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Abstract

Recent research has shown that pretrained language models (PLMs) can be-

come outdated over time and need adaptation to new words or concepts. While

efficient approaches to adapt PLMs to new vocabularies have been studied in

the fields of domain or cross-lingual adaptation, these methods have yet to be

explored in a setting where vocabulary updates should occur timely, periodi-

cally, and on a small scale (adding 1s and 10s of new words with 1MB training

data). Unfortunately, such methods either exhibit unsatisfactory performance

or result in overfitting to the new vocabularies. Existing works in model editing

of PLMs have also been tested to be ineffective for injecting unseen entities

into PLMs. Our paper proposes a tailored method — W-SUM — for adapting

PLMs to new vocabularies (i.e., neologisms) by mimicking how humans process

their internal knowledge when encountering a new word or concept. Inspired

by assimilation in Piaget’s cognitive development theory, W-SUM leverages the

rich knowledge inherent in embedding existing tokens of PLMs to find the opti-

mal embedding of a new vocabulary through a weighted sum of existing token

embeddings. We let the PLM find the optimal weight distribution via language

modeling objective. We evaluate W-SUM on two language model probing tasks

– ECBD and LAMBADA and validate W-SUM ’s ability to acquire a good

embedding for new vocabularies through semantic analysis.

Keywords: Pretrained Language Model, Temporal Adaptation, Neologism

Student Number: 2021-23818
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Chapter 1

Introduction

Temporal adaptation of pretrained language models (PLMs) refers to adapt-

ing a PLM to new data that emerges after the model has finished the initial

pre-training. Recent studies [1, 2, 3] have shown that PLMs without temporal

adaptation degrades in model performance as time goes which highlights the

necessity of regularly adapting PLMs. For example, a PLM trained with corpus

upto 2018 shows performance degradation when tested with dataset of 2019 or

2020, and adapting the PLM with corpus generated in 2019/2020 mitigates the

degradation. We denote such degradation as temporal degradation.

Accordingly, there has been active research on techniques for keeping PLMs

current. One line of research works explores continuous post-training techniques

for temporal adaptation of PLMs [1, 2]. Some works directly apply language

modeling objectives to continuous post-training while some other works apply

continual learning techniques [4, 5, 6]. Existing works have commonly diagnosed

temporal degradation in settings where there is a relatively long period between

updates (at least a quarter of a year) and an ample amount of corpora available
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for the target period the LM is adapting (e.g., Twitter text from 2017 to 2018).

We shift our focus towards more frequent and smaller-scale updates of PLMs

in temporal adaptation.

One cause of temporal degradation is failed or suboptimal understanding

of new words or entities unseen to PLMs during pretraining [1, 7]. In this

paper, we mitigate temporal degradation by studying how to effectively and

efficiently integrate neologisms (i.e., new words or entities) into PLMs. Previous

works on injecting knowledges [8, 9] have obtained good results on editing some

knowledge that a PLM already knows (e.g., the name of the current president

in the United States), recent NLP tasks [10, 11] have found that these model

editing methods are ineffective in understanding new entities that the PLM has

never seen during pretraining (e.g., Aespa, AirTag). While existing works have

focused on editing of knowledge in PLMs, we aim to make a tailored method

for addition of knowledge to PLMs.

This paper provides a new method – W-SUM – for integrating neologisms

into PLMs, by mimicking how humans process their knowledge when encoun-

tering a new word or concept. Humans try to understand the new word based

on the prior they have accumulated with past learning experiences (assimila-

tion in Piaget’s cognitive development). Likewise, W-SUM finds the optimal

embedding of new vocabulary by leveraging the rich knowledge inherent in the

embedding of existing tokens of PLMs. We treat a neologism as a single token

and add the new single token to a PLM. Here we were influenced by vocabulary

expansion approaches [12, 13, 14] studied in PLM’s domain and cross-linguistic

adaptation. The embedding of the new token is represented as a weighted sum

of embeddings of the existing tokens, and we let the model find the optimal

weight distribution via language modeling objective. Our training scheme is

based on language modeling with unlabeled corpus, so our method does not
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require data annotation.

