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Abstract

Prompting has gained tremendous attention as an efficient method for the adap-

tation of large-scale language models (LMs). A prompt typically has a task

description and demonstration examples and is fed as input to an LM. Then,

the LM learns the task from the context given by the input and processes

queries. This phenomenon is called In-context Learning. However, prompts of-

ten act against human intuition and report unstable performances, which has

motivated methods that automatically find effective prompts.

Automatic prompt tuning methods have shown promising performances on

various NLP tasks but still fall behind several LM adaptation methods, such

as full-parameter fine-tuning, in some scenarios. Despite the sub-optimal per-

formances, unique capabilities of prompting, such as simplicity or parameter

efficiency, encourage improving prompting methods.

Moreover, even though the prompt tuning methods are effective in LM adap-

tation, they are not designed to support language-model-as-a-services (LMaaSs).

Recent large-scale LMs typically provide their capabilities via services. Such

Language-Model-as-a-Services (LMaaSs) have unique constraints for practical

deployments compared to in-house models; the model’s internal parameters are

not publicly open. This requires users to prepare task-specific prompts for in-

context learning when using the service. However, LMaaSs does not provide

automatic prompt tuning methods because of their heavy computation over-

heads. An LMaaS user may use several black-box prompting methods that do

not require parameter access or service providers’ additional support, but it is

really hard for non-expert users to deploy and execute such methods on their
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in-house machines.

In this thesis, we first propose a novel regularization method, CoRe, for

gradient-based prompt tuning techniques, which guides a prompt to produce

a task context properly. CoRe realizes two regularization effects — context

attuning and context filtering — that improve prediction performance in a

zero-shot in-context learning setting where a model makes inferences only with

the prompt tuned by CoRe, without any demonstration examples for in-context

learning. Context attuning guides the context generated by the input and the

tuned prompt toward embedding the appropriate context for the task. In our

theoretical analysis, regularizing the context extends to improving zero-shot in-

context learning performance. Context filtering steers the prompt to select only

the task-related context so that context attuning solely focuses on creating

and sending the right task context. We evaluate CoRe on natural language

understanding datasets and two large language models, GPT2-XL and GPT-J.

Our training scheme shows performance improvements up to 11.9% on GPT2-

XL, and up to 6.3% on GPT-J in zero-shot settings.

We then propose MetaL-Prompt, a novel lightweight prompt generation

method for LMaaS based on meta-learning. MetaL-Prompt makes a prompt

generation model (PGM) which generates a task-specific prompt from few-shot

examples of an arbitrary user task without additional training during service.

We also suggest trainable padding to mitigate the overhead from the gener-

ation process of the meta-learning, and explore generation of diverse prompt

types using the prompt generation model. MetaL-Prompt is compute-efficient

since the PGM extracts task information from the context caused by the con-

catenation of the few-shot examples, and generates a corresponding prompt

in a single forward pass. Therefore, MetaL-Prompt introduces negligible com-

putation overheads when deployed on LMaaSs, and the services can support
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a tremendous number of various tasks with automatically generated prompts

with MetaL-Prompt. We evaluate MetaL-Prompt in diverse meta-learning set-

tings, and it improves the performance up to 19.4% for averaged F1 score on

unseen QA datasets in a zero-shot in-context learning setting compared to the

state-of-the-art baseline, even with much lower computation costs.

Keywords: prompt tuning, prompt, in-context learning, language model

Student Number: 2016-21234
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Chapter 1

Introduction

1.1 Motivation

In recent years, many large-scale deep learning language models (LMs) have

been released, and have demonstrated outstanding performances on diverse

natural language processing (NLP) tasks. Such models learn language modeling

on plain corpora (e.g., articles, news, or books), but after the learning, the

models can be transferred to specific NLP tasks using adaptation methods such

as fine-tuning.

One interesting method for LM adaptation is in-context learning [54, 4].

In-context learning adapts an LM to a task by giving a special text, usually

called a prompt, including an explanation or some demonstration examples

for the task. The LM solves the problem following the context given by the

prompt. In-context learning (ICL) has unique capabilities in that it does not

mandatorily require training examples or parameter access for LM adaptation.

Initially, a prompt is manually crafted by a developer with human intuition.
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However, because of the unstable performances and unpredictable behaviors of

manual prompts [42], automatic prompt tuning methods have been proposed.

The automatic methods have shown remarkable performances compared to

hand-crafted prompts cite, but still fall behind full-parameter fine-tuning [16].

This motivates further improvements in automatic prompt tuning.

Automatic prompt tuning methods also have another challenge in practi-

cality. Recently, many companies provide large language models’ capabilities

as services. Such Language-Model-as-a-Services (LMaaSs) support diverse user

tasks with in-context learning from prompts (i.e., instructions and demonstra-

tions of the task). However, for the users, manual crafting of prompts or running

automatic prompt tuning methods by themselves is demanding. Despite such

challenges, LMaaSs do not provide automatic prompt tuning methods on the

services. One of the major obstacles to deploying them on an LMaaS is their

heavy computation costs. Such prompt tuning methods are typically designed

to iterate tens of thousands of examples For example, P-tuning [42], which is

a representative gradient-based prompt tuning method, executes forward and

backward passes of about 50K sequences to optimize a prompt on SuperGLUE

RTE [63]. BBTv2 [61] optimizes a prompt with forward passes on 250K se-

quences for instance. Such heavy computations are unaffordable overheads for

LMaaSs.

1.2 Contributions

In this thesis, we propose two prompt tuning methods for improving the per-

formances of gradient-based prompt tuning methods, and lightweight prompt

tuning. Both methods leverage contexts that appear when concatenated exam-

ples are fed to an LM.
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We first propose a novel gradient-based prompt tuning method, CoRe, which

guides a prompt to properly produce a task context. CoRe realizes two regular-

ization effects — context attuning and context filtering. Those improve predic-

tion performance in a zero-shot ICL where additional demonstration examples

are not provided, and only prompt and test examples are available for predic-

tion with ICL. Context attuning guides the context generated by the input and

the tuned prompt toward embedding the appropriate context for the task. In

our theoretical analysis, regularizing the context extends to improving zero-

shot ICL performance. Context filtering steers the prompt to select only the

task-related context so that context attuning solely focuses on creating and

sending the right task context. CoRe shows performance improvements up to

11.9% on GPT2-XL, and up to 6.3% on GPT-J in zero-shot ICL setting on

SuperGLUE [63].

In this paper, we propose MetaL-Prompt, a novel lightweight automatic

prompt generation method for LMaaSs. MetaL-Prompt meta-trains a prompt

generation model (PGM) in order that an LM robustly learns from contexts

(i.e., in-context learning) induced by the created prompt. Due to our meta-

learning, a PGM can generate a prompt for an unseen task without additional

training of the PGM for the task. Moreover, the PGM can generate the prompt

from the context created by few-shot examples with a single forward pass,

which requires much less computation cost compared to the previous meth-

ods. We evaluate MetaL-Prompt on diverse unseen tasks, and it improves the

performance up to 19.4% for mean F1 score on QA datasets compared to the

state-of-the-art baseline P-tuning, even with such a small computation cost.
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1.3 Dissertation Structure

The rest of this thesis is organized as follows. Chapter 2 describes in-context

learning and related prompt tuning methods. In Chapter 3, we present a gradient-

based prompt tuning method, CoRe, which improves zero-shot ICL perfor-

mances of the previous methods leveraging context regularization. In Chapter 4,

we propose our lightweight prompt generation method, MetaL-Prompt, which

generates a prompt in a single forward pass by extracting a task context from

few-shot examples We conclude in Chapter 5 and suggest future works.
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Chapter 2

Background

In this chapter, we first explain in-context learning, which is an adaptation

method for large-scale language models (LMs). Then, we introduce automatic

methods to improve in-context learning. Finally, we present how large-scale

language models are deployed and utilized in the real world.

2.1 In-context Learning

Prior works have proposed that large-scale LMs are able to perform well in di-

verse tasks by learning from prompts that include instructions or a few demon-

stration examples [54, 4], even without additional tuning of the parameters.

This phenomenon is called In-context Learning, and it enables LMs to process

various tasks without additional training. Prompts have been used to adapt

pretrained LMs to numerous downstream tasks such as Natural Language In-

ference [59], text classification [18, 53, 59], question answering [32, 34, 55] and

many more.
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A prompt is a form of task specification given as part of the input, and aims

to guide the language model into generating the desired output according to

the given task. A prompt usually consists of a task description and a template

of the input with placeholders for data. For example, when given an input

”Translate English to Spanish: I love you →”, the LM is expected to finish

the input by generating the answer ”te amo”. For improved performance, some

demonstration examples are often provided as a training set in deep learning.

Prompting is more memory-efficient when we want the LM to process vari-

ous different tasks compared to fine-tuning which is a representative LM adap-

tation technique. In prompting, the LM parameters are typically frozen, and

developers only have to keep at most dozens of tokens per task, which are task

descriptions and input templates, for LM adaptation. Even including demon-

stration examples, hundreds of tokens per task are kept. In fine-tuning, the

parameters of the LM are updated to optimize the task performance. Develop-

ers have to keep different versions of parameters per task, which can be as huge

as 540 billion parameters [8] in the status quo.

Prompting is also more simple and easier to realize in serving various tasks

with a single LM than other LM adaptation methods such as LoRA [29] or

adapter [28]. Such methods require layers with different parameters for each

task, and this makes really hard to serve queries from diverse tasks in a single

forward pass (i.e., batching the queries). However, prompting simply prepends

some texts to queries, and does not require special implementation to support

such scenarios.
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2.2 Manual prompt tuning

In the early stages of prompting, prompts were often handcrafted with heuris-

tics. Radford et al. [54] and Brown et al. [4] demonstrated the transferability

of pretrained LMs using manual prompts. These two works show that LMs can

perform well on diverse NLP tasks when provided with some adequate prompts.

In subsequent works, manual prompts have been applied to a number of

research areas such as factual probing [50, 31], knowledge mining [11], question

answering [34, 55], and text classification [53, 59]. Despite their remarkable

adaptation ability, manually crafted prompts have exhibited unstable perfor-

mances [42]. Besides, prompts that show good performance are, in fact, quite

against commonsense, unable to understand why some specific prompts work

well [42].

2.3 Automatic prompt engineering

In addition to the unpredictable performance and unpredictable behavior of

manual prompts [42], the process of creating manual prompts requires signifi-

cant human effort, as it involves devising and evaluating numerous handcrafted

templates with different patterns. Consequently, recent studies have proposed

techniques to automate the search for optimal prompts. As illustrated in Ta-

ble 2.1, prompt engineering methods can be classified into two categories based

on their usage of gradients. We can additionally categorize them according to

the computation costs that they require. In Table 2.1, we assign the label ”low-

cost method” to approaches that are specifically designed for low computation

costs (i.e., involving fewer than 500 iterations) or have demonstrated their effi-

cacy under such constraints.
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Gradient-based Gradient-free

High cost

P-tuning [42] RLPrompt [13]

SoftPrompt [36] TEMPERA [69]

Prefix-tuning [39] APE [72]

AutoPrompt [60] BBTv2 [61]

P-tuning v2 [43] Clip-Tuning [5]

CoRe (§3) BDPL [15]

APE [72]

Low cost
MetaPrompting [27] Instruction Induction [24]

MetaL-Prompt (§4)

Table 2.1 Classification of automatic prompt engineering methods based on

gradient usage and computation cost for prompt creation. Methods that are

specifically designed to operate under low computation costs, with performance

validated iterating fewer than 500 examples, are classified as low-cost methods.

