

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Performance Guarantee of ADAS on
Integrated ECU Concurrently Hosting

Multi-Domain Applications

다중도메인애플리케이션을동시에

호스팅하는통합 ECU에서 ADAS의
성능보장

2023년 08월

서울대학교대학원

컴퓨터공학부

유서환

Performance Guarantee of ADAS on
Integrated ECU Concurrently Hosting

Multi-Domain Applications
다중도메인애플리케이션을동시에

호스팅하는통합 ECU에서 ADAS의
성능보장

지도교수이창건

이논문을공학석사학위논문으로제출함

2023년 05월

서울대학교대학원

컴퓨터공학부

유서환

유서환의공학석사학위논문을인준함

2023년 06월
위 원 장 김지홍 (인)

부위원장 이창건 (인)

위 원 김태현 (인)

2

Abstract

Performance Guarantee of ADAS on
Integrated ECU Concurrently Hosting

Multi-Domain Applications

Seo Hwan Yoo
Department of Computer Science and Engineering

The Graduate School
Seoul National University

Since ECUs are difficult to maintain and require high hardware costs such as

wiring, previously distributed ECUs are being integrated. As a result of ECU

integration, multi-domain applications share hardware resources with ADAS,

leading to mutual interference. In this study, we conducted research to guaran-

tee the performance of ADAS on integrated ECU hosting multi-domain applica-

tions. At first, we quantitatively observed that performance of ADAS is affected

by contention for shared resources. This led us to acknowledge the necessity

of isolating ADAS from the resources used by other multi-domain applications

to mitigate the impact of shared resources contention. So, we built a resource

isolation environment using LXC so that the minimum required resources by

ADAS can be isolated from those used by other multi-domain applications.

Before deriving the minimum resource requirement for ADAS, we preliminary

optimized ADAS to reduce the minimum resource requirement. Afterwards,

we experimentally derived the minimum resource requirement for guaranteeing

i

ADAS performance with the proposed algorithm. Finally, we confirmed that

the performance of ADAS is guaranteed with the derived minimum resources in

the environment where multi-domain applications are concurrently executed.

keywords : Autonomous Driving, Performance Guarantee, Minimum Resources

Student Number : 2021-25483

ii

Contents

1 Introduction 1

2 Motivation 4

2.1 Performance Degradation of ADAS Due to Shared Resources . . 4

2.2 Optimizing ADAS for Reduced Resource Requirement 6

3 Optimizing and Minimum Resource Allocation for ADAS 8

3.1 Building LXC-based Environment for Concurrent Execution of

Multi-Domain Applications . 8

3.2 ADAS Optimization via Event-Driven 9

3.3 Minimum Resource Requirement to Guarantee ADAS Perfor-

mance . 10

4 Experiment Results 12

4.1 ADAS Optimization . 12

4.2 Performance Guarantee of ADAS 12

5 Conclusion 17

References 18

iii

List of Figures

1 Zigzag scenario . 5

2 Core mapping for shared resources contention experiment 5

3 The proportion of alignment delay in default ADAS 7

4 (a) Periodic-polling ADAS (b) Event-driven ADAS 10

5 Deriving minimum CPU requirement of ADAS 13

6 Core mapping for CPU isolation 14

7 Deriving minimum memory BW requirement of ADAS 15

8 Core mapping for CPU and memory BW isolation 16

iv

List of Tables

1 ADAS performance affected by shared resource contention . . . 6

2 ADAS performance improvement by event-driven method 13

3 Performance isolation with minimum CPU 14

4 Performance isolation with minimum CPU and memory BW . . 16

v

1 Introduction

Recently, as advanced features such as autonomous driving and in-vehicle in-

fotainment(IVI) are added to vehicle, there is an increasing need for additional

Electronic Control Units (ECUs) to support added functionalities. However,

since maintaining multiple ECUs is challenging, and the hardware costs, such

as wiring, are expensive, there is a trend towards controlling vehicles using

a single integrated chipset with excellent performance, rather than increasing

the number of ECUs for accommodating new feature[1]. Examples of this

trend include Nvidia Drive’s Thor and Samsung’s Exynos Auto V9.

