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Abstract

Real-Time Fault Tolerance using
Performance/Lockstep Switch

Haejoo Jeon
Department of Computer Science and Engineering

The Graduate School
Seoul National University

In modern automotive systems, ECU executes various tasks, from safety-critical

to non-critical functions. Soft errors, caused by transient faults in hardware or

software, can threaten the overall system reliability and safety. Therefore, it

is essential to establish efficient resource allocation and scheduling strategies

to mitigate the impact of these errors. This paper proposes three key ideas

to address these issues: state-specific criticality, dynamic core execution mode,

and dropping non-critical tasks when an error occurs. First, we introduce the

concept of assigning task criticality based on different states and contexts, con-

sidering the specific physical environment in which the task is executed. Second,

we propose a dynamic core execution mode that adjusts how each core executes

based on the criticality of the task. Finally, we present a failure handling strat-

egy that aborts the execution of non-critical tasks in the event of a failure and

ensures the re-execution of critical tasks. Experimental results show that these

ideas can significantly reduce the number of required cores. We also discuss

potential extensions of this research.
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1 Introduction

In recent years, the exponential growth of artificial intelligence(AI) and rapid

advancements in semiconductor processing technologies have accompanied it.

This synergistic progress has sparked significant interest in autonomous driv-

ing, where the execution of numerous AI tasks on high-performance semicon-

ductors has become a reality. However, ensuring safety becomes essential for

autonomous driving to achieve widespread commercialization [1]. Among the

myriad challenges that hinder this objective, a prominent one is the occurrence

of transient hardware bit-flips known as soft errors. These soft errors are in-

duced by the impact of energetic particles, such as neutrons, on the transistors

of integrated circuits [2]. Importantly, these soft errors can manifest regardless

of the completeness or defectiveness of the underlying hardware or software

components, making them an unavoidable concern in system design. Antici-

pating and preventing soft errors in advance is difficult due to their inherent

probabilistic nature.

Moreover, the rate of soft errors is expected to increase exponentially as semi-

conductor technologies advance. Previous researches, such as [3, 4], have pro-

vided empirical evidence demonstrating that the frequency of soft errors esca-

lates with the increasing complexity of semiconductors, diminishing transistor

sizes, and reduced operating voltages. Also, it has also been suggested that

these soft errors could be life-threatening especially in autonomous driving [5].

To mitigate the adverse effects of soft errors and enhance the resilience of au-

tonomous driving systems, redundancy has emerged as a prevalent technique.

Redundancy-based approaches aim to detect and recover from errors by em-
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Figure 1: Lockstep

ploying duplicate or triplicate instances of critical components. The lockstep

approach has gained widespread adoption in real-time systems where integrity

and strict correctness are important [6]. Lockstep execution involves running

multiple replicas of a task on separate cores and comparing their outputs at

each cycle. If a difference is detected, an exception is raised, indicating the

presence of a potential error. The lockstep approach offers exceptional accu-

racy, with an error detection rate exceeding 99% [7]. However, it comes at the

cost of inefficient resource utilization and the underutilization of parallelism

in multicore systems. In autonomous driving, where ECUs(Electronic Control

Units) must execute computationally intensive AI tasks, failing to harness the

parallelism offered by multicore architectures can lead to bad resource utiliza-

tion and reduced system performance.

Recognizing the limitations of traditional lockstep approaches and the need to

leverage the parallelism inherent in multicore systems, a novel semiconductor

technology has emerged. This technology enables dynamic switching between

lockstep mode and performance mode, ensuring the stability of critical tasks

while fully utilizing the parallelism of non-critical tasks. Companies like ARM
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have initiated hardware-level support for this feature, facilitating the develop-

ment and commercializing of ECUs with performance/lockstep switch func-

tionality. These ECUs enable seamless transitions between lockstep mode,

which maximizes error detection accuracy, and performance mode, which op-

timizes multicore parallelism to enhance system performance.

In light of these advancements, this study presents a comprehensive scheduling

framework specifically tailored to the demands of autonomous driving systems.