2.3.1 Gradient-based Prompt Engineering

One popular approach in prompt engineering involves gradient-based meth-

ods, which continually update prompt tokens or parameterized prompt em-

beddings by leveraging gradients. Lester et al. [35], OPTIPROMPT [71], Au-

toPrompt [60] and P-tuning [42] initially concatenate (randomly) initialized

embeddings of tokens for prompts with the embeddings of input data in a pre-

defined order. Other methods incorporate prompts within hidden states rather

than inputs. Specifically, Prefix-tuning [39] appends prompts to the keys and

values of transformer layers. Similarly, P-tuning v2 [43] and BBT [62, 61] also

adopt this approach. The prompts are directly optimized using SGD on a given

task dataset. The optimized prompts are subsequently utilized during inference
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without any modification.

Certain methods have focused on improving prompt performance by enhanc-

ing the initialization process. P-tuning v2 [43] employed multi-task learning to

achieve this objective. MetaPrompting [27] utilized meta-learning techniques,

specifically MAML [17] and its variants [48, 1], which are methods designed

to enhance the initialization of deep learning models for few-shot learning sce-

narios. MetaPrompting also confirmed its effectiveness with several steps of

training which is a low-cost setting.

While gradient-based prompting methods have shown promising perfor-

mances across various NLP tasks, they have demonstrated degraded perfor-

mance in some cases compared to other adaptation methods such as fine-tuning

or LoRA [29], as discussed in Ding et al. [16]. These findings serve as a moti-

vation for further advancements and improvements in prompting methods.

2.3.2 Gradient-free Prompt Engineering

Gradient-based prompt engineering methods have demonstrated impressive per-

formance in LM adaptation. However, they often require substantial memory

space for backward passes. Additionally, certain language models are offered

as black-box services (as discussed in Section 2.4), where access to model pa-

rameters is disabled. Consequently, gradient-based methods are not applicable

to such models. These limitations have led to the development of gradient-free

prompt tuning methods as an alternative approach.

Prompt generation with pretrained language models

One simple method is generating a prompt using an LM as illustrated in Fig-

ure 2.1 (1). Gao et al. [18] utilize the pretrained T5 model [55] to complete

the missing spans of an input sentence and construct a prompt. PromptBoost-
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Prompt

Prompt Prompt

Hand-crafted prompt
to guide the LM to
generate prompts

LM PromptPromptPrompt

PromptPromptNew promptPrompt

(1) Generate with a pretrained language model

(3) Search-based

(2) RL agent for prompt generation

PromptRL agent LM

Update with rewards

Optional evaluation to
select the best

Repeated choice and manipulation

Figure 2.1 Illustration of three categories of gradient-free methods.

ing [26] further enhances performance by ensembling prompts generated by Gao

et al. [18]. Instruction Induction [24] employs an LM to generate a natural lan-

guage instruction for the target task, utilizing few-shot demonstrations and a

hand-crafted instruction that guides the LM in generating the task instruction.

While Instruction Induction generates a prompt efficiently through a single gen-

eration process, the performance of the generated prompt is not satisfactory.

Consequently, Automatic Prompt Engineer [72] improves upon this method by

iteratively generating candidate instructions using an LM and evaluating the

candidates to identify the best prompt.
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Prompt generation with RL agents

RLPrompt [13] is another approach that involves generating prompts using an

LM, but it employs reinforcement learning to guide the LM in prompt gener-

ation as depicted in Figure 2.1 (2). RLPrompt adapts a pretrained LM using

reinforcement learning (RL) to generate prompts tailored to specific tasks. In

the training process, RLPrompt receives rewards from a black-boxed target

LM without directly accessing its parameters. It is important to note that this

method requires an additional pretrained LM that can access the parameters

and is specifically adapted for prompt generation. TEMPERA [69] also utilizes

RL but takes a different problem. It trains an RL agent to modify an existing

prompt for a given task. During testing, the RL agent, trained by TEMPERA,

receives an initial prompt containing instructions and demonstration examples.

The agent then applies pre-defined editing actions, such as swapping or deleting

phrases, to refine the prompt according to the specific requirements of the task.

Search-based approaches

Some methods adopt more sophisticated optimization methods: search-based

optimization (Figure 2.1 (3)). GRIPS [52] repeatedly edits prompts starting

from a hand-crafted prompt and searches the best prompt by evaluating the

edited prompts. BBT [62] and BBTv2 [61] adopt evolutionary search on a con-

tinuous prompt (or soft prompt), which is a continuous vector like word embed-

dings, instead of a natural language prompt which is mapped to discrete tokens.

BBTv2 improves this by adopting the prompt design of Prefix-tuning [39], which

prepends prompts to keys and values of transformer layers. Clip-Tuning [5] also

takes an evolutionary search to optimize a continuous prompt as BBT, but

Clip-Tuning uses fitness scores from diverse subnetworks of an LM to diversify
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the data representations.

Estimated gradients

BDPL [15] optimizes prompts as gradient-based prompt tuning, but uses esti-

mated gradients obtained from a variance-reduced policy gradient algorithm.

2.4 Language Model as a Service

According to the emergence of large-scale language models (LMs), several com-

panies train such models, and provide them as services [49, 19, 10], which is

often called Language-Model-as-a-Service (LMaaS) [62]. On an LMaaS, a user

sends an input text to the service via the API, then the user can obtain some

corresponding prediction results from the LM. A model of an LMaaS is usu-

ally black-boxed due to safety to avoid potential malicious misuse, commercial

reasons, etc, which disables users to tune the model via conventional training

methods (i.e, fine-tuning) for their tasks if the service provider especially sup-

ports such method in the black-box. Even if such tuning methods are absent,

the services can support various and unique tasks of users using in-context

learning, which we mentioned in Section 2.1, where an LM learns the user task

from a carefully crafted input.

2.5 Computation costs of automatic prompt engineer-

ing methods

As we mentioned in the previous section, capabilities of large-scale language

models (LMs) are often provided via black-boxed services, LMaaS. One of the

most popular method to adapt an LM on an LMaaS to a user’s task is in-context

learning, which gives a prompt that includes a (natural language) task instruc-
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Method # of examples

P-tuning [42] 56,000

SoftPrompt [36] 960,000

RLPrompt [13] 96,000 – 192,000

TEMPERA [69] 65,536

MetaPrompting [27] 240

APE [72] 12,800

BBTv2 [61] 256,000

Clip-Tuning [5] 16,000 – 32,000

BDPL [15] 32,000 – 128,000

MetaL-Prompt (ours) 16

Table 2.2 Number of examples that each prompt tuning methods processed for

the experiments in the original papers. Note that we present the additional costs

to support one more dataset to show scalabilities of the baselines. MetaPrompt-

ing and MetaL-Prompt (ours) requires meta-learning but it is conducted once

not for each task.

tion or/and demonstration examples for the task to make the LM understand

the task. Making a good prompt is not easy even for deep learning experts, and

a service even provides a heuristic guide for manual prompt engineering based

on experiences [46].

Even though automatic prompt tuning methods have proven to be effective,

their adoption in Language-Model-as-a-Services (LMaaS) is currently lacking.

While users can attempt to create prompts by running gradient-free prompt

tuning methods using the provided LMaaS APIs, this approach poses chal-

lenges, particularly for non-experts who may find it difficult to deploy and
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execute such methods in their private environments. Therefore, LMaaSs are

encouraged to support automatic prompting methods in the services.

The primary obstacle to integrating both gradient-based and gradient-free

prompt tuning methods into LMaaS lies in their substantial computational

costs. In Table 2.2, we present the number of examples (often tens of thou-

sands) that an LM needs to process in order to optimize a prompt for each task

using various prompt engineering methods. In cases where the original papers

present few-shot settings, we report the costs given 16 examples. Otherwise, we

provide the actual costs as demonstrated in the papers’ experiments. Consid-

ering the vast number of users that an LMaaS serves, each with unique tasks,

processing such a large number of examples for a single task becomes exces-

sively burdensome. This highlights the need for a lightweight prompt tuning

method specifically tailored for LMaaS.

Among the methods listed in the table, MetaPrompting stands out as re-

quiring relatively low computation resources. MetaPrompting focuses on finding

improved initializations for prompts, facilitating rapid tuning and resulting in

enhanced prompt performance. However, it should be noted that MetaPrompt-

ing relies on computing gradients, necessitating the deployment of a training

system within the service, which introduces an additional significant overhead.

As a result, there is a clear motivation for the development of prompt tuning

methods that do not rely on gradients, particularly when LMaaS is in an online

setting. Such methods would help alleviate the deployment burden associated

with gradient computation while still enabling effective prompt optimization

within the LMaaS framework.
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2.6 Efficiency of prompt engineering methods

In this thesis, we explore the effectiveness of prompt engineering methods by

evaluating their performance in terms of accurate prediction and the compu-

tational costs associated with prompt creation. The performance of accurate

prediction is assessed using metrics such as accuracy or F1 score when the

prompts generated by a method are applied to an LM. For the sake of sim-

plicity, we refer to this efficiency as simply p̈erformance,” aligning with the

terminology commonly used in deep learning research. Additionally, we com-

pare the computation costs involved in creating a prompt for a specific task.

We quantify this by measuring the number of examples that an LM must pro-

cess to generate a prompt. Although this measure provides a rough estimate

of FLOPs, it enables a much more simple comparison of the costs by removing

minor differences between the methods. we exclude the costs of the preparation

process, such as the meta-learning phase of MetaPrompting, in order to focus

on the scalability of prompt engineering methods with respect to the number

of tasks.

2.7 Meta-learning

Meta-learning is a learning process to improve a learning algorithm using var-

ious training episodes, which is often called learning-to-learn. One of the most

representative approach is learning initialization of parameters for fast learn-

ing from few-shot examples [17, 48]. Dataset distillation [64, 3] is an another

example. It learns how to compress a dataset for computation efficiency while

a learning on the compressed dataset still generalizes well.

