

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

Improving Message-Passing and Representation

Learning of Graph Neural Networks

그래프 신경망의 메시지 전달 및 표현 학습 개선

서울대학교 대학원

컴퓨터공학부

최윤혁

2023 년 8월

Improving Message-Passing and Representation

Learning of Graph Neural Networks

지도 교수 권 태 경

이 논문을 공학박사 학위논문으로 제출함

2023 년 6 월

서울대학교 대학원

컴퓨터공학부

최윤혁

최윤혁의 공학박사 학위논문을 인준함

2023 년 6 월

위 원 장 이 상 구 (인)

부위원장 권 태 경 (인)

위 원 강 유 (인)

위 원 김 종 권 (인)

 위 원 양 은 호 (인)

Improving Message-Passing and Representation

Learning of Graph Neural Networks

by

Yoonhyuk Choi

Department of Computer Science & Engineering

Doctor of Philosophy in Seoul National University

Abstract

Graph Neural Networks (GNNs) achieve substantial improvement in

analyzing graph-structured datasets under semi-supervised setting, where few

labels are available during the training. The discriminative power of GNNs

stem from the message-passing scheme, where they utilize information from

neighboring nodes. Generally, under the graphs with strong homophily,

features from the adjacent nodes can be used to guide decision boundary (e.g.,

neural networks) more precisely. Nonetheless, they fail to achieve satisfying

results under heterophilous graphs, where most edges connect two nodes with

different labels.

In the first paper, we analyze the performance of GNNs based on the multiple

propagation schemes theoretically. For example, flipping the sign of edges is

rooted in a strong theoretical foundation, and attains significant performance

enhancements. Nonetheless, they assume a binary class scenario and they may

suffer from confined applicability. Here, we extend the prior understandings

to multi-class scenarios and points out two drawbacks: In case two nodes

belong to different classes but have a high similarity, signed propagation can

decrease the discrimination power of the GNNs, (2) signed message also

increases the prediction uncertainty (e.g., conflict evidence) which can impede

the stability of the algorithm.

In the second paper, we focus on finding the heterophilous edges, which can

degrade the overall quality of GNNs significantly. To achieve this, we employ

a confidence ratio as a hyper-parameter, assuming that some of the edges are

disassortative (heterophilic). Here, we suggest the two-phased algorithm, (1)

determining edge coefficients through subgraph matching using a

supplementary module, and (2) the application of modified label propagation.

Specifically, our supplementary module identifies a certain proportion of task-

irrelevant edges based on a given confidence ratio. Further, the improved label

propagation mechanism prevents two nodes with smaller weights from being

closer effectively.

Lastly, we introduce the limitation of GNNs from another perspective, where

they suffer from sparsity in initial node features. This can result in overfitting

of the first projection matrix (or hyperplane), where the dimensions with zero

inputs are not updated during training. To address this issue, we propose a

novel data augmentation strategy, which flips the initial features and the

hyperplane simultaneously. To the best of our knowledge, this is the first

attempt to mitigate the overfitting problem caused by input features.

Keywords: Graph neural network, Semi-supervised learning, Message-

passing, Signed propagation, Calibration, Heterophilic neighbor, Subgraph

matching, Confidence ratio, Sparseness of node features

Student Number: 2019-25552

Acknowledgments

First of all, I would like to express my gratitude to my advisor Chong-Kwon Kim,

who guided me for about five years. I would also like to extend my thanks to the thesis

committee members: Professor Sang-goo Lee, Taekyoung Kwon, U Kang, and Eunho

Yang, for their participation and valuable insights. Without them, I also could not have

completed this, who generously provided their expertise and knowledge. Further, this

endeavor would not have been possible without the generous support from the

following foundation, who financed my research.

- National Research Foundation of Korea (NRF) (No. 2016R1A5A1012966,

No. 2020R1A2C110168713)

- Technology Planning & Evaluation (IITP) (No. 2021-0-02068 Artificial

Intelligence Innovation Hub, No. RS-2022-00156287 Innovative Human

Resource Development for Local Intellectualization support program) grant

funded by the Korea government (MSIT)

I am also thankful to my colleagues, especially my senior Jiho Choi and Hyungho

Byun, office mates Taewook Ko, Ahyun Lee, and Hyungho Bae for their editing help

and encouragement. Additionally, I’d like to appreciate to the staffs, research

assistants, and study participants from the university, who impacted and inspired me.

Lastly, I would like to mention my family, especially my parents. Their belief has kept

my spirits and motivation high during this process. I would also like to thank my

friends for all the entertainment and emotional support.

List of Figures

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Node classification accuracy on six benchmark

datasets. Firstly, vanilla GCN utilizes the original

graph. The coefficient of heterophilous edges is

changed to -1 in signed GCN and to 0 in zero-

weight GCN, respectively.

We plot the Z to compare the discrimination power

of signed and zero-weight GCNs. The red and blue

colored parts indicate the regions where signed

GCN and zero-weight GCN have better

performance, respectively.

We take an example to illustrate the distribution of

node features under (a) binary and (b) multi-class

scenarios. Figure (c) represents the aggregation of

neighboring nodes (𝑘1, 𝑘2) under multiple classes.

(a) In binary class graphs, signed propagation

contributes to the separation of nodes (i, j) and

reduces the entropy. (b) In multi-class graphs, the

uncertainty of neighboring nodes that are connected

with signed edges (j, k) increases

Visualization of the update procedure of node

features under (a) binary and (b) multi-class

scenarios

Comparison of the dissonance on three graph

variants; vanilla GCN, signed GCN, and zero-

weight GCN

By differentiating the number of classes, we

compare the dissonance of GCN using two graph

variants

Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 5.1

The effect of hyper-parameter λ in Eq. 3.41 on the

classification accuracy of four calibrated methods

Node classification accuracy (%) of GCN on

different datasets; (a) Cora, and (b) Chameleon. For

each graph, we randomly prune a certain proportion

of assortative / disassortative edges and plot their

performance. We also describe a special case of (c)

helpful aggregation scenario under disassortative

graphs.

The overall framework of our model. It consists of

two parts; one for the subgraph matching module

which generates supplementary edge coefficients,

and the other one is the GNN module that utilizes

weights for label propagation.

Convergence analysis on (a) Cora, and (b) Actor.

Each figure contains validation (green) and test (red)

accuracy of node classification.

We measure F1-score to evaluate edge classification

performance on six graph datasets. Here, we adopt

our model with four baselines that specify edge

coefficients.

We differentiate the confidence ratio of subgraph

matching module, and describe F1-score on six

graph datasets.

Evaluation on over-smoothing using (a) Cora, and

(b) Chameleon dataset. We plot the accuracy of two

baselines and our method using a different number

of layers.

Initial feature distribution of benchmark graph

datasets. The definition of value z is described in

Equation 5.18.

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

(a) Mechanism of flipping and (b) overall

architecture of Flip-GNN.

(a) Distance d from 𝑊(1) to p1. (b) 𝑊𝑓
(1)

 is retrieved

by padding -2d to the last dimension of 𝑊(1).

Performance of GCN, GAT, and Flip-GCN for each

iteration. The performance of Flip-GCN is

measured in the original (o) and flipped (f) space,

respectively.

Using the Cora dataset, we plot the magnitude of the

first projection matrix gradients and their standard

deviation (𝜎) during training epochs (𝑖).

Parameter sensitivity analysis using Flip-APPNP as

a base model

List of Tables

Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Statistical details of six benchmark datasets

Mean node classification accuracy (%) with

standard deviation. A shadowed grid indicates the

best performance. Values in bracket stand for the

dissonance defined in Eq. 3.32 and symbol ‡ means

that calibration is applied to baseline method

Ablation study on the hyper-parameters

Statistical details of homophilic datasets

Statistical details of heterophilic datasets

Node classification accuracy (%) on homophilic

citation networks. Bold* symbol indicates the best

performance, and methods with † are built upon GCN.

Node classification accuracy (%) on heterophilic

citation networks. Bold* symbol indicates the best

performance, and methods with † are built upon GCN.

Statistical details of nine benchmark datasets.

(RQ1) Node classification accuracy (%) on nine

benchmark datasets.

Table 5.3 Node classification accuracy (%) w.r.t. the different

number of training samples. The symbol (+F)

means that flipping is applied on a base method.

List of Algorithms

Algorithm 1 (𝑆. 3)

Algorithm 2 (𝑆. 4)

Algorithm 3 (𝑆. 4)

Algorithm 4 (𝑆. 5)

Pseudo-code of calibrated GNN

Confidence-based Subgraph Matching

Overall Optimization of ConSM

The overall mechanism of Flip-GCN

Contents

1 Introduction ………………………………………………………… 1

2 Preliminary ...……………………………………………………… 4

3 Improving Signed Propagation for Graph Neural Networks

 3.1 Introduction …………………………………………………… 6

 3.2 Related Work .………………………………………………… 8

 3.3 Preliminary …………………………………………………… 9

 3.4 Theoretical Analysis ………………………………………… 10

 3.5 Methodology ………………………………………………… 26

 3.6 Experiments ………………………………………………… 28

 3.7 Conclusion ..………………………………………………… 35

4 Finding Heterophilic Neighbors via Confidence-based Subgraph

Matching

 4.1 Introduction ………………………………………………….. 37

 4.2 Related Work ………………………………………………… 40

 4.3 Notations ……………………………………………………… 42

 4.4 Methodology ………………………………………………… 42

4.5 Experiments ………………………………………………… 54

4.6 Conclusion …………………………………………………… 63

5 Limitation of Real-world Graph Datasets under Semi-supervised

Setting

5.1 Introduction ………………………………………………… 65

 5.2 Preliminary …………………………………………………… 67

 5.3 Methodology .………………………………………………… 69

 5.4 Theoretical Analysis ………………………………………… 75

 5.5 Experiments …………………………………………………. 76

 5.6 Related Work ………………………………………………… 84

 5.7 Conclusion …………………………………………………… 84

6 Bibliography ……………………………………………………… 85

1

Chapter 1

Introduction

The increase in graph-structured datasets has led to rapid advancements in graph

mining techniques. Especially, GNNs provide satisfactory performances in various

applications including node classification and link prediction, which also has been

adopted in many fields; physics [28], protein-protein interactions [26], and social

networks [23]. The main component of GNNs is message-passing [28], where the

information is propagated between nodes and then aggregated. Also, the integration

of a structural property with the node features enhances the representation and the

discrimination powers of GNNs substantially [73; 16; 42; 32; 81]. Consequently,

GNNs often have shown the best performance in various tasks including semi-

supervised node classification and link prediction.

Early GNN schemes assume the network homophily where nodes of similar

attributes make connections with each other based on the selection [59] or social

influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian

smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor

nodes. Consequently, these methods fail to adequately deal with heterophilous graphs

[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve

this problem, a plethora of clever algorithms have been proposed including the

adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high

similarity [67; 53], and diversified message propagation [91]. However, the majority

of prior schemes [57] stipulate certain conditions of advantageous heterophily and

these constraints undermine their generality and applicability [66].

2

Many clever schemes have been introduced to solve the problem. Some of them

specify different weights for each connection [81; 92; 2; 40], or remove disassortative

edges [94; 22; 55]. Others employ distant nodes with similar features [67; 93; 37] or

apply different aggregation boundary based on the central nodes [85]. Additionally,

some bodies of work allow the edge coefficients to be negative [13; 2] to preserve

high-frequency signal exchanges between neighbors. Further, from the perspective of

gradient flow, [2; 20] shows that negative eigenvalue preserves the high-frequency

signals to dominate during propagation. [3] introduces sheaf to enhance the linear

separability of neural networks.

In the first paper, we aim to provide theoretical justification to answer this

question “what kind of message-passing algorithm achieves best performance?”,

including signed and zero-weighted propagation. Firstly, we point out some

limitation of previous analysis [57; 89] that provide theoretical boundaries under

a binary class scenario, which may detriment their applicability to generic graphs.

Here, we extend the theorem to a multi-class scenario positing that the blind

application of signed messages to multi-class graphs may increase the uncertainty

of predictions.

In addition to the theoretical understanding, we propose another method through

the second paper, which aims to find heterophilous edges through subgraph

matching. To achieve this, we focus on the GAM [78] that suggests a

supplementary module with label propagation. Specifically, the supplementary

module of GAM only utilizes a central node to debilitate noises, which is identical

to a simple MLP. Though GAM might work well under high heterophily, they fail

to generalize well under homophilous graphs. To solve this limitation, we measure

the similarity of two nodes including their subgraphs by employing the widely

used optimal transport [69; 87; 60; 44]. In addition, we further apply a confidence

ratio to remove certain proportion of disassortative edges. Finally, considering

3

these predictions as supplementary edge coefficients, we apply label propagation

[6] between a certain proportion of high confident edges.

Lastly, our focus is on the characteristics of graph datasets. We have observed

that features from benchmark graph datasets have few non-zero elements (e.g.,

bag-of-words representation). Here, we contemplate that the shortage of training

samples in semi-supervised settings can result in the overfitting of specific

dimensions in the first layer parameters. This can negatively impact the quality of

predictions for test nodes with untrained features in those dimensions. To optimize

the first layer projection matrix better, we focused on perturbing the initial features.

As a common data augmentation technique, dimensional shifting could be used

which is commonly used in computer vision [75]. However, this was found to be

unsuitable for GNNs with bag-of-words features, as it would disrupt the semantic

information. Our proposed solution involves flipping the initial features and

parameters simultaneously, which can ensure local invariance. This approach is

inspired by shifting parameters [41] and rotating neural networks [51] that

preserve the volume of gradients and initial features. This flipping mechanism can

address the issue of zero gradients caused by sparse inputs and enhance the

semantic learning of each dimension.

To summarize, chapter 3 analyzes the power of various message-passing schemes

theoretically. In chapter 4, we provide our subgraph-based GNN, which can generalize

well under heterophilous settings. Finally, chapter 5 provides new insights from

gradient perspectives, which points out some limitations of graph benchmark datasets

to solving semi-supervised classification scenario.

4

Chapter 2

Preliminary

In this section, we define some useful notations and explain the basics of the graph-

related problems.

Let 𝐺 = (𝑉, 𝐸, 𝑋) be a graph with |𝑉| = 𝑛 nodes and |𝐸| = 𝑚 edges. The node

attribute matrix is X ∈ Rn×F, where F is the dimension of an input vector. Given X,

the hidden representation of node features H(l) (l-th layer) is derived through message

passing. Here, node i′s feature is the row of . The structural property of G can be

represented by its adjacency matrix A ∈ {0,1}n×n. Also, D is a diagonal matrix with

node degrees 𝑑𝑖𝑖 = ∑ 𝐴𝑖𝑗 .𝑛
𝑗=1 Each node has its label Y ∈ Rn×C, where C represents

the number of classes.

The goal of semi-supervised node classification is to predict the class of unlabeled

nodes 𝑉𝑈 = {𝑉 − 𝑉𝐿} ⊂ 𝑉 given the partially labeled training set 𝑉𝐿. Generally, we

assume 5% of entire nodes are available during training phase.

5

Chapter 3

Improving Signed Propagation for

Graph Neural Networks

Message-passing Graph Neural Networks (GNNs), which collect information

from adjacent nodes, achieve satisfying results on homophilic graphs. However,

their performances are dismal in heterophilous graphs, and many researchers have

proposed a plethora of schemes to solve this problem. Especially, flipping the sign

of edges is rooted in a strong theoretical foundation, and attains significant

performance enhancements. Nonetheless, previous analyses assume a binary class

scenario and they may suffer from confined applicability. This paper extends the

prior understandings to multi-class scenarios and points out two drawbacks: (1)

In case two nodes belong to different classes but have a high similarity, signed

propagation can decrease the discrimination power of the GNNs, (2) signed

message also increases the prediction uncertainty (e.g., conflict evidence) which

can impede the stability of the algorithm. Based on the theoretical understanding,

we introduce two novel strategies for improving signed propagation under multi-

class graphs. The proposed scheme combines calibration to secure robustness

while reducing uncertainty. We show the efficacy of our theorem through

extensive experiments on six benchmark graph datasets.

6

3.1 Introduction

The increase in graph-structured datasets has led to rapid advancements in graph

mining techniques including random walk-based node embedding and graph neural

networks (GNNs). Especially, GNNs provide satisfactory performances in various

applications including node classification and link prediction. The main component

of GNNs is message-passing [28], where the information is propagated between nodes

and then aggregated. Also, the integration of a structural property with the node

features enhances the representation and the discrimination powers of GNNs

substantially [16; 42; 81].