Adding a new token to PLMs should meet two requirements: to learn the

new token effectively and not to affect the meaning of existing tokens. We eval-

uate W-SUM on two language model probing tasks – ECBD and LAMBADA –

and validate how well the method can meet both desiderates. We also conduct

qualitative analysis on embeddings of new tokens found by W-SUM and demon-

strate that W-SUM truly enables the PLM to find good embedding values for

new tokens.
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Chapter 2

Background

2.1 Temporal Adaptation of Pretrained Language Mod-
els

The temporal misalignment of pretrained language models (PLMs) has recently

received much attention from the NLP research community. This issue refers

to PLMs performing poorly on test data that originated after the models fin-

ished pretraining. Consequently, there have been various approaches for keeping

PLMs up to date, namely, temporal adaptation. A temporal adaptation of pre-

trained language models (PLMs) refers to adapting a PLM to new data that

emerges after the model has finished the initial pretraining. In this section,

we look into two main approaches in temporal adaptation – continuous post-

training and model editing.
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2.1.1 Continuous Post-training of PLMs

Continuous post-training of PLMs refers to continuing to pretrain language

models that have already finished pretraining on a large general corpus with

the additional dataset. Existing works have taken two approaches when ap-

plying continuous post-training to temporal adaptation. The first approach is

to continuously post-train PLMs with the same language modeling objective

on recent corpus [1, 3, 2]. The second approach is to apply continual learning

techniques to continuous post-training [5, 6, 4].

2.1.2 Model Editing on PLMs

Model editing refers to editing a knowledge of PLM acquired during pretraining.

This line of works [8, 9] aims to make a more fine-grained, targeted update to

PLMs compared to continuous post-training. Also, they focus on editing the

existing face inside PLMs, not on appending some new word or entity that

the language model has never seen during pretraining. As such, it has recently

been diagnosed that these model-editing techniques are ineffective for injecting

a piece of new information into a PLM [10], performing worse than the original

PLM. Therefore, there has yet to be a method tailored for integrating a PLM

to understand a new entity or neologism that the PLM has never seen.

2.2 Vocabulary Expansion in Domain Adaptation and
Cross-Lingual Adaptation

Adapting a PLM to handle new vocabularies has been actively studied in do-

main adaptation (DA) and cross-lingual adaptation (CLA) of PLMs. DA refers

to adapting a language model, which has been pre-trained on a large amount of

general corpus, to a specific domain such as Bio, Computer-Science, etc., with
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the associated domain-specific corpus. CLA aims to adapt a language model,

which has been pretrained on a large amount of corpus in language A to some

other language B. In most cases, language models pretrained over the English

corpus get transferred to other mid-resource/low-resource languages.

One of the critical challenges in the DA/CLA is how to effectively capture

the semantics of domain-specific / language-specific terms, which are out-of-

vocabulary for the original PLMs’ tokenizers. One primary approach frequently

taken in DA and CLA is to expand PLM’s embedding layer and tokenizer with

new vocabularies. Research works propose different methods to initialize the

embedding of these new vocabularies. They can be categorized as the following

– 1) to leverage the overlap between the original corpus and the target do-

main corpus [15, 16] and 2) to continuously post-train with language modeling

objective [12, 13, 14].

Our method follows the vocab expansion approach but enables more in-

formed initialization by leveraging rich semantic information innate in PLM’s

existing token embeddings. We did not consider the first line of approach as it

is more realistic to assume that the source corpus of PLMs is unavailable for

end-users. The first line of work first learns the mapping between source and

target vocabularies and then acquires the embeddings for target vocabularies

using the trained mapping.
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Chapter 3

Method

3.1 Main Idea

The main idea is to represent the embedding of a target token as the weighted

sum of existing vocab embeddings, where we let the language modeling objec-

tive decide the weight for each vocab. This method was inspired by assimilation

in Piaget’s theory of cognitive development, which indicates that humans learn

new information based on what they’ve acquired in the past. From this pos-

tulation, we devised this new method where the embedding value of a new

vocabulary is deduced from the embedding value of pre-existing, well-defined

tokens in PLM’s vocab set. The optimal weight distribution is found via lan-

guage modeling objective when the PLM is trained on an unlabeled corpus

containing the new word.

Figure 4.1 illustrates the overall training process. We target single-word

neologisms and extend a PLM’s vocabulary with the neologism as a new token

’COVID-19’ is added in the figure. Given V and N where V is the number of
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vocabularies for the PLM and N is the number of new tokens to add, W-SUM

optimizes a weight parameter of size N x V . In the figure, the weight parameter

is illustrated as a single layer with size of 1 x V as we are only adding one token

(COVID-19).