As a result of the integration of ECUs, multi-domain applications such as

powertrain and infotainment now share the hardware resources with Advanced

Driver Assistance System (ADAS). Through experimentation, we observed

that the performance of ADAS is influenced by the contention for shared re-

sources, specifically CPU and memory bandwidth(BW). By using synthetic

workloads that utilize CPU and memory BW as best effort, we quantitatively

examined the impact of shared resources on ADAS performance. It was ob-

served that the average E2E(End to End) response time of ADAS increases

by 66% due to CPU contention and by 19% due to memory BW contention.

In both cases, the vehicle collided with a stopped vehicle due to contention.

Considering the potential threat to passengers’ lives caused by system failures

in ADAS, guaranteeing the performance of ADAS on integrated ECU is not a

choice but a necessity.

To guarantee the performance of ADAS on integrated ECU, it is necessary

to mitigate the impact of contention for shared resources. For this purpose,

1

the minimal resources required to guarantee ADAS performance, separate from

the resources used by other multi-domain applications, should be allocated to

ADAS in isolation. So, we built LXC-based resource isolation environment to

separate the essential resources needed for ADAS from those utilized by other

multi-domain applications.

Before deriving the resource requirement for ADAS, we investigated the

potential for optimization within Autoware[2], an open-source autonomous

driving software, which is used by ADAS, to reduce the minimum required

resources. Through analysis of Autoware, we observed that the cumulative

delay caused by external factors such as scheduling mechanisms accounted for

around 66% of the E2E response time on average. To optimize the minimal

resource requirement for ADAS, we conducted preliminary optimization by

removing delay caused by external factors. There have been previous studies

such as [3] that improve ADAS performance by finding the optimal spin rate of

each node without changing the Autoware. However, [3] has the disadvantage

of finding the spin rate of each node through exhaustive search. Subsequently,

using the optimized ADAS, the minimum resource requirement were experi-

mentally derived using the algorithm presented in this paper.

With the derived minimum resources, we confirmed that the ADAS per-

formance is guaranteed in the environment where multi-domain applications

are concurrently executed through the experiment results that both the E2E

response time and collision ratio decrease to levels similar to those achieved

when ADAS is executed alone.

Contribution : In our research, we conducted study to guarantee the perfor-

2

mance of ADAS on integrated ECU hosting multi-domain applications simul-

taneously. First, we performed quantitative observations indicating that the

performance of ADAS is affected by shared resource contention. Second, we

built the resource isolation environment using LXC to separate the minimum

necessary resources for ADAS from those utilized by other multi-domain appli-

cations. Third, before deriving the minimal resource requirement for ADAS,

we optimized ADAS to improve its performance to minimize the resources re-

quired by ADAS. With the optimized ADAS, we experimentally derived the

minimum resource requirement that guarantees ADAS performance. Lastly,

we experimentally confirmed that the ADAS performance is guaranteed when

multi-domain applications are executed concurrently on integrated ECU.

The rest of the paper is organized as follows. Section 2 explains the moti-

vation behind this research. In Section 3, it explains the ADAS optimization

and the minimum resource derivation method for guaranteeing ADAS perfor-

mance. Section 4 presents the experimental results of our research. Finally,

Section 5 concludes the paper and discuss future research plan.

3

2 Motivation

2.1 Performance Degradation of ADAS Due to Shared Resources

We conducted experiment to see if ADAS has performance degradation issues

due to contention for shared resources. Through Autoware and SVL [4], an

autonomous driving simulator, we evaluated ADAS performance using zigzag

scenario(Figure 1) in which stopped vehicles are zigzag-evaded at a maximum

speed of 7.5 m/s. Each experiment was performed 100 times, and the exper-

iment types and core mappings are illustrated in Figure 2. As performance

metric, we measured the E2E response time from the start of receiving LiDAR

sensing topics from SVL to the completion of vehicle control in ADAS node.

We also recorded the occurrence of collision with stationary vehicles. Detailed

information regarding the experiments is provided below.

