creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ok
o
IE:
=
o
(e
i
Ao

Improving Message-Passing and Representation
Learning of Graph Neural Networks

20234 8 ¢

>
¥ Mo
H 2
o
o K
<2 0
o 19

[©)

ﬂ
Mo
o

Improving Message-Passing and Representation
Learning of Graph Neural Networks

SR E BN C))

9 4 % ()
9 4 PFA (D

9 4 Fes ()

Improving Message-Passing and Representation
Learning of Graph Neural Networks
by

Yoonhyuk Choi

Department of Computer Science & Engineering

Doctor of Philosophy in Seoul National University

Abstract

Graph Neural Networks (GNNs) achieve substantial improvement in
analyzing graph-structured datasets under semi-supervised setting, where few
labels are available during the training. The discriminative power of GNNs
stem from the message-passing scheme, where they utilize information from
neighboring nodes. Generally, under the graphs with strong homophily,
features from the adjacent nodes can be used to guide decision boundary (e.g.,
neural networks) more precisely. Nonetheless, they fail to achieve satisfying
results under heterophilous graphs, where most edges connect two nodes with

different labels.

In the first paper, we analyze the performance of GNNs based on the multiple
propagation schemes theoretically. For example, flipping the sign of edges is
rooted in a strong theoretical foundation, and attains significant performance
enhancements. Nonetheless, they assume a binary class scenario and they may
suffer from confined applicability. Here, we extend the prior understandings
to multi-class scenarios and points out two drawbacks: In case two nodes

belong to different classes but have a high similarity, signed propagation can

decrease the discrimination power of the GNNs, (2) signed message also
increases the prediction uncertainty (e.g., conflict evidence) which can impede

the stability of the algorithm.

In the second paper, we focus on finding the heterophilous edges, which can
degrade the overall quality of GNNs significantly. To achieve this, we employ
a confidence ratio as a hyper-parameter, assuming that some of the edges are
disassortative (heterophilic). Here, we suggest the two-phased algorithm, (1)
determining edge coefficients through subgraph matching using a
supplementary module, and (2) the application of modified label propagation.
Specifically, our supplementary module identifies a certain proportion of task-
irrelevant edges based on a given confidence ratio. Further, the improved label
propagation mechanism prevents two nodes with smaller weights from being

closer effectively.

Lastly, we introduce the limitation of GNNs from another perspective, where
they suffer from sparsity in initial node features. This can result in overfitting
of the first projection matrix (or hyperplane), where the dimensions with zero
inputs are not updated during training. To address this issue, we propose a
novel data augmentation strategy, which flips the initial features and the
hyperplane simultaneously. To the best of our knowledge, this is the first

attempt to mitigate the overfitting problem caused by input features.

Keywords: Graph neural network, Semi-supervised learning, Message-
passing, Signed propagation, Calibration, Heterophilic neighbor, Subgraph

matching, Confidence ratio, Sparseness of node features

Student Number: 2019-25552

Acknowledgments

First of all, I would like to express my gratitude to my advisor Chong-Kwon Kim,
who guided me for about five years. I would also like to extend my thanks to the thesis
committee members: Professor Sang-goo Lee, Tackyoung Kwon, U Kang, and Eunho
Yang, for their participation and valuable insights. Without them, I also could not have
completed this, who generously provided their expertise and knowledge. Further, this
endeavor would not have been possible without the generous support from the
following foundation, who financed my research.

- National Research Foundation of Korea (NRF) (No. 2016R1A5A 1012966,
No. 2020R1A2C110168713)

- Technology Planning & Evaluation (IITP) (No. 2021-0-02068 Artificial
Intelligence Innovation Hub, No. RS-2022-00156287 Innovative Human
Resource Development for Local Intellectualization support program) grant
funded by the Korea government (MSIT)

I am also thankful to my colleagues, especially my senior Jiho Choi and Hyungho
Byun, office mates Taewook Ko, Ahyun Lee, and Hyungho Bae for their editing help
and encouragement. Additionally, I’d like to appreciate to the staffs, research
assistants, and study participants from the university, who impacted and inspired me.

Lastly, I would like to mention my family, especially my parents. Their belief has kept
my spirits and motivation high during this process. I would also like to thank my
friends for all the entertainment and emotional support.

List of Figures

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Node classification accuracy on six benchmark
datasets. Firstly, vanilla GCN utilizes the original
graph. The coefficient of heterophilous edges is
changed to -1 in signed GCN and to 0 in zero-
weight GCN, respectively.

We plot the Z to compare the discrimination power
of signed and zero-weight GCNs. The red and blue
colored parts indicate the regions where signed
GCN and zero-weight GCN have better
performance, respectively.

We take an example to illustrate the distribution of
node features under (a) binary and (b) multi-class
scenarios. Figure (c) represents the aggregation of
neighboring nodes (k4, k,) under multiple classes.

(a) In binary class graphs, signed propagation
contributes to the separation of nodes (i, j) and
reduces the entropy. (b) In multi-class graphs, the
uncertainty of neighboring nodes that are connected
with signed edges (j, k) increases

Visualization of the update procedure of node
features under (a) binary and (b) multi-class
scenarios

Comparison of the dissonance on three graph
variants; vanilla GCN, signed GCN, and zero-
weight GCN

By differentiating the number of classes, we
compare the dissonance of GCN using two graph
variants

Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 5.1

The effect of hyper-parameter A in Eq. 3.41 on the
classification accuracy of four calibrated methods

Node classification accuracy (%) of GCN on
different datasets; (a) Cora, and (b) Chameleon. For
each graph, we randomly prune a certain proportion
of assortative / disassortative edges and plot their
performance. We also describe a special case of (c)
helpful aggregation scenario under disassortative
graphs.

The overall framework of our model. It consists of
two parts; one for the subgraph matching module
which generates supplementary edge coefficients,
and the other one is the GNN module that utilizes
weights for label propagation.

Convergence analysis on (a) Cora, and (b) Actor.
Each figure contains validation (green) and test (red)
accuracy of node classification.

We measure F1-score to evaluate edge classification
performance on six graph datasets. Here, we adopt
our model with four baselines that specify edge
coefficients.

We differentiate the confidence ratio of subgraph
matching module, and describe Fl-score on six
graph datasets.

Evaluation on over-smoothing using (a) Cora, and
(b) Chameleon dataset. We plot the accuracy of two
baselines and our method using a different number
of layers.

Initial feature distribution of benchmark graph
datasets. The definition of value z is described in
Equation 5.18.

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

(a) Mechanism of flipping and (b) overall
architecture of Flip-GNN.

(a) Distance d from W® to p1. (b) Wf(l) is retrieved
by padding -2d to the last dimension of WX,

Performance of GCN, GAT, and Flip-GCN for each
iteration. The performance of Flip-GCN is
measured in the original (o) and flipped (f) space,
respectively.

Using the Cora dataset, we plot the magnitude of the
first projection matrix gradients and their standard
deviation (o) during training epochs (i).

Parameter sensitivity analysis using Flip-APPNP as

a base model

List of Tables

Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Statistical details of six benchmark datasets

Mean node classification accuracy (%) with
standard deviation. A shadowed grid indicates the
best performance. Values in bracket stand for the
dissonance defined in Eq. 3.32 and symbol f means

that calibration is applied to baseline method

Ablation study on the hyper-parameters

Statistical details of homophilic datasets

Statistical details of heterophilic datasets

Node classification accuracy (%) on homophilic
citation networks. Bold* symbol indicates the best

performance, and methods with T are built upon GCN.

Node classification accuracy (%) on heterophilic
citation networks. Bold* symbol indicates the best

performance, and methods with T are built upon GCN.

Statistical details of nine benchmark datasets.

(RQI1) Node classification accuracy (%) on nine

benchmark datasets.

Table 5.3 Node classification accuracy (%) w.r.t. the different
number of training samples. The symbol (+F)

means that flipping is applied on a base method.

List of Algorithms

Algorithm 1 (§. 3) Pseudo-code of calibrated GNN
Algorithm 2 (§. 4) Confidence-based Subgraph Matching
Algorithm 3 (§. 4) Overall Optimization of ConSM

Algorithm 4 (S.5) The overall mechanism of Flip-GCN

Contents

J B B0 (0 6 11To15 (o) s NN 1

2 Preliminary ...o..ooeinniiiii i e 4

3 Improving Signed Propagation for Graph Neural Networks

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introductiono 6
Related Work ... 8
Preliminarycccoiiiiiiiii 9
Theoretical Analysisccooiiiiiiiiiiiiiiiiiiiii e, 10
Methodologyovviiii 26
EXPerimentsooiiiiiiiiiiiiiiii i 28
ConClUSION .o.vuiii i 35

4 Finding Heterophilic Neighbors via Confidence-based Subgraph

Matching
4.1 Introductioncoooiiiiiiii 37
4.2 Related Work ... 40
ZE T \\L0] 7 13 o) § S 42
4.4 Methodologyocoviiiiiiiiiiii 42
4.5 EXPErimentscooiiiiiiiiiiiiiiiie it 54

4.6 CONCIUSION ..ouuiitiii e 63
5 Limitation of Real-world Graph Datasets under Semi-supervised
Setting

5.1 IntroduCtionoceoiiiiiiii i 65

5.2 Preliminaryoooviiiiiiii e 67

5.3 Methodologyc.vviiiniii 69

5.4 Theoretical AnalysiScciiiiiiiiiiiiiiiiii i 75

ST TI 2540 1C 0111 1S) 111 S 76

5.6 Related Worko 84

5.7 ConClUSION ...couuieiiiiii i 84
6 Bibliographyoooiiiiii 85

Chapter 1

Introduction

The increase in graph-structured datasets has led to rapid advancements in graph
mining techniques. Especially, GNNs provide satisfactory performances in various
applications including node classification and link prediction, which also has been
adopted in many fields; physics [28], protein-protein interactions [26], and social
networks [23]. The main component of GNNs is message-passing [28], where the
information is propagated between nodes and then aggregated. Also, the integration
of a structural property with the node features enhances the representation and the
discrimination powers of GNNs substantially [73; 16; 42; 32; 81]. Consequently,
GNNs often have shown the best performance in various tasks including semi-

supervised node classification and link prediction.

Early GNN schemes assume the network homophily where nodes of similar
attributes make connections with each other based on the selection [59] or social
influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian
smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor
nodes. Consequently, these methods fail to adequately deal with heterophilous graphs
[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve
this problem, a plethora of clever algorithms have been proposed including the
adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high
similarity [67; 53], and diversified message propagation [91]. However, the majority
of prior schemes [57] stipulate certain conditions of advantageous heterophily and

these constraints undermine their generality and applicability [66].

Many clever schemes have been introduced to solve the problem. Some of them
specify different weights for each connection [81; 92; 2; 40], or remove disassortative
edges [94; 22; 55]. Others employ distant nodes with similar features [67; 93; 37] or
apply different aggregation boundary based on the central nodes [85]. Additionally,
some bodies of work allow the edge coefficients to be negative [13; 2] to preserve
high-frequency signal exchanges between neighbors. Further, from the perspective of
gradient flow, [2; 20] shows that negative eigenvalue preserves the high-frequency
signals to dominate during propagation. [3] introduces sheaf to enhance the linear

separability of neural networks.

In the first paper, we aim to provide theoretical justification to answer this
question “what kind of message-passing algorithm achieves best performance?”,
including signed and zero-weighted propagation. Firstly, we point out some
limitation of previous analysis [57; 89] that provide theoretical boundaries under
a binary class scenario, which may detriment their applicability to generic graphs.
Here, we extend the theorem to a multi-class scenario positing that the blind
application of signed messages to multi-class graphs may increase the uncertainty

of predictions.

In addition to the theoretical understanding, we propose another method through
the second paper, which aims to find heterophilous edges through subgraph
matching. To achieve this, we focus on the GAM [78] that suggests a
supplementary module with label propagation. Specifically, the supplementary
module of GAM only utilizes a central node to debilitate noises, which is identical
to a simple MLP. Though GAM might work well under high heterophily, they fail
to generalize well under homophilous graphs. To solve this limitation, we measure
the similarity of two nodes including their subgraphs by employing the widely
used optimal transport [69; 87; 60; 44]. In addition, we further apply a confidence

ratio to remove certain proportion of disassortative edges. Finally, considering

these predictions as supplementary edge coefficients, we apply label propagation

[6] between a certain proportion of high confident edges.

Lastly, our focus is on the characteristics of graph datasets. We have observed
that features from benchmark graph datasets have few non-zero elements (e.g.,
bag-of-words representation). Here, we contemplate that the shortage of training
samples in semi-supervised settings can result in the overfitting of specific
dimensions in the first layer parameters. This can negatively impact the quality of
predictions for test nodes with untrained features in those dimensions. To optimize
the first layer projection matrix better, we focused on perturbing the initial features.
As a common data augmentation technique, dimensional shifting could be used
which is commonly used in computer vision [75]. However, this was found to be
unsuitable for GNNs with bag-of-words features, as it would disrupt the semantic
information. Our proposed solution involves flipping the initial features and
parameters simultaneously, which can ensure local invariance. This approach is
inspired by shifting parameters [41] and rotating neural networks [51] that
preserve the volume of gradients and initial features. This flipping mechanism can
address the issue of zero gradients caused by sparse inputs and enhance the

semantic learning of each dimension.

To summarize, chapter 3 analyzes the power of various message-passing schemes

theoretically. In chapter 4, we provide our subgraph-based GNN, which can generalize

well under heterophilous settings. Finally, chapter 5 provides new insights from

gradient perspectives, which points out some limitations of graph benchmark datasets

to solving semi-supervised classification scenario.

Chapter 2

Preliminary

In this section, we define some useful notations and explain the basics of the graph-

related problems.

Let G = (V,E,X) be a graph with || = n nodes and |E| = m edges. The node

attribute matrix is X € R™¥, where F is the dimension of an input vector. Given X,

the hidden representation of node features H®” (I-th layer) is derived through message

passing. Here, node i's feature is the row of h". The structural property of G can be

represented by its adjacency matrix 4 € {0,1}"". Also, D is a diagonal matrix with

node degrees d;; = Z}LlAi ;- Each node has its label ¥ € R™C, where C represents

the number of classes.

The goal of semi-supervised node classification is to predict the class of unlabeled
nodes Vy = {V — V,} < V given the partially labeled training set V; . Generally, we

assume 5% of entire nodes are available during training phase.

Chapter 3

Improving Signed Propagation for
Graph Neural Networks

Message-passing Graph Neural Networks (GNNs), which collect information
from adjacent nodes, achieve satisfying results on homophilic graphs. However,
their performances are dismal in heterophilous graphs, and many researchers have
proposed a plethora of schemes to solve this problem. Especially, flipping the sign
of edges is rooted in a strong theoretical foundation, and attains significant
performance enhancements. Nonetheless, previous analyses assume a binary class
scenario and they may suffer from confined applicability. This paper extends the
prior understandings to multi-class scenarios and points out two drawbacks: (1)
In case two nodes belong to different classes but have a high similarity, signed
propagation can decrease the discrimination power of the GNNs, (2) signed
message also increases the prediction uncertainty (e.g., conflict evidence) which
can impede the stability of the algorithm. Based on the theoretical understanding,
we introduce two novel strategies for improving signed propagation under multi-
class graphs. The proposed scheme combines calibration to secure robustness
while reducing uncertainty. We show the efficacy of our theorem through

extensive experiments on six benchmark graph datasets.

3.1 Introduction

The increase in graph-structured datasets has led to rapid advancements in graph
mining techniques including random walk-based node embedding and graph neural
networks (GNNs). Especially, GNNs provide satisfactory performances in various
applications including node classification and link prediction. The main component
of GNNs 1s message-passing [28], where the information is propagated between nodes
and then aggregated. Also, the integration of a structural property with the node
features enhances the representation and the discrimination powers of GNNs

substantially [16; 42; 81].

Early GNN schemes assume the network homophily where nodes of similar
attributes make connections with each other based on the selection [59] or social
influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian
smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor
nodes. Consequently, these methods fail to adequately deal with heterophilous graphs
[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve
this problem, a plethora of clever algorithms have been proposed including the
adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high
similarity [67; 53], and diversified message propagation [91]. However, the majority
of prior schemes [57] stipulate certain conditions of advantageous heterophily and

these constraints undermine their generality and applicability.

Recently, some bodies of work allow the edge coefficients to be negative [13; 2] to
preserve high-frequency signal exchanges between neighbors. Further, from the
perspective of gradient flow, [2; 20] shows that negative eigenvalue preserves the
high-frequency signals to dominate during propagation. [3] introduces sheaf to
enhance the linear separability of neural networks. Instead of changing the signs of

edges, others [55; 77] assign zero-weights to disassortative connections precluding

message diffusion on such edges. Here, there arises a question: does signed messaging

always yield better results than assigning zero-weights on heterophilic edges?

To answer the above question, we conduct an empirical study and illustrate its
results in Figure 15. Along with this, we aim to establish theoretical properties to
compare their discrimination power. For this, recent studies [57; 89] scrutinize the
changes in node features before and after message reception. Here, they provide some
useful insights into using signed messages based on the node’s relative degree and its
homophily ratio. Nonetheless, prior analyses were confined to binary class graphs,
which may detriment their applicability to generic graphs. In this paper, we extend the
theorem to a multi-class scenario positing that the blind application of signed
messages to multi-class graphs may increase the uncertainty of predictions.
Throughout this analysis, we suggest employing confidence calibration [29; 84] which
i1s simple yet effective to enhance the quality of predictions. To summarize, our

contributions can be described as follows:

« Contrary to prior work confined to a binary class, we tackle the signed messaging
mechanism in a multi-class scenario. Our work provides fundamental insight into
using signed messages and establishing the theoretical background for the

development of powerful GNNS.

» We conjecture and prove that signed messages escalate the inconsistency between
neighbors and increase the uncertainty in predictions. Based on this understanding,

we propose a novel uncertainty reduction method using confidence calibration.

« We conduct extensive experiments on six benchmark datasets to validate our

theorems and show the effectiveness of confidence calibration.

3.2 Related Work

Graph Neural Networks (GNNs). Under semi-supervised settings, GNNs have shown
great potential by utilizing the information of adjacent nodes. Early GNN studies [5;
16] focused on the spectral graph analysis (e.g., Laplacian decomposition) in a Fourier
domain. However, they suffer from large computational costs as the scale of the graph
increases. GCN [42] reduced the overhead by harnessing the localized spectral
convolution through the first-order approximation of a Chebyshev polynomial.
Another notable approach is spatial-based GNNs [81; 4] which aggregate information
in a Euclidean domain. Early spatial techniques became a steppingstone to many

useful schemes that encompass relevant remote nodes as neighbors.

GNNs on heterophilous graphs. Traditional message-passing GNNs fail to perform
well in heterophilic graphs [67]. To redeem this problem, recent studies have paid
attention to the processing of disassortative edges [17; 34]. They either capture the
difference between nodes or incorporate distant but similar nodes as neighbors. For
example, H2GCN [99] separates ego and neighbors during aggregation. SimP-GCN
[37] suggests a long-range adjacency matrix and EvenNet [46] receives messages
from even-hop away nodes only. Similarly, [48] selects neighbors from the nodes
without direct connections. Configuring path-level pattern [79] or finding a
compatibility matrix [100] has also been proposed. Another school of methodologies
either changes the sign of disassortative edges from positive to negative [13; 2; 24;
31] or assigns zero-weights to disassortative edges [55]. Even though these schemes
show their effectiveness [1] on binary classes, it may require further investigations

before extending their applications to a multi-class scenario.

3.3 Preliminary

In this section, let us first define the notations and then explain the basics of the

problem.
3.3.1 Definition of homophily.
The global edge homophily ratio (H}) is defined as:

Z(z‘,j)eg 1(Y; = Y;)

H, = (3.1)
? €]
Likewise, the local homophily (b;) of node i is given as:
n
= J ? J
b = =4=1 (3.2)

dii

3.4 Theoretical Analysis

We first discuss the mechanism of Message-Passing Neural Networks (MPNN) and
the impact of using signed messages (§ 3.4.1). Then, we introduce the previous
analysis of employing signed propagation on binary class graphs (§ 3.4.2). Through
this, we extend them to a multi-class scenario and point out some drawbacks under
this condition (§ 3.4.3). Finally, we suggest a simple yet effective solution to improve

the quality of signed GNNs through the integration of calibration (§ 3.4.4).

