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Abstract

High-performance computing (HPC) systems are composed of thousands of

compute nodes, storage systems, and high-speed networks, which provide mul-

tiple layers of I/O stacks with high complexity. To meet the increasing demand

for data access performance in applications run on HPC systems, an efficient

design of the HPC memory management system and storage file system is be-

coming more important. Moreover, HPC users need to be properly guided with

optimal system configuration settings to avoid significant fluctuations in per-

formance.

In this dissertation, our first focus is on reducing lock contention on the

memory management system of an HPC manycore architecture. One of the

critical sections that causes severe lock contention in the I/O path is the page

management system, which uses multiple Least Recently Used (LRU) lists with

a single lock instance. To solve this problem, we propose the Finer-LRU scheme,

which optimizes the page reclamation process by splitting LRU lists into mul-

tiple sub-lists, each with its lock instance. Our evaluation result shows that

the Finer-LRU scheme can improve sequential write throughput by 57.03% and

reduce latency by 98.94% compared to the baseline Linux kernel version 5.2.8

in the Intel Knights Landing (KNL) architecture.

We also analyze the root cause of low I/O performance on a ZFS-based Lus-

tre file system and propose a novel ZFS scheme, dynamic-ZFS, which combines

two optimization approaches. The experimental results show that our approach

can improve the sequential I/O performance by an average of 37%. We demon-

strate that dynamic-ZFS can deliver I/O performance comparable to that of

i



ldiskfs-based Lustre while still providing a multitude of beneficial features.

Finally, we employ multiple machine learning approaches to perform an in-

depth analysis of I/O behaviors in HPC applications and to search for optimal

configuration settings for jobs sharing similar I/O characteristics. Improved by

a maximum of 0.07 R-squared score, our overall results show that jobs run on

HPC systems can obtain the predicted I/O performance for different configura-

tion parameters with high accuracy using the proposed machine learning-based

prediction models.

Keywords: High Performance Computing, Manycore Architecture, Fine-grained

Lock, Lustre File System, ZFS, Unsupervised Learning, Prediction Model

Student Number: 2017-25955
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Chapter 1

Introduction

1.1 Motivation

1.1.1 High Performance Computing Systems

High-performance computing (HPC) systems have become essential for pro-

cessing complicated scientific tasks involving massive amounts of data. These

systems are composed of thousands of compute nodes connected by high-speed

networks, and backend servers with parallel file systems are utilized for scalable

storage. The distributed parallel computation feature of HPC systems allows

for improved energy consumption and computational performance for complex

workloads.

Due to the distributed parallel computation feature of this architecture,

complicated workloads can benefit from this architecture in terms of energy

consumption and computational performance. One way to further upgrade HPC

systems and provide higher performance is by increasing the number of cores in

each processor. Multi-core processors, which refer to a scale-out architecture,
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have two or more cores on a single chip [1]. However, the processing demand

of state-of-the-art systems is growing rapidly, and the conventional approach

of using a multi-core design is no longer fast enough in the HPC environment.

To achieve more powerful HPC systems, manycore designs with tens of cores

packed within a single chip are adopted [2]. Compared to the multi-core archi-

tecture, manycore architecture can efficiently demonstrate a higher degree of

parallelism, thus providing higher performance. In addition, each physical core

can be integrated via a simple design with lower power consumption [3–6].

Fast storage devices such as non-volatile memory express (NVMe) solid-

state drives (SSD) have also gained attention in recent years in HPC storage

systems, as they offer low flash cost [7, 8]. As the I/O capability that storage

devices can deliver has grown, the performance that parallel file systems pro-

vide has become increasingly important in recent HPC systems. Lustre parallel

file system [9] is one of the representative file systems in HPC environments

and is widely chosen for the storage layer of the world’s leading supercomput-

ing platforms. The powerful supercomputer systems that rank top ten in the

TOP500 list [10], such as Frontier [11] and Summit [12] in Oak Ridge National

Laboratory, Supercomputer Fugaku [13] in RIKEN Center, and Perlmutter [14]

in Lawrence Berkeley National Laboratory NERSC, feature Lustre-based dis-

tributed storage systems for high-performance scalable file systems. The bene-

fits of using Lustre, such as being optimized for a large range of various HPC

applications, attract great attention in the HPC community.

1.1.2 Problems

There are several challenges associated with running applications on an HPC

system platform. The followings are the three problems to be addressed in this

dissertation.
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Limited I/O Scalability. The first problem is the limited scalability of

the manycore architecture. As a result of multiple threads simultaneously ac-

cessing a shared data structure during runtime, several critical sections in the

kernel I/O path have to be protected to guarantee atomic access and prevent

synchronization problems. Although the Linux kernel provides protection for

shared data structures using various locks and allows a single thread to access

the resource, this ultimately affects the overall system performance due to the

long latency of blocked threads. Thus, the actual performance does not scale

linearly with an increase in the number of cores [15].

Several studies have proposed solutions to handle this problem, such as

lock-free implementation [16, 17] or per-socket locking mechanisms [18]. For

example, [16] proposed a new block layer that parallelizes the I/O serving tasks

in multi-SSD volumes, avoiding the limitation of locking semantics that prevent

scalable parallel I/O performance. The first practical lock-free and wait-free

algorithms were implemented in [17] using compare-and-swap (CAS) primitive

on lock-based linked lists. [18] designed NUMA-aware locks using per-socket

data structures and strategies that can lower the scheduler overhead. They

also implemented a new locking mechanism that incorporates various policy

enforcement such as NUMA-awareness and an efficient wake-up strategy in

lock design. Similar to the previous works, our approach tries to mitigate the

locking overhead in the contended data structure in Linux kernel. Above all,

we figure out that the critical I/O performance degradation problem shown in

HPC system is mainly due to contention in the page reclamation process.

Inefficient Storage I/O Stack. The second problem is the inefficiency

of storage I/O stack. Currently, Lustre supports two underlying backend file

systems, ldiskfs and ZFS [19]. ZFS, unlike traditional file systems, combines

the roles of a volume manager and a file system. Its key features include data
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integrity and zettabyte scale storage capacity. To ensure data integrity and

minimize risks, ZFS uses a 256-bit secure hash algorithm (SHA) checksum on

every ZFS block, thereby enabling a self-healing mechanism. Although ZFS has

many features that can potentially improve storage performance, its overhead in

maintaining these features results in lower performance than ldiskfs. Therefore,

most of the current Lustre file systems deployed in HPC platforms use ldiskfs

as their backend file system.

To analyze the core reason for the lower I/O performance of ZFS-based

Lustre compared to ldiskfs-based Lustre, we perform an in-depth analysis of

the latency of the I/O stacks in ZFS. Based on our analysis, we figure that the

checksum feature provided by ZFS to ensure end-to-end data integrity [20] is

the primary cause of high CPU usage. We also observe that, to accelerate the

checksum calculation, ZFS uses hundreds of ZFS threads, resulting in a high

load of CPU context switches. In this dissertation, we assert that an optimized

design of the ZFS-based Lustre file system can maximize I/O performance with

low latency NVMe SSDs and be the next-generation HPC storage file system

solution.

Lack of Guidance for HPC Configuration Settings. HPC applica-

tions often experience poor I/O performance because of several reasons. As the

massive amount of output and checkpoint files are read or written to the storage

system through complex I/O software stacks, the bandwidth can be limited by

the contention among multiple layers of software and hardware. In addition to

bottleneck in the I/O stack, shared resource contention can adversely affect job

execution time. Significant fluctuations in performance can occur occasionally

depending on the number of jobs and their computational or I/O loads that are

executed in parallel. The periodic software upgrade or malfunctioning hardware

can also attribute to the I/O performance degradation [21].
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One of the solutions for mitigating the problem is to make use of system con-

figuration settings when the users submit their jobs. The HPC systems provide

multiple tunable parameters that users can adjust via the resource scheduler.

The parameters include the amount of computation and storage resources that

can change the degree of parallelism in application execution. Unfortunately,

the users often suffer from lack of knowledge in figuring out the optimal config-

uration setting, since each parameter has extremely large range of values. The

growing diversity of the HPC workloads makes it more difficult to search for

the configuration setting that can be highly complementary with the I/O char-

acteristics of the workloads. The proper guidance with which to help the HPC

users decide the optimal configuration setting can improve both application

performance and resource utilization in the supercomputer systems.

There have been numerous works that make use of configurability in the

HPC environment, in order to get the maximum performance of the applica-

tions. [22,23] find the optimal configuration settings by using supervised, semi-

supervised or unsupervised learning models in HPC environments. [24,25] focus

on characterizing the I/O behaviors of the HPC workloads in order to provide

better insights on the performance. Specifically, [26–28] predict the I/O perfor-

mance of petascale file systems using various machine learning techniques.

1.2 Contributions

In this dissertation, our contributions are summarized as follows:

• We present a new approach that reduces lock contention on the criti-

cal path of the I/O operation and improves the performance scalability

in HPC manycore systems. We observe that in Knights Landing (KNL)

processor, one of the most commonly used manycore architecture in the
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supercomputer systems, the performance does not scale proportionally

with the number of threads issuing I/O operations. Our thorough analy-

sis of the critical path of I/O operations shows that the performance drop

is mainly due to the severe lock contention on the memory subsystem

when tens to hundreds of threads process the I/O operations concurrently.

Among the several critical sections lying on the I/O path, the page recla-

mation process accounts for large proportion of the high latency. In order

to reduce the overhead, we develop Finer-LRU scheme which divides a

large critical section into multiple small sections [29].

• We introduce two design principles that can be applied to ZFS and im-

prove I/O performance. First, we add a parallelized scheme to the current

ZFS I/O pipeline so that percentage of time taken by checksum calculation

to total I/O latency can be reduced. We create new task queue threads

that are responsible for executing checksum calculation only and allow

the threads to run in parallel with other I/O worker threads. Second, we

introduce a dynamic thread control scheme to reduce the CPU overhead

and to take advantage of concurrent execution with a reasonable number

of ZFS threads. We create a context switch monitoring tool that captures

the current CPU load of the Lustre file system servers. Then, the cur-

rent CPU load is used to determine whether to dispatch another thread

that handles the checksum operation and operate in a parallel ZFS I/O

pipeline scheme [30].

• We propose machine learning-based approach that can help get a better

insight into understanding the I/O characteristics of the HPC applica-

tions and to figure out the configurations that can result in the improved

performance. We leverage the unsupervised learning model to reveal com-
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plex I/O patterns and relationships that the HPC applications have on

performance. By building prediction models based on the clustering re-

sults, the predicted I/O performance with various configuration settings

on different jobs can be obtained with improved prediction accuracy [31].

1.3 Outline

This dissertation is structured as follows:

• Chapter 2 covers the background about the manycore system architec-

ture and Lustre backend file systems.

• Chapter 3 introduces Finer-LRU, our fine-grained HPC memory sub-

system scheme. We first explain the I/O scalability problem of existing

manycore architecture and propose our new architecture. We describe

the details of design and implementation of our scheme and evaluate our

scheme on the Linux kernel version 5.4.8 in the KNL architecture.

• Chapter 4 introduces dynamic-ZFS, an optimized ZFS-based Lustre file

system scheme. We start with explaining the problems of existing ZFS-

based Lustre file system and analyze the root cause of low I/O perfor-

mance. We give details of how we can address the challenge and evaluate

our scheme compared to ldiskfs-based Lustre file system.

• Chapter 5 introduces ML-based methodology, which predict I/O per-

formance of HPC workloads by performing an in-depth analysis on I/O

behaviors of HPC applications. We collect the I/O related information

from the real-world log dataset and present our approach to construct

I/O performance prediction models.

• Chapter 6 summarizes and concludes the dissertation.
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Chapter 2

Background

This paper covers challenges associated with achieving high I/O performance

for applications running on HPC systems (i.e., limited I/O scalability, ineffi-

cient storage I/O stack, and lack of guidance for HPC configuration settings).

In this chapter, we introduce the HPC manycore system and the Lustre file sys-

tem, which is the most widely used parallel file system in HPC environments.

Additionally, we present the Cori supercomputer system, which we collect the

real-world HPC log data from to analyze the I/O characteristics of the HPC

jobs. Finally, we summarize related works at the end of this chapter.

2.1 Manycore System

The ongoing trend toward improving concurrency and reducing the power con-

sumption by packing more cores into a chip continues. Intel, the world’s largest

semiconductor manufacturer [32], recently produced its latest 4th generation

Xeon Platinum Scalable processor with 60 cores in a single computing compo-
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Figure 2.1: Lustre file system architecture.

nent [33]. The Intel Xeon Phi Knights Landing (KNL) is also one of the most

widely used x86 manycore processor in HPC systems. The KNL architecture

consists of a total of 36 tiles with two cores on each interconnected by a 2D

mesh structure. The KNL processor can have up to 72 cores with the ability of

running four threads per core, which enables the parallel execution of a total

of 288 threads. The KNL is also equipped with a Multi-Channel DRAM (MC-

DRAM), which is used as the on-package memory for higher bandwidth and

capacity. The MCDRAM is configured as a memory side cache and is located

between the CPU and DDR DRAM in the default configuration.

2.2 Lustre File System

Lustre file system is one of the most popular distributed file systems that dom-

inates the market share of supercomputer systems nowadays. More than 75%

of the world’s top 100 supercomputer systems feature Lustre, which shows that

Lustre is currently a leading storage file system that meets the high I/O per-

formance demand in HPC systems.

Lustre file system consists of Lustre client, object storage server (OSS),

metadata server (MDS), and management server (MGS). Lustre clients main-
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tain a namespace of the data stored in the file system to applications using

POSIX interface, whereas OSSes provide scalable high-speed I/O performance

by distributing data to multiple object storage targets (OSTs). MDS stores

metadata of the file system, such as inodes, directories, and file layout, to ef-

ficiently handle data allocation and namespace operations on OSSes. Similar

to the OSS, the MDS can maintain multiple metadata storage targets (MDTs)

that can improve scalability. MGS manages configuration logs for Lustre file

systems that servers and clients retrieve when the system starts [34].

Applications can access the data via Lustre client by directly communicating

with OSSes after the file is opened and until it is closed. Lustre client interacts

with MDS only when the file is opened and closed in order to locate the data.

The overall architecture of Lustre is shown in Figure 2.1.

2.3 Cori Supercomputer

Supercomputer Cori system, a Cray X40, has been delivered since 2017 at

National Energy Research Scientific Computing Center (NERSC) [35]. Cori is

comprised of 2,388 Intel Xeon Hasweell processor nodes and 9,688 Intel Xeon

Phi Knights Landing nodes. In addition, Cori also has 1.8TB Cray Data Warp

Burst Buffer with a performance of 1.7TB/s, which user can use by specifying

APIs. All the nodes are connected with Cray Aries high-speed inter-node net-

work and Dragon fly topology. For efficiently handling parallel I/O, Cori uses

Lustre scratch file system as its disk-based storage system. Lustre file system

consists of 248 OSSs including 41 HDDs and 248 OSTs, providing total 27TB

of storage with peak performance of 744GB/s. When HPC users submit their

job using Slurm workload manager, they can specify the amount of resources

used to run their applications. For example, they can specify the number of pro-
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cessors or storage nodes and whether to use Burst Buffer while running their

jobs.

