Because the

feature extraction method used in PointNet [8] was non-structured, non-

translation-invariant, and non-rotation-invariant, the registration results

were even worse than some non-deep learning based methods [69,70]. This
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Method R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

ICP 297.080 17.236 8.610 0.007 0.082 0.043

Go-ICP [69] 184.199 13.572 3.416 0.002 0.045 0.015

FGR [70] 40.832 6.390 1.240 0.001 0.038 0.008

PointNetLK [71] 334.67 18.294 9.730 0.008 0.092 0.053

DCP [14] 45.617 6.754 4.366 0.004 0.061 0.040

PRNet [72] 7.355 2.712 1.372 0.000 0.017 0.012

FMR [73] 25.412 5.041 2.304 0.001 0.038 0.016

IDAM [74] 46.950 6.852 1.761 0.003 0.054 0.014

DeepGMR [75] 356.832 18.890 9.322 0.008 0.087 0.056

OMNet [76] 4.322 2.079 0.619 0.000 0.018 0.008

SpinNet [18] 1.355 1.164 0.902 0.000 0.013 0.011

Proposed 0.741 0.861 0.440 0.000 0.008 0.004

Table 4.3: Registration results with randomly rotated and partially sampled

point clouds of ModelNet40. The evaluation metrics are mean squared error

(MSE), root mean squared error (RMSE), and mean absolute error (MAE)

for rotation (R-) and translation (T-).

indicates that the two descriptors generated from randomly rotated point

clouds contained significantly different values. DCP [14] generated descrip-

tors using the graph based structured and translation-invariant method

(DGCNN [9]) in the feature extraction procedure, reducing registration er-

rors compared to PointNetLK [71]. The feature extraction method used

in DCP implies the translation-invariant property but does not imply the

rotation-invariant property. This leads to differences in descriptor values

according to rotations, resulting in relatively large errors when compared
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to the proposed method. The registration results of DCP and the proposed

method are visualized in Fig. 4.11. The results of the DCP method [14]

showed a small error between the two point clouds. Conversely, the results

of the proposed method showed superior matching performance. These re-

sults indicate that the proposed descriptor matches the feature-based cor-

respondences between the source and target points in a superior manner

compared to DCP [14]. Furthermore, as listed in Table 4.2, the proposed

method showed the lowest errors in the registration task with noisy point

clouds generated using Gaussian noise. These results indicate that the pro-

posed method can be applied to noisy point clouds, like real-world datasets.

In addition to the registration with fully overlapped point clouds (Table

4.1 and Table 4.2), registration with partially overlapped point clouds was

conducted. Inspired by PRNet [72], for given point clouds X and Y, partial

scans of X and Y were generated by randomly placing a point in space and

computing its 768 nearest neighbors in X and Y, respectively. The overall

architecture is similar to the registration architecture, but a rigid trans-

formation was computed using RANSAC [77] instead of the SVD module.

Table 4.3 lists the partial registration results. As shown in Table 4.3, the reg-

istration errors of the proposed method were lower than all the other meth-

ods. PRNet [72] is the extended version of DCP [14] designed to improve

registration performance by using an iterative and differentiable (i.e., train-

able) point-to-point matching module based on Gumbel-Softmax. By using

the improved matching module, PRNet showed reduced registration er-

rors, but still had relatively large errors compared to the rotation-invariant

descriptor-based methods (SpinNet [18] and the proposed method). Simi-

larly, PointNet [8] based methods (DeepGMR [75] and OMNet [76]), which
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focus on establishing point-to-point correspondences rather than the fea-

ture extraction, also showed lower performances. These results demonstrate

the importance of the rotation-invariance in the registration task. Spin-

Net [18] generates rotation-invariant descriptors by building spherical vol-

ume grids on aligned points using LRFs. Owing to the rotation-invariance,

the method could generate consistent descriptor values from corresponding

areas regardless of rotations, and SpinNet showed lower errors compared to

the non-rotation-invariant methods. However, there are drawbacks to the

method: 1) SpinNet generates descriptors using the volume grids, which

consume a significant amount of computational memory. 2) The method

aligns points using LRF, but does not consider the sign problem. On the

contrary, the proposed method consumes relatively a small amount of com-

putational memory when compared to SpinNet and addresses the sign prob-

lem by using the symmetric circular convolution method. As a result, the

proposed method significantly reduced registration errors with a simple

architecture and less computation memory.

Classification and Segmentation

The proposed method was evaluated using the ModelNet40 [66] and ScanOb-

jectNN [67] databases for classification, and the ShapeNetPart [68] database

for part-segmentation. Three kinds of experiments were conducted in the

classification and segmentation: 1) training and testing under non-rotational

environments (NR/NR); 2) training under azimuthal rotations (around the

gravity axis) and testing under arbitrary rotations (ZR/AR); and 3) train-

ing and testing under arbitrary rotations (AR/AR). The proposed method

was compared with both non-rotation-invariant and rotation-invariant meth-
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Method OA mIoU mcIoU RI

PointNet [8] 89.2 83.7 80.3 X

PointNet++ [46] 90.7 85.1 81.9 X

PointCNN [78] 92.2 86.1 84.6 X

DGCNN [9] 92.2 85.2 85.0 X

KPConv [60] 92.9 86.2 85.1 X

ShellNet [79] 93.1 - - X

PointTransformer [80] 93.7 86.6 83.7 X

RIConv [27] 86.5 80.3 75.3 O

Clusternet [28] 87.1 - - O

REQNN [12] 83.0 - - O

PRIN [81] - 71.1 67.6 O

TVCG2021 [13] 89.4 82.5 79.4 O

RIConv++ [64] 91.3 - - O

Our method 93.2 85.9 83.3 O

Table 4.4: ModelNet40 classification results (i.e. OA) and ShapeNetPart

segmentation results (i.e. mIoU). OA, mIoU, and mcIoU indicate the over-

all accuracy, instance average intersection over union, and class average

intersection over union, respectively. RI indicates whether the method is

the rotation-robust method or not.
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Method OA (ZR/AR) OA (AR/AR) RI

PointNet [8] 16.4 75.5 X

PointNet++ [46] 28.6 85.0 X

PointCNN [78] 41.2 84.5 X

DGCNN [9] 20.6 81.1 X

ShellNet [79] 19.9 87.8 X

KPConv [60] 47.8 87.8 X

PointTransformer [80] 17.2 82.2 X

RIConv [27] 86.5 86.5 O

ClusterNet [28] 87.1 87.1 O

REQNN [12] 83.0 - O

GCAConv [61] 89.1 89.2 O

RIF [13] 89.4 89.3 O

RIConv++ [64] 91.3 91.3 O

Proposed 89.0 91.6 O

Table 4.5: Results of ModelNet40 classification. (-/-) indicates the train-

ing and test environments. NR, ZR, and AR indicate no rotation (NR),

azimuthal rotations (ZR), and arbitrary rotations (AR), respectively.
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Figure 4.12: Left: source points; Right: part-segmentation results
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Method OA (ZR/AR) OA (AR/AR) RI

PointNet [8] 17.1 42.3 X

PointNet++ [46] 15.8 60.1 X

PointCNN [78] 14.9 51.8 X

DGCNN [9] 16.1 63.4 X

PointTransformer [80] 22.1 43.1 X

RIConv [27] 68.3 68.3 O

GCAConv [61] 69.8 70.0 O

RIConv++ [64] 80.3 80.3 O

Proposed 79.4 80.8 O

Table 4.6: Results of ScanObjectNN classification. (-/-) indicates the train-

ing and test environments. NR, ZR, and AR indicate no rotation (NR),

azimuthal rotations (ZR), and arbitrary rotations (AR), respectively.

ods in the classification and part-segmentation tasks.