3.4.1 Message-Passing Neural Networks.
Mechanism of Graph Neural Networks (GNNs). Generally, most of the GNNs employ
the strategy of propagation and then aggregation, where the node features are updated

iteratively. This can be represented as follows:

HD = (gD, g — AgOWwO. (3-3)
H©Y= X is the initial vector and H" is nodes’ hidden representations at the /-4 layer.
H®D js retrieved through message-passing (4) and we obtain H**" after an activation
function ¢ (e.g. ReLU). W is the trainable weight matrices that are shared across all
nodes. The final prediction is produced by applying cross-entropy o(-) (e.g., log-

softmax) to H® and the loss function is defined as:

LaNn = ’E’ﬂ-”(Ya f}) ? - J(H(L)) (3.4)

The parameters are updated by computing negative log-likelihood loss L., between
the predictions (Yy) and true labels (Y). Most GNN schemes assume that graphs are
assortative and they construct the message-passing matrix (A4) with positive values to
preserve the low-frequency information (local smoothing) [51]. Consequently, they
fail to capture the difference between node features and achieve lower performance
on the heterophilous networks [65; 67].

Meaning of using signed messages. Recent studies [13; 2; 89; 12] emphasize the
importance of high-frequency signals and suggest flipping the sign of disassortative
edges from positive to negative to preserve such signals. We first show that they can

also contribute to the separation of ego and neighbors.

3.4.2 Using Signed Messages on Binary Classes.
First, we assume a binary class and provide theoretical analysis by distinguishing two

phases: message-passing and parameter update.

(Message-Passing) Signed GNN generally improves the overall performance.

10 2 2 1))

In this section, we aim to analyze the movements of node features given three types
of graphs (original, signed, and zero weights). We again employ GCN [42] as a
baseline. Here, we assume a binary classification task (y; € {0, 1}) similar to previous
work [1; 89] and inherit several useful notations for simplifications: (1) For all nodes
i = {1,...,n}, their degrees {d;} and features {%;} are i.i.d. random variables. (2)
We assume that every class has the same population. (3) With a slight abuse of
notation, assume h(0) = XW(0) is the first layer projection of initial node features. (4)

Given the label y;, the node feature follows the distribution (u or —) as:

if 4y, =0
E(h{”|y;) = Y

Prior work [89] introduces Theorems 4.1, 4.2 using the local homophily (Eq. 3.2),
message passing (Eq. 3.3), and expectation of node features (Eq. 3.11). Each theorem

below utilizes the original and signed graph, respectively.

Theorem 4.1 (Binary class, vanilla GCN). Let us assume y;= 0. Then, the expectation

after a single-hop propagation is defined as:

- /
(20; —1)dj + 1,

T Bl e

E(h{M |y, di) =

! d;+1
tere di = Y jen, /95

J

Proof of Theorem 4.1.
Assume a binary class y; € {0,1}. Using the aggregation scheme of GCN [32], the

hidden representation of node i after message-passing hgl) 1s defined as:

(0) ;0
R = " + 4

T 4+ 1 g\; V(d + D(d; + 1)

(3.13)

11] 2 1 &L

As illustrated in Figure 7a (binary class), we assume h;~N (,u, 1/ \/E) ify; =0

and otherwise h;~N (—u, 1/ \/E) Based on the local homophily b;, Eq. 28 becomes:

E(h{V|v; - =
(hi“fvis di 1 J@v((d; +1)(dj+1)“ V@D + 0
2h; — 1)
JGN \/d +1 (dj+1)
(Z Vi,) (3.14)
41 d T ~ Vi +1
1+ (2b; —1)d
- ()
End of proof.

The generalized version of the above theorem is described in [44], which takes two

distributions wo,u1 as:

1

hi ~ N(bipro + (1 — b;)1, ﬁ (3.15)

Eq. 15 reduces to Eq. 12 when u1 = —puo.

Theorem 4.2 (Binary class, signed GCN). If the sign of heterophilous edges is flipped

correctly under the error ratio (e), the expectation is given by:

- (1—=2e)d; +1
(d; +1)

AV |yi, d E(h\?|y;) (3.16)

12

Proof of Theorem 4.2. Similarly, signed GCN correctly configures the sign of

heterophilous edges with the following error ratio 1—e. For example, the sign of

heterophilous nodes changes from —u to 4 with a probability 1 — e and vice versa:

Dy gy — M pd—e) —pe pd—e) —pe
E(h; l“dl)_dvﬁ+1+jEZM(\/(di+1)(dj+1)bl+\/(di+1)(dj+1)(1 bi)

on 1—2e
T di+1 +j§\fi (\/(dz- + 1)(d; +1)M)

1 +1-2€z\/d1+1
di+1 " di+1 e T

(14 (1 —2e)d;

(3.17)

End of proof.

(Parameter Update) Signed propagation can contributeto the separation of ego
and neighbors. Let us assume an ego node 1 and its neighbor node j is connected with
a signed edge. Let us ignore other neighbor nodes to concentrate on the mechanism

of signed messaging. Applying GCN [42], we obtain the output of node i as:

. _ a® a”
g Ly i _ J
Y = o(H;") U(di+1 \/(dﬁl)(dﬁl)) (3.5)

Assuming that the label of the ego (V) is k, we can calculate the loss (L.;) between a

true label ¥; € R€and a prediction ¥; € R as below:

Lon(Yi,Y;) = —log(Gik) (3.6)

13

Since the column-wise components of the last weight matrix W% act as an

independent classifier, we prove that the probability of node j being a class & (¥ x),

transitions in the opposite to the node i’s probability (y; ;) as the training epoch (7)

proceeds:
T ~(t+1)
Yik < ko Yik > Ui (3.7
S t+1 Y,
, Where y(:) J . — N\ L (}/u Y:’) and a;._k) = /g\jk —NVij 'C'“-”(Y;? K)

Notation 7 is the learning ratio and a symbol V represents a partial derivative of the

loss function.

Proof of Equation 7.

We first show that signed messages can contribute to separating the ego from its

neighbors. Let us assume the label of the ego node i is k. A neighbor node j is

connected to 7 with a signed edge. Since the column-wise components of the weight

matrix act as an independent classifier, the probabilities that the two nodes belong to

the same class, at a training epoch ¢ are derived as,

Z(T_ = =Uir—nViL Loaun(Yi,Yi)k
jjt: = Uik — 15 Lo (Yi, Yk

The loss function is definedas £, ;; (Y5, ﬁ),‘ = —log(¥i.k)

The gradient of node i is well-known to be,

OLu (Y. Yok 0Lan(Yi, Yk O

iLn Y;i}f ; — a7 - a7
Viknu(¥i Yl DY Y. Oy’

1 . . .
= T = : (y?.‘-(l o y?ﬁ.)(_l)) =1- Yik > 07

14

(3.8)

(3.9)

Similarly, the gradient of node j is given by:

AL (Yi, Vo), _aﬁnli(yiai}i)k i i

':£n Y Y — — *
Vilni{ e = i i,k oh")

(3.10)

1 N
= —— (Uit(1—Yik) =0 —1 <0
yz.k

where we can retrieve Eq. 3.7.

End of proof.

Referring to this analysis, we can induce the expectation of zero-weight GCN as

below.

Theorem 4.3 (Binary class, zero-weight GCN). Similar to the Theorem 4.2, assigning

zero weights to the heterophilous edges leads to the following feature distribution:

(bz — e)dg + 1

E(hY 1y, 3.18
@1 (hi " lyi) (3.18)

E(h{V|ys, d;) =

Proof of Theorem 4.3.

W1 dy) = = pl—e) —pex0, , pl—e) x0—pe,,
By Jos, di) di+1+j§, (\/(d o0 @@ Y

e
7]
(d+1)(dj+1)) (3.19)
1 b, —e d; +1
B di+1+di—|’1_ZA[_ d; + 1
1+ (b; —e)d,
(d; + 1)“

End of proof.

15 .__:l_g-l _'k.:_'l'

For all theorems, if the coefficient of is smaller than 1, the node feature moves
towards the decision boundary and message passing loses its discrimination power
[89]. Based on this observation, we can compare the discrimination powers of signed

and zero-weight GCNss.

Corollary 4.4 (Binary class, discrimination power). Omitting the overlapping part of
Theorems 4.2 and 4.3, their difference, Z, can be induced by the error ratio (e) and
homophily (b;):

Z=(1-2e)—(bj—e)=1—e—b;, (3.20)

where 0 <e,b; < 1.

(a) (b)
Figure 3.2 We plot the Z to compare the discrimination power of signed and zero-

weight GCNs. The red and blue colored parts indicate the regions where signed GCN
and zero-weight GCN have better performance, respectively.

We visualize Z in Fig. 3.2 (a). Note that the space is half-divided by the plane Z=0
since [01(1 — e — b)dedb = 0. When b; and e are small, Z becomes positive which

indicates that signed GCN outperforms zero-weight GCN and vice versa.

16

Now, let us assume that the error ratio is zero (e = 0) identical to the settings of our
previous analysis (Fig. 3.1). Under this condition, Z (= 1 — b;) should be non-negative

regardless of the homophily ratio (0 < b,< 1).

1 pl 9 . 971
/ / (1 —e—1b)dedb = [1 — ﬂ} =0 (321
o Jo 2 e.b=0

However, Fig. 3.1 shows that zero-weight GCN generally outperforms signed GCN
(Z £0) contradicting the Corollary 4.4. Thus, we extend the above theorems to cover

a multi-class scenario and point out the limitations in the previous analyses.

3.3.2 Empirical Analysis.

100
Vanilla GCN
o T X s0.5180.5 857 . Signed GCN
801 maN HE X A B¢ Zero-weight GCN
N EX o B &7 Q % ~/ Signed GCN (+ ours)
\\\ X 6?.5\ \ 5.3 65.9 67.1
2 s0| |INEX [N N SEX L ER
s | REE KB S NEX O
g \ >< \\ \ \ ><
g 404 || ‘>(S | N)< ||
=T \ }(\ \ 34,4 4.6 \ >< 51-“§
N X | N & WHX
200 OHS FN N T SEX S
NN BN RN BN AN
L ENEX BN N 5 NN
Cora Citeseer Pubmed Actor Chameleon Squ'irrel

Figure 3.1 Node classification accuracy on six benchmark datasets. Firstly,
vanilla GCN utilizes the original graph. The coefficient of heterophilous
edges is changed to -1 in signed GCN and to 0 in zero-weight GCN

Vanilla GNNs provide dismal performances in heterophilic datasets, where most
edges connect two nodes with different labels. Consequently, finding proper

coefficients of entire edges became essential to enhance the overall quality of GNNs.

g 5 93T 8t

In Fig. 3.1, we evaluate the node classification accuracy of GCN [42] using six
benchmark graphs (the statistical details are shown in Table 1). From the original
graph (vanilla GCN), we fabricate two graph variants; one that replaces disassortative
edges with -1 (signed GCN), and the other that assigns zero-weights on heterophilous
connections (zero-weight GCN). As illustrated in Fig. 3.1, the zero-weight GCN
achieves the best performance, followed by the signed GCN. The detailed

explanations regarding this phenomenon will be explained in Section 3.5.

3.4.3 Using Signed Messages on Multiple Classes.

Based on the prior analysis, we extend them to multi-class scenarios and point out

some drawbacks of using signed propagation for GNNs.

(Message-Passing) The performance of signed GCN depends on the number of
classes. Without loss of generality, one can extend the expectation of node features

from a binary (Eq. 3.16) to multiple classes through spherical coordinates as below:

E(h\”|y:) = (1, ,6). (3.22)

Here, p also represents the scale of a vector and the direction is determined by two
angles ¢ and 6. Obviously, the above equation satisfies the origin symmetry under
binary classes, where (i, ©/2, 0) = —(u, /2, ©). Through this equation, we can
redefine Theorem. 4.1 and 4.2 for multiple class GCNss.

Theorem 4.5 (Multi-class, signed GCN). Let us assume the label y;= 0. For simplicity,
we denote the coordinates of the ego (u,0) as k, and its neighbors (u,0) as k, where 0

=0and ' = 2% # 0. Then, the expectation of h;is defined as:

18 3]

(1 — 2){bik + (b — DK} + k
d; +1

E(R |y, d;) = (3.23)

A A

ki = (u,61)

n
(u‘ ﬂk}jﬁﬂ! 0) o ;kZ Sj‘ij:[} = (Iua 0)
3t

(‘u’ 7) kz = (.u! 92)

Figure 1.3 We take an example to illustrate the distribution of node features
under multi-class scenarios. The right figure represents the aggregation of
neighboring nodes (k;, k2) under multiple classes.

Proof of Theorem 4.5.
B h(-l) @' 1—6 b, —k’(l—e)+k’ b,
(ha s, d d; ZJ\;(\/d +1)d +1) +\/(d@-+1)(dj+1)(1)
26 b *k’(l*Qé)(l *bi)
; z;,()
(1 — 2e){kb; + k' (b; — 1)}
d; ZN (NCERICES)) (3.24)
ok (1—26){kb K (b — 1)}’
Cdi+1 di+1
_ (1 =20){bik+ (b~ DK} + &
d; +1
End of proof.
19] -

As shown in Figure 3.3, we extend a binary classification scenario to a multi-class
case. Without loss of generality, we employ spherical coordinates and ensure that u
corresponds to the scale of a vector, while the direction of each vector lies between
zero and & with respect to their label j. Here, we assume the label is y; = 0. For
simplicity, we replace (1,0 = 0) as k and (u,0 ~ 0) as k, respectively. Though &
comprises multiple distributions that are proportional to the number of classes, their

aggregation always satisfies |kqger | < u since the summation of coefficients (1 — 4,) is

lower than 1 and |k| < u. Referring to Fig. 7c, we can see that % < u. Given b1 =

b>= 0.5, where the aggregation of neighbors always lies in u. Thus, for brevity, we
indicate k' 4, as k’ here. Now, we can retrieve the expectation (4;) of signed GCN as
follows.

Theorem 4.6 (Multi-class, zero-weight GCN). Likewise, the h; driven by zero-weight

GCN is:
1 —e)bik +e(l — b))k}, + k
E h(l) ?;’ dz — {(7 7 i
. ’y) di +1 (3.25)
Proof of Theorem 4.6.
K k(1 —e) —kex0 E(1—¢)x0+ ke
E(hgl)h)ia di) = ——+ (b; + (1 —b;)
i1 g \VErsa " Va
k k(1 —e)b; +k'e(l —b;)
=+
di+1 jGZNl‘ (\/(dz + 1)(dj + 1))
_ K 4 {(1 —e)b;k + e(1 —b;)K'}d! (3.26)
S dit+1 771
A —e)bik +e(l — b))k}, + k
- di + 1 -
End of proof.
20 E

Similar to Corollary 4.4, we can compare the separability of the two methods based

on their coefficients.

Corollary 4.7 (Multi-class). The difference of discrimination power (Z) between

signed and zero-weight GCN in the multiclass case is:
Z = —ebik + (1 —e)(b; — 1)k’ (3.27)

Then, we can induce the conditional statement as below based on the distribution of

aggregated neighbors (k):

“2eb—(1—e—by), ifk =k (3-28)

Ze{l—e—bi, if k' = —k

Fig. 3.2 (b) plots Z for the multi-class case. The above corollary implies that if the
distribution of aggregated neighbor is origin symmetry (k' = —k), Z (= 1—e—b) becomes
identical to the Eq. 3.20. Under this condition, signed propagation might perform well.
However, as k gets closer to &, its discrimination power degrades (Z gets smaller) as
shown in the blue areas in Fig. 3.2 (b).

Intuitively, the probability of being k' = —k may decrease as the number of classes
increases, which means that the zero-weight GCN generally outperforms the signed
GCN in multi-class graphs.

—eb? —e?b+ e? + 1? !

o1 1
/ / (—2eb+ e+ b — 1) dedb = —1l =-1 (329
JO JO 2 e,b=0

(Parameter Update) Though signed propagation contributes to the ego-neighbor
separation, it also increases the uncertainty of the predictions. Adequate
management of uncertainty is vital in machine learning to generate highly confident

predictions [19; 61; 62]. This is closely related to the entropy (e.g., information gain

21 7] 3 — 11

[52]) and recent work [39] formulates two types of uncertainties: the aleatoric and
epistemic caused by the data and the model, respectively. But here, we rather focus
on the conflict evidence (dissonance) [68; 97], which ramps up the entropy of outputs.
One can easily measure the uncertainty of a prediction () using Shannon’s entropy

[74] as: o
E(y;) = — Z Yi,jlogcyi,j- (3.31)
j=1

Furthermore, measuring dissonance (diss) is also important [97] as it is powerful in
distinguishing Out-of-Distribution (OOD) data from conflict predictions [36] and

improving classification accuracy:

e [T Sy B (1 — il
diss(i) =) T (3.32)
j=1 kg Yik

Figure 3: (a) In binary class graphs, signed propagation contributes to the separation
of nodes (i,j) and reduces the entropy. (b) In multi-class graphs, the uncertainty of

neighboring nodes that are connected with signed edges (j,k) increases

Vs 2

"\\ F N k\‘
\

(a) Binary class (b) Multiple class
Figure 3.4 (a) In binary class graphs, signed propagation contributes to the separation of

nodes (i,j) and reduces the entropy. (b) In multi-class graphs, the uncertainty of
neighboring nodes that are connected with signed edges (j, k) increases.

22] © 11 & —

which can be defined only for non-zero elements. We show that signed messages are
helpful for ego and neighbor separation. Now, we posit that neighbors connected with
signed edges provoke higher entropy (e.g., E(9;) or diss(y;)) than the one with a
plane or zero-weighted one.

Theorem 4.8. Under multiple classes, the entropy gap between the signed neighbor

E (9;) and plane (or zero) one E (ﬁp) increases in proportion to the training epoch (t).

~t4+1)y (1) ~t\ _ (st
E(ys ™) = E(y,) > E(y,) — E(y,) (3.33)
y=2 y=2
[1 1, 8] [0, 37
[8, 2] [2 8] v/“‘\\‘ /r"\‘ k # k ‘[]
_ —— _ _ o O _ 7 [0, 7, 3]
i j vl y=0 i j y=1 (8, 1, 1] [1, 8 1] .'ﬁ
y=0 i~ J y=1 y=0 @« joy=1
(a.1) Binary class, before update (a.2) Binary class, after update (b. 1) Multi-classes, before update (b. 2) Multi-classes, after update

Figure 3.5 Visualization of the update procedure of node features under (a) binary and (b) multi-class.

Proof of Theorem 4.8.
Firstly, the true label probability (k) of node p (J,x) increases, while other

probabilities ¥, , (0 # k) decrease as follows:

o~

. ~t
g}(jt_kl) c yp,k —N\p ﬁnll(yvi: ,.:i)k > yp,k’ (3.34)

@\}i,o — 1 Vp Latt(Yi, Yi)o < @\;TO, Vo #k.

Since we proved that V,, Ly, (V;, YD) < 0, we analyze the partial derivative
vp Lnll(Yir ?i)o (VO * k)

- aﬁnll(n:i}i)o _ 3£nu(3ﬁ;,ﬁ;)o 3@',0

\V4 £'7 1l (Ya i}) - ~ - -~ ’
P v 2 /0 8yp30 8yi,0 ah?(:fg (335)
1 — . —~
= =< : (yz',o(]- - yi,o)) =1- Yio = 09
Yio
23 ..3 7 _q.l_": 3 |§ _.-.:.E ._

On the contrary, the gradient of node s has a different sign with node p, where we

can infer that;:

)

~(t+1) c gijk; —n VS Enll(ytia i)k < @\gjkn

Ys (3.36)
@\g,o — Vs Lat(Ys,Yi)o > /y\';,o, Vo#k.