Then, we further pretrain the PLM with the language modeling objective

on a small corpus that includes the newly added word. However, instead of

updating the whole model parameter (Figure 3.2 (a)) or only the embedding

layer (Figure 3.2 (c)), W-SUM updates the weight parameter only. Then the

embedding for the new token (1 x H) is obtained by matrix-multiplying the

weight parameter (1 x V ) and the embedding layer (V x H) where H is the

PLM’s hidden dimension.

For the training dataset, W-SUM requires a corpus that includes the newly

added token. Regarding the size of the corpus, we used a dataset of size 100s for

evaluation (250 examples for the ECBD task and 500 examples for the LAM-

BADA task), which is reasonably small compared to the amount of corpus used

for continuous post-training. We assume that this requirement is not challeng-

ing nor unrealistic as there would be enough mentions of the neologism if it

holds enough importance to get integrated into PLMs. Also, as we are using an

unlabeled corpus, it is free of burden for annotation.
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Figure 3.1 Diagram for W-SUM . A single layer of parameters colored in yellow

refers to the weights per existing embedding tokens tuned by the language

modeling objective. As the number of tokens to add increases, the height of the

weight parameter (i.e., the number of layers) will grow linearly.
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Chapter 4

Evaluation

4.1 Evaluation Setup

In this section, we explain evaluation tasks, baselines compared with W-SUM ,

and the environment used for implementation and experiments.

4.1.1 Evaluation Tasks

W-SUM and baseline methods are evaluated on two NLP tasks – Entity Cloze

By Date (ECBD) and LAMBADA.

Entity Cloze By Date

ECBD [11] is an entity probing task that tests whether a language model can

infer about entities not seen during pretraining. The task provides a set of

entities and their corresponding years when they have originated. The task also

includes the entitie’s definition and probe sentences with masked spans. Then,

given definitions about a target entity, a PLM is tested whether it can make a
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good guess on the masked span of the probe sentence.

We select entities to experiment with from the period of 2020 and 2021 to

ensure that PLMs have not seen those entities during pretraining. Within the

ECBD test dataset, 53 and 13 new entities for 2020 and 2021 each consist of

a single word. As W-SUM requires some amount of corpus containing the tar-

get token to add newly, we picked entities with the most number of definitions

provided. Such picked entities are GPT-3, which is a kind of PLMs that re-

cently became famous, Zynn, which is a start-up company, and AirTag, which

is a newly launched Apple product. We then applied input augmentation to

the definitions to prepare a train dataset of around 250. For the augmentation,

we prompted the ChatGPT [17] to paraphrase given definitions. We have rigor-

ously checked that the paraphrased sentences do not add new information other

than what is given by the original definitions; thus, other input augmentation

techniques will also work fine.

LAMBADA

LAMBADA [18] is a natural language understanding task where a model is

given a paragraph with the last few phrases masked, and asked to predict

the masked portions. The given paragraphs are constructed so that the model

should understand the whole context of the paragraph, not just the individual

sentences close to the masked portions.

From the LAMBADA test set, we select only the test examples where the

masked portion consists of a single token when tokenized, our method is de-

signed to add a single new token to a PLM. Such test examples result in 1786

unique target tokens and 2819 test examples containing the target tokens. As

training with 1786 unique tokens is resource-consuming, we randomly pick 216

tokens from 1786 tokens, denote them as LAMBADA-216, and mainly run ex-
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periments on these examples. LAMBADA-216 includes 225 test examples. We

believe the result averaged over 216 tokens is generalized enough to conclude

how well our newly proposed method works.

Although the last tokens in LAMBADA examples are not really neologisms

to PLMs, as models have seen them during pretraining, we still test with these

data samples as temporal misalignment of PLMs is a relatively new research

topic and there are few datasets available that provide real neologisms and cor-

responding test examples to evaluate. When testing with LAMBADA, we erase

the true embedding of a given token from a PLM and re-learn its embedding

using our method and baseline methods, to test whether they can successfully

recover the given token’s true embedding. We denote such tokens from LAM-

BADA examples as PSEUDO-NEOs. Also, we denote tokens that were truly

unseen during pretraining to be REAL-NEOs.

In order to measure the specificity performance, we set aside a few test

examples that do not overlap with LAMBADA-216. We randomly picked 150

unique tokens from the 1786 tokens not included in LAMBADA-216. They are

223 test examples, roughly matching the test examples number of LAMBADA-

216 (225 examples).