Early GNN schemes assume the network homophily where nodes of similar

attributes make connections with each other based on the selection [59] or social

influence theory [27]. Plain GNN algorithms [16; 42] simply perform Laplacian

smoothing (a.k.a low-pass filtering) to receive low-frequency signals from neighbor

nodes. Consequently, these methods fail to adequately deal with heterophilous graphs

[63; 66; 99] such that even a simple MLP outperforms GNN in some cases. To relieve

this problem, a plethora of clever algorithms have been proposed including the

adjustment of edge coefficients [81; 37; 4], aggregation of remote nodes with high

similarity [67; 53], and diversified message propagation [91]. However, the majority

of prior schemes [57] stipulate certain conditions of advantageous heterophily and

these constraints undermine their generality and applicability.

Recently, some bodies of work allow the edge coefficients to be negative [13; 2] to

preserve high-frequency signal exchanges between neighbors. Further, from the

perspective of gradient flow, [2; 20] shows that negative eigenvalue preserves the

high-frequency signals to dominate during propagation. [3] introduces sheaf to

enhance the linear separability of neural networks. Instead of changing the signs of

edges, others [55; 77] assign zero-weights to disassortative connections precluding

7

message diffusion on such edges. Here, there arises a question: does signed messaging

always yield better results than assigning zero-weights on heterophilic edges?

To answer the above question, we conduct an empirical study and illustrate its

results in Figure 15. Along with this, we aim to establish theoretical properties to

compare their discrimination power. For this, recent studies [57; 89] scrutinize the

changes in node features before and after message reception. Here, they provide some

useful insights into using signed messages based on the node’s relative degree and its

homophily ratio. Nonetheless, prior analyses were confined to binary class graphs,

which may detriment their applicability to generic graphs. In this paper, we extend the

theorem to a multi-class scenario positing that the blind application of signed

messages to multi-class graphs may increase the uncertainty of predictions.

Throughout this analysis, we suggest employing confidence calibration [29; 84] which

is simple yet effective to enhance the quality of predictions. To summarize, our

contributions can be described as follows:

• Contrary to prior work confined to a binary class, we tackle the signed messaging

mechanism in a multi-class scenario. Our work provides fundamental insight into

using signed messages and establishing the theoretical background for the

development of powerful GNNs.

• We conjecture and prove that signed messages escalate the inconsistency between

neighbors and increase the uncertainty in predictions. Based on this understanding,

we propose a novel uncertainty reduction method using confidence calibration.

• We conduct extensive experiments on six benchmark datasets to validate our

theorems and show the effectiveness of confidence calibration.

8

3.2 Related Work

 Graph Neural Networks (GNNs). Under semi-supervised settings, GNNs have shown

great potential by utilizing the information of adjacent nodes. Early GNN studies [5;

16] focused on the spectral graph analysis (e.g., Laplacian decomposition) in a Fourier

domain. However, they suffer from large computational costs as the scale of the graph

increases. GCN [42] reduced the overhead by harnessing the localized spectral

convolution through the first-order approximation of a Chebyshev polynomial.

Another notable approach is spatial-based GNNs [81; 4] which aggregate information

in a Euclidean domain. Early spatial techniques became a steppingstone to many

useful schemes that encompass relevant remote nodes as neighbors.

GNNs on heterophilous graphs. Traditional message-passing GNNs fail to perform

well in heterophilic graphs [67]. To redeem this problem, recent studies have paid

attention to the processing of disassortative edges [17; 34]. They either capture the

difference between nodes or incorporate distant but similar nodes as neighbors. For

example, H2GCN [99] separates ego and neighbors during aggregation. SimP-GCN

[37] suggests a long-range adjacency matrix and EvenNet [46] receives messages

from even-hop away nodes only. Similarly, [48] selects neighbors from the nodes

without direct connections. Configuring path-level pattern [79] or finding a

compatibility matrix [100] has also been proposed. Another school of methodologies

either changes the sign of disassortative edges from positive to negative [13; 2; 24;

31] or assigns zero-weights to disassortative edges [55]. Even though these schemes

show their effectiveness [1] on binary classes, it may require further investigations

before extending their applications to a multi-class scenario.

9

3.3 Preliminary

In this section, let us first define the notations and then explain the basics of the

problem.

3.3.1 Definition of homophily.

The global edge homophily ratio (ℋ𝑔) is defined as:

(3.1)

Likewise, the local homophily (bi) of node i is given as:

(3.2)

3.4 Theoretical Analysis

We first discuss the mechanism of Message-Passing Neural Networks (MPNN) and

the impact of using signed messages (§ 3.4.1). Then, we introduce the previous

analysis of employing signed propagation on binary class graphs (§ 3.4.2). Through

this, we extend them to a multi-class scenario and point out some drawbacks under

this condition (§ 3.4.3). Finally, we suggest a simple yet effective solution to improve

the quality of signed GNNs through the integration of calibration (§ 3.4.4).

3.4.1 Message-Passing Neural Networks.

Mechanism of Graph Neural Networks (GNNs). Generally, most of the GNNs employ

the strategy of propagation and then aggregation, where the node features are updated

iteratively. This can be represented as follows:

10

(3.3)

H(0) = X is the initial vector and H(l) is nodes’ hidden representations at the l-th layer.

𝐻(𝑙+1) is retrieved through message-passing (A) and we obtain H(l+1) after an activation

function ϕ (e.g. ReLU). W(l) is the trainable weight matrices that are shared across all

nodes. The final prediction is produced by applying cross-entropy σ(·) (e.g., log-

softmax) to �̅�(𝐿) and the loss function is defined as:

(3.4)

The parameters are updated by computing negative log-likelihood loss Lnll between

the predictions (Yb) and true labels (Y). Most GNN schemes assume that graphs are

assortative and they construct the message-passing matrix (A) with positive values to

preserve the low-frequency information (local smoothing) [51]. Consequently, they

fail to capture the difference between node features and achieve lower performance

on the heterophilous networks [65; 67].

 Meaning of using signed messages. Recent studies [13; 2; 89; 12] emphasize the

importance of high-frequency signals and suggest flipping the sign of disassortative

edges from positive to negative to preserve such signals. We first show that they can

also contribute to the separation of ego and neighbors.

3.4.2 Using Signed Messages on Binary Classes.

First, we assume a binary class and provide theoretical analysis by distinguishing two

phases: message-passing and parameter update.

(Message-Passing) Signed GNN generally improves the overall performance.

11

In this section, we aim to analyze the movements of node features given three types

of graphs (original, signed, and zero weights). We again employ GCN [42] as a

baseline. Here, we assume a binary classification task (𝑦𝑖 ∈ {0, 1}) similar to previous

work [1; 89] and inherit several useful notations for simplifications: (1) For all nodes

𝑖 = {1, . . . , 𝑛}, their degrees {𝑑𝑖} and features {ℎ𝑖} are i.i.d. random variables. (2)

We assume that every class has the same population. (3) With a slight abuse of

notation, assume ℎ(0) = 𝑋𝑊(0) is the first layer projection of initial node features. (4)

Given the label 𝑦𝑖, the node feature follows the distribution (𝜇 or − 𝜇) as:

(3.11)

Prior work [89] introduces Theorems 4.1, 4.2 using the local homophily (Eq. 3.2),

message passing (Eq. 3.3), and expectation of node features (Eq. 3.11). Each theorem

below utilizes the original and signed graph, respectively.

Theorem 4.1 (Binary class, vanilla GCN). Let us assume yi = 0. Then, the expectation

after a single-hop propagation is defined as:

(3.12)

, where

Proof of Theorem 4.1.

Assume a binary class yi ∈ {0,1}. Using the aggregation scheme of GCN [32], the

hidden representation of node i after message-passing ℎ𝑖
(1)

 is defined as:

(3.13)

12

As illustrated in Figure 7a (binary class), we assume ℎ𝑖~𝑁(𝜇, 1 √𝑑𝑖⁄) 𝑖𝑓 𝑦𝑖 = 0

and otherwise ℎ𝑖~𝑁(−𝜇, 1 √𝑑𝑖⁄). Based on the local homophily bi, Eq. 28 becomes:

(3.14)

End of proof.

The generalized version of the above theorem is described in [44], which takes two

distributions µ0,µ1 as:

(3.15)

Eq. 15 reduces to Eq. 12 when µ1 = −µ0.

Theorem 4.2 (Binary class, signed GCN). If the sign of heterophilous edges is flipped

correctly under the error ratio (e), the expectation is given by:

(3.16)

13

Proof of Theorem 4.2. Similarly, signed GCN correctly configures the sign of

heterophilous edges with the following error ratio 1−e. For example, the sign of

heterophilous nodes changes from −µ to µ with a probability 1 − e and vice versa:

(3.17)

End of proof.

(Parameter Update) Signed propagation can contributeto the separation of ego

and neighbors. Let us assume an ego node i and its neighbor node j is connected with

a signed edge. Let us ignore other neighbor nodes to concentrate on the mechanism

of signed messaging. Applying GCN [42], we obtain the output of node i as:

(3.5)

Assuming that the label of the ego (Yi) is k, we can calculate the loss (Lnll) between a

true label Yi ∈ RC and a prediction �̂�𝑖 ∈ RC as below:

(3.6)

14

Since the column-wise components of the last weight matrix W(L) act as an

independent classifier, we prove that the probability of node j being a class k (�̂�𝑗,𝑘),

transitions in the opposite to the node i’s probability (𝑦𝑖,𝑘) as the training epoch (t)

proceeds:

(3.7)

, where and

Notation η is the learning ratio and a symbol ▽ represents a partial derivative of the

loss function.

Proof of Equation 7.

We first show that signed messages can contribute to separating the ego from its

neighbors. Let us assume the label of the ego node i is k. A neighbor node j is

connected to i with a signed edge. Since the column-wise components of the weight

matrix act as an independent classifier, the probabilities that the two nodes belong to

the same class, at a training epoch t are derived as,

(3.8)

The loss function is defined as

The gradient of node 𝑖 is well-known to be,

(3.9)

15

Similarly, the gradient of node 𝑗 is given by:

(3.10)

where we can retrieve Eq. 3.7.

End of proof.

Referring to this analysis, we can induce the expectation of zero-weight GCN as

below.

Theorem 4.3 (Binary class, zero-weight GCN). Similar to the Theorem 4.2, assigning

zero weights to the heterophilous edges leads to the following feature distribution:

(3.18)

Proof of Theorem 4.3.

(3.19)

End of proof.

16

For all theorems, if the coefficient of is smaller than 1, the node feature moves

towards the decision boundary and message passing loses its discrimination power

[89]. Based on this observation, we can compare the discrimination powers of signed

and zero-weight GCNs.

Corollary 4.4 (Binary class, discrimination power). Omitting the overlapping part of

Theorems 4.2 and 4.3, their difference, Z, can be induced by the error ratio (e) and

homophily (bi):

(3.20)

where 0 ≤ 𝑒, 𝑏𝑖 ≤ 1.

We visualize Z in Fig. 3.2 (a). Note that the space is half-divided by the plane Z = 0

since ∬ (1 − 𝑒 − 𝑏)𝑑𝑒𝑑𝑏 = 0
1

0
. When bi and e are small, Z becomes positive which

indicates that signed GCN outperforms zero-weight GCN and vice versa.

Figure 3.2 We plot the Z to compare the discrimination power of signed and zero-

weight GCNs. The red and blue colored parts indicate the regions where signed GCN

and zero-weight GCN have better performance, respectively.

(a) (b)

17

Now, let us assume that the error ratio is zero (e = 0) identical to the settings of our

previous analysis (Fig. 3.1). Under this condition, Z (= 1 − bi) should be non-negative

regardless of the homophily ratio (0 ≤ bi ≤ 1).

(3.21)

However, Fig. 3.1 shows that zero-weight GCN generally outperforms signed GCN

(Z ≤ 0) contradicting the Corollary 4.4. Thus, we extend the above theorems to cover

a multi-class scenario and point out the limitations in the previous analyses.

3.3.2 Empirical Analysis.

Vanilla GNNs provide dismal performances in heterophilic datasets, where most

edges connect two nodes with different labels. Consequently, finding proper

coefficients of entire edges became essential to enhance the overall quality of GNNs.

Figure 3.1 Node classification accuracy on six benchmark datasets. Firstly,

vanilla GCN utilizes the original graph. The coefficient of heterophilous

edges is changed to -1 in signed GCN and to 0 in zero-weight GCN

18

In Fig. 3.1, we evaluate the node classification accuracy of GCN [42] using six

benchmark graphs (the statistical details are shown in Table 1). From the original

graph (vanilla GCN), we fabricate two graph variants; one that replaces disassortative

edges with -1 (signed GCN), and the other that assigns zero-weights on heterophilous

connections (zero-weight GCN). As illustrated in Fig. 3.1, the zero-weight GCN

achieves the best performance, followed by the signed GCN. The detailed

explanations regarding this phenomenon will be explained in Section 3.5.

3.4.3 Using Signed Messages on Multiple Classes.

Based on the prior analysis, we extend them to multi-class scenarios and point out

some drawbacks of using signed propagation for GNNs.

(Message-Passing) The performance of signed GCN depends on the number of

classes. Without loss of generality, one can extend the expectation of node features

from a binary (Eq. 3.16) to multiple classes through spherical coordinates as below:

(3.22)

Here, µ also represents the scale of a vector and the direction is determined by two

angles 𝜙 and 𝜃. Obviously, the above equation satisfies the origin symmetry under

binary classes, where (µ, π/2, 0) = −(µ, π/2, π). Through this equation, we can

redefine Theorem. 4.1 and 4.2 for multiple class GCNs.

Theorem 4.5 (Multi-class, signed GCN). Let us assume the label yi = 0. For simplicity,

we denote the coordinates of the ego (µ,θ) as k, and its neighbors (µ,θ′) as k′, where θ

= 0 and 𝜃′ =
2𝜋𝑗

𝑐
≠ 0. Then, the expectation of hi is defined as:

19

(3.23)

Proof of Theorem 4.5.

(3.24)

End of proof.

Figure 1.3 We take an example to illustrate the distribution of node features

under multi-class scenarios. The right figure represents the aggregation of

neighboring nodes (k1, k2) under multiple classes.

20

As shown in Figure 3.3, we extend a binary classification scenario to a multi-class

case. Without loss of generality, we employ spherical coordinates and ensure that µ

corresponds to the scale of a vector, while the direction of each vector lies between

zero and with respect to their label j. Here, we assume the label is yi = 0. For

simplicity, we replace (µ,θ = 0) as k and (µ,θ′ ̸= θ) as k′, respectively. Though k′

comprises multiple distributions that are proportional to the number of classes, their

aggregation always satisfies |kaggr
′ | ≤ µ since the summation of coefficients (1 − bi) is

lower than 1 and |k′| ≤ µ. Referring to Fig. 7c, we can see that
𝑘1+𝑘1

2
≤ 𝜇. Given b1 =

b2 = 0.5, where the aggregation of neighbors always lies in µ. Thus, for brevity, we

indicate 𝑘′𝑎𝑔𝑔𝑟 as 𝑘’ here. Now, we can retrieve the expectation (hi) of signed GCN as

follows.

Theorem 4.6 (Multi-class, zero-weight GCN). Likewise, the hi driven by zero-weight

GCN is:

(3.25)

Proof of Theorem 4.6.

(3.26)

End of proof.

21

Similar to Corollary 4.4, we can compare the separability of the two methods based

on their coefficients.

Corollary 4.7 (Multi-class). The difference of discrimination power (Z) between

signed and zero-weight GCN in the multiclass case is:

(3.27)

Then, we can induce the conditional statement as below based on the distribution of

aggregated neighbors (k′):

(3.28)

Fig. 3.2 (b) plots Z for the multi-class case. The above corollary implies that if the

distribution of aggregated neighbor is origin symmetry (k′ = −k), Z (= 1−e−b) becomes

identical to the Eq. 3.20. Under this condition, signed propagation might perform well.

However, as k′ gets closer to k, its discrimination power degrades (Z gets smaller) as

shown in the blue areas in Fig. 3.2 (b).

Intuitively, the probability of being k′ = −k may decrease as the number of classes

increases, which means that the zero-weight GCN generally outperforms the signed

GCN in multi-class graphs.