2.4 Related Work

Limited I/O Scalability. This dissertation first addresses the limited I/O

scalability problem of the manycore architecture due to the coarse-grained lock-

ing mechanism used in several critical sections. Numerous works have attempted

to reduce and minimize lock contention in single shared resources in the Linux

kernel communities [36]. Studies related to our work take two major approaches:

1) applying a more efficient lock mechanism, 2) optimizing the thread schedul-

ing policy to minimize lock contention and 3) taking lock-free synchronization

approach to remove the lock contention.

One of the approaches to ease lock contention is to change the locking

mechanism in a fine-grained manner. The trade-off between the fine-grained and

coarse-grained locks has been debated ever since the introduction of the lock

system. Similarly to our approach, some studies found it more efficient to have

fine-grained locks in manycore environments [37,38] since sequential execution

using a coarse-grained lock cannot fully exploit parallelism [39–41]. Zheng et

al. [42] partitioned the global cache into many independent page sets in order to

eliminate the lock contention in multicore systems. Zhang et al. [43] presented a

refactoring tool which can automatically convert coarse-grained locks into fine-

grained locks at the application level. The study shows that the throughput

of the real-world applications could be improved by using the refactor locks.

Our study presents that the I/O performance can be significantly improved by

converting the highly contended coarse-grained lock structure into fine-grained

multiple locks at the kernel level. Moreover, there have been several studies
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to make use of a multiple-granularity locking mechanism [44, 45]. Ganesh et

al. [46] proposed a combined locking technique of both fine-grained and coarse-

grained locks by identifying each thread’s granularity requirements. However,

this method can impose another overhead at runtime—traversing the threads

to figure out the optimal lock mechanism.

Another approach to decrease lock contention makes use of optimizing the

scheduler algorithm to minimize contention. Other than directly modifying the

lock structure, researchers chose to change the thread scheduling policy to min-

imize the contention between multiple threads. If contention is unavoidable, it

is better to prioritize a job acquiring a lock over a job that is waiting for a

lock for higher throughput. Amer et al. [47] proposed a two-level priority lock-

ing protocol, which allows the lock-acquired job to select from several locking

protocols to be used at each priority level. Cai et al. [48] suggested tScale, a

contention-aware threading framework, to alleviate excessive system calls and

contention-unconscious thread scheduler. Nisar et al. [49] introduced Jumbler,

a scheduler that mitigates lock contention by mapping the threads of a multi-

threaded application into the same socket. Since Jumbler is only optimized

for the threads that can share and utilize the last-level cache, I/O-intensive

workload with frequent cache miss cannot obtain any performance benefits.

Lock-free algorithms can also enhance throughput and latency. As more

threads cause more contention, lock-free algorithms have the advantage of re-

solving contention with less waits for multi-threads. One approach is to use

clock-based approximations instead of using LRU algorithm to reduce the lock

contention [50, 51]. However, since the clock-based algorithms can have only

limited history information, replacing the data structure in the page manage-

ment process can degrade the caching performance. SPECK [52] provided a

lock-less design with less overhead and scalable predictability. To control access
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to the system without a lock, it has to maintain additional resource tables.

Inspired by lock-free data structures [17,53], Son et al. [54], proposed lock-free

data structures and operations to reduce lock contention by allowing multiple

threads to access the data structures concurrently. In this work, the I/O scheme

was introduced for performing parallel I/O operations with multiple threads on

page cache layer.

Inefficient Storage I/O Stack. The second problem of this dissertation

is to tackle the inefficient storage I/O stack of ZFS, one of backend file sys-

tems used in Lustre file system. Several studies have been conducted regarding

performance analysis on ZFS [20, 55–60]. Mohr et al. [55] showed the relative

benefits of using ZFS on SSD-based Lustre file systems by comparing ZFS and

ldiskfs backend file systems, whereas Phromchana et al. [57] focused on the log-

ical volume manager(LVM) feature of ZFS by comparing ZFS and LVM (with

ext4) under various configurations. The effect ZFS has on Lustre file system

performance was also examined in [61]. Gurjar et al. [59,60] compared the I/O

performance of ZFS and BTRFS using different real-world applications on dif-

ferent frameworks. Zhang et al. [20] analyzed end-to-end data integrity feature

provided by ZFS. To further investigate the reliability mechanism of ZFS, Qiao

et al. [56] characterized the failure recovery performance varying ZFS configu-

rations and figures out factors that influence ZFS performance. Another feature

ZFS provides, data compression, was tested using different compression algo-

rithms in Widianto et al. [58]. Previous studies have analyzed the multitude of

features provided by ZFS and have shown the usefulness of layering ZFS on a

Lustre file system. In line with the previous studies, our goal is to improve and

show the I/O performance benefits of using ZFS on Lustre.

Both ZFS and Lustre provide a large number of user-configurable param-

eters to give users a chance to further increase the application performance.
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In our work, we show that one of the parameters ZFS kernel module provides

controls the number of ZFS I/O worker threads, which significantly affects the

I/O performance. Several approaches have helped users automatically find best

system parameters without the burden of exploring parameter space [62–65].

You et al. [64] presented mathematical models that can find the optimal config-

uration setting on Lustre for high I/O performance. By combining I/O perfor-

mance prediction model and run-time monitoring, Bagbaba et al. [65] further

improved the I/O bandwidth of the Lustre file system. Behzad et al. [62, 63]

demonstrated the effectiveness of applying an autotuning system on HPC plat-

forms and HDF5 applications. Although dynamic-ZFS does not tune ZFS kernel

module parameter, we show that the alternative approach of combining thread

scheduling mechanism and run-time CPU load monitoring can improve the I/O

performance dynamically.

Our approach is partly in line with previous works regarding the thread

scheduling [66, 67]. Li et al. [66] applied the dynamic thread scheduling ap-

proach on HPC applications to improve parallelism and thread scalability. Go-

ponenko et al. [67] performed real-time utilization of resources when scheduling

workloads on HPC clusters. Dynamic-ZFS also uses run-time CPU load infor-

mation to schedule ZFS I/O tasks to the threads, while the number of threads

is adjusted dynamically.

Another contribution of our work is parallelizing ZFS I/O pipeline in a

way that checksum operations and rest of the I/O operations overlap together.

Previous studies related to saving checksum computation overhead include [68–

71]. Liu et al. [68] maximized the data transfer and checksum computation

time to reduces the overall data transfer time. By pipelining data transfer and

data integrity check in block-level, 70% of overall data transfer time with end-

to-end integrity verification could be improved. Globus [70, 71] also pipelined
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data transfers and checksum computation to reduce the checksum calculation

overhead. The FIVER algorithm implemented by Arslan et al. [69] reduced the

cost of integrity verification by overlapping transfer and checksum computation

processes. Similarly, dynamic-ZFS reduces the checksum calculation overhead

time during I/O operations by modifying the order of I/O stages within the

ZFS I/O pipeline.

Lack of Guidance for HPC Configuration Settings. Lastly, this dis-

sertation aims to address the issue of the lack of guidance for HPC users on

selecting I/O configuration settings when they run the jobs. Many researchers

and HPC users often seek ways to achieve optimal performance on HPC systems

for each application they employ [72–76]. Kim et al. [72] developed an integrated

database for system logs using Darshan and LMT monitoring tools and dynam-

ically selected the most pertinent features for I/O performance from recent logs.

They utilized the selected features to automatically choose the best regression

algorithm for accurate performance prediction. In our work, we also utilize

similar database logs to identify features highly relevant to I/O performance.

However, we enhance the accuracy of the prediction models by employing a

clustering algorithm based on these relevant features. Furthermore, our work

mainly focus on providing users with suggestions for optimal user-configurable

parameters that can enhance I/O performance. In order to enhance overall I/O

performance for the applications run on HPC systems, it is crucial to analyze

logs from the past jobs and search for optimizable features. [73–75] tried to un-

derstand the correlation of various features collected by Darshan logs in HPC

environment. Gauge [76] provided a web application that calculates unorga-

nized logs of HPC jobs and showed a interactive visualization of the workloads

that ran on the HPC system. However, only 61.4% of the data variances are

taken into account with PCA. On the other hand, through Min-max feature
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selection and SBS, all the features are thoroughly considered in order to get

the best clustering result in our work. Also, by utilizing these methods, most

of the applications we analyzed gather into a single cluster, such that users can

easily look for the cluster they need.

Also, there have been numerous works that have tried to predict the per-

formance of applications to enhance the overall result. Lux et al. [77] analyzed

a benchmark with a set of configurations in order to build a prediction model.

The study suggested that the multivariate model can accurately predict I/O

performance. Other works [26,78–80] also predicted I/O performance for HPC-

scale clusters using various methods. Our work also targets prediction of the

performance of the application using characteristics of the HPC workloads. In

contrast, our work is focused on analyzing the system using Darshan logs and

makes the prediction based on the historical logs collected in the same HPC

environment. This enables our work to make a prediction based on I/O behav-

iors of HPC applications and give suggestions for input parameters for various

applications.
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Chapter 3

HPC Scalable Memory System
Optimization

3.1 Motivation

3.1.1 I/O Scalability of Existing Manycore Architecture

Even though the manycore architecture provides tens of cores for higher paral-

lelism, the performance does not scale well with the number of cores increased.

To evaluate the I/O performance on the manycore architecture, we ran IOR

benchmark [81] on the Intel Xeon Phi 7250 KNL node with 68 physical cores.

Since the KNL supports hyper-threading technology, which allows each physical

processor to execute four processes at a same time, a total number of 272 logical

cores can be operated concurrently. Figure 4.1 shows the performance result by

changing the number of threads doing sequential write operations from 8 to

256. Each thread writes with contiguous bytes of a block size between 64 MB

and 1024 MB while the transfer size is fixed to 1 MB.

The throughput decrease starts with a different block size in each case
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Figure 3.1: The file-per-process sequential write I/O throughput on the Intel

Knights Landing node

where more than 32 threads are executing write operations in parallel. The

performance degradation is due to the write I/O throttling from the memory

management subsystem. In order to preserve free space in memory, the Linux

kernel performs the flush operation in advance. When the number of dirty pages

in the page cache exceeds 40% of the total number of pages, the data flush dae-

mon and the thread processing write operations start writing out dirty pages

to the disk. As we use 96 GB of memory capacity in the KNL node, dirty pages

are flushed after writing more than 38 GB of data. This flush policy highly

affects the performance, since the write I/O is blocked until the flush operation

is finished.

However, in the case of less than 64 threads concurrently processing the

write I/O, even though the total I/O size does not exceed the flush threshold,

the performance saturates when 16 or more threads are used. Even though the

KNL processor allows the concurrent execution of up to 272 threads, there is

a severe performance degradation with less than a quarter of the maximum al-

lowed concurrency. While it is a critical problem in HPC environments that the

available parallelism is not fully exploited, this problem has not been addressed

so far to the best of our knowledge.
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Figure 3.2: The description of the LRU lists of tracking page statuses in the

memory management system

3.1.2 Page Frame Reclamation Process

When an application issues a write request, the write() system call at the user

level calls the kernel level vfs write() function to handle the request at the

virtual file system. Before going all the way down to the underlying storage

device layer where the write request is served, the function first checks whether

the requested page is on the cache layer. In order to find whether the desired

page exists in the page cache, pagecache get page is called. If the page is not

allocated, page cache alloc is executed to allocate a new page frame via the

buddy allocator on a proper memory zone. Next, the allocated page is added

to the LRU list, which is used to track the statuses of the pages. Finally, the

write request can be served on the returned page.

The Linux memory system is dynamically managed by the page frame recla-

mation process with the LRU algorithm [82, 83]. The main goal of the process

is to free the page frame that has not been referenced for a while to make space

in memory before it gets exhausted. In order to efficiently keep track of page

frames, the kernel groups pages into five different LRU lists as shown in Figure

3.2. If an anonymous page or the swap cache was recently accessed, it is included

in LRU ACTIVE ANON, otherwise, in LRU INACTIVE ANON. The same ap-

19



Figure 3.3: The page frame management process on inactive and active LRU

lists

plies to the file-backed memory on LRU ACTIVE FILE and LRU INACTIVE FILE.

If a page cannot be reclaimed, it is included in LRU UNEVICTABLE. Since

the LRU lists are frequently accessed in parallel, they are protected by a lock

instance by each NUMA node. To ease the contention and reduce the number

of accesses to the LRU lists, the pages are buffered in the per-CPU pagevec

structure first. Only when the pagevec structure is fully filled, the pages are

added or removed from the LRU lists with the lock held.

In the Linux kernel, the LRU list is implemented as a cyclic doubly linked

list. A recently accessed page is placed at the head of the list, while one that

has not been accessed for a long time is placed at the tail of the list. The cur-

rent memory management system handles the LRU lists by using the following

auxiliary functions:

• add page to lru list(): Increment the list size and add page to the head of

the list.

• add page to lru list tail(): Increment the list size and add page to the tail

of the list.
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• del page from lru list(): Delete page from the list and decrement the list

size.

Using the auxiliary functions, specific operations of the page state transition

and page movement across the LRU lists are handled as depicted in Figure

3.3. The pages to be moved are passed to the pagevec data structure, and each

of the pages contained in the pagevec structure changes its status by several

page movement functions. The function operations include adding a page to the

head or tail of the specific LRU list, moving a page from the active list to the

inactive list and vice versa. Each of these page movement functions is passed

as the callback function to pagevec lru move fn.

3.1.3 Problem Analysis

In order to determine the reason of the performance bottleneck, we profile in

detail the callback function of pagevec lru move fn that lies on the write I/O

path. Among several callback functions, pagevec lru add fn is called most

frequently in the I/O-intensive workload. This is due to the frequently per-

formed write requests that allocate and assign the new page frames in the

proper LRU lists. Figure 3.4 shows the latency and the number of function

calls of pagevec lru add fn when executing the file-per-process I/O with the

IOR benchmark, varying the block size from 64 MB to 1024 MB. The latency

is calculated by adding the function execution time of every thread that ex-

ecutes I/O operations. Similarly, the total latency on the other evaluations is

calculated in the same way in the rest of the section. The experiment was con-

ducted on the KNL platform and the number of threads running in parallel was

increased from 8 to 256.

The right side of Figure 3.4 indicates that the number of function calls

increases linearly with the total I/O size. In contrast, the latency of the page
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Figure 3.4: The latency and number of function calls of pagevec lru add fn

when executing sequential write I/O operations. Each thread writes the block

size file in file-per-process mode.

movement process shows exponential growth with increasing the number of

concurrently running threads. When each thread writes the same block size,

the latency increases up to 8,978 times while the level of parallelism increases.

This result is shown when the block size is fixed to 128 MB and the number of

threads is increased from 8 to 256, writing the maximum total I/O size of 32 GB.

Although there is no flush operation to degrade the overall performance, the

latency of adding pages to the LRU lists dramatically increases when running

multiple processes simultaneously.

The problem associated with the significantly increased latency is that the

whole page movement process across the multiple LRU lists is protected by a

single lock instance of the node. In a multiprocessor system, multiple threads

concurrently try to allocate and release page frames. As the memory subsystem

22



frequently accessed by multiple threads is protected by a single lock, it is highly

likely that the lock is already acquired by another thread when other threads

try to enter the critical section. Since a page frame reclamation process lies

on the critical path of the I/O request process, in an HPC environment, it is

especially important to overcome the performance bottleneck resulting from

severe lock contention.