4.1.2 Baselines and Models

We compare W-SUM with two methods: train-embed-wholeand train-embed-

new. train-embed-whole(Figure 3.2 (c)) refers to augmenting PLM’s vocabulary

and embedding parameter with a new neologism and training the entire em-

bedding parameter with a dataset on the neologism. This method was shown to

be effective in adapting PLMs to a new domain [13]. train-embed-new(Figure

3.2 (b)) refers to augmenting PLM’s vocabulary, embedding parameters with

a new neologism, and training the parameter for the newly added token only.
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This approach has also been tested in the domain adaptation of PLM [14]. In

the original work, this method was applied to a PLM mixed with the original

token embedding in the original work. Still, we use only the newly acquired

embedding as the original embedding is unavailable in our setting, where we

aim to find the embedding for unseen entities. When comparing our method

with train-embed-new, we can also observe whether not only initializing but

also modeling with the weighted sum of existing tokens truly helps to learn the

embedding of a new token.

We did not add model editing approaches [9, 8] as they were shown to be

ineffective for adding new entities to PLMs resulting in worse perplexity than

the original PLM [10]. For ECBD task, we additinally report the performance of

prepending definitions following the setting of the original work [10]. However,

we do not add it as a baseline method for the LAMBADA task as it is not

considered a valid method for injecting a new entity to a PLM [10] and it is not

so straightforward how to apply it to the LAMBADA task.

We conduct all the experiments on GPT2-large [19].

4.1.3 Environment and Frameworks

All the implementation was done with PyTorch 2.1.0, and checkpoints for base

models were downloaded from Huggingface. We evaluated W-SUM and base-

lines on NVIDIA A100 80GB GPUs for the LAMBADA task and NVIDIA

A6000 40GB GPUs for the ECBD task. All experiments were run with tf32

mode activated for the LAMBADA task to accelerate the training progress, as

the LAMBADA dataset is huge in size (1786 target tokens and 2819 evaluation

examples in total).
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4.2 Main Results

4.2.1 Result on ECBD

Method GPT-3 Zynn AirTag

Target Spec Target Spec Target Spec

base model 65.83 39.76 40.54 39.76 51.59 70.54

train-embed-new 72.48 40.27 45.36 41.36 51.03 71.10

train-embed-whole (early) 69.28 40.12 36.93 40.08 48.44 70.02

train-embed-whole (late) 75.17 74.29 20.49 81.08 42.26 108.48

train-weight (Ours) 38.47 39.82 30.28 40.38 45.78 68.70

prepend-defs-full 18.11 39.76 14.02 39.75 29.41 70.54

prepend-defs-half 23.60 39.76 22.79 39.75 63.82 70.54

Table 4.1 Target perplexity and specificity perplexity measured on a subset

of ECBD. The lower the perplexity is, the better. The best perplexity scores

among all the methods are marked with underline and the best perplexity scores

within parameter update based methods are marked as bold. The perplexity

of train-embed-wholeat later training steps was not considered as its specificity

perplexity is too high to be used.

Table 4.1 shows W-SUM and baseline methods’ perplexity on ECBD task.

W-SUM achieves lower target perplexity than the base model while maintaining

the specificity perplexity same. This is better achievement compared to model

editing techniques [9, 8] studied in the work of PLM learning new entities [10]

where they resulted in even higher perplexity than the base model. W-SUM

also consistently achieves lower perplexity compared to train-embed-new. While

train-embed-wholeresults in lower perplexity than W-SUM at the later training
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Method Target Accuracy Specificity Accuracy

base model 43.111 43.103

train-embed-new 28.000 37.570

train-embed-whole N/A N/A

train-weight (Ours) 64.444 24.472

Table 4.2 Target accuracy and specificityy accuracy measured on LAMBADA-

216. We did not measure the score of train-embed-whole on the full LAMBADA-

216, as the method consistently exhibits poor performance on the smaller subset

(Figure 4.1).

steps, the embeddings from train-embed-wholecannot be used as they show

steep surge in specificity perplexity. We conjecture that updating the whole

embedding parameter results in overfitting, thus, badly impacting the overall

next token prediction ability.

While W-SUM achieves comparatively good performance among techniques

based on parameter update, its perplexity is still higher than that of prepending

definitions during inference. Although prepending definitions during inference

was not considered a valid solution for adapting PLMs because of its infer-

ence cost [10], there is room for improvement in parameter update-based PLM

adaptation techniques considering the reasonably low perplexity achieved by

prepending definitions.

