creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Integrating Neologisms to Pretrained
Language Models: Using
Assimilation-Inspired Embedding Synthesis

A EHE Qo] mdlo] Axo] 58 oA G7L
S

2023 4 8 ¢

2 A e

SECRIL WATIOMAL LIMINVERSTY

M.S. THESIS

Integrating Neologisms to Pretrained
Language Models: Using
Assimilation-Inspired Embedding Synthesis

A EHE Qo] mdlo] Axo] 58 oA G7L
S

2023 4 8 ¢

2 A e

SECRIL WATIOMAL LIMINVERSTY

Integrating Neologisms to Pretrained Language
Models: Using Assimilation-Inspired Embedding
Synthesis

........

- . 22T

L N

" o

o) oW

. o]

Hl o -) oI FJ| <

o MW T % go o W 51| mo| <

L B ﬂ _ﬂ_o ‘__Lm_l . N

(e S Lo BO| T | A

ﬂ_Al % __o_l K =0 ~ %

T & & HE X T 2

Tor o ol

Ho £3 Mo

ol ol

D_..._ 3o o o

! 4 O
70 s

) " o

oF o+ °F

2 A e

SECRIL WATIOMAL LIMINVERSTY

Abstract

Recent research has shown that pretrained language models (PLMs) can be-
come outdated over time and need adaptation to new words or concepts. While
efficient approaches to adapt PLMs to new vocabularies have been studied in
the fields of domain or cross-lingual adaptation, these methods have yet to be
explored in a setting where vocabulary updates should occur timely, periodi-
cally, and on a small scale (adding 1s and 10s of new words with 1MB training
data). Unfortunately, such methods either exhibit unsatisfactory performance
or result in overfitting to the new vocabularies. Existing works in model editing
of PLMs have also been tested to be ineffective for injecting unseen entities
into PLMs. Our paper proposes a tailored method — W-SUM — for adapting
PLMs to new vocabularies (i.e., neologisms) by mimicking how humans process
their internal knowledge when encountering a new word or concept. Inspired
by assimilation in Piaget’s cognitive development theory, W-SUM leverages the
rich knowledge inherent in embedding existing tokens of PLMs to find the opti-
mal embedding of a new vocabulary through a weighted sum of existing token
embeddings. We let the PLM find the optimal weight distribution via language
modeling objective. We evaluate W-SUM on two language model probing tasks
— ECBD and LAMBADA and validate W-SUM ’s ability to acquire a good

embedding for new vocabularies through semantic analysis.

Keywords: Pretrained Language Model, Temporal Adaptation, Neologism
Student Number: 2021-23818

Contents

Abstract 1
1 Introduction 5
2 Background 8
2.1 Temporal Adaptation of Pretrained Language Models 8
2.1.1 Continuous Post-training of PLMs 9
2.1.2 Model Editingon PLMs 9

2.2 Vocabulary Expansion in Domain Adaptation and Cross-Lingual
Adaptation 9
3 Method 11
3.1 Mainldeao 11
4 Evaluation 15
4.1 Evaluation Setup 15
4.1.1 Evaluation Tasks 15
4.1.2 Baselines and Models 17
4.1.3 Environment and Frameworks 18
4.2 Main Results 19

42.1 Resulton ECBD 19

4.2.2 Result on LAMBADA 20

4.3 Analysis on the Semantics of Token Embeddings 22
4.3.1 Evaluation with PSEUDO-NEO 23

4.3.2 Evaluation on REAL-NEO 25

5 Discussion and Conclusion 28
2= 34

2 A e

SECRIL WATIOMAL LIMINVERSTY

Chapter 1

Introduction

Temporal adaptation of pretrained language models (PLMs) refers to adapt-
ing a PLM to new data that emerges after the model has finished the initial
pre-training. Recent studies [1, 2, 3] have shown that PLMs without temporal
adaptation degrades in model performance as time goes which highlights the
necessity of regularly adapting PLMs. For example, a PLM trained with corpus
upto 2018 shows performance degradation when tested with dataset of 2019 or
2020, and adapting the PLM with corpus generated in 2019/2020 mitigates the
degradation. We denote such degradation as temporal degradation.
Accordingly, there has been active research on techniques for keeping PLMs
current. One line of research works explores continuous post-training techniques
for temporal adaptation of PLMs [1, 2]. Some works directly apply language
modeling objectives to continuous post-training while some other works apply
continual learning techniques [4, 5, 6]. Existing works have commonly diagnosed
temporal degradation in settings where there is a relatively long period between

updates (at least a quarter of a year) and an ample amount of corpora available

for the target period the LM is adapting (e.g., Twitter text from 2017 to 2018).
We shift our focus towards more frequent and smaller-scale updates of PLMs

in temporal adaptation.