The proposed framework facilitates dynamic mode switching between lockstep

mode, with its high error detection rate, and performance mode, enabling

efficient multicore parallelism utilization. By leveraging the unique capabilities

of newly emerging ECUs, this framework aims to optimize resource utilization,

enhance system efficiency, and ensure autonomous driving systems’ reliable

and safe operation.
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2 Background

In autonomous mobility applications, such as autonomous vehicles, Urban Air

Mobility (UAM), and robotics, achieving accurate and error-free performance

within specified deadlines is of utmost importance. However, due to various

unpredictable factors beyond our control, errors can occur, potentially threat-

ening the integrity of critical tasks. To address this challenge, researchers and

engineers have developed a range of error detection and recovery methodolo-

gies to ensure reliable task execution in the presence of errors. Redundancy,

as a prevalent error detection technique, has garnered significant attention,

with lockstep emerging as a widely adopted approach in autonomous vehicles

due to its exceptional error detection rate exceeding 99%. Other software-

based techniques, such as control flow check (CFC) [8], valid range check [9],

and SW-based instruction-level redundant execution [10, 11], offer alterna-

tives that utilize a single core but may exhibit lower performance. System

designers must select the appropriate method considering the desired error

detection rate and resource utilization trade-offs.

Functional safety standards for the automotive industry, including autonomous

driving, are documented in ISO 26262. This internationally recognized stan-

dard establishes a comprehensive framework for developing and evaluating

safety-critical systems in road vehicles. ISO 26262 covers critical hardware

and software design, verification, and validation. The standard defines a risk

classification system known as Automotive Safety Integrity Level (ASIL) to

assess the safety risks associated with specific functions or systems. ASIL

ratings are categorized into four levels, taking into account severity, expo-
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sure, and controllability criteria [12]. Notably, highest level ASIL D requires

a single-point fault metric (SPFM) of at least 99% to mitigate safety risks

effectively.

Previous studies have pursued diverse approaches to tackle the challenges

posed by varying task criticalities. For instance, [13] suggests distinct be-

haviors for tasks with different levels of criticality, effectively addressing their

requirements. Similarly, [14] introduces a four-mode model that considers

fault tolerance and Quality of Service (QoS) considerations for low criticality

tasks. In our study, we adopt a hierarchical scheduling framework that facili-

tates the implementation of various error detection methods within a multicore

environment.

Resource interfaces are vital in system design within the hierarchical schedul-

ing framework, enabling seamless communication and efficient resource sharing

between parent and child schedulers. At the parent level, the resource interface

allocates resources to child schedulers based on their specific requirements. It

empowers the parent scheduler to effectively coordinate resource allocations,

ensuring optimal resource utilization across the system. At the child level, the

resource interface provides child schedulers with a means to request resources

from the parent scheduler. Through this interface, child schedulers can com-

municate their resource requirements to the parent scheduler, securing the

necessary resources to complete their tasks successfully.

Resource interfaces are pivotal in a hierarchical scheduling framework’s effi-

ciency and reliability. By facilitating efficient communication and resource

allocation between upper and lower-level schedulers, these interfaces ensure
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that tasks are completed within their designated timelines while maintaining

system reliability.

In our study, we leverage the Periodic Resource Model(PRM) technique to

allocate a given resource hierarchically. PRM introduces two parameters, Pi

and Theta, which guarantee a specified resource supply Θ within a defined

time frame Π. As presented in [15], Shin & Lee has proposed supply and

demand functions for PRM schedulability tests. Additionally, [16] extends the

applicability of PRM to multicore systems and defines corresponding supply

and demand functions accordingly. To establish the demand function, we

draw inspiration from the demand model introduced in G-EDF by BAR [17],

employing a similar formula to define the demand calculation.
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3 Proposed Idea

3.1 Adaptive Dynamic Criticality Level Decisions

In a mixed-criticality system, the criticality of tasks is various. Some tasks

may have catastrophic consequences if they encounter errors, while others

may tolerate faults without significant impact. Traditionally, task criticality

is determined without considering the specific physical environment in which

the tasks are executed. However, when we examine real-world scenarios, such

as autonomous driving, it becomes evident that the criticality of a task can

vary depending on the context.