4.2.2 Result on LAMBADA

Table 4.2 shows the target accuracy and specificity accuracy meausred on

LAMBADA-216. We trained each method for 75 steps, and evaluated against

LAMBADA-216 for every 15 steps. Please note that the score for train-embed-
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whole is not measured as the method showed poor performance (0 target ac-

curacy) when evaluated on a smaller subset of LAMBADA-216. In Figure 4.1,

it is observed that train-embed-whole scores 0 target accuracy all for five eval-

uations, averaged over 30 tokens randomly selected from LAMBADA-216. We

conjecture that the parameter update on the entire embedding layer may have

caused too much distribution shift from the original PLM that the model cannot

correctly perform the next token prediction task.

The result implies that train-weight achieves increased of 21.333p% in tar-

get accuracy compared to the base model. Meanwhile, train-embed-new ex-

hibts decrease in target accuracy, resulting in 28.0%. This implies that applying

weighted sum modeling when training the newly added embedding token helps

the PLM to find the embedding value for the new token.

However, this accuracy gain comes at the cost of specificity accuracy. Look-

ing at the specificity accuracy of train-embed-new, adding a newly trained em-

bedding token alone badly impact the specificity accuracy by showing a 5.533p%

decrease. Applying weighted sum modeling further degrades the specificity ac-

curacy by 13.099p%. This result contrasts with the evaluation result we saw in

the ECBD task. In the evaluation result of the ECBD task, neither train-weight

nor train-embed-new showed a decrease in specificity perplexity compared to

the original PLM. Such a decrease in specificity accuracy in the LAMBADA

task may be exaggerated. The LAMBADA task, a next token prediction task,

is essentially a classification task over 50K classes (equivalent to the number

of ); thus, even a slight change in the embedding layer may badly impact the

classification result. We believe it is more appropriate to choose the perplexity

metric, as we did in the ECBD task, to quantify the amount of possible harm

brought to other existing tokens.

We also evaluated train-weight and train-embed-new with the whole LAM-
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BADA task on 1786 unique tokens. In Figure 4.2, we can observe that with

train-weight the target accuracy continues to improve as training progresses

while train-embed-new does not.

Figure 4.1 Evaluation on a smaller subset of LAMBADA-216, averaged over 30

tokens randomly picked.

4.3 Analysis on the Semantics of Token Embeddings

This section discusses how well W-SUM and baseline methods acquire the ap-

propriate semantics of the target token. In detail, we first investigate the re-

latedness between the target token embedding trained and the original token

embedding. The closer they are, the better trained the target token embedding

is. Also, we present examples of which token embeddings of the original PLM

are the closest to the target token. For measuring the level of closeness, we use
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Figure 4.2 Evaluation on the whole LAMBADA task, averaged over 1786 to-

kens. The score for train-embed-whole is not measured as the method exhibits

poor performance (target accuracy of 0) when tested on a smaller subset of

LAMBADA-216.

cosine similarity as it is one of the most widely used metrics used to measure

how similar two word embeddings are.

4.3.1 Evaluation with PSEUDO-NEO

Figure 4.3 shows how the cosine similarity between the embedding acquired

from training and the oracle embedding (i.e., the original embedding of the

target token) changes as training progresses. The target tokens are 216 tokens

from LAMBADA-216, and the cosine similarity was measured for every 15

training steps, six times in total. The result in the figure is the average over
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Figure 4.3 The trend of cosine similarity with the original embedding as trainig

progresses.

216 tokens. The labels of the x-axis of the figure represent the step at which

the embedding of the target token was evaluated against the oracle embedding.

Please note that the value at step 0 refers to the cosine similarity before training,

that is, the cosine similarity between the initialized and oracle embedding. The

baseline train-embed-wholeis not included as it demonstrated noticeably poor

accuracy for the LAMBADA task during the preliminary experiment (shown

in Figure 4.1).

W-SUM demonstrates a steady increase in cosine similarity with the oracle

embedding throughout training, and at the last step, it reaches the cosine simi-

larity of 0.412. On the other hand, the baseline train-embed-newfails to go over

the cosine similarity of 0 after 75 training steps, although the value at the last
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step (-0.032) has increased slightly compared to the beginning of the training

(-0.048). This result implies that W-SUM finds semantically better embedding

than the baseline when given the same amount of training.