One cause of temporal degradation is failed or suboptimal understanding
of new words or entities unseen to PLMs during pretraining [1, 7]. In this
paper, we mitigate temporal degradation by studying how to effectively and
efficiently integrate neologisms (i.e., new words or entities) into PLMs. Previous
works on injecting knowledges 8, 9] have obtained good results on editing some
knowledge that a PLM already knows (e.g., the name of the current president
in the United States), recent NLP tasks [10, 11] have found that these model
editing methods are ineffective in understanding new entities that the PLM has
never seen during pretraining (e.g., Aespa, AirTag). While existing works have
focused on editing of knowledge in PLMs, we aim to make a tailored method

for addition of knowledge to PLMs.

This paper provides a new method — W-SUM - for integrating neologisms
into PLMs, by mimicking how humans process their knowledge when encoun-
tering a new word or concept. Humans try to understand the new word based
on the prior they have accumulated with past learning experiences (assimila-
tion in Piaget’s cognitive development). Likewise, W-SUM finds the optimal
embedding of new vocabulary by leveraging the rich knowledge inherent in the
embedding of existing tokens of PLMs. We treat a neologism as a single token
and add the new single token to a PLM. Here we were influenced by vocabulary
expansion approaches [12, 13, 14| studied in PLM’s domain and cross-linguistic
adaptation. The embedding of the new token is represented as a weighted sum
of embeddings of the existing tokens, and we let the model find the optimal
weight distribution via language modeling objective. Our training scheme is

based on language modeling with unlabeled corpus, so our method does not

require data annotation.

Adding a new token to PLMs should meet two requirements: to learn the
new token effectively and not to affect the meaning of existing tokens. We eval-
uate W-SUM on two language model probing tasks — ECBD and LAMBADA -
and validate how well the method can meet both desiderates. We also conduct
qualitative analysis on embeddings of new tokens found by W-SUM and demon-
strate that W-SUM truly enables the PLM to find good embedding values for

new tokens.

Chapter 2

Background

2.1 Temporal Adaptation of Pretrained Language Mod-

els

The temporal misalignment of pretrained language models (PLMs) has recently
received much attention from the NLP research community. This issue refers
to PLMs performing poorly on test data that originated after the models fin-
ished pretraining. Consequently, there have been various approaches for keeping
PLMs up to date, namely, temporal adaptation. A temporal adaptation of pre-
trained language models (PLMs) refers to adapting a PLM to new data that
emerges after the model has finished the initial pretraining. In this section,
we look into two main approaches in temporal adaptation — continuous post-

training and model editing.

2.1.1 Continuous Post-training of PLMs

Continuous post-training of PLMs refers to continuing to pretrain language
models that have already finished pretraining on a large general corpus with
the additional dataset. Existing works have taken two approaches when ap-
plying continuous post-training to temporal adaptation. The first approach is
to continuously post-train PLMs with the same language modeling objective
on recent corpus [1, 3, 2|. The second approach is to apply continual learning

techniques to continuous post-training [5, 6, 4].

2.1.2 Model Editing on PLMs

Model editing refers to editing a knowledge of PLM acquired during pretraining.
This line of works [8, 9] aims to make a more fine-grained, targeted update to
PLMs compared to continuous post-training. Also, they focus on editing the
existing face inside PLMs, not on appending some new word or entity that
the language model has never seen during pretraining. As such, it has recently
been diagnosed that these model-editing techniques are ineffective for injecting
a piece of new information into a PLM [10], performing worse than the original
PLM. Therefore, there has yet to be a method tailored for integrating a PLM

to understand a new entity or neologism that the PLM has never seen.

2.2 Vocabulary Expansion in Domain Adaptation and

Cross-Lingual Adaptation

Adapting a PLM to handle new vocabularies has been actively studied in do-
main adaptation (DA) and cross-lingual adaptation (CLA) of PLMs. DA refers
to adapting a language model, which has been pre-trained on a large amount of

general corpus, to a specific domain such as Bio, Computer-Science, etc., with

the associated domain-specific corpus. CLA aims to adapt a language model,
which has been pretrained on a large amount of corpus in language A to some
other language B. In most cases, language models pretrained over the English
corpus get transferred to other mid-resource/low-resource languages.

One of the critical challenges in the DA /CLA is how to effectively capture
the semantics of domain-specific / language-specific terms, which are out-of-
vocabulary for the original PLMs’ tokenizers. One primary approach frequently
taken in DA and CLA is to expand PLM’s embedding layer and tokenizer with
new vocabularies. Research works propose different methods to initialize the
embedding of these new vocabularies. They can be categorized as the following
— 1) to leverage the overlap between the original corpus and the target do-
main corpus [15, 16] and 2) to continuously post-train with language modeling
objective [12, 13, 14].

Our method follows the vocab expansion approach but enables more in-
formed initialization by leveraging rich semantic information innate in PLM’s
existing token embeddings. We did not consider the first line of approach as it
is more realistic to assume that the source corpus of PLMs is unavailable for
end-users. The first line of work first learns the mapping between source and
target vocabularies and then acquires the embeddings for target vocabularies

using the trained mapping.