Typically, rotation-invariant methods (RI is O in Table 4.4) showed in-

ferior performance compared to non-rotation-invariant methods (RI is X in

Table 4.4) under non-rotation environments (NR/NR). There are two main

reasons for this: Firstly, it is difficult to represent the accurate relationship

between points with rotation-invariant features. If the rotation-invariant

features (such as relative distance or angle) cannot accurately represent

point relationships, points of different topological areas can be represented

with the same rotation-invariant features. This means that descriptors gen-

erated from different topological areas can have similar values, resulting
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Method mcIoU (ZR/AR) mcIoU (AR/AR) RI

PointNet [8] 37.8 74.4 X

PointNet++ [46] 48.3 76.7 X

PointCNN [78] 34.7 71.4 X

DGCNN [9] 37.4 73.3 X

ShellNet [79] 47.2 77.1 X

KPConv [60] 46.3 75.8 X

RIConv [27] 75.3 75.3 O

PRIN [81] 64.6 67.6 O

GCAConv [61] 77.3 77.1 O

RIF [13] 79.2 79.4 O

RIConv++ [13] 80.5 80.5 O

Proposed 77.2 80.6 O

Table 4.7: Results of ShapeNetPart segmentation. (-/-) indicates the train-

ing and test environments. NR, ZR, and AR indicate no rotation (NR),

azimuthal rotations (ZR), and arbitrary rotations (AR), respectively.

in inferior performance compared to non-rotation-invariant methods. Sec-

ondly, convolution with more than one point in rotation-invariant order is

a challenging problem. Some previous works, such as RIConv [27], Cluster-

net [28], RIF [13]), encoded each point independently using MLPs to avoid

encoding in non-rotation-invariant order. However, the independent point

encoding methods cannot provide local geometric information around each

point.
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To overcome these limitations, the proposed method used the aligned

kernels as additional reference points during the feature extraction pro-

cess to extract accurate rotation-invariant features. Moreover, adjacent ker-

nels were encoded simultaneously using the circular convolution method

to provide local geometric information around each kernel, instead of en-

coding each point (or kernel) independently. As demonstrated in Table

4.4, the proposed descriptor outperforms rotation-invariant methods and

shows comparable performance to state-of-the-art non-rotation-invariant

methods. Although the proposed method has addressed the drawbacks of

rotation-invariant methods, the performance was similar to that of non-

rotation-invariant methods. This is because rotation-invariant features are

less intuitive compared to non-rotation-invariant features such as coordi-

nates. Non-rotation-invariant features encompass both relative positions

among points and their positions within the overall space, while rotation-

invariant features only contain information about the relative positions

among points. Therefore, surpassing the performance of methods using non-

rotation-invariant features poses a challenging problem. However, rotation-

invariance is a desired feature for real-world applications. Therefore, it is

significant that the proposed method achieves superior accuracy among

rotation-invariant methods.

To demonstrate the proposed method’s rotation robustness, the ex-

periments with rotated point clouds were conducted in the classification

and segmentation tasks. The network was trained with azimuthal rotations

(around the gravity axis) (ZR) and arbitrary rotations (AR) and tested

with arbitrary rotations (ZR/AR, AR/AR) (Tables 4.5, 4.6, and 4.7). (-

/-) indicates which rotational metric was used for training/testing, re-
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spectively. The rotation-invariant methods showed consistent performances

under rotation environments (ZR/AR, AR/AR) unlike the non-rotation-

invariant methods. The non-rotation-invariant methods [9, 79] used point

coordinate-based features, which varied according to rotational variations,

increasing the burden of the deep learning network by increasing the in-

put patterns. In contrast, the rotation-invariant methods showed consis-

tent performances under rotations by using the rotation-invariant features.

However, some methods [27, 28] showed inferior performances than non-

rotation-invariant methods [60,79]. It indicates that inaccurate or ambigu-

ous rotation-invariant features have limitations in representing local ge-

ometric structure, and naive convolution methods (MLPs) constrain the

network learning. To address this limitation, RIF [13] used the additional

reference points (such as the centroid of neighbors and intersection between

the query ball and line extended from the origin), but these reference points

have a chance to be changed depending on object shape variation, and it

may result in insufficient consistency of the descriptors between similar ob-

ject parts. Similarly, RIConv++ [64] represented accurate point relation-

ships by additionally using distances and angles between neighbors, but

one neighbor point variation can affect the other neighbor features. On the

contrary, the proposed method resolved the problems by using the kernels

as the reference points to represent point relationships accurately and by

using the circular convolution method, which encodes the adjacent kernels

at once to provide local geometric structure around each kernel.

In Tables 4.5 and 4.7, the proposed method showed comparable per-

formances to the rotation-invariant methods in the (ZR/AR) case. One

issue is that the kernel directions may change on the XY-plane based on
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the distribution of points. This property increased the burden of the deep

learning network by increasing the input patterns and affected the method’s

performances under the (ZR/AR) case. However, in the cases where train-

ing and testing were conducted under arbitrary rotations (AR/AR), the

proposed method outperformed both rotation-invariant and non-rotation-

invariant methods because the network learned the input patterns that

were increased by the kernel direction variations. Figure 4.12 illustrates the

sample outputs of the proposed method.

4.4.5 Parameter and ablation study

To verify the effect of the proposed method, several parameter and ablation

studies were conducted on the registration task by varying the following

parameters: 1) convolution operation, 2) the number of nearest neighbors

for each kernel, 3) global context aggregation usage, 4) scale adaptation

module usage, and 5) network statistics.

Convolution operation

The proposed method employed two types of operations: the 1 × 1 ×

1 channel-wise convolution and the circular convolution. The 1 × 1 ×

1 channel-wise convolution operation independently encodes each kernel,

thereby limiting its ability to capture local geometric information. In con-

trast, the circular convolution operation collectively encodes adjacent ker-

nels in a rotation-invariant manner, thus aiding in the capture of local

geometric information. As shown in Table 4.8, compared to the network

utilizing the 1 × 1 × 1 channel-wise convolution, the network with the cir-

cular convolution significantly enhanced performance in terms of both ro-
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tation and translation. By encoding adjacent kernels together, the method

was able to analyze the surrounding landscapes encapsulated in each kernel.

This resulted in improved learning of the structural information between

the points. These results demonstrate that circular convolution operations

successfully capture geometric features through rotation-invariant multiple

kernel encoding. Figure 4.13 illustrates the registration results according

to the kernel alignment and convolution methods. As depicted, the net-

work with aligned kernel-based circular convolution demonstrated superior

registration results.