)

<

As the training epoch increases, ¥, , will converge to 1 resulting in the decrease of
E(3p). Conversely, J x gets closer to 0, which may fail to generate a highly confident

prediction and leads to a surge of uncertainty. Thus, one can infer:
t4+1 t+1 ~ -
B@)~ B@) > B@) —E@) ast o0 (337)

As shown in Figure 3.5 a, this can be effective under a binary class, while the signed
nodes (i,/) in a multi-class case (Fig. 3.5 b) have conflict evidence except for class 0.
Taking another example, let us assume that the original probability (before the update)

is yf =[0.6,0.2,0.2] with C = 3. Then, one can calculate the Shannon’s entropy as,

E(@) = — > Ui ;logsi ; ~ 0.8649 (3.38)

J=1

Without considering node degree, let us assume the gradient of class k as

Vo Lnu(Ys, YD = — VL (Y, ¥)e = a,and other classes as
YV Lan(Y %o = — Vo Ly (¥, %), = ﬁ(\m # k). If we take a = 0.1,

then y;”” and 375““) becomes:
E(yit) = £([0.8,0.1,0.1]) ~ 0.5817, E(7{'*") = £([0.4,0.3,0.3]) ~ 0.9911
(3.39)

where we can see that E (37(H1)) <E (375(t+1)) after the single iteration.

p

24 _3'!_x'~._1.|i

End of proof.

To summarize, signed messages contribute to the separation of two nodes (Fig 3.5
a), while they also increase the uncertainty of neighboring nodes j, k that propagate
signed information to an ego i (Fig. 3.5 b). To deal with this, we employ confidence

calibration which will be explained below.
3.5 Methodology

Previously, we pointed out the issues of signed propagation from two perspectives:
message-passing and parameter update. Now, we propose two strategies that can be
combined with any GNN using signed propagation.

3.5.1 (Message-Passing) Edge weight calibration

Through Corollary 4.7, we analyze the impact of signed propagation based on the
distribution of neighbors k’. It was observed that as k' is similar to k, signed
propagation reduces the discrimination power. At the same time, it also increases the
separability of two nodes during training. Thus, we propose the following strategies:
(1) In training, we employ signed messages for ego-neighbor separation. (2) During
the validation/test phase, we block the information propagation of highly similar
nodes, which may decrease the discrimination power.

As a downstream task of GNNs, the score (e.g., cosine similarity) of two nodes is
calculated based on the node features at the [-th layer:

h; - h; (3.40)
cos(hi, hj) = ——
S (T (PR

Then, for all edges that satisfy the following conditions, we replace their weights a;;
(e.g., attention values) as 0:

. 0 ifa; <0A cos(hi,h;) > €
;s — .
" a;; otherwise

where ¢ is the hyper-parameter. Through this, the discrimination power remains
powerful during training, while securing the separability in the inference phase.

2 2 2 1))

Remark. The replacement of a;; in Eq. 41 is highly scalable for signed GNNs,
which focuses on edge-level weight retrieval.

3.5.2 (Parameter Update) Confidence calibration

In Theorem 4.8, we show that signed messages increase the uncertainty of predictions.
Here, we propose a simple yet effective solution that can reduce the uncertainty (P2)
through confidence calibration. The proposed method, free from entire path
configuration, is cost-efficient and fairly powerful. Calibration is one type of self-
training method [29; 90] that acts as a regularization term. Even though it has shown
to be effective for generic GNNs [84], we notice that the performance gain is much
greater when integrated with signed methods. Many algorithms can be used for
calibration (e.g., temperature and vector scaling [29]). In this paper, our loss function
is defined as,

1 T N N
Leont = - Z(—max(y;) + submax(y;)), (.42
i=1

where n = |V,qia U Viest| 18 the set of validation and test nodes. Our method is
quite similar to prior work [84], but we do not utilize the label of validation sets for a
fair comparison. As defined above, it penalizes the maximal and sub-maximal values
to be similar in order to suppress the generation of conflict evidence. Since the
calibration only utilizes the outputs y, it has high b scalability and is applicable to
any type of GNNs.

3.5.3 Optimization

Before, we introduce two strategies to improve the quality of signed propagation.

For optimization, we apply confidence calibration during training as below:

ﬁtutai — ‘CGNN + Aﬁconf* (3.43)

26 2 2 1))

Here, L;yy indicates any type of GNN. Also, the A is a hyper-parameter that balances
the influence of confidence calibration. After optimization, we employ edge weight
calibration during the inference phase. Through this, we observe a significant
improvement in signed GCN (+ calib) as demonstrated in Figure 1. We describe the

pseudo-code of calibrated FAGCN [2] below.

Algorithm 1 Pseudo-code of calibrated FAGCN

Require: Adjacency matrix (A), initial node features (X'), node embedding at [th layer (H' 1), attention weight between two
nodes (a;), initialized parameters of FAGCN (#), edge weight threshold (¢), best validation score (o™ = 0)
Ensure: Parameters with the best validation score (6*)
1: for training epochs do
2: # Training (plane forward pass with confidence calibration)
Retrieve class probability through forward pass, V= G’(H[L))
Compute negative-log likelihood loss, Lracony = Lan(Y, 17’)
Compute calibration loss, Lonf = % S0 (—maz(g:) + submaz(7:)). n = |Viatia U Viest|

.ol aL
Update parameters, 8 = 8 — n=—=fatt

3
4
5
6: Get total loss, Liotar = Lracon + Alconf
7
8 # Validation (forward pass with edge weight calibration)
9

Retrieve " layer’s node embedding, IT*
10: Get node i’s embedding, h!

11: Get attention weights a;; of adjacent nodes (j), a;; = tanh(gT [h'i| |h§]) * g7 learnable vector
o D hi - bt
12: Calculate cosine similarity, cos(h;, h}) = = -
1751l 17511,
13: ifa;; <0 A cos(hl,hl) > ¢, then
14: Replace a;; as 0
15: Using the updated parameters (f) and calibrated attention weights (a;;), get validation score o
16: if @ > o” then
17: Save the parameters, #* = '
18: Update best validation score, a® = «

Time complexity of calibrated GNN

We analyze the computational complexity of our method. For brevity, we take
vanilla GCN [32] as a base model. Generally, the cost of GCN is known to be
proportional to the number of edges and trainable parameters O (|E|6cn)- Here, O;cn
is comprised of O(nz(X)F' + F'C) [85], where nz(-) represents the non-zero
elements of inputs and F stand for the hidden dimension, and C is the number of

classes. Additionally, our method employs two types of calibration. The first one is

- L L

S Y |

edge weight calibration. For this, we need to retrieve the node features of each layer
and calculate the cosine similarity for all connected nodes |€|%. Thus, the complexity
becomes O(|€|0gcy + LIEI?) . Further, the calibration takes n = |V,gq U
Viest| samples as inputs and finds top k samples on each row of y,. Thus, their
complexity can be simply defined as O(n + k). To summarize, the cost of calibrated

GCNis 0(2|€E|0gcny + LIEI* + n + k), which is fairly efficient.
3.6 Experiments

We conducted extensive experiments to validate our theorems and to compare the
performances of our method and baselines. We aim to answer the following research

questions:

« Q1 Is calibration alleviates the uncertainty issue when integrated with the signed

GNNs?
« Q2 Do the signed messages increase the uncertainty of the final prediction?

» Q3 How much impact do the two calibration methodologies have on performance

improvement?
» Q4 Is the number of classes correlated with the prediction uncertainty?
« Q5 How does the hyper-parameter 4 in Eq. 3.41 affect the performance?

Datasets. The statistical details of datasets are in Table 3.1. (1) Cora, Citeseer, Pubmed
[42] are citation graphs, where a node corresponds to a paper and edges are citations
between them. The labels are the research topic of the papers. (2) Actor [80] is a co-
occurrence graph where actors and co-occurrences in the same movie are represented
as nodes and edges, respectively. The labels are five types of actors. (3) Chameleon,
Squirrel [72] are Wikipedia hyperlink networks. Each node is a web page and the

edges are hyperlinks. Nodes are categorized into five classes based on monthly traffic.

28]

Baselines. We employ several state-of-the-art methods for validation: (1) Plane GNNss:
GCN [42], and APPNP [43]. (2) GNNs for heterophilous graphs: GAT [81], GCNII
[9], H2GCN [99], and PTDNet [55]. (3) GNNs with signed propagation:

GPRGNN [13], FAGCN [2], and GGCN [89].

- General information of the implementations.

All methods including baselines and ours are implemented upon PyZorch Geometric.
For a fair comparison, we equalize the hidden dimension of the entire methodologies
as 64. ReLU with dropout is used for non-linearity and to prevent over-fitting. We
employ the log-Softmax as a cross-entropy function. The learning ratio is set to le™>
and the Adam optimizer is taken with weight decay 5e¢ *. For training, 20 nodes per
class are randomly chosen and the remaining nodes are equally divided into two parts

for validation and testing.

- More details about baseline methods.

« GCN [42] is a first-order approximation of Chebyshev polynomials [11]. For all
datasets, we simply take 2 layers of GCN.

« APPNP [43] combines personalized PageRank on GCN. We stack 10 layers and
set the teleport probability (a) as {0.1,0.1,0.1,0.5,0.2,0.3} for Cora, Citeseer,

Pubmed, Actor, Chameleon, and Squirrel.

« GAT [81] calculates feature-based attention for edge coefficients. Similar to GCN,
we construct 2 layers of GAT. The pair of (hidden dimension, head) is set as (8, 8)

for the first layer, while the second layer is (1, number of classes).

« GCNII [9] integrates an identity mapping function on APPNP. We set a = 0.5 and
employ nine hidden layers. We increase the weight of identity mapping (/) that is
inversely proportional to the heterophily of the dataset.

29 3]

« HyGCN [99] suggests the separation of ego and neighbors during aggregation. We

refer to the publicly available source code' for implementation.

« PTDNet [55] removes disassortative edges before a message-passing. We also
utilize the open-source code? here.

« GPRGNN [13] generalized the personalized PageRank to deal with heterophily
and over-smoothing. Referring here®, we tune the hyper-parameters based on the

best validation score for each dataset.

« FAGCN [2] determines the sign of edges using the node features. We implement
the algorithm referring Aere® and also tune the hyper-parameters with respect to

their accuracy.

« GGCN [89] proposes the scaling of degrees and the separation of
positive/negative adjacency matrices. We simply take the publicly available code®

for evaluation.

Datasets Cora Citeseer Pubmed Actor Cham. Squirrel
Nodes 2,708 3,327 19,717 7,600 2,277 5,201

Edges 10,558 9,104 88,648 25,944 33824 211,872
Features 1,433 3,703 500 931 2,325 2,089

Labels 7 6 3 5 5 5

Table 3.1 Statistical details of six benchmark datasets.

3.6.1 Experimental Results (Q1).

In Table 3.2, we describe the node classification accuracy of each method. A symbol
(1) means that calibration is supplemented to the basic method. Now, let us analyze

the results from two perspectives.

1 https://github.com/GemsLab/H2GCN

2 https://github.com/flyingdoog/PTDNet

3 https://github.com/jianhao2016/GPRGNN

4 https://github.com/bdy9527/FAGCN

5 https://github.com/Yujun-Yan/Heterophily and oversmoothing

30 1] 2 +1 &l

Datasets Cora Citeseer Pubmed Actor Chameleon Squirrel
H,(Eq. 1) 0.81 0.74 0.8 0.22 0.23 0.22

GCN 79.0 06 (0.17) 675 +05(0.29) 77.6 102(0.53) 202 140029 493 5 (0.19) 317 L7 (0.31)
GCN? 81.0 g (0.12) 713 112014 778 L4038 21.7 106(062) 494 14025 31.5 L6 (0.58)
GAT 80.1 £96(022) 68.0 £07(025) 78.0 £p4(045) 225 1093(028) 479 19s(0.17) 30.8 £0.0(0.27)
GAT! 814 Lq4(0.12) 722 445(0.08) 783 41530039 232 L, 4(043) 492 L 54(0.16) 303 L5 (0.40)
APPNP 81.3 £05(0.15) 689 L£03(0.21) 790 £03(0.42) 238 103049 48.0 £07(034) 304 Lo (0.69)
GCNII 81.1 Lo 7(0.08) 685 £14(0.13) 785 140200 259 +12(043) 48.1 197 (0.21) 29.1 Lgq(0.24)
H>GCN 80.6 Lgg(0.16) 68.2 4q7(022) 785 L53(029) 256 +10(034) 473 L5 (0.19) 313 g7 (0.62)
PTDNet 81.2 Lo (024) 69.5 £15(042) 788 Lg5(044) 21.5 Lg6(033) 50.6 Lo (0.17) 32.1 L7 (0.34)
PTDNetf 81.9 L6 (0200 T1.1 £ (031 79.0 L2038 227 106(0.19) 509 L5 (0.15) 323 g5 (0.30)
GPRGNN 82.2 104(025) 704 108(043) 791 1010260 254 105055 49.1 £47(0.25) 30.5 £g6(0.36)
GPRGNN? 84.5 . (5 (0.04) 73.2 105 (0.05) 80.0 4g5(0.11) 277 +15(033) 50.7 4.4 (0.18) 31.6 g4 (0.16)
FAGCN 80.9 Lg5(0.15) 698 L06(0.17) 79.0 £o5(031) 252 10s(0.66) 46.5 111025 304 Lg.4(0.64)
FAGCN? 83.7 £0.4 (009 T3.7 +05(0.08) 797 +p2(0.16) 273 £5(042) 48.6 +7(0.13) 313 g5 (0.37)
GGCN 80.0 £12(038) 69.7 £16(030) 782 L04(047) 225 L05(047) 485 L7 (0.15) 30.2 Lg.7 (0.40)
GGCN? 834 L5 (0.07) T30 £q4(0.05) 787 103(029) 241 1+44(026) 498 154 (0.07) 30.8 Lg6(0.15)

Table 3.2 (Q1) Mean node classification accuracy (%) with standard deviation. A shadowed grid
indicates the best performance. Values in bracket stand for the dissonance defined in Eq. 3.32 and

symbol + means that calibration is applied to baseline method.

Homophily ratio plays an important role in GNNs. Three citation networks have

higher homophily compared to others. We can see that all methods perform well under
homophilic datasets. As homophily decreases, methods that adjust weights depending
on associativity outperform plain GNNs. Similarly, using signed messages (GPRGNN,
FAGCN, and GGCN) has shown to be effective here. They achieve notable
performance for both homophilic and heterophilic datasets, which means the
separation of ego and neighbors (H>GCN) is quite important.

Calibration improves the overall quality and alleviates uncertainty. We apply
calibration (f) to signed GNNs (GPRGNN, FAGCN, and GGCN). We also apply
calibration to GCN and GAT. The average improvements of three signed GNNs by
calibration are 4.37%, 3.1%, and 3.13%, respectively. The improvements are greater
than those of GCN* (2.65%) and GAT* (1.97%). Additionally, we describe the
dissonance (Eq. 21) of each method in a bracket, where the calibrated methods show

lower values than the corresponding vanilla model. To summarize, the results indicate

31 T | =i
T

that calibration not only contributes to reducing uncertainty but also improves the

accuracy of signed GNNs significantly.

Dissonance

0.40

0.35 A

0.30 4

=
]
w

=
R
[=]

(=]
A
(5]

o
=
o

0.05

[-l- vanilla GCN

= A Signed GCMN

i@ Zero-weight GCN

« ¥+ Signed GCN (+ calib) |

Number of layers

(a) Cora (b) Chameleon
0.40
5 'Y
.. 0.35 1%,
-
P b o
T a* *
A 0.30 =", .
-":1 ..+ .:' -.o
i L
* u 0254 % *5 % .
* -..:' .. I" .‘ e .
2 e -
X 0.20 .. P —
-'.i‘.:.' -‘-.i_.-.
T T "
e, -"::::-‘ 0.15 1 !‘ . Cevogarerest Y
i '—Shalfnw—("'*..‘.. “a, ’ i *_Shalluw—' Tele
Xu . * i ®-... Py
. 0.10 ESRETF TR ..
P O . Y u X
. Cefeannnt
- T r - 0.05 +— T
1 2 3 4 a8 1 2 3 4 8

Number of layers

Figure 3.6 (Q2) Comparison of the dissonance on three graph variants;
vanilla GCN, signed GCN, and zero-weight GCN.

3.6.2 Correlation of using Signed Messages and the Uncertainty (Q2).

To show that signed messages increase uncertainty, we assume three types of graphs

for GCN [42] using four datasets. Specifically, we fabricate two graph variants, signed

GCN and zero-weight GCN. Here, we remove the randomness for a fair comparison.

The results are illustrated in Fig. 3.6, where the x-axis is the number of layers and the

y-axis represents dissonance. Referring to Theorem 4.8, the uncertainty is higher on

signed GCN for all shallow layers. As we stack more layers, the entropy of vanilla

GCN increases dramatically on heterophilous datasets, the Chameleon and Squirrel.

In other words, plain GCN fails to discriminate the ego and neighbors (over-

smoothing) and yields low classification accuracy.

Datasets Cora Citeseer Actor Chameleon
GPRGNN 822 104 704 1098 254 1095 49.1 1p9
w/ edge calib 83.0 + 0.6 71.1 + 1.0 25.9 + 0.6 49.7 + 0.7
w/ confecalib 838 05 726 +05 275 4104 50.2 1053
FAGCN 809 105 698 106 252 1098 465 111
w/ edge calib 82.1 + 0.6 71.6 + 0.7 25.8 + 0.7 46.9 + 1.0
w/ confcalib 83.0 103 729 105 263 104 48.0 105
GGCN 80.0 112 697 116 225 £05 485 107
w/ edge calib 81.9 + 1.0 71.0 +1.1 23.3 + 0.6 48.9 + 0.7
w/ confecalib 827 +00 725 +06 236 404 496 405

Table 3.3 (Q3) We measure the improvement of node classification accuracy (%)
by applying edge weight and confidence calibration on three baseline methods

3.6.3 Ablation study (Q3).

We conduct an ablation study to analyze the effectiveness of edge weight and
confidence calibration. As shown in the above Table, given the two homophilic (Cora,
Citeseer) and heterophilic (Actor, Chameleon) graphs, we employ three baseline
methods with signed propagation. For each method, we apply edge weight calibration
(\textbf{w/ edge calib}) or confidence calibration (\textbf{w/ conf calib}) and
measure the node classification accuracy, respectively. Here, we can see that methods
with confidence calibration generally outperform edge weight calibration and shows
smaller variance. The reason is that confidence calibration reduces the uncertainty of
the entire nodes during training, whereas edge calibration is only applied to a small
number of edges for testing. Nevertheless, it can also be observed that edge calibration
for similar nodes belonging to different classes still contributes to a certain extent to

the improvement in performance.

33

0.24 4

Dissonance

Cissonance

ols

[+@ signed Gen

-¥- Zero-weight GCN |

{a) Cora (b) Citeseer
'-|li"'|'. -1. ‘_
- i - i
.., v Lt e, s
. » 0344 | ., W . |
., . | ‘T’ . H
. . "
‘®, " i . i
& H . H
*a 03z4 | . |
e, o -0 . |
u...-._ - ‘! . ‘-"-
t " n3od | . ' 8. s
. # = | o @ L H
v Weeouwa, v = 035 - ._Hr.- . . |
Criganal e, . Binary | Qriginal - Binary|
Class "_. & Class | Slass ' Class
v 0364 |
7 4 3 2] 4 3 i
{c) Chameleon (d} Squirrel
04254 7 T
. e e, v
" HEEE "
. 0.400 1 . .‘l.l ..E
. M . ! " .
) ., . 0375 | O
. -l“‘ W ++ |
o " . 03504 | S
i+ * * &
. ’n-...._,_. .
0.325 o
Original - Binary i Original . Binary:
lass _*+ Class 0.300 4 | (lass . Class
. ! a“
.
.. 02751 Weuu,, E
"y " " ‘ _____ . »
o J 02501 | BREL
5 4 3 2 5 4 3 F.
Numbser of classes (c] Mumber of classes ()

Figure 3.7 (Q4) By differentiating the number of classes, we compare the
dissonance of GCN using two graph variants.

3.6.3 Case Study (Q4).

Theoretical analyses confirm that signed messages increase the uncertainty in multi-

class graphs (§ 4.3). They have shown to be effective when & gets closer to —k, but

this probability is inversely proportional to the number of classes c. To further analyze

this phenomenon, we compare the dissonance of two variants of GCN (signed GCN

and zero-weight GCN) by decrement of the number of classes (c). Specifically, if the

original data contains seven classes (e.g., Cora), we remove all the nodes that belong

to the rightmost class to generate a graph with six labels. The results are illustrated in

34

- A 2ok

o

Fig. 3.7. As can be seen, zero-weight GCN (red) tends to have lower dissonance under
multiple classes. However, under binary classes (¢=2), signed GCN (blue) shows
lower uncertainty with the aid of ego-neighbor separation. In the binary case, zero-

weight GCN only utilizes homophilous neighbors and fails to generalize under this

condition.
I-.- PTDNet* ~¥- GPRGHN® FAGCN? - GGCN®
&) @ & & L @ @
321 32.0
" '\\,’J\P/‘._\. 31.5 4
g l\.\ 3.0
< 30 -
[*}
@ 30.5
=
2 29
<< 30.0
28 29.5 1
29.0 4
27 1 \'\.
Y 0.3 o 03 06 09 o 0601 001 005 01 05 1
epsilon (c) lambda (A)

Figure 3.8 (Q5) The effect of hyper-parameter A in Eq. 3.41 on the classification
accuracy of four calibrated methods.