Meta-learning have been defined as various inconsistent ways, but we borrow

a bi-level optimization view to formally introduce meta-learning. Hospedales
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et al. [25] formalized meta-learning as follows:

ω∗ =argmin
ω

M∑
i=1

Lmeta(θ∗(i)(ω),ω,Di
val)

s.t. θ∗(i)(ω) = argmin
θ

Ltask(θ,ω,Di
train),

(2.1)

where Lmeta refers to meta-learning and Ltask refers to base-learning that is

conditional on the learning strategy ω. ω is often called meta-knowledge and

could be initialization or dataset compression strategy in the examples we pre-

sented. The meta-learning learns ω such that the model generalizes well on

their validation sets after the base-learning with ω.
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Chapter 3

Context Regularization for
Gradient-based Prompt Tuning

3.1 Motivation

Gradient-based prompt tuning is one of the most popular automatic prompting

methods, and has demonstrated promising performances on diverse NLP tasks.

Even though prompting has unique advantages in small space requirements and

its simplicity compared to other LM adaptation methods such as fine-tuning or

LoRA, as we mentioned in Section 2.3, gradient-based prompting methods have

shown degenerated performances compared to such LM adaptation methods.

This performance gap motivates improving SGD-based prompt tuning methods.

In this section, we propose a novel SGD-based prompt tuning scheme that

can be applied to various SGD-based prompt tuning methods to improve their

performances.
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LM

Attuning Filtering

Pos.. Pos.. Neg..The gorgeously .. Good fun .. This isn't ..

Positive Positive Negative

Figure 3.1 Abstracted illustration of the two regularizers, context attuning (red

line) and context filtering (blue line), of CoRe with sentiment analysis data.

The black line indicates regular gradient-based prompt tuning where an input

sequence consists of one data example (x0 and y0) and the prompt ω0 is opti-

mized with respect to y0 only.

3.2 Approach

Our key approach to improve SGD-based prompt tuning is to concatenate mul-

tiple examples and regularize a context generated by them, which transfers to

improvement in zero-shot prediction. Our training scheme first concatenates

multiple examples from the same task. Taking an example of concatenating

three examples (x0, y0, x1, y1, x2, y2) as depicted in Figure 3.1, a model is given

an input S = {ω, x0, y0,ω, x1, y1,ω, x2, y2} where ω is the tunable prompt.

Then, CoRe introduces context attuning regularizer. Context attuning opti-

mizes the first prompt (ω that comes before x0) towards minimizing the losses

of the succeeding examples (y1, y2). Therefore, the prompt does not become

biased to {x0, y0}, but is generalized for the appended examples as well and

generates less biased task contexts.

However, context attuning alone does not show the effect of regularization

because the following examples receive too diverse contexts, such as styles, top-
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ics, relationships between entities, or task information. Such diversity hinders

the optimization of the regularizer towards the task context. To resolve this

problem, we add another regularizer, context filtering, to adequately extract

the task context from the preceding examples. Specifically, following the exam-

ple in Figure 3.1, context filtering (blue line) optimizes prompts given preceding

examples — optimization of ω1 with respect to y1 when {x0, y0, x1} is given.

We target zero-shot ICL where only a prompt and a test input are provided

(i.e., no demonstration examples). During inference, a model is given ω, xi and

expected to predict yi where ω has been trained with CoRe. We denote this

setting as zero-shot in-context learning to imply that the model learns from the

context provided by the tuned prompt, but we do not give any demonstration

examples (zero-shot example for in-context learning). Please note that this dif-

fers from the typical zero-shot setting. Although the model still does not see

any training example for making predictions, training data has been used when

optimizing the prompt with CoRe.

We would like to highlight our finding that prompts tuned with CoRe in a

few-shot ICL setting show improved performances in a zero-shot setting. CoRe’s

two regularizers — context attuning and context filtering— are applied on a

concatenation of multiple examples (i.e., few-shot ICL), and the regularizers

steer the prompt during training time to generate a more generalized task con-

text for following examples (x1, x2) in a sequence. Such a well-generated task

context (generated by ω) is propagated not only to the following examples

(x1, x2) but also to the example (x0) paired with the prompt. Therefore, a

prompt tuned with CoRe helps the model’s prediction when given an input of

a single example (S = {ω, xi}), which is equivalent to a zero-shot ICL setting.

To the best of our knowledge, this work is the first to leverage interactions

between examples in a sequence for the purpose of regularization. There are
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several works training on multiple examples in a sequence [47, 7, 18]. They

focused on improving few-shot in-context learning by maximizing the likelihood

of an example given demonstration examples. Our work is distinct from the

above works in two aspects. First, we target zero-shot settings. Second, we

introduce a novel regularization technique — context attuning— to improve

zero-shot performance by leveraging the influence between multiple examples

within a sequence.

Throughout this section, we use a simple form of prompt for conciseness of

the explanation but without loss of generality: {ω, xi, yi} where ω is a tunable

prompt. Our work focuses on autoregressive language models (LMs), so our

method is not explored or analyzed upon autoencoding LMs such as BERT [14].

3.2.1 Context attuning

Context attuning prevents a prompt from being biased to a single example for

generalization on the zero-shot ICL setting, using regularization on a context.

In detail, this regularizer guides a prompt ω and an example {x, y} to create

an appropriate task context without being biased towards the example.

Mechanism

To realize the goal, we first put multiple examples in an input sequence so that

examples can exchange the task context with one another. This is different

from typical SGD-based prompt tuning where each input sequence has only

one training example, and the gradients cannot flow between the examples. In

the sequence, the appended examples attend to the preceding examples and

are influenced by the context of preceding examples during predictions. The

prompt of the first example plays a key role in context attuning— it minimizes

not only the losses of the first example (black line in Figure 3.1) but also the
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losses of the succeeding examples (blue line in Figure 3.1). We hypothesize

that such optimization inherently regularizes a task context from the prompt

and prevents the prompt from being too biased to a single example, ultimately

achieving better generalization ability.

We give a formal definition of the context attuning regularizer. In autore-

gressive LMs, as depicted in Figure 3.1 with the red lines, our training method

optimizes as the following:

ω ←− ω − ϵ · ∇ω0

∑
k>0

pθ(yk|S<k,ωk, xk), (3.1)

where Sk = {ωk, xk, yk} is the k-th example in the sequence, S<k = {Sj |j <

k}, ωk is a trainable parameterized prompt, s is the number of concatenated

examples, and θ is the parameters of the LM. ωk(k ̸= 0) is the same with ω0

but regarded as a constant and not optimized. We introduce k to represent the

positions of the prompts and indicate which prompts are optimized. On our

method, the prediction of each example Si,j is conditioned on the prompt ω0

paired with the first example, ”The gorgeously..” in Figure 3.1 for an example,

and the prompt is optimized for multiple examples.

We were inspired by few-shot ICL [54, 4] when designing the context attun-

ing regularizer. When predicting the answer for a new input, few-shot ICL

prepends a few demonstrations — input-answer pairs — to the new input

and condition on those demonstrations to understand the task. The success

of few-shot in-context learning has shown that prepended examples provide

some meaningful information (e.g., task context) to succeeding data. Few-shot

ICL leverages the interaction among examples during inference; our method

can be considered as leveraging the same advantage during training (prompt

tuning) to achieve better generalization.
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Theoretical analysis

We analyze how the regularizer affects context attuning using a theoretical

framework from Xie et al. [66] and verify that context attuning improves zero-

shot inference. Xie et al. [66] designed the framework to explain what enables

in-context learning of LMs. They viewed an LM as Bayesian inference with a

hidden Markov model (HMM), and the transitions of the HMM are parameter-

ized by a latent concept c, which represents a task. On their framework, our

regularizer can be expanded as follows:

p(yk|S<k,ωk, xk) ∝∫
c

∑
hs
k

p(yk|xk, hsk, c)p(hsk|S<k,ωk, xk, c)p(S<k,ωk, xk|c)p(c) dc, (3.2)

where hsk is a hidden state corresponding to xk. Note that we omit the index of

sequence i as our analysis is done on a single sequence.

We are interested in how the regularizer attunes the task context and gener-

alizes to maximize
∑

i p(yi,0|ω0, xi,0), which is zero-shot inference. On the frame-

work, our regularizer affects the terms that ω0 is involved in: p(hsk|S<k,ωk, xk, c)

and p(S<k,ωk, xk|c). We analyze the two terms to identify the effect of the

cross-data regularizer on zero-shot inference.

First, optimizing p(hsk|S<k,ωk, xk, c) prevents the prompt from being biased

towards a single data instance by optimizing the task context passed to the

following examples. The term we optimize can be expanded as follows:

p(hsk|S<k,ωk, xk, c) =
∑
hs
0

p(hsk|hs0, S
−ω0
<k−1,ωk, xk, c)p(h

s
0|ω0, x0, c), (3.3)

where S−ω0
<k−1 = S<k−1 − {ω0}. Optimizing only zero-shot inference p(y0|ω, x0)

may cause the hidden state hs0 to be biased to the data instance. However,

with our regularization, the prompt ω0 is tuned to pass the proper task context
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via the hidden state hsk to the following examples. To increase the probability

of such hidden state, the prompt should be tuned to increase the probability

p(hs0|ω0, x0, c) where h
s
0 is likely to transit to the proper hidden state hsk, where

the first term of RHS of Equation 3.3, p(hsk|hs0, S
−ω0
<k−1,ωk, xk, c), is high. Since

hs0 is unlikely to transit the hidden states that embed the proper task context

when hs0 has already been biased to a specific data instance, the bias is naturally

avoided. Finally, the unbiased hidden state hs0 improves the average zero-shot

inference performance, which is the average of Equation 3.2 over the dataset

where k = 0.

Moreover, the optimization also calibrates p(S<k,ωk, xk|c) to align the input

data to the optimal concept. Comparing that the original method only optimizes

p(ω0, xi,0|c), S<k contains y0 so we can align the input to the task additionally

considering the answer for the input.

3.2.2 Context filtering

The context filtering regularizer guides prompts to filter and receive only the

task-related context (task context). With context attuning regularizer, CoRe

help LMs to obtain unbiased hidden states for zero-shot inference but the con-

text attuning regularizer alone cannot realize the regularization effect if hidden

states of succeeding examples are too noisy.

Hidden states deliver various contexts, including not only task contexts but

also contexts related to the style, topics, or content of preceding examples.

The following examples’ predictions depend on the mixed contexts. Such phe-

nomenon has been empirically reported in the work of Liu et al. [41] where each

example has a unique set of optimal demonstrations.

We conjecture that contexts that are not directly related to the task add

noise to optimization on hidden states, undermining the regularization effect of
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context attuning regularizer. Thus, there should be some auxiliary mechanism

that selects only the set of hidden states that convey task-related optimal signal

and the context filtering regularizer serves that role.

Context filtering regularizer steers a parameterized prompt to filter only the

set of hidden states that convey task contexts. We maximize the likelihood of

an example given prepended demonstration examples, and this is the same loss

with MetaICL [47] and ICT [7] but without meta-learning. Specifically, we use

the following SGD step:

ω ←− ω − ϵ ·
∑
k>0

∇ωk
pθ(yk|S<k,ωk, xk), (3.4)

as depicted in Figure 3.1 with the blue lines. The only required context for

inference with demonstrations is the task context extracted from the preceding

demonstrations because the task is the only correlation between multiple ex-

amples. Therefore, this regularizer intrinsically leads the prompt to extract a

proper task context from preceding examples.