(3.29)

(Parameter Update) Though signed propagation contributes to the ego-neighbor

separation, it also increases the uncertainty of the predictions. Adequate

management of uncertainty is vital in machine learning to generate highly confident

predictions [19; 61; 62]. This is closely related to the entropy (e.g., information gain

22

[52]) and recent work [39] formulates two types of uncertainties: the aleatoric and

epistemic caused by the data and the model, respectively. But here, we rather focus

on the conflict evidence (dissonance) [68; 97], which ramps up the entropy of outputs.

One can easily measure the uncertainty of a prediction () using Shannon’s entropy

[74] as:

(3.31)

Furthermore, measuring dissonance (diss) is also important [97] as it is powerful in

distinguishing Out-of-Distribution (OOD) data from conflict predictions [36] and

improving classification accuracy:

(3.32)

Figure 3: (a) In binary class graphs, signed propagation contributes to the separation

of nodes (i,j) and reduces the entropy. (b) In multi-class graphs, the uncertainty of

neighboring nodes that are connected with signed edges (j,k) increases

(a) Binary class (b) Multiple class

Figure 3.4 (a) In binary class graphs, signed propagation contributes to the separation of

nodes (𝒊, 𝒋) and reduces the entropy. (b) In multi-class graphs, the uncertainty of

neighboring nodes that are connected with signed edges (𝒋, 𝒌) increases.

23

which can be defined only for non-zero elements. We show that signed messages are

helpful for ego and neighbor separation. Now, we posit that neighbors connected with

signed edges provoke higher entropy (e.g., 𝐸(�̂�𝑖) or 𝑑𝑖𝑠𝑠(�̂�𝑖)) than the one with a

plane or zero-weighted one.

Theorem 4.8. Under multiple classes, the entropy gap between the signed neighbor

𝐸(�̂�𝑠) and plane (or zero) one 𝐸(�̂�𝑝) increases in proportion to the training epoch (t).

(3.33)

Proof of Theorem 4.8.

Firstly, the true label probability (k) of node 𝑝 (�̂�𝑝,𝑘) increases, while other

probabilities �̂�𝑝,𝑜 (𝑜 ≠ 𝑘) decrease as follows:

(3.34)

Since we proved that ▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘 < 0 , we analyze the partial derivative

▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜 (∀𝑜 ≠ 𝑘).

(3.35)

Figure 3.5 Visualization of the update procedure of node features under (a) binary and (b) multi-class.

24

On the contrary, the gradient of node s has a different sign with node p, where we

can infer that:

(3.36)

As the training epoch increases, �̂�𝑝,𝑘 will converge to 1 resulting in the decrease of

𝐸(�̂�𝑝). Conversely, �̂�𝑠,𝑘 gets closer to 0, which may fail to generate a highly confident

prediction and leads to a surge of uncertainty. Thus, one can infer:

(3.37)

As shown in Figure 3.5 a, this can be effective under a binary class, while the signed

nodes (i,j) in a multi-class case (Fig. 3.5 b) have conflict evidence except for class 0.

Taking another example, let us assume that the original probability (before the update)

is 𝑦𝑖
𝑡 = [0.6,0.2,0.2] with C = 3. Then, one can calculate the Shannon’s entropy as,

(3.38)

Without considering node degree, let us assume the gradient of class k as

 ▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘 = − ▽𝑠 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑘 = 𝛼, and other classes as

▽𝑝 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜 = − ▽𝑠 𝐿𝑛𝑙𝑙(𝑌𝑖 , �̂�𝑖)𝑜 =
𝛼

𝐶−1
(∀𝑜 ≠ 𝑘). If we take 𝛼 = 0.1,

then �̂�𝑝
(𝑡+1)

 and �̂�𝑠
(𝑡+1)

 becomes:

(3.39)

where we can see that 𝐸(�̂�𝑝
(𝑡+1)

) < 𝐸(�̂�𝑠
(𝑡+1)

) after the single iteration.

25

End of proof.

To summarize, signed messages contribute to the separation of two nodes (Fig 3.5

a), while they also increase the uncertainty of neighboring nodes 𝑗, 𝑘 that propagate

signed information to an ego 𝑖 (Fig. 3.5 b). To deal with this, we employ confidence

calibration which will be explained below.

3.5 Methodology

Previously, we pointed out the issues of signed propagation from two perspectives:

message-passing and parameter update. Now, we propose two strategies that can be

combined with any GNN using signed propagation.

3.5.1 (Message-Passing) Edge weight calibration

Through Corollary 4.7, we analyze the impact of signed propagation based on the

distribution of neighbors 𝑘′ . It was observed that as 𝑘′ is similar to 𝑘 , signed

propagation reduces the discrimination power. At the same time, it also increases the

separability of two nodes during training. Thus, we propose the following strategies:

(1) In training, we employ signed messages for ego-neighbor separation. (2) During

the validation/test phase, we block the information propagation of highly similar

nodes, which may decrease the discrimination power.

As a downstream task of GNNs, the score (e.g., cosine similarity) of two nodes is

calculated based on the node features at the 𝑙-th layer:

(3.40)

Then, for all edges that satisfy the following conditions, we replace their weights 𝑎𝑖𝑗

(e.g., attention values) as 0:

 (3.41)

where 휀 is the hyper-parameter. Through this, the discrimination power remains

powerful during training, while securing the separability in the inference phase.

26

Remark. The replacement of 𝑎𝑖𝑗 in Eq. 41 is highly scalable for signed GNNs,

which focuses on edge-level weight retrieval.

3.5.2 (Parameter Update) Confidence calibration

In Theorem 4.8, we show that signed messages increase the uncertainty of predictions.

Here, we propose a simple yet effective solution that can reduce the uncertainty (P2)

through confidence calibration. The proposed method, free from entire path

configuration, is cost-efficient and fairly powerful. Calibration is one type of self-

training method [29; 90] that acts as a regularization term. Even though it has shown

to be effective for generic GNNs [84], we notice that the performance gain is much

greater when integrated with signed methods. Many algorithms can be used for

calibration (e.g., temperature and vector scaling [29]). In this paper, our loss function

is defined as,

 (3.42)

where 𝑛 = |𝑉𝑣𝑎𝑙𝑖𝑑 ∪ 𝑉𝑡𝑒𝑠𝑡| is the set of validation and test nodes. Our method is

quite similar to prior work [84], but we do not utilize the label of validation sets for a

fair comparison. As defined above, it penalizes the maximal and sub-maximal values

to be similar in order to suppress the generation of conflict evidence. Since the

calibration only utilizes the outputs y, it has high b scalability and is applicable to

any type of GNNs.

3.5.3 Optimization

Before, we introduce two strategies to improve the quality of signed propagation.

For optimization, we apply confidence calibration during training as below:

 (3.43)

27

Here, ℒ𝐺𝑁𝑁 indicates any type of GNN. Also, the 𝜆 is a hyper-parameter that balances

the influence of confidence calibration. After optimization, we employ edge weight

calibration during the inference phase. Through this, we observe a significant

improvement in signed GCN (+ calib) as demonstrated in Figure 1. We describe the

pseudo-code of calibrated FAGCN [2] below.

Time complexity of calibrated GNN

We analyze the computational complexity of our method. For brevity, we take

vanilla GCN [32] as a base model. Generally, the cost of GCN is known to be

proportional to the number of edges and trainable parameters 𝑂(|ℰ|𝜃𝐺𝐶𝑁). Here, 𝜃𝐺𝐶𝑁

is comprised of 𝑂(𝑛𝑧(𝑋)𝐹′ + 𝐹′𝐶) [85], where 𝑛𝑧(·) represents the non-zero

elements of inputs and F′ stand for the hidden dimension, and C is the number of

classes. Additionally, our method employs two types of calibration. The first one is

28

edge weight calibration. For this, we need to retrieve the node features of each layer

and calculate the cosine similarity for all connected nodes |ℰ|2. Thus, the complexity

becomes 𝑂(|ℰ|𝜃𝐺𝐶𝑁 + 𝐿|ℰ|2) . Further, the calibration takes 𝑛 = |𝑉𝑣𝑎𝑙𝑖𝑑 ∪

 𝑉𝑡𝑒𝑠𝑡| samples as inputs and finds top 𝑘 samples on each row of 𝑦𝑏 . Thus, their

complexity can be simply defined as 𝑂(𝑛 + 𝑘). To summarize, the cost of calibrated

GCN is 𝑂(2|ℰ|𝜃𝐺𝐶𝑁 + 𝐿|ℰ|2 + 𝑛 + 𝑘), which is fairly efficient.

3.6 Experiments

We conducted extensive experiments to validate our theorems and to compare the

performances of our method and baselines. We aim to answer the following research

questions:

• Q1 Is calibration alleviates the uncertainty issue when integrated with the signed

GNNs?

• Q2 Do the signed messages increase the uncertainty of the final prediction?

• Q3 How much impact do the two calibration methodologies have on performance

improvement?

• Q4 Is the number of classes correlated with the prediction uncertainty?

• Q5 How does the hyper-parameter λ in Eq. 3.41 affect the performance?

Datasets. The statistical details of datasets are in Table 3.1. (1) Cora, Citeseer, Pubmed

[42] are citation graphs, where a node corresponds to a paper and edges are citations

between them. The labels are the research topic of the papers. (2) Actor [80] is a co-

occurrence graph where actors and co-occurrences in the same movie are represented

as nodes and edges, respectively. The labels are five types of actors. (3) Chameleon,

Squirrel [72] are Wikipedia hyperlink networks. Each node is a web page and the

edges are hyperlinks. Nodes are categorized into five classes based on monthly traffic.

29

Baselines. We employ several state-of-the-art methods for validation: (1) Plane GNNs:

GCN [42], and APPNP [43]. (2) GNNs for heterophilous graphs: GAT [81], GCNII

[9], H2GCN [99], and PTDNet [55]. (3) GNNs with signed propagation:

GPRGNN [13], FAGCN [2], and GGCN [89].

- General information of the implementations.

All methods including baselines and ours are implemented upon PyTorch Geometric.

For a fair comparison, we equalize the hidden dimension of the entire methodologies

as 64. ReLU with dropout is used for non-linearity and to prevent over-fitting. We

employ the log-Softmax as a cross-entropy function. The learning ratio is set to 1e−3

and the Adam optimizer is taken with weight decay 5e−4. For training, 20 nodes per

class are randomly chosen and the remaining nodes are equally divided into two parts

for validation and testing.

- More details about baseline methods.

• GCN [42] is a first-order approximation of Chebyshev polynomials [11]. For all

datasets, we simply take 2 layers of GCN.

• APPNP [43] combines personalized PageRank on GCN. We stack 10 layers and

set the teleport probability (α) as {0.1,0.1,0.1,0.5,0.2,0.3} for Cora, Citeseer,

Pubmed, Actor, Chameleon, and Squirrel.

• GAT [81] calculates feature-based attention for edge coefficients. Similar to GCN,

we construct 2 layers of GAT. The pair of (hidden dimension, head) is set as (8, 8)

for the first layer, while the second layer is (1, number of classes).

• GCNII [9] integrates an identity mapping function on APPNP. We set α = 0.5 and

employ nine hidden layers. We increase the weight of identity mapping (β) that is

inversely proportional to the heterophily of the dataset.

30

• H2GCN [99] suggests the separation of ego and neighbors during aggregation. We

refer to the publicly available source code1 for implementation.

• PTDNet [55] removes disassortative edges before a message-passing. We also

utilize the open-source code2 here.

• GPRGNN [13] generalized the personalized PageRank to deal with heterophily

and over-smoothing. Referring here3, we tune the hyper-parameters based on the

best validation score for each dataset.

• FAGCN [2] determines the sign of edges using the node features. We implement

the algorithm referring here4 and also tune the hyper-parameters with respect to

their accuracy.

• GGCN [89] proposes the scaling of degrees and the separation of

positive/negative adjacency matrices. We simply take the publicly available code5

for evaluation.

3.6.1 Experimental Results (Q1).

In Table 3.2, we describe the node classification accuracy of each method. A symbol

(‡) means that calibration is supplemented to the basic method. Now, let us analyze

the results from two perspectives.

1 https://github.com/GemsLab/H2GCN
2 https://github.com/flyingdoog/PTDNet
3 https://github.com/jianhao2016/GPRGNN
4 https://github.com/bdy9527/FAGCN
5 https://github.com/Yujun-Yan/Heterophily and oversmoothing

Table 3.1 Statistical details of six benchmark datasets.

31

Homophily ratio plays an important role in GNNs. Three citation networks have

higher homophily compared to others. We can see that all methods perform well under

homophilic datasets. As homophily decreases, methods that adjust weights depending

on associativity outperform plain GNNs. Similarly, using signed messages (GPRGNN,

FAGCN, and GGCN) has shown to be effective here. They achieve notable

performance for both homophilic and heterophilic datasets, which means the

separation of ego and neighbors (H2GCN) is quite important.

Calibration improves the overall quality and alleviates uncertainty. We apply

calibration (‡) to signed GNNs (GPRGNN, FAGCN, and GGCN). We also apply

calibration to GCN and GAT. The average improvements of three signed GNNs by

calibration are 4.37%, 3.1%, and 3.13%, respectively. The improvements are greater

than those of GCN‡ (2.65%) and GAT‡ (1.97%). Additionally, we describe the

dissonance (Eq. 21) of each method in a bracket, where the calibrated methods show

lower values than the corresponding vanilla model. To summarize, the results indicate

Table 3.2 (Q1) Mean node classification accuracy (%) with standard deviation. A shadowed grid

indicates the best performance. Values in bracket stand for the dissonance defined in Eq. 3.32 and

symbol ‡ means that calibration is applied to baseline method.

32

that calibration not only contributes to reducing uncertainty but also improves the

accuracy of signed GNNs significantly.

3.6.2 Correlation of using Signed Messages and the Uncertainty (Q2).

To show that signed messages increase uncertainty, we assume three types of graphs

for GCN [42] using four datasets. Specifically, we fabricate two graph variants, signed

GCN and zero-weight GCN. Here, we remove the randomness for a fair comparison.

The results are illustrated in Fig. 3.6, where the x-axis is the number of layers and the

y-axis represents dissonance. Referring to Theorem 4.8, the uncertainty is higher on

signed GCN for all shallow layers. As we stack more layers, the entropy of vanilla

GCN increases dramatically on heterophilous datasets, the Chameleon and Squirrel.

In other words, plain GCN fails to discriminate the ego and neighbors (over-

smoothing) and yields low classification accuracy.

Figure 3.6 (Q2) Comparison of the dissonance on three graph variants;

vanilla GCN, signed GCN, and zero-weight GCN.

33

Table 3.3 (Q3) We measure the improvement of node classification accuracy (%)

by applying edge weight and confidence calibration on three baseline methods

3.6.3 Ablation study (Q3).

We conduct an ablation study to analyze the effectiveness of edge weight and

confidence calibration. As shown in the above Table, given the two homophilic (Cora,

Citeseer) and heterophilic (Actor, Chameleon) graphs, we employ three baseline

methods with signed propagation. For each method, we apply edge weight calibration

(\textbf{w/ edge calib}) or confidence calibration (\textbf{w/ conf calib}) and

measure the node classification accuracy, respectively. Here, we can see that methods

with confidence calibration generally outperform edge weight calibration and shows

smaller variance. The reason is that confidence calibration reduces the uncertainty of

the entire nodes during training, whereas edge calibration is only applied to a small

number of edges for testing. Nevertheless, it can also be observed that edge calibration

for similar nodes belonging to different classes still contributes to a certain extent to

the improvement in performance.

34

3.6.3 Case Study (Q4).

Theoretical analyses confirm that signed messages increase the uncertainty in multi-

class graphs (§ 4.3). They have shown to be effective when k′ gets closer to −k, but

this probability is inversely proportional to the number of classes c. To further analyze

this phenomenon, we compare the dissonance of two variants of GCN (signed GCN

and zero-weight GCN) by decrement of the number of classes (c). Specifically, if the

original data contains seven classes (e.g., Cora), we remove all the nodes that belong

to the rightmost class to generate a graph with six labels. The results are illustrated in

Figure 3.7 (Q4) By differentiating the number of classes, we compare the

dissonance of GCN using two graph variants.

35

Fig. 3.7. As can be seen, zero-weight GCN (red) tends to have lower dissonance under

multiple classes. However, under binary classes (c=2), signed GCN (blue) shows

lower uncertainty with the aid of ego-neighbor separation. In the binary case, zero-

weight GCN only utilizes homophilous neighbors and fails to generalize under this

condition.