In Table 4.3, we present the 10 most similar tokens to the trained embedding

per each target token. We searched the most similar tokens based on the last

step’s checkpoint both for W-SUM and train-embed-new.

Similar embedding tokens found for W-SUM seem to contain related words

to the original target token. (e.g. Ġbolstered or Ġrevived for Ġrenewed) For

some cases, they also include seemingly unrelated tokens to the original target

token, such as ÃĥÃĤÃĥÃĤÃĥÃĤÃĥÃĤ or ĸl,å£« in the case of Ġbelief. What

caused the embedding to be located near seemingly unrelated tokens during the

training of W-SUM is one interesting future research agenda.

Another intersting observation is that W-SUM seems to recover the contex-

tualized meaning of tokens that possess different meanings in various contexts.

For example, considering Ġclass, the closest embedding tokens found by W-

SUM include Ġproletariat, Ġlineage and Ġcohort, which are synonyms for the

word "class" within the context of socialism, genetics, and sociology, respec-

tively. This implies that learning embeddings by W-SUM reflects the contextu-

alization process language modeling.

4.3.2 Evaluation on REAL-NEO

Unlike PSEUDO-NEOs, with REAL-NEOs, measuring the cosine similarity

with the original embedding token is inappropriate as the target token is en-

tirely new to the PLM, and the original embedding token does not exist. Instead,

examples of the most similar tokens from the PLM’s embedding space are pre-

sented in Table 4.4. Similar tokens in the table show that W-SUM retrieves

semantically related tokens, while the other two methods do not.
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Target Token Method Top-10 Cosine Similar Embedding Tokens

Ġrenewed train-weight Ġrenewed, Ġheightened, Ġbolstered,

Ġreiterated, Ġintensified, Ġrenovated,

Ġstrengthened, Ġrevived, Ġrevamped,

Ġreopened

train-embed-new Ġin, Ġ(, Ġthe, Ġused, -, Ġand, „ Ġis, Ġa, Ġ"

Ġmistaken train-weight Ġunintention, Ġmisguided, Ġnonsensical,

Ġpractition, Ġsubur, Ġerroneous,

Ġmistaken, Ġdismissive, Ġdelusional,

Ġmisinterpret

train-embed-new Ġin, Ġ(, Ġused, -, Ġthe, Ġand, Ġis, „ Ġuse, Ġa

Ġclass train-weight Ġproletariat, Ġpercentile, Ġcaste,

Ġteasp, Ġslab, Ġsubur, Ġcarbohyd,

Ġpione, Ġcohort, Ġlineage

train-embed-new Ġin, -, Ġ(, Ġand, Ġis, Ġthe, Ġused, „ Ġuse, Ġ"

Ġsleeve train-weight Ġsleeve, Ġsleeves, Ġjacket, Ġskillet,

Ġskirt, Ġlace, Ġholster,

Ġsweater, Ġjackets, Ġnecklace

train-embed-new Ġin, Ġ(, -, Ġand, Ġused, Ġthe, Ġis, „ Ġuse, Ġ"

Ġbelief train-weight Ġbelief, Ġreverence, Ġpractition,

Ġunintention, Ġtheological, Ġpione,

DeliveryDate, ĸl,å£«,

ÃĥÃĤÃĥÃĤÃĥÃĤÃĥÃĤ, Ġskepticism

train-embed-new Ġin, Ġ(, -, Ġand, Ġused, Ġis, Ġthe, „ Ġuse, Ġ"

Table 4.3 Examples of Top-10 cosine similar embedding tokens found. The tar-

get token is marked with an underline if found in the top 10 most similar

embedding tokens.
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Target Token Method Top-10 Cosine Similar Embedding Tokens

