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Abstract 

Graph Neural Networks (GNNs) achieve substantial improvement in 

analyzing graph-structured datasets under semi-supervised setting, where few 

labels are available during the training. The discriminative power of GNNs 

stem from the message-passing scheme, where they utilize information from 

neighboring nodes. Generally, under the graphs with strong homophily, 

features from the adjacent nodes can be used to guide decision boundary (e.g., 

neural networks) more precisely. Nonetheless, they fail to achieve satisfying 

results under heterophilous graphs, where most edges connect two nodes with 

different labels. 

In the first paper, we analyze the performance of GNNs based on the multiple 

propagation schemes theoretically. For example, flipping the sign of edges is 

rooted in a strong theoretical foundation, and attains significant performance 

enhancements. Nonetheless, they assume a binary class scenario and they may 

suffer from confined applicability. Here, we extend the prior understandings 

to multi-class scenarios and points out two drawbacks: In case two nodes 

belong to different classes but have a high similarity, signed propagation can 



 

 

decrease the discrimination power of the GNNs, (2) signed message also 

increases the prediction uncertainty (e.g., conflict evidence) which can impede 

the stability of the algorithm. 

In the second paper, we focus on finding the heterophilous edges, which can 

degrade the overall quality of GNNs significantly. To achieve this, we employ 

a confidence ratio as a hyper-parameter, assuming that some of the edges are 

disassortative (heterophilic). Here, we suggest the two-phased algorithm, (1) 

determining edge coefficients through subgraph matching using a 

supplementary module, and (2) the application of modified label propagation. 

Specifically, our supplementary module identifies a certain proportion of task-

irrelevant edges based on a given confidence ratio. Further, the improved label 

propagation mechanism prevents two nodes with smaller weights from being 

closer effectively. 

Lastly, we introduce the limitation of GNNs from another perspective, where 

they suffer from sparsity in initial node features. This can result in overfitting 

of the first projection matrix (or hyperplane), where the dimensions with zero 

inputs are not updated during training. To address this issue, we propose a 

novel data augmentation strategy, which flips the initial features and the 

hyperplane simultaneously. To the best of our knowledge, this is the first 

attempt to mitigate the overfitting problem caused by input features. 

Keywords: Graph neural network, Semi-supervised learning, Message-

passing, Signed propagation, Calibration, Heterophilic neighbor, Subgraph 

matching, Confidence ratio, Sparseness of node features 

Student Number: 2019-25552 
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Chapter 1 

Introduction 

The increase in graph-structured datasets has led to rapid advancements in graph 

mining techniques. Especially, GNNs provide satisfactory performances in various 

applications including node classification and link prediction, which also has been 

adopted in many fields; physics [28], protein-protein interactions [26], and social 

networks [23]. The main component of GNNs is message-passing [28], where the 

information is propagated between nodes and then aggregated. Also, the integration 

of a structural property with the node features enhances the representation and the 

discrimination powers of GNNs substantially [73; 16; 42; 32; 81]. Consequently, 

GNNs often have shown the best performance in various tasks including semi-

supervised node classification and link prediction. 

Early GNN schemes assume the network homophily where nodes of similar 

attributes make connections with each other based on the selection [59] or social 

influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian 

smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor 

nodes. Consequently, these methods fail to adequately deal with heterophilous graphs 

[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve 

this problem, a plethora of clever algorithms have been proposed including the 

adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high 

similarity [67; 53], and diversified message propagation [91]. However, the majority 

of prior schemes [57] stipulate certain conditions of advantageous heterophily and 

these constraints undermine their generality and applicability [66]. 
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Many clever schemes have been introduced to solve the problem. Some of them 

specify different weights for each connection [81; 92; 2; 40], or remove disassortative 

edges [94; 22; 55]. Others employ distant nodes with similar features [67; 93; 37] or 

apply different aggregation boundary based on the central nodes [85]. Additionally, 

some bodies of work allow the edge coefficients to be negative [13; 2] to preserve 

high-frequency signal exchanges between neighbors. Further, from the perspective of 

gradient flow, [2; 20] shows that negative eigenvalue preserves the high-frequency 

signals to dominate during propagation. [3] introduces sheaf to enhance the linear 

separability of neural networks.  

In the first paper, we aim to provide theoretical justification to answer this 

question “what kind of message-passing algorithm achieves best performance?”, 

including signed and zero-weighted propagation. Firstly, we point out some 

limitation of previous analysis [57; 89] that provide theoretical boundaries under 

a binary class scenario, which may detriment their applicability to generic graphs. 

Here, we extend the theorem to a multi-class scenario positing that the blind 

application of signed messages to multi-class graphs may increase the uncertainty 

of predictions.  

In addition to the theoretical understanding, we propose another method through 

the second paper, which aims to find heterophilous edges through subgraph 

matching. To achieve this, we focus on the GAM [78] that suggests a 

supplementary module with label propagation. Specifically, the supplementary 

module of GAM only utilizes a central node to debilitate noises, which is identical 

to a simple MLP. Though GAM might work well under high heterophily, they fail 

to generalize well under homophilous graphs. To solve this limitation, we measure 

the similarity of two nodes including their subgraphs by employing the widely 

used optimal transport [69; 87; 60; 44]. In addition, we further apply a confidence 

ratio to remove certain proportion of disassortative edges. Finally, considering 
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these predictions as supplementary edge coefficients, we apply label propagation 

[6] between a certain proportion of high confident edges. 

Lastly, our focus is on the characteristics of graph datasets. We have observed 

that features from benchmark graph datasets have few non-zero elements (e.g., 

bag-of-words representation). Here, we contemplate that the shortage of training 

samples in semi-supervised settings can result in the overfitting of specific 

dimensions in the first layer parameters. This can negatively impact the quality of 

predictions for test nodes with untrained features in those dimensions. To optimize 

the first layer projection matrix better, we focused on perturbing the initial features. 

As a common data augmentation technique, dimensional shifting could be used 

which is commonly used in computer vision [75]. However, this was found to be 

unsuitable for GNNs with bag-of-words features, as it would disrupt the semantic 

information. Our proposed solution involves flipping the initial features and 

parameters simultaneously, which can ensure local invariance. This approach is 

inspired by shifting parameters [41] and rotating neural networks [51] that 

preserve the volume of gradients and initial features. This flipping mechanism can 

address the issue of zero gradients caused by sparse inputs and enhance the 

semantic learning of each dimension. 

To summarize, chapter 3 analyzes the power of various message-passing schemes 

theoretically. In chapter 4, we provide our subgraph-based GNN, which can generalize 

well under heterophilous settings. Finally, chapter 5 provides new insights from 

gradient perspectives, which points out some limitations of graph benchmark datasets 

to solving semi-supervised classification scenario. 
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Chapter 2 

Preliminary 

In this section, we define some useful notations and explain the basics of the graph-

related problems. 

 

Let 𝐺 =  (𝑉, 𝐸, 𝑋)  be a graph with |𝑉|  =  𝑛  nodes and |𝐸|  =  𝑚  edges. The node 

attribute matrix is X ∈ Rn×F, where F is the dimension of an input vector. Given X, 

the hidden representation of node features H(l) (l-th layer) is derived through message 

passing. Here, node i′s feature is the row of . The structural property of G can be 

represented by its adjacency matrix A ∈ {0,1}n×n. Also, D is a diagonal matrix with 

node degrees 𝑑𝑖𝑖 = ∑ 𝐴𝑖𝑗 .𝑛
𝑗=1  Each node has its label Y ∈ Rn×C, where C represents 

the number of classes.  

 

The goal of semi-supervised node classification is to predict the class of unlabeled 

nodes 𝑉𝑈  =  {𝑉 −  𝑉𝐿}  ⊂  𝑉 given the partially labeled training set 𝑉𝐿. Generally, we 

assume 5% of entire nodes are available during training phase. 
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Chapter 3  

Improving Signed Propagation for 

Graph Neural Networks 

 

Message-passing Graph Neural Networks (GNNs), which collect information 

from adjacent nodes, achieve satisfying results on homophilic graphs. However, 

their performances are dismal in heterophilous graphs, and many researchers have 

proposed a plethora of schemes to solve this problem. Especially, flipping the sign 

of edges is rooted in a strong theoretical foundation, and attains significant 

performance enhancements. Nonetheless, previous analyses assume a binary class 

scenario and they may suffer from confined applicability. This paper extends the 

prior understandings to multi-class scenarios and points out two drawbacks: (1) 

In case two nodes belong to different classes but have a high similarity, signed 

propagation can decrease the discrimination power of the GNNs, (2) signed 

message also increases the prediction uncertainty (e.g., conflict evidence) which 

can impede the stability of the algorithm. Based on the theoretical understanding, 

we introduce two novel strategies for improving signed propagation under multi-

class graphs. The proposed scheme combines calibration to secure robustness 

while reducing uncertainty. We show the efficacy of our theorem through 

extensive experiments on six benchmark graph datasets. 
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3.1   Introduction 

The increase in graph-structured datasets has led to rapid advancements in graph 

mining techniques including random walk-based node embedding and graph neural 

networks (GNNs). Especially, GNNs provide satisfactory performances in various 

applications including node classification and link prediction. The main component 

of GNNs is message-passing [28], where the information is propagated between nodes 

and then aggregated. Also, the integration of a structural property with the node 

features enhances the representation and the discrimination powers of GNNs 

substantially [16; 42; 81]. 

Early GNN schemes assume the network homophily where nodes of similar 

attributes make connections with each other based on the selection [59] or social 

influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian 

smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor 

nodes. Consequently, these methods fail to adequately deal with heterophilous graphs 

[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve 

this problem, a plethora of clever algorithms have been proposed including the 

adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high 

similarity [67; 53], and diversified message propagation [91]. However, the majority 

of prior schemes [57] stipulate certain conditions of advantageous heterophily and 

these constraints undermine their generality and applicability. 

Recently, some bodies of work allow the edge coefficients to be negative [13; 2] to 

preserve high-frequency signal exchanges between neighbors. Further, from the 

perspective of gradient flow, [2; 20] shows that negative eigenvalue preserves the 

high-frequency signals to dominate during propagation. [3] introduces sheaf to 

enhance the linear separability of neural networks. Instead of changing the signs of 

edges, others [55; 77] assign zero-weights to disassortative connections precluding 
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message diffusion on such edges. Here, there arises a question: does signed messaging 

always yield better results than assigning zero-weights on heterophilic edges? 

To answer the above question, we conduct an empirical study and illustrate its 

results in Figure 15. Along with this, we aim to establish theoretical properties to 

compare their discrimination power. For this, recent studies [57; 89] scrutinize the 

changes in node features before and after message reception. Here, they provide some 

useful insights into using signed messages based on the node’s relative degree and its 

homophily ratio. Nonetheless, prior analyses were confined to binary class graphs, 

which may detriment their applicability to generic graphs. In this paper, we extend the 

theorem to a multi-class scenario positing that the blind application of signed 

messages to multi-class graphs may increase the uncertainty of predictions. 

Throughout this analysis, we suggest employing confidence calibration [29; 84] which 

is simple yet effective to enhance the quality of predictions. To summarize, our 

contributions can be described as follows: 

• Contrary to prior work confined to a binary class, we tackle the signed messaging 

mechanism in a multi-class scenario. Our work provides fundamental insight into 

using signed messages and establishing the theoretical background for the 

development of powerful GNNs. 

• We conjecture and prove that signed messages escalate the inconsistency between 

neighbors and increase the uncertainty in predictions. Based on this understanding, 

we propose a novel uncertainty reduction method using confidence calibration. 

• We conduct extensive experiments on six benchmark datasets to validate our 

theorems and show the effectiveness of confidence calibration. 
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3.2   Related Work 

 Graph Neural Networks (GNNs). Under semi-supervised settings, GNNs have shown 

great potential by utilizing the information of adjacent nodes. Early GNN studies [5; 

16] focused on the spectral graph analysis (e.g., Laplacian decomposition) in a Fourier 

domain. However, they suffer from large computational costs as the scale of the graph 

increases. GCN [42] reduced the overhead by harnessing the localized spectral 

convolution through the first-order approximation of a Chebyshev polynomial. 

Another notable approach is spatial-based GNNs [81; 4] which aggregate information 

in a Euclidean domain. Early spatial techniques became a steppingstone to many 

useful schemes that encompass relevant remote nodes as neighbors. 

 

GNNs on heterophilous graphs. Traditional message-passing GNNs fail to perform 

well in heterophilic graphs [67]. To redeem this problem, recent studies have paid 

attention to the processing of disassortative edges [17; 34]. They either capture the 

difference between nodes or incorporate distant but similar nodes as neighbors. For 

example, H2GCN [99] separates ego and neighbors during aggregation. SimP-GCN 

[37] suggests a long-range adjacency matrix and EvenNet [46] receives messages 

from even-hop away nodes only. Similarly, [48] selects neighbors from the nodes 

without direct connections. Configuring path-level pattern [79] or finding a 

compatibility matrix [100] has also been proposed. Another school of methodologies 

either changes the sign of disassortative edges from positive to negative [13; 2; 24; 

31] or assigns zero-weights to disassortative edges [55]. Even though these schemes 

show their effectiveness [1] on binary classes, it may require further investigations 

before extending their applications to a multi-class scenario. 
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3.3   Preliminary 

In this section, let us first define the notations and then explain the basics of the 

problem. 