Let us consider the task of pedestrian detection as an example. The critical-

ity of this task would vary depending on the specific driving scenario. For

instance, when performed on a crosswalk with a high density of pedestrians,

accurately detecting pedestrians becomes of utmost importance. On the other

hand, in a highway setting where pedestrians are generally absent, the crit-

icality of pedestrian detection would be significantly lower. Similarly, when

evaluating a suspension system designed to reduce body sway, the criticality

of this task would be higher on a highway where even minor movements can

evoke a sense of threat due to high speeds, compared to a crosswalk. This

state-dependent approach to defining task criticality takes into consideration

not only the geographical characteristics of the driving situation but also the

physical environment. For instance, the criticality of windshield wipers may

vary between sunny weather conditions and heavy rain conditions. By incor-

porating each task’s specific state and context, rather than relying solely on
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worst-case scenarios, this state-dependent method allows for a precise assign-

ment of criticality levels to tasks, facilitating resource optimization.

Pedestrian

Detection

Rollover

Protection

Body & Con-

venience
Wiper

Worst Case ASIL D ASIL D ASIL A ASIL B

Crosswalk ASIL D ASIL B ASIL A ASIL B

Highway ASIL B ASIL D ASIL A ASIL B

Downpour ASIL D ASIL B ASIL A ASIL C

Table 1: Various criticality with driving states

By considering the actual physical environment in which tasks are executed,

we can optimize resource utilization while ensuring task safety. In the Table 1,

where a specific task is used as an example, the criticality of tasks is ranked

differently based on different states. By determining the minimum number

of cores required for each state in this situation, we can identify the optimal

number of cores needed to accommodate the varying criticality levels. This

approach enables us to allocate resources efficiently, matching them to the

specific requirements of each state. Consequently, by incorporating state-

dependent criticality analysis into task scheduling, we can achieve resource

savings while maintaining the necessary level of task safety and reliability.

3.2 Dynamic Core Execution Mode

To reduce the number of cores required for a single state, we propose the dy-

namically convertible lockstep/performance mode. The conventional approach
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Figure 2: Example taskset

Figure 3: (a) Lockstep, (b) Dynamic core execution mode

employs redundant execution using lockstep for all tasks, regardless of their

criticality. However, this method often leads to excessive resource utilization,

potentially compromising real-time performance or resulting in unnecessary

resource allocation. In our proposed method, we aim to minimize the number

of cores needed by adapting the execution method of each core based on the

criticality of the task.

The existing method in Figure 3 (a) executes all tasks in lockstep mode on

the dedicated core, without distinguishing between non-critical and critical

tasks. This approach is inefficient since it allocates twice as many resources to

relatively unimportant non-critical tasks. Our proposed method, illustrated

in Figure 3 (b), involves grouping non-critical tasks and executing them in

performance mode, while critical tasks are executed in lockstep mode. It is

much efficient since our method only runs critical tasks in lockstep mode. The
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grouping of non-critical tasks and determining the number of groups are de-

scribed in Section 3.3. To implement this scheduling approach, we leverage

component-based scheduling, where the component-level scheduler handles the

scheduling of critical and non-critical task groups, while the task-level sched-

uler focuses on scheduling the non-critical tasks within each group.

We ensure complete safety by employing the lockstep method for critical tasks,

while utilizing the performance mode for non-critical tasks to enhance paral-

lelism. As illustrated in Figure 2, τ2, τ3 and τ5, τ6 are grouped and executed in

parallel on two cores in performance mode. Conversely, since tasks τ1, τ4, and

τ7 are critical, they are executed using the lockstep mode to ensure reliability.

Through this mechanism, we can guarantee the reliability of critical tasks and

improve overall schedulability by executing tasks efficiently. By dynamically

adapting the execution mode based on task criticality, we can achieve a balance

between safety and resource optimization, leading to improved performance

and resource utilization in mixed-criticality systems.

3.3 Drop Non-critical Task with Fault

The lockstep method provides immediate detection of faulty situations, espe-

cially soft error. When a task fails to perform a normal computation due to

a soft error, it is crucial to recompute the task within its deadline to ensure

the successful behavior of task. Typically, fault-recovery strategies involve

allocating an extra budget for re-run, as depicted in Figure 4 (a). However,

reserving additional resources for low probability soft-errors (e.g., once every

few hours) can significantly waste resources [3]. To mitigate the excessive allo-
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Figure 4: (a) Extra budget, (b) Drop non-critical task

cation of cores caused by resource waste, we propose an alternative approach

that drop the execution of a group of non-critical tasks in the event of a fault

and utilizae the available resources to re-run the faulted critical task.