]
10 =4

Chapter 3

Method

3.1 Main Idea

The main idea is to represent the embedding of a target token as the weighted
sum of existing vocab embeddings, where we let the language modeling objec-
tive decide the weight for each vocab. This method was inspired by assimilation
in Piaget’s theory of cognitive development, which indicates that humans learn
new information based on what they’ve acquired in the past. From this pos-
tulation, we devised this new method where the embedding value of a new
vocabulary is deduced from the embedding value of pre-existing, well-defined
tokens in PLM’s vocab set. The optimal weight distribution is found via lan-
guage modeling objective when the PLM is trained on an unlabeled corpus
containing the new word.

Figure 4.1 illustrates the overall training process. We target single-word

neologisms and extend a PLM’s vocabulary with the neologism as a new token

"COVID-19’ is added in the figure. Given V and N where V is the number of

11 AL

vocabularies for the PLM and N is the number of new tokens to add, W-SUM
optimizes a weight parameter of size N x V. In the figure, the weight parameter
is illustrated as a single layer with size of 1 x V' as we are only adding one token
(COVID-19).

Then, we further pretrain the PLM with the language modeling objective
on a small corpus that includes the newly added word. However, instead of
updating the whole model parameter (Figure 3.2 (a)) or only the embedding
layer (Figure 3.2 (c)), W-SUM updates the weight parameter only. Then the
embedding for the new token (1 x H) is obtained by matrix-multiplying the
weight parameter (1 x V') and the embedding layer (V' x H) where H is the
PLM’s hidden dimension.

For the training dataset, W-SUM requires a corpus that includes the newly
added token. Regarding the size of the corpus, we used a dataset of size 100s for
evaluation (250 examples for the ECBD task and 500 examples for the LAM-
BADA task), which is reasonably small compared to the amount of corpus used
for continuous post-training. We assume that this requirement is not challeng-
ing nor unrealistic as there would be enough mentions of the neologism if it
holds enough importance to get integrated into PLMs. Also, as we are using an

unlabeled corpus, it is free of burden for annotation.

]
12 -i == T

A~)

DECODER)
(DECODER)
(DECODER) Twitter lifted its ban on COVID-19 misinformation...
\ _J
[Twitter | [lifted || its || ban][on |[coviD-19]

o

[\

Q@\\s\-\

o A

22,
“
SN

Q
o)
Z

o)
©

Figure 3.1 Diagram for W-SUM . A single layer of parameters colored in yellow

refers to the weights per existing embedding tokens tuned by the language

modeling objective. As the number of tokens to add increases, the height of the

weight parameter (i.e., the number of layers) will grow linearly.

13 - .H kl 1_'.]'| “']r

U

[61-ain03] |

uo

ueq

‘sonbrute) sureseq I0] WeIsel(] g ¢ 9ISl

sil

I [6r-aimod][_we_ ||

U

(e)

2

[=]
%
=]

*\‘t‘“{a‘
ot

&
ke
e
o™

14

veq || su [[pau || semml | [6L-aIno0] |

uo

4300230

4300230

ueq [su [pawn | [ewml |

Y¥300230

4300230

4330230

Chapter 4

Evaluation

4.1 Evaluation Setup

In this section, we explain evaluation tasks, baselines compared with W-SUM |,

and the environment used for implementation and experiments.

4.1.1 Evaluation Tasks

W-SUM and baseline methods are evaluated on two NLP tasks — Entity Cloze
By Date (ECBD) and LAMBADA.

Entity Cloze By Date

ECBD [11] is an entity probing task that tests whether a language model can
infer about entities not seen during pretraining. The task provides a set of
entities and their corresponding years when they have originated. The task also
includes the entitie’s definition and probe sentences with masked spans. Then,

given definitions about a target entity, a PLM is tested whether it can make a

15 -"‘-u_i'l'll | &

good guess on the masked span of the probe sentence.

We select entities to experiment with from the period of 2020 and 2021 to
ensure that PLMs have not seen those entities during pretraining. Within the
ECBD test dataset, 53 and 13 new entities for 2020 and 2021 each consist of
a single word. As W-SUM requires some amount of corpus containing the tar-
get token to add newly, we picked entities with the most number of definitions
provided. Such picked entities are GPT-8, which is a kind of PLMs that re-
cently became famous, Zynn, which is a start-up company, and AirTag, which
is a newly launched Apple product. We then applied input augmentation to
the definitions to prepare a train dataset of around 250. For the augmentation,
we prompted the ChatGPT [17]| to paraphrase given definitions. We have rigor-
ously checked that the paraphrased sentences do not add new information other
than what is given by the original definitions; thus, other input augmentation

techniques will also work fine.

LAMBADA

LAMBADA [18] is a natural language understanding task where a model is
given a paragraph with the last few phrases masked, and asked to predict
the masked portions. The given paragraphs are constructed so that the model
should understand the whole context of the paragraph, not just the individual
sentences close to the masked portions.

From the LAMBADA test set, we select only the test examples where the
masked portion consists of a single token when tokenized, our method is de-
signed to add a single new token to a PLM. Such test examples result in 1786
unique target tokens and 2819 test examples containing the target tokens. As
training with 1786 unique tokens is resource-consuming, we randomly pick 216

tokens from 1786 tokens, denote them as LAMBADA-216, and mainly run ex-

]
16 =4

periments on these examples. LAMBADA-216 includes 225 test examples. We
believe the result averaged over 216 tokens is generalized enough to conclude
how well our newly proposed method works.