3.3.1 Definition of homophily.  

The global edge homophily ratio (ℋ𝑔) is defined as:  

 

(3.1) 

 

Likewise, the local homophily (bi) of node i is given as: 

 

(3.2) 

3.4   Theoretical Analysis 

We first discuss the mechanism of Message-Passing Neural Networks (MPNN) and 

the impact of using signed messages (§ 3.4.1). Then, we introduce the previous 

analysis of employing signed propagation on binary class graphs (§ 3.4.2). Through 

this, we extend them to a multi-class scenario and point out some drawbacks under 

this condition (§ 3.4.3). Finally, we suggest a simple yet effective solution to improve 

the quality of signed GNNs through the integration of calibration (§ 3.4.4). 

 

3.4.1 Message-Passing Neural Networks. 

Mechanism of Graph Neural Networks (GNNs). Generally, most of the GNNs employ 

the strategy of propagation and then aggregation, where the node features are updated 

iteratively. This can be represented as follows: 
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(3.3) 

 

H(0) = X is the initial vector and H(l) is nodes’ hidden representations at the l-th layer. 

𝐻(𝑙+1) is retrieved through message-passing (A) and we obtain H(l+1) after an activation 

function ϕ (e.g. ReLU). W(l) is the trainable weight matrices that are shared across all 

nodes. The final prediction is produced by applying cross-entropy σ(·) (e.g., log-

softmax) to �̅�(𝐿) and the loss function is defined as: 

 

(3.4) 

 

The parameters are updated by computing negative log-likelihood loss Lnll between 

the predictions (Yb) and true labels (Y). Most GNN schemes assume that graphs are 

assortative and they construct the message-passing matrix (A) with positive values to 

preserve the low-frequency information (local smoothing) [51]. Consequently, they 

fail to capture the difference between node features and achieve lower performance 

on the heterophilous networks [65; 67]. 

 Meaning of using signed messages. Recent studies [13; 2; 89; 12] emphasize the 

importance of high-frequency signals and suggest flipping the sign of disassortative 

edges from positive to negative to preserve such signals. We first show that they can 

also contribute to the separation of ego and neighbors.  

 

3.4.2 Using Signed Messages on Binary Classes. 

First, we assume a binary class and provide theoretical analysis by distinguishing two 

phases: message-passing and parameter update. 

(Message-Passing) Signed GNN generally improves the overall performance. 
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In this section, we aim to analyze the movements of node features given three types 

of graphs (original, signed, and zero weights). We again employ GCN [42] as a 

baseline. Here, we assume a binary classification task (𝑦𝑖 ∈  {0, 1}) similar to previous 

work [1; 89] and inherit several useful notations for simplifications: (1) For all nodes 

𝑖 =  {1, . . . , 𝑛}, their degrees {𝑑𝑖} and features {ℎ𝑖} are i.i.d. random variables. (2) 

We assume that every class has the same population. (3) With a slight abuse of 

notation, assume ℎ(0) = 𝑋𝑊(0) is the first layer projection of initial node features. (4) 

Given the label 𝑦𝑖, the node feature follows the distribution (𝜇 or − 𝜇) as: 

 

(3.11) 

 

Prior work [89] introduces Theorems 4.1, 4.2 using the local homophily (Eq. 3.2), 

message passing (Eq. 3.3), and expectation of node features (Eq. 3.11). Each theorem 

below utilizes the original and signed graph, respectively. 

Theorem 4.1 (Binary class, vanilla GCN). Let us assume yi = 0. Then, the expectation 

after a single-hop propagation is defined as: 

   

(3.12) 

 

, where 

 

Proof of Theorem 4.1.  

Assume a binary class yi ∈  {0,1}. Using the aggregation scheme of GCN [32], the 

hidden representation of node i after message-passing ℎ𝑖
(1)

 is defined as: 

 

(3.13) 
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As illustrated in Figure 7a (binary class), we assume ℎ𝑖~𝑁(𝜇, 1 √𝑑𝑖⁄ ) 𝑖𝑓 𝑦𝑖 = 0 

and otherwise ℎ𝑖~𝑁(−𝜇, 1 √𝑑𝑖⁄ ). Based on the local homophily bi, Eq. 28 becomes: 

 

 

 

 

 

(3.14) 

 

 

 

End of proof. 

The generalized version of the above theorem is described in [44], which takes two 

distributions µ0,µ1 as: 

 

(3.15) 

 

Eq. 15 reduces to Eq. 12 when µ1 = −µ0. 

 

Theorem 4.2 (Binary class, signed GCN). If the sign of heterophilous edges is flipped 

correctly under the error ratio (e), the expectation is given by: 

 

(3.16) 
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Proof of Theorem 4.2. Similarly, signed GCN correctly configures the sign of 

heterophilous edges with the following error ratio 1−e. For example, the sign of 

heterophilous nodes changes from −µ to µ with a probability 1 − e and vice versa: 

 

 

 

 

(3.17) 

 

 

 

 

End of proof. 

 

(Parameter Update) Signed propagation can contributeto the separation of ego 

and neighbors. Let us assume an ego node i and its neighbor node j is connected with 

a signed edge. Let us ignore other neighbor nodes to concentrate on the mechanism 

of signed messaging. Applying GCN [42], we obtain the output of node i as: 

 

(3.5) 

 

Assuming that the label of the ego (Yi) is k, we can calculate the loss (Lnll) between a 

true label Yi ∈ RC and a prediction �̂�𝑖  ∈ RC as below: 

 

(3.6) 
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Since the column-wise components of the last weight matrix W(L) act as an 

independent classifier, we prove that the probability of node j being a class k (�̂�𝑗,𝑘), 

transitions in the opposite to the node i’s probability (𝑦𝑖,𝑘) as the training epoch (t) 

proceeds: 

(3.7) 

 

, where    and 

Notation η is the learning ratio and a symbol ▽ represents a partial derivative of the 

loss function.  

Proof of Equation 7. 

We first show that signed messages can contribute to separating the ego from its 

neighbors. Let us assume the label of the ego node i is k. A neighbor node j is 

connected to i with a signed edge. Since the column-wise components of the weight 

matrix act as an independent classifier, the probabilities that the two nodes belong to 

the same class, at a training epoch t are derived as, 

 

 

(3.8) 

 

 

The loss function is defined as  

 

The gradient of node 𝑖 is well-known to be, 

 

 

(3.9) 
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Similarly, the gradient of node 𝑗 is given by: 

 

 

(3.10) 

 

where we can retrieve Eq. 3.7. 

End of proof. 

 

Referring to this analysis, we can induce the expectation of zero-weight GCN as 

below. 

Theorem 4.3 (Binary class, zero-weight GCN). Similar to the Theorem 4.2, assigning 

zero weights to the heterophilous edges leads to the following feature distribution: 

 

(3.18) 

 

Proof of Theorem 4.3.  

 

 

 

(3.19) 

 

 

 

End of proof. 
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For all theorems, if the coefficient of is smaller than 1, the node feature moves 

towards the decision boundary and message passing loses its discrimination power 

[89]. Based on this observation, we can compare the discrimination powers of signed 

and zero-weight GCNs. 

Corollary 4.4 (Binary class, discrimination power). Omitting the overlapping part of 

Theorems 4.2 and 4.3, their difference, Z, can be induced by the error ratio (e) and 

homophily (bi): 

(3.20) 

where 0 ≤ 𝑒, 𝑏𝑖  ≤ 1. 

 

We visualize Z in Fig. 3.2 (a). Note that the space is half-divided by the plane Z = 0 

since ∬ (1 − 𝑒 − 𝑏)𝑑𝑒𝑑𝑏 = 0
1

0
. When bi and e are small, Z becomes positive which 

indicates that signed GCN outperforms zero-weight GCN and vice versa. 

Figure 3.2 We plot the Z to compare the discrimination power of signed and zero-

weight GCNs. The red and blue colored parts indicate the regions where signed GCN 

and zero-weight GCN have better performance, respectively. 

(a) (b) 
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Now, let us assume that the error ratio is zero (e = 0) identical to the settings of our 

previous analysis (Fig. 3.1). Under this condition, Z (= 1 − bi) should be non-negative 

regardless of the homophily ratio (0 ≤ bi ≤ 1).  

 

(3.21) 

 

However, Fig. 3.1 shows that zero-weight GCN generally outperforms signed GCN 

(Z ≤ 0) contradicting the Corollary 4.4. Thus, we extend the above theorems to cover 

a multi-class scenario and point out the limitations in the previous analyses. 

3.3.2 Empirical Analysis.  

Vanilla GNNs provide dismal performances in heterophilic datasets, where most 

edges connect two nodes with different labels. Consequently, finding proper 

coefficients of entire edges became essential to enhance the overall quality of GNNs. 

Figure 3.1 Node classification accuracy on six benchmark datasets. Firstly, 

vanilla GCN utilizes the original graph. The coefficient of heterophilous 

edges is changed to -1 in signed GCN and to 0 in zero-weight GCN 
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In Fig. 3.1, we evaluate the node classification accuracy of GCN [42] using six 

benchmark graphs (the statistical details are shown in Table 1). From the original 

graph (vanilla GCN), we fabricate two graph variants; one that replaces disassortative 

edges with -1 (signed GCN), and the other that assigns zero-weights on heterophilous 

connections (zero-weight GCN). As illustrated in Fig. 3.1, the zero-weight GCN 

achieves the best performance, followed by the signed GCN. The detailed 

explanations regarding this phenomenon will be explained in Section 3.5. 

 

3.4.3 Using Signed Messages on Multiple Classes. 

Based on the prior analysis, we extend them to multi-class scenarios and point out 

some drawbacks of using signed propagation for GNNs. 

(Message-Passing) The performance of signed GCN depends on the number of 

classes. Without loss of generality, one can extend the expectation of node features 

from a binary (Eq. 3.16) to multiple classes through spherical coordinates as below: 

 

(3.22) 

 

Here, µ also represents the scale of a vector and the direction is determined by two 

angles 𝜙 and 𝜃. Obviously, the above equation satisfies the origin symmetry under 

binary classes, where (µ, π/2, 0) = −(µ, π/2, π). Through this equation, we can 

redefine Theorem. 4.1 and 4.2 for multiple class GCNs. 

 

Theorem 4.5 (Multi-class, signed GCN). Let us assume the label yi = 0. For simplicity, 

we denote the coordinates of the ego (µ,θ) as k, and its neighbors (µ,θ′) as k′, where θ 

= 0 and 𝜃′ =
2𝜋𝑗

𝑐
≠ 0. Then, the expectation of hi is defined as: 
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(3.23) 

 

 

Proof of Theorem 4.5.  

 

 

 

 

 

(3.24) 

 

 

 

 

End of proof. 

 

Figure 1.3 We take an example to illustrate the distribution of node features 

under multi-class scenarios. The right figure represents the aggregation of 

neighboring nodes (k1, k2) under multiple classes. 
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As shown in Figure 3.3, we extend a binary classification scenario to a multi-class 

case. Without loss of generality, we employ spherical coordinates and ensure that µ 

corresponds to the scale of a vector, while the direction of each vector lies between 

zero and   with respect to their label j. Here, we assume the label is yi = 0. For 

simplicity, we replace (µ,θ = 0) as k and (µ,θ′ ̸= θ) as k′, respectively. Though k′ 

comprises multiple distributions that are proportional to the number of classes, their 

aggregation always satisfies |kaggr
′ | ≤ µ since the summation of coefficients (1 − bi) is 

lower than 1 and |k′| ≤ µ. Referring to Fig. 7c, we can see that 
𝑘1+𝑘1

2
≤ 𝜇. Given b1 = 

b2 = 0.5, where the aggregation of neighbors always lies in µ. Thus, for brevity, we 

indicate 𝑘′𝑎𝑔𝑔𝑟 as 𝑘’ here. Now, we can retrieve the expectation (hi) of signed GCN as 

follows. 

Theorem 4.6 (Multi-class, zero-weight GCN). Likewise, the hi driven by zero-weight 

GCN is: 

 

(3.25) 

 

Proof of Theorem 4.6. 

 

 

 

 

(3.26) 

 

 

 

End of proof. 
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Similar to Corollary 4.4, we can compare the separability of the two methods based 

on their coefficients. 

Corollary 4.7 (Multi-class). The difference of discrimination power (Z) between 

signed and zero-weight GCN in the multiclass case is: 

 

(3.27) 

 

Then, we can induce the conditional statement as below based on the distribution of 

aggregated neighbors (k′): 

 

(3.28) 

   

Fig. 3.2 (b) plots Z for the multi-class case. The above corollary implies that if the 

distribution of aggregated neighbor is origin symmetry (k′ = −k), Z (= 1−e−b) becomes 

identical to the Eq. 3.20. Under this condition, signed propagation might perform well. 

However, as k′ gets closer to k, its discrimination power degrades (Z gets smaller) as 

shown in the blue areas in Fig. 3.2 (b).  

Intuitively, the probability of being k′ = −k may decrease as the number of classes 

increases, which means that the zero-weight GCN generally outperforms the signed 

GCN in multi-class graphs.  

 

(3.29) 

 

(Parameter Update) Though signed propagation contributes to the ego-neighbor 

separation, it also increases the uncertainty of the predictions. Adequate 

management of uncertainty is vital in machine learning to generate highly confident 

predictions [19; 61; 62]. This is closely related to the entropy (e.g., information gain 
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[52]) and recent work [39] formulates two types of uncertainties: the aleatoric and 

epistemic caused by the data and the model, respectively. But here, we rather focus 

on the conflict evidence (dissonance) [68; 97], which ramps up the entropy of outputs. 