By abandoning the execution of the non-critical task group, we temporally

prioritize the re-run of the critical task that experienced the fault. While the

discontinuation of non-critical tasks may lead to a temporary degradation in

quality, it does not result in catastrophic consequences since these tasks are

relatively less significant. Furthermore, these faults are transient and infre-

quent, allowing the subsequent job instances in the non-critical task group to

resume normal execution without disruptions.
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4 Real-Time Fault Tolerance Scheduling Framework

4.1 Task Model

In this study, we aim to determine the minimum number of cores required for

a given task set to ensure safe execution in the presence of soft errors. Let’s

consider a task set, τ = {τ1, τ2, ..., τn}, where each task τi is represented by

(pi, ei, Ci). Here, pi denotes the period of task τ , ei represents the execution

time, and Ci indicates the criticality of the task, defined as Ci = [ci1, ci2, ..., cij ].

cij represents the criticality of task τi in state j. We assumed all tasks have

an implicit deadline, which means the deadline of the task is the same as the

period, pi. And it is assumed that the system designer provides the types of

states and their corresponding criticalities. To verify the schedulability of the

system, we first aim to determine the schedulability of individual components

by dividing the tasks into components.

As shown in Figure 5, the parent-level scheduler is responsible for schedul-

ing multiple workloads, where each workload becomes a resource supply for

scheduling tasks at the child level. Henceforth, we will refer to schedule at the

parent level as component scheduling and at the child level as task scheduling.

The utilization of a task set, denoted as u(task set), represents the sum of

utilizations of all tasks within the set and can be calculated as
∑

(ei/pi).

Therefore, we aim to discuss the schedulability of the proposed scheduling

framework by conducting component-level schedulability tests and task-level

schedulability tests under fault-free conditions, and component-level schedu-

lability tests under fault occurrence. There is no need to discuss the task-level
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Figure 5: Hierarchical scheduling framework

schedulability test under fault occurrence. Our proposed idea 3, which involves

dropping non-critical tasks in the presence of faults, eliminates the necessity

of conducting a separate schedulability check for this group of tasks. Conse-

quently, in the event of a fault, non-critical tasks are immediately dropped

from execution. As a result, the execution of non-critical tasks does not need

to undergo an additional schedulability assessment, as per our proposed ap-

proach.

4.2 EDF Utilization-based Schedulability Test

First, we consider the critical tasks as a single component running on two

bound cores for the given task set. Through this process, we can group the

critical tasks performed in lockstep on two cores and the non-critical tasks

performed on a single core together at the component level. It is necessary

to allocate tasks to the bound cores. This problem is commonly known as

the bin-packing problem, which is an NP-hard problem. We use the well-

13



known heuristic worst-fit to allocate tasks. Once all critical tasks are allocated,

we proceed with an utilization-based schedulability test based on the EDF

(Earliest Deadline First) algorithm. If the sum of utilizations of all critical

tasks allocated to the bound cores is less than 1.0, we can determine that it is

schedulable. In this case, the utilization-based schedulability check is typically

a single core based test method. However, since we execute the duplicate tasks

of lockstep on the bound cores simultaneously, a single core based test method

can be applied.

4.3 Time Demand Analysis

When there are a total of m cores, after allocating critical tasks to m
2 bound

cores, we can allocate non-critical tasks to the remaining utilization space.

This becomes a bin-packing problem of assigning non-critical tasks to m
2 bins.

The difference from the problem in section 4.2 lies in the methodology of

schedulability testing. Allocating non-critical tasks to m
2 bins and determining

if each task is schedulable within its respective bin, or more precisely, within

the supply of its corresponding PRM, can be resolved using time demand

analysis.

Regarding supply, we modified the supply function proposed in [15]. The PRM

Γ = (Θ,Π) can provide resources for Π units of time every Θ units of time. Our

PRM model, being executed on the bound dual cores rather than a single core,

effectively provides 2Π units of resources. Figure 6 shows an example when

supply is given as the worst case. The supply bound function in the worst-case

scenario and the linear supply bound function for convenience are as follows.
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Figure 6: Supply example on worst case

Figure 7: Supply graph on worst case
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Figure 8: Demand example

The linear supply bound function is not exact, but has the advantage of being

more computationally convenient.