• ADAS : Performance evaluation without resource interference

• ADAS + SCW : Performance evaluation when CPU contention occurs

by running Synthetic CPU Workload (SCW), which performs arithmetic

calculations with best effort on the same core as ADAS

• ADAS + SMW : Performance evaluation when memory BW contention

occurs by running Synthetic Memory Workload (SMW), which performs

memory access with best effort, in the cluster different from the one in

which ADAS is running

As expected, when synthetic workloads were executed concurrently, an in-

crease in ADAS’s E2E response time and collision ratio was observed. The ex-

4

Figure 1: Zigzag scenario

Figure 2: Core mapping for shared resources contention experiment

perimental results are presented in Table 1. It was found that CPU contention

led to 66% increase in ADAS’s average E2E response time, while memory BW

contention resulted in 19% increase. In addition, when ADAS was performed

alone without resource contention, the vehicle moved according to the scenario

without collision, but in the case of resource contention, we observed that the

vehicle collided with the stopped vehicle due to the vehicle direction calculated

based on the old sensing data as the E2E response time increased. This put

emphasis on the need to mitigate the impact of contention for shared resources

to guarantee the performance of ADAS. Consequently, it implies that the min-

imum resources required to guarantee ADAS performance should be isolated

5

from the resources used by other multi-domain applications. Therefore, it

is necessary to derive the minimum resource requirement that guarantee the

performance of ADAS.

Table 1: ADAS performance affected by shared resource contention

Workload E2E Response Time Collision Ratio

ADAS (No Cont.) 180.62ms 0%

ADAS + SCW (CPU Cont.) 300.15ms 100%

ADAS + SMW (memory BW Cont.) 215.46ms 5%

2.2 Optimizing ADAS for Reduced Resource Requirement

Before deriving the minimum resource requirement, we examined the potential

for optimization within Autoware, to reduce the resources allocated to ADAS

in isolation. In Autoware, the E2E process consists of chain of internal nodes,

starting from the start of receiving LiDAR sensing topics from SVL to vehicle

control. The E2E response time is calculated as the sum of response times of

nodes within the chain, along with the cumulative delay(hereinafter alignment

delay) caused by external factors such as scheduling mechanisms. In order to

assess the impact of alignment delay on the E2E response time, we examined

the alignment delay excluding the response times of nodes within the chain,

as shown in Figure 3. As a result, it was observed that alignment delay

accounted for 66% of the E2E response time on average. By optimizing and

eliminating unnecessary alignment delay, the minimal resource requirement

for ADAS can be reduced, which means that other multi-domain applications

6

can use more resources. That is, in order to reduce the minimum resource

requirement of ADAS, ADAS optimization is required.

Figure 3: The proportion of alignment delay in default ADAS

7

3 Optimizing and Minimum Resource Allocation for ADAS

To guarantee the performance of ADAS, we conducted research on isolating the

minimal required resources for ADAS from the resources used by other multi-

domain applications. Firstly, we built the resource isolation environment.

Before deriving the minimum resource requirement, we optimized ADAS to

reduce the minimum resource requirement. Then, we conducted research on

deriving the method for determining the minimal resource requirement for

ADAS.

3.1 Building LXC-based Environment for Concurrent Execution of Multi-

Domain Applications

In order to guarantee performance of ADAS on integrated ECU, it becomes es-

sential to reduce the negative effects caused by contention for shared resources.

To achieve this objective, it is crucial to allocate the minimal resources required

to guarantee ADAS performance, separate from the resources utilized by other

multi-domain applications. So we needed the environment that would isolate

the resources allocated to ADAS from the resources of multi-domain appli-

cations. Since the hypervisor code loaded in Exynos Auto V9 was black-box

according to corporate policy, it was difficult to troubleshoot problems related

to resource isolation. To achieve efficient resource management, the previously

deployed black-box hypervisor was replaced with the open-source LXC which

provides OS-level virtualization that allows multiple isolated Linux systems to

run on top of a single Linux kernel.

8

3.2 ADAS Optimization via Event-Driven

Through section 2, it was confirmed that 66% of the average E2E response time

of the existing ADAS is attributed to alignment delay. To improve the perfor-

mance of ADAS by reducing alignment delay, we conducted research on ADAS

optimization. Autoware is a software based on Robot Operating System(ROS).