One can easily measure the uncertainty of a prediction ( ) using Shannon’s entropy 

[74] as: 

(3.31) 

 

Furthermore, measuring dissonance (diss) is also important [97] as it is powerful in 

distinguishing Out-of-Distribution (OOD) data from conflict predictions [36] and 

improving classification accuracy: 

 

(3.32) 

 

Figure 3: (a) In binary class graphs, signed propagation contributes to the separation 

of nodes (i,j) and reduces the entropy. (b) In multi-class graphs, the uncertainty of 

neighboring nodes that are connected with signed edges (j,k) increases 

(a) Binary class (b) Multiple class 

Figure 3.4 (a) In binary class graphs, signed propagation contributes to the separation of 

nodes ( 𝒊, 𝒋 ) and reduces the entropy. (b) In multi-class graphs, the uncertainty of 

neighboring nodes that are connected with signed edges (𝒋, 𝒌) increases. 
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which can be defined only for non-zero elements. We show that signed messages are 

helpful for ego and neighbor separation. Now, we posit that neighbors connected with 

signed edges provoke higher entropy (e.g., 𝐸(�̂�𝑖)  or 𝑑𝑖𝑠𝑠(�̂�𝑖))  than the one with a 

plane or zero-weighted one. 

Theorem 4.8. Under multiple classes, the entropy gap between the signed neighbor 

𝐸(�̂�𝑠) and plane (or zero) one 𝐸(�̂�𝑝) increases in proportion to the training epoch (t). 

 

(3.33) 

 

 

Proof of Theorem 4.8. 

Firstly, the true label probability (k) of node 𝑝 (�̂�𝑝,𝑘)  increases, while other 

probabilities �̂�𝑝,𝑜 (𝑜 ≠ 𝑘) decrease as follows: 

 

(3.34) 

 

Since we proved that ▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘  <  0 , we analyze the partial derivative 

▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜 (∀𝑜 ≠ 𝑘).  

(3.35) 

Figure 3.5 Visualization of the update procedure of node features under (a) binary and (b) multi-class. 
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On the contrary, the gradient of node s has a different sign with node p, where we 

can infer that:  

 

(3.36) 

 

As the training epoch increases, �̂�𝑝,𝑘 will converge to 1 resulting in the decrease of 

𝐸(�̂�𝑝). Conversely, �̂�𝑠,𝑘 gets closer to 0, which may fail to generate a highly confident 

prediction and leads to a surge of uncertainty. Thus, one can infer: 

 

(3.37) 

 

As shown in Figure 3.5 a, this can be effective under a binary class, while the signed 

nodes (i,j) in a multi-class case (Fig. 3.5 b) have conflict evidence except for class 0. 

Taking another example, let us assume that the original probability (before the update) 

is 𝑦𝑖
𝑡 = [0.6,0.2,0.2]  with C = 3. Then, one can calculate the Shannon’s entropy as, 

 

(3.38) 

 

Without considering node degree, let us assume the gradient of class k as 

 ▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘  =  −  ▽𝑠 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘  =  𝛼, and other classes as  

▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜  =  −  ▽𝑠 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜  =  
𝛼

𝐶−1
(∀𝑜 ≠ 𝑘). If we take 𝛼 = 0.1,  

then �̂�𝑝
(𝑡+1)

 and �̂�𝑠
(𝑡+1)

 becomes: 

 

 

(3.39) 

where we can see that 𝐸(�̂�𝑝
(𝑡+1)

) < 𝐸(�̂�𝑠
(𝑡+1)

) after the single iteration. 
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End of proof. 

To summarize, signed messages contribute to the separation of two nodes (Fig 3.5 

a), while they also increase the uncertainty of neighboring nodes 𝑗, 𝑘 that propagate 

signed information to an ego 𝑖 (Fig. 3.5 b). To deal with this, we employ confidence 

calibration which will be explained below. 

3.5   Methodology  

Previously, we pointed out the issues of signed propagation from two perspectives: 

message-passing and parameter update. Now, we propose two strategies that can be 

combined with any GNN using signed propagation. 

3.5.1 (Message-Passing) Edge weight calibration 

Through Corollary 4.7, we analyze the impact of signed propagation based on the 

distribution of neighbors 𝑘′ . It was observed that as 𝑘′  is similar to 𝑘 , signed 

propagation reduces the discrimination power. At the same time, it also increases the 

separability of two nodes during training. Thus, we propose the following strategies: 

(1) In training, we employ signed messages for ego-neighbor separation. (2) During 

the validation/test phase, we block the information propagation of highly similar 

nodes, which may decrease the discrimination power. 

As a downstream task of GNNs, the score (e.g., cosine similarity) of two nodes is 

calculated based on the node features at the 𝑙-th layer: 

(3.40) 

 

Then, for all edges that satisfy the following conditions, we replace their weights 𝑎𝑖𝑗 

(e.g., attention values) as 0: 

  (3.41) 

 

where 휀 is the hyper-parameter. Through this, the discrimination power remains 

powerful during training, while securing the separability in the inference phase. 



26 

 

Remark. The replacement of 𝑎𝑖𝑗 in Eq. 41 is highly scalable for signed GNNs, 

which focuses on edge-level weight retrieval. 

3.5.2 (Parameter Update) Confidence calibration 

In Theorem 4.8, we show that signed messages increase the uncertainty of predictions. 

Here, we propose a simple yet effective solution that can reduce the uncertainty (P2) 

through confidence calibration. The proposed method, free from entire path 

configuration, is cost-efficient and fairly powerful. Calibration is one type of self-

training method [29; 90] that acts as a regularization term. Even though it has shown 

to be effective for generic GNNs [84], we notice that the performance gain is much 

greater when integrated with signed methods. Many algorithms can be used for 

calibration (e.g., temperature and vector scaling [29]). In this paper, our loss function 

is defined as, 

 

 (3.42) 

 

where 𝑛 =  |𝑉𝑣𝑎𝑙𝑖𝑑 ∪  𝑉𝑡𝑒𝑠𝑡| is the set of validation and test nodes. Our method is 

quite similar to prior work [84], but we do not utilize the label of validation sets for a 

fair comparison. As defined above, it penalizes the maximal and sub-maximal values 

to be similar in order to suppress the generation of conflict evidence. Since the 

calibration only utilizes the outputs y, it has high b scalability and is applicable to 

any type of GNNs.  

3.5.3 Optimization  

Before, we introduce two strategies to improve the quality of signed propagation. 

For optimization, we apply confidence calibration during training as below:  

 (3.43) 
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Here, ℒ𝐺𝑁𝑁 indicates any type of GNN. Also, the 𝜆 is a hyper-parameter that balances 

the influence of confidence calibration. After optimization, we employ edge weight 

calibration during the inference phase. Through this, we observe a significant 

improvement in signed GCN (+ calib) as demonstrated in Figure 1. We describe the 

pseudo-code of calibrated FAGCN [2] below. 

 

Time complexity of calibrated GNN 

We analyze the computational complexity of our method. For brevity, we take 

vanilla GCN [32] as a base model. Generally, the cost of GCN is known to be 

proportional to the number of edges and trainable parameters 𝑂(|ℰ|𝜃𝐺𝐶𝑁). Here, 𝜃𝐺𝐶𝑁  

is comprised of 𝑂(𝑛𝑧(𝑋)𝐹′ +  𝐹′𝐶)  [85], where 𝑛𝑧(·)  represents the non-zero 

elements of inputs and F′ stand for the hidden dimension, and C is the number of 

classes. Additionally, our method employs two types of calibration. The first one is 
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edge weight calibration. For this, we need to retrieve the node features of each layer 

and calculate the cosine similarity for all connected nodes |ℰ|2. Thus, the complexity 

becomes 𝑂(|ℰ|𝜃𝐺𝐶𝑁 + 𝐿|ℰ|2) . Further, the calibration takes 𝑛 =  |𝑉𝑣𝑎𝑙𝑖𝑑  ∪

 𝑉𝑡𝑒𝑠𝑡|  samples as inputs and finds top 𝑘  samples on each row of 𝑦𝑏 . Thus, their 

complexity can be simply defined as 𝑂(𝑛 +  𝑘). To summarize, the cost of calibrated 

GCN is 𝑂(2|ℰ|𝜃𝐺𝐶𝑁  +  𝐿|ℰ|2 + 𝑛 +  𝑘), which is fairly efficient. 

3.6   Experiments 

We conducted extensive experiments to validate our theorems and to compare the 

performances of our method and baselines. We aim to answer the following research 

questions: 

• Q1 Is calibration alleviates the uncertainty issue when integrated with the signed 

GNNs? 

• Q2 Do the signed messages increase the uncertainty of the final prediction? 

• Q3 How much impact do the two calibration methodologies have on performance 

improvement? 

• Q4 Is the number of classes correlated with the prediction uncertainty? 

• Q5 How does the hyper-parameter λ in Eq. 3.41 affect the performance? 

Datasets. The statistical details of datasets are in Table 3.1. (1) Cora, Citeseer, Pubmed 

[42] are citation graphs, where a node corresponds to a paper and edges are citations 

between them. The labels are the research topic of the papers. (2) Actor [80] is a co-

occurrence graph where actors and co-occurrences in the same movie are represented 

as nodes and edges, respectively. The labels are five types of actors. (3) Chameleon, 

Squirrel [72] are Wikipedia hyperlink networks. Each node is a web page and the 

edges are hyperlinks. Nodes are categorized into five classes based on monthly traffic. 
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Baselines. We employ several state-of-the-art methods for validation: (1) Plane GNNs: 

GCN [42], and APPNP [43]. (2) GNNs for heterophilous graphs: GAT [81], GCNII 

[9], H2GCN [99], and PTDNet [55]. (3) GNNs with signed propagation: 

GPRGNN [13], FAGCN [2], and GGCN [89]. 

- General information of the implementations. 

All methods including baselines and ours are implemented upon PyTorch Geometric. 

For a fair comparison, we equalize the hidden dimension of the entire methodologies 

as 64. ReLU with dropout is used for non-linearity and to prevent over-fitting. We 

employ the log-Softmax as a cross-entropy function. The learning ratio is set to 1e−3 

and the Adam optimizer is taken with weight decay 5e−4. For training, 20 nodes per 

class are randomly chosen and the remaining nodes are equally divided into two parts 

for validation and testing. 

- More details about baseline methods. 

• GCN [42] is a first-order approximation of Chebyshev polynomials [11]. For all 

datasets, we simply take 2 layers of GCN. 

• APPNP [43] combines personalized PageRank on GCN. We stack 10 layers and 

set the teleport probability (α) as {0.1,0.1,0.1,0.5,0.2,0.3} for Cora, Citeseer, 

Pubmed, Actor, Chameleon, and Squirrel. 

• GAT [81] calculates feature-based attention for edge coefficients. Similar to GCN, 

we construct 2 layers of GAT. The pair of (hidden dimension, head) is set as (8, 8) 

for the first layer, while the second layer is (1, number of classes). 

• GCNII [9] integrates an identity mapping function on APPNP. We set α = 0.5 and 

employ nine hidden layers. We increase the weight of identity mapping (β) that is 

inversely proportional to the heterophily of the dataset. 
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• H2GCN [99] suggests the separation of ego and neighbors during aggregation. We 

refer to the publicly available source code1 for implementation. 

• PTDNet [55] removes disassortative edges before a message-passing. We also 

utilize the open-source code2 here. 

• GPRGNN [13] generalized the personalized PageRank to deal with heterophily 

and over-smoothing. Referring here3, we tune the hyper-parameters based on the 

best validation score for each dataset. 

• FAGCN [2] determines the sign of edges using the node features. We implement 

the algorithm referring here4 and also tune the hyper-parameters with respect to 

their accuracy. 

• GGCN [89] proposes the scaling of degrees and the separation of 

positive/negative adjacency matrices. We simply take the publicly available code5 

for evaluation. 

 

3.6.1 Experimental Results (Q1). 

In Table 3.2, we describe the node classification accuracy of each method. A symbol 

(‡) means that calibration is supplemented to the basic method. Now, let us analyze 

the results from two perspectives. 

 
1 https://github.com/GemsLab/H2GCN 
2 https://github.com/flyingdoog/PTDNet 
3 https://github.com/jianhao2016/GPRGNN 
4 https://github.com/bdy9527/FAGCN 
5 https://github.com/Yujun-Yan/Heterophily and oversmoothing 

Table 3.1 Statistical details of six benchmark datasets. 
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Homophily ratio plays an important role in GNNs. Three citation networks have 

higher homophily compared to others. We can see that all methods perform well under 

homophilic datasets. As homophily decreases, methods that adjust weights depending 

on associativity outperform plain GNNs. Similarly, using signed messages (GPRGNN, 

FAGCN, and GGCN) has shown to be effective here. They achieve notable 

performance for both homophilic and heterophilic datasets, which means the 

separation of ego and neighbors (H2GCN) is quite important. 

Calibration improves the overall quality and alleviates uncertainty. We apply 

calibration (‡) to signed GNNs (GPRGNN, FAGCN, and GGCN). We also apply 

calibration to GCN and GAT. The average improvements of three signed GNNs by 

calibration are 4.37%, 3.1%, and 3.13%, respectively. The improvements are greater 

than those of GCN‡ (2.65%) and GAT‡ (1.97%). Additionally, we describe the 

dissonance (Eq. 21) of each method in a bracket, where the calibrated methods show 

lower values than the corresponding vanilla model. To summarize, the results indicate 

Table 3.2 (Q1) Mean node classification accuracy (%) with standard deviation. A shadowed grid 

indicates the best performance. Values in bracket stand for the dissonance defined in Eq. 3.32 and 

symbol ‡ means that calibration is applied to baseline method. 
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that calibration not only contributes to reducing uncertainty but also improves the 

accuracy of signed GNNs significantly. 