3.6.4 Hyper-parameter Analysis (Q5).

We conduct an experiment to investigate the effect of hyper-parameter 휀 and 𝜆. We

tune the epsilon (threshold of cosine similarity) from -1 to 1 and lambda (impact of

confidence calibration) from 0 to 1 as shown in Figure 8. Then, we describe the node

classification accuracy on the Squirrel (heterophilic) dataset. The blue line represents

PTDNet, while others are signed GNNs. In the left figure, we notice that baseline

methods achieve the best performance under the largest epsilon, which means

blocking the signed messages of highly similar nodes is advantageous. Here, PTDNet

does not change the sign of edges, it shows no variation based on the epsilon. In the

right figure, it is notable that finding an appropriate lambda is beneficial for overall

performance improvement. Nonetheless, it is also limited by the inherent low

capability of base models in heterophilous graphs (low accuracy). Further, assigning

Figure 3.8 (Q5) The effect of hyper-parameter 𝝀 in Eq. 3.41 on the classification

accuracy of four calibrated methods.

36

the same weights to ℒ𝐺𝑁𝑁 and ℒ𝑐𝑜𝑛𝑓 generally downgrades the overall performance,

which necessitates the usage of validation sets.

3.7 Conclusion

In this work, we provide a new theoretical perspective on using signed messages for

node embedding under multi-class benchmark datasets. Firstly, we show that signed

messages contribute to the separation of heterophilous neighbors in a binary class,

which is consistent with conventional studies. Then, we extend previous theorems to

a multi-class scenario and point out two critical limitations of using signed

propagation: (1) it decreases the separability of two nodes, while (2) increasing the

probability of generating conflict evidence. Based on the observations, we calibrate

signed GNNs to reduce uncertainty and secure robustness. Through experimental

analysis, we show that our method is beneficial for both homophilic and heterophilic

graphs. We claim that our theorems can provide insights to develop a better

aggregation scheme for future GNN studies.

37

Chapter 4

Finding Heterophilic Neighbors via

Confidence-based Subgraph Matching

Graph Neural Networks (GNNs) have proven to be powerful in many graph-based

applications. However, they fail to generalize well under heterophilic setups, where

neighbor nodes have different labels. To address this challenge, we employ a

confidence ratio as a hyper-parameter, assuming that some of the edges are

disassortative (heterophilic). Here, we propose a two-phased algorithm. Firstly, we

determine edge coefficients through subgraph matching using a supplementary

module. Then, we apply GNNs with a modified label propagation mechanism to

utilize the edge coefficients effectively. Specifically, our supplementary module

identifies a certain proportion of task-irrelevant edges based on a given confidence

ratio. Using the remaining edges, we employ the widely used optimal transport to

measure the similarity between two nodes with their subgraphs. Finally, using the

coefficients as supplementary information on GNNs, we improve the label

propagation mechanism which can prevent two nodes with smaller weights from

being closer. The experiments on benchmark datasets show that our model alleviates

over-smoothing and improves performance.

38

4.1 Introduction

The investigation of graph-structured data has gained significant attention in various

fields; physics [28], protein-protein interactions [26], and social networks [23].

Integrated with deep neural networks (DNNs) [45], graph neural networks (GNNs)

have achieved state-of-the-performance by concurrently modeling node features and

network structures [73; 16; 42; 32; 81]. Specifically, the message passing plays an

important role by aggregating features from neighboring nodes [28]. Consequently,

GNNs often have shown the best performance in various tasks including semi-

supervised node classification and link prediction.

However, recent studies reveal that GNNs gain advantages of message passing

under limited conditions, e.g., high assortativity of subject networks [59]. In this paper,

we assume two types of networks; homophilic (assortative) ones where most edges

connect two nodes with the same label, and heterophilic graphs where the most

connections are disassortative. Most prior work on GNNs assumes that connected

nodes are likely to possess the same label, and thus, they fail to attain sufficient

performance for many real-world heterophilic datasets [66]. Many clever schemes

have been introduced to solve the problem. Some of them specify different weights

for each connection [81; 92; 2; 40], or remove disassortative edges [94; 22; 55]. Others

employ distant nodes with similar features [67; 93; 37] or apply different aggregation

boundary based on the central nodes [85]. Nonetheless, there is a question to be

addressed: is it necessary to specify different weights for GNNs?

39

To answer the above question, we conduct an investigation using two representative

datasets; one is an assortative citation network called Cora [58], and the other one is

Chameleon [72] which contains many disassortative links between Wikipedia web

pages. In Figure 4.1, we randomly prune a certain ratio of assortative / disassortative

edges and describe the node classification accuracy of GCN [42]. Through this study,

we observe two characteristics; (1) for Cora, the performance increases as the

assortative edges are maintained, while disassortative edges are removed. On the

contrary, Chameleon data is rather heterophilic and thus, the disassortative links play

an important role as the number of remaining assortative edges becomes smaller. To

analyze this result, we take Figure 4.1 (c) as an example. Though the graph is

heterophilic, two central nodes share the same types of neighborhoods (2 green, 1

yellow) that can contribute to distinguishing them from others [54; 57]. (2) the

removal of assortative edges has a greater impact on the overall performance than

disassortative ones. For example, the performance in Cora using the original graph is

79.8 % (top right). If we remove all disassortative edges, it attains 88.1 % (top left),

whereas eliminating assortative links becomes 51.1 % (bottom right). To summarize,

Figure 4.1 Node classification accuracy (%) of GCN on different datasets; (a) Cora, and (b)

Chameleon. For each graph, we randomly prune a certain proportion of assortative /

disassortative edges and plot their performance. We also describe a special case of (c) helpful

aggregation scenario under disassortative graphs.

(a) (b) (c)

40

we conjecture that removing a small proportion of assortative edges can be harmful,

and thus, assigning accurate weights are fundamental for GNNs. Now, the problem is;

how can we figure out these coefficients correctly and utilize them?

To achieve this, we focus on the GAM [78] that suggests a supplementary module

with label propagation. Specifically, the supplementary module of GAM only utilizes

a central node to debilitate noises. However, referring to Figure 4.1, excluding all links

of assortative and disassortative shows the lowest performance, which is the same as

GAM’s method. To solve this limitation, our supplementary module focuses on the

widely used optimal transport [69; 87; 60; 44] to measure similarity between two

subgraphs. In addition, we further apply a confidence ratio to deal with multiple

disassortative links. Then, considering these predictions as supplementary edge

coefficients, we apply label propagation [6] between a certain proportion of high

confident edges, while the others are considered disassortative and the connected

nodes are prevented from being similar. Our contributions can be summarized as

follows:

• We introduce a confidence-based subgraph matching to retrieve edge coefficients

accurately. Our model is scalable and generalizes well for both homophilic /

heterophilic graphs, which can be achieved by varying the values of the

confidence ratio.

• Assuming that a certain proportion of entire edges are disassortative, we improve

the label propagation to keep two nodes with a lower similarity score from being

closer. Specifically, we divide the edge coefficients into two parts, which can

guide the positive pairs to be similar and vice versa.

• We conduct extensive experiments on publicly available datasets to validate the

above suggestions. The ablation studies indicate the superiority of subgraph

matching techniques for retrieving class sharing probability.

41

4.2 Related Work

Graph neural networks (GNNs) have shown substantial improvement for semi-

supervised classification tasks. Most of them can be categorized into two types;

spectral-based and spatial-based methods. The first one utilizes structural information

of the entire graph through Laplacian decomposition [33] that requires high

computational costs O(n3). To reduce their complexity, GCN [42] suggests a first-

order approximation of Chebyshev polynomials [16] and utilizes features of

neighboring nodes by simply stacking convolutional layers. Ada-GNN [21] further

employs an adaptive frequency filter to capture different perspectives of nodes.

However, these algorithms inevitably aggregate noisy adjacent nodes, where they

assume two connected nodes are likely to share the same label.

Recently, some algorithms focus on the retrieval of edge coefficients using the node

features. For example, GAT [81] measures the relevance between two nodes by

applying an attention layer to their features. Similarly, Masked-GCN [92] estimates

attribute-wise similarity for precise propagation. GNN-Explainer [94] identifies the

set of important edges and features that maximize the mutual information of the final

prediction. Nonetheless, these methods may fail to generalize well under a

heterophilic graph, where the message passing inevitably makes two connected nodes

similar.

To solve this problem, FAGCN [2] selects whether to propagate low-frequency or

high-frequency signals by enabling edges to have negative coefficients. L2Q [85]

parameterizes the aggregation boundary of each node to deal with heterophily.

SuperGAT [40] differentiates between friendly and noisy neighbors based on their

homophily and node degrees. However, these methods also implicate noisy

information since they work as a downstream task of GNNs. Some argue that graph

42

sparsification [98; 18] is considerable for graph denoising. For example, PTDNet [55]

adopts nuclear norm to prune edges between communities. Yet, it also implicates risk

for pruning positive edges and is not powerful enough for classification compared to

classical GNNs.

As another branch, non-local neural networks [83; 53] have gained increasing

attention for capturing long-range dependencies. Since previous GNNs only utilize

local adjacent nodes, they fail to deal with heterophilic graphs. Instead of directly

specifying coefficients, finding distant but similar nodes has increased the

representational power of GNNs. Specifically, Geom-GCN [67] further exploits

distant nodes within a specific boundary and executes grid-based aggregation. Simp-

GCN [37] mixes the original adjacency matrix with a feature-based similarity matrix

through learnable parameters. Nonetheless, they implicate two limitations. Firstly,

operating as a downstream task of GNNs may inevitably contain noisy information

after aggregation. Secondly, measuring relevance between two nodes can be biased

(or risky) under a semi-supervised setting that has few labeled samples [52].

Apart from retrieving edge coefficients, a strategy for utilizing this information is

also considerable. For example, P-reg [90] simply utilizes entire edges to provide

additional information for GNNs. NGM [6] integrates label propagation (LP) with

GNNs, while GAM [78] further parameterize edge coefficients. However, these

methods are highly localized and fail to discriminate less important edges under the

global aspect. Further, they show limited performance for precise prediction under our

experiments. Instead, we focus on pairwise matching between two subgraphs that are

independent of GNN modules. Using the mechanism of optimal transport (OT) [86;

44; 60], we integrate a confidence-based denoising network to secure robustness,

followed by our label propagation.

43

4.3 Notations

Please refer to the definition of notations in Section 2.

4.4 Methodology

Figure 4.2 illustrates the overall architecture of our model which consists of two parts.

On the right side, we describe the GNN module with label propagation which takes

the predicted edge weights for training. The left one stands for the subgraph matching

that provides edge coefficients as supplementary information.

The two modules do not share loss or parameters and are updated independently. In

Section 4.4.1, we first introduce methodologies for retrieving edge coefficients,

followed by our subgraph matching module. In Section 4.4.2, we suggest strategies to

utilize these predictions effectively through label propagation.

4.4.1 Retrieving Edge Coefficients.

Recently, many efforts have been dedicated to specifying edge coefficients, and we

categorize them into two types. Firstly, in Section 4.4.1.1, we take previous methods

that only utilize central nodes for classification. Secondly, in Section 4.4.1.2, we

describe previous algorithms that further utilize the adjacent nodes for prediction.

Finally, we discuss the advantages and limitations of these methods and describe our

subgraph matching module in Section 4.4.1.3.

4.4.1.1 Retrieving Edge Coefficients using a Central Node.

44

These types of methods include message passing, but only a central node is used for

similarity measure, not a subgraph. With the slight abuse of notation, let us assume

the ℎ𝑖 , ℎ𝑗 as hidden representations of two nodes 𝑖, 𝑗.

Graph agreement model (GAM) [78] introduces an auxiliary model to predict a

same class probability 𝑤𝑖𝑗 between two nodes 𝑖, 𝑗 as below:

(4.1)

The MLP is a fully-connected network with non-linear activation. GAM works well

under the heterophilic graph since they do not utilize neighboring nodes. However, as

the homophily ratio of the graph increases, we notice that they show significantly

lower performance even compared to the plain GCN [42].

Graph attention network (GAT) [81] applies layer-wise attention as a downstream

task of GNN as below:

(4.2)

GAT specifies different weights for each layer, where al is a learnable vector at the l −

th layer. Compared to GAM, a softmax function normalizes the weights that are highly

dependent on the degree of each node, which makes it harder to determine their

importance. Further, the message passing can degrade the performance since the edge

coefficients wij always maintain a positive value.

FAGCN [2] improves GAT from two perspectives; replacing softmax with degree-

based normalization, and adopting different activation function as below:

(4.3)

45

The main difference lies in tanh, where the negative value of coefficients can maintain

high-frequency signals. However, we notice that their accuracy decreases as the

homophily of networks increases (e.g., Cora), where all coefficients converged to a

positive value and fail to figure out heterophilic edges.

PTDNet [55] removes task-irrelevant edges by applying randomness ϵ and decaying

factor γ. Here, the coefficients wij can be derived as below:

 (4.4)

The random value follows ϵl ∼ Uniform(0,1), and decaying factor γ depends on the

iteration number. They apply nuclear norm on the entire edges w to remove

connections between communities. However, we notice that randomness can impede

precise prediction, and nuclear norm does not always lead to optimal results.

Summarizing the above methodologies, prediction based on the central node

implicates two major problems. Firstly, excluding message passing (GAM) can lead

to over-fitting, where it contains limited information. Though other methods

incorporate neighboring nodes, the noisy neighbors also participate in the aggregation

process, which can impede robustness and incur over-smoothing issues [81]. Secondly,

directly employing the coefficients as an adjacency matrix is highly risky, where the

elimination of assortative edges hurts the overall performance of GNNs (please refer

to Figure 4.1). To solve these limitations, we focus on subgraph matching algorithms

which will be introduced in the upcoming section.

4.4.1.2 Retrieving Edge Coefficients using Subgraphs.

In this section, we describe some methods of measuring the similarity between two

subgraphs. Recently, applying optimal transport (OT) on subgraphs [69; 87] has

shown great improvement, which is a mathematical framework for measuring

46

distances (similarity) between objects. For example, let us assume two subgraphs

Gi,Gj that contain m,n nodes, respectively. Then, we can define transport (coupling)

matrix P ∈ Rm×n between two subgraphs that meets 𝑃1𝑛 =
1

𝑚
1𝑚 and 𝑃𝑇1𝑚 =

1

𝑛
1𝑛.

The objective of OT is to find matrix P that minimizes the function below:

(4.5)

Here, S is a cost function and H(·) is entropy regularized Kantorovich relaxation

with regularizer 𝜖. However, finding 𝑃𝑖𝑗 for all pairs of (𝑖, 𝑗) requires a high

computational cost.

Linear optimal transport [60] employ reference points r to solve the above limitation,

which can be retrieved through k-means clustering or calculating Wasserstein

barycenter [15] based on each class of training nodes. Here, elements that are assigned

to the same cluster (reference) are pooled together and thus, reducing the pair-wise

calculation. Specifically, matrix P ∈ RC×N splits or assigns the entire node N to

references r (C stands for the number of reference points). P can be obtained through

multiple ways (e.g., Sinkhorn’s algorithm [76]), which calculates a relevance between

the inputs and reference points as below:

(4.6)

, where Ni is the number of nodes in subgraph i. Let us assume the hidden

representations of two subgraphs as hi ∈ 𝑅Ni×F,hj ∈ 𝑅Nj×F whose feature dimension

is F. Using pi
*

 ∈ RC×Ni, pj
∗
 ∈ RC×Nj in Equation 50 that splits the mass of subgraph

47

hi,hj to multiple references h′
i,h′

j ∈ RC×F, one can measure their similarity through

matching function M (MLP) as below:

(4.7)

Monge map [44] does not split mass, while an injective mapping is applied for each

subgraph as follows:

(4.8)

Similar to linear optimal transport [60], each subgraph hi,hj can be mapped to new

points h′
i,h′

j ∈ RC×F through optimal transport p∗ (please refer to Eq. 4.7). The

difference lies in a barycentric projection B that ensures no mass splitting (please read

this paper [44] for more details).

Using the insight of these methods [60; 44], the subgraph matching has the

advantage of using adjacent nodes for predictions. However, they also implicate a

limitation of handling noisy neighbors, since they utilize the entire nodes of the

subgraph to measure their similarity. To deal with this, we now introduce our method

that utilizes a confidence ratio as below.

4.4.1.3 Our subgraph Matching using a Confidence Ratio.

In Figure 4.2, we describe the overall architecture of our Confidence-based Subgraph

Matching. ConSM calculates a similarity between two subgraphs (probability of

sharing the same label) using optimal transport and confidence ratio as follows:

1. Sampling: We randomly sample two labeled nodes, whose labels can be the same

or different. For sampling, the size of the positive and negative pairs should be the

48

same to avoid a model being biased. We further utilize their 2-hop adjacent nodes

as inputs.