3.2 Design and Implementation

3.2.1 Design of Scalable Locking Mechanism

The performance degradation in manycore architecture is highly related to the

coarse-grained locking mechanism used in the page frame reclamation process.

In order to solve this problem, it is necessary to split the coarse-grained lock into

multiple fine-grained locks. To meet both the high throughput and low latency

goals on the manycore system, we present the Finer-LRU, an advanced memory

management scheme designed for achieving higher scalability. The details of the

Finer-LRU scheme to handle page frames in the page reclaiming process are as

follows:

• The Finer-LRU splits the frequently accessed data structure in the page

reclamation process into multiple sub-structures to avoid contention.

• The Finer-LRU also changes the page frame reclamation algorithm from

the coarse-grained to the fine-grained locking mechanism by assigning lock

instance to each data structure.

• Last, the Finer-LRU can selectively split the contended data structures

to efficiently handle the contention.
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Figure 3.5: The previous design of the LRU list locking mechanism

Figure 3.5 depicts the previous design of the LRU list locking mechanism,

while Figure 3.6 shows the Finer-LRU scheme applied to the locking mechanism.

Since the Linux kernel manages five LRU lists with a single lock instance,

threads have to wait for another thread to release the lock when trying to enter

the critical section. The total lock wait time significantly increases, especially

in the manycore environment, when hundreds of processes run simultaneously.

To ease such an overhead, the Finer-LRU scheme creates a number of sub-list

structures in advance. The LRU lists can be selectively split into N sub-lists,

with N being a pre-defined value. When the pages to be added or removed from

the list come in, the target list is chosen based on the predefined page index.

Before entering the critical section, the appropriate lock instance that handles

the specific list needs to be held and released after the page movement operation

is done. As there are lock instances in charge of protecting each list, threads

can easily enter the critical section unless there are other threads operating on

the exact same list.

The rest of the section describes the implementation Finer-LRU scheme to

improve the I/O scalability based on the Linux kernel version 5.2.8.
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Figure 3.6: The Finer-LRU design of the LRU list locking mechanism

3.2.2 Data Structures

Current Linux kernels manage five LRU lists to keep track of page frame states,

protected by a lock on each NUMA node. Since performance degradation is

caused by frequent access to the LRU lists, we aim to divide these lists into

multiple sub-lists. In order to safely split the lists, we modify two kernel data

structures: the lruvec structure and the page structure.

Each node manages all the information about its memory subsystem, in-

cluding the physical memory status and page distribution. The lruvec structure

is one of the data structures used to track the current page status by handling

the LRU operations. Whenever the page status changes, the page moves across

the LRU lists so that the page reclamation process can easily find the page

frame to be reclaimed. In order to handle the page movement between the lists,

the lruvec structure maintains the head of each LRU list. In our approach, the

lruvec structure has to manage more than five lists. Therefore, we define the
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configurable global parameter LRU FACTOR, which represents the multipli-

cation factor of the number of LRU lists. Since the number of current LRU

lists is defined as NR LRU LISTS in the kernel, we change the size of the list

head array in the lruvec structure to LRU FACTOR * NR LRU LISTS. For

simplicity, we implicitly use NR LRU LISTS as five for the rest of the section.

If LRU FACTOR is configured to one, it is the same as using the default page

management algorithm. In addition to modifying the number of LRU lists, we

add spin lock instance for each list so that each LRU list can be protected by

its particular lock instance.

After splitting the LRU lists into multiple sub-lists, each page needs to know

from which list it has to be added or deleted. To easily determine the source

and the destination, the index value is added in the page structure. The index

value ranges from zero to LRU FACTOR−1. In order to evenly distribute the

number of accesses to multiple lists, the index value is initialized as a random

variable generated by modular operation. We first create a random value from

the page structure address and then divide it by LRU FACTOR. The remainder

is taken as the index value.

3.2.3 Calculation of the LRU list index

When the number of total LRU lists is configured to LRU FACTOR * NR LRU-

LISTS, five different LRU lists are allocated sequentially in each iteration dur-

ing the LRU FACTOR iterations. In order to provide simplicity in getting the

target LRU lists where the page needs to be moved, we present an LRU list

index function. Given the page index and the LRU index representing the list
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type, the function calculates the new LRU index with the following formula :

get new lru idx(lru idx, page idx) =

lru idx+NR LRU LISTS × page idx (3.1)

The page movement functions are executed with the following arguments: the

page structure, the lruvec structure, and the type of LRU list. By using these

parameters, the LRU list index function is called inside the page movement

functions to change the LRU list type parameter into the newly calculated LRU

list index. Once it is decided which LRU list is to be handled, the rest of the

operations—such as changing the size of the list and relocating the pages—are

processed as usual.

3.2.4 Customized Callback Functions

Since we split each LRU list into a number of LRU FACTOR sub-lists and

manage them with the proper spin lock instance, the page movement functions

need to be redesigned accordingly. The current Linux kernel manages five page

movement functions, which are used as callback functions and passed as ar-

guments to pagevec lru move fn. To enable a scalable locking mechanism, we

remove pagevec lru move fn and its callback functions. Instead, we manage each

of the page movement functions on its own. In this way, the previous scheme

that used the coarse-grained lock to protect the entire function is modified to

use multiple fine-grained locks to protect smaller critical sections inside the

function. The page movement functions can be divided into two groups, the

single-lock scheme and double-lock scheme, based on their algorithms.
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The single-lock scheme

The page movement functions that use the single-lock scheme only need a

single-lock instance to protect the critical section in their algorithm. Among

the current Linux kernel page movement functions, pagevec lru add fn and

pagevec move tail fn are included in this category. pagevec lru add fn adds a

given page to the proper LRU list, while pagevec move tail fn relocates a given

page to the tail of the LRU list. All the page movement functions are passed

with the pagevec structure, which contains a batch of pages as a parameter,

and each page movement process is operated in a for loop. In our implementa-

tion, the critical section includes the auxiliary functions that handle the LRU

list, since the same LRU list can be accessed by multiple threads executing

these functions. Therefore, the lock needs to be held right before the auxiliary

function is called. However, we do not release the lock immediately after the

function is returned. One may think that making critical section smaller can

reduce the lock waiting time from other threads, expecting to get a higher per-

formance. But in our algorithm, since each of the pages is checked sequentially

in for loop, the lock does not need to be released and held repeatedly if the

same lock was already acquired for a previous page. Releasing the lock right

after exiting the critical section and acquiring the lock in the next loop also

degrades the performance even though the critical section is kept small. The

same reasoning applies to the double-lock scheme.

Algorithm 3.1 shows our implementation of the single-lock scheme. The

function gets the pagevec structure as its input, and the pages in the structure

are sequentially accessed in a for loop. At first, the current status of the page

decides to which particular LRU list the page needs to be added. From the

given LRU list type, the new LRU index is calculated through the LRU list
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Algorithm 3.1: The customized callback function algorithm

Input: pagevec structure

1 for i← 0 to size of pagevec do

2 page = pagevec[i];

3 lruvec = get lruvec from page(page);

/* previous lru index is decided by the page status */

4 lru idx = get new lru idx(lru idx, page idx);

5 this lock = lruvec→ lock[lru idx];

6 if this lock ̸= previous lock then

7 unlock(previous lock);

8 lock(this lock);

9 end

10 page movement auxiliary function(page);

11 previous lock = this lock;

12 end

13 unlock(previous lock);

14 release pages(pagevec);

index function. Additionally, the proper lock instance is decided by the newly

calculated LRU index. Next, the decision of whether to acquire a lock is made

by comparing the current lock instance and the previously held lock instance.

The previous lock is unlocked, and the thread acquires the current lock in-

stance only when the two instances are different. Finally, the page is moved

to the LRU list by calling the auxiliary functions that handle the lists. Since

both pagevec lru add fn and pagevec move tail fn operate on the same list, the

whole process can be protected by a single lock instance, which is responsible

for the list.
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The double-lock scheme

The double-lock scheme is slightly different from the single-lock scheme, since

in the former, the page movement functions have to lock twice in order to

protect their operations. The functions activate page, lru deactivate file fn,

and lru lazyfree fn need two kinds of lock instances in their implementation

since they move pages from one LRU list to another and each LRU lists needs

to be protected. The pages are moved from an inactive to an active list in

activate page, while the opposite process is operated in lru deactivate file fn.

The function lru lazyfree fn changes the status of the anonymous page and

moves it from the inactive list for anonymous pages to the inactive list for

file-backed pages.

The overall double-lock scheme algorithm is similar to the single-lock scheme

one, which is delineated in Algorithm 3.1. For each of the pages in the pagevec

structure, the two new LRU indexes are calculated using the index and corre-

sponding LRU index. The two lock instances to be acquired in the following

critical section are subsequently decided by these newly calculated LRU in-

dexes, respectively, which handle the different LRU lists. The first lock instance

is compared to the previously held lock and if they are different, the previously

held two locks are released and the two new lock instances are acquired. Finally,

in the critical section, the page is moved across the LRU lists. All the functions

in the double-lock scheme hold two locks before entering the critical sections

and each lock is responsible for the LRU list to which the page is removed or

added.
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3.3 Evaluation

3.3.1 Experimental Setup

We evaluate our proposed Finer-LRU scheme on the Intel Xeon Phi CPU 7250

@ 1.40 GHz code-named KNL, having a total of 68 physical cores and 272

virtual cores (with hyper-threading enabled) on a single socket. The KNL is

equipped with a 16-GB on-package high bandwidth MCDRAM memory with

up to 450 GB/s bandwidth and a 96-GB DDR4 main memory with up to 90

GB/s bandwidth. We run all the experiments with the default configuration of

the KNL machine, in Quadrant cluster mode and Cache memory mode. For the

storage device, we use an 800-GB Intel DC P3700 SSD, with speeds up to 2,800

MB/s and 1,900 MB/s for sequential read and write throughput, respectively.

The XFS file system is mounted on the raw device, and all the experiments

are run in a buffered I/O mode. On every evaluation, we compare the baseline

Linux kernel v5.2.8 with the Finer-LRU scheme applied to the same kernel,

varying the LRU FACTOR to split the LRU lists with different granularity.

All the experiments are conducted in a file-per-process mode to reduce the I/O

bottleneck caused by multiple threads accessing a single shared file protected

by a file lock.

3.3.2 I/O Path Latency Evaluation

In order to directly evaluate the impact of applying the Finer-LRU scheme,

we profile the latency of the functions on the write I/O path. When the write

operation is served, vfs write() is the first function to be called in the kernel

level. Next, multiple functions—including pagevec lru add, one of the page

movement functions—are invoked to handle the write procedure. Figure 3.7

presents the percentage of pagevec lru add latency to the vfs write() execution
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Figure 3.7: The percentage of the page movement latency against the total write

operation time

time. We vary the number of threads executing write operations to 64, 128, and

256, and each thread to write a 64-MB and 128-MB block size file with a 1-

MB transfer size. We compare the ratio on the baseline Linux kernel with the

Finer-LRU scheme applied kernels, changing the LRU FACTOR to 4, 8, and

16, which split all five LRU lists into LRU FACTOR sub-lists.

On the baseline kernel, the latency of multiple pages to be added in the

LRU lists occupies most of the time in the write operation time. On every eval-

uation, the pagevec lru add latency takes up more than 68% of the vfs write()

execution time. When all 256 cores perform I/O concurrently, the page move-

ment time occupies up to 84.3% of the total write time since a large number of

threads have to wait longer to acquire the lock. Even when the lists are split and

managed by four different locks each, the ratio is similar to that of the default

kernel. This happens because splitting the list lowers the contention level but

also increases the locking overhead due to the increased number of locks. When

the lists are split into eight different sub-lists, the pagevec lru add latency re-

duces significantly and takes up only 1.48% of the total vfs write() time. The

latency in the case where the list is split in 16 sub-lists takes a larger proportion
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of the write time than when the list is split in 8. This is because the lock release

and acquisition counts increase, as there are too many locks to be handled in

the page movement process. Overall, up to 65.85% of the total vfs write() time

is saved on average when using the fine-grained locking mechanism from our

approach.

3.3.3 I/O Evaluation with IOR

Sequential I/O evaluation

In this section, we evaluate the throughput and latency of running sequential

I/O operations on the kernels with the Finer-LRU scheme applied. We run the

IOR benchmark using the MPI-IO interface for parallel execution. In order to

adjust the parallelism on each evaluation, we change the number of threads

doing I/O operations from 32 to 256. Each thread accesses files in the file-per-

process mode, reading and writing a block size of 16 MB to 1024 MB depending

on the total I/O size. To avoid the performance degradation caused by memory

throttling, we keep the total I/O size lower than 40% of the total memory size,

which is the threshold value of the flush operation. Since the memory size is 96

GB in our environment, the maximum amount of system memory that can be

filled with dirty pages is about 38 GB. Therefore, we select the total write size

to 4 GB, 8 GB, 16 GB, and 32 GB and adjust the block size of each thread

accordingly.

Figure 3.8 shows the throughput of the threads, each sequentially writing

its own block size data. Increasing LRU FACTOR can reduce the contention

of threads accessing the same list but also increase the number of releasing

lock and new lock acquisition because more locks are being used. Consequently,

there is a trade-off between reducing lock contention and increasing the number
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Figure 3.8: The throughput of sequential write I/O on the baseline ker-

nel and the Finer-LRU scheme applied kernels. The number in brackets is

LRU FACTOR, equal to the number of sub-lists.

of lock acquisitions. In the case of 32 and 64 threads running the write opera-

tions, the performance increases when LRU FACTOR increases from 4 to 8 and

then drops when it is 16. When compared to the baseline kernel, only Finer-

LRU[4] shows 6.3% lower throughput, while Finer-LRU[8] and Finer-LRU[16]

show 21.89% higher throughput. When 128 or more threads write simultane-

ously, all three Finer-LRU schemes show higher throughput than the baseline

kernel. Additionally, the performance is enhanced as more threads execute I/O

operations. In other words, splitting the LRU list can efficiently ease the lock

contention in the multi-threaded environment of large number of threads con-

currently issuing the requests. The performance improves by up to 57.03% com-

pared to the baseline kernel in the case of a total of 256 threads performing
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Figure 3.9: The latency of the page movement function while processing the

sequential write I/O on the baseline kernel and the Finer-LRU scheme applied

kernels. Note that only the scale of the y-axis in the bottom right figure is

different because the range of the latency is too large.

write operations.

In the same experiment as in Figure 3.8, the latency of adding a page to the

LRU lists is shown in Figure 3.9. The difference between baseline kernel latency

and that of the Finer-LRU scheme becomes greater when the total I/O size

increases or when the number of threads performing I/O operations increases.

In the case of less than 64 threads performing write operations, splitting the

list by 16 does not reduce the latency compared to the default kernel because

the contention is not heavy enough. In fact, handling multiple locks increases

the lock acquisition overhead in this case. In more extreme cases, such as more

than 128 threads executing I/O operations, a latency reduction by more than
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Figure 3.10: The throughput of sequential read I/O on the baseline ker-

nel and the Finer-LRU scheme applied kernels. The number in brackets is

LRU FACTOR, equal to the number of sub-lists.