 

3.6.2 Correlation of using Signed Messages and the Uncertainty (Q2). 

To show that signed messages increase uncertainty, we assume three types of graphs 

for GCN [42] using four datasets. Specifically, we fabricate two graph variants, signed 

GCN and zero-weight GCN. Here, we remove the randomness for a fair comparison. 

The results are illustrated in Fig. 3.6, where the x-axis is the number of layers and the 

y-axis represents dissonance. Referring to Theorem 4.8, the uncertainty is higher on 

signed GCN for all shallow layers. As we stack more layers, the entropy of vanilla 

GCN increases dramatically on heterophilous datasets, the Chameleon and Squirrel. 

In other words, plain GCN fails to discriminate the ego and neighbors (over-

smoothing) and yields low classification accuracy.  

Figure 3.6 (Q2) Comparison of the dissonance on three graph variants; 

vanilla GCN, signed GCN, and zero-weight GCN. 
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Table 3.3 (Q3) We measure the improvement of node classification accuracy (%) 

by applying edge weight and confidence calibration on three baseline methods 
 

 

3.6.3 Ablation study (Q3). 

We conduct an ablation study to analyze the effectiveness of edge weight and 

confidence calibration. As shown in the above Table, given the two homophilic (Cora, 

Citeseer) and heterophilic (Actor, Chameleon) graphs, we employ three baseline 

methods with signed propagation. For each method, we apply edge weight calibration 

(\textbf{w/ edge calib}) or confidence calibration (\textbf{w/ conf calib}) and 

measure the node classification accuracy, respectively. Here, we can see that methods 

with confidence calibration generally outperform edge weight calibration and shows 

smaller variance. The reason is that confidence calibration reduces the uncertainty of 

the entire nodes during training, whereas edge calibration is only applied to a small 

number of edges for testing. Nevertheless, it can also be observed that edge calibration 

for similar nodes belonging to different classes still contributes to a certain extent to 

the improvement in performance. 
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3.6.3 Case Study (Q4). 

Theoretical analyses confirm that signed messages increase the uncertainty in multi-

class graphs (§ 4.3). They have shown to be effective when k′ gets closer to −k, but 

this probability is inversely proportional to the number of classes c. To further analyze 

this phenomenon, we compare the dissonance of two variants of GCN (signed GCN 

and zero-weight GCN) by decrement of the number of classes (c). Specifically, if the 

original data contains seven classes (e.g., Cora), we remove all the nodes that belong 

to the rightmost class to generate a graph with six labels. The results are illustrated in 

Figure 3.7 (Q4) By differentiating the number of classes, we compare the 

dissonance of GCN using two graph variants. 
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Fig. 3.7. As can be seen, zero-weight GCN (red) tends to have lower dissonance under 

multiple classes. However, under binary classes (c=2), signed GCN (blue) shows 

lower uncertainty with the aid of ego-neighbor separation. In the binary case, zero-

weight GCN only utilizes homophilous neighbors and fails to generalize under this 

condition. 

 

3.6.4 Hyper-parameter Analysis (Q5). 

We conduct an experiment to investigate the effect of hyper-parameter 휀 and 𝜆. We 

tune the epsilon (threshold of cosine similarity) from -1 to 1 and lambda (impact of 

confidence calibration) from 0 to 1 as shown in Figure 8. Then, we describe the node 

classification accuracy on the Squirrel (heterophilic) dataset. The blue line represents 

PTDNet, while others are signed GNNs. In the left figure, we notice that baseline 

methods achieve the best performance under the largest epsilon, which means 

blocking the signed messages of highly similar nodes is advantageous. Here, PTDNet 

does not change the sign of edges, it shows no variation based on the epsilon. In the 

right figure, it is notable that finding an appropriate lambda is beneficial for overall 

performance improvement. Nonetheless, it is also limited by the inherent low 

capability of base models in heterophilous graphs (low accuracy). Further, assigning 

Figure 3.8 (Q5) The effect of hyper-parameter 𝝀  in Eq. 3.41 on the classification 

accuracy of four calibrated methods. 
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the same weights to ℒ𝐺𝑁𝑁 and ℒ𝑐𝑜𝑛𝑓 generally downgrades the overall performance, 

which necessitates the usage of validation sets. 

 

3.7   Conclusion 

In this work, we provide a new theoretical perspective on using signed messages for 

node embedding under multi-class benchmark datasets. Firstly, we show that signed 

messages contribute to the separation of heterophilous neighbors in a binary class, 

which is consistent with conventional studies. Then, we extend previous theorems to 

a multi-class scenario and point out two critical limitations of using signed 

propagation: (1) it decreases the separability of two nodes, while (2) increasing the 

probability of generating conflict evidence. Based on the observations, we calibrate 

signed GNNs to reduce uncertainty and secure robustness. Through experimental 

analysis, we show that our method is beneficial for both homophilic and heterophilic 

graphs. We claim that our theorems can provide insights to develop a better 

aggregation scheme for future GNN studies. 
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Chapter 4  

Finding Heterophilic Neighbors via 

Confidence-based Subgraph Matching 

 

Graph Neural Networks (GNNs) have proven to be powerful in many graph-based 

applications. However, they fail to generalize well under heterophilic setups, where 

neighbor nodes have different labels. To address this challenge, we employ a 

confidence ratio as a hyper-parameter, assuming that some of the edges are 

disassortative (heterophilic). Here, we propose a two-phased algorithm. Firstly, we 

determine edge coefficients through subgraph matching using a supplementary 

module. Then, we apply GNNs with a modified label propagation mechanism to 

utilize the edge coefficients effectively. Specifically, our supplementary module 

identifies a certain proportion of task-irrelevant edges based on a given confidence 

ratio. Using the remaining edges, we employ the widely used optimal transport to 

measure the similarity between two nodes with their subgraphs. Finally, using the 

coefficients as supplementary information on GNNs, we improve the label 

propagation mechanism which can prevent two nodes with smaller weights from 

being closer. The experiments on benchmark datasets show that our model alleviates 

over-smoothing and improves performance. 
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4.1   Introduction 

The investigation of graph-structured data has gained significant attention in various 

fields; physics [28], protein-protein interactions [26], and social networks [23]. 

Integrated with deep neural networks (DNNs) [45], graph neural networks (GNNs) 

have achieved state-of-the-performance by concurrently modeling node features and 

network structures [73; 16; 42; 32; 81]. Specifically, the message passing plays an 

important role by aggregating features from neighboring nodes [28]. Consequently, 

GNNs often have shown the best performance in various tasks including semi-

supervised node classification and link prediction. 

However, recent studies reveal that GNNs gain advantages of message passing 

under limited conditions, e.g., high assortativity of subject networks [59]. In this paper, 

we assume two types of networks; homophilic (assortative) ones where most edges 

connect two nodes with the same label, and heterophilic graphs where the most 

connections are disassortative. Most prior work on GNNs assumes that connected 

nodes are likely to possess the same label, and thus, they fail to attain sufficient 

performance for many real-world heterophilic datasets [66]. Many clever schemes 

have been introduced to solve the problem. Some of them specify different weights 

for each connection [81; 92; 2; 40], or remove disassortative edges [94; 22; 55]. Others 

employ distant nodes with similar features [67; 93; 37] or apply different aggregation 

boundary based on the central nodes [85]. Nonetheless, there is a question to be 

addressed: is it necessary to specify different weights for GNNs? 
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To answer the above question, we conduct an investigation using two representative 

datasets; one is an assortative citation network called Cora [58], and the other one is 

Chameleon [72] which contains many disassortative links between Wikipedia web 

pages. In Figure 4.1, we randomly prune a certain ratio of assortative / disassortative 

edges and describe the node classification accuracy of GCN [42]. Through this study, 

we observe two characteristics; (1) for Cora, the performance increases as the 

assortative edges are maintained, while disassortative edges are removed. On the 

contrary, Chameleon data is rather heterophilic and thus, the disassortative links play 

an important role as the number of remaining assortative edges becomes smaller. To 

analyze this result, we take Figure 4.1 (c) as an example. Though the graph is 

heterophilic, two central nodes share the same types of neighborhoods (2 green, 1 

yellow) that can contribute to distinguishing them from others [54; 57]. (2) the 

removal of assortative edges has a greater impact on the overall performance than 

disassortative ones. For example, the performance in Cora using the original graph is 

79.8 % (top right). If we remove all disassortative edges, it attains 88.1 % (top left), 

whereas eliminating assortative links becomes 51.1 % (bottom right). To summarize, 

Figure 4.1 Node classification accuracy (%) of GCN on different datasets; (a) Cora, and (b) 

Chameleon. For each graph, we randomly prune a certain proportion of assortative / 

disassortative edges and plot their performance. We also describe a special case of (c) helpful 

aggregation scenario under disassortative graphs. 

(a) (b) (c) 
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we conjecture that removing a small proportion of assortative edges can be harmful, 

and thus, assigning accurate weights are fundamental for GNNs. Now, the problem is; 

how can we figure out these coefficients correctly and utilize them? 

To achieve this, we focus on the GAM [78] that suggests a supplementary module 

with label propagation. Specifically, the supplementary module of GAM only utilizes 

a central node to debilitate noises. However, referring to Figure 4.1, excluding all links 

of assortative and disassortative shows the lowest performance, which is the same as 

GAM’s method. To solve this limitation, our supplementary module focuses on the 

widely used optimal transport [69; 87; 60; 44] to measure similarity between two 

subgraphs. In addition, we further apply a confidence ratio to deal with multiple 

disassortative links. Then, considering these predictions as supplementary edge 

coefficients, we apply label propagation [6] between a certain proportion of high 

confident edges, while the others are considered disassortative and the connected 

nodes are prevented from being similar. Our contributions can be summarized as 

follows: 

• We introduce a confidence-based subgraph matching to retrieve edge coefficients 

accurately. Our model is scalable and generalizes well for both homophilic / 

heterophilic graphs, which can be achieved by varying the values of the 

confidence ratio. 

• Assuming that a certain proportion of entire edges are disassortative, we improve 

the label propagation to keep two nodes with a lower similarity score from being 

closer. Specifically, we divide the edge coefficients into two parts, which can 

guide the positive pairs to be similar and vice versa. 

• We conduct extensive experiments on publicly available datasets to validate the 

above suggestions. The ablation studies indicate the superiority of subgraph 

matching techniques for retrieving class sharing probability. 
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4.2   Related Work 

Graph neural networks (GNNs) have shown substantial improvement for semi-

supervised classification tasks. Most of them can be categorized into two types; 

spectral-based and spatial-based methods. The first one utilizes structural information 

of the entire graph through Laplacian decomposition [33] that requires high 

computational costs O(n3). To reduce their complexity, GCN [42] suggests a first-

order approximation of Chebyshev polynomials [16] and utilizes features of 

neighboring nodes by simply stacking convolutional layers. Ada-GNN [21] further 

employs an adaptive frequency filter to capture different perspectives of nodes. 

However, these algorithms inevitably aggregate noisy adjacent nodes, where they 

assume two connected nodes are likely to share the same label. 

Recently, some algorithms focus on the retrieval of edge coefficients using the node 

features. For example, GAT [81] measures the relevance between two nodes by 

applying an attention layer to their features. Similarly, Masked-GCN [92] estimates 

attribute-wise similarity for precise propagation. GNN-Explainer [94] identifies the 

set of important edges and features that maximize the mutual information of the final 

prediction. Nonetheless, these methods may fail to generalize well under a 

heterophilic graph, where the message passing inevitably makes two connected nodes 

similar. 

To solve this problem, FAGCN [2] selects whether to propagate low-frequency or 

high-frequency signals by enabling edges to have negative coefficients. L2Q [85] 

parameterizes the aggregation boundary of each node to deal with heterophily. 

SuperGAT [40] differentiates between friendly and noisy neighbors based on their 

homophily and node degrees. However, these methods also implicate noisy 

information since they work as a downstream task of GNNs. Some argue that graph 
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sparsification [98; 18] is considerable for graph denoising. For example, PTDNet [55] 

adopts nuclear norm to prune edges between communities. Yet, it also implicates risk 

for pruning positive edges and is not powerful enough for classification compared to 

classical GNNs. 

As another branch, non-local neural networks [83; 53] have gained increasing 

attention for capturing long-range dependencies. Since previous GNNs only utilize 

local adjacent nodes, they fail to deal with heterophilic graphs. Instead of directly 

specifying coefficients, finding distant but similar nodes has increased the 

representational power of GNNs. Specifically, Geom-GCN [67] further exploits 

distant nodes within a specific boundary and executes grid-based aggregation. Simp-

GCN [37] mixes the original adjacency matrix with a feature-based similarity matrix 

through learnable parameters. Nonetheless, they implicate two limitations. Firstly, 

operating as a downstream task of GNNs may inevitably contain noisy information 

after aggregation. Secondly, measuring relevance between two nodes can be biased 

(or risky) under a semi-supervised setting that has few labeled samples [52]. 