3.6.4 Hyper-parameter Analysis (Q5).

We conduct an experiment to investigate the effect of hyper-parameter € and 4. We
tune the epsilon (threshold of cosine similarity) from -1 to 1 and lambda (impact of
confidence calibration) from 0 to 1 as shown in Figure 8. Then, we describe the node
classification accuracy on the Squirrel (heterophilic) dataset. The blue line represents
PTDNet, while others are signed GNNs. In the left figure, we notice that baseline
methods achieve the best performance under the largest epsilon, which means
blocking the signed messages of highly similar nodes is advantageous. Here, PTDNet
does not change the sign of edges, it shows no variation based on the epsilon. In the
right figure, it is notable that finding an appropriate lambda is beneficial for overall
performance improvement. Nonetheless, it is also limited by the inherent low
capability of base models in heterophilous graphs (low accuracy). Further, assigning

35 .-_;rx_-l! _CI:I : 1_-_]

| &1

1V

the same weights to L;yy and L., s generally downgrades the overall performance,
which necessitates the usage of validation sets.

3.7 Conclusion

In this work, we provide a new theoretical perspective on using signed messages for
node embedding under multi-class benchmark datasets. Firstly, we show that signed
messages contribute to the separation of heterophilous neighbors in a binary class,
which is consistent with conventional studies. Then, we extend previous theorems to
a multi-class scenario and point out two critical limitations of using signed
propagation: (1) it decreases the separability of two nodes, while (2) increasing the
probability of generating conflict evidence. Based on the observations, we calibrate
signed GNNs to reduce uncertainty and secure robustness. Through experimental
analysis, we show that our method is beneficial for both homophilic and heterophilic
graphs. We claim that our theorems can provide insights to develop a better

aggregation scheme for future GNN studies.

36 3]

Chapter 4

Finding Heterophilic Neighbors via
Confidence-based Subgraph Matching

Graph Neural Networks (GNNs) have proven to be powerful in many graph-based
applications. However, they fail to generalize well under heterophilic setups, where
neighbor nodes have different labels. To address this challenge, we employ a
confidence ratio as a hyper-parameter, assuming that some of the edges are
disassortative (heterophilic). Here, we propose a two-phased algorithm. Firstly, we
determine edge coefficients through subgraph matching using a supplementary
module. Then, we apply GNNs with a modified label propagation mechanism to
utilize the edge coefficients effectively. Specifically, our supplementary module
identifies a certain proportion of task-irrelevant edges based on a given confidence
ratio. Using the remaining edges, we employ the widely used optimal transport to
measure the similarity between two nodes with their subgraphs. Finally, using the
coefficients as supplementary information on GNNs, we improve the label
propagation mechanism which can prevent two nodes with smaller weights from
being closer. The experiments on benchmark datasets show that our model alleviates

over-smoothing and improves performance.

37 r il

4.1 Introduction

The investigation of graph-structured data has gained significant attention in various
fields; physics [28], protein-protein interactions [26], and social networks [23].
Integrated with deep neural networks (DNNs) [45], graph neural networks (GNN5s)
have achieved state-of-the-performance by concurrently modeling node features and
network structures [73; 16; 42; 32; 81]. Specifically, the message passing plays an
important role by aggregating features from neighboring nodes [28]. Consequently,
GNNs often have shown the best performance in various tasks including semi-
supervised node classification and link prediction.

However, recent studies reveal that GNNs gain advantages of message passing
under limited conditions, e.g., high assortativity of subject networks [59]. In this paper,
we assume two types of networks; homophilic (assortative) ones where most edges
connect two nodes with the same label, and heterophilic graphs where the most
connections are disassortative. Most prior work on GNNs assumes that connected
nodes are likely to possess the same label, and thus, they fail to attain sufficient
performance for many real-world heterophilic datasets [66]. Many clever schemes
have been introduced to solve the problem. Some of them specify different weights
for each connection [81; 92; 2; 40], or remove disassortative edges [94; 22; 55]. Others
employ distant nodes with similar features [67; 93; 37] or apply different aggregation
boundary based on the central nodes [85]. Nonetheless, there is a question to be

addressed: is it necessary to specify different weights for GNNs?

38 3]

Ratio of remaining disassortative edges Ratio of remaining disassortative edges
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.0

1.0 0.0 1.0
|

L |
49.8 48.1 49.3 65 .

1.0
@
o

1.0

]] '
k) 80 2. A
T T ® 466 464 | 5L1 ~. \
v 0 ° 60 STa N
z 75 3 ~
g g *—o
© -
] - 53 484 495 500 s ~
© ® 55 -7 LT
= = - o
£ £ Pie .
€ L g« - ‘
: 65 £3 482 486 506 L - o
~ S
@ g 50 ~ P~ _‘_ R
- -60 - i “ .
SN- 659 612 589 586 620 615 o : 477 495 5.7 1 N B '
e o ~
8 8 ! . s
= 55 &€ 7 -45 N "N
Q- 550 503 498 485 511 511 9- 43 41 463 50.9 543 . '_ y
“s0 3
(@) (b) (c)

Figure 4.1 Node classification accuracy (%) of GCN on different datasets; (a) Cora, and (b)
Chameleon. For each graph, we randomly prune a certain proportion of assortative /
disassortative edges and plot their performance. We also describe a special case of (c) helpful
aggregation scenario under disassortative graphs.

To answer the above question, we conduct an investigation using two representative
datasets; one is an assortative citation network called Cora [58], and the other one is
Chameleon [72] which contains many disassortative links between Wikipedia web
pages. In Figure 4.1, we randomly prune a certain ratio of assortative / disassortative
edges and describe the node classification accuracy of GCN [42]. Through this study,
we observe two characteristics; (1) for Cora, the performance increases as the
assortative edges are maintained, while disassortative edges are removed. On the
contrary, Chameleon data is rather heterophilic and thus, the disassortative links play
an important role as the number of remaining assortative edges becomes smaller. To
analyze this result, we take Figure 4.1 (c) as an example. Though the graph is
heterophilic, two central nodes share the same types of neighborhoods (2 green, 1
yellow) that can contribute to distinguishing them from others [54; 57]. (2) the
removal of assortative edges has a greater impact on the overall performance than
disassortative ones. For example, the performance in Cora using the original graph is
79.8 % (top right). If we remove all disassortative edges, it attains 88.1 % (top left),

whereas eliminating assortative links becomes 51.1 % (bottom right). To summarize,

39 . H k: 1_'_” (=1]

we conjecture that removing a small proportion of assortative edges can be harmful,
and thus, assigning accurate weights are fundamental for GNNs. Now, the problem is;
how can we figure out these coefficients correctly and utilize them?

To achieve this, we focus on the GAM [78] that suggests a supplementary module
with label propagation. Specifically, the supplementary module of GAM only utilizes
a central node to debilitate noises. However, referring to Figure 4.1, excluding all links
of assortative and disassortative shows the lowest performance, which is the same as
GAM’s method. To solve this limitation, our supplementary module focuses on the
widely used optimal transport [69; 87; 60; 44] to measure similarity between two
subgraphs. In addition, we further apply a confidence ratio to deal with multiple
disassortative links. Then, considering these predictions as supplementary edge
coefficients, we apply label propagation [6] between a certain proportion of high
confident edges, while the others are considered disassortative and the connected
nodes are prevented from being similar. Our contributions can be summarized as
follows:

« We introduce a confidence-based subgraph matching to retrieve edge coefficients

accurately. Our model is scalable and generalizes well for both homophilic /
heterophilic graphs, which can be achieved by varying the values of the

confidence ratio.

« Assuming that a certain proportion of entire edges are disassortative, we improve
the label propagation to keep two nodes with a lower similarity score from being
closer. Specifically, we divide the edge coefficients into two parts, which can

guide the positive pairs to be similar and vice versa.

« We conduct extensive experiments on publicly available datasets to validate the
above suggestions. The ablation studies indicate the superiority of subgraph

matching techniques for retrieving class sharing probability.

40 } 7

4.2 Related Work

Graph neural networks (GNNs) have shown substantial improvement for semi-
supervised classification tasks. Most of them can be categorized into two types;
spectral-based and spatial-based methods. The first one utilizes structural information
of the entire graph through Laplacian decomposition [33] that requires high
computational costs O(n3). To reduce their complexity, GCN [42] suggests a first-
order approximation of Chebyshev polynomials [16] and utilizes features of
neighboring nodes by simply stacking convolutional layers. Ada-GNN [21] further
employs an adaptive frequency filter to capture different perspectives of nodes.
However, these algorithms inevitably aggregate noisy adjacent nodes, where they

assume two connected nodes are likely to share the same label.

Recently, some algorithms focus on the retrieval of edge coefficients using the node
features. For example, GAT [81] measures the relevance between two nodes by
applying an attention layer to their features. Similarly, Masked-GCN [92] estimates
attribute-wise similarity for precise propagation. GNN-Explainer [94] identifies the
set of important edges and features that maximize the mutual information of the final
prediction. Nonetheless, these methods may fail to generalize well under a
heterophilic graph, where the message passing inevitably makes two connected nodes

similar.

To solve this problem, FAGCN [2] selects whether to propagate low-frequency or
high-frequency signals by enabling edges to have negative coefficients. L2Q [85]
parameterizes the aggregation boundary of each node to deal with heterophily.
SuperGAT [40] differentiates between friendly and noisy neighbors based on their
homophily and node degrees. However, these methods also implicate noisy

information since they work as a downstream task of GNNs. Some argue that graph

41 3

sparsification [98; 18] is considerable for graph denoising. For example, PTDNet [55]
adopts nuclear norm to prune edges between communities. Yet, it also implicates risk
for pruning positive edges and is not powerful enough for classification compared to

classical GNNSs.

As another branch, non-local neural networks [83; 53] have gained increasing
attention for capturing long-range dependencies. Since previous GNNs only utilize
local adjacent nodes, they fail to deal with heterophilic graphs. Instead of directly
specifying coefficients, finding distant but similar nodes has increased the
representational power of GNNs. Specifically, Geom-GCN [67] further exploits
distant nodes within a specific boundary and executes grid-based aggregation. Simp-
GCN [37] mixes the original adjacency matrix with a feature-based similarity matrix
through learnable parameters. Nonetheless, they implicate two limitations. Firstly,
operating as a downstream task of GNNs may inevitably contain noisy information
after aggregation. Secondly, measuring relevance between two nodes can be biased

(or risky) under a semi-supervised setting that has few labeled samples [52].

Apart from retrieving edge coefficients, a strategy for utilizing this information is
also considerable. For example, P-reg [90] simply utilizes entire edges to provide
additional information for GNNs. NGM [6] integrates label propagation (LP) with
GNNs, while GAM [78] further parameterize edge coefficients. However, these
methods are highly localized and fail to discriminate less important edges under the
global aspect. Further, they show limited performance for precise prediction under our
experiments. Instead, we focus on pairwise matching between two subgraphs that are
independent of GNN modules. Using the mechanism of optimal transport (OT) [86;
44; 60], we integrate a confidence-based denoising network to secure robustness,

followed by our label propagation.

42 ¥]

4.3 Notations

Please refer to the definition of notations in Section 2.

4.4 Methodology

Figure 4.2 illustrates the overall architecture of our model which consists of two parts.
On the right side, we describe the GNN module with label propagation which takes
the predicted edge weights for training. The left one stands for the subgraph matching
that provides edge coefficients as supplementary information.

The two modules do not share loss or parameters and are updated independently. In
Section 4.4.1, we first introduce methodologies for retrieving edge coefficients,
followed by our subgraph matching module. In Section 4.4.2, we suggest strategies to

utilize these predictions effectively through label propagation.

4.4.1 Retrieving Edge Coefficients.

Recently, many efforts have been dedicated to specifying edge coefficients, and we
categorize them into two types. Firstly, in Section 4.4.1.1, we take previous methods
that only utilize central nodes for classification. Secondly, in Section 4.4.1.2, we
describe previous algorithms that further utilize the adjacent nodes for prediction.
Finally, we discuss the advantages and limitations of these methods and describe our

subgraph matching module in Section 4.4.1.3.

4.4.1.1 Retrieving Edge Coefficients using a Central Node.

43 !

These types of methods include message passing, but only a central node is used for
similarity measure, not a subgraph. With the slight abuse of notation, let us assume

the h;, h; as hidden representations of two nodes i, j.

Graph agreement model (GAM) [78] introduces an auxiliary model to predict a

same class probability w;; between two nodes i, j as below:
2
Wij = MLP((h; — h})). 4.1)

The MLP is a fully-connected network with non-linear activation. GAM works well
under the heterophilic graph since they do not utilize neighboring nodes. However, as
the homophily ratio of the graph increases, we notice that they show significantly
lower performance even compared to the plain GCN [42].

Graph attention network (GAT) [81] applies layer-wise attention as a downstream

task of GNN as below:

, explo(a'[Bi]I5]))
7 Zken, exp(ola [kl D)

(4.2)

GAT specifies different weights for each layer, where a'is a learnable vector at the / —
th layer. Compared to GAM, a softmax function normalizes the weights that are highly
dependent on the degree of each node, which makes it harder to determine their
importance. Further, the message passing can degrade the performance since the edge
coefficients w;; always maintain a positive value.

FAGCN [2] improves GAT from two perspectives; replacing softmax with degree-

based normalization, and adopting different activation function as below:

w; = tanh(a'[h}||h}]). 4.3)

44] L=

The main difference lies in fanh, where the negative value of coefficients can maintain
high-frequency signals. However, we notice that their accuracy decreases as the
homophily of networks increases (e.g., Cora), where all coefficients converged to a
positive value and fail to figure out heterophilic edges.

PTDNet [55] removes task-irrelevant edges by applying randomness € and decaying

factor y. Here, the coefficients w; can be derived as below:

wi; = o((loge' —log(l —€') + MLP(h}, hY))/v) (44

The random value follows € ~ Uniform(0,1), and decaying factor y depends on the

iteration number. They apply nuclear norm on the entire edges w to remove
connections between communities. However, we notice that randomness can impede
precise prediction, and nuclear norm does not always lead to optimal results.
Summarizing the above methodologies, prediction based on the central node
implicates two major problems. Firstly, excluding message passing (GAM) can lead
to over-fitting, where it contains limited information. Though other methods
incorporate neighboring nodes, the noisy neighbors also participate in the aggregation
process, which can impede robustness and incur over-smoothing issues [81]. Secondly,
directly employing the coefficients as an adjacency matrix is highly risky, where the
elimination of assortative edges hurts the overall performance of GNNs (please refer
to Figure 4.1). To solve these limitations, we focus on subgraph matching algorithms

which will be introduced in the upcoming section.
4.4.1.2 Retrieving Edge Coefficients using Subgraphs.

In this section, we describe some methods of measuring the similarity between two
subgraphs. Recently, applying optimal transport (OT) on subgraphs [69; 87] has

shown great improvement, which is a mathematical framework for measuring

45 } 7

distances (similarity) between objects. For example, let us assume two subgraphs

G;, G, that contain m,n nodes, respectively. Then, we can define transport (coupling)

matrix P € R™" between two subgraphs that meets P1,, = %1,,1 and PT1,, = %1,1.

The objective of OT is to find matrix P that minimizes the function below:

II}_%IIZS[QJ:..Q,'}PE'_;—EI”P]. 4.5)
iy

Here, S is a cost function and H(") is entropy regularized Kantorovich relaxation
with regularizer €. However, finding P;; for all pairs of (i, j) requires a high
computational cost.

Linear optimal transport [60] employ reference points » to solve the above limitation,
which can be retrieved through k-means clustering or calculating Wasserstein
barycenter [15] based on each class of training nodes. Here, elements that are assigned
to the same cluster (reference) are pooled together and thus, reducing the pair-wise

CxN

calculation. Specifically, matrix P € R“*" splits or assigns the entire node N to

references r (C stands for the number of reference points). P can be obtained through
multiple ways (e.g., Sinkhorn’s algorithm [76]), which calculates a relevance between
the inputs and reference points as below:

C N

p; =argmin Z ZPHH?} — hy|)? (4.6)
PP k=11=1

, where N;is the number of nodes in subgraph i. Let us assume the hidden

representations of two subgraphs as 4 € RV, h; &€ RV*F whose feature dimension

is F. Using p;” € RN, p* € RV in Equation 50 that splits the mass of subgraph

46 1] 2 +1 &l

hi,hj to multiple references /', h; € RE*F, one can measure their similarity through

matching function M (MLP) as below:

A TN A T

hi = pihi. hj=pjh; w

N '
wij = M, 1).

Monge map [44] does not split mass, while an injective mapping is applied for each

subgraph as follows:
K, = B(p}.hi), W, = B(pl, hj)

wij = M(h},).

(4.8)

Similar to linear optimal transport [60], each subgraph #4;,A; can be mapped to new

points 4';,h; € REF through optimal transport p* (please refer to Eq. 4.7). The

difference lies in a barycentric projection B that ensures no mass splitting (please read
this paper [44] for more details).

Using the insight of these methods [60; 44], the subgraph matching has the
advantage of using adjacent nodes for predictions. However, they also implicate a
limitation of handling noisy neighbors, since they utilize the entire nodes of the
subgraph to measure their similarity. To deal with this, we now introduce our method

that utilizes a confidence ratio as below.
4.4.1.3 Our subgraph Matching using a Confidence Ratio.

In Figure 4.2, we describe the overall architecture of our Confidence-based Subgraph
Matching. ConSM calculates a similarity between two subgraphs (probability of

sharing the same label) using optimal transport and confidence ratio as follows:

1. Sampling: We randomly sample two labeled nodes, whose labels can be the same

or different. For sampling, the size of the positive and negative pairs should be the

47 } 7

same to avoid a model being biased. We further utilize their 2-hop adjacent nodes

as inputs.

2. Prune: We measure a score of entire edges through reference points. Then, based

on a confidence ratio, we maintain top-k confident ones while removing others.

3. Map and aggregation: Given two subgraphs G;G;, we first map nodes to low-
dimensional embedding 4;/; and assign them to the nearest reference points r
through the Monge map. Then, we aggregate the nodes that belong to the same

reference points by pooling operation (e.g., mean).

4. Prediction: We measure the similarity of the two graphs and also retrieve the class

probability of a central node.

i o X o | yoTTTTTTT T |
oA ® @ o | S S
/ 12(/ A Q/ % I 1 1 I
— CEBE 6o o7 &0 e Fioem
/ g‘o map&aggregationo O prune \O’\'O ‘.,\ ‘u,‘l‘ QZ:"'O)(’ — 1 N | — —+1 N : — | Lenn
i @ : . 000 N N
¥ : g 1 | L 1 " |
B e 0 s Graph data ‘
by A O 1 - "‘. — forward pass — —» Backprop
\ o _4 O ;\1 l +
— map & aggregation @ .@O prune \./ P \ ,O&Oz
- O - o P Qb/ /8 /9\5
G graph Matching —_— -O X — (AL SUP
@ \& Go L O 5 \O

. Supplementary
[@ @ @ reference points G subyraph} edge weight

Figure 4.2 The overall framework of our model. It consists of two parts; one for the subgraph matching
module which generates supplementary edge coefficients, and the other one is the GNN module that utilizes
weights for label propagation.

Now, we describe the details of our method below.

Sampling. We adopt an auxiliary module for retrieving edge coefficients that are
independent of the GNN module. Here, two nodes are randomly sampled based on
their class. If two nodes share the same class (positive pair), we assume the label of

this pair as 1 and otherwise 0. To prevent a class imbalance problem, the same number

48 I _-' _"'_-II .-'.: =

of positive and negative pairs are sampled. Compared to GAM [78], we utilize the
subgraph of a central node (adjacent nodes within 2-hop) to improve prediction
accuracy.