90% is achieved in our approach. When 256 threads perform I/O concurrently,

the latency is decreased by up to 98.94%, which greatly reduces the time the

processes spent waiting for the lock.

We also evaluate the read performance of the Finer-LRU scheme. Figure

3.10 shows the sequential read throughput on the same evaluation setting as

the write I/O experiment. In most cases, the read performance is similar for

the different kernels. Since the read I/O is operated on already allocated page

cache, the LRU lists are accessed by the threads with low latency compared to

the latency in the case of write I/O operation. As a result, the performance does

not improve much like in the case of the write I/O evaluation even though the

Finer-LRU scheme is applied. The read throughput increases for every case by
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up to 25.95% only when 256 threads in total perform I/O operations. The result

indicates that the Finer-LRU scheme does not slow down the read I/O path

and slightly improves performance when a large number of threads perform I/O

simultaneously.

Random I/O evaluation

To evaluate the Finer-LRU scheme on different I/O access patterns, we run the

IOR benchmark configured to perform random access I/O. Using the same eval-

uation setting as for the sequential write performance evaluation, the through-

put and the latency of random I/O came out similar to those of sequential

I/O, as shown in Figure 3.8 and Figure 3.9, respectively. Finer-LRU[4], Finer-

LRU[8], and Finer-LRU[16] show a 7.73%, 37.29%, and 29.99% throughput

improvement on average compared to the baseline kernel, respectively, with a

57.08% improvement when 256 threads process random write operations on the

Finer-LRU[16] scheme. Moreover, the latency is reduced by 7.82%, 72.4%, and

63.59% on average, with a 99.02% reduction exhibited by the Finer-LRU[8]

scheme when 256 threads run concurrently.

Read/write mixed I/O evaluation

Real HPC workloads generally perform both read and write operations simulta-

neously. To evaluate the performance of the Finer-LRU scheme under a mixed

I/O pattern, we run sequential read and write operations together using the

IOR benchmark. In this evaluation, a total of 128 and 256 threads are run with

total I/O sizes of 8 GB and 16 GB in a file-per-process mode. We adjust the

read to write ratio by differentiating the number of threads issuing read and

write operations in order to consider both read-intensive and write-intensive

workloads. The x-axis of Figure 3.11 shows the ratio of threads issuing read
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Figure 3.11: The throughput of the sequential read and write I/O in a mixed

evaluation varying the read-to-write ratio and total I/O size

operations to threads issuing write operations and total I/O size. We choose

the ratios of 1:7, 1:1, and 7:1, which represent the read-intensive, mixed, and

write-intensive workloads, respectively.

Figure 3.11 shows the read and write throughput of 128 and 256 threads

performing I/O operations. Since these are large numbers of threads issuing

I/O operations, the write throughput improves in most cases of the Finer-LRU

scheme applied kernels. When compared to the write-only throughput result in

Figure 3.8, the performance improvement ratio is similar to the write-intensive

scenario where seven out of eight threads are performing write operations. In

the read-intensive scenario, the throughput does not increase much and even

decreases in some cases when compared to the baseline kernel. The evaluation
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Figure 3.12: The throughput of HACC-IO writing a checkpoint file of 2 760 000

particles per thread

result with mixed I/O indicates that the Finer-LRU scheme can improve the

total I/O performance, especially in write-intensive workloads, while the write

performance gain is greater than the read performance one.

3.3.4 I/O Evaluation with HACC-IO

The HACC-IO [84] benchmark is an I/O kernel of the cosmology framework

HACC (Hardware/Hybrid Accelerated Cosmology Code), which uses N-body

techniques to simulate the evolution of the universe. The benchmark is modified

to perform only the checkpoint phase of the workload and to write one file

per thread in our evaluation. The throughput of the HACC-IO using different

schemes and for different numbers of threads is shown in Figure 3.12. Each

thread is configured to manage 2 760 000 particles, writing the same number of

checkpoint files accordingly. Inevitably, the overall performance decreases when

more than 64 threads execute I/O operations, as multiple threads have to share

a limited number of physical cores. On the other hand, applying the Finer-

LRU scheme provides a higher performance than the baseline kernel when the

lists are split into more than 8 sub-lists in every case. In fact, Finer-LRU[4]
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increases the overhead of handling multiple numbers of locks in the cases with

low contention levels. Finer-LRU[4], Finer-LRU[8], and Finer-LRU[16] show a

36.78%, 75%, and 23.94% throughput improvement on average compared to the

baseline kernel, respectively. The performance is improved by up to 194.02%

with the Finer-LRU[8] scheme when the LRU lists are most contended—by 256

threads trying to access the shared resources.

3.3.5 Memory Consumption

Finer-LRU scheme reduces contention on kernel memory data structure at the

cost of increased memory consumption. In this section, we further examine

the extra memory consumption when applying the Finer-LRU scheme. When

each LRU list is split into LRU FACTOR number of sub-lists, the lruvec struc-

ture maintains total LRU FACTOR * NR LRU LISTS number of the list head

structures and same number of spin lock instances to protect each list. Since

the lruvec structure of the baseline kernel already contains NR LRU LISTS

number of the list head structures, the extra memory required by Finer-LRU

scheme can be calculated as follows:

{LRU FACTOR ∗ (NR LRU LISTS− 1)} ∗ L +

(LRU FACTOR ∗NR LRU LISTS) ∗ S

where:

L = size of list head structure

S = size of spinlock t

After simplifying the equation, the extra memory needed for each lruvec

structure in a byte-scale can be calculated as follows:

100 ∗ LRU FACTOR− 80
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Note that the lruvec structure exists for every node in memory controller group.

We find that when the Finer-LRU scheme is used with LRU FACTOR of 8 and

16, about 150KB and 320KB of extra memory is consumed respectively, which

we consider acceptable.

Figure 3.13: The throughput of sequential write I/O on the baseline kernel and

the Finer-LRU-opti scheme applied kernels on Intel Knights Landing CPU and

Intel Icelake Xeon CPU. The number in brackets is LRU FACTOR, equal to

the number of lock instances.
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3.3.6 Optimized Finer-LRU scheme

Finer-LRU has limited scalability due to the overhead in handling multiple

lock instances. As shown in Figure 3.8, the I/O throughput increases with

LRU FACTOR of 8 but drops when the LRU lists are further split. Moreover, a

recent version of the Linux kernel includes changes in page movement functions,

making direct application of Finer-LRU scheme difficult. For these reasons, we

further optimize Finer-LRU scheme based on kernel v5.18.11, which we refer to

Finer-LRU-opti for the rest of this section [85].

The Finer-LRU-opti scheme reduces locking overhead by decreasing the

number of lock instances. In the Finer-LRU scheme, the number of lock in-

stances is LRU FACTOR * NR LRU- LISTS, which is the same as the total

number of LRU lists. However, we have confirmed that the page movement

process always occurs between lists with the same lru idx. Therefore, the Finer-

LRU-opti scheme manages a single lock instance for five LRU lists with the

same lru idx, instead of managing a lock instance for each individual LRU

list. With the Finer-LRU-opti scheme, the page movement functions that uti-

lize the double-lock scheme, such as activate page, lru deactivate file fn, and

lru lazyfree fn, can be handled with a single lock instance as, two LRU lists are

managed using the same lock instance.

Figure 3.13 shows the write throughput on two different CPU processors:

Intel Knights Landing and Intel Ice Lake Xeon CPU. The single-core perfor-

mance of the Ice Lake Xeon processor is significantly higher than that of the

KNL processor. The Intel Xeon Gold 6338 processor, codenamed Ice Lake, fea-

tures a total of 32 physical cores and 64 virtual cores. The number in brackets

represents LRU FACTOR, which is equal to the number of LRU sub-lists. Since

the Finer-LRU-opti scheme manages a single lock instance for four LRU sub-
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lists (excluding the LRU UNEVICTABLE list in Figure 3.5), LRU FACTOR

* 4 number of LRU sub-lists are handled.

The upper graph in Figure 3.13 illustrates the I/O performance on the

KNL node. In contrast to the evaluation results in Figure 3.8, the I/O per-

formance of the Finer-LRU-opti scheme improves with an increased number of

LRU FACTOR, demonstrating the effectiveness of the Finer-LRU-opti scheme.

The I/O performance on the Intel Ice Lake Xeon CPU is shown at the bottom

of Figure 3.13 and exhibits similar results to the performance on the KNL node.

As LRU FACTOR increases, the I/O throughput increases by up to 140%.

3.4 Discussion

The Finer-LRU scheme has been developed to address the issue of lock con-

tention on LRU lists utilized by the Linux kernel memory system for tracking

page statuses. In the context of reducing locking overhead in the kernel memory

system, the fine-grained approach and the non-blocking wait-free approach rep-

resent distinct strategies for managing concurrent access to shared resources.

While this dissertation focuses on the fine-grained approach for reducing lock

contention, we also discuss the performance implications of employing the wait-

free approach to alleviate this contention.

The fine-grained approach utilizes a more granular locking mechanism, al-

lowing for individual resources or sections of code to be protected by their own

locks [42,43]. This enables simultaneous access by multiple threads or processes

to different resources, reducing contention and minimizing wait time for locks.

As a result, the overall system throughput is improved. However, it is impor-

tant to implement the fine-grained locking carefully, as the increased overhead

of acquiring and releasing locks at a finer granularity can introduce synchro-
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nization overhead and potentially degrade performance. On the other hand, the

non-blocking approach aims to minimize or eliminate the need for locks by em-

ploying lock-free or wait-free algorithms. These algorithms ensure that threads

or processes can progress even in the presence of contention, without relying

on traditional locking mechanisms. Consequently, the non-blocking algorithms

offer better scalability compared to the fine-grained approach by avoiding lock

contention entirely. Furthermore, they can enhance system responsiveness by

enabling threads to make progress even if they need to retry operations.

To apply the non-blocking wait-free approach to LRU lists, a lock-free dou-

bly linked list needs to be constructed. However, constructing such a list poses

challenges and maintenance difficulties. The fundamental idea behind a lock-free

doubly linked list is to design operations that can be executed concurrently by

multiple threads without compromising data integrity or the list’s consistency.

This is achieved through the use of atomic operations, typically compare-and-

swap (CAS), which enable modifications to be performed atomically and offer

a means to handle concurrent updates. However, the doubly linked list neces-

sitates multiple pointer assignments and is susceptible to threads observing an

inconsistent view of the list. Sundell et al. [86] was the first to present a lock-free

doubly linked list utilizing CAS operations. Nevertheless, due to the need for

traversing deleted nodes, frequent updates on the list lead to significant over-

head. Consequently, the current Linux kernel still restricts threads to only move

forward to prevent them from perceiving an inconsistent sequence of items in

the list.

Implementing a lock-free doubly linked list correctly requires in-depth un-

derstanding of concurrency, memory models, and low-level synchronization prim-

itives. It is a complex task that demands meticulous design and consideration

of edge cases and potential race conditions, particularly when integrating it into
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the Linux kernel. It is anticipated that the utilization of lock-free algorithms

can enhance the overall system throughput by enabling greater concurrency

without blocking operations.

3.5 Summary

In this chapter, we present Finer-LRU, a memory subsystem scheme in response

to the limited scalability of the HPC manycore architecture. In an environment

where hundreds of tasks are running in parallel, a large number of threads have

to access the shared memory resource simultaneously, causing heavy lock con-

tention. In order to reduce the contention level, the Finer-LRU scheme splits

the contended resources used in the page frame reclamation process in a fine-

grained manner. A lock instance handling multiple contended data structures is

divided into several instances, and each of them handles a split data structure.

The Finer-LRU framework is also capable of selectively splitting the data struc-

ture with severe contention to efficiently handle the memory subsystem with

reduced memory space overhead. Finally, we evaluate the Finer-LRU scheme

with IOR and HACC-IO benchmarks on the 68-core KNL system. By apply-

ing the Finer-LRU scheme on the Linux kernel, the throughput is improved by

up to 57.03% and the latency is reduced by up to 98.94%. Furthermore, we

address scalability concerns by further optimizing Finer-LRU. The Finer-LRU-

opti scheme reduces the number of lock instances and manages five LRU lists

with a single lock instance, while still increasing the total number of LRU lists.

This optimization enhances I/O performance, leading to an increased through-

put of up to 140% on both Intel KNL and Intel Ice Lake Xeon CPUs.
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Chapter 4

HPC Storage I/O Stack
Optimization

4.1 Motivation

4.1.1 Lustre Backend File Systems: ldiskfs and ZFS

Lustre maintains object storage device (OSD), which is the server software in-

terface that controls access to underlying local file systems on OSTs and MDTs.

Ldiskfs, one of the backend local file systems that are supported in Lustre, is

an enhanced version of ext4 file system [87], with an improved performance

and additional functionality for the Lustre file system. Another backend file

system that Lustre supports is ZFS which originally stands for Zettabyte file

system. As the name implies, ZFS can handle up to 256 ZB data size. Other

features that ZFS provides include pooled storage, end-to-end data integrity,

copy-on-write, and native compression [88]. ZFS works as both a file system and

a volume manager, which enables multiple physical devices to be aggregated as

a single storage pool and improves overall file system scalability. ZFS also offers
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checksum feature on every data written to ZFS to avoid and recover from data

corruption. Furthermore, the compression feature that ZFS provides can save

space of the storage devices and reduce data access time.

Because of the multiple features that ZFS supports to improve reliability

and data integrity, ldiskfs-based Lustre is more lightweight and shows higher

performance compared with ZFS-based Lustre. Conseqeuntly, current super-

computer systems prefer ldiskfs as the backend file system of Lustre. Neverthe-

less, the advent of artificial intelligence and big data analytics has resulted in

a substantial increase in the amount of data stored in HPC storage systems in

recent years [89–91]. Consequently, Lustre must be scalable enough to process

petabyte range data generated by large-scale scientific workloads. To achieve

scalability without contraints imposed by the backend file system, ZFS, which

supports zettabyte-scale storage is a better option compared to ldiskfs, which

only permits maximum volume size of 50 TB [92]. For this reason, we mainly fo-

cus on analyzing the I/O performance of Lustre with a ZFS backend file system

and introduce optimization designs to enhance the performance of ZFS.

To compare I/O performance of ldiskfs and ZFS, we run FIO microbench-

mark with various configurations to conduct I/O operations on a small-scale

testbed. The experimental environment of Lustre cluster includes three nodes:

Lustre client, OSS, and MDS/MGS. OSS node is equipped with an Intel Xeon

CPU E5-2620 v4 with 16 physical cores and a 64 GB DDR4 RAM. As flash

prices are getting lower, the next-generation flash storage systems begin to de-

ploy all-flash storage devices and remove the burden from Burst Buffer [93,94].

In line with current trend, we use four 280 GB Intel Optane SSD 900P on OSS

and configure each device to be an OST. MDS node has same system specifi-

cation with Lustre client node, and a 960 GB Samsung PM963 NVMe SSD is

configured as MDT. Lustre client, OSS, and MDS/MGS nodes are connected
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Figure 4.1: File-per-process sequential write I/O throughput of ldiskfs-based

Lustre and ZFS-based Lustre.

by Mellanox ConnectX-5 MT27800 100 Gb/s EDR Infiniband fabric.