Apart from retrieving edge coefficients, a strategy for utilizing this information is 

also considerable. For example, P-reg [90] simply utilizes entire edges to provide 

additional information for GNNs. NGM [6] integrates label propagation (LP) with 

GNNs, while GAM [78] further parameterize edge coefficients. However, these 

methods are highly localized and fail to discriminate less important edges under the 

global aspect. Further, they show limited performance for precise prediction under our 

experiments. Instead, we focus on pairwise matching between two subgraphs that are 

independent of GNN modules. Using the mechanism of optimal transport (OT) [86; 

44; 60], we integrate a confidence-based denoising network to secure robustness, 

followed by our label propagation. 
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4.3   Notations 

Please refer to the definition of notations in Section 2. 

 

4.4   Methodology 

Figure 4.2 illustrates the overall architecture of our model which consists of two parts. 

On the right side, we describe the GNN module with label propagation which takes 

the predicted edge weights for training. The left one stands for the subgraph matching 

that provides edge coefficients as supplementary information. 

The two modules do not share loss or parameters and are updated independently. In 

Section 4.4.1, we first introduce methodologies for retrieving edge coefficients, 

followed by our subgraph matching module. In Section 4.4.2, we suggest strategies to 

utilize these predictions effectively through label propagation. 

 

4.4.1 Retrieving Edge Coefficients. 

Recently, many efforts have been dedicated to specifying edge coefficients, and we 

categorize them into two types. Firstly, in Section 4.4.1.1, we take previous methods 

that only utilize central nodes for classification. Secondly, in Section 4.4.1.2, we 

describe previous algorithms that further utilize the adjacent nodes for prediction. 

Finally, we discuss the advantages and limitations of these methods and describe our 

subgraph matching module in Section 4.4.1.3. 

 

4.4.1.1 Retrieving Edge Coefficients using a Central Node. 



44 

 

These types of methods include message passing, but only a central node is used for 

similarity measure, not a subgraph. With the slight abuse of notation, let us assume 

the ℎ𝑖 , ℎ𝑗  as hidden representations of two nodes 𝑖, 𝑗. 

Graph agreement model (GAM) [78] introduces an auxiliary model to predict a 

same class probability 𝑤𝑖𝑗  between two nodes 𝑖, 𝑗 as below: 

 

(4.1) 

 

The MLP is a fully-connected network with non-linear activation. GAM works well 

under the heterophilic graph since they do not utilize neighboring nodes. However, as 

the homophily ratio of the graph increases, we notice that they show significantly 

lower performance even compared to the plain GCN [42]. 

Graph attention network (GAT) [81] applies layer-wise attention as a downstream 

task of GNN as below: 

 

(4.2) 

   

GAT specifies different weights for each layer, where al is a learnable vector at the l − 

th layer. Compared to GAM, a softmax function normalizes the weights that are highly 

dependent on the degree of each node, which makes it harder to determine their 

importance. Further, the message passing can degrade the performance since the edge 

coefficients wij always maintain a positive value. 

FAGCN [2] improves GAT from two perspectives; replacing softmax with degree-

based normalization, and adopting different activation function as below: 

 

(4.3) 
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The main difference lies in tanh, where the negative value of coefficients can maintain 

high-frequency signals. However, we notice that their accuracy decreases as the 

homophily of networks increases (e.g., Cora), where all coefficients converged to a 

positive value and fail to figure out heterophilic edges. 

PTDNet [55] removes task-irrelevant edges by applying randomness ϵ and decaying 

factor γ. Here, the coefficients wij can be derived as below: 

  

 (4.4) 

 

The random value follows ϵl ∼ Uniform(0,1), and decaying factor γ depends on the 

iteration number. They apply nuclear norm on the entire edges w to remove 

connections between communities. However, we notice that randomness can impede 

precise prediction, and nuclear norm does not always lead to optimal results. 

Summarizing the above methodologies, prediction based on the central node 

implicates two major problems. Firstly, excluding message passing (GAM) can lead 

to over-fitting, where it contains limited information. Though other methods 

incorporate neighboring nodes, the noisy neighbors also participate in the aggregation 

process, which can impede robustness and incur over-smoothing issues [81]. Secondly, 

directly employing the coefficients as an adjacency matrix is highly risky, where the 

elimination of assortative edges hurts the overall performance of GNNs (please refer 

to Figure 4.1). To solve these limitations, we focus on subgraph matching algorithms 

which will be introduced in the upcoming section. 

4.4.1.2 Retrieving Edge Coefficients using Subgraphs. 

In this section, we describe some methods of measuring the similarity between two 

subgraphs. Recently, applying optimal transport (OT) on subgraphs [69; 87] has 

shown great improvement, which is a mathematical framework for measuring 
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distances (similarity) between objects. For example, let us assume two subgraphs 

Gi,Gj that contain m,n nodes, respectively. Then, we can define transport (coupling) 

matrix P ∈ Rm×n between two subgraphs that meets 𝑃1𝑛 =
1

𝑚
1𝑚 and 𝑃𝑇1𝑚 =

1

𝑛
1𝑛. 

The objective of OT is to find matrix P that minimizes the function below: 

 

(4.5) 

  

Here, S is a cost function and H(·) is entropy regularized Kantorovich relaxation 

with regularizer 𝜖. However, finding 𝑃𝑖𝑗  for all pairs of (𝑖, 𝑗) requires a high 

computational cost. 

Linear optimal transport [60] employ reference points r to solve the above limitation, 

which can be retrieved through k-means clustering or calculating Wasserstein 

barycenter [15] based on each class of training nodes. Here, elements that are assigned 

to the same cluster (reference) are pooled together and thus, reducing the pair-wise 

calculation. Specifically, matrix P ∈ RC×N splits or assigns the entire node N to 

references r (C stands for the number of reference points). P can be obtained through 

multiple ways (e.g., Sinkhorn’s algorithm [76]), which calculates a relevance between 

the inputs and reference points as below: 

 

(4.6) 

  

, where Ni is the number of nodes in subgraph i. Let us assume the hidden 

representations of two subgraphs as hi ∈ 𝑅Ni×F,hj ∈ 𝑅Nj×F whose feature dimension 

is F. Using pi
*

 ∈ RC×Ni, pj
∗
 ∈ RC×Nj in Equation 50 that splits the mass of subgraph 
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hi,hj to multiple references h′
i,h′

j ∈ RC×F, one can measure their similarity through 

matching function M (MLP) as below: 

 

(4.7) 

 

Monge map [44] does not split mass, while an injective mapping is applied for each 

subgraph as follows: 

(4.8) 

 

Similar to linear optimal transport [60], each subgraph hi,hj can be mapped to new 

points h′
i,h′

j ∈ RC×F through optimal transport p∗ (please refer to Eq. 4.7). The 

difference lies in a barycentric projection B that ensures no mass splitting (please read 

this paper [44] for more details). 

Using the insight of these methods [60; 44], the subgraph matching has the 

advantage of using adjacent nodes for predictions. However, they also implicate a 

limitation of handling noisy neighbors, since they utilize the entire nodes of the 

subgraph to measure their similarity. To deal with this, we now introduce our method 

that utilizes a confidence ratio as below. 

4.4.1.3 Our subgraph Matching using a Confidence Ratio. 

In Figure 4.2, we describe the overall architecture of our Confidence-based Subgraph 

Matching. ConSM calculates a similarity between two subgraphs (probability of 

sharing the same label) using optimal transport and confidence ratio as follows: 

1. Sampling: We randomly sample two labeled nodes, whose labels can be the same 

or different. For sampling, the size of the positive and negative pairs should be the 
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same to avoid a model being biased. We further utilize their 2-hop adjacent nodes 

as inputs. 

2. Prune: We measure a score of entire edges through reference points. Then, based 

on a confidence ratio, we maintain top-k confident ones while removing others. 

3. Map and aggregation: Given two subgraphs Gi,Gj, we first map nodes to low-

dimensional embedding hi,hj and assign them to the nearest reference points r 

through the Monge map. Then, we aggregate the nodes that belong to the same 

reference points by pooling operation (e.g., mean). 

4. Prediction: We measure the similarity of the two graphs and also retrieve the class 

probability of a central node. 

 

 

Now, we describe the details of our method below. 

Sampling. We adopt an auxiliary module for retrieving edge coefficients that are 

independent of the GNN module. Here, two nodes are randomly sampled based on 

their class. If two nodes share the same class (positive pair), we assume the label of 

this pair as 1 and otherwise 0. To prevent a class imbalance problem, the same number 

Figure 4.2 The overall framework of our model. It consists of two parts; one for the subgraph matching 

module which generates supplementary edge coefficients, and the other one is the GNN module that utilizes 

weights for label propagation. 
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of positive and negative pairs are sampled. Compared to GAM [78], we utilize the 

subgraph of a central node (adjacent nodes within 2-hop) to improve prediction 

accuracy. 

Prune. Unlike previous method [34] that applied embedding → aggregation → 

mapping, we suggest embedding → pruning → mapping → aggregation’ to handle 

noisy edges. Specifically, we only utilize a certain proportion of edges based on their 

scores and a confidence ratio (ζ). We first describe our scoring function. Using the 

initial node features X, we can retrieve their low-dimensional embedding h ∈ RN×F 

through an encoder (MLP) as: 

 (4.9) 

Similarly, the embedding of reference points is r ∈ RC×F, which can be obtained 

through class-wise averaging of training nodes. Then, we can measure a score (e.g., 

cosine similarity) S ∈ RN×C between nodes h and references r as below:  

 (4.10) 

, where the row of S represents a score of each node with respect to the reference 

points. Given two nodes 𝑖, 𝑗, we can retrieve their similarity wij = Si · Sj. 

Consequently, the w of the entire edges can be obtained, and thus, we manage to 

maintain top-k edges k = ⌊ζ × |E|⌋ while removing others. 

Map and aggregation. Using the remaining edges, the adjacency matrix can be 

reconstructed. With the slight abuse of notation, given two nodes 𝑖, 𝑗  and their 

subgraphs Gi,Gj, we assume that their subgraph embedding hi,hj can be retrieved as 

below: 

 

 (4.11) 
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, which is similar to Equation 4.9. hi ∈ Rm×F,hj ∈ Rn×F consists of m and n nodes, 

respectively. Referring Equation 4.7 and 4.8, we can map each node in subgraph 

through Monge map as below: 

 (4.12) 

 

The ℎ′𝑖 , ℎ′𝑗 ∈ 𝑅𝐶×𝐹 is the output of subgraph after mapping and aggregation. Though 

linear OT is also considerable, we choose the Monge Map which shows the better 

performance. 

Prediction. Finally, using the concatenation of h′
i,h′

j as an input of matching 

function M, we can estimate their similarity as below: 

 

 (4.13) 

 

If two inputs share the same label, the value of 𝑤𝑖𝑗  should be closer to 1, and otherwise 

0. We further employ node classification function f(·) (MLP) to predict the label of 

each subgraph’s central node ℎ𝑖
𝑒  𝑎𝑛𝑑 ℎ𝑗

𝑒 , where 𝐿𝑛𝑙𝑙   is negative log-likelihood 

function: 

 

(4.14) 

Our subgraph matching module can be trained through Equation 58, and we describe 

the overall procedure in Algorithm 2. 
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4.4.2 GNNs with Supplementary Edge Weights. 

Recent studies focus on the strategy to better utilize edge weights. For example, some 

of them directly construct adjacency matrix [81; 55], while others employ label 

propagation (LP) [6; 78; 82] on GNNs to deal with uncertainty as below: 

 

  (4.15) 

 

LGNN is a widely used loss function for semi-supervised node classification (e.g., GCN 

[42]) that is defined as follows: 

 

(4.16) 

 

, where W is a learnable matrix. Though many recently proposed methods [81; 88; 43; 

9; 2] are considerable for GNNs, here, we select GCN to show the efficacy of our 

method. Back into Equation 4.15, λ is a regularizer and 𝐿𝐿𝑃  gives additional penalties 

as below: 
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(4.17) 

 

The notation {L,U} denotes labeled and unlabeled nodes, where LU means that only 

a single node is labeled. wij ∈ {0,1} is a binary value that represents a connection 

between two nodes 𝑖, 𝑗, and d is a dissimilarity measuring function (e.g., cosine 

similarity). Here, {a1,a2,a3} acts as a hyper-parameter. Recently, graph agreement 

model (GAM) contemplates the limitation of fixed wij, and substitute it as a 

parameterized model wij = g(Xi,Xj), where g is a fully-connected networks. However, 

these methods implicate two limitations. Firstly, they have shown inferior 

performance for discriminating task-irrelevant edges under semi-supervised 

learning. Secondly, the estimated wij scales from zero to one, even making 

disassortative nodes similar (P-reg [90] also implicates this limitation). Thus, we 

improve Equation 4.17 as below: 

 

 

 

 

(4.18) 

By sorting the score of entire edges w, we can retrieve a threshold k based on a given 

confidence ratio. In Equation 4.18, weights wij that are greater than k are trained to 

reduce dissimilarity d(i,j), while others are guided to be dissimilar 1 − d(i,j). Referring 

to Equation 4.15, we replace LLP with our LSUP and define LG as below: 

 

 (4.19) 
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As described in GAM, we exclude edges between labeled nodes (i,j ∈ LL) and set α1 

= 1.0, α2 = 0.5. We set 0.01 ≤ λ ≤ 0.1 which is proportional to the disassortativity of 

dataset. 
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4.4.3 Optimization Strategy. 