2. Prune: We measure a score of entire edges through reference points. Then, based

on a confidence ratio, we maintain top-k confident ones while removing others.

3. Map and aggregation: Given two subgraphs Gi,Gj, we first map nodes to low-

dimensional embedding hi,hj and assign them to the nearest reference points r

through the Monge map. Then, we aggregate the nodes that belong to the same

reference points by pooling operation (e.g., mean).

4. Prediction: We measure the similarity of the two graphs and also retrieve the class

probability of a central node.

Now, we describe the details of our method below.

Sampling. We adopt an auxiliary module for retrieving edge coefficients that are

independent of the GNN module. Here, two nodes are randomly sampled based on

their class. If two nodes share the same class (positive pair), we assume the label of

this pair as 1 and otherwise 0. To prevent a class imbalance problem, the same number

Figure 4.2 The overall framework of our model. It consists of two parts; one for the subgraph matching

module which generates supplementary edge coefficients, and the other one is the GNN module that utilizes

weights for label propagation.

49

of positive and negative pairs are sampled. Compared to GAM [78], we utilize the

subgraph of a central node (adjacent nodes within 2-hop) to improve prediction

accuracy.

Prune. Unlike previous method [34] that applied embedding → aggregation →

mapping, we suggest embedding → pruning → mapping → aggregation’ to handle

noisy edges. Specifically, we only utilize a certain proportion of edges based on their

scores and a confidence ratio (ζ). We first describe our scoring function. Using the

initial node features X, we can retrieve their low-dimensional embedding h ∈ RN×F

through an encoder (MLP) as:

 (4.9)

Similarly, the embedding of reference points is r ∈ RC×F, which can be obtained

through class-wise averaging of training nodes. Then, we can measure a score (e.g.,

cosine similarity) S ∈ RN×C between nodes h and references r as below:

 (4.10)

, where the row of S represents a score of each node with respect to the reference

points. Given two nodes 𝑖, 𝑗, we can retrieve their similarity wij = Si · Sj.

Consequently, the w of the entire edges can be obtained, and thus, we manage to

maintain top-k edges k = ⌊ζ × |E|⌋ while removing others.

Map and aggregation. Using the remaining edges, the adjacency matrix can be

reconstructed. With the slight abuse of notation, given two nodes 𝑖, 𝑗 and their

subgraphs Gi,Gj, we assume that their subgraph embedding hi,hj can be retrieved as

below:

 (4.11)

50

, which is similar to Equation 4.9. hi ∈ Rm×F,hj ∈ Rn×F consists of m and n nodes,

respectively. Referring Equation 4.7 and 4.8, we can map each node in subgraph

through Monge map as below:

 (4.12)

The ℎ′𝑖 , ℎ′𝑗 ∈ 𝑅𝐶×𝐹 is the output of subgraph after mapping and aggregation. Though

linear OT is also considerable, we choose the Monge Map which shows the better

performance.

Prediction. Finally, using the concatenation of h′
i,h′

j as an input of matching

function M, we can estimate their similarity as below:

 (4.13)

If two inputs share the same label, the value of 𝑤𝑖𝑗 should be closer to 1, and otherwise

0. We further employ node classification function f(·) (MLP) to predict the label of

each subgraph’s central node ℎ𝑖
𝑒 𝑎𝑛𝑑 ℎ𝑗

𝑒 , where 𝐿𝑛𝑙𝑙 is negative log-likelihood

function:

(4.14)

Our subgraph matching module can be trained through Equation 58, and we describe

the overall procedure in Algorithm 2.

51

4.4.2 GNNs with Supplementary Edge Weights.

Recent studies focus on the strategy to better utilize edge weights. For example, some

of them directly construct adjacency matrix [81; 55], while others employ label

propagation (LP) [6; 78; 82] on GNNs to deal with uncertainty as below:

 (4.15)

LGNN is a widely used loss function for semi-supervised node classification (e.g., GCN

[42]) that is defined as follows:

(4.16)

, where W is a learnable matrix. Though many recently proposed methods [81; 88; 43;

9; 2] are considerable for GNNs, here, we select GCN to show the efficacy of our

method. Back into Equation 4.15, λ is a regularizer and 𝐿𝐿𝑃 gives additional penalties

as below:

52

(4.17)

The notation {L,U} denotes labeled and unlabeled nodes, where LU means that only

a single node is labeled. wij ∈ {0,1} is a binary value that represents a connection

between two nodes 𝑖, 𝑗, and d is a dissimilarity measuring function (e.g., cosine

similarity). Here, {a1,a2,a3} acts as a hyper-parameter. Recently, graph agreement

model (GAM) contemplates the limitation of fixed wij, and substitute it as a

parameterized model wij = g(Xi,Xj), where g is a fully-connected networks. However,

these methods implicate two limitations. Firstly, they have shown inferior

performance for discriminating task-irrelevant edges under semi-supervised

learning. Secondly, the estimated wij scales from zero to one, even making

disassortative nodes similar (P-reg [90] also implicates this limitation). Thus, we

improve Equation 4.17 as below:

(4.18)

By sorting the score of entire edges w, we can retrieve a threshold k based on a given

confidence ratio. In Equation 4.18, weights wij that are greater than k are trained to

reduce dissimilarity d(i,j), while others are guided to be dissimilar 1 − d(i,j). Referring

to Equation 4.15, we replace LLP with our LSUP and define LG as below:

 (4.19)

53

As described in GAM, we exclude edges between labeled nodes (i,j ∈ LL) and set α1

= 1.0, α2 = 0.5. We set 0.01 ≤ λ ≤ 0.1 which is proportional to the disassortativity of

dataset.

54

4.4.3 Optimization Strategy.

So far, we define losses of our subgraph matching with label propagation in Equation

4.19. Let us assume the parameters of the subgraph matching module θSM and the

GNN module θG without sharing parameters. Here, we notice that our ConSM

implicates two limitations for optimization. Firstly, it is hard to determine whether the

subgraph matching module θSM is converged or not. Secondly, the predicted edge

coefficients may implicate uncertainty, which can impede the training of GNNs. To

solve this, in Algorithm 3, we suggest saving parameters 𝜃′𝐺 only if it attains the best

validation score (line 13). Then, before we compute the loss of the next training

sample, we can load these parameters if they exist (line 14). Through this mechanism,

we can guide GNNs to achieve better performance apart from the uncertainty of

supplementary weights.

4.4.4 Computational Complexity Analysis.

The computational costs of our model can be divided into two parts. The first one is a

vanilla GCN [42] model whose complexity is known as O(|E|PGCN), where they are

proportional to the number of entire edges |E| and the size of learnable matrices PGCN.

The second term is our ConSM which computes the similarity between two subgraphs.

Instead of naively calculating Wasserstein distance O(n3log(n)), we conduct linear

mapping [44] and measure Euclidean distance, which can be retrieved through simple

matrix multiplication. Consequently, our computational cost can be defined as

O(|E|PGCN + |EM|PConSM), where |EM| stands for the number of edges included in

sampled subgraph, and PConSM is the set of parameters in subgraph matching module.

55

4.5 EXPERIMENTS

In this section, we compare our ConSM with several state-of-the-art methods using a

homophilic and heterophilic graph dataset. In particular, we aim to answer the

following research questions:

• RQ1: Does ConSM improves node classification accuracy compared to the state-

of-the-art approaches?

• RQ2: How much does ConSM accurately specify task-irrelevant edges in terms

of graph denoising?

• RQ3: Does the confidence ratio for the subgraph matching module affects the

overall classification result?

• RQ4: Can ConSM alleviates over-smoothing for stacking many layers effectively?

4.5.1 Dataset Description and Baselines.

Dataset description. We conduct investigations with the following publicly available

dataset. The statistical details are described in Table 3.1, where we categorize them

into two types; assortative and disassortative networks. The explanations of each

dataset are demonstrated below.

• Assortative networks. For assortative data, we adopt widely used benchmark

graphs; Cora, Citeseer, and Pubmed [42]. Here, each node represents a paper and

the edge denotes a citation between two papers. Node features stand for the bag-

of-words of paper, and each node has a unique label based on its relevant topic.

• Disassortative networks. We adopt Actor co-occurrence graph [80] and Wikipedia

network [72] as disassortative graphs. For Actor co-occurrence data, the node

stands for an actor, and the edges are co-occurrence on the same Wikipedia pages.

56

The node label denotes five types based on the keywords of an actor. Similarly,

the Wikipedia network consists of Chameleon and Squirrel, where the edges are

hyperlinks between web pages. The node features are several informative nouns

and we classify them into five categories based on their monthly traffic.

Baselines. Using the above datasets, we compare our method with the state-of-the-art

baselines. A brief explanation of these methods can be seen as follows:

• MLP [70] employs a feed-forward neural network that only utilizes a central node

for classification.

• GCN [42] is a traditional GNN models that suggests first order approximation of

Chebyshev polynomials [16] to localize spectral filters.

• DropEdge [71] randomly removes edges under a given probability to alleviate

over-fitting problem.

• GAT [81] specifies different weights between two nodes, while ignoring graph

Laplacian matrix.

• GIN [88] pointed out the limited discriminative power of GCN, suggesting a graph

isomorphism network that satisfies the injectiveness condition.

• APPNP [43] combines personalized PageRank with GCN that improves

prediction accuracy, while reducing computational complexity.

• GCNII [9] integrates identity mapping to redeem the deficiency of APPNP.

• GAM [78] adopts the graph agreement model under the assumption that not all

edges correspond to sharing the same label between nodes.

• H2GCN [99] suggests ego-neighbor separation and hop-based aggregation to deal

with heterophilic graph.

• FAGCN [2] further utilizes high-frequency signal beyond low-frequency

information in GNNs.

57

• PTDNet [55] proposes a topological denoising network to prune task-irrelevant

edges as a downstream task of GNNs.

4.5.2 Experimental Setup.

All methods are implemented in PyTorch Geometric7, with Adam optimizer (weight

decay 5e−4) and proper learning ratio (1e−3). We set the embedding dimension as 64

for all methods, but diversifying it can improve the overall performance [56]. Here,

we adopt 2 layers of GNNs for all baselines, while APPNP, GCNII, and GIN further

utilize 2 layers of fully-connected networks for classification. We apply ReLU as an

activation function except for PTDNet (Sigmoid is used here). The Softmax is applied

on the last hidden layers for classification. For all datasets, we randomly select 20

samples per class as a training set, and the rest is for validation and testing. The

performance is evaluated based on a test set accuracy that achieved the best validation

score.

4.5.3 Results and Discussion (RQ1).

In Table 5 and 6, we describe experimental results of baselines and our method that

are conducted under homophilic / heterophilic datasets. Here, let us assume the

homophily ratio h as below:

(4.20)

Results on homophilic graph datasets In Table 4.3, we first discuss performance on

three homophilic datasets, where most of the connected nodes share the same label.

We conduct experiments over 10 times and report the mean and variance of test

58

accuracy. We also describe the performance of MLP to show the influence of message

passing on graph datasets. Firstly, for methods that employ GCN as a backbone

(marked with †), our approach achieves state-of-the-art performance on multiple

benchmark datasets. Specifically, our method outperforms GCN over 3.7 %, 5.2 %,

1.6 %, respectively. Among baselines, in Citeseer, DropEdge shows better

performance than GCN which has relatively low homophily than other networks.

Above all, APPNP and GAM achieve the best performance with the aid of label

propagation, followed by GAT adopting an attention mechanism. For our experiments,

GCNII shows lower performance than APPNP, which means that emphasizing the

identity feature is not suitable for homophilic data. The design choice of rest

algorithms (H2GCN, FAGCN, PTDNet) are for heterophilic graphs, where they fail to

achieve notable improvements over GCN.

Table 4.3 (RQ1) Node classification accuracy

(%) on homophilic citation networks. Bold*

symbol indicates the best performance, and

methods with † are built upon GCN.

Table 4.4 (RQ1) Node classification accuracy

(%) on heterophilic citation networks. Bold*

symbol indicates the best performance, and

methods with † are built upon GCN.

59

In addition to the homophilic network, we conduct the experiments under

heterophilic data with the same settings and plot the results in Table 4.4. As can be

seen, these graphs are generally disassortative with a low homophilic ratio h, which

can impede the advantages of message passing in GNNs. Surprisingly, MLP achieves

the best performance for Actor, followed by our ConSM, FAGCN, and GCNII. Given

that GCNII outperforms APPNP, we guess that a central node is highly important for

the Actor network. Nonetheless, these methods fail to outperform GCN for different

datasets. Instead, our method achieves the best accuracy on both Chameleon, and

Squirrel. Based on the results that GAM shows outstanding performance for this kind

of network, the supplementary model generalizes well under a heterophilic structured

dataset. Under our experiments, H2GCN, FAGCN, and PTDNet have shown to

achieve lower scores, which will be discussed in the upcoming section.

To better understand the convergence of ConSM, in Figure 4.3, we describe

validation and test accuracy for training. The x-axis illustrates iterations, while the y-

axis is classification accuracy. As described in Algorithm 3, a single iteration is a

combination of training subgraph matching modules, followed by training GNN

Figure 4.3 (RQ1) Convergence analysis on (a) Cora, and (b) Actor. Each figure

contains validation (green) and test (red) accuracy of node classification.

60

layers. Here, the validation and test accuracy vary significantly, but ConSM manages

to achieve better performance as iteration increases. This is because ConSM loads

parameters of the best validation score (please refer to Algorithm 3), which can

prevent the uncertainty of supplementary information precisely.

Figure 4.4 (RQ2) We measure F1-score to evaluate edge classification

performance on six graph datasets. Here, we adopt our model with four

baselines that specify edge coefficients.

61

4.5.4 Edge Classification (RQ2).

To validate whether ConSM can predict edge coefficients correctly, we examine the

accuracy of our method and several state-of-the-art approaches. Here, we assume the

label of edges that connect two nodes with the same class as 1 and vice versa.

For each method, we sort their predicted coefficients and select k − th largest value

as a threshold, which is equal to the number of positive edges. Specifically, for (a)

Cora, h = 0.81 and E = 10,558 (please refer Table 3 and 5), and thus, k = ⌊10,558×0.81⌋

which is described in Figure 4.4. We adopt F1-score that has shown to be effective for

binary classification as below:

(4.21)

We first introduce some details of baselines, followed by a discussion on the

experimental results. (1) GAM: as described in Equation 45, the agreement model

generates the same class probability. We employ their edge coefficients with the best

validation result. (2) GAT: we exclude node-wise normalization (e.g., softmax), which

can be highly sensitive to the degree of central nodes. Then, using the representations

of the final hidden layer, we retrieve the attention value of the entire edges. Multihead

attention is applied for the front layers, while the final layer only employs single-head

attention. (3) FAGCN: they retrieve the coefficients following the Equation 47.

Similar to GAT, we exploit the attention values of the last hidden representations. The

hyper-parameters are tuned referring [2]. (4) PTDNet: similar to previous studies, we

adopt the generated graphs using final representations of GNNs. The hyper-

parameters are remaining the same as their implementations8. (5) Ours: the

coefficients of our model can be retrieved through subgraph matching module.

In Figure 4.4, we can see that GAM shows the lowest performance for most graph

datasets, except for (d) Actor. It is not surprising since they only utilize a central node

62

for a prediction. Here, GAT relatively outperforms GAM with the aid of message

passing and attention layer. Except for (a) Cora, FAGCN achieves better performance

than GAT, which describes the effectiveness of high-frequency signals. Notably,

PTDNet is not shown to be powerful enough, where the edge pruning between

communities fails to generalize on most graph datasets. Comparatively, our model

improves the F1-score significantly for all datasets, which justifies the necessity of

confidence-aware subgraph matching.

Figure 4.5 (RQ3) We differentiate the confidence ratio of subgraph matching

module, and describe F1-score on six graph datasets

63

4.5.5 Parameter Sensitivity Analysis (RQ3).

In this section, we further measure edge classification scores by differentiating a

hyper-parameter of the subgraph matching module. To deal with heterophily, we

introduced a confidence ratio (ζ) to reflect data homophily, assuming that connected

nodes may not share the same labels. In Figure 4.5, we plot F1-score on six datasets

by varying ζ from 0 to 1. We also describe true homophily ratio (please refer h in

Table 5 and 6) as blue lines. If ζ = 0, the supplementary module does not utilize

neighboring nodes for a prediction, while ζ = 1 means that it fully utilizes adjacent

nodes.