Therefore, in EDF, sbf(supply bound function) and lsbf(linear supply bound

function) are given by equation 1, 2, which is equivalent to multiplying the sbf

and lsbf by a factor of 2. The graph of these functions is shown in Figure 7.

sbfΓ(t) = 2 · (b t− (Π−Θ)

Π
c ·Θ+ εs), (1)

where εs = max(t− 2 · (Π−Θ)−Πb t−(Π−Θ)
Π c, 0)

lsbfΓ(t) = 2 · Θ
Π
(t− 2(̇Π−Θ)) (2)

We used the demand from [16]. Figure 8 is simple explanation of demand

function. Let Wi(t) denote workload bound for task τi at time t and let CIi(t)

denote the carry-in demand. Then workload bound Wi(t) defined as

Wi(t) = Ni(t)ei + CIi(t) (3)

, where Ni(t) = b t
pi
c and CIi(t) = min{ei,max{0, t − Ni(t)pi}}. Please note

that we assume an implicit deadline, so some notation may differ from [16, 17].
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Figure 9: Minimum theta value

Then, interference can be defined as

Îi,2 = min{Wi(Ak + pk)− CIi(Ak + pk), Ak + pk − ek} for all i 6= k,

Îk,2 = min{Wi(Ak + pk)− ek − CIi(Ak + pk), Ak}
(4)

Then the demand of τk is

dem(Ak + pk) =

n∑
i=1

Îi,2 + max(Ii,2 − Îi,2) + ek (5)

for all critical tasks τk ∈ Wc and all Ak ≥ 0.

Using these supply and demand values, we determined the parameters Π and Θ

of the PRM. First, the period Π of the PRM component was set as minτi
pi−ei

2 .

As shown in Figure 9, for the internal tasks to execute without starvation, even

in the worst-case scenario where PRM supply is provided at its worst case,

the condition 2(Π−Θ) + e ≤ p must hold for the tasks. At this point, Θ was

excluded and left as an undetermined positive value. The following approach

was taken to find the sub-optimal theta.

Theorem 1. Let non-critical tasks in the core denote as Wn, and critical tasks

as Wc, then PRM utilization of the bound is

Θ+

Π
, where Θ+ = max

0<t<2LCMWn

(√
(t− 2Π)2 + 4ΠdbfWn(t)− (t− 2Π)

4

)
(6)
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Proof. To make tasks in Wn schedulable,

dbfWn(t) ≤ lsbfΓ(t) = 2 · Θ
Π
(t− 2(̇Π−Θ)) <= sbfΓ(t) (7)

From Eq. 7, we can derive the below equation.

Θ ≥
√
(t− 2Π)2 + 4ΠdbfWn(t)− (t− 2Π)

4
(8)

From theorem 1 for m
2 bins, we can consider the non-critical tasks as schedu-

lable within their respective groups. This determination is independent of the

schedulability of the PRM component itself and assumes that the PRM com-

ponent executes properly as a result of being schedulable. Thus, we need to

test whether the PRM component can execute even at the component level,

or in other words, on the bound cores.

Theorem 2. Assume critical task set Wc and PRM Γ = (Π,Θ) has allocated

on bound core. Component-level of core is schedulable when

∑
τi∈Wc

ei
pi

+
Θ

Π
≤ 1.0 (9)

Proof. Despite the physical composition of the bound cores as dual cores,

the simultaneous execution of all components using both cores enables us to

consider them as a single core for our analysis. Within the EDF scheduling

framework, tasks are considered schedulable if the sum of their utilizations is

less than 1.0. Therefore, based on equation Eq. 9, we can conclude that both

the critical tasks and the PRM component are schedulable.
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The PRM supplies resources to internal tasks while acting as a single task

when regarded from a higher level. Therefore, we applied the utilization-

based schedulability test as in section a. Since we originally derived Π and Θ

within the remaining utilization bound on a single core, the PRM component

itself is also schedulable.

4.4 Response Time Analysis

If a fault is detected to have actually occurred, the execution of non-critical

tasks must be dropped immediately, and the critical task should be re-executed.