3.2.3 Practical objectives

Our SGD step consists of the original likelihood maximization and the two

regularizers:

ω ←− ω −∇ω0pθ(y0|ω0, x0)

−∇ω0pθ(y1|ω0, x0, y0,ω1, x1)

−∇ω1pθ(y1|ω0, x0, y0,ω1, x1),

(3.5)

when we place two examples in a sequence. This can be implemented by sim-

ply concatenating examples and minimizing the cross entropy of all of the an-

swers. However, when we concatenate more than two examples, we need a more

complex implementation and multiple iterations for a sequence because some

prompts should be regarded as constants.
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For concrete analysis, we consider PyTorch-like frameworks, where a back-

propagation iteration computes the gradients of a single scalar loss for listed

parameters, and autoregressive LMs. On such frameworks and LMs, CoRe re-

quires n−1 backpropagation iterations, where n is the number of concatenated

examples. For example, when n = 3, CoRe needs to compute the gradient of

the original likelihood G00, context attuning {G01, G02}, and context filtering

{G11, G22}, where Gij = ∇ωipθ(yj |S<j ,ωj , xj). We can compute G00, G01, G02,

and G22 at the first backpropagation iteration, and G11 at the second, resulting

in two iterations. This is not scalable because we need more iterations as the

number of concatenated examples increases.

For efficient training, we modify the losses by allowing ωk(k > 0) to be

optimized for the cross-data regularizer so that we can simply compute the

required gradients in a single iteration. As a result, the final SGD step of CoRe

is as follows:

ω ←− ω −
∑
i<n

∑
j<i

Gij , (3.6)

where n is the number of concatenated examples.

The modified CoRe step is similar to the combination of the original CoRe

step with various number of concatenated examples. If we assumeGii ≈ ∇ωipθ(yi|ωi, xi),

the set of the gradients of the new CoRe objective is the same as the union of

the original CoRe gradients on n inputs — {ωi, xi, yi|i < j} where j ≤ n —

before the modification. For example, when n = 3, the original CoRe gradients

on {ω0, x0, y0,ω1, x1, y1,ω2, x2, y2} are the same with {G00, G01, G02, G11, G22},

those on {ω1, x1, y1,ω2, x2, y2} are the same with {G11, G12, G22}, and those on

{ω2, x2, y2} are the same with {G22} under the assumption. Therefore, the gra-

dient sum of the three steps are as follows:∑
i<n

∑
j<i

Gij +G11 + 2G22 (3.7)
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Suppressing the magnitude of G11 and G22 by multiplying 1/2 and 1/3 re-

spectively, Equation 3.7 become the modified CoRe gradients. Therefore, the

modified CoRe gradients are the same with the summation of the original CoRe

gradients on various sequence lengths with some calibrations.

3.3 Experimental Setup

In this section, we briefly specify the setup that our experiments are conducted

on: models, datasets, and hyperparameters.

Model and Dataset

We evaluate our training method on two large language models, GPT2-XL (1.5B

parameters) and GPT-J (6B parameters), and seven classification datasets

(CB [12], RTE, WSC, WiC [51], COPA [57], BoolQ [9], MultiRC [33]) from

SuperGLUE benchmark [63]. The benchmark has English datasets from vari-

ous tasks and domains such as news, blogs, or encyclopedia. We downloaded

the model checkpoints from Huggingface transformers [65] and datasets from

Huggingface datasets [38].

Baselines

We evaluate our method on three gradient-based prompt-tuning baselines: P-

tuning [42], Prefix-tuning [39], and Softprompt [35].

Input Construction for CoRe

In our experiments, the input is formed by simply adding several trainable

prompt embeddings in front of each element of a data instance. This way of

constructing an input is highly convenient because it does not require manual
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human effort and additional tuning for each task. For example, a single data

instance of natural language inference tasks consists of three elements: premise,

hypothesis, and label. We transform the data instance into (e0, premise, e1,

hypothesis, e2, label) where ei ∈ Rn×h is a parameterized prompt that we op-

timize, and h is the hidden state size. We use n = 1 for P-tuning and Soft-

prompt. For Prefix-tuning, we use a different template since prefix-tuning ap-

pends prompts only at the front of a data instance. We transform the data in-

stance into (e0, premise, hypothesis, label) where ei is a parameterized prompt

of size 5.

Sequence Size and Batch Size

We introduce a special hyperparameter used in CoRe, named sequence size. This

refers to the number of data instances concatenated for a single training example

when CoRe. For example, an input for CoRe of sequence size 2 and 3 becomes

{ω0, x0, y0,ω1, x1, y1} and {ω0, x0, y0,ω1, x1, y1ω2, x2, y2}, respectively. Please

note that CoRe of sequence size 1 is equivalent to the standard SGD training. To

make a fair comparison, we keep the size of batch size = (number of sequences

in a batch) × (sequence size) to be a constant. This way, a model sees an equal

amount of data for every iteration of CoRe across all sequence sizes.

Evaluation

We use accuracy averaged over different random seeds. We use ten seeds for

GPT2-XL experiments, and five for GPT-J experiments except for MultiRC

experiments, where we use five and three seeds respectively.

Hyperparameters We search for the best set of hyperparameters (learning

rate and batch size) on the search space presented in Table 3.1. We use Super-
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Hyperparameter Method GPT2-XL GPT-J

LR P-tuning {2e−4, 4e−4, 8e−4} {1e−4, 2e−4, 4e−4, 8e−4}

Softprompt {2e−3, 2e−2, 2e−1} {2e−3, 1e−2, 5e−2}

Prefix {8e−6, 4e−5, 2e−4} {2e−5, 1e−4, 2e−4, 4e−4}

Batch size All {32, 64} {32, 64}

Table 3.1 Hyperparameter search space for P-tuning, Softprompt, and Prefix-

tuning at GPT2-XL and GPT-J

Method GPT2-XL GPT-J

P-tuning 4e−4 2e−4

+ CoRe 4e−4 2e−4

Softprompt 2e−2 1e−2

+ CoRe 2e−2 1e−2

Prefix 2e−4 1e−4

+ CoRe 2e−4 2e−4

Table 3.2 Learning rate for P-tuning, Softprompt, and Prefix-tuning at GPT2-

XL and GPT-J

GLUE CB, the smallest dataset among SuperGLUE subsets, for quick hyper-

parameter search. For each search space of three methods and two models, we

train a prompt using the baseline and the baseline with CoRe of sequence size

2.

We use batch size 32 for all three methods at GPT2-XL and GPT-J. Note

that the batch size equals (number of sequences in a batch) × (sequence size),

as we described in Section 3.3.

In Table 3.2, we report learning rate selected for each method at GPT2-XL
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and GPT-J. Both the baseline and the baseline with CoRe show the best perfor-

mance at the same learning rate except for Prefix-tuning at GPT-J. Therefore,

for this specific case, we use the optimal learning rates for each setting (1e−4

for baseline and 2e−4 for CoRe). We use the same learning rate and batch size

for all datasets.

We train prompts for 30 epochs on SuperGLUE CB, WSC, and COPA,

which are small datasets, and 20 epochs on SuperGLUE RTE and WiC, which

are large datasets. The size of SuperGLUE BoolQ (9K) and MultiRC (27K) are

fairly larger than other SuperGLUE subsets (¡ 5K), so we match the number of

training iterations for those two datasets to that of SuperGLUE RTE instead

of setting epochs for them.

3.4 Experimental Results

We evaluate CoRe on the setup we presented in Section 3.3. We first show

the performance gain of our method on the three baselines. Then, we present

how the performance changes according to sequence sizes, and further analyze

the effect of two regularizers of CoRe with the ablation studies. In addition,

we present how the similarity of concatenated examples affects performance.

Finally, we present the performance of CoRe in few-shot inference settings.

3.4.1 Main result
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We first experiment with our method on the three baselines, which uses

parameterized continuous prompts. Table 3.3 compares the zero-shot perfor-

mances of prompts trained only with baseline tuning methods against prompts

trained with CoRe on top of the methods. On GPT2-XL, CoRe shows improve-

ments in accuracy compared to P-tuning, Prefix-tuning, and Softprompt, up to

11.9%. On GPT-J, CoRe also shows consistent enhancements up to 6.3% for

the three methods. The absolute gains are reduced on GPT-J, compared to the

gains on GPT2-XL. This is expected as it is typically hard to earn a large gain

as the baseline performance increases.

Interestingly, we found that our method shows a higher accuracy gain for

NLI tasks — SuperGLUE CB and RTE — on GPT2-XL across all three base-

lines. We can hypothesize that there are some correlations between NLI tasks

and the pretraining objective, or between the tasks and the pretraining dataset

of GPT2-XL. It is worthy to analyze the relationship between the pretraining

and downstream tasks to further improve the gains for other datasets as a future

work.

We observe that there are mainly two cases where CoRe does not show per-

formance gain. First, CoRe performs worse than the baseline on SuperGLUE

MultiRC. We conjecture that task context does not get properly propagated

since training samples of MultiRC are far longer than samples of other Super-

GLUE subsets.

Another observation is that CoRe generally does not work well for Prefix-

tuning on GPT-J. We hypothesize that this might have some correlation with

Rotary Positional Embedding (RoPE) of GPT-J. It has not yet been explored

how the mechanism of Prefix-tuning (appending prompts to all the key and val-

ues of each layer) interact with RoPE and this may undermine proper working

of CoRe.
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Figure 3.2 Zero-shot evaluation on varying sequence sizes. Accuracy for each

dataset is normalized with respect to its accuracy when the sequence size is 1.

3.4.2 How many examples to concat?

To see how the sequence size of CoRe affects the performance, we train prompts

on GPT2-XL and GPT-J using varying sequence sizes from one to four. Fig-

ure 3.2 shows the result of P-tuning on GPT-J with zero shot evaluation, and

Table 3.4, Table 3.5, and Table 3.6 presents the results of all of the baselines

on both models with the exact numbers.

In most cases, sequence size of 3 or 4 exhibits the best performances on

GPT-J, but CoRe shows better performance with smaller sequence sizes, 2 or

3, on GPT2-XL. This shows that context attuning leads to context with less

bias when given more data in a sequence, and provides effective regularization.

Increasing the sequence size over a certain level results in accuracy drop. From

this we infer that too many examples in a single sequence leads to causing a

noise to become part of the context.
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SuperGLUE

Model s CB RTE WSC WiC COPA BoolQ MultiRC

GPT2-XL 1 (Prefix) 65.89 59.35 63.56 53.12 57.70 62.56 72.24

2 79.46 61.66 64.14 53.64 56.40 67.40 69.58

GPT-J 1 (Prefix) 94.20 81.88 65.19 70.50 66.60 83.38 84.21

2 94.64 82.46 65.00 66.96 65.20 82.81 81.61

Table 3.6 The performance of Prefix-tuning (s = 1) and CoRe on Prefix-tuning

where s is the sequence size. We highlight the best performance among all

sequence sizes.