Here, a confidence ratio (ζ) that shows the best F1-score fairly aligns well with the

true homophily ratio h, and the selection of ζ is important for precise prediction.

Though ζ = 0.5 is quite different from h = 0.22 for (d) Actor, we insist that

disassortative neighbors can also contribute to improving classifications, as we

described in Figure 4.1. Nonetheless, we admit that a choice of ζ is quite sensitive,

and may require human efforts to achieve the best accuracy.

Figure 4.6 (RQ4) Evaluation on over-smoothing using (a) Cora, and (b)

Chameleon dataset. We plot the accuracy of two baselines and our method

using a different number of layers.

64

4.5.6 Analysis on Over-smoothing (RQ4).

Over-smoothing is a fundamental problem for GNNs when stacking multiple layers

[47; 96]. Here, we scrutinize this phenomenon by differentiating the depth of layers

as {1, 2, 4, 8, 16}, and report the node classification accuracy on (a) Cora, and (b)

Chameleon. In Figure 4.6, we describe the results of GCN, GAM, and our ConSM.

GCN shows the best performance at 2 layers on both datasets. However, they degrade

slightly at 4 layers and dramatically decrease beyond it. This means that GCN itself

cannot alleviate the over-smoothing problem. Though GAM remains relatively stable

compared to GCN, they also suffer from smoothing when stacking more layers.

Comparatively, ConSM consistently achieves the best performance, and the accuracy

does not decrease severely for deeper layers (e.g., 16 layers). We suggest that the

integration of well-classified edge coefficients with label propagation effectively

controls this problem, which shows the effectiveness of our method.

4. 6 Conclusion

In this work, we suggest a confidence ratio to deal with multiple disassortative edges

for semi-supervised node classification. We pointed out the significance of

configuring edge weights precisely, and thus, we propose to measure the similarity

between two connected nodes using their subgraphs. Further, based on the

observations that directly applying the predicted weights are highly risky, we integrate

label propagation with our confidence ratio to secure robustness and improve the

overall performance. The extensive experiments for both homophilic and heterophilic

setups well describe the superiority of our model.

65

Chapter 5

Limitation of Real-world Graph

Datasets under Semi-supervised Setting

Previous research on Graph Neural Networks (GNNs) in semi-supervised settings has

mostly focused on finding suitable graph filters for both homophilic and heterophilic

graphs. While these techniques have proven effective, they can still suffer from

sparsity in initial node features, where they have only a few non-zero elements for

many graph datasets. This can result in overfitting of the first projection matrix (or

hyperplane), where the dimensions with zero inputs are not updated during training.

To address this issue, we propose a novel data augmentation strategy, which flips the

initial features and the hyperplane simultaneously. This creates additional training

space and leads to more accurate updates of the learnable parameters, thereby

improving robustness during inference while reducing the variance of predictions. To

the best of our knowledge, this is the first attempt to mitigate the overfitting problem

caused by input features. Our experiments on real-world datasets show that the

proposed technique can increase node classification accuracy by up to 40.2 %

compared to state-of-the-art baselines.

66

5.1 Introduction

Graph Neural Networks (GNNs) have gained a lot of attention due to the growing

availability of graphical data. By integrating node features with network structures,

GNNs have shown powerful abilities for node and graph embedding, resulting in

improved performance in downstream tasks [16; 42; 81]. Message-passing, which

aggregates features from neighboring nodes through repeated updates, is considered

a key component of GNNs [28].

GNNs generally perform well on homophilic graphs [59], where most connected

nodes are likely to have the same label. However, the inadequacy of message-passing

in heterophilic graphs has been identified in a recent study [67]. To solve this, various

solutions have been proposed, such as assigning different weights to edges [81; 92; 2;

40; 14], eliminating disassortative connections [55], embracing distant nodes with

high similarity as neighbors [94; 37], or adopting node-specific propagation with

trainable boundaries [85]. The proper aggregation scheme and extension of virtual

neighbors are clearly important for GNNs. However, we raise another question: are

there other factors beyond aggregation schemes?

Contrary to previous methods, our focus is on the training of weight matrices

(hyperplanes). We have observed that when the initial features have few non-zero

elements (e.g., bag-of-words representation), a shortage of training samples in semi-

supervised settings can result in the overfitting of specific dimensions in the first layer

parameters. This can negatively impact the quality of predictions for test nodes with

untrained features in those dimensions.

To optimize the first layer projection matrix better, we focused on perturbing the

initial features. As a common data augmentation technique, dimensional shifting

could be used which is commonly used in computer vision [75]. However, this was

67

found to be unsuitable for GNNs with bag-of-words features, as it would disrupt the

semantic information. Unlike convolutional neural networks, which promote local

invariance [95], GNNs use a multi-layer perceptron that is not translation invariant.

Adding noise to the inputs was also considered [100], but it was discovered that this

would incur several complex consequences, such as additional decoding requirements,

precise hyper-parameter selection, and normalization issues [7].

Our proposed solution involves flipping the initial features and parameters

simultaneously, which can ensure local invariance. This approach is inspired by

shifting parameters [41] and rotating neural networks [51] that preserve the volume

of gradients and initial features. We also utilize a dual-path network [11] that allows

paired operations in both the original and flipped spaces [52]. This flipping

mechanism can address the issue of zero gradients caused by sparse inputs and

enhance the semantic learning of each dimension. It’s worth mentioning that the

proposed algorithm is applicable to various schemes and can be integrated with

different message-passing algorithms.

In this paper, we apply the flipping mechanism to three popular methods; MLP,

GCN, and GAT. We observe that they achieve an average gain of 16.5 %, 24.2 %, and

17.8 % compared to the vanilla models, respectively. These results show that flipping

improves the overall performance significantly while securing robustness. The

contributions of this paper can be summarized as follows:

• We demonstrate that GNNs are highly sensitive to initial feature vectors and

their performance can be significantly improved through flip-based augmentation.

• We propose a flipping mechanism that transposes both the initial features and

hyperplane. Unlike previous methods that focus on aggregation schemes, our

approach examines back-propagation and provides precise guidance for each

component of a first hyperplane.

68

• The proposed flipping mechanism is orthogonal to the plane methods. By

applying it to MLP, GCN, and GAT, we develop three flipping variants. Through

extensive experiments on real-world benchmark graphs, the flipping variants

outperform all existing state-of-the-art baselines significantly.

5.2 Preliminary

This section begins with the commonly used notations in Graph Neural Networks

(GNNs), which will be utilized throughout this paper. Next, we conduct an empirical

analysis to illustrate an overview of the feature distribution in benchmark datasets.

Finally, we introduce the mechanism of GNN from the perspectives of feature

projection and message-passing.

5.2.1 Notations.

Here, we separate the weight matrix for the first layer of the GNN into two parts, Wo

and Wf, where the subscripts o and f denote the original and flipped spaces,

respectively. Additionally, for gradient analysis, we take the symbol ▽ to represent

the partial derivative of the loss function. The goal of this work is to solve a node

classification task in a semi-supervised setting where only a subset of nodes VL ⊂ V

is labeled. Our goal is how to better utilize the given features to predict the classes of

unlabeled nodes VU = V − VL.

Figure 5.1 Initial feature distribution of benchmark graph datasets. The definition of value

z is described in Equation 5.1.

69

5.2.2 Empirical Analysis.

Given the node set S and their initial features 𝑋 ∈ 𝑅𝐹, the ratio of non-zero feature

dimension (z) in S can be defined as below:

(5.1)

Firstly, we obtain 𝑗 ∈ 𝑅𝐹 by adding the feature vectors of subset node 𝑋𝑣. The number

of non-zero elements in vector 𝑗 can be defined through the Kronecker delta function

𝛿, where 𝛿𝑗𝑜,0 = 1 if the 𝑜𝑡ℎ element in 𝑗 is 0. Finally, we can retrieve 𝑧 by dividing

the numerator into the feature vector dimension 𝑑𝑖𝑚(𝑥) = 𝐹.

In Figure 2, we display the 𝑧 by varying the range of node set 𝑆 from ego to their 2-

hop neighboring nodes. As seen, 𝑧 increases with the range due to the availability of

more features during training. Additionally, the scale of 𝑧 varies significantly for each

graph, dependent on the type of input (please refer to the dataset description in § 4.1).

In essence, the lower the value of 𝑧, the greater the performance improvement

obtained from flipping. To further examine this phenomenon, we provide a theoretical

explanation in terms of gradient update and variance reduction.

5.2.3 Graph Neural Network.

The basic form graph neural network is given by:

(5.2)

Previously, we defined A as an adjacency matrix that is used for message-passing.

With the slight abuse of notation, let us assume 𝐴 = 𝐼 + 𝐷−
1

2𝐴𝐷−
1

2 for the remaining

part of this paper, which is commonly used in GCN [42]. H(1) = X is an initial feature

of nodes and �̅�(𝑙) is their hidden representation at the l-th layer. H(l) can be retrieved

through an activation function σ (e.g., ReLU). GNNs obtain the final prediction Yb, by

applying softmax on the final representation (�̅�(𝐿)). Here, W(l) is the trainable weight

matrices shared across all nodes. They are updated through negative log-likelihood

function (Lnll) between the predicted Yb and true label Y as below:

70

(5.3)

Generally, GNNs focus on improving aggregation schemes to determine an

appropriate message-passing [81; 43; 9; 2]. For instance, GCN [42] uses a normalized

Laplacian matrix, while GAT [81] creates an aggregation matrix by calculating the

attention score between nodes. However, the exploration of input features has not been

given as much attention in prior studies, where we highlight the need for further

investigation below.

5.3 Methodology

5.3.1 Motivation.

We first explain the limitation of generic GNNs. While appropriate aggregation

schemes are undoubtedly essential for efficient message-passing, as explained below,

this alone cannot solve the improper learning caused by sparsity in the initial features.

To be more specific, we can define the update of weight matrix W(l) as below:

(5.4)

Figure 5.2 (a) Mechanism of flipping and (b) overall architecture of Flip-GNN.

71

The J = LGNN is a full-batch loss defined in Equation 5.4. Intuitively, zero or small

valued components in A can obstruct the gradient flow between dissimilar nodes.

Nonetheless, there arises a problem when updating the parameters of initial layer:

(5.5)

Simply, the gradient of W(1) is derived by differentiating J with respect to 𝐻(2), where

the value of AX determines the scale of a gradient. Thus, the gradients become zero

for certain dimensions with zero inputs (∀𝑖 ∈ 𝐹 ∶ 𝑋𝑖 = 0 ⇒ ▽�̅�(2) 𝐽 = 0).

Now, we can see that the update of W(1) relies on the sparseness of the input features,

especially for zero elements. Because a deficiency in training samples is common in

semi-supervised settings, we focus on removing zeros in X and guide W(1) to learn the

precise meaning of each dimension.

Augmentation of input features. One may consider that shifting, an accepted

technique in computer vision, is a simple remedy to the inadequate gradient update

problem. To implement shifting, a small valued vector Xs is added to the input features

as X = X + Xs. Although shifting has been shown to improve the quality of the initial

features, it may not be applicable to GNNs, as multi-layer perceptron is not shift-

invariant, which can lead to decreased robustness. Additionally, shifting changes the

magnitude of an input, necessitating complex neural network normalization. Another

alternative could be magnitude-conserving rotation, but it may force some

components to take negative values.

5.3.2 Flipped Graph Neural Network.

We present a scheme that simultaneously flips both the feature vectors and the

hyperplane. If the original feature vector has elements in the range [0, 1], then its

symmetric transposition through p1 = (0.5,...,0.5) will also lie in the same range (as

seen

in the hypercube in Figure 5.2 (a), which illustrates that a feature vector Xo = (1,0,0)

is transposed to Xf = (0,1,1). This is also applied to the hyperplane Wo , where Figure

5.3 shows the original and flipped spaces in the upper and lower panels, respectively.

72

In the proposed method, both spaces share the same parameters, while the initial

features and the first hyperplane are slightly tuned for each iteration. Here, we assume

GCN as a base model.

Original space. As described in Figure 5.2 (b), the upper panel illustrates the plane

GCN. It takes as inputs which are the zero-padded version of the initial

feature matrix X and the first hyperplane W(1) as below:

(5.6)

Though the last dimension is only utilized in the flipped space, zero-padding is

required to ensure dimensional consistency as W(1) is utilized in both spaces. Now, we

can compute the loss Jo = LGNN(Y,Yo) using Eq. 67 and 68, and update the parameters

W. Before introducing the flipped space, we first define a symbol p1 = (0.5,...,0.5) ∈

RF, which serves as an anchor point for flipping. While many points can be used as

an anchor (e.g., the mean of all nodes), we take the central point of F-dimensional

hypercube (1,...,1) ∈ RF as the anchor. Many graph datasets adopt bag-of-words

features, and their feature vectors correspond to the corners of the hypercube.

Figure 5.3 (a) Distance d from 𝑾(𝟏) to p1. (b) 𝑾𝒇
(𝟏)

 is retrieved by padding -2d to

the last dimension of 𝑾(𝟏).

73

Flipped space. The flipped feature Xf transposes X through p1 (Fig. 5.3 a) and pads 1

as below:

(5.7)

We should also flip the first hyperplane W(1) by calculating a distance vector d ∈ RF′

between W(1) and p1 as:

(5.8)

where ⊗ is an element-wise product. As shown in Figure 5.3 (b), is retrieved by

padding −2d to the last element, which makes the outputs of the two spaces origin-

symmetric to each other, i.e., 𝑋𝑜𝑊𝑜
(1)

= −𝑋𝑓𝑊𝑓
(1)

. This is why we flip the hyperplane

concurrently, as it preserves the pairwise distance of the hidden node representations.

Thus, after the first convolution layer, we should multiply 𝜎(𝐴𝑋𝑓𝑊𝑓
(1)

) by a negative

constant before applying the next convolution layer to ensure consistency between the

two spaces as,

(5.9)

Through Eq. 5.9, the equality holds (∀𝑙: 𝑙 ≥ 2 → 𝐻𝑓
(𝑙)

= 𝐻𝑜
(𝑙)

). Thus, the following

layer in the flipped space is identical to the one in the original space as below:

(5.10)

Finally, the loss 𝐿𝐺𝑁𝑁
𝑓

 is given by:

(5.11)

We describe the overall mechanism of our method in Alg. 4.

74

75

5.3.3 Optimization.

We define two loss functions in Eq. 5.3 and 5.11. Before gradient analyses, please

recall that the equation below holds

(5.12)

The above equation implies that the outputs (or gradients) of the two spaces are

equivalent after the second layers:

(5.13)

Like 𝐽𝑜, the 𝐽𝑓 = 𝐿𝐺𝑁𝑁
𝑓

 is a full-batch gradient in the flipped space. Though Sigmoid

or Tanh guarantees a perfect symmetry Jo = Jf, we employ ReLU for better

performance. Now, referring to Eq. 5.13, we define the gradients of the first

hyperplane W(1) on both spaces.

In the original space, update 𝑊𝑜 as,

(5.14)

In the flipped space, update 𝑊𝑓 as,

(5.15)

Proof of convergence. Convergence is one crucial aspect of algorithm design. Here,

we show that our optimization guarantees the convergence of W(1). If the activation

function ensures origin symmetry, we can redefine Eq. 5.14 and 5.15 as:

(5.16)

76

Here, the component-wise gradient of W(1) is proportional to that of X and 2p1 − X.

Also, it gets closer to a local optimum 𝑊∗
(1)

 as the iteration T continues:

(5.17)

since the two-layer neural networks with a ReLU activation converge to a local

minimum. Note that gradient ▽J and parameters are all bounded. These

properties guarantee the convergence of Flip-GNN [8]. Since the scale of gradients

depends on the number of activated dimensions, we adjust them using α,β to stabilize

our model as below:

(5.18)

5.4 Theoretical Analysis

Data augmentation is closely related to empirical risk minimization, which can be

explained through the bias-variance tradeoff [10]. Here, we prove that flipping acts

as an augmentation strategy by generalizing the trainable parameters and reducing the

variance of predictions. Firstly, let us assume the plane estimator as g(Xo) = GNN(Xo),

which is trained only with the original feature Xo, and the augmented network as �̅�(𝑋)

= GNN(X) that uses both features X = Xo ∪ Xf. We can easily see that the function g

is invariant to flipping since g(Xo,Wo) = g(Xf,Wf), where Xf preserves the pair-wise

distance between nodes. Consequently, the bias term vanishes, where we can

decompose g(X) by the law of total variance as below:

(5.19)

Here, V ar(E[g(X)]) = V ar(�̅� (X)) since they share the same marginal distribution.