Figure 4.1 shows sequential write performance of ldiskfs-based Lustre and

ZFS-based Lustre varying the number of threads concurrently executing I/O

operations and the I/O size of the file each thread writes. The number of threads

increases from 1 to 16 to differ the concurrency level. Each thread writes con-

tiguous bytes of a file size between 4 GB to 32 GB whereas the transfer size

is fixed to 1 MB. All experiments are conducted using FIO benchmark with

various configurations. When ZFS is used as backend file system for Lustre,

ZFS zpool is created for each MDT and OSTs.

The result shows that throughput scales nearly up to 7,000 MB/s with

Lustre-ldiskfs when the number of threads concurrently executing I/O opera-

tions increases. When the number of threads exceeds eight threads, the perfor-

mance of Lustre-ldiskfs starts to decrease because of the limited scalability of

the processing units on Lustre client node. Compared with that of ldiskfs-based

Lustre, the performance of ZFS-based Lustre starts to saturate when more than

four threads perform I/O operations concurrently. The maximum throughput
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Figure 4.2: I/O stack of ZFS-based Lustre file system.

that ZFS-based Lustre shows is slightly higher than 5,000 MB/s with a small

total I/O size. The performance of ZFS-based Lustre is lower than that of

ldiskfs-based Lustre by 27% when eight or more threads are used. The experi-

mental result shows large performance difference between ldiskfs and ZFS with

high-performance storage devices used as OSTs and MDT. The main reason for

performance degradation needs to be identified to fully exploit the functional

advantages that ZFS can offer while achieving high I/O performance.

4.1.2 I/O stack of ZFS-based Lustre

Figure 4.2 shows the simplified I/O stack diagram of a ZFS-based Lustre file

system. ZFS provides different modules that are related to each other within

the kernel space. When the user issues write system calls, the kernel invokes

according VFS write function that Lustre provides. Then, Lustre OSD layer

directly interact with ZFS using the data management unit (DMU) interface.

DMU module is the transactional object model in ZFS and is responsible for

committing transactions to the underlying storage layer. Adaptive replacement
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cache (ARC) and L2ARC modules serve memory management function within

ZFS and maintain caching layer for data stored in ZFS. All write operations

issued to the ZFS pool are first accumulated in ARC cache and assigned to a

specific transaction group (TXG). Accumulated operations are handled at once

by sync operation when a specific time has passed or a total of 64 MB of data

blocks are accumulated. Among different modules of ZFS, the ZFS I/O (ZIO)

module is the core part that is responsible for reading and writing data block

to disk. The accumulated data blocks on an ARC buffer is passed into a ZIO

pipeline that includes multiple I/O function stages, such as compression, check-

sum calculation, and data redundancy. After the data virtual address (DVA),

which specifies the block address of the data block, is identified in the ZIO mod-

ule, the data block is written to a physical device in the VDEV module [95].

4.1.3 ZFS I/O Pipeline

The ZIO module provides a pipelined I/O engine so that I/O operations can

be executed in pipelines. Figure 4.3 depicts the diagram of a logical write I/O

pipeline. The pipeline first starts with initializing the ZFS block pointer that

stores metadata of the data block. The contents of the block pointer include

physical size, logical size, DVA, and the 256-bit checksum of the data. After the

initialization, the rest of the I/O pipeline is operated asynchronously by dis-

patching additional threads, given that compression and checksum operations

in the following stages yield expensive CPU overhead. ZFS supports checksums

for both metadata and data block for data integrity. Various checksum algo-

rithms, such as fletcher2, fletcher4 [96], and SHA-256 [97] hashes, are supported

by default to avoid silent data corruption. Finally, when the DVA allocation of

the data block that block pointer references are finished, the actual physical

I/O is executed through the VDEV module.
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Figure 4.3: Logical write I/O pipeline in ZIO module.

The execution of the ZFS I/O pipeline is handled by threads from several

task queues. Each I/O task is added and deleted from corresponding task queues

depending on the type of operations, which is determined by the combination

of ZIO type (read, write, free, claim, ioctl) and ZIO task queue type (issue,

interrupt). For instance, the task going through the logical write I/O pipeline

shown in Figure 4.3 is enqueued to one of two task queues, z wr iss or z wr int,

depending on the type of the task. Each task queue has multiple dedicated

threads to process the tasks in the queue.

ZFS supports multiple kernel parameters that can be tuned by users to

improve the performance. zio taskq batch pct controls the percentage of online

CPUs that run I/O worker threads for the rest of the pipeline stages in the ZFS

I/O pipeline. The default value is set to 75% so that 75% of the cores run a

number of threads that can participate in executing compression and checksum

operations asynchronously. Another ZFS kernel parameter that controls the

number of threads is zfs sync taskq batch pct. The parameter determines the

percentage of online CPUs that run the threads that participate in synchroniz-

ing dirty in-memory DMU objects to disk. Similar to the zio tqskq batch pct,

the default value of zfs sync taskq batch pct is set to 75%.
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Table 4.1: Latency of write I/O pipeline stages of ZFS

Write I/O Pipeline Stages ZFS (checksum on) ZFS (checksum off) Ratio

Write BP Init 29,299,253 28,201,044 0.96

Issue Async 2,186,845,778 2,368,581,658 1.08

Write Compress 16,199,056,718 10,599,544,753 0.65

Checksum Generate 143,340,468,139 682,601,521 0.01

DVA Throttle 833,687,951 347,673,284 0.42

DVA Allocate 3,570,880,925 3,539,767,862 0.99

Ready 128,008,807,689 173,464,632,853 1.36

VDEV I/O Start 11,030,463,390 10,636,164,802 0.96

VDEV I/O Done 15,456,183,161 13,559,295,143 0.88

VDEV I/O Assess 1,321,798,672 1,144,140,313 0.87

Done 9,125,897,261 8,018,373,192 0.88

Total pipeline stages 334,534,110,488 227,475,458,797 0.68

Throughput 4,446MB/s 4,995MB/s 1.12

4.1.4 Problem Analysis

To further investigate the root cause of low I/O performance shown with ZFS-

based Lustre, we profile the latency of each function stage in the ZFS I/O

pipeline. The first column of Table 4.1 shows the write I/O pipeline stages, and

the second column shows the time taken by each pipeline stage in nanoseconds

when a total of 128 GB write I/O operations are executed concurrently with

16 threads. The two bottom rows show the total time taken in the ZFS I/O

pipeline by profiling zio execute function that recursively executes each pipeline

stage and the write throughput. Under the default configuration with checksum

feature enabled, checksum calculation takes up approximately 43% of the total

time taken in ZFS I/O pipeline stages. We also observe that 28% of CPU core

utilization by average is used by the checksum function execution according to

Linux perf tool.
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To identify the amount of checksum computation overhead on ZFS, we pro-

file latency of the same pipeline function stages of ZFS with checksum configu-

ration turned off, the result of which is shown in the third column of the table.

The fourth column of the table shows the ratio of latency taken in the ZFS I/O

pipeline with checksum disabled to latency taken in the ZFS I/O pipeline with

the default configuration. The result shows that not only the checksum func-

tion but almost every other functions take slightly less amount of time when

the checksum feature is disabled. Specifically, the time taken in compression

function, which is a computationally intensive task similar to checksum func-

tion, is reduced by 35%. Overall, 32% of the total ZFS I/O pipeline latency is

saved, and write throughput is increased by 12% when the checksum configura-

tion is turned off. The fact that disabling checksum generation affects the time

taken in rest of the pipeline functions indicates that CPU overhead has been a

bottleneck in the ZFS pipeline.

One of the I/O pipeline functions, Issue Async stage (zio issue async func-

tion), dispatches I/O worker threads to accelerate computationally intensive

functions, such as compression and checksum operations, in the next stages.

The maximum number of ZFS I/O worker threads dispatched in the stage is

controlled by the ZFS kernel parameter zio taskq batch pct, with a default value

of 75%. In our testbed environment, OSS node is equipped with 32 logical cores

with hyper-threading enabled, and a zpool is configured for each OST. In other

words, each zpool can have maximum of 24 I/O worker threads responsible

for handling tasks in each type of task queues, which is 75% of 32 online cores.

Given that four zpools exist in OSS server, a maximum of 96 I/O worker threads

responsible for z wr iss task queue can be dispatched in the testbed environ-

ment. The other I/O worker threads handling different types of task queues are

dispatched in the same way. Similar to the ZFS I/O worker thread, the number
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Figure 4.4: File-per-process sequential write I/O throughput of ldiskfs-based

Lustre, ZFS-based Lustre, and ZFS-based Lustre with 5% zio taskq batch pct.

of threads handling DSL pool synchronization operation is controlled by the

ZFS kernel parameter zfs sync taskq batch pct, with a default value of 75%. As

a result, another 96 sync threads are dispatched and used for synchronous I/O

operations. Considering that Lustre manages its own service threads as well,

hundreds of threads are created in a single server node. While there are a num-

ber of adjustable kernel module parameters provided by ZFS [98], we only focus

on two parameters in this work as they are the only parameters that directly

controls the number of ZFS threads.

Figure 4.4 compares the I/O performance of ldiskfs-based Lustre, ZFS-

based Lustre, and ZFS-based Lustre with 5% zio taskq batch pct when 8 and

16 threads concurrently execute file-per-process sequential write operations. A

single I/O worker thread is created for each zpool when ZFS-based Lustre is

configured with 5% zio taskq batch pct. As a result, four I/O worker threads

are responsible for executing ZFS I/O pipeline stages and handling all accesses

on the four zpools. The experimental result shows that reducing the maximum

number of ZFS I/O worker threads from 96 to 4 significantly improves perfor-

mance by 19% relative to the default ZFS. The performance of ZFS-based Lustre
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Figure 4.5: Sequential write and read/write mixed I/O throughput of

ZFS-based Lustre with different zio taskq batch pct.

with less threads is similar to that of ldiskfs-based Lustre, which indicates that

using a large number of threads rather decreases the performance due to ex-

cessive context switching overhead. In other words, ZFS uses too much threads

in default configuration on the 16-core system when running write-heavy work-

load. ZFS loaded on manycore system in HPC environment dispatches even

more ZFS threads in default because of a large number of cores used, which

eventually worsens the performance degradation.

Although adjusting zio taskq batch pct to 5% significantly improves I/O per-

formance, 5% is not the magic number for ZFS-based Lustre. Figure 4.5 shows

the I/O performance of write-only (left), and read/write mixed (bottom) work-

loads with 16 threads concurrently executing 8GB-size I/O operations. We con-

figure zio taskq batch pct from 5% to 100% and measure the performance. The

result shows that using small number of threads improves the I/O performance

on write-heavy workload while the relatively low I/O performance is shown

with 5% zio taskq batch pct on read/write mixed workload. The performance

of the two different workloads demonstrate that the optimal number of ZFS

I/O worker threads varies depending on the workload I/O patterns. While us-

ing small number of threads can reduce the context switch overhead, low degree
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of parallelism can lead to I/O bottleneck at the same time. The number of ZFS

I/O worker threads is controlled by the number of CPU cores used in the sys-

tem with zio taskq batch pct. Thus, dynamic adjustment of ZFS I/O threads

considering both I/O patterns and system configuration setting can improve

the performance.

To sum up, we determine that performance difference between ldiskfs and

ZFS is mainly due to the large amount of time taken in managing the checksum

feature, which ldiskfs does not support. Also, we find that hundreds of threads

are created throughout the ZFS modules for handling checksum calculation and

synchronous tasks, which increases the context switching overhead and degrades

the I/O performance. This motivates our work of designing a parallel checksum

calculation pipeline and a dynamic thread control scheme.

4.2 Design and Implementation

4.2.1 Parallel Checksum Calculation Pipeline

We have observed that the time taken in checksum calculation takes up a large

portion of the total ZFS I/O time in Table 4.1. Two of ZFS task queues that

ZFS uses, z wr iss and z wr int, are responsible for handling write I/O tasks,

including checksum operations. z wr iss threads are dispatched in one of ZFS

I/O pipeline functions, zio issue async, and increase the number of concurrent

operations to speed up the compression and checksum calculation. To separate

computationally intensive tasks from the rest of the ZFS I/O stages, dynamic-

ZFS creates and uses a new task queue named z wr cks. The threads handling

the tasks in z wr cks are responsible for executing the checksum operation only,

and those threads can be executed in parallel with z wr iss or z wr int threads.
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ZFS Checksum Threads

ZFS manages I/O threads responsible for every task queue in the storage pool

when the pool is created. Some of the threads handle the compression and

checksum tasks of the I/O accessing the pool. To reduce the I/O overhead in

CPU-intensive checksum calculation, we first create a new task queue that is

responsible for handling the checksum tasks only. The new task queue, z wr cks,

is created with the combination of ZIO type (write) and ZIO task queue type

(cksum). In other words, only write operations are handled with three kinds of

task queues: z wr cks, which is responsible for checksum calculation task only,

and z wr iss or z wr int, which is responsible for the rest of write I/O-related

function tasks with a parallel checksum calculation pipeline. The number of

threads handling the tasks in z wr cks task queue is determined by another

kernel module parameter that we implement, cksum zio taskq batch pct, with

a default value of 75%. Given that the number of active checksum task queue

threads is dynamically adjusted using the algorithms in Section 4.2.2, the kernel

parameter value is for configuring the maximum number of threads that can

be created and does not affect the performance. Similar to threads handling

z wr iss task queue, the checksum task queue threads are created when the ZFS

pool is created and dispatched in the ZFS I/O pipeline stage, zio issue async

function (Issue Async stage in Figure 4.3). As having too many ZFS threads

results in poor performance, we redesign the function to not dispatch extra

z wr iss task queue threads, but to only dispatch z wr cks task queue threads.

In summary, write operations going through a parallel ZFS I/O pipeline

are handled by three kinds of thread sets: z wr iss and z wr int task queue

threads, which handle every pipeline function operations, except the checksum

calculation function; and z wr cks task queue threads, which handle only the
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Figure 4.6: Parallel logical write I/O pipeline with parallel checksum

calculation in the ZIO module.

checksum calculation of the ZFS data block. The number of z wr iss queue

threads does not increase in the parallel ZFS I/O pipeline, whereas the number

of z wr cks queue threads is dynamically adjusted by using the dynamic thread

control scheme presented in Section 4.2.2.

Parallel ZFS I/O Pipeline

We redesign the ZFS write I/O pipeline to enable parallel checksum calculation

in the ZIO module. By using the additional threads dedicated to handle only the

checksum operation, the parallel execution of pipeline functions can be achieved.

Figure 4.6 shows the parallel logical write I/O pipeline design of dynamic-ZFS.

We carefully design dynamic-ZFS in a way that no data structure is shared

between two parallel stages. Note that dynamic-ZFS always chooses whether

to operate in parallel I/O pipeline or original I/O pipeline, depending on the

decision made in the dynamic thread control algorithm.