Nodes based on ROS generally sleep so that tasks run every predefined pe-

riod through rate.sleep(), and repeatedly perform periodic-polling-based data

processing in the spinOnce() function to handle currently received data. In

other words, each node in the chain processes data only when it wakes up from

sleep, not immediately when the data is generated. This means that if there

is misalignment between nodes, as shown in Figure 4 (a), it can cause the

alignment delay, severely delaying the response time of tasks and increasing

the E2E response time.

To eliminate the previously identified alignment delay issue, we modified

Autoware to event-driven-based system where each node processes data at the

moment it is generated using the spin() function. The spin() function oper-

ates without sleep, waking up the node when data to be received is generated

and performing the necessary processing on the received data. By using spin

() instead of spinOnce() combined with sleep(), we resolved the problem of

alignment delay occurrence. Consequently, we reconfigured nodes to operate

based on the spin() function, transforming the original periodic-polling-based

Autoware into event-driven system. In other words, as shown in Figure 4

(b), we reduced alignment delay, leading to significant reduction in the E2E

response time and improvement in the performance of ADAS.

9

(a)

(b)

Figure 4: (a) Periodic-polling ADAS (b) Event-driven ADAS

3.3 Minimum Resource Requirement to Guarantee ADAS Performance

Through section 2, it was confirmed that ADAS was affected by contention

for shared resources, specifically CPU and memory BW, resulting in driving

failures. This observation highlights the need to derive the minimum resource

requirement that guarantee the performance of ADAS to ensure its function-

ality.

To determine the minimum CPU requirement for ADAS, the ADAS ex-

periment introduced in section 2 was used. Starting with the allocation of

all CPU to ADAS, the number of CPU was gradually reduced while moni-

10

toring the occurrence of vehicle collision in the zigzag scenario or until only

one CPU was available. In other words, the smallest number of CPU in the

ADAS experiment where no collision occurred indicates the minimum CPU

requirement for guaranteeing ADAS performance. In terms of allocating CPU

to ADAS, we used CPUSET.

To determine the minimum memory BW requirement for ADAS, we used

ADAS experiment using the derived minimum number of CPU. Starting with

the allocation of the memory BW budget of all CPU involved in ADAS as

the memory BW specification, binary search approach was used to gradually

reduce the memory BW budget allocated to the CPU until vehicle collision

occurred in the zigzag scenario. To prevent the binary search from going on

indefinitely, a condition is added to stop the binary search when a search range

less than predefined threshold is reached. In other words, the smallest mem-

ory BW in the ADAS experiment where no collision occurred indicates the

minimum memory BW requirement for guaranteeing ADAS performance. To

limit the CPU’s memory BW, memguard[5], a technique based on controlling

CPU stalls through LLC miss budget, was used.

11

4 Experiment Results

In this section, we share experimental results on ADAS optimization and the

algorithm for finding the minimum resources required by ADAS using Auto-

ware and SVL. The experiments were conducted using evaluation board con-

sisting of two 4-core CPU clusters, Exynos Auto V9. Evaluation board used

lpddr4x and the maximum memory BW specification was 68.2GB/s. To re-

duce the overhead of SVL, the autonomous driving simulation was configured

to run on an external PC instead of the evaluation board.

4.1 ADAS Optimization

We conducted the ADAS experiment introduced in section 2 comparing the

conventional periodic-polling-based ADAS with the ADAS modified to event-

driven approach. Table 2 shows the results. Compared to the previous ex-

periment where alignment delay was present, the average alignment delay de-

creased by 71.9%, resulting in 47.0% reduction in average E2E response time

while keeping the sum of the response times of the nodes similar. Furthermore,

the collision ratio was improved from 36% to 0%, confirming that scenario that

required more than 3 CPUs in the periodic-polling-based ADAS are sufficient

with 3 CPUs in the event-driven-based ADAS. This means, by optimizing the

ADAS, the number of CPU resources required by the ADAS has decreased.