Although the last tokens in LAMBADA examples are not really neologisms
to PLMs, as models have seen them during pretraining, we still test with these
data samples as temporal misalignment of PLMs is a relatively new research
topic and there are few datasets available that provide real neologisms and cor-
responding test examples to evaluate. When testing with LAMBADA, we erase
the true embedding of a given token from a PLM and re-learn its embedding
using our method and baseline methods, to test whether they can successfully
recover the given token’s true embedding. We denote such tokens from LAM-
BADA examples as PSEUDO-NEOs. Also, we denote tokens that were truly
unseen during pretraining to be REAL-NEOs.

In order to measure the specificity performance, we set aside a few test
examples that do not overlap with LAMBADA-216. We randomly picked 150
unique tokens from the 1786 tokens not included in LAMBADA-216. They are
223 test examples, roughly matching the test examples number of LAMBADA-
216 (225 examples).

4.1.2 Baselines and Models

We compare W-SUM with two methods: train-embed-wholeand train-embed-
new. train-embed-whole(Figure 3.2 (c)) refers to augmenting PLM’s vocabulary
and embedding parameter with a new neologism and training the entire em-
bedding parameter with a dataset on the neologism. This method was shown to
be effective in adapting PLMs to a new domain [13]. train-embed-new(Figure
3.2 (b)) refers to augmenting PLM’s vocabulary, embedding parameters with

a new neologism, and training the parameter for the newly added token only.

]
17 ""'u_g 'I.'1.|

This approach has also been tested in the domain adaptation of PLM [14]. In
the original work, this method was applied to a PLM mixed with the original
token embedding in the original work. Still, we use only the newly acquired
embedding as the original embedding is unavailable in our setting, where we
aim to find the embedding for unseen entities. When comparing our method
with train-embed-new, we can also observe whether not only initializing but
also modeling with the weighted sum of existing tokens truly helps to learn the

embedding of a new token.

We did not add model editing approaches [9, 8| as they were shown to be
ineffective for adding new entities to PLMs resulting in worse perplexity than
the original PLM [10]. For ECBD task, we additinally report the performance of
prepending definitions following the setting of the original work [10]. However,
we do not add it as a baseline method for the LAMBADA task as it is not
considered a valid method for injecting a new entity to a PLM [10] and it is not

so straightforward how to apply it to the LAMBADA task.

We conduct all the experiments on GPT2-large [19].

4.1.3 Environment and Frameworks

All the implementation was done with PyTorch 2.1.0, and checkpoints for base
models were downloaded from Huggingface. We evaluated W-SUM and base-
lines on NVIDIA A100 80GB GPUs for the LAMBADA task and NVIDIA
A6000 40GB GPUs for the ECBD task. All experiments were run with tf32
mode activated for the LAMBADA task to accelerate the training progress, as
the LAMBADA dataset is huge in size (1786 target tokens and 2819 evaluation

examples in total).

T O+~ 3
18 -"x_g-|'1_-|'

4.2 Main Results

4.2.1 Result on ECBD

Method GPT-3 Zynn AirTag

Target Spec Target Spec Target Spec
base model 65.83 39.76 40.54 39.76 51.59 70.54

train-embed-new 7248 40.27 4536 41.36 51.03 71.10
train-embed-whole (early) 69.28 40.12 36.93 40.08 48.44 70.02

train-embed-whole (late) 75.17 74.29 20.49 81.08 42.26 108.48

train-weight (Ours) 38.47 39.82 30.28 40.38 45.78 68.70
prepend-defs-full 18.11 59.76 14.02 39.75 29.41 70.54
prepend-defs-half 23.60 39.76 22.79 89.75 63.82 70.54

Table 4.1 Target perplexity and specificity perplexity measured on a subset
of ECBD. The lower the perplexity is, the better. The best perplexity scores
among all the methods are marked with underline and the best perplexity scores
within parameter update based methods are marked as bold. The perplexity
of train-embed-wholeat later training steps was not considered as its specificity

perplexity is too high to be used.

Table 4.1 shows W-SUM and baseline methods’ perplexity on ECBD task.
W-SUM achieves lower target perplexity than the base model while maintaining
the specificity perplexity same. This is better achievement compared to model
editing techniques [9, 8| studied in the work of PLM learning new entities [10]
where they resulted in even higher perplexity than the base model. W-SUM
also consistently achieves lower perplexity compared to train-embed-new. While

train-embed-wholeresults in lower perplexity than W-SUM at the later training

¥ o =11 3
19 -"‘-u_g'l'll { !