ĠAirTag train-weight ĠiCloud, ĠChromebook, ĠMacBook,

ĠKinect, Ġepigen, ĠiPod,

ĠAlibaba, ĠMessi, ĠXiaomi, ĠEminem

train-embed-new Ġa, Ġthe, Ġuse, Ġan, Ġfood,

Ġproduction, Ġwork, Ġdevelopment,

Ġtechnique, Ġmore

train-embed-whole ĠAirTag, Ġthe, ĠU, ĠApple,

Ġ20, Ġ14, Ġ11, Ġ2, Ġit, Ġpre

GPT-3 train-weight LinkedIn, Austral, Analy,

JSON, NVIDIA, Google, Interestingly,

Researchers, ß, Parameters

train-embed-new Ġfood, Ġsnacks, Ġhighly, Ġgimm,

Ġdevelopment, Ġtechnique, Ġprotein,

Ġproduction, Ġfoods, Ġproductive

train-embed-whole GPT-3, „ ’s, ., Ġand, -, Ġover,

Ġin, Ġis, Ġpre

ĠZynn train-weight ĠYelp, ĠXiaomi, ĠHuawei, ĠHulu,

ĠRoku, ĠDropbox, Ġcryptocurrency,

ĠSpaceX, ĠLyft, ĠAirbnb

train-embed-new Ġa, Ġthe, Ġan, Ġmore, Ġfood, Ġall,

Ġit, Ġhigh, Ġproduction, Ġthis

train-embed-whole ĠZynn, Ġthe, Ġin, Ġa, Ġ20,

ĠAmerica, ., Ġall, Ġit

Table 4.4 Examples of Top-10 cosine similar embedding tokens found using each

method. Please note that target tokens are REAL-NEOs, that is, a PLM has

never seen these target tokens during pretraining.
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Chapter 5

Discussion and Conclusion

In this paper, we have studied how to integrate neologisms into pretrained

language models (PLMs) effectively. While there has been active research on

the temporal degradation of PLMs and adaptation techniques to overcome the

degradation, there has yet to be a technique tailored for integrating new words

or entities, unseen during pretraining, into PLMs. This work proposes a new

training method, W-SUM , inspired by how human intelligence assimilates new

concepts into its internal knowledge model based on prior knowledge. Evalua-

tions on language model probing tasks and qualitative analysis have validated

that W-SUM does help to find good embeddings for newly added tokens to

PLMs.

However, there are limitations, mainly regarding W-SUM ’s applicability.

First, the current form of W-SUM only applies to a single word’s neologisms.

While our work did not target multi-word neologisms as the understanding of

multi-word expressions fall under an independent research field; it would be

desirable for the technique to support multi-word neologisms as well as many
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neologisms are phrases. Also, W-SUM do not assume cases where existing tokens

of a PLM have acquired a new meaning but there exist cases where existing

tokens should be added with new contexts. For example, the token ’ĠDelta’

already exists in GPT2 models but still needs adaptation as the word ’Delta’

in a new corpus is often associated with COVID-19. It would be advantageous

for the technique to accommodate such cases as well.
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초록

사전훈련된언어모델(PLM)은시간이지남에따라새로운데이터에대한성능이

낮아질수있으므로새로운단어나개념에대해 PLM을적응시킬필요성이대두되

었다. PLM을 새로운 어휘에 적응시키는 효율적인 접근 방식이 도메인 또는 교차

언어 적응 분야에서 연구되었지만, 이러한 방법은 어휘 업데이트가 적시에, 주기

적으로, 소규모 (1MB가량의 학습 데이터로 1-10개의 새 단어 추가)로 발생해야

하는 설정에서는 아직 실험된 적이 없다. 위와 같은 방법들은 새로운 세팅에서 만

족스럽지 못한 성능을 나타내거나 새로운 어휘에 과적합되는 결과를 낳는 경향을

보였다. 더 나아가, 기존의 PLM의 모델 편집 테크닉 또한 사전 학습 도중에 보지

못한 정보를 PLM에 주입하는 데에는 효과적이지 못한 것으로 알려져있다. 따라

서 본 논문에서는, 인간이 새로운 단어나 개념을 접할 때 내부 지식을 처리하는

방식을모방하여 PLM을새로운어휘(즉,신조어)에적응시키기위한맞춤형방법

W-SUM 을 제안한다. Piaget의 인지 발달 이론에서 동화에 영감을 받아, W-SUM

는기존토큰임베딩의가중합계를통해새로운어휘의최적임베딩을찾고,이과

정에서 PLM의 기존 토큰 임베딩에 내재된 풍부한 지식을 활용하도록 한다. 가중

합계를 위한 가중치는 PLM이 추가적인 사전학습을 통해서 찾도록 했다. ECBD

와 LAMBADA라는 두 가지 언어 모델 조사 태스크에서 W-SUM 를 평가하고 임

베딩 비교 분석을 통해W-SUM 이 새로운 어휘에 대한 좋은 임베딩을 획득하는데

효과적이라는 것을 보인다.

주요어:

학번: 2021-23818
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