Prune. Unlike previous method [34] that applied embedding — aggregation —
mapping, we suggest embedding — pruning — mapping — aggregation’ to handle
noisy edges. Specifically, we only utilize a certain proportion of edges based on their

scores and a confidence ratio ({). We first describe our scoring function. Using the

initial node features X, we can retrieve their low-dimensional embedding # € RM¥
through an encoder (MLP) as:

h = Encoder(X). 4.9)
Similarly, the embedding of reference points is » € R, which can be obtained

through class-wise averaging of training nodes. Then, we can measure a score (e.g.,

cosine similarity) S € R¥*Cbetween nodes / and references r as below:

S=h-rt (4.10)

, where the row of S represents a score of each node with respect to the reference
points. Given two nodes i, j, we can retrieve their similarity w;=S; - S;.
Consequently, the w of the entire edges can be obtained, and thus, we manage to
maintain top-k edges k = |{ % |E|] while removing others.

Map and aggregation. Using the remaining edges, the adjacency matrix can be
reconstructed. With the slight abuse of notation, given two nodes i,j and their
subgraphs G;,G;, we assume that their subgraph embedding 4;4; can be retrieved as

below:

hi = Encoder(Gi), hj = Encoder(Gj) (4.11)

49 7] 3 — 11

, which is similar to Equation 4.9. h; € R™F h; € R™F consists of m and n nodes,

respectively. Referring Equation 4.7 and 4.8, we can map each node in subgraph

through Monge map as below:

h; = B(p;, hi), h; =B(p}, hj) (4.12)

The h';,h'; €R CxF is the output of subgraph after mapping and aggregation. Though
linear OT 1is also considerable, we choose the Monge Map which shows the better
performance.

Prediction. Finally, using the concatenation of 4,4, as an input of matching

function M, we can estimate their similarity as below:
Wi :M(h:@h}) (4.13)

If two inputs share the same label, the value of w;; should be closer to 1, and otherwise

0. We further employ node classification function f{:) (MLP) to predict the label of
each subgraph’s central node h{ and h{, where L,; is negative log-likelihood

] 9
function:

Lsm=), lwijl+ D [wij=11+ Lo (f (). Yi)+ Ly (). Y)).
Yi#Y, Y=Y,
(4.14)

Our subgraph matching module can be trained through Equation 58, and we describe

the overall procedure in Algorithm 2.

50 1] 2 1]

Algorithm 2 Confidence-based Subgraph Matching

Require: Adjacency matrix A, initialized parameters fl5,r, number of entire training epochs K, learning ratio
Ensure: Supplementary edge coefficients w
1: for number of entire training epochs K, do

2: Get embedding of nodes

3: Get reference points » by averaging embedding of training
nodes per each class

4: Find top-k confident edges

5 Using the confident edges, reconstruct adjacency matrix
within 2-hop as A = A v A?

6: Sampling positive or negative node pair (7, j)

7: for each node pair (i, j) do

8: Find the subgraphs G; = A[i], G; = A[j], and obtain

their embedding h;. h;

9: Apply Monge map for each subgraph

10: Retrieve the edge coefficient through

11: Compute the loss Lg s using

12: Update 05, = Osas — 5=t

13 end for

14: end for

15: Calculate supplementary edge coefficients w using 65,,

4.4.2 GNNs with Supplementary Edge Weights.

Recent studies focus on the strategy to better utilize edge weights. For example, some
of them directly construct adjacency matrix [81; 55], while others employ label
propagation (LP) [6; 78; 82] on GNNSs to deal with uncertainty as below:

L =LoNN +ALLp. (4.15)

Lewvis a widely used loss function for semi-supervised node classification (e.g., GCN
[42]) that is defined as follows:

Y = safrmax(iﬂ'[ﬁxwulwl),

_ (4.16)
Lonn = LY. Y).

, where W is a learnable matrix. Though many recently proposed methods [81; 88; 43;

9; 2] are considerable for GNNs, here, we select GCN to show the efficacy of our

method. Back into Equation 4.15, 4 is a regularizer and L; p gives additional penalties

as below:

51 s - i)

o

Lip=m Z wijd (i, j)+az Z wijd (i, j)+as Z wiid(i, j). (4.17)

ijeLL ijeLU i,jelU

The notation {L,U} denotes labeled and unlabeled nodes, where LU means that only

a single node is labeled. w; € {0,1} is a binary value that represents a connection

between two nodes i, j, and d is a dissimilarity measuring function (e.g., cosine
similarity). Here, {a1,a2,a3} acts as a hyper-parameter. Recently, graph agreement
model (GAM) contemplates the limitation of fixed wj;, and substitute it as a
parameterized model w;; = g(X; X)), where g is a fully-connected networks. However,
these methods implicate two limitations. Firstly, they have shown inferior
performance for discriminating task-irrelevant edges under semi-supervised
learning. Secondly, the estimated w;; scales from zero to one, even making
disassortative nodes similar (P-reg [90] also implicates this limitation). Thus, we

improve Equation 4.17 as below:

LSUFCH(> wgdl)+ Y (1—UJij)(1—d(fe:,.f>))

1,j€ELUw;; >k i,JELU,w;; <k
4o (Z w;;d(i, 7) + Z (1 —w;)(1— d(’i:j))).
i jEUU wi; >k i, jEUUwi; <k
(4.18)

By sorting the score of entire edges w, we can retrieve a threshold & based on a given
confidence ratio. In Equation 4.18, weights w;; that are greater than k& are trained to
reduce dissimilarity d(i,j), while others are guided to be dissimilar 1 — d(i,j). Referring

to Equation 4.15, we replace L.p with our Lsyp and define L as below:

L =LoNN +ALsyp. (4.19)

52 _:|] 4

As described in GAM, we exclude edges between labeled nodes (i,j € LL) and set o

=1.0, 00 =

dataset.

0.5. We set 0.01 <4 <0.1 which is proportional to the disassortativity of

Algorithm 3 Overall Optimization of ConSM

Require: Initialized parameters fg); and 6/, number of en-

tire training epochs K., best validation score 3 = 0,
learning ratio 7

!
Ensure Trained parameters 99 A O

: for number of entire training epochs K. do

2: for training samples do

3: Compute the L5 using Eq 58

4: Update 0, = Osar — ?aajﬂf

5: end for

6: Retrieve edge coefficients w using 65, ,

7: for training samples do

8: Compute the L using Eq. 63

O: Compute the validation score [3
AL

10: Update 0, = 0g — 552

11: if 3 ; 3’ then

12: Save updated parameters 6

13: g =p

14 end for

15: Load 6, if exists

16: end for

>3 p '!H ,_r]H“"

LT

4.4.3 Optimization Strategy.

So far, we define losses of our subgraph matching with label propagation in Equation
4.19. Let us assume the parameters of the subgraph matching module fsi and the
GNN module 6 without sharing parameters. Here, we notice that our ConSM
implicates two limitations for optimization. Firstly, it is hard to determine whether the
subgraph matching module s is converged or not. Secondly, the predicted edge
coefficients may implicate uncertainty, which can impede the training of GNNs. To
solve this, in Algorithm 3, we suggest saving parameters 0’ only if it attains the best
validation score (line 13). Then, before we compute the loss of the next training
sample, we can load these parameters if they exist (line 14). Through this mechanism,
we can guide GNNs to achieve better performance apart from the uncertainty of

supplementary weights.

4.4.4 Computational Complexity Analysis.

The computational costs of our model can be divided into two parts. The first one is a
vanilla GCN [42] model whose complexity is known as O(|E[PGcn), where they are
proportional to the number of entire edges |E| and the size of learnable matrices PGCN.
The second term is our ConSM which computes the similarity between two subgraphs.
Instead of naively calculating Wasserstein distance O(n’*log(n)), we conduct linear
mapping [44] and measure Euclidean distance, which can be retrieved through simple
matrix multiplication. Consequently, our computational cost can be defined as
O(JE|Pcen + |[Em|Pconsm), where |Em| stands for the number of edges included in

sampled subgraph, and Pconsm is the set of parameters in subgraph matching module.

54 } 7

4.5 EXPERIMENTS

In this section, we compare our ConSM with several state-of-the-art methods using a
homophilic and heterophilic graph dataset. In particular, we aim to answer the
following research questions:

« RQ1: Does ConSM improves node classification accuracy compared to the state-

of-the-art approaches?

« RQ2: How much does ConSM accurately specify task-irrelevant edges in terms
of graph denoising?
« RQ3: Does the confidence ratio for the subgraph matching module affects the

overall classification result?

« RQ4: Can ConSM alleviates over-smoothing for stacking many layers effectively?

4.5.1 Dataset Description and Baselines.

Dataset description. We conduct investigations with the following publicly available
dataset. The statistical details are described in Table 3.1, where we categorize them
into two types; assortative and disassortative networks. The explanations of each

dataset are demonstrated below.

« Assortative networks. For assortative data, we adopt widely used benchmark
graphs; Cora, Citeseer, and Pubmed [42]. Here, each node represents a paper and
the edge denotes a citation between two papers. Node features stand for the bag-

of-words of paper, and each node has a unique label based on its relevant topic.

« Disassortative networks. We adopt Actor co-occurrence graph [80] and Wikipedia
network [72] as disassortative graphs. For Actor co-occurrence data, the node

stands for an actor, and the edges are co-occurrence on the same Wikipedia pages.

55 1

The node label denotes five types based on the keywords of an actor. Similarly,
the Wikipedia network consists of Chameleon and Squirrel, where the edges are
hyperlinks between web pages. The node features are several informative nouns

and we classify them into five categories based on their monthly traffic.

Baselines. Using the above datasets, we compare our method with the state-of-the-art

baselines. A brief explanation of these methods can be seen as follows:

« MLP [70] employs a feed-forward neural network that only utilizes a central node

for classification.

« GCN [42] is a traditional GNN models that suggests first order approximation of
Chebyshev polynomials [16] to localize spectral filters.

« DropEdge [71] randomly removes edges under a given probability to alleviate
over-fitting problem.
« GAT [81] specifies different weights between two nodes, while ignoring graph

Laplacian matrix.

 GIN [88] pointed out the limited discriminative power of GCN, suggesting a graph

isomorphism network that satisfies the injectiveness condition.

« APPNP [43] combines personalized PageRank with GCN that improves

prediction accuracy, while reducing computational complexity.
« GCNII [9] integrates identity mapping to redeem the deficiency of APPNP.

« GAM [78] adopts the graph agreement model under the assumption that not all

edges correspond to sharing the same label between nodes.

« H2GCN [99] suggests ego-neighbor separation and hop-based aggregation to deal
with heterophilic graph.

« FAGCN [2] further utilizes high-frequency signal beyond low-frequency

information in GNNSs.

56 7]

« PTDNet [55] proposes a topological denoising network to prune task-irrelevant

edges as a downstream task of GNNss.
4.5.2 Experimental Setup.

All methods are implemented in PyTorch Geometric’, with Adam optimizer (weight
decay 5e¢*) and proper learning ratio (1e*). We set the embedding dimension as 64
for all methods, but diversifying it can improve the overall performance [56]. Here,
we adopt 2 layers of GNNs for all baselines, while APPNP, GCNII, and GIN further
utilize 2 layers of fully-connected networks for classification. We apply ReLU as an
activation function except for PTDNet (Sigmoid is used here). The Softmax is applied
on the last hidden layers for classification. For all datasets, we randomly select 20
samples per class as a training set, and the rest is for validation and testing. The
performance is evaluated based on a test set accuracy that achieved the best validation

Score.

4.5.3 Results and Discussion (RQ1).

In Table 5 and 6, we describe experimental results of baselines and our method that
are conducted under homophilic / heterophilic datasets. Here, let us assume the

homophily ratio / as below:

- # of edges that mnnecf nodes with same label (4.20)
of entire edges

Results on homophilic graph datasets In Table 4.3, we first discuss performance on
three homophilic datasets, where most of the connected nodes share the same label.

We conduct experiments over 10 times and report the mean and variance of test

57 1] o 1

accuracy. We also describe the performance of MLP to show the influence of message
passing on graph datasets. Firstly, for methods that employ GCN as a backbone
(marked with 1), our approach achieves state-of-the-art performance on multiple
benchmark datasets. Specifically, our method outperforms GCN over 3.7 %, 5.2 %,
1.6 %, respectively. Among baselines, in Citeseer, DropEdge shows better
performance than GCN which has relatively low homophily than other networks.
Above all, APPNP and GAM achieve the best performance with the aid of label
propagation, followed by GAT adopting an attention mechanism. For our experiments,
GCNII shows lower performance than APPNP, which means that emphasizing the
identity feature is not suitable for homophilic data. The design choice of rest
algorithms (H2GCN, FAGCN, PTDNet) are for heterophilic graphs, where they fail to

achieve notable improvements over GCN.

Datasets Cora Citeseer Pubmed Datasets Actor Chameleon Squirrel
Hom. ratio (h) 0.81 0.74 0.8 Hom. ratio (k) 0.22 0.23 0.22
MLP 54.2 1059 53.7 +1.7% 69.7 10.4% MLP 27.9% 1119 412 1189 265 106%
GCN 80.5 +04% 675 +06% 784 1029 GCN 214 t06% 494 1079 331 1129
DropEdge’ 80.6 +0.4% 68.4 1059 78.3 103% DropEdge’ 219 142 492 Lo8% 31.0 1147
GAT 814 1049 69.3 1099 78.6 +05% GAT 23.2 108% 48.2 L1069 30.1 1099
GIN 782 102% 651 ro06% 76.8 108% GIN 23.6 c05% 40.1 379 23.0 21249
APPNP 821 4049 692 1079 78.7 +0.4% APPNP 21.7 1029 45.2 L1079 30.6 +07%
GCNII 81.1 1039 67.0 1049 78.5 L08% GCNII 25.7 1049 451 1059 288 Lo3%
GAMT 813 w069 704 +03% 792 1019 GAM' 217 z03% 495 zo05% 339 z04%
H>GCN 80.5 1929 68.9 1059 78.9 10249 H>GCN 228 1039 46.6 112% 298 L0749
FAGCN 815 +05% 68.6 +p2% 79.0 1019 FAGCN 269 1049 46.7 +06% 295 1079
PTDNet " 815 +07% 694 106% 76.9 +1.1% PTDNet" 215 1059 49.7 L0099 326 L0749
Ours" 83.6" 1039 71.2° 1029 79.6" 1014 Ours' 27.7 +0a4% 52.3% 104w 357" io05%
Table 4.3 (RQ1) Node classification accuracy Table 4.4 (RQ1) Node classification accuracy
(%) on homophilic citation networks. Bold* (%) on heterophilic citation networks. Bold*
symbol indicates the best performance, and symbol indicates the best performance, and
methods with 1 are built upon GCN. methods with { are built upon GCN.

58 7] '-'.':_-|-|' -
| |

In addition to the homophilic network, we conduct the experiments under
heterophilic data with the same settings and plot the results in Table 4.4. As can be
seen, these graphs are generally disassortative with a low homophilic ratio 4, which
can impede the advantages of message passing in GNNs. Surprisingly, MLP achieves
the best performance for Actor, followed by our ConSM, FAGCN, and GCNII. Given
that GCNII outperforms APPNP, we guess that a central node is highly important for
the Actor network. Nonetheless, these methods fail to outperform GCN for different
datasets. Instead, our method achieves the best accuracy on both Chameleon, and
Squirrel. Based on the results that GAM shows outstanding performance for this kind
of network, the supplementary model generalizes well under a heterophilic structured
dataset. Under our experiments, Ho-GCN, FAGCN, and PTDNet have shown to

achieve lower scores, which will be discussed in the upcoming section.

0.9 (a) Cora 0.300 (b) Actor
0.8 1 r\ 0.2751
0.7 1 0.250 1
> 0.6 1 > 0.2251
© ©
5 0.5 5 0.200 1
3 vt
<041 <0.1751
0.3 1 0.150
0.2 1 —— Validation 0.1251 —— \Validation
ps; TESE — Test
0.1— T y y T T T T T 0.100 +— T y T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
iterations iterations

Figure 4.3 (RQ1) Convergence analysis on (a) Cora, and (b) Actor. Each figure
contains validation (green) and test (red) accuracy of node classification.

To better understand the convergence of ConSM, in Figure 4.3, we describe
validation and test accuracy for training. The x-axis illustrates iterations, while the y-
axis is classification accuracy. As described in Algorithm 3, a single iteration is a

combination of training subgraph matching modules, followed by training GNN

59 ..:I] _I\.I_":_ T :

layers. Here, the validation and test accuracy vary significantly, but ConSM manages

to achieve better performance as iteration increases. This is because ConSM loads

parameters of the best validation score (please refer to Algorithm 3), which can

prevent the uncertainty of supplementary information precisely.

0.900

0.875

0.850

0.825

0 800

Fl-score

0.775

0.750

0.725

0.700

0.820

0.815

0.810

0 805

Fl-score

0.800

0.795

0.790

0.300

0.275

0.250

0.225

7 0. 200

Fl-score

0.175

0.150

0.125

0.100

(a) Cora, k=8551

7 GAM
N GAT
mmm FAGCN
= PTDNet
** Ours

GAM GAT FAGCN PTDNet

(c) Pubmed, k=70918

7 GAM
NG

=== FAGCN
4== PTDNet
* Ours

FAGCN PTDNet

(e) Chameleon, k =7779

GAM
GAT
FAGCN
PTDNet
Ours

/ N
N

R

GAM FAGCN PTDNet

0.800

0.775

0.750

0.725

0.700

Fl-score

0.675

0.650

0.625

0.600

0.26

Fl-score
o] o
N N N
N w »

o
N
[t

0.20

0.300

0.275

0.250

0.225

Fl-score
o
N
(=]
o

0.175

0.150

0.125

0.100

(b) Citeseer, k =6736

GAM
GAT
FAGCN
PTDNet
Ours

2181

GAM FAGCN PTDNet

(d) Actor, k=5707

GAM
GAT
FAGCN
PTDNet
Ours

BB
2 N

kD

T

FAGCN PTDNet

(f) Squirrel, k=46611

GAM
GAT
FAGCN
PTDNet
Ours

2111

GAM FAGCN PTDNet

Figure 4.4 (RQ2) We measure Fl-score to evaluate edge classification
performance on six graph datasets. Here, we adopt our model with four
baselines that specify edge coefficients.

60

11°

4.5.4 Edge Classification (RQ2).

To validate whether ConSM can predict edge coefficients correctly, we examine the
accuracy of our method and several state-of-the-art approaches. Here, we assume the
label of edges that connect two nodes with the same class as 1 and vice versa.

For each method, we sort their predicted coefficients and select k — ¢4 largest value
as a threshold, which is equal to the number of positive edges. Specifically, for (a)
Cora, #=0.81 and E = 10,558 (please refer Table 3 and 5), and thus, £ =[10,558%0.81]
which is described in Figure 4.4. We adopt F1-score that has shown to be effective for

binary classification as below:

2 X precision x recall
Fl-score =

precision + recall 4.21)

We first introduce some details of baselines, followed by a discussion on the
experimental results. (1) GAM: as described in Equation 45, the agreement model
generates the same class probability. We employ their edge coefficients with the best
validation result. (2) GAT: we exclude node-wise normalization (e.g., softmax), which
can be highly sensitive to the degree of central nodes. Then, using the representations
of the final hidden layer, we retrieve the attention value of the entire edges. Multihead
attention is applied for the front layers, while the final layer only employs single-head
attention. (3) FAGCN: they retrieve the coefficients following the Equation 47.
Similar to GAT, we exploit the attention values of the last hidden representations. The
hyper-parameters are tuned referring [2]. (4) PTDNet: similar to previous studies, we
adopt the generated graphs using final representations of GNNs. The hyper-
parameters are remaining the same as their implementationsS. (5) Ours: the
coefficients of our model can be retrieved through subgraph matching module.

In Figure 4.4, we can see that GAM shows the lowest performance for most graph

datasets, except for (d) Actor. It is not surprising since they only utilize a central node

61 ¥]

for a prediction. Here, GAT relatively outperforms GAM with the aid of message

passing and attention layer. Except for (a) Cora, FAGCN achieves better performance

than GAT, which describes the effectiveness of high-frequency signals. Notably,

PTDNet is not shown to be powerful enough, where the edge pruning between

communities fails to generalize on most graph datasets. Comparatively, our model

improves the Fl-score significantly for all datasets, which justifies the necessity of

confidence-aware subgraph matching.