Method Target Accuracy | Specificity Accuracy
base model 43.111 43.103
train-embed-new 28.000 37.570
train-embed-whole N/A N/A
train-weight (Ours) 64.444 24.472

Table 4.2 Target accuracy and specificityy accuracy measured on LAMBADA-
216. We did not measure the score of train-embed-whole on the full LAMBADA-
216, as the method consistently exhibits poor performance on the smaller subset

(Figure 4.1).

steps, the embeddings from train-embed-wholecannot be used as they show
steep surge in specificity perplexity. We conjecture that updating the whole
embedding parameter results in overfitting, thus, badly impacting the overall
next token prediction ability.

While W-SUM achieves comparatively good performance among techniques
based on parameter update, its perplexity is still higher than that of prepending
definitions during inference. Although prepending definitions during inference
was not considered a valid solution for adapting PLMs because of its infer-
ence cost [10], there is room for improvement in parameter update-based PLM
adaptation techniques considering the reasonably low perplexity achieved by

prepending definitions.

4.2.2 Result on LAMBADA

Table 4.2 shows the target accuracy and specificity accuracy meausred on
LAMBADA-216. We trained each method for 75 steps, and evaluated against
LAMBADA-216 for every 15 steps. Please note that the score for train-embed-

2 Sk k

whole is not measured as the method showed poor performance (0 target ac-
curacy) when evaluated on a smaller subset of LAMBADA-216. In Figure 4.1,
it is observed that train-embed-whole scores 0 target accuracy all for five eval-
uations, averaged over 30 tokens randomly selected from LAMBADA-216. We
conjecture that the parameter update on the entire embedding layer may have
caused too much distribution shift from the original PLM that the model cannot
correctly perform the next token prediction task.

The result implies that train-weight achieves increased of 21.333p% in tar-
get accuracy compared to the base model. Meanwhile, train-embed-new ex-
hibts decrease in target accuracy, resulting in 28.0%. This implies that applying
weighted sum modeling when training the newly added embedding token helps
the PLM to find the embedding value for the new token.

However, this accuracy gain comes at the cost of specificity accuracy. Look-
ing at the specificity accuracy of train-embed-new, adding a newly trained em-
bedding token alone badly impact the specificity accuracy by showing a 5.533p%
decrease. Applying weighted sum modeling further degrades the specificity ac-
curacy by 13.099p%. This result contrasts with the evaluation result we saw in
the ECBD task. In the evaluation result of the ECBD task, neither train-weight
nor train-embed-new showed a decrease in specificity perplexity compared to
the original PLM. Such a decrease in specificity accuracy in the LAMBADA
task may be exaggerated. The LAMBADA task, a next token prediction task,
is essentially a classification task over 50K classes (equivalent to the number
of); thus, even a slight change in the embedding layer may badly impact the
classification result. We believe it is more appropriate to choose the perplexity
metric, as we did in the ECBD task, to quantify the amount of possible harm

brought to other existing tokens.

We also evaluated train-weight and train-embed-new with the whole LAM-

]
21 -i == T

BADA task on 1786 unique tokens. In Figure 4.2, we can observe that with
train-weight the target accuracy continues to improve as training progresses

while train-embed-new does not.

0.8 Method
o 07aa 0769 0782 0769 train_ weight
0:705 —e— train_embed new
0.6 —— train_embed_whole
0.5
g
504404
3
< 0.3
0.29
0.2 0.218
0.179 0.179 0.179
0.1
1 o0 0.0 0.0 0.0 0:0 0.0
0 15 30 45 60 75

Number of Training Steps

Figure 4.1 Evaluation on a smaller subset of LAMBADA-216, averaged over 30

tokens randomly picked.

4.3 Analysis on the Semantics of Token Embeddings

This section discusses how well W-SUM and baseline methods acquire the ap-
propriate semantics of the target token. In detail, we first investigate the re-
latedness between the target token embedding trained and the original token
embedding. The closer they are, the better trained the target token embedding
is. Also, we present examples of which token embeddings of the original PLM

are the closest to the target token. For measuring the level of closeness, we use

» 2] -2-t)) 8} 3

'||

Method
0.628 0.63] .
0.8 07604 train_weight
—e— train_embed new
0542 0.55
0.5
)
o
3
3 04-
< |03
0.3
0.28
0248 0236 (0233 0233
0 15 30 45 60 75

Number of Training Steps

Figure 4.2 Evaluation on the whole LAMBADA task, averaged over 1786 to-
kens. The score for train-embed-whole is not measured as the method exhibits

poor performance (target accuracy of 0) when tested on a smaller subset of

LAMBADA-216.

cosine similarity as it is one of the most widely used metrics used to measure

how similar two word embeddings are.

4.3.1 Evaluation with PSEUDO-NEO

Figure 4.3 shows how the cosine similarity between the embedding acquired
from training and the oracle embedding (i.e., the original embedding of the
target token) changes as training progresses. The target tokens are 216 tokens
from LAMBADA-216, and the cosine similarity was measured for every 15

training steps, six times in total. The result in the figure is the average over

23 -":er -I_I' 1_-“

Method
04 0408 0412 _
0.389 : train_weight
0.363 —— frain_embed_new
0.334
~,0.3
E
-(%0.2
@
£
801
&
0
0048 -0.044 -0.039 -0035 -0.033 -0.032

0 15 30 45 60 75

Number of Training Steps

Figure 4.3 The trend of cosine similarity with the original embedding as trainig

progresses.