3.4.3 The impact of each regularizer

To see how context attuning and context filtering each contributes to the per-

formance gain from CoRe, we conduct ablation studies with gradients involved

in CoRe. We factorize the gradients as in Equation 3.5 with a sequence size

of 2, and the gradients represent the gradient in the baseline method, context

attuning, and context filtering, respectively. We then test the effect of each type

of gradients.

As presented in Table 3.7, in general, CoRe exhibits the best performance

when all three gradients (baseline, context attuning, and context filtering) are

involved. Context attuning alone has no gain, or shows smaller gain than ap-

plying both regularizers. It requires a mechanism to filter unnecessary contexts

and make context attuning focus on the task context, and our context filtering

serves that role. There is one unexpected behavior in SoftPrompt on CB that

applying the filtering gradient alone shows performance on par with CoRe. We

hypothesize that filtering appropriate task context alone shows good enough

performance for this specific case.
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Method Task orig. + A + F + both

(CoRe)

P-tuning RTE 68.84 69.86 68.48 72.13

CB 76.79 76.07 73.57 81.79

Softprompt RTE 68.66 69.31 69.71 73.14

CB 73.57 75.00 75.89 75.89

Prefix RTE 59.35 55.56 53.72 61.66

CB 65.90 73.39 71.07 79.46

Table 3.7 Ablations studies on the effect of context attuning regularizer (A)

and context filtering regularizer (F) where sequence size is 2.

3.4.4 Measurement of bias caused by prompts

To showcase the regularization effect of CoRe, we compare how much prompts

are biased to training data samples before and after applying CoRe. For quan-

tifying the amount of bias, we use ’one-step generalization ratio (OSGR)’ sug-

gested by [40], which is a validation loss drop during a single training step

divided by a training loss drop during the step. We calculate the training loss

only on the single batch of data used in the training step, not the entire train-

ing set, to represent how much the prompt is over-fitted (biased) to the batch.

The higher the OSGR, the faster the validation loss drops with respect to the

training loss, meaning smaller generalization gap between a training batch and

a validation set. Note that a model sees the exactly same training data in a sin-

gle training step regardless of applying CoRe, as we mentioned in Section 3.3.

In Table 3.8, we report results for three baselines on CB and RTE datasets,

measured for 100 training steps after 3 epochs, and averaged over 10 seeds.

Despite training for the same batch of data examples, all three baselines
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Method Task orig. + CoRe

P-tuning RTE 0.024 0.050

CB 0.261 0.286

Softprompt RTE 0.006 0.014

CB 0.137 0.157

Prefix RTE 0.013 0.020

CB 0.015 0.037

Table 3.8 Comparison of one-step generalization ratio [40] before and after

applying CoRe.

Similarity CB RTE WiC

max 78.93 67.22 62.79

max (10%) 76.96 70.43 64.70

standard 81.79 72.13 65.03

min (10%) 77.68 62.13 64.67

min 81.07 69.35 64.48

Table 3.9 Comparison of zero-shot performance of various sampling methods

considering semantic similarity. Standard is CoRe without such sampling.

show a smaller OSGR than the baselines with CoRe. This result implies that

vanilla prompt-tuning is prone to make a prompt more biased toward data ex-

amples that the model has seen during training. CoRe produce prompts that

can mitigate such bias which aligns with the performance gain shown in Ta-

ble 3.3.

3.4.5 Which examples to concat?

Previous studies show that concatenating semantically similar examples im-

proves downstream task performances. Liu et al. [41] empirically shows that

37



demonstration examples that are semantically similar to the target example

improve in-context learning performances. Some studies also show that placing

semantically similar examples in an input sequence during finetuning [18] or

pretraining [37] improves downstream task performance. We experiment how

semantic similarity between examples in an input sequence affects the perfor-

mance of CoRe. We consider CoRe with sequence size 2.

For the experiment, we first sample batch size/2 samples for each iteration

during prompt tuning. For each sampled example, we select the most similar ex-

ample (max ) or the least similar example (min) among the unseen examples in

the epoch, and append the selected example after the sampled example. We also

experiment with less extreme similarity by sampling an example to be appended

from 10% most similar (max 10% ) or 10% least similar (min 10% ) examples of

the unseen examples in the epoch. We measure the semantic similarity between

examples using stsb-roberta-large model from sentence transformers [56].

As presented in Table 3.9, sampling considering semantic similarity degen-

erates the performances of CoRe compared to the standard sampling, where

demonstrations are sampled at random. This shows that CoRe also benefits

from concatenating semantically similar examples — standard sampling reports

better evaluation result compared to min and min 10%. However, choosing to

concatenate the more similar example (max and max 10% ) introduces a bias

to the prompt, and the bias depresses the regularization effects of CoRe.

3.4.6 Few-shot in-context learning

We also evaluate our method in a few-shot in-context learning setting, where

we prepend multiple examples as demonstrations to a target example during

evaluation. Although the few-shot setting is not originally our target, the objec-

tive of two regularizers — to optimize a prompt towards sending and receiving
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Figure 3.3 Comparison of few-shot in-context learning performance between

P-tuning and P-tuning with CoRe, normalized by zero-shot performance of P-

tuning. Number of demonstrations we use is a multiple (x axis) of the number

of each dataset’s classes.

a proper task context — naturally contributes to improving the predictions

prepended with demonstrations — that is, few-shot in-context learning. Fig-

ure 3.3 shows the result of few-shot evaluation on three different datasets with

prompts from P-tuning and CoRe on P-tuning.

We observe that both P-tuning and CoRe on P-tuning report degradation in

general as the number of demonstrations increases. However, CoRe on P-tuning

exhibits far less accuracy drop across different numbers of demonstrations and

even performance gain in the case of CB dataset. We assume that less degra-

dation compared to P-tuning comes from two regularizers of CoRe.

3.5 Discussion

In this section, we discuss the limitations of CoRe, and suggest future research

directions to resolve them.
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No improvement on some tasks

As reported in Section 3.4.1, NLI tasks demonstrate a significant benefit from

CoRe, while other tasks show marginal benefits or no benefits at all. We hy-

pothesize that this disparity stems from the specific characteristics of each task.

However, we have not yet conducted a comprehensive investigation to identify

the task characteristics that contribute to the observed performance gains.

To address this issue, we require a novel deep learning interpretation method

that can effectively probe the latent contexts of LM. Alternatively, a thorough

analysis of the relationship between the pretraining objective and downstream

tasks, as well as an examination of how prompting bridges the gap between

these two distinct phases, would provide valuable insights. We consider these

research questions as part of our future work, awaiting further exploration and

investigation.

Long texts

CoRe is not suitable for cases where the training dataset consists of excessively

long sequence texts. This is because CoRe requires the concatenation of multi-

ple examples, making it impractical for developers to benefit from CoRe if the

majority of concatenated examples from their dataset exceed the maximum se-

quence length of the language model. It is important to acknowledge, however,

that recent advancements in language models have begun to address this limi-

tation by adopting longer sequence sizes. The inclusion of longer sequence sizes

enables CoRe to handle longer examples more effectively, thereby mitigating

this constraint.
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Generation tasks

We have yet to examine the applicability of CoRe to natural language gener-

ation (NLG) tasks. NLG holds a significant position in natural language pro-

cessing research, alongside natural language understanding (NLU), and presents

numerous intriguing applications. We are convinced that the concept of con-

text attuning and context filtering, central to CoRe, can provide assistance in

addressing major challenges in NLG, such as controlled NLG. Following the

submission of this paper, our future plans involve delving into the exploration

of CoRe on NLG tasks.
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Chapter 4

Meta-Learning of Prompt
Generation for In-context
Learning

4.1 Motivation

As discussed in Section 2.5, despite the effectiveness of automatic prompt tuning

methods and their potential benefits for non-expert users of Language-Model-

as-a-Services (LMaaS), their adoption in LMaaS is currently lacking. The main

hurdle in incorporating both gradient-based and gradient-free prompt tuning

methods into LMaaS stems from their significant computational costs. More-

over, some methods necessitate the deployment of training systems for gradient-

based prompt engineering, which further adds to the overhead and challenges

of implementing these methods in LMaaS.
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4.2 MetaL-Prompt

To address the challenges associated with automatic prompt tuning in LMaaS,

we introduce MetaL-Prompt, a meta-learning approach for a lightweight prompt

generation. In this approach, we meta-train a prompt generation model (PGM)

(Section 4.2.1), which is initialized with a target language model (LM), with

the objective of generating prompts that enhance the LM’s contextual learning

capabilities. We refer to this training process as meta-learning because the PGM

learns generation of prompts that effectively induce meaningful contexts for

the target LM to learn from (i.e., learning-to-learn). We also propose the use

of trainable padding (Section 4.2.2) to alleviate the overhead of the prompt

generation process, which requires multiple forward passes, during the meta-

learning. Additionally, we explore various types of prompts that PGMs can

generate, as discussed in Section 4.2.3, which have not been explored in previous

prompt generation methods.

The overall workflow of an LMaaS with MetaL-Prompt is depicted in Fig-

ure 4.1. Initially, the model provider trains a PGM using MetaL-Prompt (Fig-

ure 4.1 (a)). Importantly, this training process does not impact the ongoing

service as the training occurs prior to the service initiation. During the service,

when a user provides a set of few-shot examples for the user’s specific task, the

prompt generation model generates a prompt based on these few-shot exam-

ples (Figure 4.1 (b)). This generated prompt is optionally further tuned with

gradient-based prompt tuning for improved performance. The final prompt is

then saved and associated with the user’s future requests. Finally, when the

user submits a request pertaining to the task, the prompt is composed to the

query, and the composed input is fed into the LM to generate the response

(Figure 4.1 (c)).
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Figure 4.1 A workflow of MetaL-Prompt on LMaaS.

MetaL-Prompt offers advancements over prior works in two key aspects:

prompt quality and computation cost for prompt generation. The prompts

that MetaL-Prompt generate empirically demonstrate more accurate or com-

parable prediction quality compared to prompts crafted by previous gradient-

based or gradient-free approaches [42, 36, 61, 13], given limited computation

budgets. In terms of computational efficiency, MetaL-Prompt surpasses previ-

ous methods by requiring only a single forward pass for prompt generation,

as explained in Section 4.2.2. This streamlined approach is highly productive,

especially when contrasted with prior approaches that necessitate an exten-

sive number of forward or backward passes to tune or generate a prompt for
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Figure 4.2 An illustration of meta-learning of a prompt generation model.

a single task, as discussed in Section 4.1. The reduction in computation cost

achieved by MetaL-Prompt significantly enhances its practicality and efficiency

with LMaaS. Furthermore, MetaL-Prompt does not necessarily rely on gradi-

ent computation during prompt generation, thereby reducing the deployment

overhead of training systems. Since MetaL-Prompt still requires gradients dur-

ing the meta-learning phase of a PGM, MetaL-Prompt is a hybrid approach in

terms of gradient usage, as described in Table 2.1.