So far, we define losses of our subgraph matching with label propagation in Equation 

4.19. Let us assume the parameters of the subgraph matching module θSM and the 

GNN module θG without sharing parameters. Here, we notice that our ConSM 

implicates two limitations for optimization. Firstly, it is hard to determine whether the 

subgraph matching module θSM is converged or not. Secondly, the predicted edge 

coefficients may implicate uncertainty, which can impede the training of GNNs. To 

solve this, in Algorithm 3, we suggest saving parameters 𝜃′𝐺 only if it attains the best 

validation score (line 13). Then, before we compute the loss of the next training 

sample, we can load these parameters if they exist (line 14). Through this mechanism, 

we can guide GNNs to achieve better performance apart from the uncertainty of 

supplementary weights. 

 

4.4.4 Computational Complexity Analysis. 

The computational costs of our model can be divided into two parts. The first one is a 

vanilla GCN [42] model whose complexity is known as O(|E|PGCN), where they are 

proportional to the number of entire edges |E| and the size of learnable matrices PGCN. 

The second term is our ConSM which computes the similarity between two subgraphs. 

Instead of naively calculating Wasserstein distance O(n3log(n)), we conduct linear 

mapping [44] and measure Euclidean distance, which can be retrieved through simple 

matrix multiplication. Consequently, our computational cost can be defined as 

O(|E|PGCN + |EM|PConSM), where |EM| stands for the number of edges included in 

sampled subgraph, and PConSM is the set of parameters in subgraph matching module. 
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4.5   EXPERIMENTS 

In this section, we compare our ConSM with several state-of-the-art methods using a 

homophilic and heterophilic graph dataset. In particular, we aim to answer the 

following research questions: 

• RQ1: Does ConSM improves node classification accuracy compared to the state-

of-the-art approaches? 

• RQ2: How much does ConSM accurately specify task-irrelevant edges in terms 

of graph denoising? 

• RQ3: Does the confidence ratio for the subgraph matching module affects the 

overall classification result? 

• RQ4: Can ConSM alleviates over-smoothing for stacking many layers effectively? 

 

4.5.1 Dataset Description and Baselines. 

Dataset description. We conduct investigations with the following publicly available 

dataset. The statistical details are described in Table 3.1, where we categorize them 

into two types; assortative and disassortative networks. The explanations of each 

dataset are demonstrated below. 

• Assortative networks. For assortative data, we adopt widely used benchmark 

graphs; Cora, Citeseer, and Pubmed [42]. Here, each node represents a paper and 

the edge denotes a citation between two papers. Node features stand for the bag-

of-words of paper, and each node has a unique label based on its relevant topic. 

• Disassortative networks. We adopt Actor co-occurrence graph [80] and Wikipedia 

network [72] as disassortative graphs. For Actor co-occurrence data, the node 

stands for an actor, and the edges are co-occurrence on the same Wikipedia pages. 
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The node label denotes five types based on the keywords of an actor. Similarly, 

the Wikipedia network consists of Chameleon and Squirrel, where the edges are 

hyperlinks between web pages. The node features are several informative nouns 

and we classify them into five categories based on their monthly traffic. 

Baselines. Using the above datasets, we compare our method with the state-of-the-art 

baselines. A brief explanation of these methods can be seen as follows: 

• MLP [70] employs a feed-forward neural network that only utilizes a central node 

for classification. 

• GCN [42] is a traditional GNN models that suggests first order approximation of 

Chebyshev polynomials [16] to localize spectral filters. 

• DropEdge [71] randomly removes edges under a given probability to alleviate 

over-fitting problem. 

• GAT [81] specifies different weights between two nodes, while ignoring graph 

Laplacian matrix. 

• GIN [88] pointed out the limited discriminative power of GCN, suggesting a graph 

isomorphism network that satisfies the injectiveness condition. 

• APPNP [43] combines personalized PageRank with GCN that improves 

prediction accuracy, while reducing computational complexity. 

• GCNII [9] integrates identity mapping to redeem the deficiency of APPNP. 

• GAM [78] adopts the graph agreement model under the assumption that not all 

edges correspond to sharing the same label between nodes. 

• H2GCN [99] suggests ego-neighbor separation and hop-based aggregation to deal 

with heterophilic graph. 

• FAGCN [2] further utilizes high-frequency signal beyond low-frequency 

information in GNNs. 
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• PTDNet [55] proposes a topological denoising network to prune task-irrelevant 

edges as a downstream task of GNNs. 

4.5.2 Experimental Setup. 

All methods are implemented in PyTorch Geometric7, with Adam optimizer (weight 

decay 5e−4) and proper learning ratio (1e−3). We set the embedding dimension as 64 

for all methods, but diversifying it can improve the overall performance [56]. Here, 

we adopt 2 layers of GNNs for all baselines, while APPNP, GCNII, and GIN further 

utilize 2 layers of fully-connected networks for classification. We apply ReLU as an 

activation function except for PTDNet (Sigmoid is used here). The Softmax is applied 

on the last hidden layers for classification. For all datasets, we randomly select 20 

samples per class as a training set, and the rest is for validation and testing. The 

performance is evaluated based on a test set accuracy that achieved the best validation 

score. 

 

4.5.3 Results and Discussion (RQ1). 

In Table 5 and 6, we describe experimental results of baselines and our method that 

are conducted under homophilic / heterophilic datasets. Here, let us assume the 

homophily ratio h as below: 

 

(4.20) 

 

Results on homophilic graph datasets In Table 4.3, we first discuss performance on 

three homophilic datasets, where most of the connected nodes share the same label. 

We conduct experiments over 10 times and report the mean and variance of test 
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accuracy. We also describe the performance of MLP to show the influence of message 

passing on graph datasets. Firstly, for methods that employ GCN as a backbone 

(marked with †), our approach achieves state-of-the-art performance on multiple 

benchmark datasets. Specifically, our method outperforms GCN over 3.7 %, 5.2 %, 

1.6 %, respectively. Among baselines, in Citeseer, DropEdge shows better 

performance than GCN which has relatively low homophily than other networks. 

Above all, APPNP and GAM achieve the best performance with the aid of label 

propagation, followed by GAT adopting an attention mechanism. For our experiments, 

GCNII shows lower performance than APPNP, which means that emphasizing the 

identity feature is not suitable for homophilic data. The design choice of rest 

algorithms (H2GCN, FAGCN, PTDNet) are for heterophilic graphs, where they fail to 

achieve notable improvements over GCN. 

 

 

 

  

Table 4.3 (RQ1) Node classification accuracy 

(%) on homophilic citation networks. Bold* 

symbol indicates the best performance, and 

methods with † are built upon GCN. 

Table 4.4 (RQ1) Node classification accuracy 

(%) on heterophilic citation networks. Bold* 

symbol indicates the best performance, and 

methods with † are built upon GCN. 
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In addition to the homophilic network, we conduct the experiments under 

heterophilic data with the same settings and plot the results in Table 4.4. As can be 

seen, these graphs are generally disassortative with a low homophilic ratio h, which 

can impede the advantages of message passing in GNNs. Surprisingly, MLP achieves 

the best performance for Actor, followed by our ConSM, FAGCN, and GCNII. Given 

that GCNII outperforms APPNP, we guess that a central node is highly important for 

the Actor network. Nonetheless, these methods fail to outperform GCN for different 

datasets. Instead, our method achieves the best accuracy on both Chameleon, and 

Squirrel. Based on the results that GAM shows outstanding performance for this kind 

of network, the supplementary model generalizes well under a heterophilic structured 

dataset. Under our experiments, H2GCN, FAGCN, and PTDNet have shown to 

achieve lower scores, which will be discussed in the upcoming section. 

 

  

To better understand the convergence of ConSM, in Figure 4.3, we describe 

validation and test accuracy for training. The x-axis illustrates iterations, while the y-

axis is classification accuracy. As described in Algorithm 3, a single iteration is a 

combination of training subgraph matching modules, followed by training GNN 

Figure 4.3 (RQ1) Convergence analysis on (a) Cora, and (b) Actor. Each figure 

contains validation (green) and test (red) accuracy of node classification. 
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layers. Here, the validation and test accuracy vary significantly, but ConSM manages 

to achieve better performance as iteration increases. This is because ConSM loads 

parameters of the best validation score (please refer to Algorithm 3), which can 

prevent the uncertainty of supplementary information precisely. 

 

Figure 4.4 (RQ2) We measure F1-score to evaluate edge classification 

performance on six graph datasets. Here, we adopt our model with four 

baselines that specify edge coefficients. 
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4.5.4 Edge Classification (RQ2). 

To validate whether ConSM can predict edge coefficients correctly, we examine the 

accuracy of our method and several state-of-the-art approaches. Here, we assume the 

label of edges that connect two nodes with the same class as 1 and vice versa. 

For each method, we sort their predicted coefficients and select k − th largest value 

as a threshold, which is equal to the number of positive edges. Specifically, for (a) 

Cora, h = 0.81 and E = 10,558 (please refer Table 3 and 5), and thus, k = ⌊10,558×0.81⌋ 

which is described in Figure 4.4. We adopt F1-score that has shown to be effective for 

binary classification as below: 

 

(4.21) 

 

We first introduce some details of baselines, followed by a discussion on the 

experimental results. (1) GAM: as described in Equation 45, the agreement model 

generates the same class probability. We employ their edge coefficients with the best 

validation result. (2) GAT: we exclude node-wise normalization (e.g., softmax), which 

can be highly sensitive to the degree of central nodes. Then, using the representations 

of the final hidden layer, we retrieve the attention value of the entire edges. Multihead 

attention is applied for the front layers, while the final layer only employs single-head 

attention. (3) FAGCN: they retrieve the coefficients following the Equation 47. 

Similar to GAT, we exploit the attention values of the last hidden representations. The 

hyper-parameters are tuned referring [2]. (4) PTDNet: similar to previous studies, we 

adopt the generated graphs using final representations of GNNs. The hyper-

parameters are remaining the same as their implementations8. (5) Ours: the 

coefficients of our model can be retrieved through subgraph matching module. 

In Figure 4.4, we can see that GAM shows the lowest performance for most graph 

datasets, except for (d) Actor. It is not surprising since they only utilize a central node 
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for a prediction. Here, GAT relatively outperforms GAM with the aid of message 

passing and attention layer. Except for (a) Cora, FAGCN achieves better performance 

than GAT, which describes the effectiveness of high-frequency signals. Notably, 

PTDNet is not shown to be powerful enough, where the edge pruning between 

communities fails to generalize on most graph datasets. Comparatively, our model 

improves the F1-score significantly for all datasets, which justifies the necessity of 

confidence-aware subgraph matching.  

  

Figure 4.5 (RQ3) We differentiate the confidence ratio of subgraph matching 

module, and describe F1-score on six graph datasets 
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4.5.5 Parameter Sensitivity Analysis (RQ3). 

In this section, we further measure edge classification scores by differentiating a 

hyper-parameter of the subgraph matching module. To deal with heterophily, we 

introduced a confidence ratio (ζ) to reflect data homophily, assuming that connected 

nodes may not share the same labels. In Figure 4.5, we plot F1-score on six datasets 

by varying ζ from 0 to 1. We also describe true homophily ratio (please refer h in 

Table 5 and 6) as blue lines. If ζ = 0, the supplementary module does not utilize 

neighboring nodes for a prediction, while ζ = 1 means that it fully utilizes adjacent 

nodes. 

Here, a confidence ratio (ζ) that shows the best F1-score fairly aligns well with the 

true homophily ratio h, and the selection of ζ is important for precise prediction. 

Though ζ = 0.5 is quite different from h = 0.22 for (d) Actor, we insist that 

disassortative neighbors can also contribute to improving classifications, as we 

described in Figure 4.1. Nonetheless, we admit that a choice of ζ is quite sensitive, 

and may require human efforts to achieve the best accuracy. 

 

 

Figure 4.6 (RQ4) Evaluation on over-smoothing using (a) Cora, and (b) 

Chameleon dataset. We plot the accuracy of two baselines and our method 

using a different number of layers. 
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4.5.6 Analysis on Over-smoothing (RQ4). 

Over-smoothing is a fundamental problem for GNNs when stacking multiple layers 

[47; 96]. Here, we scrutinize this phenomenon by differentiating the depth of layers 

as {1, 2, 4, 8, 16}, and report the node classification accuracy on (a) Cora, and (b) 

Chameleon. In Figure 4.6, we describe the results of GCN, GAM, and our ConSM. 

GCN shows the best performance at 2 layers on both datasets. However, they degrade 

slightly at 4 layers and dramatically decrease beyond it. This means that GCN itself 

cannot alleviate the over-smoothing problem. Though GAM remains relatively stable 

compared to GCN, they also suffer from smoothing when stacking more layers. 

Comparatively, ConSM consistently achieves the best performance, and the accuracy 

does not decrease severely for deeper layers (e.g., 16 layers). We suggest that the 

integration of well-classified edge coefficients with label propagation effectively 

controls this problem, which shows the effectiveness of our method. 

4. 6   Conclusion 

In this work, we suggest a confidence ratio to deal with multiple disassortative edges 

for semi-supervised node classification. We pointed out the significance of 

configuring edge weights precisely, and thus, we propose to measure the similarity 

between two connected nodes using their subgraphs. Further, based on the 

observations that directly applying the predicted weights are highly risky, we integrate 

label propagation with our confidence ratio to secure robustness and improve the 

overall performance. The extensive experiments for both homophilic and heterophilic 

setups well describe the superiority of our model. 