Fl-score

0.270

0.265

0.260

0.255

0.250

Fl-score

0.245

0.240

0.235

—— Prediction

—— True homophily _

/‘

(a) Cora

e

0.4 0.6 0.8 10

Confidence ratio

(c) Pubmed

Prediction
—— True hemophily

N

0.4 0.6 0.8 1.0

Confidence ratio

{e) Chameleon

—e— Pradiction
—— True homaophily

\/H/\/'

0.4 0.6 0.8 1.0
Confidence ratio

0.77 ¢

0.76 1

0.751

Fl-scorg

0.74 1

0.731

072+

—a— Prediction
= True hemophily

0.2 0.4 0.6 o8 10

{b) Citeseer

T~

Confidence ratio

(d) Actor

0.250
0.245 1
0.2401
o 0.2351

o -
g. 0.2301

—
W 02251

0.2201

0.2151

0.210 +—
o

+— Prediction

\A True homophily

0.2 0.4 0.6 0.8 10

Confidence ratio

(f) Squirrel

0.275

0.270 1

0.265 1

0.260 1

Fl-score

0.255 1

0.250 1

—e— Pradiction
—— True homophily

0.243

0.2 04 0.6 0.8 1.0

Confidence ratio

Figure 4.5 (RQ3) We differentiate the confidence ratio of subgraph matching

module, and describe F1-score on six graph datasets
62

s - i)

& -

4.5.5 Parameter Sensitivity Analysis (RQ3).

In this section, we further measure edge classification scores by differentiating a
hyper-parameter of the subgraph matching module. To deal with heterophily, we
introduced a confidence ratio ({) to reflect data homophily, assuming that connected
nodes may not share the same labels. In Figure 4.5, we plot F1-score on six datasets
by varying ¢ from 0 to 1. We also describe true homophily ratio (please refer 4 in
Table 5 and 6) as blue lines. If { = 0, the supplementary module does not utilize
neighboring nodes for a prediction, while { = 1 means that it fully utilizes adjacent
nodes.

Here, a confidence ratio ({) that shows the best F1-score fairly aligns well with the
true homophily ratio %, and the selection of { is important for precise prediction.
Though ¢ = 0.5 is quite different from 4 = 0.22 for (d) Actor, we insist that
disassortative neighbors can also contribute to improving classifications, as we
described in Figure 4.1. Nonetheless, we admit that a choice of { is quite sensitive,

and may require human efforts to achieve the best accuracy.

(a) Cora (b) Chameleon

—o— GCN —e— GCN
—&— GAM —a— GAM
—— Ours —— Ours

Accuracy
o o
S S

o
>

o
w

o
N}
o
i
S

16

#ﬁme #&mwm
Figure 4.6 (RQ4) Evaluation on over-smoothing using (a) Cora, and (b)
Chameleon dataset. We plot the accuracy of two baselines and our method
using a different number of layers.

63 1] 2 +1 &l

4.5.6 Analysis on Over-smoothing (RQ4).

Over-smoothing is a fundamental problem for GNNs when stacking multiple layers
[47; 96]. Here, we scrutinize this phenomenon by differentiating the depth of layers
as {1, 2, 4, 8, 16}, and report the node classification accuracy on (a) Cora, and (b)
Chameleon. In Figure 4.6, we describe the results of GCN, GAM, and our ConSM.
GCN shows the best performance at 2 layers on both datasets. However, they degrade
slightly at 4 layers and dramatically decrease beyond it. This means that GCN itself
cannot alleviate the over-smoothing problem. Though GAM remains relatively stable
compared to GCN, they also suffer from smoothing when stacking more layers.
Comparatively, ConSM consistently achieves the best performance, and the accuracy
does not decrease severely for deeper layers (e.g., 16 layers). We suggest that the
integration of well-classified edge coefficients with label propagation effectively

controls this problem, which shows the effectiveness of our method.
4. 6 Conclusion

In this work, we suggest a confidence ratio to deal with multiple disassortative edges
for semi-supervised node classification. We pointed out the significance of
configuring edge weights precisely, and thus, we propose to measure the similarity
between two connected nodes using their subgraphs. Further, based on the
observations that directly applying the predicted weights are highly risky, we integrate
label propagation with our confidence ratio to secure robustness and improve the
overall performance. The extensive experiments for both homophilic and heterophilic

setups well describe the superiority of our model.

64 1

Chapter 5

Limitation of Real-world Graph

Datasets under Semi-supervised Setting

Previous research on Graph Neural Networks (GNNs) in semi-supervised settings has
mostly focused on finding suitable graph filters for both homophilic and heterophilic
graphs. While these techniques have proven effective, they can still suffer from
sparsity in initial node features, where they have only a few non-zero elements for
many graph datasets. This can result in overfitting of the first projection matrix (or
hyperplane), where the dimensions with zero inputs are not updated during training.
To address this issue, we propose a novel data augmentation strategy, which flips the
initial features and the hyperplane simultaneously. This creates additional training
space and leads to more accurate updates of the learnable parameters, thereby
improving robustness during inference while reducing the variance of predictions. To
the best of our knowledge, this is the first attempt to mitigate the overfitting problem
caused by input features. Our experiments on real-world datasets show that the
proposed technique can increase node classification accuracy by up to 40.2 %

compared to state-of-the-art baselines.

65

5.1 Introduction

Graph Neural Networks (GNNs) have gained a lot of attention due to the growing
availability of graphical data. By integrating node features with network structures,
GNNs have shown powerful abilities for node and graph embedding, resulting in
improved performance in downstream tasks [16; 42; 81]. Message-passing, which
aggregates features from neighboring nodes through repeated updates, is considered

a key component of GNNs [28].

GNNs generally perform well on homophilic graphs [59], where most connected

nodes are likely to have the same label. However, the inadequacy of message-passing
in heterophilic graphs has been identified in a recent study [67]. To solve this, various
solutions have been proposed, such as assigning different weights to edges [81; 92; 2;
40; 14], eliminating disassortative connections [55], embracing distant nodes with
high similarity as neighbors [94; 37], or adopting node-specific propagation with
trainable boundaries [85]. The proper aggregation scheme and extension of virtual
neighbors are clearly important for GNNs. However, we raise another question: are
there other factors beyond aggregation schemes?
Contrary to previous methods, our focus is on the training of weight matrices
(hyperplanes). We have observed that when the initial features have few non-zero
elements (e.g., bag-of-words representation), a shortage of training samples in semi-
supervised settings can result in the overfitting of specific dimensions in the first layer
parameters. This can negatively impact the quality of predictions for test nodes with
untrained features in those dimensions.

To optimize the first layer projection matrix better, we focused on perturbing the
initial features. As a common data augmentation technique, dimensional shifting

could be used which is commonly used in computer vision [75]. However, this was

66 1

found to be unsuitable for GNNs with bag-of-words features, as it would disrupt the
semantic information. Unlike convolutional neural networks, which promote local
invariance [95], GNNs use a multi-layer perceptron that is not translation invariant.
Adding noise to the inputs was also considered [100], but it was discovered that this
would incur several complex consequences, such as additional decoding requirements,
precise hyper-parameter selection, and normalization issues [7].

Our proposed solution involves flipping the initial features and parameters
simultaneously, which can ensure local invariance. This approach is inspired by
shifting parameters [41] and rotating neural networks [51] that preserve the volume
of gradients and initial features. We also utilize a dual-path network [11] that allows
paired operations in both the original and flipped spaces [52]. This flipping
mechanism can address the issue of zero gradients caused by sparse inputs and
enhance the semantic learning of each dimension. It’s worth mentioning that the
proposed algorithm is applicable to various schemes and can be integrated with
different message-passing algorithms.

In this paper, we apply the flipping mechanism to three popular methods; MLP,
GCN, and GAT. We observe that they achieve an average gain of 16.5 %, 24.2 %, and
17.8 % compared to the vanilla models, respectively. These results show that flipping
improves the overall performance significantly while securing robustness. The
contributions of this paper can be summarized as follows:

« We demonstrate that GNNs are highly sensitive to initial feature vectors and
their performance can be significantly improved through flip-based augmentation.
« We propose a flipping mechanism that transposes both the initial features and
hyperplane. Unlike previous methods that focus on aggregation schemes, our
approach examines back-propagation and provides precise guidance for each

component of a first hyperplane.

67 1

« The proposed flipping mechanism is orthogonal to the plane methods. By
applying it to MLP, GCN, and GAT, we develop three flipping variants. Through
extensive experiments on real-world benchmark graphs, the flipping variants

outperform all existing state-of-the-art baselines significantly.

Ego

A
A A

i
AL HS SIS A

s iosessresis

SRS AAHS S

LA

e Within 1-hop |
mm Within 2-hops

S Lok,

Citeseer Pubmed Actor Chameleon Wisconsin

v
el
=
3
o
o
o
S
- |
o

Figure 5.1 Initial feature distribution of benchmark graph datasets. The definition of value
z is described in Equation 5.1.

5.2 Preliminary

This section begins with the commonly used notations in Graph Neural Networks
(GNNs), which will be utilized throughout this paper. Next, we conduct an empirical
analysis to illustrate an overview of the feature distribution in benchmark datasets.
Finally, we introduce the mechanism of GNN from the perspectives of feature
projection and message-passing.

5.2.1 Notations.

Here, we separate the weight matrix for the first layer of the GNN into two parts, W,
and Wy where the subscripts o and f denote the original and flipped spaces,
respectively. Additionally, for gradient analysis, we take the symbol ¥ to represent
the partial derivative of the loss function. The goal of this work is to solve a node
classification task in a semi-supervised setting where only a subset of nodes V, C V

is labeled. Our goal is how to better utilize the given features to predict the classes of
unlabeled nodes Vy=V — V.

68

5.2.2 Empirical Analysis.

Given the node set S and their initial features X € R, the ratio of non-zero feature
dimension (z) in S can be defined as below:

|
EL",_I(I —dj,.0)

— —] — X . .
‘ dim(x) 7 Z ’ C-D

Firstly, we obtain j € RF by adding the feature vectors of subset node X,,. The number
of non-zero elements in vector j can be defined through the Kronecker delta function
8, where §; o =1 if the oM element in j is 0. Finally, we can retrieve z by dividing
the numerator into the feature vector dimension dim(x) = F.

In Figure 2, we display the z by varying the range of node set S from ego to their 2-
hop neighboring nodes. As seen, z increases with the range due to the availability of
more features during training. Additionally, the scale of z varies significantly for each
graph, dependent on the type of input (please refer to the dataset description in § 4.1).
In essence, the lower the value of z, the greater the performance improvement
obtained from flipping. To further examine this phenomenon, we provide a theoretical
explanation in terms of gradient update and variance reduction.

5.2.3 Graph Neural Network.
The basic form graph neural network is given by:
HY = g(H@ED), A = AHOW® (1> 1)

-

Y = softmaz(H)).

(5.2)

Previously, we defined A4 as an adjacency matrix that is used for message-passing.

With the slight abuse of notation, let us assume A =1 + D_%AD_% for the remaining
part of this paper, which is commonly used in GCN [42]. H") = X is an initial feature
of nodes and H® is their hidden representation at the /-th layer. H" can be retrieved
through an activation function o (e.g., ReLU). GNNs obtain the final prediction Ys, by
applying softmax on the final representation (H®)). Here, W is the trainable weight
matrices shared across all nodes. They are updated through negative log-likelihood
function (L) between the predicted Yy and true label Y as below:

69] 2 +1 &

Lann = Lo (i}? Y) (5:3)

Generally, GNNs focus on improving aggregation schemes to determine an
appropriate message-passing [81; 43; 9; 2]. For instance, GCN [42] uses a normalized
Laplacian matrix, while GAT [81] creates an aggregation matrix by calculating the
attention score between nodes. However, the exploration of input features has not been
given as much attention in prior studies, where we highlight the need for further
investigation below.

w —» GNN —» LENN]

Original Space

OmMeE T w

Flipped Space

w® — N —> hyy |
(a) Mechanism of Flipping (b) Overall Architecture of Flip-GNN

Figure 5.2 (a) Mechanism of flipping and (b) overall architecture of Flip-GNN.

5.3 Methodology

5.3.1 Motivation.

We first explain the limitation of generic GNNs. While appropriate aggregation
schemes are undoubtedly essential for efficient message-passing, as explained below,
this alone cannot solve the improper learning caused by sparsity in the initial features.
To be more specific, we can define the update of weight matrix W as below:

Vwnd = (AH{”)T Vaasy J, I=1,.. L. (5.4)

70 1] 2 +1 &l

The J = Lewwv is a full-batch loss defined in Equation 5.4. Intuitively, zero or small
valued components in 4 can obstruct the gradient flow between dissimilar nodes.
Nonetheless, there arises a problem when updating the parameters of initial layer:

vyl;'{ljr] = (AH{I})T Vg2 J
= (AX)T \ g (2) J.

(5.5)

Simply, the gradient of W is derived by differentiating J with respect to H®, where
the value of 4X determines the scale of a gradient. Thus, the gradients become zero
for certain dimensions with zero inputs (Vi € F: X; = 0 = Vg | = 0).

Now, we can see that the update of WV relies on the sparseness of the input features,
especially for zero elements. Because a deficiency in training samples is common in
semi-supervised settings, we focus on removing zeros in X and guide WV to learn the
precise meaning of each dimension.

Augmentation of input features. One may consider that shifting, an accepted
technique in computer vision, is a simple remedy to the inadequate gradient update
problem. To implement shifting, a small valued vector X;is added to the input features
as X = X + X;. Although shifting has been shown to improve the quality of the initial
features, it may not be applicable to GNNs, as multi-layer perceptron is not shift-
invariant, which can lead to decreased robustness. Additionally, shifting changes the
magnitude of an input, necessitating complex neural network normalization. Another
alternative could be magnitude-conserving rotation, but it may force some
components to take negative values.

5.3.2 Flipped Graph Neural Network.

We present a scheme that simultaneously flips both the feature vectors and the
hyperplane. If the original feature vector has elements in the range [0, 1], then its
symmetric transposition through pi1 = (0.5,...,0.5) will also lie in the same range (as
seen

in the hypercube in Figure 5.2 (a), which illustrates that a feature vector X, = (1,0,0)
1s transposed to Xy=(0,1,1). This is also applied to the hyperplane W, , where Figure
5.3 shows the original and flipped spaces in the upper and lower panels, respectively.

& 2 21l

In the proposed method, both spaces share the same parameters, while the initial
features and the first hyperplane are slightly tuned for each iteration. Here, we assume
GCN as a base model.

06 02 .. 04 ,,f’ﬁ\\\ 06 02 .. 04
4
P
it \\ Wil
wlij
T \ fr
I A
01 05 0.7 lf'- 01 05 0.7

B 1 |

I 0 | 40 Wi pad — 2d | —2d |

_________ d pa S —
Original space (W.") Flipped space {w}il}

Figure 5.3 (a) Distance d from W to p1. (b) W}l) is retrieved by padding -2d to
the last dimension of W),

Original space. As described in Figure 5.2 (b), the upper panel illustrates the plane
GCN. It takesX,and WS as inputs which are the zero-padded version of the initial
feature matrix X and the first hyperplane WV as below:

_(X oy W

Though the last dimension is only utilized in the flipped space, zero-padding is
required to ensure dimensional consistency as WV is utilized in both spaces. Now, we
can compute the loss J, = Levwv(Y, Y,) using Eq. 67 and 68, and update the parameters

W. Before introducing the flipped space, we first define a symbol p; = (0.5,...,0.5) €

R¥, which serves as an anchor point for flipping. While many points can be used as
an anchor (e.g., the mean of all nodes), we take the central point of F-dimensional

hypercube (1,...,1) € R as the anchor. Many graph datasets adopt bag-of-words

features, and their feature vectors correspond to the corners of the hypercube.

b Fa 1|
72 X 2

Flipped space. The flipped feature X transposes X through p1 (Fig. 5.3 a) and pads 1
as below:

We should also flip the first hyperplane WV by calculating a distance vector d € R
between WV and p; as:

o _ [wh - W)y[: 5
er —\ _94 , where d = Z (@ WY 4], (5.8)
1 =

where © is an element-wise product. As shown in Figure 5.3 (b),W}U 1s retrieved by
padding —2d to the last element, which makes the outputs of the two spaces origin-

symmetric to each other, i.e., X, Wo(l) = —X; Wf(l). This is why we flip the hyperplane
concurrently, as it preserves the pairwise distance of the hidden node representations.
Thus, after the first convolution layer, we should multiply o (AX VIC,(D) by a negative

constant before applying the next convolution layer to ensure consistency between the
two spaces as,

HY = —o(AX;W}Y) (5.9)

Through Eq. 5.9, the equality holds (V;:1 = 2 — H;l) = H(El)). Thus, the following

layer in the flipped space is identical to the one in the original space as below:

HY =@, gt = agPwh (1>2). 610
Finally, the loss L}; vy 1S given by:

E{;‘NN = Lau(Y, }’-’})j where ?f = S(thﬂl(l-.‘I;(ﬂ}L}). (5.11)

We describe the overall mechanism of our method in Alg. 4.

73

Algorithm 4 The overall mechanism of Flip-GCN

Require: Adjacency matrix A, node features X, parameters
fc, epoch K, best valid and test acc. v = & = 0,

learning rate=n

Ensure: Best test accuracy ¢’

1

10:
§ &
12:
13:
14:
15:
16:
17
18:
19:
20:

W & W D

for number of training epoch 2K do

Original space
for training samples do
Given X, and W.", retrieve the £2, » (Eq. 68)
k+1 _ pk OLL NN
Update 6,7 = 05 — 1) -——Qﬂaog
end for
Compute the validation = and test score &
if v >~/ then
v =7,0=9
Flipped space
for training samples do
Get flipped features X ¢ (Eq. 72)
Get flipped hyperplane W f(l) (Eq. 73)
Compute L{; v (Eq. 76)
f
Update 652 = 95+ — n%‘%‘%’{i
G
end for
Compute the validation « and test score o
if v >~ then
Y =7,0=29
end for

74

5.3.3 Optimization.

We define two loss functions in Eq. 5.3 and 5.11. Before gradient analyses, please
recall that the equation below holds

Vs = (AX)" 7 g Iy, HY = AX; WY, (1)

The above equation implies that the outputs (or gradients) of the two spaces are
equivalent after the second layers:

VW}E”JO — Vw}:}-}f (3 > 2). (5.13)

Like J,, the J; = L’;NN is a full-batch gradient in the flipped space. Though Sigmoid

or Tanh guarantees a perfect symmetry J, = J;, we employ ReLU for better
performance. Now, referring to Eq. 5.13, we define the gradients of the first
hyperplane WV on both spaces.

In the original space, update W, as,
Vwwdo = (AXo) 7 o Jo, HSY = AX,WED. (5.14)

In the flipped space, update W; as,
H? = o(AX,WV) = H? = —a(AX, W), s15)

Proof of convergence. Convergence is one crucial aspect of algorithm design. Here,
we show that our optimization guarantees the convergence of WV. If the activation
function ensures origin symmetry, we can redefine Eq. 5.14 and 5.15 as:

VW}E”J‘J = (AX)T Vﬂézl Jo,

T 5.16
vlfvﬁlj"]f = —(A(Q;Ul — X))j VH}Qj Jf. (5.16)

75 ¥ [-1 == —
-"'h.-l: -I|_|' 1_.]| '-'!_ 11

Here, the component-wise gradient of W is proportional to that of X and 2p; — X.

Also, it gets closer to a local optimum W;(l) as the iteration 7 continues:

E(Wy) — WiVJ2 o el (5.17)

since the two-layer neural networks with a ReLU activation converge to a local
.. . A0 @
minimum. Note that gradient VJ and parameters "o |- "W lare all bounded. These

properties guarantee the convergence of Flip-GNN [8]. Since the scale of gradients
depends on the number of activated dimensions, we adjust them using o,/ to stabilize
our model as below:

W, =W, —aVw, Jo,
Wi =W —Bvw, Js.