Different from Figure 4.3 in Section 4.1.4, Issue Async stage is located after

the compression function in parallel I/O pipeline. This is because the purpose

of dynamic-ZFS is to reduce the checksum calculation latency, which occupies
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a large portion of the total latency, as shown in Table 4.1. By positioning Issue

Async stage just before Checksum Generate stage, we allow Issue Async stage

to be responsible for making a decision of whether to dispatch new threads

that handle checksum calculation tasks in z wr cks task queue. If the decision

is made to dispatch new z wr cks task queue thread, the checksum calculation

function is removed from the mainline pipeline stages and executed in parallel

with the rest of the stages (DVA Throttle, DVA Allocate, and Ready stages). In

this case, we add a barrier function in Ready stage to wait for a slow checksum

task to make sure that the checksum operation is finished before the data are

written to physical devices. As a result, the time taken in checksum operation

can be saved by executing the ZFS I/O pipeline in parallel.

To validate that the block checksum is successfully calculated in our scheme,

we conduct a simple experiment. In the experiment setting, we include extra

Checksum Generate stage in the main pipeline in Figure 4.6 and let z wr iss

task queue thread executes checksum operation as in default ZFS. The data

block is duplicated right after Write Compress stage and we let each block to

go through original checksum stage and parallelized checksum stage. Then, the

checksum values calculated in the two checksum stages are compared in the

Ready stage. Through the experiment, we confirm that the checksum values of

default and parallel ZFS I/O pipelines are always the same.

4.2.2 Dynamic Thread Control Scheme

We implement algorithms that can adjust the number of ZFS I/O worker

threads dynamically by considering current CPU loads. Even though ZFS al-

ready has TASKQ DYNAMIC feature enabled by default that dynamically

controls the number of ZFS worker threads, the current CPU load is not consid-

ered in the adjustment process. As we observe that spawning additional thread
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Algorithm 4.1: Context Switch Monitoring Algorithm

1 open File;

/* open Monitoring File */

2 mmap File;

/* map file into memory */

3 while do

4 pid pool ← ZFS process id;

/* get process ids of currently running ZFS processes */

5 for i← 0 to size of pid pool do

6 sum← 0;

7 pid← pid pool[i];

8 acc ctxt← ctxt(pid);

/* get accumulated number of process’s context switches */

9 sum← sum+ acc ctxt;

10 write File← sum;

/* write total number of context switches */

11 munmap File;

/* unmap file */

12 close File;

/* close Monitoring File */

whenever an I/O task is to be processed rather decreases the overall perfor-

mance, the number of threads needs to be controlled considering the current

CPU utilization.

CPU usage Monitoring

To dynamically adjust the number of ZFS threads, we first implement a CPU

usage monitoring framework to identify the current CPU load used by ZFS I/O
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worker threads. Given that a large number of threads used in ZFS results in

poor performance, we assume CPU usage with the number of context switches.

Algorithm 4.1 shows the context switch monitoring procedure. In our implemen-

tation, the monitoring file is opened and memory mapped in order to reduce

the overhead of using a complex software I/O stack and enable fast file accesses

(line 1-2). Then, process IDs of currently running ZFS processes are retrieved

and stored in pid pool data structure (line 4). The process ID is retrieved one

by one from pid pool, and the accumulated number of context switches of the

process so far is calculated (line 5-9). The numbers of context switches of the

ZFS processes are summed up and written to the monitoring file (line 10). The

process of getting an accumulated number of context switches of ZFS processes

is repeated during the time ZFS module is loaded.

In dynamic-ZFS, the numbers of ZFS threads in two different thread sets are

controlled: z wr cks task queue threads and dp sync taskq task queue threads.

The reason for adjusting the two thread sets is because two kernel param-

eters that control the number of ZFS threads on default ZFS already exist:

zio taskq batch pct and zfs sync taskq batch pct. The task queues storing read

tasks can also be adjusted, but we only focus on optimizing the write path in

this work. As a result, the number of ZFS I/O worker threads handling check-

sum calculation in write operations (z wr cks) and the number of ZFS threads

responsible for synchronous writes (dp sync taskq) are controlled.

Dynamic Thread Control Algorithm

Using the context switch monitoring framework, we implement a dynamic

thread control algorithm embedded in the ZFS I/O module. Dynamic-ZFS con-

trols the number of threads that execute the tasks by monitoring the current

CPU load in real time. Algorithm 4.2 shows the algorithm of controlling the

61



Algorithm 4.2: Dynamic Thread Control Algorithm

Global variables : prev acc ctxt, prev ctxt

1 Function ThreadControl :

2 acc ctxt← get ctxt();

/* get accumulated number of context switches */

3 ctxt← acc ctxt− prev acc ctxt;

/* get number of context switches occurred during last

interval */

4 ctxt diff ← ctxt− prev ctxt;

/* difference of number of context switches */

5 prev ctxt← ctxt;

6 prev acc ctxt← acc ctxt;

7 return ctxt diff ;

8 Function ZfsFunction:

9 if ctxt diff >= 0 then

/* dispatch another thread to execute function */

10 else if ctxt diff < 0 then

/* let current thread to execute function */

number of ZFS threads dynamically. Two global variables, prev acc ctxt and

prev ctxt, represent the accumulated number of context switches and the num-

ber of context switches calculated in the previous iteration, respectively. The

thread control procedure first gets acc ctxt, which is the current accumulated

number of context switches of the ZFS threads (line 2). The value is calcu-

lated from Algorithm 4.1. To determine the number of context switches that

occurred during the last timestamp interval (from the last time when thread

control procedure is called until the current time), we calculate the ctxt variable

by determining the difference between acc ctxt and prev acc ctxt (line 3). Then,
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we compare the current CPU load and the previous CPU load by calculating

the difference between ctxt and prev ctxt. The difference is stored in variable

ctxt diff (line 4). The current context switch indicator values are updated to

the global variables for next function call (line 5-6).

The calculated ctxt diff variable is used to determine whether to wake up

another task queue thread and operate in parallel I/O pipeline to execute the

next procedure. In default ZFS, an additional thread is always dispatched when-

ever there exist a new task to be handled. However, this increases the number

of threads excessively and eventually leads to overabundant CPU usage. To

avoid using unnecessarily large number of ZFS threads, we control the number

of threads by checking whether the current CPU usage load is higher than the

load in the last timestamp interval. When ctxt diff is positive, which indicates

that the current CPU usage load is higher than the previous load in the last

interval, we dispatch another thread to lower the current CPU load and let the

thread handle the task in the parallel I/O pipeline (line 9). On the contrary,

when the current CPU usage is the same or lower than the previous load and

ctxt diff being zero or negative, we do not dispatch another thread and let

current thread execute the task in the original I/O pipeline (line 10).

The dynamic thread control algorithm is applied to two ZFS functions, ck-

sum zio taskq dispatch and dmu objset sync. cksum zio taskq dispatch function

is the new function that we implemented, which combines zio issue async and

zio checksum generate functions (Issue Async and Checksum Generate stages in

Figure 4.6). The function controls the number of checksum task queue threads

using the algorithms and let the thread execute a checksum calculation task in

the parallel I/O pipeline. When the algorithm determines not to dispatch an-

other thread and let the current thread to execute the function, current write

task queue thread executes checksum function in the original I/O pipeline.
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Meanwhile, dmu objset sync also adds the dynamic thread control algorithm to

control the number of ZFS threads handling synchronization tasks.

4.3 Evaluation

4.3.1 Experimental Setup

We evaluate dynamic-ZFS on three different system configurations.

Cluster A, The Cluster A consists of one client, one OSS, and one MDS/MGS

node. Lustre client node is equipped with Intel Xeon CPU E5-2650 v3 with

20 physical cores and 80 GB DDR4 RAM. OSS node is composed of Intel

Xeon CPU E5-2620 v4 with 16 physical cores and 64 GB DDR4 RAM,

equipped with four 280 GB Intel Optane 900P. Each Intel Optane SSD is

configured as an OST and has sequential read and write throughput by

up to 2,500 MB/s and 2,000 MB/s, respectively. MDS/MGS node has the

same CPU and memory specification with Lustre client node and uses a

single 960 GB Samsung PM963 NVMe SSD configured as MDT.

Cluster B, The Cluster B consists of two clients, two OSSes, and one MD-

S/MGS node to evaluate the scalability of dynamic-ZFS. The additional

Lustre client node and OSS node have the same system hardware spec-

ification with the Lustre client used in the Cluster A. Two OSS nodes

are equipped with four Intel Optane 900P devices each, having a total of

eight OSTs on the Lustre file system.

Cluster C, The Cluster C consists of two clients, four OSSes, and one MD-

S/MGS node. The additional two OSS nodes have the same system hard-

ware specification with the Lustre client in the Cluster A. Four OSSes are

equipped with two Intel Optane 900P devices each, having a total of eight
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OSTs on the Lustre file system.

All nodes are connected by Mellanox ConnectX-5 MT27800 100 Gb/s EDR

Infiniband fabric to avoid network bottleneck.

All the experiments are run using parallel I/O benchmark, FIO, with buffered

I/O mode. We vary the number of threads concurrently running I/O operations

and file size each thread writes, while fixing the transfer size to 1 MB. We con-

figure FIO to run in file-per-process mode to avoid I/O bottleneck of every

threads accessing the same shared file protected by a single file lock. We com-

pare the Lustre performance with three different backend file systems: ldiskfs,

ZFS, and dynamic-ZFS.

4.3.2 ZFS I/O Pipeline Latency

To evaluate the reduced latency of ZFS I/O pipeline by applying parallel ZFS

I/O pipeline and dynamic thread control schemes, we measure the latency of

every stage function that participated in ZFS write I/O pipeline. Figure 4.7

shows the latency of functions when 16 threads concurrently write a total of 128

GB I/O size on a Lustre file system with dynamic-ZFS as backend file system.

All the latency of functions measured on Lustre file system with default ZFS is

set to 1, and the latency of dynamic-ZFS is normalized accordingly.

The result shows that the latency of every function is reduced significantly

with dynamic-ZFS even though the I/O load to handle is the same. The reason

why no latency is measured on Issue Async stage (zio issue async function)

is that dynamic-ZFS chooses not to dispatch additional ZFS I/O thread that

handles the tasks in write task queues during its I/O pipeline process. Instead,

whether to dispatch an additional ZFS I/O thread that handles the check-

sum tasks is determined in cksum zio taskq dispatch function. The reason for

reduced latency of every stage functions is that context switching overhead is
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Figure 4.7: Normalized latency of write I/O pipeline stages of dynamic-ZFS

compared to ZFS.

reduced from a moderate number of threads dispatched. Overall, the time taken

in the total pipeline stages is reduced by 96% when Lustre uses its backend file

system as dynamic-ZFS.

4.3.3 CPU Utilization

We first evaluate the performance of the dynamic-ZFS-based Lustre file sys-

tem on a single server cluster, Cluster A. The cluster consists of one client,

one OSS, and one MDS/MGS node. We compare the context switching over-

head by measuring CPU utilization on a OSS server during I/O operations.

We use FIO benchmark to issue a total of 128 GB file-per-process I/O opera-

tions using 16 threads each. To measure CPU utilization in real time, we use

sar monitoring tool [99] to run in background with FIO benchmark. Figure 4.8

shows application-level and system-level CPU utilization when Lustre is con-

figured with ZFS and dynamic-ZFS. We configure FIO benchmark to run in

write-only mode (top), and read/write mixed mode (bottom). In a read/write
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Figure 4.8: CPU utilization of OSS under different I/O patterns with 16 threads.

mixed mode, 16 files (8 GB each) are sequentially created first, and then all 16

threads perform read operations and write operations equally together within

each file. As a result, a slight increase in CPU usage rate is shown 16 times before

the actual read/write mixed operations are performed. Both graphs show that

using dynamic-ZFS decreases the system level CPU load significantly. Also,

the application-level CPU utilization does not increase much with dynamic-

ZFS even though context switch monitoring tool runs in background. Average

system-level CPU load is decreased from 53% to 34% when dynamic-ZFS is used

under write-only mode, whereas the load is decreased from 48% to 35% on av-

erage when read and write are performed together. We assume that more CPU

load utilization can be saved under a system configuration of a large number of

67



Figure 4.9: Number of active ZFS I/O worker threads in ZFS.

flash storage devices used together within a server.

4.3.4 Dynamic Thread Control

Dynamic-ZFS adjusts the number of ZFS I/O worker threads to achieve low

CPU utilization and high I/O performance. To demonstrate the dynamic aspect

of dynamic thread control scheme, we track the number of active threads run in

ZFS and dynamic-ZFS while running the same I/O workload. The active thread

refers to the thread that got woken up to execute tasks, such as executing I/O

pipeline functions. Although there are other task queue threads involved in

ZFS I/O pipeline, we focus on z wr iss and z wr cks task queue threads in this

evaluation. There are four zpools exist in the OSS node in Cluster A and each

zpool creates 24 I/O worker threads, which is 75% of the number of online

CPUs. Even though there are total 96 threads run in the server node, the

number of active threads is tracked per zpool. Thus, the maximum number of

active threads is 24 in the graphs.

Figure 4.9 and Figure 4.10 show the changes in the number of active threads

68



Figure 4.10: Number of active ZFS I/O worker threads in dynamic-ZFS.

while running FIO benchmark in read/write mixed mode. Same with the read-

/write workload run in Section 4.3.3, the benchmark first sequentially creates

16 files of 8 GB in size. Then, all 16 threads perform read and write operations

equally together within each file. Each dot in the graph represents the number

of active threads run in each zpool at a timestamp. In default ZFS, ZFS I/O

worker threads (z wr iss taskq threads) are always dispatched to the maximum

extent regardless of the current I/O loads as shown in Figure 4.9. Even when

the single file is created sequentially, all 96 threads got woken up to handle
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the tasks. On the contrary, dynamic-ZFS does not dispatch additional ZFS I/O

worker threads in the I/O pipeline and controls the number of checksum threads

(z wr cks taskq threads). Figure 4.10 shows that dynamic-ZFS determines to

use only 2 to 4 threads in total when I/O load is low, which is regarded to be

sufficient to perform ZFS I/O pipeline. When the I/O load increases, the ac-

tive number of checksum threads increases by the decision made from dynamic

thread control algorithm. To sum up, our evaluation shows that dynamic-ZFS

captures the I/O load in real time and dynamically controls the number of ZFS

threads to reduce CPU overhead.

4.3.5 Sequential I/O Performance

In this section, we compare sequential write throughput and latency of Lustre

file system when ldiskfs, ZFS, and dynamic-ZFS backend file systems are used.

Figure 4.11 shows the throughput and latency when 8, 16, and 32 threads

concurrently write total I/O size of 64, 128, 256, 512, and 960 GB. Every thread

is configured to write the same file size (i.e. Each thread writes 60 GB file

sequentially when 16 threads write a total I/O size of 960 GB). For every file

to be equally striped over every OST, we set the stripe count to 4.

The result shows that dynamic-ZFS can improve the I/O performance as

the number of ZFS I/O worker threads is dynamically adjusted by monitoring

the run-time CPU load. Dynamic-ZFS-based Lustre improves I/O performance

by 37% and reduces latency by 27% on average compared with default ZFS-

based Lustre when eight or more threads concurrently issue I/O operations.

When compared with ldiskfs-based Lustre, I/O performance is slightly degraded

by 2% and latency is increased by only 3% with dynamic-ZFS-based Lustre.