4.2.1 Prompt generation model (PGM)

MetaL-Prompt employs meta-training to train a prompt generation model (PGM),

enabling the creation of prompts that enhance in-context learning of the target
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language model (LM) across diverse tasks. The objective function utilized by

MetaL-Prompt, as depicted in Figure 4.2, can be expressed as follows:

θ∗
P =argmax

θP

∑
i

p(yi|fθP (X
P
i ), XL

i , xi;θL) (4.1)

where θL and θP are the parameters of the LM and the PGM respectively,XP
i =

{xPi,0, yPi,0, xPi,1, yPi,1, ...} and XL
i = {xLi,0, yLi,0, xLi,1, yLi,1, ...} are concatenations of

examples. XP and XL consist of examples from various NLP tasks. The prompt

generation process fθP can be realized in different ways, and one straightforward

example is choosing the most probable next tokens using probabilities predicted

by the PGM. Further details regarding the prompt generation process will be

discussed in-depth in Section 4.2.3.

The parameter θP is initialized with a target LM to leverage its existing

understanding of various NLP tasks. In essence, MetaL-Prompt employs Equa-

tion 4.1 to adapt the LM and obtain a PGM. For this adaptation process,

we utilize LoRA [29], a parameter-efficient fine-tuning method, instead of full-

parameter fine-tuning. Note that the original LM is frozen and only PGM is

tuned during the meta-learning.

During the service phase following meta-learning, when a user provides a set

of few-shot examples, MetaL-Prompt divides them into two subsets: XP and

XL. The PGM utilizes XP to generate an appropriate prompt. This generated

prompt is then combined with the additional demonstration examples XL, and

the composed input is used to process future user requests. It is important to

note that XL can be an empty set. In such cases, only the prompt and the

input from the user’s request are fed to the LM. This configuration enables the

fastest inference speed due to the shorter sequence lengths.

A prompt generated by the PGM can be directly utilized for LM prompting.

However, for cases where additional computational cost is acceptable, we can
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enhance the prompt by applying gradient-based prompt tuning methods [36,

42, 39, 60]. In this scenario, the generated prompt serves as an initialization of

gradient-based prompt tuning. We observe that this additional tuning process

can further improve the performance of the prompt.

4.2.2 Trainable padding

Generative language models, such as GPT-3 [4], typically predict one token at

a time within a given context, necessitating n forward passes to generate n

tokens. This multi-pass generation process can not only introduce inefficiencies

in existing serving systems [68] but also cause extra overheads to train PGMs

with the objective outlined in Equation 4.1, which also includes generation

processes.

We tackle this challenge by proposing trainable padding, which is inspired

by special tokens of recent LMs and gradient-based prompt tuning [36, 42]. As

depicted in Figure 4.2, MetaL-Prompt appends trainable embeddings to the

given examples Xp, which are then fed to the PGM as part of the input. This

enables the PGM to generate multiple prompt tokens simultaneously by lever-

aging the hidden states corresponding to each padding position. Additionally,

we reparameterize the trainable padding similar to other prompt tuning meth-

ods [42, 39, 43, 27], specifically employing LSTMs following the methodology

of P-tuning [42].

4.2.3 Prompt design

In this section, we discuss four prompt designs — Discrete, Weighted Sum,

Hidden State, and Prefix — and their generation using a PGM. While exist-

ing prompt generation methods have primarily focused on discrete prompts in

natural language, we extend our investigation to include real-valued prompts
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(i.e., continuous prompts) as previous prompt tuning methods [42, 39, 61] have

demonstrated their effectiveness.

Discrete is a prompt that consists of the most probable natural language

tokens predicted by a PGM. To train the PGM for Discrete, we adopt Gumbel-

Softmax reparameterization with discretization (“Straight-through” trick).

Weighted Sum is a continuous prompt obtained by multiplying the token

probability predicted by a PGM with the word embeddings of a target LM. It

represents the probability-weighted sum of the word embeddings.

Hidden State directly uses the input hidden states of the head layer in

a PGM as a continuous prompt. As word embedding layers and head layers

typically share the same parameters in recent LMs, the input hidden states

from the head layer have the same representations as the word embeddings.

This makes them valid inputs (i.e., prompts) for the LM.

Prefix adds a prompt before the keys and values of transformers [39], rather

than prepends it to the inputs like the others. As depicted in Figure 4.2, we

extract the keys and values of self-attention layers from each layer of a PGM

at the position of the trainable padding, and prepend them to the keys and

values of a target LM in the corresponding layers. Prefix demonstrates the best

performance among all (Section 4.4.4), and therefore, we utilize Prefix in the

following experiments (Section 4.4).

4.3 Experimental setup

In this section, we present the setup of our experiments for MetaL-Prompt,

which includes datasets, training and evaluation details, baselines, and models.
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Split

Setting Meta-learning Eval

cls→cls 43 20

HR→LR 61 26

QA→QA 37 22

Table 4.1 The number of datasets for each task setting. There is no overlap

between the meta-learning datasets and the evaluation datasets in each setting.

Dataset

We conduct experiments to evaluate the performance of MetaL-Prompt using

the combination of CrossFIT [67] and UNIFIED QA [34], which consists of

142 diverse datasets. Specifically, we adopt three different task settings from

MetaICL [47], cls → cls, HR → LR, and QA → QA. Each setting defines

two disjoint sets — meta-learning datasets and evaluation datasets — and brief

explanations of the settings are as follows.

Classification to classification (cls → cls): Both the meta-learning

datasets and the evaluation datasets encompass classification tasks.

QA to QA (QA → QA): Both the meta-learning datasets and the

evaluation datasets consist of Question-Answering (QA) tasks.

High Resource→ Low Resource (HR→ LR): In this particular set-

ting, meta-learning datasets comprises datasets that include more than 10,000

training examples, while each evaluation dataset consists of datasets with fewer

than 10,000 examples.

These settings cover a total of 133 unique tasks, which is significantly larger

than the number of tasks explored in previous prompt tuning methods [61, 62,

13, 52, 24, 72]. The statistics of each setting are described in Table 4.1.
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Evaluation

We use Macro-F1, which is a better measure than accuracy on imbalanced

datasets, as our evaluation metric and report the mean scores obtained from

four distinct runs. For each run, MetaL-Prompt and the baselines are given a

different set of 16 examples sampled from the training split of the evaluation

dataset for prompt generation or tuning. MetaL-Prompt trains only a single

PGM for all of the runs, but the PGM generates unique prompts for each

run by leveraging distinct example sets. Furthermore, we explore the impact of

varying example sizes and provide the corresponding results. Here, nP denotes

the number of examples used for prompt generation, and nL represents the

number of examples utilized for in-context learning demonstrations in addition

to the tuned or generated prompts.

Training

MetaL-Prompt trains a PGM on the meta-learning datasets of each setting.

Subsequently, for evaluation, the trained PGM is employed to generate prompts

from nP examples of the unseen evaluation datasets. As we mentioned in Sec-

tion 4.2.1, the generated prompts can be further tuned with SGD as the previous

gradient-based tuning methods. If not specified, we do not adopt the additional

tuning.

As described in Section 4.2.1, MetaL-Prompt concatenates examples to form

XP
i for prompt generation and XL

i for inference, respectively. If not mentioned,

we use the same nP and nL with the evaluation settings to construct XP
i and

XL
i for alignment between the training and evaluation settings.

To train the prompt generation models (PGMs) of MetaL-Prompt, we utilize

the AdamW optimizer [44] along with linear learning rate decay. The learning
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rate is initialized at 0.0001 for HR→LR and 0.0002 for cls→cls and QA→QA,

without employing a learning rate warmup. The training epochs for cls→cls,

HR→LR, and QA→QA are set to 10, 6, and 8, respectively. The prompt length

for MetaL-Prompt is 20. For the additional tuning of the generated prompts,

we employ an initial learning rate of 0.02 and tune them for 9 epochs to align

with the computation costs associated with the gradient-based prompt tuning

baselines (Section 4.3). It is important to note that this additional tuning pro-

cess is performed on the few-shot examples utilized by the PGM for prompt

generation.

Baselines

We compare MetaL-Prompt against five different prompt tuning baselines — P-

tuning [42], SoftPrompt [36], Prefix-tuning [39], RLPrompt [13], and BBTv2 [61].

In order to tune prompt with the baselines, we use the hyperparameters listed

in Table 4.2.

For P-tuning [42], SoftPrompt [36] and Prefix-tuning [39], we tune learning

rates based on F1 scores of three classification tasks — AG News [20], Yelp

Polarity [70] and TabFact [6] — that have the largest test splits among classifi-

cation datasets, and we borrow other hyperparameters from the original paper.

We set a prompt length of 20.

To train a policy model for RLPrompt [13], we adhere to the hyperparame-

ters described in the original paper. In our experiments, we employ distilGPT-

2 [30, 58], as a policy model for generating optimized prompts following the

original paper. To maintain consistency with the recommendations of Deng

et al. [13], we set the prompt length to 5.

Given that BBTv2 [61] leverages the Covariance Matrix Adaptation Evolu-

tionary Strategy (CMA-ES) [21, 22] during its training, we adopt all hyperpa-
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Method P-tuning SoftPrompt Prefix-tuning BBTv2 RLPrompt

Optimizer AdamW AdamW AdamW - Adam

Learning Rate 1.6e−4 4e−5 2e−4 - 5e−5

Learning Rate Schedule Linear Linear Linear - Constant

# Epoch 10 10 10 240 5

Batch Size 16

Prompt Length 20 20 20 50 5

Table 4.2 Hyperparameters for the baselines.

rameters for CMA-ES as outlined by Sun et al. [61], with the exception of the

population size and a budget to limit the computation cost. In line with Sun

et al. [61], we set the prompt length to 50.

Models

To evaluate MetaL-Prompt and the baselines, we employ autoregressive LMs:

GPT2-Large (762M parameters) and GPT2-XL (1.5B parameters) [54]. The

motivation behind the model choice is that autoregressive models are widely

utilized for LMaaS, such as OpenAI API. However, MetaL-Prompt is not lim-

ited to such models. It can support other LMs such as sequence-to-sequence

models as well.

Computation costs

To assess the effectiveness of the baselines on LMaaS, we evaluate their per-

formance under constrained cost settings, roughly 10 epochs of forward and

backward passes. When MetaL-Prompt adopts the further tuning of the gener-

ated prompts, we run 9 epochs of the tuning to meet the computation budget,

considering the prompt generation costs. Table 4.3
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Method forward backward

P-tuning 160 160

SoftPrompt 160 160

Prefix-tuning 160 160

RLPrompt 320 ×α -

BBTv2 3,880 -

Table 4.3 Number of examples that the baselines process with the forward and

backward passes for each task.