216 tokens. The labels of the x-axis of the figure represent the step at which
the embedding of the target token was evaluated against the oracle embedding.
Please note that the value at step 0 refers to the cosine similarity before training,
that is, the cosine similarity between the initialized and oracle embedding. The
baseline train-embed-wholeis not included as it demonstrated noticeably poor
accuracy for the LAMBADA task during the preliminary experiment (shown

in Figure 4.1).

W-SUM demonstrates a steady increase in cosine similarity with the oracle
embedding throughout training, and at the last step, it reaches the cosine simi-
larity of 0.412. On the other hand, the baseline train-embed-newfails to go over

the cosine similarity of 0 after 75 training steps, although the value at the last

g Aot

step (-0.032) has increased slightly compared to the beginning of the training
(-0.048). This result implies that W-SUM finds semantically better embedding
than the baseline when given the same amount of training.

In Table 4.3, we present the 10 most similar tokens to the trained embedding
per each target token. We searched the most similar tokens based on the last
step’s checkpoint both for W-SUM and train-embed-new.

Similar embedding tokens found for W-SUM seem to contain related words
to the original target token. (e.g. Gbolstered or Grevived for Grenewed) For
some cases, they also include seemingly unrelated tokens to the original target
token, such as AWAHAhAHADAHALAH or xla£« in the case of Gbelief. What
caused the embedding to be located near seemingly unrelated tokens during the
training of W-SUM is one interesting future research agenda.

Another intersting observation is that W-SUM seems to recover the contex-
tualized meaning of tokens that possess different meanings in various contexts.
For example, considering Gelass, the closest embedding tokens found by W-
SUM include Gproletariat, Glineage and Geohort, which are synonyms for the
word "class" within the context of socialism, genetics, and sociology, respec-
tively. This implies that learning embeddings by W-SUM reflects the contextu-

alization process language modeling.

4.3.2 Evaluation on REAL-NEO

Unlike PSEUDO-NEOs, with REAL-NEOs, measuring the cosine similarity
with the original embedding token is inappropriate as the target token is en-
tirely new to the PLM, and the original embedding token does not exist. Instead,
examples of the most similar tokens from the PLM’s embedding space are pre-
sented in Table 4.4. Similar tokens in the table show that W-SUM retrieves

semantically related tokens, while the other two methods do not.

1l 7
2 & Ly

Target Token

Method

Top-10 Cosine Similar Embedding Tokens

Grenewed train-weight Grenewed, Gheightened, Gbolstered,
Greiterated, Gintensiﬁed, Grenovated,
Gstrengthened, Grevived, Grevamped,
Greopened
train-embed-new | Gin, G(, Gthe, Gused, -, Gand, ,, Gis, Ga, G"
Gmistaken train-weight Gunintention7 Gmisguided, Gnonsensical,
Gpractition, Gsubur, Gerroneous,
Gmistaken, Gdismissive, Gdelusional,
Gmisinterpret
train-embed-new Gin, G(, Gused, - Gthe, Gand, Gis, ” Guse, Ga
Gelass train-weight Gproletariat, Gpercentile, Gcaste,
Gteasp, Gslab, Gsubur, Gcarbohyd,
Gpione, Geohort, Glineage
train-embed-new | Gin, -, G(, Gand, Gis, Gthe, Gused, ,, Guse, G"
Gsleeve train-weight Gsleeve, Gsleeves, Gjacket, Gskillet,
Gskirt, Glace, Gholster,
Gsweater, Gjackets, Gnecklace
train-embed-new | Gin, G(, -, Gand, Gused, Gthe, Gis, ,, Guse, G"
Gbelief train-weight Gbelief, Greverence, Gpractition,

train-embed-new

Gunintention, Gtheological, Gpione,
DeliveryDate, xlaf£«,
AWAHALAHALRAHALAH, Gskepticism
Gin, G(, -, Gand, Gused, Gis, Gthe, ,, Guse, G"

Table 4.3 Examples of Top-10 cosine similar embedding tokens found. The tar-

get token is marked with an underline if found in the top 10 most similar

embedding tokens.

2% 2 2-t}] &

Target Token

Method

Top-10 Cosine Similar Embedding Tokens

GAirTag

train-weight

train-embed-new

train-embed-whole

GiCloud, GChromebook, GMacBook,
GKinect, Gepigen, GiPod,
GAlibaba, GMessi, GXiaomi, GEminem
Ga, Gthe, Guse, Gan, Gfood,
Gproduction, Gwork, Gdevelopment,
Gtechnique, Gmore
GAirTag, Gthe, GU, GApple,

G20, G14, G11, G2, Git, Gpre

GPT-3

train-weight

train-embed-new

train-embed-whole

LinkedIn, Austral, Analy,
JSON, NVIDIA, Google, Interestingly,
Researchers, £, Parameters
Gfood, Gsnacks, Ghighly7 Ggimm,
Gdevelopment, Gtechnique, Gprotein,
Gproduction, Gfoods, Gproductive
GPT-3, ,, s, ., Gand, -, Gover,
Gin, Gis, Gpre