Conv method R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

channel-wise 0.040420 0.201046 0.105576 0.000000 0.000149 0.000094

circular conv 0.017159 0.130991 0.064475 0.000000 0.000048 0.000027

Table 4.8: Convolution operation study for ModelNet40 global registration

task.

The number of nearest neighbors for each kernel

The performance of the method was further analyzed by varying the number

of neighbors for the kernels. As described in Section 4.2.2, the method ex-

tracted k-nearest neighbors for each kernel. It then estimated the weighted

average location of those neighbors. This location was used as a represen-

tative point to capture the local geometry where the neighbors are located.

Because the distance-based weights were used for each neighbor, closer

neighbors had more impact, while the effect of faraway neighbors was re-

duced. Experiments were conducted with different numbers of neighbors,
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Figure 4.13: Comparison of methods

and the results are listed in Table 4.9. It was observed that the perfor-

mance of the proposed method is not significantly affected by variations in

the number of neighbors. This robustness can be attributed to the approach

of estimating the weighted average location, which approximates neighbors,

thereby reducing sensitivity to changes in their distribution. This approx-

imation technique, similar to the strategy used by volumetric methods for

approximating point clouds, contributes to making the proposed method

less sensitive to distribution changes.

KNN R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

2 0.014517 0.120486 0.065029 0.000000 0.000037 0.000025

10 0.017159 0.130991 0.064475 0.000000 0.000048 0.000027

Table 4.9: The number of nearest neighbors study for ModelNet40 global

registration task.
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Global context aggregation

As the generated descriptors only contain local geometric information around

each point, similar descriptor values from monotonous and repeating areas

may hinder computation of a rigid transformation in the SVD module. To

address this issue, all descriptor values were aggregated based on distances

to allow for each descriptor to have a distinct value. To evaluate the effect

of the global context, registration was conducted both with and without

it (O and X in Table 4.10). The global context yielded improved perfor-

mance compared to the method without a global context. By aggregating

all the local descriptor information, the method can encompass informa-

tion about the entire point cloud. This approach provides distinctiveness

to local descriptors generated from repetitive and similar landscapes and

effectively resolves the issue of resemblance among descriptors generated

from different locations but similar terrains. These results highlight this

method’s capability to address the problem of descriptor similarity across

diverse locations with similar terrains.

Moreover, to check the efficiency of the method, two global contexts

were created, one using descriptors of all points (with 1024 points in Table

4.11), and another using descriptors of uniformly sampled points (with 128

points in Table 4.11). The global contexts generated from both sampled

points and all points showed comparable performance. This implies that an

effective global context can be generated with a smaller number of points.

Because information was gathered from uniformly sampled points, it was

possible to accumulate information about the entire point cloud. This is

why there was no significant difference in the results when using all points.
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Global information R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

X 0.017159 0.130991 0.064475 0.000000 0.000048 0.000027

O 0.008142 0.091766 0.046526 0.000000 0.000047 0.000027

Table 4.10: Global context study for ModelNet40 global registration task.

Point num R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

w/ 128 points 0.007513 0.086675 0.041369 0.000000 0.000047 0.000026

w/ 1024 points 0.008142 0.091766 0.046526 0.000000 0.000047 0.000027

Table 4.11: Global context study with the different number of used points.

Scale adaptation module

In descriptor generation, the extracted neighbors, estimated feature val-

ues, and distance-based weights for neighbors depend on the kernel size. As

this kernel size is influenced by scale variations, the scale adaptation mod-

ule was introduced to automatically determine the appropriate kernel size

under various scales, as described in Section 4.2.5. To evaluate the scale-

robustness of the module, experiments were conducted with and without

the scale adaptation module. The network was trained using multiple ker-

nel sizes and tested with different scales (0.50, 1.00, 1.50) of point clouds

to demonstrate scale robustness. Table 4.12 presents the results of the dif-

ferent scale tests for each model, with the mean and standard deviations

provided. By analyzing features of various scales, the module was able to

identify an optimal kernel size that corresponded to informative features

for accurately representing the terrain. With this approach, the proposed

network demonstrated stable results when using the scale adaptation mod-
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Scale adaptation

(test scale)
R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE

X (0.50) 0.084 0.290 0.195 0.007 0.086 0.075

X (1.00) 0.018 0.137 0.085 0.000 0.000 0.000

X (1.50) 0.116 0.341 0.213 0.007 0.086 0.075

X (Total) 0.072 ± 0.040 0.256 ± 0.086 0.164 ± 0.056 0.004 ± 0.003 0.057 ± 0.040 0.049 ± 0.035

O (0.50) 0.017 0.130 0.085 0.000 0.006 0.003

O (1.00) 0.018 0.136 0.085 0.000 0.006 0.003

O (1.50) 0.016 0.127 0.083 0.000 0.005 0.003

O (Total) 0.017 ± 0.000 0.131 ± 0.003 0.084 ± 0.001 0.000 ± 0.000 0.005 ± 0.000 0.003 ± 0.000

Table 4.12: ModelNet40 global registration results with different scales. (#)

is the experiments in which networks are trained with the original scale of

point clouds and tested with (#) scale of point clouds. Values indicate the

mean and standard deviation of the results.

ule. These results indicate that the module determined the optimal kernel

size for capturing geometric information, leading to improved performance

in global registration.

Network statistics

The space and time complexities of a deep learning network can be esti-

mated using the number of parameters in the network and the number of

floating-point operations per sample (FLOPs). Space complexity is typi-

cally measured by the number of parameters in the network, and the more

complex the network, the more training data it can memorize. FLOPs de-

scribe the number of operations required to run a single instance of a given

network, with a higher number of FLOPs indicating longer inference time.

Table 4.13 lists the space (number of parameters in the network) and

time (FLOPs per sample) complexities of networks for registration on Mod-
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elNet40, as well as the processing time for one batch. The complexities of the

proposed method were compared to those of PointNet [8] and DGCNN [9].

The results showed that PointNet [8] used the fewest number of param-

eters and FLOPs and was also the fastest in processing. As PointNet [8]

simply processed each point independently, it is the most straightforward

and fastest method among the point-based approaches. However, because

it can’t effectively learn structural geometric information, its performance

is the most limited, despite its fast speed. DGCNN [9] found neighbors for

each point to build the graph and processed each edge of the graph, result-

ing in a higher amount of computation than PointNet [8]. In the case of

DGCNN, 2D convolution was used to process neighbors for each point, un-

like PointNet, which used 1D convolution. This made DGCNN slower than

PointNet. Similarly to DGCNN, the proposed method built structures (i.e.,

kernels) for each point, but it additionally required kernel alignment and

rotation-invariant feature extraction for each kernel point. Additionally, it

processed adjacent kernel points together when each kernel point was pro-

cessed, unlike DGCNN, which processed each edge independently. All of

these factors affected the complexities of the proposed method and infer-

ence speed. Although the proposed method is relatively slower than Point-

Net and DGCNN, these efforts to achieve rotation-invariant properties are

essential for applicability to real-world datasets. Due to its robust rotation-

invariant properties, the proposed method can enhance performance even

under challenging conditions, such as those presented by real-world datasets

(Table 4.6). Rather than reducing speed, it is crucial to perform each task

accurately.
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Method PointNet DGCNN
Proposed

(w/o global context)

Proposed

(w/ global context)

Params 5,343,049 5,568,905 5,957,545 6,514,857

FLOPs 10,912,399,360 13,223,591,936 15,134,056,448 16,211,992,576

Batch/s 10 3.9 3.3 3.2

Table 4.13: Model statistics on ModelNet40 dataset. The models were ex-

perimented with a GTX 1080.