For P-tuning, SoftPrompt and Prefix-tuning, we tune prompts with the

baselines for 10 epochs. It implies that they process 160 examples (10 epochs

× 16 examples) with their forward and backward passes.

In accordance with the cost limit, RLPrompt is trained for 5 epochs. In

our setting, RLPrompt evaluate the losses of four prompts for each example,

requiring 64 forward passes per epoch. Additionally, RLPrompt also requires

the losses of all classes and some classes are mapped to multi-token labels,

which multiplies the required passes by the number of classes (α). For example,

if a task has two classes, RLPrompt requires 128 forward passes on the setting.

It is important to note that we do not consider backward passes of the policy

model, as it solely updates small MLP layers [13] just before the head layer.

To assess BBTv2 in a constrained budget scenario, we designate 240 forward

passes per batch for GPT2-XL and 180 forward passes for GPT2-Large, taking

into account the number of hidden layers in each model (e.g., 48 layers for

GPT2-XL) and the selected population size of 5. With a batch size of 16 utilized

by BBTv2, this translates to a total of 3,840 forward passes for GPT2-XL and

2,880 forward passes for GPT2-Large.
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4.4 Experimental Results

We evaluate MetaL-Prompt on the setup presented in Section 4.3. We first

show the performance of MetaL-Prompt when the generated or tuned prompt

is solely provided without additional demonstrations (Section 4.4.1). Then, we

explore a trade-off between the number of examples used for in-context learning

demonstrations for LMs and those for prompt generation (Section 4.4.2). We

additionally validate whether the PGMs are capable of generalizing to inference

settings that involve a different number of demonstrations from training settings

(Section 4.4.3). Finally, we compare the performances of prompt designs we

presented in Section 4.2.3 (Section 4.4.4).

4.4.1 Prompt-only In-context Learning

We present the performance of the prompts generated by MetaL-Prompt with-

out extra demonstrations for in-context learning. In this setting, all 16 exam-

ples from a task are used for prompt generation or tuning. The inputs are

composed of only the prompt and test inputs without any additional demon-

strations (nP = 16, nL = 0). This setting is the most practical setting because

it keeps the shortest input length. Short sequence length leads to low latency,

small hidden state cache (i.e., key and value cache of transformer-based models

for demonstrations or prompts), or low monetary cost for users.

As demonstrated in Table 4.4, MetaL-Prompt exhibits superior performance

compared to the baselines, with the exception of Prefix-tuning. It achieves no-

table improvements of up to 19.4% on QA tasks, surpassing the state-of-the-

art method (i.e., P-tuning), even with significantly lower computational costs

requiring only a single forward pass. Interestingly, Prefix-tuning showcases ex-

ceptional efficacy in the limited budget setting compared to other baselines.
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However, MetaL-Prompt outperforms Prefix-tuning on QA tasks, and main-

tains comparable performance on GPT2-XL, the larger model, and classification

tasks. Notably, MetaL-Prompt benefits from its advantageously low computa-

tion costs while still delivering competitive results.

Our hypothesis regarding the lack of performance improvements in the

HR→LR setting for MetaL-Prompt is attributed to the limited diversity of

datasets in high-resource datasets. The PGMs employed by MetaL-Prompt

leverage meta-knowledge obtained from a broad spectrum of tasks, empha-

sizing the significance of dataset diversity. However, it is worth noting that the

meta-learning dataset specific to the HR→LR setting primarily comprises high-

resource datasets. These datasets consist of tasks where corresponding data can

be relatively easily collected. Consequently, we believe that the meta-learning

dataset for this particular setting lacks the necessary variety of datasets required

for effective meta-learning and prompt generation.

Furthermore, as discussed in Section 4.2.1, we can enable MetaL-Prompt to

utilize comparable computation costs to the baselines (Section 4.3) by incor-

porating additional tuning of the generated prompts. The performances of this

variant, referred to as MetaL(+Tune), is presented in Table 4.4. When consid-

ering the fair computation costs, MetaL-Prompt consistently achieves superior

performance across various task settings and models, and shows improvements

up to 27.7% on the QA tasks compared to the state-of-the-art method, P-tuning.

Lastly, it is important to highlight that the gradient-based prompt tuning

methods — SoftPrompt, P-tuning, and Prefix-tuning — demonstrate superior

overall performance when applied to the smaller model particularly on the clas-

sification tasks. We attribute this phenomenon to the convergence speed. Due

to the smaller size of the model, the prompts tuned by these methods converge

more rapidly on the smaller model, allowing them to reach better performance
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Example Splits

Method (16, 0) (12, 4)

cls→cls

P-tuning 30.25 29.87

Prefix-tuning 36.76 37.07

MetaL-Prompt 36.85 39.33

QA→QA

P-tuning 26.64 26.53

Prefix-tuning 25.70 26.17

MetaL-Prompt 31.81 30.49

Table 4.5 Comparison of the performances on various distribution of examples

for prompting and demonstration. We use GPT2-XL for the LM and PGMs.

within the constrained computational budgets.

However, it is noteworthy that MetaL-Prompt showcases better scalabil-

ity across different model sizes compared to the baselines. This means that

MetaL-Prompt is expected to deliver improved performance on larger models,

whereas other gradient-based methods may encounter limitations when applied

to such models. This scalability advantage positions MetaL-Prompt as a favor-

able choice for scenarios involving larger models.

4.4.2 Additional demonstrations with generated prompts

Although prompt-only is the most cost-efficient setting, model providers or

users may be willing to allocate expanded computation budgets for inference

or larger spatial budgets (i.e., larger key/value cache) to further increase the

performance. For such situations, we explore the effect of additional demonstra-
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tions combined with the generated prompt. We keep the number of examples

for each task the same but vary the ratio between nP and nL. We evaluate

MetaL-Prompt and two baselines, P-tuning [42] and Prefix-tuning [39], which

are the most powerful baselines in Section 4.4.1, on settings where (nP , nL) is

(16, 0) and (12, 4).

Table 4.5 presents the results of MetaL-Prompt and the baselines when addi-

tional demonstrations are provided. Notably, when given these extra demonstra-

tions, MetaL-Prompt demonstrates further performance improvements, particu-

larly in the cls→cls setting, with enhancements of up to 6.7%. Hence, depending

on tasks, a model provider may opt to allocate a larger computation budget for

inference on longer sequences or allocate additional spatial resources to cache

the hidden states of the demonstrations, thereby enhancing performance. It is

worth mentioning that Prefix-tuning also benefits from these budgetary alloca-

tions in both settings, whereas P-tuning does not exhibit the same advantage.

4.4.3 Transferability to different test settings

In the previous section, we have discussed that MetaL-Prompt can further en-

hance performance by tailoring example splits through increased computation

or spatial budgets. In this section, we further explore that a PGM trained with

a specific training setting (i.e., a particular example split) is still available in

different test settings. We evaluate two PGMs trained for GPT2-XL where

(nP , nL) is (16, 0), (12, 4). These models represent training without demonstra-

tions and with additional demonstrations respectively. We evaluate the models

on cls→cls and QA→QA with three test settings where (nP , nL) is (16, 0),

(12, 4), and (8, 8).

As presented in Table 4.6, PGMs trained without demonstrations (i.e.,

(nP , nL) = (16, 0)) does not generalize to the other test settings. The per-
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Train Test Setting

Setting (16, 0) (12, 4) (8, 8)

cls→cls

(16, 0) 36.85 31.09 27.75

(12, 4) 32.46 39.33 39.38

QA→QA

(16, 0) 31.81 26.51 27.35

(12, 4) 23.56 30.49 31.31

Table 4.6 Results for transferability of the PGMs. We evaluate the PGMs for

GPT2-XL on the test settings different from the training settings.

formance decreases when examples are provided with an LM as demonstrations

instead of solely utilized for prompt generation. Interestingly, PGMs trained

with (nP , nL) = (12, 4), where demonstrations are considered, show marginal

or no degradation when transferred to the other test settings with demonstra-

tions.

In summary, PGMs trained without demonstrations can not be transferred

to test settings with demonstrations, and vice versa. From this observation,

we notice that there exists a significant disparity between suitable prompts

that are soley used without demonstrations and those that are paired with

demonstrations. Exploration of this gap will be an interesting future work.

4.4.4 Comparison between various prompt designs

In this section, we compare performances of diverse prompt designs listed in

Section 4.2.3: Discrete, Weighted Sum (WS), Hidden State (HS), and Prefix.

Discrete is a prompt consisting of natural language tokens, whereas Weighted
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Method Disc WS HS Prefix

F1 31.78 33.13 31.19 36.85

Table 4.7 Ablation studies on the effect of our prompt design. We evaluate

various prompt designs on GPT2-XL and cls→cls.

Sum, Hidden State, and Prefix represent continuous prompts, which are real-

valued prompts. We compare the designs on cls→cls where (nP , nL) is (16, 0).

As depicted in Table 4.7, Prefix exhibits the best performance among the

approaches due to its ability to prepend to each layer, resulting in a larger

prompt size while maintaining the same prompt length. This larger prompt size

provides Prefix with a richer expressiveness compared to the other methods.

Weighted Sum also demonstrates improved performance, benefiting from its

enhanced expressiveness compared to the discrete prompt, which consists of

natural language tokens.

However, Hidden State displays degenerated performance, even when com-

pared to the discrete prompts. As discussed in Section 4.2.3, the input hidden

states of the head layer have representations similar to word embeddings, but

they are not identical, particularly in terms of the scale of the values. This dis-

crepancy may cause the Hidden State prompts to deviate from the manifold of

the word embeddings. We hypothesize that the degraded performance of Hid-

den State prompts is a result of this discrepancy. Consequently, incorporating

an additional scaler to mitigate the discrepancy is expected to be beneficial in

improving the performance of Hidden State prompts.
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4.5 Discussion

In this section, we aim to highlight the limitations of MetaL-Prompt, and pro-

pose potential avenues for future research.

Input templates for prompt generation

MetaL-Prompt simply prepends generated prompts, which intuitively corre-

spond to task instructions, to queries, but hand-crafted prompts are usually

more complex. Hand-crafted prompts may include some tags for each data field

or special characters to split demonstration examples, which are templates to

be filled with data instances. However, MetaL-Prompt does not generate such

input templates during prompt generation. Moreover, previous works have not

yet systematically explored how the templates affect the performances if given

in prompt generation. We will more deeply explore the generation of input

templates, or the effects of input templates in prompt generation.

Flexibility on the number of demonstrations

As highlighted in Section 4.4.3, it is important to note that a prompt generation

model (PGM) trained on a specific training setting (i.e., example split) cannot

be directly transferred to different test settings. Consequently, when we aim

to enhance prediction quality through the inclusion of additional demonstra-

tions as on the cls→cls setting in Section 4.4.3, we require multiple PGMs for

each specific setting, allowing for a flexible trade-off between inference speed

and prediction quality by adjusting the number of demonstrations. However,

training and managing multiple PGMs pose challenges for LMaaS providers.
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Prompt generation with more examples

In our experiments, the prompt generation models (PGMs) are constrained by

sequence size limits. Consequently, if a user provides an excessive number of

examples, the PGMs may be unable to process such a large set if the concate-

nation of the examples exceeds the sequence size limit.