  



65 

 

Chapter   5  

Limitation of Real-world Graph 

Datasets under Semi-supervised Setting 

 

Previous research on Graph Neural Networks (GNNs) in semi-supervised settings has 

mostly focused on finding suitable graph filters for both homophilic and heterophilic 

graphs. While these techniques have proven effective, they can still suffer from 

sparsity in initial node features, where they have only a few non-zero elements for 

many graph datasets. This can result in overfitting of the first projection matrix (or 

hyperplane), where the dimensions with zero inputs are not updated during training. 

To address this issue, we propose a novel data augmentation strategy, which flips the 

initial features and the hyperplane simultaneously. This creates additional training 

space and leads to more accurate updates of the learnable parameters, thereby 

improving robustness during inference while reducing the variance of predictions. To 

the best of our knowledge, this is the first attempt to mitigate the overfitting problem 

caused by input features. Our experiments on real-world datasets show that the 

proposed technique can increase node classification accuracy by up to 40.2 % 

compared to state-of-the-art baselines. 
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5.1   Introduction 

Graph Neural Networks (GNNs) have gained a lot of attention due to the growing 

availability of graphical data. By integrating node features with network structures, 

GNNs have shown powerful abilities for node and graph embedding, resulting in 

improved performance in downstream tasks [16; 42; 81]. Message-passing, which 

aggregates features from neighboring nodes through repeated updates, is considered 

a key component of GNNs [28]. 

 

GNNs generally perform well on homophilic graphs [59], where most connected 

nodes are likely to have the same label. However, the inadequacy of message-passing 

in heterophilic graphs has been identified in a recent study [67]. To solve this, various 

solutions have been proposed, such as assigning different weights to edges [81; 92; 2; 

40; 14], eliminating disassortative connections [55], embracing distant nodes with 

high similarity as neighbors [94; 37], or adopting node-specific propagation with 

trainable boundaries [85]. The proper aggregation scheme and extension of virtual 

neighbors are clearly important for GNNs. However, we raise another question: are 

there other factors beyond aggregation schemes? 

Contrary to previous methods, our focus is on the training of weight matrices 

(hyperplanes). We have observed that when the initial features have few non-zero 

elements (e.g., bag-of-words representation), a shortage of training samples in semi-

supervised settings can result in the overfitting of specific dimensions in the first layer 

parameters. This can negatively impact the quality of predictions for test nodes with 

untrained features in those dimensions. 

To optimize the first layer projection matrix better, we focused on perturbing the 

initial features. As a common data augmentation technique, dimensional shifting 

could be used which is commonly used in computer vision [75]. However, this was 
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found to be unsuitable for GNNs with bag-of-words features, as it would disrupt the 

semantic information. Unlike convolutional neural networks, which promote local 

invariance [95], GNNs use a multi-layer perceptron that is not translation invariant. 

Adding noise to the inputs was also considered [100], but it was discovered that this 

would incur several complex consequences, such as additional decoding requirements, 

precise hyper-parameter selection, and normalization issues [7]. 

Our proposed solution involves flipping the initial features and parameters 

simultaneously, which can ensure local invariance. This approach is inspired by 

shifting parameters [41] and rotating neural networks [51] that preserve the volume 

of gradients and initial features. We also utilize a dual-path network [11] that allows 

paired operations in both the original and flipped spaces [52]. This flipping 

mechanism can address the issue of zero gradients caused by sparse inputs and 

enhance the semantic learning of each dimension. It’s worth mentioning that the 

proposed algorithm is applicable to various schemes and can be integrated with 

different message-passing algorithms. 

In this paper, we apply the flipping mechanism to three popular methods; MLP, 

GCN, and GAT. We observe that they achieve an average gain of 16.5 %, 24.2 %, and 

17.8 % compared to the vanilla models, respectively. These results show that flipping 

improves the overall performance significantly while securing robustness. The 

contributions of this paper can be summarized as follows: 

• We demonstrate that GNNs are highly sensitive to initial feature vectors and 

their performance can be significantly improved through flip-based augmentation. 

• We propose a flipping mechanism that transposes both the initial features and 

hyperplane. Unlike previous methods that focus on aggregation schemes, our 

approach examines back-propagation and provides precise guidance for each 

component of a first hyperplane. 
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• The proposed flipping mechanism is orthogonal to the plane methods. By 

applying it to MLP, GCN, and GAT, we develop three flipping variants. Through 

extensive experiments on real-world benchmark graphs, the flipping variants 

outperform all existing state-of-the-art baselines significantly. 

 

5.2   Preliminary 

This section begins with the commonly used notations in Graph Neural Networks 

(GNNs), which will be utilized throughout this paper. Next, we conduct an empirical 

analysis to illustrate an overview of the feature distribution in benchmark datasets. 

Finally, we introduce the mechanism of GNN from the perspectives of feature 

projection and message-passing. 

 

5.2.1 Notations. 

Here, we separate the weight matrix for the first layer of the GNN into two parts, Wo 

and Wf, where the subscripts o and f denote the original and flipped spaces, 

respectively. Additionally, for gradient analysis, we take the symbol ▽ to represent 

the partial derivative of the loss function. The goal of this work is to solve a node 

classification task in a semi-supervised setting where only a subset of nodes VL ⊂ V 

is labeled. Our goal is how to better utilize the given features to predict the classes of 

unlabeled nodes VU = V − VL. 

Figure 5.1 Initial feature distribution of benchmark graph datasets. The definition of value 

z is described in Equation 5.1. 
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5.2.2 Empirical Analysis. 

Given the node set S and their initial features 𝑋 ∈ 𝑅𝐹, the ratio of non-zero feature 

dimension (z) in S can be defined as below: 

 

(5.1) 

 

Firstly, we obtain 𝑗 ∈ 𝑅𝐹 by adding the feature vectors of subset node 𝑋𝑣. The number 

of non-zero elements in vector 𝑗 can be defined through the Kronecker delta function 

𝛿, where 𝛿𝑗𝑜,0 = 1  if the 𝑜𝑡ℎ element in 𝑗 is 0. Finally, we can retrieve 𝑧 by dividing 

the numerator into the feature vector dimension 𝑑𝑖𝑚(𝑥) = 𝐹. 

In Figure 2, we display the 𝑧 by varying the range of node set 𝑆 from ego to their 2-

hop neighboring nodes. As seen, 𝑧 increases with the range due to the availability of 

more features during training. Additionally, the scale of 𝑧 varies significantly for each 

graph, dependent on the type of input (please refer to the dataset description in § 4.1). 

In essence, the lower the value of 𝑧, the greater the performance improvement 

obtained from flipping. To further examine this phenomenon, we provide a theoretical 

explanation in terms of gradient update and variance reduction. 

 

5.2.3 Graph Neural Network. 

The basic form graph neural network is given by: 

 

(5.2) 

 

Previously, we defined A as an adjacency matrix that is used for message-passing. 

With the slight abuse of notation, let us assume 𝐴 = 𝐼 + 𝐷−
1

2𝐴𝐷−
1

2 for the remaining 

part of this paper, which is commonly used in GCN [42]. H(1) = X is an initial feature 

of nodes and �̅�(𝑙) is their hidden representation at the l-th layer. H(l) can be retrieved 

through an activation function σ (e.g., ReLU). GNNs obtain the final prediction Yb, by 

applying softmax on the final representation (�̅�(𝐿)). Here, W(l) is the trainable weight 

matrices shared across all nodes. They are updated through negative log-likelihood 

function (Lnll) between the predicted Yb and true label Y as below: 
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(5.3) 

 

Generally, GNNs focus on improving aggregation schemes to determine an 

appropriate message-passing [81; 43; 9; 2]. For instance, GCN [42] uses a normalized 

Laplacian matrix, while GAT [81] creates an aggregation matrix by calculating the 

attention score between nodes. However, the exploration of input features has not been 

given as much attention in prior studies, where we highlight the need for further 

investigation below. 

 

 

 

5.3   Methodology 

5.3.1 Motivation. 

We first explain the limitation of generic GNNs. While appropriate aggregation 

schemes are undoubtedly essential for efficient message-passing, as explained below, 

this alone cannot solve the improper learning caused by sparsity in the initial features. 

To be more specific, we can define the update of weight matrix W(l) as below: 

(5.4) 

Figure 5.2 (a) Mechanism of flipping and (b) overall architecture of Flip-GNN. 
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The J = LGNN is a full-batch loss defined in Equation 5.4. Intuitively, zero or small 

valued components in A can obstruct the gradient flow between dissimilar nodes. 

Nonetheless, there arises a problem when updating the parameters of initial layer: 

 

(5.5) 

 

Simply, the gradient of W(1) is derived by differentiating J with respect to 𝐻(2), where 

the value of AX determines the scale of a gradient. Thus, the gradients become zero 

for certain dimensions with zero inputs (∀𝑖 ∈  𝐹 ∶  𝑋𝑖  =  0 ⇒ ▽�̅�(2) 𝐽 =  0). 

Now, we can see that the update of W(1) relies on the sparseness of the input features, 

especially for zero elements. Because a deficiency in training samples is common in 

semi-supervised settings, we focus on removing zeros in X and guide W(1) to learn the 

precise meaning of each dimension. 

Augmentation of input features. One may consider that shifting, an accepted 

technique in computer vision, is a simple remedy to the inadequate gradient update 

problem. To implement shifting, a small valued vector Xs is added to the input features 

as X = X + Xs. Although shifting has been shown to improve the quality of the initial 

features, it may not be applicable to GNNs, as multi-layer perceptron is not shift-

invariant, which can lead to decreased robustness. Additionally, shifting changes the 

magnitude of an input, necessitating complex neural network normalization. Another 

alternative could be magnitude-conserving rotation, but it may force some 

components to take negative values. 

 

5.3.2 Flipped Graph Neural Network. 

We present a scheme that simultaneously flips both the feature vectors and the 

hyperplane. If the original feature vector has elements in the range [0, 1], then its 

symmetric transposition through p1 = (0.5,...,0.5) will also lie in the same range (as 

seen 

in the hypercube in Figure 5.2 (a), which illustrates that a feature vector Xo = (1,0,0) 

is transposed to Xf = (0,1,1). This is also applied to the hyperplane Wo , where Figure 

5.3 shows the original and flipped spaces in the upper and lower panels, respectively. 
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In the proposed method, both spaces share the same parameters, while the initial 

features and the first hyperplane are slightly tuned for each iteration. Here, we assume 

GCN as a base model. 

 

 

Original space. As described in Figure 5.2 (b), the upper panel illustrates the plane 

GCN. It takes   as inputs which are the zero-padded version of the initial 

feature matrix X and the first hyperplane W(1) as below: 

 

(5.6) 

 

Though the last dimension is only utilized in the flipped space, zero-padding is 

required to ensure dimensional consistency as W(1) is utilized in both spaces. Now, we 

can compute the loss Jo = LGNN(Y,Yo) using Eq. 67 and 68, and update the parameters 

W. Before introducing the flipped space, we first define a symbol p1 = (0.5,...,0.5) ∈ 

RF, which serves as an anchor point for flipping. While many points can be used as 

an anchor (e.g., the mean of all nodes), we take the central point of F-dimensional 

hypercube (1,...,1) ∈ RF as the anchor. Many graph datasets adopt bag-of-words 

features, and their feature vectors correspond to the corners of the hypercube. 

Figure 5.3 (a) Distance d from 𝑾(𝟏) to p1. (b) 𝑾𝒇
(𝟏)

 is retrieved by padding -2d to 

the last dimension of 𝑾(𝟏). 
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Flipped space. The flipped feature Xf  transposes X through p1 (Fig. 5.3 a) and pads 1 

as below: 

 

(5.7) 

 

We should also flip the first hyperplane W(1) by calculating a distance vector d ∈ RF′ 

between W(1) and p1 as: 

 

(5.8) 

 

where ⊗ is an element-wise product. As shown in Figure 5.3 (b),  is retrieved by 

padding −2d to the last element, which makes the outputs of the two spaces origin-

symmetric to each other, i.e., 𝑋𝑜𝑊𝑜
(1)

= −𝑋𝑓𝑊𝑓
(1)

. This is why we flip the hyperplane 

concurrently, as it preserves the pairwise distance of the hidden node representations. 

Thus, after the first convolution layer, we should multiply 𝜎(𝐴𝑋𝑓𝑊𝑓
(1)

) by a negative 

constant before applying the next convolution layer to ensure consistency between the 

two spaces as, 

(5.9) 

 

Through Eq. 5.9, the equality holds (∀𝑙: 𝑙 ≥ 2 → 𝐻𝑓
(𝑙)

= 𝐻𝑜
(𝑙)

). Thus, the following 

layer in the flipped space is identical to the one in the original space as below: 

(5.10) 

 

Finally, the loss 𝐿𝐺𝑁𝑁
𝑓

  is given by: 

 

(5.11) 

We describe the overall mechanism of our method in Alg. 4. 
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5.3.3 Optimization. 

We define two loss functions in Eq. 5.3 and 5.11. Before gradient analyses, please 

recall that the equation below holds 

 

(5.12) 

 

The above equation implies that the outputs (or gradients) of the two spaces are 

equivalent after the second layers: 

 

(5.13) 

 

Like 𝐽𝑜, the 𝐽𝑓 = 𝐿𝐺𝑁𝑁
𝑓

 is a full-batch gradient in the flipped space. Though Sigmoid 

or Tanh guarantees a perfect symmetry Jo = Jf, we employ ReLU for better 

performance. Now, referring to Eq. 5.13, we define the gradients of the first 

hyperplane W(1) on both spaces. 