4.5 Discussion

Building rotation- and scale-robust descriptors is essential to achieve consis-

tent and accurate results under various environmental conditions as real-

world datasets are not always aligned. While recent studies have made

progress in developing rotation-robust descriptors through LRF based align-

ment or rotation-invariant features, there are still challenges to overcome,

such as incorrect LRFs, ambiguous rotation-invariant features, and diffi-

culty in encoding features in a rotation-invariant manner.

In this dissertation, a new rotation-robust descriptor generation method

is proposed to address these challenges. The proposed method extracted ac-

curate rotation-invariant features and encoded them in a rotation-invariant

and sign-independent manner using the aligned cylindrical kernel. The re-

sults of various tasks, such as registration, classification, and part segmen-

tation, demonstrated that the proposed method outperformed previous

approaches significantly under rotation variations. The registration task

showed a significant reduction in rotation and translation errors, indicating

that the proposed descriptors captured salient and corresponding geometric

information between two transformed point clouds successfully. The classi-
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fication and segmentation results showed that the proposed method is not

only suitable for transformed point cloud tasks but also for general pur-

poses. Overall, the proposed method provides a promising solution to the

challenge of building rotation- and scale-robust descriptors in point cloud

analysis.
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Chapter 5

Applying Aligned Kernels for
Dense Point Cloud Registration
in Real-World Scenarios

5.1 Overview

With the development of 3D acquisition technologies, many researchers

have generated various real-world 3D scene models for scene-understanding

tasks using 3D-sensing devices [82,83]. The major challenge in scene mod-

eling is the matching task (that is, registration) caused by the limited view

range for each partial scene. The difficulty of registration arises from es-

tablishing correspondences based on local descriptor comparisons. In con-

trast, similar descriptor values are prone to be obtained in many regions,

irrespective of their saliency. Moreover, inconsistent descriptor values are

obtained from arbitrary rotations; this hinders the establishment of correct

correspondence between points. Thus, generating rotation-robust descrip-
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tors and selecting salient descriptors is key for accurate registration.

Recently, deep learning-based registration approaches, which typically

sample interest points and their neighbors (that is, patches) and build a

local descriptor for each patch, have been widely researched, but it is still

challenging to build rotation-robust and salient descriptors that contain

distinctive information differentiated by geometric terrain. There are two

reasons for this: 1) It is hard to achieve rotation-invariant property. Because

real-world point clouds obtained from 3D sensors are not aligned (that is,

rotated and translated), it is an essential to obtain consistent descriptor

values from corresponding rotated regions. To achieve rotation invariance,

some methods [11] align the patches using the LRF and build volume-based

descriptors from aligned patches, but the estimated LRF is not unique

and can be varied. To mitigate the problem of incorrectly estimated LRF,

DIP [16], and GeDI [62] use additional networks to align the patches and

build descriptors from the patches; however, it still requires training the

additional transformation networks, which indicates that it is difficult to

obtain rotation-invariance descriptors. 2) Descriptors extracted from the

monotonous and repeating areas hinder the registration task. To build point

correspondences, it is necessary to identify the most similar local descriptor

for each point; however, descriptors from monotonous or repeated regions

hinder the procedure. Therefore, featureless descriptors must be excluded

to build correspondences using only salient descriptors. Some methods [16,

84] extract salient descriptors by selecting descriptors with high-intensity

feature values [16] or using a key-point detection module to find the most

suitable points. However, both selection methods are problematic. In the

case of [16], there is no guarantee that descriptors from monotonous and
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repeating areas have low-intensity feature values, and the selection method

of [84] cannot be used for patch-based descriptor approaches because the

method requires all the points at once.

In this dissertation, to overcome the limitations, a point cloud regis-

tration method with rotation-invariant and dissimilarity-based salient de-

scriptors is proposed. The proposed method employs the aligned cylindri-

cal kernel-based convolution (Chapter 4) to build an adequate rotation-

invariant descriptor and propose a dissimilarity-based salient descriptor

selection method to exclude descriptors extracted from monotonous and

repeating areas.

The major advantage of the proposed method is that the generated

rotation-invariant descriptors can deal with incorrect LRF problems (that

is, XY-plane rotational variation and normal-axis sign variation) by ex-

tracting and encoding cylindrical kernel features in a rotation-invariant

manner without an additional transformation network [16,62]. In addition,

the proposed method employs a salient descriptor selection method that

compares dissimilarities between descriptors. This enables exclusion of de-

scriptors from monotonous and repeating areas and selection of only the

most salient descriptors for the registration process. This study suggests

a simple method for building and extracting effective descriptors from 3D

point clouds without additional training networks for adaptability. The sig-

nificance of this study is that the proposed method demonstrated superior

generalization performance without adapting training steps. This chapter is

organized as follows. Based on the aligned local patches, feature extraction

and encoding processes to generate descriptors are presented in Section

5.2. In Section 5.3, salient descriptor selection based on dissimilarities is
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introduced.

Figure 5.1: Overview of the descriptor generation. (a) Given an interest

point, the LRF is first estimated from its neighbor points (patch). The

local patch is then aligned using the LRF. (b-c) Rotation-invariant fea-

tures are computed for each kernel. (d) The extracted kernel features are

encoded using the symmetric circular convolution in a rotation-invariant

manner. Consequently, the descriptor for the local patch is generated. N is

the number of interest points, and D is the dimension of the descriptor. (e)

The network architecture encodes extracted features.

5.2 Descriptor generation

The basic concept of the descriptor generation method is to gather rotation-

invariant geometric information from cylindrically located kernels to create

a rotation-robust descriptor. Figure 5.1 presents an overview of the de-

scriptor generation framework. Given the interest points of the input point

clouds, the LRFs are computed from its neighbor points (i.e., patch), and

82



the local patches are aligned using the LRFs (Fig. 5.1 (a)). Subsequently,

a cylindrical kernel is placed on the aligned patches (Fig. 5.1 (b)), and the

rotation-invariant features are then extracted for each kernel point (Fig. 5.1

(c)). Each patch’s point descriptor is generated by encoding the extracted

features (Fig. 5.1 (d)).

5.2.1 Local patch alignment

Given a point cloud P = {xi ∈ R3}i<N , the interest points for registration

are selected using Farthest Point Sampling [46]. For each interest point x,

the neighborhood Pn = {xi : ||xi − x||2 ≤ r} (i.e., patch), defined as the

set of neighboring points within a certain radius r, is selected. Based on

the points within the patch Pn, the LRF is estimated using the 3Dsmooth-

Net method [11]. This method computes three orthogonal vectors for the

LRF: the eigenvector corresponding to the smallest eigenvalue of the patch

covariance matrix, weighted sum of vectors from the interest point to the

neighboring points, and orthogonal vector of the previous two vectors. From

the three orthogonal vectors, the rotation matrix R is estimated, and then

the patch Pn is aligned using R. Specifically, the aligned patch Pr is ob-

tained by applying the rotation matrix to the points in Pn and subtracting

the rotated interest point x, i.e., Pr = RPn − Rx.