GZynn

train-weight

train-embed-new

train-embed-whole

GYelp, GXiaomi, GHuawei, GHulu,
GRoku, G":Dropbox7 Gcryptocurrency,
GSpaceX, GLyft, GAirbnb
Ga, Gthe, Gan, Gmore, Gfood, Gall,
Git, Ghigh, Gproduction, Gthis
GZynn, Gthe, Gin, Ga, G20,
GAmerica, ., Gall, Git

Table 4.4 Examples of Top-10 cosine similar embedding tokens found using each

method. Please note that target tokens are REAL-NEOs, that is, a PLM has

never seen these target tokens during pretraining.

Chapter 5

Discussion and Conclusion

In this paper, we have studied how to integrate neologisms into pretrained
language models (PLMs) effectively. While there has been active research on
the temporal degradation of PLMs and adaptation techniques to overcome the
degradation, there has yet to be a technique tailored for integrating new words
or entities, unseen during pretraining, into PLMs. This work proposes a new
training method, W-SUM , inspired by how human intelligence assimilates new
concepts into its internal knowledge model based on prior knowledge. Evalua-
tions on language model probing tasks and qualitative analysis have validated
that W-SUM does help to find good embeddings for newly added tokens to
PLMs.

However, there are limitations, mainly regarding W-SUM ’s applicability.
First, the current form of W-SUM only applies to a single word’s neologisms.
While our work did not target multi-word neologisms as the understanding of
multi-word expressions fall under an independent research field; it would be

desirable for the technique to support multi-word neologisms as well as many

2 SER=k

neologisms are phrases. Also, W-SUM do not assume cases where existing tokens
of a PLM have acquired a new meaning but there exist cases where existing
tokens should be added with new contexts. For example, the token 'GDelta’
already exists in GPT2 models but still needs adaptation as the word 'Delta’
in a new corpus is often associated with COVID-19. It would be advantageous

for the technique to accommodate such cases as well.

- M 2- T ¢

Bibliography

1]

2]

3]

A. Lazaridou, A. Kuncoro, E. Gribovskaya, D. Agrawal, A. Liska, T. Terzi,
M. Gimenez, C. de Masson d’Autume, T. Ko¢isky, S. Ruder, D. Yogatama,
K. Cao, S. Young, and P. Blunsom, “Mind the gap: Assessing temporal gen-
eralization in neural language models,” in Advances in Neural Information
Processing Systems (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds.), 2021.

D. Loureiro, F. Barbieri, L. Neves, L. Espinosa Anke, and J. Camacho-
collados, “TimeLMs: Diachronic language models from Twitter,” in Pro-
ceedings of the 60th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, (Dublin, Ireland), pp. 251-260, Asso-

ciation for Computational Linguistics, May 2022.

K. Luu, D. Khashabi, S. Gururangan, K. Mandyam, and N. A. Smith,
“Time waits for no one! analysis and challenges of temporal misalignment,”
in Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, (Seattle, United States), pp. 5944-5958, Association for Computa-

tional Linguistics, July 2022.

30 -"x_g g _..:

4]

[5]

6]

7]

8]

X. Jin, D. Zhang, H. Zhu, W. Xiao, S.-W. Li, X. Wei, A. Arnold, and
X. Ren, “Lifelong pretraining: Continually adapting language models to
emerging corpora,’ in Proceedings of BigScience Episode #5 — Workshop
on Challenges € Perspectives in Creating Large Language Models, (vir-
tual+Dublin), pp. 1-16, Association for Computational Linguistics, May
2022.

J. Jang, S. Ye, C. Lee, S. Yang, J. Shin, J. Han, G. Kim, and M. Seo,
“TemporalWiki: A lifelong benchmark for training and evaluating ever-
evolving language models,” in Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing, (Abu Dhabi, United Arab
Emirates), pp. 62376250, Association for Computational Linguistics, Dec.
2022.

J. Jang, S. Ye, S. Yang, J. Shin, J. Han, G. KIM, S. J. Choi, and M. Seo,
“Towards continual knowledge learning of language models,” in Interna-

tional Conference on Learning Representations, 2022.

S. Amba Hombaiah, T. Chen, M. Zhang, M. Bendersky, and M. Najork,
“Dynamic language models for continuously evolving content,” in Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery; Data
Mining, KDD 21, (New York, NY, USA), p. 2514-2524, Association for
Computing Machinery, 2021.

E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning, “Fast model
editing at scale,” in International Conference on Learning Representations,

2022.

31 S “._, ‘_]l

19]

[10]

[11]

[12]

[13]

[14]

K. Meng, D. Bau, A. J. Andonian, and Y. Belinkov, “Locating and editing
factual associations in GPT,” in Advances in Neural Information Process-

ing Systems (A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.