4.2 Performance Guarantee of ADAS

We experimentally determined the minimum resource requirement to guar-

antee the performance of ADAS by investigating the impact of changes in

12

Table 2: ADAS performance improvement by event-driven method
Workload E2E Response Time Alignment Delay Collision Ratio

Periodic-Polling ADAS 340.63ms 224.01ms 36%

Event-Driven ADAS 180.62ms 63.00ms 0%

resources on ADAS performance. To experimentally confirm the minimum

CPU requirement for ADAS, we used the ADAS experiment and the proposed

algorithm. Figure 5 shows the results. We can observe that collision occur

when the number of CPU is less than 3, indicating that the minimum CPU

resource requirement for ADAS is 3.

Figure 5: Deriving minimum CPU requirement of ADAS

We conducted experiments to investigate whether allocating the minimum

CPU resources to ADAS while isolating them from the CPU used by multi-

domain applications would lead to performance degradation. We used the

ADAS experiment introduced in section 2 , and the experimental setup and

13

core mapping are shown in Figure 6. The specific details of the experiments

are as follows.

• ADAS : Performance evaluation using the minimum number of CPU

without resource interference

• ADAS + SCW + ISO. : Performance evaluation using the minimum

number of CPU when running Synthetic CPU Workload (SCW), which

performs arithmetic calculations with best effort on different cores from

ADAS, and CPU contention was minimized through isolation

Figure 6: Core mapping for CPU isolation

Through Table 3, it can be observed that the synthetic cpu workload has

minimal impact on ADAS performance. When CPU isolation is applied, it is

evident that both the E2E response time and collision ratio decrease to levels

similar to those achieved when ADAS is executed alone.

Table 3: Performance isolation with minimum CPU
Workload E2E Response Time Collision Ratio

ADAS (No Cont.) 180.62ms 0%

ADAS + SCW + ISO(CPU Iso.) 180.88ms 0%

14

To experimentally determine the minimum memory BW requirement for

ADAS, we used the ADAS experiment using the derived minimum number

of CPU, along with the algorithm proposed in section 3 (with a threshold of

1GB). The results are presented in Figure 7. The binary search terminated

when the search interval became smaller than the predefined threshold, and

it can be observed that the smallest memory BW budget that avoids collision

is 1.598 GB/s. Therefore, we can confirm that the minimum memory BW

resource requirement for ADAS is 1.598 GB/s.

Figure 7: Deriving minimum memory BW requirement of ADAS

We performed experiments to determine whether there is a degradation in

ADAS performance when the minimum CPU and memory BW are isolated and

allocated to ADAS, separate from the CPU and memory BW used by multi-

domain applications. The ADAS experiment was used, and the experiment

types and core mappings are shown in Figure 8. The specific details of the

15

experiments are as follows.

• ADAS : Performance evaluation using the minimum number of CPU and

memory BW without resource interference

• ADAS + SMW + ISO. : Performance evaluation using the minimum

number of CPU and memory BW when Synthetic Memory Workload

(SMW), which performs memory access with best effort, was executed in

the cluster different from the ADAS cluster, and memory BW contention

was minimized through isolation

Figure 8: Core mapping for CPU and memory BW isolation

By referring to Table 4, it can be observed that synthetic memory workload

has minimal impact on ADAS performance. When CPU and memory BW

isolation is implemented, it is evident that the E2E response time and collision

ratio decrease to levels similar to that achieved when ADAS operates alone.

Table 4: Performance isolation with minimum CPU and memory BW
Workload E2E Response Time Collision Ratio

ADAS (No Cont.) 186.24ms 0%

ADAS + SMW + ISO(memory BW Iso.) 187.27ms 0%

16

5 Conclusion

We conducted the study to guarantee the performance of ADAS on integrated

ECU hosting multi-domain applications. First of all, we quantitatively ob-

served the performance degradation of ADAS due to resource contention.

Then, we built LXC-based resource isolation environment. Prior to deriving

the minimum resource requirement for ADAS, we optimized its performance.

With the optimized ADAS, we empirically derived the minimum resource re-

quirement that guarantees the performance of ADAS. Lastly, we confirmed

that performance guarantee of ADAS was attained using the derived mini-

mum resources when running multi-domain applications concurrently. In fu-

ture work, we plan to study on flexible isolation to maximize performance and

completely eliminate mutual interference.