5.2.2 Rotation-invariant feature extraction and encoding

Once the patch is aligned, rotation-invariant features are extracted to cap-

ture geometric information based on the feature extraction method intro-

duced in chapter 4. The basic idea is to place a cylindrical kernel on each

point and extract geometric information (i.e., features) for each point of the
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kernel (Fig. 5.1 (b-c)). Once the features are extracted, the kernel features

are encoded using the circular convolution method introduced in chapter 4

to efficiently generate rotation-invariant descriptors (Fig. 5.1 (d)).

The network architecture used to encode the features is illustrated in

Fig. 5.1 (e). Four subsequent circular convolutions are applied to the ex-

tracted features (from N × 64 to N × 512 in Fig. 5.1 (e)). To generate a

single descriptor from the N encoded features, the features are compressed

by computing the maximal responses along the columns (from N × 512 to

512). Subsequently, additional fully connected layers are applied to generate

the final descriptor (from 256 to 32 in Fig. 5.1 (e)).

The network parameters are learned using the hardest-contrastive loss

[36]. This loss function first finds the hardest negatives, which are irrelevant

but similar descriptors, for a given positive pair, which are corresponding

descriptors. Because the positive pair indicates two corresponding points in

the matching procedure, the descriptors of the positive pair should be close

to each other. Conversely, the irrelevant descriptors (i.e., negatives) should

be far from the positive descriptors. To minimize the distance between cor-

responding descriptors while maximizing irrelevant descriptors, the method

computes the pairwise loss for the quadruplet consisting of the positive pair

and the hardest negatives. The loss function is defined as follows:

L =
∑
i,j∈P

{(D(di, dj)−mp))
2/|P |

+λ(mn −min
k∈N

D(di, dk)))
2/|Pi|

+λ(mn −min
k∈N

D(dj , dk)))
2/|Pj |},

(5.1)

where λ is the weight for negative losses (i.e., the second and third terms),

and m∗ are constant margin values. Here, P is a set of positive pairs, and
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N is a set of randomly sampled points. Then, mink∈N D(d∗, dk) indicates

the distance between the closest irrelevant descriptor and the ∗-th positive

descriptor.

Figure 5.2: Salient descriptor selection process using dissimilarities. (a)

Given point clouds, descriptors are generated. (b) For each point cloud,

pairwise dissimilarities are estimated using the descriptors. (c) For each

point (that is, each row of the dissimilarity matrix), dissimilarity intensity

is estimated by calculating L2-norm for each row vector. (d) Salient de-

scriptors, which have high-intensity values (that is, strong dissimilarities

between points), are selected for RANSAC-based registration.

5.3 Salient descriptor selection

The interest points are uniformly selected using Farthest Point Sampling

[46], so some points may be extracted from monotonous and repeating

areas. These areas may result in descriptors that are too similar to one

another, making it challenging to distinguish them; thus, dissimilarities
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between descriptors are analyzed, and salient descriptors are extracted by

selecting descriptors that are not similar to others.

Given two descriptor sets P and Q obtained from two point clouds P

and Q (Fig. 5.2 (a)), a dissimilarity matrix is computed for each set using

cosine dissimilarity (Fig. 5.2 (b)).

D∗
i,j = 1−

d∗i · d∗j
||d∗i ||||d∗j ||

, (5.2)

where d∗i and d∗j are the i-th and j-th descriptors of point cloud ∗. Based

on the dissimilarity matrix, the dissimilarity intensity for each point is

estimated using the L2-norm (Fig. 5.2 (c)).

D∗
i = (

N∗∑
j

|D∗
i,j |2)

1
2 , (5.3)

where D∗
i is the L2-norm value obtained using the i-th row of D∗

i,j , and N∗

is the number of descriptors of ∗. A higher D∗
i value indicates that the ith

descriptor differs from many other descriptors. Then, descriptors, whose

dissimilarity intensities are less than the bottom τS percent dissimilarity

intensity, are excluded. However, the repeated area ratio varied from point

cloud to point cloud. Therefore, multiple τS values are set and a transforma-

tion matrix is estimated for each τS value. Then, a transformation matrix

with the highest inlier correspondence ratio owing to RANSAC is used. A

registration task can be performed using salient descriptors by excluding

similar descriptors. The advantage of this selection method is that there is

no need to train an additional network to select the salient descriptors.
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5.4 Experimental results

5.4.1 Overview

The purpose of the experimental section is to highlight the strengths and

weaknesses of the proposed method in registering real-world dense point

clouds. This section begins by presenting the configuration of the prepared

data and evaluation metrics, followed by a comparison with state-of-the-art

methods, and a detailed ablation study of the proposed method.

5.4.2 Data configurations

Figure 5.3: (a) Visualization of fragments and a reconstruction of an apart-

ment from SUN3D [15]. (b) Visualization of several RGB-D reconstructions

used to train the network.
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Indoor 3DMatch dataset

The 3DMatch [82] contains over 200K RGB-D images of 62 different indoor

scenes collected from analysis-by-synthesis [85], 7-Scenes [86], SUN3D [15],

RGB-D Scenes v.2 [87], and Halber et al. [88] (Fig. 5.3). The dataset consists

of partially overlapped point cloud fragments of indoor bedrooms, offices,

living rooms, tabletops, and restrooms. Among the 62 indoor scenes, 54

were used for training, and eight were used for testing.

Outdoor ETH dataset

The ETH dataset was scanned using an RGB-D scanner, while the 3DMatch

dataset was scanned using a laser scanner. It consists of partially overlapped

point cloud sequences from four outdoor scenes: Gazebo-Summer, Gazebo-

Winter, Wood-Summer, andWood-Autumn (Fig. 5.4). The ”Gazebo” scenes

were recorded in a park during summer and winter and mainly consist of

grasses and sparse trees with a small paved road. The primary structure in

the scenes is a gazebo made of rock walls and a wooden ceiling covered with

vines and trees. People usually walk on the path and take a break under

the gazebo. The primary motivation for this dataset was to test registration

algorithms against semi-structured environments. The ”Wood” scenes were

recorded during summer and autumn in an environment consisting of vege-

tation, with a small paved road crossing the wood. The primary motivation

for this dataset is to evaluate the robustness of registration algorithms to

unstructured environments. To evaluate the generalization ability of the

method, it was trained on the indoor 3DMatch dataset and tested on the

outdoor ETH dataset.
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Figure 5.4: (a, d) Environment Topologies of gazebo and wood. (b, e) Con-

textual Photographs of gazebo and wood. (c, f) Point cloud views gazebo

and wood.
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5.4.3 Evaluation metric

The quality of the descriptors was evaluated using the feature-matching

recall (FMR) metric [89,90], which can evaluate descriptor quality without

applying RANSAC [77]. The basic idea is to compute the recall by averaging

the number of matched points across the datasets, given by:

FMR =
1

N

N∑
i=1

I([
1

|Ω|
∑
i,j∈Ω

I((xi − Tyj) < τ1)] > τ2), (5.4)

where N is the number of ground-truth corresponding point pairs, xi and yj

are the corresponding point pairs found by applying the nearest-neighbor

search in the descriptor space, and Ω, T , and I are the corresponding

set, ground-truth transformation, and indicator functions, respectively. The

Euclidean distance threshold τ1 is set to 10cm to determine whether the

matching pair is correct, and the correctly corresponding point pair ratio

threshold τ2 is set to 0.05. In theory, RANSAC finds at least three correct

corresponding points with 99.9% confidence using no more than 55,258

iterations [16,90].