Considering that dynamic-ZFS provides a multitude of features that ldiskfs does

not, slight performance degradation is negligible. Moreover, the performance
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Figure 4.11: Throughput and latency of the sequential write I/O varying the

number of threads and total I/O size in Cluster A

.
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improvement with dynamic-ZFS increases as the concurrency level gets higher

with an increased number of threads participating in I/O. The I/O throughput

is increased by 33%, 38%, and 41%, and the latency is reduced by 25%, 28%,

and 29% when 8, 16, and 32 threads issue I/O operations with dynamic-ZFS,

respectively. This indicates that under the heavy CPU load, dynamic-ZFS can

further improves the I/O performance. As it is common in HPC platforms that

each OSS is composed of more than four storage devices and multiple jobs share

storage nodes concurrently reading and writing large amount of files, we can

assume that the performance gain by using dynamic-ZFS as backend file system

for Lustre is even higher in real-world HPC systems.

4.3.6 Scalability

To evaluate the scalability of dynamic-ZFS, we run FIO benchmark on Cluster

B and Cluster C. One includes two Lustre clients, two OSS nodes, and one

MDS/MGS node, and the other includes two Lustre clients, four OSS nodes,

and on MDS/MGS node Figure 4.12 shows the sequential write throughput in

Cluster B, and Figure 4.13 shows the same throughput result in Cluster C. The

write throughput is measured and summed up in two Lustre clients on both

evaluations. We vary the number of threads run in each Lustre client from 1 to

32 and the file size each thread writes from 4 GB to 32 GB. Eight OSTs are

used in two system clusters: four OSTs per OSS node in Cluster B, and two

OSTs per OSS node in Cluster C. For all the files to be equally striped into

every OST, we set the stripe count to 8 on every evaluations.

Similar to the result shown with Cluster A in Figure 4.11, dynamic-ZFS-

based Lustre achieves higher I/O performance than default ZFS-based Lustre

in Figure 4.12. The performance peak shown with ldiskfs-based Lustre when

eight threads concurrently writes 4 GB of file per thread is due to the effect
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Figure 4.12: Throughput of sequential write I/O varying the number of threads

and I/O size per thread in Cluster B

.

of buffered I/O mode. Other than small size I/O evaluation, dynamic-ZFS-

based Lustre shows similar performance with ldiskfs-based Lustre. The write

throughput of dynamic-ZFS is improved by 8% on average relative to ZFS.

Under the heavy I/O load of 8, 16, and 32 threads concurrently issuing I/O

operations per Lustre client node, 15% of the I/O performance on average is

improved.

When only two OSTs are on each OSS node, the performance still improves

with dynamic-ZFS, but the performance improvement is less than that of Clus-

ter B. Figure 4.13 shows the I/O throughput with the same FIO configuration

settings with Figure 4.12. The reason why not much difference is observed

among the performance between ldiskfs, ZFS, and dynamic-ZFS-based Lustre
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Figure 4.13: Throughput of sequential write I/O varying the number of threads

and I/O size per thread in Cluster C

.

is that two NVMe devices on each server node does not incur CPU usage over-

head. As a result, ZFS can show high performance comparable to ldiskfs even

with an excessive number of ZFS I/O worker threads. The I/O performance of

dynamic-ZFS-based Lustre is slightly higher than that of ldiskfs-based Lustre

with 5% on average. Our evaluation shows that dynamic-ZFS can still improve

I/O performance, even under the environment where CPU utilization is not

high.

4.4 Summary

ZFS, a backend file system used by Lustre, delivers a number of beneficial

features that can improve I/O performance. However, ZFS rather incurs high
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CPU usage load and results in low performance because of a large number

of worker threads handling end-to-end data integrity checksum computation

jobs. To overcome the performance limitation, we designed dynamic-ZFS, a

combination of parallel execution scheme of ZFS I/O pipeline and dynamic

ZFS thread control scheme. The evaluation results showed that dynamic-ZFS

can successfully control the high CPU load of ZFS by interacting with CPU

monitoring framework in run-time. The sequential I/O throughput is improved

by 37%, and latency is reduced by 27% on average, whereas CPU utilization

during I/O operations is decreased by 20%. We also showed that dynamic-ZFS

can be effectively applied to scalable HPC platforms with a multitude of feature

configurations and a high performance comparable to that of ldiskfs. As next-

generation HPC platforms begin to deploy all-flash storage systems, we expect

the performance benefit of using dynamic-ZFS on Lustre to increase in the near

future.
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Chapter 5

HPC System Configuration
Optimization

5.1 Motivation

The Cori Supercomputer system at the National Energy Research Scientific

Computing Center (NERSC) is one of the most powerful HPC systems in the

world. HPC users can run their applications on the Cori system by submit-

ting a job script to the Slurm workload manager. The term job refers to a

computational task that a user requests to run via the Slurm scheduler, while

application refers to an executable program. Users can specify configurations on

the job script, such as the amount of computational resource, the type of cores

in the compute node to use, or the number of MPI processes with which to run

the job. The limit of execution time and the storage system-related parameters

can also be included in the script. Using the information that the user defined

on the job script, the Slurm workload manager allocates the available resources

to the users so that the jobs can be run accordingly.
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We perform our analysis using the real-world user log data from Cori system

from January to June, 2019 (PDT). In order to collect the HPC log data, we

use the Darshan I/O profiling tool [25]. The Darshan module is a lightweight

I/O instrumentation library that can capture various I/O behaviors, including

application access patterns, number of I/O operations, or access sizes using

multiple interfaces. Since we have to get the aggregated database of the logs to

apply the machine learning models, we use the python3-based parser developed

by Kim et al [72]. The parser can extract I/O-related data not only from the

logs that the Darshan module provides, but also from the Slurm workload

manager and Lustre Monitoring Tool. By utilizing both application-level, file

system-level, and scheduler-level statistics, a total of 112 I/O related features

are collected from 134,069 jobs in the analysis period.

Among the features given by the parser, there are five features that are user-

configurable. The number of compute nodes(numNode), CPUs(numCPU ), and

processes(numProc) are the features that control the amount of computational

resource, while the stripe count(numOST ) and the stripe size(stripeSize) are

the ones used to configure the file striping settings in the Lustre file system.

Figure 5.1 shows the distribution of the user-configurable features on the jobs

from the top five applications that issue the largest amount of I/O operations.

The graph shows that all the jobs do not change stripe size setting in the

Lustre file system, although they have a chance to improve the performance by

changing the parameter. Also, only one application (marked as purple) out of

five changes the stripe count dynamically, while another four use a relatively

fixed number of OSTs. Another thing to notice is that 93.42% of jobs run

from the other application (green) use the same configuration setting while I/O

throughput varies from 14.3 to 215.6GB/s, which is approximately 15 times

higher performance.
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Figure 5.1: The distribution of user-configurable parameters on the top five

applications that have large amounts of I/O during the job execution time. The

applications have different colors in the graph

Our observations show that most of the users choose to use fixed amounts

of resources to run the jobs and there are multiple factors affecting I/O perfor-

mance in the HPC environment, other than the amount of resources the jobs

use. When the job increases the I/O parallelism by configuring the Lustre file

system to use multiple OSTs, it also increases the shared resource contention

on the network and file system layer. The performance can even change due to

the input parameters that are used to run the job, the information of which the

profiling tools cannot capture. It is an exhaustive work to manually figure out

the exact I/O related features that lead to poor performance.

To ease computational complexities, we utilize multiple machine learning

models together to identify factors that have a significant impact on I/O perfor-
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Figure 5.2: The machine learning process for user-configurable parameter sug-

gestion

mance. By grouping real-world logs with similar I/O characteristics, the predic-

tion models built on each cluster can achieve improved prediction accuracy. The

methodology we introduce aims to assist HPC users in gaining better insights

into configuring HPC resources for enhancing I/O performance. The overall

machine learning process for suggesting optimal user-configurable parameters

is depicted in Figure 5.2.

5.2 Design and Implementation

5.2.1 Dataset Preprocessing

The log data from multiple profiling tools has to be refined using several data

preprocessing steps before applying machine learning models. We use the jobs

that issue more than 1GB I/O operations, in order to focus on the data that

have enough I/O related information. Also, only the applications that have

been executed more than 100 times during the analysis period are included

in the dataset. To overcome the data imbalance, we sample the data to make

the number of job executions of the applications to be the same by performing

random over-sampling and under-sampling [100]. After the data preprocessing

79



Table 5.1: Features extracted on the parser

Category Features

Application Statistics

(MPIIO / POSIX / STDIO)

totalFile

[Read,Write]Req / OpenReq / SeekReq / StatReq

seq[Read,Write]Pct

[read,write][Less,More][1k,1m]

runTime

Computation Statistics

numNode

numCPU

numProc

Storage Statistics

numOST

stripeSize

mdsCPU[Min,Mean,95]

mdsOPS[Min,Mean,95]

oss[Read,Write][Min,Mean,95]

oss[Read,Write][Min,Mean,95]Used

oss[Read,Write]LargestUsed

oss[Read,Write]Higher[1g,4g]

Performance Statistics

(MPIIO / POSIX / STDIO)

IORateTotal

[Read,Write]Bytes

[Read/Write/meta]Time

slow[Read/Write]Time

steps are completed, the dataset includes a total of 122,640 jobs from 84 different

applications, each with the same 1,460 jobs. There are 35 features remaining

in the dataset, and the target feature of clustering and prediction models is

the sum of the read and write I/O throughput, also termed IORateTotal. Table

5.1 summarizes some of the features that the parser generates, with five user-

configurable features emphasized.
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5.2.2 Feature Selection and Clustering Models

A clustering method can reveal hidden information in I/O behaviors in the HPC

system and yield a better understanding of the I/O workload characteristics.

The clustering algorithm calculates the similarity of the features for each data

point, in order to group the jobs together. Since there are too many features that

are related to I/O characteristics, it is necessary first to eliminate the irrelevant

features for dimensional reduction before clustering the jobs. We seek the best

feature subset that includes features having the most dominant impact on the

target feature in two steps: the Min-max mutual information feature selection,

and the SBS process combined with clustering algorithm.

In order to select the features that can best represent the I/O characteristics

of the data, we implement a new feature selection algorithm that chooses the

features based on the correlation coefficient value. The new method, named

Min-max mutual information feature selection, first selects the feature that is

most strongly correlated with the IORateTotal, which is the target feature.

Then, the second feature is selected from among the top ten least correlated

features with the previously selected one, having the highest correlation value

with the IORateTotal. In this way, not only the features that have a strong

relationship with the target feature can be selected, but also the redundancy

among the selected features is minimized. The process of selecting the features

iterates until the desired number of features are selected.

The top ten features selected from the Min-max mutual information al-

gorithm in our dataset are as follows: runTime, OpenReqSTDIO, mdsOPSMin,

writeLess1k, ossWriteLargestUsed, slowWriteTimePOSIX, numOST, totalFileST-

DIO, writeMore1m and readLess1k.

Among the ten features that are selected via the Min-max mutual informa-

81



tion algorithm, naively selecting some of the features correlated to I/O perfor-

mance on clustering may not group data with similar I/O characteristics. It is

also important to determine the best number of features to select for efficient

clustering. To find the best feature subset that can give the highest clustering

performance, we use the parallel Sequential Backward Selection (SBS) algo-

rithm [101], which can reduce the computational cost by searching for the best

feature set in parallel.

The SBS algorithm works along with the KMeans clustering algorithm and

two cluster evaluation metrics. Starting from a set of ten features, one feature at

a time is removed, making ten feature subsets, each consisting of nine features.

Then, the KMeans clustering algorithm is performed on each of the ten feature

subsets in parallel, and the clustering result is evaluated using the Silhouette

coefficient [102] and the Davies-Bouldin index (DBI) [103] metrics. The two

validity metrics evaluate the cluster performance by calculating the inter-cluster

variance and the inner-cluster variance. When the Silhouette coefficient score

is high and the DBI score is low, the two scores indicate that the inter-cluster

distance is short and the nearest-cluster distance is long, which can also be

regarded as the quality of the clustering result is good. In order to combine

the two validity metrics into one, we make use of the Combined Score validity

metric, which is calculated by dividing the Silhouette score by the DBI score.

After the ten different clustering results from the ten different feature sub-

sets are evaluated in parallel, the subset with the highest Combined Score is

selected and becomes the starting feature set in the next iteration. The SBS

process continues until three features are left in the feature set. Since the clus-

tering algorithm is executed and evaluated in parallel, the computation cost of

searching for the optimal result with the best feature set can be reduced dra-

matically. The KMeans clustering algorithm runs using each feature subset and
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Figure 5.3: Three-dimensional feature space diagram of four clusters

the results are evaluated on the dedicated compute nodes in parallel, reducing

the computation time by approximately 82%, compared to the time taken in a

serial search process.

The result shows that regardless of the number of clusters, the Combined

Score increases as the feature set size decreases, which indicates that the SBS

process eliminates the feature that is most irrelevant to I/O performance and

has a negative impact on the cluster performance in every iteration. Since the

objective of the clustering is to group the applications with similar I/O char-

acteristics together and build the prediction model on each of the clustered

datasets, clusters need to have a sufficient number of jobs. Considering both

the Combined Score and the size of each clusters, we select the clustering result

of four clusters by automatically calculates the cluster size variability, in the

case when every cluster consists of at least 10,000 jobs.

The KMeans clustering algorithm clusters the jobs based on three features,
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OpenReqSTDIO, writeLess1k, and slowWriteTimePOSIX, which are considered

to be the most relevant variables to I/O performance and can provide the best

clustering performance. Figure 5.3 shows the three-dimensional diagram of the

clustering results, with OpenReqSTDIO and slowWriteTimePOSIX being in

logarithmic format. slowWriteTimePOSIX represents the time taken by the

slowest POSIX write operation, while writeLess1k is the percentage of the num-

ber of write operations with an access size less than 1KB to the total number

of write operations. OpenReqSTDIO represents the number of open requests

using the STDIO interface. The diagram shows that jobs are grouped mainly

based on writeLess1k, which represents that writeLess1k value highly influences

the I/O performance of the job.

5.2.3 Clustered Datasets

In the previous section, we clustered jobs based on the features highly correlated

to I/O performance, from which we obtained four clusters, each with similar

I/O characteristics. Our next step is to train the prediction models using each of

the clustered datasets, and evaluate the prediction performance. Since multiple

prediction models are trained from each of the clusters, which model to use

can be identified by the application name of the job. However, the internal I/O

behaviors of two jobs from the same application can be completely different in

some cases. Assuming that the parallel I/O benchmark is run on the system,

depending on the command line options the users specify, one job may perform

the random write operations with a 4KB block size, while another job may

perform sequential read operations with a 4GB block size. Then, the profiling

logs would show completely different I/O patterns, even though the two jobs

are run using the same application. Therefore, the clustering algorithm would

certainly place the two jobs in different clusters, considering that they have
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Table 5.2: Evaluation of Prediction models using different datasets

Dataset Number of Apps Number of Jobs R-squared score

Cluster 0 35 51,100 0.86

Cluster 1 22 32,120 0.91

Cluster 2 6 8,760 0.82

Cluster 3 3 4,380 0.20

Un-clustered Data 84 122,640 0.84

opposite I/O behaviors from each other. In this case, I/O performance cannot

be predicted for the same I/O benchmark job, since it is impossible to know

into which cluster the job will be grouped, and thus the appropriate prediction

model cannot be distinguished.