Further, the difference of their mean, W1(E[g(X)],E[�̅� (X)]), which equals to the

77

Wasserstein distance (e.g., L2) between two distributions is independent of the total

variance. Based on this observation, we can induce the condition below:

(5.20)

Finally, we show the losses of two networks follow:

(5.21)

which means the performance gain of the augmented model over the plain method

depends on the variance reduction. One can induce a tighter bound of Eq. 5.19 and

5.21 using Loewner order [10], but we omit the detailed derivation for brevity.

5.5 Experiments

This section describes the experiments for the performance analysis. We focused our

efforts to find answers to the following research questions:

• RQ1: Does flipping effectively address the issue of multiple zero-valued

components in the features?

• RQ2: Does flipping ensure convergence?

• RQ3: How significant is the difference between the gradients from the original

and the flipped spaces?

• RQ4: How does the performance of flipping change as the number of training

samples increases?

78

5.5.1 Datasets and Baselines.

Details of datasets. Our experiments are conducted on nine datasets whose statistical

details are described in Table 7. We also measure the assortativity of each dataset as

below:

(5.23)

• Cora, Citeseer, Pubmed [42] are citation networks. The node features in Cora

and Citeseer are binary bag-of-words while Pubmed consists of TF-IDF values.

• Actor [80] is an actor co-occurrence graph. The node feature encodes the

keywords in the actor’s Wikipedia web pages with binary values.

• Chameleon, Squirrel [72] are taken from Wikipedia web pages and have non-

zero positive or negative values. The maximum values in each dataset are 46.4

and 70.4 while the minimum values are -0.57 and -0.99, respectively, which might

not be suitable for our method.

• Cornell, Texas, Wisconsin contain web pages from cs departments of multiple

universities. The node features are binary bag-of-words like the citation networks.

Baselines. For evaluation, we employ several traditional methods including MLP [70],

GCN [42], DropEdge [71], and GIN [88]. Further, we compare GAT [81], GATv2 [4],

APPNP [43], GCNII [9], H2GCN [99], and FAGCN [2] which are designed for

heterophilous graphs. Finally, some regularization-based algorithms like P-reg [90]

and Ortho-GCN [30] are compared here.

Table 5.1 Statistical details of nine benchmark datasets.

79

5.5.2 Results and Discussion (RQ1).

Flipping can be integrated into various neural networks. We apply it to three

representative models; MLP, GCN, and GAT. In Table 5.2, we observe that all flipping

variants (Flip-MLP, Flip-GCN, and Flip-GAT) perform significantly better than their

base models. Now, we analyze these results from two perspectives.

Performance gain of flipping is sensitive to the Z-value of each dataset. Since flipping

is designed to reduce overfitting caused by the sparsity in initial features, we can

presume that the non-zero element ratio (z-value) is the key factor that determines the

performance gains of flipping. Indeed, flipping attains larger performance gains on

low z-value datasets than on higher ones. For the three datasets with higher z-values

(Pubmed, Chameleon, and Squirrel), the advancement of flipping over their vanilla

models (e.g., Flip-MLP vs MLP) is relatively small. Nonetheless, the average gain of

flipping was 3 %, 1.9 %, and 2.4 %, respectively, indicating the effectiveness of

flipping even on datasets with large z-values.

On datasets with low z-values, three flipping variants obtain remarkable

advancements over their originals, achieving performance gains of 16.5 %, 24.2 %,

and 17.8 % on average. Notably, flipping methods perform best except for Squirrel

Table 5.2 (RQ1) Node classification accuracy (%) on nine benchmark datasets. Bold with an

asterisk (*) symbol indicates the best performance, and methods with † are built upon GCN. We

show 𝜶, 𝜷 that achieves the best accuracy (Eq. 5.18).

80

(with high z-value and low homophily). This may imply that a slight perturbation to

the input features can have a greater impact than aggregation scheme modifications

under semi-supervised settings.

Relatedness between the homophily ratio and performance. Message-passing GNNs

utilize the homophily property commonly observed in graphs [50; 89]. In three

citation graphs, GNNs outperform Multi-Layer Perceptron (MLP) due to higher

homophily ratios in these graphs. However, in other datasets like Actor and three

WebKB networks, Flip-MLP achieves the best accuracy among the baselines

indicating that message-passing fails to generalize well in the presence of high

heterophily. The performance gain of Flip-MLP is higher than Flip-GNNs on

homophilic graphs, but GNNs benefit more from flipping on heterophilic graphs.

Although several baselines achieve notable performance, our flipping methods

outperform all of these algorithms on the overall datasets, demonstrating the

effectiveness across various GNN architectures.

5.5.3 Convergence Analysis (RQ2).

One may argue that flipping could negatively impact the stability of the algorithms

due to the operations in two spaces. Figure 5.4 illustrates the performance of vanilla

GCN and GAT compared to Flip-GCN in both spaces as a function of the number of

iterations. We show the results from four datasets only due to the limited space. The

performance of GCN (blue), GAT (pink), Flip-GCN (o) in the original space (red),

and Flip-GCN (f) in the flipped space (green) are depicted with different colors. The

x-axis represents the training epochs, and the y-axis shows the node classification

accuracy.

81

 Through this figure, we can see that the Flip-GCN achieves higher performance in

both spaces. On the Chameleon graph, we notice that Flip-GCN (f) surpasses the

baselines after 1000 epochs. Compared to GCN and GAT, the flip-based method

demonstrates stability and fast convergence, as seen in the Chameleon and Squirrel

datasets. The results confirm our analysis which asserts that flipping reduces the

variance of predictions as described in Section 5.4. Though we admit that the

performance gain of Flip-GCN is dependent on the type of initial features, flipping

leads to the faster and more stable convergence of the parameters. In conclusion, as a

data augmentation strategy, flipping leads to improved performance on datasets with

Figure 5.4 (RQ2) Performance of GCN, GAT, and Flip-GCN for each

iteration. The performance of Flip-GCN is measured in the original (o) and

flipped (f) space, respectively.

82

multiple zero elements while ensuring robustness, which is an important characteristic

in semi-supervised settings.

5.5.4 Analysis of Gradients on Two Spaces (RQ3).

Figure 5.5 analyzes the gradient of the first projection matrix during the training phase

with the Cora dataset. We define four neighbor types applying different ranges of

neighboring: T1, T2, T3, and T4. T1 only consists of the features of the central node

(Ego). T2 and T3 include the features of 1-hop and 2-hop neighbors, respectively. T4

Figure 5.5 (RQ3) Using the Cora dataset, we plot the magnitude of the first

projection matrix gradients and their standard deviation (𝝈) during training

epochs (𝒊).

83

has the remaining feature. We prioritize the types from T1 to T4 to avoid overlapping

and double-counting of features (note that all T ∈ RF are binarized vectors).

In Figure 5.5, the average and standard deviation of gradients in two spaces are plotted.

In the original space (left), the largest gradient is given to features from T1 (red). This

is due to the property of GCN, where the gradients generally decrease w.r.t. the hop

counts. Also, the features in T4 (orange) have the smallest values, suggesting that they

are mostly excluded during training, while only slight updates by weight

regularization. On the other hand, in the flipped space (right), all types tend to have a

similar magnitude with a small deviation (σ). The results indicate that most

dimensions are updated during training in the flipped space.

5.5.5 Varying the Size of Training Samples (RQ4).

In this experiment, we aim to investigate the impact of labeled sample size on

performance. Table 5.3 displays the z-value of ego nodes varying the number of

labeled nodes per class (L/C) for three graphs. Here, we adjust the number of training

samples to analyze the effect of the size of labeled nodes on performance.

Firstly, we can see that GCN and GAT outperform MLP for Cora and Chameleon,

while MLP surpasses two models in the Cornell dataset. Apart from this, we observe

that the performance improvement from flipping decreases as the L/C increases. This

is because, as more training nodes are available, the initial features start to cover most

dimensions (high z-value) and the plain models can effectively update the first weight

matrix without flipping.

Table 5.3 (RQ4) Node classification accuracy (%) w.r.t. the different number of training

samples. The symbol (+F) means that flipping is applied on a base method.

84

In the Chameleon graph, flipping does not have a significant impact on performance

as the number of samples increases. This is because the initial features of the dataset

contain many non-zero components and have high maximum values. And as the

number of labeled nodes increases, the performance of the vanilla also increases. The

same trend can be observed for GAT, where the performance gap between GAT and

GAT+F becomes smaller as the number of labeled nodes per class (L/C) increases.

However, flipping still improves the performance of the base models in other graphs

(Cora and Cornell) significantly.

5.5.5 Varying the Size of Training Samples (RQ5).

We investigated how two hyperparameters, 𝛼 and 𝛽 in Eq. 21, affect the overall

performance of our model. In Figure 8, we illustrate the node classification accuracy

of Flip-APPNP by changing 𝛼 and 𝛽 (relative weights of the gradient in two types of

spaces) through grid search. As can be seen, we employ two types of datasets: Cora

and Cornell. Flip-APPNP generally outperforms plain APPNP when 𝛼 is close to 1.

Since the original space allows for fast optimization with a small number of elements,

the performance decreases in proportion to 𝛼. Furthermore, we noticed that assigning

small values to 𝛽 achieves better performance, where the scale of gradients in a flipped

space is generally larger than the original ones (please refer to Fig. 7).

Table 5.6 (RQ4) Parameter sensitivity analysis using Flip-APPNP as a base model

85

5.6 Related Work

Graph Neural Networks. Generally, GNNs can be divided into two categories:

spectral-based and spatial-based. Spectral-based GNN is based on the mathematical

foundation for graph convolution in the spectral domain using the Laplacian matrix

[5; 16; 21]. On the other hand, spatial-based GNNs aggregate information from local

neighborhoods from a spatial perspective, leading to the development of many

aggregation schemes for handling noisy connections [81; 67; 99; 13; 2]. The issue of

sparse initial features, however, has not received much attention in the literature.

Generalization of neural networks. In the field of neural network generalization, many

approaches have been proposed [8; 25; 84]. Several suggested the normalization of

deep neural networks [35] while others applied regularization to all adjacent nodes

[90] or integrated label propagation to give further information [82]. More recently,

the orthogonal GCN [30] attacks the gradient vanishing problem at the initial few

layers of GNNs. RawlsGCN [38] claims the unfairness of gradient update which is

biased to nodes with a large degree. Though these methods show notable

improvements under the semi-supervised scenario, they fail to solve the problem that

is inherently occurred by a characteristic of initial features. In this paper, we solve this

problem through a simple yet effective method, flipping.

5.7 Conclusion

Existing GNNs have primarily focused on optimizing the aggregation strategy while

neglecting the type of initial features. In this paper, we examine the correlation

between zero elements in input vectors and their impact on the first layer of neural

networks. We introduce a co-training approach that involves learning the gradient

flows in both the original and flipped spaces, and adaptively adjusting the parameters.

Additionally, we provide a theoretical understanding that flipping reduces prediction

variance while maintaining stable convergence. By incorporating flipping into three

base methods, we observe an improvement in node classification accuracy,

demonstrating that our approach is scalable and effective. In future work, we hope to

apply flipping to other variations of GNNs to enhance their performance.

86

Bibliography

[1] BARANWAL, A., FOUNTOULAKIS, K., AND JAGANNATH, A. Graph

convolution for semi-supervised classification: Improved linear separability and out-

of-distribution generalization. arXiv preprint arXiv:2102.06966 (2021).

[2] BO, D., WANG, X., SHI, C., AND SHEN, H. Beyond low-frequency

information in graph convolutional networks. arXiv preprint arXiv:2101.00797

(2021).

[3] BODNAR, C., DI GIOVANNI, F., CHAMBERLAIN, B. P., LIO`, P., AND

BRONSTEIN, M. M. Neural sheaf diffusion: A topological perspective on heterophily

and oversmoothing in gnns. arXiv preprint arXiv:2202.04579 (2022).

[4] BRODY, S., ALON, U., AND YAHAV, E. How attentive are graph attention

networks? arXiv preprint arXiv:2105.14491 (2021).

[5] BRUNA, J., ZAREMBA, W., SZLAM, A., AND LECUN, Y. Spectral

networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

(2013).

[6] BUI, T. D., RAVI, S., AND RAMAVAJJALA, V. Neural graph learning:

Training neural networks using graphs. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining (2018), pp. 64–71.

[7] CAI, T., LUO, S., XU, K., HE, D., LIU, T.-Y., AND WANG, L. Graphnorm:

A principled approach to accelerating graph neural network training. In International

Conference on Machine Learning (2021), PMLR, pp. 1204–1215.

[8] CHEN, J., ZHU, J., AND SONG, L. Stochastic training of graph convolutional

networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017).

87

[9] CHEN, M., WEI, Z., HUANG, Z., DING, B., AND LI, Y. Simple and deep

graph convolutional networks. In International Conference on Machine Learning

(2020), PMLR, pp. 1725–1735.

[10] CHEN, S., DOBRIBAN, E., AND LEE, J. H. A group-theoretic framework

for data augmentation. The Journal of Machine Learning Research 21, 1 (2020),

9885–9955.

[11] CHEN, Y., LI, J., XIAO, H., JIN, X., YAN, S., AND FENG, J. Dual path

networks. Advances in neural information processing systems 30 (2017).

[12] CHEN, Z., MA, T., AND WANG, Y. When does a spectral graph neural

network fail in node classification? arXiv preprint arXiv:2202.07902 (2022).

[13] CHIEN, E., PENG, J., LI, P., AND MILENKOVIC, O. Adaptive universal

generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988 (2020).

[14] CHOI, Y., CHOI, J., KO, T., BYUN, H., AND KIM, C.-K. Finding

heterophilic neighbors via confidence-based subgraph matching for semi-supervised

node classification. In Proceedings of the 31st ACM International Conference on

Information & Knowledge Management (2022), pp. 283–292.

[15] CUTURI, M., AND DOUCET, A. Fast computation of wasserstein

barycenters. In International conference on machine learning (2014), PMLR, pp. 685–

693.

[16] DEFFERRARD, M., BRESSON, X., AND VANDERGHEYNST, P.

Convolutional neural networks on graphs with fast localized spectral filtering.

Advances in neural information processing systems 29 (2016).

88

[17] DERR, T., MA, Y., AND TANG, J. Signed graph convolutional networks. In

2018 IEEE International Conference on Data Mining (ICDM) (2018), IEEE, pp. 929–

934.

[18] DESAI, U., BANDYOPADHYAY, S., AND TAMILSELVAM, S. Graph

neural network to dilute outliers for refactoring monolith application. In Proceedings

of the AAAI Conference on Artificial Intelligence (2021), vol. 35, pp. 72–80.

[19] DEVRIES, T., AND TAYLOR, G. W. Learning confidence for out-of-

distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018).

[20] DI GIOVANNI, F., ROWBOTTOM, J., CHAMBERLAIN, B. P.,

MARKOVICH, T., AND BRONSTEIN, M. M. Graph neural networks as gradient

flows. arXiv preprint arXiv:2206.10991 (2022).

[21] DONG, Y., DING, K., JALAIAN, B., JI, S., AND LI, J. Graph neural networks

with adaptive frequency response filter. arXiv preprint arXiv:2104.12840 (2021).

[22] ENTEZARI, N., AL-SAYOURI, S. A., DARVISHZADEH, A., AND

PAPALEXAKIS, E. E. All you need is low (rank) defending against adversarial

attacks on graphs. In Proceedings of the 13th International Conference on Web Search

and Data Mining (2020), pp. 169–177.

[23] FAN, W., MA, Y., LI, Q., HE, Y., ZHAO, E., TANG, J., AND YIN, D. Graph

neural networks for social recommendation. In The world wide web conference

(2019), pp. 417–426.

[24] FANG, Z., XU, L., SONG, G., LONG, Q., AND ZHANG, Y. Polarized graph

neural networks. In Proceedings of the ACM Web Conference 2022 (2022), pp. 1404–

1413.

89

[25] FENG, J., AND SIMON, N. Sparse-input neural networks for high-

dimensional nonparametric regression and classification. arXiv preprint

arXiv:1711.07592 (2017).

[26] FOUT, A., BYRD, J., SHARIAT, B., AND BEN-HUR, A. Protein interface

prediction using graph convolutional networks. Advances in neural information

processing systems 30 (2017).