Therefore, it is necessary to verify that the re-execution in the event of a fault

can be completed within the deadline. For this purpose, EDF single-core re-

sponse time analysis can be utilized. Unlike the well-known rate monotonic

(RM) scheduling, EDF does not have a predetermined critical instant. There-

fore, it is not possible to calculate the response time with the condition that all

tasks are released simultaneously, as in RM. To determine the critical instant,

Spuri [18] employs the sliding window method, which involves considering each

task individually to identify the point at which the interference from other

tasks reaches its maximum, indicating the occurrence of the critical instant.

If a soft error occurs, the affected critical task must be re-executed within

the deadline. Non-critical tasks are dropped during this process, so they need

not be considered. However, other critical tasks that did not experience er-

rors must still adhere to their timing constraints, regardless of re-execution.

Therefore, we considered re-execution as a form of interference. In the itera-

tive response time formula, we added the fixed interference amount that the
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task can receive during that time period.

Let si(a) denote the time in which the first instance of τi arrived. Also, then

the interference from higher priority workload HWi(a, t) is

HWi(a, t) =
∑

j 6=i & pj≤a+pi

min
{⌈ t

pj

⌉
, 1 +

⌊a+ pi − pj
pj

⌋}
ej + δi(a, t)ei (10)

where si = a−
⌊

a
pi

⌋
pi and

δi(a, t) =


min

{⌈
t−si(a)

pi

⌉
, 1 +

⌈
a
pi

⌉}
if t > si(a)

0 otherwise
(11)

From Eq. 10, the busy period Li(a) could be defined.


L
(0)
i (a) =

∑
j 6=i & pj≤a+pi

ej + I{si(a)=0} · ei

L
(m+1)
i (a) = HWi

(
a, L

(m)
i (a)

)
+ rerun capacity

(12)

where

I{si(a)=0} =


1 if si(a) = 0,

0 otherwise

Finally, worst-case response time of τi is

ri = max
a≥0

{
max{ei, Li(a)− a}

}
(13)

In the context of single core EDF response time analysis (RTA), the precise

critical instant is not predetermined. However, it is known that the critical

instant occurs when all other tasks are simultaneously released. To determine
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the critical instant, we employ the sliding window method, which involves con-

sidering each task individually to identify the point at which the interference

from other tasks reaches its maximum, indicating the occurrence of the critical

instant.
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5 Experiments

In the experimental section of our research, we evaluate three key contribu-

tions.

• Adaptive dynamic criticality level decisions

• Dynamic core execution mode

• Drop non-critical tasks with fault

Specifically, we focus on evaluating two aspects: The impacts of criticality per

state and the scheduling mechanism’s impacts. These two contributions, the

”Dynamic core execution mode” and the ”Drop non-critical task with fault”

techniques, are evaluated together to assess their effectiveness compared to

existing approaches.

5.1 Impacts of Dynamic Core Execution Mode and Drop Non-critical

Task with Fault

We investigated the impact of Idea 2 and Idea 3 on the required number of

cores. The detailed parameters are as follows.

• Total iteration number: 1,000

• The number of tasks in task set: 10

• Period: log-uniform on [10, 500]

• Max utilization of task: 0.3
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Figure 10: Compare method experiment

Similar to the previous experiment, we compared the baseline with the appli-

cation of only idea 2, and the application of both idea 2 and idea 3. Except for

the baseline, we observed that as the percentage of critical tasks in the task

set increased, the required number of cores seam to be increased. However,

we noticed that the baseline consistently required many cores regardless of the

criticality percentage. In the case of applying only idea 2, we observed that it

required more cores when the critical task ratio was moderately higher com-

pared to the scenario where the task set consisted entirely of critical tasks.

This can be attributed to the overhead of grouping non-critical tasks into

PRMs. If there are not enough non-critical tasks assigned to the PRM to take

advantage of parallelism within the PRM, the loss due to grouping outweighs

the benefits of parallelization. However, in general, where the ratio of critical

tasks is lower than that of non-critical tasks, both methods incorporating our
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ideas required fewer cores than the baseline.