5.4.4 Quantitative analysis

5.4.5 Test on indoor 3DMatch dataset

The proposed method was trained and tested on the indoor 3DMatch

dataset. For each fragment, 5000 interest points were sampled using the

Farthest Point Sampling method [46]. To demonstrate the rotation robust-

ness, the proposed method was compared with state-of-the-art rotation-

invariant methods (LRF-based LMVD [17], SpinNet [18], and GeDI [62],

which uses an additional transformation network) on the rotated 3DMatch

90



Method Type
3DMatch

FMR

3DMatchR

FMR

Feat

dim

Saliency

Selection
R-I

SpinImage [5] H 0.633 ± 0.106 0.639 ± 0.098 153 X X

FPFH [4] H 0.754 ± 0.071 0.767 ± 0.075 33 X O

USC [30] H 0.868 ±.052 0.877 ± 0.053 1980 X O

SHOT [1] H 0.875 ± 0.034 0.875 ± 0.036 352 X O

3DMatch [82] D 0.596 ± 0.073 0.011 ± 0.010 512 X X

FCGF [36] D 0.952 ± 0.029 0.953 ± 0.033 32 X X

D3Feat-rand [84] D 0.953 ± 0.027 0.952 ± 0.032 32 X X

D3Feat-pred [84] D 0.958 ± 0.029 0.955 ± 0.035 32 O X

CGF [91] D 0.478 ± 0.094 0.499 ± 0.092 32 X O

PPF-FoldNet [90] D 0.718 ± 0.105 0.731 ± 0.104 512 X O

Equivariant3D [92] D 0.942 ± 0.040 0.939 ± 0.048 512 X O

PerfectMatch [11] D 0.947 ± 0.027 0.949 ± 0.025 32 X O

DIP [16] D 0.948 ± 0.046 0.946 ± 0.046 32 O O

LMVD [17] D 0.975 ± 0.028 0.969 ± - 32 X O

SpinNet [18] D 0.976 ± 0.019 0.975 ± 0.019 32 X O

GeDi [62] D 0.979 ± 0.022 0.976 ± 0.027 32 X O

Proposed D 0.976 ± 0.020 0.976 ± 0.020 32 O O

Proposed + TNet [16] D 0.976 ± 0.022 0.976 ± 0.022 56 O O

Table 5.1: Evaluation results for the indoor 3DMatch dataset. The evalua-

tion metrics are Feature-matching recall (FMR) and standard deviation of

FMR (std). H and D Type indicate handcrafted and deep learning-based

methods, respectively. Feat dim is the descriptor dimension. Saliency Se-

lection indicates whether the method uses salient and reliable descriptor

selection. R-I (Rotation-Invariance) indicates whether the method uses the

LRF or rotation-invariant features. Results are divided according to the

Type (H or D) and R-I values.
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Figure 5.5: Registration results of the proposed method on the indoor

3DMatch dataset.
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Figure 5.6: Registration results of the proposed method on the indoor

3DMatch dataset.
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Figure 5.7: Registration results of the proposed method on the indoor

3DMatch dataset.
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Figure 5.8: Registration results of the proposed method on the indoor

3DMatch dataset.
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dataset by applying arbitrary rotations to point clouds (3DMatchR in Table

5.1). Additionally, to demonstrate the effectiveness of the descriptor selec-

tion method, the proposed method was compared with key-point selection

methods (DIP [16] and D3Feat [84]).

The registration results of the proposed method for the 3DMatch dataset

are shown in Figures 5.5, 5.6, 5.7, and 5.8. Table 5.1 presents the second-

highest FMR scores of the proposed method on the 3DMatch dataset

without rotation (3DMatch) and the highest FMR scores with rotations

(3DMatchR). Under rotations, all rotation-invariant methods show consis-

tent performance (labeled O in the R-I column of Table 5.1). Some rotation-

variant methods use random rotation data augmentation [36,84] to achieve

rotation invariance. As the terrain patterns of the training and test datasets

are similar, the rotation-variant methods with simple data augmentation

show consistent performance by learning rotated input patterns. Thanks

to the aligned cylindrical kernel-based convolution method, the proposed

method achieves rotation invariance and outperforms other methods in

both experiments. However, GeDI [62] shows the highest FMR scores in

both experiments despite using a simple feature extraction method. The

main difference between this and other rotation-invariant methods is that

GeDI [62] uses a transformation network to mitigate incorrect LRFs. This

means that incorrect LRFs exist because of the occluded and noisy point

clouds. Thus, incorrectly estimated LRFs result in limited descriptor per-

formance because they increase the burden of the deep learning network by

increasing the input patterns from incorrectly aligned patches. To improve

the overall performance, non-salient descriptors were excluded by analyz-

ing dissimilarities between points, and only selected salient descriptors were
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used, resulting in comparable performance compared to additional transfor-

mation network-based approaches. Moreover, to evaluate the effectiveness

of mitigating incorrect LRFs, an additional experiment was conducted using

an additional transformation network [16] (Proposed + TNet [16] in Table

5.1). However, due to the large size of TNet, the aligned points using TNet

were encoded independently. The encoded point coordinate features were

then concatenated with the proposed descriptors, but this concatenation

had limited influence on correcting the point correspondences. Therefore,

the performances of the proposed method with and without TNet were not

significantly different.

5.4.6 Test on outdoor ETH dataset

The proposed method was trained on the indoor 3DMatch dataset and then

tested on the outdoor ETH dataset to evaluate its generalization ability.

The ETH dataset contains more complex outdoor scenes than the indoor

3DMatch dataset and has a lower point cloud resolution. As a result, the

differences between the two datasets make it challenging to achieve good

generalization performance for descriptors.