17

References

[1] Marco Di Natale and Alberto Luigi Sangiovanni-Vincentelli. Moving from

federated to integrated architectures in automotive: The role of standards,

methods and tools. Proceedings of the IEEE, 98(4):603–620, 2010.

[2] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato

Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke

Fujii, and Takuya Azumi. Autoware on board: Enabling autonomous vehi-

cles with embedded systems. In 2018 ACM/IEEE 9th International Con-

ference on Cyber-Physical Systems (ICCPS), pages 287–296, 2018.

[3] Byungkyu Park and Chang-Gun Lee. System optimization of ros-based

open source autonomous driving platform on embedded board environ-

ment. In Proceedings of the 6th International Conference on Algorithms,

Computing and Systems, pages 1–7, 2022.

[4] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve

Lemke, Mārtiņš Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin

Mehta, Eugene Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushi-

roda, Michael Reyes, Dmitry Zelenkovsky, and Seonman Kim. Lgsvl simu-

lator: A high fidelity simulator for autonomous driving. In 2020 IEEE 23rd

International Conference on Intelligent Transportation Systems (ITSC),

pages 1–6, 2020.

[5] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui

Sha. Memguard: Memory bandwidth reservation system for efficient per-

18

formance isolation in multi-core platforms. In 2013 IEEE 19th Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages

55–64, 2013.

19

요약(국문초록)

ECU는유지보수하기가어렵고wiring과같은하드웨어비용이들기
때문에, 기존분산되어있던 ECU들이통합되고있다. ECU들이통합됨
에따라, 다중도메인응용들이ADAS와하드웨어자원을공유하여서로
에게영향을주게되었다. 우리는다중도메인응용을동시에호스팅하

는통합 ECU에서 ADAS의성능을보장하는연구를진행하였다. 먼저,
우리는ADAS의성능이공유자원에대한경합에의해영향을받는것을
정량적으로관찰했습니다. 이를통해, ADAS성능보장을위해서ADAS
가요구하는최소한의필요자원이다른다중도메인응용이사용하는자

원들과격리되어 ADAS에할당되어야하는필요성을확인하였다. 그렇
기때문에, ADAS에필요한최소한의자원을다른다중도메인응용에서
사용하는자원과격리할수있도록 LXC를사용하여자원격리환경을
구축했습니다. ADAS의최소자원요구사항을도출하기전, 최소자원
요구사항을줄이기위하여 ADAS 최적화를진행하였다. 이후, ADAS
성능을보장하는최소자원요구사항을본논문에서제시하는알고리즘

을이용하여실험적으로도출하였다. 마지막으로, 다중도메인응용이

동시에실행되는환경에서도출된최소자원으로 ADAS의성능이보장
됨을실험을통해확인하였다.

주요어 : 자율주행, 성능보장, 최소자원

학번 : 2021-25483

20

	1 Introduction
	2 Motivation
	2.1 Performance Degradation of ADAS Due to Shared Resources
	2.2 Optimizing ADAS for Reduced Resource Requirement

	3 Optimizing and Minimum Resource Allocation for ADAS
	3.1 Building LXC-based Environment for Concurrent Execution of Multi-Domain Applications
	3.2 ADAS Optimization via Event-Driven
	3.3 Minimum Resource Requirement to Guarantee ADAS Performance

	4 Experiment Results
	4.1 ADAS Optimization
	4.2 Performance Guarantee of ADAS

	5 Conclusion
	References

<startpage>9
1 Introduction 1
2 Motivation 4
 2.1 Performance Degradation of ADAS Due to Shared Resources 4
 2.2 Optimizing ADAS for Reduced Resource Requirement 6
3 Optimizing and Minimum Resource Allocation for ADAS 8
 3.1 Building LXC-based Environment for Concurrent Execution of Multi-Domain Applications 8
 3.2 ADAS Optimization via Event-Driven 9
 3.3 Minimum Resource Requirement to Guarantee ADAS Performance 10
4 Experiment Results 12
 4.1 ADAS Optimization 12
 4.2 Performance Guarantee of ADAS 12
5 Conclusion 17
References 18
</body>