This finding demonstrates that our proposed ideas can effectively reduce the

required number of cores, especially when the critical task ratio is lower than

that of non-critical tasks. Nonetheless, it is important to carefully consider

the overhead introduced while grouping non-critical tasks and the available

parallelism within PRMs when determining the optimal resource allocation

strategy. Further analysis and optimization of these factors can lead to more

efficient resource utilization in mixed-criticality systems.

5.2 Impacts of Criticality Per State

In the second experiment, we experimented to investigate the impact of assign-

ing criticality based on states on the required number of cores. The experiment

was conducted to determine the required number of cores based on the ratio of

critical tasks within the task set and the number of states. These parameters

were tested using the given task set to analyze the results.

• Total iteration number: 1,000

• The number of tasks in task set: 40

• Period: uniform on [10, 100]

• Max utilization of task: 0.1

As shown in Figure 11 (a), when applying idea 1, it exhibited a more atten-

uated growth trend as the ratio of critical tasks within the task set increased

compared to the baseline. Additionally, in all cases, it was observed that idea 1
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Figure 11: (a) criticality percentage experiment, (b) state experiment

required fewer states compared to the baseline. In Figure 11 (b), the minimum

required number of cores, which varies depending on the number of states set,

can be observed. Without idea1 required the same number of cores regardless

of the number of states. At the same time, ours showed a reduction in the

required number of cores as the number of states increased, indicating a more

refined criticality differentiation.
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6 Conclusion

In this paper, we have presented a comprehensive approach for resource opti-

mization and reliability in mixed-criticality systems. Our contributions include

the consideration of adaptive dynamic criticality level decisions, dynamic core

execution mode, and dropping non-critical tasks with faults. Through exper-

imental evaluation, we have demonstrated the effectiveness of our approach

in reducing the required number of cores while maintaining task safety and

reliability.

By incorporating state-dependent criticality analysis, we have shown that the

criticality of tasks can vary based on the specific physical environment in which

they are executed. This approach enables us to allocate resources efficiently,

matching them to the particular requirements of each state. Moreover, our

dynamic core execution mode allows for adapting execution methods based on

task criticality, improving resource utilization and performance. Additionally,

by dropping non-critical tasks in the event of a fault and prioritizing the re-

run of critical tasks, we have mitigated resource waste caused by excessive

allocation for low probability soft errors. This fault-handling strategy ensures

the reliability of critical tasks while minimizing disruptions to non-critical

tasks.

Furthermore, our scheduling framework can be improved by applying various

error detection methods, not just simple lockstep. Considering these different

error detection methods can better reflect real-world situations. For example,

you can more appropriately meet the error detection rates required by the four

ASIL levels.
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In conclusion, our research has contributed to resource optimization in mixed-

criticality systems. By incorporating our proposed ideas, we have demon-

strated the potential for reducing the required number of cores while main-

taining task safety and reliability. Integrating various error detection methods

and exploring adaptive approaches are promising avenues for future research,

enabling further enhancements in reliability, resource utilization, and schedu-

lability in mixed-criticality systems.
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요약(국문초록)

자율주행분야에서 ECU는안전에중요한기능부터중요하지않은
기능까지광범위한작업을실행하게된다. 그러나소프트에러로인한

비트플립현상은전체시스템신뢰성과안전성을위협할수있다. 따라

서이러한오류의영향을없애기위해높은정확도의에러감지율을가진

방법론의사용과함께효율적인리소스활용이필요하다. 본논문에서는

이러한문제를해결하기위한세가지핵심아이디어, 즉상태별중요도,

동적 코어실행모드, 오류 발생시중요하지않은태스크실행삭제를

제안한다. 첫째, 작업이실행되는특정물리적환경을고려하여다양한

상황에따라작업의중요도를할당하는아이디어를제안한다. 둘째, 태

스크의중요도에따라각코어의실행방식을전환하는동적코어실행

모드를제안한다. 마지막으로, 장애 발생 시중요하지않은태스크의

실행을중단하고중요태스크의재실행을데드라인내에완료하는장애

처리전략을제시한다. 실험결과를통해이러한아이디어를적용했을

때작업안전성을유지하면서필요한코어수를크게줄일수있음을확

인했다.

주요어 : 실시간시스템, 장애허용시스템, 동적전환

학번 : 2021-20935
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