Table 5.2 lists the FMR scores of the outdoor ETH dataset. Rotation-

variant methods, such as FCGF [36] and D3Feat [84], show significant per-

formance decrease on the ETH dataset, whereas rotation-invariant methods

(LMVD [17], SpinNet [18], and GeDI [62]) demonstrate superior perfor-

mance. The low generalization performance of rotation-variant methods is

attributed to their rotational variance properties. In addition to the LRF,

DIP [16], and GeDI [62] used additional transformation networks to miti-

gate the eventual noisy canonicalization of input points. Despite using sim-
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Method Type
Gazebo

Summer

Gazebo

Winter

Wood

Autumn

Wood

Summer
Average

Saliency

Selection
R-I

FPFH [4] H 0.386 0.142 0.148 0.208 0.221 X O

SHOT [1] H 0.739 0.457 0.609 0.640 0.611 X O

3DMatch [82] D 0.228 0.083 0.139 0.224 0.169 X X

FCGF [36] D 0.228 0.100 0.148 0.168 0.161 X X

D3Feat-rand [84] D 0.457 0.239 0.130 0.224 0.262 X X

D3Feat-pred [84] D 0.859 0.630 0.496 0.480 0.616 O X

CGF [91] D 0.375 0.138 0.104 0.192 0.202 X O

PerfectMatch [11] D 0.913 0.841 0.678 0.728 0.790 X O

LMVD [17] D 0.853 0.720 0.840 0.783 0.799 X O

DIP [16] D 0.908 0.886 0.965 0.952 0.928 O O

SpinNet [18] D 0.929 0.917 0.922 0.944 0.928 X O

GeDI [62] D 0.989 0.965 0.974 1.000 0.982 X O

Proposed D 0.995 0.938 0.965 0.928 0.956 O O

Proposed + TNet [16] D 0.984 0.997 1.000 1.000 0.995 O O

Table 5.2: Feature-matching recall (FMR) scores on the outdoor ETH

dataset. The network is trained on the 3DMatch dataset and tested on the

ETH dataset. H and D Type indicate handcrafted and deep learning-based

methods, respectively. Saliency Selection indicates whether the method uses

salient and reliable descriptor selection. R-I (Rotation-Invariance) indicates

whether the method uses the LRF or rotation-invariant features. Results

are divided according to the Type (H or D) and R-I values.
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Figure 5.9: Registration results of the proposed method on the outdoor

ETH dataset.
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Figure 5.10: Registration results of the proposed method on the outdoor

ETH dataset.
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Figure 5.11: Registration results of DIP [16], LMVD [17], SpinNet [18],

and the proposed method on the outdoor ETH dataset. The dotted box

indicates the characteristic overlap area. The arrow indicates the distance

between the source and target point clouds.
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Figure 5.12: Registration results of DIP [16], LMVD [17], SpinNet [18],

and the proposed method on the outdoor ETH dataset. The dotted box

indicates the characteristic overlap area. The arrow indicates the distance

between the source and target point clouds.
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ple feature extraction methods (PointNet [8] and PointNet++ [46]), these

two methods show superior performance thanks to the additional transfor-

mation networks.

As shown in Table 5.2, the proposed method achieves the highest FMR

score for the Gazebo-Summer scenario, but for all other scenarios, except

for Gazebo-Summer, GeDI [62] outperforms the proposed method. Because

the ETH point clouds are complex, occluded, and represented with low res-

olutions, obtaining correct LRFs is challenging compared to the 3DMatch

point clouds. To mitigate incorrect LRFs, DIP [16] and GeDI [62] use

additional transformation networks, resulting in significantly better per-

formance compared to other rotation-invariant methods in these experi-

ments. An additional experiment was conducted to investigate cases where

patches have incorrect LRFs by using an additional transformation net-

work [16] (Proposed + TNet [16] in Table 5.2). The results show that the

proposed method with the additional transformation network [16] achieved

the highest FMR scores in the Gazebo-Winter, Wood-Autumn, and Wood-

Summer scenarios, indicating that incorrect LRFs affect the descriptor gen-

eration process more than the 3DMatch datasets. Nevertheless, the pro-

posed method shows comparable performance with transformation-based

methods such as GeDI [62] and outperforms other methods when the trans-

formation network is used. These results demonstrate the method’s supe-

rior generalization ability on datasets by leveraging its rotation-invariance

property and salient descriptor selection. Figures 5.9 and 5.10 illustrate the

registration results of the proposed method for the ETH dataset, and fig-

ures 5.11 and 5.12 compare the registration results with those of DIP [16],

LMVD [17], SpinNet [18], and the proposed method. The results of the
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DIP [16], LMVD [17], and SpinNet [18] show relatively large errors between

the two point clouds compared to the proposed method (dotted boxes in

Figs. 5.11 and 5.12).

Method Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study MIT Lab Avg

w/o Salient selection 0.992 0.981 0.923 0.996 0.971 1.000 0.952 0.896 0.964

w/ Salient selection 0.992 0.994 0.928 0.996 0.971 1.000 0.965 0.961 0.976

Table 5.3: Feature-matching recall (FMR) scores of the ablation study of

the salient descriptor selection method on the 3DMatch dataset.

Method
Gazebo

Summer

Gazebo

Winter

Wood

Autumn

Wood

Summer
Avg

w/o Salient selection 0.962 0.910 0.939 0.928 0.935

w/ Salient selection 0.995 0.938 0.965 0.928 0.956

Table 5.4: Feature-matching recall (FMR) scores of the ablation study of

the salient descriptor selection method on the ETH dataset.

5.4.7 Ablation study

To evaluate the effectiveness of the proposed method, ablative experiments

were conducted. First, the network was trained on the 3DMatch dataset

and evaluated with and without the dissimilarity-based salient descriptor

selection method on both the 3DMatch and ETH datasets. Tables 5.3 and

5.4 list the FMR scores for the experiments. As a baseline, descriptors

without the salient descriptor selection method were also evaluated (w/o

salient selection in Tables 5.3 and 5.4). The results demonstrate that de-

scriptors with the selection method outperform those without the selection

104



Figure 5.13: Registration results of the proposed method on the indoor

3DMatch dataset. (a) All points are colored yellow (source) and blue (tar-

get). (b) Only salient points obtained by using the selection method are

colored yellow and blue.

method for most scenes, indicating the effectiveness of the proposed selec-

tion method. Salient points extracted using the selection method are shown

in Figure 5.13. The figure demonstrates that the proposed dissimilarity cri-

terion (5.3) effectively excludes repeated and monotonous points, such as

floor points, while preserving overlapped points around complex terrain

shapes, such as chairs and tables.

Second, the proposed method was evaluated on the 3DMatch with dif-

ferent numbers of sampled points. As shown in Table 5.5, the descriptor

generated by the proposed method exhibited consistent FMR scores for

different numbers of sampled points. GeDI [62] demonstrated the best per-

105



formance in most of the experiments. The robustness of a different number

of points can be mainly attributed to the superior descriptor performance

based on improved rotation-invariance owing to the additional transforma-

tion network. However, it requires training the network with many convo-

lution channels. Instead of using the transformation network, the proposed

method improved the overall performance by excluding non-salient descrip-

tors and achieved relatively higher performance compared with the state-

of-the-art methods. In addition, the method shows superior performance

compared with D3Feat-pred [84], which uses a key-point detector. These

results demonstrate that combining the rotation-invariant descriptor and

the selection method improves the robustness for various points differently

from GeDI [62].