(5.18)

5.4 Theoretical Analysis

Data augmentation is closely related to empirical risk minimization, which can be
explained through the bias-variance tradeoff [10]. Here, we prove that flipping acts
as an augmentation strategy by generalizing the trainable parameters and reducing the
variance of predictions. Firstly, let us assume the plane estimator as g(X,) = GNN(X,),
which is trained only with the original feature X,, and the augmented network as g(X)

= GNN(X) that uses both features X = X, U X We can easily see that the function g

1s invariant to flipping since g(Xo, Wo) = g(X; Wy), where Xrpreserves the pair-wise
distance between nodes. Consequently, the bias term vanishes, where we can
decompose g(X) by the law of total variance as below:

Var(g(X)) = Var(E [g(X)]) + E [Var(g(X))]

= Var(g(X))+E[Var(g(X))]. (5.19)

Here, V ar(E[g(X)]) = V ar(g (X)) since they share the same marginal distribution.
Further, the difference of their mean, Wi(E[g(X)],E[g (X)]), which equals to the

76 ..:I] _I\.I_":_ T :

Wasserstein distance (e.g., L2) between two distributions is independent of the total
variance. Based on this observation, we can induce the condition below:

Var(g(X)) < Var(g(X)). (5.20)

Finally, we show the losses of two networks follow:
L(g(X))—L(g(X)) € =Eftr(Var(g(X))], 21

which means the performance gain of the augmented model over the plain method
depends on the variance reduction. One can induce a tighter bound of Eq. 5.19 and
5.21 using Loewner order [10], but we omit the detailed derivation for brevity.

5.5 Experiments

This section describes the experiments for the performance analysis. We focused our
efforts to find answers to the following research questions:

« RQI1: Does flipping effectively address the issue of multiple zero-valued
components in the features?

« RQ2: Does flipping ensure convergence?

« RQ3: How significant is the difference between the gradients from the original
and the flipped spaces?

« RQ4: How does the performance of flipping change as the number of training
samples increases?

77 1] o 1

Datasets Cora Citeseer Pubmed Actor Chameleon Squirrel Cornell Texas Wisconsin

Nodes 2,708 3,327 19,717 7,600 2,277 5,201 183 183 251
Edges 10,558 9,104 88,648 25944 33,824 211,872 295 309 499
Features 1,433 3,703 500 931 2,325 2,089 1,703 1,703 1,703
Classes 7 6 3 5 5 5 5 5 5

Training Nodes 140 120 60 100 100 100 25 25 25

Validation Nodes 1,568 2,207 18,657 3,750 1,088 2,550 79 79 113
Test Nodes 1,000 1,000 1,000 3,750 1,089 2,551 79 79 113

Table 5.1 Statistical details of nine benchmark datasets.

5.5.1 Datasets and Baselines.

Details of datasets. Our experiments are conducted on nine datasets whose statistical
details are described in Table 7. We also measure the assortativity of each dataset as

below:
- Z(i,j)e&' 1(Y; = YJ)

h
€]

(5.23)

« Cora, Citeseer, Pubmed [42] are citation networks. The node features in Cora
and Citeseer are binary bag-of-words while Pubmed consists of TF-IDF values.

« Actor [80] is an actor co-occurrence graph. The node feature encodes the
keywords in the actor’s Wikipedia web pages with binary values.

« Chameleon, Squirrel [72] are taken from Wikipedia web pages and have non-
zero positive or negative values. The maximum values in each dataset are 46.4
and 70.4 while the minimum values are -0.57 and -0.99, respectively, which might
not be suitable for our method.

« Cornell, Texas, Wisconsin contain web pages from cs departments of multiple
universities. The node features are binary bag-of-words like the citation networks.

Baselines. For evaluation, we employ several traditional methods including MLP [70],
GCN [42], DropEdge [71], and GIN [88]. Further, we compare GAT [81], GATVv2 [4],
APPNP [43], GCNII [9], H2GCN [99], and FAGCN [2] which are designed for
heterophilous graphs. Finally, some regularization-based algorithms like P-reg [90]
and Ortho-GCN [30] are compared here.

78 1] o2 1] &1

Datasets Cora Citeseer Pubmed Actor Chameleon Squirrel Cornell Texas Wisconsin

z(Eq. 1) 0.59 0.41 0.96 0.21 1.0 1.0 0.62 0.41 0.53
Homophily (Eq. 21) 0.81 0.74 0.8 0.22 0.23 0.22 0.11 0.06 0.16

MLP 532 Los5y 53.7 1179 69.7 Loa% 279 1119 412 L8y 26.5 1059 60.1 £109 65.8 L50% T35 L54%
GCNf 791 207w 675 103w 778 1o2w 204 1oew 494 forw 318 oo 394 1439 476 105y 405 119y
DropEdge! 790 1059 674 to2w 770 103w 202 1049 B9 Liag 309 sosw 467 1359 475 1oy 433 Lasu
Ortho-GCNT 80.6 Lga 69.5 Lg% 76.9 4 ga9 214 4169 46.7 195 313 Lg% 454 4 4ney 531 439 46.6 1551
GIN 773 Losy 66.1 Lggw 771 Lo~ 24.6 1os9 491 L7y 284 1509 429 4459 535 Lagy 38.7 Losu
GAT 80.1 2ogm 680 sgme 780 soum 225 1oz 469 Loge 308 Loom 420 taie 492 L. 458 Lsaq
GATv2 795 1055 674 106w 762 1059w 220 ya0% 483 1ouw 289 10w B0 i3y 525415y 41T s
APPNP 812 Lguy 68.9 Lgaw 790 104% 21.5 102% 450 Lo5% 303 Lo6w 498 435w 56.1 Lqgam 457 1179
GCNIIL 80.8 o7 690 L4y 788 1oa% 26.1 1193 45.1 Lg5m 28.1 Lqo73 625 Lg5% 693 45,5 63.2 L35
H,;GCN 795 Log% 674 Lo59 787 1o3% 258 4109 473 L9y 311 1oy 50.8 41570 66.3 L4y 615 L4y
Preg! 800 pgn 692 somm 174 soam 209 tosw 490 tgim 336" sogm 449 soim 585 siam 53T sagu
FAGCN 81.0 Lg3n 68.3 Lo 789 1o4% 20.7 10a8% 46.8 Lo 299 Los5% 46.5 L1179 538 L0 510 449
Flip-MLP 614 Lo70 603 Lo59 T4l Losy 3597 Losg 435 1109 285 sggq TOST paaq 7927 Lagq 8057 L5
vs MLP (+ %) +154 % +12.1 % +63% +28.7 % +23% +21% +17.3 % +20.4 % +95%

a, 3 1,01 1,1 1,0.01 0.1, 0.1 1.1 1.1 0.1, 0.1 0.1,0.01 1.1
Flip-GCN' 82.7 205w 724 toaw 792" so2w 286 1o3w S04 o590 324 Loy 494 16w 622 118w 523 sauy
vs GCN (+ %) +4.6 % +73% +1.8% +40.2 % +2.0% +19% +20.4 % +30.7 % +29.1 %
a, B 0.1, 0.01 0.01, 0.001 1,0.01 le % le? I, le? 1,0.01 1, le * T o 0.01, 0.001
vs GAT (+ %) +3.7% +71% +0.6 % +34.7 % +3.0% +3.6% +20.2 % +22.0% +19.0 %
a, 3 1,01 0.01, 0.001 1, 0.001 0.1, 0.1 1,0.1 1,1 0.1, le* 0.1,1e 0.1, 0.001

Table 5.2 (RQ1) Node classification accuracy (%) on nine benchmark datasets. Bold with an
asterisk (*) symbol indicates the best performance, and methods with 1 are built upon GCN. We
show «a, 8 that achieves the best accuracy (Eq. 5.18).

5.5.2 Results and Discussion (RQ1).

Flipping can be integrated into various neural networks. We apply it to three
representative models; MLP, GCN, and GAT. In Table 5.2, we observe that all flipping
variants (Flip-MLP, Flip-GCN, and Flip-GAT) perform significantly better than their
base models. Now, we analyze these results from two perspectives.

Performance gain of flipping is sensitive to the Z-value of each dataset. Since flipping
is designed to reduce overfitting caused by the sparsity in initial features, we can
presume that the non-zero element ratio (z-value) is the key factor that determines the
performance gains of flipping. Indeed, flipping attains larger performance gains on
low z-value datasets than on higher ones. For the three datasets with higher z-values
(Pubmed, Chameleon, and Squirrel), the advancement of flipping over their vanilla
models (e.g., Flip-MLP vs MLP) is relatively small. Nonetheless, the average gain of
flipping was 3 %, 1.9 %, and 2.4 %, respectively, indicating the effectiveness of
flipping even on datasets with large z-values.

On datasets with low z-values, three flipping variants obtain remarkable
advancements over their originals, achieving performance gains of 16.5 %, 24.2 %,
and 17.8 % on average. Notably, flipping methods perform best except for Squirrel

79 I k'.f_]-]"

(with high z-value and low homophily). This may imply that a slight perturbation to
the input features can have a greater impact than aggregation scheme modifications
under semi-supervised settings.

Relatedness between the homophily ratio and performance. Message-passing GNNs
utilize the homophily property commonly observed in graphs [50; 89]. In three
citation graphs, GNNs outperform Multi-Layer Perceptron (MLP) due to higher
homophily ratios in these graphs. However, in other datasets like Actor and three
WebKB networks, Flip-MLP achieves the best accuracy among the baselines
indicating that message-passing fails to generalize well in the presence of high
heterophily. The performance gain of Flip-MLP is higher than Flip-GNNs on
homophilic graphs, but GNNs benefit more from flipping on heterophilic graphs.
Although several baselines achieve notable performance, our flipping methods
outperform all of these algorithms on the overall datasets, demonstrating the
effectiveness across various GNN architectures.

5.5.3 Convergence Analysis (RQ2).

One may argue that flipping could negatively impact the stability of the algorithms
due to the operations in two spaces. Figure 5.4 illustrates the performance of vanilla
GCN and GAT compared to Flip-GCN in both spaces as a function of the number of
iterations. We show the results from four datasets only due to the limited space. The
performance of GCN (blue), GAT (pink), Flip-GCN (o) in the original space (red),
and Flip-GCN (f) in the flipped space (green) are depicted with different colors. The
x-axis represents the training epochs, and the y-axis shows the node classification
accuracy.

80 3]

(a) Cora

(b) Citeseer

0. 74
0.84
__‘\\ e - -f"__‘
0.72 A T e A
g / N ;\.«/"/;:_;/_’ —y
0.82 \ \\‘_;.-" . 0.70 !
- e)
- E g _': & _ —""“‘mg o
o - h [.
@ e o 068
5 080 ¢ 5 /
o 4 " . L o -
& ._.-' o Fa - . & o6 . Lo .
0.78 ' L' . R
064 -
. 2 GCN {3, . e~ GCN
GAT H GAT
076 +-- Flip-GCM (0) o.62 i +-- Flip-GCN (o0}
—+— Flip-GCN (f) —s— Flip-GCN (f)
T T T 0,60 v .
o 200 300 600 8OO 200 400 600 80O
Iterations lterations
(c) Chameleon (d) Squirrel
.60
055 4 0.34
0.50 P . a4
Rt P 032 A, A b
B e . e o
, 045 * = - R U e s
g A~ g vy g e L S S
5 040 A £ 030 o
4 f
< 035 < |
028 ."
0,30 4 - GCN ; .' #- GCN
f
GAT i GAT
0.25 -4 Flip-GCN (o) 026 J:' -4 Flip-GCN (o)
— —+— Flip-GCN {f) | —s— Flip-GCN (f)
& J
0.20 +—F r . v . . .
o 200 400 600 BOO 200 400 600 8OO
Iterations Iterations

Figure 5.4 (RQ2) Performance of GCN, GAT, and Flip-GCN for each
iteration. The performance of Flip-GCN is measured in the original (o) and
flipped (f) space, respectively.

Through this figure, we can see that the Flip-GCN achieves higher performance in
both spaces. On the Chameleon graph, we notice that Flip-GCN (f) surpasses the
baselines after 1000 epochs. Compared to GCN and GAT, the flip-based method
demonstrates stability and fast convergence, as seen in the Chameleon and Squirrel
datasets. The results confirm our analysis which asserts that flipping reduces the
variance of predictions as described in Section 5.4. Though we admit that the
performance gain of Flip-GCN is dependent on the type of initial features, flipping
leads to the faster and more stable convergence of the parameters. In conclusion, as a
data augmentation strategy, flipping leads to improved performance on datasets with

81

multiple zero elements while ensuring robustness, which is an important characteristic
in semi-supervised settings.

oo Original space
. s Ego (T1)
i —— Hop 1(T2)
., - Hop 2 (T3)
0.0004 i L] Others (T4)
\ |
4 i=960
0.0003 s y 4 g=3.9e"°
2 R l
= i
E H A
0 0.0002
0.0001
0.0000
o 100 200 00 400 500 600 roo BOO 200 1o0a
Iterations (i)
Flipped space
0008 éll—r i=0 +- Ego (T1)
| g=2.3e" —— Hop 1(T2)
) #- Hop 2 (T3)
0007 \ Others (T4)
000 ;—4‘
I|
‘T 0o \
o 1
T \
T noos \
= &
aooz
n,*\ i=960
.00z — U=0.98_6
Y \a—"&- " P o T
\ P & F WA 2 .
a0l ety Y e oy oot T b-‘-‘,«ﬁ\‘ ‘Bro—"\“ﬁﬁ%_o ool o
o 'I‘.:IFJ P.:II'J ’.I'-.ﬂ H:Il!- ‘-E:Il!- ﬁl‘!\'l 'ﬁlll! Hfl?ﬂ "I:Tﬂ 'Iﬂ;!fl)
Iterations (i)

Figure 5.5 (RQ3) Using the Cora dataset, we plot the magnitude of the first

projection matrix gradients and their standard deviation (o) during training
epochs (i).

5.5.4 Analysis of Gradients on Two Spaces (RQ3).

Figure 5.5 analyzes the gradient of the first projection matrix during the training phase
with the Cora dataset. We define four neighbor types applying different ranges of
neighboring: T1, T2, T3, and T4. T1 only consists of the features of the central node
(Ego). T2 and T3 include the features of 1-hop and 2-hop neighbors, respectively. T4

82 . H kl 1_'_” '

has the remaining feature. We prioritize the types from T1 to T4 to avoid overlapping

and double-counting of features (note that all 7 € R are binarized vectors).

In Figure 5.5, the average and standard deviation of gradients in two spaces are plotted.
In the original space (left), the largest gradient is given to features from T1 (red). This
1s due to the property of GCN, where the gradients generally decrease w.r.t. the hop
counts. Also, the features in T4 (orange) have the smallest values, suggesting that they
are mostly excluded during training, while only slight updates by weight
regularization. On the other hand, in the flipped space (right), all types tend to have a
similar magnitude with a small deviation (o). The results indicate that most
dimensions are updated during training in the flipped space.

Dataset Cora Chameleon Cornell
L/C 20 40 80 20 40 20 5 10 20
z 0.59 0.76 0.91 1 1 1 0.62 0.72 0.84
MLP 53.2 56.9 62.1 41.2 46.3 49,1 60.1 68.8 73.3
MLP+F 614 65.5 70.4 43.5 49.9 51.8 70.5 86.4 95.8
GCN 79.1 82.8 83.4 49.4 53.5 55.7 394 50.7 533
GCN+F 82.7 84.5 85.5 504 54.1 55.9 49.4 54.9 T2.8
GAT 80.1 82.4 83.0 46.9 524 54.1 42.1 48.9 53.3
GAT+F 83.1 84.0 84.6 48.3 52.9 544 51.9 59.5 64.4

Table 5.3 (RQ4) Node classification accuracy (%) w.r.t. the different number of training
samples. The symbol (+F) means that flipping is applied on a base method.

5.5.5 Varying the Size of Training Samples (RQ4).

In this experiment, we aim to investigate the impact of labeled sample size on
performance. Table 5.3 displays the z-value of ego nodes varying the number of
labeled nodes per class (L/C) for three graphs. Here, we adjust the number of training
samples to analyze the effect of the size of labeled nodes on performance.

Firstly, we can see that GCN and GAT outperform MLP for Cora and Chameleon,
while MLP surpasses two models in the Cornell dataset. Apart from this, we observe
that the performance improvement from flipping decreases as the L/C increases. This
is because, as more training nodes are available, the initial features start to cover most
dimensions (high z-value) and the plain models can effectively update the first weight
matrix without flipping.

83 1

In the Chameleon graph, flipping does not have a significant impact on performance
as the number of samples increases. This is because the initial features of the dataset
contain many non-zero components and have high maximum values. And as the
number of labeled nodes increases, the performance of the vanilla also increases. The
same trend can be observed for GAT, where the performance gap between GAT and
GAT+F becomes smaller as the number of labeled nodes per class (L/C) increases.
However, flipping still improves the performance of the base models in other graphs
(Cora and Cornell) significantly.

(a) Cora (b) Cornell

10 1071 10— 10~* 10 10t 10— 10-*

56
49.7

8 L. 526 53.1 50,7 50.9
© o
= 76 =
=3 = - 52
o]
™ L - 518 51.1 50.4 49.5
- Te - 50
70 L 417 50.3 51.6 49.8
2
- 48
beta beta

Table 5.6 (RQ4) Parameter sensitivity analysis using Flip-APPNP as a base model

5.5.5 Varying the Size of Training Samples (RQ5).

We investigated how two hyperparameters, ¢ and f in Eq. 21, affect the overall
performance of our model. In Figure 8, we illustrate the node classification accuracy
of Flip-APPNP by changing « and S (relative weights of the gradient in two types of
spaces) through grid search. As can be seen, we employ two types of datasets: Cora
and Cornell. Flip-APPNP generally outperforms plain APPNP when « is close to 1.
Since the original space allows for fast optimization with a small number of elements,
the performance decreases in proportion to a. Furthermore, we noticed that assigning
small values to f§ achieves better performance, where the scale of gradients in a flipped
space is generally larger than the original ones (please refer to Fig. 7).

84 . x;,x_‘| ri]_H -

5.6 Related Work

Graph Neural Networks. Generally, GNNs can be divided into two categories:
spectral-based and spatial-based. Spectral-based GNN is based on the mathematical
foundation for graph convolution in the spectral domain using the Laplacian matrix
[5; 16; 21]. On the other hand, spatial-based GNNs aggregate information from local
neighborhoods from a spatial perspective, leading to the development of many
aggregation schemes for handling noisy connections [81; 67; 99; 13; 2]. The issue of
sparse initial features, however, has not received much attention in the literature.

Generalization of neural networks. In the field of neural network generalization, many
approaches have been proposed [8; 25; 84]. Several suggested the normalization of
deep neural networks [35] while others applied regularization to all adjacent nodes
[90] or integrated label propagation to give further information [82]. More recently,
the orthogonal GCN [30] attacks the gradient vanishing problem at the initial few
layers of GNNs. RawlsGCN [38] claims the unfairness of gradient update which is
biased to nodes with a large degree. Though these methods show notable
improvements under the semi-supervised scenario, they fail to solve the problem that
is inherently occurred by a characteristic of initial features. In this paper, we solve this
problem through a simple yet effective method, flipping.

5.7 Conclusion

Existing GNNs have primarily focused on optimizing the aggregation strategy while
neglecting the type of initial features. In this paper, we examine the correlation
between zero elements in input vectors and their impact on the first layer of neural
networks. We introduce a co-training approach that involves learning the gradient
flows in both the original and flipped spaces, and adaptively adjusting the parameters.
Additionally, we provide a theoretical understanding that flipping reduces prediction
variance while maintaining stable convergence. By incorporating flipping into three
base methods, we observe an improvement in node classification accuracy,
demonstrating that our approach is scalable and effective. In future work, we hope to
apply flipping to other variations of GNNs to enhance their performance.

85 1

Bibliography

[1] BARANWAL, A., FOUNTOULAKIS, K., AND JAGANNATH, A. Graph

convolution for semi-supervised classification: Improved linear separability and out-

of-distribution generalization. arXiv preprint arXiv:2102.06966 (2021).

[2] BO, D., WANG, X., SHI, C., AND SHEN, H. Beyond low-frequency
information in graph convolutional networks. arXiv preprint arXiv:2101.00797

(2021).

[3] BODNAR, C., DI GIOVANNI, F., CHAMBERLAIN, B. P, LIO", P., AND
BRONSTEIN, M. M. Neural sheaf diffusion: A topological perspective on heterophily
and oversmoothing in gnns. arXiv preprint arXiv:2202.04579 (2022).

[4] BRODY, S., ALON, U., AND YAHAY, E. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491 (2021).