[27] FRIEDKIN, N. E. A structural theory of social influence. Cambridge

University Press, 1998.

[28] GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., VINYALS, O., AND

DAHL, G. E. Neural message passing for quantum chemistry. In International

conference on machine learning (2017), PMLR, pp. 1263–1272.

[29] GUO, C., PLEISS, G., SUN, Y., AND WEINBERGER, K. Q. On calibration

of modern neural networks. In International conference on machine learning (2017),

PMLR, pp. 1321–1330.

[30] GUO, K., ZHOU, K., HU, X., LI, Y., CHANG, Y., AND WANG, X.

Orthogonal graph neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence (2022), vol. 36, pp. 3996–4004.

[31] GUO, Y., AND WEI, Z. Clenshaw graph neural networks. arXiv preprint

arXiv:2210.16508 (2022).

[32] HAMILTON, W., YING, Z., AND LESKOVEC, J. Inductive representation

learning on large graphs. Advances in neural information processing systems 30

(2017).

90

[33] HAMMOND, D. K., VANDERGHEYNST, P., AND GRIBONVAL, R.

Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic

Analysis 30, 2 (2011), 129–150.

[34] HUANG, J., SHEN, H., HOU, L., AND CHENG, X. Signed graph attention

networks. In International Conference on Artificial Neural Networks (2019), Springer,

pp. 566–577.

[35] HUANG, L., QIN, J., ZHOU, Y., ZHU, F., LIU, L., AND SHAO, L.

Normalization techniques in training dnns: Methodology, analysis and application.

arXiv preprint arXiv:2009.12836 (2020).

[36] HUANG, T., WANG, D., AND FANG, Y. End-to-end open-set semi-

supervised node classification with out-ofdistribution detection. In Proceedings of the

Thirty-First International Joint Conference on Artificial Intelligence, IJCAI22 (2022),

IJCAI.

[37] JIN, W., DERR, T., WANG, Y., MA, Y., LIU, Z., AND TANG, J. Node

similarity preserving graph convolutional networks. In Proceedings of the 14th ACM

International Conference on Web Search and Data Mining (2021), pp. 148– 156.

[38] KANG, J., ZHU, Y., XIA, Y., LUO, J., AND TONG, H. Rawlsgcn: Towards

rawlsian difference principle on graph convolutional network. In Proceedings of the

ACM Web Conference 2022 (2022), pp. 1214–1225.

[39] KENDALL, A., AND GAL, Y. What uncertainties do we need in bayesian

deep learning for computer vision? Advances in neural information processing

systems 30 (2017).

[40] KIM, D., AND OH, A. How to find your friendly neighborhood: Graph

attention design with self-supervision. arXiv preprint arXiv:2204.04879 (2022).

91

[41] KIM, H., RASCH, M., GOKMEN, T., ANDO, T., MIYAZOE, H., KIM, J.-J.,

ROZEN, J., AND KIM, S. Zero-shifting technique for deep neural network training

on resistive cross-point arrays. arXiv preprint arXiv:1907.10228 (2019).

[42] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[43] KLICPERA, J., BOJCHEVSKI, A., AND GUNNEMANN¨ , S. Predict then

propagate: Graph neural networks meet personalized pagerank. arXiv preprint

arXiv:1810.05997 (2018).

[44] KOLOURI, S., NADERIALIZADEH, N., ROHDE, G. K., AND

HOFFMANN, H. Wasserstein embedding for graph learning. arXiv preprint

arXiv:2006.09430 (2020).

[45] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature 521, 7553

(2015), 436–444.

[46] LEI, R., WANG, Z., LI, Y., DING, B., AND WEI, Z. Evennet: Ignoring odd-

hop neighbors improves robustness of graph neural networks. arXiv preprint

arXiv:2205.13892 (2022).

[47] LI, Q., HAN, Z., AND WU, X.-M. Deeper insights into graph convolutional

networks for semi-supervised learning. In Thirty-Second AAAI conference on

artificial intelligence (2018).

[48] LI, X., ZHU, R., CHENG, Y., SHAN, C., LUO, S., LI, D., AND QIAN, W.

Finding global homophily in graph neural networks when meeting heterophily. arXiv

preprint arXiv:2205.07308 (2022).

[49] LI, Y., AND YUAN, Y. Convergence analysis of two-layer neural networks

with relu activation. Advances in neural information processing systems 30 (2017).

92

[50] LIM, D., HOHNE, F., LI, X., HUANG, S. L., GUPTA, V., BHALERAO, O.,

AND LIM, S. N. Large scale learning on non-homophilous graphs: New benchmarks

and strong simple methods. Advances in Neural Information Processing Systems 34

(2021), 20887–20902.

[51] LIN, M., JI, R., XU, Z., ZHANG, B., WANG, Y., WU, Y., HUANG, F., AND

LIN, C.-W. Rotated binary neural network. Advances in neural information

processing systems 33 (2020), 7474–7485.

[52] LIU, H., HU, B., WANG, X., SHI, C., ZHANG, Z., AND ZHOU, J.

Confidence may cheat: Self-training on graph neural networks under distribution shift.

In Proceedings of the ACM Web Conference 2022 (2022), pp. 1248–1258.

[53] LIU, M., WANG, Z., AND JI, S. Non-local graph neural networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2021).

[54] LUAN, S., HUA, C., LU, Q., ZHU, J., ZHAO, M., ZHANG, S., CHANG, X.-

W., AND PRECUP, D. Is heterophily a real nightmare for graph neural networks to

do node classification? arXiv preprint arXiv:2109.05641 (2021).

[55] LUO, D., CHENG, W., YU, W., ZONG, B., NI, J., CHEN, H., AND ZHANG,

X. Learning to drop: Robust graph neural network via topological denoising. In

Proceedings of the 14th ACM International Conference on Web Search and Data

Mining (2021), pp. 779–787.

[56] LUO, G., LI, J., SU, J., PENG, H., YANG, C., SUN, L., YU, P. S., AND HE,

L. Graph entropy guided node embedding dimension selection for graph neural

networks. arXiv preprint arXiv:2105.03178 (2021).

[57] MA, Y., LIU, X., SHAH, N., AND TANG, J. Is homophily a necessity for

graph neural networks? arXiv preprint arXiv:2106.06134 (2021).

93

[58] MCCALLUM, A. K., NIGAM, K., RENNIE, J., AND SEYMORE, K.

Automating the construction of internet portals with machine learning. Information

Retrieval 3, 2 (2000), 127–163.

[59] MCPHERSON, M., SMITH-LOVIN, L., AND COOK, J. M. Birds of a

feather: Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–

444.

[60] MIALON, G., CHEN, D., D’ASPREMONT, A., AND MAIRAL, J. A

trainable optimal transport embedding for feature aggregation and its relationship to

attention. arXiv preprint arXiv:2006.12065 (2020).

[61] MOON, J., KIM, J., SHIN, Y., AND HWANG, S. Confidence-aware learning

for deep neural networks. In international conference on machine learning (2020),

PMLR, pp. 7034–7044.

[62] MUKHERJEE, S., AND AWADALLAH, A. Uncertainty-aware self-training

for few-shot text classification. Advances in Neural Information Processing Systems

33 (2020), 21199–21212.

[63] NEWMAN, M. E. Assortative mixing in networks. Physical review letters 89,

20 (2002), 208701.

[64] NT, H., AND MAEHARA, T. Revisiting graph neural networks: All we have

is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

[65] OONO, K., AND SUZUKI, T. Graph neural networks exponentially lose

expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019).

[66] PANDIT, S., CHAU, D. H., WANG, S., AND FALOUTSOS, C. Netprobe: a

fast and scalable system for fraud detection in online auction networks. In Proceedings

of the 16th international conference on World Wide Web (2007), pp. 201–210.

94

[67] PEI, H., WEI, B., CHANG, K. C.-C., LEI, Y., AND YANG, B. Geom-gcn:

Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020).

[68] PERRY, C. Machine learning and conflict prediction: a use case. Stability:

International Journal of Security and Development 2, 3 (2013), 56.

[69] PEYRE´, G., CUTURI, M., ET AL. Computational optimal transport: With

applications to data science. Foundations and Trends® in Machine Learning 11, 5-6

(2019), 355–607.

[70] POPESCU, M.-C., BALAS, V. E., PERESCU-POPESCU, L., AND

MASTORAKIS, N. Multilayer perceptron and neural networks. WSEAS

Transactions on Circuits and Systems 8, 7 (2009), 579–588.

[71] RONG, Y., HUANG, W., XU, T., AND HUANG, J. Dropedge: Towards deep

graph convolutional networks on node classification. arXiv preprint

arXiv:1907.10903 (2019).

[72] ROZEMBERCZKI, B., DAVIES, R., SARKAR, R., AND SUTTON, C.

Gemsec: Graph embedding with self clustering. In Proceedings of the 2019

IEEE/ACM international conference on advances in social networks analysis and

mining (2019), pp. 65–72.

[73] SCARSELLI, F., GORI, M., TSOI, A. C., HAGENBUCHNER, M., AND

MONFARDINI, G. The graph neural network model. IEEE transactions on neural

networks 20, 1 (2008), 61–80.

[74] SHANNON, C. E. A mathematical theory of communication. The Bell system

technical journal 27, 3 (1948), 379–423.

95

[75] SHIJIE, J., PING, W., PEIYI, J., AND SIPING, H. Research on data

augmentation for image classification based on convolution neural networks. In 2017

Chinese automation congress (CAC) (2017), IEEE, pp. 4165–4170.

[76] SINKHORN, R., AND KNOPP, P. Concerning nonnegative matrices and

doubly stochastic matrices. Pacific Journal of Mathematics 21, 2 (1967), 343–348.

[77] SONG, Z., ZHANG, Y., AND KING, I. Towards an optimal asymmetric graph

structure for robust semi-supervised node classification. In Proceedings of the 28th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022), pp.

1656–1665.

[78] STRETCU, O., VISWANATHAN, K., MOVSHOVITZ-ATTIAS, D.,

PLATANIOS, E., RAVI, S., AND TOMKINS, A. Graph agreement models for semi-

supervised learning. Advances in Neural Information Processing Systems 32 (2019).

[79] SUN, Y., DENG, H., YANG, Y., WANG, C., XU, J., HUANG, R., CAO, L.,

WANG, Y., AND CHEN, L. Beyond homophily: Structure-aware path aggregation

graph neural network. In Proceedings of the Thirty-First International Joint

Conference on Artificial Intelligence, IJCAI-22 (7 2022), L. D. Raedt, Ed.,

International Joint Conferences on Artificial Intelligence Organization, pp. 2233–

2240. Main Track.

[80] TANG, J., SUN, J., WANG, C., AND YANG, Z. Social influence analysis in

large-scale networks. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining (2009), pp. 807–816.

[81] VELICKOVIC, P., CUCURULL, G., CASANOVA, A., ROMERO, A., LIO,

P., AND BENGIO, Y. Graph attention networks. stat 1050 (2017), 20.

[82] WANG, H., AND LESKOVEC, J. Unifying graph convolutional neural

networks and label propagation. arXiv preprint arXiv:2002.06755 (2020).

96

[83] WANG, X., GIRSHICK, R., GUPTA, A., AND HE, K. Non-local neural

networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition (2018), pp. 7794–7803.

[84] WANG, X., LIU, H., SHI, C., AND YANG, C. Be confident! towards

trustworthy graph neural networks via confidence calibration. Advances in Neural

Information Processing Systems 34 (2021), 23768–23779.

[85] XIAO, T., CHEN, Z., WANG, D., AND WANG, S. Learning how to propagate

messages in graph neural networks. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining (2021), pp. 1894–1903.

[86] XU, H., LUO, D., AND CARIN, L. Scalable gromov-wasserstein learning for

graph partitioning and matching. Advances in neural information processing systems

32 (2019).

[87] XU, H., LUO, D., ZHA, H., AND DUKE, L. C. Gromov-wasserstein learning

for graph matching and node embedding. In International conference on machine

learning (2019), PMLR, pp. 6932–6941.

[88] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[89] YAN, Y., HASHEMI, M., SWERSKY, K., YANG, Y., AND KOUTRA, D.

Two sides of the same coin: Heterophily and oversmoothing in graph convolutional

neural networks. arXiv preprint arXiv:2102.06462 (2021).

[90] YANG, H., MA, K., AND CHENG, J. Rethinking graph regularization for

graph neural networks. In Proceedings of the AAAI Conference on Artificial

Intelligence (2021), vol. 35, pp. 4573–4581.

97

[91] YANG, L., LI, M., LIU, L., WANG, C., CAO, X., GUO, Y., ET AL. Diverse

message passing for attribute with heterophily. Advances in Neural Information

Processing Systems 34 (2021), 4751–4763.

[92] YANG, L., WU, F., WANG, Y., GU, J., AND GUO, Y. Masked graph

convolutional network. In IJCAI (2019), pp. 4070– 4077.

[93] YANG, T., WANG, Y., YUE, Z., YANG, Y., TONG, Y., AND BAI, J. Graph

pointer neural networks. arXiv preprint arXiv:2110.00973 (2021).

[94] YING, Z., BOURGEOIS, D., YOU, J., ZITNIK, M., AND LESKOVEC, J.

Gnnexplainer: Generating explanations for graph neural networks. Advances in neural

information processing systems 32 (2019).

[95] ZHANG, X., LIU, L., XIE, Y., CHEN, J., WU, L., AND PIETIKAINEN, M.

Rotation invariant local binary convolution neural networks. In Proceedings of the

IEEE International Conference on Computer Vision Workshops (2017), pp. 1210–

1219.

[96] ZHAO, L., AND AKOGLU, L. Pairnorm: Tackling oversmoothing in gnns.

arXiv preprint arXiv:1909.12223 (2019).

[97] ZHAO, X., CHEN, F., HU, S., AND CHO, J.-H. Uncertainty aware semi-

supervised learning on graph data. Advances in Neural Information Processing

Systems 33 (2020), 12827–12836.

[98] ZHENG, C., ZONG, B., CHENG, W., SONG, D., NI, J., YU, W., CHEN, H.,

AND WANG, W. Robust graph representation learning via neural sparsification. In

International Conference on Machine Learning (2020), PMLR, pp. 11458– 11468.

[99] ZHU, J., YAN, Y., ZHAO, L., HEIMANN, M., AKOGLU, L., AND

KOUTRA, D. Beyond homophily in graph neural networks: Current limitations and

98

effective designs. Advances in Neural Information Processing Systems 33 (2020),

7793–7804.

[100] ZHU, Y., XU, Y., YU, F., LIU, Q., WU, S., AND WANG, L. Graph contrastive

learning with adaptive augmentation. In Proceedings of the Web Conference 2021

(2021), pp. 2069–2080.

	1 Introduction
	2 Preliminary
	3 Improving Signed Propagation for Graph Neural Networks
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminary
	3.4 Theoretical Analysis
	3.5 Methodology
	3.6 Experiments
	3.7 Conclusion

	4 Finding Heterophilic Neighbors via Confidence-based Subgraph Matching
	4.1 Introduction
	4.2 Related Work
	4.3 Notations
	4.4 Methodology
	4.5 Experiments
	4.6 Conclusion

	5 Limitation of Real-world Graph Datasets under Semi-supervised Setting
	5.1 Introduction
	5.2 Preliminary
	5.3 Methodology
	5.4 Theoretical Analysis
	5.5 Experiments
	5.6 Related Work
	5.7 Conclusion

	6 Bibliography

<startpage>14
1 Introduction 1
2 Preliminary 4
3 Improving Signed Propagation for Graph Neural Networks 5
 3.1 Introduction 6
 3.2 Related Work 8
 3.3 Preliminary 9
 3.4 Theoretical Analysis 10
 3.5 Methodology 26
 3.6 Experiments 28
 3.7 Conclusion 35
4 Finding Heterophilic Neighbors via Confidence-based Subgraph Matching 37
 4.1 Introduction 37
 4.2 Related Work 40
 4.3 Notations 42
 4.4 Methodology 42
 4.5 Experiments 54
 4.6 Conclusion 63
5 Limitation of Real-world Graph Datasets under Semi-supervised Setting 65
 5.1 Introduction 65
 5.2 Preliminary 67
 5.3 Methodology 69
 5.4 Theoretical Analysis 75
 5.5 Experiments 76
 5.6 Related Work 84
 5.7 Conclusion 84
6 Bibliography 85
</body>