In the original space, update 𝑊𝑜   as, 

 

(5.14) 

 

In the flipped space, update  𝑊𝑓  as, 

 

(5.15) 

 

Proof of convergence. Convergence is one crucial aspect of algorithm design. Here, 

we show that our optimization guarantees the convergence of W(1). If the activation 

function ensures origin symmetry, we can redefine Eq. 5.14 and 5.15 as: 

 

(5.16) 
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Here, the component-wise gradient of W(1) is proportional to that of X and 2p1 − X. 

Also, it gets closer to a local optimum 𝑊∗
(1)

 as the iteration T continues: 

 

(5.17) 

 

since the two-layer neural networks with a ReLU activation converge to a local 

minimum. Note that gradient ▽J and parameters are all bounded. These 

properties guarantee the convergence of Flip-GNN [8]. Since the scale of gradients 

depends on the number of activated dimensions, we adjust them using α,β to stabilize 

our model as below: 

 

(5.18) 

 

5.4   Theoretical Analysis 

Data augmentation is closely related to empirical risk minimization, which can be 

explained through the bias-variance tradeoff [10]. Here, we prove that flipping acts 

as an augmentation strategy by generalizing the trainable parameters and reducing the 

variance of predictions. Firstly, let us assume the plane estimator as g(Xo) = GNN(Xo), 

which is trained only with the original feature Xo, and the augmented network as �̅�(𝑋) 

= GNN(X) that uses both features X = Xo ∪ Xf. We can easily see that the function g 

is invariant to flipping since g(Xo,Wo) = g(Xf,Wf), where Xf preserves the pair-wise 

distance between nodes. Consequently, the bias term vanishes, where we can 

decompose g(X) by the law of total variance as below: 

 

(5.19) 

 

Here, V ar(E[g(X)]) = V ar(�̅� (X)) since they share the same marginal distribution. 

Further, the difference of their mean, W1(E[g(X)],E[ �̅�  (X)]), which equals to the 
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Wasserstein distance (e.g., L2) between two distributions is independent of the total 

variance. Based on this observation, we can induce the condition below: 

  

(5.20) 

 

Finally, we show the losses of two networks follow: 

 

(5.21) 

 

which means the performance gain of the augmented model over the plain method 

depends on the variance reduction. One can induce a tighter bound of Eq. 5.19 and 

5.21 using Loewner order [10], but we omit the detailed derivation for brevity. 

 

 

5.5   Experiments 

This section describes the experiments for the performance analysis. We focused our 

efforts to find answers to the following research questions: 

• RQ1: Does flipping effectively address the issue of multiple zero-valued 

components in the features? 

• RQ2: Does flipping ensure convergence? 

• RQ3: How significant is the difference between the gradients from the original 

and the flipped spaces? 

• RQ4: How does the performance of flipping change as the number of training 

samples increases? 
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5.5.1 Datasets and Baselines. 

Details of datasets. Our experiments are conducted on nine datasets whose statistical 

details are described in Table 7. We also measure the assortativity of each dataset as 

below: 

(5.23) 

 

• Cora, Citeseer, Pubmed [42] are citation networks. The node features in Cora 

and Citeseer are binary bag-of-words while Pubmed consists of TF-IDF values. 

• Actor [80] is an actor co-occurrence graph. The node feature encodes the 

keywords in the actor’s Wikipedia web pages with binary values. 

• Chameleon, Squirrel [72] are taken from Wikipedia web pages and have non-

zero positive or negative values. The maximum values in each dataset are 46.4 

and 70.4 while the minimum values are -0.57 and -0.99, respectively, which might 

not be suitable for our method. 

• Cornell, Texas, Wisconsin contain web pages from cs departments of multiple 

universities. The node features are binary bag-of-words like the citation networks. 

 

Baselines. For evaluation, we employ several traditional methods including MLP [70], 

GCN [42], DropEdge [71], and GIN [88]. Further, we compare GAT [81], GATv2 [4], 

APPNP [43], GCNII [9], H2GCN [99], and FAGCN [2] which are designed for 

heterophilous graphs. Finally, some regularization-based algorithms like P-reg [90] 

and Ortho-GCN [30] are compared here. 

Table 5.1 Statistical details of nine benchmark datasets. 
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5.5.2 Results and Discussion (RQ1). 

Flipping can be integrated into various neural networks. We apply it to three 

representative models; MLP, GCN, and GAT. In Table 5.2, we observe that all flipping 

variants (Flip-MLP, Flip-GCN, and Flip-GAT) perform significantly better than their 

base models. Now, we analyze these results from two perspectives. 

Performance gain of flipping is sensitive to the Z-value of each dataset. Since flipping 

is designed to reduce overfitting caused by the sparsity in initial features, we can 

presume that the non-zero element ratio (z-value) is the key factor that determines the 

performance gains of flipping. Indeed, flipping attains larger performance gains on 

low z-value datasets than on higher ones. For the three datasets with higher z-values 

(Pubmed, Chameleon, and Squirrel), the advancement of flipping over their vanilla 

models (e.g., Flip-MLP vs MLP) is relatively small. Nonetheless, the average gain of 

flipping was 3 %, 1.9 %, and 2.4 %, respectively, indicating the effectiveness of 

flipping even on datasets with large z-values. 

On datasets with low z-values, three flipping variants obtain remarkable 

advancements over their originals, achieving performance gains of 16.5 %, 24.2 %, 

and 17.8 % on average. Notably, flipping methods perform best except for Squirrel 

Table 5.2 (RQ1) Node classification accuracy (%) on nine benchmark datasets. Bold with an 

asterisk (*) symbol indicates the best performance, and methods with † are built upon GCN. We 

show 𝜶, 𝜷 that achieves the best accuracy (Eq. 5.18). 
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(with high z-value and low homophily). This may imply that a slight perturbation to 

the input features can have a greater impact than aggregation scheme modifications 

under semi-supervised settings. 

Relatedness between the homophily ratio and performance. Message-passing GNNs 

utilize the homophily property commonly observed in graphs [50; 89]. In three 

citation graphs, GNNs outperform Multi-Layer Perceptron (MLP) due to higher 

homophily ratios in these graphs. However, in other datasets like Actor and three 

WebKB networks, Flip-MLP achieves the best accuracy among the baselines 

indicating that message-passing fails to generalize well in the presence of high 

heterophily. The performance gain of Flip-MLP is higher than Flip-GNNs on 

homophilic graphs, but GNNs benefit more from flipping on heterophilic graphs. 

Although several baselines achieve notable performance, our flipping methods 

outperform all of these algorithms on the overall datasets, demonstrating the 

effectiveness across various GNN architectures. 

 

5.5.3 Convergence Analysis (RQ2). 

One may argue that flipping could negatively impact the stability of the algorithms 

due to the operations in two spaces. Figure 5.4 illustrates the performance of vanilla 

GCN and GAT compared to Flip-GCN in both spaces as a function of the number of 

iterations. We show the results from four datasets only due to the limited space. The 

performance of GCN (blue), GAT (pink), Flip-GCN (o) in the original space (red), 

and Flip-GCN (f) in the flipped space (green) are depicted with different colors. The 

x-axis represents the training epochs, and the y-axis shows the node classification 

accuracy.  
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  Through this figure, we can see that the Flip-GCN achieves higher performance in 

both spaces. On the Chameleon graph, we notice that Flip-GCN (f) surpasses the 

baselines after 1000 epochs. Compared to GCN and GAT, the flip-based method 

demonstrates stability and fast convergence, as seen in the Chameleon and Squirrel 

datasets. The results confirm our analysis which asserts that flipping reduces the 

variance of predictions as described in Section 5.4. Though we admit that the 

performance gain of Flip-GCN is dependent on the type of initial features, flipping 

leads to the faster and more stable convergence of the parameters. In conclusion, as a 

data augmentation strategy, flipping leads to improved performance on datasets with 

Figure 5.4 (RQ2) Performance of GCN, GAT, and Flip-GCN for each 

iteration. The performance of Flip-GCN is measured in the original (o) and 

flipped (f) space, respectively. 
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multiple zero elements while ensuring robustness, which is an important characteristic 

in semi-supervised settings.  

 

5.5.4 Analysis of Gradients on Two Spaces (RQ3). 

Figure 5.5 analyzes the gradient of the first projection matrix during the training phase 

with the Cora dataset. We define four neighbor types applying different ranges of 

neighboring: T1, T2, T3, and T4. T1 only consists of the features of the central node 

(Ego). T2 and T3 include the features of 1-hop and 2-hop neighbors, respectively. T4 

Figure 5.5 (RQ3) Using the Cora dataset, we plot the magnitude of the first 

projection matrix gradients and their standard deviation (𝝈) during training 

epochs (𝒊). 
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has the remaining feature. We prioritize the types from T1 to T4 to avoid overlapping 

and double-counting of features (note that all T ∈ RF are binarized vectors). 

In Figure 5.5, the average and standard deviation of gradients in two spaces are plotted. 

In the original space (left), the largest gradient is given to features from T1 (red). This 

is due to the property of GCN, where the gradients generally decrease w.r.t. the hop 

counts. Also, the features in T4 (orange) have the smallest values, suggesting that they 

are mostly excluded during training, while only slight updates by weight 

regularization. On the other hand, in the flipped space (right), all types tend to have a 

similar magnitude with a small deviation (σ). The results indicate that most 

dimensions are updated during training in the flipped space. 

 

5.5.5 Varying the Size of Training Samples (RQ4). 

In this experiment, we aim to investigate the impact of labeled sample size on 

performance. Table 5.3 displays the z-value of ego nodes varying the number of 

labeled nodes per class (L/C) for three graphs. Here, we adjust the number of training 

samples to analyze the effect of the size of labeled nodes on performance. 

Firstly, we can see that GCN and GAT outperform MLP for Cora and Chameleon, 

while MLP surpasses two models in the Cornell dataset. Apart from this, we observe 

that the performance improvement from flipping decreases as the L/C increases. This 

is because, as more training nodes are available, the initial features start to cover most 

dimensions (high z-value) and the plain models can effectively update the first weight 

matrix without flipping. 

Table 5.3 (RQ4) Node classification accuracy (%) w.r.t. the different number of training 

samples. The symbol (+F) means that flipping is applied on a base method. 
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In the Chameleon graph, flipping does not have a significant impact on performance 

as the number of samples increases. This is because the initial features of the dataset 

contain many non-zero components and have high maximum values. And as the 

number of labeled nodes increases, the performance of the vanilla also increases. The 

same trend can be observed for GAT, where the performance gap between GAT and 

GAT+F becomes smaller as the number of labeled nodes per class (L/C) increases. 

However, flipping still improves the performance of the base models in other graphs 

(Cora and Cornell) significantly. 

 

5.5.5 Varying the Size of Training Samples (RQ5). 

We investigated how two hyperparameters, 𝛼 and 𝛽 in Eq. 21, affect the overall 

performance of our model. In Figure 8, we illustrate the node classification accuracy 

of Flip-APPNP by changing 𝛼 and 𝛽 (relative weights of the gradient in two types of 

spaces) through grid search. As can be seen, we employ two types of datasets: Cora 

and Cornell. Flip-APPNP generally outperforms plain APPNP when 𝛼 is close to 1. 

Since the original space allows for fast optimization with a small number of elements, 

the performance decreases in proportion to 𝛼. Furthermore, we noticed that assigning 

small values to 𝛽 achieves better performance, where the scale of gradients in a flipped 

space is generally larger than the original ones (please refer to Fig. 7). 

 

 

Table 5.6 (RQ4) Parameter sensitivity analysis using Flip-APPNP as a base model 
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5.6   Related Work 

Graph Neural Networks. Generally, GNNs can be divided into two categories: 

spectral-based and spatial-based. Spectral-based GNN is based on the mathematical 

foundation for graph convolution in the spectral domain using the Laplacian matrix 

[5; 16; 21]. On the other hand, spatial-based GNNs aggregate information from local 

neighborhoods from a spatial perspective, leading to the development of many 

aggregation schemes for handling noisy connections [81; 67; 99; 13; 2]. The issue of 

sparse initial features, however, has not received much attention in the literature. 

Generalization of neural networks. In the field of neural network generalization, many 

approaches have been proposed [8; 25; 84]. Several suggested the normalization of 

deep neural networks [35] while others applied regularization to all adjacent nodes 

[90] or integrated label propagation to give further information [82]. More recently, 

the orthogonal GCN [30] attacks the gradient vanishing problem at the initial few 

layers of GNNs. RawlsGCN [38] claims the unfairness of gradient update which is 

biased to nodes with a large degree. Though these methods show notable 

improvements under the semi-supervised scenario, they fail to solve the problem that 

is inherently occurred by a characteristic of initial features. In this paper, we solve this 

problem through a simple yet effective method, flipping. 

 

 

5.7   Conclusion 

Existing GNNs have primarily focused on optimizing the aggregation strategy while 

neglecting the type of initial features. In this paper, we examine the correlation 

between zero elements in input vectors and their impact on the first layer of neural 

networks. We introduce a co-training approach that involves learning the gradient 

flows in both the original and flipped spaces, and adaptively adjusting the parameters. 

Additionally, we provide a theoretical understanding that flipping reduces prediction 

variance while maintaining stable convergence. By incorporating flipping into three 

base methods, we observe an improvement in node classification accuracy, 

demonstrating that our approach is scalable and effective. In future work, we hope to 

apply flipping to other variations of GNNs to enhance their performance.  
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