[5] BRUNA, J., ZAREMBA, W., SZLAM, A., AND LECUN, Y. Spectral
networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

(2013).

[6] BUI, T. D., RAVI, S., AND RAMAVAJJALA, V. Neural graph learning:
Training neural networks using graphs. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining (2018), pp. 64—71.

[7] CAL T, LUO, S., XU, K., HE, D., LIU, T.-Y., AND WANG, L. Graphnorm:
A principled approach to accelerating graph neural network training. In International

Conference on Machine Learning (2021), PMLR, pp. 1204—-1215.

[8] CHEN,J.,ZHU, J., AND SONG, L. Stochastic training of graph convolutional
networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017).

86 1

[9] CHEN, M., WEI, Z., HUANG, Z., DING, B., AND LI, Y. Simple and deep
graph convolutional networks. In International Conference on Machine Learning

(2020), PMLR, pp. 1725-1735.

[10] CHEN, S., DOBRIBAN, E., AND LEE, J. H. A group-theoretic framework
for data augmentation. The Journal of Machine Learning Research 21, 1 (2020),
9885-9955.

[11] CHEN, Y., LI J., XIAO, H., JIN, X., YAN, S., AND FENG, J. Dual path

networks. Advances in neural information processing systems 30 (2017).

[12] CHEN, Z., MA, T., AND WANG, Y. When does a spectral graph neural
network fail in node classification? arXiv preprint arXiv:2202.07902 (2022).

[13] CHIEN, E., PENG, J., LI, P, AND MILENKOVIC, O. Adaptive universal
generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988 (2020).

[14] CHOI, Y., CHOI, J., KO, T., BYUN, H., AND KIM, C.-K. Finding
heterophilic neighbors via confidence-based subgraph matching for semi-supervised
node classification. In Proceedings of the 31st ACM International Conference on

Information & Knowledge Management (2022), pp. 283-292.

[15] CUTURI, M., AND DOUCET, A. Fast computation of wasserstein
barycenters. In International conference on machine learning (2014), PMLR, pp. 685—

693.

[16] DEFFERRARD, M., BRESSON, X., AND VANDERGHEYNST, P.
Convolutional neural networks on graphs with fast localized spectral filtering.

Advances in neural information processing systems 29 (2016).

87 1

[17] DERR,T., MA, Y., AND TANG, J. Signed graph convolutional networks. In
2018 IEEE International Conference on Data Mining (ICDM) (2018), IEEE, pp. 929—
934.

[18] DESAI, U.,, BANDYOPADHYAY, S., AND TAMILSELVAM, S. Graph
neural network to dilute outliers for refactoring monolith application. In Proceedings

of the AAAI Conference on Artificial Intelligence (2021), vol. 35, pp. 72—-80.

[19] DEVRIES, T., AND TAYLOR, G. W. Learning confidence for out-of-
distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018).

[20] DI GIOVANNI, F., ROWBOTTOM, J., CHAMBERLAIN, B. P,
MARKOVICH, T., AND BRONSTEIN, M. M. Graph neural networks as gradient
flows. arXiv preprint arXiv:2206.10991 (2022).

[21] DONG,Y., DING, K., JALAIAN, B.,JI, S., AND L1, J. Graph neural networks
with adaptive frequency response filter. arXiv preprint arXiv:2104.12840 (2021).

[22] ENTEZARI, N., AL-SAYOURI, S. A., DARVISHZADEH, A., AND
PAPALEXAKIS, E. E. All you need is low (rank) defending against adversarial
attacks on graphs. In Proceedings of the 13th International Conference on Web Search

and Data Mining (2020), pp. 169-177.

[23] FAN,W,MA, Y, LI, Q. HE, Y., ZHAO, E., TANG, J., AND YIN, D. Graph
neural networks for social recommendation. In The world wide web conference

(2019), pp. 417-426.

[24] FANG, Z., XU, L., SONG, G., LONG, Q., AND ZHANG, Y. Polarized graph
neural networks. In Proceedings of the ACM Web Conference 2022 (2022), pp. 1404—
1413.

88 3]

[25] FENG, J.,, AND SIMON, N. Sparse-input neural networks for high-
dimensional nonparametric regression and classification. arXiv preprint

arXiv:1711.07592 (2017).

[26] FOUT, A., BYRD, J., SHARIAT, B., AND BEN-HUR, A. Protein interface
prediction using graph convolutional networks. Advances in neural information

processing systems 30 (2017).

[27] FRIEDKIN, N. E. A structural theory of social influence. Cambridge
University Press, 1998.

[28] GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., VINYALS, O., AND
DAHL, G. E. Neural message passing for quantum chemistry. In International

conference on machine learning (2017), PMLR, pp. 1263-1272.

[29] GUO, C., PLEISS, G., SUN, Y., AND WEINBERGER, K. Q. On calibration
of modern neural networks. In International conference on machine learning (2017),

PMLR, pp. 1321-1330.

[30] GUO, K., ZHOU, K., HU, X., LI, Y., CHANG, Y., AND WANG, X.
Orthogonal graph neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence (2022), vol. 36, pp. 3996—4004.

[31] GUO, Y., AND WEI, Z. Clenshaw graph neural networks. arXiv preprint
arXiv:2210.16508 (2022).

[32] HAMILTON, W., YING, Z., AND LESKOVEQC, J. Inductive representation
learning on large graphs. Advances in neural information processing systems 30

(2017).

89 3]

[33] HAMMOND, D. K., VANDERGHEYNST, P., AND GRIBONVAL, R.
Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (2011), 129-150.

[34] HUANG, J., SHEN, H., HOU, L., AND CHENG, X. Signed graph attention
networks. In International Conference on Artificial Neural Networks (2019), Springer,

pp. 566-577.

[35] HUANG, L., QIN, J., ZHOU, Y., ZHU, F.,, LIU, L., AND SHAO, L.
Normalization techniques in training dnns: Methodology, analysis and application.

arXiv preprint arXiv:2009.12836 (2020).

[36] HUANG, T., WANG, D., AND FANG, Y. End-to-end open-set semi-
supervised node classification with out-ofdistribution detection. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, [JCAI22 (2022),
[JCAL

[37] JIN, W.,, DERR, T., WANG, Y., MA, Y., LIU, Z., AND TANG, J. Node
similarity preserving graph convolutional networks. In Proceedings of the 14th ACM

International Conference on Web Search and Data Mining (2021), pp. 148— 156.

[38] KANG,]J.,ZHU, Y., XIA, Y., LUO, J., AND TONG, H. Rawlsgcn: Towards
rawlsian difference principle on graph convolutional network. In Proceedings of the

ACM Web Conference 2022 (2022), pp. 1214-1225.

[39] KENDALL, A., AND GAL, Y. What uncertainties do we need in bayesian
deep learning for computer vision? Advances in neural information processing

systems 30 (2017).

[40] KIM, D., AND OH, A. How to find your friendly neighborhood: Graph
attention design with self-supervision. arXiv preprint arXiv:2204.04879 (2022).

90 1

[41] KIM, H., RASCH, M., GOKMEN, T., ANDO, T., MIYAZOE, H., KIM, J.-J.,
ROZEN, J., AND KIM, S. Zero-shifting technique for deep neural network training
on resistive cross-point arrays. arXiv preprint arXiv:1907.10228 (2019).

[42] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[43] KLICPERA, J., BOJCHEVSKI, A., AND GUNNEMANN", S. Predict then
propagate: Graph neural networks meet personalized pagerank. arXiv preprint

arXiv:1810.05997 (2018).

[44] KOLOURI, S., NADERIALIZADEH, N., ROHDE, G. K., AND
HOFFMANN, H. Wasserstein embedding for graph learning. arXiv preprint
arXiv:2006.09430 (2020).

[45] LECUN,Y., BENGIO,Y.,AND HINTON, G. Deep learning. nature 521, 7553
(2015), 436444,

[46] LEI R., WANG, Z., LI, Y., DING, B., AND WEI, Z. Evennet: Ignoring odd-
hop neighbors improves robustness of graph neural networks. arXiv preprint

arXiv:2205.13892 (2022).

[47] LI Q., HAN, Z., AND WU, X.-M. Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI conference on

artificial intelligence (2018).

[48] LI X., ZHU, R., CHENG, Y., SHAN, C., LUO, S., LI, D., AND QIAN, W.
Finding global homophily in graph neural networks when meeting heterophily. arXiv

preprint arXiv:2205.07308 (2022).

[49] LI Y., AND YUAN, Y. Convergence analysis of two-layer neural networks

with relu activation. Advances in neural information processing systems 30 (2017).

91 ¥]

[50] LIM, D., HOHNE, F,, LI, X., HUANG, S. L., GUPTA, V., BHALERAO, O.,
AND LIM, S. N. Large scale learning on non-homophilous graphs: New benchmarks

and strong simple methods. Advances in Neural Information Processing Systems 34

(2021), 20887-20902.

[51] LIN, M., JI, R., XU, Z., ZHANG, B., WANG, Y., WU, Y., HUANG, F., AND
LIN, C.-W. Rotated binary neural network. Advances in neural information

processing systems 33 (2020), 7474—7485.

[52] LIU, H., HU, B., WANG, X., SHI, C., ZHANG, Z., AND ZHOU, J.
Confidence may cheat: Self-training on graph neural networks under distribution shift.

In Proceedings of the ACM Web Conference 2022 (2022), pp. 1248-1258.

[53] LIU, M., WANG, Z., AND JI, S. Non-local graph neural networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2021).

[54] LUAN,S.,HUA, C.,LU, Q.,ZHU, J., ZHAO, M., ZHANG, S., CHANG, X.-
W., AND PRECUP, D. Is heterophily a real nightmare for graph neural networks to
do node classification? arXiv preprint arXiv:2109.05641 (2021).

[55] LUO,D., CHENG, W., YU, W,, ZONG, B., NI, J., CHEN, H., AND ZHANG,
X. Learning to drop: Robust graph neural network via topological denoising. In
Proceedings of the 14th ACM International Conference on Web Search and Data
Mining (2021), pp. 779-787.

[S6] LUO,G., LLJ., SU,J., PENG, H., YANG, C., SUN, L., YU, P. S., AND HE,
L. Graph entropy guided node embedding dimension selection for graph neural

networks. arXiv preprint arXiv:2105.03178 (2021).

[57] MA, Y., LIU, X., SHAH, N., AND TANG, J. Is homophily a necessity for
graph neural networks? arXiv preprint arXiv:2106.06134 (2021).

92 ¥]

[58] MCCALLUM, A. K., NIGAM, K., RENNIE, J., AND SEYMORE, K.
Automating the construction of internet portals with machine learning. Information

Retrieval 3, 2 (2000), 127-163.

[59] MCPHERSON, M., SMITH-LOVIN, L., AND COOK, J. M. Birds of a
feather: Homophily in social networks. Annual review of sociology 27, 1 (2001), 415—
444,

[60] MIALON, G., CHEN, D., D’ASPREMONT, A., AND MAIRAL, J. A
trainable optimal transport embedding for feature aggregation and its relationship to

attention. arXiv preprint arXiv:2006.12065 (2020).

[61] MOON,]J., KIM, J., SHIN, Y., AND HWANG, S. Confidence-aware learning
for deep neural networks. In international conference on machine learning (2020),

PMLR, pp. 7034-7044.

[62] MUKHERIJEE, S., AND AWADALLAH, A. Uncertainty-aware self-training
for few-shot text classification. Advances in Neural Information Processing Systems

33 (2020), 21199-21212.

[63] NEWMAN, M. E. Assortative mixing in networks. Physical review letters 89,
20 (2002), 208701.

[64] NT, H.,, AND MAEHARA, T. Revisiting graph neural networks: All we have
is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

[65] OONO, K., AND SUZUKI, T. Graph neural networks exponentially lose
expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019).

[66] PANDIT, S., CHAU, D. H., WANG, S., AND FALOUTSOS, C. Netprobe: a
fast and scalable system for fraud detection in online auction networks. In Proceedings

of the 16th international conference on World Wide Web (2007), pp. 201-210.

93 1

[67] PEIL H., WEI, B., CHANG, K. C.-C., LEI Y., AND YANG, B. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020).

[68] PERRY, C. Machine learning and conflict prediction: a use case. Stability:
International Journal of Security and Development 2, 3 (2013), 56.

[69] PEYRE’, G.,, CUTURI, M., ET AL. Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine Learning 11, 5-6

(2019), 355-607.

[70] POPESCU, M.-C., BALAS, V. E., PERESCU-POPESCU, L., AND
MASTORAKIS, N. Multilayer perceptron and neural networks. WSEAS
Transactions on Circuits and Systems 8, 7 (2009), 579-588.

[71] RONG, Y., HUANG, W., XU, T., AND HUANG, J. Dropedge: Towards deep
graph convolutional networks on node classification. arXiv preprint

arXiv:1907.10903 (2019).

[72] ROZEMBERCZKI, B., DAVIES, R., SARKAR, R., AND SUTTON, C.
Gemsec: Graph embedding with self clustering. In Proceedings of the 2019
IEEE/ACM international conference on advances in social networks analysis and

mining (2019), pp. 65-72.

[73] SCARSELLI F., GORI, M., TSOI, A. C., HAGENBUCHNER, M., AND
MONFARDINI, G. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

[74] SHANNON, C. E. A mathematical theory of communication. The Bell system
technical journal 27, 3 (1948), 379-423.

94 } 7

[75] SHUIE, J., PING, W., PEIYIL, J., AND SIPING, H. Research on data
augmentation for image classification based on convolution neural networks. In 2017

Chinese automation congress (CAC) (2017), IEEE, pp. 4165—4170.

[76] SINKHORN, R., AND KNOPP, P. Concerning nonnegative matrices and
doubly stochastic matrices. Pacific Journal of Mathematics 21, 2 (1967), 343-348.

[77] SONG, Z.,ZHANG, Y., AND KING, I. Towards an optimal asymmetric graph
structure for robust semi-supervised node classification. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022), pp.
1656-1665.

[78] STRETCU, O., VISWANATHAN, K., MOVSHOVITZ-ATTIAS, D.,
PLATANIOS, E., RAVI, S., AND TOMKINS, A. Graph agreement models for semi-

supervised learning. Advances in Neural Information Processing Systems 32 (2019).

[79] SUN, Y., DENG, H., YANG, Y., WANG, C., XU, J., HUANG, R., CAO, L.,
WANG, Y., AND CHEN, L. Beyond homophily: Structure-aware path aggregation
graph neural network. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22 (7 2022), L. D. Raedt, Ed.,
International Joint Conferences on Artificial Intelligence Organization, pp. 2233—

224(0. Main Track.

[80] TANG,J., SUN, J., WANG, C., AND YANG, Z. Social influence analysis in
large-scale networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (2009), pp. 807-816.

[81] VELICKOVIC, P,, CUCURULL, G., CASANOVA, A., ROMERO, A., LIO,
P., AND BENGIO, Y. Graph attention networks. stat 1050 (2017), 20.

[82] WANG, H., AND LESKOVEC, J. Unifying graph convolutional neural
networks and label propagation. arXiv preprint arXiv:2002.06755 (2020).

95 3]

[83] WANG, X., GIRSHICK, R., GUPTA, A., AND HE, K. Non-local neural
networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition (2018), pp. 7794-7803.

[84] WANG, X., LIU, H., SHI, C., AND YANG, C. Be confident! towards
trustworthy graph neural networks via confidence calibration. Advances in Neural

Information Processing Systems 34 (2021), 23768-23779.

[85] XIAO,T.,CHEN, Z., WANG, D., AND WANG, S. Learning how to propagate
messages in graph neural networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (2021), pp. 1894-1903.

[86] XU, H., LUO, D., AND CARIN, L. Scalable gromov-wasserstein learning for
graph partitioning and matching. Advances in neural information processing systems

32 (2019).

[87] XU, H., LUO, D.,ZHA, H., AND DUKE, L. C. Gromov-wasserstein learning
for graph matching and node embedding. In International conference on machine

learning (2019), PMLR, pp. 6932-6941.

[88] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[89] YAN, Y., HASHEMI, M., SWERSKY, K., YANG, Y., AND KOUTRA, D.
Two sides of the same coin: Heterophily and oversmoothing in graph convolutional

neural networks. arXiv preprint arXiv:2102.06462 (2021).

[90] YANG, H., MA, K., AND CHENG, J. Rethinking graph regularization for
graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence (2021), vol. 35, pp. 4573-4581.

96 3]

[91] YANG, L., LI, M., LIU, L., WANG, C., CAO, X., GUO, Y., ET AL. Diverse
message passing for attribute with heterophily. Advances in Neural Information

Processing Systems 34 (2021), 4751-4763.

[92] YANG, L., WU, F, WANG, Y., GU, J.,, AND GUO, Y. Masked graph
convolutional network. In IJCAI (2019), pp. 4070— 4077.

[93] YANG, T.,, WANG, Y., YUE, Z., YANG, Y., TONG, Y., AND BAI, J. Graph
pointer neural networks. arXiv preprint arXiv:2110.00973 (2021).

[94] YING, Z., BOURGEOIS, D., YOU, J., ZITNIK, M., AND LESKOVEC, J.
Gnnexplainer: Generating explanations for graph neural networks. Advances in neural

information processing systems 32 (2019).

[95] ZHANG, X., LIU, L., XIE, Y., CHEN, J., WU, L., AND PIETIKAINEN, M.
Rotation invariant local binary convolution neural networks. In Proceedings of the
IEEE International Conference on Computer Vision Workshops (2017), pp. 1210—
1219.

[96] ZHAO, L., AND AKOGLU, L. Pairnorm: Tackling oversmoothing in gnns.
arXiv preprint arXiv:1909.12223 (2019).

[97] ZHAO, X., CHEN, F., HU, S., AND CHO, J.-H. Uncertainty aware semi-
supervised learning on graph data. Advances in Neural Information Processing

Systems 33 (2020), 12827-12836.

[98] ZHENG, C., ZONG, B., CHENG, W., SONG, D., NI, J., YU, W., CHEN, H.,
AND WANG, W. Robust graph representation learning via neural sparsification. In
International Conference on Machine Learning (2020), PMLR, pp. 11458— 11468.

[99] ZHU, J., YAN, Y., ZHAO, L., HEIMANN, M., AKOGLU, L., AND
KOUTRA, D. Beyond homophily in graph neural networks: Current limitations and

97 3]

effective designs. Advances in Neural Information Processing Systems 33 (2020),

7793-7804.

[100] ZHU,Y. XU,Y., YU, F, LIU, Q., WU, S., AND WANG, L. Graph contrastive
learning with adaptive augmentation. In Proceedings of the Web Conference 2021

(2021), pp. 2069—2080.

98 1] o 1

	1 Introduction
	2 Preliminary
	3 Improving Signed Propagation for Graph Neural Networks
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminary
	3.4 Theoretical Analysis
	3.5 Methodology
	3.6 Experiments
	3.7 Conclusion

	4 Finding Heterophilic Neighbors via Confidence-based Subgraph Matching
	4.1 Introduction
	4.2 Related Work
	4.3 Notations
	4.4 Methodology
	4.5 Experiments
	4.6 Conclusion

	5 Limitation of Real-world Graph Datasets under Semi-supervised Setting
	5.1 Introduction
	5.2 Preliminary
	5.3 Methodology
	5.4 Theoretical Analysis
	5.5 Experiments
	5.6 Related Work
	5.7 Conclusion

	6 Bibliography

<startpage>14
1 Introduction 1
2 Preliminary 4
3 Improving Signed Propagation for Graph Neural Networks 5
 3.1 Introduction 6
 3.2 Related Work 8
 3.3 Preliminary 9
 3.4 Theoretical Analysis 10
 3.5 Methodology 26
 3.6 Experiments 28
 3.7 Conclusion 35
4 Finding Heterophilic Neighbors via Confidence-based Subgraph Matching 37
 4.1 Introduction 37
 4.2 Related Work 40
 4.3 Notations 42
 4.4 Methodology 42
 4.5 Experiments 54
 4.6 Conclusion 63
5 Limitation of Real-world Graph Datasets under Semi-supervised Setting 65
 5.1 Introduction 65
 5.2 Preliminary 67
 5.3 Methodology 69
 5.4 Theoretical Analysis 75
 5.5 Experiments 76
 5.6 Related Work 84
 5.7 Conclusion 84
6 Bibliography 85
</body>