Y. Onoe, M. J. Q. Zhang, S. Padmanabhan, G. Durrett, and E. Choi,
“Can lms learn new entities from descriptions? challenges in propagating

injected knowledge,” 2023.

Y. Onoe, M. Zhang, E. Choi, and G. Durrett, “Entity cloze by date: What
LMs know about unseen entities,” in Findings of the Association for Com-
putational Linguistics: NAACL 2022, (Seattle, United States), pp. 693

702, Association for Computational Linguistics, July 2022.

M. Artetxe, S. Ruder, and D. Yogatama, “On the cross-lingual transfer-
ability of monolingual representations,” in Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, (Online),

pp. 4623-4637, Association for Computational Linguistics, July 2020.

R. Zhang, R. Gangi Reddy, M. A. Sultan, V. Castelli, A. Ferritto, R. Flo-
rian, E. Sarioglu Kayi, S. Roukos, A. Sil, and T. Ward, “Multi-stage
pre-training for low-resource domain adaptation,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), (Online), pp. 5461-5468, Association for Computational Lin-
guistics, Nov. 2020.

W. Tai, H. T. Kung, X. Dong, M. Comiter, and C.-F. Kuo, “exBERT:
Extending pre-trained models with domain-specific vocabulary under con-
strained training resources,” in Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, (Online), pp. 1433-1439, Association for

Computational Linguistics, Nov. 2020.

]
32 =4

[15] V. Sachidananda, J. Kessler, and Y.-A. Lai, “Efficient domain adaptation
of language models via adaptive tokenization,” in Proceedings of the Second
Workshop on Simple and Efficient Natural Language Processing, (Virtual),
pp- 155-165, Association for Computational Linguistics, Nov. 2021.

[16] B. Minixhofer, F. Paischer, and N. Rekabsaz, “WECHSEL: Effective ini-
tialization of subword embeddings for cross-lingual transfer of monolin-
gual language models,” in Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, (Seattle, United States), pp. 39924006, As-

sociation for Computational Linguistics, July 2022.

[17] OpenAl, “ChatGPT: Conversational ai language model.” https://www.

openai.com/research/chatgpt, 2023. Accessed on May 31, 2023.

[18] D. Paperno, G. Kruszewski, A. Lazaridou, N. Q. Pham, R. Bernardi,
S. Pezzelle, M. Baroni, G. Boleda, and R. Fernandez, “The LAMBADA
dataset: Word prediction requiring a broad discourse context,” in Pro-
ceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), (Berlin, Germany), pp. 1525-1534,

Association for Computational Linguistics, Aug. 2016.

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-

guage models are unsupervised multitask learners,” 2019.

1 []
33 N =4

https://www.openai.com/research/chatgpt
https://www.openai.com/research/chatgpt

SfjoF

sl

7hHe 24

=
T

| PLM

[¢]

of w2t A =2 dolEfof] o

jm]

wobd 4 9108 A28 Holu Al of

At PLME Az o] %o

1B

o] A

T

A

Al
<% dlolE & 1-107]2] A ghoj

=

sk

S

2, 2752 (1IMB7}9]

Z] O
5=

s M=z A"oA T

& UEHAU A 22 o F]oll B2t 23t

Bt o Yolrt, 712 PLMe] Bd ®XY €3

)

—_
1jo

o
To°

ﬂo
Al
o
i

L.

—

o

£ rol, W-SUM

A4e A
o 7 Qg 2, o] 7

T+

A

o
K

SEICRERIE

o

—

St Plaget 9] Q1] & o] 2ol A F3}e]

s

5to] PLM= M=
At

15
[e)

=

AL B

W-SUM

2 olF

il A=

el

M}

7goll 4 PLM 9] 7]

t}. ECBD

14 2es 9

kel

=
°©

[o] aSen
L_C'L}_ld =

A

291 4}

]_

T 7HA o e A} Bl AT W-SUM

PLMo| =

=

Z
1=
—

=
K}

7t

oA

_?4
¢} LAMBADAG=}

il

ol

nj

o13]e] of

o

]l W-SUM o] Aj2-&

5]

SR FRREES

‘_lr.ui
__ﬂ

34

SHH: 2021-23818

FQ909]:

	Abstract
	1 Introduction
	2 Background
	2.1 Temporal Adaptation of Pretrained Language Models
	2.2 Vocabulary Expansion in Domain Adaptation and Cross-Lingual Adaptation

	3 Method
	3.1 Main Idea

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Main Results
	4.3 Analysis of the Semantics of Token Embeddings

	5 Discussion and Conclusion
	초록

<startpage>8
Abstract 1
1 Introduction 5
2 Background 8
 2.1 Temporal Adaptation of Pretrained Language Models 8
 2.2 Vocabulary Expansion in Domain Adaptation and Cross-Lingual Adaptation 9
3 Method 11
 3.1 Main Idea 11
4 Evaluation 15
 4.1 Evaluation Setup 15
 4.2 Main Results 19
 4.3 Analysis of the Semantics of Token Embeddings 22
5 Discussion and Conclusion 28
초록 34
</body>