In order to identify the proper prediction model from the application name,

we restrict the clustered dataset to include applications that show similar I/O

behaviors across multiple runs. For example, when 80% of the jobs from appli-

cation A belong to Cluster 1 and the rest of the jobs belong to Cluster 2, we

consider every future job from the application A would belong to Cluster 1. In-

terestingly, the clustering result shows that 66 out of 84 applications have more

than 80% of the jobs grouped into the same cluster. This indicates that most

of the HPC applications are run repeatedly with similar I/O characteristics,

which is in line with previous works [72,104].

5.2.4 Prediction Models

We use the KNN prediction algorithm, which is one of the most commonly

used regression methods, to train the prediction models. KNN calculates the

similarity between the given feature values of trained data and test data to find
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Figure 5.4: Prediction plots of the measured versus predicted I/O performance

(MB/s) of jobs being in logarithmic format (from left to right are: Cluster 0,

Cluster 1, Cluster 2, Cluster 3)

the K-Nearest neighbors, from which the average of the neighbors becomes the

predicted value. We aim to improve the prediction performance by using the

training dataset that includes jobs having common I/O characteristics. To eval-

uate our clustering-based prediction models, we train the models and measure

the R-squared score using five different datasets: the four clusters we get in

Section 5.2, and the un-clustered dataset that has undergone only the data pre-

processing step for baseline evaluation. The training set and test set are created

by randomly dividing the jobs of each dataset into an 8:2 ratio, respectively. The

input parameters to the model are the five user-configurable features, the num-

ber of compute nodes(numNode), CPUs(numCPU ), and processes(numProc),

stripe count(numOST ) and the stripe size(stripeSize), information of which can

be obtained before the job execution time.

Table 5.2 shows the number of applications, jobs and the R-squared score,

which can represent the predictive accuracy, on five types of datasets. The

number of applications and jobs in the un-clustered dataset is larger than the

sum of those in the four clusters, because we only include applications that have

similar I/O characteristics across the runs in the four clusters. The evaluation

result shows that the R-squared score is higher with Clusters 0 and 1, when
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compared to the score of the un-clustered dataset. One of the reasons why

the score of Cluster 3 is extremely poor is because only three applications are

included in the cluster, which is considered to be too small to train the model.

Also, since most of the jobs in Cluster 3 use a fixed value of user-configurable

parameters, the prediction model cannot accurately predict I/O performance

with different configurations. Figure 5.4 plots the measured and predicted I/O

performance of the jobs in logarithmic scale in the four clusters. The horizontal

dots in the bottom right graph indicate that the prediction model trained by

jobs in Cluster 3 predicts the same I/O performance most of the time, due

to the lack of training data. In contrast to Cluster 3, the prediction model

created from Cluster 1 shows the highest R-squared score, due to the dynamic

configuration settings the users configured in running the jobs. The average R-

squared score with different weights for Cluster 0, 1, and 2 based on the cluster

size is calculated as 0.87, which is higher than the score of un-clustered dataset.

Overall, our result shows that clustering the jobs with similar I/O behaviors

can help increase the R-squared score and makes it possible to predict I/O

performance of the jobs with improved accuracy.

5.3 Evaluation

In this section, we search for the optimal system configuration settings for

HPC workloads, using the trained prediction model. We only show the Clus-

ter 0-based trained prediction model and omit the other models due to page

limitation. Other than the Cluster 3-based model, which has poor performance

because of the lack of information in the training data, Cluster 0, 1 and 2-

based models show the similar performance. We create the test dataset by

varying the five user-configurable parameters in different ranges, which are de-
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Figure 5.5: The optimal user-configurable parameters obtained from the Cluster

0-based prediction model. The applications have different colors in the graph

termined based on the Cori system user log data, run from July to September

2019 (PDT). Specifically, numNode has the range between 1 to 3,850 and num-

CPU is determined as the product of 64 or 272 times numNode, which is the

number of cores in the Haswell and KNL nodes respectively. Also, the product

of numNode times 2 to the power of 0 to 8 is determined as numProc, referring

to the log data. numOST ranges from 1 to 248, which is same as the number

of OSSs in the Cori system, and stripeSize is determined to have one of 1, 2, 4,

8, 16, and 32MB values. I/O performance is predicted for every combination of

the five parameters in the prediction model. Then the configuration parameters

with the highest I/O performance in the model are selected.

Figure 5.5 shows the distribution of the user-configurable parameters of the

jobs and the optimal configurations that give the highest I/O performance, us-
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ing the prediction models based on Clusters 0. Among the applications included

in the cluster, we plot the top five I/O-intensive applications, run from July to

September 2019 (PDT), which is the time period that starts right after our

training period. The red marks in the graphs represent the optimal configura-

tion settings that are searched from the prediction models. Compared to the

performance of the jobs in all five applications, the red marks show the high-

est I/O throughput. Although we omit the figures showing the results of the

Cluster 1 and 2-based models, the optimal user-configurable parameters that

are searched using the two models also give the highest I/O performance com-

pared to the performance of the jobs that run between the test time period.

By using the predicted performance for various configuration settings, not only

can users get a better understanding of configuring the jobs and achieve higher

performance, but also the system can efficiently schedule the limited amount of

resource in the HPC environment.

While we show that I/O performance can be predicted with different com-

binations of configuration parameters, only the methodology for building the

prediction model based on the clustering results is applicable to other HPC sys-

tems. We obtain the optimal configuration settings from the regression models

that are trained with jobs run in the specific analysis period, January to June,

2019 (PDT). Considering that the supercomputer system changes significantly

over time for multiple reasons, such as periodic maintenance, hardware replace-

ment, and software upgrades, the results that we observe are not expected to

be found in general. The objective of our work is to provide the methodol-

ogy that can predict I/O performance of HPC workloads with high accuracy,

using various machine learning models. By periodically searching for the op-

timal user-configurable parameters using our methodology, HPC users can be

provided with the configuration setting guidance that can give improved I/O
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performance.

5.4 Summary

We used multiple machine learning techniques together to efficiently discover

hidden information in the complex I/O behaviors of scientific workloads with

low computational cost. By clustering the unlabeled user log data, applications

having similar I/O characteristics with each other can be grouped together.

Our results showed that the R-squared scores on the prediction models built

on each of the clusters are higher than the score of the un-clustered dataset,

indicating that the clustering can help improve the prediction accuracy. Using

the methodology that we introduced, I/O performance can be predicted for

any system configuration setting in advance, which can help users find the best

configuration settings for improved I/O performance of the jobs. Also, efficient

resource scheduling in the HPC environment can be achieved by using the

constructed prediction models.

90



Chapter 6

Conclusion

HPC systems consist of numerous compute nodes, high-speed networks, and

storage systems, all of which have complex I/O stacks. It is increasingly crucial

to design efficient memory management and storage file systems for HPC sys-

tems to satisfy the growing demand for data access performance in applications.

In addition, HPC users must be provided with optimal system configuration set-

tings to prevent significant variations in performance. In this dissertation, we

focused on three optimization schemes to improve I/O performance in HPC

systems. We first minimized lock contention in the memory management sys-

tem of an HPC manycore architecture, while optimizing storage I/O stack in

ZFS-based Lustre file system, which is the commonly used PFS in HPC envi-

ronments. We also searched for optimal configuration settings to maximize the

I/O performance of HPC applications using multiple machine learning models.

We implemented Finer-LRU, a memory subsystem scheme in response to

the limited scalability of the HPC manycore architecture. In an environment

where hundreds of tasks are running in parallel, a large number of threads have
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to access the shared memory resource simultaneously, causing heavy lock con-

tention. In order to reduce the contention level, the Finer-LRU scheme splits

the contended resources used in the page frame reclamation process in a fine-

grained manner. A lock instance handling multiple contended data structures is

divided into several instances, and each of them handles a split data structure.

The Finer-LRU framework is also capable of selectively splitting the data struc-

ture with severe contention to efficiently handle the memory subsystem with

reduced memory space overhead. Finally, we evaluated the Finer-LRU scheme

with IOR and HACC-IO benchmarks on the 68-core KNL system. By applying

the Finer-LRU scheme on the Linux kernel, the throughput is improved by up

to 57.03% and the latency is reduced by up to 98.94%.

ZFS, a backend file system used by Lustre, delivers a number of beneficial

features that can improve I/O performance. However, ZFS rather incurs high

CPU usage load and results in low performance because of a large number

of worker threads handling end-to-end data integrity checksum computation

jobs. To overcome the performance limitation, we designed dynamic-ZFS, a

combination of parallel execution scheme of ZFS I/O pipeline and dynamic

ZFS thread control scheme. The evaluation results showed that dynamic-ZFS

can successfully control the high CPU load of ZFS by interacting with CPU

monitoring framework in run-time. The sequential I/O throughput is improved

by 37%, and latency is reduced by 27% on average, whereas CPU utilization

during I/O operations is decreased by 20%. We also showed that dynamic-ZFS

can be effectively applied to scalable HPC platforms with a multitude of feature

configurations and a high performance comparable to that of ldiskfs. As next-

generation HPC platforms begin to deploy all-flash storage systems, we expect

the performance benefit of using dynamic-ZFS on Lustre to increase in the near

future.
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We used multiple machine learning techniques together to efficiently discover

hidden information in the complex I/O behaviors of scientific workloads with

low computational cost. By clustering the unlabeled user log data, applications

having similar I/O characteristics with each other can be grouped together.

Our results showed that the R-squared scores on the prediction models built

on each of the clusters are higher than the score of the un-clustered dataset,

indicating that the clustering can help improve the prediction accuracy. Using

the methodology that we introduced, I/O performance can be predicted for

any system configuration setting in advance, which can help users find the best

configuration settings for improved I/O performance of the jobs. Also, efficient

resource scheduling in the HPC environment can be achieved by using the

constructed prediction models.

This dissertation shows performance improvement by optimizing the exist-

ing HPC system on memory, storage, and user-level components. Rather than

optimizing the existing system, designing a HPC system from scratch would

require careful consideration of several factors [105]. Followings are some key

aspects to consider in such design:

• Scalability Design the kernel to be scalable and NUMA aware to effi-

ciently handle the increased number of cores. Data structures, synchro-

nization mechanisms, and algorithms should be carefully designed to mini-

mize contention and improve parallelism across multiple cores. Review the

memory management system to ensure strong NUMA-awareness. Imple-

ment memory allocation policies, page migration algorithms, and memory

placement strategies to improve locality and reduce remote memory access

penalties in multi-socket systems.

• Scheduling Algorithms Enhance the kernel scheduling and resource
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management mechanisms to efficiently handle the increased number of

cores. Explore techniques such as load balancing, task migration, and

affinity management to distribute workloads evenly and reduce contention.

Consider gang scheduling and hierarchical scheduling to improve paral-

lelism and resource utilization. Reduce unnecessary context switches by

considering factors such as cache locality and thread affinity when making

scheduling decisions.

• Thread and Process Management Analyze the thread and process

management subsystem to improve efficiency and reduce overheads. Ex-

plore improved context switching mechanisms, such as minimizing the

amount of state that needs to be saved and restored during a context

switch. This can involve optimizing register save and restore operations.

Also explore lightweight threading models and optimizations like thread

pinning or thread affinity to enhance parallelism and cache locality.

• File System Design Design file system for high-speed storage devices.

Implement striping, caching, and prefetching within file system I/O stacks

to improve I/O performance. Adapt the I/O request processing and ex-

plore asynchronous I/O mechanisms to overlap I/O operations with com-

putation. Consider optimizing metadata operations and improving caching

mechanisms. Additionally, leverage non-volatile storage technologies to

exploit high-speed and low-latency characteristics. Incorporate high-speed

interconnects and technologies like RDMA to reduce CPU involvement

and high latency in data transfers and improve overall I/O performance.

• Performance Analysis and Monitoring Introduce or enhance perfor-

mance monitoring and analysis capabilities within the kernel. This may

involve adding performance counters, profiling mechanisms, or tracing fa-
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cilities to enable real-time monitoring and fine-grained analysis of system

behavior and performance characteristics.
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요약

고성능 컴퓨팅 시스템은 수천 개의 계산 노드와 스토리지 시스템, 그리고 이를 연

결하는 고속의 네트워크로 구성되어 높은 복잡성을 가진 여러 계층의 I/O 스택을

제공한다. 고성능 컴퓨팅 시스템에서 응용의 데이터 접근에 대한 높은 I/O 성능을

제공하기 위해 메모리 관리 시스템 및 스토리지 파일 시스템의 효율적인 설계가

더욱 중요해지고 있는 추세이다. 또한 고성능 컴퓨팅 시스템 사용자는 지속적인

높은 성능을 제공받기 위해 응용 수행 시 적합한 시스템 구성 설정을 해주어야

한다.

본 논문에서는 초고성능 컴퓨팅 시스템에서 주로 쓰이는 매니코어 아키텍처를

사용 시 메모리 관리 시스템에서의 락 경합을 감소시키는 것을 첫 번째 목표로

한다. I/O 경로에서 심각한 락 경합을 일으키는 부분은 페이지 관리 시스템이며,

이는 단일 락 인스턴스를 사용하여 메모리 페이지들을 트래킹하는 LRU 리스트를

관리한다. 이 문제를 해결하기 위해 각각의 락 인스턴스를 여러 개의 하위 리스

트로 분할하는 최적화 기법인 Finer-LRU 기법을 소개하였으며, 실험 결과 Linux

커널버전 5.2.8에적용한 Finer-LRU기법이순차쓰기성능을 57.03%향상시키고

지연 시간을 98.94% 감소시킬 수 있었다.

본 논문의 두 번째 목표는 대부분의 고성능 컴퓨팅 시스템에서 사용하고 있

는 Lustre 파일 시스템의 backend 파일 시스템으로 ZFS를 사용하였을 때 성능

최적화이다. ZFS 기반 Lustre 파일 시스템에서 낮은 I/O 성능의 근본적인 원인

을 분석하고, 두 가지 최적화 접근 방식을 결합하여 dynamic-ZFS를 소개하였다.

Dynamic-ZFS는 I/O파이프라인을병렬화하고 I/O스레드의수를동적으로조절

함으로써 순차 쓰기 성능을 평균 37% 향상시켰다. 이에 본 연구를 통해 dynamic-

ZFS는 ldiskfs 기반의 Lustre 파일시스템이 제공하지 못하는 다양한 기능을 제공

하면서도 유사한 I/O 성능을 제공할 수 있음을 입증하였다.
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마지막으로 응용의 높은 I/O 성능을 제공하기 위해 고성능 컴퓨팅 시스템에서

제공하는 여러 I/O 설정 값을 다양한 머신 러닝 기법을 사용하여 탐색하는 기법을

구현하였다. 실제 운용되고 있는 고성능 컴퓨팅 시스템에서 실제 응용의 I/O 설정

값과 성능을 포함한 데이터베이스를 구축하고 상관 관계를 분석하여 성능 예측 모

델을구현하였고,이를통해높은정확도로다양한 I/O설정값에따른 I/O성능을

예측할 수 있음을 보였다.

주요어: 초고성능 컴퓨팅, 매니코어 아키텍처, 파인 그레인드 락, Lustre 파일 시

스템, ZFS, 비지도 학습, 예측 모델

학번: 2017-25955
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