Third, the proposed method was evaluated on the outdoor ETH dataset

by varying the τS value in Section 5.3. The FMR scores according to dif-

ferent τS values are illustrated in Figure 5.14. A higher τS value indicates

that more non-salient descriptors are excluded. As shown in the graph, the

FMR scores increased as the τS value increased, but the scores started to

decrease when the τS value approached approximately 80%. Because the

two point clouds are partially overlapped, salient descriptors exist in non-

overlapped and overlapped areas. Thus, excluding descriptors with a strict

τS value (i.e., a high value) can remove corresponding salient descriptors,

leading to a high ratio of non-corresponding descriptors. Hence, it is crucial

to determine the optimal τS value to maximize the ratio of corresponding

salient descriptors.
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Method 5000 2500 1000 500 250 Avg
Saliency

Selection

PerfectMatch [11] 0.947 0.942 0.926 0.901 0.829 0.909 X

FCGF [36] 0.952 0.955 0.946 0.930 0.899 0.936 X

D3Feat-rand [84] 0.953 0.951 0.942 0.936 0.908 0.938 X

D3Feat-pred [84] 0.958 0.956 0.946 0.943 0.933 0.947 O

SpinNet [18] 0.976 0.975 0.973 0.963 0.943 0.966 X

GeDI [62] 0.979 0.977 0.976 0.972 0.973 0.975 X

Proposed 0.976 0.975 0.976 0.974 0.967 0.974 O

Table 5.5: Feature-matching recall (FMR) scores of the ablation study on

the 3DMatch dataset with the different number of sampled points.

5.5 Discussion

The task of registration requires the extraction of 3D descriptors from each

point cloud to align them accurately. However, building robust and dis-

criminative descriptors for this task remains challenging. In this disser-

tation, a new method is proposed to build robust and discriminative 3D

local descriptors that achieve rotation invariance and exclude non-salient

descriptors. The method uses aligned cylindrical-shape kernels and sym-

metric circular convolution to build rotation-robust descriptors, even in

unstable LRF problems. Moreover, it excludes similar descriptors by com-

paring their dissimilarities and selecting discriminative descriptors, which

may hinder registration tasks.

The proposed method was experimented on indoor and outdoor datasets

to evaluate its performance. The method shows comparable performance to
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Figure 5.14: Registration results of the proposed method on the outdoor

ETH dataset with different τS of Section 5.3 (that is, τS percentage of

similar points are excluded). The horizontal axis and vertical axis indicate

τS and FMR score.

state-of-the-art methods, even under rotational variances, owing to rotation-

invariant features and convolution. These features and convolution reduce

the number of input patterns that the network must learn and allow the

network to handle a new type of point cloud. However, in most experiments,

the transformation network-based methods demonstrated the best perfor-

mance. This indicates that incorrect LRF estimation significantly affects de-
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scriptor performance, and resolving this problem for LRF-based local patch

alignment is still necessary. Nevertheless, the proposed method achieved

comparable performance to the transformation network-based methods by

using a simple descriptor method, which mitigates incorrect LRF problems.

Experiments across different domains demonstrate a superior generalization

ability due to the combination of the rotation-invariant descriptor and selec-

tion method. Additionally, ablation studies on the selection method and the

number of sampled points demonstrate that the proposed selection method

successfully selects salient descriptors by excluding similar descriptors.
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Chapter 6

Conculsion and Future Works

The task of encoding rotation- and scale-robust features is crucial for point

cloud representation. The success of various downstream tasks depends on

the robustness of these parameters. In this dissertation, an aligned kernel

based feature representation is proposed to resolve these limitations. The

proposed methods, including kernel alignment, rotation-invariant feature

extraction, and kernel-conscious convolution, show superior performance

when compared to previous approaches. These findings suggest that the

proposed methods improve the stability and the feature representation of

the descriptor. Additionally, the proposed scale adaptation and global ag-

gregation methods capture the optimum scale parameter and global ge-

ometric features for each local descriptor, respectively. Furthermore, the

salient descriptor selection method is successfully employed in the registra-

tion task by analyzing the differences between points. This study proposes

a simple method for extracting effective descriptors from 3D point clouds
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without additional training networks for adaptability.

In future research, it will be essential to develop density-robust descrip-

tors, given that the proposed method is based on point-based approaches.

These approaches process each point directly and aggregate geometric in-

formation from all the processed points. As a result, variations in den-

sity can lead to variations in the aggregated geometric information, poten-

tially impacting the performance of the analysis. Additionally, the proposed

method’s performance can be further investigated under more challenging

environmental conditions, such as non-rigid deformations. These deforma-

tions are commonly encountered in various fields like medical imaging, 3D

modeling, animation, and robotics. For instance, in medical imaging, han-

dling non-rigid deformations efficiently could lead to more accurate diag-

noses and treatment plans. In the case of robotics and autonomous vehi-

cles, robust registration even under constant environmental changes could

enhance navigation and perception capabilities. Therefore, these investi-

gations can provide valuable insights into the potential applications and

limitations of the proposed method.

Overall, the proposed method’s effectiveness in generating rotation- and

scale-robust descriptors for point clouds shows promise for future research

and practical applications in various fields, including robotics, augmented

reality, and autonomous vehicles.
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초록

최근 3차원센서의발전으로지형정보를담은포인트클라우드데이터가활용

가능해져, 포인트 클라우드 분석 기술은 로봇 공학, 자율 주행 및 증강/혼합

현실 등 다양한 분야에서 필수적인 연구 분야가 되고 있다. 포인트 클라우드

객체간대응관계를찾거나포인트클라우드지형정보분석등다양한응용을

위해서는포인트클라우드로부터핵심적인정보를추출하는것이필수적이다.

최근 인공지능 기반의 3차원 포인트 클라우드 분석 기술들이 많이 연구되고

있지만, 회전 불변성 속성을 고려하지 않아 주어진 포인트 클라우드가 임의로

회전되어 있는 경우에는 출력값이 일정하지 않아 일반화 성능이 좋지 않다는

단점이 있다.

본 논문에서는 이러한 문제를 해결하기 위해 포인트 클라우드의 회전에

강건한 디스크립터 생성 방법을 제시한다. 제안된 방법의 주요 아이디어는

포인트 클라우드의 각 점마다 주변 점들의 분포를 분석하고, 그 분포에 따라

구조화된 추가 점 (커널)들을 정렬하여 배치하는 것이다. 실린더 모양의 커널

을 사용하여 정렬이 잘못되는 경우를 보완하고, 포인트 클라우드의 점들 간

관계성을 표현하기 위한 특징값을 추출 시, 정렬된 커널 구조의 점들을 같이

사용함으로써 회전에도 일관적 (회전 불변)이면서 정확하게 관계를 표현하는

특징값들을 추출한다. 또한, 추출한 특징값들을 회전 불변 방식으로 인공지능

방법으로 처리한다. 회전 불변성 외에도 포인트 클라우드 크기 변화에 대한

견고성을 향상시키기 위해 포인트 클라우드를 분석하여 최적의커널 크기를

분석 및 사용한다. 생성한 디스크립터는 유사도를 비교하여 특징 있는 디스크

립터만 선택하여 분석 작업에 사용한다.

제안하는 디스크립터 방법은 3차원 포인트 클라우드에서 분류, 분할, 정합
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성능을 평가하기 위해 생성된 벤치마크 데이터 세트에서 실험하였으며, 실제

응용 가능성을 평가하기 위해 3차원 센서로 촬영하여 생성된 실내 및 실외

데이터 세트에서도 실험하였다. 실험 결과, 제안하는 방법은 등록 작업에서

최신 방법에 비해 우수한 성능을 보였고, 무작위 회전 환경에서의 분류 및

부분 분할 작업에서도 우수한 성능을 보였다.

주요어: 포인트 클라우드 분류, 분할, 정합, 회전 강건 디스크립터

학번: 2020-35803
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