However, it is worth noting that recent language models have started to

adopt longer sequence sizes, which helps alleviate this limitation. The incorpo-

ration of longer sequence sizes enables PGMs to handle larger sets of examples

more effectively.

Additionally, we explore an iterative approach to improving prompts by

concatenating a previously generated prompt with new examples. This con-

catenated context is then used as input to the PGM to generate an enhanced

prompt, allowing the PGM to accommodate an arbitrary number of examples

by iteratively processing the example subsets. This iterative approach enhances

the scalability of prompt generation, empowering PGMs to process varying

numbers of examples effectively.

Applying CoRe to MetaL-Prompt

As outlined in Figure 4.2 and Equation 4.1, MetaL-Prompt incorporates prompt

gradients in the backpropagation process to compute gradients of the PGM pa-

rameters. Hence, intuitively, CoRe aids in generalization of PGM by regulariz-

ing the prompt gradients. If we apply CoRe to meta-learning of MetaL-Prompt,

Equation 4.1 changes as follows:

θ∗
P =argmax

θP

∑
i

∑
j

p(yi,j |ω, x0i , y
0
i ,ω, x1i , y

1
i , ...,ω, xji ;θL)

s.t. ω = fθP (X
P
i ),

(4.2)
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where j is the sequence size of CoRe. Although the effectiveness of CoRe on

MetaL-Prompt has not been validated yet, it is a promising area for further

exploration.
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Chapter 5

Conclusion

5.1 Conclusion

In this dissertation, we explored leveraging contexts induced by input sequences

in language models (LMs) to propose novel automatic prompt engineering meth-

ods for in-context learning. As presented in Table 2.1, we first present CoRe to

improve gradient-based prompt tuning methods, and we also introduce MetaL-

Prompt which is a lightweight prompting method for LMaaS.

CoRe is a novel gradient-based prompt tuning method that regularizes task

contexts among multiple examples, which finally regularizes a prompt to im-

prove zero-shot performance. Two regularizers of CoRe— context attuning and

context filtering— regularize the prompt to create proper task context and

guides the prompt to convey only the task-related context to succeeding ex-

amples on the concatenation of multiple examples. We provide a theoretical

analysis for the effect of context attuning and context filtering and our exper-

imental results back this up. Following the theoretical analysis, CoRe achieves
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performance gain over three different baseline prompt tuning methods in zero-

shot setting up to 11.9% on GPT2-XL and 6.3% on GPT-J.

MetaL-Prompt is a novel lightweight prompting method for LMaaS based on

meta-learning of prompt generation. MetaL-Prompt trains a prompt generation

model (PGM), which predicts a prompt given examples for a task, using our

meta-learning objective. After the meta-learning, the trained PGM does not re-

quire additional training for unseen user tasks. For efficient training of PGM, we

also propose trainable padding, which approximates the generation process in

meta-learning and mitigates the overhead. Moreover, we explore the prediction

of continuous prompts using an LM. This has not yet been discussed in the

previous prompting studies, which search for the best prompt by repeatedly

manipulating a prompt. With the proposed designs, MetaL-Prompt achieves

performance gains over five baselines up to 19.4% on unseen QA datasets with

much less computation than the baselines. When given fair computation bud-

gets, MetaL-Prompt shows improvements up to 27.7% on unseen QA datasets

using additional tuning of the generated prompts. The results support the ef-

ficiency of MetaL-Prompt in terms of model performance and computational

cost.

5.2 Future Work

5.2.1 Interpretation of in-context learning

Despite the success of in-context learning, there is no study that interprets

task knowledge that an LM learns from a context. Some methods lead an LM

to generate an explanation of a task from demonstration examples [24, 72]

using hand-crafted instructions. However, the heuristic approach of the hand-

crafted instructions does not guarantee that the LM actually explains how it
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understands the examples.

MetaL-Prompt in chapter 4 demonstrated that a tuned LM can more ro-

bustly extract task information from examples and pack the information in

some embeddings that the target LM can interpret compared to the prompt

generation methods. Therefore, approaches of MetaL-Prompt can be used to

interpret in-context learning. Since MetaL-Prompt now only support continuous

prompts, which is not human-readable, we need to develop a training scheme

for discrete token. Moreover, we may need an additional approach to make a

prompt generation model generate real natural language texts considering that

discrete prompts are still sometimes not human-readable [60].

5.2.2 Applicability of automatic prompt engineering according

to tasks

As mentioned in the preceding sections, both CoRe and MetaL-Prompt do not

consistently exhibit gains on certain tasks. This phenomenon raises questions

about the specific task characteristics that hinder the effectiveness of automatic

prompt engineering methods. The effectiveness of prompt engineering on diverse

tasks remains inadequately explored. Therefore, it is crucial to assess the va-

lidity of other automatic prompt engineering methods and our context-based

approaches across diverse tasks. By doing so, we can identify tasks where these

methods may prove ineffective and subsequently investigate the task character-

istics responsible for disabling automatic prompt engineering.

5.2.3 Location of adaptation modules

Many previous works on LM adaptation have proposed adaptation modules, in-

cluding prompts, that is placed to various location of a model [29, 28, 45, 2, 39].

The modules are placed on prefixes of keys and values [39, 61], after feed-forward
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module [28], in parallel to linear layers [29], or on other somewhere. The methods

have shown remarkable performances but the effect of locations of adaptation

modules has not been properly explored. He et al. [23] analyzed several loca-

tions proposed by previous works, but they explore limited locations on a small

number of datasets. Therefore, more extended analyses are encouraged.
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초록

프롬프팅은 대규모 언어 모델(LMs)의 적응에 효과적인 방법으로 큰 관심을 받고

있다. 프롬프트는 일반적으로 과제에 대한 설명과 예제를 포함하고, 이는 LM의

입력으로 제공된다. LM은 프롬프트를 통해서 주어진 맥락을 통해 과제를 이해하

고 실제로 풀어야 하는 문제를 처리하고, 이 방식을 인-컨텍스트 학습이라고 한다.

하지만 프롬프트는 종종 인간의 직관에 반하여 불안정한 성능을 보여주기 때문에

기존 연구들은 효과적인 프롬프트를 자동으로 찾는 방법들을 제안하게 된다.

자동 프롬프트 엔지니어링 방법은 다양한 NLP 작업에서 뛰어난 성능을 보여

주지만, 특정 시나리오에서는 전체 파라미터 파인튜닝과 같은 몇 가지 LM 적응

방법에비해성능이떨어진다.최적의성능을보여주지못하더라도,간단한디자인

이나 파라미터 효율성 등 프롬프트의 특수한 장점은 프롬프트의 성능을 개선하기

위한 방법을 연구의 동기가 된다.

또한,프롬프트튜닝방법은 LM적응에효과적이지만,언어모델서비스 (language-

model-as-a-service (LMaaS)를지원하기위해설계되지않았다.최근대규모언어

모델은 주로 서비스 형태(LMaaS)로 제공된다. LMaaS는 모델의 파라미터를 공개

하지 않기 때문에, 사용자는 서비스를 사용할 때 인-컨텍스트 학습을 위해 과제별

프롬프트를 준비해야 한다. 하지만, LMaaS는 무거운 계산 비용 때문에 자동 프

롬프트 튜닝 방법을 서비스 내에서 제공하지 않는다. LMaaS 사용자는 파라미터

접근이 필요하지 않거나 서비스 제공자의 추가 지원이 필요하지 않는 여러 블랙박

스프롬프트방법을사용할수있지만,비전문가사용자가본인의장비에서이러한

방법을 배포하고 실행하기는 매우 어렵다.

이 논문에서는 먼저 CoRe라는 새로운 정규화 방법을 제안한다. 이 방법은

gradient 기반 프롬프트 튜닝 기술에 적용되어 프롬프트가 과제에 대한 맥락을 올

바르게 생성하도록 유도한다. CoRe는 컨텍스트 어튜닝과 컨텍스트 필터링이라는
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두 가지 정규화 효과를 실현하여, 과제에 대한 예시 없이 CoRe에 의해 튜닝된

프롬프트만을 사용하여 인퍼런스가 이루어지는 ”제로-샷 인-컨텍스트 러닝” 환경

에서 예측 성능을 향상시킨다. 컨텍스트 어튜닝은 입력과 튜닝된 프롬프트에 의해

생성된맥락이작업에적합한맥락을담도록유도한다.이론적분석을통해맥락의

정규화는 제로-샷 인-컨텍스트 러닝 성능을 향상시키는 데 기여한다는 것을 알 수

있다. 컨텍스트 필터링은 프롬프트가 작업과 관련된 맥락에 집중하도록 유도하여

컨텍스트 어튜닝이 올바른 작업 맥락를 생성하고 전송하는 데에만 집중하도록 합

니다. 우리는 자연어 이해 데이터셋과 GPT2-XL 및 GPT-J라는 두 가지 대규모

언어 모델에서 CoRe를 평가한다. CoRe는 제로-샷 설정에서 GPT2-XL에서 최대

11.9%의 성능 향상과 GPT-J에서 최대 6.3%의 성능 향상을 보여준다.

그리고우리는MetaL-Prompt라는 LMaaS를위한새로운경량프롬프트생성

방법을 제안한다. MetaL-Prompt는 적은 수의 데이터를 활용하여 추가적인 훈련

없이 해당 작업에 대한 프롬프트를 생성하는 프롬프트 생성 모델(PGM)을 메타

러닝을 통해 학습한다. 또한, 메타러닝 도중 또는 프롬프트 생성 도중의 생성 과

정으로 인한 부하를 완화하기 위해 trainable padding을 제안하고, 프롬프트 생성

모델을 사용하여 다양한 프롬프트 유형의 생성을 탐구합니다. MetaL-Prompt는

PGM이특정과제에대한예제들의연결로인해발생하는컨텍스트에서과제에대

한정보를추출하고,이를기반으로단일포워드패스를통해프롬프트를생성하기

때문에 계산 측면에서 효율적이다. 따라서, MetaL-Prompt는 LMaaS에 적용되었

을때계산부하가적으며,서비스는자동으로생성된프롬프트를사용하여다양한

작업을 지원할 수 있다. 우리는 다양한 메타러닝 설정에서 MetaL-Prompt를 평가

하였으며, 제로-샷 인-컨텍스트 러닝 환경에서 최신 베이스라인과 비교하여 QA

데이터셋에서 평균 F1 점수를 최대 19.4%까지 향상시킨다. 또한 이를 달성하는데

베이스라인에 비해 아주 적은 계산 비용이 든다.

주요어: 프롬프트 튜닝, 프롬프트, 인-컨텍스트 학습, 언어 모델

학번: 2016-21234
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